
www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Chapter 1: Algorithm Basics

Approach

Algorithms and Data Structures

Pseudocode

Algorithm Features

Practical Considerations

Summary

Exercises

Chapter 2: Numerical Algorithms

Randomizing Data

Finding Greatest Common Divisors

Performing Exponentiation

Working with Prime Numbers

Performing Numerical Integration

Finding Zeros

Summary

Exercises

Chapter 3: Linked Lists

Basic Concepts

Singly Linked Lists

Doubly Linked Lists

Sorted Linked Lists

Linked-List Algorithms

2

www.allitebooks.com

http://www.allitebooks.org

Linked List Selectionsort

Multithreaded Linked Lists

Linked Lists with Loops

Summary

Exercises

Chapter 4: Arrays

Basic Concepts

One-dimensional Arrays

Nonzero Lower Bounds

Triangular Arrays

Sparse Arrays

Matrices

Summary

Exercises

Chapter 5: Stacks and Queues

Stacks

Queues

Summary

Exercises

Chapter 6: Sorting

O(N2) Algorithms

O(N log N) Algorithms

Sub O(N log N) Algorithms

Summary

3

www.allitebooks.com

http://www.allitebooks.org

Exercises

Chapter 7: Searching

Linear Search

Binary Search

Interpolation Search

Summary

Exercises

Chapter 8: Hash Tables

Hash Table Fundamentals

Chaining

Open Addressing

Summary

Exercises

Chapter 9: Recursion

Basic Algorithms

Graphical Algorithms

Backtracking Algorithms

Selections and Permutations

Recursion Removal

Summary

Exercises

Chapter 10: Trees

Tree Terminology

Binary Tree Properties

4

www.allitebooks.com

http://www.allitebooks.org

Tree Representations

Tree Traversal

Sorted Trees

Threaded Trees

Specialized Tree Algorithms

Summary

Exercises

Chapter 11: Balanced Trees

AVL Trees

2-3 Trees

B-Trees

Balanced Tree Variations

Summary

Exercises

Chapter 12: Decision Trees

Searching Game Trees

Searching General Decision Trees

Summary

Exercises

Chapter 13: Basic Network Algorithms

Network Terminology

Network Representations

Traversals

Finding Paths

5

www.allitebooks.com

http://www.allitebooks.org

Summary

Exercises

Chapter 14: More Network Algorithms

Topological Sorting

Cycle Detection

Map Coloring

Maximal Flow

Summary

Exercises

Chapter 15: String Algorithms

Matching Parentheses

Pattern Matching

String Searching

Calculating Edit Distance

Summary

Exercises

Chapter 16: Cryptography

Terminology

Transposition Ciphers

Substitution Ciphers

Block Ciphers

Public-Key Encryption and RSA

Other Uses for Cryptography

Summary

6

www.allitebooks.com

http://www.allitebooks.org

Exercises

Chapter 17: Complexity Theory

Notation

Complexity Classes

Reductions

NP-Hardness

Detection, Reporting, and Optimization Problems

NP-Complete Problems

Summary

Exercises

Chapter 18: Distributed Algorithms

Types of Parallelism

Distributed Algorithms

Summary

Exercises

Chapter 19: Interview Puzzles

Asking Interview Puzzle Questions

Answering Interview Puzzle Questions

Summary

Exercises

Appendix A: Summary of Algorithmic Concepts

Chapter 1: Algorithm Basics

Chapter 2: Numeric Algorithms

Chapter 3: Linked Lists

7

www.allitebooks.com

http://www.allitebooks.org

Chapter 4: Arrays

Chapter 5: Stacks and Queues

Chapter 6: Sorting

Chapter 7: Searching

Chapter 8: Hash Tables

Chapter 9: Recursion

Chapter 10: Trees

Chapter 11: Balanced Trees

Chapter 12: Decision Trees

Chapter 13: Basic Network Algorithms

Chapter 14: More Network Algorithms

Chapter 15: String Algorithms

Chapter 16: Cryptography

Chapter 17: Complexity Theory

Chapter 18: Distributed Algorithms

Chapter 19: Interview Puzzles

Appendix B: Solutions to Exercises

Chapter 1: Algorithm Basics

Chapter 2: Numerical Algorithms

Chapter 3: Linked Lists

Chapter 4: Arrays

Chapter 5: Stacks and Queues

Chapter 6: Sorting

Chapter 7: Searching

8

www.allitebooks.com

http://www.allitebooks.org

Chapter 8: Hash Tables

Chapter 9: Recursion

Chapter 10: Trees

Chapter 11: Balanced Trees

Chapter 12: Decision Trees

Chapter 13: Basic Network Algorithms

Chapter 14: More Network Algorithms

Chapter 15: String Algorithms

Chapter 16: Encryption

Chapter 17: Complexity Theory

Chapter 18: Distributed Algorithms

Chapter 19: Interview Puzzles

Glossary

Introduction

9

www.allitebooks.com

http://www.allitebooks.org

Chapter 1

Algorithm Basics

Before you jump into the study of algorithms, you need a little
background. To begin with, you need to know that, simply stated, an
algorithm is a recipe for getting something done. It defines the steps for
performing a task in a certain way.

That definition seems simple enough, but no one writes algorithms for
performing extremely simple tasks. No one writes instructions for how to
access the fourth element in an array. It is just assumed that this is part of
the definition of an array and that you know how to do it (if you know
how to use the programming language in question).

Normally people write algorithms only for difficult tasks. Algorithms
explain how to find the solution to a complicated algebra problem, how to
find the shortest path through a network containing thousands of streets, or
how to find the best mix of hundreds of investments to optimize profits.

This chapter explains some of the basic algorithmic concepts you should
understand if you want to get the most out of your study of algorithms.

It may be tempting to skip this chapter and jump to studying specific
algorithms, but you should at least skim this material. Pay close attention
to the section “Big O Notation,” because a good understanding of runtime
performance can mean the difference between an algorithm performing its
task in seconds, hours, or not at all.

Approach
To get the most out of an algorithm, you must be able to do more than
simply follow its steps. You need to understand the following:

• The algorithm's behavior. Does it find the best possible solution,
or does it just find a good solution? Could there be multiple best
solutions? Is there a reason to pick one “best” solution over the
others?

10

www.allitebooks.com

http://www.allitebooks.org

• The algorithm's speed. Is it fast? Slow? Is it usually fast but
sometimes slow for certain inputs?

• The algorithm's memory requirements. How much memory will
the algorithm need? Is this a reasonable amount? Does the
algorithm require billions of terabytes more memory than a
computer could possibly have (at least today)?

• The main techniques the algorithm uses. Can you reuse those
techniques to solve similar problems?

This book covers all these topics. It does not, however, attempt to cover
every detail of every algorithm with mathematical precision. It uses an
intuitive approach to explain algorithms and their performance, but it does
not analyze performance in rigorous detail. Although that kind of proof
can be interesting, it can also be confusing and take up a lot of space,
providing a level of detail that is unnecessary for most programmers. This
book, after all, is intended primarily for programming professionals who
need to get a job done.

This book's chapters group algorithms that have related themes.
Sometimes the theme is the task they perform (sorting, searching, network
algorithms), sometimes it's the data structures they use (linked lists,
arrays, hash tables, trees), and sometimes it's the techniques they use
(recursion, decision trees, distributed algorithms). At a high level, these
groupings may seem arbitrary, but when you read about the algorithms,
you'll see that they fit together.

In addition to those categories, many algorithms have underlying themes
that cross chapter boundaries. For example, tree algorithms (Chapters 10,
11, and 12) tend to be highly recursive (Chapter 9). Linked lists (Chapter
3) can be used to build arrays (Chapter 4), hash tables (Chapter 8), stacks
(Chapter 5), and queues (Chapter 5). The ideas of references and pointers
are used to build linked lists (Chapter 3), trees (Chapters 10, 11, and 12),
and networks (Chapters 13 and 14). As you read, watch for these common
threads. Appendix A summarizes common strategies programs use to
make these ideas easier to follow.

11

Algorithms and Data
Structures
An algorithm is a recipe for performing a certain task. A data structure is
a way of arranging data to make solving a particular problem easier. A
data structure could be a way of arranging values in an array, a linked list
that connects items in a certain pattern, a tree, a graph, a network, or
something even more exotic.

Often algorithms are closely tied to data structures. For example, the edit
distance algorithm described in Chapter 15 uses a network to determine
how similar two strings are. The algorithm is tied closely to the network
and won't work without it.

Often an algorithm says, “Build a certain data structure and then use it in a
certain way.” The algorithm can't exist without the data structure, and
there's no point in building the data structure if you don't plan to use it
with the algorithm.

Pseudocode
To make the algorithms described in this book as useful as possible, they
are first described in intuitive English terms. From this high-level
explanation, you should be able to implement the algorithm in most
programming languages.

Often, however, an algorithm's implementation contains niggling little
details that can make implementation hard. To make handling those
details easier, the algorithms are also described in pseudocode.
Pseudocode is text that is a lot like a programming language but that is not
really a programming language. The idea is to give you the structure and
details you would need to implement the algorithm in code without tying
the algorithm to a particular programming language. Hopefully you can
translate the pseudocode into actual code to run on your computer.

12

The following snippet shows an example of pseudocode for an algorithm
that calculates the greatest common divisor (GCD) of two integers:

// Find the greatest common divisor of a and b.
// GCD(a, b) = GCD(b, a Mod b).
Integer: Gcd(Integer: a, Integer: b)

While (b != 0)
// Calculate the remainder.
Integer: remainder = a Mod b
// Calculate GCD(b, remainder).
a = b
b = remainder

End While
// GCD(a, 0) is a.
Return a

End Gcd

The Mod Operator
The modulus operator, which is written Mod in the pseudocode, means the
remainder after division. For example, 13 Mod 4 is 1 because 13 divided by 4 is 3
with a remainder of 1.

The equation 13 Mod 4 is usually pronounced “13 mod 4” or “13 modulo 4.”

The pseudocode starts with a comment. Comments begin with the
characters // and extend to the end of the line.

The first actual line of code is the algorithm's declaration. This algorithm
is called Gcd and returns an integer result. It takes two parameters named
a and b, both of which are integers.

Note
Chunks of code that perform a task, optionally returning a result, are variously called
routines, subroutines, methods, procedures, subprocedures, or functions.

The code after the declaration is indented to show that it is part of the
method. The first line in the method's body begins a While loop. The
code indented below the While statement is executed as long as the
condition in the While statement remains true.

The While loop ends with an End While statement. This statement
isn't strictly necessary, because the indentation shows where the loop ends,
but it provides a reminder of what kind of block of statements is ending.

13

The method exits at the Return statement. This algorithm returns a
value, so this Return statement indicates which value the algorithm
should return. If the algorithm doesn't return any value, such as if its
purpose is to arrange values or build a data structure, the Return
statement isn't followed by a return value.

The code in this example is fairly close to actual programming code.
Other examples may contain instructions or values described in English.
In those cases, the instructions are enclosed in angle brackets (<>) to
indicate that you need to translate the English instructions into program
code.

Normally when a parameter or variable is declared (in the Gcd algorithm,
this includes the parameters a and b and the variable remainder), its
data type is given before it, followed by a colon, as in Integer:
remainder. The data type may be omitted for simple integer looping
variables, as in For i = 1 To 10.

One other feature that is different from some programming languages is
that a pseudocode For loop may include a Step statement indicating the
value by which the looping variable is changed each trip through the loop.
A For loop ends with a Next i statement (where i is the looping
variable) to remind you which loop is ending.

For example, consider the following pseudocode:

For i = 100 To 0 Step -5
// Do something...

Next i

This code is equivalent to the following C# code:

for (int i = 100; i >= 0; i -= 5)
{

// Do something...
}

The pseudocode used in this book uses If-Then-Else statements,
Case statements, and other statements as needed. These should be
familiar to you from your knowledge of real programming languages.
Anything else that the code needs is spelled out in English.

14

One basic data structure that may be unfamiliar to you depending on
which programming languages you know is a List. A List is similar
to a self-expanding array. It provides an Add method that lets you add an
item to the end of the list. For example, the following pseudocode creates
a List Of Integer that contains the numbers 1 through 10:

List Of Integer: numbers
For i = 1 To 10

numbers.Add(i)
Next i

After a list is initialized, the pseudocode can use it as if it were a normal
array and access items anywhere in the list. Unlike arrays, lists also let
you add and remove items from any position.

Many algorithms in this book are written as methods or functions that
return a result. The method's declaration begins with the result's data type.
If a method performs some task and doesn't return a result, it has no data
type.

The following pseudocode contains two methods:

// Return twice the input value.
Integer: DoubleIt(Integer: value)

Return 2 * value
End DoubleIt
// The following method does something and doesn't
return a value.
DoSomething(Integer: values[])

// Some code here.
...

End DoSomething

The DoubleIt method takes an integer as a parameter and returns an
integer. The code doubles the input value and returns the result.

The DoSomething method takes as a parameter an array of integers
named values. It performs a task and doesn't return a result. For example,
it might randomize or sort the items in the array. (Note that this book
assumes that arrays start with the index 0. For example, an array
containing three items has indices 0, 1, and 2.)

Pseudocode should be intuitive and easy to understand, but if you find
something that doesn't make sense to you, feel free to post a question on

15

the book's discussion forum at www.wiley.com/go/
essentialalgorithms or e-mail me at
RodStephens@CSharpHelper.com. I'll point you in the right
direction.

One problem with pseudocode is that it has no compiler to detect errors.
As a check of the basic algorithm, and to give you some actual code to use
for a reference, C# implementations of most of the algorithms and many
of the exercises are available for download on the book's website.

Algorithm Features
A good algorithm must have three features: correctness, maintainability,
and efficiency.

Obviously if an algorithm doesn't solve the problem for which it was
designed, it's not much use. If it doesn't produce correct answers, there's
little point in using it.

Note
Interestingly, some algorithms produce correct answers only some of the time but are still
useful. For example, an algorithm may be able to give you some information with a
certain probability. In that case you may be able to rerun the algorithm many times to
increase your confidence that the answer is correct. Fermat's primality test, described in
Chapter 2, is this kind of algorithm.

If an algorithm isn't maintainable, it's dangerous to use in a program. If an
algorithm is simple, intuitive, and elegant, you can be confident that it is
producing correct results, and you can fix it if it doesn't. If the algorithm is
intricate, confusing, and convoluted, you may have a lot of trouble
implementing it, and you will have even more trouble fixing it if a bug
arises. If it's hard to understand, how can you know if it is producing
correct results?

Note
This doesn't mean it isn't worth studying confusing and difficult algorithms. Even if you
have trouble implementing an algorithm, you may learn a lot in the attempt. Over time
your algorithmic intuition and skill will increase, so algorithms you once thought were
confusing will seem easier to handle. You must always test all algorithms thoroughly,
however, to make sure they are producing correct results.

16

http://www.wiley.com/go/essentialalgorithms
http://www.wiley.com/go/essentialalgorithms
d:\control\pi\scripts\working\tmp\1118612760.epub\oebps\mailto:RodStephens@CSharpHelper.com

Most developers spend a lot of effort on efficiency, and efficiency is
certainly important. If an algorithm produces a correct result and is simple
to implement and debug, it's still not much use if it takes seven years to
finish or if it requires more memory than a computer can possibly hold.

In order to study an algorithm's performance, computer scientists ask how
its performance changes as the size of the problem changes. If you double
the number of values the algorithm is processing, does the runtime
double? Does it increase by a factor of 4? Does it increase exponentially
so that it suddenly takes years to finish?

You can ask the same questions about memory usage or any other
resource that the algorithm requires. If you double the size of the problem,
does the amount of memory required double?

You can also ask the same questions with respect to the algorithm's
performance under different circumstances. What is the algorithm's
worst-case performance? How likely is the worst case to occur? If you run
the algorithm on a large set of random data, what is its average-case
performance?

To get a feeling for how problem size relates to performance, computer
scientists use Big O notation, described in the following section.

Big O Notation
Big O notation uses a function to describe how the algorithm's worst-case
performance relates to the problem size as the size grows very large. (This
is sometimes called the program's asymptotic performance.) The function
is written within parentheses after a capital letter O.

For example, O(N2) means an algorithm's runtime (or memory usage or
whatever you're measuring) increases as the square of the number of
inputs N. If you double the number of inputs, the runtime increases by
roughly a factor of 4. Similarly, if you triple the number of inputs, the
runtime increases by a factor of 9.

Note

17

Often O(N2) is pronounced “order N squared.” For example, you might say, “The
quicksort algorithm described in Chapter 6 has a worst-case performance of order N
squared.”

There are five basic rules for calculating an algorithm's Big O notation:
1. If an algorithm performs a certain sequence of steps f(N) times
for a mathematical function f, it takes O(f(N)) steps.
2. If an algorithm performs an operation that takes O(f(N)) steps
and then performs a second operation that takes O(g(N)) steps for
functions f and g, the algorithm's total performance is O(f(N) +
g(N)).
3. If an algorithm takes O(f(N) + g(N)) and the function f(N) is
greater than g(N) for large N, the algorithm's performance can be
simplified to O(f(N)).
4. If an algorithm performs an operation that takes O(f(N)) steps,
and for every step in that operation it performs another O(g(N))
steps, the algorithm's total performance is O(f(N) × g(N)).
5. Ignore constant multiples. If C is a constant, O(C × f(N)) is the
same as O(f(N)), and O(f(C × N)) is the same as O(f(N)).

These rules may seem a bit formal, with all the f(N) and g(N), but they're
fairly easy to apply. If they seem confusing, a few examples should make
them easier to understand.

Rule 1
If an algorithm performs a certain sequence of steps f(N) times for a
mathematical function f, it takes O(f(N)) steps.

Consider the following algorithm, written in pseudocode, for finding the
largest integer in an array:

Integer: FindLargest(Integer: array[])
Integer: largest = array[0]
For i = 1 To <largest index>

If (array[i] > largest) Then largest =
array[i]

Next i
Return largest

End FindLargest

18

The FindLargest algorithm takes as a parameter an array of integers
and returns an integer result. It starts by setting the variable largest
equal to the first value in the array.

It then loops through the remaining values in the array, comparing each to
largest. If it finds a value that is larger than largest, the program
sets largest equal to that value.

After it finishes the loop, the algorithm returns largest.

This algorithm examines each of the N items in the array once, so it has
O(N) performance.

Note
Often algorithms spend most of their time in loops. There's no way an algorithm can
execute more than N steps with a fixed number of code lines unless it contains some sort
of loop.

Study an algorithm's loops to figure out how much time it takes.

Rule 2
If an algorithm performs an operation that takes O(f(N)) steps and then
performs a second operation that takes O(g(N)) steps for functions f and
g, the algorithm's total performance is O(f(N) + g(N)).

If you look again at the FindLargest algorithm shown in the
preceding section, you'll see that a few steps are not actually inside the
loop. The following pseudocode shows the same steps, with their runtime
order shown to the right in comments:

Integer: FindLargest(Integer: array[])
Integer: largest =

array[0] // O(1)
For i = 1 To <largest

index> // O(N)
If (array[i] > largest) Then largest =

array[i]
Next i

Return
largest //
O(1)
End FindLargest

19

This algorithm performs one setup step before it enters its loop and then
performs one more step after it finishes the loop. Both of those steps have
performance O(1) (they're each just a single step), so the total runtime for
the algorithm is really O(1 + N + 1). You can use normal algebra to
combine terms to rewrite this as O(2 + N).

Rule 3
If an algorithm takes O(f(N) + g(N)) and the function f(N) is greater than
g(N) for large N, the algorithm's performance can be simplified to
O(f(N)).

The preceding example showed that the FindLargest algorithm has
runtime O(2 + N). When N grows large, the function N is larger than the
constant value 2, so O(2 + N) simplifies to O(N).

Ignoring the smaller function lets you focus on the algorithm's asymptotic
behavior as the problem size becomes very large. It also lets you ignore
relatively small setup and cleanup tasks. If an algorithm spends some time
building simple data structures and otherwise getting ready to perform a
big computation, you can ignore the setup time as long as it's small
compared to the length of the main calculation.

Rule 4
If an algorithm performs an operation that takes O(f(N)) steps, and for
every step in that operation it performs another O(g(N)) steps, the
algorithm's total performance is O(f(N) + g(N)).

Consider the following algorithm that determines whether an array
contains any duplicate items. (Note that this isn't the most efficient way to
detect duplicates.)

Boolean: ContainsDuplicates(Integer: array[])
// Loop over all of the array's items.
For i = 0 To <largest index>

For j = 0 To <largest index>
// See if these two items are duplicates.
If (i != j) Then

If (array[i] == array[j]) Then
Return True

20

www.allitebooks.com

http://www.allitebooks.org

End If
Next j

Next i
// If we get to this point, there are no

duplicates.
Return False

End ContainsDuplicates

This algorithm contains two nested loops. The outer loop iterates over all
the array's N items, so it takes O(N) steps.

For each trip through the outer loop, the inner loop also iterates over the N
items in the array, so it also takes O(N) steps.

Because one loop is nested inside the other, the combined performance is
O(N × N) = O(N2).

Rule 5
Ignore constant multiples. If C is a constant, O(C × f(N)) is the same as
O(f(N)), and O(f(C × N)) is the same as O(f(N)).

If you look again at the ContainsDuplicates algorithm shown in
the preceding section, you'll see that the inner loop actually performs one
or two steps. It performs an If test to see if the indices i and j are the
same. If they are different, it compares array[i] and array[j]. It
may also return the value True.

If you ignore the extra step for the Return statement (it happens at most
only once), and you assume that the algorithm performs both the If
statements (as it does most of the time), the inner loop takes O(2 × N)
steps. Therefore, the algorithm's total performance is O(N × 2 × N) = O(2
× N2).

Rule 5 lets you ignore the factor of 2, so the runtime is O(N2).

This rule really goes back to the purpose of Big O notation. The idea is to
get a feeling for the algorithm's behavior as N increases. In this case,
suppose you increase N by a factor of 2.

If you plug the value 2 × N into the equation 2 × N2, you get the
following:

21

This is 4 times the original value 2 × N2, so the runtime has increased by a
factor of 4.

Now try the same thing with the runtime simplified by Rule 5 to O(N2).
Plugging 2 × N into this equation gives the following:

This is 4 times the original value N2, so the runtime has increased by a
factor of 4.

Whether you use the formula 2 × N2 or just N2, the result is the same:
Increasing the size of the problem by a factor of 2 increases the runtime by
a factor of 4. The important thing here isn't the constant; it's the fact that
the runtime increases as the square of the number of inputs N.

Note
It's important to remember that Big O notation is just intended to give you an idea of an
algorithm's theoretical behavior. Your results in practice may be different. For example,
suppose an algorithm's performance is O(N), but if you don't ignore the constants, the
actual number of steps executed is something like 100,000,000 + N. Unless N is really
big, you may not be able to safely ignore the constant.

Common Runtime Functions
When you study the runtime of algorithms, some functions occur
frequently. The following sections give some examples of a few of the
most common functions. They also give you some perspective so that
you'll know, for example, whether an algorithm with O(N3) performance
is reasonable.

1
An algorithm with O(1) performance takes a constant amount of time no
matter how big the problem is. These sorts of algorithms tend to perform

22

relatively trivial tasks because they cannot even look at all the inputs in
O(1) time.

For example, at one point the quicksort algorithm needs to pick a number
that is in an array of values. Ideally, that number should be somewhere in
the middle of all the values in the array, but there's no easy way to tell
which number might fall nicely in the middle. (For example, if the
numbers are evenly distributed between 1 and 100, 50 would make a good
dividing number.) The following algorithm shows one common approach
for solving this problem:

Integer: DividingPoint(Integer: array[])
Integer: number1 = array[0]
Integer: number2 = array[<last index of array>]
Integer: number3 = array[<last index of array> /

2]
If (<number1 is between number2 and number3>)

Return number1
If (<number2 is between number1 and number3>)

Return number2
Return number3

End MiddleValue

This algorithm picks the values at the beginning, end, and middle of the
array, compares them, and returns whichever item lies between the other
two. This may not be the best item to pick out of the whole array, but
there's a decent chance that it's not too terrible a choice.

Because this algorithm performs only a few fixed steps, it has O(1)
performance and its runtime is independent of the number of inputs N. (Of
course, this algorithm doesn't really stand alone. It's just a small part of a
more complicated algorithm.)

Log N
An algorithm with O(log N) performance typically divides the number of
items it must consider by a fixed fraction at every step.

For example, Figure 1.1 shows a sorted complete binary tree. It's a binary
tree because every node has at most two branches. It's a complete tree
because every level (except possibly the last) is completely full and all the
nodes in the last level are grouped on the left side. It's a sorted tree

23

because every node's value lies between the values of its left and right
child nodes.

Logarithms
The logarithm of a number in a certain log base is the power to which the base
must be raised to get a certain result. For example, log2(8) is 3 because 23 = 8.
Here, 2 is the log base.

Often in algorithms the base is 2 because the inputs are being divided into two
groups repeatedly. As you'll see shortly, the log base isn't really important in Big
O notation, so it is usually omitted.

Figure 1.1 Searching a full binary tree takes O(log N) steps.

The following pseudocode shows one way you might search the tree
shown in Figure 1.1 to find a particular item.

24

Node: FindItem(Integer: target_value)
Node: test_node = <root of tree>
Do Forever

// If we fell off the tree. The value isn't
present.

If (test_node == null) Return null
If (target_value == test_node.Value) Then

// test_node holds the target value. This
is the node we want.

Return test_node
Else If (target_value < test_node.Value) Then

// Move to the left child.
test_node = test_node.LeftChild

Else
// Move to the right child.
test_node = test_node.RightChild

End If
End Do

End FindItem

Chapter 10 covers tree algorithms in detail, but you should be able to get
the gist of the algorithm from the following discussion.

The algorithm declares and initializes the variable test_node so that it
points to the root at the top of the tree. (Traditionally, trees in computer
programs are drawn with the root at the top, unlike real trees.) It then
enters an infinite loop.

If test_node is null, the target value isn't in the tree, so the
algorithm returns null.

Note
null is a special value that you can assign to a variable that should normally point to an
object such as a node in a tree. The value null means “This variable doesn't point to
anything.”

If test_node holds the target value, test_node is the node we're
seeking, so the algorithm returns it.

If target_value, the value we're searching for, is less than the value
in test_node, the algorithm sets test_node equal to its left child.
(If test_node is at the bottom of the tree, its LeftChild value is
null, and the algorithm handles the situation the next time it goes
through the loop.)

25

If test_node's value does not equal target_value and is not less
than target_value, it must be greater than target_value. In
that case, the algorithm sets test_node equal to its right child. (Again,
if test_node is at the bottom of the tree, its RightChild is null,
and the algorithm handles the situation the next time it goes through the
loop.)

The variable test_node moves down through the tree and eventually
either finds the target value or falls off the tree when test_node is
null.

Understanding this algorithm's performance becomes a question of how
far down the tree test_node must move before it finds
target_value or falls off the tree.

Sometimes the algorithm gets lucky and finds the target value right away.
If the target value is 7 in Figure 1.1, the algorithm finds it in one step and
stops. Even if the target value isn't at the root node—for example, if it's
4—the program might have to check only a bit of the tree before stopping.

In the worst case, however, the algorithm needs to search the tree from top
to bottom.

In fact, roughly half the tree's nodes are the nodes at the bottom that have
missing children. If the tree were a full complete tree, with every node
having exactly zero or two children, the bottom level would hold exactly
half the tree's nodes. That means if you search for randomly chosen values
in the tree, the algorithm will have to travel through most of the tree's
height most of the time.

Now the question is, “How tall is the tree?” A full complete binary tree of
height H has 2H nodes. To look at it from the other direction, a full
complete binary tree that contains N nodes has height log2(N). Because
the algorithm searches the tree from top to bottom in the worst (and
average) case, and because the tree has a height of roughly log2(N), the
algorithm runs in O(log2(N)) time.

At this point a curious feature of logarithms comes into play. You can
convert a logarithm from base A to base B using this formula:

26

Setting B = 2, you can use this formula to convert the value O(log2(N) into
any other log base A:

The value 1 / logA(2) is a constant for any given A, and Big O notation
ignores constant multiples, so that means O(log2(N)) is the same as
O(logA(N)) for any log base A. For that reason, this runtime is often
written O(log N) with no indication of the base (and no parentheses to
make it look less cluttered).

This algorithm is typical of many algorithms that have O(log N)
performance. At each step, it divides roughly in half the number of items
it must consider.

Because the log base doesn't matter in Big O notation, it doesn't matter
which fraction the algorithm uses to divide the items it is considering.
This example divides the number of items in half at each step, which is
common for many logarithmic algorithms. But it would still have O(log
N) performance if it divided the remaining items by a factor of 1/10th and
made lots of progress at each step, or if it divided the items by a factor of
9/10ths and made relatively little progress.

The logarithmic function log(N) grows relatively slowly as N increases, so
algorithms with O(log N) performance generally are fast enough to be
useful.

Sqrt N
Some algorithms have O(sqrt(N)) performance (where sqrt is the square
root function), but they're not common, and none are covered in this book.
This function grows very slowly but a bit faster than log(N).

27

N
The FindLargest algorithm described in the earlier section “Rule 1”
has O(N) performance. See that section for an explanation of why it has
O(N) performance.

The function N grows more quickly than log(N) and sqrt(N) but still not
too quickly, so most algorithms that have O(N) performance work quite
well in practice.

N log N
Suppose an algorithm loops over all the items in its problem set and then,
for each loop, performs some sort of O(log N) calculation on that item. In
that case, the algorithm has O(N × log N) or O(N log N) performance.

Alternatively, an algorithm might perform some sort of O(log N)
operation and, for each step in it, do something to each of the items in the
problem.

For example, suppose you have built a sorted tree containing N items as
described earlier. You also have an array of N values and you want to
know which values in the array are also in the tree.

One approach would be to loop through the values in the array. For each
value, you could use the method described earlier to search the tree for
that value. The algorithm examines N items and for each it performs
log(N) steps so the total runtime is O(N log N).

Many sorting algorithms that work by comparing items have an O(N log
N) runtime. In fact, it can be proven that any algorithm that sorts by
comparing items must use at least O(N log N) steps, so this is the best you
can do, at least in Big O notation. Some algorithms are still faster than
others because of the constants that Big O notation ignores.

N2

An algorithm that loops over all its inputs and then for each input loops
over the inputs again has O(N2) performance. For example, the
ContainsDuplicates algorithm described earlier, in the section

28

“Rule 4,” runs in O(N2) time. See that section for a description and
analysis of the algorithm.

Other powers of N, such as O(N3) and O(N4), are possible and are
obviously slower than O(N2).

An algorithm is said to have polynomial runtime if its runtime involves
any polynomial involving N. O(N), O(N2), O(N6), and even O(N4000) are
all polynomial runtimes.

Polynomial runtimes are important because in some sense these problems
can still be solved. The exponential and factorial runtimes described next
grow extremely quickly, so algorithms that have those runtimes are
practical for only very small numbers of inputs.

2N

Exponential functions such as 2N grow extremely quickly, so they are
practical for only small problems. Typically algorithms with these
runtimes look for optimal selection of the inputs.

For example, consider the knapsack problem. You are given a set of
objects that each has a weight and a value. You also have a knapsack that
can hold a certain amount of weight. You can put a few heavy items in the
knapsack, or you can put lots of lighter items in it. The challenge is to
select the items with the greatest total value that fit in the knapsack.

This may seem like an easy problem, but the only known algorithms for
finding the best possible solution essentially require you to examine every
possible combination of items.

To see how many combinations are possible, note that each item is either
in the knapsack or out of it, so each item has two possibilities. If you
multiply the number of possibilities for the items, you get 2 × 2 × … × 2 =
2N total possible selections.

Sometimes you don't have to try every possible combination. For example,
if adding the first item fills the knapsack completely, you don't need to add
any selections that include the first item plus another item. In general,
however, you cannot exclude enough possibilities to narrow the search
significantly.

29

For problems with exponential runtimes, you often need to use
heuristics—algorithms that usually produce good results but that you
cannot guarantee will produce the best possible results.

N!
The factorial function, written N! and pronounced “N factorial,” is defined
for integers greater than 0 by N! = 1 × 2 × 3 × … × N. This function
grows much more quickly than even the exponential function 2N.
Typically algorithms with factorial runtimes look for an optimal
arrangement of the inputs.

For example, in the traveling salesman problem (TSP), you are given a list
of cities. The goal is to find a route that visits every city exactly once and
returns to the starting point while minimizing the total distance traveled.

This isn't too hard with just a few cities, but with many cities the problem
becomes challenging. The most obvious approach is to try every possible
arrangement of cities. Following that algorithm, you can pick N possible
cities for the first city. After making that selection, you have N – 1
possible cities to visit next. Then there are N – 2 possible third cities, and
so forth, so the total number of arrangements is N × (N – 1) × (N – 2) × …
× 1 = N!.

Visualizing Functions
Table 1.1 shows a few values for the runtime functions described in the
preceding sections so that you can see how quickly these functions grow.

Table 1.1 Function Values for Various Inputs

30

www.allitebooks.com

http://www.allitebooks.org

Figure 1.2 shows a graph of these functions. Some of the functions have
been scaled so that they fit better on the graph, but you can easily see
which grows fastest when x grows large. Even dividing by 100 doesn't
keep the factorial function on the graph for very long.

Figure 1.2 The log, sqrt, linear, and even polynomial functions grow at a
reasonable pace, but exponential and factorial functions grow incredibly
quickly.

31

Practical Considerations
Although theoretical behavior is important in understanding an algorithm's
runtime behavior, practical considerations also play an important role in
real-world performance for several reasons.

The analysis of an algorithm typically considers all steps as taking the
same amount of time even though that may not be the case. Creating and
destroying new objects, for example, may take much longer than moving
integer values from one part of an array to another. In that case an

32

algorithm that uses arrays may outperform one that uses lots of objects
even though the second algorithm does better in Big O notation.

Many programming environments also provide access to operating system
functions that are more efficient than basic algorithmic techniques. For
example, part of the insertionsort algorithm requires you to move some of
the items in an array down one position so that you can insert a new item
before them. This is a fairly slow process and contributes greatly to the
algorithm's O(N2) performance. However, many programs can use a
function (such as RtlMoveMemory in .NET programs and
MoveMemory in Windows C++ programs) that moves blocks of
memory all at once. Instead of walking through the array, moving items
one at a time, a program can call these functions to move the whole set of
array values at once, making the program much faster.

Just because an algorithm has a certain theoretical asymptotic
performance doesn't mean you can't take advantage of whatever tools your
programming environment offers to improve performance. Some
programming environments also provide tools that can perform the same
tasks as some of the algorithms described in this book. For example, many
libraries include sorting routines that do a very good job of sorting arrays.
Microsoft's .NET Framework, used by C# and Visual Basic, includes an
Array.Sort method that uses an implementation that you are unlikely
to beat using your own code—at least in general. For specific problems
you can still beat Array.Sort's performance if you have extra
information about the data. (For more information, read about
countingsort in Chapter 6.)

Special-purpose libraries may also be available that can help you with
certain tasks. For example, you may be able to use a network analysis
library instead of writing your own network tools. Similarly, database
tools may save you a lot of work building trees and sorting things. You
may get better performance building your own balanced trees, but using a
database is a lot less work.

If your programming tools include functions that perform the tasks of one
of these algorithms, by all means use them. You may get better
performance than you could achieve on your own, and you'll certainly
have less debugging to do.

33

Finally, the best algorithm isn't always the one that is fastest for very large
problems. If you're sorting a huge list of numbers, quicksort usually
provides good performance. If you're sorting only three numbers, a simple
series of If statements will probably give better performance and will be
a lot simpler. Even if quicksort does give better performance, does it
matter whether the program finishes sorting in 1 millisecond or 2? Unless
you plan to perform the sort many times, you may be better off going with
the simpler algorithm that's easier to debug and maintain rather than the
complicated one to save 1 millisecond.

If you use libraries such as those described in the preceding paragraphs,
you may not need to code all these algorithms yourself, but it's still useful
to understand how the algorithms work. If you understand the algorithms,
you can take better advantage of the tools that implement them even if you
don't write them. For example, if you know that relational databases
typically use B-trees (and similar trees) to store their indices, you'll have a
better understanding of how important pre-allocation and fill factors are. If
you understand quicksort, you'll know why some people think the .NET
Framework's Array.Sort method is not cryptographically secure.
(This is discussed in the section “Using Quicksort” in Chapter 6.)

Understanding the algorithms also lets you apply them to other situations.
You may not need to use mergesort, but you may be able to use its
divide-and-conquer approach to solve some other problem on multiple
processors.

Summary
To get the most out of an algorithm, you not only need to understand how
it works, but you also need to understand its performance characteristics.
This chapter explained Big O notation, which you can use to study an
algorithm's performance. If you know an algorithm's Big O runtime
behavior, you can estimate how much the runtime will change if you
change the problem size.

This chapter also described some algorithmic situations that lead to
common runtime functions. Figure 1.2 showed graphs of these equations
so that you can get a feel for just how quickly each grows as the problem

34

size increases. As a rule of thumb, algorithms that run in polynomial time
are often fast enough that you can run them for moderately large
problems. Algorithms with exponential or factorial runtimes, however,
grow extremely quickly as the problem size increases, so you can run
them only with relatively small problem sizes.

Now that you have some understanding of how to analyze algorithm
speeds, you're ready to study some specific algorithms. The next chapter
discusses numerical algorithms. They tend not to require elaborate data
structures, so they usually are quite fast.

Exercises
Asterisks indicate particularly difficult problems.

1. The section “Rule 4” described a ContainsDuplicates

algorithm that has runtime O(N2). Consider the following improved
version of that algorithm:

Boolean: ContainsDuplicates(Integer: array[])
// Loop over all of the array's items

except the last one.
For i = 0 To <largest index> - 1

// Loop over the items after item i.
For j = i + 1 To <largest index>

// See if these two items are
duplicates.

If (array[i] == array[j]) Then
Return True

Next j
Next i

// If we get to this point, there are no
duplicates.

Return False
End ContainsDuplicates

What is the runtime of this new version?
2. Table 1.1 shows the relationship between problem size N and
various runtime functions. Another way to study that relationship is

35

to look at the largest problem size that a computer with a certain
speed could execute within a given amount of time.
For example, suppose a computer can execute 1 million algorithm
steps per second. Consider an algorithm that runs in O(N2) time. In
1 hour the computer could solve a problem where N = 60,000
(because 60,0002 = 3,600,000,000, which is the number of steps the
computer can execute in 1 hour).
Make a table showing the largest problem size N that this computer
could execute for each of the functions listed in Table 1.1 in one
second, minute, hour, day, week, and year.
3. Sometimes the constants that you ignore in Big O notation are
important. For example, suppose you have two algorithms that can
do the same job. The first requires 1,500 × N steps, and the other
requires 30 × N2 steps. For what values of N would you choose
each algorithm?
4. *Suppose you have two algorithms—one that uses N3 / 75 – N2 /
4 + N + 10 steps, and one that uses N / 2 + 8 steps. For what values
of N would you choose each algorithm?
5. Suppose a program takes as inputs N letters and generates all
possible unordered pairs of the letters. For example, with inputs
ABCD, the program generates the combinations AB, AC, AD, BC,
BD, and CD. (Here unordered means that AB and BA count as the
same pair.) What is the algorithm's runtime?
6. Suppose an algorithm with N inputs generates values for each
unit square on the surface of an N × N × N cube. What is the
algorithm's runtime?
7. Suppose an algorithm with N inputs generates values for each
unit cube on the edges of an N × N × N cube, as shown in Figure
1.3. What is the algorithm's runtime?

Figure 1.3 This algorithm generates values for cubes on a cube's
“skeleton.”

36

8. *Suppose you have an algorithm that, for N inputs, generates a
value for each small cube in the shapes shown in Figure 1.4.
Assuming that the obvious hidden cubes are present so that the
shapes in the figure are not hollow, what is the algorithm's runtime?

37

Figure 1.4 This algorithm adds one more level to the shape as N
increases.

9. Can you have an algorithm without a data structure? Can you
have a data structure without an algorithm?
10. Consider the following two algorithms for painting a fence:

Algorithm1()
For i = 0 To <number of boards in fence> -

1
<paint board number i>

Next i
End Algorithm1

Algorithm2(Integer: first_board, Integer:
last_board)

If (first_board == last_board) Then
// There's only one board. Just paint

it.
<paint board number first_board>

Else
// There's more than one board. Divide

the boards
// into two groups and recursively

paint them.
Integer: middle_board = (first_board +

last_board) / 2
Algorithm2(first_board, middle_board)
Algorithm2(middle_board, last_board)

38

End If
End Algorithm2

What are the runtimes for these two algorithms, where N is the
number of boards in the fence? Which algorithm is better?
11. *Fibonacci numbers can be defined recursively by the following
rules:

Fibonacci(0) = 1
Fibonacci(1) = 1
Fibonacci(n) = Fibonacci(n - 1) + Fibonacci(n

- 2)

The Fibonacci sequence starts with the values 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, 89.
How does the Fibonacci function compare to the runtime functions
shown in Figure 1.2?

39

Chapter 2

Numerical Algorithms

Numerical algorithms calculate numbers. They perform such tasks as
randomizing values, breaking numbers into their prime factors, finding
greatest common divisors, and computing geometric areas.

All these algorithms are useful occasionally, but they also demonstrate
useful algorithmic techniques such as adaptive algorithms, Monte Carlo
simulation, and using tables to store intermediate results.

Randomizing Data
Randomization plays an important role in many applications. It lets a
program simulate random processes, test algorithms to see how they
behave with random inputs, and search for solutions to difficult problems.
Monte Carlo integration, which is described in the later section
“Performing Numerical Integration,” uses randomly selected points to
estimate the size of a complex geometric area.

The first step in any randomized algorithm is generating random numbers.

Generating Random Values
Even though many programmers talk about “random” number generators,
any algorithm used by a computer to produce numbers is not truly
random. If you knew the details of the algorithm and its internal state, you
could correctly predict the “random” numbers it generates.

To get truly unpredictable randomness, you need to use a source other
than a computer program. For example, you could use a radiation detector
that measures particles coming out of a radioactive sample to generate
random numbers. Because no one can predict exactly when the particles
will emerge, this is truly random.

Other possible sources of true randomness include dice rolls, analyzing
static in radio waves, and studying Brownian motion. Random.org

40

www.allitebooks.com

http://www.allitebooks.org

measures atmospheric noise to generate random numbers. (You can go to
http://www.random.org to get true random numbers.)

Unfortunately, because these sorts of true random-number generators
(TRNG) are relatively complicated and slow, most applications use a
faster pseudorandom number generator (PRNG) instead. For many
applications, if the numbers are in some sense “random enough,” a
program can still make use of them and get good results.

Generating Values
One simple and common method of creating pseudorandom numbers is a
linear congruential generator, which uses the following relationship to
generate numbers:

A, B, and M are constants.

The value of X0 initializes the generator so that different values for X0
produce different sequences of numbers. A value that is used to initialize
the pseudorandom number generator, such as X0 in this case, is called the
seed.

Because all the values in the number sequence are taken modulo M, after
at most M numbers the generator produces a number it produced before,
and the sequence of numbers repeats from that point.

As a very small example, suppose A = 7, B = 5, and M = 11. If you start
with X0 = 0, the previous equation gives you the following sequence of
numbers:

41

http://www.random.org

Because X10 = X0 = 0, the sequence repeats.

The values 0, 5, 7, 10, 9, 2, 8, 6, 3, 4 look fairly random. But now that you
know the method that the program uses to generate the numbers, if
someone tells you the method's current number, you can correctly predict
those that follow.

Some PRNG algorithms use multiple linear congruential generators with
different constants and then select from among the values generated at
each step to make the numbers seem more random and to increase the
sequence's repeat period. That can make programs produce more
random-seeming results, but those methods are still not truly random.

Note
Most programming languages have built-in PRNG methods that you can use instead of
writing your own. Those methods generally are reasonably fast and produce very long

42

sequences of numbers before they repeat, so for most programs you can simply use them
instead of writing your own.

One feature of PRNGs that is sometimes an advantage is that you can use
a particular seed value to generate the same sequence of “random” values
repeatedly. That may seem like a disadvantage, because it means that the
numbers are more predictable, but being able to use the same numbers
repeatedly can make some programs much easier to debug.

Being able to repeat sequences of numbers also lets some applications
store complex data in a very compact form. For example, suppose a
program needs to make an object perform a long and complicated
pseudorandom walk on a map. The program could generate the walk and
save all its coordinates so that it can redraw the route later. Alternatively,
it could just save a seed value. Then, whenever it needs to draw the route,
it can use the seed to reinitialize a PRNG so that it produces the same
walk each time.

The RandomTrees program, shown in Figure 2.1, uses seed values to
represent random trees. Enter a seed and click Go to generate a random
tree. If two seed values differ by even 1, they produce very different
results.

Figure 2.1 Even slightly different seeds lead to very different random
trees.

43

The RandomTrees program uses the seed value you enter to generate
drawing parameters such as the number of branches the tree creates at
each step, the angle at which the branches bend from their parent branch,
and how much shorter each branch is than its parent. You can download
the program from the book's website to see the details.

If you enter the same seed number twice, you produce the same tree both
times.

Cryptographically Secure PRNGs
Any linear congruential generator has a period over which it repeats, and that
makes it unusable for cryptographic purposes.

For example, suppose you encrypt a message by using a PRNG to generate a value
for each letter in the message and then adding that value to the letter. For example,
the letter A plus 3 would be D, because D is three letters after A in the alphabet. If
you get to Z, you wrap around to A. So, for example, Y + 3 = B.

This technique works quite well as long as the sequence of numbers is random,
but a linear congruential generator has a limited number of seed values. All you

44

need to do to crack the code is to try decrypting the message with every possible
seed value. For each possible decryption, the program can look at the distribution
of letters to see if the result looks like real text. If you picked the wrong seed,
every letter should appear with roughly equal frequency. If you guessed the right
seed, some letters, such as E and T, will appear much more often than other
letters, such as J and X. If the letters are very unevenly distributed, you have
probably guessed the seed.

This may seem like a lot of work, but on a modern computer it's not very hard. If
the seed value is a 32-bit integer, only about 4 billion seed values are possible. A
modern computer can check every possible seed in just a few seconds or, at most,
minutes.

A cryptographically secure pseudorandom number generator (CSPRNG) uses
more complicated algorithms to generate numbers that are harder to predict and to
produce much longer sequences without entering a loop. They typically have
much larger seed values. A simple PRNG might use a 32-bit seed. A CSPRNG
might use keys that are 1,000 bits long to initialize its algorithm.

CSPRNGs are interesting and very “random,” but they have a couple of
disadvantages. They are complicated, so they're slower than simpler algorithms.
They also may not allow you to do all the initialization manually, so you may be
unable to easily generate a repeatable sequence. If you want to use the same
sequence more than once, you should use a simpler PRNG. Fortunately, most
algorithms don't need a CSPRNG, so you can use a simpler algorithm.

Ensuring Fairness
Usually programs need to use a fair PRNG. A fair PRNG is one that
produces all its possible outputs with the same probability. A PRNG that
is unfair is called biased. For example, a coin that comes up heads
two-thirds of the time is biased.

Many programming languages have methods that produce random
numbers within any desired range. But if you need to write the code to
transform the PRNG's values into a specific range, you need to be careful
to do so in a fair way.

A linear congruential generator produces a number between 0 (inclusive)
and M (exclusive), where M is the modulus used in the generator's
equation:

45

Usually a program needs a random number within a range other than 0 to
M. An obvious but bad way to map a number produced by the generator
into a range Min to Max is to use the following equation:

For example, to get a value between 1 and 100, you would calculate the
following:

The problem with this is that it may make some results more likely than
others.

To see why, consider a small example where M = 3, Min = 0, and Max =
1. If the generator does a reasonable job, it produces the values 0, 1, and 2
with roughly equal probability. If you plug these three values into the
preceding equation, you get the values shown in Table 2.1.

Table 2.1 PRNG Values and Results Mapped with a Modulus
Generator Value Result

0 0

1 1

2 0

The result 0 occurs twice as often as the result 1 in Table 2.1, so the final
result is biased.

In a real PRNG where the modulus M is very large, the problem is
smaller, but it's still present.

A better approach is to convert the value produced by the PRNG into a
fraction between 0 and 1 and then multiply that by the desired range, as in
the following formula:

46

Another method of converting a pseudorandom value from one range to
another is to simply ignore any results that fall outside the desired range.
In the previous example, you would use the limited PRNG to generate a
value between 0 and 2. If you get a 2, which is outside the desired range,
you ignore it and get another number.

For a slightly more realistic example, suppose you want to give a cookie
to one of four friends and you have a six-sided die. In that case you could
simply roll the die repeatedly until you get a value between 1 and 4.

Getting Fairness from Biased Sources
Even if a PRNG is unfair, there may be a way to generate fair numbers.
For example, suppose you think a coin is unfair. You don't know the
probabilities of getting heads or tails, but you suspect the probabilities are
not 0.5. In that case, the following algorithm produces a fair coin flip:

Flip the biased coin twice.
If the result is {Heads, Tails}, return Heads.
If the result is {Tails, Heads}, return Tails.
If the result is something else, start over.

To see why this works, suppose the probability of the biased coin coming
up heads is P, and the probability of its coming up tails is 1 – P. Then the
probability of getting heads followed by tails is P × (1 – P). The
probability of getting tails followed by heads is (1 – P) × P. The two
probabilities are the same, so the probability of the algorithm returning
heads or tails is the same, and the result is fair.

If the biased coin gives you heads followed by heads or tails followed by
tails, you need to repeat the algorithm. If you are unlucky or the coin is
very biased, you may need to repeat the algorithm many times before you
get a fair result. For example, if P = 0.9, 81% of the time the coin will give
you heads followed by heads, and 1% of the time it will give you tails
followed by tails.

Warning
Using a biased coin to produce fair coin flips is unlikely to be useful in a real program.
But it's a good use of probabilities and would make an interesting interview question, so
it's worth understanding.

47

You can use a similar technique to expand the range of a PRNG. For
example, suppose you want to give one of your five friends a cookie, and
your only source of randomness is a fair coin. In that case, you can flip the
coin three times and treat the results as a binary number with heads
representing 1 and tails representing 0. For example, heads, tails, heads
corresponds to the value 101 in binary, which is 5 in decimal. If you get a
result that is outside the desired range (in this example, heads, heads,
heads gives the result 111 binary or 8 decimal, which is greater than the
number of friends present), you discard the result and try again.

In conclusion, the PRNG tools that come with your programming
language are probably good enough for most programs. If you need better
randomness, you may need to look at CSPRNGs. Using a fair coin to pick
a random number between 1 and 100 or using a biased source of
information to generate fair numbers are more useful under weird
circumstances or as interview questions.

Randomizing Arrays
A fairly common task for programs is randomizing the items in an array.
For example, suppose a scheduling program needs to assign employees to
work shifts. If the program assigns the employees alphabetically, in the
order in which they appear in the database, or in some other static order,
the employee who always gets assigned to the late night shift will
complain.

Some algorithms can also use randomness to prevent a worst-case
situation. For example, the standard quicksort algorithm usually performs
well but if the values it must sort are initially already sorted, the algorithm
performs terribly. One way to avoid that situation would be to randomize
the values before sorting them.

The following algorithm shows one way to randomize an array:

RandomizeArray(String: array[])
Integer: max_i = <Upper bound of array>
For i = 0 To max_i - 1

// Pick the item for position i in the array.
Integer: j = <pseudorandom number between i

and max_i inclusive>
<Swap the values of array[i] and array[j]>

48

Next i
End RandomizeArray

This algorithm visits every position in the array once, so it has a run time
of O(N), which should be fast enough for most applications.

Note that repeating this algorithm does not make the array “more
random.” When you shuffle a deck of cards, items that start near each
other tend to remain near each other (although possibly less near each
other), so you need to shuffle several times to get a reasonably random
result. This algorithm completely randomizes the array in a single pass, so
running it again just wastes time.

A Fairly Random Array
One other important consideration of this algorithm is whether it produces a fair
arrangement. In other words, is the probability that an item ends up in any given
position the same for all positions? For example, it would be bad if the item that
started in the first position finished in the first position half of the time.

I said in the Introduction that this book doesn't include long mathematical proofs.
So if you want, you can skip the following discussion and take my word for it that
the randomness algorithm is fair. If you know some probability, however, you
may find the discussion kind of interesting.

For a particular item in the array, consider the probability of its being placed in
position k. To be placed in position k, it must not have been placed in positions 1,
2, 3, ..., k – 1 and then placed in position k.

Define P–i to be the probability of the item's not being placed in position i given
that it was not previously placed in positions 1, 2, ..., i – 1. Also define Pk to be
the probability of the item's being placed in position k given that it was not placed
in positions 1, 2, ..., k – 1. Then the total probability that the item is placed in
position k is P–1 × P–2 × P–3 × ... × P–(k–1) × Pk.

P1 is 1 / N, so P–1 is 1 – P1 = 1 – 1 / N = (N – 1) / N.

After the first item is assigned, N – 1 items could be assigned to position 2, so P2
is 1 / (N – 1), and P–2 is 1 – P2 = 1 – 1 / (N – 1) = (N – 2) / (N –1).

More generally, Pi = 1 / (N – (i – 1)) and P–i = 1 – Pi = 1 – 1 / (N – (i – 1)) = (N –
(i – 1) – 1) / (N – (i – 1)) = (N – i) / (N – i + 1).

If you multiply the probabilities together, P–1 × P–2 × P–3 × ... × P–(k–1) × Pk
gives the following equation:

49

If you look at the equation, you'll see that the numerator of each term cancels out
with the denominator of the following term. When you make all the cancelations,
the equation simplifies to 1/N.

This means that the probability of the item's being placed in position k is 1/N no
matter what k is, so the arrangement is fair.

A task very similar to randomizing an array is picking a certain number of
random items from an array without duplication.

For example, suppose you're holding a drawing to give away five copies
of your book (something I do occasionally), and you get 100 entries. One
way to pick five names is to put the 100 names in an array, randomize it,
and then give the books to the first five names in the randomized list. The
probability that any particular name is in any of the five winning positions
is the same, so the drawing is fair.

Generating Nonuniform Distributions
Some programs need to generate pseudorandom numbers that are not
uniformly distributed. Often these programs simulate some other form of
random-number generation. For example, a program might want to
generate numbers between 2 and 12 to simulate the roll of two six-sided
dice.

You can't simply pick pseudorandom numbers between 2 and 12, because
you won't have the same probability of getting each number that you
would get by rolling two dice.

The solution is to actually simulate the dice rolls by generating two
numbers between 1 and 6 and adding them together.

50

www.allitebooks.com

http://www.allitebooks.org

Finding Greatest Common
Divisors
The greatest common divisor (GCD) of two integers is the largest integer
that evenly divides both of the numbers. For example, GCD(60, 24) is 12
because 12 is the largest integer that evenly divides both 60 and 24. (The
GCD may seem like an esoteric function but it is actually quite useful in
cryptographic routines that are widely used in business to keep such things
as financial communications secure.)

Note
If GCD(A, B) = 1, A and B are said to be relatively prime or coprime.

One way to find the GCD is to factor the two numbers and see which
factors they have in common. However, the Greek mathematician Euclid
recorded a faster method in his treatise Elements circa 300 BC. The
following pseudocode shows the modern version of the algorithm.
Because it is based on Euclid's work, this algorithm is called the Euclidian
algorithm or Euclid's algorithm:

Integer: GCD(Integer: A, Integer: B)
While (B != 0)

Integer: remainder = A Mod B
// GCD(A, B) = GCD(B, remainder)
A = B
B = remainder

End While
Return A

End GCD

For example, consider GCD(4851, 3003). Table 2.2 shows the values for
A, B, and A Mod B at each step.

Table 2.2 Values Used to Calculate GCD(4851, 3003)
A B A MOD B

4,851 3,003 1,848

3,003 1,848 1,155

1,848 1,155 693

51

1,155 693 462

693 462 231

462 231 0

231 0

When B becomes 0, the variable A holds the GCD—in this example, 231.
To verify the result, note that 4,851 = 231× 21 and 1,848 = 231 × 8, so
231 divides both numbers. The values 21 and 8 have no common factors,
so 231 is the largest integer that divides 4,851 and 1,848.

Great GCDs
This is another mathematical explanation that you can skip if you really want to.

The key to Euclid's algorithm is the fact that GCD(A, B) = GCD(B, A Mod B).

To understand why this is true, consider the definition of the modulus operator. If
the remainder R = A Mod B, A = m × B + R for some integer m. If g is the GCD
of A and B, g divides B evenly, so it must also divide m × B evenly. Because g
divides A evenly and A = m × B + R, g must divide m × B + R evenly. Because g
divides m × B evenly, it must also divide R evenly.

This proves that g divides B and R. To say g = GCD(B, R) you still need to know
that g is the largest integer that divides B and R evenly.

Suppose G is an integer larger than g, and G divides B and R. Then G also divides
m × B + R. But A = m × B + R, so G divides A as well. This means that g is not
GCD(A, B). This contradicts the assumption that g = GCD(A, B). Because the
assumption that G g leads to a contradiction, there must be no such G, and g is
GCD(A, B).

This algorithm is quite fast because the value B decreases by at least a
factor of 1/2 for every two trips through the While loop. Because the
size of B decreases by a factor of at least 1/2 for every two iterations, the
algorithm runs in time at most O(log B).

The Need for Speed
The value B in Euclid's algorithm decreases by at least a factor of 1/2 for every
two trips through the While loop. To see why, let Ak, Bk, and Rk be the A, B,
and R values for the kth iteration, and consider A1 = m1 × B1 + R1 for some
integer m1. In the second iteration, A2 = B1 and B2 = R1.

If R1 ≤ B1 / 2, B2 ≤ B1 / 2 as desired.

52

Suppose R1 B1 / 2. In the third iteration, A3 = B2 = R1 and B3 = R2. By
definition, R2 = A2 Mod B2, which is the same as B1 Mod R1. We're assuming
that R1 B1 / 2, so R1 divides into B1 exactly once with a remainder of B1 – R1.
Because we're assuming that R1 B1 / 2, we know that B1 – R1 ≤ B1 / 2. Working
back through the equations:

B1 – R1 = B1 Mod R1 = A2 Mod B2 = R2 = B3

Therefore, B3 ≤ B1 / 2 as desired.

Performing Exponentiation
Sometimes a program needs to calculate a number raised to an integer
power. That's not hard if the power is small. For example, 73 is easy to
evaluate by multiplying 7 × 7 × 7 = 343.

For larger powers such as 7102,187,291, however, this would be fairly slow.

Note

Calculating large powers such as 7102,187,291 might be slow, but people probably
wouldn't care very much if it weren't for the fact that this kind of large exponentiation is
used in some important kinds of cryptography.

Fortunately, there's a faster way to perform this kind of operation. This
method is based on two key facts about exponentiation:

• A2 · M = (AM)2

• AM+N = AM × AN

The first fact lets you quickly create powers of A where the power itself is
a power of 2.

The second fact lets you combine those powers of A to build the result
you want.

The following pseudocode shows the algorithm at a high level:

// Calculate A to the power P.
Float: RaiseToPower(Float: A, Integer: P)

<Use the first fact to quickly calculate A, A2,

A4, A8, and so on

53

until you get to a value AN where N + 1 > P>
<Use those powers of A and the second fact to

calculate AP>

Return AP

End RaiseToPower

For example, suppose you want to calculate 76. First the algorithm
calculates 71, 72, and 74. It stops there because the next power, 8, is greater
than the desired power, 6:

Next the algorithm uses the second fact to build 6 from the powers of 2
that are already created. If you think of 6 as being a sum of powers of 2, 6
= 2 + 4. Using the second fact, you know that 76 = 72 × 74 = 49 × 2,401 =
117,649.

Performing this calculation took two multiplications to calculate 72 and 74

plus one more multiplication to find the final result, for a total of three
multiplications. That's fewer multiplications than simply multiplying 7 × 7
× 7 × 7 × 7 × 7, but it's a small difference in this example.

More generally, for the exponent P, the algorithm calculates log(P) powers
of A. It then examines the binary digits of A to see which of those powers
it must multiply together to get the final result. (If a binary digit of P is 1,
then the final result should include the corresponding power of 2. For the
previous example, the binary representation of 6 is 110 so the second and
third powers of 2 are included: 22 and 24.)

In binary, the value P has log2(P) digits, so the total run time is O(log P) +
O(log P) = O(log P). Even if P is 1 million, log(P) is about 20, so this
algorithm uses about 20 steps (up to 40 multiplications), which is a lot
fewer than 1 million.

One limitation of this algorithm is that values raised to large powers grow
extremely large. Even a “small” value such as 7300 has 254 decimal digits.

54

This means that multiplying the huge numbers needed to calculate large
powers is slow and takes up quite a bit of space.

Fortunately, the most common applications for these kinds of huge powers
are cryptographic algorithms that perform all their operations in a
modulus. The modulus is large, but it still limits the numbers' size. For
example, if the modulus has 100 digits, the product of two 100-digit
numbers can have no more than 200 digits. You then reduce the result
with the modulus to again get a number with no more than 100 digits.
Reducing each number with the modulus makes each step slightly slower,
but it means you can calculate values of practically unlimited size.

Working with Prime
Numbers
As you probably know, a prime number is a counting number (an integer
greater than 0) greater than 1 whose only factors are 1 and itself. A
composite number is a counting number greater than 1 that is not prime.

Prime numbers play important roles in some applications where their
special properties make certain operations easier or more difficult. For
example, some kinds of cryptography use the product of two large primes
to provide security. The fact that it is hard to factor a number that is the
product of two large primes is what makes the algorithm secure.

The following sections discuss common algorithms that deal with prime
numbers.

Finding Prime Factors
The most obvious way to find a number's prime factors is to try dividing
the number by all the numbers between 2 and 1 less than the number.
When a possible factor divides the number evenly, save the factor, divide
the number by it, and continue trying more possible factors. Note that you
need to try the same factor again before moving on in case the number
contains more than one copy of the factor.

55

For example, to find the prime factors of 127, you would try to divide 127
by 2, 3, 4, 5, and so on until you reach 126.

The following pseudocode shows this algorithm:

List Of Integer: FindFactors(Integer: number)
List Of Integer: factors
Integer: i = 2
While (i < number)

// Pull out factors of i.
While (number Mod i == 0)

// i is a factor. Add it to the list.
factors.Add(i)
// Divide the number by i.
number = number / i

End While
// Check the next possible factor.
i = i + 1

End While
// If there's anything left of the number, it is

a factor, too.
If (number > 1) Then factors.Add(number)
Return factors

End FindFactors

If the number is N, this algorithm has run time O(N).

You can improve this method considerably with three key observations:
• You don't need to test whether the number is divisible by any even

number other than 2 because, if it is divisible by any even number,
it is divisible by 2. This means that you only need to check
divisibility by 2 and then by odd numbers instead of by all possible
factors. Doing so cuts the run time in half.

• You only need to check for factors up to the square root of the
number. If n = p × q, either p or q must be less than or equal to
sqrt(n). (If both are greater than sqrt(n), their product is greater than
n.) If you check possible factors up to sqrt(n), you will find the
smaller factor, and when you divide n by that factor, you will find
the other one. This reduces the run time to O(sqrt(n)).

• Every time you divide the number by a factor, you can update the
upper bound on the possible factors that you need to check.

These observations lead to the following improved algorithm:

56

List Of Integer: FindFactors(Integer: number)
List Of Integer: factors
// Pull out factors of 2.
While (number Mod 2 == 0)

factors.Add(2)
number = number / 2

End While
// Look for odd factors.
Integer: i = 3
Integer: max_factor = Sqrt(number)
While (i <= max_factor)

// Pull out factors of i.
While (number Mod i == 0)

// i is a factor. Add it to the list.
factors.Add(i)
// Divide the number by i.
number = number / i
// Set a new upper bound.
max_factor = Sqrt(number)

End While
// Check the next possible odd factor.
i = i + 2

End While
// If there's anything left of the number, it is

a factor, too.
If (number > 1) Then factors.Add(number)
Return factors

End FindFactors

Note
This prime factoring algorithm has run time O(sqrt(N)), where N is the number it is
factoring, so it is reasonably fast for relatively small numbers. If N gets really large, even
O(sqrt(N)) isn't fast enough. For example, if N is 100 digits long, sqrt(N) has 50 digits. If
N happens to be prime, even a fast computer won't be able to try all the possible factors in
a reasonable amount of time. This is what makes some cryptographic algorithms secure.

Finding Primes
Suppose your program needs to pick a large prime number. (Yet another
task required by some cryptographic algorithms.) One way to find prime
numbers is to use the algorithm described in the preceding section to test a
bunch of numbers to see if they are prime. For reasonably small numbers,
that works, but for very large numbers, it can be prohibitively slow.

57

The sieve of Eratosthenes is a simple method of finding all the primes up
to a given limit. This method works well for reasonably small numbers,
but it requires a table with entries for every number that is considered.
Therefore, it uses an unreasonable amount of memory if the numbers are
too large.

The basic idea is to make a table with one entry for each of the numbers
between 2 and the upper limit. Cross out all the multiples of 2 (not
counting 2 itself). Then, starting at 2, look through the table to find the
next number that is not crossed out (3 in this case). Cross out all multiples
of that value (not counting the value itself). Note that some of the values
may already be crossed out because they were also a multiple of 2. Repeat
this step, finding the next value that is not crossed out, and cross out its
multiples until you reach the square root of the upper limit. At that point,
any numbers that are not crossed out are prime.

The following pseudocode shows the basic algorithm:

// Find the primes between 2 and max_number
(inclusive).
List Of Integer: FindPrimes(long max_number)

// Allocate an array for the numbers.
Boolean: is_composite = new bool[max_number + 1]
// "Cross out" multiples of 2.
For i = 4 to max_number Step 2

is_composite[i] = true
Next i
// "Cross out" multiples of primes found so far.
Integer: next_prime = 3
Integer: stop_at = Sqrt(max_number)
While (next_prime < stop_at)

// "Cross out" multiples of this prime.
For i = next_prime * 2 To max_number Step

next_prime Then
is_composite[i] = true

Next i
// Move to the next prime, skipping the even

numbers.
next_prime = next_prime + 2

While (next_prime <= max_number) And
(is_composite[next_prime])

next_prime = next_prime + 2
End While

End While
// Copy the primes into a list.

58

List Of Integer: primes
For i = 2 to max_number

If (Not is_composite[i]) Then primes.Add(i)
Next i
// Return the primes.
Return primes

End FindPrimes

It can be shown that this algorithm has run time O(N × log(log N)), but
that is beyond the scope of this book.

Testing for Primality
The algorithm described in the earlier section “Finding Prime Factors”
factors numbers. One way to determine whether a number is prime is to
use that algorithm to try to factor it. If the algorithm doesn't find any
factors, the number is prime.

As that section mentioned, that algorithm works well for relatively small
numbers. But if the number has 100 digits, the number of steps the
program must execute is a 50-digit number. Not even the fastest
computers can perform that many operations in a reasonable amount of
time. (A computer executing 1 trillion steps per second would need more
than 3 × 1030 years.)

Some cryptographic algorithms need to use large prime numbers, so this
method of testing whether a number is prime won't work. Fortunately,
there are other methods. The Fermat primality test is one of the simpler.

Fermat's “little theorem” states that if p is prime and 1 ≤ n ≤ p, np–1 Mod p
= 1. In other words, if you raise n to the p–1 power and then take the result
modulo p, the result is 1.

For example, suppose p = 11 and n = 2. Then np–1 Mod p = 210 Mod 11 =
1,024 Mod 11. The value 1,024 = 11 × 93 + 1, so 1,024 Mod 11 = 1 as
desired.

Note that it is possible for np–1 Mod p = 1 even if p is not prime. In that
case the value n is called a Fermat liar because it incorrectly implies that
p is prime.

59

If np–1 Mod p ≠ 1, n is called a Fermat witness because it proves that p is
not prime.

It can be shown that, for a natural number p, at least half of the numbers n
between 1 and p are Fermat witnesses. In other words, if p is not prime
and you pick a random number n between 1 and p, there is a 0.5
probability that n is a Fermat witness, so np–1 Mod p ≠ 1.

Of course, there is also a chance you'll get unlucky and randomly pick a
Fermat liar for n. If you repeat the test many times, you can increase the
chances that you'll pick a witness if one exists.

It can be shown that at each test there is a 50 percent chance that you'll
pick a Fermat witness. So if p passes k tests, there is a 1/2k chance that
you got unlucky and picked Fermat liars every time. In other words, there
is a 1/2k chance that p is actually a composite number pretending to be
prime.

For example, if p passes the test 10 times, there is a 1/210 ≈ 0.00098
probability that p is not prime. If you want to be even more certain, repeat
the test 100 times. If p passes all 100 tests, there is only a 1/2100 αππρξ 7.8
× 10–31 probability that p is not prime.

The following pseudocode shows an algorithm that uses this method to
decide whether a number is probably prime:

// Return true if the number p is (probably) prime.
Boolean: IsPrime(Integer: p, Integer: max_tests)

// Perform the test up to max_tests times.
For test = 1 To max_tests

<Pick a pseudorandom number n between 1 and
p (exclusive)>

If (np-1 Mod p != 1) Then Return false
Next test
// The number is probably prime.

// (There is a 1/2max_tests chance that it is not
prime.)

Return true
End IsPrime

Note

60

www.allitebooks.com

http://www.allitebooks.org

This is an example of a probabilistic algorithm—one that produces a correct result with a
certain probability. There's still a slim chance that the algorithm is wrong, but you can
repeat the tests until you reach whatever level of certainty you want.

If the number p is very large—which is the only time when this whole
issue is interesting—calculating np–1 by using multiplication could take
quite a while. Fortunately, you know how to do this quickly by using the
fast exponentiation algorithm described in the earlier section “Performing
Exponentiation.”

Once you know how to determine whether a number is (probably) prime,
you can write an algorithm to pick prime numbers:

// Return a (probable) prime with max_digits digits.
Integer: FindPrime(Integer: num_digits, Integer:
max_tests)

Repeat
<Pick a pseudorandom number p with

num_digits digits>
If (IsPrime(p, max_tests)) Then Return p

End FindPrime

Performing Numerical
Integration
Numerical integration, which is also sometimes called quadrature or
numeric quadrature, is the process of using numerical techniques to
approximate the area under a curve defined by a function. Often the
function is a function of one variable y = F(x) so the result is a
two-dimensional area, but some applications might need to calculate the
three-dimensional area under a surface defined by a function z = F(x, y).
You could even calculate areas defined by higher-dimensional functions.

If the function is easy to understand, you may be able to use calculus to
find the exact area. But perhaps you cannot find the function's
antiderivative. For example, maybe the function's equation is complex, or
you have data generated by some physical process, so you don't know the

61

function's equation. In that case, you can't use calculus, but you can use
numerical integration.

There are several ways to perform numerical integration. The most
straightforward uses Newton-Cotes formulas, which use a series of
polynomials to approximate the function. The two most basic kinds of
Newton-Cotes formulas are the rectangle rule and the trapezoid rule.

The Rectangle Rule
The rectangle rule uses a series of rectangles of uniform width to
approximate the area under a curve. Figure 2.2 shows the RectangleRule
sample program (which is available for download on the book's website)
using the rectangle rule. The program also uses calculus to calculate the
exact area under the curve so that you can see how far the rectangle rule is
from the correct result.

Figure 2.2 The RectangleRule sample program uses the rectangle rule to
approximate the area under the curve y = 1 + x + Sin(2 × x).

62

The following pseudocode shows an algorithm for applying the rectangle
rule:

Float: UseRectangleRule(Float: function(), Float:
xmin, Float: xmax,

Integer: num_intervals)
// Calculate the width of a rectangle.
Float: dx = (xmax - xmin) / num_intervals
// Add up the rectangles' areas.
Float: total_area = 0
Float: x = xmin
For i = 1 To num_intervals

total_area = total_area + dx * function(x)
x = x + dx

Next i
Return total_area

End UseRectangleRule

63

The algorithm simply divides the area into rectangles of constant width
and with height equal to the value of the function at the rectangle's left
edge. It then loops over the rectangles, adding their areas.

The Trapezoid Rule
Figure 2.2 shows where the rectangles don't fit the curve exactly,
producing an error in the total calculated area. You can reduce the error by
using more, skinnier rectangles. In this example, increasing the number of
rectangles from 10 to 20 reduces the error from roughly –6.5% to –3.1%.

An alternative strategy is to use trapezoids to approximate the curve
instead of using rectangles. Figure 2.3 shows the TrapezoidRule sample
program (which is available for download on the book's website) using the
trapezoid rule.

Figure 2.3 The TrapezoidRule sample program uses the trapezoid rule to
make a better approximation than the RectangleRule program does.

64

The following pseudocode shows an algorithm for applying the trapezoid
rule:

Float: UseTrapezoidRule(Float: function(), Float:
xmin, Float: xmax,

Integer: num_intervals)
// Calculate the width of a trapezoid.
Float: dx = (xmax - xmin) / num_intervals
// Add up the trapezoids' areas.
Float: total_area = 0
Float: x = xmin
For i = 1 To num_intervals

total_area = total_area + dx * (function(x) +
function(x + dx)) / 2

x = x + dx
Next i

65

Return total_area
End UseTrapezoidRule

The only difference between this algorithm and the rectangle rule
algorithm is in the statement that adds the area of each slice. This
algorithm uses the formula for the area of a trapezoid: area = width ×
average of the lengths of the parallel sides.

You can think of the rectangle rule as approximating the curve with a step
function that jumps from one value to another at each rectangle's edge.
The trapezoid rule approximates the curve with line segments.

Another example of a Newton-Cotes formula is Simpson's rule, which
uses polynomials of degree 2 to approximate the curve. Other methods use
polynomials of even higher degree to make better approximations of the
curve.

Adaptive Quadrature
A variation on the numerical integration methods described so far is
adaptive quadrature, in which the program detects areas where its
approximation method may produce large errors and refines its method in
those areas.

For example, look again at Figure 2.3. In areas where the curve is close to
straight, the trapezoids approximate the curve very closely. In areas where
the curve is bending sharply, the trapezoids don't fit as well.

A program using adaptive quadrature looks for areas where the trapezoids
don't fit the curve well and uses more trapezoids in those areas.

The AdaptiveMidpointIntegration sample program, shown in Figure 2.4,
uses the trapezoid rule with adaptive quadrature. When calculating the
area of a slice, this program first uses a single trapezoid to approximate its
area. It then breaks the slice into two pieces and uses two smaller
trapezoids to calculate their areas. If the difference between the larger
trapezoid's area and the sum of the areas of the smaller trapezoids is more
than a certain percentage, the program divides the slice into two pieces
and calculates the areas of the pieces in the same way.

66

Figure 2.4 The AdaptiveMidpointIntegration program uses an adaptive
trapezoid rule to make a better approximation than the TrapezoidRule
program.

The following pseudocode shows this algorithm:

// Integrate by using an adaptive midpoint trapezoid
rule.
Float: IntegrateAdaptiveMidpoint(Float: function(),

Float: xmin, Float: xmax, Integer: num_intervals,
Float: max_slice_error)

// Calculate the width of the initial trapezoids.
Float: dx = (xmax - xmin) / num_intervals

67

double total = 0
// Add up the trapezoids' areas.
Float: total_area = 0
Float: x = xmin
For i = 1 To num_intervals

// Add this slice's area.
total_area = total_area +

SliceArea(function, x, x + dx,
max_slice_error)

x = x + dx
Next i
Return total_area

End IntegrateAdaptiveMidpoint
// Return the area for this slice.
Float: SliceArea(Float: function(),Float: x1, Float:
x2,

Float: max_slice_error)
// Calculate the function at the endpoints and

the midpoint.
Float: y1 = function(x1)
Float: y2 = function(x2)
Float: xm = (x1 + x2) / 2
Float: ym = function(xm)
// Calculate the area for the large slice and

two subslices.
Float: area12 = (x2 - x1) * (y1 + y2) / 2.0
Float: area1m = (xm - x1) * (y1 + ym) / 2.0
Float: aream2 = (x2 - xm) * (ym + y2) / 2.0
Float: area1m2 = area1m + aream2
// See how close we are.
Float: error = (area1m2 - area12) / area12
// See if this is small enough.
If (Abs(error) < max_slice_error) Then Return

area1m2
// The error is too big. Divide the slice and

try again.
Return

SliceArea(function, x1, xm, max_slice_error)
+

SliceArea(function, xm, x2, max_slice_error)
End SliceArea

If you run the AdaptiveMidpointIntegration program and start with only
two initial slices, the program divides them into the 24 slices shown in
Figure 2.4 and estimates the area under the curve with –0.035% error. If
you use the TrapezoidRule program with 24 slices of uniform width, the

68

program has an error of –0.072%, roughly twice as much as that produced
by the adaptive program. The two programs use the same number of
slices, but the adaptive program positions them more effectively.

The AdaptiveTrapezoidIntegration sample program uses a different
method to decide when to break a slice into subslices. It calculates the
second derivative of the function at the slice's starting x value and divides
the interval into one slice plus 1 per second derivative value. For example,
if the second derivative is 2, the program divides the slice into three
pieces. (The formula for the number of slices was chosen somewhat
arbitrarily. You might get better results with a different formula.)

Note
In case your calculus is a bit rusty, a function's derivative tells you its slope at any given
point. Its second derivative tells you the slope's rate of change, or how fast the curve is
bending. A higher second derivative means that the curve is bending relatively tightly, so
the AdaptiveTrapezoidIntegration program uses more slices.

Of course, this technique won't work if you can't calculate the curve's
second derivative. The technique used by the
AdaptiveMidpointIntegration program seems to work fairly well in any
case, so you can fall back on that technique.

Adaptive techniques are useful in many algorithms because they can
produce better results without wasting effort in areas where it isn't needed.
The AdaptiveGridIntegration program shown in Figure 2.5 uses adaptive
techniques to estimate the area in the shaded region. This region includes
the union of vertical and horizontal ellipses, minus the areas covered by
the three circles inside the ellipses.

Figure 2.5 The AdaptiveGridIntegration program uses adaptive
integration to estimate the area in the shaded region.

69

This program divides the whole image into a single box and defines a grid
of points inside the box. In Figure 2.5 the program uses a grid with four
rows and columns of points. For each point in the grid, the program
determines whether the point lies inside or outside the shaded region.

If none of the points in the box lies within the shaded region, the program
assumes the box is not inside the region and ignores it.

If every point in the box lies inside the shaded region, the program
considers the box to lie completely within the region and adds the box's
area to the region's estimated area.

70

www.allitebooks.com

http://www.allitebooks.org

If some of the points in the box lie inside the shaded region and some lie
outside the region, the program subdivides the box into smaller boxes and
uses the same technique to calculate the smaller boxes' areas.

In Figure 2.5, the AdaptiveGridIntegration program has drawn the boxes it
considered so that you can see them. You can see that the program
considered many more boxes near the edges of the shaded region than far
inside or outside the region. In total, this example considered 19,217
boxes, mostly focused on the edges of the area it was integrating.

Monte Carlo Integration
Monte Carlo integration is form of numeric integration in which the
program generates a series of pseudorandom points uniformly within an
area and determines whether each point lies within the target region.
When it has finished, the program uses the percentage of the points that
were inside the region to estimate the region's total area.

For example, suppose the area within which the points are generated is a
20 × 20 square, so it has an area of 400 square units, and 37% of the
pseudorandom points are within the region. The region has an area of
roughly 0.37 × 400 = 148 square units.

The MonteCarloIntegration sample program shown in Figure 2.6 uses this
technique to estimate the area of the same shape used by the
AdaptiveGridIntegration program.

Figure 2.6 Points inside the shaded region are black, and points outside
the region are gray.

71

Monte Carlo integration generally is more prone to error than more
methodical approaches such as trapezoid integration and adaptive
integration. But sometimes it is easier because it doesn't require you to
know much about the nature of the shape you're measuring. You simply
throw points at the shape and see how many hit it.

Note
This chapter describes using pseudorandom values to calculate areas, but more generally
you can use similar techniques to solve many problems. In a Monte Carlo simulation, you
pick pseudorandom values and see what percentage satisfies some criterion to estimate
the total number of values that satisfy the criterion.

72

Finding Zeros
Sometimes a program needs to figure out where an equation crosses the
x-axis. In other words, given an equation y = f(x), you may want to find x
where f(x) = 0. Values such as this are called the equation's roots.

Newton's method, which is sometimes called the Newton-Raphson
method, is a way to successively approximate an equation's roots.

The method starts with an initial guess X0 for the root. If f(X0) is not close
enough to 0, the algorithm follows a line that is tangent to the function at
the point X0 until the line hits the x-axis. It uses the x-coordinate at the
intersection as a new guess X1 for the root.

The algorithm then repeats the process starting from the new guess X1.
The algorithm continues the process of following tangents to the function
to find new guesses until it finds a value Xk where f(Xk) is sufficiently
close to 0.

The only tricky part is figuring out how to follow tangent lines. If you use
a little calculus to find the derivative of the function f'(x), which is also
written dfdx(x), the following equation shows how the algorithm can
update its guess by following a tangent line:

Note
Unfortunately, explaining how to find a function's derivative is outside the scope of this
book. For more information, search online or consult a calculus book.

Figure 2.7 shows the process graphically. The point corresponding to the
initial guess is labeled 1. That point's y value is far from 0, so the
algorithm follows the tangent line until it hits the x-axis. It then calculates
the function at the new guess to get the point labeled 2 in Figure 2.7. This
point's y-coordinate is also far from 0, so the algorithm repeats the process
to find the next guess, labeled 3. The algorithm repeats the process one

73

more time to find the point labeled 4. Point 4's y-coordinate is close
enough to 0, so the algorithm stops.

Figure 2.7 Newton's method follows a function's tangent lines to zero in
on the function's roots.

The following pseudocode shows the algorithm:

// Use Newton's method to find a root of the
function f(x).
Float: FindZero(Float: f(), Float: dfdx(), Float:
initial_guess,

Float: maxError)
float x = initial_guess
For i = 1 To 100 // Stop at 100 in case

something goes wrong.
// Calculate this point.
float y = f(x)
// If we have a small enough error, stop.
if (Math.Abs(y) < maxError) break

74

// Update x.
x = x – y / dfdx(x)

Next i
Return x

End NewtonsMethod

The algorithm takes as parameters a function y = F(x), the function's
derivative dfdx, an initial guess for the root's value, and a maximum
acceptable error.

The code sets the variable x equal to the initial guess and then enters a
For loop that repeats, at most, 100 times. Normally the algorithm quickly
finds a solution. But sometimes, if the function has the right curvature, the
algorithm can diverge and not zero in on a solution. Or it can get stuck
jumping back and forth between two different guesses. The maximum of
100 iterations means the program cannot get stuck forever.

Within the For loop, the algorithm calculates F(x). If the result isn't
close enough to 0, the algorithm updates x and tries again.

Note that some functions have more than one root. In that case, you need
to use the FindZero algorithm repeatedly with different initial guesses to
find each root.

Figure 2.8 shows the NewtonsMethod sample program, which is available
for download on this book's website. This program uses Newton's method
three times to find the three roots of the function y = x3 / 5 – x2 + x.
Circles show the program's guesses as it searches for each root.

Figure 2.8 The NewtonsMethod sample program demonstrates Newton's
method to find the three roots of the function y = x3 / 5 – x2 + x.

75

Summary
Some numerical algorithms, such as randomization, are useful in a wide
variety of applications. Other algorithms, such as prime factoring and
finding the greatest common divisor, have more limited use. If your
program doesn't need to find greatest common divisors, the GCD
algorithm won't be much help.

However, the techniques and concepts demonstrated by these algorithms
can be useful in many other situations. For example, the idea that an
algorithm can be probabilistic is very important in many applications.
That idea can help you devise other algorithms that don't work with
perfect certainty (and that could easily be the subject of an interview
question).

76

This chapter explained the ideas of fairness and bias, two very important
concepts for any sort of randomized algorithm, such as the Monte Carlo
integration algorithm, which also was described in this chapter.

This chapter also explained adaptive quadrature, a technique that lets a
program focus most of its work on areas that are the most relevant and pay
less attention to areas that are easy to manage. This idea of making a
program adapt to spend the most time on the most important parts of the
problem is applicable to many algorithms.

Many numerical algorithms, such as GCD, Fermat's primality test, the
rectangle and trapezoid rules, and Monte Carlo integration, don't need
complex data structures. In contrast, most of the other algorithms
described in this book do require specialized data structures to produce
their results. The next chapter explains one kind of data structure: linked
lists. These are not the most complicated data structures you'll find in this
book, but they are useful for many other algorithms. Also, the concept of
linking data is useful in other data structures, such as trees and networks.

Exercises
Answers to these exercises are found in Appendix B. Asterisks indicate
particularly difficult problems.

1. Write an algorithm to use a fair six-sided die to generate coin
flips.
2. The section “Getting Fairness from Biased Sources” explains
how you can use a biased coin to get fair coin flips by flipping the
coin twice. But sometimes doing two flips produces no result, so
you need to repeat the process. Suppose the coin produces heads
three-fourths of the time and tails one-fourth of the time. In that
case, what is the probability that you'll get no result after two flips
and have to try again?
3. Again consider the coin described in Exercise 2. This time,
suppose you were wrong, and the coin is actually fair but you're still
using the algorithm to get fair flips from a biased coin. In that case,
what is the probability that you'll get no result after two flips and
have to try again?

77

4. Write an algorithm to use a biased six-sided die to generate fair
values between 1 and 6. How efficient is this algorithm?
5. Write an algorithm to pick M random values from an array
containing N items (where M ≤ N). What is its run time? How does
this apply to the example described in the text where you want to
give books to five people selected from 100 entries? What if you
got 10,000 entries?
6. Write an algorithm to deal five cards to players for a poker
program. Does it matter whether you deal one card to each player in
turn until every player has five cards, or whether you deal five cards
all at once to each player in turn?
7. Write a program that simulates rolling two six-sided dice and
draws a bar chart or graph showing the number of times each roll
occurs. Compare the number of times each value occurs with the
number you would expect for two fair dice in that many trials. How
many trials do you need to perform before the results fit the
expected distribution well?
8. What happens to Euclid's algorithm if A < B initially?
9. The least common multiple (LCM) of integers A and B is the
smallest integer that A and B both divide into evenly. How can you
use the GCD to calculate the LCM?
10. The fast exponentiation algorithm described in this chapter is at
a very high level. Write a low-level algorithm that you could
actually implement.
11. How would you change the algorithm you wrote for Exercise 10
to implement modular fast exponentiation?
12. *Write a program that calculates the GCD for a series of pairs of
pseudorandom numbers and graphs the number of steps required by
the GCD algorithm versus the average of the two numbers. Does the
result look logarithmic?
13. The following pseudocode shows how the sieve of Eratosthenes
crosses out multiples of the prime next_prime:

// "Cross out" multiples of this prime.
For i = next_prime * 2 To max_number Step

next_prime Then
is_composite[i] = true

Next i

78

The first value crossed out is next_prime * 2. But you know
that this value was already crossed out because it is a multiple of 2;
the first thing the algorithm did was cross out multiples of 2. How
can you modify this loop to avoid revisiting that value and many
others that you have already crossed out?
14. *In an infinite set of composite numbers called Carmichael
numbers, every relatively prime smaller number is a Fermat liar. In
other words, p is a Carmichael number if every n where 1 ≤ n ≤ p
and GCD(p, n) = 1 is a Fermat liar. Write an algorithm to list the
Carmichael numbers between 1 and 10,000 and their prime factors.
15. When you use the rectangle rule, parts of some rectangles fall
above the curve, increasing the estimated area, and other parts of
some rectangles fall below the curve, reducing the estimated area.
What do you think would happen if you used the function's value at
the midpoint of the rectangle for the rectangle's height instead of the
function's value at the rectangle's left edge? Write a program to
check your hypothesis.
16. Could you make a program that uses adaptive Monte Carlo
integration? Would it be effective?
17. Write a high-level algorithm for performing Monte Carlo
integration to find the volume of a three-dimensional shape.
18. How could you use Newton's method to find the points where
two functions intersect?

79

Chapter 3

Linked Lists

Linked lists are probably the simplest data structures you'll build.
However, some of the concepts you use to build them are also used to
build the most sophisticated data structures described in this book. To use
a linked list, you need to understand cells and links in addition to methods
of finding, inserting, and deleting cells. You use those same concepts to
build complicated networks, trees, and balanced trees, which can be
confusing.

This chapter explains the ideas you need to master to use linked lists.
Later chapters (in particular, Chapters 4, 5, 8, and 10 through 14) revisit
these ideas.

Basic Concepts
A linked list is built of objects that are often called cells. The cell's class
contains whatever data the list must store plus a link to another cell. The
link is simply a reference or pointer to another object of a cell's class.
Often the pointer field in the cell class is called Next.

For example, the following code shows the definition of an
IntegerCell class in C#. The cell holds an integer value and a pointer
to the next IntegerCell object in the linked list:

class IntegerCell
{

public int Value;
public IntegerCell Next;

}

Linked lists are often represented graphically, with boxes representing
cells and arrows representing links.

To indicate a link that doesn't point to anything, this book uses a small box
with an X in it. (In a programming language, the value of the pointer
corresponding to the link would be nothing, null, or some other

80

language-specific value indicating that the pointer doesn't point to
anything.)

In addition to the list itself, a program needs a variable that points to the
list so that the code can find it. Often this variable is named top to
indicate that it represents the top of the list. The top variable could be a
variable of the cell's class, or it might be a pointer to the first cell in the
list.

Figure 3.1 shows two linked lists holding the numbers 31, 72, 47, and 9.
In the list on the top, the program has a variable named top that is a
pointer to the list's first cell. In the list on the bottom, the program's top
variable is the first cell in the list. Both lists end with a box containing an
X to represent a null pointer.

Figure 3.1 These linked lists hold the numbers 31, 72, 47, and 9.

Linked lists are a good way to store a list of items that can grow or shrink
over time. To add a new cell, you just add it at the beginning or end of the
linked list. In contrast, an array has a fixed size, so it may be hard to
enlarge if you need to add more items.

The following sections explain some of the algorithms you can use to
manipulate linked lists. Many of them are most easily described with
figures that show the list before and after an operation has been
performed.

81

Singly Linked Lists
In a singly linked list, each cell is connected to the following cell by a
single link. The lists shown in Figure 3.1 are singly linked lists.

To use a linked list, you need a set of algorithms for iterating over a list,
adding items to the list, finding items in the list, and removing items from
the list. The following sections describe some of the algorithms you might
want to use.

Iterating Over the List
Assuming that a program has built a linked list, iterating over its cells is
relatively easy. The following algorithm shows how you can iterate over
the cells in a list and use some sort of method to do something with the
values in the cells. This example use a Print method to display the cells'
values, but you could replace Print with any method that does
something with the cells.

Iterate(Cell: top)
While (top != null)

Print top.Value
top = top.Next

End While
End Iterate

Note
These algorithms assume that the parameter top is passed by value, so the code can
modify it without changing the value of top in the calling code.

This algorithm starts with a While loop that executes as long as the top
cell pointer is not null. Inside the loop, the algorithm calls the Print
method to display the top cell's value. It then sets top to point to the
cell that follows the top cell in the linked list.

This process continues until top is set to the null pointer at the end of
the list and the While loop stops.

This algorithm examines every cell in the linked list, so if the list contains
N cells, it has run time O(N).

82

Finding Cells
Finding a cell in a linked list is simply a matter of iterating over the list
and stopping when you find the cell you want. The following algorithm
looks through a list and returns the cell that contains a target value:

Cell: FindCell(Cell: top, Value: target)
While (top != null)

If (top.Value == target) Then Return top
top = top.Next

End While
// If we get this far, the target is not in the

list.
Return null

End FindCell

The algorithm enters a While loop that executes as long as top is not
null. Inside the loop, the algorithm compares the top cell's value to the
target value. If the values match, the algorithm returns top. If the values
do not match, the algorithm moves top to point to the next cell in the list.

If top runs all the way through the list and becomes null, the target
value is not in the list, so the algorithm returns null. (Alternatively, the
algorithm could throw an exception or raise some kind of error, depending
on your programming language.)

As you'll see in some of the following sections, it's often easiest to work
with a cell in a linked list if you have a pointer to the cell before that cell.
The following algorithm finds the cell before the cell that contains a target
cell:

Cell: FindCellBefore(Cell: top, Value: target)
// If the list is empty, the target value isn't

present.
If (top == null) Return null
// Search for the target value.
While (top.Next != null)

If (top.Next.Value == target) Then Return top
top = top.Next

End While
// If we get this far, the target is not in the

list.
Return null

End FindCellBefore

83

This code is similar to the previous version—with two exceptions. First it
must check that top is not null before it starts so that it knows it can
look at top.Next safely. If top is null, top.Next is undefined,
and a program that implemented the algorithm would crash.

If top is not null, the algorithm enters a While loop as before, but
this time it looks at top.Next.Value instead of top.Value. When
it finds the value, top points to the cell before the one that holds the
target value, and the algorithm returns top.

Using Sentinels
If you study the preceding algorithm closely, you may find one situation
where it fails. If the first cell in the linked list contains the target value,
there is no cell before that one, so the algorithm cannot return it. The first
value that the algorithm examines is in the list's second cell, and it never
looks back.

One way to handle this situation is to add special-purpose code that
explicitly looks for the target value in the first cell and then handles that
case specially. The program would probably need to handle this situation
as a special case, and it could get messy.

Another approach is to create a sentinel at the beginning of the list. A
sentinel is a cell that is part of the linked list but that doesn't contain any
meaningful data. It is used only as a placeholder so that algorithms can
refer to a cell that comes before the first cell.

The following pseudocode shows the previous FindCellBefore
algorithm modified to use a sentinel:

Cell: FindCellBefore(Cell: top, Value: target)
// Search for the target value.
While (top.Next != null)

If (top.Next.Value == target) Then Return top
top = top.Next

End While
// If we get this far, the target is not in the

list.
Return null

End FindCellBefore

84

This version doesn't need to check whether top is null. Because the
linked list always has at least a sentinel, top cannot be null. This
means that the While loop can begin right away.

This version also starts by checking the value in the first cell in the list,
not the second, so it can detect the case where the first cell contains the
target value.

This version of the algorithm can return the sentinel cell before the first
real cell (the top cell) if appropriate. Therefore, the program using the
algorithm doesn't need customized code to handle the special case in
which the target value is at the beginning of the list.

When searching for a target value, the algorithm might get lucky and find
it right away. But in the worst case it may have to search most of the
linked list before it finds the target value. If the target value isn't in the list,
the algorithm needs to search every cell in the list. If the list contains N
cells, that means this algorithm has run time O(N).

A sentinel may seem like a waste of space, but it removes the need for
special-purpose code and makes the algorithm simpler and more elegant.

The following sections assume that linked lists have sentinels and that the
top pointer points to the sentinel.

Adding Cells at the Beginning
One use for linked lists is to provide a data structure where you can store
items. This is sort of like an array that you can expand whenever you need
more space.

The easiest way to add an item to a linked list is to place a new cell at the
beginning, right after the sentinel. The following algorithm adds a new
item at the beginning of a linked list:

AddAtBeginning(Cell: top, Cell: new_cell)
new_cell.Next = top.Next
top.Next = new_cell

End AddAtBeginning

This algorithm sets the new cell's Next pointer so that it points to the first
cell in the list after the sentinel. It then sets the sentinel's Next pointer to

85

point to the new cell. That places the new cell after the sentinel so that it
becomes the new first cell in the linked list.

Figure 3.2 shows a linked list before and after a new cell is added at the
top of the list. The list's sentinel is shaded.

Figure 3.2 To add an item at the top of a linked list, make the new cell's
link point to the old top of the list, and then make the sentinel's link point
to the new cell.

This algorithm performs only two steps, so its run time is O(1) no matter
how many cells the list contains.

Adding Cells at the End
Adding a cell at the end of the list is a bit more difficult than adding it at
the beginning, because the algorithm must first traverse the list to find the
last cell.

The following pseudocode shows an algorithm for adding a new cell at the
end of a list:

AddAtEnd(Cell: top, Cell: new_cell)
// Find the last cell.
While (top.Next != null)

86

top = top.Next
End While
// Add the new cell at the end.
top.Next = new_cell
new_cell.Next = null

End AddAtEnd

The code iterates through the linked list until it finds the last cell. It makes
the last cell's link point to the new cell and then sets the new cell's link to
point to null.

This code would be messier if the list didn't have a sentinel. In that case
you would have to use special code to handle the case when the list is
empty so top points to null.

Figure 3.3 shows the process graphically.

Figure 3.3 To add an item at the end of a linked list, find the last cell and
make its link point to the new cell. Then make the new cell's link point to
null.

This algorithm must traverse the entire list, so if the list contains N cells, it
has run time O(N).

87

Inserting Cells After Other Cells
The preceding sections explained how you can add cells at the beginning
or end of a linked list, but sometimes you may want to insert an item in
the middle of the list. Assuming that you have a variable named
after_me that points to the cell after which you want to insert the item,
the following pseudocode shows an algorithm for inserting a cell after
after_me:

InsertCell(Cell: after_me, Cell: new_cell)
new_cell.Next = after_me.Next
after_me.Next = new_cell

End InsertCell

This algorithm makes the new cell's link point to the cell that follows
after_me and then makes after_me's link point to the new cell.
Figure 3.4 shows the process graphically.

Figure 3.4 Inserting a cell after a given cell takes O(1) time.

This algorithm takes only two steps, so it runs in O(1) time, although you
may need to use O(N) time to find the cell after_me. For example, if
you want to insert a cell after the cell that contains a target value, first you
need to find the cell that contains the target value.

88

Deleting Cells
To delete a target cell, you simply set the previous cell's link to the cell
that follows the target cell. The following pseudocode shows an algorithm
that deletes the cell after the cell after_me:

DeleteAfter(Cell: after_me)
after_me.Next = after_me.Next.Next

End DeleteAfter

Figure 3.5 shows this algorithm graphically.

Figure 3.5 To remove a cell from a linked list, set the previous cell's link
to point to the cell after the target cell.

C# and Visual Basic use a garbage-collection method of memory
management. This means that the deleted cell is automatically recycled
when the program needs more memory. But depending on your
programming language, you may need to perform extra work to properly
free the deleted cell. For example, in C++ you would need to free the
target cell, as in the following version of the algorithm:

DeleteAfter(Cell: after_me)
Cell: target_cell = after_me.Next
after_me.Next = after_me.Next.Next
free(target_cell)

End DeleteAfter

How you destroy a linked list also depends on your language. In C# and
Visual Basic, you can simply set all the program's references to the list to

89

null, and the garbage collector eventually reclaims the list. In a
language such as C++, where you need to explicitly free each cell, you
need to walk through the list, freeing each cell, as shown in the following
pseudocode:

DestroyList(Cell: top)
While (top != null)

// Save a pointer to the next cell.
Cell: next_cell = top.Next
// Free top.
free(top)
// Move to the next cell.
top = next_cell

End While
End DestroyList

How you free resources is language-dependent, so this book doesn't say
anything more about it here or in later chapters. Just be aware that you
may need to do some extra work whenever you remove a cell or other
object from a data structure.

Doubly Linked Lists
In a doubly linked list, the cells have links that point to both the next and
previous cells in the list. The link to the previous cell is often called Prev
or Previous.

Often it is convenient to have both top and bottom sentinels for doubly
linked lists so that the program can easily manipulate the list from either
end. For example, this lets you add items to and remove items from either
end in O(1) time.

Figure 3.6 shows a doubly linked list with top and bottom sentinels.

Figure 3.6 Doubly linked lists often have top and bottom sentinels.

90

Algorithms for manipulating doubly linked lists are similar to those that
work with singly linked lists, except that they must do some extra work to
manage the second set of links. For example, the following pseudocode
shows an algorithm for inserting a cell after a given cell:

InsertCell(Cell: after_me, Cell: new_cell)
// Update Next links.
new_cell.Next = after_me.Next
after_me.Next = new_cell
// Update Prev links.
new_cell.Next.Prev = new_cell
new_cell.Prev = after_me

End InsertCell

The only really tricky part of these algorithms is keeping track of which
links have been updated at any point in time. For example, in the
preceding algorithm, the second-to-last statement sets the Prev link that
should point to the new cell. You might be tempted to do this by using the
following statement:

after_me.Next.Prev = new_cell

However, when this statement executes, after_me.Next has already
been updated to point to the new cell, so this won't work. The algorithm
needs to use new_cell.Next instead.

Figure 3.7 shows the algorithm graphically.

Figure 3.7 When updating a doubly linked list, a program must update
both the Next and Prev links.

91

Sorted Linked Lists
Sometimes it's convenient to keep the items in a linked list in sorted order.
When you add a new item to the list, you need to search through the list to
find the position where the item belongs and update the appropriate links
to insert it there.

The following pseudocode shows an algorithm for inserting an item into a
sorted singly linked list:

// Insert a cell into a sorted singly linked list.
InsertCell(Cell: top, Cell: new_cell)

// Find the cell before where the new cell
belongs.

While (top.Next != null) And (top.Next.Value <
new_cell.Value)

top = top.Next
End While
// Insert the new cell after top.
new_cell.Next = top.Next
top.Next = new_cell

End InsertCell

92

In the worst case, this algorithm might need to cross the whole list before
finding the correct location for the new item. Therefore, if the list holds N
cells, its run time is O(N). Although you cannot improve the theoretical
run time, you can make the algorithm simpler and faster in practice by
adding a bottom sentinel. If you set the bottom sentinel's Value to a
value larger than any Value that could be stored in a cell, you can
remove the top.Next != null test. You can do so because you
know that the code will eventually find a location for the new cell, even if
it's right before the bottom sentinel.

For example, if the cells hold names that use ASCII characters, you can
set the bottom sentinel's Value to ∼ because the ∼ character comes
alphabetically after any valid name. If the cells hold integers, you can set
the bottom sentinel's Value to the largest possible integer value. (On
most 32-bit systems that value is 2,147,483,647.)

The following pseudocode shows the revised algorithm, assuming that the
list has a bottom sentinel holding a value larger than any value that could
be held in the cells:

// Insert a cell into a sorted singly linked list.
InsertCell(Cell: top, Cell: new_cell)

// Find the cell before where the new cell
belongs.

While (top.Next.Value < new_cell.Value)
top = top.Next

End While
// Insert the new cell after top.
new_cell.Next = top.Next
top.Next = new_cell

End InsertCell

Linked-List Algorithms
So far this chapter has described algorithms for building and maintaining
linked lists. It has described algorithms for adding items at the top,
bottom, and interior of a list; algorithms for finding items in a list; and
algorithms for deleting items from a list.

93

The following sections describe other algorithms that manipulate linked
lists in other ways.

Copying Lists
Some algorithms rearrange a list. This section and the next describe
algorithms that sort the items in a list. If you want to keep the original list
intact, you must make a copy of the list before you sort it.

The following pseudocode shows how you can copy a singly linked list:

// Copy a list.
Cell: CopyList(Cell: old_sentinel)

// Make the new list's sentinel.
Cell: new_sentinel = new Cell()
// Keep track of the last item we've added so

far.
Cell: last_added = new_sentinel
// Skip the sentinel.
Cell: old_cell = old_sentinel.Next
// Copy items.
While (old_cell != null)

// Make a new item.
last_added.Next = New Cell
// Move to the new item.
last_added = last_added.Next
// Set the new item's value.
last_added.Value = old_cell.Value
// Get ready to copy the next cell.
old_cell = old_cell.Next

End While
// End with null.
last_added.Next = null
// Return the new list's sentinel.
Return new_sentinel

}

This algorithm is reasonably straightforward, but it contains one feature
worth mentioning. The algorithm uses the variable last_added to
keep track of the cell that was most recently added to the new copy of the
list. To copy a new item to the list, the algorithm sets
last_added.Next equal to a new cell object. That puts the new

94

object at the end of the list. The algorithm then updates last_added to
point to the new item and copies the original cell's value into it.

This lets the list grow at the bottom instead of at the top. This is similar to
how you can easily add items to the end of a list if you keep track of the
last item in the list, as described in Exercise 1.

Sorting with Insertionsort
Chapter 6 says a lot about sorting algorithms, but two are worth discussing
here: selectionsort, which is described in the following section, and
insertionsort.

The basic idea behind insertionsort is to take an item from the input list
and insert it into the proper position in a sorted output list (which initially
starts empty).

The following pseudocode shows the insertionsort algorithm, where the
items to sort are stored in a singly linked list that has a top sentinel:

// Use insertionsort to sort the list.
Cell: Insertionsort(Cell: input)

// Make a sentinel for the sorted list.
Cell sentinel = new Cell()
sentinel.Next = null
// Skip the input list's sentinel.
input = input.Next
// Repeat until we have inserted all of the

items in the new list.
While (input != null)

// Get the next cell to add to the list.
Cell: next_cell = input

// Move input to input.Next for the next
trip through the loop.

input = input.Next
// See where to add the next item in the

sorted list.
Cell: after_me = sentinel
While (after_me.Next != null) And

(after_me.Next.Value < next_cell.Value)
after_me = after_me.Next

End While
// Insert the item in the sorted list.
next_cell.Next = after_me.Next

95

after_me.Next = next_cell
End While
// Return the sorted list.
return sentinel

End Insertionsort

This algorithm starts by building an empty list to hold the sorted output. It
then loops through the unsorted list of input cells. For each input cell, it
looks through the growing sorted list and finds the cell after which the
new value belongs. It then inserts the cell there.

You can simplify the code if you call the InsertCell algorithm
described in the earlier section “Inserting Cells Before Other Cells.”

If the items in the input list are initially sorted in smallest-to-largest order,
this algorithm inserts each item at the beginning of the new list in just a
couple of steps. If the list holds N cells, inserting all the items in the new
list takes a total of O(N) steps. This is the algorithm's best case.

If the items in the input list are initially sorted in largest-to-smallest order,
this algorithm must insert each item at the end of the new list. Finding the
end of the list takes one step for each item already in the list. Therefore,
inserting all the items takes 1 + 2 + 3 + … + N = N × (N – 1) ÷ 2 = O(N2)
steps.

In the average case, with the items initially randomly arranged, the
algorithm can insert some items quickly, but others take longer. The result
is that the algorithm's run time is still O(N2), although in practice it won't
take as long as the worst case.

Many other sorting algorithms take only O(N log N) time, so this
algorithm's O(N2) performance is relatively slow. That makes this
algorithm ineffective for large lists. However, it runs reasonably quickly
for small lists, and it works for linked lists, which many of the other
algorithms don't.

96

Linked List Selectionsort
The basic idea behind the selectionsort algorithm is to search the input list
for the largest item it contains and then add it to the front of a growing
sorted list.

The following pseudocode shows the selectionsort algorithm for a singly
linked list holding integers:

// Use selectionsort to sort the list.
Cell: Selectionsort(Cell: input)

// Make a sentinel for the sorted list.
Cell: sentinel = new Cell
sentinel.Next = null
// Repeat until the input list is empty.
While (input.Next != null)

// Find the largest item in the input list.
// The cell after_me will be the cell before
// the one with the largest value.
Cell: best_after_me = input

Integer: best_value =
best_after_me.Next.Value

// Start looking with the next item.
Cell: after_me = input.Next
While (after_me.Next != null)

If (after_me.Next.Value > best_value)
Then

best_after_me = after_me
best_value = after_me.Next.Value

End If
after_me = after_me.Next

End While
// Remove the best cell from the unsorted

list.
Cell: best_cell = best_after_me.Next
best_after_me.Next = best_cell.Next
// Add the best cell at the beginning of the

sorted list.
best_cell.Next = sentinel.Next
sentinel.Next = best_cell

End While
// Return the sorted list.
Return sentinel

End Selectionsort

97

You can simplify this algorithm somewhat if you extract the code that
finds the largest cell in the input list, place that code in a new algorithm,
and then invoke the new algorithm from this one.

When the input list contains K items, finding the largest item in the list
takes K steps. As the algorithm progresses, the input list shrinks.
Therefore, if it originally holds N items, the total number of steps is N +
(N – 1) + (N – 2) + … + 2 + 1 = N × (N – 1) ÷ 2 = O(N2), the same run
time given by the insertionsort algorithm.

Multithreaded Linked Lists
In a singly linked list, a cell has a link to the next cell in the list. In a
doubly linked list, each cell has links to the cell before and after it in the
list. The doubly linked list uses two links to provide two different ways to
move through the cells it contains: forward or backward.

There's no reason why you can't add other links to a list's cells to provide
other ways to move through the cells. For example, suppose you build a
Planet class to hold information about the solar system's planets. You
can give the Planet class a field named NextDistance that is a link
to the Planet that is the next nearest to the sun. Following the
NextDistance links would list the planets in the order Mercury,
Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune (and optionally
Pluto if you want to include it as a planet).

Similarly, you could add other fields to list the planets ordered by mass,
diameter, and other characteristics. Each path through the cells defined by
a set of links is called a thread.

It's easy enough to work with a single thread, thinking of it as a simple
linked list, although visualizing all the threads at the same time can be
messy. For example, Figure 3.8 shows a linked list of planets with three
threads. The thin links visit the planets ordered by distance to the sun, the
dashed links visit the planets ordered by mass, and the thick links visit the
planets ordered by diameter.

98

Figure 3.8 Visualizing all the threads through a multithreaded linked list
can be confusing.

Note
Other data structures also can have threads. For example, a tree might provide threads to
let a program visit its nodes in orders that are not typical for a tree.

Linked Lists with Loops
A circular linked list is a linked list in which the last link points back to
the first item in the list. Figure 3.9 shows a circular linked list.

Figure 3.9 Circular linked lists let a program easily loop through a
sequence of objects indefinitely.

99

Circular linked lists can be useful when you need to loop through a
sequence of items indefinitely. For example, an operating system might
repeatedly loop through a list of processes to give each a chance to
execute. If a new process started, it could be added anywhere in the list,
perhaps right after the sentinel so that it would have a chance to execute
right away.

As another example, a game might loop indefinitely through a list of
objects, allowing each to move on the screen. Again, new objects could be
added anywhere to the list.

Figure 3.10 shows a linked list that contains a loop, but the loop doesn't
include all the list's cells.

Figure 3.10 This list contains a loop that doesn't include all the list's cells.

100

The kind of linked list shown in Figure 3.10 is interesting mostly because
it presents you with two interesting problems. First, how can you tell
whether a linked list contains such a loop? Second, if a linked list contains
such a loop, how can you find where the loop starts and break it there to
“fix” the list? This is roughly the same question as asking where the
“bottom” of the list is. In Figure 3.10, you might define the bottom of the
list to be cell I because it is the last cell you visit while traversing the list
before cells start repeating.

The following sections describe some of the most interesting algorithms
that answer these questions.

Marking Cells
Probably the easiest way to tell if a linked list has a loop is to traverse its
cells, marking each as you visit it. If you come to a cell that is already
marked, you know that the list has a loop and that it starts at that point.

The following pseudocode shows this algorithm:

// Return true if the list has a loop.
// If the list has a loop, break it.
Boolean: Has_loopMarking(Cell: sentinel)

101

// Assume there is no loop.
Boolean: has_loop = false
// Loop through the list.
Cell: cell = sentinel
While (cell.Next != null)

// See if we already visited the next cell.
If (cell.Next.Visited)

// This is the start of a loop.
// Break the loop.
cell.Next = null
has_loop = true
<Break out of the While loop>

End If
// Move to the next cell.
cell = cell.Next
// Mark the cell as visited.
cell.Visited = true

End While
// Traverse the list again to clear the Visited

flags.
cell = sentinel
While (cell.Next != null)

cell.Visited = false
cell = cell.Next

End While
// Return the result.
Return has_loop

End Has_loopMarking

The BreakLoopMarking sample program, which is available for download
on the book's website, demonstrates this algorithm.

This algorithm must traverse the loop twice—once to set the cells'
Visited flags to true, and again to reset them to false. So if the
list contains N cells, this algorithm takes 2 × N steps and runs in O(N)
time.

This algorithm also requires that each cell have an added Visited field,
so it requires O(N) space. The list already takes up O(N) space to hold the
cells and their links so this shouldn't be a problem but it's worth
acknowledging that the algorithm has some memory requirements.

Note

102

Marking cells is a simple technique that is also useful for other data structures,
particularly networks. Some of the algorithms described in Chapters 13 and 14 use
marking techniques.

Often a problem such as this one has the additional requirement that you
are not allowed to change the definition of the cell class. In this case, this
means you aren't allowed to add a Visited field. The following
algorithms satisfy that additional restriction.

Using Hash Tables
Hash tables are described in detail in Chapter 8. For now, all you need to
know is that a hash table can very quickly store items, retrieve items, and
tell you if an item is present in the hash table.

This algorithm moves through the list, adding each cell to a hash table.
When it visits a cell, it checks the hash table to see if a cell is already in
the table. If it comes to a cell that is already in the hash table, the list
contains a loop that starts at that cell.

The following pseudocode shows this algorithm:

// Return true if the list has a loop.
// If the list has a loop, break it.
Boolean: HasLoopHashTable(Cell: sentinel)

// Make a hash table.
Hashtable: visited
// Loop through the list.
Cell: cell = sentinel
While (cell.Next != null)

// See if we already visited the next cell.
If (visited.Contains(cell.Next))

// This is the start of a loop.
// Break the loop and return true.
cell.Next = null
Return true

End If
// Add the cell to the hash table.
visited.Add(cell)
// Move to the next cell.
cell = cell.Next

End While
// If we get this far, there is no loop.

103

Return false
End HasLoopHashTable

The BreakLoopHashtable sample program, which is available for
download on the book's website, demonstrates this algorithm.

This algorithm traverses the list's cells once, so if the list contains N cells,
this algorithm takes N steps and runs in O(N) time.

This algorithm also requires a hash table. For the best performance, a hash
table must have more space than the values it will hold. So in this
algorithm, the hash table must have room for more than N entries. A hash
table with room for 1.5 × N entries will give good performance and still
use O(N) space.

This algorithm obeys the restriction that it isn't allowed to modify the cell
class, but it uses extra storage. The following sections describe some
algorithms that detect loops without using extra storage.

List Retracing
This algorithm makes an object traverse the list. For each cell visited, the
algorithm makes a second object traverse the list until it finds the first
object. If the cells before the two objects are different, then the list
contains a loop.

This description may seem a bit confusing, but the algorithm should make
more sense after you see it implemented in the following pseudocode:

// Return true if the list has a loop.
// If the list has a loop, break it.
Boolean: HasLoopRetracing(Cell: sentinel)

// Loop through the list.
Cell: cell = sentinel
While (cell.Next != null)

// See if we already visited the next cell.
Cell: tracer = sentinel
While (tracer != cell)

If (tracer.Next == cell.Next)
// This is the start of a loop.
// Break the loop and return true.
cell.Next = null
Return true

104

End If
tracer = tracer.Next

End While
// Move to the next cell.
cell = cell.Next

End While
// If we get here, the list has no loop.
Return false

End HasLoopRetracing

The BreakLoopHashtable sample program, which is available for
download on the book's website, demonstrates this algorithm.

Assume that the list contains N cells. When the algorithm's cell object
examines the Kth cell in the list, the tracer object must traverse the list
up to that point, so it must perform K steps. That means the algorithm's
total run time is 1 + 2 + 3 + … + N = N × (N – 1) ÷ 2 = O(N2).

This is slower than the previous algorithms, but, unlike those algorithms,
it doesn't require additional space.

Not only does the next algorithm not require additional space, but it also
runs in O(N) time.

List Reversal
This algorithm traverses the list, reversing each cell's link so that it points
to the cell before it in the list instead of the one after it. If the algorithm
reaches the list's sentinel, the list contains a loop. If the algorithm reaches
a null link without reaching the sentinel, the list doesn't contain a loop.

Of course, moving through the list reversing links messes up the links. To
restore them, the algorithm then moves back through the list a second
time, reversing the links again so that they point to where they did
originally.

To see how this works, look at the list shown in Figure 3.11.

Figure 3.11 An algorithm can detect a loop by reversing the links in a
linked list.

105

106

The top image in Figure 3.11 shows the original list with the first cell
shaded to indicate the cell that the algorithm is visiting. The algorithm
moves through the list, reversing the links.

The middle image in Figure 3.11 shows the algorithm when it has reached
cell I. The links that have been reversed are shown in bold. Next the
algorithm follows the link out of cell I to cell D. It then follows the
reversed links from cell D to cells C, B, and A. As it follows those links,
the algorithm reverses them again to give the image shown at the bottom
of Figure 3.11. Here the links that have been reversed twice are shown
with dotted arrows.

At this point the algorithm returns to the first cell in the list, so it knows
the list contains a loop. Notice that the new list is the same as the old one,
except that the links in the loop are reversed.

Because this algorithm must reverse the list twice, it starts with the
following method for reversing the list:

// Reverse the loop once and return the new top of
the list.
Cell: ReverseList(Cell: sentinel)

Cell: prev_cell = null
Cell: curr_cell = sentinel
While (curr_cell != null)

// Reverse the link out of this cell.
Cell: next_cell = curr_cell.Next
curr_cell.Next = prev_cell
// Move to the next cell.
prev_cell = curr_cell
curr_cell = next_cell

End While
// Return the last cell we visited.
Return prev_cell

End ReverseList

This pseudocode moves through the list, reversing the links, and returns
the last node visited, which is the first node in the reversed list.

The following algorithm uses the previous pseudocode to determine
whether the list contains a loop:

// Return true if the list has a loop.
Boolean: HasLoopReversing(Cell: sentinel)
{

107

// If the list is empty, it has no loops.
If (sentinel.Next == null) Then Return false
// Loop through the list, reversing links.
Cell: new_sentinel = ReverseList(sentinel)
// Loop through the list again to restore the

links.
ReverseList(new_sentinel)
// If the reversed list starts with the same cell
// as the original list, there is a loop.
// Return the result.
If (new_sentinel == sentinel) Then Return true
Return false

End HasLoopReversing

This algorithm calls the ReverseList method to reverse the list and
get the reversed list's first cell. It then calls ReverseList again to
re-reverse the list and restore the links to their original values.

If the sentinel is the same as the first cell in the reversed list, the algorithm
returns true. If the sentinel is different from the first cell in the reversed
list, the algorithm returns false.

This algorithm traverses the list twice—once to reverse links, and once to
restore them—so it performs 2 × N = O(N) steps.

This algorithm runs in O(N) time without requiring additional space.
Unfortunately, it only detects loops; it doesn't provide a way to break
them. The next algorithm solves that problem, although it may be the most
confusing of the algorithms described here.

Tortoise and Hare
This algorithm is called the tortoise-and-hare algorithm or Floyd's
cycle-finding algorithm after Robert Floyd, who invented it in the 1960s.
The algorithm itself isn't too complicated, but its explanation is pretty
confusing, so if you don't want to see the math, skip to the following
pseudocode.

The algorithm starts two objects called “tortoise” and “hare” moving
through the list at different speeds starting at the beginning of the list. The
tortoise moves one cell per step. The hare moves two cells per step.

108

If the hare reaches a link that is null, the list has an end, so there is no
loop.

If the list does contain a loop, the hare eventually enters the loop and starts
running laps around it.

Meanwhile, the tortoise plods along until it eventually reaches the loop
too. At that point both the tortoise and hare are inside the loop.

Let T be the number of steps that pass before the tortoise enters the loop,
and let H be the distance from the beginning of the loop to the hare's
location after T steps, as shown in Figure 3.12. Let L be the number of
cells inside the loop.

In Figure 3.12, T = 4, H = 4, and L = 5.

Because the hare moves twice as fast as the tortoise, it reaches the loop
after moving T cells. It then crosses another T cells inside the loop to
reach the position shown in Figure 3.12. This leads to the following
Important Fact #1.

Figure 3.12 T is the distance the tortoise travels to get to the loop, and H
is the distance from the start of the loop to the hare at that time.

109

Important Fact #1
If you move across T cells within the loop, you end up H cells away from where
you started.

Note that the hare may have run several laps around the loop if L is much
smaller than T. For example, if T is 102 and L is 5, the tortoise reaches the
loop after 102 steps. The hare reaches the loop after 51 steps, spends the
next 50 steps (100 cells) running 20 laps around the loop, and then moves
one more step (two cells) inside the loop. In this case, H = 2.

The next question is, “When will the hare catch the tortoise?” When the
tortoise enters the loop, the hare is H cells ahead, as shown in Figure 3.12.
Because the tortoise and hare are in a loop, you can also think of the hare
as L – H cells behind the tortoise. Because the hare moves two cells for
every one that the tortoise moves, it gains one cell per step. That means
the hare will catch the tortoise in L – H more steps.

110

In Figure 3.12, H = 4 and L = 5, so the hare will catch the tortoise in 5 – 4
= 1 more step when both animals meet at cell E.

This means that, at the point of collision, the tortoise will have moved L –
H cells into the loop. When the two animals meet, they are L – (L – H) =
H cells short of the beginning of the loop. This is Important Fact #2.

Important Fact #2
When the hare catches the tortoise, the two animals are H cells short of the
beginning of the loop.

Now, if you could move the tortoise H cells from the point of collision,
the tortoise would be at the beginning of the loop, and you would know
where the loop starts. Unfortunately, you don't know the value of H, so
you can't simply move the tortoise that far.

However, you do know from Important Fact #1 that if the tortoise moves
T cells around the loop, it will end up H cells ahead of where it started. In
this case, it will end up at the start of the loop!

Unfortunately, you also don't know the value of T, so you can't simply
move the tortoise that far either. However, if you start the hare at the
beginning of the linked list and make it move only one cell at a time
instead of two (it's probably tired after running around in the loop for so
long), it will also reach the start of the loop after it crosses T cells. That
means the two will meet again after crossing T cells, when they will be at
the start of the loop.

The following pseudocode shows the algorithm at a high level:
1. Start the tortoise moving through the list at one cell per step. Start
the hare moving through the list at two cells per step.
2. If the hare finds a null link, the list has no loop, so stop.
3. Otherwise, when the hare catches the tortoise, restart the hare at
the beginning of the list, moving one cell per step, and continue
moving the tortoise at one cell per step.
4. When the tortoise and hare meet again, they are at the start of the
loop. Leave the hare at the loop's starting point to take a
well-deserved rest while the tortoise takes one more lap around the

111

loop. When the tortoise's Next pointer gives the cell where the
hare is waiting, the tortoise is at the end of the loop.
5. To break the loop, set the tortoise's cell's Next pointer to null.

Warning
I've never met a program that really needed to use the tortoise-and-hare algorithm. If
you're careful, there's no excuse for letting a linked list become corrupted by an
accidental loop. However, detecting loops seems to be a popular interview question and
brainteaser, so it's good to know about this solution.

Loops in Doubly Linked Lists
Detecting loops in a doubly linked list is easy. If there is a loop,
somewhere a Next pointer jumps back to an earlier part of the list. The
Prev pointer in that cell points to an earlier cell, not the one that created
the loop.

So, to detect a loop, simply traverse the list, and for each cell, verify that
cell.Next.Prev == cell.

This all assumes that the cells form a normal doubly linked list and that a
loop, if it exists, is a simple loop. If the Next and Prev lists are
completely out of sync, this method detects the mess but doesn't help you
fix it. This is more a case of two threads through the same cells than a
doubly linked list with a loop.

Summary
This chapter explained linked lists and some of the things you can do with
them. It explained singly and doubly linked lists and threaded lists. It also
explained basic list-manipulation algorithms such as adding, finding, and
deleting items, and it explained a variety of loop-detection and -removal
algorithms.

All this work with pointers is a kind of preview for later chapters that deal
with trees, balanced trees, networks, and other linked data structures. In

112

fact, the next chapter uses linked data structures to implement sparse
arrays.

Exercises
Answers to these exercises are found in Appendix B.

1. The section “Adding Cells at the End” gives an O(N) algorithm
for adding an item at the end of a singly linked list. If you keep
another variable, bottom, that points to the last cell in the list, you
can add items to the end of the list in O(1) time. Write such an
algorithm. How does this complicate other algorithms that add an
item at the beginning or end of the list, find an item, and remove an
item? Write an algorithm for removing an item from this kind of
list.
2. Write an algorithm to find the largest item in an unsorted singly
linked list with cells containing integers.
3. Write an algorithm to add an item at the top of a doubly linked
list.
4. Write an algorithm to add an item at the bottom of a doubly
linked list.
5. If you compare the algorithms you wrote for Exercises 3 and 4 to
the InsertCell algorithm shown in the section “Doubly Linked
Lists,” you should notice that they look very similar. Rewrite the
algorithms you wrote for Exercises 3 and 4 so that they call the
InsertCell algorithm instead of updating the list's links
directly.
6. Write an algorithm that deletes a specified cell from a doubly
linked list. Draw a picture that shows the process graphically.
7. Suppose you have a sorted doubly linked list holding names. Can
you think of a way to improve search performance by starting the
search from the bottom sentinel instead of the top sentinel? Does
that change the Big O run time?
8. Write an algorithm for inserting an item in a sorted doubly linked
list where the top and bottom sentinels hold the minimum and
maximum possible values.

113

9. Write an algorithm that determines whether a linked list is sorted.
10. Insertionsort and selectionsort both have a run time of O(N2).
Explain why selectionsort takes longer in practice.
11. Write a program that builds a multithreaded linked list of the
planets, as described in the section “Multithreaded Linked Lists.”
Let the user click a radio button or select from a combo box to
display the planets ordered by the different threads. (Hints: Make a
Planet class with fields Name, DistanceToSun, Mass,
Diameter, NextDistance, NextMass, and
NextDiameter. Then make an AddPlanetToList method
that adds a planet to the threads in sorted order.)
12. Write a program that implements the tortoise-and-hare
algorithm.

114

Chapter 4

Arrays

Arrays are extremely common data structures. They are intuitive, easy to
use, and supported well by most programming languages. In fact, arrays
are so common and well understood that you may wonder whether there's
much to say about them in an algorithms book. Most applications use
arrays in a relatively straightforward way, but special-purpose arrays can
be useful in certain cases, so they deserve some attention here.

This chapter explains algorithmic techniques you can use to make arrays
with nonzero lower bounds, save memory, and manipulate arrays more
quickly than you can normally.

Basic Concepts
An array is a chunk of contiguous memory that a program can access by
using indices—one index per dimension in the array. You can think of an
array as an arrangement of boxes where a program can store values.

Figure 4.1 illustrates one-, two-, and three-dimensional arrays. A program
can define higher-dimensional arrays, but trying to represent them
graphically is hard.

Figure 4.1 You can think of one-, two-, and three-dimensional arrays as
arrangements of boxes where a program can store values.

115

Typically a program declares a variable to be an array with a certain
number of dimensions and certain bounds for each dimension. For
example, the following code shows how a C# program might declare and
allocate an array named numbers that has 10 rows and 20 columns:

int[,] numbers = new int[10, 20];

In C#, array bounds are zero-based, so this array's row indices range from
0 to 9, and its column indices range from 0 to 19.

Behind the scenes the program allocates enough contiguous memory to
hold the array's data. Logically the memory looks like a long series of
bytes, and the program maps the array's indices to positions in this series
of bytes, as explained in the following list:

• For one-dimensional arrays, the mapping from array indices to
memory entries is simple: Index i maps to entry i.

• For two-dimensional arrays, the program can map the array entries
in one of two ways: row-major order or column-major order:

116

• In row-major order, the program maps the first row of array
entries to the first set of memory locations. It then maps the
second row to the set of memory locations after the first. It
continues mapping one row at a time until all the entries are
mapped.

• In column-major order, the program maps the first column of
array entries to the first set of memory locations. It then maps
the second column to the second set of memory locations, and
so forth.

Figure 4.2 shows row-major and column-major mappings.

Figure 4.2 A program can map array entries to memory locations in either
row-major or column-major order.

You can extend the ideas of row-major and column-major ordering for
higher-dimensional arrays. For example, to store a three-dimensional array
in row-major order, the program would map the first two-dimensional
“slice” of the array where the third dimension's index is 0. It would map

117

that slice in row-major order as usual. It would then similarly map the
second slice where the third index is 1, and so on for the remaining slices.

Another way to think of this is as an algorithm for mapping a
three-dimensional array. Suppose you have defined a Map2DArray
method that maps a two-dimensional array. The following algorithm uses
Map2DArray to map a three-dimensional array:

For i = 0 To <upper bound of array's third
coordinate>

Map2DArray(<array with the third coordinate set
to i>)
Next i

Similarly, you could use this algorithm to define algorithms for mapping
arrays with even more dimensions.

Normally how a program maps array entries to memory locations is
irrelevant to how a program works, and there's no reason why you should
care. Your code manipulates the array entries, and you don't need to know
how they are stored. However, understanding how the row-major and
column-major orders work is useful when you try to create your own
array-mapping data structures to implement triangular arrays. (Triangular
arrays are discussed in the later section “Triangular Arrays.”)

One-dimensional Arrays
Algorithms that involve one-dimensional or linear arrays tend to be so
straightforward that they're almost trivial. They often come up in
programming interviews, however, so they're worth a brief discussion
here. Linear array operations also provide a preview of operations used by
more interesting data structures such as linked lists, stacks, and queues, so
it's worth covering these operations now for completeness.

Finding Items
Chapter 7 covers some interesting algorithms for finding a target item in a
sorted array. If the items in the array are not sorted, however, finding an

118

item is a matter of performing a linear search or exhaustive search. You
look at every element in the array until you find the target item or you
conclude that the item is not in the array. The following algorithm finds a
target item:

Integer: IndexOf(Integer: array[], Integer: target)
For i = 0 to array.Length - 1

If (array[i] == target) Return i
Next i
// The target isn't in the array.
Return -1

End IndexOf

In the worst case, the target item may be the very last item in the array. So
if the array has N items, the algorithm ends up examining all of them. That
makes the algorithm's run time O(N).

The worst case also occurs if the target item is not in the array. In that case
the algorithm must examine all N items to conclude that the item is not
present.

If you were to successively search for every item in the array, the average
search would take N/2 steps, which is still O(N).

Finding Minimum, Maximum, and
Average
If the array contains numbers, you might want to find the minimum,
maximum, and average values in the array. As is the case for finding an
item, you cannot avoid looking at every item in the array when you want
to find the minimum, maximum, or average.

The following algorithms find the minimum, maximum, and average
values for a one-dimensional array of integers:

Integer: FindMinimum(Integer: array[])
Integer: minimum = array[0]
For i = 1 To array.Length - 1

If (array[i] < minimum) Then minimum =
array[i]

Next i
Return minimum

119

End FindMinimum
Integer: FindMaximum(Integer: array[])

Integer: maximum = array[0]
For i = 1 To array.Length - 1

If (array[i] > maximum) Then maximum =
array[i]

Next i
Return maximum

End FindMaximum
Float: FindAverage(Integer: array[])

Integer: total = 0
For i = 0 To array.Length - 1

total = total + array[i]
Next i
Return total / array.Length

End FindMaximum

As is the case for the algorithm that finds a specific item, these algorithms
must visit every item in the array, so they have run time O(N).

You can similarly calculate other statistical values such as the standard
deviation and variance if you need them. One value that isn't as easy to
calculate is the median, the value that lies in the middle of the values
when they are sorted. For example, the median of 1, 3, 4, 7, 8, 8, 9 is 7
because there are three smaller values (1, 3, 4) and three larger values (8,
8, 9).

A single pass through the array won't give you all the information you
need to calculate the median, because in some sense you need more global
information about the values to find the median. You can't simply adjust a
“running” median by looking at values one at a time.

One approach might be to think about each value in the list. For each test
value, reconsider all the values, and keep track of those that are larger and
smaller than the test value. If you find a test value where the number of
smaller and larger entries is equal, the test value is the median.

The following is the basic algorithm:

Integer: FindMedian(Integer: array[])
For i = 0 To array.Length - 1

// Find the number of values greater than and
less than array[i].

Integer: num_larger = 0
Integer: num_smaller = 0

120

For j = 0 To array.Length - 1
If (array[j] < array[i]) Then num_smaller

= num_smaller + 1
If (array[j] > array[i]) Then num_larger

= num_larger + 1
Next j
If (num_smaller = num_larger) Then

Return array[i]
End If

Next i
End FindMedian

This algorithm has a few flaws. For example, it doesn't handle the case in
which multiple items have the same value, as in 1, 2, 3, 3, 4. It also doesn't
handle arrays with an even number of items, which have no item in the
middle. (If an array has an even number of items, its median is defined as
the average of the two middlemost items. For example, the median of 1, 4,
6, 9 is 4 + 6 / 2 = 5.)

This algorithm isn't efficient enough to be worth fixing, but its run time is
worth analyzing.

If the array contains N values, the outer For i loop executes N times.
For every one of those iterations, the inner For j loop executes N times.
That means the steps inside the inner loop execute N × N = N times,
giving the algorithm a run time of O(N).

A much faster algorithm is to first sort the array and then find the median
directly by looking at the values in the sorted array. Chapter 6 describes
several algorithms for sorting an array containing N items in O(N log N)
time. That's a lot faster than O(N).

Inserting Items
Inserting an item at the end of a linear array is easy, assuming that the
underlying programming language can extend the array by one item.
Simply extend the array and insert the new item at the end.

Inserting an item anywhere else in the array is more difficult. The
following algorithm inserts a new item at location position in a linear
array:

121

InsertItem(Integer: array[], Integer: value,
Integer: position)

<Resize the array to add 1 item at the end>
// Move down the items after the target position
// to make room for the new item.
For i = array.Length - 1 To position + 1 Step -1

array[i] = array[i - 1]
Next i
// Insert the new item.
array[position] = value

End InsertItem

Notice that this algorithm's For loop starts at the end of the array and
moves toward the beginning. That lets it fill in the new position at the end
of the array first and then fill each preceding spot right after its value has
been copied to a new location.

If the array initially holds N items, this algorithm's For loop executes N –
position times. In the worst case, when you're adding an item at the
beginning of the array, position = 0 and the loop executes N times, so
the algorithm's run time is O(N).

Note
Many programming languages have methods for moving blocks of memory that would
make moving the items down one position much faster.

In practice, inserting items in a linear array isn't all that common, but the
technique of moving over items in an array to make room for a new one is
useful in other algorithms.

Removing Items
Removing the item with index k from an array is about as hard as adding
an item. The code first moves the items that come after position k one
position closer to the beginning of the array, and then the code resizes the
array to remove the final unused entry.

In the worst case, when you're removing the first item from the array, the
algorithm may need to move all the items in the array. That means it has a
run time of O(N).

122

Note
In some cases it may be possible to flag an entry as unused instead of actually removing
it. For example, if the values in the array are references or pointers to objects, you may be
able to set the removed entry to null. That technique can be particularly useful in hash
tables, where resizing the array would be time-consuming.

If you flag many entries as unused, however, the array could eventually fill up with
unused entries. Then, to find an item, you would need to examine a lot of empty
positions. At some point, it may be better to compress the array to remove the empty
entries.

Nonzero Lower Bounds
Many programming languages require that all arrays use 0 for a lower
bound in every dimension. For example, a linear array can have indices
ranging from 0 to 9 but cannot have indices ranging from 1 to 10.

Sometimes, however, it's convenient to treat an array's dimension as if it
had nonzero lower bounds. For example, suppose you're writing a sales
program that needs to record sales figures for 10 employees with IDs
between 1 and 10 for the years 2000 through 2010. In that case it might be
nice to declare the array like this:

Double: sales[1 to 10, 2000 to 2010]

You can't do that in languages that require 0 lower bounds, but you can
translate the more convenient bounds into bounds that start with 0 fairly
easily. The following two sections explain how to use nonzero lower
bounds for arrays with two or more dimensions.

Two Dimensions
Managing arrays with nonzero lower bounds isn't too hard for any given
number of dimensions.

Consider again the example where you want an array indexed by
employee ID and year, where employee ID ranges from 1 to 10 and year
ranges from 2000 to 2010. These ranges include 10 employee ID values
and 11 years, so they would allocate an array with 10 rows and 11
columns, as shown in the following pseudocode:

123

Double: sales[10, 11]

To access an entry for employee e in year y, you calculate the row and
column in the actual array as follows:

row = e - 1
column = y - 2000

Now the program simply works with the entry array[row,
column].

This is easy enough, but you can make it even easier by wrapping the
array in a class. You can make a constructor to give the object the bounds
for its dimensions. It can then store the lower bounds so that it can later
calculate rows and columns.

In some programming languages you can even make get and set
methods to be the class's indexers, so you can treat objects almost as if
they were arrays. For example, in C# you could use the following code to
set and get values in an array:

array[6, 2005] = 74816;
MessageBox.Show(

"In 2005 employee 6 had " + array[6,
2005].ToString() + " in sales."

The details of a particular programming language are specific to that
language, so they aren't shown here. You can download the TwoDArray
sample program from the book's website at www.wiley.com/go/
essentialalgorithms to see the details in C#.

Higher Dimensions
The method described in the preceding section works well if you know the
number of dimensions the array should have. Unfortunately, generalizing
this technique for any number of dimensions is difficult because, for N
dimensions, you need to allocate an N-dimensional array to hold the data.
You could make separate classes to handle two, three, four, and more
dimensions, but it would be better to find a more generalizable approach.

Instead of storing the values in a two-dimensional array, you could pack
them into a one-dimensional array in row-major order. You would start by

124

http://www.wiley.com/go/essentialalgorithms
http://www.wiley.com/go/essentialalgorithms

allocating an array big enough to hold all the items. If there are N rows
and M columns, you would allocate an array with N × M entries:

Double: values[N * M]

To find an item's position in this array, first you calculate row and column
as before. If an item corresponds to employee e and year y, the row and
column are given by the following:

row = e - <employee ID lower bound>
column = y - <year lower bound>

Now that you know the item's row and column, you need to find its index
in the values array.

First, how many complete rows fit into the array before this item? If the
item's row number is r, there are r complete rows before this item
numbered 0, 1, …, r – 1. Because there are <row size> items in each
row, that means those rows account for r × <row size> items
before this one.

Now, how many items come before this one in this item's row? If this
item's column number is c, there are c items before this item in its row
numbered 0, 1, …, c – 1. Those items take up c positions in the values
array.

The total number of items that come before this one in the values array is
given by this:

index = row × <row size> + column

Now you can find this item at values[index].

This technique is a bit more complicated than the technique described in
the preceding section, but it is easier to generalize for any number of
dimensions.

Suppose you want to create an array with N dimensions, with lower
bounds stored in the lower_bounds array and with upper bounds
stored in the upper_bounds array.

The first step is to allocate a one-dimensional array with enough space to
store all the values. Simply subtract each lower bound from each upper

125

bound to see how “wide” the array must be in that dimension, and then
multiply the resulting “widths” together:

Integer: ArraySize(Integer: lower_bounds[], Integer:
upper_bounds[])

Integer: total_size = 0
For i = 0 To lower_bounds.Length - 1

total_size = total_size * (upper_bounds[i] -
lower_bounds[i])

Next i
Return total_size

End ArraySize

The next step, mapping row and column to a position in the
one-dimensional array, is a bit more confusing. Recall how the preceding
example mapped row and column to an index in the values array. First
the code determined how many complete rows belonged in the array and
multiplied that number by the number of items in a row. The code then
added 1 for each position in the item's row that was before the item.

Moving to three dimensions isn't much harder. Figure 4.3 shows a 4×4×3
three-dimensional array with dimensions labeled height, row, and column.
The entry with coordinates (1, 1, 3) is highlighted in gray.

Figure 4.3 The first step in mapping an item to the values array is
determining how many complete “slices” come before it.

To map the item's coordinates (1, 1, 3) to an index in the values array,
first determine how many complete “slices” come before the item.
Because the item's height coordinate is 1, there is one complete slice

126

before the item in the array. The size of a slice is <row size> ×
<column size>. If the item has coordinates (h, r, c), the number of
items that come before this one due to slices is given by the following:

index = h × <row size> × <column size>

Next you need to determine how many items come before this one due to
complete rows. In this example, the item's row is 1, so one row comes
before the item in the values array. If the item has row r, you need to
add r times the size of a row to the index:

index = index + r × <row size>

Finally, you need to add 1 for each item that comes before this one in its
column. If the item has column c, this is simply c:

index = index + c

You can extend this technique to work in even higher dimensions. To
make calculating indices in the values array easier, you can make a
slice_sizes array that holds the size of the “slice” at each of the
dimensions. In the three-dimensional case, these values are <row
size> × <column size>, <column size>, and 1.

To move to higher dimensions, you can find a slice size by multiplying the
next slice size by the size of the current dimension. For example, for a
four-dimensional array, the next slice size would be <height size>
× <row size> × <column size>.

With all this background, you're ready to see the complete algorithm.
Suppose the bounds array holds alternating lower and upper bounds for
the desired N-dimensional array. Then the following pseudocode
initializes the array:

InitializeArray(Integer: bounds[])
// Get the bounds.
Integer: NumDimensions = bounds.Length / 2
Integer: LowerBound[NumDimensions]
Integer: SliceSize[NumDimensions]
// Initialize LowerBound and SliceSize.
Integer: slice_size = 1
For i = NumDimensions - 1 To 0 Step -1

SliceSize[i] = slice_size
LowerBound[i] = bounds[2 * i]

127

Integer: upper_bound = bounds[2 * i + 1]
Integer: bound_size = upper_bound -

LowerBound[i] + 1
slice_size *= bound_size

Next i
// Allocate room for all of the items.
Double: Values[slice_size]

End InitializeArray

This code calculates the number of dimensions by dividing the number of
values in the bounds array by 2. It creates a LowerBound array to
hold the lower bounds and a SliceSize array to hold the sizes of slices
at different dimensions.

Next the code sets slice_size to 1. This is the size of the slice at the
highest dimension, which is a column in the preceding example.

The code then loops through the dimensions, starting at the highest and
looping toward dimension 0. (This corresponds to looping from column to
row to height in the preceding example.) It sets the current slice size to
slice_size and saves the dimension's lower bound. It then multiplies
slice_size by the size of the current dimension to get the slice size
for the next-smaller dimension.

After it finishes looping over all the dimensions, slice_size holds the
sizes of all the array's dimensions multiplied together. That is the total
number of items in the array, so the code uses it to allocate the Values
array, where it will store the array's values.

The following deceptively simple pseudocode uses the LowerBound
and SliceSize arrays to map the indices in the indices array to an
index in the Values array:

Integer: MapIndicesToIndex(Integer: indices[])
Integer: index = 0
For i = 0 to indices.Length - 1

index = index +
(indices[i] - LowerBound[i]) *

SliceSize[i]
Next i
Return index

End MapIndicesToIndex

128

The code initializes index to 0. It then loops over the array's
dimensions. For each dimension, it multiplies the number of slices at that
dimension by the size of a slice at that dimension and adds the result to
index.

After it has looped over all the dimensions, index holds the item's index
in the Values array.

You can make using the algorithm easier by encapsulating it in a class.
The constructor can tell the object what dimensions to use. Depending on
your programming language, you may be able to make get and set
methods that are used as accessors so that a program can treat an object as
if it actually were an array.

Download the NDArray sample program from the book's website to see a
C# implementation of this algorithm.

Triangular Arrays
Some applications can save space by using triangular arrays instead of
normal rectangular arrays. In a triangular array, the values above the
diagonal (where the item's column is greater than its row) have some
default value, such as 0, null, or blank. Figure 4.4 shows an upper
triangular array.

For example, a connectivity matrix represents the connections between
points in some sort of network. The network might be an airline's flight
network that indicates which airports are connected to other airports. The
array's entry connected[i, j] is set to 1 if there is a flight from
airport i to airport j. If you assume that there is a flight from airport j to
airport i whenever there is a flight from airport i to airport j,
connected[i, j] = connected[j, i]. In that case there's
no need to store both connected[i, j] and connected[j, i]
because they are the same.

Figure 4.4 In a triangular array, values above the diagonal have a default
value.

129

In cases such as this, the program can save space by storing the
connectivity matrix in a triangular array.

Note
It's probably not worth going to the trouble of making a 3×3 triangular array, because you
would save only three entries. In fact, it's probably not worth making a 100×100
triangular array, because you would save only 4,960 entries, which still isn't all that much
memory, and working with the array would be harder than using a normal array.
However, a 10,000×10,000 triangular array would save about 50 million entries, which
begins to add up to real memory savings, so it may be worth making into a triangular
array.

Building a triangular array isn't too hard. Simply pack the array's values
into a one-dimensional array, skipping the entries that should not be
included. The challenges are to figure out how big the one-dimensional
array must be and to figure out how to map rows and columns to indices
in the one-dimensional array.

Table 4.1 shows the number of entries needed for triangular arrays of
different sizes.

130

Table 4.1 Entries in Triangular Arrays
Number of Rows Number of Entries

1 1

2 3

3 6

4 10

5 15

6 21

7 28

If you study Table 4.1, you'll see a pattern. The number of cells needed for
N rows equals the number needed for N – 1 rows plus N.

If you think about triangular arrays for a while, you'll realize that they
contain roughly half the number of the entries in a square array with the
same number of rows. A square array containing N rows holds N2 entries,
so it seems likely that the number of entries in the corresponding
triangular array would involve N2. If you start with a general quadratic
equation A × N2 + B × N + C and plug in the values from Table 4.1, you
can solve for A, B, and C to find that the equation is (N2 + N) / 2.

That solves the first challenge. To build a triangular array with N rows,
allocate a one-dimensional array containing (N2 + N) / 2 items.

The second challenge is to figure out how to map rows and columns to
indices in the one-dimensional array. To find the index for an entry with
row r and column c, you need to figure out how many entries come before
that one in the one-dimensional array.

To answer that question, look at the array shown in Figure 4.5 and
consider the number of entries that come before entry (3, 2).

Figure 4.5 To find the index of an entry, you must figure out how many
entries come before it in the one-dimensional array.

131

The entries due to complete rows are highlighted with a thick border in
Figure 4.5. The number of those entries is the same as the number of all
entries in a triangular array with three rows, and you already know how to
calculate that number.

The entries that come before the target entry (3, 2) that are not due to
complete rows are those to the left of the entry in its row. In this example,
the target entry is in column 2, so there are two entries to its left in its row.

In general, the formula for the index of the entry with row r and column c
is ((r – 1)2 + (r – 1)) / 2 + c.

With these two formulas, working with triangular arrays is easy. Use the
first formula, (N2 + N) / 2, to figure out how many items to allocate for an
array with N rows. Use the second formula, ((r – 1)2 + (r – 1)) / 2 + c, to
map rows and columns to indices in the one-dimensional array, as shown
in the following pseudocode:

132

Integer: FindIndex(Integer: r, Integer: c)
Return ((r - 1) * (r - 1) + (r - 1)) / 2 + c

End FindIndex

You can make this easier by wrapping the triangular array in a class. If
you can make the get and set methods indexers for the class, a
program can treat a triangular array object as if it were a normal array.

One last detail is how the triangular array class should handle requests for
entries that do not exist in the array. For example, what should the class do
if the program tries to access entry (1, 4), which lies in the missing upper
half of the array? Depending on the application, you might want to return
a default value, switch the row and column and return that value, or throw
an exception.

Sparse Arrays
Triangular arrays let a program save memory if you know that the array
will not need to hold values above its diagonal. If you know an array will
hold very few entries, you may be able to save even more memory.

For example, consider again an airline connectivity matrix that holds a 1
in the [i, j] entry to indicate that there is a flight between city i and
city j. The airline might have only 600 flights connecting 200 cities. In
that case there would be only 600 nonzero values in an array of 40,000
entries. Even if the flights are symmetrical (for every i–j flight there is a
j–i flight) and you store the connections in a triangular array, the array
would hold only 300 nonzero entries out of a total of 20,100 entries. The
array would be almost 99% unused.

A sparse array lets you save even more space by not representing the
missing entries. To get an item's value, the program searches for the item
in the array. If the item is present, the program returns its value. If the item
is missing, the program returns a default value for the array. (For the
connectivity matrix example, the default value would be 0.)

One way to implement a sparse array is to make a linked list of linked
lists. The first list holds information about rows. Each item in that list

133

points to another linked list holding information about entries in the
array's columns for that row.

You can build a sparse array with two cell classes—an ArrayRow class
to represent a row and an ArrayEntry class to represent a value in a
row.

The ArrayRow class stores a row number, a reference or pointer to the
next ArrayRow, and a reference to the first ArrayEntry in that row.
The following shows the ArrayRow class's layout:

ArrayRow:
Integer: RowNumber
ArrayRow: NextRow
ArrayEntry: RowSentinel

The ArrayEntry class stores the entry's column number, whatever
value the entry should hold for the array, and a reference to the next
ArrayEntry object in this row. The following shows the
ArrayEntry class's layout, where T is whatever type of data the array
must hold:

ArrayEntry:
Integer: ColumnNumber
T: Value
ArrayEntry: NextEntry

To make adding and removing rows easier, the list of rows can start with a
sentinel, and each list of values in a row can start with a sentinel. Figure
4.6 shows a sparse array with the sentinels shaded.

To make it easier to determine when a value is missing from the array, the
ArrayRow objects are stored in increasing order of RowNumber. If
you're searching the list for a particular row number and you find an
ArrayRow object that has a lower RowNumber, you know that the row
number you're looking for isn't in the array.

Similarly, the ArrayEntry objects are stored in increasing order of
ColumnNumber.

Note that the RowEntry objects that seem to be aligned vertically in
Figure 4.6 do not necessarily represent the same columns. The first

134

RowEntry object in the first row might represent column 100, and the
first RowEntry object in the second row might represent column –50.

The arrangement shown in Figure 4.6 looks complicated, but it's not too
hard to use. To find a particular value, look down the row list until you
find the right row. Then look across that row's value list until you find the
column you want. If you fail to find the row or column, the value isn't in
the array.

This arrangement requires some ArrayRow objects and sentinels that
don't hold values, but it's still more efficient than a triangular array if the
array really is sparse. For example, in the worst case a sparse array would
contain one value in each row. In that case an N × N array would use N +
1 ArrayRow objects and 2 × N ArrayEntry objects. Of those
objects, only N would contain actual values, and the rest would be
sentinels or used to navigate through the array. The fraction of objects
containing array values is N / (N + 1 + 2 * N) = N / (3 * N + 1), or
approximately 1/3. Compare that to the triangular array described
previously, which was almost 99% empty.

Figure 4.6 Adding and removing cells is easier if each linked list begins
with a sentinel.

135

With the data structure shown in Figure 4.6, you still need to write
algorithms to perform three array operations:

1. Get the value at a given row and column or return a default value
if the value isn't present.
2. Set a value at a given row and column.
3. Delete the value at a given row and column.

These algorithms are a bit easier to define if you first define methods for
finding a particular row and column.

136

Find a Row or Column
To make finding values easier, you can define the following
FindRowBefore method. This method finds the ArrayRow object
before the spot where a target row should be. If the target row is not in the
array, this method returns the ArrayRow before where the target row
would be if it were present:

ArrayRow: FindRowBefore(Integer: row, ArrayRow:
array_row_sentinel)

ArrayRow: array_row = array_row_sentinel
While (array_row.NextRow != null) And

(array_row.NextRow.RowNumber < row))
array_row = arrayRow.NextRow

End While
Return array_row

End FindRowBefore

This algorithm sets variable array_row equal to the array's row
sentinel. The algorithm then repeatedly advances array_row to the
next ArrayRow object in the list until either the next object is null or
the next object's RowNumber is at least as large as the target row
number.

If the next object is null, the program has reached the end of the row list
without finding the desired row. If the row were present, it would belong
after the current array_row object.

If the next object's RowNumber value equals the target row, the
algorithm has found the target row.

If the next object's RowNumber value is greater than the target row, the
target row is not present in the array. If the row were present, it would
belong after the current array_row object.

Similarly, you can define a FindColumnBefore method to find the
ArrayEntry object before the spot where a target column should be.
This method takes as parameters the target column number and the
sentinel for the row that should be searched for that number:

FindColumnBefore(Integer: column, ArrayEntry:
row_sentinel)

ArrayEntry: array_entry = row_sentinel

137

While (array_entry.NextEntry != null) And
(array_entry.NextEntry.ColumnNumber <

column))
array_entry = array_entry.NextEntry;

Return array_entry
End FindColumnBefore

If the array holds N ArrayRow objects, the FindRowBefore method
takes O(N) time. If the row holding the most nondefault items contains M
of those items, the FindColumnBefore method runs in O(M) time.
The exact run time for these methods depends on the number and
distribution of nondefault values in the array.

Get a Value
Getting a value from the array is relatively easy once you have the
FindRowBefore and FindColumnBefore methods:

GetValue(Integer: row, Integer: column)
// Find the row.
ArrayRow: array_row = FindRowBefore(row)
array_row = array_row.NextRow
If (array_row == null) Return default
If (array_row.RowNumber > row) Return default
// Find the column in the target row.
ArrayEntry: array_entry =

FindColumnBefore(column,
array_row.RowSentinel)

array_entry = array_entry.NextEntry
If (array_entry == null) Return default
If (array_entry.ColumnNumber > column) Return

default
Return array_entry.Value

End GetValue

This algorithm uses FindRowBefore to set array_row to the row
before the target row. It then advances array_row to the next row,
hopefully the target row. If array_row is null or refers to the wrong
row, the GetValue method returns the array's default value.

If the algorithm finds the correct row, it uses FindColumnBefore to
set array_entry to the column before the target column. It then
advances array_entry to the next column, hopefully the target

138

column. If array_entry is null or refers to the wrong column, the
GetValue method returns the array's default value.

If the algorithm gets this far, it has found the correct ArrayEntry
object, so it returns that object's value.

This algorithm calls the FindRowBefore and
FindColumnBefore methods. If the array has N rows that contain
nondefault values, and the row with the most nondefault values contains
M of those values, the total run time for the GetValue method is O(N +
M). This is much longer than the O(1) time needed to get a value from a
normal array, but the sparse array uses much less space.

Set a Value
Setting a value is similar to finding a value, except that the algorithm must
be able to insert a new row or column into the array if necessary:

SetValue(Integer: row, Integer: column, T: value)
// If the value we're setting is the default,
// delete the entry instead of setting it.
If (value == default)

DeleteEntry(row, column)
Return

End If
// Find the row before the target row.
ArrayRow: array_row = FindRowBefore(row)
// If the target row is missing, add it.

If (array_row.NextRow == null) Or
(array_row.NextRow.RowNumber > row)

ArrayRow: new_row
new_row.NextRow = array_row.NextRow
array_row.NextRow = new_row
ArrayEntry: sentinel_entry
new_row.RowSentinel = sentinel_entry
sentinel_entry.NextEntry = null

End If
// Move to the target row.
array_row = array_row.NextRow
// Find the column before the target column.
ArrayEntry: array_entry =

FindColumnBefore(column,
array_row.RowSentinel)

139

// If the target column is missing, add it.
If (array_entry.NextEntry == null) Or

(array_entry.NextEntry.ColumnNumber >
column)

ArrayEntry: new_entry
new_entry.NextEntry = array_entry.NextEntry
array_entry.NextEntry = new_entry

End If
// Move to the target entry.
array_entry = array_entry.NextEntry
// Set the value.
array_entry.Value = value

End SetValue

The algorithm starts by checking the value it is setting in the array. If the
value is the default value, the program should delete it from the array to
minimize the array's size. To do that, it calls the DeleteEntry method,
described in the next section, and returns.

If the new value isn't the default value, the algorithm calls the
FindRowBefore method to find the row before the target row. If the
row after the one returned by FindRowBefore isn't the target row,
either the algorithm reached the end of the row list, or the next row comes
after the target row. In either case the algorithm inserts a new ArrayRow
object between the row before and the row that follows it.

Figure 4.7 shows this process. In the list on the left, the target row is
missing but should go where the dashed ellipse is.

Figure 4.7 If the target row is missing, the SetValue method inserts a
new ArrayRow.

140

To insert the new ArrayRow object, the algorithm creates the new
object and sets its NextRow reference to the array_row object's
NextRow value. It then gives the new object a new row sentinel.

When it has finished, the list looks like the right side of Figure 4.7, with
array_row's NextRow reference pointing to the new object.

Having found the target row, creating it if necessary, the algorithm calls
the FindColumnBefore method to find the ArrayEntry object
that represents the target column. If that object doesn't exist, the algorithm
creates it and inserts it into the linked list of the ArrayEntry object,
much as it inserted the ArrayRow if necessary.

Finally, the algorithm moves the variable array_entry to the
ArrayEntry corresponding to the row and sets its value.

The SetValue algorithm may call the DeleteEntry algorithm,
described in the following section. That algorithm calls the
FindRowBefore and FindColumnBefore methods. If the

141

SetValue algorithm does not call DeleteEntry, it calls
FindRowBefore and FindColumnBefore. In either case, the
method calls FindRowBefore and FindColumnBefore either
directly or indirectly.

Suppose the array has N rows that contain nondefault values and the row
with the most nondefault values contains M of those values. In that case,
those FindRowBefore and FindColumnBefore methods give the
SetValue algorithm a total run time of O(N + M).

Delete a Value
The algorithm to delete a value follows the same general approach used to
get or set a value:

DeleteEntry(Integer: row, Integer column)
// Find the row before the target row.
ArrayRow: array_row = FindRowBefore(row)
// If the target row is missing, we don't need

to delete it.
If (array_row.NextRow == null) Or

(array_row.NextRow.RowNumber > row)
Return

// Find the entry before the target column in
the next row.

ArrayRow: target_row = array_row.NextRow
ArrayEntry: array_entry =

FindColumnBefore(column,
target_row.RowSentinel)

// If the target entry is missing, we don't need
to delete it.

If (array_entry.NextRow == null) Or
(array_entry.NextRow.ColumnNumber >

column)
Return

// Delete the target column.
array_entry.NextColumn =

array_entry.NextColumn.NextColumn
// If the target row has any columns left, we're

done.
If (target_row.RowSentinel.NextColumn != null)

Return
// Delete the empty target row.

142

array_row.NextRow = array_row.NextRow.NextRow
End DeleteEntry

This algorithm calls FindRowBefore to find the row before the target
row. If the target row doesn't exist, the algorithm doesn't need to delete
anything, so it returns.

Next the algorithm calls FindColumnBefore to find the column
before the target column in the target row. If the target column doesn't
exist, again the algorithm doesn't need to delete anything, so it returns.

At this point, the algorithm has found the ArrayEntry object before
the target entry in the row's linked list of entries. It removes the target
entry from the list by setting the NextColumn reference of the previous
entry to refer to the object after the target entry.

This operation is shown in Figure 4.8. The list at the top is the original list.
The variable array_entry refers to the entry before the target entry.
To remove the target entry, the algorithm makes that entry's
NextColumn reference point to the following entry.

Figure 4.8 To remove a target entry, the algorithm sets the preceding
entry's NextColumn reference to the entry after the target entry.

The algorithm does not change the target entry's NextColumn
reference. That reference still refers to the following entry, but the
algorithm no longer has a reference that can refer to the target entry, so it
is essentially lost to the program.

Note
When this algorithm deletes a row or column object, that object's memory must be freed.
Depending on the programming language you use, that may require more action. For
example, a C++ program must explicitly call the free function for the removed object
to make that memory available for reuse.

143

Other languages take other approaches. For example, C# and Visual Basic use garbage
collection, so the next time the garbage collector runs, it automatically frees any objects
that the program can no longer access.

After it has removed the target entry from the row's linked list, the
program examines the row's ArrayRow sentinel. If that object's
NextColumn reference is not null, the row still holds other column
entries, so the algorithm is finished, and it returns.

If the target row no longer contains any entries, the algorithm removes it
from the linked list of ArrayRow objects, much as it removed the target
column entry.

The DeleteEntry algorithm calls FindRowBefore and
FindColumnBefore. If the array has N rows that contain nondefault
values and the row with the most nondefault values contains M of those
values, the total run time for the DeleteEntry method is O(N + M).

Matrices
One application of arrays is to represent matrices. If you use normal
arrays, it's fairly easy to perform operations on matrices. For example, to
add two 3×3 matrices you simply add the corresponding entries. The
algorithm following the next note shows this operation for two normal
two-dimensional arrays.

Note
If you're unfamiliar with matrices and matrix operations, you may want to review the
article “Matrix” at http://en.wikipedia.org/wiki/
Matrix(mathematics).

AddArrays(Integer: array1[], Integer: array2[],
Integer: result[])

For i = 0 To <maximum bound for dimension 1>
For j = 0 To <maximum bound for dimension 2>

result[i, j] = array1[i, j] + array2[i,
j]

Next i

144

http://en.wikipedia.org/wiki/Matrix(mathematics)
http://en.wikipedia.org/wiki/Matrix(mathematics)

Next i
End AddArrays

The following algorithm shows how you can multiply two normal
two-dimensional matrices:

MultiplyArrays(Integer: array1[], Integer: array2[],
Integer: result[])

For i = 0 To <maximum bound for dimension 1>
For j = 0 To <maximum bound for dimension 2>

// Calculate the [i, j] result.
result[i, j] = 0
For k = 0 To <maximum bound for dimension

2>
result[i, j] = result[i, j] +

array1[i, k] * array2[k, j]
Next k

Next j
Next i

End MultiplyArrays

These algorithms work with triangular or sparse arrays, but they are
inefficient because they examine every item in both input arrays even if
those entries aren't present.

For example, a triangular array is missing all values [i, j] where j
> i, so adding or multiplying those entries takes on special meaning. If
the missing entries are assumed to be 0, adding or multiplying them
doesn't add to the result. (If those entries are assumed to have some other
default value, adding or multiplying the arrays will result in a
nontriangular array, so you may need to add or multiply the arrays out
completely.)

Instead of considering every entry, the algorithms should consider only
the entries that are actually present. For triangular arrays, this isn't too
confusing. Writing addition and multiplication algorithms for triangular
arrays are topics saved for Exercises 12 and 13. If you get stuck on them,
you can read the solutions in Appendix B.

The situation is a bit more confusing for sparse arrays, but the potential
time savings is even greater. For example, when you add two sparse
matrices, there's no need to iterate over rows and columns that are not
present in either of the input arrays.

145

The following high-level algorithm adds two sparse matrices:

AddArrays(SparseArray: array1[], SparseArray:
array2[],

SparseArray: result[])
// Get pointers into the the matrices' row lists.
ArrayRow: array1_row = array1.Sentinel.NextRow
ArrayRow: array2_row = array2.Sentinel.NextRow
ArrayRow: result_row = result.Sentinel
// Repeat while both input rows have items left.
While (array1_row != null) And (array2_row !=

null)
If (array1_row.RowNumber <

array2_row.RowNumber) Then
// array1_row's RowNumber is smaller.

Copy it.
<copy array1_row's row to the result>
array1_row = array1_row.NextRow

Else If (array2_row.RowNumber <
array1_row.RowNumber) Then

// array2_row's RowNumber is smaller.
Copy it.

<copy array2_row's row to the result>
array2_row = array2_row.NextRow

Else
// The input rows have the same

RowNumber.
// Add the values in both rows to the

result.
<add the values in both array1_row and

array2_row to the
result>

array1_row = array1_row.NextRow
array2_row = array2_row.NextRow

End If
End While
// Copy any remaining items from either input

matrix.
If (array1_row != null) Then

<copy array1_row's remaining rows to the
result>

End If
If (array2_row != null) Then

<copy array2_row's remaining rows to the
result>

End If
End AddArrays

146

Similarly, you can write an algorithm to multiply two sparse matrices
without examining all the missing rows and columns. This is saved for
Exercise 15. If you get stuck writing that algorithm, read the solution in
Appendix B.

Column-Ordered Sparse Matrices
In some algorithms, it may be more convenient to access the entries in a sparse
matrix by columns instead of by rows. For example, when you're multiplying two
three-dimensional matrices, you multiply the entries in the rows of the first matrix
by the entries in the columns of the second matrix.

To make that easier, you can use a similar technique where use linked lists to
represent columns instead of rows. If you need to access a sparse matrix in both
row and column order, you can use both representations.

Summary
Normal arrays are simple, intuitive, and easy to use, but for some
applications they can be awkward. In some applications it may be more
natural to work with an array that has nonzero lower bounds. By using the
techniques described in the section “Nonzero Lower Bounds,” you can
effectively do just that.

Normal arrays are also inefficient for some applications. If an array holds
entries in only its lower-left half, you can use a triangular array to save
roughly half of the array's memory. If an array contains even fewer
entries, you may be able to save even more space by using a sparse array.

Arrays with nonzero lower bounds, triangular arrays, and sparse arrays are
more complicated than the normal arrays provided by most programming
languages, but in some cases they offer greater convenience and large
memory savings.

An array provides random access to the elements it contains. It lets you
get or set any item if you know its indices in the array.

The next chapter explains two different kinds of containers: stacks and
queues. Like arrays, these data structures hold collections of items. Unlike

147

arrays, with their random access behavior, however, they have very
constrained methods for inserting and removing items.

Exercises
Asterisks indicate particularly difficult problems.

1. Write an algorithm to calculate the sample variance of a
one-dimensional array of numbers where the sample variance for an
array containing N items is defined by this equation:

Here is the mean (average) of the values in the array, and the
summation symbol means to add up all the xi values as i varies from
0 to N – 1.
2. Write an algorithm to calculate the sample standard deviation of a
one-dimensional array of numbers where the sample standard
deviation is defined to be the square root of the sample variance.
3. Write an algorithm to find the median of a sorted
one-dimensional array. (Be sure to handle arrays holding an even or
odd number of items.)
4. The section “Removing Items” explained how to remove an item
from a linear array. Write the algorithm in pseudocode.
5. The triangular arrays discussed in this chapter are sometimes
called “lower triangular arrays” because the values are stored in the
lower-left half of the array. How would you modify that kind of
array to produce an upper triangular array with the values stored in
the upper-right corner?
6. How would you modify the lower triangular arrays described in
this chapter to make an “upper-left” array where the entries are
stored in the upper-left half of the array? What is the relationship
between row and column for the entries in the array?

148

7. Suppose you define the main diagonal of a rectangular (and
nonsquare) array to start in the upper-left corner and extend down
and to the right until it reaches the bottom or right edge of the array.
Write an algorithm that fills entries on or below the main diagonal
with 1s and entries above the main diagonal with 0s.
8. Consider the diagonal of a rectangular array that starts in the last
column of the first row and extends left and down until it reaches
the bottom or left edge of the array. Write an algorithm that fills the
entries on or above the diagonal with 1s and entries below the
diagonal with 0s.
9. Write an algorithm that fills each item in a rectangular array with
the distance from that entry to the nearest edge of the array.
10. *Generalize the method for building triangular arrays to build
three-dimensional tetrahedral arrays that contain entries
value[i, j, k] where j ≤ i and k ≤ j. How would you
continue to extend this method for even higher dimensions?
11. How could you make a sparse triangular array?
12. Write an algorithm that adds two triangular arrays.
13. Write an algorithm that multiplies two triangular arrays.
14. The algorithm described for adding two sparse matrices is fairly
high-level. Expand the algorithm to provide details in place of the
instructions inside the angle brackets (<>). (Hint: You may want to
make a separate CopyEntries method to copy entries from one
list to another and a separate AddEntries method to combine
the entries in two rows with the same row number.)
15. At a high level, write an algorithm that efficiently multiplies
two sparse matrices that have default value 0.

149

Chapter 5

Stacks and Queues

Stacks and queues are relatively simple data structures that store objects in
either first-in-first-out order or last-in-first-out order. They expand as
needed to hold additional items, much as the linked lists described in
Chapter 3 can. In fact, you can use linked lists to implement stacks and
queues.

You can also use stacks and queues to model analogous real-world
scenarios such as service lines at a bank or supermarket. But they are more
often used to store objects for later processing by other algorithms such as
shortest-path network algorithms.

This chapter explains stacks and queues. It explains what they are, stack
and queue terminology, and methods you can use to implement them.

Stacks
A stack is a data structure where items are added and removed in
last-in-first-out order. Because of this last-in-first-out (LIFO, usually
pronounced “life-oh”) behavior, stacks are sometimes called LIFO lists or
LIFOs.

A stack is similar to a pile of books on a desk. You can add a book to the
top of the pile or remove the top book from the pile, but you can't pull a
book out of the middle or bottom of the pile without making the whole
thing topple over.

A stack is also similar to a spring-loaded stack of plates at a cafeteria. If
you add plates to the stack, the spring compresses so that the top plate is
even with the countertop. If you remove a plate, the spring expands so that
the plate that is now on top is still even with the countertop. Figure 5.1
shows this kind of stack.

Figure 5.1 A stack is similar to a stack of plates at a cafeteria.

150

Because this kind of stack pushes plates down into the counter, this data
structure is also sometimes called a pushdown stack. Adding an object to a
stack is called pushing the object onto the stack, and removing an object
from the stack is called popping the object off the stack. A stack class
typically provides Push and Pop methods to add items to and remove
items from the stack.

The following sections describe a few of the more common methods for
implementing a stack.

Linked-List Stacks
Implementing a stack is easy using a linked list. The Push method simply
adds a new cell to the top of the list, and the Pop method removes the top
cell from the list.

The following pseudocode shows the algorithm for pushing an item onto a
linked-list stack:

Push(Cell: sentinel, Data: new_value)
// Make a cell to hold the new value.
Cell: new_cell = New Cell
new_cell.Value = new_value
// Add the new cell to the linked list.

151

new_cell.Next = sentinel.Next
sentinel.Next = new_cell

End Push

The following pseudocode shows the algorithm for popping an item off a
linked list stack:

Data: Pop(Cell: sentinel)
// Make sure there is an item to pop.

If (sentinel.Next == null) Then <throw an
exception>

// Get the top cell's value.
Data: result = sentinel.Next.Value
// Remove the top cell from the linked list.
sentinel.Next = sentinel.Next.Next
// Return the result.
Return result

End Pop

Figure 5.2 shows the process. The top image shows the stack after the
program has pushed the letters A, P, P, L, and E onto it. The middle image
shows the stack after the new letter S has been pushed onto the stack. The
bottom image shows the stack after the S has been popped off the stack.

Figure 5.2 It's easy to build a stack with a linked list.

152

Note
See Chapter 3 for more details about using linked lists.

With a linked list, pushing and popping items both have O(1) run times, so
both operations are quite fast. The list requires no extra storage aside from
the links between cells, so linked lists are also space-efficient.

Array Stacks
Implementing a stack in an array is almost as easy as implementing one
with a linked list. Allocate space for an array that is large enough to hold
the number of items you expect to put in the stack. Use a variable to keep
track of the next empty position in the stack.

The following pseudocode shows the algorithm for pushing an item onto
an array-based stack:

Push(Data: stack_values [], Integer: next_index,
Data: new_value)

// Make sure there's room to add an item.
If (next_index == <length of stack_values>) Then

<throw an exception>
// Add the new item.
stack_values[next_index] = new_value
// Increment next_index.
next_index = next_index + 1

End Push

The following pseudocode shows the algorithm for popping an item off an
array-based stack:

Data: Pop(Data: stack_values[], Integer: next_index)
// Make sure there is an item to pop.
If (next_index == 0) Then <throw an exception>
// Decrement next_index.
next_index = next_index - 1
// Return the top value.
Return stack_values[next_index]

End Pop

Figure 5.3 shows the process. The top image shows the stack after the
program has pushed the letters A, P, P, L, and E onto it. The middle image

153

shows the stack after the new letter S has been pushed onto the stack. The
bottom image shows the stack after the S has been popped off the stack.

Figure 5.3 It's easy to build a stack with an array.

With an array-based stack, adding and removing an item both have O(1)
run times, so both operations are quite fast. Setting and getting a value
from an array generally is faster than creating a new cell in a linked list, so

154

this method may be slightly faster than using a linked list. The array-based
stack also doesn't need extra memory to store links between cells.

Unlike a linked-list stack, however, an array-based stack requires extra
space to hold new items. How much extra space depends on your
application and whether you know in advance how many items might
need to fit into the stack. If you don't know how many items you might
need to store in the array, you can resize the array if needed, although that
will take extra time. If the array holds N items when you need to resize it,
it will take O(N) steps to copy those items into the newly resized array.

Depending on how the stack is used, allowing room for extra items may
be very inefficient. For example, suppose an algorithm occasionally needs
to store 1,000 items in a stack, but most of the time it stores only a few. In
that case, most of the time the array will take up much more space than
necessary. If you know the stack will never need to hold more than a few
items, however, an array-based stack can be fairly efficient.

Double Stacks
Suppose an algorithm needs to use two stacks whose combined size is
bounded by some amount. In that case you can store both stacks in a
single array, with one at each end and both growing toward the middle, as
shown in Figure 5.4.

Figure 5.4 Two stacks can share an array if their combined size is limited.

The following pseudocode shows the algorithms for pushing and popping
items with two stacks contained in a single array. To make the algorithm
simpler, the Values array and the NextIndex1 and NextIndex2
variables are stored outside of the Push methods:

Data: StackValues[<max items>]
Integer: NextIndex1, NextIndex2
// Initialize the array.
Initialize()

155

NextIndex1 = 0
NextIndex2 = <length of StackValues> - 1

End Initialize
// Add an item to the top stack.
Push1(Data: new_value)

// Make sure there's room to add an item.
If (NextIndex1 > NextIndex2) Then <throw an

exception>
// Add the new item.
StackValues[NextIndex1] = new_value
// Increment NextIndex1.
NextIndex1 = NextIndex1 + 1

End Push1
// Add an item to the bottom stack.
Push2(Data: new_value)

// Make sure there's room to add an item.
If (NextIndex1 > NextIndex2) Then <throw an

exception>
// Add the new item.
StackValues[NextIndex2] = new_value
// Decrement NextIndex2.
NextIndex2 = NextIndex2 - 1

End Push2
// Remove an item from the top stack.
Data: Pop1()

// Make sure there is an item to pop.
If (NextIndex1 == 0) Then <throw an exception>
// Decrement NextIndex1.
NextIndex1 = NextIndex1 - 1
// Return the top value.
Return StackValues[NextIndex1]

End Pop1
// Remove an item from the bottom stack.
Data: Pop2()

// Make sure there is an item to pop.
If (NextIndex2 == <length of StackValues> - 1)
Then <throw an exception>
// Increment NextIndex2.
NextIndex2 = NextIndex2 + 1
// Return the top value.
Return StackValues[NextIndex2]

End Pop2

156

Stack Algorithms
Many algorithms use stacks. For example, some of the shortest path
algorithms described in Chapter 13 can use stacks. The following sections
describe a few other algorithms that you can implement by using stacks.

Reversing an Array
Reversing an array is simple with a stack. Just push each item onto the
stack and then pop it back off. Because of the stack's LIFO nature, the
items come back out in reverse order.

The following pseudocode shows this algorithm:

ReverseArray(Data: values[])
// Push the values from the array onto the stack.
Stack: stack = New Stack
For i = 0 To <length of values> - 1

stack.Push(values[i])
Next i
// Pop the items off the stack into the array.
For i = 0 To <length of values> - 1

values[i] = stack.Pop()
Next i

End ReverseArray

If the array contains N items, this algorithm takes 2 × N steps, so it has run
time O(N).

Train Sorting
Suppose a train contains cars bound for several different destinations, and
it enters a train yard. Before the train leaves the yard, you need to use
holding tracks to sort the cars so that the cars going to the same
destination are grouped.

Figure 5.5 shows a train with cars bound for cities 3, 2, 1, 3, and 2
entering from the left on the input track. The train can move onto a
holding track and move its rightmost car onto the left end of any cars on
that holding track. Later the train can go back to the holding track and

157

move a car from the holding track's left end back onto the train's right end.
The goal is to sort the cars.

Figure 5.5 You can use stacks to model a train yard sorting a train's cars.

You can directly model this situation by using stacks. One stack represents
the incoming train. Its Pop method removes a car from the right of the
train, and its Push method moves a car back onto the right end of the
train.

Other stacks represent the holding tracks and the output track. Their
Push methods represent moving a car onto the left end of the track, and
the Pop method represents moving a car off of the left end of the track.

The following pseudocode shows how a program could use stacks to
model sorting the train shown in Figure 5.5. Here train is the train on
the input track, track1 and track2 are the top and bottom holding
tracks, and output is the output track on the right:

holding1.Push(train.Pop()) // Step 1: Car 2 to
holding 1.
holding2.Push(train.Pop()) // Step 2: Car 3 to
holding 2.
output.Push(train.Pop()) // Step 3: Car 1 to
output.
holding1.Push(train.Pop()) // Step 4: Car 2 to
holding 1.
train.Push(holding2.Pop()) // Step 5: Car 3 to
train.
train.Push(holding1.Pop()) // Step 6: Car 2 to
train.
train.Push(holding1.Pop()) // Step 7: Car 2 to
train.
train.Push(output.Pop()) // Step 8: Car 1 to
train.

158

Figure 5.6 shows this process. The car being moved in each step has a
bold outline. An arrow shows where each car moves.

Note
A real train yard might need to sort several trains containing many more cars all at once
using many more holding tracks that may connect in unique configurations. All of these
considerations make the problem much harder than this simple example.

Of course, in a real train yard, each move requires shuffling train cars and can take
several minutes. Therefore, finding a solution with the fewest possible moves is very
important.

Figure 5.6 You can sort this train in eight moves by using two holding
tracks and an output track.

Tower of Hanoi
The Tower of Hanoi puzzle, shown in Figure 5.7, has three pegs. One peg
holds a stack of disks of different sizes, ordered from smallest to largest.
You move the disks from one peg to another, one at a time, with the goal
of restacking all the disks, ordered by size, on a different peg. You cannot
place a disk on top of another disk that has a smaller radius.

159

Figure 5.7 The goal in the Tower of Hanoi puzzle is to restack disks from
one peg to another without placing a disk on top of a smaller disk.

You can model this puzzle using three stacks in a fairly obvious way.
Each stack represents a peg. You can use numbers giving the disks' radii
for objects in the stacks.

The following pseudocode shows how a program could use stacks to
model moving the disks from the left peg to the middle peg:

peg2.Push(peg1.Pop())
peg3.Push(peg1.Pop())
peg3.Push(peg2.Pop())
peg2.Push(peg1.Pop())
peg1.Push(peg3.Pop())
peg2.Push(peg3.Pop())
peg2.Push(peg1.Pop())

Figure 5.8 shows the process.

Note
The example shown in Figure 5.8 uses only three disks so that the solution can fit easily

into a figure. In general, the number of steps required to move N disks is 2N – 1, so the
number of steps grows very quickly as N increases. If you had a stack of 35 disks and you
moved them at a rate of one per second, it would take you more than 1,000 years to
restack them on a different peg.

Figure 5.8 You can model the Tower of Hanoi puzzle with three stacks.

160

161

One solution to the Tower of Hanoi puzzle is a nice example of recursion,
so it is discussed in greater detail in Chapter 9.

Stack Insertionsort
Chapter 6 focuses on sorting algorithms, but Chapter 3 briefly explains
how to implement insertionsort with linked lists. The basic idea behind
insertionsort is to take an item from the input list and insert it into the
proper position in a sorted output list (which initially starts empty).
Chapter 3 explains how to implement insertionsort with linked lists, but
you also can implement it with stacks.

The original stack holds items in two sections. The items farthest down in
the stack are sorted, and those near the top of the stack are not. Initially no
items are sorted, and all the items are in the “not sorted” section of the
stack.

The algorithm makes a second, temporary stack. For each item in the
stack, the algorithm pulls the top item off the stack and stores it in a
variable. It then moves all the other unsorted items onto the temporary
stack.

Next the algorithm starts moving sorted items into the temporary stack
until it finds the position where the new item belongs. At that point the
algorithm inserts the new item into the original stack and moves all the
items from the temporary stack back to the original stack.

The algorithm repeats this process until all the items have been added to
the sorted section of the stack.

The following pseudocode shows the insertionsort algorithm at a fairly
high level:

// Sort the items in the stack.
StackInsertionsort(Stack: items)

// Make a temporary stack.
Stack: temp_stack = New Stack
Integer: num_items = <number of items>
For i = 0 To num_items - 1

// Position the next item.
// Pull off the first item.
Data: next_item = items.Pop()

<Move the items that have not yet been

162

sorted to temp_stack.
At this point there are (num_items - i - 1)

unsorted items.>
<Move sorted items to the second stack until
you find out where next_item belongs.>

<Add next_item at this position.>
<Move the items back from temp_stack to the

original stack.>
Next i

End StackInsertionsort

For each item, this algorithm moves the unsorted items to the temporary
stack. Then it moves some of the sorted items to the temporary stack, and
then it moves all the items back to the original stack. At different steps the
number of unsorted items that must be moved is N, N – 1, N – 2, …, 2, 1,
so the total number of items moved is N + (N – 1) + (N – 2) + … + 2 + 1
= N × (N + 1) / 2 = O(N2). That means the algorithm has a run time of
O(N2).

Stack Selectionsort
In addition to describing a linked-list insertionsort, Chapter 3 explains
how to implement selectionsort with linked lists. The basic idea behind
selectionsort is to search through the unsorted items to find the smallest
item and then move it to the end of the sorted output list. Chapter 3
explains how to implement selectionsort with linked lists, but you can also
implement it with stacks.

As in the insertionsort algorithm, the original stack holds items in two
sections. The items farthest down in the stack are sorted, and those near
the top of the stack are not. Initially, no items are sorted, and all the items
are in the “not sorted” section of the stack.

The algorithm makes a second temporary stack. For each position in the
stack, the algorithm moves all the unsorted items to the temporary stack,
keeping track of the largest item.

After it has moved all the unsorted items to the temporary stack, the
program pushes the largest item it found onto the original stack. It then
moves all the unsorted items from the temporary stack back to the original
stack.

163

The algorithm repeats this process until all the items have been added to
the sorted section of the stack.

The following pseudocode shows the selectionsort algorithm at a fairly
high level:

// Sort the items in the stack.
StackSelectionsort(Stack: items)

// Make the temporary stack.
Stack: temp_stack = New Stack
Integer: num_items = <number of items>
For i = 0 To num_items - 1

// Position the next item.
// Find the item that belongs in sorted

position i.
<Move the items that have not yet been sorted

to temp_stack,
keeping track of the largest. Store the

largest item in variable
largest_item.
At this point there are (num_items - i - 1)

unsorted items.>
<Add largest_item to the original stack
at the end of the previously sorted items.>
<Move the unsorted items back from temp_stack

to the
original stack, skipping largest_item when

you find it>
Next i

End StackSelectionsort

For each item, this algorithm moves the unsorted items to the temporary
stack, adds the largest item to the sorted section of the original stack, and
then moves the remaining unsorted items back from the temporary stack
to the original stack. For each position in the array, it must move the
unsorted items twice. At different steps there are N, N – 1, N – 2, …, 1
unsorted items to move, so the total number of items moved is N + (N – 1)
+ (N – 2) + … + 1 = N × (N + 1) / 2 = O(N2), and the algorithm has run
time O(N2).

164

Queues
A queue is a data structure where items are added and removed in
first-in-first-out order. Because of this first-in-first-out (FIFO, usually
pronounced “fife-oh”) behavior, stacks are sometimes called FIFO lists or
FIFOs.

A queue is similar to a store's checkout line. You join the end of the line
and wait your turn. When you get to the front of the line, the cashier takes
your money and gives you a receipt.

Usually the method that adds an item to a queue is called Enqueue, and
the item that removes an item from a queue is called Dequeue.

The following sections describe a few of the more common methods for
implementing a queue.

Linked-List Queues
Implementing a queue is easy using a linked list. To make removing the
last item from the queue easy, the queue should use a doubly linked list.

The Enqueue method simply adds a new cell to the top of the list, and
the Dequeue method removes the bottom cell from the list.

The following pseudocode shows the algorithm for enqueueing an item in
a linked-list stack:

Enqueue(Cell: top_sentinel, Data: new_value)
// Make a cell to hold the new value.
Cell: new_cell = New Cell
new_cell.Value = new_value
// Add the new cell to the linked list.
new_cell.Next = top_sentinel.Next
top_sentinel.Next = new_cell
new_cell.Prev = top_sentinel

End Enqueue

The following pseudocode shows the algorithm for dequeueing an item
from a linked-list stack:

165

Data: Dequeue(Cell: bottom_sentinel)
// Make sure there is an item to dequeue.
If (bottom_sentinel.Prev == top_sentinel) Then

<throw an exception>
// Get the bottom cell's value.
Data: result = bottom_sentinel.Prev.Value
// Remove the bottom cell from the linked list.
bottom_sentinel.Prev = bottom_sentinel.Prev.Prev
bottom_sentinel.Prev.Next = bottom_sentinel
// Return the result.
Return result

End Dequeue

Note
See Chapter 3 for more details about using linked lists.

With a linked list, enqueueing and dequeueing items have O(1) run times,
so both operations are quite fast. The list requires no extra storage aside
from the links between cells, so linked lists are also space-efficient.

Array Queues
Implementing a queue in an array is a bit trickier than implementing one
with a linked list. To keep track of the array positions that are used, you
can use two variables: Next, to mark the next open position, and Last,
to mark the position that has been in use the longest. If you simply store
items at one end of an array and remove them from the other, however, the
occupied spaces move down through the array.

For example, suppose a queue is implemented in an array with eight
entries. Consider the following series of enqueue and dequeue operations:

Enqueue(M)
Enqueue(O)
Enqueue(V)
Dequeue() // Remove M.
Dequeue() // Remove O.
Enqueue(I)
Enqueue(N)
Enqueue(G)
Dequeue() // Remove V.
Dequeue() // Remove I.

166

Figure 5.9 shows this sequence of operations. Initially Next and Last
refer to the same entry. This indicates that the queue is empty. After the
series of Enqueue and Dequeue operations, only two empty spaces
are available for adding new items. After that it will be impossible to add
new items to the queue.

Figure 5.9 As you enqueue and dequeue items in an array-based queue,
the occupied spaces move down through the array.

167

One approach to solving this problem is to enlarge the array when Next
falls off the end of the array. Unfortunately, that would make the array
grow bigger over time, and all the space before the Last entry would be
unused.

168

Another approach would be to move the array's entries to the beginning of
the array whenever Last falls off the array. That would work but would
be relatively slow.

A more effective approach is to build a circular array, in which you treat
the last item as if it were immediately before the first item. Now when
Next falls off the end of the array, it wraps around to the first position,
and the program can store new items there.

Figure 5.10 shows a circular queue holding the values M, O, V, I, N, and
G.

Figure 5.10 In a circular queue you treat the array's last item as if it comes
right before the first item.

A circular array does present a new challenge, however. When the queue
is empty, Next is the same as Last. If you add enough items to the
queue, Next goes all the way around the array and catches up to Last
again, so there's no obvious way to tell whether the queue is empty or full.

169

You can handle this problem in a few ways. For example, you can keep
track of the number of items in the queue, keep track of the number of
unused spaces in the queue, or keep track of the number of items added to
and removed from the queue. The CircularQueue sample program, which
is available for download on the book's website, handles this problem by
always keeping one of the array's spaces empty. If you added another
value to the queue shown in Figure 5.10, the queue would be considered
full when Next is just before Last, even though there was one empty
array entry.

The following pseudocode shows the algorithm used by the example
program for enqueueing an item:

// Variables to manage the queue.
Data: Queue[<queue size>]
Integer: Next = 0
Integer: Last = 0
// Enqueue an item.
Enqueue(Data: value)

// Make sure there's room to add an item.
If ((Next + 1) Mod <queue size> == Last) Then

<throw an exception>
Queue[Next] = value
Next = (Next + 1) Mod <queue size>

End Enqueue

The following pseudocode shows the algorithm for dequeueing an item:

// Dequeue an item.
Data: Dequeue()

// Make sure there's an item to remove.
if (Next == Last) Then <throw an exception>
Data: value = Queue[Last]
Last = (Last + 1) Mod <queue size>
Return value

End Dequeue

A circular queue still has a problem if it becomes completely full. If the
queue is full and you need to add more items, you need to allocate a larger
storage array, copy the data into the new array, and then use the new array
instead of the old one. This can take some time, so you should try to make
the array big enough in the first place.

170

Specialized Queues
Queues are fairly specialized, but some applications use even more
specialized queues. Two of these kinds of queues are priority queues and
deques.

Priority Queues
In a priority queue, each item has a priority, and the dequeue method
removes the item that has the highest priority. Basically, high-priority
items are handled first.

One way to implement a priority queue is to keep the items in the queue
sorted by priority. For example, you can use the main concept behind
insertionsort to keep the items sorted. When you add a new item to the
queue, you search through the queue until you find the position where it
belongs, and you place it there. To dequeue an item, you simply remove
the top item from the queue. With this approach, enqueueing an item takes
O(N) time, and dequeueing an item takes O(1) time.

Another approach is to store the items in whatever order they are added to
the queue and then have the dequeue method search for the
highest-priority item. With this approach, enqueueing an item takes O(1)
time, and dequeueing an item takes O(N) time.

Both of these approaches are reasonably straightforward if you use linked
lists.

The heap data structure described in the “Heapsort” section of Chapter 6
provides a more efficient way of implementing a priority queue. A
heap-based priority queue can enqueue and dequeue items in O(log N)
time.

Deques
Deque, which is usually pronounced “deck,” stands for “double-ended
queue.” A deque is a queue that allows you to add items to and remove
items from either end of the queue.

171

Deques are useful in algorithms where you have partial information about
the priority of items. For example, you might know that some items are
high priority and others are low priority, but you might not necessarily
know the exact relative priorities of every item. In that case, you can add
high-priority items to one end of the deque and low-priority items to the
other end of the deque.

Deques are easy to build with doubly linked lists.

Summary
This chapter explained stacks and queues, two data structures that are
often used by other algorithms to store items. In a stack, items are added
to and then removed from the same “end” of the data structure in
last-in-first-out order. In a queue, items are added at one end and removed
from the other in first-in-first-out order.

You can use an array to build a stack fairly easily as long as it doesn't run
out of space. If you build a stack with a linked list, you don't need to
worry about the stack's running out of space.

You can also use an array to build a queue, although in that approach the
items move through the array until they reach the end and you need to
resize the array. You can solve that problem by using a circular array. You
can also avoid the whole issue by using a doubly linked list to build a
queue.

You can use stacks and queues to sort items in O(N2) time, although those
algorithms are more exercises in using stacks and queues than in efficient
sorting. The next chapter describes several sorting algorithms that give
much better performance, with some running in O(N log N) time and
others even running in O(N) time.

Exercises
Asterisks indicate particularly difficult problems.

172

1. When you use a double stack, what is the relationship between
the variables NextIndex1 and NextIndex2 when one of the
stacks is full?
2. Write an algorithm that takes as input a stack and returns a new
stack containing the same items but in reverse order.
3. Write a program that implements insertionsort with stacks.
4. For each item, the stack insertionsort algorithm moves the
unsorted items to the temporary stack. Then it moves some of the
sorted items to the temporary stack, and then it moves all the items
back to the original stack. Does it really need to move all the items
back to the original stack? Can you improve the algorithm's
performance by modifying that step? What does that do to the
algorithm's Big O run time?
5. What does the stack insertionsort algorithm mean in terms of
train sorting?
6. Write a program that implements selectionsort with stacks.
7. What does the stack selectionsort algorithm mean in terms of
train sorting?
8. Write a program that implements a priority queue.
9. Write a program that implements a deque.
10. * Consider a bank where customers enter a single line that is
served by several tellers. You enter the line at the end, and when
you get to the front of the line, you are served by the next available
teller. You can model this “multiheaded queue” with a normal
queue that serves multiple tellers.
Make a program similar to the one shown in Figure 5.11 to simulate
a multiheaded queue in a bank. Give the user controls to adjust the
number of tellers, the amount of time between customer arrivals, the
amount of time each customer stays, and the speed of the
simulation. After the user specifies the parameters, run a simulation
to see how the queue behaves. How does the number of tellers
affect the average wait time?

Figure 5.11 In a bank queue, customers stand in a single line and
then are helped by the next available teller.

173

11. Write a program that implements insertionsort with queues.
12. Write a program that implements selectionsort with queues.

174

Chapter 6

Sorting

There are several reasons why sorting algorithms are usually covered in
great detail in algorithms books. First, they are interesting and
demonstrate several useful techniques, such as recursion, problem
subdivision, heaps, and trees.

Second, sorting algorithms are well studied and are some of the few
algorithms for which exact run times are known. It can be shown that the
fastest possible algorithm that uses comparisons to sort N items must use
O(N log N) time. Several sorting algorithms actually achieve that
performance, so in some sense they are optimal.

Finally, sorting algorithms are useful. Almost any data is more useful
when it is sorted in various ways, so sorting algorithms play an important
role in many applications.

This chapter describes several different sorting algorithms. Some, such as
insertionsort, selectionsort, and bubblesort, are relatively simple but slow.
Others, such as heapsort, quicksort, and mergesort, are more complicated
but much faster. Still others, such as countingsort, don't use comparisons
to sort items, so they can break the O(N log N) restriction and perform
amazingly fast under the right circumstances.

The following sections categorize the algorithms by their run time
performance.

Note
Many programming libraries include sorting tools, and they usually are quite fast.
Therefore, in practice, you may want to use those tools to save time writing and
debugging the sorting code. It's still important to understand how sorting algorithms
work, however, because sometimes you can do even better than the built-in tools. For
example, a simple bubblesort algorithm may beat a more complicated library routine for
very small lists, and countingsort often beats the tools if the data being sorted has certain
characteristics.

175

O(N2) Algorithms
O(N2) algorithms are relatively slow but fairly simple. In fact, their
simplicity sometimes lets them outperform faster but more complicated
algorithms for very small arrays.

Insertionsort in Arrays
Chapter 3 describes an insertionsort algorithm that sorts items in linked
lists, and Chapter 4 describes insertionsort algorithms that use stacks and
queues. The basic idea is to take an item from the input list and insert it
into the proper position in a sorted output list (which initially starts
empty).

Chapter 3 explains how to do this in linked lists, but you can use the same
steps to sort an array. The following pseudocode shows the algorithm for
use with arrays:

Insertionsort(Data: values[])
For i = 0 To <length of values> - 1

// Move item i into position in the sorted
part of the array.

< Find the first index j where j < i and
values[j] > values[i].>

<Move the item into position j.>
Next i

End Insertionsort

As the code loops through the items in the array, the index i separates the
items that have been sorted from those that have not. The items with an
index less than i have already been sorted, and those with an index
greater than or equal to i have not yet been sorted.

As i goes from 0 to the last index in the array, the code moves the item at
index i into the proper position in the sorted part of the array.

To find the item's position, the code looks through the already sorted items
and finds the first item that is greater than values[i].

176

The code then moves values[i] into its new position. This can be a
time-consuming step. Suppose the item's new index should be j. In that
case, the code must move the items between indices j and i one position
to the right to make room for the item at position j.

Figure 6.1 shows the algorithm's key steps. The image at the top shows the
original unsorted array. In the middle image, the first four items (outlined
in bold) have been sorted, and the algorithm is preparing to insert the next
item (which has value 3) into the sorted part of the array. The algorithm
searches through the sorted items until it determines that the value 3
should be inserted before the value 5. At the bottom of the figure, the
algorithm has moved the values 5, 6, and 7 to the right to make room for
value 3. The algorithm inserts value 3 and continues the For loop to
insert the next item (which has value 2) into its correct position.

Figure 6.1 Insertionsort inserts items into the sorted part of the array.

This algorithm sorts the items in the original array, so it doesn't need any
additional storage (aside from a few variables to control loops and move
items).

177

If the array contains N items, the algorithm considers each of the N
positions in the array. For each position i, it must search the previously
sorted items in the array to find the ith item's new position. It must then
move the items between that location and index i one position to the
right. If the item i should be moved to position j, it takes j steps to find
the new location j and then i – j more steps to move items over,
resulting in a total of i steps. That means in total it takes i steps to move
item i into its new position.

Adding up all the steps required to position all the items, the total run time
is

This means the algorithm has run time O(N2). This isn't a very fast run
time, but it's fast enough for reasonably small arrays (fewer than 10,000 or
so items). It's also a relatively simple algorithm, so it may sometimes be
faster than more complicated algorithms for very small arrays. How small
an array must be for this algorithm to outperform more complicated
algorithms depends on your system. Typically this algorithm is only faster
for arrays holding 5 or 10 items.

Selectionsort in Arrays
In addition to describing insertionsort for linked lists, Chapter 3 also
describes selectionsort for linked lists. Similarly Chapter 4 described
selectionsort algorithms that use stacks and queues.

The basic idea is to search the input list for the largest item it contains and
then add it to the end of a growing sorted list. Alternatively, the algorithm
can find the smallest item and move it to the beginning of the growing list.

The following pseudocode shows the algorithm for use with arrays:

Selectionsort(Data: values[])
For i = 0 To <length of values> - 1

// Find the item that belongs in position i.
<Find the smallest item with index j >= i.>
<Swap values[i] and values[j].>

178

Next i
End Selectionsort

The code loops through the array to find the smallest item that has not yet
been added to the sorted part of the array. It then swaps that smallest item
with the item in position i.

Figure 6.2 shows the algorithm's key steps. The image at the top shows the
original unsorted array. In the middle image, the first three items (outlined
in bold) have been sorted, and the algorithm is preparing to swap the next
item into position. The algorithm searches the unsorted items to find the
one with the smallest value (3 in this case). The algorithm then swaps the
item that has the smallest value into the next unsorted position. The image
at the bottom of the figure shows the array after the new item has been
moved to the sorted part of the array. The algorithm now continues the
For loop to add the next item (which has value 5) to the growing sorted
portion of the array.

Like insertionsort, this algorithm sorts the items in the original array, so it
doesn't need any additional storage (aside from a few variables to control
loops and move items).

If the array contains N items, the algorithm considers each of the N
positions in the array. For each position i, it must search the N – i items
that have not yet been sorted to find the item that belongs in position i. It
then swaps the item into its final position in a small constant number of
steps. Adding up the steps to move all the items gives the following run
time:

This means the algorithm has run time O(N2), the same run time as
insertionsort.

Like insertionsort, selectionsort is fast enough for reasonably small arrays
(fewer than 10,000 or so items). It's also a fairly simple algorithm, so it
may sometimes be faster than more complicated algorithms for very small
arrays (typically 5 to 10 items).

Figure 6.2 Selectionsort moves the smallest unsorted item to the end of
the sorted part of the array.

179

Bubblesort
Bubblesort uses the fairly obvious fact that, if an array is not sorted, it
must contain two adjacent elements that are out of order. The algorithm
repeatedly passes through the array, swapping items that are out of order,
until it can't find any more swaps.

The following pseudocode shows the bubblesort algorithm:

Bubblesort(Data: values[])
// Repeat until the array is sorted.
Boolean: not_sorted = True
While (not_sorted)

// Assume we won't find a pair to swap.
not_sorted = False
// Search the array for adjacent items that

are out of order.
For i = 0 To <length of values> - 1

// See if items i and i - 1 are out of
order.

If (values[i] < values[i - 1]) Then
// Swap them.
Data: temp = values[i]

180

values[i] = values[i - 1]
values[i - 1] = temp
// The array isn't sorted after all.
not_sorted = True

End If
Next i

End While
End Bubblesort

The code uses a boolean variable named not_sorted to keep track of
whether it has found a swap in its most recent pass through the array. As
long as not_sorted is true, the algorithm loops through the array,
looking for adjacent pairs of items that are out of order, and swaps them.

Figure 6.3 shows an example. The array on the far left is mostly sorted.
During the first pass through the array, the algorithm finds that the 6/3 pair
is out of order (6 should come after 3), so it swaps 6 and 3 to get the
second arrangement of values. During the second pass through the array,
the algorithm finds that the 5/3 pair is out of order, so it swaps 5 and 3 to
get the third arrangement of values. During the third pass through the
array, the algorithm finds that the 4/3 pair is out of order, so it swaps 4 and
3, giving the arrangement on the far right in the figure. The algorithm
performs one final pass, finds no pairs that are out of order, and ends.

Figure 6.3 In bubblesort, items that are farther down than they should be
slowly “bubble up” to their correct positions.

181

The fact that item 3 seems to slowly bubble up to its correct position gives
the bubblesort algorithm its name.

During each pass through the array, at least one item reaches its final
position. In Figure 6.3, item 6 reaches its final destination during the first
pass, item 5 reaches its final destination during the second pass, and items
3 and 4 reach their final destinations during the third pass.

If the array holds N items and at least one item reaches its final position
during each pass through the array, the algorithm can perform, at most, N
passes. (If the array is initially sorted in reverse order, the algorithm needs
all N passes.) Each pass takes N steps, so the total run time is O(N2).

182

Like insertionsort and selectionsort, bubblesort is fairly slow but may
provide acceptable performance for small lists (fewer than 1,000 or so
items). It is also sometimes faster than more complicated algorithms for
very small lists (five or so items).

You can make several improvements to bubblesort. First, in Figure 6.3,
the item with value 3 started out below its final correct position, but
consider what happens if an item starts above its final position. In that
case the algorithm finds that the item is out of position and swaps it with
the following item. It then considers the next position in the array and
finds the item again. If the item is still out of position, the algorithm swaps
it again. The algorithm continues to swap that item down through the list
until it reaches its final position in a single pass through the array. You
can use this fact to speed up the algorithm by alternating downward and
upward passes through the array. Downward passes quickly move items
that are too high in the array, and upward passes quickly move items that
are too low in the array.

To make a second improvement, notice that some items may move
through several swaps at once. For example, during a downward pass, a
large item (call it K) may be swapped several times before it reaches a
larger item, and it stops for that pass. You can save a little time if you
don't put item K back in the array for every swap. Instead, you can store K
in a temporary variable and move other items up in the array until you find
the spot where K stops. You then put K in that position and continue the
pass through the array.

To make a final improvement, consider the largest item (call it L) that is
not in its final position. During a downward pass, the algorithm reaches
that item (possibly making other swaps beforehand) and swaps it down
through the list until it reaches its final position. During the next pass
through the array, no item can swap past L because L is in its final
position. That means the algorithm can end its pass through the array
when it reaches item L.

More generally, the algorithm can end its pass through the array when it
reaches the position of the last swap it made during the previous pass. If
you keep track of the last swaps made during downward and upward
passes through the array, you can shorten each pass.

183

Figure 6.4 shows these three improvements. During the first pass down
through the array, the algorithm swaps item 7 with items 4, 5, 6, and 3. It
holds the value 7 in a temporary variable, so it doesn't need to save it back
into the array until it reaches its final position.

Figure 6.4 Improvements make bubblesort faster, but it still has O(N2)
performance.

After placing 7 after 3, the algorithm continues moving through the array
and doesn't find any other items to swap so it knows that item 7 and those
that follow are in their final positions and don't need to be examined again.
If some item nearer to the top of the array were larger than 7, the first pass
would have swapped it down past 7. In the middle image shown in Figure

184

6.4, the final items are shaded to indicate that they don't need to be
checked during later passes.

The algorithm knows item 7 and the items after it are in their final
positions, so it starts its second pass, moving upward through the array at
the first item before item 7, which is item 3. It swaps that item with items
6, 5, and 4, this time holding item 3 in a temporary variable until it reaches
its final position.

Now item 3 and those that come before it in the array are in their final
positions, so they are shaded in the last image in Figure 6.4.

The algorithm makes one final downward pass through the array, starting
the pass at value 4 and ending at value 6. No swaps occur during this pass,
so the algorithm ends.

These improvements make bubblesort faster in practice. (In one test
sorting 10,000 items, bubblesort took 2.50 seconds without improvements
and 0.69 seconds with improvements.) But it still has O(N2) performance,
so there's a limit to the size of the list you can sort with bubblesort.

O(N log N) Algorithms
O(N log N) algorithms are much faster than O(N2) algorithms, at least for
larger arrays. For example, if N is 1,000, N log N is less than 1×104, but
N2 is roughly 100 times as big at 1×106. That difference in speed makes
these algorithms more useful in everyday programming, at least for large
arrays.

Heapsort
Heapsort uses a data structure called a heap and is a useful technique for
storing a complete binary tree in an array.

185

Storing Complete Binary Trees in Arrays
A binary tree is a tree where every node is connected to, at most, two
children. In a complete tree (binary or otherwise), all the tree's levels are
completely filled, except possibly the last level, where all the nodes are
pushed to the left.

Figure 6.5 shows a complete binary tree holding 12 nodes. The tree's first
three levels are full. The fourth level contains five nodes pushed to the left
side of the tree.

Figure 6.5 In a complete binary tree, every level is full, except possibly
the last.

One useful feature of complete binary trees is that you can easily store
them in an array using a simple formula. Start by placing the root node at
index 0. Then, for any node with index i, place its children at indices 2 ×
i + 1 and 2 × i + 2.

If a node has index j, its parent has index (j – 1) / 2, where means to
truncate the result to the next-smaller integer (round down). For example,
2.9 is 2, and 2 is also 2.

Figure 6.6 shows the tree shown in Figure 6.5 stored in an array, with the
entry's indices shown on top.

186

Figure 6.6 You can easily store a complete binary tree in an array.

For example, the value 6 is at index 4, so its children should be at indices
4 × 2 + 1 = 9 and 4 × 2 + 2 = 10. Those items have values 5 and 12. If you
look at the tree shown in Figure 6.5, you'll see that those are the correct
children.

If the index of either child is greater than the largest index in the array, the
node doesn't have that child in the tree. For example, the value 9 has index
5. Its right child has index 2 × 5 + 2 = 12, which is beyond the end of the
array. If you look at Figure 6.5, you'll see that the item with value 9 has no
right child.

For an example of calculating a node's parent, consider the item with
value 12 stored at index 10. The index of the parent is (10 – 1) / 2 = 4.5 =
4. The value at index 4 is 6. If you look at the tree shown in Figure 6.5,
you'll see that the node with value 12 does have as its parent the node with
value 6.

Defining Heaps
A heap, shown in Figure 6.7, is a complete binary tree where every node
holds a value that is at least as large as the values in all its children. Figure
6.5 is not a heap because, for example, the root node has a value of 7, and
its right child has a value of 10, which is greater.

Figure 6.7 In a heap, the value of every node is at least as large as the
values of its children.

187

You can build a heap one node at a time. Start with a tree consisting of a
single node. Because it has no children, it satisfies the heap property.

Now suppose you have built a heap, and you want to add a new node to it.
Add the new node at the end of the tree. There is only one place where
you can add this node to keep the tree a complete binary tree—at the right
end of the bottom level of the tree.

Now compare the new value to the value of its parent. If the new value is
larger than the parent's, swap them. Because the tree was previously a
heap, you know that the parent's value was already larger than its other
child (if it has one). By swapping it with an even larger value, you know
that the heap property is preserved at this point.

However, you have changed the value of the parent node, so that might
break the heap property farther up in the tree. Move up the tree to the
parent node, and compare its value to the value of its parent, swapping
their values if necessary.

Continue up the tree, swapping values if necessary, until you reach the
root node. At that point the tree is again a heap.

Figure 6.8 shows this process when you add the value 12 to the tree shown
in Figure 6.7. Figure 6.9 shows the new heap.

188

Figure 6.8 To add a new value to a heap, place the value at the end of the
tree, and move it up as needed to restore the heap property.

Figure 6.9 When the value moves up to a node that already satisfies the
heap property, the tree is once again a heap.

189

Storing the heap in an array makes this process particularly easy, because
when you need to add a new item to the end of the tree, it's already in the
proper position in the array.

The following pseudocode shows the algorithm to turn an array into a
heap:

MakeHeap(Data: values[])
// Add each item to the heap one at a time.
For i = 0 To <length of values> - 1

// Start at the new item, and work up to the
root.

Integer: index = i
While (index != 0)

// Find the parent's index.
Integer: parent = (index - 1) / 2
// If child <= parent, we're done, so
// break out of the While loop.

If (values[index] <= values[parent])
Then Break

// Swap the parent and child.
Data: temp = values[index]
values[index] = values[parent]
values[parent] = temp
// Move to the parent.
index = parent

End While
Next i

End MakeHeap

Heaps are useful for creating priority queues because the largest item in
the tree is always at the root node. When you need to remove an item from
the queue, you simply use the item at the root.

Unfortunately, that breaks the heap, so it is no longer a tree. Fortunately,
there's an easy way to fix it: Move the last item in the tree to the root.

Doing so breaks the tree's heap property, but you can fix that using a
method similar to the one you used to build the heap. If the new value is
smaller than one of its child values, swap it with the larger child. That
fixes the heap property at this node, but it may have broken it at the child's
level, so move down to that node and repeat the process. Continue
swapping the node down into the tree until you find a spot where the heap
property is already satisfied or you reach the bottom of the tree.

190

The following pseudocode shows the algorithm to remove an item from
the heap and restore the heap property:

Data: RemoveTopItem (Data: values[], Integer: count)
// Save the top item to return later.
Data: result = values[0]
// Move the last item to the root.
values[0] = values[count - 1]
// Restore the heap property.
Integer: index = 0
While (True)

// Find the child indices.
Integer: child1 = 2 * index + 1
Integer: child2 = 2 * index + 2
// If a child index is off the end of the

tree,
// use the parent's index.
If (child1 >= count) Then child1 = index
If (child2 >= count) Then child2 = index
// If the heap property is satisfied,

// we're done, so break out of the While
loop.

If ((values[index] >= values[child1]) And
(values[index] >= values[child2])) Then

Break
// Get the index of the child with the

larger value.
Integer: swap_child
If (values[child1] > values[child2]) Then

swap_child = child1
Else

swap_child = child2
// Swap with the larger child.
Data: temp = values[index]
values[index] = values[swap_child]
values[swap_child] = temp
// Move to the child node.
index = swap_child

End While
// Return the value we removed from the root.
return result

End RemoveTopItem

This algorithm takes as a parameter the size of the tree, so it can find the
location where the heap ends within the array.

191

The algorithm starts by saving the value at the root node so that it can
return it later. It then moves the last item in the tree to the root node.

The algorithm sets the variable index to the index of the root node and
then enters an infinite While loop.

Inside the loop, the algorithm calculates the indices of the children of the
current node. If either of those indices is off the end of the tree, it is set to
the current node's index. In that case, when the node's values are
compared later, the current node's value is compared to itself. Because any
value is greater than or equal to itself, that comparison satisfies the heap
property, so the missing node does not make the algorithm swap values.

After the algorithm calculates the child indices, it checks whether the heap
property is satisfied at this point. If it is, the algorithm breaks out of the
While loop. (If both child nodes are missing, or if one is missing and the
other satisfies the heap property, the While loop ends.)

If the heap property is not satisfied, the algorithm sets swap_child to
the index of the child that holds the larger value and swaps the parent
node's value with that child node's value. It then updates the index
variable to move down to the swapped child node and continues down the
tree.

Implementing Heapsort
Now that you know how to build and maintain a heap, implementing the
heapsort algorithm is easy. The algorithm builds a heap. It then repeatedly
swaps the first and last items in the heap, and rebuilds the heap excluding
the last item. During each pass, one item is removed from the heap and
added to the end of the array where the items are placed in sorted order.

The following pseudocode shows how the algorithm works:

Heapsort(Data: values)
<Turn the array into a heap.>
For i = <length of values> - 1 To 0 Step -1

// Swap the root item and the last item.
Data: temp = values[0]
values[0] = values[i]
values[i] = temp

<Consider the item in position i to be

192

removed from the heap, so
the heap now holds i - 1 items. Push the

new root value down
into the heap to restore the heap property.>

Next i
End Heapsort

This algorithm starts by turning the array of values into a heap. It then
repeatedly removes the top item, which is the largest, and moves it to the
end of the heap. It reduces the number of items in the heap and restores
the heap property, leaving the newly positioned item at the end of the heap
in its proper sorted order.

When it is finished, the algorithm has removed the items from the heap in
largest-to-smallest order and placed them at the end of the ever-shrinking
heap. The array is left holding the values in smallest-to-largest order.

The space required by heapsort is easy to calculate. The algorithm stores
all the data inside the original array and uses only a fixed number of extra
variables for counting and swapping values. If the array holds N values,
the algorithm uses O(N) space.

The runtime required by the algorithm is slightly harder to calculate. To
build the initial heap, the algorithm adds each item to a growing heap.
Each time it adds an item, it places the item at the end of the tree and
swaps the item upward until the tree is again a heap. Because the tree is a
complete binary tree, it is O(log N) levels tall, so pushing the item up
through the tree can take, at most, O(log N) steps. The algorithm performs
this step of adding an item and restoring the heap property N times, so the
total time to build the initial heap is O(N log N).

To finish sorting, the algorithm removes each item from the heap and then
restores the heap property. It does that by swapping the last item in the
heap and the root node, and then swapping the new root down through the
tree until the heap property is restored. The tree is O(log N) levels tall, so
this can take up to O(log N) time. The algorithm repeats this step N times,
so the total number of steps required is O(N log N).

Adding the time needed to build the initial heap and the time to finish
sorting gives a total time of O(N log N) + O(N log N) = O(N log N).

193

Heapsort is an elegant “sort-in-place” algorithm that takes no extra
storage. It also demonstrates some useful techniques such as heaps and
storing a complete binary tree in an array.

Even though heapsort's O(N log N) run time is asymptotically the fastest
possible for an algorithm that sorts by using comparisons, the quicksort
algorithm described in the next section usually runs slightly faster.

Quicksort
The quicksort algorithm works by subdividing an array into two pieces
and then calling itself recursively to sort the pieces. The following
pseudocode shows the algorithm at a high level:

Quicksort(Data: values[], Integer: start, Integer:
end)

<Pick a dividing item from the array. Call it
divider.>

<Move items < divider to the front of the array.
Move items >= divider to the end of the array.

Let middle be the index between the pieces
where divider is put.>

// Recursively sort the two halves of the array.
Quicksort(values, start, middle - 1)
Quicksort(values, middle + 1, end)

End Quicksort

For example, the top of Figure 6.10 shows an array of values to sort. In
this case I picked the first value, 6, for divider.

Figure 6.10 When the value moves up to a node that already satisfies the
heap property, the tree is once again a heap.

194

In the middle image, values less than divider have been moved to the
beginning of the array, and values greater than or equal to divider
have been moved to the end of the array. The divider item is shaded at
index 6. Notice that one other item has value 6, and it comes after the
divider in the array.

The algorithm then calls itself recursively to sort the two pieces of the
array before and after the divider item. The result is shown at the
bottom of Figure 6.10.

Before moving into the implementation details, you should study the
algorithm's run time behavior.

Analyzing Quicksort's Runtime
First, consider the special case in which the dividing item divides the part
of the array that is of interest into two exactly equal halves at every step.
Figure 6.11 shows the situation.

Figure 6.11 If the divider item divides the array into equal halves, the
algorithm progresses quickly.

195

Each of the “nodes” in the tree shown in Figure 6.11 represents a call to
the quicksort algorithm. The thick line in the middle of the node shows
how the array was divided into two equal halves. The two arrows out of
the node represent the quicksort algorithm calling itself twice to process
the two halves.

The nodes at the bottom of the tree represent calls to sort a single item.
Because a list holding a single item is already sorted, those calls simply
return without doing anything.

After the calls work their way to the bottom of the tree, they begin
returning to the methods that called them, so control moves back up the
tree.

If the array originally holds N items and the items divide exactly evenly,
as shown in Figure 6.11, the tree of quicksort calls is log N levels tall.

Each call to quicksort must examine all the items in the piece of the array
it is sorting. For example, a call to quicksort represented by a group of
four boxes in Figure 6.11 would need to examine those four boxes to
further divide its values.

All the items in the original array are present at each level of the tree, so
each level of the tree contains N items. If you add up the items that each

196

call to quicksort must examine at any level of the tree, you get N items.
That means the calls to quicksort on any level require N steps.

The tree is log N levels tall, and each level requires N steps, so the
algorithm's total run time is O(N log N).

All this analysis assumes that the quicksort algorithm divides its part of
the array into two equal-sized pieces at every step. In practice, that would
be extremely unlikely.

Most of the time, however, the dividing item will belong somewhere more
or less in the middle of the items it is dividing. It won't be in the exact
middle, but it won't be near the edges either. For example, in Figure 6.10
the dividing item 6 ended up close to but not exactly in the middle in the
second image. If the dividing item is usually somewhere near the middle
of the values it is dividing, then in the expected case, the quicksort
algorithm still has O(N log N) performance.

In the worst case, suppose the dividing item is less than any of the other
items in the part of the array that it is dividing. (The worst case also occurs
if all the items in the array have the same value.) In that case, none of the
items goes into the left piece of the array, and all the other items (except
the dividing item) go into the right piece of the array. The first recursive
call returns immediately because it doesn't need to sort any items, but the
second call must process almost all the items. If the first call to quicksort
had to sort N items, this recursive call must sort N – 1 items.

If the dividing item is always less than the other items in the part of the
array being sorted, the algorithm is called to sort N items, and then N – 1
items, and then N – 2 items, and so on. In that case the call tree shown in
Figure 6.11 is extremely tall and thin, with a height of N.

The calls to quicksort at level i in the tree must examine N – i items.
Adding up the items that all the calls must examine gives N + (N – 1) + (N
– 2) + … + 1 = N × (N + 1) / 2, which is O(N2), so the algorithm's
worst-case behavior is O(N2) .

In addition to examining the algorithm's run time performance, you should
consider the space it needs. This depends partly on the method you use to
divide parts of the array into halves, but it also depends on the algorithm's

197

depth of recursion. If the sequence of recursive calls is too deep, the
program will exhaust its stack space and crash.

For the tree shown in Figure 6.11, the quicksort algorithm calls itself
recursively to a depth of log N calls. In the expected case, that means the
program's call stack will be O(log N) levels deep. That shouldn't be a
problem for most computers. Even if the array holds 1 billion items, log N
is only about 30, and the call stack should be able to handle 30 recursive
method calls.

For the tall thin tree created in the worst case, however, the depth of
recursion is N. Few programs will be able to safely build a call stack with
1 billion recursive calls.

You can help avoid the worst-case scenario to make the algorithm run in a
reasonable amount of time and with a reasonable depth of recursion by
picking the dividing item carefully. The following section describes some
strategies for doing so. The sections after that one describe two methods
for dividing a section of an array into two halves. The final section
discussing quicksort summarizes issues with using quicksort in practice.

Picking a Dividing Item
One method of picking the dividing item is to simply use the first item in
the part of the array being sorted. This is quick, simple, and usually
effective. Unfortunately if the array happens to be initially sorted or sorted
in reverse, the result is the worst case. If the items are randomly arranged,
this worst case behavior is extremely unlikely, but it seems reasonable that
the array of items might be sorted or mostly sorted for some applications.

One solution is to randomize the array before calling quicksort. If the
items are randomly arranged, it is extremely unlikely that this method will
pick a bad dividing item every time and result in worst-case behavior.
Chapter 2 explains how to randomize an array in O(N) time so that this
won't add to quicksort's expected O(N log N) run time, at least in Big O
notation. In practice it still could take a fair amount of time for a large
array, however, so most programmers don't use this approach.

Another approach is to examine the first, last, and middle items in part of
the array being sorted and use the value that is between the other two for
the dividing item. This doesn't guarantee that the dividing item isn't close

198

to the largest or smallest in this part of the array, but it does make it less
likely.

A final approach is to pick a random index from the part of the array being
sorted and then use the value at that index as the dividing item. It would
be extremely unlikely that every such random selection would produce a
bad dividing value and result in worst-case behavior.

Implementing Quicksort with Stacks
After you have picked a dividing item, you must divide the items into two
sections to be placed at the front and back of the array. One easy way to
do this is to move items into one of two stacks, depending on whether the
item you are considering is greater than or less than the dividing item. The
following pseudocode shows the algorithm for this step:

Stack of Data: before = New Stack of Data
Stack of Data: after = New Stack of Data
// Gather the items before and after the dividing
item.
// This assumes the dividing item has been moved to
values[start].
For i = start + 1 To end

If (values[i] < divider) Then
before.Push(values[i])

Else after.Push(values[i])
Next i
<Move items in the "before" stack back into the
array.>
<Add the dividing item to the array.>
<Move items in the "after" stack back into the
array.>

At this point, the algorithm is ready to recursively call itself to sort the two
pieces of the array on either side of the dividing item.

Implementing Quicksort in Place
Using stacks to split the items in the array into two groups as described in
the preceding section is easy, but it requires you to allocate extra space for
the stacks. You can save some time if you allocate the stacks at the
beginning of the algorithm and then let every call to the algorithm share

199

the same stacks instead of creating their own, but this still requires the
stacks to hold O(N) memory during their first use.

With a little more work, you can split the items into two groups without
using any extra storage. The following high-level pseudocode shows the
basic approach:

<Swap the dividing item to the beginning of the
array.>
<Remove the dividing item from the array.
This leaves a hole at the beginning where you can

place another item.>
Repeat:

<Search the array from back to front to find
the last item in the array less than "divider.">
<Move that item into the hole. The hole is now

where that item was.>
<Search the array from front to back to find

the first item in the array greater than or
equal to "divider.">

<Move that item into the hole. The hole is now
where that item was.>

Continue looking backwards from the end of the array and forwards from
the start of the array, moving items into the hole, until the two regions you
are searching meet somewhere in the middle. Place the dividing item in
the hole, which is now between the two pieces, and recursively call the
algorithm to sort the two pieces.

This is a fairly confusing step, but the actual code isn't all that long. If you
study it closely, you should be able to figure out how it works.

<Search the array from back to front to find
the last item in the array less than "divider.">
<Move that item into the hole. The hole is now

where that item was.>
<Search the array from front to back to find

the first item in the array greater than or
equal to "divider.">

<Move that item into the hole. The hole is now
where that item was.>

The following pseudocode shows the entire quicksort algorithm at a low
level:

200

// Sort the indicated part of the array.
Quicksort(Data: values[], Integer: start, Integer:
end)

// If the list has no more than one element,
it's sorted.

If (start >= end) Then Return
// Use the first item as the dividing item.
Integer: divider = values[start]
// Move items < divider to the front of the

array and
// items >= divider to the end of the array.
Integer: lo = start
Integer: hi = end
While (True)

// Search the array from back to front
starting at "hi"

// to find the last item where value <
"divider."

// Move that item into the hole. The hole is
now where

// that item was.
While (values[hi] >= divider)

hi = hi - 1
If (hi <= lo) Then <Break out of the

inner While loop.>
End While
If (hi <= lo) Then

// The left and right pieces have met in
the middle

// so we're done. Put the divider here,
and

// break out of the outer While loop.
values[lo] = divider
<Break out of the outer While loop.>

End If
// Move the value we found to the lower half.
values[lo] = values[hi]

// Search the array from front to back
starting at "lo"

// to find the first item where value >=
"divider."

// Move that item into the hole. The hole is
now where

// that item was.
lo = lo + 1
While (values[lo] < divider)

lo = lo + 1

201

If (lo >= hi) Then <Break out of the
inner While loop.>

End While
If (lo >= hi) Then

// The left and right pieces have met in
the middle

// so we're done. Put the divider here,
and

// break out of the outer While loop.
lo = hi
values[hi] = divider
<Break out of the outer While loop.>

End If
// Move the value we found to the upper half.
values[hi] = values[lo]

End While
// Recursively sort the two halves.
Quicksort(values, start, lo - 1)
Quicksort(values, lo + 1, end)

End Quicksort

This algorithm starts by checking whether the section of the array contains
one or fewer items. If it does, it is sorted, so the algorithm returns.

If the section of the array contains at least two items, the algorithm saves
the first item as the dividing item. You can use some other dividing item
selection method if you like. Just swap the dividing item you pick to the
beginning of the section so that the algorithm can find it in the following
steps.

Next the algorithm uses variables lo and hi to hold the highest index in
the lower part of the array and the lowest index in the upper part of the
array. It uses those variables to keep track of which items it has placed in
the two halves. Those variables also alternately track where the hole is left
after each step.

The algorithm then enters an infinite While loop that continues until the
lower and upper pieces of the array grow to meet each other.

Inside the outer While loop, the algorithm starts at index hi and
searches the array backward until it finds an item that should be in the
lower piece of the array. It moves that item into the hole left behind by the
dividing item.

202

Next the algorithm starts at index lo and searches the array forward until
it finds an item that should be in the upper pieces of the array. It moves
that item into the hole left behind by the previously moved item.

The algorithm continues searching backward and then forward through the
array until the two pieces meet. At that point it puts the dividing item
between the two pieces and recursively calls itself to sort the pieces.

Using Quicksort
If you divide the items in place instead of by using stacks, quicksort
doesn't use any extra storage (beyond a few variables).

Like heapsort, quicksort has O(N log N) expected performance, although
quicksort can have O(N2) performance in the worst case. Heapsort has
O(N log N) performance in all cases, so it is in some sense safer and more
elegant. But in practice quicksort is usually faster than heapsort, so it is
the algorithm of choice for most programmers. It is also the algorithm that
is used in most libraries. (The Java library uses mergesort, at least
sometimes. The following section provides more information about
mergesort, and the “Stable Sorting” sidebar in that section has information
about why Java uses mergesort.)

In addition to greater speed, quicksort has another advantage over
heapsort: it is parallelizable. Suppose a computer has more than one
processor, which is increasingly the case these days. Each time the
algorithm splits a section of the array into two pieces, it can make
different processors sort the two pieces. Theoretically a highly parallel
computer could use O(N) processors to sort the list in O(log N) time. In
practice, most computers have a fairly limited number of processors (for
example, two or four), so the run time would be divided by the number of
processors, plus some additional overhead to manage the different threads
of execution. That won't change the Big O run time, but it should improve
performance in practice.

Because it has O(N2) performance in the worst case, the implementation
of quicksort provided by a library may be cryptographically insecure. If
the algorithm uses a simple dividing item selection strategy, such as
picking the first item, an attacker might be able to create an array holding
items in an order that gives worst-case performance. The attacker might be

203

able to launch a denial-of-service (DOS) attack by passing your program
that array and ruining your performance. Most programmers don't worry
about this possibility, but if this is a concern, you can use a randomized
dividing item selection strategy.

Mergesort
Like quicksort, mergesort uses a divide-and-conquer strategy. Instead of
picking a dividing item and splitting the items into two groups holding
items that are larger and smaller than the dividing item, mergesort splits
the items into two halves of equal size. It then recursively calls itself to
sort the two halves. When the recursive calls to mergesort return, the
algorithm merges the two sorted halves into a combined sorted list.

The following pseudocode shows the algorithm:

Mergesort(Data: values[], Data: scratch[], Integer:
start, Integer: end)

// If the array contains only one item, it is
already sorted.

If (start == end) Then Return
// Break the array into left and right halves.
Integer: midpoint = (start + end) / 2
// Call Mergesort to sort the two halves.
Mergesort(values, scratch, start, midpoint)
Mergesort(values, scratch, midpoint + 1, end)
// Merge the two sorted halves.
Integer: left_index = start
Integer: right_index = midpoint + 1
Integer: scratch_index = left_index
While ((left_index <= midpoint) And (right_index

<= end))
If (values[left_index] <=

values[right_index]) Then
scratch[scratch_index] =

values[left_index]
left_index = left_index + 1

Else
scratch[scratch_index] =

values[right_index]
right_index = right_index + 1

End If
scratch_index = scratch_index + 1 End

While

204

// Finish copying whichever half is not empty.
For i = left_index To midpoint

scratch[scratch_index] = values[i]
scratch_index = scratch_index + 1

Next i
For i = right_index To end

scratch[scratch_index] = values[i]
scratch_index = scratch_index + 1

Next i
// Copy the values back into the original values

array.
For i = start To end

values[i] = scratch[i]
Next i

End Mergesort

In addition to the array to sort and the start and end indices to sort, the
algorithm also takes as a parameter a scratch array that it uses to merge the
sorted halves.

This algorithm starts by checking whether the section of the array contains
one or fewer items. If it does, it is trivially sorted, so the algorithm returns.

If the section of the array contains at least two items, the algorithm
calculates the index of the item in the middle of the section of the array
and recursively calls itself to sort the two halves.

Next the algorithm merges the two sorted halves. It loops through the
halves, copying the smaller item from whichever half holds it into the
scratch array. When one half is empty, the algorithm copies the remaining
items from the other half.

Finally, the algorithm copies the merged items from the scratch array back
into the original values array.

Note
It is possible to merge the sorted halves without using a scratch array, but it's more
complicated and slower, so most programmers use a scratch array.

The “call tree” shown in Figure 6.11 shows calls to quicksort when the
values in the array are perfectly balanced, so the algorithm divides the
items into equal halves at every step. The mergesort algorithm does divide
the items into exactly equal halves at every step, so Figure 6.11 applies
even more to the mergesort algorithm than it does to quicksort.

205

The same run time analysis shown earlier for quicksort also works for
mergesort, so this algorithm also has O(N log N) run time. Like heapsort,
mergesort's run time does not depend on the initial arrangement of the
items, so it always has O(N log N) run time and doesn't have a disastrous
worst case like quicksort does.

Like quicksort, mergesort is parallelizable. When a call to mergesort calls
itself recursively, it can make one of those calls on another processor. This
requires some coordination, however, because the original call must wait
until both recursive calls finish before it can merge their results. In
contrast, quicksort can simply tell its recursive calls to sort a particular
part of the array, and it doesn't need to wait until those calls return.

Mergesort is particularly useful when all the data to be sorted won't fit in
memory at once. For example, suppose a program needs to sort 1 million
customer records, each of which occupies 1 MB. Loading all that data into
memory at once would require 1018 bytes of memory, or 1,000 TB, which
is much more than most computers have.

The mergesort algorithm, however, doesn't need to load that much
memory all at once. The algorithm doesn't even need to look at any of the
items in the array until after its recursive calls to itself have returned.

At that point, the algorithm walks through the two sorted halves in a linear
fashion and merges them. Moving through the items linearly reduces the
computer's need to page memory to and from disk. When quicksort moves
items into the two halves of a section of an array, it jumps from one
location in the array to another, increasing paging and greatly slowing
down the algorithm.

Mergesort was even more useful in the days when large data sets were
stored on tape drives, which work most efficiently if they keep moving
forward with few rewinds. (Sorting data that cannot fit in memory is
called external sorting.) Specialized versions of mergesort were even
more efficient for tape drives. They're interesting but not commonly used
anymore, so they aren't described here.

A more common approach to sorting enormous data sets is to sort only the
items' keys. For example, a customer record might occupy 1 MB, but the
customer's name might occupy only 100 bytes. A program can make a
separate index that matches names to record numbers and then sort only

206

the names. Then, even if you have 1 million customers, sorting their
names requires only about 100 MB of memory, an amount that a computer
could reasonably hold. (Chapter 11 describes B-trees and B+ trees, which
are often used by database systems to store and sort record keys in this
manner.)

General 6.1 : Stable Sorting
A stable sorting algorithm is one that maintains the original relative positioning of
equivalent values. For example, suppose a program is sorting Car objects by their
Cost properties and Car objects A and B have the same Cost values. If object
A initially comes before object B in the array, then in a stable sorting algorithm,
object A still comes before object B in the sorted array.

If the items you are sorting are value types such as integers, dates, or strings, then
two entries with the same values are equivalent, so it doesn't matter if the sort is
stable. For example, if the array contains two entries that have value 47, it doesn't
matter which 47 comes first in the sorted array.

In contrast, you might care if Car objects are rearranged unnecessarily. A stable
sort lets you sort the array multiple times to get a result that is sorted on multiple
keys (such as Maker and Cost for the Car example).

Mergesort is easy to implement as a stable sort (the algorithm described earlier is
stable), so it is used by Java's Arrays.sort library method.

Mergesort is also easy to parallelize, so it may be useful on computers that have
more than one CPU. See Chapter 18 for information on implementing mergesort
on multiple CPUs.

Quicksort may often be faster, but mergesort still has some advantages.

Sub O(N log N) Algorithms
Earlier this chapter said that the fastest possible algorithm that uses
comparisons to sort N items must use at least O(N log N) time. Heapsort
and mergesort achieve that bound, and so does quicksort in the expected
case, so you might think that's the end of the sorting story. The loophole is
in the phrase “that uses comparisons.” If you use a method other than
comparisons to sort, you can beat the O(N log N) bound.

The following sections describe two algorithms that sort in less than O(N
log N) time.

207

Countingsort
Countingsort works if the values you are sorting are integers that lie in a
relatively small range. For example, if you need to sort 1 million integers
with values between 0 and 1,000, countingsort can provide amazingly fast
performance.

The basic idea behind countingsort is to count the number of items in the
array that have each value. Then it is relatively easy to copy each value, in
order, the required number of times back into the array.

Then the following pseudocode shows the countingsort algorithm:

Countingsort(Integer: values[], Integer: max_value)
// Make an array to hold the counts.
Integer: counts[0 To max_value]
// Initialize the array to hold the counts.
// (This is not necessary in all programming

languages.)
For i = 0 To max_value

counts[i] = 0
Next i
// Count the items with each value.
For i = 0 To <length of values> - 1

// Add 1 to the count for this value.
counts[values[i]] = counts[values[i]] + 1

Next i
// Copy the values back into the array.
Integer: index = 0
For i = 0 To max_value

// Copy the value i into the array counts[i]
times.

For j = 1 To counts[i]
values[index] = i
index = index + 1

Next j
Next i

End Countingsort

The max_value parameter gives the largest value in the array. (If you
don't pass it in as a parameter, the algorithm can figure it out by looking
through the array.)

Let M be the number of items in the counts array (so M = max_value +
1) and let N be the number of items in the values array, If your

208

programming language doesn't automatically initialize the counts array
so that it contains 0s, the algorithm spends M steps initializing the array. It
then takes N steps to count the values in the array.

The algorithm finishes by copying the values back into the original array.
Each value is copied once, so that part takes N steps. If any of the entries
in the counts array is still 0, the program also spends some time
skipping over that entry. In the worst case, if all the values are the same,
so that the counts array contains mostly 0s, it takes M steps to skip over
the 0 entries.

That makes the total run time O(2 × N + M) = O(N + M). If M is
relatively small compared to N, this is much smaller than the O(N log N)
performance given by heapsort and the other algorithms described
previously.

In one test, quicksort took 4.29 seconds to sort 1 million items with values
between 0 and 1,000, but it took countingsort only 0.03 seconds. Note that
this is a bad case for quicksort, because the values include lots of
duplicates. With 1 million values between 0 and 1,000, roughly 1,000
items have each value, and quicksort doesn't handle lots of duplication
well.

With similar values, heapsort took roughly 1.02 seconds. This is a big
improvement on quicksort but still is much slower than countingsort.

Bucketsort
The bucketsort algorithm (also called bin sort) works by dividing items
into buckets. It sorts the buckets either by recursively calling bucketsort or
by using some other algorithm and then concatenates the buckets' contents
back into the original array. The following pseudocode shows the
algorithm at a high level:

Bucketsort(Data: values[])
<Make buckets.>
<Distribute the items into the buckets.>
<Sort the buckets.>
<Gather the bucket values back into the original

array.>
End Bucketsort

209

If the values in an array holding N items are reasonably uniformly
distributed, if you use M buckets, and if the buckets divide the range of
values evenly, you should expect roughly N / M items per bucket.

For example, consider the array shown at the top of Figure 6.12, which
contains 10 items with values between 0 and 99. In the distribution step,
the algorithm moves the items into the buckets. In this example, each
bucket represents 20 values: 0 to 19, 20 to 39, and so on. In the sorting
step, the algorithm sorts each bucket. The gathering step concatenates the
values in the buckets to build the sorted result.

Figure 6.12 Bucketsort moves items into buckets, sorts the buckets, and
then concatenates the buckets to get the sorted result.

210

The buckets can be stacks, linked lists, queues, arrays, or any other data
structure that you find convenient.

211

If the array contains N fairly evenly distributed items, distributing them
into the buckets requires N steps times whatever time it takes to place an
item in a bucket. Normally this mapping can be done in constant time. For
example, suppose the items are integers between 0 and 99, as in the
example shown in Figure 6.12. You would place an item with value v in
bucket number v / 20. You can calculate this number in constant time, so
distributing the items takes O(N) steps.

If you use M buckets, sorting each bucket requires an expected F(N / M)
steps, where F is the run time function of the sorting algorithm that you
use to sort the buckets. Multiplying this by the number of buckets M, the
total time to sort all the buckets is O(M × F(N / M)).

After you have sorted the buckets, gathering their values back into the
array requires N steps to move all the values. It could require an additional
O(M) steps to skip empty buckets if many of the buckets are empty, but if
M < N, the whole operation requires O(N) steps.

Adding the times needed for the three stages gives a total run time of O(N)
+ O(M × F(N / M)) + O(N) = O(N + M × F(N / M)).

If M is a fixed fraction of N, N / M is a constant, so F(N / M) is also a
constant, and this simplifies to O(N + M).

In practice, M must be a relatively large fraction of N for the algorithm to
perform well. If you are sorting 10 million records and you use only 10
buckets, you need to sort buckets containing an average of 1 million items
each.

Unlike countingsort, bucketsort's performance does not depend on the
range of the values. Instead, it depends on the number of buckets you use.

Summary
The sorting algorithms described in this chapter demonstrate different
techniques and have different characteristics. Table 6.1 summarizes the
algorithms.

Table 6.1 Algorithm Characteristics

212

These algorithms demonstrate an assortment of useful techniques and
provide good performance for a wide variety of problems, but they're far
from the end of the story. There are dozens of other sorting algorithms.
Some are minor modifications of these algorithms, and others use
radically different approaches. Chapter 10 discusses trees, which are also
extremely useful for sorting data. Search the Internet for other algorithms.

This chapter explained several ways to sort data but didn't explain why
you should want to do that. Simply having data sorted often makes it more
useful to a user. Viewing customer accounts sorted by balance makes it
much easier to determine which accounts need special attention.

213

Another good reason to sort data is so that you can later find specific items
within it. For example, if you sort customers by their names, it's easier to
locate a specific customer. The next chapter explains methods you can use
to search a sorted set of data to find a specific value.

Exercises
Answers to these exercises are found in Appendix B.

1. Write a program that implements insertionsort.
2. The For i loop used by the insertionsort algorithm runs from 0
to the array's last index. What happens if it starts at 1 instead of 0?
Does that change the algorithm's run time?
3. Write a program that implements selectionsort.
4. What change to selectionsort could you make that corresponds to
the change described in Exercise 2? Would it change the algorithm's
run time?
5. Write a program that implements bubblesort.
6. Add the first and third bubblesort improvements described in the
section “Bubblesort” (downward and upward passes, and keeping
track of the last swap) to the program you built for Exercise 5.
7. Write a program that uses an array-based heap to build a priority
queue. So that you don't need to resize the array, allocate it at some
fixed size, perhaps 100 items, and then keep track of the number of
items that are used by the heap. (To make the queue useful, you
can't just store priorities. Use two arrays—one to store string values,
and another to store the corresponding priorities. Order the items by
their priorities.)
8. What is the run time for adding items to and removing items from
a heap-based priority queue?
9. Write a program that implements heapsort.
10. Can you generalize the technique used by heapsort for holding a
complete binary tree so that you can store a complete tree of degree
d? Given a node's index p, what are its children's indices? What is
its parent's index?

214

11. Write a program that implements quicksort with stacks. (You
can use the stacks provided by your programming environment or
build your own.)
12. Write a program that implements quicksort with queues instead
of stacks. (You can use the queues provided by your programming
environment or build your own.) Is there any advantage or
disadvantage to using queues instead of stacks?
13. Write a program that implements quicksort with in-place
partitioning.
14. Quicksort can display worst-case behavior if the items are
initially sorted, if the items are initially sorted in reverse order, or if
the items contain many duplicates. You can avoid the first two
problems if you choose random dividing items. How can you avoid
the third problem?
15. Write a program that implements countingsort.
16. If an array's values range from 100,000 to 110,000, allocating a
counts array with 110,001 entries would slow down countingsort
considerably, particularly if the array holds a relatively small
number of items. How could you modify countingsort to give good
performance in this situation?
17. If an array holds N items that span the range 0 to M – 1, what
happens to bucketsort if you use M buckets?
18. Write a program that implements bucketsort. Allow the user to
specify the number of items, the maximum item value, and the
number of buckets.
19. For the following data sets, which sorting algorithms would
work well, and which would not?

a. 10 floating-point values
b. 1,000 integers
c. 1,000 names
d. 100,000 integers with values between 0 and 1,000
e. 100,000 integers with values between 0 and 1 billion
f. 100,000 names
g. 1 million floating-point values
h. 1 million names
i. 1 million integers with uniform distribution

215

j. 1 million integers with nonuniform distribution

216

Chapter 7

Searching

The preceding chapter explained how you can sort data. Algorithms such
as quicksort and heapsort let you sort fairly large amounts of data quickly.
Algorithms such as countingsort and bucketsort let you sort data almost as
quickly as a program can examine it but only under certain special
circumstances.

One of the advantages of sorted data is that it lets you find specific items
relatively quickly. For example, you can locate a particular person in a
telephone directory containing tens of thousands of names in just a minute
or two because all the names are arranged in sorted order. (Imagine trying
to find a name if the directory wasn't sorted!)

This chapter explains algorithms that you can use to find a particular piece
of data in a sorted array.

Note
The algorithms described in this chapter work with simple arrays, not more specialized
data structures. Specialized data structures such as trees also let you quickly find an item
with a specific value. Algorithms for working with trees are discussed in Chapter 10.

Note
Some programming libraries include searching tools that locate items in a sorted array.
For example, the .NET Framework's Array class provides a BinarySearch method.
These methods generally are fast, so in practice you may want to use those tools to save
time writing and debugging the sorting code.

It's still important to understand how searching algorithms work, however,
because sometimes you can do even better than the tools. For example,
interpolation search is much faster than binary search when it is
applicable.

217

Linear Search
As you may be able to guess, a linear or exhaustive search simply loops
through the items in the array, looking for the target item. Figure 7.1
shows a linear search for the value 77.

Figure 7.1 A linear search examines every item in the array until it finds
the target item.

Unlike binary search and interpolation search, linear search works on
linked lists, where you cannot easily jump from one part of the list to
another, as you can in an array.

Linear search also works on unsorted lists. But if the items are sorted, the
algorithm can stop if it ever comes to an item with a value greater than the
target value.. That lets the algorithm stop early and save a little time if the
target value isn't in the list.

The following pseudocode shows the linear search algorithm for an array:

// Find the target item's index in the sorted array.
// If the item isn't in the array, return -1.
Integer: LinearSearch(Data values[], Data target)

For i = 0 To <length of values> - 1
// See if this is the target.
If (values[i] == target) Then Return i
// See if we have passed where the target

would be.
If (values[i] > target) Then Return -1

Next i
// If we get here, the target is not in the

array.
Return -1

End LinearSearch

This algorithm may need to loop through the entire array to conclude that
an item isn't there, so its worst-case behavior is O(N).

Even in the average case, the algorithm's run time is O(N). If you add up
the number of steps required to search for every item in the array, you get

218

1 + 2 + 3 + … + N = N * (N + 1) / 2. If you divide that total by N to get
the average search time for all the N items, you get (N + 1) / 2, which is
still O(N).

This algorithm is much slower than binary search or interpolation search,
but it has the advantage that it works on linked lists and unsorted lists.

Binary Search
In a binary search, the algorithm keeps track of the largest and smallest
indices the target item might have in the array. Initially those bounds (call
them min and max) are 0 and the largest index in the array.

The algorithm then calculates the index halfway between min and max
(call it mid). If the target is less than the array's value at mid, the
algorithm resets max to search the left half of the array and starts over. If
the target is greater than the array's value at mid, the algorithm resets
min to search the right half of the array and starts over. If the target
equals the array's value at mid, the algorithm returns the index mid.

Figure 7.2 shows a binary search for the value 77.

Figure 7.2 A binary search repeatedly divides the part of the array that
might contain the target item into two halves and then searches the
appropriate half.

The following pseudocode shows the algorithm:

// Find the target item's index in the sorted array.
// If the item isn't in the array, return -1.
Integer: BinarySearch(Data values[], Data target)

Integer: min = 0
Integer: max = <length of values> - 1
While (min <= max)

219

// Find the dividing item.
Integer: mid = (min + max) / 2

// See if we need to search the left or
right half.

If (target < values[mid]) Then max = mid - 1
Else If (target > values[mid]) Then min =

mid + 1
Else Return mid

End While
// If we get here, the target is not in the

array.
Return -1

End BinarySearch

At each step, this algorithm divides in half the number of items that might
contain the target. If the array contains N items, after O(log N) steps, the
section of the array that might hold the target contains only one item, so
the algorithm either finds the item or concludes that it isn't in the array.
That means the algorithm has O(log N) run time.

Interpolation Search
At every step, binary search examines the item in the middle of the section
of the array that it is considering. In contrast, interpolation search uses the
value of the target item to guess where in the array it might lie and achieve
much faster search times.

For example, suppose the array contains 1,000 items with values between
1 and 100. If the target value is 30, it lies about 30 percent of the way
from the smallest to the largest value so you can guess that the item may
be somewhere near index 300. Depending on the distribution of the
numbers in the array, this may not be exactly correct, but it should get you
fairly close to the target item's position.

Figure 7.3 shows an interpolation search for the value 77.

Figure 7.3 Interpolation search uses the target item's value to calculate
where it should be in the remaining part of the array.

220

The following pseudocode shows the algorithm at a high level:

Integer: InterpolationSearch(Data values[], Data
target)

Integer: min = 0
Integer: max = values.Length - 1
While (min <= max)

// Find the dividing item.
Integer: mid = min + (max - min) *

(target - values[min]) / (values[max] -
values[min])

If (values[mid] == target) Then Return mid
<Set min or max to search the left or right

half.>
End While
Return -1

End InterpolationSearch

This high-level description leaves a couple of problems unsolved. The
mid calculation can result in an overflow or a value of mid that is not
between min and max. Solving those problems is left as part of Exercise
6.

The trickiest part of this algorithm is the statement that calculates mid.
The value is set to the current value of min plus the distance between
min and max when scaled by the expected fraction of the distance
between values[min] and values[max] where target should
lie.

For example, if values[min] is 100, values[max] is 200, and
target is 125, then you would use the following calculation to decide
where to look for the target value:

(target - values[min]) / (values[max] - values[min])
=
(125 - 100) / (200 - 100) =
25 / 100 =
0.25

221

That puts the new value for mid one quarter of the way from min to
max.

In the worst case, if the data is extremely unevenly distributed, and you're
looking for the worst possible target value, this algorithm has O(N)
performance. If the distribution is reasonably uniform, the expected
performance is O(log(log N)). (But proving that is outside the scope of
this book.)

Summary
Table 7.1 shows the values of log N and log(log N) for different values of
N so that you can compare the speeds of linear search, binary search, and
interpolation search.

Table 7.1 Algorithm Characteristics
N log2 N log2(log2 N)

1,000 10.0 3.3

1,000,000 19.9 4.3

1,000,000,000 29.9 4.9

1,000,000,000,000 39.9 5.3

Linear search is useful only for relatively small arrays. Table 7.1 shows
that binary search works well even for very large arrays. It can search an
array containing 1 trillion items in only about 40 steps.

Interpolation search works well for arrays of any size that you can
reasonably fit on a computer. It can search an array containing 1 trillion
items in only about five steps. In fact, an array would need to hold more
than 1×10154 items before interpolation search would require an expected
number of steps greater than nine.

However, the exact number of steps for interpolation search depends on
the distribution of the values. Sometimes the algorithm gets lucky and
finds the target in one or two steps, and other times it might need four or
five. On average, however, it is extremely fast.

222

Exercises
Answers to these exercises are found in Appendix B.

If you don't know what recursion is yet, skip exercises 2, 5, and 7 and
come back to them after you read Chapter 8, which introduces recursion.

1. Write a program that implements linear search.
2. Write a program that implements linear search recursively. Does
this version have any advantages or disadvantages compared to the
nonrecursive version?
3. Write a program that implements linear search with sorted linked
lists.
4. Write a program that implements binary search.
5. Write a program that implements binary search recursively. Does
this version have any advantages or disadvantages compared to the
nonrecursive version?
6. Write a program that implements interpolation search.
7. Write a program that implements interpolation search recursively.
Does this version have any advantages or disadvantages compared
to the nonrecursive version?
8. Which sorting algorithm described in Chapter 6 uses a technique
reminiscent of the technique used by interpolation search?
9. If an array contains duplicates, the binary search and
interpolation search algorithms described in this chapter don't
guarantee that they return the first instance of the target item. How
could you modify them to return the first occurrence of the target
item? What is the run time for the modified version?

223

Chapter 8

Hash Tables

The preceding chapter explained binary search, an O(log N) algorithm for
locating an item in a sorted list. The algorithm repeatedly examines a test
item in the middle of the part of the list where the target item must be. It
compares the test item to the target item and then recursively examines the
left or right half of the region, depending on whether the test item is
greater than or less than the target item.

The preceding chapter also explained interpolation search, which uses a
mathematical calculation to predict where the target item will be. That
algorithm has O(log(log N)) time and is so much faster than binary search
that it almost seems like magic.

The reason interpolation search is so much faster than binary search is that
it uses the data's special structure to find values by calculation instead of
by making comparisons. (The countingsort and bucketsort algorithms
described in Chapter 6 do this too.)

Hash tables also use the data's structure to locate values very quickly.
Instead of storing items in a sorted list, a hash table stores them in a way
that lets you calculate an item's location in the table directly.

For a simple example of a hash table, suppose you have a small company
with 20 employees, and you want to be able to look up an employee's
information by searching for that person's employee ID. One way you
could store the information is to allocate an array of 100 items and then
store an employee with employee ID N in position N mod 100 in the
array. For example, an employee with ID 2190 would go in position 90, an
employee with ID 2817 would go in position 17, and an employee with ID
3078 would go in position 78.

To find a particular employee, you would simply calculate the ID mod
100 and look at the corresponding array entry. This is an O(1) operation
that's even faster than interpolation search.

In a real program, things aren't quite so simple. If you have enough
employees, you will eventually get two with IDs that map to the same

224

value. For example, if two employees have IDs 2817 and 1317, they both
map to position 17 in the table.

Still, this idea of mapping values into a table is a pretty good start and is
the basic concept behind hash tables. The rest of this chapter describes
hash tables more precisely and explains ways you can implement hash
tables in a program.

Hash Table Fundamentals
A hash table maps data to locations in a data structure. Often it associates
a key value such as an ID or name to a larger record such as an employee
or customer record. Because hash tables associate a key to a value, they
are sometimes called associative arrays or, less formally, dictionaries.

The process of mapping a key value for use by the hash table is called
hashing. Good hashing functions spread out key values so that they don't
all go to the same position in the table. In particular, key values are often
similar, so a good hashing function maps similar key values to dissimilar
locations in the table.

For example, suppose you want to store customer records in a hash table
and look them up by name. If two customers have the last names Richards
and Richardson, ideally the hashing function should map them to two
different locations.

To achieve this, hashing functions often generate a value that looks
something like gibberish, as if the key value had been chopped into hash.

If you put enough values in a hash table, eventually you'll find two keys
that hash to the same value. That's called a collision. When that occurs,
you need a collision-resolution policy that determines what to do. Often
the collision resolution policy maps the key to a series of new positions in
the table until it finds an empty position.

A hash table's fill percentage, the percentage of the table that contains
entries, influences the chance of collisions occurring. Adding a new key to
a hash table is more likely to cause a collision if the table's data structure
is 95 percent full than if the data structure is 10 percent full.

225

To summarize, a hash table needs the following:
• A data structure to hold the data
• A hashing function to map keys to locations in the data structure
• A collision-resolution policy that specifies what should be done

when keys collide

To be useful, a hash table must be able to at least add new items and
locate items that were previously stored. Another feature that is useful but
not provided by some hash tables is the ability to remove a hashed key.

Resizing Hash Tables
Eventually a hash table may become completely full, or at least so full that
collisions are very likely and performance suffers. In that case, you need a resize
algorithm to determine when and how the hash table is resized to make it larger.

You can also have an algorithm for determining when and how to make the hash
table smaller. For example, if a hash table can hold 1 million entries but currently
holds only 10 entries, you might want to make it smaller to reclaim unused space.

One simple method of resizing a hash table is to create a new hash table of the
desired size and rehash all the items in the original data structure into the new
table. Some types of hash tables, such as hash tables with chaining, offer other
methods, but this one should work for almost any hash table.

Different kinds of hash tables use different methods to provide these
features. The following sections describe some common methods of
building hash tables.

Chaining
A hash table with chaining uses a collection of entries called buckets to
hold key values. Each bucket is the top of a linked list holding the items
that map to that bucket.

Typically the buckets are arranged in an array, so you can use a simple
hashing function to determine a key's bucket. For example, if you have N
buckets, and the keys are numeric, you could map the key K to bucket
number K mod N.

Figure 8.1 shows a hash table with chaining.

226

Figure 8.1 In a hash table with chaining, each bucket is the top of a linked
list.

To add a key to the hash table, you map the key to a bucket using the hash
function, and then add a new cell to the bucket's linked list. Hashing the
key to find its bucket takes O(1) steps. Adding the value to the top of the
linked list takes O(1) steps, so this would be very fast.

However, to be useful, a hash table cannot hold duplicate values. If the
hash table uses B buckets and holds a total of N items, and the items are
reasonably evenly distributed, each bucket's linked list holds roughly N /
B items. So checking that a new item isn't already present in a bucket
takes O(N / B) steps. That means adding an item to the hash table takes a
total of O(1) + O(N / B) = O(N / B) steps.

Note
You can make searching for items in the hash table a little faster if the linked lists hold
keys in sorted order. Then, if a key isn't present, you only need to search until you find a
value greater than the target key instead of searching all the way to the end of the list. The
runtime is still O(N / B) but in practice will be a bit faster.

To find an item, you hash its key to see which bucket should hold it and
then traverse that bucket's linked list until you find the item or come to the
end of the list. If you get to the end of the list, you can conclude that the
item isn't in the hash table. As is the case when adding an item to the hash
table, this takes O(N / B) steps.

A hash table with chaining supports item removal quite well. To remove
an item, hash its key as usual to find its bucket, and then remove the item

227

from the bucket's linked list. Hashing the item takes O(1) steps, and
removing it takes O(N / B) steps, so the total time is O(N / B).

A hash table with chaining can expand and shrink as needed, so you don't
need to resize it if you don't want to. If the linked lists become too long,
however, finding and removing items will take a long time. In that case
you may want to enlarge the table to make more buckets. When you
rehash the table, you know that you will not be adding any duplicate
items, so you don't need to search to the end of each bucket's linked list,
looking for duplicates. That allows you to rehash all the items in O(N)
time.

Open Addressing
Chaining has some nice advantages, such as the fact that it can hold any
number of values without changing the number of buckets, but it has some
disadvantages as well. For example, if you put too many items in the
buckets, searching through the buckets can take a fair amount of time.
You can reduce the search time by adding more buckets, but then you
might have lots of empty buckets taking up space, and there's no way for
the hash table to use those empty buckets.

Another strategy to implement hash tables is open addressing. In open
addressing the values are stored in an array, and some sort of calculation
serves as the hashing function, mapping values into positions in the array.
For example, if a hash table uses an array with M entries, a simple hashing
function might map the key value K into array position K mod M.

Different variations of open addressing use different hashing functions
and collision-resolution policies. In all cases, however, the
collision-resolution policy produces a sequence of locations in the array
for a value. If a value maps to a location that is already in use, the
algorithm tries another location. If that location is also in use, the
algorithm tries again. The algorithm continues trying new locations until it
either finds an empty location or concludes that it cannot find one.

The sequence of locations that the algorithm tries for a value is called its
probe sequence. The average length of probe sequences for values that

228

may or may not be in the hash table gives a good estimate of how efficient
the hash table is. Ideally the average probe sequence length should be only
1 or 2. If the table becomes too full, the average probe sequence may
become fairly long.

Depending on the collision-resolution policy, a probe sequence might be
unable to find an empty location for an item even if there are empty items
in the hash table's array. If the probe sequence repeats itself before visiting
every entry, some entries may remain unused.

To locate an item in the hash table, the algorithm follows the value's probe
sequence until one of three things happens. First, if the probe sequence
finds the item, the job is done. Second, if the probe sequence finds an
empty entry in the array, the item is not present.

The third possibility is that the probe sequence could visit M entries,
where M is the size of the array. In that case, the algorithm can conclude
that the value is not present. The probe sequence might not visit every
entry in the array, but after visiting M entries, you know that it has either
visited every entry or that it is unlikely to find the target value. The probe
sequence may even be following a loop, visiting the same positions
repeatedly. In any case, the value must not be present because, if it were, it
would have been added to the array using the same probe sequence.

At a reasonable fill percentage, open addressing is very fast. If the average
probe sequence is only 1 or 2, adding and locating items has runtime O(1).

Open addressing is fast, but it does have some disadvantages. The most
obvious problem is that the hash table's performance degrades if its array
becomes too full. In the worst case, if the array contains N items and is
completely full, it takes O(N) time to conclude that an item is not present
in the array. Even finding items that are present can be very slow.

If the array becomes too full, you can resize it to make it bigger and give
the hash table a smaller fill percentage. To do that, create a new array and
rehash the items into it. If the new array is reasonably large, it should take
O(1) time to rehash each item, for a total runtime of O(N).

The following section discusses another important problem with open
addressing.

229

Removing Items
Although open addressing lets you add and find items reasonably quickly,
at least if the array isn't too full, it doesn't allow you to remove items the
way chaining does. An item in the array might be part of another item's
probe sequence. If you remove an item, you may break the other item's
probe sequence, so you can no longer find the second value.

For example, suppose items A and B both map to the same index IA in the
array. Item A is added first at index IA, so when you try to add item B, it
goes to the second position in its probe sequence, IB.

Now suppose you remove item A. If you then try to find item B, you
initially look at index IA. Because that entry is now empty, you incorrectly
conclude that item B isn't present.

One solution to this problem is to mark the item as deleted instead of
resetting the array's entry to the empty value. For example, if the array
holds 32-bit integers, you might use the value –2,147,483,648 to mean
that an entry has no value and –2,147,483,647 to mean that the value has
been deleted.

When you search for a value, you continue searching if you find the
deleted value. When you insert a new value into the hash table, you can
place it in a previously deleted entry if you find one in the probe sequence.

One drawback of this approach is that if you add and then remove many
items, the table may become full of deleted entries. That won't slow down
insertions but will make searching for items slower. In the worst case, if
the array is completely full of current and deleted items, you might have to
search the entire array to find an item or to conclude that it isn't present.

If you delete many items, you can rehash the current values and reset the
deleted array locations so that they hold the special empty value. If the
array contains N items and has a reasonable fill percentage, this should
take only O(N) time.

230

Linear Probing
In linear probing, the collision-resolution policy adds a constant number,
called the stride and usually set to 1, to each location to generate a probe
sequence. Each time the algorithm adds 1, it takes the result modulus the
size of the array, so the sequence wraps around to the beginning of the
array if necessary.

For example, suppose the hash table's array contains 100 items, and the
hashing rule is: N maps to location N mod 100. Then the probe sequence
for the value 2,197 would visit locations 97, 98, 99, 0, 1, 2, and so forth.

Figure 8.2 shows a linear probe sequence for inserting the value 71.

Figure 8.2 In linear probing, the algorithm adds a constant amount to
locations to produce a probe sequence.

Here the table already contains several values when you want to add item
71. This table's array has 10 entries, so 71 maps to location 71 mod 10 = 1.
That location already contains the value 61, so the algorithm moves to the
next location in the value's probe sequence, location 2. That location is
also occupied, so the algorithm moves to the next location in the probe
sequence, location 3. That location is empty, so the algorithm places 71
there.

This method has the advantages that it is very simple and that a probe
sequence will eventually visit every location in the array. Therefore, the
algorithm can insert an item if any space is left in the array.

However, it has a disadvantage called primary clustering, an effect in
which items added to the table tend to cluster to form large blocks of
contiguous array entries that are all full. This is a problem because it leads
to long probe sequences. If you try to add a new item that hashes to any of

231

the entries in a cluster, the item's probe sequence will not find an empty
location for the item until it crosses the whole cluster.

The LinearProbing example program shown in Figure 8.3 demonstrates
primary clustering. This hash table's array has 101 entries and holds 50
values. If the items were evenly distributed within the array, the probe
sequence for every item that is in the table would have a length of 1. The
probe sequences for items that are not in the table would have lengths of 1
or 2, depending on whether the initial hashing mapped the item to an
occupied location.

However, in Figure 8.3 the program shows that the hash table's average
probe sequence length is 2.42, which is a bit above what you would get
with an even distribution. The situation is worse with higher load factors.

Figure 8.3 Hash tables that use linear probing are subject to primary
clustering.

Note
The program shown in Figure 8.3 is a solution to Exercise 8.3. See Appendix B for more
information.

232

To understand how clusters form, consider an empty hash table with N
entries. If you add a random number to the table, there's a 1/N chance that
it will end up in any given position. Suppose it ends up in position K.

Now suppose you add another random number to the table. There's a 1/N
chance that this item will also map to position K, and in that case, linear
probing will put the item in position K + 1. There's also a 1/N chance that
the item will map directly to position K + 1. Between the two possibilities,
there's a 2/N chance that the item will end up in position K + 1 and a small
cluster will form.

Over time, more clusters will form. The larger a cluster is, the greater the
probability that a new item will add to the end of the cluster. Eventually
clusters will expand until they merge and form bigger clusters. Soon the
array is full of clusters and long probe sequences.

The following two sections describe ways you can reduce the primary
clustering effect.

Quadratic Probing
The reason linear probing produces clusters is that items that map to any
location in a cluster end up at the end of the cluster, making it larger. One
way to prevent that is quadratic probing. Instead of adding a constant
stride to locations to create a probe sequence, the algorithm adds the
square of the number of locations it has tried to create the probe sequence.

In other words, if K, K + 1, K + 2, K + 3, … is the probe sequence created
by linear probing, the sequence created by quadratic probing is K, K + 12,
K + 22, K + 32, … .

Now, if two items map to different positions in the same cluster, they don't
follow the same probe sequences and don't necessarily end up adding to
the cluster.

Figure 8.4 shows an example. Initially the table has a cluster containing
five items. The value 71 has the probe sequence 1, 1 + 12 = 2, 1 + 22 = 5, 1
+ 32 = 10, so it doesn't add to the cluster. The value 93 initially maps to
the same cluster but has the probe sequence 3, 3 + 12 = 4, 3 + 22 = 7, so it
doesn't add to the cluster, either.

233

Figure 8.4 Quadratic probing reduces primary clustering.

The QuadraticProbing example program shown in Figure 8.5 uses
quadratic probing. If you compare this figure to Figure 8.3, you'll see that
quadratic probing gives a shorter average probe sequence length than
linear probing. In this example, quadratic probing gave an average probe
sequence length of 1.92, whereas linear probing gave an average length of
2.42.

Note
The program shown in Figure 8.5 is part of the solution to Exercise 8.4. See Appendix B
for more information.

Quadratic probing reduces primary clustering, but it can suffer from
secondary clustering. In secondary clustering, values that map to the same
initial position in the array follow the same probe sequence, so they create
a cluster. This cluster is spread out through the array, but it still results in
longer probe sequences for the items that map to the same initial position.

Quadratic probing also has the drawback that it may fail to find an empty
entry for a value even if a few empty positions are left in the table.
Because of how a quadratic probe sequence jumps farther and farther
through the array, it may jump over an empty position and not find it.

Figure 8.5 Average probe sequence length is shorter with quadratic
probing than it is with linear probing.

234

Pseudorandom Probing
Pseudorandom probing is similar to linear probing, except that the stride is
given by a pseudorandom function of the initially mapped location. In
other words, if a value initially maps to position K, its probe sequence is
K, K + p, K + 2 * p, …, where p is determined by a pseudorandom
function of K.

Like quadratic probing, pseudorandom probing prevents primary
clustering. Also like quadratic probing, pseudorandom probing is subject
to secondary clustering, because values that map to the same initial
position follow the same probe sequences.

Pseudorandom probing may also skip over some unused entries and fail to
insert an item even though the table isn't completely full.

Double Hashing
The reason quadratic probing and pseudorandom probing suffer from
secondary clustering is that values that map to the same initial location

235

then follow the same probe sequence. You can reduce that effect if you
make values that map to the same location follow different probe
sequences.

Double hashing is similar to pseudorandom probing. Instead of using a
pseudorandom function of the initial location to create a stride value, it
uses a second hashing function to map the original value to a stride.

For example, suppose the values A and B both initially map to position K.
In pseudorandom probing, a pseudo-random function F1 generates a stride
p = F1(K). Then both values use the probe sequence K, K + p, K + 2 * p,
K + 3 * p, … .

In contrast, double hashing uses a pseudorandom hash function F2 to map
the original values A and B to two different stride values pA = F2(A) and
pB = F2(B). The two probe sequences start at the same value K, but after
that they are different.

Double hashing eliminates primary and secondary clustering. However,
like pseudorandom probing, double hashing may skip some unused entries
and fail to insert an item even though the table isn't completely full.

Ordered Hashing
In some applications, values are hashed once and then looked up many
times. For example, a program that uses a dictionary, address book, or
product lookup table might follow this approach. In this case, it is more
important that the program be able to find values quickly than to insert
them quickly.

A hash table with chaining can find items more quickly if its linked lists
are sorted. When searching for an item, the algorithm can stop if it ever
finds an item that is larger than the target item.

Similarly, you can arrange a hash table in an ordered manner. Suppose the
probe sequence for value K visits array locations with values V1, V2, and
so forth, where all the Vi are less than K. In other words, all the values
along K's probe sequence are less than K.

Note that the values need not be in a strictly increasing order. For
example, the probe sequence for the value 71 might encounter the values

236

61, 32, and then 71. That's okay as long as the probe sequence for 32
doesn't follow the same path, so that it visits 61 before 32.

If you can arrange the array in this way, you can make searching for an
item faster by stopping if you ever find a value greater than the target
value.

The following pseudocode shows at a high level how you can find an item
in an ordered hash table:

// Return the location of the key in the array or -1
if it is
// not present.
Integer: FindValue(Integer: array[], Integer: key)

Integer: probe = <Initial location in key's
probe sequence.>

// Repeat forever.
While true

// See if we found the item.
If (array[probe] == key) Then Return probe
// See if we found an empty spot.
If (array[probe] == EMPTY) Then Return -1
// See if we passed where the item should be.
If (array[probe] > key) Then Return -1

// Try the next location in the probe
sequence.

probe = <Next location in key's probe
sequence.>

End While
End FindValue

The exact arrangements of the hash tables described so far depend on the
order in which items are added to the table. For example, suppose a hash
table's array has 10 entries and the hashing function maps the value K to K
mod 10. If you add the values 11, 21, 31, 41 to the hash table, they are
stored in that order in positions 1 through 4. However, if you add the same
items in the order 41, 31, 21, 11, they are stored in the same positions, but
in reverse order.

Suppose you can add the values to the hash table in sorted order, smallest
to largest. Then, when you add a value, if the table already holds any
values in the new value's probe sequence, they must be smaller than the
new value, because you're adding the values in sorted order. That means

237

each probe sequence must be properly ordered so that you can search the
table quickly.

Unfortunately, often you cannot add the items to a hash table in sorted
order because you don't know that order when you start. For example, you
may only add a few items at a time to the table over a long period.
Fortunately, there is a way to create an ordered hash table no matter how
you add the items.

To add an item, follow its probe sequence as usual. If you find an empty
spot, insert the item, and you're done. If you find a spot containing a value
that is larger than the new value, replace it with the new value, and then
rehash the larger value.

As you rehash the larger item, you may encounter another, even larger
value. If that happens, drop the item you're hashing in the new position,
and rehash the new item. Continue the process until you find an empty
spot for whatever item you're currently hashing.

The following pseudocode shows the process at a high level:

AddItem(Integer: array[], Integer: key)
Integer: probe = <Initial location in key's

probe sequence.>
// Repeat forever.
While true

// See if we found an empty spot.
If (array[probe] == EMPTY) Then

array[probe] = key
Return

End If
// See if we found a value greater than

"key."
If (array[probe] > key) Then

// Place the key here and rehash the
other item.

Integer: temp = array[probe]
array[probe] = key
key = temp

End If
// Try the next location in the probe

sequence.
probe = <Next location in key's probe

sequence.>

238

End While
End AddItem

The final step inside the While loop sets probe equal to the next
location in the current key's probe sequence. For linear probing,
pseudorandom probing, and double hashing, you can figure out the next
item in the probe sequence even if you switched the key value you're
hashing for a larger value. For example, with double hashing, you can
apply the second hashing function to the new key value to find the new
probe sequence's stride. You can then use the new stride to follow the new
item's probe sequence from that point.

That doesn't work for quadratic probing, because you would need to know
how far the algorithm had searched the new key's probe sequence to get to
that point.

The reason this method works is that you only replace values with smaller
values. If you replace a value in an ordered probe sequence with a smaller
value, the probe sequence is still ordered.

The only value that might still be in question is the new larger value you're
rehashing. When you rehash that value, it ends up in a position that makes
its probe sequence ordered.

Summary
Hash tables allow you to store and locate values very quickly. If a hash
table has a reasonably low fill percentage, finding an item may require
only a couple calculations.

It is important to maintain a reasonable fill percentage, however, because
if a hash table becomes too full, its performance suffers. A lower fill
percentage gives better performance but requires extra space that isn't used
to hold data, so in some sense it is wasted. Too high a fill percentage can
slow performance and increases the risk that the hash table will become
full. This requires you to resize the hash table, which can take a
considerable amount of time and memory.

239

This is a good example of a space-time trade-off that is common in
algorithms. By using extra space, you can improve an algorithm's
performance.

Ordered hashing provides another kind of trade-off. If you spend extra
time up front building a hash table, later searching is much faster. When
inserting a value, the program may find a value that is larger than the one
it is inserting. In that case it switches values and continues to rehash the
larger one. One way to do that is recursion: making the insertion algorithm
call itself. The next chapter discusses recursion in detail. It covers good
and bad uses of recursion and explains how you can remove recursion
from a program if deep call stacks or frequent recalculation of values
cause problems.

Exercises
For the exercises that ask you to build a hash table, create an interface
similar to Figure 8.6. The Create button creates a new hash table. The
Make Items button lets the user add many random items to the hash table
all at once. The Insert and Find buttons add or find a single item. After
each change to the table or its data, display the number of keys per bucket
for chaining algorithms or the fill percentage for open addressing
algorithms. Also display the maximum and average probe length when
you try to find all the values between the minimum and maximum values
used to fill the table.

Figure 8.6 This interface lets you build and test hash tables.

240

In all the hashing programs, use a single pseudorandom number generator
initialized to the same value so that every program adds the same values to
its hash table. That will let you compare the algorithms' behavior with the
same data.

1. Write a program that implements a hash table with chaining.
2. Modify the program you wrote for Exercise 1 to use sorted linked
lists. Compare the average probe lengths of the two programs when
the hash tables use 10 buckets and hold 100 items.
3. Graph the average probe sequence length for the programs you
built for Exercises 1 and 2 when the hash tables use 10 buckets and
hold 50, 100, 150, 200, and 250 items. What can you deduce from
the graph?
4. Write a program that builds a hash table that uses open
addressing with linear probing.
5. Write a program that builds a hash table that uses open
addressing with quadratic probing.
6. Write a program that builds a hash table that uses open
addressing with pseudorandom probing.
7. Write a program that builds a hash table that uses open
addressing with double hashing.

241

8. Linear probing always finds an empty spot for a value if a spot is
available, but quadratic probing, pseudorandom probing, and double
hashing may all skip empty entries and conclude that the table is
full when it is not. How can you pick the table size N to prevent
quadratic probing, pseudorandom probing, and double hashing from
concluding that the hash table is full even if it is not?
9. Write a program that builds a hash table that uses open
addressing with ordered quadratic hashing.
10. Use your favorite programming language to build a hash table
that uses open addressing with ordered double hashing.
11. To see how the different open addressing algorithms compare,
graph the average probe sequence length for the programs you built
for Exercises 4, 5, 6, 7, 9, and 10. Use a table with 101 entries, and
plot values when the table holds 50, 60, 70, 80, and 90 values. What
can you deduce from the graph?

242

Chapter 9

Recursion

Recursion occurs when a method calls itself. The recursion can be direct
(when the method calls itself) or indirect (when the method calls some
other method that then calls the first method).

Recursion can also be single (when the method calls itself once) or
multiple (when the method calls itself multiple times).

Recursive algorithms can be confusing because people don't naturally
think recursively. For example, to paint a fence, you probably would start
at one end and start painting until you reach the other. It is less intuitive to
think about breaking the fence into left and right halves and then solving
the problem by recursively painting each half.

However, some problems are naturally recursive. They have a structure
that allows a recursive algorithm to easily keep track of its progress and
find a solution. For example, a tree is recursive by nature, so algorithms
that build, draw, and search trees are often recursive.

This chapter explains some useful algorithms that are naturally recursive.
Some of these algorithms are useful by themselves, but learning how to
use recursion in general is far more important than learning how to solve a
single problem. Once you understand recursion, you can find it in many
programming situations.

Recursion is not always the best solution, however, so this chapter also
explains how you can remove recursion from a program when recursion
might cause poor performance.

Basic Algorithms
Some problems have naturally recursive solutions. The following sections
describe three naturally recursive algorithms that calculate factorials and
Fibonacci numbers and solve the Tower of Hanoi problem.

243

These relatively straightforward algorithms demonstrate important
concepts used by recursive algorithms. Once you understand them, you'll
be ready to move on to the more complicated algorithms described in the
following sections.

Factorial
The factorial of a number N is written N! and pronounced “N factorial.”
You can define the factorial function recursively as follows:

For example, the following equations show how you can use this
definition to calculate 3!:

This definition leads to the following simple recursive algorithm:

Integer: Factorial(Integer: n)
If (n == 0) Then Return 1
Return n * Factorial(n - 1)

End Factorial

First, if the input value n equals 0, the algorithm returns 1. This
corresponds to the first equation that defines the factorial function.

Otherwise, if the input is not 0, the algorithm returns the number n times
the factorial of n - 1. This step corresponds to the second equation that
defines the factorial function.

This is a very simple algorithm, but it demonstrates two important features
that all recursive algorithms must have:

• Each time the method executes, it reduces the current problem to a
smaller instance of the same problem and then calls itself to solve
the smaller problem. In this example, the method reduces the
problem of computing n! to the problem of computing (n -
1)! and then multiplying by n.

244

• The recursion must eventually stop. In this example, the input
parameter n decreases with each recursive call until it equals 0. At
that point, the algorithm returns 1 and does not call itself
recursively, so the process stops.

Note that even this simple algorithm can create problems. If a program
calls the Factorial method, passing it the parameter –1, the recursion
never ends. Instead, the algorithm begins the following series of
calculations:

One method that some programmers use to prevent this is to change the
first statement in the algorithm to If (n <= 0) Then Return 1.
Now if the algorithm is called with a negative parameter, it simply returns
1.

Note
From a software engineering point of view, this may not be the best solution, because it
hides a problem in the program that called the algorithm. It also returns the misleading
value 1 when the true factorial of a negative number is undefined.

To detect problems in the calling code quickly, it may be better to explicitly check the
value to make sure it is at least 0 and throw an exception if it is not.

Analyzing the run time performance of recursive algorithms is sometimes
tricky, but it is easy for this particular algorithm. On input N, the Factorial
algorithm calls itself N + 1 times to evaluate N!, (N – 1)!, (N – 2)!, …, 0!.
Each call to the algorithm does a small constant amount of work, so the
total run time is O(N).

Because the algorithm calls itself N + 1 times, the maximum depth of
recursion is also O(N). In some programming environments, the
maximum possible depth of recursion may be limited, so this might cause
a problem.

245

Serious Stack Space
Normally a computer allocates two areas of memory for a program: the stack and
the heap.

The stack is used to store information about method calls. When a piece of code
calls a method, information about the call is placed on the stack. When the method
returns, that information is popped off the stack, so the program can resume
execution just after the point where it called the method. (The stack is the same
kind of stack described in Chapter 5.) The list of methods that were called to get to
a particular point of execution is called the call stack.

The heap is another piece of memory that the program can use to create variables
and perform calculations.

Typically the stack is much smaller than the heap. The stack usually is large
enough for normal programs because your code typically doesn't include methods
calling other methods to a very great depth. However, recursive algorithms can
sometimes create extremely deep call stacks and exhaust the stack space, causing
the program to crash.

For this reason, it's important to evaluate the maximum depth of recursion that a
recursive algorithm requires in addition to studying its run time and memory
requirements.

However, the factorial function grows very quickly, so there's a
practical limit to how big N can be in a normal program. For example, 20!
≈ 2.4 ×1018, and 21! is too big to fit in a 64-bit-long integer. If a program
never calculates values larger than 20!, the depth of recursion can be only
20, and there should be no problem.

If you really need to calculate larger factorials, you can use other data
types that can hold even larger values. For example, a 64-bit
double-precision floating-point number can hold 170! ≈ 7.3 ×10306, and
some data types, such as the .NET BigInteger type, can hold
arbitrarily large numbers. In those cases, the maximum depth of recursion
could be a problem. The section “Tail Recursion Removal” later in this
chapter explains how you can prevent this kind of deep recursion from
exhausting the stack space and crashing the program.

Fibonacci Numbers
The Fibonacci numbers are defined by these equations:

246

For example, the fi rst 12 Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, 89.

Note
Some people define Fibonacci(0) = 1 and Fibonacci(1) = 1. This gives the same values as
the definition shown here, just skipping the value 0.

The recursive definition leads to the following recursive algorithm:

Integer: Fibonacci(Integer: n)
If (n <= 1) Then Return n
Return Fibonacci(n - 1) + Fibonacci(n - 2);

End Fibonacci

If the input n is 0 or 1, the algorithm returns 0 or 1. (If the input is 1 or
less, the algorithm just returns the input.)

Otherwise, if the input is greater than 1, the algorithm calls itself for
inputs n - 1 and n - 2, adds them together, and returns the result.

This recursive algorithm is reasonably easy to understand but is very slow.
For example, to calculate Fibonacci(6) the program must calculate
Fibonacci(5) and Fibonacci(4). But before it can calculate Fibonacci(5),
the program must calculate Fibonacci(4) and Fibonacci(3). Here
Fibonacci(4) is being calculated twice. As the recursion continues, the
same values must be calculated many times. For large values of N,
Fibonacci(N) calculates the same values an enormous number of times,
making the program take a very long time.

Figure 9.1 shows the Fibonacci algorithm's call tree when it evaluates
Fibonacci(6). Each node in the tree represents a call to the algorithm, with
the indicated number as a parameter. The figure shows, for example, that
the call to Fibonacci(6) in the top node calls Fibonacci(5) and
Fibonacci(4). If you look at the figure, you can see that the tree is filled
with duplicated calls. For example, Fibonacci(0) is calculated five times,
and Fibonacci(1) is calculated eight times.

247

Figure 9.1 The Fibonacci algorithm's call tree is filled with duplicated
calculations.

Analyzing this algorithm's run time is a bit trickier than analyzing the
Factorial algorithm's run time, because this algorithm is
multiply-recursive.

Suppose T(N) is the run time for the algorithm on input N. If N > 1, the
algorithm calculates Fibonacci(N – 1) and Fibonacci(N – 2), performs an
extra step to add those values, and returns the result. That means T(N) =
T(N – 1) + T(N – 2) + 1.

This is slightly greater than T(N – 1) + T(N – 2). If you ignore the extra
constant 1 at the end, this is the same as the definition of the
Fibonacci function, so the algorithm has a run time at least as large as
the function itself.

The Fibonacci function doesn't grow as quickly as the factorial
function, but it still grows very quickly. For example, Fibonacci(92) ≈
7.5x1018 and Fibonacci(93) doesn't fit in a long integer. That means you
can calculate up to Fibonacci(92) with a maximum depth of recursion of
92, which shouldn't be a problem for most programming environments.

However, the run time of the Fibonacci algorithm grows very quickly. On
my computer, calculating Fibonacci(44) takes more than a minute so
calculating much larger values of the function is impractical anyway.

248

Tower of Hanoi
Chapter 5 introduced the Tower of Hanoi puzzle, in which a stack of
disks, where each disk is smaller than the one below it, sits on one of three
pegs. The goal is to transfer the disks from their starting peg to another
peg by moving them one at a time and never placing a disk on top of a
smaller disk. Figure 9.2 shows the puzzle from the side.

Figure 9.2 In the Tower of Hanoi puzzle, the goal is to move disks from
one peg to another without placing a disk on top of a smaller disk.

Trying to solve the puzzle with a grand plan can be confusing, but there is
a simple recursive solution. Instead of trying to think of solving the
problem as a whole, you can reduce the problem size and then recursively
solve the rest of the problem. The following pseudocode uses this
approach to provide a simple recursive solution:

// Move the top n disks from peg from_peg to peg
to_peg
// using other_peg to hold disks temporarily as
needed.
TowerOfHanoi(Peg: from_peg, Peg: to_peg, Peg:
other_peg, Integer: n)

// Recursively move the top n - 1 disks from
from_peg to other_peg.

If (n > 1) Then TowerOfHanoi(from_peg, other_peg,
to_peg, n - 1)

// Move the last disk from from_peg to to_peg.
<Move the top disk from from_peg to to_peg.>
// Recursively move the top n - 1 disks back from

other_peg to to_peg.
If (n > 1) Then TowerOfHanoi(other_peg, to_peg,

from_peg, n - 1)
End TowerOfHanoi

The first step requires faith in the algorithm that seems to beg the question
of how the algorithm works. That step moves the top n – 1 disks from the
original peg to the peg that isn't the destination peg. It does this by

249

recursively calling the TowerOfHanoi algorithm. At this point, how
can you know that the algorithm works and can handle the smaller
problem?

The answer is that the method recursively calls itself repeatedly if needed
to move smaller and smaller stacks of disks. At some point in the
sequence of recursive calls, the algorithm is called to move only a single
disk. Then the algorithm doesn't call itself recursively. It simply moves the
disk and returns.

The key is that each recursive call is used to solve a smaller problem.
Eventually the problem size is so small that the algorithm can solve it
without calling itself recursively.

As each recursive call returns, the algorithm's calling instance moves a
single disk and then calls itself recursively again to move the smaller stack
of disks to its final destination peg.

Figure 9.3 shows the series of high-level steps needed to move the stack
from the first peg to the second. The first step recursively moves all but
the bottom disk from the first peg to the third. The second step moves the
bottom disk from the first peg to the second. The final step recursively
moves the disks from the third peg to the second.

Figure 9.3 To move n disks, recursively move the upper n – 1 disks to the
temporary peg. Then move the remaining disk to the destination peg.
Finally, move the n – 1 upper disks from the temporary peg to the
destination peg.

250

Figure 9.4 shows the entire sequence of moves needed to transfer a stack
of three disks from the first peg to the second.

Figure 9.4 This sequence of steps transfers three disks from the first peg
to the second.

251

252

To analyze the algorithm's run time, let T(n) be the number of steps
required to move n disks from one peg to another. Clearly T(1) = 1,
because it takes one step to move a single disk from one peg to another.

For n > 0, T(n) = T(n – 1) + 1 + T(n – 1) = 2 × T(n – 1) + 1. If you ignore
the extra constant 1, T(n) = 2 × T(n – 1) so the function has exponential
run time O(2N).

To see this in another way, you can make a table similar to Table 9.1,
giving the number of steps for various values of n. In the table, each value
with n > 1 is calculated from the previous value by using the formula T(n)
= 2 × T(n – 1) + 1. If you study the values, you'll see that T(n) = 2n– 1.

Like the Fibonacci algorithm, the maximum depth of recursion for this
algorithm on input N is N. Also like the Fibonacci algorithm, this
algorithm's run time increases very quickly as N increases, so the run time
limits the effective problem size long before the maximum depth of
recursion does.

Table 9.1 Run Times for the Tower of Hanoi Puzzle
N T(N)

1 1

2 3

3 7

4 15

5 31

6 63

7 127

8 255

9 511

10 1023

253

Graphical Algorithms
Several interesting graphical algorithms take advantage of recursion to
produce intricate pictures with surprisingly little code. Although these
algorithms are short, generally they are more confusing than the basic
algorithms described in the preceding section.

Koch Curves
The Koch curve is good example of a particular kind of self-similar
fractal, a curve in which pieces of the curve resemble the curve as a
whole. These fractals start with an initiator, a curve that determines the
fractal's basic shape. At each level of recursion, some or all of the initiator
is replaced by a suitably scaled, rotated, and translated version of a curve
called a generator. At the next level of recursion, pieces of the generator
are then similarly replaced by new versions of the generator.

The simplest Koch curve uses a line segment as an initiator. Then, at each
level of recursion, the segment is replaced with four segments that are
one-third of the original segment's length. The first segment is in the
direction of the original segment, the next is rotated –60 degrees, the third
is rotated 120 degrees, and the final segment is in the original direction.
Figure 9.5 shows this curve's initiator (left) and generator (right).

Figure 9.5 This initiator (left) and generator (right) create the Koch curve.

At the next level of recursion, the program takes each of the segments in
the generator and replaces them with a new copy of the generator. Figure
9.6 shows the curve with levels of recursion 0 through 5.

Figure 9.6 The Koch curve with levels of recursion 0 through 5 produces
these shapes.

254

Looking at Figure 9.6, you can see why the curve is called self-similar.
Parts of the curve look like smaller versions of the whole curve.

255

Let pt1, pt2, pt3, pt4, and pt5 be the points connected by the
segments in the generator on the right in Figure 9.5. The following
pseudocode shows how you might draw Koch curves:

// Draw a Koch curve with the given depth starting
at point p1
// and going the distance "length" in the direction
"angle."
DrawKoch(Integer: depth, Point: pt1, Float: angle,
Float: length)

If (depth == 0) Then
<Draw the line segment>

Else
<Find the points pt2, pt3, and pt4.>
// Recursively draw the pieces of the curve.
DrawKoch(depth - 1, pt1, angle, length / 3);
DrawKoch(depth - 1, pt2, angle - 60, length

/ 3);
DrawKoch(depth - 1, pt3, angle + 60, length

/ 3);
DrawKoch(depth - 1, pt4, angle, length / 3);

End If
End DrawKoch

If depth is 0, the algorithm simply draws a line segment starting at point
p1 going in direction angle for the distance length. (Exactly how
you draw the segment depends on the programming environment you are
using.)

If depth is greater than 0, the algorithm finds the points pt2, pt3, and
pt4. It then draws a line segment starting at point pt1 going in direction
angle for one-third of the original distance. From the new end point at
pt2, it turns 60 degrees left and draws another segment one-third of the
original distance. From the new end point at pt3, it turns 120 degrees
right (to an angle 60 degrees greater than the original angle) and draws
another segment one-third of the original distance. Finally, from the last
end point, pt4, the algorithm draws a segment at the original angle for
one-third of the original distance.

If the depth is greater than 0, the algorithm calls itself recursively four
times. If T(n) is the number of steps the algorithm uses for depth n, T(n) =
4 × T(n – 1) + C for some constant C. If you ignore the constant, T(n) = 4
× T(n – 1), so the algorithm has run time O(4N).

256

The maximum depth of recursion required to draw a depth N Koch curve
is only N. Like the Fibonacci and Tower of Hanoi algorithms, this
algorithm's run time grows so quickly that the maximum depth of
recursion should never be a problem.

If you connect the edges of three Koch curves so that their initiators form
a triangle, the result is called a Koch snowflake. Figure 9.7 shows a level
3 Koch snowflake.

Figure 9.7 Three connected Koch curves form a Koch snowflake.

Hilbert Curve
Like the Koch curve, the Hilbert curve starts with a simple initiator curve.
To move to a deeper level of recursion, the algorithm breaks the initiator

257

into pieces and uses an appropriately rotated smaller version of the Hilbert
curve to draw pieces of the initiator.

Figure 9.8 shows level 0, 1, and 2 Hilbert curves. In the level 1 and 2
curves, the lines connecting the lower-level curves are gray so that you
can see how the pieces are connected to build the higher-level curves.

Figure 9.8 High-level Hilbert curves are made up of four connected
lower-level curves.

The following pseudocode shows the Hilbert curve algorithm:

// Draw the Hilbert initially moving in the
direction <dx, dy>.
Hilbert(Integer: depth, Float: dx, Float: dy)

If (depth > 0) Then Hilbert(depth - 1, dy, dx)
DrawRelative(dx, dy)
If (depth > 0) Then Hilbert(depth - 1, dx, dy)
DrawRelative(dy, dx)
If (depth > 0) Then Hilbert(depth - 1, dx, dy)
DrawRelative(-dx, -dy)
If (depth > 0) Then Hilbert(depth - 1, -dy, -dx)

End Hilbert

The algorithm assumes that the program has defined a current drawing
location. The DrawRelative method draws from that current position
to a new point relative to that position and updates the current position.
For example, if the current position is (10, 20), the statement
DrawRelative(0, 10) would draw the line segment (10, 20)
- (10, 30) and leave the new current position at (10, 30).

If the depth of recursion is greater than 0, the algorithm calls itself
recursively to draw a version of the curve with one lower level of
recursion and with the dx and dy parameters switched so that the smaller
curve is rotated 90 degrees. If you compare the level 0 and level 1 curves

258

shown in Figure 9.8, you can see that the level 0 curve that is drawn at the
beginning of the level 1 curve is rotated.

Next the program draws a line segment to connect the first lower-level
curve to the next one.

The algorithm then calls itself again to draw the next subcurve. This time
it keeps dx and dy in their original positions so that the second subcurve
is not rotated.

The algorithm draws another connecting line segment and then calls itself,
again keeping dx and dy in their original positions so that the third
subcurve is not rotated.

The algorithm draws another connecting line segment and then calls itself
a final time. This time it replaces dx with -dy and dy with -dx so that
the smaller curve is rotated –90 degrees.

Sierpi ski Curve
Like the Koch and Hilbert curves, the Sierpi ski curve draws a
higher-level curve by using lower-level copies of itself. Unlike the other
curves, however, the simplest method of drawing a Sierpi ski curve uses
four indirectly recursive routines that call each other.

Figure 9.9 shows level 0, 1, 2, and 3 Sierpi ski curves. In the level 1, 2,
and 3 curves, the lines connecting the lower-level curves are gray so that
you can see how the pieces are connected to build the higher-level curves.

Figure 9.9 A Sierpi ski curve is made up of four smaller Sierpi ski
curves.n´n´

259

Figure 9.10 shows the pieces of the level 1 Sierpi ski curve. The curve
consists of four sides that are drawn by four different routines and
connected by line segments. The four routines draw curves that move the
current drawing position in the right, down, left, and up directions. For
example, the Right routine draws a series of segments that leaves the
drawing position moved to the right. In Figure 9.10, the connecting line
segments are drawn in gray.

Figure 9.10 The level 1 Sierpi ski curve is made up of pieces that go
right, down, left, and up.n´

260

To draw a higher-level version of one of the pieces of the curve, the
algorithm breaks that piece into smaller pieces that have a lower level. For
example, Figure 9.11 shows how you can make a depth 2 Right piece out
of four depth 1 pieces. If you study Figure 9.9, you can figure out how to
make the other pieces.

Figure 9.11 The level 2 Right piece is made up of pieces that go right,
down, up, and right.

The following pseudocode shows the main algorithm:

261

// Draw a Sierpinski curve.
Sierpinski(Integer: depth, Float: dx, Float: dy)

SierpRight(depth, dx, dy)
DrawRelative(dx, dy)
SierpDown(depth, gr, dx, dy)
DrawRelative(-dx, dy)
SierpLeft(depth, dx, dy)
DrawRelative(-dx, -dy)
SierpUp(depth, dx, dy)
DrawRelative(dx, -dy)

End Sierpinski

The algorithm calls the methods SierpRight, SierpDown,
SierpLeft, and SierpUp to draw the pieces of the curve. Between
those calls, the algorithm calls DrawRelative to draw the line
segments connecting the pieces of the curve. As was the case with the
Hilbert curve, the DrawRelative method draws from that current
position to a new point relative to that position and updates the current
position. These calls to DrawRelative are the only places where the
algorithm actually does any drawing.

The following pseudocode shows the SierpRight algorithm:

// Draw right across the top.
SierpRight(Integer: depth, Float: dx, Float: dy)

If (depth > 0) Then
depth = depth - 1
SierpRight(depth, gr, dx, dy)
DrawRelative(gr, dx, dy)
SierpDown(depth, gr, dx, dy)
DrawRelative(gr, 2 * dx, 0)
SierpUp(depth, gr, dx, dy)
DrawRelative(gr, dx, -dy)
SierpRight(depth, gr, dx, dy)

End If
End SierpRight

You can follow this method's progress in Figure 9.11. First this method
calls SierpRight to draw a piece of the curve moving to the right at a
smaller depth of recursion. It then draws a segment down and to the right
to connect to the next piece of the curve.

Next the method calls SierpDown to draw a piece of the curve moving
downward at a smaller depth of recursion. It draws a segment to the right
to connect to the next piece of the curve.

262

The method then calls SierpUp to draw a piece of the curve moving
upward at a smaller depth of recursion. It draws a segment up and to the
right to connect to the next piece of the curve.

The method finishes by calling SierpRight to draw a final piece of the
curve moving to the right at a smaller depth of recursion.

Figuring out the other methods that draw pieces of the Sierpi ski curve is
left as an exercise.

Because the Sierpi ski methods call each other multiple times, they are
multiply and indirectly recursive. Coming up with a nonrecursive solution
from scratch would be difficult.

Approximate Routing
Space-filling curves such as the Hilbert and Sierpi ski curves provide a simple
method of approximate routing. Suppose you need to visit a group of stops in a
city. If you draw a Hilbert or Sierpi ski curve over the map of the city, you can
visit the stops in the order in which they are visited by the curve. (You don't need
to drive along the curve. You just use it to generate the ordering.)

The result probably won't be optimal, but it probably will be reasonably good.
You can use it as a starting point for the traveling salesperson problem (TSP)
described in Chapter 17.

Gaskets
A gasket is a type of self-similar fractal. To draw a gasket, you start with a
geometric shape such as a triangle or square. If the desired depth of
recursion is 0, you simply draw the shape. If the desired depth is greater
than 0, the method subdivides the shape into smaller, similar shapes and
then calls itself recursively to draw some but not all of them.

For example, Figure 9.12 shows depth 0 through 3 triangular gaskets that
are often called Sierpi ski gaskets (or Sierpi ski sieves or Sierpi ski
triangles).

Figure 9.12 To create a Sierpi ski gasket, divide a triangle into four
pieces and recursively color the three at the triangle's corners.n´

263

Figure 9.13 shows a square gasket that is often called the Sierpi ski
carpet. (The Polish mathematician Wacław Franciszek Sierpi ski,
1882–1969, studied lots of these sorts of shapes, so his name is attached to
several.)

Figure 9.13 To create a Sierpi ski carpet, divide a square into nine pieces,
remove the center one, and recursively color the rest.n´

264

Writing low-level pseudocode to draw the Sierpi ski gasket and carpet is
left as an exercise.

Backtracking Algorithms
Backtracking algorithms use recursion to search for the best solution to
complicated problems. These algorithms recursively build partial test
solutions to solve the problem. When they find that a test solution cannot
lead to a usable final solution, they backtrack, discarding that test solution
and continuing the search from farther up the call stack.

Backtracking is useful when you can incrementally build partial solutions
and you can sometimes quickly determine that a partial solution cannot

265

lead to a complete solution. In that case, you can stop improving that
partial solution, backtrack to the previous partial solution, and continue
the search from there.

The following pseudocode shows the general backtracking approach at a
high level:

// Explore this test solution.
// Return false if it cannot be extended to a full
solution.
// Return true if a recursive call to
LeadsToSolution finds
// a full solution.
Boolean: LeadsToSolution(Solution: test_solution)

// If we can already tell that this partial
solution cannot

// lead to a full solution, return false.
If <test_solution cannot solve the problem> Then

Return false
// If this is a full solution, return true.

If <test_solution is a full solution> Then
Return true

// Extend the partial solution.
Loop <over all possible extensions to

test_solution>
<Extend test_solution>

// Recursively see if this leads to a
solution.

If (LeadsToSolution(test_solution)) Then
Return true

// This extension did not lead to a
solution. Undo the change.

<Undo the extension>
End Loop
// If we get here, this partial solution cannot
// lead to a full solution.
Return false

End LeadsToSolution

The LeadsToSolution algorithm takes as a parameter whatever data
it needs to keep track of a partial solution. It returns true if that partial
solution leads to a full solution.

The algorithm begins by testing the partial solution to see if it is illegal. If
the test solution so far cannot lead to a feasible solution, the algorithm

266

returns false. The calling instance of LeadsToSolution abandons
this test solution and works on others.

If the test solution looks valid so far, the algorithm loops over all the
possible ways it can extend the solution toward a full solution. For each
extension, the algorithm calls itself recursively to see if the extended
solution will work. If the recursive call returns false, that extension
doesn't work, so the algorithm undoes the extension and tries again with a
new extension.

If the algorithm tries all possible extensions to the test solution and cannot
find a feasible solution, it returns false so that the calling instance of
LeadsToSolution can abandon this test solution.

You can think of the quest for a solution as a search through a
hypothetical decision tree. Each branch in the tree corresponds to a
particular decision attempting to solve the problem. For example, an
optimal chess game tree would contain branches for every possible move
at a given point in the game. If you can use a relatively quick test to
realize that a partial solution cannot produce a solution, you can trim the
corresponding branch off the tree without searching it exhaustively. That
can remove huge chunks from the tree and save a lot of time. (The idea of
decision trees is described further in Chapter 12.)

The following sections describe two problems that have natural
backtracking algorithms: the eight queens problem and the knight's tour
problem. When you study the algorithms for those problems, the more
general solution shown here should be easier to understand.

Eight Queens Problem
In the eight queens problem, the goal is to position eight queens on a
chessboard so that none of them can attack any of the other queens. In
other words, no two queens can be in the same row, column, or diagonal.
Figure 9.14 shows one solution to the eight queens problem.

Figure 9.14 In the eight queens problem, you must position eight queens
on a chessboard so that none can attack any of the others.

267

One way to solve this problem would be to try every possible arrangement

of eight queens on a chessboard. Unfortunately,
arrangements are possible. You could enumerate all of them, but doing so
would be time-consuming.

Counting Combinations
The reason there are so many possible arrangements of queens is that you can
position 8 queens in any of 64 squares. The queens are identical so it doesn't
matter which queen you use in a given location. That means the number of
possible arrangements is the same as the number of ways you can pick 8 squares
out of the possible 64.

268

The number of selections of k items from a set of n without duplicates is given by

the binomial coefficient. That value is written and is pronounced “n choose
k.” You can calculate the value with this formula:

For example, this equation gives the number of different selections of three items
from a set of five without duplicates:

The number of selections of k items from a set of n allowing duplicates (if you are
allowed to pick the same item more than once in a selection) is given by this
formula:

For example, this equation gives the number of different selections of three items
from a set of five allowing duplicates:

In the eight queens, you need to find the number of ways to pick 8 of the squares
without duplicates (you can't put more than one queen on the same square). The
number of possible selections is:

Backtracking works well for this problem because it allows you to
eliminate certain possibilities from consideration. For example, you could
start with a partial solution that places a queen on the board's upper-left

269

corner. You might try adding another queen just to the right of the first
queen, but you know that placing two queens on the same row isn't
allowed. This means you can eliminate every possible solution that has the
first two queens next to each other in the upper-left corner. The program
can backtrack to the point before it added the second queen and search for
more promising solutions.

This may seem like a trivial benefit. After all, you know a solution cannot

have two queens side by side in the upper-left corner. However,

possible arrangements of eight queens on a chessboard have queens in
those positions, so one backtracking step saves you the effort of
examining more than 61 million possibilities.

In fact, if the first queen is placed in the upper-left corner, no other queen
can be placed in the same row, column, or diagonal. That means there are
a total of 21 places where the second queen cannot be placed. Eliminating
all those partial solutions removes almost 1.3 billion possible
arrangements from consideration.

Later tests remove other partial solutions from consideration. For
example, after you place the second queen somewhere legal, it restricts
where the third queen can be placed further.

The following pseudocode shows how you can use backtracking to solve
the eight queens problem:

Boolean: EightQueens(Boolean: spot_taken[,],
Integer: num_queens_positioned)

// See If the test solution is already illegal.
If (Not IsLegal(spot_taken)) Then Return false
// See if we have positioned all of the queens.
If (num_queens_positioned == 8) Then Return true
// Extend the partial solution.
// Try all positions for the next queen.
For row = 0 to 7

For col = 0 to 7
// See if this spot is already taken.
If (Not spot_taken[row, col]) Then

// Put a queen here.
spot_taken[row, col] = true
// Recursively see if this leads to

a solution.
If (EightQueens(spot_taken,

270

num_queens_positioned + 1))
Then Return true

// The extension did not lead to a
solution.

// Undo the change.
spot_taken[row, col] = false

End If
Next col

Next row
// If we get here, we could not find a valid

solution.
Return false

End EightQueens

The algorithm takes as a parameter a two-dimensional array of booleans
named spot_taken. The entry spot_taken[row, col] is
true if there is a queen in row row and column col.

The algorithm's second parameter, num_queens_positioned,
specifies how many queens have been placed in the test solution.

The algorithm starts by calling IsLegal to see if the test solution so far
is legal. The IsLegal method, which isn't shown here, simply loops
through the spot_taken array to see if there are two queens in the
same row, column, or diagonal.

Next the algorithm compares num_queens_positioned with the
total number of queens, 8. If all the queens have been positioned, this test
solution is a full solution, so the algorithm returns true. (The
spot_taken array is not modified after that point, so when the first call
to EightQueens returns, the array holds the solution.)

If this is not a full solution, the algorithm loops over all the rows and
columns. For each row/column pair, it checks spot_taken to see if
that spot already contains a queen. If the spot doesn't hold a queen, the
algorithm puts the next queen there and calls itself recursively to see if the
extended solution leads to a full solution.

If the recursive call returns true, it found a full solution, so this call also
returns true.

271

If the recursive call returns false, the extended solution does not lead to
a solution, so the algorithm removes the queen from its new position and
tries the next possible position.

If the algorithm tries all possible locations for the next queen and none of
them works, this test solution (before the new queen is added) cannot lead
to a full solution, so the algorithm returns false.

You can improve this algorithm's performance in a couple of interesting
ways. See Exercises 13 and 14 for details.

Knight's Tour
In the knight's tour problem, the goal is to make a knight visit every
position on a chessboard without visiting any square twice. A tour is
considered closed if the final position is one move away from the starting
position, and the knight could immediately start the tour again. A tour that
is not closed is considered open.

Note
In case you don't remember, a knight moves two squares horizontally or vertically and
then one square perpendicularly from its current position, as shown in Figure 9.15.

Figure 9.15 In chess, a knight can move to eight places if none of
them lies off the board.

272

The following pseudocode shows a backtracking solution to the knight's
tour problem:

// Move the knight to position [row, col]. Then
recursively try
// to make other moves. Return true if we find a
valid solution.
Boolean: KnightsTour(Integer: row, Integer: col,
Integer: move_number[,], Integer: num_moves_taken)

// Move the knight to this position.
num_moves_taken = num_moves_taken + 1
move_number[row, col] = num_moves_taken
// See if we have made all the required moves.
If (num_moves_taken == 64) Then Return true
// Build arrays to determine where legal moves

are
// with respect to this position.

273

Integer: dRows[] = { -2, -2, -1, 1, 2, 2, 1, -1 }
Integer: dCols[] = { -1, 1, 2, 2, 1, -1, -2, -2 }
// Try all legal positions for the next move.
For i = 0 To 7

Integer: r = row + d_rows[i]
Integer: c = col + d_cols[i]
If ((r >= 0) And (r < NumRows) And

(c >= 0) And (c < NumCols) And
(move_number[r, c] == 0))

Then
// This move is legal and available.

Make this move
// and then recursively try other

assignments.
If (KnightsTour(r, c, move_number,

num_moves_taken))
Then Return true

End If
Next i
// This move didn't work out. Undo it.
move_number[row, col] = 0
// If we get here, we did not find a valid

solution.
return false

End KnightsTour

This algorithm takes as parameters the row and column where the knight
should move next, an array named move_number that gives the number
of the move when the knight visited each square, and the number of
moves made so far.

The algorithm starts by recording the knight's move to the current square
and incrementing the number of moves made. If the number of moves
made is 64, the knight has finished a tour of the board, so the algorithm
returns true to indicate success.

If the tour is not finished, the algorithm initializes two arrays to represent
the moves that are possible from the current square. For example, the first
entries in the arrays are –2 and –1, indicating that the knight can move
from square (row, col) to (row - 2, col - 1) if that square
is on the board.

Next the algorithm loops through all the possible moves from the position
(row, col). If a move is on the board and has not already been visited

274

in the test tour, the algorithm makes the move and recursively calls itself
to see if that leads to a full solution.

If none of the possible moves from the current position leads to a solution,
the algorithm sets move_number[row, col] = 0 to undo the
current move and returns false to indicate that moving the knight to
square (row, col) does not lead to a solution.

Unfortunately, the knight's tour problem isn't as easy to constrain as the
eight queens problem. With the eight queens problem, it's fairly easy to
tell whether a new position is under attack by another queen and therefore
unavailable for a new queen. In that case you can eliminate that position
from consideration.

In the knight's tour, any position the knight can reach that has not yet been
visited gives a new test solution. There may be some cases where you can
easily conclude that a test solution won't work, such as if the board has an
unvisited square that is more than one move away from any other
unvisited square, but recognizing that situation is difficult.

The fact that it's hard to eliminate test solutions early on means the
algorithm often follows a test solution for a long while before discovering
that the solution is infeasible. A knight can have up to eight legal moves,
so an upper bound on the number of potential tours is 864, or roughly 6.3
×1057. You can study the positions on the board to get a better estimate of
the potential number of tours (for example, a knight in a corner has only
two possible moves), but the total number of potential tours is an
enormous number in any case.

All this means it's difficult to solve the knight's tour problem for a normal
8 ×8 chessboard. In one set of tests, a program solved the problem on a 6
× 6 board almost instantly and on a 7 × 6 board in about 2 seconds. It still
hadn't found a solution on a 7 × 7 board after an hour.

Although solving the knight's tour using only backtracking is difficult, a
heuristic solves the problem quite well. A heuristic is an algorithm that
often produces a good result but that is not guaranteed to produce the best
possible result. For example, a driving heuristic might be to add 10
percent more time to expected travel time to allow for traffic delays.
Doing so doesn't guarantee that you'll always be on time, but it increases
the chances.

275

In 1823 H. C. von Warnsdorff suggested a knight's tour heuristic in which
at each step the algorithm should select the next possible move that has
the lowest number of possible moves leading out of it.

For example, suppose the knight is in a position where it has only two
possible moves. If the knight makes the first move, it then has five
possible locations for its next move. If the knight makes the second move,
it has only one possible move for its next move. In that case, the heuristic
says the algorithm should try the second move first.

This heuristic is so good that it finds a complete tour with no backtracking
for boards of size up to 75 ×75. (In my test, the program found a solution
on a 57 ×57 board almost instantly and then crashed with a stack overflow
on a 58 ×58 board.)

Selections and Permutations
A selection or combination is a subset of a set of objects. For example, in
the set {A, B, C}, the subset {A, B} is a selection. All the selections for
the set {A, B, C} are {A, B}, {A, C}, and {B, C}. In a section, the
ordering of the items in a set doesn't matter so {A, B} is considered the
same as {B, A}.

You can think of this as being similar to a menu selection at a restaurant.
Selecting a cheese sandwich and milk is the same as selecting milk and a
cheese sandwich.

A permutation is an ordered arrangement of a subset of items taken from a
set. This is similar to a selection, except that the ordering matters. For
example, (A, B) and (B, A) are two permutations of two items taken from
the set {A, B, C}. All the permutations of two items taken from the set
{A, B, C} are (A, B), (A, C), (B, A), (B, C), (C, A), and (C, B). (Notice
the notation uses brackets { } for unordered selections and parentheses ()
for ordered permutations.)

One other factor determines which groups of items are included in a
particular kind of selection or permutation: whether duplicates are
allowed. For example, the two-item selections for the set {A, B, C}

276

allowing duplicates include {A, A}, {B, B}, and {C, C} in addition to the
other selections listed earlier.

The special case of a permutation that takes all the items in the set and
doesn't allow duplicates gives all the possible arrangements of the items.
For the set {A, B, C}, all the arrangements are (A, B, C), (A, C, B), (B, A,
C), (B, C, A), (C, A, B), and (C, B, A). Many people think of the
permutations of a set to be this collection of arrangements, rather than the
more general case, in which you may not be taking all the items from the
set and you may allow duplicates.

The following sections describe algorithms you can use to generate
selections and permutations with and without duplicates:

Selections with Loops
If you know how many items you want to select from a set when you are
writing a program, you can use a series of For loops to easily generate
combinations. For example, the following pseudocode generates all the
selections of three items taken from a set of five items allowing
duplicates:

// Generate selections of 3 items allowing
duplicates.
List<string>: Select3WithDuplicates(List<string>
items)

List<string>: results = New List<string>
For i = 0 To <Maximum index in items>

For j = i To <Maximum index in items>
For k = j To <Maximum index in items>

results.Add(items[i] + items[j] +
items[k])

Next k
Next j

Next i
Return results

End Select3WithDuplicates

This algorithm takes as a parameter a list of Strings. It then uses three
For loops to select the three letters that make up each selection.

277

Each loop starts with the current value of the previous loop's counter. For
example, the second loop starts with j equal to i. That means the second
letter chosen for the selection will not be a letter that comes before the
first letter in the items. For example, if the items include the letters A, B,
C, D, and E, and the first letter in the selection is C, the second letter won't
be A or B. That keeps the letters in the selection in alphabetical order and
prevents the algorithm from selecting both {A, B, C} and {A, C, B},
which are the same set.

Within the innermost loop, the algorithm combines the items selected by
each loop variable to produce an output that includes all three selections.

Modifying this algorithm to prevent duplicates is simple. Just start each
loop at the value 1 greater than the current value in the next outer loop.
The following pseudocode shows this modification:

// Generate selections of 3 items without allowing
duplicates.
List<string>: Select3WithoutDuplicates(List<string>
items)

List<string>: results = new List<string>()
For i = 0 To <Maximum index in items>

For j = i + 1 To <Maximum index in items>
For k = j + 1 To <Maximum index in items>

results.Add(items[i] + items[j] +
items[k])

Next k
Next j

Next i
Return results

End Select3WithoutDuplicates

This time each loop starts at 1 greater than the previous loop's current
value, so a loop cannot select the same item as a previous loop, and that
prevents duplicates.

The sidebar “Counting Combinations” earlier in this chapter explains how
you can calculate the number of possible selections for a given set and
number of items to select.

278

Selections with Duplicates
The problem with the algorithms described in the preceding section is that
they require you to know how many items you will select when you write
the code, and sometimes that may not be the case. If you don't know how
many items are in the original set of items, the program can figure that
out. However, if you don't know how many items to select, you can't
program the right number of For loops.

You can solve this problem recursively. Each recursive call to the
algorithm is responsible for adding a single selection to the result. Then, if
the result doesn't include enough selections, the algorithm calls itself
recursively to make more. When the selection is complete, the algorithm
does something with it, such as printing the list of items selected.

The following pseudocode shows a recursive algorithm that generates
selections allowing duplicates:

// Generate combinations allowing duplicates.
SelectKofNwithDuplicates(Integer: index, Integer:
selections[],
Data: items[], List<List<Data>> results)

// See if we have made the last assignment.
If (index == <Length of selections>) Then

// Add the result to the result list.
List<Data> result = New List<Data>()
For i = 0 To <Largest index in selections>

result.Add(items[selections[i]])
Next i
results.Add(result)

Else
// Get the smallest value we can use for the

next selection.
Integer: start = 0 // Use this value if this

is the first index.
If (index > 0) Then start = selections[index -

1]
// Make the next assignment.
For i = start To <Largest index in items>

// Add item i to the selection.
selections[index] = i
// Recursively make the other selections.

SelectKofNwithDuplicates(index + 1,
selections, items, results)

279

Next i
End If

End SelectKofNwithDuplicates

This algorithm takes the following parameters:
• index gives the index of the item in the selection that this

recursive call to the algorithm should set. If index is 2, this call to
the algorithm fills in selections[2].

• selections is an array to hold the indices of the items in a
selection. For example, if selections holds two entries and its
values are 2 and 3, the selection includes the items with indices 2
and 3.

• items is an array of the items from which selections should be
made.

• results is a list of lists of items representing the complete
selections. For example, if a selection is {A, B, D}, results
holds a list including the indices of A, B, and D.

When the algorithm starts, it checks the index of the item in the selection
it should make. If this value is greater than the length of the
selections array, the selection is complete, so the algorithm adds it to
the results list.

If the selection is incomplete, the algorithm determines the smallest index
in the items array that it could use for the next choice in the selection. If
this call to the algorithm is filling in the first position in the
selections array, it could use any value in the items array, so
start is set to 0. If this call does not set the first item in the selection,
the algorithm sets start to the index of the last value chosen.

For example, suppose the items are {A, B, C, D, E} and the algorithm has
been called to fill in the third choice. Suppose also that the first two
choices were the items with indices 0 and 2, so the current selection is {A,
C}. In that case the algorithm sets start to 3, so the items it considers
for the next position have indices of 3 or greater. That makes it pick
between D and E for this selection.

Setting start in this way keeps the items in the selection in order. In
this example, that means the letters in the selection are always in
alphabetical order. That prevents the algorithm from picking two

280

selections such as {A, C, D} and {A, D, C}, which are the same items in a
different order.

Having set start, the algorithm loops from start to the last index in
the items array. For each of those values, the algorithm places the value
in the selections array to add the corresponding item to the selection
and then calls itself recursively to assign values to the other entries in the
selections array.

Selections Without Duplicates
To produce selections without duplicates, you need to make only one
minor change to the previous algorithm. Instead of setting the start
variable equal to the index last added to the selections array, set it to
1 greater than that index. That prevents the algorithm from selecting the
same value again.

The following pseudocode shows the new algorithm with the modified
line highlighted:

// Generate combinations allowing duplicates.
SelectKofNwithoutDuplicates(Integer: index, Integer:
selections[],
Data: items[], List<List<Data>> results)

// See if we have made the last assignment.
If (index == <Length of selections>) Then

// Add the result to the result list.
List<Data> result = New List<Data>()
For i = 0 To <Largest index in selections>

Result.Add(items[selections[i]])
Next i
results.Add(result)

Else
// Get the smallest value we can use for the

next selection.
Integer: start = 0 // Use this value if this

is the first index.
If (index > 0) Then start = selections[index - 1]

+ 1
// Make the next assignment.
For i = start To <Largest index in items>

// Add item i to the selection.
selections[index] = i

281

// Recursively make the other selections.
SelectKofNwithoutDuplicates(

index + 1, selections, items, results)
Next i

End If
End SelectKofNwithoutDuplicates

The algorithm works the same way as before, but this time each choice for
an item in the selection must come after the one before it in the items list.
For example, suppose the items are {A, B, C, D}, the algorithm has
already chosen {A, B} for the partial selection, and now the algorithm has
been called to make the third selection. In that case, the algorithm
considers only the items that come after B, which are C and D.

Permutations with Duplicates
The algorithm for generating permutations is very similar to the previous
ones for generating selections. The following pseudocode shows the
algorithm for generating permutations allowing duplicates:

// Generate permutations allowing duplicates.
PermuteKofNwithDuplicates(Integer: index, Integer:
selections[],
Data: items[], List<List<Data>> results)

// See if we have made the last assignment.
If (index == <Length of selections>) Then

// Add the result to the result list.
List<Data> result = New List<Data>()
For i = 0 To <Largest index in selections>

Result.Add(items[selections[i]])
Next i
results.Add(result)

Else
// Make the next assignment.
For i = 0 To <Largest index in items>

// Add item i to the selection.
selections[index] = i
// Recursively make the other assignments.

PermuteKofNwithDuplicates(index + 1,
selections, items, results)

Next i
End If

End PermuteKofNwithDuplicates

282

The main difference between this algorithm and the earlier one for
generating selections with duplicates is that this algorithm loops through
all the items when it makes its assignment instead of starting the loop at a
start value. This allows the algorithm to pick items in any order, so it
generates all the permutations.

Counting Permutations with Duplicates
Suppose you're making permutations of k out of n items allowing duplicates. For
each item in a permutation, the algorithm could pick any of the n choices. It makes
k independent choices (in other words, one choice does not depend on the
previous choices), so there are n * n * ... * n = nk possible permutations.

In the special case where you want to generate permutations that select all n of the
n items, nn results are possible.

Just as you can define selections without duplicates, you can define
permutations without duplicates.

Permutations Without Duplicates
To produce permutations without duplicates, you need to make only one
minor change to the preceding algorithm. Instead of allowing all the items
to be selected for each assignment, the algorithm excludes any items that
have already been used.

The following pseudocode shows the new algorithm with the modified
lines highlighted:

// Generate permutations not allowing duplicates.
PermuteKofNwithoutDuplicates(Integer: index,
Integer: selections[],
Data: items[], List<List<Data>> results)

// See if we have made the last assignment.
If (index == <Length of selections>) Then

// Add the result to the result list.
List<Data> result = New List<Data>()
For i = 0 To <Largest index in selections>

Result.Add(items[selections[i]])
Next i
results.Add(result)

Else
// Make the next assignment.

283

For i = 0 To <Largest index in items>
// Make sure item i hasn't been used

yet.Boolean: used = falseFor j = 0 To index - 1
If (selections[j] == i) Then used =

trueNext j
If (Not used) Then

// Add item i to the selection.
selections[index] = i

// Recursively make the other
assignments.

PermuteKofNwithoutDuplicates(
index + 1, selections, items,

results)
End If

Next i
End If

End PermuteKofNwithoutDuplicates

The only change is that this version of the algorithm checks that an item
has not been used yet in a permutation before adding it.

Most people think of permutations as being the permutations of n out of
the n objects without duplicates.

Recursion Removal
Recursion makes some problems easier to understand. For example, the
recursive solution to the Tower of Hanoi problem is simple and elegant.

Unfortunately, recursion has some drawbacks. Sometimes it leads to
solutions that are natural but inefficient. For example, the recursive
algorithm for generating Fibonacci numbers requires that the program
calculate the same values many times. This slows it down so much that
calculating more than the 50th or so value is impractical.

Counting Permutations Without Duplicates
Suppose you're making permutations of k out of n items without duplicates. For
the first item in a permutation, the algorithm could pick any of the n choices. For
the second item, it could pick any of the remaining n – 1 items. Multiplying the
number of choices at each step gives the total number of possible permutations: n
× (n – 1) × (n – 2) × ... × (n – k + 1).

284

In the special case where k = n, so that you are generating permutations that select
all n of the items without duplicates, this formula becomes n × (n – 1) × (n – 2) ×
... 1 = n! This is the number most people think of as the number of permutations of
a set.

Other recursive algorithms cause a deep series of calls, and that can make
the program exhaust its call stack. The knight's tour with Warnsdorff's
heuristic demonstrates that problem. The heuristic can solve the knight's
tour problem for boards up to 57 ×57 on my computer, but beyond that it
exhausts the call stack.

Fortunately, you can do a few things to address these problems. The
following sections describe some approaches you can take to restructure
or remove recursion to improve performance.

Tail Recursion Removal
Tail recursion occurs when the last thing a singly recursive algorithm does
before returning is call itself. For example, consider the following
implementation of the Factorial algorithm:

Integer: Factorial(Integer: n)
If (n == 0) Then Return 1
Integer: result = n * Factorial(n - 1)
Return result

End Factorial

The algorithm starts by checking to see if it needs to call itself recursively
or if it can simply return the value 1. If the algorithm must call itself, it
does so, multiplies the returned result by n, and returns the result.

You can convert this recursive version of the algorithm into a
nonrecursive version by using a loop. Within the loop, the algorithm
performs whatever tasks the original algorithm did.

Before the end of the loop, the algorithm should set its parameters to the
values they had during the recursive call. If the algorithm returns a value,
as the Factorial algorithm does, you need to create a variable to keep track
of the return value.

285

When the loop repeats, the parameters are set for the recursive call, so the
algorithm does whatever the recursive call did.

The loop should end when the condition occurs that originally ended the
recursion.

For the Factorial algorithm, the stopping condition is n == 0, so that
condition controls the loop.

When the algorithm calls itself recursively, it decreases its parameter n by
1, so the non-recursive version should also decrease n by 1 before the end
of the loop.

The following pseudocode shows the new nonrecursive version of the
Factorial algorithm:

Integer: Factorial(Integer: n)
// Make a variable to keep track of the returned

value.
// Initialize it to 1 so we can multiply it by

returned results.
// (The result is 1 if we do not enter the loop

at all.)
Integer: result = 1
// Start a loop controlled by the recursion

stopping condition.
While (n != 0)

// Save the result from this "recursive"
call.

result = result * n
// Prepare for "recursion."
n = n - 1

Loop
// Return the accumulated result.
Return result

End Factorial

This algorithm looks a lot longer than it really is because of all the
comments.

Removing tail recursion is straightforward enough that some compilers
can do it automatically to reduce stack space requirements.

Of course, the problem with the Factorial algorithm isn't the depth of
recursion, it's the fact that the results become too big to store in data types

286

of fixed size. Tail recursion is still useful for other algorithms and usually
improves performance, because checking a While loop's exit condition
is faster than performing a recursive method call.

Storing Intermediate Values
The Fibonacci algorithm doesn't use tail recursion. Its problem is that it
calculates too many intermediate results repeatedly, so it takes a very long
time to calculate results.

One solution to this problem is to record values as they are calculated so
that the algorithm doesn't need to calculate them again later.

// Calculated values.
Integer: FibonacciValues[100]
// The maximum value calculatued so far.
Integer: MaxN
// Set Fibonacci[0] and Fibonacci[1].
InitializeFibonacci()

FibonacciValues[0] = 0
FibonacciValues[1] = 1
MaxN = 1

End InitializeFibonacci
// Return the nth Fibonacci number.
Integer: Fibonacci(Integer: n)

// If we have not yet calculated this value,
calculate it.

If (MaxN < n) Then
FibonacciValues[n] = Fibonacci(n - 1) +

Fibonacci(n - 2)
MaxN = n

End If
// Return the calculated value.
Return FibonacciValues[n]

End Fibonacci

This algorithm starts by declaring a globally visible
FibonacciValues array to hold calculated values. The variable
MaxN keeps track of the largest value N for which Fibonacci(N) has
been stored in the array.

Next the algorithm defines an initialization method called
InitializeFibonacci. The program must call this method to set

287

the first two Fibonacci number values before it calls the Fibonacci
function.

The Fibonacci function compares MaxN to its input parameter n. If
the program has not yet calculated the nth Fibonacci number, it
recursively calls itself to calculate that value, stores it in the
FibonacciValues array, and updates MaxN.

Next the algorithm simply returns the value stored in the
FibonacciValues array. At this point the algorithm knows the value
is in the array either because it was before or because the previous lines of
code put it there.

In this program, each Fibonacci number is calculated only once. After that
the algorithm simply looks it up in the array instead of recursively
calculating it.

This approach solves the original Fibonacci algorithm's problem by letting
it avoid calculating intermediate values a huge number of times. The
original algorithm can calculate Fibonacci(44) in about a minute on my
computer and cannot reasonably calculate values that are much larger. The
new algorithm can calculate Fibonacci(92) almost instantly. It cannot
calculate Fibonacci(93) because the result doesn't fit in a 64-bit-long
integer. (If your programming language has access to larger data types, the
algorithm can easily calculate Fibonacci(1000) or more.)

Saving intermediate values makes the program much faster but doesn't
remove the recursion. If you want to remove the recursion, you can figure
out how by thinking about how this particular program works.

To calculate a particular value Fibonacci(n), the program first recursively
calculates Fibonacci(n – 1), Fibonacci(n – 2), …, Fibonacci(2). It looks up
Fibonacci(1) and Fibonacci(0) in the FibonacciValues array.

As each recursive call finishes, it saves its value in the
FibonacciValues array so that it can be used by calls to the
algorithm higher up the call stack. To make this work, the algorithm saves
new values into the array in increasing order. As the recursive calls finish,
they save Fibonacci(2), Fibonacci(3), …, Fibonacci(n) in the array.

288

Knowing this, you can remove the recursion by making the algorithm
follow similar steps to create the Fibonacci values in increasing order. The
following pseudocode shows this approach:

// Return the nth Fibonacci number.
Integer: Fibonacci(Integer: n)

If (n > MaxN) Then
// Calculate values between Fibonacci(MaxN)

and Fibonacci(n).
For i = MaxN + 1 To n

FibonacciValues[i] = Fibonacci(i - 1) +
Fibonacci(i - 2)

Next i
// Update MaxN.
MaxN = n

End If
// Return the calculated value.
Return FibonacciValues[n]

End Fibonacci

This version of the algorithm starts by precalculating all the Fibonacci
values up to the one it needs. It then returns that value.

You could even put all the precalculation code in the initialization method
InitializeFibonacci and then make the Fibonacci method
simply return the correct value from the array.

General Recursion Removal
The previous sections explained how you can remove tail recursion and
how you can remove recursion from the Fibonacci algorithm, but they
don't give a general algorithm for removing recursion in other situations.
For example, the Hilbert curve algorithm is multiply recursive, so you
can't use tail recursion removal on it. You might be able to work on it long
enough to come up with a nonrecursive version, but that would be hard.

A more general way to remove recursion is to mimic what the program
does when it performs recursion. Before making a recursive call, the
program stores information about its current state on the stack. Then,
when the recursion call returns, it pops the information off the stack so
that it can resume execution where it left off.

289

To mimic this behavior, divide the algorithm into sections that come
before each recursive call, and name them 1, 2, 3, and so forth.

Next, create a variable named section that indicates which section the
algorithm should execute next. Set this variable to 1 initially so that the
algorithm starts with the first section of code.

Create a While loop that executes as long as section is greater than
0.

Now move all the algorithm's code inside the While loop and place it
inside a series of If-Else statements. Make each If statement
compare the variable section to a section number, and execute the
corresponding code if they match. (You can use a Switch or Select
Case statement instead of a series of If-Else statements if you
prefer.)

When the algorithm enters a section of code, increment the variable
section so that the algorithm knows which section to execute the next
time it passes through the loop.

When the algorithm would normally call itself recursive, push all the
parameters' current values onto stacks. Also, push section onto a stack
so that the algorithm will know which section to execute when it returns
from the fake recursion. Update any parameters that should be used by the
fake recursion. Finally, set section = 0 to begin the fake recursive
call at the first section of code.

The following pseudocode shows the original Hilbert curve algorithm
presented earlier in this chapter broken into sections after each recursion:

Hilbert(Integer: depth, Float: dx, Float: dy)
// Section 1.
If (depth > 0) Then Hilbert(depth - 1, dy, dx)
// Section 2.
DrawRelative(dx, dy)
If (depth > 0) Then Hilbert(depth - 1, dx, dy)
// Section 3.
DrawRelative(dy, dx)
If (depth > 0) Then Hilbert(depth - 1, dx, dy)
// Section 4.
DrawRelative(-dx, -dy)
If (depth > 0) Then Hilbert(depth - 1, -dy, -dx)

290

// Section 5.
End Hilbert

The following pseudocode shows this code translated into a nonrecursive
version:

// Draw the Hilbert curve.
Hilbert(Integer: depth, Float: dx, Float: dy)

// Make stacks to store information before
recursion.

Stack<Integer> sections = new Stack<int>();
Stack<Integer> depths = new Stack<int>();
Stack<Float> dxs = new Stack<float>();
Stack<Float> dys = new Stack<float>();
// Determine which section of code to execute

next.
Integer: section = 1
While (section > 0)

If (section == 1) Then
section = section + 1
If (depth > 0) Then

sections.Push(section)
depths.Push(depth)
dxs.Push(dx)
dys.Push(dy)
// Hilbert(depth - 1, gr, dy, dx)
depth = depth - 1
float temp = dx
dx = dy
dy = temp
section = 1

End If
Else If (section == 2) Then

DrawRelative(gr, dx, dy)
section = section + 1
If (depth > 0) Then

sections.Push(section)
depths.Push(depth)
dxs.Push(dx)
dys.Push(dy)
// Hilbert(depth - 1, gr, dx, dy)
depth = depth - 1
section = 1

End If
Else If (section == 3) Then

DrawRelative(gr, dy, dx)
section = section + 1

291

If (depth > 0) Then
sections.Push(section)
depths.Push(depth)
dxs.Push(dx)
dys.Push(dy)
// Hilbert(depth - 1, gr, dx, dy)
depth = depth - 1
section = 1

End If
Else If (section == 4) Then

DrawRelative(gr, -dx, -dy)
section = section + 1
If (depth > 0) Then

sections.Push(section)
depths.Push(depth)
dxs.Push(dx)
dys.Push(dy)
// Hilbert(depth - 1, gr, -dy, -dx)
depth = depth - 1
float temp = dx
dx = -dy
dy = -temp
section = 1

End If
Else If (section == 5) Then

// Return from a recursion.
// If there's nothing to pop, we're at

the top.
If (sections.Count == 0) Then section =

-1
Else

// Pop the previous parameters.
section = sections.Pop()
depth = depths.Pop()
dx = dxs.Pop()
dy = dys.Pop()

End If
End While

End Hilbert

This version is quite a bit longer, because it contains several copies of
code to push values onto stacks, update parameters, and pop values back
off stacks.

292

Summary
Recursion is a powerful technique. Some problems are naturally recursive,
and when they are, a recursive algorithm is sometimes much easier to
design than a nonrecursive version. For example, recursion makes the
Tower of Hanoi puzzle relatively easy to solve. Recursion also lets you
create interesting pictures such as self-similar curves and gaskets with
little code.

Recursion lets you implement backtracking algorithms and solve problems
in which you need to repeat certain steps an unknown number of times.
For example, generating selections or permutations is easy if you know
how many items you will need to pick when you write the code. If you
don't know beforehand how many items you will need to pick, generating
solutions is easier with recursion.

Despite its usefulness, recursion can sometimes cause problems. Using
recursion indiscriminately can make a program repeat the same
calculation many times, as does the most obvious implementation of the
Fibonacci algorithm. Deep levels of recursion can sometimes exhaust the
stack space and make a program crash. In cases such as these, you can
remove recursion from a program to improve performance.

Aside from these few instances, recursion is an extremely powerful and
useful technique. It's particularly useful when you're working with
naturally recursive data structures such as the trees described in the next
three chapters.

Exercises
Some of the following exercises require graphic programming. Exactly
how you build them depends on which programming environment you are
using. They also require graphic programming experience, so they are
marked with asterisks to indicate that they are harder than the other
problems.

293

Other programs, such as the eight queens problem and the knight's tour,
can be implemented graphically or with just textual output. For an extra
challenge, implement them graphically.

1. Write a program that implements the original recursive Factorial
algorithm.
2. Write a program that implements the original recursive Fibonacci
algorithm.
3. Write a program that implements the Tower of Hanoi algorithm.
The result should be the series of moves in the form A→B where
this represents moving the top disk from peg A to peg B. For
example, here is the result for moving three disks:

A→B A→C B→C A→B C→A C→B A→B

4. *Write a program that solves the Tower of Hanoi puzzle and then
displays the moves by graphically drawing disks moving between
the pegs. (For hints, see Appendix B.)
5. *Write a program that draws Koch snowflakes.
6. *In the standard Koch snowflake, the generator's corners are
60-degree angles, but you can use other angles to produce
interesting results. Write a program that lets the user specify the
angle as a parameter and that produces a result similar to the one
shown in Figure 9.16 for 80-degree angles.

Figure 9.16 Giving the Koch snowflake's generator 80-degree turns
creates a spiky result.

294

7. *Write a program that draws Hilbert curves. (For a hint about
how to set dx, see Appendix B.)
8. Write pseudocode for the algorithms that draw the Sierpi ski
curve pieces down, left, and up.
9. *Write a program that draws Sierpi ski curves. (For a hint about
how to set dx, see Appendix B.)
10. Write low-level pseudocode to draw the Sierpi ski gasket.
11. Write low-level pseudocode to draw the Sierpi ski carpet.
12. Write a program that solves the eight queens problem.
13. One improvement you can make to the eight queens problem is
to keep track of how many queens can attack a particular position
on the board. Then, when you are considering adding a queen to the
board, you can ignore any positions where this value isn't 0. Modify
the program you wrote for Exercise 12 to use this improvement.
How does this improve the number of times the program positions a
queen and the total run time?

295

14. To make another improvement to the eight queens problem,
notice that every row on the chessboard must hold a single queen.
Modify the program you wrote for Exercise 13 so that each call to
the EightQueens method searches only the next row for the
new queen's position. How does this improve the number of times
the program positions a queen, as well as the total run time?
15. Write a program that uses only backtracking to solve the
knight's tour problem while allowing the user to specify the board's
width and height. What is the size of the smallest square board for
which a knight's tour is possible?
16. Use your favorite programming language to write a program
that solves the knight's tour problem by using Warnsdorff's
heuristic.
17. How are a selection without duplicates and a permutation
without duplicates related?
18. Write a program that implements the
SelectKofNwithDuplicates and
SelectKofNwithoutDuplicates algorithms.
19. Write a program that implements the
PermuteKofNwithDuplicates and
PermuteKofNwithoutDuplicates algorithms.
20. Write a program that implements the nonrecursive Factorial
algorithm.
21. Write a program that implements the recursive Fibonacci
algorithm with saved values.
22. Write a program that implements the non-recursive Fibonacci
algorithm.
23. The nonrecursive Fibonacci algorithm calculates Fibonacci
numbers up to the one it needs and then looks up the value it needs
in the array of calculated values. In fact, the algorithm doesn't really
need the array. Instead, it can calculate the smaller Fibonacci values
whenever they are needed. This takes a little longer but avoids the
need for a globally available array. Write a program that
implements a nonrecursive Fibonacci algorithm that uses this
approach.
24. Write a program that implements the nonrecursive Hilbert curve
algorithm.

296

Chapter 10

Trees

This chapter explains trees, highly recursive data structures that you can
use to store hierarchical data and model decision processes. For example,
you can store in a tree a company organizational chart or the parts that
make up a complex machine such as a car.

This chapter explains how to build relatively simple trees and provides the
background you need to understand the more complicated trees described
in Chapters 11 and 12.

Tree Terminology
Trees borrow terminology from genealogy, horticulture, and computer
science. Trees use a lot of terms, but many of them are intuitive because
you probably already understand what they mean in another context.

A tree consists of nodes connected by branches. Usually the nodes contain
some sort of data, and the branches do not.

Note
Trees are a special type of network or graph, so sometimes network and graph terms leak
into discussions of trees. For example, branches are sometimes called links or edges,
although those terms are more appropriate for networks and graphs. Chapters 13 and 14
have more to say about networks.

The branches in a tree are usually directed so that they define a parent/
child relationship between the nodes they connect. Normally branches are
drawn as arrows pointing from the parent node to the child node. Two
nodes that have the same parent are sometimes called siblings.

Each node in the tree has exactly one parent node, except for a single root
node, which has no parent.

The children, the children's children, and so on for a node are that node's
descendants. A node's parent, its parent's parent, and so on up to the root
are that node's ancestors.

297

All these relationship-oriented terms make sense if you think of the tree as
a family tree. You can even define terms such as cousin, nephew, and
grandparent without confusing anyone, although those terms are
uncommon.

Depending on the type of tree, nodes may have any number of children.
The number of children a node has is the node's degree. A tree's degree is
the maximum degree of its nodes. For example, in a degree 2 tree, which
is usually called a binary tree, each node can have at most two children.

A node with no children is called a leaf node or an external node. A node
that has at least one child is called an internal node.

Unlike real trees, tree data structures usually are drawn with the root at the
top and the branches growing downward, as shown in Figure 10.1.

Figure 10.1 Tree data structures usually are drawn with the root at the top.

All these definitions explain what a tree is intuitively. You can also
recursively define a tree to be either:

• A single root node
• A root node connected by branches to one or more smaller trees

298

A node's level or depth in the tree is the distance from the node to the root.
In particular, the root's level is 0.

A node's height is the length of the longest path from the node downward
through the tree to a leaf node. In other words, it's the distance from the
node to the bottom of the tree.

A tree's height is the same as the height of the root node.

A subtree of a tree T rooted at the node R is the node R and all its
descendants. For example, in Figure 10.1 the subtree rooted at node 5 is
the tree containing the nodes 5, 7, 6, and 8.

An ordered tree is one in which the order of the children is important. For
example, many algorithms treat the left and right child in a binary tree
differently. An unordered tree is one in which the order of the children
doesn't matter. (Usually a tree has an ordering, even if it's not particularly
important to the algorithm. This is true simply because the children or
branches are stored in an array or some other collection that imposes an
ordering on them.)

For any two nodes, the first common ancestor (or least common ancestor)
is the node that is the ancestor of both nodes that is closest to the nodes.
Another way to think about this is to start at one node and move up toward
the root until you reach the first node that is an ancestor of the other node.
For example, in Figure 10.1 the first common ancestor of nodes 3 and 5 is
the root 4.

Note that the first common ancestor of two nodes might be one of the
nodes. For example, in Figure 10.1 the first common ancestor of nodes 5
and 6 is node 5.

Note also that there is a unique path between any two nodes in a tree that
doesn't cross any branch more than once. The path starts at the first node,
moves up the tree to the nodes' first common ancestor, and then moves
down the tree to the second node.

A full tree is one in which every node has either zero children or as many
children as the tree's degree. For example, in a full binary, every node has
either zero or two children. The tree shown in Figure 10.1 is not full
because node 5 has only one child.

299

A complete tree is one in which every level is completely full, except
possibly the bottom level, where all the nodes are pushed as far to the left
as possible. Figure 10.2 shows a complete binary tree. Notice that this tree
is not full because the third node from the left on level 2 has only one
child.

A perfect tree is full, and all the leaves are at the same level. In other
words, the tree holds every possible node for a tree of its height.

Figure 10.3 shows examples of full, complete, and perfect binary trees.

Figure 10.2 In a complete binary tree, every level is completely full,
except possibly the bottom level, where the nodes are pushed as far to the
left as possible.

Figure 10.3 Full, complete, and perfect binary trees contain an increasing
number of nodes for a given height.

300

That's a lot of terminology all at once, so Table 10.1 summarizes these
tree terms to make remembering them a bit easier.

Table 10.1 Summary of Tree Terminology
Term Meaning

ancestor A node's parent, its parent's parent, and so on to the root are the
node's ancestors.

binary tree A tree with degree 2.

branch Connects nodes in a tree.

child A child node is connected to its parent in the tree. Normally a
child is drawn below its parent.

complete
tree

A tree in which every level is completely full, except possibly the
bottom level, where all the nodes are pushed as far to the left as
possible.

degree For a node, the number of children the node has. For a tree, the
maximum degree of any of its nodes.

depth Level.

descendant A node's children, their children, and so on are the node's
descendants.

external
node

A leaf node.

first (or
least)
common
ancestor

For any two nodes, the node that is the ancestor of both nodes that
is closest to the nodes.

full tree A tree in which every node has either zero children or as many
children as the tree's degree.

height For a node, the length of the longest path from the node downward
through the tree to a leaf node. For a tree, this is the same as the
root's height.

internal
node

A tree node that has at least one child.

leaf node A tree node with no children.

level A tree node's level is the distance between it and the root node.

301

node An object that holds data in a tree. Connected to other nodes by
branches.

ordered tree A tree in which the ordering of each node's children matters.

parent A parent node is connected to its child nodes by branches. Every
node except the root has exactly one parent. Normally the parent is
drawn above its children.

perfect tree A full tree where all the leaves are at the same level.

root The unique node at the top of the tree that has no parent.

sibling Two nodes in a tree that have the same parent are siblings.

subtree A node and all its descendants in a tree.

Having learned all these terms, you're ready to start learning some of the
properties and uses of trees.

Binary Tree Properties
Binary trees are useful in many algorithms, partly because lots of
problems can be modeled using binary choices and partly because binary
trees are relatively easy to understand. The following are some useful facts
about binary trees:

• The number of branches B in a binary tree containing N nodes is B
= N – 1.

• The number of nodes N in a perfect binary tree of height H is N =
2H+1 – 1.

• Conversely, if a perfect binary tree contains N nodes, it has a height
of log2(N + 1) – 1.

• The number of leaf nodes L in a perfect binary tree of height H is L
= 2H. Because the total number of nodes in a perfect binary tree of
height H is 2H+1 – 1, the number of internal nodes I is I = N – L =
(2H+1 – 1) – 2H = (2H+1 – 2H) – 1 = 2H×(2 – 1) – 1 = 2H – 1.

• This means that in a perfect binary tree, almost exactly half of the
nodes are leaves and almost exactly half are internal nodes. More
precisely, I = L – 1.

302

• The number of missing branches (places where a child could be
added) M in a binary tree that contains N nodes is M = N + 1.

• If a binary tree has N0 leaf nodes and N2 nodes with degree 2, N0 =
N2 + 1. In other words, there is one more leaf node than nodes with
degree 2.

Leaf and Full Nodes
The last fact is not very intuitive, so here's a proof.

1. Let N be the total number of nodes; B be the total number of branches; and
N0, N1, and N2 be the number of nodes of degree 0, 1, and 2, respectively.
2. Consider the branches leading into nodes. Every node has a single branch
leading into it from its parent, so B = N – 1.
3. Next, consider the branches leading out of nodes. The N0 nodes have no
branches leading out of them, the N1 nodes have one branch leading out of
them, and the N2 nodes have two branches leading out of them, so the total
number of branches B = N1 + 2×N2.
4. Setting these two equations for B equal to each other gives N – 1 = N1 +
2×N2. Adding 1 to both sides of the equation changes this to N = N1 + 2×N2 +
1.
5. Adding up the three kinds of nodes, you know that N = N0 + N1 + N2.
6. Setting these two equations for N equal to each other gives N1 + 2×N2 + 1 =
N0 + N1 + N2. Then subtracting N1 + N2 from both sides makes this N2 + 1 =
N0.

These facts often make it easier to calculate the run time for algorithms
that work with trees. For example, if an algorithm must search a perfect
binary tree containing N nodes from the root to a leaf node, you know that
the algorithm needs only O(log(N)) steps.

Inductive Reasoning
You can prove many of these properties of binary trees inductively. In an
inductive proof, you first establish a base case for a small problem. Then you
make an inductive step in which you prove that the property being true for some
value K means that it must be true for the value K + 1. Those two steps show that
the property holds for all values K.

For example, consider the first property described a moment ago: The number of
nodes N in a perfect binary tree of height H is N = 2H+1 – 1. The following shows
an inductive proof. (Here H plays the role of K in the general description of an
inductive proof.)

BASE CASE:

303

Consider a perfect tree of height H = 0. This tree has a single root node and no
branches. In that case the number of nodes N is 1. Note that 2H+1 – 1 = 20+1 – 1
= 21 – 1 = 2 – 1 = 1, so N = 2H+1 – 1 as desired.

INDUCTIVE STEP:
Suppose the property holds true for perfect binary trees of height H. A perfect
binary tree of height H + 1 consists of a root node connected to two perfect binary
subtrees of height H. Because we assume the property is true for trees of height H,
the total number of nodes in each subtree is 2H+1 – 1. Adding the root node, that
means the total number of nodes in the tree of height H + 1 is 2 × (2H+1 – 1) + 1.
Rearranging this a bit gives (2(H+1)+1 – 2) + 1 = 2(H+1)+1 – 1. This is the
formula for the number of nodes for a perfect binary tree of height H + 1 (just plug
H + 1 into the formula), so the property is true for a tree of height H + 1.

If a binary tree containing N nodes is fat (isn't too tall and skinny), such as
if it's a complete tree, its statistics are similar to those of a perfect binary
tree in terms of Big O notation. For example, if a fat binary tree contains
N nodes, it has O(log N) height, O(N÷2) = O(N) leaves, O(N÷2) = O(N)
internal nodes, and O(N) missing branches.

These properties also are true for fat trees of higher degrees but with
different log bases. For example, a fat degree 10 tree containing N nodes
has height O(log10 N). Because all log bases are the same in Big O
notation, this is the same as O(log N), although in practice the constants
ignored by Big O notation may make a big difference.

Chapter 11 describes balanced trees that do not to grow too tall and thin in
order to guarantee that these properties are true.

Tree Representations
You can use classes to represent a tree's nodes. For complete trees, you
can also store the tree in an array. The following two sections describe
these approaches.

304

Building Trees in General
You can use classes to represent a tree's nodes much as you can use them
to make the cells in a linked list. Give the class whatever properties it
needs to hold data. Give it object references to represent the branches to
the node's children.

In a binary tree, you can use separate properties named LeftChild and
RightChild for the branches.

The following pseudocode shows how you might create a binary node
class. The details will differ depending on your programming language:

Class BinaryNode
String: Name
BinaryNode: LeftChild
BinaryNode: RightChild
Constructor(String: name)

Name = name
End Constructor

End Class

The class begins by declaring a public property called Name to hold the
node's name. It then defines two properties named LeftChild and
RightChild to hold references to the node's children.

The class's constructor takes a string as a parameter and saves it in the
node's Name property.

The following pseudocode shows how you could use this class to build the
tree shown in Figure 10.1:

BinaryNode: root = New BinaryNode("4")
BinaryNode: node1 = New BinaryNode("1")
BinaryNode: node2 = New BinaryNode("2")
BinaryNode: node3 = New BinaryNode("3")
BinaryNode: node5 = New BinaryNode("5")
BinaryNode: node6 = New BinaryNode("6")
BinaryNode: node7 = New BinaryNode("7")
BinaryNode: node8 = New BinaryNode("8")
root.LeftChild = node2
root.RightChild = node5
node2.LeftChild = node1
node2.RightChild = node3

305

node5.RightChild = node7
node7.LeftChild = node6
node7.RightChild = node8

This code first creates a BinaryNode object to represent the root. It
then creates other BinaryNode objects to represent the tree's other
nodes. After it has created all the nodes, the code sets the nodes' left and
right child references.

If the tree's degree is greater than 2, or if it is unordered (so the order of a
node's children is unimportant), it is usually more convenient to put the
child references in an array, list, or some other collection. That lets the
program loop through the children, doing something to each, instead of
requiring you to write a separate line of code for each child.

The following pseudocode shows how you could create a TreeNode
class that allows each node to have any number of children:

Class TreeNode
String: Name
List Of TreeNode: Children
Constructor(String: name)

Name = name
End Constructor

End Class

This class is similar to the preceding one, except that it stores its children
in a List of references to TreeNode objects instead of in separate
properties.

Notice that these representations only have links from a node to its child
nodes. They don't include a link from a node up to its parent. Most tree
algorithms work in a top-down manner, so they move from parent to child
down into the tree. If you really need to be able to find a node's parent,
however, you can add a Parent property to the node class.

Most tree algorithms store data in each node, but a few store information
in the branches. If you need to store information in the branches, you can
either add the information to the parent node or create a separate Branch
class.

The following pseudocode demonstrates the first approach:

306

Class TreeNode
String: Name
List Of TreeNode: Children
List Of Data: ChildData
Constructor(String: name)

Name = name
End Constructor

End Class

In this class, when you add a child to a node, you also need to add data for
the branch that leads to that child. Then ChildData[i] holds the data
for the branch leading to Children[i].

The following pseudocode shows a Branch class that you could use to
store information about branches:

Class Branch
Data: BranchData
TreeNode: Child

End Class

This class holds whatever data is necessary, plus a reference to the child
object. If you use this class to store branch information, you need to
modify the node class to use it. The following pseudocode shows how you
might modify the TreeNode class:

Class TreeNode
String: Name
List Of Branch: Branches
Constructor(String: name)

Name = name
End Constructor

End Class

Now, to examine the node's children, you loop through the Branches
list and use each Branch object's Child property.

XML and Trees
XML (eXtensible Markup Language) is a markup language for representing data.
XML documents are hierarchical. You define tokens nested within other tokens.

XML's hierarchical structure makes it a natural choice for storing trees persistently
and for transmitting trees from one program or computer to another. For example,
you could build a large tree representing your company's organizational chart,

307

save it in an XML file, and then share that file with other programs throughout
your company.

For more information on XML, see http://en.wikipedia.org/wiki/
XML or http://www.w3schools.com/xml/xml_whatis.asp, or
get a book about XML such as Beginning XML, 5th Edition by Joe Fawcett, et al
(Wrox, 2012).

Building Complete Trees
The heapsort algorithm described in Chapter 6 uses a complete binary tree
stored in an array to represent a heap, a binary tree in which every node
holds a value that is at least as large as the values in all its children. Figure
10.4 shows a heap represented as a tree and stored in an array.

Figure 10.4 You can store a heap, or any complete binary tree,
conveniently in an array.

If a node is stored at index i in the array, the indices of its children are 2×i
+ 1 and 2×i + 2.

308

http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/XML
http://www.w3schools.com/xml/xml_whatis.asp

If a node has index j, its parent has index (j – 1) ÷ 2 where means to
truncate the result to the next-smaller integer. For example, 2.9 is 2 and 2
is also 2.

This provides a concise format for storing any complete binary tree in an
array. Working with this kind of tree can be a bit awkward and confusing,
however, particularly if you need to resize the array frequently. For those
reasons, you may want to stick to using classes to build trees.

Note
Now that you know more about trees, you may want to reread the section “Heapsort” in
Chapter 6 to see how you can use classes instead of an array to build a heap.

Tree Traversal
One of the most basic and important tree operations is traversal. In a
traversal, the goal is for the algorithm to visit all the nodes in the tree in
some order and perform an operation on them. The most basic traversal
simply enumerates the nodes so that you can see their ordering in the
traversal.

Traversal and Searching
Many algorithms search a tree for a particular node. In general, these searches are
traversals, and you can use any traversal as the basis for a search.

Chapter 11 describes some special cases in which you can use the structure of the
data in a tree to search it efficiently.

Binary trees have four kinds of traversals: preorder, inorder, postorder,
and depth-first.

Preorder Traversal
In a preorder traversal, the algorithm processes a node, and then its left
child, and then its right child. For example, consider the tree shown in
Figure 10.5. Suppose you're writing an algorithm to simply display the
tree's nodes in a preorder traversal.

309

Figure 10.5 Traversals process a tree's nodes in different orders.

To produce the tree's preorder traversal, the algorithm first visits the root
node, so it immediately outputs the value D. The algorithm then moves to
the root node's left child.

It visits that node, so it outputs B and then moves to that node's left child.

There the algorithm outputs A. That node has no children, so the
algorithm returns to the previous node, B, and visits that node's right child.

Next the algorithm outputs C. That node also has no children, so the
algorithm returns to the previous node, B. It has finished visiting that
node's children, so the algorithm moves up the tree again to node D and
visits that node's right child.

The algorithm outputs the next node, E. That node also has no children, so
the algorithm returns to the previous node, which is the root node. It has
finished visiting that node's children, so the algorithm is done producing
the traversal.

The full traversal order is D, B, A, C, E.

Notice that the algorithm examines or visits the nodes in one order but
processes the nodes to produce an output in a different order. The
following list shows the series of steps the algorithm follows while
producing the preorder traversal for the tree shown in Figure 10.5:

1. Visit D
2. Output D
3. Visit B

310

4. Output B
5. Visit A
6. Output A
7. Visit B
8. Visit C
9. Output C
10. Visit B
11. Visit D
12. Visit E
13. Output E
14. Visit D

The following pseudocode shows a natural recursive implementation of
this algorithm:

TraversePreorder(BinaryNode: node)
<Process node>

If (node.LeftChild != null) Then
TraversePreorder(node.LeftChild)

If (node.RightChild != null) Then
TraversePreorder(node.RightChild)
End TraversePreorder

This algorithm simply follows the definition of a preorder traversal. It
starts by processing the current node. In a real program, you would insert
whatever code you needed to execute for each node here. For example,
you might use code that adds the current node's label to an output string,
or you might examine the node to see if you had found a particular target
item.

Next the algorithm determines whether the node has a left child. If it does,
the algorithm calls itself recursively to traverse the left child's subtree. The
algorithm then repeats that step for the right child and is done.

The algorithm is extremely short and simple.

To traverse the entire tree, a program would simply call
TraversePreorder, passing it the root node as a parameter.

This algorithm works quite well, but its code must be placed somewhere
in the program—perhaps in the main program, in a code module, or in a

311

helper class. Often it is more convenient to place code that manipulates a
tree inside its node class. The following pseudocode shows the same
algorithm implemented inside the BinaryNode class:

Class BinaryNode
String: Name
BinaryNode: LeftChild
BinaryNode: RightChild
Constructor(String: name)

Name = name
End Constructor
TraversePreorder()

<Process this node>
If (LeftChild != null) Then

TraversePreorder(LeftChild)
If (RightChild != null) Then

TraversePreorder(RightChild)
End TraversePreorder

End Class

This is almost the same as the previous version, except that the code is
running within a BinaryNode object, so it has direct access to that
object's LeftChild and RightChild properties. This makes the
code slightly simpler and keeps it nicely encapsulated within the
BinaryNode class.

Now, to traverse the entire tree, you invoke the root node's
TraversePreorder method.

Passing Methods
In most programming languages, you can pass a reference to a method as a
parameter to a method. In this example, that means you could pass a method to
use on a node into the TraversePreorder method. When
TraversePreorder reaches the step <Process node>, it would call the
method that was passed into it as a parameter.

This lets you use a single TraversePreorder method to do anything you
want to the tree by passing it an appropriate node processing method.

You can use a similar technique to make other traversal algorithms perform
arbitrary actions on a tree's nodes.

Although this discussion is about binary trees, you can also define a
preorder traversal for trees of higher degrees. The rule is simply to visit
the node and then visit its children.

312

Inorder Traversal
In an inorder or symmetric traversal, the algorithm processes a node's left
child, the node, and then the node's right child. For the tree shown in
Figure 10.5, the algorithm starts at the root node and moves to its left child
B. The algorithm then moves to that node's left child A.

That node has no left child, so the algorithm visits the node and outputs A.
That node has no right child, so the algorithm returns to the parent node B.

Having finished with node B's left child, the algorithm outputs node B. It
then moves to that node's right child C.

Node C has no left child, so the algorithm visits the node and outputs C.
The node also has no right child, so the algorithm returns to the parent
node B.

The algorithm has finished with node B's right child, so it returns to the
root node D. The algorithm has finished with D's left child, so it outputs D
and then moves to its right child E.

Node E has no left child, so the algorithm visits the node and outputs E.
The node also has no right child, so the algorithm returns to the parent
node D.

The full traversal order is A, B, C, D, E. Notice that this outputs the tree's
nodes in sorted order. Normally the term sorted tree means that the tree's
nodes are arranged so that an inorder traversal processes them in sorted
order like this.

The following pseudocode shows a recursive implementation of this
algorithm:

TraverseInorder(BinaryNode: node)
If (node.LeftChild != null) Then

TraverseInorder(node.LeftChild)
<Process node>

If (node.RightChild != null) Then
TraverseInorder(node.RightChild)
End TraverseInorder

313

This algorithm simply follows the definition of an inorder traversal. It
recursively processes the node's left child if it exists, processes the node,
and then recursively processes the node's right child if it exists.

To traverse the entire tree, a program would simply call
TraverseInorder, passing it the root node as a parameter.

The following pseudocode shows the same algorithm implemented inside
the BinaryNode class:

Class BinaryNode
String: Name
BinaryNode: LeftChild
BinaryNode: RightChild
Constructor(String: name)

Name = name
End Constructor
TraverseInorder()

If (LeftChild != null) Then
TraverseInorder(LeftChild)

<Process this node>
If (RightChild != null) Then

TraverseInorder(RightChild)
End TraverseInorder

End Class

Unlike the preorder traversal, it's unclear how you would define an inorder
traversal for a tree with a degree greater than 2. You could define it to
mean that the algorithm should process the first half of a node's children,
and then the node, and then the remaining children. That's an atypical
traversal, though.

Postorder Traversal
In a postorder traversal, the algorithm processes a node's left child, and
then its right child, and then the node. For the tree shown in Figure 10.5:

1. The algorithm starts at the root node and moves to its left child B.
2. The algorithm then moves to that node's left child A.
3. Node A has no left or right child, so the algorithm outputs the
node A and returns to the parent node B.

314

4. Having finished with the left child, the algorithm moves to the
node's right child C.
5. Node C has no left or right child, so the algorithm outputs node C
and returns to the parent node B.
6. Now that it has visited node B's left and right child, the algorithm
outputs node B. It then returns to the parent node D.
7. The algorithm has visited node D's left child, so now it moves to
the right child E.
8. Node E has no left or right child, so the algorithm outputs node E
and returns to the parent node D.
9. The algorithm has finished with node D's left and right children,
so the algorithm outputs D and is done.

The full traversal is A, C, B, E, D.

The following pseudocode shows a recursive implementation of this
algorithm:

TraversePostorder(BinaryNode: node)
If (node.LeftChild != null) Then

TraversePostorder(node.LeftChild)
If (node.RightChild != null) Then

TraversePostorder(node.RightChild)
<Process node>

End TraversePostorder

This algorithm recursively processes the node's left child and right child if
they exist. It then processes the node.

To traverse the entire tree, a program would simply call
TraversePostorder, passing it the root node as a parameter.

The following pseudocode shows the same algorithm implemented inside
the BinaryNode class:

Class BinaryNode
String: Name
BinaryNode: LeftChild
BinaryNode: RightChild
Constructor(String: name)

Name = name
End Constructor
TraverseInorder()

315

If (LeftChild != null) Then
TraversePostorder(LeftChild)

If (RightChild != null) Then
TraversePostorder(RightChild)

<Process this node>
End TraversePostorder

End Class

Like the preorder traversal, you can easily define a postorder traversal for
trees with a degree greater than 2. The algorithm should visit all of a
node's children before visiting the node itself.

Depth-first Traversal
In a depth-first traversal, the algorithm processes all the nodes at a given
level of the tree in left-to-right order before processing the nodes at the
next level. For the tree shown in Figure 10.5, the algorithm starts at the
root node's level and outputs D.

The algorithm then moves to the next level and outputs B and E.

The algorithm finishes at the bottom level by outputting the nodes A and
C.

The full traversal is D, B, E, A, C.

This algorithm does not naturally follow the structure of the tree as the
previous traversal algorithms do. The tree shown in Figure 10.5 has no
child link from node E to node A, so it's not obvious how the algorithm
moves from node E to node A.

One solution is to add a node's children to a queue and then process the
queue later, after you've finished processing the parents' level. The
following pseudocode uses this approach:

TraverseDepthFirst(BinaryNode: root)
// Create a queue to hold children for later

processing.
Queue<BinaryNode>: children = New

Queue<BinaryNode>()
// Place the root node on the queue.
children.Enqueue(root)
// Process the queue until it is empty.

316

While (children Is Not Empty)
// Get the next node in the queue.
BinaryNode: node = children.Dequeue()
// Process the node.
<Process node>
// Add the node's children to the queue.

If (node.LeftChild != null)
children.Enqueue(node.LeftChild)

If (node.RightChild != null)
children.Enqueue(node.RightChild)

End While
End TraverseDepthFirst

This algorithm starts by making a queue and placing the root node in it. It
then enters a loop that continues until the queue is empty.

Inside the loop, the algorithm removes the first node from the queue,
processes it, and adds the node's children to the queue.

Because a queue processes items in first-in-first-out order, all the nodes at
a particular level in the tree are processed before any of their child nodes
are processed. Because the algorithm adds each node's left child to the
queue before it adds the right node to the queue, the nodes on a particular
level are processed in left-to-right order. (If you want to be more precise,
you can prove these facts by induction.)

Traversal Run Times
The three recursive algorithms for preorder, inorder, and postorder
traversal all travel down the tree to the leaf nodes. Then, as the recursive
calls unwind, they travel back up to the root. After an algorithm visits a
node and then returns to the node's parent, the algorithm doesn't visit that
node again. That means the algorithms visit each node once. So if a tree
contains N nodes, they all have O(N) run time.

Those three algorithms don't need any extra storage space, because they
use the tree's structure to keep track of where they are in the traversal.
They do, however, have depth of recursion equal to the tree's height . If
the tree is very tall, that could cause a stack overflow.

317

The depth-first traversal algorithm processes nodes as they move through
a queue. Each node enters the queue once, so if the tree has N nodes, the
algorithm takes O(N) time.

This algorithm isn't recursive, so it doesn't have problems with large
depths of recursion. Instead, it needs extra space to build its queue. In the
worst case, if the tree is a perfect binary tree, its bottom level holds
roughly half the total number of nodes (see the earlier section “Facts
About Binary Trees”), so if the tree holds N nodes, the queue holds O(N ÷
2) = O(N) nodes.

More generally, a tree of arbitrary degree might consist of a root node that
has every other node as a child. In that case, the queue might need to hold
N – 1 nodes, so the space requirement is still O(N).

Sorted Trees
As mentioned earlier, a sorted tree's nodes are arranged so that an inorder
traversal processes them in sorted order. Another way to think of this is
that each node's value is larger than the value of its left child and less than
(or equal to) the value of its right child. Figure 10.6 shows a sorted tree.

Figure 10.6 In a sorted tree, a node's value lies between the values of its
left child and its right child.

318

To use a sorted tree, you need three algorithms to add, delete, and find
nodes.

Adding Nodes
Building a sorted tree is fairly easy. To add a value to a node's subtree,
compare the new value to the node's value, and recursively move down
the left or right branch as appropriate. When you try to move down a
missing branch, add the new value there.

The following pseudocode shows the algorithm for a BinaryNode
class. The code assumes that the class has a Value property to hold the
node's data:

// Add a node to this node's sorted subtree.
AddNode(Data: new_value)

// See if this value is smaller than ours.
If (new_value < Value) Then

// The new value is smaller. Add it to the
left subtree.

If (LeftChild == null) LeftChild = New

319

BinaryNode(new_value)
Else LeftChild.AddNode(new_value)

Else
// The new value is not smaller. Add it to

the right subtree.
If (RightChild == null) RightChild = New

BinaryNode(new_value)
Else RightChild.AddNode(new_value)

End If
End AddNode

The algorithm compares the new value to the node's value. If the new
value is smaller than the node's value, the algorithm should place the new
value in the left subtree. If the left child reference is null, the algorithm
gives the current node a new left child node and places the new value
there. If the left child is not null, the algorithm calls the child node's
AddNode method recursively to place the new value in the left subtree.

If the new value is not smaller than the node's value, the algorithm should
place the new value in the right subtree. If the right child reference is null,
the algorithm gives the current node a new right child node and places the
new value there. If the right child is not null, the algorithm calls the child
node's AddNode method recursively to place the new value in the right
subtree.

Note
As was the case for the linked lists described in Chapter 3, it is sometimes helpful to use a
sentinel at the top of a tree. For a sorted tree, if you set the root node's value to something
smaller than any possible value the tree might need to contain, you can simply add nodes
to the tree without worrying about whether it is empty. All the nodes you add end up in
the right subtree below the root.

The run time for this algorithm depends on the order in which you add the
items to the tree. If the items are initially ordered in a reasonably random
way, the tree grows relatively short and wide. In that case, if you add N
nodes to the tree, it has height O(log N). When you add an item to the tree,
you must search to the bottom of the tree, and that takes O(log N) steps.
Adding N nodes at O(log N) steps each makes the total time to build the
tree O(N log N).

Random Tree Height

320

When you build a nice, wide sorted tree, it may not be obvious that you're adding
O(N) nodes at a height of O(log N). After all, what if most of the nodes fit near the
top of the tree so that the tree is short while you're adding most of the nodes?

Recall from the earlier section “Facts About Binary Trees” that roughly half of the
nodes in a perfect binary tree are at the bottom of the tree. That means after you
have added half of the nodes to the tree, you have built all but the last level of the
tree, so it already has height log(N) – 1. Now you need to add the remaining half
of the nodes at a depth of log(N) – 1, so the total number of steps is N ÷ 2 ×
log(N) – 1 = O(N log N).

If the values in the tree are initially randomly ordered, you get a
reasonably wide tree. However, if you add the values in some orders, you
get a tall, thin tree. In the worse case, if you add the values in sorted or
reverse sorted order, every node has a single child, and you get a tree
containing N nodes that has height N.

In that case, after you add N ÷ 2 nodes, the tree has height N ÷ 2. That
means it will take more than N ÷ 2 steps to add the remaining N ÷ 2
nodes, giving a total run time of O(N ÷ 2×N ÷2) = O(N2).

You can use the AddNode algorithm to build a sorting algorithm called
treesort. In the treesort algorithm, you use the previous AddNode
algorithm to add values to a sorted tree. You then use an inorder traversal
to output the items in sorted order. The AddNode algorithm takes
expected time O(N log N), and the inorder traversal takes O(N) time, so
the total run time is O(N log N + N) = O(N log N).

In the worst case, building the sorted tree takes O(N2) time. Adding the
O(N) time for the inorder traversal gives a total run time of O(N2 + N) =
O(N2).

Finding Nodes
After you build a sorted tree, you can search for specific items in it. For
example, nodes might represent employee records, and the values used to
order the tree might be a record's employee ID. The following pseudocode
shows a method provided by the BinaryNode class that searches a
node's subtree for a target value:

321

// Find a node with a given target value.
BinaryNode: FindNode(Key: target)

// If we've found the target value, return this
node.

If (target == Value) Then Return <this node>
// See if the desired value is in the left or

right subtree.
If (target < Value) Then

// Search the left subtree.
If (LeftChild == null) Then Return null
Return LeftChild.FindNode(target)

Else
// Search the right subtree.
If (RightChild == null) Then Return null
Return RightChild.FindNode(target)

End If
End FindNode

First the algorithm checks the current node's value. If that value equals the
target value, the algorithm returns the current node.

Next, if the target value is less than the current node's value, the desired
node lies in this node's left subtree. If the left child branch is null, the
algorithm returns null to indicate that the target item isn't in the tree. If
the left child isn't null, the algorithm recursively calls the left child's
FindNode method to search that subtree.

If the target value is greater than the current node's value, the algorithm
performs similar steps to search the right subtree.

If the tree contains N nodes and is reasonably balanced so that it isn't tall
and thin, it has height O(log N), so this search can take at most O(log N)
steps.

Deleting Nodes
Deleting a node from a sorted tree is a bit more complicated than adding
one.

The first step is finding the node to delete. The preceding section
explained how to do that.

322

The next step depends on the position of the target node in the tree. To
understand the different situations, consider the tree shown in Figure 10.7.

Figure 10.7 How you delete a node from a sorted binary tree depends on
the node's position in the tree.

If the target node is a leaf node, you can simply delete it, and the tree is
still a sorted tree. For example, if you remove node 89 from the tree
shown in Figure 10.7, you get the tree shown in Figure 10.8.

Figure 10.8 If you remove a leaf node from a sorted binary tree, it
remains a sorted binary tree.

323

If the target node is not a leaf and it has only one child, you can replace
the node with its child. For example, if you remove node 71 from the tree
shown in Figure 10.8, you get the tree shown in Figure 10.9.

Figure 10.9 To remove an internal node that has one child, replace it with
its child.

324

The trickiest case occurs when the target node has two children. In that
case, the general strategy is to replace the node with its left child, but that
leads to two subcases.

First, if the target node's left child has no right child, you can simply
replace the target node with its left child. For example, if you remove
node 21 from the tree shown in Figure 10.9, you get the tree shown in
Figure 10.10.

Figure 10.10 To remove a target node with two children and whose left
child has no right child, replace the target node with its left child.

325

The final case occurs when the target node has two children and its left
child has a right child. In that case, you should search down the tree to
find the rightmost node below the target node's left child. If that node has
no children, simply replace the target node with it. If that node has a left
child, replace it with its left child, and then replace the target node with
the rightmost node.

Figure 10.11 shows this case where you want to remove node 35. Now 35
has two children, and its left child (17) has a right child (24). The
algorithm moves down from the left child (17) as far as possible by
following right child links. In this example, that leads to node 24, but in
general that rightmost child could be farther down the tree.

Figure 10.11 Removing a target node with two children whose left child
has a right child is the most complicated operation for a sorted binary tree.

326

To delete the target node, the algorithm replaces the rightmost node with
its child (if it has one) and then replaces the target node with the rightmost
node. In this example, the program replaces node 24 with node 23 and
then replaces node 35 with node 24, resulting in the tree on the right in
Figure 10.11.

Threaded Trees
A thread is a series of links that allow you to move through the nodes in a
tree or network in a way other than by following normal branches or links.
A threaded tree is a tree that contains one or more threads.

For example, Figure 10.12 shows a tree with threads represented by
dashed arrows.

The threads shown in Figure 10.12 point from a node to the nodes that
come before and after it in an inorder traversal. They allow an algorithm
to perform an inorder traversal or reverse traversal more quickly than is
possible by using the branches alone.

327

Figure 10.12 A threaded tree contains references that let you move
through the tree without following its normal branches.

Note
You can define other threads in a tree, but this type is the most common. Because it
includes threads forward and backward through the tree's inorder traversal, this kind of
tree is sometimes called a symmetrically threaded tree.

Note
Notice that all the nodes shown in Figure 10.12 have either a left branch or a left thread
and a right branch or a right thread. You can use the same references for both branches
and threads if you can somehow distinguish between them. For example, if you give the
node class two boolean variables, HasLeftBranch and HasRightBranch, you
can store threads in the child links if you set those variables to True.

You can even pack the two boolean values into a byte and use byte operations to see if
they are set.

In practice, the savings in memory may not be worth the extra complexity and potential
confusion unless you're working with an extremely large tree.

To use this kind of threaded tree, you need to know two things: how to
build the tree and how to traverse it.

328

Building Threaded Trees
A threaded tree starts with a single node that has no branches and with
threads set to null. Creating that node is simple.

The trick is adding a new node to the tree. There are two cases, depending
on whether you add the new node as the left or right child of its parent.

First, suppose you're adding the new node as a left child. Suppose you're
adding the node 3 as the left child of node 4 in the tree shown in Figure
10.12.

Because of where the new node is placed, its value is the next smaller
value compared to its parent's value. (In this example, 3 is the next smaller
value after 4.) That means the node before the new one in the traversal is
the node that was formerly the node before the parent. (In this example,
the node before 3 is the node that was before 4—in this case, 2.) When
creating the new node, set the new node's left thread equal to the value of
the parent's left thread.

The parent's predecessor in the traversal is now the new node. The parent's
left branch points to the new node, so the parent no longer needs its left
thread, and you should set it equal to null.

The new node's right thread should point to the next node in the tree's
traversal. Because of where the new node is placed, that's the parent node,
so you should set the new node's right thread to its parent. (In this
example, node 3's right thread should point to node 4.)

Figure 10.13 shows the updated tree with node 3 added.

Figure 10.13 When you insert a node as a left child, its left thread points
where the parent's left thread used to point.

329

When you add a node as the right child of an existing node, the steps are
similar, with the roles of the left and right branches and threads reversed.
The new node's right thread takes the value that the parent's right thread
had, and the parent's right thread is set to null. The new node's left
thread points to the parent node.

Figure 10.14 shows the tree in Figure 10.13 with the new node 8 inserted.

The following pseudocode shows an algorithm for inserting a node into a
threaded sorted tree:

// Add a node to this node's sorted subtree.
AddNode(Data: new_value)

// See if the new value is smaller than ours.
If (new_value < this.Value)

// The new value is smaller. Add it to the
left subtree.

If (this.LeftChild != null)
Then this.LeftChild.AddNode(new_value)
Else

// Add the new child here.
ThreadedNode child = new

ThreadedNode(new_value)
child.LeftThread = this.LeftThread
child.RightThread = this
this.LeftChild = child
this.LeftThread = null

330

End If
Else

// The new value is not smaller. Add it to
the right subtree.

If (this.RightChild != null)
Then this.RightChild.AddNode(new_value)
Else

// Add the new child here.
ThreadedNode child = new

ThreadedNode(new_value)
child.LeftThread = this
child.RightThread = this.RightThread
this.RightChild = child
this.RightThread = null

End If
End If

End AddNode

Figure 10.14 When you insert a node as a right child, its right thread
points where the parent's right thread used to point.

The algorithm first compares the new value to the node's value. If the new
value is smaller, the algorithm adds it to the left subtree.

331

If the node has a left child, the algorithm recursively calls its AddNode
method.

If the node has no left child, the algorithm adds the new node here. It
creates the new node, sets its left thread equal to the current node's left
thread, and sets its right thread equal to the current node. It sets the current
node's left branch to point to the new node and sets the current node's left
thread to null.

If the new value is greater than or equal to the current node's value, the
algorithm performs similar steps to place the new value in the right
subtree. The steps are the same as the case when the new value is smaller
than the current node's value, with the roles of the left and right branches
and threads reversed.

This algorithm is very similar to the previous algorithm for adding a node
to a sorted tree. Both versions recursively search down through the tree to
find the new node's location. The only difference is that this version takes
extra action to sort out threads when it finally creates the new node.

As with the previous version, if you use this method to build a threaded
sorted tree containing N nodes, this algorithm takes O(N log N) time if the
values are initially arranged randomly. The algorithm takes O(N2) time in
the worst case when the values are sorted initially or sorted in reverse
order.

Using Threaded Trees
The following pseudocode uses threads to perform an inorder traversal:

InorderWithThreads(BinaryNode: root)
// Start at the root.
BinaryNode: node = root
// Remember whether we got to a node via a

branch or thread.
// Pretend we go to the root via a branch so we

go left next.
Boolean: via_branch = True
// Repeat until the traversal is done.
While (node != null)

// If we got here via a branch, go
// down and to the left as far as possible.

332

If (via_branch) Then
While (node.LeftChild != null)

node = node.LeftChild
End While

End If
// Process this node.
<Process node>
// Find the next node to process.
If (node.RightChild == null) Then

// Use the thread.
node = node.RightThread
via_branch = False

Else
// Use the right branch.
node = node.RightChild
via_branch = True

End If
End While

End InorderWithThreads

The algorithm starts by initializing the variable node to the root node. It
also initializes the variable via_branch to True to indicate that the
algorithm got to the current node via a branch. Treating the root node in
this way makes the algorithm move to the leftmost node in the tree in the
next step.

The algorithm then enters a loop that continues until the variable node
drops off the tree at the end of the traversal.

If the algorithm got to the current node via a branch, it should not
necessarily process that node just yet. If that node has a left branch, the
nodes down that subtree have values smaller than the current node, so the
algorithm must consider them first. To do that, the algorithm moves as far
down the left branches as possible. (In Figure 10.12, this occurs when the
algorithm moves from node 6 to node 9. The algorithm must first move
down to node 7 before it processes node 9.)

The algorithm then processes the current node.

Next, if the node has no right branch, the algorithm follows the node's
right thread. If the right thread is null, the node is set to null, and the
While loop ends. The algorithm sets via_branch to False to
indicate that it got to the new node via a thread, not a branch. (In Figure
10.12, this happens several times, such as when the algorithm moves from

333

node 4 to node 5. Because via_branch is False, the algorithm will
process node 5 next.)

If the current node's right branch is not null, the algorithm follows it and
sets via_branch to True so that it moves down that node's left
subtree during the next trip through the While loop.

The following list describes the steps taken by this algorithm to traverse
the tree shown in Figure 10.12:

1. Start at the root, and set via_branch to True.
2. Variable via_branch is True, so follow the left branches to
2 and then 1. Process node 1.
3. Follow the right thread to 2, and set via_branch to False.
4. Variable via_branch is False, so process node 2.
5. Follow the right branch to 4, and set via_branch to True.
6. Variable via_branch is True, so try to move down the left
branches. There is no left branch here, so stay at node 4 and process
node 4.
7. Follow the right thread to 5, and set via_branch to False.
8. Variable via_branch is False, so process node 5.
9. Follow the right branch to 6, and set via_branch to True.
10. Variable via_branch is True, so try to move down the left
branches. There is no left branch here, so stay at node 6 and process
node 6.
11. Follow the right branch to 9, and set via_branch to True.
12. Variable via_branch is True, so follow the left branch to 7
and process node 7.
13. Follow the right thread to 9, and set via_branch to False.
14. Variable via_branch is False, so process node 9.
15. Follow the right thread to null, and set via_branch to
False.
16. Variable node is now null, so the While loop ends.

This algorithm still follows all the nodes' branches, and it visits every
node, so it has run time O(N). However, it doesn't need to let recursive
calls unwind back up the child branches, so it saves a bit of time over a

334

normal traversal. It also doesn't use recursion, so it doesn't have problems
with deep levels of recursion. It also doesn't need any extra storage space,
unlike a depth-first traversal.

Specialized Tree Algorithms
Over the years programmers have developed many specialized tree
algorithms to solve specific problems. This chapter can't possibly describe
every algorithm, but the following sections describe four algorithms that
are particularly interesting. They demonstrate the useful techniques of
updating a tree to include new data, evaluating recursive expressions, and
subdividing geometric areas. The final section explains tries, which are
well-known in algorithmic studies.

The Animal Game
In the animal game, the user thinks of an animal, and the program's simple
artificial intelligence tries to guess what it is. The program is a learning
system, so over time it gets better at guessing the user's animal.

The program stores information about animals in a binary tree. Each
internal node holds a yes-or-no question that guides the program down the
left or right branch. Leaf nodes represent animals.

The program asks the questions at each node and follows the appropriate
branch until it reaches a leaf node where it guesses that node's animal.

If the program is wrong, it asks the user to type a question it can ask to
differentiate between the animal it guessed and the correct answer. It adds
a new internal node containing the question and gives that node leaves
holding the correct and incorrect animals.

Figure 10.15 shows a small knowledge tree for the game.

For example, suppose the user is thinking about a snake. Table 10.2 shows
the questions the program asks and the answers the user gives.

335

For another example, suppose the user is thinking about a giraffe. Table
10.3 shows the questions the program asks and the answers the user gives
in this example.

Figure 10.15 This knowledge tree can differentiate among dog, cat, fish,
snake, and bird.

Table 10.2 The Animal Game Trying to Guess Snake
The program asks: The user answers:

Is it a mammal? No

Does it have scales? Yes

Does it breathe water? No

Is it a snake? Yes

Table 10.3 The Animal Game Trying to Guess Giraffe

336

The program asks: The user answers:

Is it a mammal? Yes

Does it bark? No

Is it a cat? No

What is your animal? Giraffe

What question could I ask to differentiate between a cat
and a giraffe?

Does it have a long
neck?

Is the answer to this question true for a giraffe? Yes

The program then updates its knowledge tree to hold the new question and
animal. The new tree is shown in Figure 10.16.

Figure 10.16 This knowledge tree can now differentiate between cat and
giraffe.

337

Expression Evaluation
You can model many situations with trees. You can model mathematical
expressions by creating an internal node for each operator and a leaf node
for each numeric value.

Mathematical expressions naturally break into subexpressions that you
must evaluate before you can evaluate the expression as a whole. For
example, consider the expression (6×14) ÷ (9 + 12). To evaluate this
expression, you must first evaluate 6×14 and 9 + 12. You can then divide
the results of those calculations to get the final result.

To model this expression as a tree, you build subtrees to represent the
subexpressions. You then join the subtrees with a root node that represents
the operation that combines the subexpressions—in this case, division.

Figure 10.17 shows the tree representing the expression (6×14) ÷ (9 + 12).

Figure 10.17 You can use trees to evaluate mathematical expressions.

Each internal node has children representing its operands. For example,
binary operators such as + and / have left and right children that the
operator must combine.

You can think of the leaf nodes as special operators that convert a text
value into a numeric one. In that case the leaf nodes must hold their text.

The only thing missing from the arithmetic node class is a method to
evaluate the node. That method should examine the type of node and then
return an appropriate result. For example, if the operator is +, the method

338

should recursively make its operands evaluate their subexpressions, and
then it can add the results.

The following pseudocode creates an enumeration that defines values that
indicate a node's operator type:

Enumeration Operators
Literal
Plus
Minus
Times
Divide
Negate

End Enumeration

This enumeration defines operator types for literal values such as 8,
addition, subtraction, multiplication, division, and unary negation (as in
–5). You can add other operators such as square root, exponentiation, sine,
cosine, and others.

The following pseudocode shows an ExpressionNode class that
represents a node in a mathematical expression tree:

Class ExpressionNode
Operators: Operator
ExpressionNode: LeftOperand, RightOperand
String: LiteralText
// Evaluate the expression.
Float: Evaluate()

Case Operator
Literal:

Return Float.Parse(LiteralText)
Plus:

Return LeftOperand.Evaluate() +
RightOperand.Evaluate()

Minus:
Return LeftOperand.Evaluate() -

RightOperand.Evaluate()
Times:

Return LeftOperand.Evaluate() *
RightOperand.Evaluate()

Divide:
Return LeftOperand.Evaluate() /

RightOperand.Evaluate()
Negate:

Return -LeftOperand.Evaluate()

339

End Case
End Evaluate

End ExpressionNode

The class begins by declaring its properties. The Operator property is a
value from the Operators enumerated type.

The LeftOperand and RightOperand properties hold links to the
node's left and right children. If the node represents a unary operator such
as negation, only the left child is used. If the node represents a literal
value, neither child is used.

The LiteralText property is used only by literal nodes. For a literal
node, it contains the node's textual value, such as 12.

The Evaluate method examines the node's Operator property and
takes appropriate action. For example, if Operator is Plus, the
method calls the Evaluate method for its left and right children, adds
their results, and returns the sum.

After you build an expression tree, evaluating it is easy. You simply call
the root node's Evaluate method.

The hardest part of evaluating mathematical expressions is building the
expression tree from a string such as (6×14) ÷ (9 + 12). How you can do
that is a string operation, not a tree operation, so this topic is deferred until
Chapter 15, which covers strings in depth.

Quadtrees
Quadtrees are tree data structures that help locate objects in
two-dimensional space. For example, suppose you have an application
that displays several thousand delivery locations. If the user clicks the
map, the program needs to search through all the locations to find the one
closest to where the user clicked. If the locations are stored in a simple
list, the program must perform a sequential search to find the closest point.
A quadtree can make the search much faster.

In a quadtree, a node represents a rectangle in two-dimensional space. The
node contains a list of items that are contained within its rectangle.

340

If a quadtree node contains too many items, it is split into four child nodes
representing the parent node's northwest, northeast, southeast, and
southwest quadrants. The items are then moved into the appropriate child
nodes.

To use a quadtree to find an item with given X and Y coordinates, you
start at the root node. If the quadtree node has children, you use the item's
coordinates to determine which child contains the item and then
recursively search that child for the item. If you reach a node that doesn't
have children, you search the items it contains for an item at the target
location.

To see why this makes the search faster, suppose the mapping application
described a moment ago contains a list of 1,500 locations. Searching that
list linearly will require on average roughly 750 comparisons.

In contrast, suppose you store the items in a quadtree where each node can
hold at most 100 items. If the nodes are reasonably evenly distributed
around the map, the quadtree would logically look like the one shown in
Figure 10.18.

Figure 10.18 If each leaf node can hold 100 items and the items are
evenly distributed, this quadtree can hold roughly 1,600 items.

The root node's area is divided into four quadrants, each of which is
divided into four smaller quadrants. Each leaf node representing a smaller
quadrant can hold up to 100 items.

To find the item that the user clicked in this quadtree, you need to
determine which larger quadrant contains the item and then which smaller
quadrant within the larger quadrant contains the item. Then you need to
search up to 100 items in the leaf node. The result is an average of two
quadrant tests plus roughly 50 item tests. The relative speed of the
quadrant tests and item tests may vary depending on your implementation.

341

But the speed generally is much faster than the 750 item tests required by
a simple list.

If a quadtree contains N nodes, each of which can hold up to K items, and
the items are distributed reasonably evenly in the map area, the tree has a
height of roughly log4(N ÷ K). In the previous example, N = 1,500 and K
= 100, so the height should be roughly log4(1,500 ÷ 100) = log4(15) ≈
1.95, which is close to the height of 2 for the tree shown in Figure 10.18.

Figure 10.19 shows another way to visualize a quadtree. In this figure, the
quadtree contains 200 items, and each quadtree node can hold at most 10
items. (In a real program, you would probably want to let each node hold
more items so that they don't split too often.) The program draws a box
around each quadtree node so that you can see how the area is divided.

Figure 10.19 Each box shows a quadtree node's area.

In the tree shown in Figure 10.19, the full map area is divided into four
quadrants, and each of these is divided into smaller quadrants. Some of the

342

smaller quadrants are divided again, and some of those areas are divided
one last time.

To manage a quadtree, you need algorithms to add a new item to a node to
a subtree and to find an item in a subtree. You may also want an algorithm
to draw the items on a map.

The following pseudocode shows the basic class definition for a quadtree
node:

Class QuadtreeNode
// The maximum number of points allowed in a

quadtree node.
Integer: MaxItems = 10
// The items in this quadtree node.
List Of Data: Items
// The area that this quadtree node represents.
Rectangle: Area
// The middle X and Y values.
Float: Xmid, Ymid
// The child quadtree nodes.
QuadtreeNode: NWchild, NEchild, SEchild, SWchild
// Initializing constructor.
Constructor(Rectangle: area)

Area = area
Xmid = (Area.Left + Area.Right) / 2
Ymid = (Area.Top + Area.Bottom) / 2

End Constructor
End QuadtreeNode

The value MaxItems indicates the maximum number of items a node
can hold before it must be split into quadrants.

The Items property contains the items that the node holds. If the node is
internal, Items is null, and the items are stored in the node's child
subtrees.

The Area property holds the rectangle that the node represents in
two-dimensional space.

The Xmid and Ymid values give the middle X and Y coordinates of the
Area rectangle. These are used to determine which quadrant contains an
item.

343

This class provides a constructor that initializes the node's Area property
and initializes the Xmid and Ymid properties. You could calculate Xmid
and Ymid whenever you need them, but those values are used frequently
(at least for nonleaf nodes), so you can save time by initializing them now.

The following pseudocode shows how a QuadtreeNode can add a new
item to its subtree:

// Add an item to this node's subtree.
AddItem(Item: new_item)

// See if this quadtree node is full.
If ((Items != null) And (Items.Count + 1 >

MaxItems)) Then
// Divide this quadtree node.
Float: wid = (Area.Right - Area.Left) / 2
Float: hgt = (Area.Bottom - Area.Top) / 2
NWchild = New QuadtreeNode(

New Rectangle(Area.Left, Area.Top, wid,
hgt))

NEchild = New QuadtreeNode(
New Rectangle(Area.Left + wid, Area.Top,

wid, hgt))
SEchild = New QuadtreeNode(

New Rectangle(Area.Left + wid, Area.Top
+ hgt, wid, hgt))

SWchild = New QuadtreeNode(
New Rectangle(Area.Left, Area.Top + hgt,

wid, hgt))
// Move the points into the appropriate

subtrees.
For Each item In Items

If (item.Y < Ymid) Then
If (item.X < Xmid) Then

NWchild.AddItem(item)
Else NEchild.AddItem(item)

Else
If (item.X < Xmid)

SWchild.AddItem(item)
Else SEchild.AddItem(item)

End If
Next item
// Remove this node's Items list.
Items = null

End If // End if the quadtree node is full.
// Add the item to the appropriate subtree.
If (Items != null) ThenItems.Add(new_item)

344

Else If (new_item.Y < Ymid) Then
If (new_item.X < Xmid) Then

NWchild.AddItem(new_item)
Else NEchild.AddItem(new_item)

Else
If (new_item.X < Xmid) Then

SWchild.AddItem(new_item)
Else SEchild.AddItem(new_item)

End If
End AddItem

If the current node is a leaf node and adding one more item would give it
too many items, the algorithm splits the node. It creates the four child
nodes and then loops through the items, recursively calling the child
nodes' AddItem methods to move the items into the appropriate child
subtree. It then sets the Items list to null to indicate that this is an
internal node.

Next, if the Items property is not null, this is a leaf node, so the
algorithm adds the new item to the Items list.

If the Items property is null, this is an internal node. In that case, the
algorithm performs a series of If-Then tests to see which subtree
should contain the item, and it recursively calls the corresponding child's
AddItem method.

The following pseudocode shows at a high level how a QuadtreeNode
can find the item at a given point. The algorithm returns the item it finds
through the parameter result. It returns True if it finds the item and
False otherwise:

// Find the item at a specified point. Return true
if we find it.
Boolean: FindItem(Point: target, Item: result)

// See if we have children.
If (Items == null) Then

// We have children. Search the appropriate
child subtree.

If (target.Y < Ymid) Then
If (new_item.X < Xmid) Then

Return NWchild.FindItem(target,
result)

Else Return NEchild.FindItem(target,
result)

345

Else
If (new_item.X < Xmid) Then

Return SWchild.FindItem(target,
result)

Else Return SEchild.FindItem(target,
result))

End If
Else

// We have no children. Search the current
node's items.

For Each item In Items
// See if this is the item.
If ((item.X == target.X) And (item.Y ==

target.Y)) Then
result = item
Return True

End If
Next item
// We did not find the item.
Return False

End If
End FindItem

The algorithm first checks the Items property to see if the current node
has children. If the node has children, it determines which child subtree
contains the item and recursively calls the corresponding child's
FindItem method.

If the current node doesn't have children, the algorithm searches the node's
Items list to find the item at the target location. If the algorithm doesn't
find an item at that position, it returns False to indicate that it didn't find
the item.

This algorithm is reasonably straightforward, but in practice things usually
aren't so simple. The items stored in the tree are things other than simple
points such as circles, rectangles, or line segments. In that case, where do
you store an item that straddles the edge between two quadtree nodes?

One approach is to store the item in both quadtree nodes so that the
algorithm can find it no matter which area the user clicks. If you use this
approach, you need to change the algorithms to work with
two-dimensional items. For example, the search algorithm cannot simply
compare the target point to the item's location. Instead, it must use some
method to see if the target point lies within the item.

346

One problem with this approach is that it requires duplicate items
representing the same object in different quadtree nodes. That wastes
space and fills quadtree nodes sooner than they would be filled otherwise,
so they must split more often and make the tree deeper.

Another approach is to represent each item with a specific point, perhaps
in its center or upper-left corner. Then, when you need to find an item,
you search quadtree nodes with areas that overlap an area around the
target point that is big enough to include the largest item.

For example, in the program shown in Figure 10.19, the items are circles
with radius 5 that are represented by their center points. When searching
for an item at location (A, B), the program examines any quadtree node
with an area that intersects the rectangle A – 5 ≤ X ≤ A + 5 and B – 5 ≤ Y
≤ B + 5.

The changes to the algorithms aren't too complicated, but they make the
code quite a bit longer.

Octtrees
An octtree is similar to a quadtree, except that it stores objects in three
dimensions. An octtree node represents a three-dimensional volume. When an
octtree node contains too many items, its volume is divided into eight octants that
are represented by eight child nodes, and the items are distributed among the child
subtrees.

Tries
A trie (the word comes from “retrieval” but is usually pronounced “try”)
is a tree that holds strings. Each internal node represents a single letter.
Leaf nodes may represent more than one letter. A path from the root to a
leaf node corresponds to a string.

A partial path from the root to an internal node forms a prefix for longer
paths, so tries are sometimes called prefix trees.

A path that represents a key string, whether it ends at an internal node or
at a leaf node, has an associated value.

347

Figure 10.20 shows a trie that holds the keys and values shown in Table
10.4.

Table 10.4 Keys and Values for the Example Trie
Key Value

WANE 29

WISP 72

WANT 36

Figure 10.20 A path through a trie defines a string.

For example, consider the path from the root to the node E. The nodes
visited correspond to the letters W, A, N, and E, so that node represents
the key WANE. That key's value is 29.

For another example, consider the path to the node T. The nodes visited
correspond to the letters W, A, N, and T, so the node represents the key
WANT. That key's value is 36.

Notice that the path to the node N forms the string WAN, which is a prefix
of both WANE and WANT.

Notice also that a leaf node may represent more than one letter. In this
example, the node ISP represents three letters. The path from the root to
that node represents the key WISP and has value 72.

To add a new key to the trie, you use the key's letters to follow the
appropriate path through the trie. If you reach a leaf node and the key has

348

still more letters that are not represented by the current path, you add a
new child node to represent the rest of the key.

For example, suppose you want to add the key WANTED to the trie. You
follow the path through the nodes W, A, N, and T. The key still has the
letters ED, so you add a new node to hold them. Figure 10.21 shows the
new trie.

Figure 10.21 To add a key that is longer than the corresponding path
through the tree, add a new leaf node.

Sometimes when you add a new key to the trie, you find it early. For
example, the trie shown in Figure 10.21 already has the nodes needed to
represent the key WAN. In that case, all you need to do is add a value to
the appropriate node, as shown in Figure 10.22.

Figure 10.22 If a trie already contains nodes to represent a key, simply
add a value to the key's final node.

349

Instead of storing a letter in each internal node, you can figure out the
node's letter by keeping track of the path you took from the root to get
there. For example, you could store a node's children in an array where
Children[0] is the branch for the letter A, Children[1] is the
branch for the letter B, and so forth.

Figure 10.23 shows the trie from Figure 10.22 with internal node letters
moved to the branches. Notice that the node with value 29 doesn't need
any extra information because the key it represents is fully specified by
the path to the node. In contrast, the path to the node with value 10
specifies only the letters W, A, N, T, and E, so the node needs to store the
final D.

Figure 10.23 Instead of storing an internal node's letter in the node, you
can figure out the node from the path to the node.

350

The following pseudocode shows how you can add an item to a trie. In
this code the phrase “remaining node key” means part of a key stored in a
leaf node, such as D and SP in Figure 10.23:

AddValue(string new_key, string new_value)
<If new_key is not blank and matches the

remaining node key,
place the value in this node and return.>
<If new_key is blank and the remaining node key

is too,
place the value here and return.>
<If new_key is blank but the node's remaining

key isn't blank,
move the node's remaining key (minus the first

letter) into
a child, place the value here, and return.>

// If we get to this point, we need a child node.
If <The Children array is null> Then

// Make the Children array.
Children = New TrieNode[26]
<If the node's remaining key is not blank,
move it into the appropriate child.>

End If
// Convert the letter into an integer by

"subtracting" A.
Integer: index = new_key[0] - ‘A'
// Search the appropriate subtrie.
If (Children[index] == null)

// This child doesn't exist. Make it and
// let it represent the rest of the new key.
Children[index] = New TrieNode()

Children[index].RemainingKey =
new_key.Substring(1)

Children[index].Value = new_value
Return

End If
// Search the appropriate subtrie.

Children[index].AddValue(new_key.Substring(1),
new_value)
End AddValue

This is a fairly confusing algorithm. It may be easier to understand if you
draw a tree and then walk through the algorithm, updating it in various
ways.

351

As the algorithm moves through the trie, it removes the letters from the
new key corresponding to the branches it crosses. The body of the
algorithm then considers the current value of the new key.

First, if the new key is not blank and it matches the remaining node key,
the algorithm places the new value in the current node. This would happen
in Figure 10.23 if you were setting the value for WANTED. When the
algorithm reached the node labeled D, the new key value will be D and the
node's remaining key is D.

Next, if the new key is blank and the node's remaining key is too, the
algorithm places the value in this node. This occurs if you set the value of
WAN in Figure 10.23. When the algorithm crosses the N branch, the new
key is reduced to an empty string. The node at the end of that branch
doesn't have any remaining key (only leaf nodes can have remaining key
values), so this is where the value for WAN belongs.

Next, if the new key is blank but the node's remaining key isn't, the
algorithm moves the node's remaining key into a child. This would happen
if the trie contains WANE and WANTED but not WANT. In that case, the
path for WANTED will be W, A, N, T, ED. When you add WANT and
cross the T branch, the new key value is blank because the path represents
the entire new key WANT. But that node has value ED. The algorithm
moves the ED down to a child, creating a new E branch and a new node
with D as its remaining key.

If the algorithm gets past all the previous steps, the algorithm must move
into a child node's subtrie. Before it tries to do that, it determines whether
the node's Children array has been initialized. If it has not, the
algorithm creates the Children array. If the node's remaining key is not
blank, the algorithm also moves the remaining key (minus its first letter)
into the appropriate child.

The algorithm then examines the child that should contain the new key. If
that child doesn't exist, the algorithm creates it and stores the rest of the
new key and the new value in it.

If that child does exist, the algorithm recursively calls itself to add the new
key (minus its first letter) to that child's subtrie.

A search for a value in a trie follows the same path through the trie but
uses a much simpler algorithm because there are fewer special cases to

352

consider. The following pseudocode shows how a search algorithm might
work in a trie:

// Find a value in this node's subtrie.
Data: FindValue(String: target_key)

// If the remaining key matches the
// remaining node key, return this node's value.
If (target_key == RemainingKey) Then Return Value
// Search the appropriate child.
If (Children == null) Then Return null
Integer: index = target_key[0] - ‘A'
If (Children[index] == null) Then Return null

Return
Children[index].FindValue(target_key.Substring(1))
End FindValue

The algorithm first compares the target key to the node's remaining key
value. If these are the same, two things may have happened. First, the
algorithm may have used up the target key and reached a node that doesn't
have a remaining value. (This happens if you search for WAN in Figure
10.22.) Second, the algorithm may have reached a node where the
remaining target key matches the node's remaining key. (This happens if
you search for WANTED in Figure 10.22.) In either case, this code
matches the target key, so the algorithm returns its value.

If the remaining target key doesn't match the node's remaining key, the
algorithm must search a child node. If the current node has no children,
the target key isn't in the trie, so the algorithm returns null.

If the node has children, the algorithm calculates the index of the target
key's child. If that child doesn't exist, the target key isn't in the trie, so the
algorithm again returns null.

Finally, if the target key's child exists, the algorithm calls itself recursively
for that child to find the target key (minus its first letter).

Summary
Trees can be useful for storing and manipulating hierarchical data. After
you build a tree, you can enumerate its values in different orders and
search for values within the tree.

353

The performance of many tree algorithms is related to the tree's height. If
a tree holding N nodes is relatively short and wide, its height is O(log N),
and those algorithms are fairly quick. If the tree is tall and thin, it could
have height O(N), and some of those algorithms perform badly. For
example, building a sorted binary tree takes O(N×log N) time in the best
case and O(N2) time in the worst case.

Because a tree's height is important to these algorithms, special trees have
been devised that rebalance themselves so that they cannot grow too tall
and thin. The next chapter describes several kinds of balanced trees,
including the B-trees and B+trees used by many database systems to store
and search indices efficiently.

Exercises
Asterisks indicate particularly difficult problems.

1. Can a perfect binary tree hold an even number of nodes?
2. A perfect tree is full and complete, although not all full and
complete trees are perfect. Draw a tree that is full and complete but
not perfect.
3. Use induction to prove that the number of branches B in a binary
tree containing N nodes is B = N – 1.
4. Prove that the number of branches B in a binary tree containing N
nodes is B = N – 1 without using induction.
5. *Use induction to prove that the number of leaf nodes L in a
perfect binary tree of height H is L = 2H.
6. **Use induction to prove that the number of missing branches
(places where a child could be added) M in a binary tree that
contains N nodes is M = N + 1.
7. What is the preorder traversal for the tree shown in Figure 10.24?

Figure 10.24 Tree data structures usually are drawn with the root at
the top.

354

8. What is the inorder traversal for the tree shown in Figure 10.24?
9. What is the postorder traversal for the tree shown in Figure
10.24?
10. What is the depth-first traversal for the tree shown in Figure
10.24?
11. Write a program that finds the preorder, inorder, postorder, and
depth-first traversals for the tree shown in Figure 10.24.
12. What happens if you use a queue instead of a stack in the
depth-first traversal algorithm described in the section “Depth-first
Traversal?” How could you generate the same traversal recursively?
13. Write a program similar to the one shown in Figure 10.25 that
uses a preorder traversal to display a textual representation of the
tree shown in Figure 10.24.

Figure 10.25 A preorder traversal can generate a textual display of
a tree similar to the one used by Windows Explorer to display a
directory hierarchy.

355

14. **Write a program similar to the one shown in Figure 10.26 to
display a more intuitive picture of a tree. (Hints: Give the node class
a PositionSubtree method that positions the node's subtree.
It should take as parameters the minimum x- and y-coordinates that
the node's subtree can occupy, and it should calculate the rectangle
that the subtree will cover. It will need to recursively call the
PositionSubtree method of its left and right child subtrees
and use the subtrees' sizes to see how big to make the original
subtree. Also give the node class methods to recursively draw the
tree's links and nodes.)

Figure 10.26 To draw a tree, a program must first position it.

356

15. **The tree shown in Figure 10.26 is particularly useful for
unordered trees, but for ordered binary trees it can be hard to tell
whether a node is the left or right child of its parent. For example, in
Figure 10.26 it's unclear whether node C is the left or right child of
node D.
Modify the program you wrote for Exercise 14 to produce a display
similar to the one shown in Figure 10.27. Here, if a node has only
one child, the program allows some space for the missing child, so
you can tell whether the other child is a left or right child.

Figure 10.27 In an ordered binary tree, you can leave space to
indicate missing children.

357

16. Write pseudocode to perform a reverse inorder traversal on a
threaded sorted tree.
17. *Write a program that builds a threaded sorted tree and displays
its inorder and reverse inorder traversals.
18. **Expand the program you built for Exercise 17 so that it
displays the tree shown in Figure 10.28. The circles in the drawing
show a node's value and the values of the nodes to which its threads
lead. For example, node 4 has its left thread set to null (displayed
as -- in the program) and its right thread pointing to node 5.

Figure 10.28 This program builds and displays threaded sorted
trees.

358

19. In general, is the knowledge tree used by the animal game full,
complete, perfect, none of those, or a combination of those?
20. The animal game can use the following node class to store
information:

Class AnimalNode
String: Question
AnimalNode: YesChild, NoChild

End Class

If you use this class, how can you tell whether a node represents a
question or an animal?

359

21. Write a program that implements the animal game.
22. Draw expression trees for the following expressions:

• (15 ÷ 3) + (24 ÷ 6)
• 8×12 – 14×32
• 1 ÷ 2 + 1 ÷ 4 + 1 ÷ 20

23. Write a program that evaluates mathematical expressions.
Because parsing expressions to build mathematical expression trees
is deferred until Chapter 15, this program doesn't need to do that.
Instead, make the program use code to build and evaluate the
expressions in Exercise 22.
24. Draw expression trees for the following expressions:

• 5! ÷ ((5 – 3)!×3!)
• Sine(45°)2

25. *Extend the program you wrote for Exercise 23 to evaluate the
expressions in Exercise 24.
26. **Write a program similar to the one shown in Figure 10.19.
Let the user click to select a circle. If the user clicks outside all the
circles, select no circle. When you draw the map, draw the selected
circle (if there is one) in a different color.
27. Draw a trie to represent the following keys and values:
Key Value

APPLE 10

APP 20

BEAR 30

ANT 40

BAT 50

APE 60

28. **Write a program that lets you add and find items in a trie.

360

Chapter 11

Balanced Trees

The previous chapter explained trees in general and some of the
algorithms that use trees. Some algorithms, such as tree traversals, have
run times that depend on the tree's total size. Other algorithms, such as one
for inserting a node in a sorted tree, have run times that depend on the
tree's height. If a sorted tree containing N nodes is relatively short and
wide, inserting a new node takes O(log N) steps. However, if the nodes
are added to the tree in sorted order, the tree grows tall and thin, so adding
a new node takes O(N) time, which is much longer.

This chapter describes balanced trees. A balanced tree is one that
rearranges its nodes as necessary to guarantee that it doesn't become too
tall and thin. These trees may not be perfectly balanced or have the
minimum height possible for a given number of nodes, but they are
balanced enough that algorithms that travel through them from top to
bottom run in O(log N) time.

Note
This chapter doesn't use the pseudocode used by much of the rest of the book. Balanced
tree algorithms are much easier to explain and understand if you use pictures instead of
code.

The following sections describe three kinds of balanced trees: AVL trees,
2-3 trees, and B-trees.

AVL Trees
An AVL tree is a sorted binary tree in which the heights of two subtrees at
any given node differ by at most 1. When a node is added or removed, the
tree is rebalanced if necessary to ensure that the subtrees again have
heights differing by at most 1.

Note
AVL trees are named after their inventors, G. M. Adelson-Velskii and E. M. Landis.
They were described in a 1962 paper and are the oldest type of balanced tree.

361

Because an AVL tree is a sorted binary tree, searching one is fairly easy.
The previous chapter explained how to do so.

Adding values to and deleting values from an AVL tree is a bit more
complicated. The following sections describe these two operations.

Adding Values
Usually the implementation of the AVL tree node includes a balance
factor that indicates whether the node's subtrees are left-heavy, balanced,
or right-heavy. You can define the balance factor as <height of left
subtree> – <height of right subtree>. Therefore, a balance factor of –1
means the node is right-heavy, a balance factor of 0 means the two
subtrees have the same height, and a balance factor of +1 means the node
is left-heavy.

The basic strategy for adding a new node to an AVL tree is to recursively
climb down into the tree until you find the location where the new node
belongs. As the recursion unwinds, the program updates the balance
factors at each node as it returns to the root. If the program finds a node
with a balance factor less than –1 or greater than +1, it uses one or more
“rotations” to rebalance the subtrees at that node.

Which rotations the algorithm uses depends on which grandchild subtree
contains the new node. There are four cases, depending on whether the
new node is in the left child's left subtree, the left child's right subtree, the
right child's left subtree, or the right child's right subtree.

The tree shown in Figure 11.1 illustrates the situation in which the new
node is in the left child's left subtree A1. This is called a left-left case.

Figure 11.1 In the left-left case, the left child's left subtree contains the
new node.

362

The triangles in Figure 11.1 represent balanced AVL subtrees that could
contain many nodes. In this example, the new node is in subtree A1. The
tree is unbalanced at node B because the subtree rooted at node A, which
includes subtree A1, is two levels taller than node B's other subtree, B2.

You can rebalance the tree by rotating it to the right, replacing node B
with node A and moving subtree A2 so that it becomes the new left
subtree for node B. Figure 11.2 shows the result. This rebalancing is
called a right rotation.

Figure 11.2 A right rotation rebalances the tree shown in Figure 11.1.

363

The right-right case is similar. You can rebalance the tree in that case with
a left rotation, as shown in Figure 11.3.

Figure 11.3 A left rotation rebalances the tree if the new node is in the
right child's right subtree.

The top image in Figure 11.4 shows the left-right case in which the new
node is in the left child's right subtree. That subtree includes node A and
its two subtrees. It doesn't matter whether the new node is in subtree A1 or
A2. In either case, the subtree rooted at node A reaches two levels deeper
than subtree B2. That means the subtree rooted at node C has depth 2
greater than subtree B2, so the tree is unbalanced at node B.

Figure 11.4 A left rotation followed by a right rotation rebalances the tree
if the new node is in the left child's right subtree.

364

365

You can rebalance the tree in this case with a left rotation followed by a
right rotation. The second image in Figure 11.4 shows the tree after a left
rotation to change the positions of nodes A and C. At this point, the tree is
in the left-left case, like the one shown in Figure 11.1. The left child's
subtree is 2 levels deeper than node B's right subtree. Now you can
rebalance the tree the same way you do in the left-left case by using a
right rotation. The bottom image in Figure 11.4 shows the resulting
balanced tree.

Similar techniques let you rebalance the tree in the right-left case. Use a
right rotation to put the tree in the right-right case, and then use a left
rotation to rebalance the tree.

Deleting Values
You can use the same rotations to rebalance the tree whether you're adding
new nodes or removing existing nodes. For example, Figure 11.5 shows
the process of removing a node from an AVL tree. The top image shows
the original tree. After node 1 is removed, the tree in the middle of the
figure is unbalanced at node 3, because that node's left subtree has height
1, and its right subtree has height 3. A left rotation gives the rebalanced
tree shown on the bottom.

Figure 11.5 A left rotation rebalances the tree after node 1 is removed.

366

367

At all times, an AVL tree containing N nodes has height at most O(log N),
so it is reasonably short and wide. That means operations that climb the
tree, such as searching for a value, take O(log N) time.

Rebalancing the tree also takes at most O(log N) time, so adding or
removing a value takes O(log N) time.

2-3 Trees
To keep an AVL tree balanced, you consider the tree's structure at a
relatively large scale. The subtrees at any node differ in height by at most
1. If you needed to examine the subtrees to determine their heights, you
would need to search the subtrees to their leaf nodes.

To keep a 2-3 tree balanced, you consider its nodes at a smaller scale.
Instead of considering entire subtrees at any given node, you consider the
number of children each node has.

In a 2-3 tree, every internal node has either two or three children. A node
that has two children is called a 2-node, and a node that has three children
is called a 3-node. Because every internal node has at least two children, a
tree containing N nodes can have a height of at most log2(N).

Nodes with two children work the way the nodes do in a normal binary
tree. Such a node holds a value. When you're searching the tree, you look
down the node's left or right branch, depending on whether the target
value is less than or greater than the node's value.

Nodes with three children hold two values. When you're searching the
tree, you look down this node's left, middle, or right branch, depending on
whether the target value is less than the node's first value, between its first
and second value, or greater than its second value.

In practice, you can use the same class or structure to represent both kinds
of nodes. Just create a node that can hold up to two values and three
children. Then add a property that tells how many values are in use. (Note
that a leaf node might hold one or two values but has no children.)

368

Figure 11.6 shows a 2-3 tree. To find the value 76, you would compare 76
to the root node's value 42. The target value 76 is greater than 42, so you
move down the branch to the right of the value 42. At the next node, you
compare 76 to 69 and 81. The target value 76 is between 69 and 81, so
you move down the middle branch. You then find the value 76 in the leaf
node.

Figure 11.6 In a 2-3 tree, every internal node has either two or three
children.

Searching a 2-3 tree is reasonably simple, but adding and deleting values
is a bit harder than it is for a normal binary tree.

Adding Values
To add a new value to the tree, search the tree much as you would search
any sorted tree to find the leaf node where the new value belongs. There
are two cases, depending on whether the leaf node is full.

First, if the leaf node holds fewer than two values, simply add the new
value to the node, keeping it in sorted order with the node's existing value,
and you're done.

Second, suppose the leaf node that should hold the new value already
holds two values, so it is full. In that case, you split the node into two new
nodes, put the smallest value in the left node, put the largest value in the
right node, and move the middle value up to the parent node. This is called
a node split.

369

Figure 11.7 shows the process of adding the value 42 to the tree on the
left. The value 42 is greater than the value 27 in the root node, so the new
value should be placed down the root node's right branch. The node down
that branch is a leaf node, so that is where the new value ideally belongs.
That node is full, however, so adding the new value would give it three
values: 32, 42, and 57. To make room, you split the leaf node into two
new nodes holding the smaller and larger values 32 and 57, and you move
the middle value up to the parent node. The resulting tree is shown on the
right.

Figure 11.7 Adding a new value to a full leaf node forces a node split.

When a node splits, you need to move a value up to its parent node. That
may cause the parent node to hold too many values, so it also splits. In the
worst case, the series of splits cascades all the way up the tree to the root
node, causing a root split. When a root split occurs, the tree grows taller.
This is the only way a 2-3 tree grows taller.

In a sorted binary tree, adding values in sorted order is the worst-case
scenario and results in a tall, thin tree. If you add N nodes to the tree, the
tree has height N.

Figure 11.8 shows a 2-3 tree with the values 1 through 7 added in numeric
order. The tree can hold the values 1 and 2 in the root node, so the first
image shows the tree already containing those values. Each image shows
the next value to be added and the location where it belongs in the tree. If
you step through the stages, you'll see that adding the value 4 causes a
node split and adding the value 7 causes a root split.

Figure 11.8 Adding a new value to a full leaf node forces a node split.

370

Deleting Values
In theory, deleting a value from a 2-3 tree is about the same as adding one
in reverse. Instead of node splits, you may have node merges. In practice,
however, the details are fairly complicated.

You can simplify the problem if you can treat all deletions as if they are
from a leaf node. If the target value is not in a leaf node, replace it with
the rightmost value to the left of it in the tree, just as you would in any
sorted tree. The replacement node will be in a leaf node, so now you can
treat the situation as if you had removed the rightmost value from that leaf
node.

After you remove a value from a node, that node contains either zero
values or one value. If it contains one value, you're done.

If the node now contains zero values, you may be able to borrow a value
from its sibling node. If the node's sibling has two values, move one into
the empty node, and again you're done.

For example, consider the tree shown at the top of Figure 11.9. Suppose
you want to remove value 4 from the root. Start by moving the value 3
into the deleted position to get the tree shown second in the figure.

Figure 11.9 When you delete a value from a node in a 2-3 tree, sometimes
a node that is too empty can borrow values from its sibling.

371

372

This tree is no longer a 2-3 tree because the internal node A has only one
child. In this example, node A's sibling node B has three children, so node
A can take one. Move the node containing the value 5 so that it is a child
of node A. When you remove that node, you must also remove the value 6
that was used to decide when to move left from node B to the node
containing 5. The third tree in Figure 11.9 shows the situation.

At this point, the value 6 doesn't have a node, and the values in the tree are
no longer in sorted order. The value 6 is greater than any value in A's
subtree, so move it to A's parent. The value that was in that position (3 in
this example) is greater than the values in A's original subtree and less
than the value borrowed from its sibling (5), so put 3 to the left of the
borrowed value.

The bottom tree in Figure 11.9 shows the final result.

One more situation may occur when you delete a value. Suppose you
remove a value from a node, so the node then has only one child, and the
node's sibling contains only one value, so you can't borrow a node from it.
In that case you can merge the node and its sibling. (Not surprisingly, this
is called a node merge.)

When you merge two nodes, their parent loses a child. If the parent had
only two children, it now violates the condition that every internal node in
a 2-3 tree must have either two or three children. In that case, you move
up the tree and rebalance at that node's parent, either redistributing nodes
or merging the parent with its sibling.

For example, consider the tree shown at the top of Figure 11.10. Suppose
you want to delete value 3. Doing so results in the second tree shown in
the figure. This tree is no longer a 2-3 tree because internal node A has
only one child.

Figure 11.10 Sometimes when you delete a value from a 2-3 tree you
need to merge two nodes.

373

Node B also has only two children, so node A cannot borrow a child from
it. Instead, you need to merge nodes A and B. Between them, nodes A and
B contain two values and have three children, so that works from a space
point of view.

When you merge the two nodes, their parent node loses a child, so it must
also lose a value. You can move that value into the merged node's subtree.

After you make those rearrangements, the values are no longer in sorted
order, so you need to rearrange them a bit. The bottom of Figure 11.10
shows the resulting tree.

374

In this example, the top node (which ends up holding the value 20) has
two children. If it did not, you would have to rebalance the tree at that
node's level, either borrowing a child or merging with that node's sibling.

In the worst case, a series of merges can cascade all the way to the tree's
root, causing a root merge. This is the only way a 2-3 tree grows shorter.

B-Trees
B-trees (pronounced “bee trees”) are an extension of 2-3 trees. (Or, if you
prefer, 2-3 trees are a special case of B-trees.) In a 2-3 tree, every internal
node holds one or two values and has two or three branches. In a B-tree of
order K, every internal node (except possibly the root) holds between K
and 2 × K values and has between K + 1 and 2 × K + 1 branches.

Because they can hold many values, the internal nodes in a B-tree are
often called buckets.

The number of values that a B-tree node can hold is determined by the
tree's order. A B-tree of order K has these properties:

• Each node holds at most 2 × K values.
• Each node except possibly the root node holds at least K values.
• An internal node holding M values has M + 1 branches leading to

M + 1 children.
• All leaves are at the same level in the tree.

Because each internal node has at least M + 1 branches, the B-tree cannot
grow too tall and thin. For example, every internal node in a B-tree of
order 9 has 10 branches, so a tree holding 1 million values would need to
be about log10(1 million) = six levels tall. (A complete binary tree would
need to be 20 levels tall to hold the same values.)

Note
Recall that a tree's degree is the maximum number of branches that any of its nodes can
have. That means a B-tree of order K has degree 2 × K + 1.

You search a B-tree much as you search a 2-3 tree. At each node, you find
the values between which the target value lies and then move down the
corresponding branch.

375

Figure 11.11 shows a B-tree node of order 2. If you were searching the
tree for the value 35, you would move down branch B, because 35 is
between the node's values 27 and 36, and branch B is between those
values. If you wanted to find the value 50, you would move down branch
D, because that is the node's last branch, and the value 50 is greater than
all the node's values.

Figure 11.11 In a B-tree, internal nodes hold several values with branches
between them.

Just as searching in a B-tree is similar to searching in a 2-3 tree, adding
and removing values in a B-tree is similar to adding and removing values
in a 2-3 tree.

Adding Values
To insert a value in a B-tree, locate the leaf node that should contain it. If
that node contains fewer than 2 × K values, simply add the new value.

If the node contains 2 × K values, there's no room for a new value. If any
of the node's siblings contains fewer than 2 × K values, you can rearrange
the values in the siblings so that the new value will fit.

For example, consider the tree shown at the top of Figure 11.12. Suppose
you want to add the value 17. The leaf that should hold the new value is
full. In the tree at the bottom of the figure, the values in the node and its
right sibling have been rearranged to make room for the new value.
(Notice that the dividing value has been changed in the parent node.)

Figure 11.12 Sometimes when you add a value to a full B-tree node, you
can redistribute values among the node's siblings to make room.

376

If all the sibling nodes are full (or if you don't want to rearrange values
among siblings, a potentially difficult task), you can split the node into
two nodes that each contain 2 × K values. Add the new value to the node's
existing values, move the middle value up to be the dividing value in the
parent node, and put the remaining values in the two new nodes.

For example, consider the tree shown at the top of Figure 11.13. Suppose
you want to add the value 34. The leaf node and its siblings are all full, so
you cannot redistribute values to make room. Instead, you can split the
node, as shown at the bottom of the figure.

Figure 11.13 Sometimes when you add a value to a full B-tree node, you
must split the node.

377

When you move a new value up to the parent node, that node may now be
too full. In that case you must repeat the process with the parent node,
either rearranging values among that node's siblings or splitting that node
and moving a value up to its parent.

In the worst case, the split travels all the way up the tree to the root, where
it causes a root split. This is the only way a B-tree grows taller.

Deleting Values
To remove a value from an internal node, swap it with the rightmost value
to the left in the tree, as you normally do for sorted trees. Then treat the
case as if you were removing the value from a leaf node.

After you remove the value, if the leaf node contains at least K values,
you're done. If the leaf node now contains fewer than K values, you must
rebalance the tree.

If any of the node's siblings holds more than K values, you can redistribute
the values to give the target node K values.

378

For example, consider the tree shown at the top of Figure 11.14. Suppose
you want to remove the value 32. That would leave the leaf holding only
one value, which is not allowed for a B-tree of degree 2. In the tree at the
bottom of the figure, the values in the node and its siblings have been
rearranged so each holds two values.

Figure 11.14 Sometimes when you delete a value from a B-tree node, you
can redistribute values among the node's siblings to rebalance the tree.

If none of the node's siblings holds more than K values, you can merge the
node with one of its siblings to make a node that holds 2 × K values.

For example, consider the tree shown at the top of Figure 11.15. Suppose
you want to delete the value 12. The leaf node and its siblings all hold K
values, so you cannot redistribute values. Instead, you can merge the leaf
with one of its siblings, as shown at the bottom of the figure.

Figure 11.15 Sometimes when you delete a value from a B-tree node, you
must merge the node with a sibling.

379

When you merge two nodes, the parent node may not hold K values. In
that case you must repeat the process with the parent node, either
rearranging values among that node's siblings or merging that node with
one of its siblings.

In the worst case, the merge travels all the way up the tree to the root,
where it causes a root merge. This is the only way a B-tree grows shorter.

Balanced Tree Variations
There are many other kinds of balanced tree structures and several
variations on the ones that have already been described. The following
sections cover two useful modifications that you can make to B-trees.
These modifications are described for B-trees, but they also apply to some
of the other kinds of balanced trees. In particular, because a 2-3 tree is
really just a B-tree of order 1, these techniques apply directly to 2-3 trees.

Top-down B-trees
When you add an item to a B-tree, you first recursively move down into
the tree to find the leaf node that should hold it. If that bucket is full, you

380

may need to split it and move an item up to the parent node. As the
recursive calls return, they can add a value that has been moved up to the
current node and, if that node splits, move another value up the tree.
Because these bucket splits occur as the recursive calls return up the tree,
this data structure is sometimes called a bottom-up B-tree.

An alternative strategy is to make the algorithm split any full nodes on the
way down into the tree. This creates room in the parent node if the
algorithm must move a value up the tree. For example, if the leaf node that
should hold the new value is full, the algorithm knows that the leaf's
parent has room, because if it didn't, it would have been split already.
Because these bucket splits occur as the recursion moves down into the
tree, this data structure is sometimes called a top-down B-tree.

In a top-down B-tree, bucket splits occur sooner than they might
otherwise. The top-down algorithm splits a full node even if its children
contain lots of unused entries. This means the tree holds more unused
entries than necessary, so it is taller than a bottom-up B-tree would be.
However, all that empty space also reduces the chances that adding a new
value will cause a long series of bucket splits.

Unfortunately, there is no top-down algorithm for bucket merging. As it
moves down into the tree, the algorithm cannot tell if a node will lose a
child, so it can't know if it should merge that node with a sibling.

B+trees
B-trees are often used to store large records. For example, a B-tree might
hold employee records, each occupying several kilobytes of space. If the
records include photographs of the employees, each might hold a few
megabytes. The B-tree would organize its data by using some sort of key
value, such as employee ID.

In that case, rearranging the items in a bucket would be fairly slow,
because the program might need to shuffle many megabytes of data
among several nodes. A cascading bucket split could make the algorithm
move a huge amount of data.

One way to avoid moving large amounts of data is to place only the key
values in the B-tree's internal nodes and then make each node also store a

381

pointer to the rest of the record's data. Now, when the algorithm needs to
rearrange buckets, it moves only the keys and the record pointers instead
of the whole record. This type of tree is called a B+tree (pronounced “bee
plus tree”).

Figure 11.16 shows the idea behind B+trees. Here dashed lines indicate
links (pointers) from a key to the corresponding data, shown in a box.

Figure 11.16 In a B+tree, values are linked to the corresponding data,
shown here in boxes.

B+trees have a couple of advantages in addition to making it faster to
rearrange values. First, they let a program easily use multiple trees to
manage different keys for the same data. For example, a program might
use one B+tree to arrange employee records by employee ID and another
B+tree to arrange the same records by Social Security number. Each tree
would use the same pointers to refer to the employee records. To find an
employee by ID or Social Security number, you would search the
appropriate tree and then follow the correct pointer to the actual data.

A second benefit of B+trees is that the nodes could hold more values in
the same space. That means you can increase the tree's degree and make
the tree shorter.

For example, suppose you build an order 2 B-tree so that each node has
between three and five children. To hold 1 million records, this tree would
need a height between log5(1,000,000) and log3(1,000,000), or between 9
and 13. To find an item in this tree, the program might need to search as
many as 13 nodes. It is unlikely that all the tree's records would fit into

382

memory all at once, so this might require 13 disk accesses, which would
be relatively slow.

Now suppose you store the same 1 million records in a B+tree using nodes
of the same size in kilobytes. Because the B+tree stores only key values in
the nodes, its nodes may be able to hold far more keys.

Suppose this B+tree can store up to 20 employee IDs in the same node
space. (The actual value may be much larger, depending on the size of the
employee records.) In that case, each node in the tree would have between
11 and 21 children, so the tree could store the same 1 million values with a
height between log21(1,000,000) and log11(1,000,000), or between 5 and 6.
To find an item, the program would need to search only six nodes at most
and perform six disk accesses at most, cutting the search time roughly in
half.

Note
Because B+trees provide fast search times with few disk accesses, relational databases
often use them to implement indices.

Summary
Like other sorted trees, balanced trees let a program store and find values
quickly. By keeping themselves balanced, trees such as AVL trees, 2-3
trees, B-trees, and B+trees ensure that they don't grow too tall and thin,
which would ruin their performance.

Adding and removing values in a balanced tree takes longer than it does in
an ordinary (nonbalanced) sorted tree. Those operations still take only
O(log N) time, however, so the theoretical run time is the same even if the
actual time is slightly longer. Spending that extra time lets the algorithm
guarantee that those operations don't grow to linear time.

Chapter 8 describes hash tables, which store and retrieve values even more
quickly than balanced trees do. However, hash tables don't allow some of
the same features, such as quickly displaying all the values in the data
structure in sorted order.

383

This chapter and the preceding one describe generic tree algorithms that
let you build and traverse trees and balanced trees. The next chapter
describes decision trees, which you can use to model and solve a wide
variety of problems.

Exercises
Asterisks indicate particularly difficult problems.

1. Draw a picture similar to Figure 11.4 showing how to rebalance
an AVL tree in the right-left case.
2. Draw a series of pictures showing an AVL tree as you add the
values 1 through 8 to it in numeric order.
3. Rebalance the AVL tree shown in Figure 11.17 after removing
node 33.

Figure 11.17 Remove value 33 from this AVL tree, and rebalance
it.

4. Draw a series of pictures similar to Figure 11.7 showing how to
rebalance the 2-3 tree shown in Figure 11.18 after you add the value
24 to it.

Figure 11.18 Add value 24 to this 2-3 tree, and rebalance it.

384

5. Draw a series of pictures similar to Figure 11.9 showing how to
remove the value 20 from the 2-3 tree shown in Figure 11.18.
6. Draw a series of pictures similar to Figure 11.13 showing how to
add the value 56 to the B-tree shown in Figure 11.19.

Figure 11.19 Add value 56 to this B-tree, and rebalance it.

7. Draw a series of pictures similar to the one shown in Figure
11.14 illustrating how to delete the value 49 from the B-tree you got
as the final solution in Exercise 6.
8. Draw a series of pictures that shows a B-tree of order 2 as you
add consecutive numbers 1, 2, 3, and so forth until the root node has
four children. How many values does the tree hold at that point?
9. Computers usually read data from a hard disk in blocks. Suppose
a computer has a 2 KB block size, and you want to build a B-tree or
a B+tree that stores customer records using four blocks per bucket.
Assume that each record occupies 1 KB, and you want the key
value stored by the tree to be the customer's name, which occupies
up to 100 bytes. Also assume that pointers between nodes (or to
data in a B+tree) take 8 bytes each. What is the largest order you
could use for a B-tree or a B+tree while using four-block buckets?
What would be the maximum height of the B-tree and B+tree if
they hold 10,000 records?

385

Chapter 12

Decision Trees

Chapters 10 and 11 described tree algorithms in general and balanced
trees in particular. They explained algorithms that you can use to build
and maintain trees, but they didn't describe any algorithms that use trees to
solve a particular problem.

This chapter describes decision trees, which you can use to model
situations where you can solve a problem by making a series of decisions.
Each branch in the tree represents a single choice. A leaf node represents a
complete set of decisions that produces a final solution. The goal is to find
the best possible set of choices or the best leaf node in the tree.

For example, suppose you want to divide a set of objects of various
weights into two piles that have the same total weight. You could model
this problem with a binary where the left branch at level K of the tree
corresponds to including the Kth object in the first pile and the right
branch corresponds to including the Kth object in the second pile. A
complete path through the tree corresponds to a complete assignment of
objects to the two piles. The goal is to find a path that gives an even
distribution of weight.

Decision trees are extremely useful and can model all sorts of situations
where you can use a series of steps to produce a solution. Unfortunately,
decision trees are often truly enormous. For example, the binary tree
described in the preceding paragraph representing the division of N
objects into two piles has 2N leaf nodes, so searching the entire tree may
be impossible. For example, a tree representing the division of 50 objects
has approximately 1.13 ×1015 leaf nodes. Even if you could examine 1
million of those nodes per second, it would take more than 2,100 years to
examine every node.

This chapter describes some different kinds of decision trees. It explains
techniques you can use to search these trees efficiently so that you can
find solutions to larger problems than you could find by using a
brute-force approach. It also explains heuristic methods you can use to
find approximate solutions to some problems when searching a tree
completely isn't feasible.

386

The following section starts the discussion of decision tree search
algorithms by covering a very specific kind of search: game tree searches.

Searching Game Trees
You can model games such as chess, checkers, Go, and tic-tac-toe
(naughts and crosses) with a game tree where each branch represents a
move by one of the players. If at some point in the game a player has 10
possible moves, the tree at that point has 10 possible branches. A complete
path through the tree corresponds to a complete game.

Like all decision trees, game trees grow extremely quickly. For example,
suppose a chess game lasts 40 moves (each player moves 20 times) and
has an average of about 30 possible moves per turn. The total number of
paths through the game tree is roughly 3040 ≈ 1.2×1059. Exhaustively
searching such a tree with a computer that could examine 1 billion
possible paths per second would take roughly 2.3×1044 years. (See
http://en.wikipedia.org/wiki/Shannon_number for a
discussion of the Shannon number, an estimate of the complexity of
chess.)

Tic-tac-toe is a more tractable problem, although the game tree is still
huge. In the first move, the X player initially has nine choices. In the
second move, player O has eight choices. At each move, the current player
has one fewer choice than the other player had in the previous move, so a
total of 9 × 8 × 7 × … × 1 = 9! = 362,880 paths are possible through the
game tree.

Some of those paths are illegal. For example, if X takes the top three
squares in the first five moves, the game is over, so any paths through the
tree that begin with X taking those squares don't go all the way to the
ninth level of the tree.

If you remove all the paths that end early, the game tree still contains
roughly a quarter million leaf nodes, so the tree is still fairly large.

The following sections describe algorithmic techniques you can use to
search a tic-tac-toe game tree. The discussion uses tic-tac-toe because that

387

http://en.wikipedia.org/wiki/Shannon_number

problem is reasonably small, but the same techniques apply to any similar
game, such as chess, checkers, or Go.

Minimax
To decide whether one move is preferable to another during a game, you
need to decide what value the different board positions have. For example,
if you can place an X in a particular square in a tic-tac-toe game, and
doing so lets you win, that board position has a high value. Conversely, if
placing an X in a different position allows O to win, that board position
has a low value.

Different games use different board position values that can depend on
many factors, such as whether you win, whether your opponent wins,
whether your pieces occupy certain parts of the board, and whether your
pieces can threaten certain positions. In tic-tac-toe, you can define four
board values:

• 4: The board position will end in a win for this player.
• 3: It's unclear whether the current board position will result in a

win, loss, or draw.
• 2: The board position will end in a draw.
• 1: The board position will end in a loss for this player.

Figure 12.1 shows board positions demonstrating each of these values. In
the upper-left board position, X will win in the next move. The board
position in the upper right gives a loss to X, because O will win no matter
where X goes in the next turn. The lower-left board position is uncertain,
assuming that you can search only a few levels into the game tree. Finally,
the board position in the lower right will end in a draw no matter where X
and O move on their final moves.

Figure 12.1 To pick a move, the program must assign values to board
positions.

388

There's an obvious relationship among these values. If player 1 wins,
player 2 loses. If a game ends in a draw for player 1, it ends in a draw for
player 2. If the board value is unknown for player 1, it's unclear for player
2 also.

For complicated games, the outcome of a particular board position is often
uncertain because the program cannot search the game tree thoroughly
enough to examine all the possible outcomes. In cases such as those, the
program must assign approximate values to different positions so that the
program can pick the best one.

389

On a reasonably fast computer, a tic-tac-toe program can search the entire
game tree, so the value 3 isn't really necessary. It is included here so that
you can see how to handle more complicated games. (You can get the
same effect in a tic-tac-toe program by not allowing the program to search
more than a few levels through the game tree.)

Note
Because you can search the entire tic-tac-toe game tree, it's fairly obvious that, starting
from the first move, X can force a win, O can force a win, or one of the players can force
a draw. If both players understand the game tree completely, there's really no game. The
only way there could be any doubt about the outcome is if one of the players makes a
mistake.

It's much less obvious that the same is true for more complicated games such as chess. If
the players had perfect knowledge of the game tree, one or the other could force a win or
draw with no doubt about the outcome. It's the fact that the game tree is too big to
understand completely that makes the game interesting.

Minimax is a game tree search strategy in which at each move you try to
minimize the maximum value your opponent can achieve. For example, if
you can make two moves, the first giving your opponent a win and the
second giving your opponent a loss, you should take the second move.

The following pseudocode shows the minimax algorithm at a high level:

// Find the best move for player1.
Minimax(Board: board_position, Move: best_move,
Value: best_value,

Player: player1, Player: player2, Integer: depth,
Integer: max_depth)

// See if we have exceeded our allowed depth of
recursion.

If (depth > max_depth) Then
// We have exceeded the maximum allowed

depth of recursion.
// The outcome for this board position is

unknown.
best_value = Unknown
Return

End If
// Find the move that gives player2 the lowest

value.
Value: lowest_value = Infinity
Move: lowest_move
For Each <possible test move>

<Update board_position to make the test move>
// Evaluate this board position.

390

If <this is a win, loss, or draw> Then
<Set lowest_value and lowest_move

appropriately>
Else

// Recursively try other future moves.
Value: test_value
Move: test_move

Minimax(board_position, test_move,
test_value,

player2, player1, depth, max_depth)
// See if we found a worse move for

player2.
If (test_value < lowest_value) Then

// This is an improvement. Save it.
lowest_value = test_value
lowest_move = test_move

End If
End If
<Restore board_position to unmake the test

move>
Next <possible test move>
// Save the best move.
best_move = lowest_move
// Convert board values for player2 into values

for player 1.
If (lowest_value == Win)

best_value = Loss
Else If (lowest_value == Loss)

best_value = Win
Else

...
End If

End Minimax

The algorithm starts by checking its depth of recursion. If it has exceeded
its maximum allowed depth of recursion, the algorithm cannot determine
the game's eventual outcome from this board position, so it sets
best_value to Unknown and returns.

To find the best move for player1, the algorithm must find the move
that gives player2 the worst board value. The algorithm creates
variables to keep track of the lowest board value found so far for
player2. It sets lowest_value equal to Infinity so that any
board value it finds replaces the initial value of Infinity.

391

Next the algorithm loops through all the moves player1 could make.
The Minimax algorithm makes a move and then recursively calls itself
to find the best move player2 could make after player1 makes that
test move.

After the recursive call returns, the algorithm compares the best result
player2 could obtain with the value saved in lowest_value. If the
test value is lower, the algorithm updates lowest_value and
lowest_move, so it knows that this move is preferable (to player1).

After it finishes examining all the possible test moves, the algorithm
knows which move player1 should make to give player2 the worst
possible board position. It saves that move and then converts the value of
the board for player2 into the value for player1. For example, if the
best board position makes player2 lose, it makes player1 win, and
vice versa.

In cases where player2 doesn't win or lose, it's a little less clear how to
convert from a player2 value to a player1 value. For tic-tac-toe, the
Unknown and Draw values are the same for both players. For example,
if a board position gives player2 a draw, it gives player1 a draw as
well.

For a more complicated game such as chess, a board position's value
might be a number between –100 and +100, where +100 represents a win
and –100 represents a loss. In that case, player2's value for a board
position might simply be the negative of player1's value for the same
board position.

One side effect of a simple minimax strategy that can sometimes be a
problem is that the program considers all solutions that have the same
board value equally desirable. To see why that can be a problem, suppose
a game is close enough to the end for the program to realize that it will
lose no matter what it does. In that case, it selects the first move it
considers while searching the game tree, because all moves give the same
result. That move may seem random or even foolish. For example, the
program might pick a move that gives its opponent a win in the next move
when a different move might have delayed the inevitable for two or three
more moves. In contrast, a human would probably pick a move that made

392

the game last longer, hoping the opponent will make a mistake or won't
realize that the game is as good as over.

Conversely, the program might find a way to win in six moves and pick
that over another strategy that would win in only two moves.

You can address these problems by favoring longer sequences of moves
that lead to losses or ties and shorter sequences of moves that lead to wins.

A simple minimax strategy is enough for a winning tic-tac-toe game, but
for more complicated games a program cannot search the entire game tree.
The following sections describe some strategies you can use to search
larger game trees.

Initial Moves and Responses
One way to reduce the size of the game tree is to store precomputed initial
moves and responses. If you search the game tree ahead of time to find the
best possible initial move, you can simply have the program make that
move if it has the first turn. Instead of spending a noticeable amount of
time searching for a first move, the program can move instantly.

The user moves next, so the computer doesn't need to move again until
two moves have been made. The size of the game tree at that point
depends on the particular moves made, but the tree will be much smaller
than the original game tree. For example, the entire tic-tac-toe game tree
contains 255,168 possible games. If X picks the upper-left square and O
picks the upper-middle square, the remaining game tree contains only
3,668 possible games. That may still be too many to enumerate by hand,
but it's a very small tree for a computer to search.

If the user moves first, the game tree also shrinks dramatically. If the user
picks the upper-left square for the first move, the remaining game tree
contains only 27,732 possible games. This is a lot more than the number
of games after the second move, but it's a lot smaller than the entire game
tree. With one additional change, you can make that number even smaller.

X has only nine choices for a first move. If you precalculate all the best
responses to those first moves, you can make the program simply look up

393

the appropriate response. Instead of searching a game tree containing
27,732 possible games, the program only needs to look up a response.

The user then moves again, so the program doesn't need to search the
game tree until three moves have been made—one by the user, one a
precalculated response, and another by the user. At that point the game
tree is much smaller. For example, if X takes the upper-left square, O
takes the upper-middle square, and X takes the upper-right square, the
remaining game tree contains only 592 possible games. That's actually
small enough that you could search the tree by hand if you wanted to.

In a more complicated game like chess, the game tree is infinitely large for
practical purposes, so trimming the top few levels of the tree won't help as
much. Skipping three moves might let you reduce the number of possible
games from around 1.2×1059 to roughly 4.5×1054, but that's still much too
big to search completely.

Using precalculated moves and responses does let a chess program make
its first few moves quickly, however. It also lets you spend lots of time
studying game openings so that you can invest extra time in planning
those moves. It also lets the program avoid openings that would give it a
big initial disadvantage.

Game Tree Heuristics
The game trees for all but the simplest games are much too big to search
completely, so in general there's no way to know if a particular move will
lead to a better solution than another. Although you can't always know for
certain that a particular move will be beneficial, sometimes you can use a
heuristic to indicate a move's value.

A heuristic (pronounced “hyoo-riss-tik”) is an algorithm that is likely to
produce a good result but that is not guaranteed to do so. Heuristics can't
help you search the entire game tree, but they can give you rules for
deciding which parts of the tree to avoid and which parts deserve special
attention.

One type of game heuristic is to look for patterns in the board position.
For example, one heuristic that some chess players use is “When ahead,
trade mercilessly.” This means if you have the advantage and you can

394

trade one of your pieces for a piece of equal value, you should do so. That
can make your relative advantage greater and makes the game tree smaller
so that it's easier to search in the future.

Other patterns that a chess program may look for include long sequences
of trades, castling moves, moves that threaten multiple pieces, discovered
check, moves that threaten the king or queen, promotion, en passant, and
so forth.

When a program recognizes one of these patterns, it can alter the strategy
it uses to search the game tree. For example, if the program sees a long
series of exchanges, it might exceed its normal maximum depth of
recursion to follow the exchange to the end to see if it will come out
ahead.

Another kind of heuristic assigns numeric values to locations on the board
and then modifies a board's total value based on the values of the locations
occupied or threatened by a player's pieces. For example, in tic-tac-toe
you might assign each square a number indicating the number of wins that
include it. For example, the upper-left corner would have the value 3,
because there are three ways to win by using that square. Figure 12.2
shows the square values for this heuristic.

Figure 12.2 The value of a tic-tac-toe square is the number of ways you
can use that square to win.

In chess, the center four squares occupy a critical location, so you might
give those squares more value. You also might want to assign different
values for squares occupied by a piece and squares threatened by a piece.

In most games, the values of the board locations would change over time.
For example, in the early stages of a chess game the central four squares
are important. At the very end of the game, however, it is whether a player

395

can achieve a checkmate that is important, not whether the player controls
those squares.

Note
Writing a Reversi game is an interesting exercise in game programming. The rules are
much simpler than those for chess, but the game tree is much larger than the tree for
tic-tac-toe, so you can't search it completely. The way pieces move is much simpler than
chess, so some patterns at least are easier to recognize. By using board location values
alone and some tree searching, you can build a reasonably strong Reversi program. For
more information on Reversi, including the rules and some notes about strategy, see
http://en.wikipedia.org/wiki/Reversi.

The later section “Decision Tree Heuristics” has more to say about
heuristics.

Searching General Decision
Trees
By modeling a game's moves as a tree, you convert the problem of picking
a good move into a search for the best path through the tree. Similarly,
you can model many other decision processes with a tree.

For example, consider the partition problem. You have a collection of
objects of a given weight (or cost or value or some other measure), and
you need to divide them into two groups that have the same total weight.
In some cases, this is easy. If you have four objects with weights 2, 4, 1,
and 1, it's obvious that you can put the large object in the first group and
the other objects in the second group. Similarly, if you have an even
number of objects that all have the same weight, you can simply place half
in one group and half in the other.

The problem is much harder if you have a large number of objects with
varying weights. In that case, you can model the process of deciding
which objects go in which group with a binary decision tree. Here the Kth
level of the tree represents a decision about the Kth object. A left branch
represents putting the object in the first group, and a right branch
represents putting the object in the second group.

396

http://en.wikipedia.org/wiki/Reversi

Figure 12.3 shows a complete decision tree for a partition problem with
four objects having weights 2, 4, 1, and 1. A path through the tree
represents a complete assignment of objects to the two groups. For
example, the path that follows the root's left branch and then the next three
right branches puts the first object (weight 2) in the first group and the
other objects (weights 4, 1, and 1) in the second group. The numbers
below the tree show the total weights of the two groups—in this case, 2
and 6.

Figure 12.3 You use a decision tree to model the partition problem.

Notice that only two leaf nodes in Figure 12.3 correspond to dividing the
objects' weights equally so that both groups have a total weight of 4. The
two solutions are basically the same solution with the objects in the two
groups switched.

Note
In fact, any solution you find will have a complementary solution with the two groups
switched. If you arbitrarily pick an item and place it in the first group before starting the
search, you can shorten the tree by one level. That eliminates solutions that have the
chosen item in the second group, but the tree will still contain solutions if there are any.

The decision tree shown in Figure 12.3 is fairly large even though it
represents a problem with only four objects. For larger problems, the
decision tree is enormous. For example, if you need to divide 50 objects
into two groups, the tree holds 250 leaf nodes, representing roughly
1.13×1015 possible solutions. If only a few of the arrangements produce an
even division of weight, it could be very difficult to find a good solution.

The following section explains the difference between two versions of
problems such as the partition problem — one that is very hard to solve,

397

and one that is extremely hard to solve. The sections after that explain
general methods you can use to search decision trees efficiently.

Optimization Problems
Problems such as the partition problem often come in two closely related
forms. The first form asks if a particular solution is possible. The second
form asks you to find the best solution possible.

For the partition problem, the first question asks whether you can divide
the objects into two groups with equal total weights. The second question
asks you to divide the objects into two groups with total weights as close
to equal as possible. The second question is called an optimization
problem because you can divide the objects in many ways, and you must
find the optimum division.

The optimization version of the problem is in some ways easier because it
allows approximate solutions. The other version of the problem requires a
strictly yes-or-no answer.

For example, suppose you need to divide into two groups 100 items with a
total combined weight of 400. If you search the decision tree and find an
exactly equal division, you know the answer to the first question is yes.
However, you might search the tree for hours or even days and never find
a division that is exactly equal. In that case, you cannot conclude that no
such division exists, only that you haven't found one.

In contrast, you can easily find solutions to the optimization version of the
problem. Those solutions may not be very good, but at least you can find
an answer that approximates the best possible solution. If you search the
decision tree long enough, usually you can find a solution that is
reasonably good, even if it isn't perfect. Of course, you might get lucky
and find a solution that divides the objects exactly evenly. If you don't find
such a solution, you cannot conclude that no such solution exists, but at
least you've found an approximate solution.

The following sections discuss methods you can use to search decision
trees. The first two describe methods you can use to solve either the
optimization or nonoptimization version of a problem. The final section,

398

on decision tree heuristics, works only on the optimization version of a
problem.

Exhaustive Search
The simplest way to search a decision tree is to visit all its nodes, looking
for the best solution. Note that you don't actually need to build a decision
tree to search it. You just need a way to keep track of where you are in the
tree. Many algorithms use recursion to pick branches at different levels of
the tree, and those recursive calls can keep track of their positions in the
tree.

For example, the following pseudocode shows a basic high-level
algorithm that exhaustively searches for a solution to the optimization
version of the partition problem:

StartExhaustiveSearch()
<Initialize best solution so it is replaced by

the first
test solution>
ExhaustiveSearch(0)

End StartExhaustiveSearch
ExhaustiveSearch(Integer: next_index)

// See if we are done.
If <next_index > max_index>

// We have assigned all items, so we are at
a leaf node.

<If the test solution is better than the
best solution found so far, save it>

Else
// We have not assigned all items, so we are

not at a leaf node.
<Assign item next_index to group 0>
ExhaustiveSearch(next_index + 1)
<Unassign item next_index to group 0>
<Assign item at next_index to group 1>
ExhaustiveSearch(next_index + 1)
<Unassign item next_index to group 1>

End If
End ExhaustiveSearch

The StartExhaustiveSearch method initializes the best solution
found so far. Normally it simply sets the value of that solution (which, in

399

the case of the partition problem, is the difference between the weights of
the two groups) to a very large number, so the first valid test solution will
be an improvement.

The StartExhaustiveSearch method then calls
ExhaustiveSearch to do all the real work.

The ExhaustiveSearch method takes as a parameter the index of
the item that it should assign to a group. This is the same as the depth of
recursion and the level in the decision tree.

If ExhaustiveSearch has assigned all the items to one group or
another, it compares the test solution to see if it is better than the best
solution found so far. If the test solution is an improvement, the method
saves it as the new best solution.

If ExhaustiveSearch has not yet assigned every item to a group, it
tries assigning item number next_index to group 0 and then calls
itself recursively to assign the remaining items. After the recursive call
returns, the method tries assigning item number next_index to group
1 and again calls itself recursively to assign the remaining items.

Eventually the recursive calls work their way down the tree until they
reach leaf nodes and update the best solution if appropriate.

This basic algorithm is fairly flexible and can be adapted for many
different problems.

For the partition problem, you can use an array to store the test solution
and the best solution found so far. The Kth entry in the array should be a 0
or 1 to indicate whether the Kth item is assigned to group 0 or group 1.
When the algorithm reaches a leaf node, it should add up the weights of
the items in each group and compare the difference to the best distance
found so far.

This algorithm is reasonably straightforward and works, but the fact that it
searches the entire decision tree makes it relatively slow. This method will
never be fast, but you can make one improvement that sometimes shortens
the search considerably.

If the algorithm ever reaches a leaf node where the test assignment makes
two groups with exactly equal total weights, it can stop without searching

400

the rest of the decision tree. If the tree contains many optimal solutions,
“short circuiting” a search in this way may let the algorithm find a
solution relatively quickly and skip searching much of the tree.

For example, in one test, while trying to divide 20 items into two groups
of equal weight, a full exhaustive search visited 2,097,150 nodes. When
allowed to stop the search after finding an optimal solution, the algorithm
visited only 4,098 nodes. The results vary greatly depending on the
specific weights.

Branch and Bound
Branch and bound is a technique for searching trees more effectively than
an exhaustive search does. After it moves down a branch in the tree, the
algorithm calculates the best possible outcome it can achieve down that
branch. If the best possible outcome won't be an improvement over the
best solution that has already been found, the algorithm abandons that
branch and doesn't continue down its subtree. Depending on the specific
data values, this can save a huge amount of time.

For example, suppose a partition problem algorithm keeps track of the
current total weight in each of the two groups it is building and the total
weight of the items that have not yet been assigned to a group. Now
suppose the algorithm has reached a point where group 0 has a total
weight of 100, group 1 has a total weight of 50, and the unassigned items
have a total weight of 20. Suppose also that the algorithm has already
found a solution in which the two groups have weights that differ by 20.

If the algorithm were to assign all the remaining items to group 1, group 0
would have a total weight of 100, and group 1 would have a total weight
of 70, a difference of 30. But the algorithm has already found a solution in
which the difference is only 20. The current test solution cannot be
improved enough to make it better than the current best solution. In that
case, the algorithm can stop working on its current solution without
assigning the rest of the items.

The following pseudocode shows a high-level branch and bound
algorithm for the optimization version of the partition problem:

401

StartBranchAndBound()
<Initialize best solution so it is replaced by

the first
test solution>
BranchAndBound(0)

End StartBranchAndBound
BranchAndBound(Integer: next_index)

// See if we are done.
If <next_index > max_index>

// We have assigned all items, so we are at
a leaf node.

<If the test solution is better than the
best solution, save it>

Else
// We have not assigned all items, so we are

not at a leaf node.
If <the test solution cannot be improved

enough
to beat the current best solution>

Then Return
<Assign item next_index to group 0>
BranchAndBound(next_index + 1)
<Unassign item next_index to group 0>
<Assign item next_index to group 1>
BranchAndBound(next_index + 1)
<Unassign item next_index to group 1>

End If
End BranchAndBound

This algorithm is similar to the exhaustive search algorithm, except that it
determines whether the test solution can be improved enough to beat the
current best solution, and it returns without recursion if it can't.

Branch and bound often trims many branches and their subtrees from the
decision tree, so it can be much faster than an exhaustive search.

For example, in one test, while trying to divide 20 items into two groups
of equal weight, a full exhaustive search visited 2,097,150 nodes, but a
branch and bound search visited only 774,650 nodes. When both
algorithms were allowed to use the “short circuit” described in the
preceding section to stop early, the exhaustive search visited 4,082 nodes,
but the branch and bound search visited only 298 nodes.

Branch and bound is a very useful technique, but I want to mention two
important facts before moving on to decision tree heuristics. First, branch

402

and bound searches any path through the tree that might lead to a solution
better than the best solution found so far. That means, like exhaustive
search, it always finds the optimal solution.

The second important fact is that, although branch and bound often avoids
searching large parts of the decision tree, decision trees can be enormous,
so branch and bound can still be fairly slow.

In one test, exhaustive search could search a decision tree for a 25-item
partition problem in roughly 6.6 seconds. Branch and bound could search
the same tree in roughly 2 seconds. That's a big improvement, but adding
a new item to the problem roughly doubles the tree's size. Adding one
more item made branch and bound take about 4 seconds, and adding a
second item made it take 7.9 seconds.

Branch and bound is much faster than exhaustive search, but it still isn't
fast enough to search a really big decision tree such as the 2.2 trillion node
tree representing the partition problem with 40 items.

Decision Tree Heuristics
Exhaustive search and branch and bound find the best possible solution.
Unfortunately, decision trees are so large that those algorithms work only
for relatively small problems.

To search larger trees, you need to use heuristics. A heuristic won't
necessarily find the best possible solution, but it may find a fairly good
solution—at least for the optimization version of a problem where
approximate solutions make sense.

The following sections describe four heuristics for use with the partition
problem.

Random Search
One of the simplest heuristics for searching a decision tree is to follow
random paths through it. At each node, simply pick a branch to follow
randomly. If you try enough random paths, you may stumble across a
reasonably good solution.

403

The following pseudocode shows how you might search a decision tree
randomly:

RandomSearch()
<Initialize best solution so it is replaced by

the first
test solution>
For i = 1 To num_trials

For index = 0 To max_index
<Randomly assign item number index to

group 0 or 1>
Next index
// See if this solution is an improvement.

<If the test solution is better than the
best solution, save it>

Next i
End RandomSearch

The algorithm starts by initializing the best solution as usual. It then enters
a loop that it executes for some number of trials.

For each trial, the algorithm loops over the indices of the items to be
partitioned and randomly assigns each item to either group 0 or group 1.

After it has randomly assigned every item to a group, the algorithm checks
the solution to see if it is better than the best solution found so far and, if it
is, saves the new solution.

If you are trying to partition N weights, each trial takes only N steps, so
this heuristic is extremely fast. That's good, because in a large decision
tree, the odds of your finding a good solution may be small, so you need
to run a lot of trials.

There are several ways you could pick the number of trials to run. You
could just run a fixed number of trials—say, 1,000. That will work for
small decision trees, but it might be better to pick a number that depends
on the tree's size.

Another strategy is to make the number of trials a polynomial function of
the number of weights being partitioned. For example, if you are
partitioning N weights, you could use num_trials = 3 × N3. The
function 3 × N3 grows quickly as N increases, but not nearly as quickly as
2N, so this still searches only a tiny fraction of the decision tree.

404

Another approach is to continue trying random paths until a certain
number of random paths in a row fail to find an improvement. Then the
algorithm won't stop as long as it's fairly easy to find improvements.

Perhaps the ideal approach is to let the algorithm run continuously,
updating its best solution when it finds improvements, until you stop it.
That way if you don't need a solution in a hurry, you can let the algorithm
run for hours or possibly even days.

Improving Paths
You can make random path selection more effective if you pick a random
path and then try to improve it. Start with a random path. Then randomly
pick an item, and switch it from the group it is in to the other group. If that
improves the partitioning, keep that change. If that change doesn't help,
undo it and try again. Repeat this process many times until you can't
improve the path any more.

This technique has many variations. For example, instead of swapping
random items, you could try swapping each item one at a time. You might
want to repeat that process several times, because swapping one item may
change the weights of the two groups so that it is now possible to swap
some other item that you could not swap before.

The following pseudocode shows this algorithm:

MakeImprovements()
<Initialize best solution so it is replaced by

the first
test solution>
For i = 1 To num_trials

// Make a random initial solution.
For index = 0 To max_index

<Randomly assign item number index to
group 0 or 1>

Next index
// Try to improve the solution.
Boolean: had_improvement = True
While (had_improvement)

// Assume this time we won't have any
improvement.

had_improvement = False
// Try swapping items.

405

For index = 0 To max_index
<Swap item number index into the

other group>
// See if this improves the test

solution.
If <this swap improves the test

solution> Then
had_improvement = True

Else
<Swap the item back>

End If
Next index

Loop
// See if this solution is an improvement.

<If the test solution is better than the
best solution, save it>

Next i
End MakeImprovements

The algorithm enters a loop to perform a certain number of trials. For each
trial, it picks a random test solution.

It then enters a loop that executes as long as the algorithm finds an
improvement for the random test solution. Each time through this
improvement loop, the algorithm tries swapping each item into the group
to which it isn't currently assigned. If that swap improves the test solution,
the algorithm keeps it. If that swap does not improve the test solution, the
algorithm undoes it.

After it can find no more improvements, the algorithm compares the test
solution to the best solution found so far and keeps it if it is better.

You can pick the number of trials to run in the same ways you can for the
random heuristic described in the previous section. You can let the
algorithm run a fixed number of trials—a number of trials that depends on
the number of weights being partitioned—until it finds no improved best
solution, or until you stop it.

Sometimes it is not possible to improve a path by making a single swap.
For example, suppose you are partitioning the weights 6, 5, 5, 5, 3, and 3.
Suppose also that you pick a random path that makes the two groups {6, 3,
3} and {5, 5, 5} so that the groups have total weights of 12 and 15.
Therefore, their total weights differ by 3.

406

Moving an item from the first group to the second only makes the
difference greater, so that won't improve the solution.

If you moved an item with weight 5 from the second group to the first, the
groups would be {6, 5, 3, 3} and {5, 5}, so their total weights would be 17
and 10—not an improvement.

No single swap can improve this solution. But if you move an item with
weight 3 from the first group to the second, and you also move an item
with weight 5 from the second group to the first, you get the groups {6, 5,
3} and {5, 5, 3}. The groups would then have weights 14 and 13, an
improvement over the original solution.

The single swap strategy described in this section won't find this
improvement, because it requires you to make two swaps at the same time.
Other improvement strategies try swapping two items at the same time. Of
course, there are also improvements you cannot make by swapping two
items that you can make by swapping three items, so that strategy doesn't
always work either. Still, swapping two items at a time isn't too difficult
and may result in some improvements, so it is worth implementing.

Simulated Annealing
Simulated annealing is an improved version of the simple improvement
heuristic described in the preceding section. Simulated annealing initially
makes large changes to a solution and then over time makes smaller and
smaller changes to try to improve the solution.

As mentioned in the preceding section, one problem with the original
improvement heuristic is that sometimes moving a single item from one
group to the other won't let you improve the solution, but moving two
items at the same time might. Even that method has limits. There may be
cases where moving two items at the same time won't get you an
improvement but moving three will.

Simulated annealing addresses this issue by allowing the algorithm to
make large changes to the initial solution. Over time the size of the
allowed changes is reduced. The algorithm tries smaller and smaller
changes until finally it reaches a test solution that it compares to the best
solution found so far.

407

Note
Simulated annealing is modeled on the way crystals grow in a cooling metal or mineral.
When the material is very hot, the molecules move quickly, so their arrangement changes
a lot. As the material cools, the molecular motion decreases and structures form, but
there's still enough energy to allow some structures to merge with others if that forms a
more stable relationship. Eventually the material cools enough that there isn't enough
energy to disrupt the molecular structure. If the cooling happened slowly enough, the
material should contain only a few very large crystals representing a very stable
arrangement of molecules.

Another way to implement simulated annealing is to consider random
changes in any complexity. If a change results in an improvement, the
algorithm accepts it and continues. If a change doesn't result in an
improvement, the algorithm accepts it anyway with a certain probability.
Over time that probability decreases, so initially the algorithm may make
the solution worse so that it can later get to a better end result. Eventually
the probability of accepting a nonimproving change decreases until the
algorithm accepts only changes that improve the solution.

Hill Climbing
Imagine you're a lost hiker. It's nighttime, so you can't see very far, and
you need to find the top of the mountain. One strategy you could use
would be to always move up the steepest slope. If the mountain has a
reasonably smooth shape with no small peaks or hills on its side, you'll
eventually reach the top. If there is a smaller hill on the side of the
mountain, however, you may become stuck there and not know which
way to go until morning.

In a hill-climbing heuristic, the algorithm always makes a choice that
moves it closer to a better solution. For the partitioning problem, that
means placing the next item in the group that minimizes the difference in
the groups' weights. That's equivalent to adding the item to the group that
has the smaller total weight.

For example, suppose the items have weights 3, 4, 1, 5, and 6. The first
item can go in either group, so suppose it's placed in the first group.

Now the algorithm considers the second item, with weight 4. If the
algorithm places the second item in the first group, the groups are {3, 4}
and {}, so the difference between their total weights is 7. If the algorithm
places the second item in the second group, the groups are {3} and {4}, so

408

the difference between their total weights is 1. To make the best choice at
the time, the algorithm places the item in the second group.

Next the algorithm considers the third item, with weight 1. If the
algorithm places this item in the first group, the groups are {3, 1} and {4},
so the difference between their total weights is 0. If the algorithm places
the item in the second group, the groups are {3} and {4, 1}, so the
difference between their total weights is 2. To make the best choice at the
time, the algorithm places the item in the first group.

The algorithm continues in this manner until it has placed all the items in a
group.

The following pseudocode shows the hill-climbing algorithm:

HillClimbing()
For index = 0 To max_index

Integer: difference_0 =
<difference in group weights if item

number index is in
group 0>

Integer: difference_1 =
<difference in group weights if item

number index is in
group 1>

If (difference_0 < difference_1)
<Place item number index in group 0>

Else
<Place item number index in group 1>

End If
Next index

End HillClimbing

If you are partitioning N weights, this algorithm performs only N steps, so
it is extremely fast. In a large decision tree, it is unlikely to find the best
possible solution, but sometimes it finds a reasonable solution.

Hill climbing is so fast that you could spend some extra time improving its
solution. For example, you could try using the techniques described in the
preceding section to improve the initial solution.

409

Sorted Hill Climbing
One easy way to improve the hill-climbing algorithm is to sort the weights
and then consider them in order of decreasing size. The idea is that the
early stages of the algorithm place the heavier objects in groups and then
the later stages use the smaller items to balance the groups.

The following pseudocode shows this algorithm:

SortedHillClimbing()
<Sort the items in order of decreasing weight>
For index = 0 To max_index

Integer: difference_0 =
<difference in group weights if item

number index is in
group 0>

Integer: difference_1 =
<difference in group weights if item

number index is in
group 1>

If (difference_0 < difference_1)
<Place item number index in group 0>

Else
<Place item number index in group 1>

End If
Next index

End SortedHillClimbing

This is the same as the hill-climbing algorithm described in the preceding
section, with the addition of the sorting step.

This may seem like a small modification, but sorted hill climbing often
finds a better solution than hill climbing.

If you are partitioning N weights, the sorted hill-climbing algorithm takes
O(N log N) steps to sort the weights and then N steps to generate its
solution. The sorting step makes it slower than the normal hill-climbing
algorithm, but it's still extremely fast.

In fact, sorted hill climbing is so fast that you could spend some extra time
improving its solution, just as you can improve the normal hill-climbing
algorithm's solution.

410

Other Decision Tree Problems
This chapter has focused on the partition problem, but you can use
decision trees to model many other difficult problems. The following
sections describe some algorithmic problems you can study with decision
trees.

Many of the problems come in pairs—one problem that asks whether
something is possible, and another that asks for an optimal solution.

Generalized Partition Problem
In the partition problem, the goal is to divide a set of objects into two
groups with equal weight. In the generalized partition problem, the goal is
to divide a set of objects into K groups with equal weight.

The decision tree for this problem has K branches at each node
corresponding to putting the item at that level of the tree into one of the K
different partitions. If you have N items, the tree is N levels tall, so it
contains KN leaf nodes.

The same heuristics that work for the partition problem also work for the
generalized partition problem, although they are more complicated. For
example, a random improvement for the partition problem might try
moving an object from one group to the other. In the generalized partition
problem, it would need to consider moving the object from one group into
any of the other K – 1 groups.

The optimization version of the generalized partition problem asks you to
find a way to divide the items into K groups, but you need to decide how
to judge the best solution. For example, you might try to minimize the
sum of the absolute value of the differences between the groups' weights
and the average group weight. For example, suppose you have four groups
with total weights 15, 18, 22, and 25. The average of those weights is 20,
so the absolute values of the differences between the group weights and
the average are 5, 2, 2, and 5, making the sum of those differences 14.

Alternatively, you might want to minimize the sum of the squares of the
differences between the group's weights and the average. For the
preceding example, the squared differences would be 25, 4, 4, and 25, so

411

the sum would be 58. This measurement would favor solutions where all
the group weights are close to the average.

Subset Sum
In the subset sum problem, you have a set of numbers, and you want to
determine whether there is a subset whose sum is 0. For example, consider
the set {–11, –7, –5, –3, 4, 6, 9, 12, 14}. This set has the zero-sum subset
{–7, –5, –3, 6, 9}. A related optimization version of the problem would
ask you to find a subset with a sum close to 0.

You can model this problem with a decision tree similar to the one you
use for the partition problem. Essentially, you need to divide the items into
two groups—one that holds objects to go into the zero-sum set, and one
that holds objects that will be discarded.

Like the decision tree for the partition problem, if you are working with N
items, this tree is N levels, and each node has two branches—one
corresponding to adding an item to the zero-sum set, and one
corresponding to discarding the item, so the tree has 2N leaf nodes.

You can use branch and bound and heuristics on the optimization version
of this problem but not on the nonoptimization version.

Bin Packing
In the bin-packing problem, you have a set of items of different weights
and a series of bins that have the same capacity. (In a generalized version,
the bins could have different capacities.) The goal is to pack the items into
the bins so that you use as few bins as possible.

You could model this as a decision tree in which each branch corresponds
to putting an item in a particular bin. If you have N items and K bins, the
tree would have N levels with K branches at each node, so the tree would
have KN leaf nodes.

This is an optimization problem. You can use branch and bound and
heuristics to try to find good solutions.

A related problem is to find a way to pack the items into bins so that you
use only <total weight of all items> ÷ <bin capacity> where means to

412

round up. For example, if the total weight of the items is 115, and the bins
have a capacity of 20, can you find a way to pack the items into only six
bins? You can use heuristics to try to find a good solution, but if you don't
find a solution, that doesn't mean one doesn't exist.

Cutting Stock
The cutting stock problem is basically a two-dimensional version of the
bin-packing problem. In this problem, you need to cut out a collection of
shapes (usually rectangles) from a set of boards, pieces of cloth, or other
stock. The goal is to use as few pieces of stock as possible.

Modeling this problem as a decision tree is much harder than it is for the
bin-packing problem, because how you position shapes on a piece of stock
changes the number of pieces you can fit on that piece. That means
assigning a shape to a piece of stock isn't enough. You must also assign a
position to the shape within the stock. If you have K pieces of stock, there
are more than K places where you can position a shape, so a node may
have more than K branches.

If you make some simplifying assumptions, you can still use a decision
tree for this problem. For example, if the pieces of stock are 36 inches by
72 inches, and you allow a shape to be positioned at only an (X, Y)
position where X and Y are integer numbers of inches, there are 36 × 72 =
2,592 positions where you can place a shape on a particular piece of stock.
That means each node in the tree would have K × 2,592 branches.

Fortunately, many of those branches are easy to trim from the tree. For
example, some branches place a shape so close to an edge of the stock that
it won't fit. Other branches make a shape overlap with another shape. If
you avoid following those kinds of branches, you can search the tree to
find at least some solution.

The tree will still be extremely large, however, so you'll need to use
heuristics to find reasonable solutions.

Also note that the simplifying assumptions may exclude some solutions.
For example, suppose you want to fit five 7-inch-by-7-inch squares on
20-inch-by-20-inch sheets of stock. If you place the squares so that their
edges are parallel to the sides of the stock, you can fit only two squares
vertically and horizontally on each piece of stock, as shown on the left in

413

Figure 12.4. If you rotate one of the squares, however, you can fit all five
squares on a single piece of stock, as shown on the right.

Figure 12.4 If you don't allow rotation, some solutions are impossible.

A common variation of the cutting stock problem involves a single very
long piece of stock, such as a roll of paper. The goal is to minimize the
number of linear inches of stock used.

Knapsack
In the knapsack problem, you are given a set of objects that each have a
weight and a value, and a knapsack that holds a certain amount of weight.
Your goal is to find the items with the maximum value that will fit in the
knapsack. For example, you might fill the knapsack with a few heavy
items that have high values, or you may be better off filling it with lots of
lighter items that have lower values.

The knapsack problem is similar to the partition problem, in which you try
to divide the items into two groups—one with items to go into the
knapsack, and one with items to remain outside. In the knapsack problem,
the goal is to make the first group as valuable as possible and also to
ensure that the first group fits inside the knapsack.

Because the knapsack's basic structure is similar to that of the partition
problem, you can use a similar decision tree. The main differences are that
not all assignments are legal due to the weight constraint, and the goal is
different.

414

The same techniques that work well with the partition problem also work
with the knapsack problem. Random solutions, improved solutions, and
simulated annealing work in much the same way they do for the partition
problem.

Branch and bound could stop examining a partial solution if its total
weight already exceeded the knapsack's capacity.

Branch and bound could also stop if the total value of the unconsidered
items was insufficient to raise the current solution's value enough to beat
the best solution found so far. For example, suppose you've found a
solution worth $100 and you're examining a partial solution that has a
value of $50. If the total value of all the remaining items is only $20, you
cannot improve this solution enough to beat the current best solution.

At each step, a hill-climbing heuristic would add the highest-value item
that could still fit in the knapsack to the solution.

A sorted hill-climbing heuristic might consider the items in order of
decreasing weight so that later selections could fill in any remaining room
in the knapsack.

Probably a better sorted hill-climbing heuristic would consider the items
in order of decreasing value-to-weight ratio, so it would first consider the
items worth the most dollars per pound (or whatever the units are).

The decision tree for a knapsack problem with N items contains 2N leaf
nodes, so this isn't an easy problem, but at least you can try some
heuristics.

Traveling Salesman Problem (TSP)
Suppose you're a traveling salesperson who must visit certain locations on
a map and then return to your starting point. The traveling salesman
problem is to visit those locations in an order that minimizes the total
distance covered.

Note
TSP has important practical implications for businesses that have fleets of vehicles. For
example, the U.S. Postal Service's letter carriers and truck drivers travel 1.3 billion miles
per year. If better routing can shave even a fraction of a percent off that total, the savings
in fuel and wear on the vehicles could be huge.

415

To model this problem as a decision tree, the Kth level of the tree
corresponds to selecting an item to visit Kth in the completed tour. If there
are N locations to visit, the root node has N branches, corresponding to
visiting each of the locations first. The nodes at the second level of the
tree have N – 1 branches, corresponding to visiting any of the locations
not yet visited next. The nodes at the third level of the tree have N – 2
branches and so on to the leaves, which have no branches. The total
number of leaves in the tree would be N × (N – 1) × (N – 2) × … × 1 = N!.

This tree is so big that you need to use heuristics to find good solutions.

Satisfiability (SAT)
Given a logical statement such as “A and B or (A and not C),” the
satisfiability problem is to decide whether there is a way to assign the
values true and false to the variables A, B, and C to make the statement
true. A related problem asks you to find such an assignment.

You can model this problem with a binary decision tree in which the left
and right branches represent setting a variable to true or false. Each leaf
node represents an assignment of values to all the variables and
determines whether the statement as a whole is true or false.

This problem is harder than the partition problem because there are no
approximate solutions. Any leaf node makes the statement either true or
false. The statement cannot be “approximately true.” (However, if you use
probabilistic logic, in which variables have probabilities of truth rather
than being definitely true or false, you might be able to find a way to make
the statement probably true.)

A random search of the tree may find a solution, but if you don't find a
solution, you cannot conclude that there isn't one.

You can try to improve random solutions. But making changes makes the
statement either true or not, so there's no way you can improve the
solution gradually. That means you cannot really use the path
improvement strategy described earlier. Because you can't improve the
solution gradually, you also can't use simulated annealing or hill climbing.
In general, you also can't tell if a partial assignment makes the statement
false, so you can't use branch and bound either.

416

With exhaustive and random search as your only real options, you can
solve satisfiability for only relatively small problems.

Note
You may wonder why anyone would want to solve SAT. It turns out that you can reduce
many other problems to an instance of SAT. For an instance of some other problem, such
as the partition problem, you can build a logical expression such that a solution to SAT
corresponds to a solution to the partition problem. In other words, if you can solve one,
you can solve the other. By proving that different problems can be reduced to SAT, you
show that they are as hard as SAT. So the fact that there is no known easy way to solve
SAT means that there is no known easy way to solve the other problems.

SAT is related to the 3SAT 3-satisfiability problem. In 3SAT the logical
statement consists of terms combined with the And operator. Each term
involves three variables or their negations combined with Or. For
example, the statement “(A or B or not C) and (B or not A or D)” is in the
3SAT format.

With some work that is far outside the scope of this book, you can show
that SAT and 3SAT are equivalent, so they are equally difficult to solve.

Note that the same kind of decision tree will solve either version of the
problem.

Summary
Decision trees are a powerful tool for approaching complex problems, but
they are not the best approach for every problem. For example, you could
model the eight queens problem described in Chapter 9 with a decision
tree that was eight levels tall and that had 64 branches per node, giving a
total of 648 ≈ 2.8 × 1014 leaf nodes. By taking advantage of the problem's
structure, however, you can eliminate most of the tree's branches without
exploring them and explore only 113 board positions. Thinking about the
problem as a general decision tree may be a mistake, because it might
make you miss the simplifications that let you solve the problem
efficiently.

Still, decision trees are a powerful technique that you should at least
consider if you don't know of a better approach to a problem.

417

This chapter and the previous two described trees and algorithms that
build, maintain, and search trees. The next two chapters discuss networks.
Like trees, networks are linked data structures. Unlike trees, networks are
not hierarchical, so they can contain loops. That makes them a bit more
complicated than trees, but it also lets them model and solve some
interesting problems that trees can't.

Exercises
Asterisks indicate particularly difficult problems.

1. Write a program that exhaustively searches the tic-tac-toe game
tree and counts the number of times X wins, O wins, and the game
ends in a tie. What are those counts, and what is the total number of
games possible? Do the numbers give an advantage to one player or
the other?
2. Modify the programs you wrote for Exercise 1 so that the user
can place one or more initial pieces on a tic-tac-toe board and then
count the number of possible X wins, O wins, and ties from that
point. How many total games are possible starting from each of the
nine initial moves by X? (Do you need to calculate all nine?)
3. Write a program that lets the player play tic-tac-toe against the
computer. Let the player be either X or O. Provide three skill levels:
Random (the computer moves randomly), Beginner (the computer
uses minimax with only three levels of recursion), and Expert (the
computer uses a full minimax search).
4. Write a program that uses exhaustive search to solve the
optimizing partition problem. Allow the user to create a list of
random weights between bounds set by the user. Also allow the user
to check a box indicating whether the algorithm is allowed to short
circuit and stop early.
5. Extend the program you wrote for Exercise 4 so that you can
perform branch and bound with and without short circuits.
6. *Use the program you wrote for Exercise 4 to solve the partition
problem using exhaustive search and branch and bound with the
values 1 through 5, 1 through 6, 1 through 7, and so on up to 1
through 25. Then graph the number of nodes visited versus the

418

number of weights being partitioned for the two methods. Finally,
on a separate graph, show the logarithm of the number of nodes
visited versus the number of weights for the results. What can you
conclude about the number of nodes visited for the two methods?
7. Extend the program you wrote for Exercise 5 to use a random
heuristic to find solutions.
8. Extend the program you wrote for Exercise 7 to use an
improvement heuristic to find solutions.
9. What groups would a partitioning program find if it used the
hill-climbing heuristic for the weights 7, 9, 7, 6, 7, 7, 5, 7, 5, and 6?
What are the groups' total weights and the difference between the
total weights?
10. Extend the program you wrote for Exercise 8 to use a
hill-climbing heuristic to find solutions.
11. Repeat Exercise 9 using a sorted hill-climbing heuristic.
12. Repeat Exercise 9 using exhaustive search.
13. Extend the program you wrote for Exercise 10 to use a sorted
hill-climbing heuristic to find solutions.

419

Chapter 13

Basic Network Algorithms

Chapters 10 through 12 explained trees. This chapter describes a related
data structure: the network. Like a tree, a network contains nodes that are
connected by links. Unlike the nodes in a tree, the nodes in a network
don't necessarily have a hierarchical relationship. In particular, the links in
a network may create cycles, so a path that follows the links could loop
back to its starting position.

This chapter explains networks and some basic network algorithms, such
as detecting cycles, finding shortest paths, and finding a tree that is part of
the network that includes every node.

Network Terminology
Network terminology isn't quite as complicated as tree terminology,
because it doesn't borrow as many terms from genealogy, but it's still
worth taking a few minutes to review the relevant terms.

A network consists of a set of nodes connected by links. (Sometimes,
particularly when you're working on mathematical algorithms and
theorems, a network is called a graph, nodes are called vertices, and links
are called edges.) If node A and node B are directly connected by a link,
they are adjacent and are called neighbors.

Unlike the case with a tree, a network has no root node, although there
may be particular nodes of interest, depending on the network. For
example, a transportation network might contain special hub nodes where
buses, trains, ferries, or other vehicles start and end their routes.

A link can be undirected (you can traverse it in either direction) or
directed (you can traverse it in one direction only). A network is called a
directed or undirected network depending on what kinds of links it
contains.

A path is an alternating sequence of nodes and links through the network
from one node to another. Suppose there is only one link from any node to

420

any adjacent node (in other words, there aren't two links from node A to
node B). In that case, you can specify a path by listing either the nodes it
visits or the links it uses.

A cycle or loop is a path that returns to its starting point.

As is the case with trees, the number of links that leave a node is called
the node's degree. The degree of the network is the largest degree of any
of the nodes in it. In a directed network, a node's in-degree and out-degree
are the numbers of links entering and leaving the node.

Nodes and links often have data associated with them. For example, nodes
often have names, ID numbers, or physical locations such as a latitude and
longitude. Links often have associated costs or weights, such as the time it
takes to drive across a link in a street network. They may also have
maximum capacities, such as the maximum amount of current you can
send over a wire in a circuit network or the maximum number of cars that
can cross a link in a street network per unit of time.

A reachable node is a node that you can reach from a given node by
following links. Depending on the network, you may be unable to reach
every node from every other node.

In a directed network, if node B is reachable from node A, nodes A and B
are said to be connected. Note that if node A is connected to node B, and
node B is connected to node C, node A must be connected to node C.

A connected component of a network is a set of all the nodes that are
mutually connected. The network is called connected if all its nodes are
connected to each other.

If a directed network's nodes are all connected, the network is called
strongly connected. If a directed network is connected if you replace its
directed links with undirected links, the network is weakly connected.

Figure 13.1 shows some of the parts of a small directed network. Arrows
represent the links, and the arrowheads indicate the links' directions.
Double-headed arrows represent pairs of links that go in opposite
directions.

421

The numbers on the links are the links' costs. This example assumes that
opposite links have the same costs. That need not be the case, but then
drawing the network is harder.

The network shown in Figure 13.1 is strongly connected because you can
find a path using links from any node to any other node.

Figure 13.1 In a directed network, arrows show the directions of links.

Notice that paths between nodes may not be unique. For example, A-E-F
and A-B-C-F are both paths from node A to node F.

Table 13.1 summarizes these tree terms to make remembering them a bit
easier.

Table 13.1 Summary of Network Terminology
Term Meaning

adjacent If two nodes are connected by a link, they are adjacent.

capacity The maximum amount of something that can move through a node
or link, such as the maximum current that can flow through a wire in
an electrical network or the maximum number of cars that can move
through a link in a street network per unit of time.

422

connected In an undirected network, nodes A and B are connected if node B is
reachable from node A and vice versa. An undirected network is
connected if every node is reachable from every other node.

connected
component

A set of nodes that are mutually connected.

cost A link may have an associated cost. Less commonly, a node may
have a cost.

cycle A path that returns to its starting point.

degree In an undirected network, the number of links leaving a node. In a
directed network, a node has an in-degree and an out-degree.

directed A link is directed if you can traverse it in only one direction. A
network is directed if it contains directed links.

edge Link.

graph Network.

in-degree In a directed network, the number of links entering a node.

link An object in a network that represents a relationship between two
nodes. Links can be directed or undirected.

loop Cycle.

neighbor Two nodes are neighbors if they are adjacent.

node An object in a network that represents a point-like location. Nodes
are connected by links.

out-degree In a directed network, the number of links leaving a node.

path An alternating series of nodes and links that leads from one node to
another. If there is only one link from any node to an adjacent node,
you can specify a path by listing the nodes or links it includes.

reachable
node

Node B is reachable from node A if there is a path from node A to
node B.

strongly
connected

A directed network is strongly connected if every node is reachable
from every other node.

undirected A link is undirected if you can traverse it only in either direction. A
network is undirected if it contains only undirected links.

vertex Node.

423

weakly
connected

A directed network is weakly connected if every node is reachable
from every other node when you replace the directed links with
undirected links.

weight Cost.

Network Representations
It's fairly easy to use objects to represent a network. You can represent
nodes with a node class.

How you represent links depends on how you will use them. For example,
if you are building a directed network, you can make the links be
references stored inside the node class. If the links should have costs or
other data, you can also add that to the node class. The following
pseudocode shows a simple node class for this situation:

Class Node
String: Name
List<Node>: Neighbors
List<Integer>: Costs

End Node

This representation works for simple problems, but often it's useful to
make a class to represent the links like objects. For example, some
algorithms, such as the minimal spanning tree algorithm described later in
this chapter, build lists of links. If the links are objects, it's easy to place
specific links in a list. If the links are represented by references stored in
the node class, it's harder to put them in lists.

The following pseudocode shows node and link classes that store links as
separate objects for an undirected network:

Class Node
String: Name
List<Link>: Links

End Node
Class Link

Integer: Cost
Node: Nodes[2]

End Link

424

Here the Link class contains an array of two Node objects representing
the nodes it connects.

In an undirected network, a Link object represents a link between two
nodes, and the ordering of the nodes doesn't matter. If a link connects
node A and node B, the Link object appears in the Neighbors list for
both nodes, so you can follow it in either direction.

Because the order of the nodes in the link's Nodes array doesn't matter,
an algorithm trying to find a neighbor must compare the current node to
the link's Nodes to see which one is the neighbor. For example, if an
algorithm is trying to find the neighbors of node A, it must look at a link's
Nodes array to see which entry is node A and which entry is the
neighbor.

In a directed network, the link class only really needs to know its
destination node. The following pseudocode shows classes for this
situation:

Class Node
String: Name
List<Link>: Links

End Node
Class Link

Integer: Cost
Node: ToNode

End Link

However, it may still be handy to make the link class contain references to
both of its nodes. For example, if the network's nodes have spatial
locations, and the links have references to their source and destination
nodes, it is easier for the links to draw themselves. If the links store only
references to their destination nodes, the node objects must pass extra
information to a link to let it draw itself.

If you use a link class that uses the Nodes array, you can store the node's
source node in the array's first entry and its destination node in the array's
second entry.

Note
The sample programs that are available for download on this book's website use the
earlier representation, in which the link class has a Nodes property that holds references
to both the link's source and destination nodes.

425

The best way to represent a network in a file depends on the tools
available in your programming environment. For example, even though
XML is a hierarchical language and works most naturally with
hierarchical data structures, some XML libraries can save and load
network data.

To keep things simple, the examples that are available for download use a
simple text file structure. The file begins with the number of nodes in the
network. After that, the file contains one line of text per node.

Each node's line contains the node's name and its x- and y-coordinates.
Following that is a series of entries for the node's links. Each link's entry
includes the index of the destination node, the link's cost, and the link's
capacity.

The following lines show the format:

number_of_nodes
name,x,y,to_node,cost,capacity,to_node,cost,capacity,...
name,x,y,to_node,cost,capacity,to_node,cost,capacity,...
name,x,y,to_node,cost,capacity,to_node,cost,capacity,...
...

For example, the following is a file representing the network shown in
Figure 13.2:

3
A,85,41,1,87,1,2,110,4
B,138,110,2,99,4
C,44,144,1,99,4

The file begins with the number of nodes, 3. It then contains lines
representing each node.

The line for node A begins with its name, A. The next two entries give the
node's x- and y-coordinates, so this node is at location (85, 41).

The line then contains a sequence of sets of values describing links. The
first set of values means the first link leads to node B (index 1), has a cost
of 87, and has a capacity of 1. The second set of values means the second
link leads to node C (index 2), has a cost of 110, and has a capacity of 4.

The file's other lines define nodes B and C and their links.

426

Figure 13.2 This network contains four links—two connecting node A to
nodes B and C, and two connecting node B to node C.

Note
Before you can program network algorithms, you need to be able to build networks. You
can write code that creates a network one node and link at a time, but it's helpful to have a
program that you can use to make test networks. See Exercise 1 for instructions on what
the program needs to do.

Traversals
Many algorithms traverse a network in some way. For example, the
spanning tree and shortest-path algorithms all visit the nodes in a tree.

The following sections describe several algorithms that use different kinds
of traversals to solve network problems.

427

Depth-first Traversal
The preorder traversal algorithm for trees described in Chapter 10 almost
works for networks. The following pseudocode shows that algorithm
modified slightly to use a network node class:

Traverse()
<Process node>
For Each link In Links

link.Nodes[1].Traverse
Next link

End Traverse

The method first processes the current node. It then loops through the
node's links and recursively calls itself to process each link's destination
node.

This would work except for one serious problem. Unlike trees, networks
are not hierarchical, so they may contain cycles. If a network contains a
cycle, this algorithm will end up in an infinite loop, recursively following
the cycle.

One solution to this problem is to give the algorithm a way to tell if it has
visited a node before. An easy way to do that is to add a Visited
property to the node class. The following pseudocode shows the algorithm
rewritten to use a Visited property:

Traverse()
<Process node>
Visited = True
For Each link In Links

If (Not link.Nodes[1].Visited) Then
link.Nodes[1].Traverse

End If
Next link

End Traverse

Now the algorithm visits the current node and sets its Visited property
to True. It then loops through the node's links. If the Visited property
of the link's destination node is False, it recursively calls itself to
process that destination node.

This version works but may lead to very deep levels of recursion. If a
network contains N nodes, the algorithm might call itself N times. If N is

428

large, that could exhaust the program's stack space and make the program
crash.

You can avoid this problem if you use the techniques described in Chapter
9 to remove the recursion. The following pseudocode shows a version that
uses a stack instead of recursion:

DepthFirstTraverse(Node: start_node)
// Visit this node.
start_node.Visited = True
// Make a stack and put the start node in it.
Stack(Of Node): stack
stack.Push(start_node)
// Repeat as long as the stack isn't empty.
While <stack isn't empty>

// Get the next node from the stack.
Node node = stack.Pop()
// Process the node's links.
For Each link In node.Links

// Use the link only if the destination
// node hasn't been visited.
If (Not link.Nodes[1].Visited) Then

// Mark the node as visited.
link.Nodes[1].Visited = True
// Push the node onto the stack.
stack.Push(link.Nodes[1])

End If
Next link

Loop // Continue processing the stack until empty
End DepthFirstTraverse

This algorithm visits the start node and pushes it onto a stack. Then, as
long as the stack isn't empty, it pops the next node off the stack and
processes it.

To process a node, the algorithm examines the node's links. If a link's
destination node has not been visited, the algorithm marks it as visited and
adds it to the stack for later processing.

Because of how this algorithm pushes nodes onto a stack, it traverses the
network in a depth-first order. To see why, suppose the algorithm starts at
node A and that A has neighbors B1, B2, and so on. When the algorithm
processes node A, it pushes the neighbors onto the stack. Later, when it
processes neighbor B1, it pushes that node's neighbors C1, C2, and so on
onto the stack. Because the stack returns items in last-in-first-out order,

429

the algorithm processes the Ci nodes before it processes the Bi nodes. As it
continues, the algorithm moves quickly through the network, traveling
long distances away from the start node A before it gets back to
processing that node's closer neighbors.

Because the traversal visits nodes far from the root node before it visits all
the ones that are closer to the root, this is called a depth-first traversal.

Figure 13.3 shows a depth-first traversal with the nodes labeled according
to the order in which they were traversed.

Figure 13.3 In a depth-first traversal, some nodes far from the start node
are visited before some nodes close to the start node.

With some work, you can figure out how the nodes were added to the
traversal. The algorithm started with the node labeled 0. It then added the
nodes labeled 1, 2, and 3 to its stack.

Because node 3 was added to the stack last, it was processed next, and the
algorithm added nodes 4 and 5 to the stack. Because node 5 was added

430

last, the algorithm processed it next and added nodes 6, 7, 8, and 9 to the
stack.

If you like, you can continue studying Figure 13.3 to figure out why the
algorithm visited the nodes in the order it did. But at this point you should
be able to see how some nodes far from the start node are processed
before some of the nodes closer to the start node.

Breadth-first Traversal
In some algorithms, it is convenient to traverse nodes closer to the start
node before the nodes that are farther away. The previous algorithm
visited some nodes far from the start node before it visited some closer
nodes because it used a stack to process the nodes. If you use a queue
instead of a stack, the nodes are processed in first-in-first-out order, and
the nodes closer to the start node are processed first.

Because this algorithm visits all of a node's neighbors before it visits any
other nodes, this is called a breadth-first search. Figure 13.4 shows a
breadth-first traversal with the nodes labeled according to the order in
which they were traversed.

Figure 13.4 In a breadth-first traversal, nodes close to the starting node
are visited before those that are farther away.

431

As with the depth-first traversal, you can study Figure 13.4 to see how the
algorithm visited the network's nodes. The algorithm started with the node
labeled 0. It then added its neighbors labeled 1, 2, and 3 to its queue.

Because the queue returns items in first-in-first-out order, the algorithm
next processes node 1 and adds its neighbors to the queue. The only
neighbor of that node that has not been visited yet is node 4.

Next the algorithm removes node 2 from the queue and adds its neighbor,
marked 5, to the queue. It then removes the node marked 3 from the queue
and adds its neighbors 6 and 7 to the queue.

If you like, you can continue studying Figure 13.4 to figure out why the
algorithm visited the nodes in the order it did. But at this point you should
be able to see that all the nodes closest to the start node were visited
before any of the nodes farther away.

432

Connectivity Testing
The traversal algorithms described in the previous two sections
immediately lead to a couple other algorithms with only minor
modifications. For example, a traversal algorithm visits all the nodes that
are reachable from the start node. For an undirected network, that means it
visits every node in the network if the network is connected. This leads to
the following simple algorithm to determine whether an undirected
network is connected:

Boolean: IsConnected(Node: start_node)
// Traverse the network starting from start_node.
Traverse(start_node)
// See if any node has not been visited.
For Each node In <all nodes>

If (Not node.Visited) Then Return False
Next node
// All nodes were visited, so the network is

connected.
Return True

End IsConnected

This algorithm uses the previous traversal algorithm and then checks each
node's Visited property to see if it was visited.

You can extend this algorithm to find all the network's connected
components. Simply use the traversal algorithm repeatedly until you visit
all the nodes. The following pseudocode shows an algorithm that uses a
depth-first traversal to find the network's connected components.:

List(Of List(Of Node)): GetConnectedComponents
// Keep track of the number of nodes visited.
Integer: num_visited = 0;
// Make the result list of lists.
List(Of List(Of Node)): components
// Repeat until all nodes are in a connected

component.
While (num_visited < <number of nodes>)

// Find a node that hasn't been visited.
Node: start_node = <first node not yet

visited>
// Add the start node to the stack.
Stack(Of Node): stack
stack.Push(start_node)

433

start_node.Visited = True
num_visited = num_visited + 1
// Add the node to a new connected component.
List(Of Node): component
components.Add(component)
component.Add(start_node)
// Process the stack until it's empty.
While <stack isn't empty>

// Get the next node from the stack.
Node: node = stack.Pop()
// Process the node's links.
For Each link In node.Links

// Use the link only if the
destination

// node hasn't been visited.
If (Not link.Nodes[1].Visited) Then

// Mark the node as visited.
link.Nodes[1].Visited = True
// Mark the link as part of the

tree.
link.Visited = True
num_visited = num_visited + 1
// Add the node to the current

connected component.
component.Add(link.Nodes[1])
// Push the node onto the stack.
stack.Push(link.Nodes[1])

End If
Next link

End // While <stack isn't empty>
Loop // While (num_visited < <number of nodes>)
// Return the components.
Return components

End GetConnectedComponents

This algorithm returns a list of lists, each holding the nodes in a connected
component. It starts by making the variable num_visited to keep
track of how many nodes have been visited. It then makes the list of lists it
will return.

The algorithm then enters a loop that continues as long as it has not visited
every node. Inside the loop the program finds a node that has not yet been
visited, adds it to a stack as in the traversal algorithm, and also adds it to a
new list of nodes that represents the node's connected component.

434

The algorithm then enters a loop similar to the one the earlier traversal
algorithm used to process the stack until it is empty. The only real
difference is that this algorithm adds the nodes it visits to the list it is
currently building in addition to adding them to the stack.

When the stack is empty, the algorithm has visited all the nodes that are
connected to the start node. At that point it finds another node that hasn't
been visited and starts again.

When every node has been visited, the algorithm returns the list of
connected components.

Spanning Trees
If an undirected network is connected, you can make a tree rooted at any
node, showing a path from the root node to every other node in the
network. This tree is called a spanning tree because it spans all the nodes
in the network.

For example, Figure 13.5 shows a spanning tree rooted at node H for a
network. If you follow the darker links, you can trace a path from the root
node H to any other node in the network. For example, the path to node M
visits nodes H, C, B, A, F, K, L, and M.

Figure 13.5 A spanning tree connects all the nodes in a network.

435

The traversal algorithms described earlier actually find spanning trees but
they just don't record which links were used in the tree. To modify the
previous algorithms to record the links used, simply add the following
lines right after the statement that marks a new node as visited:

// Mark the link as part of the spanning tree.
link.Visited = True

Basically the algorithm starts with the root node in the spanning tree. At
each step, it picks another node that is adjacent to the spanning tree and
adds it to the tree. The new algorithm simply records which links were
used to connect the nodes to the growing spanning tree.

Minimal Spanning Trees
The spanning tree algorithm described in the preceding section lets you
use any node in the network as the root of a spanning tree, so many
spanning trees are possible.

436

A spanning tree that has the least possible cost is called a minimal
spanning tree. Note that a network may have more than one possible
minimal spanning tree. In fact, if all the links in the network have the
same cost, every spanning tree is a minimal spanning tree.

The following steps describe a simple high-level algorithm for finding a
minimal spanning tree with root node R:

1. Add the root node R to the initial spanning tree.
2. Repeat until every node is in the spanning tree:

a. Find a least-cost link that connects a node in the spanning
tree to a node that is not yet in the spanning tree.
b. Add that link's destination node to the spanning tree.

The algorithm is greedy because at each step it selects a link that has the
least possible cost. By making the best choices locally, it achieves the best
solution globally.

For example, consider the network shown on the left in Figure 13.6, and
suppose the bold links and nodes are part of a growing spanning tree
rooted at node A. In step 2a, you examine the links that connect nodes in
the tree with nodes that are not yet in the tree. In this example, those links
have costs 15, 10, 12, and 11. Using the greedy algorithm, you add the
least-cost link, which has cost 10, to get the tree on the right.

The most time-consuming step in this algorithm is step 2a, finding the
next link to add to the tree. How much time this step takes depends on the
approach you use.

Figure 13.6 At each step, you add to the spanning tree the least-cost link
that connects a node in the tree to a node that is not in the tree.

437

One way to find a least-cost link is to loop through the tree's nodes,
examining their links to find one that connects to a node outside the tree
and that has minimal cost. This is fairly time-consuming, because the
algorithm must examine the links of the tree's nodes many times, even if
they lead to other nodes that are already in the tree.

A better approach is to keep a list of candidate links. When the algorithm
adds a node to the growing spanning tree, it also adds any links from that
node to a node outside the tree to the candidate list. To find a minimal
link, the algorithm looks through the list for the smallest link. As it
searches the list, if it finds a link that leads to another node that is already
in the tree (because that node was added to the tree after the link was
added to the candidate list), the algorithm removes it from the list. That
way, the algorithm doesn't need to consider the link again later. When the
candidate list is empty, the algorithm is done.

Finding Paths
Finding paths in a network is a common task. An everyday example is
finding a route from one location to another in a street network.

The following sections describe some algorithms for finding paths through
networks.

Finding Any Path
The spanning tree algorithms described earlier in this chapter give you a
method for finding a path between any two nodes in a network. The
following steps describe a simple high-level algorithm for finding a path
from node A to node B in a network:

1. Find a spanning tree rooted at node A.
2. Follow the reversed links in the spanning tree from node B to
node A.
3. Reverse the order in which the links were followed.

The algorithm builds the spanning tree rooted at node A. Then it starts at
node B. For each node in its path, it finds the link in the spanning tree that

438

leads to that node. It records that link and moves to the next node in the
path.

Unfortunately, finding the link that leads to a particular node in the
spanning tree is difficult. Using the spanning tree algorithms described so
far, you would need to loop through every link to determine whether it
was part of the spanning tree and whether it ended at the current node.

You can solve this problem by making a small change to the spanning tree
algorithm. First, add a new FromNode property to the Node class.
Then, when the spanning tree algorithm marks a node as being in the tree,
set that node's FromNode property to the node whose link was used to
connect the new node to the tree.

Now, to find the path from node B to node A in step 2, you can simply
follow the nodes' FromNode properties.

Label-Setting Shortest Paths
The algorithm described in the preceding section finds a path from a start
node to a destination node, but it's not necessarily a very good path. The
path is taken from a spanning tree, and there's no guarantee that it is very
efficient. Figure 13.7 shows a path from node M to node S. If the link
costs are their lengths, then it's not hard to find a shorter path such as M
→ L → G → H → I → N → S.

A more useful algorithm would find the shortest path between two nodes.
Shortest-path algorithms are divided into two categories: label setting and
label correcting. The next section describes a label-correcting algorithm.
This section describes a label-setting algorithm.

This label-setting algorithm begins at a starting node and creates a
spanning tree in a manner that is somewhat similar to how the minimal
spanning tree described earlier does. At each step, that algorithm selects
the least-cost link that connects a new node to the spanning tree. In
contrast, the shortest-path algorithm selects a link that adds to the tree a
node that is the least distance from the starting node.

To determine which node is the least distance from the starting node, the
algorithm labels each node with its distance from the starting node. When

439

it considers a link, it adds the distance to the link's source node to that
link's cost, and that determines the current distance to the link's destination
node.

Figure 13.7 A path that follows a spanning tree from one node to another
may be inefficient.

When the algorithm has added every node to the spanning tree, it is
finished. The paths through the tree show the shortest paths from the
starting node to every other node in the network, so the tree is called a
shortest-path tree.

The following describes the algorithm at a high level:
1. Set the starting node's distance to 0, and mark it as part of the
tree.
2. Add the starting node's links to a candidate list of links that could
be used to extend the tree.

440

3. While the candidate list is not empty, loop through the list
examining the links.

a. If a link leads to a node that is already in the tree, remove the
link from the candidate list.
b. Suppose link L leads from node N1 in the tree to node N2 not
yet in the tree. If D1 is the distance to node N1 in the tree and
CL is the cost of the link, then you could reach node N2 with
distance N1 + CL by first going to node N1 and following the
link. Let D2 = N1 + CL be the possible distance for node N1 that
uses this link. As you loop over the links in the candidate list,
keep track of the link and node that give the smallest possible
distance. Let Lbest and Nbest be the link and node that give the
smallest distance Dbest.
c. Set the distance for Nbest to Dbest and mark Nbest as part of the
shortest path tree.
d. For all links L leaving node Nbest, if L leads to a node that is
not yet in the tree, add L to the candidate list.

For example, consider the network shown on the left in Figure 13.8.
Suppose the bold links and nodes are part of a growing shortest-path tree.
The tree's nodes are labeled with their distance from the root node, which
is labeled 0.

Figure 13.8 At each step, you add to the shortest-path tree the link that
gives the smallest total distance from the root to a node that is not in the
tree.

441

To add the next link to the tree, examine the links that lead from the tree
to a node that is not in the tree, and calculate the distance to those nodes.
This example has three possible links.

The first leads from the node labeled 19 to node F. The distance from the
root node to the node labeled 19 is 19 (that's why it's labeled 19), and this
link has cost 11, so the total distance to node F via this link is 19 + 11 =
30.

The second link leads from the node labeled 15 to node F. The distance
from the root node to the node labeled 15 is 15, and this link has cost 11,
so the total distance to node F via this link is 15 + 11 = 26.

The third link leads from the node labeled 10 to node G. The link has cost
12, so the total distance via this link is 10 + 12 = 22. This is the least of
the three distances calculated, so this is the link that should be added to
the tree. The result is shown on the right in Figure 13.8.

Figure 13.9 shows a complete shortest-path tree built by this algorithm. In
this network, the links' costs are their lengths in pixels. Each node is
labeled with the order in which it was added to the tree. The root node was
added first, so it has label 0, the node to its left was added next, so it has
label 1, and so on.

Notice how the nodes' labels increase as the distance from the root node
increases. This is similar to the ordering in which nodes were added to the
tree in a breadth-first traversal. The difference is that the breadth-first
traversal added nodes in order of the number of links between the root and
the nodes, but this algorithm adds nodes in order of the distance along the
links between the root and the nodes.

Figure 13.9 A shortest-path tree gives the shortest paths from the root
node to any node in the network.

442

Having built a shortest-path tree, you can follow the nodes' FromNode
values to find a backwards path from a destination node to the start node,
as described in the preceding section.

Figure 13.10 shows the shortest path from node M to node S in the
original network. This looks more reasonable than the path shown in
Figure 13.7, which uses a spanning tree.

Figure 13.10 A path through a shortest-path tree gives the shortest path
from the root node a specific node in the network.

443

Label-Correcting Shortest Paths
The most time-consuming step in the label-setting shortest-path algorithm
is finding the next link to add to the shortest-path tree. To add a new link
to the tree, the algorithm must search through the candidate links to find
the one that reaches a new node with the least cost.

An alternative strategy is to just add any of the candidate links to the
shortest-path tree and label its destination node with the cost to the root as
usual.

Later, when the algorithm considers links in the candidate list, it may find
a better path to a node that is already in the shortest-path tree. In that case,
the algorithm updates the node's distance, adds its links back into the
candidate list (if they are not already in the list), and continues.

444

In the label-setting algorithm, a node's distance is set only once and never
changes. In the label-correcting algorithm, a node's distance is set once but
later may be corrected many times.

The following describes the algorithm at a high level:
1. Set the starting node's distance to 0, and mark it as part of the
tree.
2. Add the starting node's links to a candidate list of links.
3. While the candidate list is not empty:

a. Consider the first link in the candidate list.
b. Calculate the distance to the link's destination node:
<distance> = <source node distance> + <link cost>.
c. If the new distance is better than the destination node's
current distance:

i. Update the destination node's distance.
ii. Add all the destination node's links to the candidate list.

This algorithm may seem more complicated, but the code is actually
shorter, because you don't need to search the candidate list for the best
link.

Because this algorithm may change the link leading to a node several
times, you cannot simply mark a link as used by the tree and leave it at
that. If you need to change the link that leads to a node, you need to find
the old link and unmark it.

An easier approach is to give the Node class a FromLink property.
When you change the link leading to the node, you can update this
property.

If you still want to mark the links used by the shortest-path tree, first build
the tree. Then loop over the nodes and mark the links stored in their
FromLink properties.

Figure 3.11 shows the shortest-path tree for a network found by using the
label-correcting method. Again, in this network the links' costs are their
lengths in pixels. Each node is labeled with the number of times its
distance (and FromLink value) was corrected. The root node is labeled
0 because its value was set initially and never changed.

445

Figure 13.11 In a label-correcting algorithm, some nodes' distances may
be corrected several times.

Many of the nodes in Figure 13.11 are labeled 1, meaning their distances
were set once and never corrected. A few nodes are labeled 2, meaning
their values were set and then corrected once.

In a large and more complicated network, it is possible that a node's
distance might be corrected many times before the shortest-path tree is
complete.

All-Pairs Shortest Paths
The shortest-path algorithms described so far find shortest-path trees from
a starting node to every other node in the network. Another type of
shortest-path algorithm asks you to find the shortest path between every
pair of nodes in the network.

446

The Floyd–Warshall algorithm begins with a two-dimensional array
named Distance, where Distance[start_node,
end_node] is the shortest distance between nodes start_node and
end_node.

To build the array, initialize it by setting the diagonal entries, which
represent the distance from a node to itself, to 0. Set the entries that
represent direct links between two nodes to the cost of the links. Set the
array's other values to infinity.

Suppose the Distance array is partially filled, and consider the path
within the array from node start_node to node end_node. Suppose
also that the path uses only nodes 0, 1, 2, …, via_node – 1 for some
value via_node.

The only way adding node via_node could shorten a path is if the
improved path visits that node somewhere in the middle. In other words,
the path start_node → end_node becomes start_node →
via_node followed by via_node → end_node.

To update the Distance array, you examine all pairs of nodes
start_node and end_node. If Distance[start_node,
end_node] > Distance[start_node, via_node] +
Distance[via_node, end_node], you update the entry by
setting Distance[start_node, end_node] equal to the
smaller distance.

If you repeat this with via_node = 0, 1, 2, …, N – 1, where N is the
number of nodes in the network, the Distance array holds the final
shortest distance between any two nodes in the network using any of the
other nodes as intermediate points on the shortest paths.

So far the algorithm doesn't tell you how to find the shortest path from one
node to another. It just explains how to find the shortest distance between
the nodes. Fortunately, you can add the path information by making
another two-dimensional array named Via.

The Via array keeps track of one of the nodes along the path from one
node to another. In other words, Via[start_node, end_node]

447

holds the index of a node that you should visit somewhere along the
shortest path from start_node to end_node.

If Via[start_node, end_node] is end_node, there is a direct
link from start_node to end_node, so the shortest path consists of
just the node end_node.

If Via[start_node, end_node] is some other node
via_node, you can recursively use the array to find the path from
start_node to via_node and then from via_node to
end_node. (If this seems a bit confusing, it will probably make more
sense when you see the algorithm for using the Via array.)

To build the Via array, initialize it so that its entries are–1. Then set
Via[start_node, end_node] to end_node if there is a direct
link between the nodes.

Now, when you build the Distance array and you improve the path
start_node → end_node by replacing it with the paths
start_node → via_node and via_node → end_node, you
need to do one more thing. You must also set Via[start_node,
end_node] = via_node to indicate that the shortest path from
start_node end_node goes via the intermediate point
via_node.

The following steps describes the full algorithm for building the
Distance and Via arrays (assuming that the network contains N
nodes):

1. Initialize the Distance array:
a. Set Distance[i, j] = infinity for all entries.
b. Set Distance[i, i] = 0 for all i = 1 to N – 1.
c. If nodes i and j are connected by a link i → j, set
Distance[i, j] to the cost of that link.

2. Initialize the Via array:
a. For all i and j:

i. If Distance[i, j] < infinity, set Via[i, j] to j
to indicate that the path from i to j goes via node j.

448

ii. Otherwise, set Via[i, j] to –1 to indicate that there
is no path from node i to node j.

3. Execute the following nested loops to find improvements:

For via_node = 0 To N - 1
For from_node = 0 To N - 1

For to_node = 0 To N - 1
Integer: new_dist =

Distance[from_node, via_node] +
Distance[via_node, to_node]
If (new_dist < Distance[from_node,

to_node]) Then
// This is an improved path. Update

it.
Distance[from_node, to_node] =

new_dist
Via[from_node, to_node] = via_node

End If
Next to_node

Next from_node
Next via_node

The via_node loop loops through the indices of nodes that could be
intermediate nodes and improves existing paths. After that loop finishes,
all the shortest paths are complete.

The following pseudocode shows how to use the completed Distance
and Via arrays to find the nodes in the shortest path from a start node to a
destination node:

List(Of Integer): FindPath(Integer: start_node,
Integer: end_node)

If (Distance[start, end] == infinity) Then
// There is no path between these nodes.
Return null

End If
// Get the via node for this path.
Integer: via_node = Via[start_node, end_node]
// See if there is a direct connection.
If (via_node == end_node)

// There is a direct connection.
// Return a list that contains only end_node.
Return { end_node }

Else
// There is no direct connection.

// Return start_node --> via_node plus

449

via_node --> end_node.
Return
{

FindPath(start_node, via_node] +
FindPath(via_node, end_node]

}
End If

End FindPath

For example, consider the network shown at the top of Figure 13.12. The
upper arrays show how the Distance values change over time, and the
bottom arrays show how the Via values change over time. Values that
change are highlighted to make them easy to spot.

Figure 13.12 The shortest paths between all pairs of nodes in a network
can be represented by a Distance array (top arrays) and a Via array
(bottom arrays).

The upper-left array shows the initial values in the Distance array. The
distance from each node to itself is 0. The distance between two nodes
connected by a link is set to the link's cost. For example, the link between
node A and node B has cost 4, so Distance[A, B] is 4. (To make the
example easier to follow, the names of the nodes are used as if they were
array indices.) The remaining entries are set to infinity.

450

The lower-left array shows the initial values in the Via array. For
example, there is a link from node C to node B, so Via[C, B] is B.

After initializing the arrays, the algorithm looks for improvements. First it
looks for paths it can improve by using node A as an intermediate point.
Node A is on the end of the network, so it can't improve any paths.

Next the algorithm tries to improve paths by using node B and finds four
improvements. For example, looking at the second Distance array, you
can see that Distance[A, C] is infinity, but Distance[A, B] is
4 and Distance[B, C] is 10, so the path A → C can be improved.
To make that improvement, the algorithm sets Distance[A, C] to 4
+ 10 = 14 and sets Via[A, C] to the intermediate node B.

If you look at the network, you can follow the changes there. The initial
path A → C had distance set to infinity. The path A → B → C is an
improvement, and you can see in the network that the total distance for
that path is 14.

Similarly you can work through the changes in the paths A → D, C → A,
and D → A.

Next the algorithm tries to improve paths by using node C as an
intermediate node. That node doesn't allow any improvements (because
it's at the edge of the network).

Finally, the algorithm tries to improve paths by using node D as an
intermediate node. It can use node D to improve the four paths A → C, B
→ C, C → A, and C → B.

For an example of finding a path through the completed Via array,
consider the array on the lower right in Figure 13.12. Suppose you want to
find the path from node A to node C. The following steps describe how to
find the path A → C:

• Via[A, C] is D, so A → C = A → D + D → C.
• Via[A, D] is B, so A → D = A → B + B → D.
• Via[D, C] is C, so there is a link from node D to node C.
• Via[A, B] is B, so there is a link from node A to node B.
• Finally, Via[B, D] is D, so there is a link from node B to node

D.

451

The final path travels through nodes B, D, and C so the full path is A → B
→ D → C.

Figure 13.13 shows the recursive calls.

After you create the Distance and Via arrays, you can quickly find
the shortest paths between any two points in a network. The downside is
the arrays can take up a lot of room.

For example, a street network for a moderately large city might contain
30,000 nodes, so the arrays would contain 2 × 30,0002 = 1.8 billion
entries. If the entries are 4-byte integers, the arrays would occupy 7.2
gigabytes of memory.

Even if you can afford that much memory, the algorithm for building the
arrays uses three nested loops that run from 1 to N, where N is the number
of nodes, so the algorithm's total runtime is O(N3). If N is 30,000, that's
2.7 ×1013 steps. A computer running 1 million steps per second would
need more than 10 months to build the arrays.

Figure 13.13 To find the path from start_node to end_node with
intermediate point via_node, you recursively find the paths from
start_node to via_node and from via_node to end_node.

For really big networks, this algorithm is impractical, so you need to use
one of the other shortest-path algorithms to find paths as needed. If you

452

need to find many paths on a smaller network, perhaps one with only a
few hundred nodes, you may be able to use this algorithm to precompute
all the shortest paths and save some time.

Summary
Most of the algorithms described in this chapter are traversals of networks.
The depth-first and breadth-first traversal algorithms visit a network's
nodes in different orders. The connectivity, spanning tree, minimal
spanning tree, and shortest-path algorithms also all traverse the network in
various ways. For example, the minimal spanning tree algorithm traverses
links in order of their costs, and the label-setting shortest-path algorithm
traverses links in order of the distances to their destination nodes.

The all-pairs shortest-path algorithm is a bit different. Instead of
traversing the network, it builds a collection of N shortest-path trees, each
of which lets you traverse the network.

The next chapter continues the discussion of networks. It explains
more-advanced algorithms that let you solve real-world problems such as
task ordering, map coloring, and work assignment.

Exercises
Asterisks indicate particularly difficult problems.

1. *Build a program similar to the one shown in Figure 13.14 that
lets you build, save, and load test networks. Tools on the toolbar let
the user add nodes, one-way links, and two-way links (actually two
links connecting the clicked nodes in both directions). Give the File
menu the commands New, Open, and Save As to let the user create,
load, and save networks. (If you're using C# and don't want to build
the whole program, you can download the example program from
this book's website and replace the algorithmic code it contains with
your own code.)

453

Figure 13.14 The sample program NetworkMaker lets you build,
save, and load test networks.

2. Expand the program you wrote for Exercise 1 to let the user
traverse a network. If the user selects the traversal tool and then
clicks a node, display a traversal of the nodes.
3. Expand the program you wrote for Exercise 1 to add a tool that
displays the network's connected components.
4. Does the algorithm described for finding a network's connected
components work for directed networks? Why or why not?
5. Expand the program you wrote for Exercise 1 to add a tool that
finds and displays a spanning tree rooted at a node the user clicks.
6. The section “Minimal Spanning Trees” says that, in a network
where every link has the same cost, every spanning tree is a
minimal spanning tree. Why is that true?
7. Expand the program you wrote for Exercise 1 to add a tool that
finds and displays a minimal spanning tree rooted at a node the user
clicks.

454

8. Expand the program you wrote for Exercise 1 to add a tool that
uses a spanning tree to find and display a path between two nodes
the user selects.
9. Is a shortest-path tree always a minimal spanning tree? If so,
why? If not, draw a counterexample.
10. Expand the program you wrote for Exercise 1 to add a tool that
finds and displays a label-setting shortest-path tree rooted at a node
the user clicks.
11. Expand the program you wrote for Exercise 1 to add a tool that
uses a label-setting shortest-path tree to find and display a path
between two nodes the user selects.
12. Expand the program you wrote for Exercise 1 to add a tool that
finds and displays a label-correcting shortest-path tree rooted at a
node the user clicks.
13. Expand the program you wrote for Exercise 1 to add a tool that
uses a label-correcting shortest-path tree to find and display a path
between two nodes the user selects.
14. What happens to the label-correcting shortest-path algorithm if
the network contains a cycle that has a negative total weight? What
happens to the label-setting algorithm?
15. Suppose you want to find the shortest path between two
relatively close points in a large network. How could you make a
label-setting algorithm find the path without building the entire
shortest-path tree? Would the change save time?
16. *For the scenario in Exercise 15, how could you make a
label-correcting algorithm find the path without building the entire
shortest-path tree? Would the change save time?
17. *Suppose you're driving to a museum, and frequent road
construction makes you leave the shortest path. After each change,
you need to calculate a new shortest-path tree to find the best route
from your new location to the museum. How could you avoid those
recalculations?
18. *Expand the program you wrote for Exercise 1 to add a tool that
finds and displays the Distance and Via arrays for a network.
Verify the program on a network similar to the one shown in Figure
13.12.

455

19. *Expand the program you wrote for Exercise 18 so that the
all-pairs shortest-path tool also displays the shortest paths between
every pair of nodes in the network. Verify the program on a
network similar to the one shown in Figure 13.12.
20. Assuming that your computer can execute 1 million steps per
second while building the all-pairs shortest-path algorithm's
Distance and Via arrays, how long would it take to build the
arrays for a network with 100 nodes? 1,000 nodes? 10,000 nodes?
21. Using the network shown in Figure 13.15, draw the
Distance and Via arrays as they evolve the same way Figure
13.13 does. What are the initial and final shortest paths from node A
to node C?

Figure 13.15 Draw the Distance and Via arrays for this network.

456

Chapter 14

More Network Algorithms

Chapter 13 focused on network traversal algorithms, including algorithms
that use breadth-first and depth-first traversals to find the shortest paths
between nodes in the network. This chapter continues the discussion of
network algorithms. The first algorithms, which perform topological
sorting and cycle detection, are relatively simple. The algorithms
described later in the chapter, such as graph coloring and maximal flow
calculation, are a bit more complicated.

Topological Sorting
Suppose you want to perform a complicated job that involves many tasks,
some of which must be performed before others. For example, suppose
you want to remodel your kitchen. Before you can get started, you may
need to obtain permits from your local government. Then you need to
order new appliances. Before you can install the appliances, however, you
need to make any necessary changes to the kitchen's wiring. That may
require demolishing the walls, changing the wiring, and then rebuilding
the walls. A complex project such as remodeling an entire house or
commercial building might involve hundreds of steps with a complicated
set of dependencies.

Table 14.1 shows some of the dependencies you might have while
remodeling a kitchen.

Table 14.1 Kitchen Remodeling Task Dependencies
Task Prerequisite

Obtain permit —

Buy appliances —

Install appliances Buy appliances

Demolition Obtain permit

Wiring Demolition

457

Drywall Wiring

Plumbing Demolition

Initial inspection Wiring

Initial inspection Plumbing

Drywall Plumbing

Drywall Initial inspection

Paint walls Drywall

Paint ceiling Drywall

Install flooring Paint walls

Install flooring Paint ceiling

Final inspection Install flooring

Tile backsplash Drywall

Install lights Paint ceiling

Final inspection Install lights

Install cabinets Install flooring

Final inspection Install cabinets

Install countertop Install cabinets

Final inspection Install countertop

Install flooring Drywall

Install appliances Install flooring

Final inspection Install appliances

You can represent the job's tasks as a network in which a link points from
task A to task B if task B must be performed before task A. Figure 14.1
shows a network that represents the tasks listed in Table 14.1.

A partial ordering is a set of dependencies that defines an ordering
relationship for some but not necessarily all the objects in a set. The
dependencies listed in Table 14.1 and shown in Figure 14.1 define a
partial ordering for the remodeling tasks.

Figure 14.1 You can represent a series of partially ordered tasks as a
network.

458

If you want to actually perform the tasks, you need to extend the partial
ordering to a complete ordering so that you can perform the tasks in a
valid order. For example, the conditions listed in Table 14.1 don't
explicitly prohibit you from installing the flooring before you do the
plumbing work, but if you carefully study the table or the network, you'll
see that you can't do those tasks in that order. (The flooring must come
after painting the walls, which must come after drywall, which must come
after plumbing.)

Topological sorting is the process of extending a partial ordering to a full
ordering on a network.

One algorithm for extending a partial ordering is quite simple. If the tasks
can be completed in a valid order, there must be some task with no

459

prerequisites that you can perform first. Find that task, add it to the
extended ordering, and remove it from the network. Then repeat those
steps, finding another task with no prerequisites, adding it to the extended
ordering, and removing it from the network until all the tasks have been
completed.

If you reach a point where every remaining task has a prerequisite, then
the tasks have a circular dependency so the partial ordering cannot be
extended to a full ordering.

The following pseudocode shows the basic algorithm:

// Return the nodes completely ordered.
List(Of Node) ExtendPartialOrdering()

// Make the list of nodes in the complete
ordering.

List(Of Node): ordering
While <the network contains nodes>

// Find a node with no prerequisites.
Node: ready_node
ready_node = <a node with no prerequisites>
If <ready_node == null> Then Return null
// Move the node to the result list.
<Add ready_node to the ordering list>
<Remove ready_node from the network>

End While
Return ordering

End ExtendPartialOrdering

The basic idea behind the algorithm is straightforward. The trick is
implementing the algorithm efficiently. If you just look through the
network at each step to find a task with no prerequisites, you might
perform O(N) steps each time, for a total run time of O(N2).

A better approach is to give each network node a new NumBeforeMe
property that holds the number of a node's prerequisites and initialize each
node's NumBeforeMe value. Now when you remove a node from the
network, follow its links and decrement the NumBeforeMe property for
the nodes that are dependent on the removed node. If a node's
NumBeforeMe count becomes 0, it is ready to add to the extended
ordering.

The following pseudocode shows the improved algorithm:

460

// Return the nodes completely ordered.
List(Of Node) ExtendPartialOrdering()

// Make the list of nodes in the complete
ordering.

List(Of Node): ordering
// Make a list of nodes with no prerequisites.
List(Of Node): ready
// Initialize.
<Initialize each node's NumBeforeMe count>
<Add nodes with no prerequisites to the ready

list>
While <the ready list contains nodes>

// Add a node to the extended ordering.
Node: ready_node = <First node in ready list>
<Add ready_node to the ordering list>
// Update NumBeforeMe counts.
For Each link In ready_node.Links

// Update this node's NumBeforeMe count.
link.Nodes[1].NumBeforeMe =

link.Nodes[1].NumBeforeMe - 1
// See if the node is now ready for

output.
If (link.Nodes[1].NumBeforeMe == 0) Then

ready.Add(link.Nodes[1])
End If

Next link
End While
If (<Any node has NumBeforeMe > 0>) Then Return

null
Return ordering

End ExtendPartialOrdering

This algorithm assumes that the network is completely connected. If it is
not, use the algorithm repeatedly for each connected component.

Cycle Detection
Cycle detection is the process of determining whether a network contains
a cycle. In other words, it is the process of determining whether a path
through the network returns to its beginning.

Cycle detection is easy if you think of the problem as one of topological
sorting. A network contains a cycle if and only if it cannot be

461

topologically sorted. In other words, if you think of the network as a
topological sorting problem, the network contains a cycle if a series of
tasks A, B, C, …, K forms a dependency loop.

After you make that observation, detecting cycles is easy. The following
pseudocode shows the algorithm:

// Return True if the network contains a cycle.
Boolean: ContainsCycle()

// Try to topologically sort the network.
If (ExtendPartialOrdering() == null) Then Return

True
Return False

End ContainsCycle

This algorithm assumes that the network is completely connected. If it is
not, use the algorithm repeatedly for each connected component.

Map Coloring
In map coloring, the goal is to color the regions in a map so that no
regions that share an edge have the same color. Obviously you can do this
if you give every region a different color. The real question is, “What is
the smallest number of colors you can use to color a particular map?” A
related question is, “What is the smallest number of colors you can use to
color any map?”

To study map coloring with network algorithms, you need to convert the
problem from one of coloring regions into one of coloring nodes. Simply
create a node for each region, and make an undirected link between two
nodes if their corresponding regions share a border.

Depending on the map, you may be able to color it with two, three, or four
colors. The following sections describe these maps and algorithms you
can use to color them.

462

Two-coloring
Some maps, such as the one shown in Figure 14.2, can be colored with
only two colors.

Figure 14.2 Some maps can be colored with only two colors.

Note
Generating a two-colorable map is easy. Place a pencil on a piece of paper, and draw a
shape that returns to your starting point. You can draw any shape as long the curve
doesn't follow along an earlier part of itself to make a “doubled edge.” In other words, the
curve can cross itself at a point but cannot merge with itself for some distance. Figure
14.3 shows such a shape.

Figure 14.3 If you draw a closed curve without lifting the pencil
and without making any “doubled edges,” the result is
two-colorable.

463

No matter how you make the curve cross itself, the result is two-colorable. If you then
draw another shape over the first one in the same way, the result is still two-colorable.

Coloring this kind of map is easy. Pick any region, and give it one of the
two colors. Then give each of its neighbors the other color, and
recursively visit them to color their neighbors. If you ever come to a point
where a node's neighbor already has the same color as the node, the map
cannot be two-colored.

The following pseudocode shows this algorithm:

TwoColor()
// Make a queue of nodes that have been colored.
Queue(Of Node): colored
// Color the first node, and add it to the list.
Node: first_node = <Any node>
first_node.Color = color1
colored.Enqueue(first_node)
// Traverse the network, coloring the nodes.
While (colored contains nodes)

// Get the next node from the colored list.
Node: node = colored.Dequeue()
// Calculate the node's neighbor color.

464

Color: neighbor_color = color1
If (node.Color == color1) Then

neighbor_color = color2
// Color the node's neighbors.
For Each link In node.Links

Node: neighbor = link.Nodes[1]
// See if the neighbor is already

colored.
If (neighbor.Color == node.Color) Then

<The map cannot be two-colored>
Else If (neighbor.Color ==

neighbor_color) Then
// The neighbor has already been

colored correctly.
// Do nothing else.

Else
// The neighbor has not been

colored. Color it now.
neighbor.Color = neighbor_color
colored.Enqueue(neighbor)

End If
Next link

End While
End TwoColor

This algorithm assumes that the network is completely connected. If it is
not, use the algorithm repeatedly for each connected component.

Three-coloring
It turns out that determining whether a map is three-colorable is a very
difficult problem. In fact, no known algorithm can solve this problem in
polynomial time.

One fairly obvious approach is to try each of the three colors for the nodes
and see if any combination works. If the network holds N nodes, this takes
O(3N) time, which is quite slow if N is large. You can use a tree traversal
algorithm, such as one of the decision tree algorithms described in Chapter
12, to try combinations, but this still will be a very slow search.

You may be able to improve the search by simplifying the network. If a
node has fewer than three neighbors, those neighbors can use at most two
of the available colors, so the original node can use one of the unused

465

colors. In that case, you can remove the node with fewer than three
neighbors from the network, color the smaller network, and then restore
the removed node, giving it a color that isn't used by a neighbor.

Removing a node from the network reduces the number of neighbors for
the remaining nodes, so you might be able to remove even more nodes. If
you're lucky, the network will shrink until you're left with a single node.
You can then color that node and add the other nodes back into the
network, coloring each in turn.

The following steps describe an algorithm that uses this approach:
1. Repeat while the network has a node with degree less than 3:

a. Remove a node with degree less than 3, keeping track of
where the node was so that you can restore it later.

2. Use a network traversal algorithm to find a three-coloring for
whatever network remains. If there is no solution for the smaller
network, there is no solution for the original network.
3. Restore the nodes removed earlier in last-removed-first-restored
order, and color them using colors that are not already used by their
neighbors.

If the network is not completely connected, you can use the algorithm for
each of its connected components.

Four-coloring
The four-coloring theorem states that any map can be colored with at most
four colors. This theorem was first proposed by Francis Guthrie in 1852
and was studied extensively for 124 years before Kenneth Appel and
Wolfgang Haken finally proved it in 1976. Unfortunately, their proof
exhaustively examined a set of 1,936 specially selected maps, so it doesn't
offer a good method of finding a four-coloring of a map.

Note
The four-coloring theorem assumes that the network is planar, which means you can
draw it on a plane with none of the links intersecting. The links need not be straight lines,
so they can wiggle and twist all over the place, but they cannot intersect.

If a network is not planar, there's no guarantee that you can four-color it. For example,
you could make 10 nodes with 90 links connecting every pair of nodes.

466

Because every node is connected to every other node, you would need 10 colors to color
the network.

If you make a network from a normal map, however, you get a planar network.

You can use techniques similar to those described in the previous section
for three-coloring.

1. Repeat while the network has a node with degree less than 4:
a. Remove a node with degree less than 4, keeping track of
where the node was so that you can restore it later.

2. Use a network traversal algorithm to find a four-coloring for
whatever network remains. If there is no solution for the smaller
network, there is no solution for the original network.
3. Restore the nodes removed earlier in last-removed-first-restored
order, and color them using colors that are not already used by their
neighbors.

Again, if the network is not completely connected, you can use the
algorithm for each of its connected components.

Five-coloring
Even though no simple constructive algorithm exists for four-coloring a
map, there is one for five-coloring, even if it isn't very simple.

Like the algorithms described in the two previous sections, this algorithm
repeatedly simplifies the network. Unlike the two previous algorithms,
this one can always simplify the network until it eventually contains only
a single node. You can then undo the simplifications to rebuild the
original network, coloring the nodes as you do.

This algorithm uses two types of simplification. The first is similar to the
one used by the two previous algorithms. If the network contains a node
that has fewer than five neighbors, remove it from the network. When you
restore the node, give it a color that is not used by one of its neighbors.
Call this Rule 1.

You use the second simplification if the network doesn't contain any node
with fewer than five neighbors. It can be shown (although it's outside the

467

scope of this book) that such a network must have at least one node K
with neighbors M and N such that:

• K has exactly five neighbors.
• M and N have at most seven neighbors.
• M and N are not neighbors of each other.

To simplify the network, find such nodes K, N, and M, and require that
nodes M and N have the same color. We know that they aren't neighbors,
so that is allowed. Because node K has exactly five neighbors and nodes
M and N use the same color, K's neighbors cannot be using all five of the
available colors. That means at least one is left over for node K to use.

The simplification is to remove nodes K, M, and N from the network and
create a new node M/N to represent the color that nodes M and N will
have. Give the new node the same neighbors that nodes M and N had
previously. Call this Rule 2.

When you restore the nodes K, M, and N that were removed using Rule 2,
give nodes M and N whatever color was assigned to node M/N. Then pick
a color that isn't used by one of its neighbors for node K.

You can use techniques similar to those described in the previous section
for three-coloring. The following steps describe the algorithm:

1. Repeat while the network has more than one node:
a. If there is a node with degree less than 5, remove it from the
network, keeping track of where it was so that you can restore
it later.
b. If the network contains no node of degree less than 5, find a
node K with degree exactly 5 and two children M and N, as
described earlier. Remove nodes K, M, and N, and create the
new node M/N as described in Rule 1.

2. When the network contains a single node, assign it a color.
3. Restore the previously removed nodes, coloring them
appropriately.

If the network is not completely connected, you can use the algorithm for
each of its connected components.

468

Figure 14.4 shows a small sample network being simplified. If you look
closely at the network at the top, you'll see that every node has five
neighbors, so you can't use Rule 1 to simplify the network.

Although you cannot use Rule 1 on this network, you can use Rule 2.
There are several possible choices for nodes to play the roles of nodes K,
M, and N in Rule 2. This example uses the nodes C, B, and H. Those
nodes are removed, and a new node B/H is added with the same children
that nodes B and H had before.

After nodes C, B, and H have been replaced with the new node B/H,
nodes G, A, and D have fewer than five neighbors, so they are removed.
(For this example, assume that they are removed in that order.)

Figure 14.4 You can simplify this network to a single node with one use
of Rule 2 and several uses of Rule 1.

469

470

After those nodes have been removed, nodes L, B/H, K, F, E, and I all
have fewer than five neighbors, so they are removed also.

At that point the network contains only the single node J, so the algorithm
arbitrarily assigns node J a color and begins reassembling the network.

Suppose the algorithm gives nodes the colors red, green, blue, yellow, and
orange, in that order. For example, if a node's neighbors are red, green,
and orange, the algorithm gives the node the first unused color—in this
case, blue.

Starting at the final network shown in Figure 14.4, the algorithm follows
these steps:

1. The algorithm makes node J red.
2. The algorithm restores the node that was removed last, node I.
Node I's neighbor J is red, so the algorithm makes node I green.
3. The algorithm restores the node that was removed next-to-last,
node E. Node E's neighbors J and I are red and green, so the
algorithm makes node E blue.
4. The algorithm restores node F. Node F's neighbors J and E are
red and blue, so the algorithm makes node F green.
5. The algorithm restores node K. Node K's neighbors J and F are
red and green, so the algorithm makes node K blue.
6. The algorithm restores node B/H. Node B/H's neighbors K, F,
and I are blue, green, and green, so the algorithm makes node B/H
red.
7. The algorithm restores node L. Node L's neighbors K, B/H, and I
are blue, red, and green, so the algorithm makes node L yellow. (At
this point the network looks like the bottom network in Figure 14.4,
but with the nodes colored.)
8. The algorithm restores node D. Node D's neighbors B/H, E, and I
are red, blue, and green, so the algorithm makes node D yellow.
9. The algorithm restores node A. Node A's neighbors B/H, F, E,
and D are red, green, blue, and yellow, so the algorithm makes node
A orange.
10. The algorithm restores node G. Node G's neighbors L, B/H, and
K are yellow, red, and blue, so the algorithm makes node G green.

471

(At this point the network looks like the middle network in Figure
14.4, but with the nodes colored.)
11. Now the algorithm undoes the Rule 2 step. It restores nodes B
and H and gives them the same color as node B/H, which is red.
Finally, it restores node C. Its neighbors G, H, D, A, and B have
colors green, red, yellow, orange, and red, so the algorithm makes
node C blue. (At this point the network looks like the network at the
top of Figure 14.4, but with the nodes colored.)

Figure 14.5 shows the original network. Nodes of different colors are
represented by different shapes because this book is black and white.

Figure 14.5 Shapes show nodes of different colors in this five-colored
network.

Other Map-coloring Algorithms
These are not the only possible map-coloring algorithms. For example, a
hill-climbing strategy might loop through the network's nodes and give
each one the first color that is not already used by one of its neighbors.
This may not always color the network with the fewest possible colors,
but it is extremely simple and very fast. It also works if the network is not

472

planar and it might be impossible to four-color the network. For example,
this algorithm can color the non-planar network shown in Figure 14.6.

Figure 14.6 This network is not planar but can be three-colored.

With some effort, you could apply some of the other heuristic techniques
described in Chapter 12 to try to find the smallest number of colors
needed to color a particular planar or nonplanar network. For example,
you could try random assignments or incremental improvement strategies
in which you switch the colors of two or more nodes.

Maximal Flow
In a capacitated network, each of the links has a maximum capacity
indicating the maximum amount of some sort of flow that can cross it. The
capacity might indicate the number of gallons per minute that can flow
through a pipe, the number of cars that can move through a street per hour,
or the maximum amount of current a wire can carry.

473

In the maximal flow problem, the goal is to assign flows to the links to
maximize the total flow from a designated source node to a designated
sink node.

For example, consider the networks shown in Figure 14.7. The numbers
on a link show the link's flow and capacity. For example, the link between
nodes B and C in the left network has a flow of 1 and a capacity of 2.

Figure 14.7 In the maximal flow problem, the goal is to maximize the
flow from a source node to a sink node.

The network on the left has a total flow of 4 from node A to node F. The
total amount of flow leaving the source node A in the network on the left
is 1 unit along the A → D link plus 3 units along the A → B link for a
total of 4. Similarly the total flow into the sink node F is 3 units along the
E → F link plus 1 unit along the C → F link for a total of 4 units. (If no
flow is gained or lost in the network, then the total flow out of the sink
node is the same as the total flow into the sink node.)

You cannot increase the total flow by simply adding more flow to some of
the links. In this example you can't add more flow to the A → B link
because that link is already used at full capacity. You also can't add more
flow to the A → D link because the E → F link is already used at full
capacity, so the extra flow wouldn't have anywhere to go.

You can improve the solution, however, by removing 1 unit of flow from
the path B → E → F and moving it to the path B → C → F. That gives the
E → F link unused capacity so you can add a new unit of flow along the
path A → D → E → F. The network on the right in Figure 14.7 shows the
new flows, giving a total flow of 5 from node A to node F.

The algorithm for finding maximal flows is fairly simple, at least at a high
level, but figuring out how it works can be hard. To understand the

474

algorithm, it helps to know a bit about residual capacities, residual
capacity networks, and augmenting paths.

If that sounds intimidating, don't worry. These concepts are useful for
understanding the algorithm, but you don't need to build many new
networks to calculate maximal flows. Residual capacities, residual
capacity networks, and augmenting paths can all be found within the
original network without too much extra work.

A link's residual capacity is the amount of extra flow you could add to the
link. For example, the C → F link on the left in Figure 14.7 has a residual
capacity of 2 because the link has a capacity of 3 and is currently carrying
a flow of only 1.

In addition to the network's normal links, each link defines a virtual
backlink that may not actually be part of the network. For example, in
Figure 14.7 the A → B link implicitly defines a backwards B → A
backlink. These backlinks are important because they can have residual
capacities, and you may be able to push flow backwards across them.

A backlink's residual capacity is the amount of flow traveling forward
across the corresponding normal link. For example, on the left in Figure
14.7 the B → E link has a flow of 2, so the E → B backlink has a residual
capacity of 2. (To improve the solution on the left, the algorithm must
push flow back across the E → B backlink to free up more capacity on the
E → F link. That's how the algorithm uses the backlinks' residual
capacities.)

A residual capacity network is a network consisting of links and backlinks
marked with their residual capacities. Figure 14.8 shows the residual
capacity network for the network on the left in Figure 14.7. Backlinks are
drawn with dashed lines.

Figure 14.8 A residual capacity network shows the residual capacity of a
network's links and backlinks.

475

For example, the C → F link on the left in Figure 14.7 has a capacity of 3
and a flow of 1. Its residual capacity is 2 because you could add two more
units of flow to it. Its backlink's residual capacity is 1 because you could
remove one unit of flow from the link. In Figure 14.8 you can see the C →
F link is marked with its residual capacity 2. The F → C backlink is
marked with its residual capacity 1.

To improve a solution, all you need to do is find a path through the
residual capacity network from the source node to the sink node that uses
links and backlinks with positive residual capacities. Then you push
additional flow along that path. Adding flow to a normal link in the path
represents adding more flow to that link in the original network. Adding
flow to a backlink in the path represents removing flow from the
corresponding normal link in the original network. Because the path
reaches the sink node, it increases the total flow to that node. Because the
path improves the solution, it is called an augmenting path.

The bold links in Figure 14.8 show an augmenting path through the
residual capacity network for the network shown on the left in Figure
14.7.

To decide how much flow the path can carry, follow the path from the
sink node back to the source node, and find the link or backlink with the
smallest residual capacity. Now you can update the network's flows by
moving that amount through the path. If you update the network on the

476

left of Figure 14.7 by following the augmenting path in Figure 14.8, you
get the network on the right in Figure 14.7.

This may seem complicated, but the algorithm isn't too confusing after
you understand the terms. The following steps describe the algorithm,
which is called the Ford-Fulkerson algorithm:

1. Repeat as long as you can find an augmenting path through the
residual capacity network:

a. Find an augmenting path from the source node to the sink
node.
b. Follow the augmenting path, and find the smallest residual
capacity along it.
c. Follow the augmenting path again, and update the links'
flows to correct the augmenting path.

Remember that you don't need to actually build the residual capacity
network. You can use the original network and calculate each link's and
backlink's residual capacity by comparing its flow to its capacity.

Note
It may be handy to add a list of backlinks to each node so that you can easily find the
links that lead into each node (so that you can follow them backwards), but otherwise you
don't need to change the network's structure.

Network flow algorithms have several applications other than calculating
actual flows such as water or current flow. The next two sections describe
two of those: performing work assignment and finding minimal flow cuts.

Work Assignment
Suppose you have a workforce of 100 employees, each with a set of
specialized skills, and you have a set of 100 jobs that can only be done by
people with certain combinations of skills. The work assignment problem
asks you to assign employees to jobs in a way that maximizes the number
of jobs that are done.

At first this might seem like a complicated combinatorial problem. You
could try all the possible assignments of employees to jobs to see which
one results in the most jobs being accomplished. There are 100! ≈ 9.3 ×

477

10157 permutations of employees, so that could take a while. You might be
able to apply some of the heuristics described in Chapter 12 to find
approximate solutions, but there is a better way to solve this problem.

The maximal flow algorithm gives you an easy solution. Create a work
assignment network with one node for each employee and one node for
each job. Create a link from an employee to every job the employee can
do. Create a source node connected to every employee, and connect every
job to a sink node. Give all the links a capacity of 1.

Figure 14.9 shows a work assignment network with five employees
represented by letters and five jobs represented by numbers. All the links
are directional-pointing right and have a capacity of 1. The arrowheads
and capacities are not shown to keep the picture simple.

Figure 14.9 The maximal flow through a work assignment network gives
optimal assignments.

Now find the maximal flow from the source node to the sink node. Each
unit of flow moves through an employee to the job that should be assigned
to the employee. The total flow gives the number of jobs that can be
performed.

Note
In a bipartite network, the nodes can be divided into two groups A and B, and every link
connects a node in group A with a node in group B. If you remove the source and sink
nodes in the network shown in Figure 14.9, the result is a bipartite network.

478

Bipartite matching is the process of matching the nodes in group A with those in group B.
The method described in this section provides a nice solution to the bipartite matching
problem.

Minimal Flow Cut
In the minimal flow cut problem (also called min flow cut, minimum cut,
or min-cut), the goal is to remove links from a network to separate a
source node from a sink node while minimizing the capacity of the links
removed.

For example, consider the network shown in Figure 14.10. Try to find the
best links to remove to separate source node A from sink node O. You
could remove the A → B and A → E links, which have a combined
capacity of 9. You can do better if you remove the K → O, N → O, and P
→ O links instead, because they have a total capacity of only 6. (Take a
minute to see how good a solution you can find.)

Figure 14.10 Try to find the best links to remove from this network to
separate node A from node O.

479

Exhaustively removing all possible combinations of links would be a huge
task for even a relatively small network. Each link is either removed or
left in the network, so if the network contains N links, there would be 2N

possible combinations of removing and leaving links. The relatively small
network shown in Figure 14.10 contains 24 links, so there are 224 ≈ 16.8
million possible combinations to consider. In a network with 100 links,
which is still fairly small for many applications such as modeling a street
network, you would need to consider 2100 ≈ 1.3 × 1030 combinations. If
your computer could consider 1 million combinations per second, it would
take roughly 4.0 × 1016 years to consider them all. You could undoubtedly
come up with some heuristics to make the search easier, but this would be
a daunting approach.

480

Fortunately, the maximal flow algorithm provides a much easier solution.
The following steps describe the algorithm at a high level:

1. Perform a maximal flow calculation between the source and sink
nodes.
2. Starting from the sink node, visit all the nodes you can using only
links and backlinks that have residual capacities greater than 0.
3. Place all the nodes visited in Step 2 in set A and all the other
nodes in set B.
4. Remove links that lead from nodes in set A to nodes in set B.

Unfortunately, the reasons why this works are fairly confusing.

First, consider a maximal set of flows, suppose the total maximum flow is
F, and consider the cut produced by the algorithm. This cut must separate
the source and sink nodes. If it didn't, there would be a path from the
source to the sink through which you could move more flow. In that case,
there would be a corresponding augmenting path through the residual
capacity network, so the maximal flow algorithm executed in Step 1
would not have done its job correctly.

Notice that any cut that prevents flow from the source node to the sink
node must have a net flow of F across its links. Flow might move back
and forth across the cut, but in the end F units of flow reach the sink node,
so the net flow across the cut is F.

That means the links in the cut produced by the algorithm must have a
total capacity of at least F. All that remains is to see why those links have
a total capacity of only F. The net flow across the cut is F, but perhaps
some of the flow moves back and forth across the cut, increasing the total
flow of the cut's links.

Suppose this is the case, so a link L flows back from the nodes in set B to
the nodes in set A, and then later another link moves the flow back from
set A to set B. The flow moving across the cut from set B to set A and
back from set A to set B would cancel, and the net result would be 0.

If there is such a link L, however, it has positive flow from set B to set A.
In that case, its backlink has a positive residual capacity. But in Step 2 the
algorithm followed all links and backlinks with positive residual capacity
to create set A. Because link L ends at a node in set A and has positive

481

residual capacity, the algorithm should have followed it, and the node at
the other end should also have been in set A.

All of that means there can be no link from set B to set A with positive
flow.

Because the net flow across the cut is F, and there can be no flow
backwards across the cut into the nodes in set A, the flow across the cut
must be exactly F, and the total capacity removed by the cut is F.

(I warned you this would be confusing. The technical explanation used by
graph theorists is even more confusing.)

Now that you've had time to work on the problem shown in Figure 14.10,
here's the solution. The optimal cut is to remove links E → I, F → J, F →
G, C → G, and C → D, which have a total capacity of 4. Figure 14.11
shows the network with those links removed.

Figure 14.11 This network shows a solution to the min-flow-cut problem
for the network shown in Figure 14.10.

482

Summary
Some network algorithms model real-world situations in a fairly
straightforward way. For example, a shortest-path algorithm can help you
find the quickest way to drive through a street network. Other network
algorithms have less-obvious uses. For example, the maximal flow
algorithm not only lets you determine the greatest amount of flow that a
network can carry, but it also lets you assign jobs to employees.

The edit distance algorithm described in the next chapter also uses a
network in a non-obvious way. It uses a network to decide how different

483

one string is from another. For example, the algorithm can determine that
the strings “peach” and “peace” are more similar than the strings “olive”
and “pickle.”

The next chapter discusses algorithms such as the edit distance algorithm
that let you study and manipulate strings.

Exercises
Asterisks indicate particularly difficult problems.

1. Expand the network program you wrote for the exercises in
Chapter 13 to implement the topological sorting algorithm.
2. In some applications you may be able to perform more than one
task at the same time. For example, in the kitchen remodeling
scenario, an electrician and plumber might be able to do their jobs
at the same time. How could you modify the topological sorting
algorithm to allow this sort of parallelism?
3. If you know the predicted length of each task, how can you
extend the algorithm you devised for Exercise 2 to calculate the
expected finish time for all the tasks?
4. The topological sorting algorithm described in this chapter uses
the fact that one of the tasks must have no prerequisites if the tasks
can be fully ordered. In network terms, its out-degree is 0. Can you
make a similar statement about nodes with an in-degree of 0? Does
that affect the algorithm's run time?
5. Expand the program you used in Exercise 1 to two-color a
network's nodes.
6. When using Rule 2 to simplify the network shown in Figure 14.4,
the example uses the nodes C, B, and H. List all the pairs of nodes
you could use if you used C for the middle node. In other words, if
node C plays the role of node K in Rule 2 terminology, what nodes
could you use for nodes M and N? How many different possible
ways could you use those pairs to simplify the network?
7. *Expand the program you used in Exercise 5 to perform an
exhaustive search to color a planar network using the fewest
possible colors. (Hint: First use the two-coloring algorithm to

484

quickly determine whether the network is two-colorable. If that
fails, you only need to try to three-color and four-color it.)
8. Use the program you used in Exercise 7 to find a four-coloring of
the network shown in Figure 14.5.
9. Expand the program you used in Exercise 5 to implement the
hill-climbing heuristic described in the section “Other Map-coloring
Algorithms.” How many colors does it use to color the networks
shown in Figures 14.5 and 14.6?
10. For the network shown in Figure 14.12 with source node A and
sink node I, draw the residual capacity network, find an augmenting
path, and update the network to improve the flows. Can you make
further improvements after that?

Figure 14.12 Use a residual capacity network to find an
augmenting path for this network.

11. **Expand the program you used in Exercise 9 to find the
maximal flow between a source and sink node in a capacitated
network.

485

12. Use the program you built for Exercise 11 to find an optimal
work assignment for the network shown in Figure 14.9. What is the
largest number of jobs that can be assigned?
13. To determine how robust a computer network is, you could
calculate the number of different paths between two nodes. How
could you use a maximal flow network to find the number of paths
that don't share any links between two nodes? How could you find
the number of paths that don't share links or nodes?
14. How many colors do you need to color a bipartite network?
How many colors do you need to color a work assignment network?
15. **Expand the program you built for Exercise 12 to find the
minimal flow cut between a source and sink node in a capacitated
network.
16. Use the program you built for Exercise 15 to find a minimal
flow cut for the network shown in Figure 14.12. What links are
removed, and what is the cut's total capacity?

486

Chapter 15

String Algorithms

String operations are common in many programs, so they have been
studied extensively, and many programming libraries have good string
tools. Because these operations are so important, the tools available to you
probably use the best algorithms available, so you are unlikely to beat
them with your own code.

For example, the Boyer-Moore algorithm described in this chapter lets
you find the first occurrence of a string within another string. Because this
is such a common operation, most high-level programming languages
have tools for doing this. Those tools probably use some variation of the
Boyer-Moore algorithm, so your implementation is unlikely to be much
better. In fact, many libraries are written in assembly language or at some
other very low level, so they may give better performance even if you use
the same algorithm in your code.

If your programming library includes tools to perform these tasks, use
them. The algorithms explained in this chapter are presented because they
are interesting, they are an important part of a solid algorithmic education,
and they provide examples of useful techniques that you may be able to
adapt for other purposes.

Matching Parentheses
Some string values, such as arithmetic expressions, can contain nested
parentheses. For proper nesting of parentheses, you can place a pair of
matching parentheses inside another pair of matching parentheses, but you
cannot place one parenthesis of a pair inside another matched pair. For
example, ()(()(())) is properly nested, but (() and (())) are not.

Graphically you can tell that an expression's parentheses are properly
nested if you can draw lines connecting left and right parentheses so every
parenthesis is connected to another, all the lines are on the same side (top
or bottom) of the expression, and no lines intersect. Figure 15.1 shows that
()(()(())) is properly nested but (() and (())) are not.

487

Figure 15.1 Lines connect, matching pairs of parentheses.

Algorithmically it is easy to see if parentheses are properly matched by
using a counter to keep track of the number of unmatched opening
parentheses. Initialize the counter to 0, and loop through the expression.
When you find an opening parenthesis, add 1 to the counter. When you
find a closing parenthesis, subtract 1 from the counter. If the counter ever
drops below 0, the parentheses are improperly nested. When you finish
checking the expression, if the counter is not 0, the parentheses are
improperly nested.

The following pseudocode shows the algorithm:

Boolean: IsProperlyNested(String: expression)
Integer: counter = 0
For Each ch In expression

If (ch == ‘(') Then counter = counter + 1
Else If (ch == ‘)') Then

counter = counter - 1
If (counter < 0) Then Return False

488

End If
Next ch
If (counter == 0) Then Return True
Else Return False

IsProperlyNested

For example, when the algorithm scans the expression ()(()(())), the
counter's values after reading each character are 1, 0, 1, 2, 1, 2, 3, 2, 1, 0.
The counter never drops below 0, and it ends at 0, so the expression is
nested properly.

Some expressions contain text other than parentheses. For example, the
arithmetic expression (8 × 3) + (20 / (7 – 3)) contains numbers, operators
such as × and +, and parentheses. To see if the parentheses are nested
properly, you can use the previous IsProperlyNested algorithm,
ignoring any characters that are not parentheses.

Evaluating Arithmetic Expressions
You can recursively define a fully parenthesized arithmetic expression as
one of the following:

• A literal value such as 4 or 1.75
• An expression surrounded by parentheses (expr) for some

expression expr
• Two expressions separated by an operator, as in expr1 + expr2 or

expr1 × expr2

For example, the expression 8 ×3 uses the third rule, with the two
expressions 8 and 3 separated by the operator ×. The values 8 and 3 are
both expressions according to the first rule.

You can use the recursive definition to create a recursive algorithm for
evaluating arithmetic expressions. The following steps describe the
algorithm at a high level:

1. If the expression is a literal value, use your programming
language's tools to parse it and return the result.
2. If the expression is of the form (expr), remove the outer
parentheses, recursively use the algorithm to evaluate expr, and
return the result.

489

3. If the expression is of the form expr1?expr2 for expressions
expr1 and expr2 and operator ?, recursively use the algorithm to
evaluate expr1 and expr2, combine those values appropriately for
the operator ?, and return the result.

The basic approach is straightforward. Probably the hardest part is
determining which of the three cases applies and breaking the expression
into two operands and an operator in case 3. You can do that by using a
counter similar to the one used by the IsProperlyNested algorithm
described in the preceding section.

When the counter is 0, if you find an operator, case 3 applies, and the
operands are on either side of the operator.

If you finish scanning the expression, and you don't find an operator when
the counter is 0, either case 1 or case 2 applies. If the first character is an
opening parenthesis, case 2 applies. If the first character is not an opening
parenthesis, case 1 applies.

Building Parse Trees
The algorithm described in the preceding section parses arithmetic
expressions and then evaluates them, but you might like to do other things
with an expression after you parse it. For example, suppose you need to
evaluate an expression that contains variables such as X many times for
different values of X, perhaps to draw a graph of the equation (X × X) – 7.
One approach would be to use the previous algorithm repeatedly to parse
and evaluate the expression, substituting different values for X.
Unfortunately, parsing text is relatively slow.

Another approach is to parsed the expression but not evaluate it right
away. Then you can evaluate the pre-parsed expression many times with
different values for X without needing to parse the expression again. You
can do this using an algorithm very similar to the one described in the
preceding section. Instead of making the algorithm combine the results of
recursive calls to itself, however, it builds a tree containing objects that
represent the expression.

For example, to represent multiplication, the algorithm makes a node with
two children, where the children represent the multiplication's operands.

490

Similarly, to represent addition, the algorithm makes a node with two
children, where the children represent the addition's operands.

You can build a class for each of the necessary node types. The classes
should provide an Evaluate method that calculates and returns the
node's value, calling the Evaluate method for its child nodes if it has
any.

Having built the parse tree, you can call the root node's Evaluate
method any number of times for different values of X.

Figure 15.2 shows the parse tree for the expression (X × X) – 7.

Figure 15.2 You can use parse trees to represent expressions such as (X ×
X) – 7.

Pattern Matching
The algorithms described in the preceding sections are useful and
effective, but they're tied to the particular application of parsing and
evaluating arithmetic expressions. Parsing is a very common task in
computer programming, so it would be nice to have a more general
approach you could use to parse other kinds of text.

For example, a regular expression is a string that a program can use to
represent a pattern for matching in a string. Programmers have defined
several different regular expression languages. To keep this discussion

491

reasonably simple, this section uses a language that defines the following
symbols:

• An alphabetic character such as A or Q represents that letter.
• The + symbol represents concatenation. For the sake of readability,

this symbol is often omitted, so ABC is the same as A + B + C.
However, it may be convenient to require the symbol to make it
easier for a program to parse the regular expression.

• The * symbol means the previous expression can be repeated any
number of times (including zero).

• The | symbol means the text must match either the previous or
following expression.

• Parentheses determine the order of operation.

For example, with this restricted language, the regular expression AB*A
matches strings that begin with an A, contain any number of Bs, and then
end with an A. That pattern would match ABA, ABBBBA, and AA.

More generally, a program might want to find the first occurrence of a
pattern within a string. For example, the string AABBA matches the
previous pattern AB*A starting at the second letter.

To understand the algorithms described here for regular expression
matching, it helps to understand deterministic finite automata (DFAs) and
nondeterministic finite automata (NFAs). The following two sections
describe DFAs and NFAs. The section after that explains how you can use
them to perform pattern matching with regular expressions.

DFAs
A deterministic finite automaton, also known as a deterministic finite state
machine, is basically a virtual computer that uses a set of states to keep
track of what it is doing. At each step, it reads some input and, based on
that input and its current state, moves into a new state. One state is the
initial state in which the machine starts. One or more states can be marked
as accepting states.

If the machine ends its computation in an accepting state, the machine
accepts the input. In terms of regular expression processing, if the

492

machine ends in an accepting state, the input text matches the regular
expression.

In some models it's convenient for the machine to accept its input if it ever
enters an accepting state.

You can represent a DFA with a state transition diagram, which is
basically a network in which circles represent states and directed links
represent transitions to new states. Each link is labeled with the inputs that
make the machine move into the new state. If the machine encounters an
input that has no corresponding link, then it halts in a non-accepting state.

For example, Figure 15.3 shows the state transitions for a DFA that
recognizes the pattern AB*A. The DFA starts in state 0. If it reads an A
character, it moves to state 1. If it sees any other character, the machine
halts in a nonaccepting state.

Figure 15.3 This network represents the state transitions for a DFA that
recognizes the pattern AB*A.

Next, if the DFA is in state 1 and reads a B, it follows the loop and returns
to state 1. If the DFA is in state 1 and reads an A, it moves to state 2.

State 2 is marked with a double circle to indicate that it is an accepting
state. Depending on how you are using the DFA, just entering this state
might make the machine return a successful match. Alternatively, it might
need to finish reading its input in that state, so if the input string contains
more characters, the match fails.

For another example, consider the state transition diagram shown in
Figure 15.4. This diagram represents a machine that matches a string that
consists of AB repeated any number of times or the string BA repeated
any number of times.

493

Figure 15.4 This network represents the state transitions for a DFA that
recognizes the pattern (AB)*|(BA)*.

Programmatically you can implement a DFA by making an object to
represent each of the states in the state transition diagram. When presented
with an input, the program moves from the current object to the object that
is appropriate for that input.

Often DFAs are implemented with a table showing the state transitions.
For example, Table 15.1 shows the state transitions for the state transition
diagram shown in Figure 15.3.

Table 15.1 A State Transition Table for AB*A

Note
DFAs aren't only useful for processing regular expressions. You can use them to model
the state of any system where it's convenient to specify the system's rules with a transition
diagram or transition table.

494

For example, an order processing system might track the state of the orders in the system.
You could give the states intuitive names such as Placed, Fulfilled, Shipped, Billed,
Canceled, Paid, and Returned. As events occur, the order's state would change
accordingly. For example, if the order is in the Placed state, and the customer decides to
cancel the order, the order moves to the Canceled state and stops its progress through the
system.

Building DFAs for Regular
Expressions
You can translate simple regular expressions into transition diagrams and
transition tables easily enough by using intuition, but for complicated
regular expressions, it's nice to have a methodical approach. Then you can
apply this approach to let a program do the work for you.

To convert a regular expression into a DFA state transition table, you can
build a parse tree for the regular expression and then use it to recursively
generate the corresponding state transitions.

The parse tree's leaves represent literal input characters such as A and B.
The state transition diagram for reading a single input character is just a
start state connected to an accepting final state with a link labeled by the
required character. Figure 15.5 shows the simple state transition diagram
for reading the input character B.

Figure 15.5 This transition diagram represents the simple regular
expression B.

The parse tree's internal nodes represent the operators +, *, and |.

495

To implement the + operator, take the accepting state of the left subtree's
transition diagram and make it coincide with the starting state of the right
subtree's transition diagram, so the machine must perform the actions of
the left subtree followed by the actions of the right subtree. For example,
Figure 15.6 shows the transition diagrams for the simple literal patterns A
and B on the left and the combined pattern A + B on the right.

Figure 15.6 The transition diagram on the right represents the regular
expression A + B.

To implement the * operator, make the single subexpression's accepting
state coincide with the subexpression's starting state. Figure 15.7 shows
the transition diagram for the pattern A + B on the left and the pattern (A
+ B)* on the right.

Figure 15.7 The transition diagram on the right represents the regular
expression (A + B)*.

496

Finally, to implement the | operator, make the starting and ending states of
the left and right subexpressions' transition diagram coincide. Figure 15.8
shows the transition diagram for the patterns A + B and B + A on the left
and the combined pattern (A + B) | (B + A) on the right.

Figure 15.8 The transition diagram on the right represents the regular
expression (A + B) | (B + A).

497

This approach works in this instance, but it has a serious drawback under
some conditions. What happens to the | operator if the two subexpressions
start with the same input transitions? For example, suppose the two
subexpressions are A + A and A + B. In that case, blindly following the
previous discussion leads to the transition diagram on the left in Figure
15.9. It has two links labeled A that leave state 0. If the DFA is in state 0
and encounters input character A, which link should it follow?

Figure 15.9 These transition diagrams represent the regular expression (A
+ A) | (A + B).

One solution is to restructure the diagram a bit, as shown on the right in
Figure 15.9, so that the diagrams for two subexpressions share their first
state (state 1). This works, but it requires some cleverness—something
that can be hard to build into a program. If the subexpressions were more
complicated, finding a similar solution might be difficult—at least for a
program.

One solution to this problem is to use an NFA instead of a DFA.

498

NFAs
A deterministic finite automaton is called deterministic because its
behavior is completely determined by its current state and the input it sees.
If a DFA using the transition diagram on the right side of Figure 15.8 is in
state 0 and reads the character B, it moves into state 2 without question.

A nondeterministic finite automaton (NFA) is similar to a DFA, except
that multiple links may be leaving a state for the same input, as shown on
the left in Figure 15.9. When that situation occurs during processing, the
NFA is allowed to guess which path it should follow to eventually reach
an accepting state. It's as if the NFA were being controlled by a
fortune-teller who knows what inputs will come later and can decide
which links to follow to reach an accepting state.

Of course, in practice a computer cannot really guess which state it should
move into to eventually find an accepting state. What it can do is try all
the possible paths. To do that, a program can keep a list of states it might
be in. When it sees an input, the program updates each of those states,
possibly creating a larger number of states. (Another way to think of this
is to regard the NFA as simultaneously being in all the states. If any of its
current states is an accepting state, the NFA as a whole is in an accepting
state.)

You can make one more change to an NFA's transitions to make it slightly
easier to implement. The operations shown in Figures 15.10 through 15.9
require that you make states from different subexpressions coincide—and
that can be awkward.

An alternative is to introduce a new kind of null transition that occurs
without any input. If the NFA encounters a null transition, it immediately
follows it.

Figure 15.10 Using an NFA and null transitions makes combining
subexpressions more straightforward.

499

Figure 15.10 shows how you can combine state transition machines for
subexpressions to produce more-complex expressions. Here the Ø
character indicates a null transition, and a box indicates a possibly
complicated network of states representing a subexpression.

The first part of Figure 15.10 shows a set of states representing some
subexpression. This could be as simple as a single transition that matches
a single input, as shown in Figure 15.5, or it could be a complicated set of
states and transitions. The only important feature of this construct from the
point of view of the rest of the states is that it has a single input state and a
single output state.

The second part of Figure 15.10 shows how you can combine two
machines, M1 and M2, by using the + operator. The output state from M1
is connected by a null transition to the input state of M2. By using a null
transition, you avoid the need to make M1's output state and M2's input
state coincide.

The third part of Figure 15.10 shows how you can add the * operator to
M1. M1's output state is connected to its input state by a null transition.
The * operator allows whatever it follows to occur any number of times,
including zero times, so another null transition allows the NFA to jump to
the accept state without matching whatever is inside the M1.

The final part of Figure 15.10 shows how you can combine two machines
M1 and M2 by using the | operator. The resulting machine uses a new input
state connected by null transitions to the input states of M1 and M2. The
output states of M1 and M2 are connected by null transitions to a final
output state for the new combined machine.

500

To summarize, you can follow these steps to make a regular expression
parser:

1. Build a parse tree for the regular expression.
2. Use the parse tree to recursively build the states for an NFA
representing the expression.
3. Start the NFA in state 0, and use it to process the input string one
character at a time.

String Searching
The previous sections explained how you can use DFAs and NFAs to
search for patterns in a string. Those methods are quite flexible, but they're
also relatively slow. To search for a complicated pattern, an NFA might
need to track a large number of states as it examines each character in an
input string one at a time.

If you want to search a piece of text for a target substring instead of a
pattern, there are faster approaches. The most obvious strategy is to loop
over all the characters in the text and see if the target is at each position.
The following pseudocode shows this brute-force approach:

// Return the position of the target in the text.
Integer: FindTarget(String: text, String: target)

For i = 0 To <last index of string>
// See if the target begins at position i.
Boolean: found_it = True
For j = 0 To <last index of target>

If (string[i + j] != target[j]) Then
found_it = False

Next j
// See if we found the target.
If (found_it) Then Return i

Next i
// If we got here, the target isn't present.
Return -1

End FindTarget

In this algorithm, variable i loops over the length of the text. For each
value of i, the variable j loops over the length of the target. If the text has

501

length N and the target has length M, the total run time is O(N × M). This
is simpler than using an NFA, but it's still not very efficient.

The Boyer-Moore algorithm uses a different approach to search for target
substrings much more quickly. Instead of looping through the target's
characters from the beginning, it examines the target's characters starting
at the end and works backwards towards the beginning.

The easiest way to understand the algorithm is to imagine the target
substring sitting below the text at a position where a match might occur.
The algorithm compares characters starting at the target's leftmost
character. If it finds a position where the target and text don't match, the
algorithm slides the target to the right to the next position where a match
might be possible.

For example, suppose you want to search the string A man a plan a
canal Panama for the target string Roosevelt. Consider Figure
15.11.

Figure 15.11 Searching A man a plan a canal Panama for
Roosevelt requires only three comparisons.

The algorithm first aligns the two strings so that they line up on the left
and compares the last character in the target to the corresponding
character in the text. At that position, the target's last character is t, and
the text's corresponding character is p. Those characters don't match, so
the algorithm slides the target to the right to find the next position where a
match is possible. The text's character p doesn't appear anywhere in the
target, so the algorithm slides the target to the right all the way past its
current location, nine characters to the right.

At the new position, the target's last character is t, and the text's
corresponding character is n. Again the characters don't match, so the

502

algorithm slides the target to the right. Again the text's character n doesn't
appear in the target, so the algorithm slides the target nine characters to
the right.

At the new position, the target's last character is t, and the text's
corresponding character is a. The characters don't match, so the algorithm
slides the target to the right. Again the text's character a doesn't appear in
the target, so the algorithm slides the target nine characters to the right.

At this point the target extends beyond the end of the text, so a match isn't
possible, and the algorithm concludes that the target is not present in the
text. The brute-force algorithm described earlier would have required 37
comparisons to decide that the target wasn't present, but the Boyer-Moore
algorithm required only three comparisons.

Things don't always work out this smoothly. For a more complicated
example, suppose you want to search the text abba daba
abadabracadabra for the target cadabra. Consider Figure 15.12.

Figure 15.12 Searching abba daba abadabracadabra for
cadabra requires 18 comparisons.

The algorithm starts with the two strings aligned at the left and compares
the target character a with the text character a. Those characters match, so
the algorithm considers the preceding characters, r and d. Those
characters do not match, so the algorithm slides the target to the right. In
this case, however, the text's character d does appear in the target, so

503

there's a chance that the d is part of a match. The algorithm slides the
target to the right until the last d in the target (shown with a gray box in
Figure 15.12) aligns with the d in the text.

At the new position, the target's last character is a, and the text's
corresponding character is a space. Those characters don't match, so the
algorithm slides the target to the right. The target has no space, so the
algorithm moves the target its full width of seven characters.

At the new position, the target's last character is a, and the text's
corresponding character is r. Those characters don't match, so the
algorithm slides the target to the right. The character r does appear in the
target, so the algorithm moves the target until its last r (shaded) aligns
with the r in the text.

At the new position, the target's last character is a, and the text's
corresponding character is a. These characters match, so the algorithm
compares the preceding characters to see if they match. Those characters
also match, so the algorithm continues comparing characters backwards
through the target and text. Six characters match. Not until the algorithm
considers the target's first character does it find a mismatch. Here the
target's character is c, and the text's corresponding character is b.

The target has a b, but it comes after the position in the target the
algorithm is currently considering. To align this b with the one in the text,
the algorithm would have to move the target to the left. All leftward
positions have already been eliminated as possible locations for the match,
so the algorithm doesn't do this. Instead, it shifts the target seven
characters to the right to the next position where a match could occur.

At this new position, the target's characters all match the corresponding
characters in the text, so the algorithm has found a match.

The following steps describe the basic Boyer-Moore algorithm at a high
level:

1. Align the target and text on the left.
2. Repeat until the target's last character is aligned beyond the end
of the text:

504

a. Compare the characters in the target with the corresponding
characters in the text, starting from the end of the target and
moving backwards toward the beginning.
b. If all the characters match, you've found a match.
c. Suppose character X in the text doesn't match the
corresponding character in the target. Slide the target to the
right until the X aligns with the next character with the same
value X in the target to the left of the current position. If no
such character X exists to the left of the position in the target,
slide the target to the right by its full length.

One of the more time-consuming pieces of this algorithm is Step 2c,
which calculates the amount by which the algorithm slides the target to the
right. You can make this step faster if you precalculate the amounts for
different mismatched characters in different positions within the target.

For example, suppose the algorithm compares target and text characters,
and the first mismatch is in position 3, where the text has the character G.
The algorithm would then slide the text to the right to align the G with the
first G that appears to the left of position 3 in the target.

Note
Variations on the Boyer-Moore algorithm use other, more complicated rules for shifting
the target string efficiently. For example, suppose the algorithm considers the following
alignment:

... what shall we draw today ...

abracadabra

The algorithm scans the target abracadabra backwards. The first two characters, a
and r, match. Then the text's d doesn't match the target's b. The previous algorithm
would shift the target to align the text's mismatched d like this:

... what shall we draw today ...
abracadabra

But you know that the text matched the following two characters, ra, so you know that
the text's characters dra cannot match the target's characters dab at this point.

Instead of shifting to align the text's mismatched d, you can shift to align the entire suffix
that has been matched so far—in this case, ra—to an earlier occurrence of those
characters in the target. In other words, you can move the target to place an earlier
occurrence of the characters ra where the matched suffix is right now, as in the
following.

505

... what shall we draw today ...
abracadabra

This lets the algorithm shift the target further, so it can make the search run faster.

For more information on variations on the Boyer-Moore algorithm, see
http://en.wikipedia.org/wiki/
Boyer-Moore_string_search_algorithm.

The Boyer-Moore algorithm has the unusual property that it tends to be
faster if the target string is longer because, when it finds a nonmatching
character, it can shift the target farther.

Calculating Edit Distance
The edit distance of two strings is the minimum number of changes you
need to make to turn the first string into the second. You can define the
changes you are allowed to make in several ways. For this discussion,
assume that you are only allowed to remove or insert letters. (Another
common change that isn't considered here is changing one letter into
another letter. You can achieve the same result by first deleting the first
character and then inserting the second.)

For example, consider the words “encourage” and “entourage.” It's fairly
easy to see that you can change “encourage” into “entourage” by
removing the “c” and inserting a “t.” That's two changes, so the edit
distance between those two words is 2.

For another example, consider the words “assent” and “descent.” One way
to convert “assent” into “descent” would be to follow these steps:

1. Remove “a” to get “ssent.”
2. Remove “s” to get “sent.”
3. Remove “s” to get “ent.”
4. Add “d” to get “dent.”
5. Add “e” to get “deent.”
6. Add “s” to get “desent.”
7. Add “c” to get “descent.”

506

http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
http://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm

This requires seven steps, so the edit distance is no more than 7, but how
can you tell if this is the most efficient way to convert “assent” to
“descent?” For longer words or strings (or, as you'll see later in this
section, for files), it can be hard to be sure you have found the best
solution.

One way to calculate the edit distance is to build an edit graph that
represents all the possible changes you could make to get from the first
word to the second. Start by creating an array of nodes similar to the one
shown in Figure 15.13.

Figure 15.13 This edit graph represents possible ways to convert “assent”
to “descent.”

507

The nodes across the top of the graph represent the letters in the first
word. The nodes down the left side represent the letters in the second
word. Create links between the nodes leading to the right and downward.

Add diagonal links ending at any locations where the corresponding letters
in both words are the same. For example, “assent” has an “e” in the fourth
position, and “descent” has an “e” in its second position, so a diagonal
link leads to the node below the “e” in “assent” and to the right of the first
“e” in “descent.”

508

Each link represents a transformation of the first word, making it more
similar to the second word. A link pointing right represents removing a
letter from the first word. For example, the link leading to the “a” on the
top row represents removing the “a” from “assent,” which would make
“ssent.”

A link pointing down represents adding a letter to the word. For example,
the link pointing to the “d” in the first column represents adding the letter
“d” to the current word, which would make “dassent.”

A diagonal link represents keeping a letter unchanged.

Any path through the graph from the upper-left corner to the lower-right
corner corresponds to a series of changes to convert the first word into the
second. For example, the bold arrows shown in Figure 15.13 represent the
changes described earlier to convert “assent” into “descent.”

Now finding a path through the edit graph that has the least cost is fairly
easy. Give each horizontal and vertical link a cost of 1, and give the
diagonal links a cost of 0. Now you just need to find the shortest path
through the network.

You can use the same techniques described in Chapter 13 to find the
shortest path, but this network has a special structure that lets you use an
easier method.

First, set the distances for the nodes in the top row to be their column
numbers. To get to the node in column 5 from the upper-left corner, you
need to cross five links, so that's its distance.

Similarly, set the distances for the nodes in the leftmost column to be their
row numbers. To get to the node in row 7, you need to cross seven links,
so that's its distance.

Now loop over the rows and, for each row, loop over its columns. The
shortest path to the node at position (r, c) comes via the node above at (r –
1, c), the node to the left at (r, c – 1), or, if a diagonal move is allowed, the
node diagonally up and to the left at (r – 1, c – 1). The distances to all
those nodes has already been set. So you can determine what the cost
would be for each of those possibilities and set the distance for the node at
(r, c) to be the smallest of those.

509

Once you know how to find the edit distance between two words or
strings, it's easy to find the edit distance between two files. You could just
use the algorithm as-is to compare the files character by character.
Unfortunately, that could require a very large edit graph. For example, if
the two files have about 40,000 characters (this chapter is in that
neighborhood), the edit graph would have about 40,000 × 40,000 = 1.6
billion nodes. Building that graph would require a lot of memory, and
using it would take a lot of time.

Another approach is to modify the algorithm so that it compares lines in
the files instead of characters. If the files each contain about 700 lines, the
edit graph would hold about 700 × 700 = 49,000 nodes. That's still a lot,
but it's much more reasonable.

Summary
Many programs need to examine and manipulate strings. Even though
programming libraries include many string manipulation tools, it's worth
knowing how some of those algorithms work. For example, using a
regular expression is much easier than writing your own, but the technique
of using DFAs and NFAs to process commands is useful in many other
situations. The Boyer-Moore string search algorithm is a well-known
algorithm that any student of algorithms should see at least once. Edit
distance algorithms let you determine how close two words, strings, or
even files are to each other and to find the differences between them.

One kind of string algorithm that isn't covered in this chapter is algorithms
used for encryption and decryption. The next chapter describes some of
the more important and interesting algorithms used to encrypt and decrypt
strings and other data.

Exercises
Asterisks indicate particularly difficult problems.

510

1. Write a program that determines whether an expression entered
by the user contains properly nested parentheses. Allow the
expression to contain other characters as well, as in (8 × 3) + (20 ÷
(7 – 3)).
2. Write a program that parses and evaluates arithmetic expressions
that contain real numbers and the operators +, –, *, and /.
3. How would you modify the program you wrote for Exercise 2 to
handle the unary negation operator, as in – (2 / 7)?
4. How would you modify the program you wrote for Exercise 2 to
handle functions such as sine, as in 3 * sine(45)?
5. Write a program that parses and evaluates boolean expressions
such as T&(–F|T), where T means TRUE, F means FALSE, &
means AND, | means OR, and – means NOT.
6. **Write a program similar to the one shown in Figure 15.14. The
program should build a parse tree for the expression entered by the
user and then graph it. (Depending on how your program draws the
graphics, the default coordinate system for the picture probably will
have (0, 0) in the upper-left corner, and coordinates will increase to
the right and down. The coordinate system may also use one unit in
the X and Y directions per pixel, which means the resulting graph
will be fairly small. Unless you have experience with graphics
programming, don't worry about scaling and transforming the result
to fit the form nicely.)

Figure 15.14 This program, GraphExpression, builds a parse tree
for an expression and then evaluates it many times to graph the
expression.

511

7. Build a state transition table for the DFA state transition diagram
shown in Figure 15.4.
8. Draw a state transition diagram for a DFA to match the regular
expression ((AB)|(BA))*.
9. Build a state transition table for the state transition diagram you
drew for Exercise 8.
10. *Write a program that lets the user type a DFA's state transitions
and an input string and determines whether the DFA accepts the
input string.
11. Do you think it would be better for a DFA to get its state
transitions from a table similar to the one shown in Table 15.1 or to
use objects to represent the states? Why?
12. How can you make a set of states for an NFA to see if a pattern
occurs anywhere within a string? For example, how could you
determine whether the pattern ABA occurred anywhere within a
long string? Draw the state transition diagram using a block to
represent the pattern's machine (as done in Figure 15.10).

512

13. Draw the parse tree for the expression (AB*)|(BA*). Then draw
the NFA network you get by applying the rules described in this
chapter to the parse tree.
14. Convert the NFA state transition diagram you drew for Exercise
13 into a simple DFA state transition diagram.
15. Suppose you want to search some text of length N for a target
substring of length M. Find an example where a brute-force search
requires O(N × M) steps.
16. Study the edit graph shown in Figure 15.13. What rule should
you follow to find the least-cost path from the upper-left corner to
the lower-right corner? What is the true edit distance?
17. *Write a program that calculates edit distance.
18. *Enhance the program you wrote for Exercise 17 to display the
edits required to change one string into another. Display deleted
characters as crossed out and inserted characters as underlined, as
shown in Figure 15.15.

Figure 15.15 By following the path through the edit graph, you can
show exactly what edits were needed to change one string into
another.

19. Is edit distance commutative? (In other words, is the edit
distance between word 1 and word 2 the same as the edit distance
between word 2 and word 1?) Why or why not?
20. *Modify the program you wrote for Exercise 17 to calculate the
edit distance between two files instead of the differences between
two strings.

513

21. *Modify the program you wrote for Exercise 18 to display the
differences between two files instead of the differences between
two strings.

514

Chapter 16

Cryptography

Cryptography is the study of methods for secure communication in the
presence of adversaries who want to intercept information. Early
cryptography, which was simply writing, worked because only a few
people could read. Later forms of cryptography used special alphabets
known only to the message sender and recipient. One of the earliest
known instances of this form of cryptography used nonstandard
hieroglyphics carved on monuments in Egypt circa 1900 BC.

Another form of cryptography used by the ancient Greeks and Spartans
used a wooden rod called a scytale (rhymes with “Italy”). A strip of
parchment was wrapped in a spiral around the rod, and words were written
on it. When the parchment was unwrapped, the letters were out of order.
To read the message, the recipient would wrap the parchment around a rod
with the same diameter.

These forms of cryptography are sometimes called “security through
obscurity” because they rely on the fact that the adversary doesn't know
the trick. If the adversary knows the secret alphabet or knows that the
message was written on a scytale, it's easy to reproduce the message.

More modern cryptographic techniques assume that the adversary knows
all about how the message was encrypted but doesn't know some small,
crucial piece of information called the key. The message's sender uses the
key to encrypt the message, and the recipient uses the key to decrypt it.
Because the method of encryption is known, an attacker who can find the
key can also decrypt the message.

This form of encryption, in which the attacker knows the encryption
method, is more powerful than security through obscurity, because sooner
or later the attacker will discover the encryption method.

This chapter describes some interesting and useful cryptographic
techniques. It starts by describing some classical cryptographic methods.
These are no longer considered secure, but that are interesting and
demonstrate a few useful concepts such as frequency analysis.

515

Cryptanalysis, the study of how to break encryptions to recover a
message, has been around as long as cryptography. The following sections
that describe classical methods also explain how you can break those
methods.

The later sections describe more secure techniques, such as permutation
networks and public-key encryption. A complete discussion of the latest
encryption methods, such as Advanced Encryption Standard (AES) and
Blowfish, is beyond the scope of this book, but the later sections should
give you a general idea of modern approaches.

Terminology
Before starting the study of cryptography, you should know a few basic
terms.

In cryptography, the goal is for a sender to send a message to a receiver
without a third party, usually called an adversary or attacker,
understanding the message. It is assumed that the attacker will intercept
the encrypted message, so only the encryption stands between the attacker
and understanding the message.

The unencrypted message is called plaintext. The encrypted message is
called ciphertext. Turning plaintext into ciphertext is called encrypting or
enciphering the plaintext. Recovering the plaintext from the ciphertext is
called decrypting or deciphering the ciphertext.

Technically, a cipher is a pair of algorithms used to encrypt and decrypt
messages.

Cryptanalysis is an attacker's study of methods for breaking an encryption.

To make working with smaller messages easier, they are usually
encrypted in all capital letters without spaces or punctuation. That means
the sender and receiver don't need to consider more characters than
necessary—an important consideration if you're encrypting and decrypting
messages by hand. This also removes clues that spaces and punctuation
might give an attacker.

516

To make encrypted messages a bit easier to read, they usually are written
in five-character chunks in a fixed-width font so that characters line up
nicely. For example, the message “This is a secret message” would be
written as THISI SASEC RETME SSAGE, and it might be encrypted
as something like TSRSH AESIS TASEM GICEE. The receiver may
need to spend a little extra time figuring out where to insert spaces and
punctuation.

Modern cryptographic algorithms encrypt and decrypt byte streams.
Therefore, they can include uppercase and lowercase letters, spaces,
punctuation, and even Unicode characters or images, depending on the
type of message. Those algorithms are good enough that the attacker
shouldn't be able to tell the spaces and punctuation from other characters
to get extra information about the message.

Transposition Ciphers
In a transposition cipher, the plaintext's letters are rearranged in some
specific way to create the ciphertext. The recipient puts the letters back in
their original positions to read the message.

These ciphers work partly with security through obscurity if the attacker
doesn't know what kind of transposition is being used. For example, the
scytale method described at the beginning of the chapter uses a
transposition caused by winding the parchment around a rod. It relies
solely on the fact that the attacker doesn't know it was the method used to
encrypt the message.

Most of these techniques also provide a key that gives some information
about the transposition. For example, the row/column transposition cipher
described in the next section uses the number of columns as a key. These
keys tend to allow a fairly limited set of values, however, so it isn't hard to
guess the key and break the encryption, particularly if you use a computer.

These ciphers are fairly easy to work through with paper and pencil and
can be a fun exercise. (If they're too easy, try working them out in your
head.)

517

Row/column Transposition
In a row/column transposition cipher, the plaintext message is written into
an array by rows. Then the ciphertext is read from the array by columns.
For example, Figure 16.1 shows the plaintext “THIS IS A SECRET
MESSAGE” written by rows into a four-row, five-column array.
(Normally, if the message doesn't fit exactly, you pad it with Xs or
random characters to make it fit.)

Figure 16.1 In a row/column transposition cipher, you write the plaintext
into an array by rows and then read the ciphertext by columns.

To get the cipher text, you read down each column. In this example, that
gives the ciphertext TSRSH AESIS TASEM GICEE. The key is the
number of columns used in the transposition.

To decode a ciphertext message, you basically undo the encryption
operation. You build the array, write the ciphertext characters into it by
columns, and then read the decoded message by rows.

If you're implementing this in a program, you don't really need to write the
text into an array. Instead, if the number of columns is num_columns,
you can simply read the characters from the plaintext string, skipping
num_columns between each character. The following pseudocode
shows this approach:

String: ciphertext = ""
For col = 0 To num_columns - 1

Integer: index = col
For row = 0 To num_rows - 1

518

ciphertext = ciphertext + plaintext[index]
index += num_columns

Next row
Next col

To decipher a message in a program, notice that decoding a message that
was originally written in an array that has R rows and C columns is the
same as encrypting a message with an array that has C rows and R
columns.

The preceding example writes a message into a 4 × 5 array. Figure 16.2
shows the ciphertext TSRSH AESIS TASEM GICEE written into a 5 × 4
array by rows. If you look at the figure, you'll see that you can read the
plaintext by columns.

Figure 16.2 Decrypting with an R × C array is equivalent to encrypting
with a C × R array.

Row/column transposition is easy and makes a fun exercise, but it's a
relatively easy system to break. The secret key is the number of columns
in the array. If you factor the length of the ciphertext, you can come up
with a few choices for the key. For instance, the previous ciphertext
contains 20 characters. The factors of 20 are 1, 2, 4, 5, 10, and 20, so those
are the possibilities for the number of columns. The 1 × 20 and 20 × 1
arrays make the ciphertext the same as the plaintext, so there are really
only two possibilities to check. If you simply try each value, you'll see that

519

the characters spell gibberish when you use four columns, but they spell
words when you use five columns.

The sender can try to make the attacker's life a little harder by adding
some extra random characters to the end of the ciphertext so that the
array's size isn't exactly determined by the message's length. For example,
you could add nine characters to the previous ciphertext to get a message
that is 29 characters long. Then it wouldn't be as obvious that the array
must have four or five columns.

Even so, you can easily make a program that tries every possible number
of columns between 2 and 1 less than the length of the ciphertext. When
the program sees that the corresponding decrypted text contains words, it
finds the key.

Column Transposition
In a column transposition cipher, the plaintext message is written into an
array by rows much as it is in a row/column transposition cipher. The
columns are then rearranged, and the message is read by rows.

Figure 16.3 shows the plaintext “THIS IS A SECRET MESSAGE”
written by rows into a four-row, five-column array on the left. The
columns are then rearranged. The numbers above the array on the left
show the ordering of the columns in the rearranged array on the right.
Reading the message by rows from the array on the right gives the
ciphertext HTIIS ASSCE ERTEM SSAEG.

Figure 16.3 In a column transposition cipher, you write the plaintext into
an array by rows, rearrange the columns, and read the ciphertext by rows.

520

In this case, the encryption's key is the number of columns in the array
plus the permutation of the columns. You could write the key for this
example as 21354.

A more intuitive way to store the key is in a word with a length equal to
the number of columns and with letters whose alphabetical order gives the
column permutation. For this example, the key could be CARTS. In this
word, the letter A comes first alphabetically, so its value is 1, the letter C
comes second alphabetically, so its value is 2, the letter R comes third
alphabetically, so its value is 3, and so on. Putting the letters' alphabetical
values in the order in which they appear in the word gives the numeric key
21354, and that gives the ordering of the columns. (In practice, you pick
the word first and then use it to determine the column ordering. You don't
pick an ordering and then try to come up with a word to match.)

To decrypt a message, you write the ciphertext into an array that has as
many columns as the keyword has letters. You then find the inverse
mapping defined by the letters' alphabetical ordering. In this example, the
numeric key 21354 means that the columns move as follows:

• Column 1 moves to position 2
• Column 2 moves to position 1
• Column 3 moves to position 3
• Column 4 moves to position 5
• Column 5 moves to position 4

Simply reverse that mapping so that
• Column 2 moves to position 1
• Column 1 moves to position 2
• Column 3 moves to position 3

521

• Column 5 moves to position 4
• Column 4 moves to position 5

Now you can rearrange the columns and read the plaintext by rows.

As is the case with a row/column transposition cipher, a program that
performs row transposition doesn't really need to write values into an
array; it just needs to keep careful track of where the characters need to
move. In fact, a program can use the inverse mapping described in the
preceding paragraphs to figure out which character goes in which position
of the ciphertext.

Suppose mapping is an array of integers that gives the column
transposition. For example, if column number 2 moves to position 1,
mapping[2] = 1. Similarly, suppose inverse_mapping is an
array that gives the inverse mapping, so, for this example,
inverse_mapping[1] = 2. Then the following pseudocode shows
how the program can encrypt the plaintext:

String: ciphertext = ""
For row = 0 to num_rows - 1

// Read this row in permuted order.
For col = 0 to num_columns - 1

Integer: index = row * num_columns +
inverse_mapping[col]

ciphertext = ciphertext + plaintext[index]
Next col

Next row

Notice that this pseudocode uses the inverse mapping to encrypt the
plaintext. To find the character that maps to a particular column number in
the ciphertext, it must use the inverse mapping to find the column from
which the character came.

You can use forward mapping to decrypt the ciphertext.

To attack a column transposition cipher, an attacker would write the
message in an array, with the number of columns given by the length of
the keyword. The attacker would then swap columns to try to guess the
proper ordering. If the array has C columns, there are C! possible
orderings of the columns, so this could require looking at a lot of
combinations. For example, 10 columns would result in 3,628,800
possible arrangements of columns.

522

That seems like a lot of possibilities, particularly if the attacker isn't using
a computer, but the attacker may be able to decrypt the message
incrementally. The attacker could start by trying to find the first five
columns in the plaintext. If the first five columns are correct, the first row
will show five characters of valid words. It may show a complete word or
at least a prefix of a word. The other rows may begin with partial words,
but after that they will also contain words or prefixes. There are only 10 ×
9 × 8 × 7 × 6 = 30,240 possible arrangements of five columns chosen from
10, so this is a lot fewer combinations to check, although it would still be
a daunting task.

Route Ciphers
In a route cipher, the plaintext is written into an array or some other
arrangement and then is read in an order determined by a route through
the array. For example, Figure 16.4 shows a plaintext message written into
an array by rows. The ciphertext is read by following the array's diagonals,
starting with the left diagonal, so the ciphertext is SRSSE ATATG
HSMEI EESCI.

Figure 16.4 In a route cipher, you write the plaintext into an array by rows
and then read the ciphertext in some other order.

In theory, the number of possible routes through the array is enormous. If
the array holds N entries, N! possible routes exist. The example shown in
Figure 16.4 has 20! ≈ 2.4 × 1018 possible routes.

523

However, a good route should be reasonably simple so that the receiver
can remember it. The diagonal route shown in Figure 16.4 is easy to
remember, but if the route jumps randomly all over the array, the receiver
would need to write it down, basically making the key as long as the
message. (Later in this chapter you'll see that a one-time pad also has a
key as long as the message, and it also changes the message's letters, so
the attacker cannot get extra information such as the frequency of the
different letters in the message.)

Some routes also leave large pieces of the message intact or reversed. For
example, an inward clockwise spiral starting in the upper-left corner is
easy to remember, but the first row of the message appears unscrambled in
the ciphertext. These sorts of routes give the attacker extra information
and may make it easier to figure out the route.

If you eliminate routes that cannot be easily remembered and routes that
include large sections of unscrambled plaintext, the number of available
routes is much smaller than the theoretical maximum.

Substitution Ciphers
In a substitution cipher, the letters in the plaintext are replaced with other
letters. The following sections describe four common substitution ciphers.

Caesar Substitution
About 2,100 years ago, Julius Caesar (100 BC–44 BC) used a simple
substitution cipher to encrypt messages he sent to his officers. In his
version of this cipher, he shifted each character in the message by three
letters in the alphabet. A became D, B became E, and so on. To decrypt a
message, the receiver subtracted 3 from each letter, so Z became W, Y
became V, and so on.

For example, the message “This is a secret message” with a shift of 3
becomes WKLVL VDVHF UHWPH VVDJH.

524

Julius Caesar's nephew Augustus used a similar cipher with a shift of 1
instead of 3. More generally, you can shift the letters in the plaintext by
any number of characters.

An attacker can try to decipher a message encrypted using this method by
examining the frequencies of the letters in the ciphertext. In English, the
letter E occurs much more often than the other letters. It occurs about
12.7% of the time. The next most common letter, T, occurs 9.1% of the
time. If the attacker counts the number of times each letter is used in the
ciphertext, the one that occurs most is probably an encrypted E. Finding
the number of characters between the ciphertext letter and E gives the shift
used to encrypt the message.

This attack works best with long messages, because short ones may not
have a typical distribution of letters.

Table 16.1 shows the number of occurrences of the letters in the ciphertext
WKLVL VDVHF UHWPH VVDJH.

Table 16.1 Frequency of Occurance of the Letters in the Example
Ciphertext

If you assume V is the encryption of the letter E, the shift must be 17.
Decrypting the message with that shift gives you FTUEU EMEQO
DQFYQ EEMSQ, which does not contain valid words.

If you assume the second-most-used character H is the encryption of E,
you get a shift of 3, and you can decode the original message.

Vigenère Cipher
One problem with the Caesar substitution cipher is that it uses only 26
keys. An attacker could easily try all 26 possible shift values to see which
one produces valid words. The Vigenère cipher improves on the Caesar
substitution cipher by using different shift values for different letters in the
message.

525

Note
The Vigenère cipher was originally described by Giovan Battista Bellaso in 1553, but it
was later attributed to Blaise de Vigenère in the 19th century, and the name stuck.

In the Vigenère cipher, a keyword specifies the shifts for different letters
in the message. Each letter in the keyword specifies a shift based on its
position in the alphabet. A indicates a shift of 0, B represents a shift of 1,
and so on.

To encrypt a message, you write the plaintext below a copy of the
keyword repeated as many times as necessary to have the same length as
the message. Figure 16.5 shows a message below the keyword ZEBRAS
repeated several times.

Figure 16.5 In a Vigenère cipher, repeat the keyword as many times as
necessary over the plaintext.

Now you can use the corresponding letters to produce the ciphertext. For
example, key letter Z represents a shift of 25, so the plaintext letter T
becomes S.

To make shifting the letters easier, you can use a “multiplication table”
like the one shown in Figure 16.6. To encrypt the plaintext letter T with
the key letter Z, you look in row T, column Z.

Figure 16.6 This table makes it easier to shift letters in a Vigenère cipher.

526

To decrypt a ciphertext letter, you look down the key letter's column until
you find the ciphertext letter. The row tells you the plaintext letter.

The simple frequency analysis that you can use to attack a Caesar
substitution cipher doesn't work with a Vigenère cipher because the letters
don't all have the same shift. You can, however, use the ciphertext's letter
frequencies to attack a Vigenère cipher.

Suppose the keyword is K letters long. In that case, every Kth letter has
the same offset. For example, the letters in positions 1, K + 1, 2 × K + 1,
and so forth have the same offset. Those letters are not the same as the
plaintext letters, but their relative frequencies are the same.

527

To begin the attack, you try guessing the key's length and looking at the
letters that have the same offset. For example, you try a key length of 2
and examine letters numbered 2, 4, 6, 8, and so forth. If the key's length
actually is 2, the letters' frequencies should look like those in normal
English (or whatever language you're using). In particular, a few letters
corresponding to plaintext letters such as E, S, and T should occur much
more often than other letters corresponding to plaintext letters such as X
and Q.

If the key's length is not 2, the letters' frequencies should be fairly
uniform, with no letters occurring much more often than the others. In that
case, you guess a new key length and try again.

When you find a key length that gives a frequency distribution that looks
something like the one for English, you look at the specific frequencies, as
you did for a Caesar substitution cipher. The letter that occurs most often
is probably an encrypted E.

Similarly, you look at the other letters with the same offsets to figure out
what their offset is. Basically, at this step you decrypt a Caesar
substitution cipher for each letter in the key.

When you're finished, you should have the offset for each letter in the key.
This is more work than the Caesar substitution cipher, but it is still
possible.

Simple Substitution
In a simple substitution cipher, each letter has a fixed replacement letter.
For example, you might replace A with H, B with J, C with X, and so
forth.

In this cipher, the key is the mapping of plaintext letters to ciphertext
letters. If the message can contain only the letters A through Z, 4.0 × 1026

mappings are possible.

If you're encrypting and decrypting messages by hand, you'll need to write
down the mapping.

If you're using a computer, you may be able to use a pseudorandom
number generator to re-create the mapping. The sender picks a number K,

528

uses it to initialize the pseudorandom number generator, and then uses the
generator to randomize the letters A through Z and produce the mapping.
The value K becomes the key. The receiver follows the same steps, using
K to initialize the random-number generator and generate the same
mapping the sender used.

It's easier to remember a single number than the entire mapping, but most
random-number generators have far fewer possible internal states than 4.0
× 1026. For example, if the number you use to initialize the
random-number generator is a signed integer, the key can have only about
2 billion values. That's still a lot, but a computer can easily try all possible
2 billion values to see which one produces valid words.

You can also use letter frequencies to make the process a little easier. If
the letter W appears most often in the ciphertext, it is probably an
encrypted E.

One-Time Pads
A one-time pad cipher is sort of like a Vigenère cipher where the key is as
long as the message. Every letter has its own offset, so you cannot use the
letters' frequencies in the ciphertext to find the offsets.

Because any ciphertext letter can have any offset, the corresponding
plaintext letter could be anything, so an attacker cannot get any
information from the ciphertext (except the message's length, and you can
even disguise that by adding extra characters to the message).

In a manual system, the sender and receiver each have a copy of a notepad
containing random letters. To encrypt a message, the sender uses the pad's
letters to encrypt the message, crossing out the pad's letters as they are
used so that they are never used again. To decrypt the message, the
receiver uses the same letters in the pad to decrypt the message, also
crossing out the letters as they are used.

Because each letter essentially has its own offset, this cipher is
unbreakable as long as the attacker doesn't get hold of a copy of the
one-time pad.

529

One drawback of the one-time pad cipher is that the sender and receiver
must have identical copies of the pad, and sending a copy securely to the
receiver can be as hard as sending a secure message. Historically, pads
were sent by couriers. If an attacker intercepted a courier, the pad was
discarded, and a new one was sent.

Note
If you're implementing a one-time pad in software, you can use the bitwise XOR operator
to encrypt each character instead of using letter shifts. If the bytes in the “pad” are
random values between 0 and 255, the encrypted results will also be random values
between 0 and 255.

Block Ciphers
In a block cipher, the message is broken into blocks, each block is
encrypted separately, and the encrypted blocks are combined to form the
encrypted message.

Many block ciphers also encrypt blocks by applying some sort of
transformation to the data many times in rounds. The transformation must
be invertible so that you can later decrypt the ciphertext. Giving the blocks
a fixed size means that you can design the transformation to work with a
block of that size.

Block ciphers also have the useful feature that they let cryptographic
software work with messages in relatively small pieces. For example,
suppose you want to encrypt a very large message, perhaps a few
gigabytes. If you use a column transposition cipher, the program needs to
jump throughout the message's location in memory. That can cause
paging, which slows down the program greatly.

In contrast, a block cipher can consider the message in pieces, each of
which fits easily in memory. The program may still need to page, but it
needs to load each piece of the message into memory only once instead of
many times.

The following sections describe some of the most common types of block
ciphers.

530

Substitution-Permutation Networks
A substitution-permutation network cipher repeatedly applies rounds
consisting of a substitution stage and a permutation stage. It helps to
visualize the stages being performed by machines in boxes that are called
substitution boxes (S-boxes) and permutation boxes (P-boxes).

An S-box takes a small part of the block and combines it with part of the
key to make an obfuscated result. To obscure the result as much as
possible, changing a single bit in the key should ideally change about half
of the bits in the result. For example, if an S-box works with 1 byte, it
might use the XOR operation to combine the first bit in the key with bits
1, 3, 4, and 7 in the text. The S-box would combine other key bits with the
message bits in different patterns. You could use different S-boxes for
different parts of the block.

A P-box rearranges the bits in the entire block and sends them to different
S-boxes. For example, bit 1 from the first S-box might go to the next
stage's bit 7 in the third S-box.

Figure 16.7 shows a three-round substitution-permutation network cipher.
The S-boxes S1, S2, S3, and S4 combine the key with pieces of the
message. (Note that each round could use different key information.) The
P-boxes all use the same permutation to send the outputs of the S-boxes
into the next round of S-boxes.

To decrypt a message, you perform the same steps in reverse. You run the
ciphertext through the inverted S-boxes, pass the results through the
inverted P-box, and repeat the necessary number of rounds.

One drawback of this method is that the S-boxes and P-boxes must be
invertible so that you can decrypt messages. The code that performs
encryption and decryption is also different, so you have more code to
write, debug, and maintain.

Note
The Advanced Encryption Standard (AES), which is probably the most commonly used
encryption method today, uses a substitution-permutation network. It uses a block size of
128 bits and a key size of 128, 192, or 256 bits, depending on the level of security you
want.

531

To get a feel for how many possible keys this creates, consider that 2128 ≈ 3.4 × 1038

and 2256 ≈ 1.2 × 1077. If an attacker had a computer that could test 1 billion keys per
second (and that seems unlikely for a typical personal computer given how complicated

the steps needed to encrypt a message are), it would take about 1.1 × 1022 years to check

all possible 128-bit keys and about 3.7 × 1060 years to check all possible 256-bit keys.

AES uses a different number of rounds depending on the key size: 10 rounds for 128-bit
keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys. The greater number of
rounds for larger keys obscures the message more and makes a brute-force attack slower.
For more information on AES, see http://en.wikipedia.org/wiki/
Advanced_Encryption_Standard.

Figure 16.7 In a substitution-permutation network cipher, substitution
stages alternate with permutation stages.

532

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

Feistel Ciphers
In a Feistel cipher, named after cryptographer Horst Feistel, the message
is split into left and right halves, L0 and R0. A function is applied to the
right half, and the XOR operation is used to combine the result with the
left half. The two halves are swapped, and the process is repeated for
some number of rounds.

The following steps describe the algorithm at a high level:

533

1. Split the plaintext into two halves, L0 and R0.
2. Repeat:

a. Set Li+1 = Ri.
b. Set Ri+1 = Li XOR F(Ri, Ki).

Here Ki is a subkey used for round i. This is a series of values generated
by using the message's key. For example, a simple approach would be to
split the key into pieces and then use the pieces in order, repeating them as
necessary. (You can think of a Vigenère cipher as doing this because it
uses each letter in the key to encrypt a single message character and then
repeats the key letters as needed.)

After you have finished the desired number of rounds, the ciphertext is
Li+1 plus Ri+1.

To decrypt a message, you split the ciphertext into two halves to get the
final values Li+1 and Ri+1. If you look at the preceding steps, you'll see that
Ri is Li+1. Therefore, because you already know Li+1, you already know Ri.

To recover Li, substitute Li+1 for Ri in the equation used in step 2b to get
this:

At this point you know Li+1, so you can calculate F(Li+1, Ki). If you
combine that with Ri+1, the F(Li+1, Ki) terms cancel, leaving only Li, so
you have recovered Li.

The following steps describe the decryption algorithm:
1. Split the ciphertext into two halves, Li+1 and Ri+1.
2. Repeat:

a. Set Ri = Li+1.
b. Set Li = Ri+1 XOR F(Li+1, Ki).

One advantage to Feistel ciphers is that decryption doesn't require you to
invert the function F. That means you can use any function for F, even
functions that are not easily invertible.

Another advantage of Feistel ciphers is that the code for encryption and
decryption is basically the same. The only real difference is that you use

534

the subkeys in reverse order to decrypt the ciphertext. That means you
need only one piece of code for encryption and decryption.

Note
The Data Encryption Standard (DES), which until recently was one of the most
commonly used encryption methods, is a Feistel cipher. It is generally no longer
considered secure enough for high-security applications, largely due to its relatively short
56-bit key. A variation of this method called Triple DES simply applies DES three times
to each block. Triple DES is believed to be secure in practice, although most highly
secure applications now use AES instead. For more information on DEA, see
http://en.wikipedia.org/wiki/Data_Encryption_Standard.

Public-Key Encryption and
RSA
Public-key encryption uses two separate keys: a public key and a private
key. The public key is published, so everyone (including the attacker)
knows it. The private key is known only to the receiver.

A sender uses the public key to encrypt the message and sends the result
to the receiver. Only the receiver, who has the private key, can decrypt the
message.

In contrast, other forms of encryption are sometimes called symmetric-key
encryption because you use the same key to encrypt and decrypt
messages.

One of the best-known public-key algorithms is RSA, which is named
after those who first described it: Ron Rivest, Adi Shamir, and Leonard
Adleman.

Math Warning
The RSA algorithm is very interesting and some understanding of how it works
may be useful in an interview. Unfortunately the algorithms used by RSA are also
very mathematical. If you don't like math, you may want to skip to the section
“Practical Considerations.”

535

http://en.wikipedia.org/wiki/Data_Encryption_Standard

You follow these steps to generate the public and private keys for the
algorithm:

1. Pick two large prime numbers p and q.
2. Compute n = p × q. Release this as the public key modulus.
3. Compute ϕ(n), where ϕ is Euler's totient function. (I'll say more
about this shortly.)
4. Pick an integer e where 1 ≤ e ≤ ϕ(n) and e and ϕ(n) are relatively
prime. (In other words, they have no common factors.) Release this
as the public key exponent e.
5. Find d, the multiplicative inverse of e modulo ϕ(n). In other
words, e × d ≡ 1 mod ϕ(n). (I'll also say more about this shortly.)
The value d is the private key.

The public key consists of the values n and e. To encrypt a numeric
message M, the sender uses the formula C = Me mod n.

To decrypt a message, the receiver simply calculates Cd mod n.

Note
Chapter 2 explains several of the techniques you need to implement RSA. It explains a
probabilistic test to determine whether a number is prime. To find a large prime, pick a
random large number, and see if it is prime. Repeat until you find one.

Chapter 2 also explains how to perform fast exponentiation and how to use the GCD
algorithm to quickly determine whether two numbers are relatively prime.

The strength of RSA relies on the fact that it is hard to factor very large
numbers. An attacker who can factor the public modulus n can recover the
primes p and q. From p and q, plus the public exponent e, the attacker can
then figure out the private key and break the cipher.

This is why the primes p and q must be large—to prevent an attacker from
easily factoring n.

Note
Although factoring is believed to be a hard problem, and lots of people have spent a huge
amount of effort studying it, there is no guarantee that someone won't eventually come up
with a way to factor large numbers quickly.

536

Euler's Totient Function
Step 3 of the key-generating algorithm requires you to calculate Euler's
totient function ϕ(n). The totient function, which is also called the phi
function, is a function that gives the number of positive integers less than
a particular number that are relatively prime to that number. For example,
ϕ(12) is 4 because there are four numbers less than 12 that are relatively
prime to it: 1, 5, 7, and 11.

Because a prime number is relatively prime to every positive integer less
than itself, ϕ(p) = p – 1 if p is prime.

It turns out that, if p and q are relatively prime, ϕ(p × q) = ϕ(p) × ϕ(p). If p
and q are both primes, they are relatively prime, so in step 3 ϕ(n) = ϕ(p ×
q) = ϕ(p) × ϕ(q) = (p – 1) × (q – 1). This is easy to compute.

For example, suppose p = 3 and q = 5. Then ϕ(15) = ϕ(3) × ϕ(5) = (3 – 1)
× (5 – 1) = 2 × 4 = 8. This is true because the positive integers smaller
than 15 that are relatively prime to 15 are the eight values 1, 2, 4, 7, 8, 11,
13, and 14.

Multiplicative Inverses
Step 5 of the key-generating algorithm requires you to find the
multiplicative inverse d of e modulo ϕ(n). In other words, find e so that e
× d ≡ 1 mod ϕ(n).

One simple way to find the inverse is to compute (1 × d) mod ϕ(n), (2 × d)
mod ϕ(n), (3 × d) mod ϕ(n), and so on until you discover a value that
makes the result 1.

You can also use an extended GCD algorithm to find the value e more
efficiently. See http://en.wikipedia.org/wiki/
Extended_Euclidean_algorithm for more information on that
algorithm.

An RSA Example
First, consider an example of picking the public and private keys:

537

http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

1. Pick two large prime numbers p and q.
For this example, let p = 17 and q = 29. In a real application, these
values should be much larger, such as 128-bit numbers when
written in binary, so they would have an order of magnitude of
about 1×1038.
2. Compute n = p × q. Release this as the public key modulus.
The public key modulus n is p × q = 493.
3. Compute ϕ(n) where ϕ is Euler's totient function.
The value ϕ(n) = (p – 1) × (q – 1) = 16 × 28 = 448.
4. Pick an integer e where 1 ≤ e ≤ ϕ(n) and e and ϕ(n) are relatively
prime.
For this example, you need to pick e where 1 ≤ e ≤ 448 and e and
448 are relatively prime. The prime factorization of 448 is 26 × 7, so
e cannot include the factors 2 or 7. For this example, let e = 3 × 5 ×
11 = 165.
5. Find d, the multiplicative inverse of e modulo ϕ(n). In other
words, d–1 ≡ e mod ϕ(n).
For this example, you must find the multiplicative inverse of 165
mod 448. In other words, find d such that d × 165 ≡ 1 mod 448. In
this example, 429 × 165 ≡ 1 mod 448, so the inverse is 429.
(Example program MultiplicativeInverse, which is included in the
downloads for this chapter, exhaustively finds inverses such as this
one. It tried values until it discovered that 429 worked.)

So the public exponent e = 165, the public modulus n = 493, and the secret
key d = 429.

Now suppose you want to encrypt the message value 321. The encrypted
value C would be C = Me mod n = 321165 mod 493. The ExponentiateMod
program, which is available for download on the book's web site as part of
the solution to Chapter 2's Exercise 11, calculates large exponentials
quickly. That program calculates that 321165 mod 493 = 359, so the
encrypted value is 359.

To decrypt the value 359, the receiver calculates Cd mod n. For this
example, that's 359429 mod 493. The ExponentiateMod program from
Chapter 2 calculates that 359429 mod 493 = 321, so the decrypted message
is 321 as it should be.

538

Practical Considerations
Generating good private keys and calculating big exponents can take some
time even if you use fast modular exponentiation. Remember that p and q
are very large numbers, so using private-key cryptography to encrypt a
long message in blocks small enough to be represented as numbers could
take quite a while.

To save time, some cryptographic systems use public-key encryption to
allow a sender and receiver to exchange a private key for use with
symmetric-key encryption.

Note
The popular program Pretty Good Privacy (PGP) uses public-key encryption for at least
part of its computation. To get a good level of obscurity in the ciphertext, a reasonable
message length, and acceptable speed, PGP actually processes messages with a series of
operations, including hashing, compression, public-key encryption, and private-key
encryption.For more information on PGP, see http://en.wikipedia.org/
wiki/Pretty_good_privacy.

Other Uses for
Cryptography
The algorithms described in this chapter focus on encrypting and
decrypting messages, but cryptography has other uses as well.

For example, a cryptographic hash function takes as an input a block of
data such as a file and returns a hash value that identifies the data. You
then can make the file and hash value available publically.

A receiver who wants to use the file can perform the same hashing
function to see if the new hash value matches the published one. If
someone has tampered with the file, the hash values should not match, and
the receiver knows that the file is not in its original form.

A good hash function should have the following properties:
• It should be easy to compute.

539

http://en.wikipedia.org/wiki/Pretty_good_privacy
http://en.wikipedia.org/wiki/Pretty_good_privacy

• It should be prohibitively difficult for an attacker to create a file
with a given hash value (so the attacker cannot replace the true file
with a fake one).

• It should be prohibitively difficult to modify the file without
changing its hash value.

• It should be prohibitively difficult to find two files with the same
hash value.

One application of cryptographic hashing is password verification. You
create a password, and the system stores its hash value. The system doesn't
store the actual password, so an attacker who breaks into the system
cannot steal the password.

Later, when you want to log into the system, you enter your password
again. The system hashes it and verifies that the new hash value matches
the one it has saved.

A digital signature is a cryptographic tool that is somewhat similar to
cryptographic hashing. If you want to prove that you wrote a particular
document, you sign it. Later, someone else can examine the document to
verify that you have signed it. If someone else modifies the document, that
person cannot sign it in your name.

Typically a digital signature system includes three parts:
• A key-generation algorithm that creates private and public keys
• A signing algorithm that uses the private key to sign a document
• A verification algorithm that uses a public key that you publish to

verify that you did sign the document

In a sense, a digital signature is the opposite of a private-key encryption
system. In a private-key encryption system, any number of senders can
use a public key to encrypt a message, and a single receiver uses a private
key to decrypt the message. In a digital signature, a single sender uses a
private key to sign a message, and then any number of receivers can use a
public key to verify the signature.

540

Summary
This chapter explained a few cryptographic algorithms. The simpler
forms, such as transposition and substitution ciphers, are not
cryptographically secure, but they provide some interesting exercises. Any
student of algorithms should also have some experience with these,
particularly Caesar and Vigenère ciphers.

The algorithms described later in the chapter explained how many of the
current state-of-the art cryptographic algorithms work. AES, which uses
substitution-permutation networks, and RSA, which uses public-key
encryption, are two of the most commonly used algorithms today.
Although DES is no longer considered completely secure, it uses a Feistel
cipher, which is still interesting and can produce secure encryption
schemes such as triple DES.

This chapter has covered only a tiny percentage of the cryptographic
algorithms that have been studied. For more information, search online or
see a book on cryptography. Two places you can start your search online
include http://en.wikipedia.org/wiki/Cryptography
and http://mathworld.wolfram.com/
Cryptography.html. If you prefer a book, I highly recommend
Applied Cryptography: Protocols, Algorithms, and Source Code in C,
Second Edition by Bruce Schneier (Wiley, 1996). It describes a huge
number of algorithms for encryption and decryption, digital signatures,
authentication, secure elections, and digital money.

All of these algorithms rely on the fact that you can perform some
calculations relatively easily if you know the key and an attacker cannot
perform the same operation without knowing the key. For example, in
RSA the receiver can easily decrypt messages, but an attacker cannot
without factoring the product of two large prime numbers. It is believed
that factoring large numbers is very difficult, so an attacker cannot break
an RSA encryption.

In the study of algorithms, there are two extremely important sets: P and
NP. The first set includes problems that are relatively easy to solve, such
as multiplying two numbers or searching a binary tree for a piece of
information. The second set includes much harder problems, such as

541

http://en.wikipedia.org/wiki/Cryptography
http://mathworld.wolfram.com/Cryptography.html
http://mathworld.wolfram.com/Cryptography.html

solving the bin packing, knapsack, and traveling salesman problems
described in Chapter 12.

The next chapter discusses P and NP and explains some of the interesting
questions about these important classes of problems that remain
unanswered.

Exercises
1. Write a program that uses a row/column transposition cipher to
encrypt and decrypt messages.
2. Write a program that uses a column transposition cipher to
encrypt and decrypt messages.
3. A column transposition cipher uses the relative alphabetic order
of its key's letters to determine the column mapping. What happens
if a key contains duplicated letters, as in PIZZA or BOOKWORM?
How can you solve that problem? Does this approach have any
benefits?
4. A column transposition cipher swaps the columns in a message
written into an array. Would you gain extra security by swapping
both columns and rows?
5. Write a program similar to a column transposition cipher that
swaps both columns and rows.
6. Write a program that uses a Caesar substitution cipher to encrypt
and decrypt messages. What is the encryption of “Nothing but
gibberish” with a shift of 13?
7. *Write a program that displays the frequencies of occurrence of
the letters in a message. Sort the results by frequency, and for each
letter, display the offset that would map E to that letter.
Then use that program and the program you wrote for Exercise 6 to
decipher the message KYVIV NRJRK ZDVNY VETRV JRIJL
SJKZK LKZFE NRJKY VJKRK VFWKY VRIK. What is the
encryption's offset?
8. Write a program that uses a Vigenère cipher to encrypt and
decrypt messages. Use the program to decrypt the ciphertext

542

VDOKR RVVZK OTUII MNUUV RGFQK TOGNX VHOPG
RPEVW VZYYO WKMOC ZMBR with the key VIGENERE.
9. After you have used all the letters in a one-time pad, why can't
you start over and use the letters again?
10. Suppose you're using a large one-time pad to send and receive
many messages with another person, and one of the messages you
receive decrypts into gibberish. What might have happened, and
what can you do about it?
11. When using a one-time pad, suppose you send ciphertext
messages together with the index of the first letter used to encrypt
them. Would that compromise the encryption?
12. Write a program that uses a pseudorandom one-time pad. Rather
making a truly random one-time pad, make the program use a
pseudorandom number generator to make a pseudorandom pad
when it starts. As you encrypt and decrypt messages, make the
program keep track of the characters that have been used for
encryption and decryption.
13. Explain how a cryptographically secure random-number
generator is equivalent to an unbreakable encryption scheme. In
other words, if you have a cryptographically secure random-number
generator, how could you use it to create an unbreakable encryption
scheme, and vice versa?
14. The lengths and timing of messages can sometimes give
information to an attacker. For example, an attacker might notice
that you always send a long message before an important event such
as a dignitary visiting or a large stock purchase. How you can avoid
giving that sort of information to an attacker?
15. Suppose you're using RSA with the primes p = 107, q = 211,
and e = 4,199. In that case, what are n, ϕ(n), and d? What is the
encryption of the value 1,337? What is the decryption of 19,905?
(You may want to use the ExponentiateMod program from Chapter
2. You may also want to write a program to find inverses in a
modulus, or you can use the MultiplicativeInverse program
included in this chapter's downloads.)

543

Chapter 17

Complexity Theory

An algorithm's performance is always important when you try to solve a
problem. An algorithm won't do you much good if it takes too long or
requires too much memory or other resources to actually run on a
computer.

Computational complexity theory, or just complexity theory, is the closely
related study of the difficulty of computational problems. Rather than
focusing on specific algorithms, complexity theory focuses on problems.

For example, the mergesort algorithm described in Chapter 6 can sort a
list of N numbers in O(N log N) time. Complexity theory asks what you
can learn about the task of sorting in general, not what you can learn about
a specific algorithm. It turns out you can show that any sorting algorithm
that sorts by using comparisons must use at least N × log(N) time in the
worst case.

N log N Sorting
To understand why any algorithm that uses comparisons to sort a list must use at
least N × log(N) time in the worst case, suppose you have an array of N unique
items. Because they are unique, there are N! possible ways you can arrange them.
To look at this in a different way, depending on what the values in the array are,
there are N! ways the algorithm might need to rearrange the items to put them in
sorted order. That means the algorithm must be able to follow N! possible paths of
execution to produce every possible result.

The only tool the algorithm can use for branching into different paths of execution
is to compare two values. So you can think of the possible paths of execution as a
binary tree in which each node represents a comparison and each leaf node
represents a final arrangement of the items in the array.

There are N! possible arrangements of the items in the array, so the execution tree
must have N! leaf nodes. Because this is a binary tree, it has height log2(N!). Then
log2(N!) = log2(N) + log2(N – 1) + log2(N – 2) + ... + log2(2). Half of these terms
(and that makes N ÷ 2 terms) are at least log2(N ÷ 2), so log2(N!) ≥ N ÷ 2 ÷
log2(N ÷ 2), which is of the order N × log(N).

Complexity theory is a large and difficult topic, so there's no room here to
cover it fully. However, every programmer who studies algorithms should
know at least something about complexity theory in general and the two

544

sets P and NP in particular. This chapter introduces complexity theory and
describes what these important classes of problems are.

Notation
One of the first topics covered in this book was Big O notation. Chapter 1
described Big O notation somewhat intuitively by saying it describes how
an algorithm's worst-case performance increases as the problem's size
increases.

For most purposes, that definition is good enough to be useful, but in
complexity theory Big O notation has a more technical definition. If an
algorithm's run time is f(N), the algorithm has Big O performance of g(N)
if f(N) < g(N) × k for some constant k and for N large enough. In other
words, the function g(N) is an upper bound for the actual run time
function f(N).

Two other notations similar to Big O notations are sometimes useful when
discussing algorithmic complexity. Big Omega notation, written Ω(g(N)),
means the run time function is bounded below by the function g(N). For
example, as explained a moment ago, N log(N) is a lower bound for
algorithms that sort by using comparisons, so those algorithms are Ω(N
log N).

Big Theta notation, written Θ(g(N)), means the run time function is
bounded both above and below by the function g(N). For example, the
mergesort algorithm's run time is bounded above by O(N log N), and the
run time of any algorithm that sorts by using comparisons is bounded
below by Ω(N log N), so mergesort has performance Θ(N log N).

In summary, Big O notation gives an upper bound, Big Omega (Ω) gives a
lower bound, and Big Theta (Θ) gives an upper and lower bound.

Note that some algorithms have different upper and lower bounds. For
example, like all algorithms that sort by using comparisons, quicksort has
a lower bound of Ω(N log N). In the best and expected cases, quicksort's
performance actually is Ω(N log N). In the worst case, however,
quicksort's performance is O(N2). The algorithm's lower and upper bounds
are different, so no function gives quicksort a Big Theta notation. In

545

practice, however, quicksort is often faster than algorithms such as
mergesort that are tightly bounded by Θ(N log N), so it is still a popular
algorithm.

Complexity Classes
Algorithmic problems are sometimes grouped into classes of algorithms
that have similar run times (or space requirements) when running on a
certain type of hypothetical computer.

The two most common kinds of hypothetical computers are deterministic
and nondeterministic.

A deterministic computer's actions are completely determined by a finite
set of internal states (the program's variables and code) and its input. In
other words, if you feed a certain set of inputs into the computer, the
results are completely predictable. (More technically, the “computer” used
for this definition is a Turing machine fairly similar to the DFAs described
in Chapter 15.)

Turing Machines
The concept of a Turing machine was invented by Alan Turing in 1936 (although
he called it an “a-machine”). The idea was to make a conceptual machine that was
extremely simple so that you could prove theorems about what such a machine
could and could not compute.

A Turing machine is a simple finite automaton that uses a set of internal states that
determine what the machine does as it reads its input. This is very similar to the
DFAs and FNAs described in Chapter 15. The main difference is that the Turing
machine's input is given as a string of 0s and 1s on a single-ended infinitely long
tape that the machine can read from and write to. When the machine reads a 0 or 1
from the tape, the machine's states determine the following:

• Whether the machine should write a 0 or 1 onto the tape's current position
• Whether the machine's “read/write head” moves left, moves right, or stays in

the same position on the tape
• The new state the machine should enter

Despite its simplicity, a Turing machine provides a fairly good model of actual
computers, although creating a Turing machine to simulate a complicated program
can be quite hard.

546

Turing machines have several variations. Some use a tape that is infinitely long in
both directions. Others use multiple tapes and multiple read/write heads. Some are
nondeterministic, so they can be in more than one state at the same time. Some
allow null transitions so that the machine can move to a new state without reading
anything.

One of the interesting results of studying Turing machines is that all these
different kinds of machines have the same power. In other words, they can all
perform the same computations.

For more information on Turing machines, see
http://en.wikipedia.org/wiki/Turing_machine.

In contrast, a nondeterministic computer is allowed to be in multiple states
at one time. This is similar to how the NFAs described in Chapter 15 can
be in multiple states at once. Because the nondeterministic machine can
follow any number of paths through its states to an accepting state, all it
really needs to do is use the input on all the possible states it could be in
and verify that one of the paths of execution works. Essentially (and less
precisely), that means it can guess the correct solution and then simply
verify that the solution is correct.

Note that a nondeterministic computer doesn't need to prove negative
results. If there is a solution, the computer is allowed to guess the solution
and verify it. If there is no solution, the computer doesn't need to prove
that.

For example, to find the prime factors for an integer, a deterministic
computer would need to somehow find the factors, perhaps by trying all
possible factors up to the number's square root or by using a sieve of
Eratosthenes. (See Chapter 2 for more information on those methods.)
This would take a very long time.

In contrast, a nondeterministic computer can guess the factorization and
then verify that it is correct by multiplying the factors together to see that
the product is the original number. This would take very little time.

After you understand what the terms deterministic and nondeterministic
mean in this context, understanding most of the common complexity
classes is relatively easy. The following list summarizes the most
important deterministic complexity classes:

• DTIME(f(N))—Problems that can be solved in f(N) time by a
deterministic computer. These problems can be solved by some

547

http://en.wikipedia.org/wiki/Turing_machine

algorithm with run time O(f(N)) for some function f(N). For
example, DTIME(N log N) includes problems that can be solved in
O(N log N) time, such as sorting by using comparisons.

• P—Problems that can be solved in polynomial time by a
deterministic computer. These problems can be solved by some
algorithm with run time O(NP) for some power P no matter how
large, even O(N1000).

• EXPTIME (or EXP)—Problems that can be solved in exponential
time by a deterministic computer. These problems can be solved by
some algorithm with run time O(2f(N)) for some polynomial
function f(N).

The following list summarizes the most important nondeterministic
complexity classes:

• NTIME(f(N))—Problems that can be solved in f(N) time by a
deterministic computer. These problems can be solved by some
algorithm with run time O(f(N)) for some function f(N). For
example, NTIME(N2) includes problems in which an algorithm can
guess the answer and verify that it is correct in O(N2) time.

• NP—Problems that can be solved in polynomial time by a
nondeterministic computer. For these problems, an algorithm
guesses the correct solution and verifies that it works in polynomial
time O(NP) for some power P.

• NEXPTIME (or NEXP)—Problems that can be solved in
exponential time by a nondeterministic computer. For these
problems, an algorithm guesses the correct solution and verifies
that it works in exponential time O(2f(N)) for some polynomial
function f(N).

Similarly, you can define classes of problems that can be solved with
different amounts of available space. These have the rather predictable
names DSPACE(f(N)), PSPACE (polynomial space), EXPSPACE
(exponential space), NPSPACE (nondeterministic polynomial space), and
NEXPSPACE (nondeterministic exponential space).

Some relationships among these classes are known. For example, P ⊆ NP.
(The ⊆ symbol means “is a subset of,” so this statement means “P is a
subset of NP.”) To see why this is true, suppose a problem is in P. Then
there is a deterministic algorithm that can find a solution to the problem in

548

polynomial time. In that case, you can use the same algorithm to solve the
problem with a nondeterministic computer. If the algorithm works—in
other words, if the solution it finds must be correct—that trivially proves
the solution is correct, so the nondeterministic algorithm works too.

Some of the other relationships are less obvious. For example, PSPACE =
NSPACE, and EXPSPACE = NEXSPACE.

The most profound question in complexity theory is, does P equal NP?
Many problems, such as sorting, are known to be in P. Many other
problems, such as the knapsack and traveling salesman problems
described in Chapter 12, are known to be in NP. The big question is, are
the problems in NP also in P?

Lots of people have spent a huge amount of time trying to determine
whether these two sets are the same. No one has discovered a polynomial
time deterministic algorithm to solve the knapsack or traveling salesman
problem, but that doesn't prove that no such algorithm is possible.

One way you can compare the difficulty of two algorithms is by reducing
one to the other, as described in the next section.

Reductions
To reduce one problem to another, you must come up with a way for the
solution to one problem to give you the solution to the other. If you can do
that within a certain amount of time, the maximum run time of the two
algorithms is the same within the amount of time you spent on the
reduction.

For example, you know that prime factoring is in NP and that sorting is in
P. Suppose you could find an algorithm that can reduce factoring into a
sorting problem, and the reduction takes only polynomial time. In that
case, you could solve factoring problems in polynomial time by solving
the corresponding sorting problem. (Of course, no one knows how to
reduce factoring to sorting. If someone had discovered such a reduction,
factoring wouldn't be as hard as it is.)

549

Polynomial time reductions are particularly important because they let you
reduce many problems in NP to other problems in NP. In fact, there are
some problems to which every problem in NP can be reduced. Those
problems are called NP-complete.

The first known NP-complete problem was the satisfiability problem
(SAT). In this problem, you are given a boolean expression that includes
variables that could be true or false, such as (A AND B) OR (B AND
NOT C). The goal is to determine whether there is a way to assign the
values true and false to the variables to make the statement true.

The Cook-Levin theorem (or just Cook's theorem) proves that SAT is
NP-complete. The details are rather technical (see
http://en.wikipedia.org/wiki/Cook-Levin_theorem
for details), but the basic ideas aren't too confusing.

To show that SAT is NP-complete, you need to do two things: Show that
SAT is in NP, and show that any other problem in NP can be reduced to
SAT.

SAT is in NP because you can guess the assignments for the variables and
then verify that those assignments make the statement true.

Proving that any other problem in NP can be reduced to SAT is the tricky
part. Suppose a problem is in NP. In that case, you must be able to make a
nondeterministic Turing machine with internal states that let it solve the
problem. The idea behind the proof is to build a boolean expression that
says the inputs are passed into the Turing machine, the states work
correctly, and the machine stops in an accepting state.

The boolean expression contains three kinds of variables that are named
Tijk, Hik, and Qqk for various values of i, j, k, and q. The following list
explains each variable's meaning:

• Tijk is true if tape cell i contains symbol j at step k of the
computation.

• Hik is true if the machine's read/write head is on tape cell i at step k
of the computation.

• Qqk is true if the machine is in state q at step k of the computation.

The expression must also include some terms to represent how a Turing
machine works. For example, suppose the tape can hold only 0s and 1s.

550

http://en.wikipedia.org/wiki/Cook-Levin_theorem

Then the statement (T001 AND NOT T011) OR (NOT T001 AND T011)
means that cell 0 at step 1 of the computation contains either a 0 or a 1 but
not both.

Other parts of the expression ensure that the read/write head is in a single
position at each step of the computation, that the machine starts in state 0,
that the read/write head starts at tape cell 0, and so on.

The full boolean expression is equivalent to the original Turing machine
for the problem in NP. In other words, if you set the values of the
variables Tijk to represent a series of inputs, the truth of the boolean
expression tells you whether the original Turing machine would accept
those inputs.

This reduces the original problem to the problem of determining whether
the boolean expression can be satisfied so that SAT is NP-complete.

Once you have found one problem that is NP-complete, such as SAT, you
can prove that other problems are NP-complete by reducing them to the
first problem.

If problem A and B can be reduced to problem B in polynomial time, you
can write A ≤p B.

The following sections provide examples that reduce one problem to
another.

3SAT
The 3SAT problem is to determine whether a boolean expression in
three-term conjunctive normal form can be satisfied. Three-term
conjunctive normal form (3CNF) means that the boolean expression
consists of a series of clauses combined with AND and NOT, and that
each clause combines exactly three variables with OR and NOT. For
example, the following statements are all in 3CNF:

• (A OR B OR NOT C) AND (C OR NOT A OR B)
• (A OR C OR C) AND (A OR B OR B)
• (NOT A OR NOT B OR NOT C)

551

Clearly 3SAT is in NP because, as is the case with SAT, you can guess an
assignment of true and false to the variables and then check whether the
statement is true.

With some work, you can convert any boolean expression in polynomial
time into an equivalent expression in 3CNF. That means SAT is
polynomial-time reducible to SAT. Because SAT is NP-complete, 3SAT
must also be NP-complete.

Bipartite Matching
A bipartite graph is one in which the nodes are divided into two sets and
no link connects two nodes in the same set, as shown in Figure 17.1.

Figure 17.1 In a bipartite graph, the nodes are divided into two sets, and
links can only connect nodes in one set to nodes in the other.

552

In the bipartite graph, a matching is a set of links, no two of which share a
common end point..

In the bipartite matching problem, given a bipartite graph and a number k,
is there a matching that contains at least k links?

The section “Work Assignment” in Chapter 14 explained how you could
use a maximal flow problem to perform work assignment. Work
assignment is simply a bipartite matching between nodes representing
employees and nodes representing jobs, so that algorithm also solves the
bipartite matching problem.

Add a source node, and connect it to all the nodes in one set. Create a sink
node, and connect all the nodes in the other set to it. Now the maximal
flow algorithm finds a maximal bipartite matching. After you find the
matching, compare the maximal flow to the number k.

NP-Hardness
A problem is NP-complete if it is in NP and every other problem in NP is
polynomial-time reducible to it. A problem is NP-hard if every other
problem in NP is polynomial-time reducible to it. The only difference
between NP-complete and NP-hard is that an NP-hard problem need not
be in NP.

Note that all NP-complete problems are NP-hard, plus they are in NP.

Being NP-hard in some sense means the problem is at least as hard as any
problem in NP, because you can reduce any problem in NP to it.

You can show that a problem is NP-complete by showing it is
polynomial-time reducible to an NP-complete problem. Similarly, you can
show that a problem is NP-hard by showing it is polynomial-time
reducible to an NP-hard problem.

553

Detection, Reporting, and
Optimization Problems
Many interesting problems come in three forms: detection, reporting, and
optimization. The detection problem asks if a solution of a given quality
exists. The reporting problem asks you to find a solution of a given
quality. The optimization problem asks you to find the best possible
solution.

For example, in the subset sum problem, you are given a set of numbers,
and there are three associated problems:

• Detection—Is there a subset of the numbers that adds up to a
specific value k?

• Reporting—Find a subset of the numbers that adds up to the
specific value k, if such a subset exists.

• Optimization—Find a subset of the numbers with a total as close to
the specific value k as possible.

(A variation on the subset sum problem asks you to find a subset with
values that total 0.)

At first some of these problems may seem easier than others. For example,
the detection problem only asks you to prove that a subset adds up to 0.
Because it doesn't make you find subsets like the reporting problem does,
you might think the detection problem is easier. In fact, you can use
reductions to show that the three forms of problems have the same
difficulty, at least as far as complexity theory is concerned.

To do that, you need to show four reductions:
• Detection ≤p Reporting
• Reporting ≤p Optimization
• Reporting ≤p Detection
• Optimization ≤p Reporting

Reductions are transitive, so the first two reductions show that Detection
≤p Reporting ≤p Optimization, and the second two reductions show that
Optimization ≤p Reporting ≤p Detection.

554

Detection ≤p Reporting
The reduction Detection ≤p Reporting is relatively obvious. If you have an
algorithm for reporting subsets, you can use it to detect subsets. For a
value k, use the reporting algorithm to find a subset that adds up to k. If
the algorithm finds one, the answer to the detection problem is, “Yes, such
a subset exists.”

For a specific example, suppose ReportSum is a reporting algorithm for
the subset sum problem. In other words, ReportSum(k) returns a subset
with sum k if such a subset exists. Then DetectSum(k) can simply call
ReportSum(k) and return true if ReportSum(k) returns a subset.

Reporting ≤p Optimization
The reduction Reporting ≤p Optimization also is fairly obvious. Suppose
you have an algorithm for finding the optimal solution. Then use it to find
an optimal solution. If that solution is within the value k specified by the
reporting problem, the reporting problem can return the solution found by
the optimization algorithm. If the solution found by the optimization
problem is not within the value k, the reporting algorithm should return
false.

For a specific example, suppose OptimizeSum(k) returns a subset with a
total as close as possible to the value k. Then ReportSum(k) can call
OptimizeSum(k) and see if the returned subset's total is k. If the total is k,
ReportSum(k) returns that subset. If the total is not k, ReportSum(k)
returns nothing to indicate that no such subset exists.

Reporting ≤p Detection
The reduction Reporting ≤p Detection is less obvious than the previous
reductions. First, use the detection algorithm to see if a solution is
possible. If there is no solution, the reporting algorithm doesn't need to do
anything.

If a solution is possible, simplify the problem somehow to give an
equivalent problem, and then use the detection algorithm to see if a

555

solution is still possible. If a solution no longer exists, remove the
simplification, and try a different one. When you have tried all possible
simplifications, and none of them will work, whatever is left must be the
solution that the reporting algorithm should return.

For a specific example, suppose DetectSum(k) returns true if there is a
subset with total value equal to k. The following pseudocode shows how
to use that algorithm to build a ReportSum algorithm:

1. Use DetectSum(k) on the whole set to see if a solution is
possible. If no solution is possible, the ReportSum algorithm returns
that fact and is done.
2. For each value Vi in the set:

a. Remove Vi from the set, and call DetectSum(k) for the
remaining set to see if there is still a subset with total value k.
b. If DetectSum(k) returns false, restore Vi to the set, and
continue the loop at Step 2.
c. If DetectSum(k) returns true, leave Vi out of the set, and
continue the loop at Step 2.

When the loop in Step 2 finishes, the remaining values in the set form a
subset with total value k.

Optimization ≤p Reporting
The final step in showing that the three kinds of problems have the same
complexity is showing that Optimization ≤p Reporting. Suppose you have
a reporting algorithm Report(k). Then the optimization algorithm can call
Report(k), Report(k + 1), Report(k + 2), and so on until it finds a solution.
(If the problem also allows solutions of the form Report(k – 1), try those
too.)

For a specific example, suppose ReportSum(k) returns a subset with total
value k if one exists. Then the following steps describe an algorithm for
OptimizeSum(k):

1. For i = 0 To N, where N is the number of items in the set:
a. If ReportSum(k + i) returns a subset, OptimizeSum should
return that subset.

556

b. If ReportSum(k – i) returns a subset, OptimizeSum should
return that subset.
c. Continue the loop in Step 1.

These reductions show Detection ≤p Reporting ≤p Optimization and
Optimization ≤p Reporting ≤p Detection, so the problems all have the
same complexity.

NP-Complete Problems
More than 3,000 NP-complete problems have been discovered, so the
following list is only a very small subset of them. They are listed here to
give you an idea of some kinds of problems that are NP-complete.

Remember that NP-complete problems have no known polynomial time
solution, so these are all considered very hard problems. Many can only be
solved exactly for very small problem sizes.

Because these problems are all NP-complete, there is a way to reduce each
of them to every other problem (although that reduction may not be very
useful):

• Art gallery problem—Given an arrangement of rooms and hallways
in an art gallery, find the minimum number of guards needed to
swatch the entire gallery.

• Bin packing—Given a set of objects and a series of bins, find a way
to pack the objects into the bins to use the fewest bins possible.

• Bottleneck traveling salesman problem—Find a Hamiltonian path
through a weighted network that has the minimum possible largest
link weight.

• Chinese postman problem (or route inspection problem)—Given a
network, find the shortest circuit that visits every link.

• Chromatic number (or vertex coloring)—Given a graph, find the
smallest number of colors needed to color the graph's nodes. (The
graph is not necessarily planar.)

• Clique—Given a graph, find the largest clique in the graph. (A
clique is a set of nodes that are all mutually connected. In other

557

words, every pair of nodes in the set has an edge connecting the
pair of nodes.)

• Clique cover problem—Given a graph and a number k, find a way
to partition the graph into k sets that are all cliques.

• Degree-constrained spanning tree—Given a graph, find a spanning
tree with a given maximum degree.

• Dominating set—Given a graph, find a set of nodes S so that every
other node is adjacent to one of the nodes in the set S.

• Feedback vertex set—Given a graph, find the smallest set S of
vertices that you can remove to leave the graph free of cycles.

• Hamiltonian completion—Find the minimum number of edges you
need to add to a graph to make it Hamiltonian (in other words, to
make it so that it contains a Hamiltonian path).

• Hamiltonian cycle—Determine whether there is a path through a
graph that visits every node exactly once and then returns to its
starting point.

• Hamiltonian path (HAM)—Determine whether there is a path
through a graph that visits every node exactly once.

• Job shop scheduling—Given N jobs of various sizes and M
identical machines, schedule the jobs for the machines to minimize
the total time to finish all the jobs.

• Knapsack—Given a knapsack with a given capacity and a set of
objects with weights and values, find the set of objects with the
largest possible weight that fits in the knapsack.

• Longest path—Given a network, find the longest path that doesn't
visit the same node twice.

• Maximum independent set—Given a graph, find the largest set of
nodes where no two nodes in the set are connected by a link.

• Maximum leaf spanning tree—Given a graph, find a spanning tree
that has the maximum possible number of leaves.

• Minimum degree spanning tree—Given a graph, find a spanning
tree with the minimum possible degree.

• Minimum k-cut—Given a graph and a number k, find the minimum
weight set of edges that you can remove to divide the graph into k
pieces.

• Partitioning—Given a set of integers, find a way to divide the
values into two sets with the same total value. (Variations use more
than two sets.)

558

• Satisfiability (SAT)—Given a boolean expression containing
variables, find an assignment of true and false to the variables to
make the expression true. (See the earlier section “Reductions” for
more details.)

• Shortest path—Given a (not necessarily planar) network, find the
shortest path between two given nodes.

• Subset sum—Given a set of integers, find a subset with a given
total value.

• Three-partition problem—Given a set of integers, find a way to
divide the set into triples that all have the same total value.

• Three-satisfiability (3SAT)—Given a boolean expression in
conjunctive normal form, find an assignment of true and false to the
variables to make the expression true. (See the earlier section
“3SAT” for more details.)

• Traveling salesman problem (TSP)—Given a list of cities and the
distances between them, find the shortest possible route that visits
all the cities and returns to the starting city.

• Unbounded knapsack—Similar to the knapsack problem, except
that you can select any item multiple times.

• Vehicle routing—Given a set of customer locations and a fleet of
vehicles, find the most efficient routes for the vehicles to visit all
the customer locations. (This problem has many variations. For
example, the route might require delivery only or both pickup and
delivery, items might need to be delivered in
last-picked-up-next-delivered order, vehicles might have capacities,
and so on.)

• Vertex cover—Given a graph, find a minimal set of vertices so that
every link in the graph touches one of the selected vertices.

Summary
This chapter provided a brief introduction to complexity theory. It
explained what complexity classes are and described some of the more
important ones, including P and NP. You don't necessarily need to know
the fine details of every complexity class, but you should certainly
understand P and NP. You should also be familiar with perhaps the most
profound question in computer science: Does P equal NP?

559

Later sections in this chapter explained how to use polynomial-time
reductions to show that one problem is at least as hard as another. Those
sorts of reductions are useful for studying complexity theory, but the
concept of reducing one problem to another is also useful more generally
for using an existing solution to solve a new problem. This chapter doesn't
describe any practical algorithm you might want to implement on a
computer, but the reductions show how you can use an algorithm that
solves one problem to solve a different problem.

The problems described in this chapter may also help you realize when
you're attempting to solve a very hard problem, so that you'll know a
perfect solution may be impossible. If you face a programming problem
that is another version of the Hamiltonian path, traveling salesman, or
knapsack problem, you know you can only solve the problem exactly for
small problem sizes.

Chapter 12 discusses methods you can use to address some of these very
hard problems. Branch and bound lets you solve problems that are larger
than you could otherwise solve by using a brute-force approach.
Heuristics let you find approximate solutions to even larger problems.

Another technique that lets you address larger problems is parallelism. If
you can divide the work across multiple CPUs or computers, you may be
able to find problems that would be impractical on a single computer. The
next chapter describes some algorithms that are useful when you can use
multiple CPUs or computers to solve a problem.

Exercises
Asterisks indicate particularly diffi cult problems.

1. If any algorithm that sorts by using comparisons must use at least
O(N log N) time in the worst case, how do algorithms such as the
countingsort and bucketsort algorithms described in Chapter 6 sort
more quickly than that?
2. The bipartite detection problem is as follows: Given a graph, is
the graph bipartite? Find a polynomial time reduction of this
problem to a map coloring problem. What can you conclude about
the complexity class containing bipartite detection?

560

3. The three-cycle problem is as follows: Given a graph, does the
graph contain any cycles of length 3? Find a polynomial time
reduction of this problem to another problem. What can you
conclude about the complexity class containing the three-cycle
problem?
4. The odd-cycle problem is as follows: Given a graph, does the
graph contain any cycles of odd length? Find a polynomial time
reduction of this problem to another problem. What can you
conclude about the complexity class containing the odd-cycle
problem? How does this relate to the three-cycle problem?
5. The Hamiltonian path problem (HAM) is as follows: Given a
network, is there a path that visits every node exactly once? Show
that HAM is in NP.
6. The Hamiltonian cycle or Hamiltonian circuit problem (call it
HAMC) is as follows: Given a network, is there a path that visits
every node exactly once and returns to its starting node? Show that
this problem is in NP.
7. **Find a polynomial time reduction of HAM to HAMC.
8. **Find a polynomial time reduction of HAMC to HAM.
9. The network coloring problem is as follows: Given a network and
a number k, is there a way to k-color the network's nodes? Show
that this problem is in NP.
10. The zero sum subset problem is as follows: Given a set of
numbers, does a subset of the numbers add up to 0? Show that this
problem is in NP.
11. *Suppose you are given a set of objects with weights Wi and
values Vi, and a knapsack that can hold a total weight of W. Then
three forms of the knapsack problem are as follows:

• Detection—For a value k, is there a subset of objects that fit
into the knapsack and have a total value of at least k?

• Reporting—For a value k, find a subset of objects that fit into
the knapsack and have a total value of at least k if such a
subset exists.

• Optimization—Find a subset that fits in the knapsack with
the largest possible total value.

Find a reduction of the reporting problem to the detection problem.

561

12. *For the problems defined in Exercise 11, find a reduction of
the optimization problem to the detection problem.
13. **Suppose you are given a set of objects with values Vi. Then
two forms of the partition problem are as follows:

• Detection—Is there a way to divide the objects into two
subsets A and B that have the same total value?

• Reporting—Find a way to divide the objects into two subsets
A and B that have the same total value.

Find a reduction of the reporting problem to the detection problem.

562

Chapter 18

Distributed Algorithms

In a paper published in 1965, Gordon E. Moore noticed that the number of
transistors on integrated circuits roughly doubled every two years between
the invention of the integrated circuit in 1958 and 1965. From that
observation, he predicted that the trend would continue for at least another
10 years. This prediction, which is now known as Moore's Law, has
proven amazingly accurate for the last 50 years, but the end may be in
sight.

The size of the objects that manufacturers can put on a chip is reaching the
limits of the current technology. Even if manufacturers find a way to put
even more on a chip (they're quite clever, so it's certainly possible),
eventually transistors will reach quantum sizes where the physics becomes
so weird that current techniques will fail. Quantum computing may be
able to take advantage of some of those effects to create amazing new
computers, but it seems likely that Moore's Law won't hold forever.

One way to increase computing power without increasing the number of
transistors on a chip is to use more than one processor at the same time.
Most computers for sale today contain more than one central processing
unit (CPU). Often they contain multiple cores—multiple CPUs on a single
chip. Clever operating systems may be able to get some use out of extra
cores, and a good compiler may be able to recognize parts of a program
that can be executed in parallel and run them on multiple cores. To really
get the most out of multiple CPU systems, however, you need to
understand how to write parallel algorithms.

This chapter explains some of the issues that arise when you try to use
multiple processors to solve a single problem. It describes different
models of parallel processing and explains some algorithms and
techniques you can use to solve parallelizable problems more quickly.

563

Types of Parallelism
There are several models of parallelism, and each is dependent on its own
set of assumptions, such as the number of processors you have available
and how they are connected. Currently distributed computing is the most
common model for most people, but other forms of parallel computing are
interesting, so this chapter spends a little time describing some of them,
beginning with systolic arrays. You may be unable to use a large systolic
array, but understanding how one works may give you ideas for other
algorithms you might want to write for a distributed system.

Systolic Arrays
A systolic array is an array of data processing units (DPUs) called cells.
The array could be one-, two-, or even higher-dimensional.

Each cell is connected to the cells that are adjacent to it in the array, and
those are the only cells with which it can communicate directly.

Each cell executes the same program in lockstep with the other cells. This
form of parallelism is called data parallelism because the processors
execute the same program on different pieces of data. (The term “systolic
array” comes from the fact that data is pumped through the processors at
regular intervals, much as a beating heart pumps blood through the body.)

Systolic arrays can be very efficient, but they also tend to be very
specialized and expensive to build. Algorithms for them often assume that
the array holds a number of cells that depends on the number of inputs.
For example, an algorithm that multiplies N×N matrices might assume it
can use an N×N array of cells. That assumption limits the size of the
problem you can solve to the size of the array you can build.

Although you may never use a systolic array, their algorithms are fairly
interesting, so this section presents one to give you an idea of how they
work.

Suppose you want to sort a sequence of N numbers on a one-dimensional
systolic array containing N cells. The following steps describe how each
cell can process its data:

564

1. To input the first half of the numbers, repeat N times:
a. Each cell should move its current value to the right.
b. If this is an odd-numbered step, push a new number into the
first cell. If this is an even-numbered step, do not add a new
number to the first cell.

2. To input the second half of the numbers, repeat N times:
a. If a cell contains two values, it should compare them, move
the smaller value left, and move the larger value right.
b. If the first cell contains one number, it should move it right.
c. If the last cell contains one number, it should move it left.
d. If this is an odd-numbered step, push a new number into the
first cell. If this is an even-numbered step, do not add a new
number to the first cell.

3. To output the sorted list, repeat N times:
a. If a cell contains two values, it should compare them, move
the smaller value left, and move the larger value right.
b. If a cell contains one value, it should move it left.

Figure 18.1 shows this algorithm sorting the values 3, 4, 1, and 2 with an
array of four cells. The first row in the figure shows the empty array of
cells, with the numbers to be sorted on the left.

Figure 18.1 A systolic array of four cells can sort four numbers in 14
ticks.

565

566

The first four systolic ticks push the first two values (2 and 1) into the
array. (The figure calls them “ticks” so that you don't confuse them with
the algorithm's steps.) These ticks correspond to Step 1 in the algorithm.

The interesting part of the algorithm begins with tick 5. This is where Step
2 of the algorithm begins. During this tick, the algorithm pushes the new
value 4 into the first cell. At this point the third cell contains the values 1
and 2. It compares them, moves the smaller value 1 left, and moves the
larger value 2 right.

In tick 6, the second cell compares the values 4 and 1. It moves 1 left and
moves 4 right. During this tick the algorithm also moves the last value, 3,
into the first cell.

In tick 7, the first cell compares 3 and 1, moves 1 left to the output list,
and moves 3 right. At the same time, the third cell compares 4 and 2,
moves 2 left, and moves 4 right.

In tick 8, the second cell compares 3 and 2, moves 2 left, and moves 3
right. The last cell moves 4 left.

In tick 9, Step 3 of the algorithm begins. The first cell outputs the value 2.
The third cell compares 3 and 4, moves 3 left, and moves 4 right.

In ticks 10 through 14, the cells contain at most one value, so they move
their values left, eventually adding them to the sorted output.

This may seem like a lot of steps to sort four items, but the algorithm
would save time if the list of numbers were larger. For N items, the
algorithm needs N steps to move half of the numbers into the array (Step
1), N more steps to move the rest of the numbers into the array (Step 2),
and N more steps to pull out the last of the sorted values.

The total number of steps is O(3 × N) = O(N), which is faster than the
O(N log N) steps required by any nonparallel algorithm that uses
comparisons to sort N numbers. Because the numbers are spread across up
to N / 2 cells, the cells can perform up to (N / 2)2 comparisons at the same
time.

This algorithm has a couple of interesting features. First, in tick 7, the last
value enters the array, and in tick 8, the first sorted value pops out.
Because the first sorted value pops out as soon as the last value is entered,

567

making it seem as if the algorithm is using no time at all to sort the items,
this algorithm is called a “zero-time sort.”

Another interesting feature of this algorithm is that only half of its cells
contain data at any one time. If you wanted to, you could pack values for a
second sequence of numbers into the unused cells and make the array sort
two lists at the same time.

Distributed Computing
In distributed computing, multiple computers work together over a
network to get a job done. The computers don't share memory, although
they may share disks.

Because networks are relatively slow compared to the communication that
is possible between CPUs within a single computer, distributed algorithms
must try to minimize communication between the computers. Typically a
distributed algorithm sends data to the computers, the computers spend
some time working on the problem, and then they send back a solution.

Two kinds of distributed environments are cluster and grid computing. A
cluster is a collection of closely related computers. Often they are
connected by an intranet or a special-purpose network that has limited
access to outside networks. For many practical purposes, you can think of
a cluster as a giant computer that has unusual internal communications.

In grid computing, the collection of computers is much less tightly
integrated. They may communicate over a public network and may even
include different kinds of computers running different operating systems.

Communications among the computers in grid computing can be quite
slow and may be unreliable. Because the computers are only loosely
associated, any given computer may not finish its assigned calculations
before its owner shuts it down, so the system needs to be able to reassign
subproblems to other computers if necessary.

Despite the drawbacks of relatively slow communications and the
unreliability of individual computers, grid computing allows a project to
create a “virtual supercomputer” that can potentially apply enormous

568

amounts of processing power to a problem. The following list summarizes
some public grid projects:

• MilkyWay@home http://milkyway.cs.rpi.edu/
milkyway This project is building a very accurate model of the
Milky Way galaxy for use in astroinformatics and computer science
research. This project's 38,000 or so computers provide about 1.6
petaflops.

• Berkeley Open Infrastructure for Network Computing (BOINC)
http://boinc.berkeley.edu This open source project is
used by many separate projects to study problems in astrophysics,
mathematics, medicine, chemistry, biology, and other fields. Its
roughly 600,000 computers provide about 9.2 petaflops.

• Folding@home http://folding.stanford.edu This
project models protein folding in an attempt to understand diseases
such as Alzheimer's, mad cow (BSE), AIDS, Huntington's,
Parkinson's, and many cancers. This project's almost 200,000
computers provide about 12 petaflops.

FLOPS
Often the speed of computers that are used to perform intensive mathematical
calculations is measured in floating-point operations per second (flops). One
teraflop (tflop) is 1012 flops, or 1 trillion flops. One petaflop (pflop) is 1015 flops,
or 1,000 teraflops. For comparison, a typical desktop system might be able to run
in the 0.25 to 10 gigaflops range.

Because the processes on distributed computers can execute different
tasks, this approach demonstrates task parallelism. Contrast this with data
parallelism, in which the focus is distributing data across multiple
processors.

Joining a Grid
If you're interested in these projects, visit their web pages to download software
that will let your computer contribute CPU cycles when it's idle.

569

http://milkyway.cs.rpi.edu/milkyway
http://milkyway.cs.rpi.edu/milkyway
http://boinc.berkeley.edu
http://folding.stanford.edu

Multi-CPU Processing
Most modern computers include multiple processors. Sometimes these are
on separate chips, but often they are multiple cores on a single chip.

CPUs on the same computer can communicate much more quickly than
computers in a distributed network, so some of the communications
problems that can trouble distributed networks don't apply. For example, a
distributed network must pass the least possible data between computers
so that the system's performance isn't limited by communication speeds. In
contrast, CPUs in the same computer can communicate very quickly, so
they can exchange more data without paying a big performance penalty.

Multiple CPUs on the same computer can also access the same disk drive
and memory.

The ability to exchange more data and to access the same memory and
disks can be helpful, but it also can lead to problems such as race
conditions and deadlock. These can happen with any distributed system,
but they're most common in multi-CPU systems because it's so easy for
the CPUs to contend for the same resources.

Race Conditions
In a race condition, two processes try to write to a resource at almost the
same time. The process that writes to the resource second wins.

To see how this can happen, suppose two processes use heuristics to find
solutions to the Hamiltonian path problem (discussed in Chapter 17) and
then use the following pseudocode to update shared variables that hold the
best route found so far and that route's total length:

// Perform heuristics.
...
// Save the best solution.
If (test_length < BestLength) Then

// Save the new solution.
...
// Save the new total length.
BestLength = test_length

End If

570

The pseudocode starts by using heuristics to find a good solution. It then
compares the best total route length it found to the value stored in the
shared variable BestLength. If the new solution is better than the
previous best, the pseudocode saves the new solution and the new route's
length.

Unfortunately, you cannot tell when the multiple processes will actually
access the shared memory. Suppose two processes happen to execute their
code in the order shown in the following pseudocode timeline:

// Perform heuristics.
...

// Perform
heuristics.

...
// Save the best solution.
If (test_length < BestLength) Then

// Save the
best solution.

If
(test_length < BestLength) Then

// Save the new solution.
...

// Save
the new solution.

...
// Save

the new total length.
BestLength

= test_length
End If

// Save the new total length.
BestLength = test_length

End If

The timeline shows the actions performed by process A on the left and
those performed by process B on the right.

Process A performs its heuristics, and then process B performs its
heuristics.

Process A then executes the If test to see whether it found an improved
solution. Suppose for this example that the initial best solution had a route
length of 100, and process A found a route with a total length of 70.
Process A enters the If Then block.

571

Next, process B executes its If test. Suppose process B finds a route with
a total length of 90, so it also enters its If Then block.

Process A saves its solution.

Next, process B saves its solution. It also updates the shared variable
BestLength to the new route's length: 90.

Now process A updates BestLength to the length of the route it found:
70.

At this point the shared best solution holds process B's solution, which is
the worse of the two solutions the processes found. The variable
BestLength also holds the value 70, which is the length of process A's
solution, not the length solution that was actually saved.

You can prevent race conditions by using a mutex. A mutex (the name
comes from “mutual exclusion”) is a method of ensuring that only one
process can perform a certain operation at a time. The key feature of a
mutex with regards to a shared variable is that only one process can read
or write to it at a time.

Implementing Mutexes
Some computers may provide hardware to make implementing mutexes more
efficient. On other computers, mutexes must be implemented in software.

The following pseudocode shows how you add a mutex to the previous
algorithm to prevent the race conditions:

// Perform heuristics.
...
// Acquire the mutex.
...
// Save the best solution.
If (test_length < BestLength) Then

// Save the new solution.
...
// Save the new total length.
BestLength = test_length

End If
// Release mutex.
...

572

In this version of the code, the process performs its heuristics as before. It
does this without using any shared memory, so this cannot cause a race
condition.

When it is ready to update the shared solution, the process first acquires a
mutex. Exactly how that works depends on the programming language
you are using. For example, in the .NET languages C# and Visual Basic, a
process can create a Mutex object and then use its WaitOne method to
request ownership of the mutex.

If another process tries to acquire the mutex at this point, it blocks and
waits until the mutex is released by the first process.

After the process acquires the mutex, it manipulates the shared memory.
Because no other process can acquire the mutex at this point, it cannot
change the shared memory while the first process is using the shared
memory.

When it has finished examining and updating the shared solution, the
process releases the mutex so that any other process that is waiting for it
can continue.

The following code shows what happens if the earlier sequence of events
occurs while processes A and B are using a mutex:

// Perform heuristics.
...

// Perform
heuristics.

...
// Acquire the mutex.
...
// Save the best solution.
If (test_length < BestLength) Then

// Process B
attempts to acquire

// the mutex,
but process A already

// owns it, so
process B is blocked.

// Save the new solution.
...
// Save the new total length.
BestLength = test_length

End If

573

// Release the mutex.
...

// Process B
acquires the mutex, is

// unblocked and
continues running.

// Save the best
solution.

If (test_length
< BestLength) Then

// Save the
new solution.

...
// Save the

new total length.
BestLength =

test_length
End If

// Release the
mutex.

...

Now the two processes do not interfere with each other's use of the shared
memory, so there is no race condition.

Notice that in this scenario process B blocks while it waits for the mutex.
To avoid wasting lots of time waiting for mutexes, processes should not
request them too frequently.

For this example, where processes are performing Hamiltonian path
heuristics, a process shouldn't compare every test solution it finds with the
shared best solution. Instead, it should keep track of the best solution it
has found and compare that to the shared solution only when it finds an
improvement on its own best solution.

When it does acquire the mutex, a process also can update its private best
route length, so it has a shorter total length to use for comparison. For
example, suppose process A finds a new best route with a length of 90. It
acquires the mutex and finds that the shared best route length is 80
(because process B found a route with that length). At this point process A
should update its private route length to 80. It doesn't need to know what
the best route is; it just needs to know that only routes with lengths of less
than 80 are interesting.

574

You can use a mutex incorrectly in several ways:
• Acquiring a mutex and not releasing it
• Releasing a mutex that was never acquired
• Holding a mutex for a long time
• Using a resource without first acquiring the mutex

Other problems can arise even if you use mutexes correctly:
• Priority inversion—A high-priority process is stuck waiting for a

low-priority process that has the mutex. In this case, it might be
nice to remove the mutex from the lower-priority process and give
it to the higher-priority process. That would mean the
lower-priority process would need to be able to somehow undo any
unfinished changes it was making and then later acquire the mutex
again. An alternative strategy is to make each process own the
mutex for the smallest time possible so that the higher-priority
process isn't blocked for very long.

• Starvation—A process cannot get the resources it needs to finish.
Sometimes this occurs when the operating system tries to solve the
priority inversion problem. If a high-priority process keeps the CPU
busy, a lower-priority process might never get a chance to run, so it
will never finish.

• Deadlock—Two processes are stuck waiting for each other.

The next section discusses deadlocks in greater detail.

Deadlock
In a deadlock, two processes block each other while each waits for a
mutex held by the other.

For example, suppose processes A and B both need two resources that are
controlled by mutex 1 and mutex 2. Then suppose process A acquires
mutex 1, and process B acquires mutex 2. Now process A blocks waiting
for mutex 2, and process B blocks waiting for mutex 1. Both processes are
blocked, so neither can release the mutex it already holds to release the
other process.

One way to prevent deadlocks is to agree that every process will acquire
mutexes in numeric order (assuming that the mutexes are numbered). In

575

the previous example, both processes A and B try to acquire mutex 1. One
of the processes succeeds, and the other is blocked. Whichever process
successfully acquired mutex 1 can then acquire mutex 2. When it finishes,
it releases both mutexes, and the other process can acquire them.

The problem is more difficult in a complex environment such as an
operating system, where dozens or hundreds of processes are competing
for shared resources, and no clear order for requesting mutexes has been
defined.

The “dining philosophers” problem described later in this chapter is a
special instance of a deadlock problem.

Quantum Computing
A quantum computer uses quantum effects such as entanglement (multiple
particles remain in the same state even if they are separated) and
superposition (a particle exists in multiple states simultaneously) to
manipulate data.

Currently quantum computing is in its infancy. Very few laboratories can
build and run even a small quantum computer with only a few qubits
(quantum bits, the basic unit of information in a quantum computer). So
far quantum computers have been able to use Shor's algorithm to factor
the number 15 and the number 21. With such modest results, it's probably
a bit early to start planning to include quantum algorithms in your
programs.

All advanced technology starts with these sorts of tiny proof-of-concept
demonstrations, however, and there's a chance that quantum computers
may eventually become commonplace. In that case, manufacturers may
someday be able to build truly nondeterministic and probabilistic
computers that can solve problems in NP exactly.

For example, Shor's algorithm can factor numbers in O((log N)3) time,
where N is the size of the input number. This is much faster than the
current fastest-known algorithm, the general number field sieve, which
runs in subexponential time. (It's slower than any polynomial time but
faster than exponential time.)

576

Quantum computing is very confusing, so this book doesn't cover it any
further. Fortunately, it will be several years before you will need to write
your own algorithms for quantum computers.

Note
For more information on quantum computers and Shor's algorithm, see
http://en.wikipedia.org/wiki/Quantum_computer and
http://en.wikipedia.org/wiki/Shor's_algorithm.

Distributed Algorithms
Some of the forms of parallelism described in the previous sections are
somewhat scarce. Very few home or business computers contain systolic
arrays (although I could see a case for building a chip to perform
zero-time sorting). It may be decades before quantum computers appear in
computer stores—if they ever do.

However, distributed computing is widely available now. Large grid
computing projects use tens or even hundreds of thousands of computers
to apply massive computing power to complex problems. Smaller
networked clusters let dozens of computers work together. Even most
desktop and laptop systems today contain multiple cores.

Some of these rely on fast communication between cores on a single chip,
and others anticipate slow, unreliable network connections, but all these
cases use distributed algorithms.

The next two sections discuss general issues that face distributed
algorithms: debugging and identifying embarrassingly parallel problems.

The sections after those describe some of the most interesting classical
distributed algorithms. Some of these algorithms seem more like IQ tests
or riddles than practical algorithms, but they are useful for a couple of
reasons. First, they highlight some of the issues that may affect distributed
systems. They demonstrate ways to think about problems that encourage
you to look for potential trouble spots in distributed algorithms.

Second, these algorithms are actually implemented in some real-world
scenarios. In many applications, it doesn't matter much if one of a set of

577

http://en.wikipedia.org/wiki/Quantum_computer
http://en.wikipedia.org/wiki/Shor's_algorithm

processes fails. If a grid computing process doesn't return a value, you can
simply assign it to another computer and carry on. However, if a set of
processors is controlling a patient's life-support systems, a large passenger
plane, or a billion-dollar spacecraft, it may be worth the extra effort to
ensure that the processes reach the correct decision, even if one of them
produces incorrect results.

Debugging Distributed Algorithms
Because events in different CPUs can occur in any order, debugging
distributed algorithms can be very difficult. For example, consider the
Hamiltonian path example described earlier. A race condition occurs only
if the events in processes A and B happen in exactly the right sequence. If
the two processes don't update the shared best solution too frequently, the
chance of their trying to update the solution at the same time is small. The
two processes might run for a very long time before anything goes wrong.

Even if a problem does occur, you may not notice it. You'll detect the
problem only if you notice that process B thinks the best solution is better
than the currently saved solution. It's even possible that one of the
processes will find a better solution and overwrite the incorrect one before
you notice it.

Some debuggers let you examine the variables in use by multiple
processes at the same time so that you can look for problems in distributed
systems. Unfortunately, by pausing the processes to examine their
variables, you interrupt the timing that might cause an error.

Another approach is to make the processes write information about what
they are doing into a file or terminal so that you can examine it later. If the
processes need to write into the file frequently, they probably should use
separate files so that they don't fight over access to the file. In that case,
they should also write timestamps into the file so that you can figure out
the order in which the entries were made.

Even if you have good logs, each process could perform millions of steps
over hours or even days before a problem arises.

Possibly your best bet for debugging distributed algorithms is to avoid
bugs in the first place. Think carefully about the critical sections of code

578

where multiple processes could interfere with each other, and then use
mutexes to prevent trouble.

When you write an application, you should also test it as thoroughly as
possible. Add extra code to frequently check any shared variables to see if
they contain correct values. After you've tested the code and think it runs
reliably, you can comment out the extra logging value-checking code to
get better performance.

Embarrassingly Parallel Algorithms
An embarrassingly parallel algorithm is one that naturally breaks into
pieces that can easily be solved by separate processes. They require little
communication among processes and ideally little work to combine results
from different processes.

Here are some embarrassingly parallel problems:
• Ray tracing is a computer graphics technique that traces a ray from

a point of view into a scene to see which objects it strikes. A ray
can travel through transparent objects and bounce off of reflective
objects. The reason this is an embarrassingly parallel problem is
that the calculations needed for each ray are independent, so you
can easily divide them among multiple processors. If you have 10
processors, you can split up the image and make each processor
generate one-tenth of the image. Each processor needs to know the
scene's geometry, but it doesn't need to know what calculations the
other processors are performing. Each process writes its results into
different parts of the image, so they may not need any mutexes to
control access to shared memory.

• Fractals—Many fractals, such as the Mandelbrot set, require a
program to perform a long series of calculations for each pixel in
the resulting image. As in ray tracing, the calculations for each
pixel are completely separate, so it is easy to divide the problem
among as many processors as you have available.

• Brute-force searches—If you can divide the search space easily,
you can use different processes to search different parts of the
search space. For example, suppose you want to solve a knapsack
problem exactly, and you want to model the problem as a decision
tree, as described in Chapter 12. Suppose also that you have an

579

eight-core computer. Each branch of the decision tree has two
branches, representing your putting an item in the knapsack or
leaving the item out of the knapsack. In that case, the third level of
the tree has eight nodes. You could assign each processor to search
one of the eight subtrees at that level and return the best solution it
can find.

• Random searches—If you want to search a solution space
randomly, you can make any number of processors search
separately and update a shared current best solution. If the solution
space is large, there is only a small chance that the processors will
examine the same randomly selected solutions very often, so they
won't waste too much time on duplicated efforts.

• Nonindexed database searches—If you need to search a large
database without indexes, you can partition the database and assign
different partitions to different processes. For example, suppose
you have a library of 100,000 photographs of faces, and you want
to find the best match to a new photograph. You could divide the
library into 10 partitions containing 10,000 photographs and make
10 processes search the partitions.

• File processing—Suppose you want to perform a slow operation on
a large number of files. Say you have a database containing
100,000 images, and you want to make thumbnails, make embossed
versions, or perform some other graphic operation on them. You
could divide the files among a group of processors, and they could
work separately.

Beware of Contention
The nonindexed database and file-processing examples use a large number of
files. Whenever you want multiple processors to handle a large number of files,
you need to know how long it will take to read and write the files. Reading and
writing files on a hard disk is much slower than processing data in memory. If the
operation you are performing on the files is relatively fast, the processes may
spend a lot of time in contention for the disk, waiting their turn until they can read
and write files. In the worst case, processes spend so much time waiting for files
that the application's speed is determined by disk access time rather than
processing time. (That kind of application is called disk bound.)

You can often avoid disk contention by writing the files onto multiple disk drives
or making the processes run on separate computers that each has a disk drive
containing part of the database.

580

Sometimes when you study a problem you can find a way to address it in
parallel and take advantage of whatever processors you have available.
Other times you can find pieces of the problem that are naturally parallel.
You may not be able to divide the whole application among a group of
processors, but you may be able to send pieces of the problem to separate
processors to save time.

The next section explains how you can use mergesort on multiple
processors. The sections that follow describe some classic algorithms in
distributed processing. Some of them are rather esoteric and may be less
common in practice, but they point out some of the low-level problems
that may occur in distributed systems.

Mergesort
The mergesort algorithm described in Chapter 6 is naturally recursive. The
following steps describe a high-level description of mergesort:

1. Split the values into two equally sized sublists.
2. Recursively call mergesort to sort the two sublists.
3. Merge the two sorted sublists into the final sorted list.

The following steps describe how you can make mergesort work on N
processors, where N is a relatively small fixed number:

1. Split the values into N equally sized sublists.
2. Launch N processes to sort the N sublists.
3. Merge the N sorted sublists into the final sorted list.

Notice that the processors don't necessarily need to use mergesort to sort
their sublists.

Dining Philosophers
In the dining philosophers problem, N philosophers sit at a table. In front
of each is a plate of spaghetti. Between each pair of adjacent philosophers
is a fork. The philosophers use a two-handed approach to eating spaghetti,
so each needs two forks to eat. The philosophers' goal is to eat, put down
both forks for a while to think, and eat again. They repeat this process

581

until they have fathomed all the mysteries of the universe. To make the
problem harder, the philosophers are not allowed to talk to each other.
(Presumably they are too busy thinking.)

The following steps describe one algorithm the philosophers might use:
1. Repeat forever:

a. Think until the left fork is available. Pick it up.
b. Think until the right fork is available. Pick it up.
c. Eat until full.
d. Put down the left fork.
e. Put down the right fork.
f. Think until hungry.

Unfortunately, this algorithm can lead to a deadlock. Suppose the
philosophers are all quite similar, and they all start the algorithm at the
same time. Initially every philosopher finds that the fork on his left is
available, so each picks up his left fork. At this point, every fork has been
picked up by the philosopher to its right, so every philosopher is stuck
waiting for the fork on his right.

This problem has several solutions.

Randomization
One way to try to break the deadlock is to have a philosopher put down
his left fork and to wait for 10 minutes if he has been waiting for the right
fork for more than 10 minutes. This prevents a deadlock but may create a
livelock. A livelock occurs when processes are not blocked indefinitely
but still cannot get any work done because of how they try to access the
resources. In this example, all the philosophers could pick up their left
fork, all wait 10 minutes, all put down their left fork, all wait another 10
minutes, and then start over.

Sometimes a simple randomization may break the stalemate. If a
philosopher picks up a fork and then waits for more than 10 minutes, you
could make him put down the first fork. Even if the philosophers are
synchronized, that can still lead to livelock.

582

Instead of waiting 10 minutes before giving up on a fork, the philosophers
could wait a random amount of time, perhaps between 5 and 15 minutes.
Eventually the philosophers will become unsynchronized enough that
someone will get to eat.

Depending on the situation, this solution might take quite a while. For
example, if many processes are contending over many shared resources,
they may need to be very unsynchronized before one of them can get all
the resources it needs.

Note
You also need to be sure the philosophers' pseudorandom number generators are not
synchronized so that they don't pick the same “random” length of time to wait. For
example, they could initialize their generators by using their IDs as seeds.

Resource Hierarchy
In the resource hierarchy solution, the resources are ranked, and every
philosopher must try to acquire the resources in order of their rank. For
example, you might number the forks 1 through N, and each philosopher
must try to pick up the lower-numbered fork before trying to pick up the
higher-numbered fork. If all the philosophers reach for a fork at the same
time, most of them pick up the fork on the left (assuming the fork numbers
increase left to right, or counterclockwise).

However, the last philosopher has fork N on his left and fork 1 on his
right, so he reaches for the right fork. There are two possibilities,
depending on whether he successfully picks up fork 1.

If the last philosopher successfully picks up fork 1, he then reaches for
fork N on his left. Meanwhile, the philosopher to his left has already
picked up fork N – 1 and now also reaches for fork N. One of the two
picks up fork N. At that point, he has two forks and can eat.

The last philosopher might fail to pick up fork 1 if the philosopher to his
right grabbed it first. In that case, the philosopher to his left picks up fork
N – 1 on his left. Because the last philosopher is waiting for fork 1, the
philosopher to the left can now pick up fork N unopposed and can eat.

If any of the philosophers eats, the synchronized timing that caused the
livelock is broken. Once the philosophers are out of synch, they may

583

occasionally need to wait for a fork, but they shouldn't get stuck in a
never-ending livelock.

Waiter
Another solution to the livelock problem is to introduce a waiter (a sort of
referee process). Before a philosopher can pick up a fork, he must ask the
waiter for permission. The waiter can see where each fork is, so he can
prevent a deadlock. If a philosopher requests a fork and that would cause a
deadlock, the waiter tells him to wait until another fork is freed.

Chandy/Misra
In 1984 Chandy and Misra suggested another solution that allows any
number of processes to contend for any number of resources, although it
requires that the philosophers talk to each other.

Each fork can be considered clean or dirty. Initially they are all assumed
to be dirty. Then the following steps describe the algorithm:

1. Initially give each fork to the adjacent philosopher with the lower
ID. (If the forks and philosophers are numbered as described in the
section “Resource Hierarchy,” all but philosophers 1 and N hold
their left forks.)
2. When a philosopher wants a fork, he asks his neighbor for it.
3. If a philosopher is asked for a fork, he keeps it if it is clean. If the
fork is dirty, he cleans it and gives it to the requester.
4. After a philosopher eats, his forks are dirty. If someone requested
a fork while he was using it, the philosopher cleans it and hands it
over after he finishes eating.

Suppose the forks and philosophers are numbered 1 through N in an
arrangement, so philosopher K has fork K on his left. Initially every
philosopher has one fork, except for philosopher N, who has no forks, and
philosopher 1, who has forks 1 and N. At this point asymmetry prevents
the livelock that can occur with synchronized philosophers.

After this point, the forks' clean and dirty states basically make the
philosophers take turns. If you used a fork, it is dirty, so your neighbor can
take it from you if he wants it.

584

The Two Generals Problem
In the two generals problem, two generals have armies encamped just
outside an enemy city, at opposite ends of town. If the generals both attack
the city at the same time, they will win, but if only one general attacks, the
enemy will win.

Now suppose that the only way the generals can communicate is to send a
messenger through the enemy city; however, the messenger might be
captured. The goal is to allow the generals to synchronize their attacks so
that they both attack at the same time.

An obvious approach would be for general A to send a messenger telling
general B that army A will attack at dawn. Unfortunately, general A
cannot know if the messenger got through. If general A attacks and
general B doesn't, army A will be wiped out. So there's strong incentive
for general A not to attack unless he knows that general B got the
message.

To tell general A that the message was received, general B can send an
acknowledgment message. If general A receives it, he knows the two
armies are in agreement, and the attack can proceed as planned. However,
how does general B know that general A receives the acknowledgment? If
general A doesn't receive the acknowledgment, general B doesn't know if
the attack is still on and whether it's safe to proceed.

The solution, of course, is for general A to send an acknowledgment of the
acknowledgment to general B.

By now you can probably see the problem. No matter how many
acknowledgments the generals send to each other, there's no way to be
sure whether the last messenger arrived safely, so there's no way to be
certain that the generals agree.

One way around this dilemma is to have the generals send enough copies
of the same message to ensure a high probability of one's getting through.
For example, suppose there's a 1 in 2 chance that a particular messenger
will be captured. If one general sends N messages saying “Attack at
dawn,” there is a 1/2N chance that all the messages will be captured.
Perfect certainty is impossible, but the generals can reduce the chances of
disagreement to any desired level of certainty.

585

But how do the generals know the probability that a messenger will be
captured? They can figure that out by sending messages to each other.
First, general A sends 10 messages to general B saying, “This is message
1 of 10. Attack at dawn.” After a reasonable amount of time, general B
receives some of the messages. The number of messages received (and the
fact that there were 10 of them) tells him the probability of a message's
getting through. (The messages' content also tells him to attack at dawn.)

General B uses the probability of capture to calculate the number of
acknowledgments he must send to ensure that at least one will get through
with some desired level of confidence.

This works well if general B receives any messages, but what if none of
the first batch of messages gets through? In that case, general A never
receives an acknowledgment, so he doesn't know if general B got any
messages.

To solve this problem, general A waits a reasonable amount of time. If he
doesn't receive an acknowledgment, he sends a new batch of messages
saying, “This is message 1 of 20. Attack at dawn.” If he still doesn't get an
acknowledgment, he sends another batch of 30 messages, and so on, until
he eventually receives an acknowledgment.

Eventually some of the messages get through, general B calculates and
sends an appropriate number of acknowledgment messages, and general A
receives an acknowledgment.

Byzantine Generals
In the byzantine generals problem (BGP), a set of generals must agree on
a plan of action. Unfortunately, some of the generals might be traitors who
will spread confusion by giving conflicting signals to the others. The goals
are as follows:

• The loyal generals must decide on the same action.
• If the loyal generals really do agree on an action, the traitors cannot

trick them into agreeing to the other action.

More generally, you can define the problem so that each general has a
value Vi, and all the loyal generals must learn each others' values. Then
the goal for the loyal generals is as follows:

586

• Learn the Vi values for the other loyal generals.

The difficulty arises because the traitors can give other generals
conflicting information. A traitor might send general A one value and
general B a different value. A traitor could even cast suspicion on general
B by telling general A that general B told him something that he didn't.

The problem is easier to solve if you reduce it to the related general and
lieutenants problem. In this problem, a commanding general gives an
order to all his lieutenants, but the general or some lieutenants might be
traitors. The goals for the loyal lieutenants are as follows:

• Decide on a common action.
• If the general is not a traitor, that action must be the one the general

ordered.

Note that you cannot solve the general and lieutenants problem if there are
only two lieutenants and one is a traitor. To see why this is true, consider
the two situations shown in Figure 18.2.

Figure 18.2 A loyal lieutenant cannot tell the difference between a traitor
general and a traitor lieutenant.

In the situation on the left, the general is a traitor and gives conflicting
instructions to his lieutenants, who honestly report their orders to each
other.

In the situation on the right, the general is loyal and tells both lieutenants
to retreat, but the lieutenant on the right lies about his orders.

587

In both of these cases, the lieutenant on the left sees the same result—an
order to retreat from the general, and an order to attack from the other
lieutenant. He doesn't know which order is true.

If there are at least three lieutenants (four people in all) and only one
traitor, a simple solution exists:

1. The general sends orders to the lieutenants.
2. Each lieutenant tells the others what order he received from the
general.
3. Each lieutenant takes as his action whatever order is in the
majority of those he has heard about (including the one he received
from the general).

To see why this works, look at Figure 18.3. If the general is a traitor, as
shown on the left, he can give conflicting orders to the lieutenants. In that
case, all the lieutenants are loyal, so they faithfully report the orders they
receive. That means all the lieutenants get the same information about the
orders they received, so they all come to the same conclusion about which
order is in the majority. For the situation on the left in Figure 18.3, all
three lieutenants see two orders to attack and one order to retreat, so they
all decide to attack. They arrive at a common decision, and it matches the
loyal general's actual order.

If a lieutenant is a traitor, as shown on the right in Figure 18.3, the general
gives all the lieutenants the same order. The traitor can report conflicting
or incorrect orders to the other lieutenants to try to confuse the issue.
However, the two other lieutenants receive the same order (because the
general is loyal) and faithfully report their identical order. Depending on
what the traitor reports, the other two lieutenants may not receive the same
set of reported orders, but there are enough loyal lieutenants to guarantee
that the true order is the majority decision for every lieutenant.

Note
The majority vote solution to the general and lieutenants problem works if there are T
traitors as long as there are at least 3 × T lieutenants.

Figure 18.3 Three lieutenants can agree on a common decision no matter
who the traitor is.

588

After you understand how to solve the general and lieutenants problem,
you can reduce the byzantine generals problem to it. Assuming that each
of the generals has a value Vi, the following steps give all the loyal
generals the true values of the other loyal generals:

1. For each general Gi:
a. Run the general and lieutenants algorithm with Gi acting as
the commanding general, the other generals acting as the
lieutenants, and the value Gi acting as the commanding
general's order.
b. Each of the noncommanding generals should use the
majority vote as the value Vi for general Gi.

After all the rounds of Step 1, each general knows the values owned by all
the loyal generals. They may have different ideas about the values held by
the traitors, but that's not a requirement of the problem.

Consensus
In the consensus problem, a number of processes must agree on a data
value even if some of the processes fail. (This is very similar to the
byzantine generals problem, in which the generals must agree on a plan of
action even if there are traitors.) The specific rules are as follows:

• Termination—Every valid process eventually picks a value.
• Validity—If all valid processes initially propose value V, they

eventually all decide on value V.

589

• Integrity—If a valid process decides on a value V, value V must
have been proposed by some valid process.

• Agreement—All valid processes must agree on the same value in
the end.

The “phase king” algorithm solves the consensus problem if up to F
processes fail and there is a total of at least 4 × F + 1 processes. For
example, to tolerate one failure, the algorithm requires at least five
processes.

Suppose there are N processes and up to F failures. Initially each process
makes a guess as to what it thinks the final value should be. Let Vi be the
guess for process Pi.

To allow up to F failures, the algorithm uses a series of F + 1 phases.
During each phase, one of the processes is designated as the “phase king.”
You can assign the phase king based on process ID or some other arbitrary
value, as long as each phase has a different phase king.

Each of the F + 1 phases consists of two rounds. In the first round, every
process tells every other process its current guess about what it thinks the
value should be.

Each process examines the guesses it received, plus its own current guess,
and finds the majority value. If there is no majority value, it uses some
predefined default value. Let Mi be the majority value for process Pi.

In the phase's second round, the current phase king process Pk broadcasts
its own majority value to all the other processes to use as a tiebreaker.
Each process (including the phase king) examines its majority value Mi. If
the number of times Mi appears is greater than N / 2 + F, the process
updates its guess by setting Vi = Mi. If the number of times Mi appears is
not greater than N / 2 + F, the process sets Vi equal to the phase king's
tiebreaker value.

For example, to see how this might work in a simple case, suppose there
are five processes and there could be one invalid process, but in fact all
the processes are working correctly. Let the phase king in phase i be
process Pi, and suppose the processes' initial guesses are attack, retreat,
retreat, attack, and attack, respectively:

590

• Phase 1, Round 1—The processes honestly broadcast their values
to each other, so each thinks there are three votes of attack and two
votes of retreat.

• Phase 1, Round 2—The phase king broadcasts its majority value
attack to the other processes. Each process compares the number of
times it saw the majority value (attack) to N / 2 + F. Each process
saw the majority value three times. The value N / 2 + F = 5 / 2 + 1
= 3.5. Because the majority value did not occur more than 3.5
times, the processes all set their guesses to the tiebreaker value
attack.

• Phase 2, Round 1—The processes honestly broadcast their values
to each other again. Now all of them vote attack.

• Phase 2, Round 2—The phase king broadcasts its majority value
attack to the other processes. This time each process sees the
majority value five times. The value 5 is greater than 3.5, so each
process accepts this as its guess.

Because this example tolerates up to one failure, it finishes after only two
phases. In this example, every process votes to attack, which happens to
be the true majority vote.

For a more complicated example, suppose there are five processes, as
before, but the first fails in a byzantine way (it is a traitor). Suppose the
initial guesses are <traitor>, attack, attack, retreat, attack. (The traitor
doesn't have an initial guess. He just wants to mess up the others.)

• Phase 1, Round 1—In this phase, the phase king is the traitor
process P1. The processes broadcast their values to each other. The
traitor tells each process that it agrees with whatever that process's
guess is, so the processes receive these votes:

• P1—<The traitor doesn't really care.>
• P2—Attack, attack, attack, retreat, attack
• P3—Attack, attack, attack, retreat, attack
• P4—Retreat, attack, attack, retreat, attack
• P5—Attack, attack, attack, retreat, attack

• The majority votes and their numbers of occurrence for the
processes are <traitor>, attack × 4, attack × 4, attack × 3, and
attack × 4.

• Phase 1, Round 2—The phase king (the traitor) gives the other
processes conflicting tiebreaker values. It tells P2 and P3 that the

591

tiebreaker is attack, and it tells P4 and P5 that the tiebreaker is
retreat. Processes P2, P3, and P5 see the majority value attack four
times, so they accept it as their updated guess. Process P4 sees the
majority value only three times. This is less than the 3.5 times
required for certainty, so P4 uses the tiebreaker value retreat. The
processes' new guesses are <traitor>, attack, attack, retreat, attack.

• Phase 2, Round 1—In this phase, the phase king is the valid
process P2. The processes broadcast their values to each other. In a
last-ditch attempt to confuse the issue, the traitor tells all the other
processes that it thinks they should retreat, so the processes receive
these votes:

• P1—<The traitor doesn't really care.>
• P2—Retreat, attack, attack, retreat, attack
• P3—Retreat, attack, attack, retreat, attack
• P4—Retreat, attack, attack, retreat, attack
• P5—Retreat, attack, attack, retreat, attack

• The majority votes and their numbers of occurrence for the
processes are <traitor>, attack × 3, attack × 3, attack × 3, and
attack × 3.

• Phase 2, Round 2—The majority value for the phase king P2 is
attack (seen three times), so it tells all the other processes that the
tiebreaker value is attack. All the valid processes (including the
phase king) see the majority value attack less than 3.5 times, so
they all go with the tiebreaker value, which is attack.

At this point, all the value processes have attack as their current guess.

The reason this algorithm works is that it runs for F + 1 phases. If there
are at most F failures, at least one of the phases has an honest phase king.

During that phase, suppose valid process Pi doesn't see its majority value
more than N / 2 + F times. In that case, it uses the phase king's tiebreaker
value.

That means all valid processes Pi that don't see a value more than N / 2 +
F times end up using the same value. But what if some valid process Pj
does see a value more than N / 2 + F times? Because there are at most F
invalid processes, those more than N / 2 + F occurrences include more
than N / 2 valid occurrences. That means there is a true majority for that
value, so every process that sees a majority value more than N / 2 + F

592

times must be seeing the same majority value. Because in this situation
there is a true majority value, the current phase king must see that value as
its majority value (even if the phase king doesn't necessarily see it more
than N / 2 + F times).

This means that after the honest phase king's reign, all the valid processes
vote for the same value.

After that point, it doesn't matter what an invalid phase king tries to do. At
this point, the N – F valid processes all agree on a value. Because F < N /
4, the number of valid processes is N – F > N – (N / 4) = 3 / 4 × N = N / 2
+ N / 4. Because N / 4 > F, this value is N / 2 + N / 4 > N / 2 + F. But if a
valid process sees more than this number of agreeing guesses, it uses that
value for its updated guess. This means all the valid processes keep their
values, no matter what an invalid phase king does to try to confuse them.

Leader Election
Sometimes a collection of processes may need a central leader to
coordinate actions. If the leader crashes or the network connection to the
leader fails, the group must somehow elect a new leader.

The bully algorithm uses the processes' IDs to elect a new leader. The
process with the largest ID wins.

Despite this simple description, the full bully algorithm isn't quite as
simple as you might think. It must handle some odd situations that may
arise if the network fails in various ways. For example, suppose one
process declares itself the leader, and then another process with a lower ID
also declares itself the leader. The first process with the higher ID should
be the leader, but obviously the other processes didn't get the message.

The following steps describe the full bully algorithm:
1. If process P decides the current leader has failed (because the
leader has exceeded a timeout), it broadcasts an “Are you alive?”
message to all processes with a larger ID.
2. If process P does not receive an “I am alive” message from any
process with a higher ID within a certain timeout period, process P
becomes the leader by sending an “I am the leader” message to all
processes.

593

3. If process P does receive an “I am alive” message from a process
with a higher ID, it waits for an “I am the leader” message from that
process. If P doesn't receive that message within a certain timeout
period, it assumes that the presumptive leader has failed and starts a
new election from Step 1.
4. If P receives an “Are you alive” message from a process with a
lower ID, it replies with “I am alive” and then starts a new election
from Step 1.
5. If P receives an “I am the leader” message from a process with a
lower ID, it starts a new election from Step 1.

In Step 5, when a lower ID process says it's the leader, the higher ID
process basically says, “No, you're not,” pushes aside the lower ID
process, and assumes command. This is the behavior that gives the bully
algorithm its name.

Snapshot
Suppose you have a collection of distributed processes, and you want to
take a snapshot of the entire system's state that represents what each
process is doing at a given moment.

Actually, the timing of when the snapshot is taken is a bit hard to pin
down. Suppose process A sends a message to process B, and that message
is currently in transit. Should the system's state be taken before the
message was sent, while the message is in transit, or after the message
arrives?

You might want to try to save the system's state before the message was
sent. Unfortunately, process A may not remember what its state was at
that time, so this won't work (unless you require all processes to remember
their past states, which could be quite a burden).

If you store only the processes' states while a message is in transit, the
processes' states may be inconsistent. For example, suppose you want to
restore the system's state by resetting all the processes' states to their saved
states. This doesn't really restore the entire system, because the first time
around, process B received the message shortly after the snapshot was
taken, and that won't happen in the restored version.

594

For a concrete example, suppose processes A and B store the bank
balances for customers A and B. Now suppose customer A wants to
transfer $100 to customer B. Process A subtracts the money and sends a
message to process B, telling it to add $100 to customer B's account.
While the message is in transit, you take a snapshot of the system. If you
later restore the system from the snapshot, customer A has already sent the
$100, but customer B has not yet received it, so the $100 is lost. (This
would be a terrible way to manage bank accounts. If a network failure
makes a message disappear, the money also will be lost. You need to use a
more secure consensus protocol to make sure both processes agree that the
money has been transferred.)

So to take a good snapshot of the system, you need to save not only each
process's state, but also any messages that are traveling among the
processes.

The following steps describe a snapshot algorithm developed by K. Mani
Chandy and Leslie Lamport:

1. Any process (called the observer) can start the snapshot process.
To start a snapshot:

a. The observer saves its own state.
b. The observer sends a snapshot message to all other
processes. The message contains the observer's address and a
snapshot token that indicates which snapshot this is.

2. If a process receives a particular snapshot token for the first time:
a. It sends the observer its saved state.
b. It attaches a snapshot token to all subsequent messages that
it sends to any other process.

3. Suppose process B receives the snapshot token and then later
receives a message from process A that does not have the snapshot
token attached. In that case, the message was in transit. It was sent
before process A received the snapshot token, so it is not taken into
account by process A's saved state. To make sure this information
isn't lost, process B sends a copy of the message to the observer.

After all the messages have finished flowing through the system, the
observer has a record of every process's state and of any messages that
were in transit when the snapshot was taken.

595

Clock Synchronization
Exact clock synchronization can be tricky due to inconsistent message
transmission times that occur in a shared network. The problem becomes
much easier if processes communicate directly without using a network.
For example, if two computers are in the same room and you connect
them with a wire, you can measure the wire's length, calculate the time it
takes for a signal to travel across the wire, and then use it to synchronize
the computers' clocks.

This works, but it is cumbersome and may not be possible between
computers that are far apart. Fortunately, you can synchronize two
processes' clocks fairly well by using a network if you assume that a
network's message transmission time doesn't vary too much over a short
period of time.

Suppose you want process B to synchronize its clock to the clock used by
process A. Call the time according to process A the “true” time.

The following steps describe the messages the processes should exchange:
1. Process A sends process B a message containing TA1 (the
current time according to process A).
2. Process B receives the message and sends process A a reply
containing TA1 and TB1 (the current time according to process B).
3. Process A receives the reply and sends process B a new message
containing TA1, TB1, and TA2 (the new current time according to
process A).

Now process B can perform some calculations to synchronize its clock
with process A.

Suppose E is the error between the two clocks, so TB = TA + E at any
given time. Also suppose D is the delay required to send a message
between the two processes.

When process B records time TB1, the initial message took time D to get
from process A to process B, so:

596

Similarly, when process A records time TA2, the reply took time D to get
from process B to process A, so:

If you subtract the second equation from the first, you get:

Solving this equation for E gives:

Now process B has an estimate of E, so it can adjust its clock accordingly.

This algorithm assumes that the delay remains roughly constant during the
time it takes to pass the messages back and forth. It also assumes that a
message from A to B takes about the same amount of time as a message
from B to A.

Summary
This chapter has discussed issues that involve parallel processing. It
explained some of the different models of parallel computation and
described several algorithms that run in distributed systems. You may not
need to use some of the more esoteric algorithms, such as the zero-time
sort on a systolic array or the solution to the dining philosophers problem,
but all these algorithms highlight some of the problems that can arise in
distributed systems. Those problems include such issues as race
conditions, deadlock, livelock, consistency, and synchronization.

Distributed environments range from desktop and laptop computers with
multiple cores to huge grid projects that use hundreds of thousands of
computers to attack a single problem. Even if Moore's Law holds for

597

another decade or two, so much underused processing power already is
available that it makes sense to try to take advantage of it with distributed
computing. To get the most out of today's computing environments and
the increasingly parallel environments that are on their way, you must be
aware of these issues and the approaches that you can use to solve them.

Exercises
1. Make a diagram similar to the one shown in Figure 18.1, showing
how the zero-time sorting algorithm would sort the two lists 3, 5, 4,
1 and 7, 9, 6, 8 simultaneously. Draw one set of numbers bold or in
a different color to make it easier to keep the two lists separate as
the algorithm runs. How many more ticks are required to sort the
two lists instead of just one?
2. In many systems, a process can safely read a shared memory
location, so it only needs a mutex to safely write to the location.
(The system is said to have atomic reads, because a read operation
cannot be interrupted in the middle.) What happens to the
Hamiltonian path example if the process reads the shared total route
length in the If statement and then acquires the mutex as its first
statement inside the If Then block?
3. *Consider the Chandy/Misra solution to the dining philosophers
problem. Suppose the philosophers are synchronized, and suppose
they all immediately attempt to eat. Assume that a philosopher
thinks for a long time after eating, so none of them needs to eat a
second time before the others have eaten.
In what order do the philosophers eat? In other words, who eats
first, second, third, and so on? (Hint: It may be helpful to draw a
series of pictures to show what happens.)
4. In the two generals problem, what happens if some of the initial
messages get through, and general B sends some acknowledgments,
but he is unlucky, and none of the acknowledgments makes it back
to general A?
5. In the two generals problem, let PAB be the probability that a
messenger is caught going from general A to general B. Let PBA be
the probability that a messenger is caught going from general B to

598

general A. The original algorithm assumes that PAB = PBA, but
suppose that isn't true. How can the generals figure out the two
probabilities?
6. Consider the three-person general and lieutenant problem shown
in Figure 18.2. You could try to solve the problem by making a rule
that any lieutenant who hears conflicting orders should follow the
order given by the general. Why won't that work?
7. Consider the three-person general and lieutenant problem shown
in Figure 18.2. You could try to solve the problem by making a rule
that any lieutenant who hears conflicting orders should retreat. Why
won't that work?
8. In the four-person general and lieutenant problem shown in
Figure 18.3, can the loyal lieutenants figure out who the traitor is? If
they cannot, how many lieutenants would be needed to figure it out?
9. In the four-person general and lieutenant problem shown in
Figure 18.3, find a scenario that allows the lieutenants to identify
the traitor. In that scenario, what action should the lieutenants take?
(Of course, if the traitor is smart, he will never let this happen.)
10. What modification would you need to make to the dining
philosophers problem to let the leader algorithm to help with it?
How would it help?
11. Would a bully-style algorithm help with the dining philosophers
problem?
12. Define a ravenous philosophers problem. It is similar to the
dining philosophers problem, except this time the philosophers are
always hungry. After a philosopher finishes eating, he puts down
his forks. If no one picks them up right away, he grabs them and
eats again. What problems would this cause? What sort of algorithm
might fix the problems?
13. In the clock synchronization algorithm, suppose the time needed
to send a message from A to B differs from the time needed to send
a message from B to A. How much error could this difference
introduce into the final value for process B's clock?
14. The clock synchronization algorithm assumes that
message-sending times are roughly constant during the message
exchange. If the network's speed changes during the algorithm, how

599

much error could that introduce into the final value for process B's
clock?
15. Suppose a network's speed varies widely over time. How could
you use the answer to Exercise 14 to improve the clock
synchronization algorithm?

600

Chapter 19

Interview Puzzles

It's perfectly reasonable for a job interview to include questions that
require you to use your skills to solve a problem. Each of this book's
chapters contains exercises that might make good interview questions—at
least if the candidate is well-versed in algorithms. Many of those questions
would be quite difficult if you hadn't recently been reading about the
relevant algorithms.

Recently, certain kinds of puzzles have also become popular in interviews
at companies such as Microsoft and Google. The puzzles are intended to
measure a candidate's creativity and critical-thinking ability.
Unfortunately, these sorts of puzzles come with a large set of assumptions
that may not be true. Most business situations, even in programming, are
not phrased as puzzles involving balance scales, marbles, rickety bridges,
and goats. They usually don't involve a clever trick or an amazing insight
that is blindingly obvious after you hear it but that is practically
impossible to figure out in a 10-minute interview.

It's true that finding the best solution to a real-world problem often
requires creativity, but many of these kinds of puzzles don't measure
creativity. Instead, they measure whether you've scoured the Internet long
enough to find the problem that the interviewer is asking about, or
something similar.

For example, consider the following questions:
1. Why are manhole covers round?
2. On which side of a car is its gas cap?
3. What is the significance of the phrase “dead beef?”
4. What is the next number in the sequence 17, 21, 5, 19, 20, 9, 15?

Take a moment (but only a moment) to think about these questions. Here
are the answers, with some comments:

1. So that you can't pick one up, turn it on its edge, and drop it into
the manhole. That's clever (although other shapes will work,
particularly if the opening is relatively small and the cover is fairly
thick), but the question asks you to work backwards from the

601

solution to find the problem. How often does that occur in a real
programming situation?
2. It's on the side opposite the exhaust pipe (unless the exhaust pipe
or the gas cap is in the middle, in which case all bets are off). This
question also requires you to work backwards from the solution
(how to prevent gasoline from spilling on a hot exhaust pipe) to the
problem.
3. Back in the days of mainframe and assembly programming,
programmers could put the hexadecimal value 0xDEADBEEF in
the code to make it easy to spot that particular location. This
question doesn't test the applicant's creativity or intelligence; it just
determines whether he or she ever programmed in assembly. And
saw that trick. And remembered it. It would be easier to just ask
how much experience the applicant has with assembly
programming. (For the record, I studied some assembly
programming, and I didn't run across this trick.)
4. The answer is 14. If you assign numbers to letters so that A = 1,
B = 2, C = 3, and so on, the sequence in the question spells
QUESTIO. If you figure that out, it's fairly easy to guess that the
final letter should be N, which is assigned to the number 14. This
question fools the applicant into thinking about numbers when he or
she should be thinking about letters and encodings. Unless you're
hiring a cryptographer, this probably isn't relevant. (If you are hiring
a cryptographer, you're probably better off asking the applicant
about Laplace transforms and hyperbolic curves.)

The Journal of Applied Psychology article “Why Are Manhole Covers
Round? A Laboratory Study of Reactions to Puzzle Interviews” questions
the usefulness of these kinds of interview questions. The article says this
kind of question is not a very effective method for gauging an applicant's
reasoning ability. Applicants may also feel these questions are unfair or
arbitrary, and that may cause them to become uncooperative or to turn
down the job if it is offered.

Does that mean these questions are worthless in interviews? They
certainly are if you use them incorrectly.

The next two sections discuss how to handle these sorts of questions as an
interviewer and as an interviewee.

602

Asking Interview Puzzle
Questions
The preceding section gave some examples of bad interview puzzles.
They rely on knowledge of trivia or, at best, the ability to work backwards
from a solution to a problem. Working backwards does take creativity, but
you can certainly be creative without that ability.

More than anything else, those problems tell you how well the candidate
combed the Internet, looking for potential interview puzzles. There's some
benefit in knowing that the candidate prepared thoroughly for the
interview, but it doesn't really tell you much about his or her creativity or
problem-solving ability.

To get useful information from a puzzle, you need a question that the
candidate hasn't seen before. On the other hand, the puzzle can't be so
impossibly hard that the candidate panics. It shouldn't rely on a trick or
point of trivia that only measures whether the candidate happened to see a
particular issue of some obscure magazine.

Unfortunately, that rules out a lot of puzzles. Those that remain include
puzzles that ask the user to perform a calculation, make an estimate, or
otherwise do something that may be straightforward but that gives the
candidate room to explore possible approaches.

For example, one popular interview question has a form similar to this:
“How many baseballs fit inside a school bus?” The candidate is highly
unlikely to have memorized that fact, so this question is really asking the
user to come up with an estimate. A good answer will list the assumptions
that go into the estimate and perform a calculation. (Suppose a school bus
is 36 feet long, the interior is 7 feet high, a baseball is 3 inches in
diameter, and so on.) It doesn't really matter whether the assumptions are
correct, as long as the process makes sense.

This question determines whether the candidate can perform
back-of-the-envelope calculations, which is relevant to software
engineering.

603

Another kind of calculation puzzle comes in a form similar to this: “If I'm
three times as old as my brother, and in two years I'll be twice as old as he
is, how old am I now?” (See Exercise 6 for the answer.) This is mainly an
exercise in translating a word problem into a set of equations. That skill is
certainly useful, but many people don't like word problems, and most
real-world problems don't take this form anyway.

Clock puzzles have this form: “How many times do the hour and minute
hands on a clock cross each other between noon and midnight?” (See
Exercise 7 for the answer.) This puzzle and others usually can be solved
by using a table and plugging in some values. That approach doesn't really
let the candidate show off his creativity, but it does show that he can be
organized.

Another way puzzles can be interesting is if you discuss the puzzle
afterwards. For example, you could use a relatively simple puzzle that
you're pretty sure the candidate can solve. Afterwards you can discuss
why the solution works, how the candidate found the solution, what other
approaches might have been worth trying even if they wouldn't work, and
so on.

Alternatively, you could give the candidate a very hard puzzle, give him
time to think about it so that you're sure he understands the constraints,
and then discuss the solution. Now you can talk about different
approaches you might take to reach that solution.

Salvaging a Bad Question
Giving a candidate an impossible problem with insufficient time to solve it won't
help either of you, but what if the candidate fails to solve what you think is an
easy problem? You could spend the rest of the interview asking the candidate why
he failed, pointing out how easy the problem is if you look at it a certain way, and
otherwise torturing the poor guy to inflate your ego.

A more productive approach would be to minimize the problem's importance and
get on with the rest of the interview. You could say, “That's okay. Almost no one
figures out this problem. It's really a test of how you react to difficult situations.”
Then you can get the interview back on track.

Probably a better approach than a simple puzzle is to describe a situation
that resembles one you might encounter in your business. For example,
you might say, “Let's design a database to store vacation plans for aliens
from other planets.” This problem is big enough to give the candidate

604

plenty of room to show his or her database design skills and creativity but
is silly enough that the candidate probably won't panic. If you like, you
can work through the problem together to see how the candidate interacts
with others. You can propose strange twists and ask the candidate what
might go wrong under different circumstances to see how creatively he or
she handles unexpected problems. This kind of interactive challenge is
harder to control, and different candidates may come up with very
different solutions, so it may be hard to judge among them. But this
challenge can teach you a lot more than a simple puzzle.

Puzzles can be interesting and entertaining but they're probably not the
best way to measure the qualities you want in your job candidates.

Answering Interview Puzzle
Questions
The preceding section argued that puzzle questions don't really measure
the characteristics an employer wants in a job applicant. Instead of
measuring your creativity and critical-thinking ability, they measure your
ability to memorize trivia and scour the Internet to find these sorts of
problems.

Just because these puzzles don't measure the qualities they seem to doesn't
mean you won't see these sorts of questions in an interview. Some
interviewers may use them to see how you handle pressure, respond to
unreasonable demands, and cope with impossible problems. These sorts of
puzzles may not measure creative thinking ability, but they may provide
information about your psychological makeup.

So how should you respond to this kind of puzzle question? First and
foremost, don't panic. Whether the interviewer expects you to solve the
problem or just wants to see how you react, panicking won't help. This
will make it nearly impossible to solve the problem and will create a bad
impression.

Instead, focus on the problem. Once you start working on the problem,
you won't have as much time to panic.

605

Many puzzles at technical interviews are related to programming. They
may ask you to reverse the characters in a string, sort objects in an unusual
way, copy a data structure, or perform some other straightforward but
confusing task. In those cases, think about the algorithmic techniques you
know. Here are some techniques you should consider:

• Divide and conquer—Can you break the problem into pieces that
are easier to solve?

• Randomization—Does the problem include worst cases that could
be avoided with randomization?

• Probability—Can you think of a probabilistic method that uses
guesses to find a solution or that solves the problem with some
probability?

• Adaptive techniques—Can you think of an approach that focuses
on specific parts of the problem? Are there really only a few true
areas of interest, with most of the problem being there to confuse
the issue?

• Data structures—Does a certain data structure (linked list, array,
stack, queue, tree, balanced tree, network) map naturally to the
problem? Does a certain data structure have behaviors similar to the
ones you need to solve the problem?

• Problem structure—Is the problem's structure naturally recursive,
hierarchical, or similar to a network? Can you use tree or network
algorithms to search the data?

• Decision trees—Can you apply decision tree search methods to the
problem? (Often you can, but it would take too long.) You might
say, “Well, we could try examining all possible combinations of the
data, but that would take forever. Perhaps a divide-and-conquer
approach would be better.”

If you get stuck, you can also try some of the following general
problem-solving tips:

• Make sure you understand the problem. If it contains ambiguities,
ask for clarification.

• Restate the problem to be sure you understand it. If you have made
a bad assumption, the interviewer may correct you.

• Compare the problem to other problems you have seen in the past.
• Break the problem into smaller pieces. If the problem is large, look

for pieces you can solve separately.

606

• Focus on the details. Sometimes the smaller details are easier to
handle.

• Focus on the big picture. Sometimes the details don't make sense
except when seen together as a whole.

• Make a list of facts you know.
• Make a list of facts you would like to know. List ways you might

learn those facts.
• Make a table of values. See if you can extend the table to new

values.
• Guess and check. You can solve some problems by making a guess

and then adjusting to get the result you need.
• Think outside the box. If the problem is about numbers, think about

letters, shapes, and other nonnumeric values. If the problem is
about letters, think about numbers.

• Brainstorm. Talk out loud about the kinds of approaches you might
take. This may be a good time to let the interviewer know what
techniques you understand. “Binary subdivision probably won't
work… The problem is naturally recursive, but that would lead to
an infinite series of operations…” Again, the interviewer may
correct you. At a minimum, you'll be telling the interviewer some
of the techniques you know.

• Draw a picture if one makes sense. Sometimes seeing a problem
graphically instead of textually can help.

• If you get stuck with one approach, try another. The interviewer
doesn't want to see you struggling to use the wrong approach long
after it's clear that it won't work.

• Stick with it, or give up. If you have the time and the interviewer
clearly wants you to spend a lot of time on the puzzle, do so. If it
doesn't seem like you have enough time, it may be better to ask the
interviewer if you should continue.

Failing to solve an interview puzzle doesn't necessarily mean you failed
the interview. If you try hard, exhaust all the approaches you can think of,
and are clearly getting nowhere, it may be better to ask whether you
should stop. You might say something like, “It seems like a recursive
approach would be promising, but I think I'm missing something. Do you
want me to keep working on this?” If the interviewer wants you to
continue, he can say so.

607

Even if you fail to solve the problem, the interviewer probably will learn
something from your attempt. If you talk as you work, he probably will
learn about some of the approaches you know and something about how
you think about problems. He also will see what you do to understand the
problem before trying to solve it and how long you work before giving up.

One Glib Answer
You're allowed one glib answer, but then you must be prepared to get to work. For
example, one common kind of interview puzzle is the estimation question, such as
“How many baseballs fit inside a school bus?” or “How many barbers are there in
Tampa, Florida?”

These questions often lend themselves to glib answers. For example, if the
interviewer asks, “How much should you charge to clean all the chimneys in
Detroit?” you could say “As much as the market will bear” or “$30 per chimney.”
You can pause for a chuckle, but then you should start working on an estimate. If
the interviewer only wants the glib answer, he will stop you at that point. More
likely, however, he wants to see how you handle a calculation full of unknown
values.

If you have absolutely no clue about some value, leave it in the calculation as a
variable. After you come up with an equation, plug in some values just to see what
happens, and make a guess about whether that seems reasonable. For the chimney
example, you might come up with this equation:

where:

• Amount is the total amount to charge
• Rate is the hourly rate (say, $20 per hour)
• Time is the time required to clean a chimney (say, 1 hour)
• Population is the population of Detroit (say, 1 million)
• Percentage is the percentage of people with a chimney (say, 25%)

The last value may require some further estimates. You might try to estimate the
number of people living in each household and the number of people who live in
houses as opposed to apartments without chimneys.

When you're done, you plug in your guesses and see what amount comes out. For
the values shown here, that would be as follows:

It doesn't really matter whether the answer is correct (it almost certainly isn't).
What's important is the method you use to calculate it.

608

One thing you should never do is try to pick apart the interviewer's
questions to prove how stupid they are. While looking for websites that
contain puzzle-style interview questions, I came across an article in which
the author gave a series of “snappy comebacks” to the interview question
“How would you design a routine to copy a file?” The article had the
applicant ask all kinds of questions about what kind of file it is, whether
the file's permissions should be copied, whether the file should be
encrypted, whether it should be marked for backup, and other detailed
questions until the fictional interviewer was frustrated to the point of
saying, “Look, just copy the damn file.”

The article's point was that this is a stupid question, because no one writes
his or her own routines to copy files. That's true in most cases, although
I've worked on projects where copying files was particularly tricky due to
file locking issues. In fact, the biggest bottleneck in their whole operation
involved copying tens of thousands of files per day multiple times across a
series of computers that performed various operations on them. Even a
small mistake in copying files resulted in lost files or a backlog of
hundreds of thousands of files. Even if a question seems pointless, you
can't be sure of that until you know background behind the question.

Proving how smart you are and how stupid the question is won't land you
the job. At best, you'll show impatience and a lack of interest when
confronted with a problem. At worst, you'll alienate the interviewer, imply
that you cannot solve the puzzle, and give the impression that you don't
care about the employer's problems.

A much better approach is to inquire why the interviewer is asking the
question so that you can understand his point of view and come up with an
appropriate response.

Summary
Interviewers sometimes use puzzle questions in an attempt to measure a
candidate's creativity and critical-thinking skills. Those puzzles don't do a
very good job of that, although they may provide some insight into how a
candidate deals with frustrating situations.

609

If you're an interviewer, avoid puzzles that rely on trivia, that require the
candidate to work backwards from a solution to a problem, or that are so
difficult that the candidate would be lucky to solve them. Puzzles that
make the candidate perform back-of-the-envelope calculations are better
and more relevant.

Better still are questions that are similar to those the candidate may
actually encounter at work. You also can use exercises similar to the ones
included in this book or other books about algorithms and programming in
general. You should be careful not to pick questions that are too difficult,
however. Only someone who has studied algorithms extensively or fairly
recently will remember the finer points of balanced-tree rotations or how
to show that optimization ≤p reporting (or even know what that means).

You can usually learn more about what the candidate knows by asking
questions and discussing problem-solving approaches than you can by
posing a single puzzle that may happen to fall outside the candidate's
experience.

If you're a candidate, try not to panic or be offended by puzzle questions.
Make sure you understand the problem, and give it your best shot.
Remember, failing to solve a problem doesn't necessarily mean you've
also failed the interview.

You can find a huge number of puzzle questions online by searching for
“interview puzzle questions.” Read a bunch and get a feel for the kinds of
things interviewers ask and the kinds of approaches required to solve
them. Even if you don't face these sorts of puzzles in an interview, they
can be interesting and fun, so you won't have wasted your time.

However, don't forget to work on the other parts of your interview skills.
Brush up on your algorithms, database design, architecture, project
management, and other relevant skills. Last but not least, don't forget to
get a good book or two about how to prepare for interviews more
generally.

See the following links for some sites that provide particularly interesting
puzzles, puzzles that have been used by companies such as Microsoft and
Google, and information about puzzle questions:

610

• How effective are puzzle interview questions?:
http://resourceszone.com/blog/
how-effective-are-those-puzzle-interview-questions

• 10 Google interview puzzles:
http://www.mytechinterviews.com/
10-google-interview-questions

• 10 famous Microsoft interview puzzles:
http://www.mytechinterviews.com/
10-famous-microsoft-interview-puzzles

• How to Ace a Google Interview:
http://online.wsj.com/article/
SB10001424052970204552304577112522982505222.html

• techinterview: http://www.techinterview.org
• Facebook interview puzzles group:
https://www.facebook.com/interviewpuzzles

• Haidong Wang's interview puzzles (note that the answers to many
of these are not posted on his site):
http://www-cs-students.stanford.edu/
∼hdwang/puzzle.html

• Top 5 Microsoft interview questions:
http://dailybrainteaser.blogspot.com/2010/
08/
top-5-microsoft-interview-questions.html

• A2Z Interviews: puzzles (these have answers but not explanations):
http://www.a2zinterviews.com/Puzzles/
logical-puzzles

• Interview aptitude questions: http://www.knoowgle.com/
Puzzles

• CoolInterview puzzles:
http://www.coolinterview.com/
type.asp?iType=619

• CareerCup: http://www.careercup.com
• Math Olympiads (This site supports the Math Olympiads

organization, which organizes math competitions for students in
grades 4 through 8. Many of the problems are similar to interview
puzzles, and they're pretty fun.): http://www.moems.org

611

http://resourceszone.com/blog/how-effective-are-those-puzzle-interview-questions
http://resourceszone.com/blog/how-effective-are-those-puzzle-interview-questions
http://www.mytechinterviews.com/10-google-interview-questions
http://www.mytechinterviews.com/10-google-interview-questions
http://www.mytechinterviews.com/10-famous-microsoft-interview-puzzles
http://www.mytechinterviews.com/10-famous-microsoft-interview-puzzles
http://online.wsj.com/article/SB10001424052970204552304577112522982505222.html
http://online.wsj.com/article/SB10001424052970204552304577112522982505222.html
http://www.techinterview.org
https://www.facebook.com/interviewpuzzles
http://www-cs-students.stanford.edu/∼hdwang/puzzle.html
http://www-cs-students.stanford.edu/∼hdwang/puzzle.html
http://dailybrainteaser.blogspot.com/2010/08/top-5-microsoft-interview-questions.html
http://dailybrainteaser.blogspot.com/2010/08/top-5-microsoft-interview-questions.html
http://dailybrainteaser.blogspot.com/2010/08/top-5-microsoft-interview-questions.html
http://www.a2zinterviews.com/Puzzles/logical-puzzles
http://www.a2zinterviews.com/Puzzles/logical-puzzles
http://www.knoowgle.com/Puzzles
http://www.knoowgle.com/Puzzles
http://www.coolinterview.com/type.asp?iType=619
http://www.coolinterview.com/type.asp?iType=619
http://www.careercup.com
http://www.moems.org

Many books also cover these sorts of puzzles. Look for them in your
favorite bookstore.

One book I've seen that includes puzzles that are mostly relevant to
programmers is Cracking the Coding Interview by Gayle Laakmann
McDowell (CareerCup, 2011). Many of the puzzles test your
understanding of important data structures and programming techniques,
although a few “clever trick” problems require you to have encountered a
particular technique (such as the tortoise-and-hare algorithm). (I'm sure
other good books are available. This is just one that I found interesting.)

Exercises
The following exercises are brief examples of some common types of
interview puzzles.

1. A man has a dresser drawer containing 10 brown socks and 10
black socks. He gets up early and wants to find a pair of socks
without turning on the bedroom light and waking up his wife. How
many socks should he take into the living room (where he can turn
on the light) to guarantee that he has a matching pair of socks?
2. You are given 10 black marbles, 10 white marbles, and two
bowls. You may divide the marbles between the bowls any way you
like. Then you are blindfolded, the bowls are shuffled, and you
reach into a bowl and pick out a marble. How should you distribute
the marbles to maximize your chances of picking a white marble?
3. If you randomly arrange four red marbles and eight blue marbles
in a circle, what are the odds that no pair of adjacent marbles has
the same color?
4. If you randomly arrange four red marbles and eight blue marbles
in a circle, what are the odds that no pair of adjacent marbles is red?
5. What would be the best data structure for reversing a list of
customer records without using additional memory?
6. If I'm three times as old as my brother, and in two years I'll be
twice as old as he is, how old am I now?
7. How many times do the hour and minute hands on a clock cross
each other between noon and midnight?

612

8. The people in a certain country particularly value boys, so every
couple has children until they get a boy, and then they stop having
children. Assuming boys and girls are equally likely, what is the
total percentage of girls in the population?
9. You hire a consultant who wants to be paid in gold. The job will
take between one and seven days (you don't know ahead of time). If
the job takes the full seven days, you will give the consultant a
small brick of gold. If the job takes less time, you will give the
consultant 1/7th of the brick per day worked. What is the fewest
number of pieces into which you must cut the brick so that you can
pay the consultant no matter how many days the job takes?
10. You have eight golden eggs, but you know that one is only
gold-plated, so it's lighter than the others. You also have a two-pan
balance. How can you find the gold-plated egg in only two
weighings?
11. You have five unlabeled pill bottles containing between 10 and
20 pills each. Four of the bottles contain 1-gram pills. The fifth
contains placebos that weigh 0.9 grams. How can you use a digital
scale (one that shows you a weight in grams, not a two-pan balance)
to determine which bottle contains the placebos in a single
weighing?

613

Appendix A

Summary of Algorithmic Concepts

Chapter 1: Algorithm Basics
Understanding algorithms—To understand an algorithm, you need to
understand certain facts about it:

• Behavior—Does the algorithm always find the best solution?
• Speed—How does speed vary with the number of inputs?
• Memory requirements—Are they reasonable? How does memory

use vary with number of inputs?
• Main techniques—Can you reuse those techniques?

Algorithms and data structures—A data structure holds data in some
arrangement. An algorithm produces a result. You need an algorithm to
build and use a data structure.

Pseudocode is text that looks a lot like code but not in any particular
programming language. You need to translate it into an actual
programming language before you can execute it.

Algorithmic goals—To be useful, an algorithm must be correct,
maintainable, and efficient.

Big O notation describes the relationship between the number of inputs
and runtime or memory requirements as the problem size grows large. Big
O notation ignores constant multiples and considers only the
fastest-growing function that describes performance.

Runtime functions—Some common runtime functions in order of
increasing speed of growth are 1 (constant), log N, sqrt(N), N, N log N,
N2, 2N, and N!

614

Chapter 2: Numeric
Algorithms
Randomization—A program can randomize a collection of objects. It can
then pick the first items in the randomized collection to make a random
selection. For example, to select five cards from a deck of cards, a
program can randomize the deck and then pick the first five cards. You
can use a source of randomness to pick values with a different range (as in
using coin flips to pick a number between 0 and 7). You may be able to
use a biased source of randomness to generate fair selections.

Fairness—A pseudorandom process is fair if all the outcomes it can
generate occur with equal probability.

Bias—A pseudorandom process is biased if it is not fair. A six-sided die
that rolls a 1 half of the time is biased.

Probabilistic algorithm—An algorithm that produces a result with a given
certainty is probabilistic. For example, the Fermat primality test detects
nonprime numbers at least 50% of the time. If you repeat the test many
times, you can conclude that a number is prime with great certainty.

Precalculated values—Fast exponentiation uses precalculated values to
quickly calculate exponents. The sieve of Eratosthenes also uses
precalculated values to quickly eliminate numbers as potential primes.
Many programs can be sped up by using precalculated values either
calculated on the fly or calculated in advance and saved for later use.

Modeling accuracy—The rectangle and trapezoid rules show that better
modeling of a problem can lead to a better result without necessarily
requiring a lot of extra work.

Adaptive techniques—Many algorithms can be improved if you can focus
more work on parts of the problem that are most difficult and less work on
parts of the problem that are easy to handle.

Monte Carlo simulation—Some algorithms can use pseudorandom values
to estimate a result. These methods often don't give the accuracy of

615

deterministic methods, but they often are easy to apply when a
deterministic approach is difficult.

Chapter 3: Linked Lists
Linked lists are built from objects called cells that each contain a piece of
data plus a link to the next cell in the list.

In a doubly linked list, cells have links to the next and previous cells in the
list.

Sentinel—In linked lists, a sentinel is a cell that does not contain useful
data but is used to mark the beginning or end of the list.

Linked-list operations—It is easy to store a collection of objects in a
linked list. The list can grow as needed to hold more objects. It is easy to
add and remove items to and from a linked list. Linked lists are not very
efficient, however, for sorting or searching for items.

Chapter 4: Arrays
An array is a contiguous piece of memory that holds items.

Array packing—You can pack items into a piece of memory by mapping
array indices to memory locations. For example, to save space you can
make a triangular array by mapping indices in the triangular array into
positions in a one-dimensional array. Similarly, you can make arrays with
nonzero lower bounds by mapping the bounds into a regular zero-based
array.

Sparse arrays—You can use linked data structures to build space-efficient
sparse arrays or matrices.

616

Chapter 5: Stacks and
Queues
A stack is a data structure that provides last-in-first-out (LIFO) access to
items. You can implement a stack in a linked list or array, although you
may need to resize the array if it becomes full.

A queue is a data structure that provides first-in-first-out (FIFO) access to
items. You can implement a stack in a linked list or circular array,
although you may need to resize the array if it becomes full.

In a priority queue, items are retrieved in priority order.

Pronounced “deck,” a deque is a queue that allows you to add or remove
items from either end.

Uses—Other algorithms often use stacks and queues to hold items while
they are being processed.

Chapter 6: Sorting
Insertion—As in insertionsort, the algorithm takes an item and inserts it
into the correct position in some data structure.

Selection—As in selectionsort, the algorithm examines the items that have
not yet been processed, finds the best one at that moment, and adds it to
some data structure.

Decreasing range of interest—As in bubblesort, the algorithm keeps track
of the range of interest and restricts that range over time to reduce the
number of items it must consider.

A heap is a tree in which every node has value at least as large as its
children's values. A heap can be used as a priority queue.

Storing a complete tree—An algorithm can store a complete tree in an
array.

617

Divide and conquer—An algorithm breaks the problem into smaller pieces
and solves the pieces, usually recursively.

Randomization—Quicksort can use randomization to reduce the chance of
worst-case behavior because of items initially in a particular order. (This
doesn't protect it if there are many duplicate items.)

Parallelization—Quicksort, mergesort, and bucketsort can be parallelized.

External sorting—Because of how it moves through memory, mergesort
performs external sorting well.

Counting—If items have a limited range, you may be able to count them
instead of sorting them as countingsort does.

Partitioning—Bucketsort partitions items into buckets to simplify the
problem.

Picking the right algorithm—Sorting algorithms provide a good example
of when it is important to pick the right algorithm for the problem. Picking
the right algorithm can mean the difference between solving a problem in
seconds, minutes, or years.

Chapter 7: Searching
A linear (exhaustive) search simply loops through all the possible items,
looking for a target, giving it O(N) runtime. If the list is sorted, the
algorithm can stop early if it passes the point where the item would be.

A binary search algorithm divides in half the area to be searched at each
step, giving it O(log N) runtime. This concept applies to many problems.

An interpolation search algorithm uses interpolation to guess where a
target item is, giving it an O(log(log N)) runtime.

618

Chapter 8: Hash Tables
Hashing requirements—Hashing requires a data structure to hold values, a
hashing function to map values into the data structure, and a collision
resolution policy.

Mapping—Hash tables use a hashing function to map values from one
domain (names, employee IDs) to another domain (indices in an array). A
good hashing function maps any input values to a random distribution of
output values.

Chaining—Using linked lists to hold bucket overflow.

Sorted chaining—Sorting the linked lists improves performance in many
algorithms.

Open addressing—Mapping data directly to array entries.

Marking items as deleted—Many data structures cannot easily remove
items. Instead, you may be able to mark items as deleted and then reuse
their spots later.

Clustering—In some algorithms, such as linear probing and quadratic
probing, the probability of an item's landing in different places may not be
equal. This can reduce the algorithm's efficiency.

Randomization—By randomizing data, you can sometimes avoid bad
consequences. Double hashing uses a second hash function to avoid
clustering.

Chapter 9: Recursion
Recursive metrics—For recursive algorithms, in addition to studying
runtime and memory requirements, you must consider maximum depth of
recursion and use of stack space.

Recursive approach—A recursive algorithm calls itself to solve a smaller
problem. When the recursive calls reach a point where the problem is

619

small enough, the algorithm solves it without recursion and returns to the
calling instance.

Recursive definitions—Some sequences, such as the factorial function and
Fibonacci numbers, have natural recursive definitions. Those lead easily
to recursive algorithms, although they are not always as efficient as
nonrecursive algorithms.

Self-similar fractals are curves that start with an initiator curve and then
recursively replace parts of the curve with a suitably scaled, rotated, and
translated generator curve.

Backtracking is a recursive algorithm that considers partial solutions. If it
finds a partial solution that cannot be extended to a full solution, the
algorithm discards the partial solution, backtracks to the previous feasible
test solution, and continues searching from there.

A selection is an unordered subset of a set of objects. The number of
selections without duplicates of k items taken from a total of n items is
given by this equation:

The number of selections with duplicates of k items taken from a total of n

items is given by .

A permutation is an ordered subset of items taken from a set. The number
of permutations with duplicates of k items taken from a total of n items is
given by nk. The number of permutations without duplicates is n × (n – 1)
× (n – 2) × … × (n – k + 1). For the special case where k = n, which is
what most people think of as permutation, this is n!

Tail recursion removal—You can replace tail recursion with a loop that
resets parameters before the end of the loop.

Storing intermediate values—If a calculation such as the Fibonacci
numbers must recalculate the same values many times, you can save time

620

by storing values in a lookup table so that you need to calculate them only
once.

General recursion removal—You can remove recursion more generally by
mimicking how a program calls a method recursively. Push variables onto
stacks before recursion, and pop them off afterwards.

Chapter 10: Trees
Many algorithms use trees, so it's important to remember at least the most
basic tree properties.

Logarithmic growth—If a tree is reasonably balanced, its height grows
like the logarithm of the number of nodes it contains.

Lots of leaves—If a binary tree is reasonably balanced, roughly half its
nodes are leaves.

Inductive reasoning—Proof by induction is a useful technique for proving
tree theorems.

Branches and object references—You can use object references or
pointers to link a node to its children. You can use similar references to
create threads through trees. You also can use similar references to build
networks.

Traversals—Preorder, inorder, postorder, and breadth-first traversals
process the nodes in a tree in different orders.

Sorted trees—A sorted tree arranges its nodes so that they are processed in
sorted order during an inorder traversal.

Threads—You can use special branches or links for threads that let you
visit the nodes in a tree or network in unusual orders. A data structure can
have as many threads as you find useful, although maintaining threads
requires extra work.

Knowledge trees—The animal game uses a knowledge tree to represent
questions and the results that answers to those questions give.

Expressions can be represented and evaluated as trees.

621

Quadtrees and octtrees subdivide two- or three-dimensional space to make
locating objects fast.

Chapter 11: Balanced Trees
Amortized operations—Sometimes you can do a little extra work during
common operations such as rebalancing a tree when you add or remove a
value to avoid performing much longer operations later.

AVL trees use rotations to rebalance the tree, so the heights of two
subtrees at any node differ by at most 1.

2-3 trees—Every internal node has either two or three children. If a node
has three children and you add a node to it, it splits into two nodes with
two children. If a node has two children and you remove one of them, the
node rearranges with a sibling node or merges with a value in its parent.

B-trees—Every node holds between K and 2 × K values, where K is the
tree's order. A node holding M values has M + 1 children. B-trees are a
generalization of 2-3 trees and use similar node splitting and merging.

Top-down B-trees—When moving down into the tree to add a value, the
algorithm splits any full nodes it encounters so that there is room if
needed. This is another example of an amortized operation in which the
algorithm does some extra work to make later operations easier.

Chapter 12: Decision Trees
You can model many problems with decision trees. A branch in a decision
tree represents a single decision.

Game trees are a special kind of decision tree. A minimax strategy lets
you minimize your opponent's board position. Game tree heuristics
include precomputed initial moves and responses, looking for patterns,
and numeric board locations (that may change over time).

622

Types of problems—Many complex problems come in two forms: a yes/
no form and an optimization form. Decision trees help model the
optimization form. If a decision tree doesn't find a solution to the yes/no
form, you cannot conclude that a solution doesn't exist.

Examples:
• To find an ordering of items, a branch at level K in the tree

represents selecting one of the remaining items for the Kth position
in the ordering. The tree has N! leaf nodes.

• To select a subset of a collection of items, a branch at level K in the
tree determines whether the Kth item is in the set. Each node has
two branches. The tree has 2N leaf nodes.

• To select a subset of M items from a collection of N items, a branch
at level K in the tree selects one of the N – K remaining items. The
tree has N × (N – 1) × … × K leaf nodes.

Branch and bound can be much faster than exhaustive search for finding
an optimal solution.

Heuristics—All these trees are enormous for large problem sizes, so often
they cannot be solved exactly, and you must turn to heuristics. Heuristics
that can apply to any decision tree include random search, improving
paths, and simulated annealing. Hill climbing and sorted hill climbing
often can give good results extremely quickly, although you need to define
what “hill climbing” means for a particular problem.

Chapter 13: Basic Network
Algorithms
For a review of network terminology, review the first section in Chapter
13, and see Table 13.1.

Some network representations use a separate Link class. Others store
link information in the node where the link starts.

Traversals—Depth-first and breadth-first network traversal algorithms
work much as tree traversal algorithms do, except that you need to add a

623

property to the node class so that you can tell when you've already visited
a node. If you don't do that, the traversal may get stuck in an infinite loop.

Connectivity—You can determine whether a network is connected starting
from a given node by traversing the network from that node and then
determining whether the traversal visited every node in the network.

A spanning tree is a tree that covers every node in the network. A minimal
spanning tree has the least possible cost. The spanning tree algorithm
described in Chapter 13 is a good example of a greedy algorithm.

A label-setting algorithm always adds items to the solution that will
remain in the final solution. A label-setting shortest-path algorithm is a
breadth-first traversal of the network.

A label-correcting algorithm adds items to the solution that may later be
replaced with different items. A label-correcting shortest-path algorithm is
a depth-first traversal of the network.

An all-pairs shortest-path algorithm finds paths between any two nodes in
a network. It has polynomial runtime, but the O(N3) polynomial is large
enough that the algorithm is slow for big networks. It also takes O(N2)
memory, so it can use a lot of memory for large networks.

Chapter 14: More Network
Algorithms
Topological sorting extends a partial ordering to a full ordering so that you
can perform tasks in a feasible order. Topological sorting also lets you
determine whether a network contains cycles.

If a map is two-colorable, it is easy to find a two-coloring. Determining
whether a map is three-colorable is a very hard problem. You can color
any map with at most four colors, but that doesn't mean it will be easy to
find a four-coloring. Often a greedy algorithm finds a coloring without too
many extra colors.

624

You can find maximal flows by using a (virtual) residual capacity
network. An augmenting path shows how to improve the flows. You can
use maximal flows to perform work assignment, to find a minimum flow
cut, and to determine the number of disjointed paths from a source to a
sink.

Chapter 15: String
Algorithms
You can use parenthesis matching to help parse mathematical, logical, or
other parenthesized expressions. You also can use parenthesis matching to
build parse trees, which you can then use to evaluate expressions multiple
times or generate data structures.

Regular expressions let a program determine whether a string contains a
substring that matches a pattern. The algorithms described for working
with regular expressions use DFAs and NFAs to process strings. DFAs
and NFAs are also useful in other situations where you want to use a set of
simple rules to control a virtual computer.

The Boyer-Moore algorithm lets a program check a string for a particular
substring without examining every character in the string. In other
situations you may be able to apply the idea that a simple test (checking
the end of a target substring) may be able to exclude a large area where
the target may appear.

The edit distance algorithm determines how similar two strings or files
are. In any situation where you can define the types of changes that are
allowed, you can use a similar approach to calculate how similar two
objects are.

625

Chapter 16: Cryptography
For most programmers, these algorithms have only academic or
entertainment value. They do demonstrate a couple of useful techniques,
however.

Transposition ciphers—Even though several of these algorithms treat
message text as if it were written into an array, you don't necessarily need
to build the array if you can use simple calculations to figure out where a
piece of text would be in the array.

One-time pads provide provably strong encryption. Their disadvantage is
that you need to safely give the same pad to the sender and receiver.

Block ciphers break a message into blocks and then encrypt the blocks
separately. Many of them also apply relatively simple operations to blocks
repeatedly to increase obfuscation.

Public-key encryption algorithms essentially publish a partial
transformation. Senders apply the partial transformation, and then the
receiver finishes the transformation to recover the original message.

Other cryptographic algorithms include hashing and document signing.

Chapter 17: Complexity
Theory
Complexity classes—Problems (not algorithms) are grouped into
complexity classes depending on how difficult they are to solve.

P and NP—P is the set of problems that can be solved in polynomial time
by a deterministic computer. NP is the set of problems that can be solved
in polynomial time by a nondeterministic computer. Perhaps the most
profound question in computer science is whether P and NP are equal.

626

DTIME and NTIME—A problem is in DTIME(f(N)) if it can be solved by
a deterministic computer in O(f(N)) time. A problem is in NTIME(f(N)) if
it can be solved by a nondeterministic computer in O(f(N)) time.

EXPTIME and NEXPTIME—A problem is in EXPTIME if it can be
solved by a deterministic computer in exponential time. A problem is in
NEXPTIME if it can be solved by a nondeterministic computer in
exponential time.

Reduction—You can use polynomial-time reductions to show that a
problem is at least as hard as another problem. (In everyday programming,
you can sometimes reduce one problem to another so you don't need to
come up with a completely new solution.)

NP-complete—A problem is NP-complete if it is in NP and all other
problems in NP can be reduced to it.

Detection, reporting, and optimization—By using reductions, you can
show that these forms of problems have equivalent difficulty, at least in
terms of complexity theory.

Chapter 18: Distributed
Algorithms
There are many kinds of parallelism, including systolic arrays, distributed
computing with networked computers, multi-CPU processing with
multiple CPUs or cores on a single computer, and quantum computing.
Currently distributed computing with networked computers and
multi-CPU computers is the most common form of parallel computing.

Debugging parallel algorithms can be very difficult because
synchronization issues make it hard to reproduce incorrect behavior.

Embarrassingly parallel algorithms are those that naturally break into
pieces that can be shared among several processes with minimal
communication.

Mergesort has a naturally distributed implementation.

627

The dining philosophers problem addresses deadlock and livelock.

The two generals problem addresses insecure communications.

The byzantine generals problem and its variants deal with processes that
may fail in the worst possible way, giving incorrect results rather than no
results.

The consensus problem addresses the issue of multiple processes agreeing
on a common result.

Leader election addresses the problem of picking a process to be the
leader. The leader can then coordinate to help solve many other distributed
problems.

A snapshot records the state of a distributed system, including all the
processes' internal states and any messages that are in transit at the time.

Clock synchronization attempts to synchronize one process with another
in the presence of communication delays.

Chapter 19: Interview
Puzzles
Interview puzzles don't necessarily do a very good job of testing a
candidate's reasoning and problem-solving abilities. They often rely on
trivia, sneaky tricks, or working backwards from a solution to a problem.
Candidates who know the trick can often solve these puzzles without
much creative thought. Candidates who don't know the trick often have a
hard time even if they are creative thinkers.

Puzzles that involve programming are better than those that involve
marbles or decks of cards. Programming challenges that don't involve
clever tricks are even better than programming puzzles.

If an interview includes a puzzle that is too hard, it may rattle the
candidate, and you won't learn much about his or her normal behavior for
the rest of the interview (or day).

628

Appendix B

Solutions to Exercises

Chapter 1: Algorithm Basics
1. The outer loop still executes O(N) times in the new version of the
algorithm. When the outer loop's counter is i, the inner loop
executes O(N – i) times. If you add up the number of times the
inner loop executes, the result is N + (N – 1) + (N – 2) + … + 1 = N
× (N – 1) / 2 = (N2 – N) / 2. This is still O(N2), although the
performance in practice will probably be faster than the original
version.
2. See Table B.1. The value Infinity means that the program
can execute the algorithm for any practical problem size. The
example program Ch01Ex02, which is available for download on
the book's website, generates these values.

Table B.1 Maximum Problem Sizes That Run in Various Times

3. The question is, “For what N is 1,500 × N > 30 × N2?” Solving
for N gives 50 < N, so the first algorithm is slower if N > 50. You
would use the first algorithm if N ≤ 50 and the second if N > 50.
4. The question is, “For what N is N3 / 75 – N2 / 4 + N + 10 > N / 2
+ 8?” You can solve this in any way you like, including algebra or
using Newton's method (see Chapter 2). The two positive solutions
to this equation are N < 4.92 and N > 15.77. That means you should
use the first algorithm if 5 ≥ N ≥ 15. The Ch01Ex04 example

629

program, which is available for download on the book's website,
graphs the two equations and uses Newton's method to find their
points of intersection.
5. Given N letters, you have N choices for the first letter. After you
have picked the first letter, you have N – 1 choices for the second
letter, giving you N × (N – 1) total choices. That counts each pair
twice (AB and BA), so the total number of unordered pairs is N (N
– 1) / 2. In Big O notation that is O(N2).
6. If a cube has side length N, each side has an area of N2 units. A
cube has six sides, so the total surface area of all sides is 6 × N2. If
the algorithm generates one value for each square unit, its run time
is O(N2).
Less rigorously, you could have intuitively realized that the cube's
surface area depends on N2. Therefore, you could conclude that the
run time is O(N2) without doing the full calculation.
7. If a cube has side length N, each of its edges has length N. The
cube has 12 edges, so the total edge length is 12 × N. However,
each of the unit cubes in the corners is part of three edges, so they
are counted three times in the 12 × N total. The cube has eight
corners, so to make the count correct, you subtract 2 × 8 from 12 ×
N so that each corner cube is counted only once. The true number of
cubes is 12 × N – 16, so the algorithm's run time is O(N).
Less rigorously, you could have intuitively realized that the total
length of the cube's edges depends on N. Therefore, you might
conclude that the run time is O(N) without doing the full
calculation.
8. Table B.2 shows the number of cubes for several values of N.

Table B.2 Cubes for Different Values of N
N Cubes

1 1

2 4

3 10

4 20

5 35

630

6 56

7 84

8 120

From the way the shapes grow in length, width, and height in Figure
1.5, you can probably guess that the number of cubes involves N3 in
some manner. If you assume the number of cubes is A × N3 + B ×
N2 + C × N + D for some constants A, B, C, and D, you can plug in
the values from Table B.2 and solve for A, B, C, and D. If you do
that, you'll find that the number of cubes is (N3 + 3 × N2 + 2 × N) ÷
6, so the run time is O(N3).
Less rigorously, you could have intuitively realized that the total
volume of the shapes depends on N3. Therefore, you might
conclude that the run time was O(N3) without doing the full
calculation.
9. Can you have an algorithm without a data structure? Yes. An
algorithm is just a series of instructions, so it doesn't necessarily
need a data structure. For example, many of the numeric algorithms
described in Chapter 2 do not use data structures.
Can you have a data structure without an algorithm? Not really.
You need some sort of algorithm to build the data structure, and you
need another algorithm to use it to produce some kind of result.
There isn't much point to a data structure that you won't use to
produce a result.
10. The first algorithm simply paints the boards from one end to the
other. It paints N boards and therefore has a run time of O(N).
The second algorithm divides the boards in a recursive way, but
eventually it paints all N boards. Dividing the boards recursively
requires O(log N) steps. Painting the boards requires O(N) steps.
The total number of steps is N + log N, so the run time is O(N), just
like the first algorithm.
The algorithms have the same run time, but the second takes
slightly longer in practice if not in Big O notation. It is also more
complicated and confusing, so the first algorithm is better.
11. Figure B.1 shows the Fibonacci function graphed with the other
runtime functions. If you look closely at the figure, you can tell that

631

Fibonacci(x) ÷ 10 curves up more steeply than x2 ÷ 5 and slightly
less steeply than 2x ÷ 10. The shape of its curve is very similar to
the shape of 2x ÷ 10, so you might guess (correctly) that it is an
exponential function.

Figure B.1 The Fibonacci function increases more quickly than x2

but less quickly than 2x.

It turns out that you can calculate the Fibonacci numbers directly
using the following formula:

632

where:

So the Fibonacci function is exponential in φ. The value φ ≈ 1.618,
so the function doesn't grow as quickly as 2N, but it is still
exponential and does grow faster than polynomial functions.

Chapter 2: Numerical
Algorithms

1. Simply map 1, 2, and 3 to heads and 4, 5, and 6 to tails.
2. In this case, the probability of getting heads followed by heads is
3 ÷ 4 × 3 ÷ 4 = 9 ÷ 16. The probability of getting tails followed by
tails is 1 ÷ 4 × 1 ÷ 4 = 1 ÷ 16. Because these are independent
outcomes, you can add their probabilities. So there is a 9 ÷ 16 + 1 ÷
16 = 10 ÷ 16 = 0.625, or 62.5%, probability that you'll need to try
again.
3. If the coin is fair, the probability that you'll get heads followed by
heads is 1 ÷ 2 × 1 ÷ 2 = 1 ÷ 4. Similarly, the probability that you'll
get tails followed by tails is 1 ÷ 2 × 1 ÷ 2 = 1 ÷ 4. Because these are
independent outcomes, you can add their probabilities. So there is a
1 ÷ 4 + 1 ÷ 4 = 1 ÷ 2, or 50%, probability that you'll need to try
again.
4. You can use a method similar to the one that uses a biased coin to
produce fair coin flips:

Roll the biased die 6 times.
If the rolls include all 6 possible values,

return the first one.
Otherwise, repeat.

Depending on how biased the die is, it could take many trials to roll
all six values. For example, if the die is fair (the best case), the
probability of rolling all six values is 6! ÷ 66 = 720 ÷ 46,656 ≈

633

0.015, so there's only about a 1.5% chance that six rolls will give six
different values. For another example, if the die rolls a 1 half of the
time and each of the other five values one-tenth of the time, the
probability of getting all six values in six rolls is 0.5 × 0.15 × 6! =
0.0036, or 0.36%. So you may be rolling the die for a long time.
5. You can use the same algorithm to randomize an array, but you
can stop after positioning the first M items:

String: PickM(String: array[], Integer: M)
Integer: max_i = <Upper bound of array>
For i = 0 To M – 1

// Pick the item for position i in the
array.

Integer: j = <pseudo-random number
between i and max_i inclusive>

<Swap the values of array[i] and
array[j]>

Next i
<Return array[0] through array[M – 1]>

End PickM

This algorithm runs in O(M) time. Because M ≤ N, O(M) ≤ O(N).
In practice, M is often much less than N, so this algorithm may be
much faster than randomizing the entire array.
To give away five books, you would pick five names to go in the
array's first five positions and then stop. This would take only five
steps, so it would be very quick. It doesn't matter how many names
are in the array, as long as there are at least five.
6. Simply make an array holding all 52 cards, randomize it, and
then deal the cards as you normally would—one to each player in
turn until everyone has five.
It doesn't matter whether you deal one card to each player in turn or
deal five cards all at once to each player. As long as the deck is
randomized, each player will get five randomly selected cards.
7. Figure B.2 shows the program written in C#, which is available
for download on the book's website. The numbers for each value are
the actual percentage of rolls that gave the value, the expected
percentage for the value, and the percentage difference.

634

Figure B.2 Relatively small numbers of trials sometimes result in
significant differences between observed and expected frequencies
of rolls.

The actual results don't consistently match the expected results until
the number of trials is quite large. The program often produces
more than 5% error for some values until about 10,000 or more
trials are run.
8. If A1 < B1, A1 Mod B1 = A1, so A2 = B1 and B2 = A1 Mod B1 =
A1. In other words, during the first trip through the While loop,
the values of A and B switch. After that the algorithm proceeds
normally.
9. LCD(A, B) = A × B / GCD(A, B). Suppose g = GCD(A, B), so A
= g × m and B = g × n for some integers m and n. Then A × B ÷
GCD(A, B) = g × m × g × n ÷ g = g × m × n. The values m and n
have no common factors, so this is the LCM.
10. The following pseudocode shows the algorithm used by the
FastExponentiation example program that's available for download
on the book's website. (The bold lines of code are used for the
solution to Exercise 11.)

// Perform the exponentiation.
Integer: Exponentiate(Integer: value, Integer:
exponent)

635

// Make lists of powers and the value to
that power.

List Of Integer: powers
List Of Integer: value_to_powers
// Start with the power 1 and valueˆ1.
Integer: last_power = 1
Integer: last_value = value
powers.Add(last_power)
value_to_powers.Add(last_value)
// Calculate other powers until we get to

one bigger than exponent.
While (last_power < exponent)

last_power = last_power * 2
last_value = last_value * last_value
powers.Add(last_power)
value_to_powers.Add(last_value)

End While
// Combine values to make the required

power.
Integer: result = 1
// Get the index of the largest power that

is smaller than exponent.
For power_index = powers.Count - 1 To 0

Step –1
// See if this power fits within

exponent.
If (powers[power_index] <= exponent)

// It fits. Use this power.
exponent = exponent -

powers[power_index]
result = result *

value_to_powers[power_index]
End If

Next power_index
// Return the result.
Return result

End Exponentiate

11. You would need to modify the bold lines in the preceding code.
If the modulus is m, you would change this line:

last_value = last_value * last_value

to this:

last_value = (last_value * last_value) Modulus m

You would also change this line:

636

result = result * value_to_powers[power_index]

to this:

result = (result *
value_to_powers[power_index]) Modulus m

The ExponentiateMod example program that's available for
download on the book's website demonstrates this algorithm.
12. Figure B.3 shows the GcdTimes example program that is
available for download on the book's website. The gray lines show
the graph of number of steps versus values. The dark curve near the
top shows the logarithm of the values. It's hard to tell from the
graph if the number of steps really follows the logarithm, but it
clearly grows very slowly.

Figure B.3 The GcdTimes example program graphs number of
GCD steps versus number size.

13. You already know that next_prime × 2 has been crossed
out, because it is a multiple of 2. If next_prime > 3, you
know that next_prime × 3 has also been crossed out, because
3 has already been considered. In fact, for every prime p where p
< next_prime, the prime p has already been considered, so
next_prime × p has already been crossed out. The first prime
that is not less than next_prime is next_prime, so the first
multiple of next_prime that has not yet been considered is
next_prime × next_prime. That means you can change
the loop to the following:

637

// “Cross out” multiples of this prime.
For i = next_prime * next_prime To max_number
Step next_prime Then

is_composite[i] = true
Next i

14. The following pseudocode shows an algorithm to display
Carmichael numbers and their prime factors:

// Generate Carmichael numbers.
GenerateCarmichaelNumbers(Integer: max_number)

Boolean: is_composite[]
<Make is_composite a sieve of Eratosthenes

for
numbers 2 through max_number>

// Check for Carmichael numbers.
For i = 2 To max_number

// Only check nonprimes.
If (is_composite[i]) Then

// See if i is a Carmichael number.
If (IsCarmichael(i)) Then

<Output i and its prime factors>
End If

End If
Next i

End GenerateCarmichaelNumbers
// Return true if the number is a Carmichael
number.
Boolean: IsCarmichael(Integer: number)

// Check all possible witnesses.
For i = 1 to number – 1

// Only check numbers with GCD(number,
1) = 1.

If (GCD(number, i) == 1) Then
<Use fast exponentiation to

calculate
i ˆ (number–1) mod number>
Integer: result = Exponentiate(i,

number – 1, number)
// If we found a Fermat witness,
// this is not a Carmichael number.
If (result != 1) Then Return false

End If
Next i
// They're all a bunch of liars!
// This is a Carmichael number.

638

Return true
End IsCarmichael

You can download the CarmichaelNumbers example program from
the book's website to see a C# implementation of this algorithm.
15. Suppose you use the value of the function at the rectangle's
midpoint for the rectangle's height. Then, if the function is
increasing, the left part of the rectangle is too short, and the right
part is too tall, so the error in the two pieces tends to cancel out, at
least to some extent. Similarly, if the function is decreasing, the left
part of the rectangle is too short, and the right part is too tall, so
again they partially cancel each other out. This reduces the total
error considerably without increasing the number of rectangles.
This method won't help (and may even hurt) if the curve has a local
minimum or maximum near the middle of a rectangle. In those
cases the errors on the left and right sides of the curve will add up
and give a larger total error.
Figure B.4 shows the MidpointRectangleRule example program,
which is available for download on the book's website,
demonstrating this technique. If you compare the result to the one
shown in Figure 2.2, you'll see that using the midpoint reduced the
total error from about –6.5% to 0.2%, roughly 1/30th of the error,
without changing the number of rectangles.

Figure B.4 The MidpointRectangleRule example program reduces
error by using each rectangle's midpoint to calculate its height.

639

16. Yes. This would be similar to a version of the
AdaptiveGridIntegration program that would use pseudorandom
points instead of a grid. If done properly, it would be more effective
than a normal Monte Carlo integration, because it would pick more
points in areas of interest and fewer in large areas that are either all
in or all out of the shape.
17. The following pseudocode shows a high-level algorithm for
performing Monte Carlo integration in three dimensions:

Float: EstimateVolume(Boolean:
PointIsInShape(,,), Integer: num_trials,

Float: xmin, Float: xmax, Float: ymin, Float:
ymax,

Float: zmin, Float: zmax)
Integer: num_hits = 0

640

For i = 1 To num_trials
Float: x = <pseudorandom number between

xmin and xmax>
Float: y = <pseudorandom number between

ymin and ymax>
Float: z = <pseudorandom number between

zmin and zmax>
If (PointIsInShape(x, y, z)) Then

num_hits = num_hits + 1
Next i
Float: total_volume = (xmax – xmin) * (ymax

– ymin) * (zmax – zmin)
Float: hit_fraction = num_hits / num_trials

*
Return total_volume * hit_fraction

End EstimateVolume

18. To find the points of intersection between the functions y = f(x)
and y = g(x), you can use Newton's method to find the roots of the
equation y = f(x) – g(x). Those roots are the X values where f(x)
and g(x) intersect.

Chapter 3: Linked Lists
1. Assuming that the program has a pointer bottom that points to the
last item in a linked list, the following pseudocode shows how you
could add an item to the end of the list:

Cell: AddAtEnd(Cell: bottom, Cell: new_cell)
bottom.Next = new_cell
new_cell.Next = null
// Return the new bottom cell.
Return new_cell

End AddAtEnd

This algorithm returns the new bottom cell, so the calling code can
update the variable that points to the list's last cell. Alternatively,
you could pass the bottom pointer into the algorithm by reference
so that the algorithm can update it.
Using a bottom pointer doesn't change the algorithms for adding
an item at the beginning of the list or for finding an item.

641

Removing an item is the same as before unless that item is at the
end of the list, in which case you also need to update the bottom
pointer. Because you identify the item to be removed with a pointer
to the item before it, this is a simple change. The following code
shows the modified algorithm for removing the last item in the list:

Cell: DeleteAfter(Cell: after_me, Cell: bottom)
// If the cell being removed is the last

one, update bottom.
If (after_me.Next.Next == null) Then bottom

= after_me
// Remove the target cell.
after_me.Next = after_me.Next.Next
// Return a pointer to the last cell.
Return bottom

End DeleteAfter

2. The following pseudocode shows an algorithm for finding the
largest cell in a singly linked list with cells containing integers:

Cell: FindLargestCell(Cell: top)
// If the list is empty, return null.
If (top.Next == null) Return null
// Move to the first cell that holds data.
top = top.Next
// Save this cell and its value.
Cell: best_cell = top
Integer: best_value = best_cell.Value
// Move to the next cell.
top = top.Next
// Check the other cells.
While (top != null)

// See if this cell's value is bigger.
If (top.Value > best_value) Then

best_cell = top
best_value = top.Value

End If
// Move to the next cell.
top = top.Next

End While
Return best_cell

End FindLargestCell

3. The following pseudocode shows an algorithm to add an item at
the top of a doubly linked list:

642

AddAtBeginning(Cell: top, Cell: new_cell)
// Update the Next links.
new_cell.Next = top.Next
top.Next = new_cell
// Update the Prev links.
new_cell.Next.Prev = new_cell
new_cell.Prev = top

End AddAtBeginning

4. The following pseudocode shows an algorithm to add an item at
the bottom of a doubly linked list:

AddAtEnd(Cell: bottom, Cell: new_cell)
// Update the Prev links.
new_cell.Prev = bottom.Prev
bottom.Prev = new_cell
// Update the Next links.
new_cell.Prev.Next = new_cell
new_cell.Next = bottom

End AddAtEnd

5. The InsertCell algorithm takes as a parameter the cell after
which the new cell should be inserted. All the
AddAtBeginning and AddAtEnd algorithms need to do is
pass InsertCell the appropriate cell to insert after. The
following code shows the new algorithms:

AddAtBeginning(Cell: top, Cell: new_cell)
// Insert after the top sentinel.
InsertCell(top, new_cell)

End AddAtBeginning
AddAtEnd(Cell: bottom, Cell: new_cell)

// Insert after the cell before the bottom
sentinel.

InsertCell(bottom.Prev, new_cell)
End AddAtEnd

6. The following pseudocode shows an algorithm that deletes a
specified cell from a doubly linked list:

DeleteCell(Cell: target_cell)
// Update the next cell's Prev link.
target_cell.Next.Prev = target_cell.Prev
// Update the previous cell's Next link.
target_cell.Prev.Next = target_cell.Next

End DeleteCell

Figure B.5 shows the process graphically.

643

Figure B.5 To delete a cell from a doubly linked list, change the
next and previous cells' links to “go around” the target cell.

7. If the name you're looking for comes nearer the end of the
alphabet than the beginning, such as a name that starts with N or
later, you could search the list backwards, starting at the bottom
sentinel. This would not change the O(N) run time, but it might cut
the search time roughly in half in practice if the names are
reasonably evenly distributed.
8. The following pseudocode shows an algorithm for inserting a cell
in a sorted doubly linked list:

// Insert a cell in a sorted doubly linked list.
InsertCell(Cell: top, Cell: new_cell)

// Find the cell before where the new cell
belongs.

While (top.Next.Value < new_cell.Value)
top = top.Next

End While
// Update Next links.
new_cell.Next = top.Next
top.Next = new_cell
// Update Prev links.
new_cell.Next.Prev = new_cell
new_cell.Prev = top

End InsertCell

644

This algorithm is similar to the one used for a singly linked list
except for the two lines that update the Prev links.
9. The following pseudocode determines whether a linked list is
sorted:

Boolean: IsSorted(Cell: sentinel)
// If the list has 0 or 1 items, it's

sorted.
If (sentinel.Next == null) Then Return true
If (sentinel.Next.Next == null) Then Return

true
// Compare the other items.
sentinel = sentinel.Next;
While (sentinel.Next != null)

// Compare this item with the next one.
If (sentinel.Value >

sentinel.Next.Value) Then Return false
// Move to the next item.
sentinel = sentinel.Next

End While
// If we get here, the list is sorted.
Return true

End IsSorted

10. Insertionsort takes the first item from the input list and then
finds the place in the growing sorted list where that item belongs.
Depending on its value, sometimes the item will belong near the
beginning of the list, and sometimes it will belong near the end. The
algorithm won't always need to search the whole list, unless the new
item is larger than all the items already on the sorted list.
In contrast, when selectionsort searches the unsorted input list to
find the largest item, it must search the whole list. Unlike
insertionsort, it can never stop the search early.
11. The PlanetList example program, which is available for
download on the book's website, shows one solution.
12. The BreakLoopTortoiseAndHare example program, which is
available for download on the book's website, shows a C# solution.

645

Chapter 4: Arrays
1. The following algorithm calculates an array's sample variance:

Double: FindSampleVariance(Integer: array[])
// Find the average.
Integer: total = 0
For i = 0 To array.Length – 1

total = total + array[i]
Next i
Double: average = total / array.Length
// Find the sample variance.
Double: sum_of_squares = 0
For i = 0 To array.Length – 1

sum_of_squares = sum_of_squares +
(array[i] – average) * (array[i] –

average)
Next i
Return sum_of_squares / array.Length

End FindSampleVariance

2. The following algorithm uses the preceding algorithm to
calculate sample standard deviation:

Integer: FindSampleStandardDeviation(Integer:
array[])

// Find the sample variance.
Double: variance = FindSampleVariance(array)
// Return the standard deviation.
Return Sqrt(variance)

End FindSampleStandardDeviation

3. Because the array is sorted, the median is the item in the middle
of the array. You have two issues to think about. First, you need to
handle arrays with even and odd lengths differently. Second, you
need to be careful calculating the index of the middle item, keeping
in mind that indexing starts at 0.

Double: FindMedian(Integer: array[])
If (array.Length Mod 2 == 0) Then

// The array has even length.
// Return the average of the two middle

items.
Integer: middle = array.Length / 2

Return (array[middle – 1] +
array[middle]) / 2

646

Else
// The array has odd length.
// Return the middle item.
Integer: middle = (array.Length – 1)/ 2
Return array[middle]

End If
End FindMedian

4. The following pseudocode removes an item from a linear array:

RemoveItem(Integer: array[], Integer: index)
// Slide items left 1 position to fill in

where the item is.
For i = index + 1 To array.Length – 1

Array[i – 1] = Array[i]
Next i
// Resize to remove the final unused entry.
<Resize the array to delete 1 item from the

end>
End RemoveItem

5. All you really need to change in the original triangular array class
is the method that uses row and column to calculate the index in the
one-dimensional storage array. The following pseudocode shows
the original method:

Integer: FindIndex(Integer: r, Integer: c)
Return ((r – 1) * (r – 1) + (r – 1)) / 2 + c

End FindIndex

The following pseudocode shows the new version with row and
column switched:

Integer: FindIndex(Integer: r, Integer: c)
Return ((c – 1) * (c – 1) + (c – 1)) / 2 + r

End FindIndex

6. The relationship between row and column for nonblank entries in
an N×N array is row + column < N. You could rework the equation
for mapping row and column to an index in the one-dimensional
storage array, but it's easier to map the row and column to a new
row and column that fit the original lower-left triangular
arrangement. You can do this by replacing r with N – 1 – r, as
shown in the following pseudocode:

Integer: FindIndex(Integer: r, Integer: c)
r = N – 1 – r

647

Return ((r – 1) * (r – 1) + (r – 1)) / 2 + c
End FindIndex

This change essentially flips the array upside-down so that small
row numbers are mapped to the bottom of the array and large row
numbers are mapped to the top of the array. For example, suppose
N = 5. Then the entry [0, 4] is in the upper-right corner of the array.
That position is not allowed in the normal lower-left triangular
array, so the row is changed to N – 1 – 0 = 4. The position [4, 4] is
in the lower right corner, which is in the normal array.
7. The following pseudocode fills the array with the values
ll_value and ur_value. You can set these to 1 and 0 to get
the desired result.

FillArrayLLtoUR(Integer: values[,],
Integer: ll_value, Integer: ur_value)

For row = 0 To <Upper bound for dimension 1>
For col = 0 To <Upper bound for

dimension 2>
If (row >= col) Then

values[row, col] = ur_value
Else

values[row, col] = ll_value
End If

Next col
Next row

End FillArrayLLtoUR

8. The following pseudocode fills the array with the values
ul_value and lr_value. You can set these to 1 and 0 to get
the desired result.

FillArrayULtoLR(Integer: values[,],
Integer: ul_value, Integer: lr_value)

Integer: max_col = <Upper bound for
dimension 2>

For row = 0 To <Upper_bound for dimension 1>
For col = 0 To max_col

If (row > max_col – col) Then
values[row, col] = ul_value

Else
values[row, col] = lr_value

End If
Next col

Next row
End FillArrayULtoLR

648

9. One approach is to set the value for each entry in the array to the
minimum of its row, column, and distance to the right and lower
edges of the array, as shown in the following pseudocode:

FillArrayWithDistances(Integer: values[,])
Integer: max_row = values.GetUpperBound(0)
Integer: max_col = values.GetUpperBound(1)
For row = 0 To max_row

For col = 0 To max_col
values[row, col] =

Minimum(row, col, max_row –
row, max_col – col)

Next col
Next row

End FillArrayWithDistances

10. The key is the mapping between [row, column, height] and
indices in the storage array. To do that, the program needs to know
how many cells are in a full tetrahedral group of cells and how
many cells are in a full triangular group of cells. Chapter 4 explains
that the number of cells in a full triangular arrangement is (N2 + N)
÷ 2, so the following pseudocode can calculate that value:

Integer: NumCellsForTriangleRows(Integer: rows)
Return (rows * rows + rows) / 2

End NumCellsForTriangleRows

The number of cells in a full tetrahedral arrangement is harder to
calculate. If you make some drawings and count the cells, you can
follow the approach used in the chapter. (See Table 4.1 and the
nearby paragraphs.) If you assume the number of cells in the
tetrahedral arrangement involves the number of rows cubed, you
will find that the exact number is (N3 + 3 × N2 + 2 × N) / 6. The
following pseudocode uses that formula:

Integer: NumCellsForTetrahedralRows(Integer:
rows)

Return (rows * rows * rows + 3 * rows *
rows + 2 * rows) / 6
End NumCellsForTetrahedralRows

With these two methods, you can write a method to map [row,
column, height] to an index in the storage array:

Integer: RowColumnHeightToIndex(Integer: row,
Integer: col,

649

Integer: hgt)
Return

NumCellsForTetrahedralRows(row) +
NumCellsForTriangleRows(col) +
hgt;

End RowColumnHeightToIndex

This code returns the number of entries before this one in the array.
It calculates that number by adding the entries due to complete
tetrahedral groups before this item, plus the number of entries due
to complete triangular groups before this item, plus the number of
individual entries that come before this one in its triangular group of
cells.
11. The sparse array already doesn't use space to hold missing
entries, so this isn't a matter of rearranging the data structure to save
space. All you really need to do is check that row ≥ column when
you access an entry.
12. You can add two triangular arrays by simply adding
corresponding items. The only trick here is that you only need to
consider entries where row ≥ column. The following pseudocode
does this:

AddTriangularArrays(Integer: array1[,],
Integer: array2[,],

Integer: result[,])
For row = 0 To <Upper bound for dimension 1>

For col = 0 To row
Result[row, col] = array1[row, col]

+ array2[row, col]
Next col

Next row
End AddTriangularArrays

13. The following code for multiplying two matrices was shown in
the chapter's text:

MultiplyArrays(Integer: array1[], Integer:
array2[], Integer: result[])

For i = 0 To <Upper bound for dimension 1>
For j = 0 To <Upper bound for dimension

2>
// Calculate the [i, j] result.
result[i, j] = 0

For k = 0 To <Upper bound for
dimension 2>

650

result[i, j] = result[i, j] +
array1[i, k] * array2[k, j]

Next k
Next j

Next i
End MultiplyArrays

Now consider the inner For k loop. If i < k, array1[i,
k] is 0. Similarly, if k < j, array2[k, j] is 0. If either of
those two values is 0, their product is 0.
The following code shows how you can modify the inner
assignment statement so that it changes an entry's value only if it is
multiplying entries that are present in both arrays:

If (i >= k) And (k >= j) Then
result[i, j] = result[i, j] + array1[i, k]

* array2[k, j]
End If

You can make this a bit simpler if you think about the values of k
that access entries that exist in both arrays. Those values exist if k
<= i and k >= j. You can use those bounds for k in its For
loop, as shown in the following pseudocode:

For k = j To i
total += this[i, k] * other[k, j];

Next k

14. The following code shows a CopyEntries method that
copies the items in the ArrayEntry linked list starting at
from_entry to the end of the list that currently ends at
to_entry:

// Copy the entries starting at from_entry into
// the destination entry list after to_entry.
CopyEntries(ArrayEntry: from_entry, ArrayEntry:
to_entry)

While (from_entry != null)
to_entry.NextEntry = new ArrayEntry
to_entry = to_entry.NextEntry

to_entry.ColumnNumber =
from_entry.ColumnNumber

to_entry.Value = from_entry.Value
to_entry.NextEntry = null
// Move to the next entry.
from_entry = from_entry.NextEntry

651

End While
End CopyEntries

As long as the “from” list isn't empty, this adds a new
ArrayEntry object to the “to” list.
The following AddEntries method copies entries from the two
lists from_entry1 and from_entry2 into the result list
to_entry:

// Add the entries in the two lists from_entry1
and from_entry2
// and save the sums in the destination entry
list after to_entry.
AddEntries(ArrayEntry: from_entry1, ArrayEntry:
from_entry2,

ArrayEntry: to_entry)
// Repeat as long as either from list has

items.
While (from_entry1 != null) And

(from_entry2 != null)
// Make the new result entry.
to_entry.NextEntry = new ArrayEntry
to_entry = to_entry.NextEntry
to_entry.NextEntry = null
// See which column number is smaller.

If (from_entry1.ColumnNumber <
from_entry2.ColumnNumber) Then

// Copy the from_entry1 entry.
to_entry.ColumnNumber =

from_entry1.ColumnNumber
to_entry.Value = from_entry1.Value
from_entry1 = from_entry1.NextEntry
Else If (from_entry2.ColumnNumber <

from_entry1.ColumnNumber)
Then

// Copy the from_entry2 entry.
to_entry.ColumnNumber =

from_entry2.ColumnNumber
to_entry.Value = from_entry2.Value
from_entry2 = from_entry2.NextEntry

Else
// The column numbers are the same.

Add both entries.
to_entry.ColumnNumber =

from_entry1.ColumnNumber
to_entry.Value = from_entry1.Value

652

+ from_entry2.Value
from_entry1 = from_entry1.NextEntry
from_entry2 = from_entry2.NextEntry

End If
End While
// Add the rest of the entries from the

list that is not empty.
if (from_entry1 != null)

CopyEntries(from_entry1, to_entry)
if (from_entry2 != null)

CopyEntries(from_entry2, to_entry)
End AddEntries

This code loops through both “from” lists, adding the next entry
from each list that has the smaller column number. If the current
entries in each list have the same column number, the code creates a
new entry and adds the values of the “from” lists.
The following code shows how the Add method uses
CopyEntries and AddEntries to add two matrices:

// Add two SparseArrays representing matrices.
SparseArray: Add(SparseArray: array1,
SparseArray: array2)

SparseArray: result = new SparseArray
// Variables to move through all the arrays.

ArrayRow: array1_row =
array1.TopSentinel.NextRow

ArrayRow: array2_row =
array2.TopSentinel.NextRow

ArrayRow: result_row = result.TopSentinel
While (array1_row != null) And (array2_row

!= null)
// Make a new result row.
result_row.NextRow = new ArrayRow
result_row = result_row.NextRow
result_row.RowSentinel = new ArrayEntry
result_row.NextRow = null
// See which input row has the smaller

row number.
If (array1_row.RowNumber <

array2_row.RowNumber) Then
// array1_row comes first. Copy its

values into result.
result_row.RowNumber =

array1_row.RowNumber

653

CopyEntries(array1_row.RowSentinel.NextEntry,
result_row.RowSentinel)

array1_row = array1_row.NextRow
Else If (array2_row.RowNumber <

array1_row.RowNumber) Then
// array2_row comes first. Copy its

values into result.
result_row.RowNumber =

array2_row.RowNumber

CopyEntries(array2_row.RowSentinel.NextEntry,
result_row.RowSentinel)

array2_row = array2_row.NextRow
Else

// The row numbers are the same.
Add their values.

result_row.RowNumber =
array1_row.RowNumber

AddEntries(

array1_row.RowSentinel.NextEntry,

array2_row.RowSentinel.NextEntry,
result_row.RowSentinel)

array1_row = array1_row.NextRow
array2_row = array2_row.NextRow

End If
End While
// Add any remaining rows.
If (array1_row != null) Then

// Make a new result row.
result_row.NextRow = new ArrayRow
result_row = result_row.NextRow

result_row.RowNumber =
array1_row.RowNumber

result_row.RowSentinel = new ArrayEntry
result_row.NextRow = null

CopyEntries(array1_row.RowSentinel.NextEntry,
result_row.RowSentinel)

End If
If (array2_row != null) Then

// Make a new result row.
result_row.NextRow = new ArrayRow
result_row = result_row.NextRow

result_row.RowNumber =
array2_row.RowNumber

654

result_row.RowSentinel = new ArrayEntry
result_row.NextRow = null

CopyEntries(array2_row.RowSentinel.NextEntry,
result_row.RowSentinel)

End If
return result

End Add

The method loops through the two “from” arrays. If one list's
current row has a lower row number than the other, the method uses
CopyEntries to copy that row's entries into the “to” list.
If the lists' current rows have the same row number, the method
uses AddEntries to combine the rows in the output array.
After one of the “from” lists is empty, the method uses
CopyEntries to copy the remaining items in the other “from”
list into the output list.
15. To multiply two matrices, you need to multiply the rows of the
first with the columns of the second. To do that efficiently, you
need to be able to iterate over the entries in the second array's
columns. The sparse arrays described in the text let you iterate over
the entries in their rows but not the entries in the columns.
You can make it easier to iterate over the entries in a column by
using a linked list of columns, each holding a linked list of entries,
just as the text describes using linked lists of rows.
Instead of building a whole new class, however, you can reuse the
existing SparseArray class. If you reverse the roles of the rows
and columns, you get an equivalent array that lets you traverse the
fields in a column. Of course, the class will treat the rows as
columns and vice versa, so this can be confusing.
The following pseudocode shows a high-level algorithm for
multiplying two sparse matrices:

Multiply(SparseArray: array1, SparseArray:
array2, SparseArray: result)

// Make a column-major version of array2.
SparseArray: new_array2
For Each entry [i, j] in array2

new_array2[j, i] = array2[i, j]
Next [i, j]
// Multiply.
For Each row number r in array1

655

For Each “row” number c in array2 //
These are really columns.

Integer: total = 0
For Each <k that appears in both

array1's row
and array2's column>

total = total +
<The row's k value> * <the

column's k value>
Next k
result[r, c] = total

Next c
Next r

End Multiply

Chapter 5: Stacks and
Queues

1. When one of the stacks is full, NextIndex1 > NextIndex2.
At that point both stacks are full, NextIndex1 is the index of the
top item in the second stack, and NextIndex2 is the index of the
top item in the first stack.
2. Simply push each of the items from the original stack onto a new
one. The following pseudocode shows this algorithm:

Stack: ReverseStack(Stack: values)
Stack: new_stack
While (<values is not empty>)

new_stack.Push(values.Pop())
End While
Return new_stack

End ReverseStack

3. The StackInsertionsort example program, which is available for
download on the book's website, demonstrates insertionsort with
stacks.
4. The algorithm doesn't really need to move all the unsorted items
back onto the original stack, because all it will do with those items
is take the next one to insert in sorted position. Instead, the
algorithm could just move the sorted items back onto the original

656

stack and then use the next unsorted item as the next item to
position. This would save some time, but the run time would still be
O(N2).
5. The fact that the stack insertionsort algorithm works means that
you can sort train cars with only one holding track plus the output
track. You can use the holding track as the second stack, and you
can use the output track to store the car you are currently sorting (or
vice versa). This would require more steps than you would need if
you have more than one holding track, however. Because moving
train cars is a lot slower than moving items between stacks on a
computer, it would be better to use more holding tracks if possible.
6. The StackSelectionsort example program, which is available for
download on the book's website, demonstrates selectionsort with
stacks.
7. You can use the selectionsort algorithm to sort train cars with
some small modifications. The version described in Chapter 5 keeps
track of the largest item in a separate variable. When sorting train
cars, you can't set aside a car to hold in a variable. Instead, you can
move cars to the holding track and store the car with the largest
number on the output track. When you find a car with a larger
number, you can move the car from the output track back to the
holding track and then move the new car to the output track.
Of course, with real trains, you don't need to look only at the top car
in a stack. Instead, you can look at the unsorted cars and figure out
which has the largest number before you start moving any cars.
Then you can simply move the cars to the holding track, except for
the selected car, which you can move to the output track. That will
remove any need to put incorrect cars on the output track and
reduce time-consuming shuffling.
8. The InsertionsortPriorityQueue example program, which is
available for download on the book's website, uses a linked list to
implement a priority queue.
9. The LinkedListDeque example program, which is available for
download on the book's website, uses a doubly linked list to
implement a deque.
10. The MultiHeadedQueue example program, which is available
for download on the book's website, demonstrates a multiheaded
queue.

657

The average wait time is very sensitive to the number of tellers. If
you have even one fewer than the optimum number of tellers, the
number of customers in the queue quickly grows long, and the
average wait time soars. Adding a single teller can make the queue
practically disappear and reduce average wait time to only a few
seconds. (Some retailers have learned this lesson. Whenever more
than a couple of customers are waiting, pull employees from other
jobs to open a new register and quickly clear the queue.)
11. The QueueInsertionsort example program does this.
12. The QueueSelectionsort example program does this.

Chapter 6: Sorting
For performance reasons, all of the sorting example programs display at
most 1,000 of the items they are sorting. If the program generates more
than 1,000 items, all of the items are processed but only the first 1,000 are
displayed in the output list.

1. Example program Insertionsort implements the insertionsort
algorithm.
2. When the algorithm starts with index 0, it moves the 0th item to
position 0, so it doesn't change anything. Making the algorithm's
For loop start at 1 instead of 0 essentially makes it treat the first
item as already in sorted position. That makes sense, because a
group of one item is already sorted.
Starting the loop at 1 doesn't change the algorithm's run time.
3. Example program Selectionsort implements the selectionsort
algorithm.
4. The algorithm's outer For loop could stop before the last item in
the array, because the final trip through the loop positions the item
at position N – 1 at index N – 1, so it isn't moved anyway. The
following pseudocode shows the new For statement:

For i = 0 To <length of values> – 2

This would not change the algorithm's run time.

658

5. Example program Bubblesort implements the bubblesort
algorithm.
6. Example program ImprovedBubblesort adds those improvements.
7. Example program PriorityQueue uses a heap to implement a
priority queue. (This program works directly with the value and
priority arrays. For more practice, package the heap code into a
class.)
8. Adding an item to and removing an item from a heap containing
N items take O(log N) time. See the discussion of the heapsort
algorithm's run time for details.
9. Example program Heapsort implements the heapsort algorithm.
10. For a complete tree of degree d, if a node has index p, its
children are at d × p + 1, d × p + 2, and d × p + 3. A node at index p
has parent index ?(p – 1)?/d.
11. Example program QuicksortStack implements the quicksort
algorithm with stacks.
12. Example program QuicksortQueue implements the quicksort
algorithm with queues. Stacks and queues provide the same
performance as far as the quicksort algorithm is concerned. Any
difference would be in how the stacks and queues are implemented.
13. Example program Quicksort implements the quicksort algorithm
with in-place partitioning.
14. Instead of dividing the items into two halves at each step, divide
them into three groups. The first group contains items strictly less
than the dividing item, the middle group contains all repetitions of
the dividing item, and the last group contains items greater than the
dividing item. Then recursively sort the first and third groups but
not the second.
15. Example program Countingsort implements the countingsort
algorithm.
16. Allocate a counts array with indices 0 to 10,000. Subtract the
smallest item's value (100,000) from each item before you
increment its count. Then, when you are writing the counts back
into the original array, add 100,000 back in. (Alternatively, you
could use an array with nonzero lower bounds, as described in
Chapter 4.)

659

17. In this case bucketsort almost becomes countingsort. Bucketsort
would need to sort each bucket, but all the items in a particular
bucket would have the same value. As long as the buckets don't
hold too many items, that's not a problem, but countingsort still has
a small advantage, because it only needs to count the items in each
bucket.
18. Example program Bucketsort implements the bucketsort
algorithm.
19. The following paragraphs explain which algorithms would work
well under the indicated circumstances.

a. 10 floating-point values—Any of the algorithms except
countingsort would work. Insertionsort, selectionsort, and
bubblesort would be simplest and would probably provide the
best performance.
b. 1,000 integers—Heapsort, quicksort, and mergesort would
work well. Quicksort would be fastest if the values don't
contain too many duplicates and are not initially sorted or you
use a randomized method for selecting dividing items.
Countingsort would work if the range of values is limited.
c. 1,000 names—Heapsort, quicksort, and mergesort would
work well. Quicksort would be fastest if the values don't
contain too many duplicates and are not initially sorted or you
use a randomized method for selecting dividing items.
Countingsort won't work. Making bucketsort work might be
difficult. (The trie described in Chapter 10 is similar to a
bucketsort, and it would work.)
d. 100,000 integers with values between 0 and
1,000—Countingsort would work very well. Bucketsort would
also work well, but not as well as countingsort. Heapsort,
quicksort, and mergesort would work but would be slower.
e. 100,000 integers with values between 0 and 1
billion—Countingsort would not work very well, because it
would need to allocate an array with 1 billion entries to hold
value counts. Bucketsort would work well. Heapsort, quicksort,
and mergesort would work but would be slower.
f. 100,000 names—Countingsort doesn't work with strings.
Making bucketsort work might be difficult. (Again, the trie
described in Chapter 10 would work.) Heapsort, quicksort, and

660

mergesort would work well, with quicksort being the fastest in
the expected case.
g. 1 million floating-point values—Countingsort doesn't work
with strings. Bucketsort would work well. Heapsort, quicksort,
and mergesort would work but would be much slower.
h. 1 million names—This is a hard one for the algorithms
described in this chapter. Countingsort doesn't work with
strings. Making bucketsort work with strings could be hard, but
it would work. Heapsort, quicksort, and mergesort would work
but would be slow. The trees described in Chapter 10 can also
handle this case.
i. 1 million integers with uniform distribution—Countingsort
might work if the range of values is limited. Otherwise,
bucketsort would probably be the best choice. Heapsort,
quicksort, and mergesort would work but would be slow.
j. 1 million integers with nonuniform
distribution—Countingsort might work if the range of values is
limited. Bucketsort might have trouble because the distribution
is nonuniform. Heapsort, quicksort, and mergesort would work
but would be slow.

Chapter 7: Searching
1. Example program LinearSearch implements the linear search
algorithm.
2. Example program RecursiveLinearSearch implements the linear
search algorithm recursively. If the array holds N items, this method
might require N levels of recursion. Some programming languages
may be unable to handle that depth of recursion for large N, so the
nonrecursive version probably is safer.
3. Example program LinearLinkedListSearch implements the linear
search algorithm for a linked list.
4. Example program BinarySearch implements the binary search
algorithm.
5. Example program RecursiveBinarySearch implements the binary
search algorithm recursively. This method requires more stack

661

space than the nonrecursive version. That could be a problem if the
depth of recursion is great, but that would occur only for extremely
large arrays, so it probably isn't an issue in practice. That being the
case, the better algorithm is the one you find less confusing.
(Personally, I think the nonrecursive version is less confusing.)
6. Example program InterpolationSearch implements the
interpolation search algorithm.
7. Example program RecursiveInterpolationSearch implements the
interpolation search algorithm recursively. As is the case with
binary search, this method requires more stack space than the
nonrecursive version. That could be a problem if the depth of
recursion is great, but that would occur only for extremely large
arrays, so it probably isn't an issue in practice. That being the case,
the better algorithm is the one you find less confusing. (Personally,
I think the nonrecursive version is less confusing.)
8. The bucketsort algorithm uses a calculation similar to the one
used by interpolation search to pick each item's bucket.
9. You could simply move backwards through the array until you
find the first item that doesn't match the target. In the worst case,
that would take O(N) time. For example, if a program used binary
search on an array that contained nothing but copies of the target
item, the algorithm would find the target halfway through the array
and then would need to move back to the beginning in N / 2 = O(N)
steps.
A faster but more complicated approach would be to perform a
binary search or interpolation search starting at the location where
the first target item was found and look for the next-smaller item.
This would not change the run time of the original algorithm: O(log
N) for binary search and O(log(log N)) for interpolation search.

Chapter 8: Hash Tables
1. Example program Chaining implements a hash table with
chaining.
2. Example program SortedChaining implements a hash table with
chaining and sorted linked lists. In one test when the program's hash

662

table and the hash table from the Chaining program both used 10
buckets and held 100 items, the Chaining program's average probe
length was 9.46 positions. But the SortedChaining program's
average probe length was only 5.55 positions.
3. Figure B.6 shows the average probe sequence lengths for the
Chaining and SortedChaining programs. In the figure, the two
curves appear to be linear, indicating that both algorithms have a
O(1) run time (assuming a constant number of buckets). Sorted
chaining has better performance, however, so its run time includes
smaller constants.

Figure B.6 Sorted chaining gives shorter average probe sequence
lengths than chaining.

4. Example program LinearProbing implements a hash table that
uses open addressing with linear probing.
5. Example program QuadraticProbing implements a hash table that
uses open addressing with quadratic probing.
6. Example program PseudoRandomProbing implements a hash
table that uses open addressing with pseudo-random probing.
7. Example program DoubleHashing implements a hash table that
uses open addressing with double hashing.

663

8. The probe sequences used by those algorithms will skip values if
their stride evenly divides the table size N. For example, suppose
the table size is 10, and a value maps to location 1 with a stride of 2.
Then its probe sequence visits positions 1, 3, 5, 7, and 9 and then
repeats. You can avoid this by ensuring that the stride cannot evenly
divide N. One way to do that is to make N prime so that no stride
can divide it evenly.
9. Example program OrderedQuadraticHashing implements a hash
table that uses open addressing with ordered quadratic hashing.
10. Example program OrderedDoubleHashing implements a hash
table that uses open addressing with ordered double hashing.
11. Figure B.7 shows the average probe sequence lengths for the
different open addressing algorithms. All the nonordered algorithms
have similar performance. Linear probing generally is slowest, but
the others are within about one probe of giving the same
performance. Double hashing has a slight advantage.

Figure B.7 Double hashing has shorter average probe sequence
lengths, but quadratic and pseudorandom probing give similar
performance.

It's not obvious from the graph, but the exact values added to the
tables make a big enough difference to change which algorithms are
faster than the others.
The ordered quadratic probing and ordered double hashing
algorithm provide almost exactly the same average probe sequence
length. Their values are much smaller than the average lengths of

664

the other algorithms, although inserting items in the ordered hash
tables takes longer.

Chapter 9: Recursion
1. Example program Factorial implements the factorial algorithm.
2. Example program FibonacciNumbers implements the Fibonacci
algorithm.
3. Example program TowerOfHanoi implements the Tower of
Hanoi algorithm.
4. Example program GraphicalTowerOfHanoi implements the
Tower of Hanoi algorithm graphically. Hints:

a. Make a Disk class to represent disks. Give it properties to
represent its size and position, a list of points representing
positions it should visit, a Draw method that draws the disk,
and a Move method that moves the disk some distance toward
the next point in its points list.
b. Make stacks to represent the pegs. Initially put Disk objects
on the first peg's stack to represent the initial tower of disks.
c. Make a Move class to represent moves. It should record the
peg number from which and to which a disk should move. Give
it a MakeMovePoints method that gets the top disk from
the Move object's start peg, builds the Disk's movement
points, and moves the Disk to the destination stack.
d. When the user clicks a button, solve the Tower of Hanoi
problem, building a list of Move objects to represent the
solution. Then start a timer that uses the Move items in the list
to create movement points for the Disk objects and that uses
the Disk objects' Move and Draw methods to move and
draw the disks.

5. Example program KochSnowflake draws Koch snowflakes.
6. Example program AngleSnowflake lets the user specify the
angles in the generator.

665

7. Example program Hilbert draws Hilbert curves. Hint: If the
whole curve should be width units wide, set dx = width /
(2depth+1 – 1).
8. The following pseudocode shows the methods that draw the
Sierpiski curve pieces down, left, and up:

// Draw down on the right.
SierpDown(Integer: depth, Float: dx, Float: dy)

If (depth > 0) Then
depth = depth – 1
SierpDown(depth, gr, dx, dy)
DrawRelative(gr, –dx, dy)
SierpLeft(depth, gr, dx, dy)
DrawRelative(gr, 0, 2 * dy)
SierpRight(depth, gr, dx, dy)
DrawRelative(gr, dx, dy)
SierpDown(depth, gr, dx, dy)

End If
End SierpDown
// Draw left across the bottom.
SierpLeft(Integer: depth, Float: dx, Float: dy)

If (depth > 0) Then
depth = depth – 1
SierpLeft(depth, gr, dx, dy)
DrawRelative(gr, –dx, –dy)
SierpUp(depth, gr, dx, dy)
DrawRelative(gr, –2 * dx, 0)
SierpDown(depth, gr, dx, dy)
DrawRelative(gr, –dx, dy)
SierpLeft(depth, gr, dx, dy)

End If
End SierpLeft
// Draw up along the left.
SierpUp(Integer: depth, Float: dx, Float: dy)

If (depth > 0) Then
depth = depth - 1
SierpUp(depth, gr, dx, dy)
DrawRelative(gr, dx, –dy)
SierpRight(depth, gr, dx, dy)
DrawRelative(gr, 0, –2 * dy)
SierpLeft(depth, gr, dx, dy)
DrawRelative(gr, –dx, –dy)
SierpUp(depth, gr, dx, dy)

End If
End SierpUp

666

9. Example program Sierpinski draws Sierpiski curves. Hint: If the
whole curve should be width units wide, set dx = width /
(2depth+2 – 2).
10. The following pseudocode draws a Sierpiski gasket. This code
assumes a Point data type that has X and Y properties.

// Draw the gasket.
SierpinskiGasket(Integer: depth,
Point: point1, Point: point2, Point: point3)

// If this is depth 0, fill the remaining
triangle.

If (depth == 0) Then
Point: points[] = { point1, point2,

point3 }
FillPolygon(points)

Else
// Find points on the left, right, and

bottom of the triangle.
Point: lpoint = new Point(

(point1.X + point2.X) / 2,
(point1.Y + point2.Y) / 2)

Point: bpoint = new Point(
(point2.X + point3.X) / 2,
(point2.Y + point3.Y) / 2)

Point: rpoint = new Point(
(point3.X + point1.X) / 2,
(point3.Y + point1.Y) / 2)

// Draw the triangles at the corners.
SierpinskiGasket(depth – 1, gr, point1,

lpoint, rpoint)
SierpinskiGasket(depth – 1, gr, lpoint,

point2, bpoint)
SierpinskiGasket(depth – 1, gr, rpoint,

bpoint, point3)
End If

End SierpinskiGasket

11. The following pseudocode draws a Sierpiski carpet. This code
assumes a Rectangle data type that has X, Y, Width, and
Height properties.

// Draw the carpet.
SierpinskiCarpet(Integer: depth, Rectangle:
rect)

// If this is depth 0, fill the remaining
rectangle.

667

If (depth == 0) Then
FillRectangle(rect)

Else
// Fill the 8 outside rectangles.
Float: width = rect.Width / 3
Float: height = rect.Height / 3
For row = 0 To 2

For col = 0 To 2
// Skip the center rectangle.
If ((row != 1) || (col != 1))

Then
SierpinskiCarpet(depth – 1,

New Rectangle(
rect.X + col *

width,
rect.Y + row *

height,
width, height))

End If
Next col

Next row
End If

End SierpinskiCarpet

12. Example program EightQueens solves the eight queens
problem.
13. Example program EightQueens2 keeps track of how many times
each square is attacked so that it can decide more quickly whether a
position for a new queen is legal. In one test, this reduced the
number of test positions attempted from roughly 1.5 million to
26,000 and reduced the total time from 2.13 seconds to 0.07
seconds. The more quickly and effectively you can eliminate
choices, the faster the program will run.
14. Example program EightQueens3 only searches the next row for
the next queen's position. In one test, this reduced the number of test
positions attempted from roughly 26,000 to 113 and reduced the
total time from 0.07 seconds to practically no time at all. This
program restricts the possible positions for queens even more than
the previous version, so it does much less work.
15. Example program KnightsTour uses only backtracking to solve
the knight's tour problem. The smallest square board that has a tour
is 5×5 squares.

668

16. Example program KnightsTour2 implements Warnsdorff's
heuristic.
17. If you take a collection of selections and generate all the
arrangements of each, you get the original set's permutations. For
example, consider the set {A, B, C}. Its selections of two items
includes {A, B}, {A, C}, and {B, C}. If you add the rearrangements
of those selections (B, A), (C, A), and (C, B), you get the original
set's permutations (A, B), (A, C), (B, A), (B, C), (C, A), and (C, B).
18. Example program SelectKofN implements the
SelectKofNwithDuplicates and
SelectKofNwithoutDuplicates algorithms.
19. Example program Permutations implements the
PermuteKofNwithDuplicates and
PermuteKofNwithoutDuplicates algorithms.
20. Example program NonrecursiveFactorial calculates factorials
nonrecursively.
21. Example program FastFibonacci calculates Fibonacci numbers
recursively with saved values.
22. Example program NonrecursiveFibonacci calculates Fibonacci
numbers nonrecursively.
23. Example program NonrecursiveFibonacci2 calculates Fibonacci
numbers nonrecursively as needed without a globally available
array.
24. Example program NonrecursiveHilbert implements the
nonrecursive Hilbert curve algorithm.

Chapter 10: Trees
1. No. The number of nodes N in a perfect binary tree of height H is
N = 2H+1 – 1. The value 2H+1 is a multiple of 2, so it is always even,
and therefore 2H+1 – 1 is always odd.
2. Figure B.8 shows a tree that is full and complete but not perfect.

Figure B.8 Not all full complete trees are perfect.

669

3. Base case: If N = 1, the tree is a root node with no branches, so B
= 0. In that case, B = N – 1 is true.
Inductive step: Suppose the property is true for binary trees
containing N nodes, and consider such a tree. If you add a new node
to the tree, you must also add a new branch to the tree to connect
the node to the tree. Adding one branch to the N – 1 branches that
the tree already had means that the new tree has N + 1 nodes and (N
– 1) + 1 = (N + 1) – 1 branches. This is the statement of the
property for a tree with N + 1 nodes, so the property holds for
binary trees containing N + 1 nodes.
That proves B = N – 1 by induction.
4. Every node in a binary tree except the root node is attached to a
parent by a branch. There are N – 1 such nodes, so there are N – 1
branches. (This result holds for trees in general, not just binary
trees.)
5. Base case: If H = 0, the tree is a root node with no branches. In
that case, there is one leaf node, so L = 1 and L = 2H = 20 = 1 is
true.
Inductive step: Suppose the property is true for perfect binary trees
of height H. A perfect binary tree of height H + 1 consists of a root
node connected to two perfect binary subtrees of height H. Because
we assume the property is true for trees of height H, the total

670

number of leaf nodes in each subtree is 2H. Adding a new root node
above the two subtrees doesn't add any new leaf nodes to the tree of
height H + 1, so the total number of leaf nodes is (2 × 2H) = 2H+1, so
the property holds for perfect binary trees of height H + 1.
That proves L = 2H by induction.
6. Base case: If N = 1, the tree is a root node with no branches. That
root node is missing two branches. Then M = 2 = 1 + 1, so the
property M = N + 1 is true for N = 1.
Inductive step: Suppose the property is true for binary trees
containing N nodes, and consider such a tree. If you add a new node
to the tree, that node is attached to its parent by a branch that
replaces a formerly missing branch, decreasing the number of
missing branches by 1. The new node has two missing branches of
its own. Adding these to the tree's original N + 1 missing branches
gives the new number of missing branches, M = (N + 1) – 1 + 2 =
(N + 1) + 1. This is the statement of the property for a tree
containing N + 1 nodes, so the property holds for binary trees
containing N + 1 nodes.
That proves M = N + 1 by induction.
7. The preorder traversal for the tree shown in Figure 10.24 is E, B,
A, D, C, F, I, G, H, J.
8. The inorder traversal for the tree shown in Figure 10.24 is A, B,
C, D, E, F, G, H, I, J.
9. The postorder traversal for the tree shown in Figure 10.24 is A,
C, D, B, H, G, J, I, F, E.
10. The depth-first traversal for the tree shown in Figure 10.24 is E,
B, F, A, D, I, C, G, J, H.
11. Example program BinaryTraversals finds the traversals for the
tree shown in Figure 10.24.
12. If you use a queue instead of a stack in the depth-first traversal
algorithm described in the section “Depth-first Traversal,” the result
is the reverse of the postorder traversal. You could generate the
same traversal recursively by using a preorder traversal, but visiting
each node's right child before visiting its left child.
13. Example program TextDisplay creates a textual display of the
tree shown in Figure 10.25.

671

14. Example program DrawTree displays a tree similar to the one
shown in Figure 10.26.
15. Example program DrawTree2 displays a tree similar to the one
shown in Figure 10.27.
16. The following pseudocode shows an algorithm for performing a
reverse inorder traversal on a threaded sorted tree. The differences
between this algorithm and the algorithm for performing a normal
inorder traversal are highlighted.

ReverseInorderWithThreads(BinaryNode: root)
// Start at the root.
BinaryNode: node = root
// Remember whether we got to a node via a

branch or thread.
// Pretend we go to the root via a branch

so we go right next.
Boolean: via_branch = True
// Repeat until the traversal is done.
While (node != null)

// If we got here via a branch, go
// down and to the right as far as

possible.
If (via_branch) Then

While (node.RightChild != null)
node = node.RightChild

End While
End If
// Process this node.
<Process node>
// Find the next node to process.
If (node.LeftChild == null) Then

// Use the thread.
node = node.LeftThread
via_branch = False

Else
// Use the left branch.
node = node.LeftChild
via_branch = True

End If
End While

End ReverseInorderWithThreads

17. Example program ThreadedTree lets you build threaded sorted
trees and display their traversals.

672

18. Example program ThreadedTree lets you build threaded sorted
trees and display their traversals as shown in Figure 10.28.
19. In the knowledge tree used by the animal game, all internal
nodes hold questions and lead to two child nodes, so they have
degree 2. All leaf nodes have degree 0. No nodes can have degree 1,
so the tree is full.
The tree grows irregularly, depending on the order in which animals
are added and the questions used to differentiate them, so the tree is
neither complete nor perfect.
20. Nodes that represent questions are internal nodes that have two
children. Nodes that represent animals are leaf nodes, so they have
no children. You can tell the difference by testing the node's
YesChild property to see if it is null.
21. Example program AnimalGame implements the animal game.
22. Figure B.9 shows the expression trees.

Figure B.9 The expression trees on the right represent the
expressions on the left.

673

23. Example program Expressions evaluates the necessary
expressions.
24. Figure B.10 shows the expression trees.

Figure B.10 The expression trees on the right represent the
expressions on the left.

674

675

25. Example program Expressions2 evaluates the necessary
expressions.
26. Example program Quadtree demonstrates quadtrees.
27. Figure B.11 shows a trie for the given strings.

Figure B.11 This trie represents the strings APPLE, APP, BEAR,
ANT, BAT, and APE.

28. Example program Trie builds and searches a trie.

Chapter 11: Balanced Trees
1. Figure B.12 shows the right-left rotation.

676

Figure B.12 You can rebalance an AVL tree in the right-left case
by using a right rotation followed by a left rotation.

677

678

2. Figure B.13 shows an AVL tree as the values 1 through 8 are
added in numeric order.

Figure B.13 An AVL tree remains balanced even if you add values
in sorted order.

3. Figure B.14 shows the process of removing node 33 and
rebalancing the tree. First you need to replace node 33 with the
rightmost node to its left, which in this case is node 17. After that
replacement, the tree is unbalanced at node 12, because its left
subtree has height 2, and its right subtree has height 0. The tall
grandchild subtree causing the imbalance consists of the node 8, so
this is a left-right case. To rebalance the tree, you perform a left
rotation to move node 8 up one level and node 5 down one level,
followed by a right rotation to move node 8 up another level and
node 12 down one level.

Figure B.14 To rebalance the tree at the top, you need to replace
value 33 with value 17, and then perform a left-right rotation.

679

680

4. Figure B.15 shows the process of adding the value 24 to the tree
shown on the left.

Figure B.15 When you add the value 24 to the tree on the left, the
leaf containing values 22 and 23 splits.

5. Figure B.16 shows the process of removing the value 20 from the
tree shown on the left. First, replace value 20 with value 13. That
leaves the leaf that contained 13 empty. Rebalance by borrowing a
value from a sibling node.

Figure B.16 If you remove a value from a 2-3 tree node, and the
node contains no values, you may be able to borrow a value from a
sibling.

681

6. Figure B.17 shows the process of adding the value 56 to the
B-tree on the top. To add the new value, you must split the bucket
containing the values 52, 54, 55, and 58. You add the value 56 to
those, make two new buckets, and send the middle value 55 up to
the parent node. The parent node doesn't have room for another
value, so you must split it too. Its values (including the new one) are

682

21, 35, 49, 55, and 60. You put 21 and 35 in new buckets and move
the middle value 49 up to its parent. This is the root of the tree, so
the tree grows one level taller.

Figure B.17 Sometimes bucket splits cascade to the root of a
B-tree, and the tree grows taller.

7. To remove the value 49 from the bottom tree in Figure B.17,
simply replace the value 49 with the rightmost value to its left,
which is 48. The node initially containing the value 48 still holds
three values, so it doesn't need to be rebalanced. Figure B.18 shows
the result.

Figure B.18 Sometimes when you remove a value, no rebalancing
is required.

683

8. Figure B.19 shows a B-tree growing incrementally as you add the
values 1 through 11. When you add 11, the root node has four
children, so the tree holds 11 values at that point.

Figure B.19 Adding 11 values to an empty B-tree of order 2 makes
the root node hold four children.

9. A B-tree node of order K would occupy 1,024 × (2 × K) + 8 × (2
× K + 1) = 2,048 × K + 16 × K + 8 = 2,064 × K + 8 bytes. To fit in

684

four blocks of 2 KB each, this must be less than or equal to 4 × 2 ×
1,024 = 8,192 bytes, so 2,064 × K + 8 ≤ 8,192. Solving for K gives
K ≤ (8,192 – 8) ÷ 2, 064, or K ≤ 3.97. K must be an integer, so you
must round this down to 3.
A B+tree node of order K would occupy 100 × (2 × K) + 8 × (2 × K
+ 1) = 200 × K + 16 × K + 8 = 216 × K + 8 bytes. To fit in four
blocks of 2 KB each, this must be less than or equal to 4 × 2 × 1,024
= 8,192 bytes, so 216 × K + 8 ≤ 8,192. Solving for K gives K ≤
(8,192 – 8) ÷ 216, or K ≤ 37.9. K must be an integer, so you must
round this down to 37.
Each tree could have a height of at most log(K+1)(10,000) while
holding 10,000 items. For the B-tree, that value is log4(10,000) ≈
6.6, so the tree could be seven levels tall. For the B+tree, that value
is log38(10,000) ≈ 2.5, so the tree could be three levels tall.

Chapter 12: Decision Trees
1. Example program CountTicTacToeBoards does this. It found the
following results:

• X won 131,184 times.
• O won 77,904 times.
• The game ended in a tie 46,080 times.
• The total number of possible games was 255,168.

The numbers would favor player X if each player moved randomly,
but because most nonbeginners have a strategy that forces a tie, a tie
is the most common outcome.
2. Example program CountPrefilledBoards does this. Figure B.20
shows the number of possible games for each initial square taken.
For example, 27,732 possible games start with X taking the
upper-left corner on the first move.

Figure B.20 These numbers show how many possible games begin
with X taking the corresponding square in the first move.

685

Because the tic-tac-toe board is symmetric, you don't really need to
count the games from each starting position. All the corners give the
same number of possible games, and all the middle squares also
give the same number of possible games. You only really need to
count the games for one corner, one middle, and the center to get all
the values.
3. Example program TicTacToe does this.
4. Example program PartitionProblem does this.
5. Example program PartitionProblem does this.
6. Figure B.21 shows the two graphs. The graph of the logarithms
of the nodes visited is almost a perfectly straight line for both
algorithms, so the number of nodes visited by each algorithm is an
exponential function of the number of weights N. In other words, if
N is the number of weights, <Nodes Visited> = CN for some C. The
number of nodes visited is smaller for branch and bound than it is
for exhaustive search, but it's still exponential.

Figure B.21 Because the graph of logarithm of nodes visited versus
number of weights is a line, the number of nodes visited is
exponential in the number of nodes.

686

7. Example program PartitionProblem does this.
8. Example program PartitionProblem does this.
9. The two groups are {9, 6, 7, 7, 6} and {7, 7, 7, 5, 5}. Their total
weights are 35 and 31, so the difference is 4.
10. Example program PartitionProblem does this.
11. The two groups are {5, 6, 7, 7, 7} and {5, 6, 7, 7, 9}. Their total
weights are 32 and 34, so the difference is 2.
12. The two groups are {7, 9, 7, 5, 5} and {6, 7, 7, 7, 6}. Their total
weights are both 33, so the difference is 0.
13. Example program PartitionProblem does this.

Chapter 13: Basic Network
Algorithms

1. Example program NetworkMaker does this. Select the Add Node
tool and then click on the drawing surface to create new nodes.
When you select either of the add link tools, use the left mouse
button to select the start node and use the right mouse button to
select the destination node.
2. Example program NetworkMaker does this.
3. Example program NetworkMaker does this.
4. That algorithm doesn't work for directed networks because it
assumes that if there is a path from node A to node B, there is a path

687

from node B to node A. For example, suppose a network has three
nodes connected in a row A → B → C. If the algorithm starts at
node A, it reaches all three nodes, but if it starts at node B, it only
finds nodes B and C. It would then incorrectly conclude that the
network has two connected components {B, C} and {A}.
5. Example program NetworkMaker does this.
6. If the network has N nodes, any spanning tree contains exactly N
– 1 links. If all the links have the same cost C, every spanning tree
has a total cost of C × (N – 1).
7. Example program NetworkMaker does this.
8. Example program NetworkMaker does this.
9. No, a shortest-path tree need not be a minimal spanning tree.
Figure B.22 shows a counterexample. The image on the left shows
the original network, the middle image shows the shortest-path tree
rooted at node A, and the image on the right shows the minimal
spanning tree rooted at node A.

Figure B.22 A shortest-path tree is a spanning tree but not
necessarily a minimal spanning tree.

10. Example program NetworkMaker does this.
11. Example program NetworkMaker does this.
12. Example program NetworkMaker does this.
13. Example program NetworkMaker does this.
14. If the network contains a cycle with a negative total weight, the
label-correcting algorithm enters an infinite loop following the
cycle and lowering the distances to the nodes it contains.
This cannot happen to the label-setting algorithm, because each
node's distance is set exactly once and never changed.

688

15. After a node is labeled by a label-setting algorithm, its distance
is never changed, so you can make the algorithm stop when it has
labeled the destination donut shop. If the network is large and the
start and end destination are close together, this change will
probably save time.
16. When a label-correcting algorithm labels a node, that doesn't
mean it will not later change that distance, so you cannot
immediately conclude that the path to that node is the shortest, the
way you can with a label-setting algorithm.
However, the algorithm cannot improve a distance that is shorter
than the distances provided by the links in the candidate list. That
means you can periodically check the links in the list. If none of
them leads to a distance less than the donut shop's distance, the
donut shop's shortest path is final.
This change is complicated and slow enough that it probably won't
speed up the algorithm unless the network is very large and the start
and destination nodes are very close together. You may be better off
using a label-setting algorithm.
17. Instead of building a shortest-path tree rooted at the start node,
you can build a shortest-path tree rooted at the destination node that
uses the reverse of the network's links. Instead of showing the
shortest path from the start node to every other node in the network,
that tree will show the shortest path from every node in the network
to the destination node. When construction makes you leave the
current shortest path, the tree already shows the shortest path from
your new location.
18. Example program NetworkMaker does this.
19. Example program NetworkMaker does this.
20. Building the arrays would take about 1 second for 100 nodes,
16.67 minutes for 1,000 nodes, and 11.57 days for 10,000 nodes.
21. Figure B.23 shows the Distance and Via arrays for the
network shown in Figure 13.15. The initial shortest path from node
A to node C is A → C with a cost of 18. The final shortest path is A
→ B → C with a cost of 16.

Figure B.23 The Via and Distance arrays give the solutions to
an all-pairs shortest-path problem.

689

Chapter 14: More Network
Algorithms

1. Example program NetworkMaker does this.
2. When the algorithm adds a node to the output list, it updates its
neighbors' NumBeforeMe counts. If a neighbor's count becomes
0, the algorithm adds the neighbor to the ready list. At that point,
it could also add the neighbor to a list of nodes that are becoming
available for work. For example, when the algorithm adds the
Drywall node to the output list, the Wiring and Plumbing nodes
both become ready, so they could be listed together. The result
would be a list of tasks that become ready at the same time.
3. The algorithm should keep track of the time since the first task
started. When it sets a node's NumAfterMe count to 0, it should
set the node's start time to the current elapsed time. From that it can
calculate the node's expected finish time. When it needs to remove a
node from the ready list, it should select the node with the earliest
expected finish time.
4. Yes. Just as at least one node must have out-degree 0
representing a task with no prerequisites, at least one node with
in-degree 0 must represent a task that is not a prerequisite for any
other task. You could add that task to the end of the full ordering.

690

That would let you remove nodes from the network and add them to
the beginning and end of the ordered list.
Unfortunately, the algorithm doesn't have a good way to identify the
nodes that have in-degree 0, so it would slow down the algorithm
without some major revisions.
5. Example program NetworkMaker does this.
6. You could use the following pairs of nodes for nodes M and N:
B/H, B/D, G/D, G/A, H/A, H/B, D/B, D/G, A/G, and A/H. Half of
those are the same as the others reversed (for example, B/H and
H/B), so there are really only five different possibilities.
7. Example program NetworkMaker does this.
8. Example program NetworkMaker does this. Run the program to
see the four-coloring it finds.
9. Example program NetworkMaker does this. In my tests the
program used five colors for the network shown in Figure 14.5 and
three colors for the network shown in Figure 14.6. Run the program
to see the colorings it finds.
10. The left side of Figure B.24 shows the residual capacity network
for the network shown in Figure 14.12, with an augmenting path in
bold. Using the path to update the network gives the new flows
shown on the right. This is the best possible solution, because the
total flow is 7, and that's all the flow that is possible out of source
node A.

Figure B.24 The augmenting path in the residual capacity network
on the left leads to the revised network on the right.

691

11. Example program NetworkMaker does this. Load a network and
select the Calculate Maximal Flows tool. Then left-click and
right-click to select the source and sink nodes. Use the Options
menu's Show Links Capacities command to show the link flows and
capacities.
12. Figure B.25 shows example program NetworkMaker displaying
maximal flows for the network shown in Figure 14.9. Only four
jobs can be assigned. Load or create a work assignment network
and select the Calculate Maximal Flows tool. Then left-click and
right-click to select the source and sink nodes.

Figure B.25 At most four jobs can be assigned in this work
assignment network.

13. To find the number of paths that don't share links, simply give
each link a capacity of 1, and find the maximal flow between the
nodes. The total flow gives the number of paths.

692

To find the number of paths that don't share links or nodes, replace
each node with two nodes—an in-node and an out-node. Connect
the two new nodes with a link of capacity 1. Make the links that
entered the original node now enter the in-node. Make the links that
exited the original node now exit the out-node. Now find the
maximal flow. Because each original node is now represented by
two nodes connected with a link of capacity 1, only one path can
use each in-node/out-node pair.
14. You need only two colors to color a bipartite network. Simply
give one color to one set of nodes and a second color to the other set
of nodes. Because no link connects a node to another node in the
same set, the two-coloring works.
You can use three colors to color a work assignment network. Use
one color for the employee nodes, one color for the job nodes, and
one color for the source and sink nodes.
15. Example program NetworkMaker does this. Load a network and
select the Minimal Flow Cut tool. Then left-click and right-click to
select the source and sink nodes.
16. There are two solutions. The first solution removes links B →
C, E → F, and H → I. The second solution removes links C → F, E
→ F, and H → I. Both solutions remove a total capacity of 7.
Example program NetworkMaker finds the first of these two
solutions.

Chapter 15: String
Algorithms

1. Example program ParenthesisMatching does this.
2. Example program EvaluateExpression does this.
3. The program would need to look for a fourth recursive case in
which the expression is of the form –expr for some other expression
expr.

693

4. The program would need to look for another recursive case in
which the expression is of the form Sine(expr) for some other
expression expr.
5. Example program EvaluateBoolean does this.
6. Example program GraphExpression does this.
7. Table B.3 shows a state transition table for a DFA that matches
the regular expression (AB)*|(BA)*.

Table B.3 A State Transition Table for (AB)*|(BA)*.

8. Figure B.26 shows the state transition diagram.

Figure B.26 This DFA state transition diagram matches the regular
expression ((AB)|(BA))*.

9. Table B.4 shows a state transition table for the state transition
diagram shown in Figure B.26.

694

Table B.4 A State Transition Table for ((AB)|(BA))*.

10. Example program DFAMatch does this.
11. A table is easy to write down, but it's not easy to look up
transitions when you need them. For example, suppose the DFA is
in state 17, and it sees the input H. The program would need to
search the table to find the appropriate entry before moving to the
new state. If the table is large, this could take a while. To speed
things up, you might store the transitions in a tree, hash table, or
some other data structure to make finding transitions easier. That
would take up more memory and complicate the program.
In contrast, suppose you use objects to represent the states, similar
to how you can use node objects to represent locations in a network.
Each state object could have a list giving the new state object for
various inputs. In that case, state transitions would be relatively
quick and simple. If some states can read many possible inputs (in
other words, there are many links leaving them in the state
diagram), you might still spend some time looking up new states. In
that case you might want to use a tree, hash table, or some other
data structure to make finding the new states faster, but at least you
won't have to search the whole transition table.
12. Build the NFA states as usual to recognize the pattern. Then add
a new start state at the beginning. Add a null transition that connects
the new state to the normal states. Add another transition that
connects the new start state to itself on every input character.
Finally add a transition that connects the pattern's accepting state to
itself on any input character. Figure B.27 shows the transition
diagram.

Figure B.27 This NFA state transition diagram matches a pattern
anywhere within a string.

695

13. Figure B.28 shows the solution.

Figure B.28 The parse tree (left) and corresponding NFA network
(right) for the expression (AB*)|(BA*).

14. Figure B.29 shows the solution.

Figure B.29 This DFA state transition diagram matches the same
values as the NFA state transition diagram shown on the right in
Figure B.28.

696

15. Let the target consist of a series of A's and the text consist of
runs of M – 1 A's followed by a B. For example, if M is 4, then the
target is AAAA, and the text is AAAB repeated any number of
times. In this case, the target is not present in the text, because there
are never M A's in a row. As the outer loop variable i changes, the
inner loop must run over M, M – 1, M – 2, …, 1 values to decide
that it has not found a match. Then the sequence repeats. On
average, the inner loop runs roughly M / 2 times, giving a total run
time of O(N × M / 2) = O(N × M).
16. The least-cost path uses as many diagonal links as possible. In
Figure 15.13, a path can use at most four diagonal links. A path that
uses four diagonal links uses five nondiagonal links, so the edit
distance is 5.
17. Example program StringEditDistance does this.
18. Example program StringEditDistance does this.
19. Yes, the edit distance is commutative. To transform word 2 into
word 1, you can reverse operations. In other words, instead of
deleting a character, insert one, and instead of inserting a character,
delete one.
20. Example program FileEditDistance does this.
21. Example program FileEditDistance does this.

Chapter 16: Encryption
1. Example program RowColumnTransposition does this.

697

2. Example program SwapColumns does this.
3. If the key contains duplicated characters, there's no way to know
which of the corresponding columns should come first.
One solution is to use only the first occurrence of each letter, so
PIZZA becomes PIZA and BOOKWORM becomes BOKWRM.
This actually has the small benefit of increasing obscurity if the
attacker doesn't know the rule, because it disguises the number of
columns in the encryption array.
4. Swapping both columns and rows greatly increases the number of
possible arrangements of rows and columns. For example, if a
message contains 100 characters and is written into a 10×10 array,
there are 10! × 10! ≈ 1.3×1013 possible arrangements of the rows
and columns.
However, if the attacker figures out only the column ordering, the
rows will be out of order, but each row in the array will contain
valid words. By recognizing the valid words, the attacker can
recover the column ordering and then try to swap rows to recover
the full message.
If each row begins with a new word, finding the row ordering could
be difficult. But if words span rows, the pieces of the words will
give the attacker extra clues for finding the row ordering. For
example, suppose the first row ends with GREA, the second row
begins with NT, and the third row begins with TLY. In that case, it's
likely that the third row should follow the first row.
This is an example in which what seems like a perfectly reasonable
attempt to add one encryption method to another doesn't really help
much. Although adding row transpositions to column transpositions
greatly increases the number of possible combinations, it doesn't
greatly increase the number of combinations the attacker must
consider.
5. Example program SwapRowsAndColumns does this.
6. Example program CaesarSubstitution does this. The encryption
of “Nothing but gibberish” with a shift of 13 is ABGUV ATOHG
TVOOR EVFU.
7. Example program LetterFrequencies displays the relative
frequencies of the letters in a message. That program finds the

698

following values for the three most common letters in the
ciphertext:
Letter Frequency Offset

K 18.5% 6

V 14.8% 17

R 13.0% 13

Using the CaesarSubstitution example program with offset 6 to
decipher the message produces gibberish. Using the program again
with offset 17 gives the plaintext message THERE WASAT
IMEWH ENCAE SARSU BSTIT UTION WASTH ESTAT
EOFTH EART. (There was a time when Caesar substitution was the
state of the art.)
8. Example program VigenereCipher does this. The decrypted
message is AVIGE NEREC IPHER ISMOR ECOMP LICAT
EDTHA NCAES ARSUB STITU TION. (A Vigenère cipher is
more complicated than Caesar substitution.)
9. If you reuse a one-time pad, you are essentially using a Vigenère
cipher where the keyword is the entire pad. You might get away
with this for a little while, but eventually, if the attacker knows that
you are reusing the pad, the cipher may be broken.
10. This would happen if a message was lost or you received
messages out of order so that you're not using the right letters in the
pad. You can decrypt the message by starting at different positions
in the pad until you find a position that produces a readable
message. The number of letters in the pad that you needed to skip
tells you how long the message was that you missed. You can either
ignore that message or give the sender a message (encrypted, of
course) asking for the missing message to be repeated.
11. Not much. It would give the attacker information about the
length and frequency of the messages you are sending, but the
attacker can learn that anyway by looking at the lengths of
intercepted messages (assuming that all messages are intercepted).
12. Example program OneTimePad does this.
13. If you have a cryptographically secure random-number
generator, you can use it to generate one-time pads and use those

699

for encryption. A one-time pad is unbreakable because any message
letter could become any ciphertext letter.
Conversely, suppose you have an unbreakable encryption scheme.
You could use it to encrypt a message consisting of nothing but
instances of the letter A to generate a sequence of random letters.
You could then use those letters to generate the random numbers for
a secure random-number generator.
14. Always send a message of the same length at the same time
every day. If you have nothing to say, just say that. Pad the
messages to the same length with random characters. If the
encryption is secure, the attacker cannot tell when a message
contains important information and when it contains random
characters.
15. For this scenario, the answers are as follows:
n = 22,577
φ(n) = 106 × 210 = 22,260
d = 18,899
C = 1,3374,199 mod 22,577 = 13,400
M = 19,90518,899 mod 22,577 = 12,345

Chapter 17: Complexity
Theory

1. Countingsort and bucketsort don't use comparisons. Instead, they
perform mathematical calculations to find where in the sorted list
each value should go.
2. This can be reduced to the two-coloring problem. If the graph is
two-colorable, it is bipartite. To use a two-coloring algorithm to
solve the bipartite detection problem, try to two-color the graph. If a
two-coloring is possible, the graph is bipartite. The two-coloring
even gives you the two node sets for the bipartite graph. Just put
nodes with one color in one set and nodes with the other color in the
other set.

700

The two-coloring algorithm described in Chapter 14 runs in
polynomial time (actually, it's quite fast), so it's in P, and the
bipartite detection is also in P.
3. The three-cycle problem can be reduced to the bipartite detection
problem. If a graph has a cycle of length 3, it is not bipartite. To
solve the three-cycle problem, use a bipartite detection algorithm to
see if the graph is bipartite. If the graph is bipartite, it does not
contain any cycles of length 3.
Note that the converse is not necessarily true. If the graph has no
cycles of length 3, it is still not bipartite if it has a cycle with an odd
length.
Exercise 2 shows that the bipartite detection problem is in P, so the
three-cycle problem is also in P.
4. The odd-cycle problem also can be reduced to the bipartite
detection problem. If a graph has a cycle with odd length, it is not
bipartite. To solve the odd-cycle problem, use a bipartite detection
algorithm to see if the graph is bipartite. If the graph is bipartite, it
does not contain any cycles of odd length.
Note that for this case, the converse is also true. If the graph has no
cycles of odd length, it is bipartite.
Exercise 2 shows that the bipartite detection problem is in P, so the
odd-cycle problem is also in P.
5. A nondeterministic algorithm for solving HAM is as follows:
Guess the order in which the nodes can be visited, and then verify
(in polynomial time) that the ordering gives a Hamiltonian path. To
do that, you need to verify that every node is in the ordering exactly
once and that there is a link between the adjacent pairs of nodes in
the ordering.
6. You can use a nondeterministic algorithm similar to the one
described in the solution to Exercise 5: Guess the order in which the
nodes can be visited, and then verify (in polynomial time) that the
ordering gives a Hamiltonian cycle. The only difference is that for
this problem you also need to verify that the first and last nodes are
the same.
7. HAM and HAMC are very closely related, but they don't
instantly solve each other, because a network can contain a
Hamiltonian path without containing a Hamiltonian cycle. (For

701

example, consider a two-node network with a single link A → B.
The ordering A → B gives a Hamiltonian path but not a
Hamiltonian cycle.)
To reduce HAM to HAMC, you must find a way to use a HAMC
algorithm to solve HAM problems. In other words, if a network
contains a Hamiltonian path, you must use a HAMC algorithm to
detect it.
First, note that a network that contains a Hamiltonian cycle contains
a Hamiltonian path. Simply take a Hamiltonian cycle and remove
the final link to form a Hamiltonian path.
Now suppose the network doesn't contain a Hamiltonian cycle, and
suppose it does contain a Hamiltonian path. How could you turn the
path into a cycle? Simply add the path's starting node to the end of
the path. If a link from the ending node to the starting node was
already in the network, it would have already contained a
Hamiltonian cycle, so that link must not be present.
To look for a Hamiltonian cycle, add a new link LAB between two
nodes A and B. Now if there is a Hamiltonian cycle, the same
ordering gives you a Hamiltonian path in the original network.
Suppose the Hamiltonian cycle passes through the nodes N1, N2, …,
A, B, Nk, Nk+1, … N1. Then the original network contains the
Hamiltonian path B, Nk, Nk+1, … N1, N2, …, A.
The complete algorithm for solving HAM is as follows:

1. Use the HAMC algorithm to see if the original network
contains a Hamiltonian cycle. If it does, it contains a
Hamiltonian path.
2. For every pair of nodes A and B, if there is not already a link
from node A to node B:

a. Add a link LAB between nodes A and B.
b. Use the HAMC algorithm to see if the modified network
contains a Hamiltonian cycle. If it does, the original
network contains a Hamiltonian path.
c. Remove link LAB, and continue trying other pairs of
nodes.

Figure B.30 shows the idea. The original network is on the left. This
network clearly has no Hamiltonian cycle, because node L has only
one link, so a path that enters that node cannot leave it again.

702

Figure B.30 The network on the left contains a Hamiltonian path
but no Hamiltonian cycle.

As the reduction algorithm progresses, it eventually tries adding a
link between nodes I and L. The HAMC algorithm finds the
Hamiltonian path shown on the right in Figure B.30. If you remove
the link between nodes I and L, you get a Hamiltonian path in the
original network.
Note that this may be an inefficient algorithm for finding
Hamiltonian paths. If the network contains N nodes, you may need
to repeat Step 2 up to N2 times. That's still polynomial time,
however, so this is a polynomial time reduction.
The HAMC algorithm is NP-complete so it has no known fast
solutions. That means running it N2 times will be very slow indeed.
8. To reduce HAMC to HAM, you must find a way to use a HAM
algorithm to solve HAMC problems. In other words, if a network
contains a Hamiltonian cycle, you must use a HAM algorithm to
detect it.
Unfortunately, you can extend a Hamiltonian path to form a cycle
only if the last node in the path has a link leading to the first node in
the path. A HAM algorithm might find a path that does not have
such a link, so it could not form a cycle.
Suppose the network contains a Hamiltonian cycle that includes the
link LAB connecting nodes A and B. Now suppose you connect a
new node A' to node A and a new node B' to node B. Then the new
network contains a noncyclic Hamiltonian path starting at node A'
and ending at node B'.

703

Conversely, any Hamiltonian path must start at node A' and end at
node B' (or vice versa in an undirected network). Suppose the HAM
algorithm finds a path that visits the nodes A', A, N1, N2, …, B, B'.
Then the path A, N1, N2, …, B, A is a Hamiltonian cycle.
The complete algorithm for solving HAMC is as follows:

1. For every link LAB connecting nodes A and B:
a. Connect a new node A' to node A, and connect a new
node B' to node B.
b. Use the HAM algorithm to see if the modified network
contains a Hamiltonian path. If it does, the original
network contains a Hamiltonian cycle.
c. Remove the new nodes A' and B' and the links
connected to them, and continue with another link.

Figure B.31 shows the idea. You can probably find a Hamiltonian
cycle easily enough, but pretend you can't. In the image on the right,
the reduction algorithm is considering the link LQR connecting
nodes Q and R. It has added node Q', connected to node Q, and
node R', connected to node R. The Hamiltonian path algorithm finds
the path shown in bold in the modified network on the right.
Removing the Q' and R' nodes and their links and adding the LQR
link to the path gives a Hamiltonian cycle.

Figure B.31 The bold Hamiltonian path in the network on the right
corresponds to a Hamiltonian cycle in the network on the left.

704

9. The nondeterministic algorithm is as follows: Guess the coloring.
For each node, verify that its neighbors have a different color from
the node.
10. The nondeterministic algorithm is as follows: Guess the subset.
Then add up the numbers and verify that their total is 0.
11. The following pseudocode shows one way to reduce the
reporting problem to the detection algorithm:

1. If DetectKnapsack(k) returns false, no subset with a value of
at least k will fit in the knapsack, so the reporting algorithm can
return that information and stop.
2. If DetectKnapsack(k) returns true, for each object Oi in the
set:

a. Remove object Oi from the set.
b. Use DetectKnapsack(k) to see if a solution with value k
is still possible.
c. If a solution with value k is still possible, leave out
object Oi, and continue the loop in Step 2.
d. If a solution with value k is no longer possible, restore
object Oi to the set, and continue the loop in Step 2.

When the loop has finished, the items that are still in the set form
the solution.
12. The following pseudocode shows one way to reduce the
optimization problem to the detection algorithm:

1. Suppose Kall is the total value of all the objects in the set.
Use the detection algorithm DetectKnapsack(Kall),
DetectKnapsack(Kall – 1), DetectKnapsack(Kall – 2), and so
on until DetectKnapsack(Kall – m) returns true. At that point,
Kall – m is the maximum possible value that you can fit in the
knapsack. Let Kmax = Kall – m.
2. Use the reduction described in the solution to Exercise 11 to
find ReportKnapsack(Kmax). The result is the result of the
optimization problem.

13. The following pseudocode shows one way to reduce the
reporting problem to the detection algorithm:

1. If DetectPartition() returns false, no even division
is possible, so the reporting algorithm can return that
information and stop.

705

2. If DetectPartition() returns true:
a. Let Omax be the object with the greatest value, and
assume Omax is in Subset A. (If a partitioning is possible,
it is possible with Omax in Subset A. If you find a
partitioning and Omax in Subset B, just swap every item
between the two subsets.)
b. For each of the other objects Oi:
i. Remove Oi from the set, and add its value Vi to the value
of object Omax.
ii. Use the DetectPartition algorithm to see if a
partitioning is still possible. If it is, a partitioning of the
original set is possible with Oi in Subset A. Leave the set
and Vmax as they currently are, and continue the loop in
Step 2b.
iii. If DetectPartition indicates that a partitioning
is no longer possible, object Oi must be placed in Subset B.
In that case, subtract the Vi you added to Vmax, and add
Oi back into the set to restore the set to the way it was
before Step 2b-ii. To represent putting Oi in Subset B,
remove object Oi from the set, and subtract its value Vi
from Vmax. Now continue the loop in Step 2b.

When the loop in Step 2b has finished, the set should contain only
Omax, and Vmax should be 0. The steps you took to get there tell
you which items belong in Subset A and which belong in Subset B.

Chapter 18: Distributed
Algorithms

1. Figure B.32 shows the zero-time sort algorithm sorting the two
lists.

Figure B.32 A systolic array of four cells can sort two lists
containing four numbers each in a total of 15 ticks.

706

707

Sorting two lists of numbers takes only one tick longer than sorting
a single list.
2. Suppose the shared best route length is 100, and process A has a
new route with a total length of 80. It reads the shared value and
enters its If Then block. Now process B compares the shared
value to its new route length of 70, so it also enters its If Then
block, and it acquires the mutex first. Process B saves its solution,
along with the new total route length of 70, and releases the mutex.
Now process A acquires the mutex and saves its solution with the
total route length 80.
In this case, the solution saved by process A is worse than the one
saved by process B. The route length saved by process A matches
the solution saved by process A, so this is a little better than the
original race condition example, but the best solution is still
overwritten. Process B also has a local copy of what it thinks is the
best route length, 70, so it would not report a new solution with a
route length of 70 if it found one.
Process A can save itself if it checks the shared route length again
after it acquires the mutex. You can void that extra step if you
acquire the mutex first, but there may actually be a benefit to
checking the value twice.
Acquiring a mutex can be a relatively slow operation, at least
compared to checking a memory location. If process A's value isn't
as good as the value already stored in the shared variable, process A
can learn that quickly and not bother acquiring the mutex.
3. Figure B.33 shows the situation for four philosophers. Forks with
a line through them are dirty. The image on the left shows the initial
situation, in which philosopher 4 has no forks, philosopher 1 has
two forks, and the other philosophers hold their left forks.

Figure B.33 In the Chandy/Misra solution with synchronized
philosophers, philosopher 1 eats first, and philosopher N eats
second.

708

When the philosophers all try to eat at the same time, philosopher 1
already has two forks, so he succeeds and is the first to eat. The
others (except for philosopher 4) already hold dirty left forks, so
they request right forks. Philosopher N has no forks, so he requests
both forks. Because all the forks are dirty, those who have them
clean their left forks and give them away (except philosopher 1,
who is eating). The result is shown in the middle of Figure B.33.
In this example, two of the philosophers now have a clean right fork
and no left fork, so they ask for the left fork. (In a large problem,
most of the philosophers would have a clean right fork and no left
fork.) Their neighbors hold clean forks, so they refuse to give them
up, and everyone waits.
When philosopher 1 finishes eating, he cleans his forks and gives
them to his neighbors, philosophers 2 and 4. The result is shown on
the right in Figure B.33. Philosopher 4 now has two forks, so he is
the second to eat.
When philosopher 4 finishes eating, he gives his right fork to
philosopher 3, who then eats.
When philosopher 3 finishes eating, he gives his right fork to
philosopher 2, who then eats last.
More generally, the philosophers eat in the order 1, N, N – 1, N – 2,
…, 2.
4. In that case, general A never receives an acknowledgment.
Therefore, he assumes he didn't send enough messages the first time
around, and he sends another batch with more messages. General B
receives some of those messages and sends a new batch of
acknowledgments (possibly including more this time). Eventually
the generals will go through enough rounds that general A will
receive an acknowledgment.

709

5. General A sends a batch of messages as before. If general B
receives any messages, he calculates PAB and then sends a batch of
10 acknowledgments that say, “PAB = <calculated value>. This is
acknowledgment 1 of 10. I agree to attack at dawn.”
If general A receives any acknowledgments, he calculates PBA. The
content of the acknowledgments tells him PAB. He uses PAB to
decide how many messages to send to get a desired level of
certainty, and he sends messages saying, “PBA = <calculated value>.
Acknowledgment received.”
After the first batch of messages, if general A doesn't receive any
acknowledgments (when he sent them, he didn't know PAB, so he
didn't know how many to send), he assumes general B didn't receive
any. So he sends another, larger batch.
Similarly, if general B doesn't receive a reply to the
acknowledgments (when he sent them, he didn't know PBA, so he
didn't know how many to send), he assumes general A didn't
receive any. So he sends another, larger batch.
Eventually general A will send enough messages for general B to
receive some and calculate PAB. After that, general B will
eventually send enough acknowledgments for general A to receive
some and calculate PBA. Finally, general A will eventually send
enough replies to give general B the value PBA, and both generals
will know both probabilities.
6. That would work in the situation shown on the right of Figure
18.2.
In the situation shown on the left of Figure 18.2, however, each
lieutenant makes a decision. In some sense it doesn't matter what
each does, because the general is a traitor, and there's no rule that
they need to obey a traitorous general. However, there is a rule that
two loyal lieutenants must decide on the same action, and in this
case they don't.
7. That would work in both of the situations shown in Figure 18.2.
In both situations, the lieutenants receive conflicting instructions, so
they both retreat.
However, suppose the general is loyal (as in the situation on the
right of Figure 18.2). The general orders an attack, and the
traitorous lieutenant on the right lies about it. In that case, the

710

lieutenant on the left receives conflicting orders, so he retreats,
violating the general's orders.
8. No, there isn't enough information for the loyal lieutenants to
identify the traitor. For example, consider two scenarios. First,
suppose the general is a traitor who tells the first lieutenant to attack
and the other lieutenants to retreat. After the lieutenants exchange
information, they believe they were all told to retreat, except for the
first lieutenant.
For the second scenario, suppose the first lieutenant is a traitor. The
general tells all the lieutenants to retreat, but the traitor tells the
others that the general told him to attack.
The lieutenants receive the same information in both scenarios, so
they cannot tell whether the traitor is the general or the first
lieutenant.
These two scenarios hold no matter how many lieutenants there are,
so there is no way to identify the traitor.
(The traitor could also simply act as if he is loyal and not give
conflicting orders. Then there is no way to detect him, although he
won't cause any harm that way either.)
9. Suppose the general tells two lieutenants to attack and two to
retreat. After exchanging orders, the lieutenants all believe two
attack orders and two retreat orders were given. A single traitor
lieutenant could not create that set of orders, so the traitor must be
the general.
If this occurs, the lieutenants don't need to obey the traitor, but they
still need to agree on a common decision. They can do that with a
predefined rule that says, “If the commanding general is a traitor,
retreat.”
10. The dining philosophers problem assumes that the philosophers
cannot talk to each other. If you let them talk, they can elect a leader
who can act as a waiter.
11. A bully algorithm would let a philosopher remove a fork from a
philosopher who has a lower ID. That would help if the
philosophers don't eat too often. But if they eat a large percentage of
the time, this might lead to a livelock in which philosophers with
lower IDs don't get to eat very often.

711

12. If the philosophers want to eat too often, they probably will
waste a lot of time waiting for forks. A waiter who allows all
odd-numbered philosophers to eat at the same time and then allows
all even-numbered philosophers to eat at the same time would be
much more efficient than a free-for-all.
13. Suppose DAB and DBA are the delays for sending a message
from A to B and B to A, respectively, and consider the equations
the algorithm uses to calculate the clock error:

Now, if you subtract the second equation from the first, you get this:

In the previous analysis where DAB = DBA, those two terms cancel.
If you leave the terms in the equation and solve for E, you get this:

The error in E due to the difference between DBA and DAB is half of
their difference. In the worst case, where one of these is close to 0
and the other is close to the total roundtrip delay D, the error is D ÷
2.
After running the clock algorithm, TB = TA ± D ÷ 2.
14. There really isn't any difference between the network speed's
changing and it taking a different amount of time for a message to
go from A to B or from B to A. In either case, all that matters is that
the values DBA and DAB from the answer to Exercise 13 are
different. That answer shows that after the clock algorithm runs, TB
= TA ± D ÷ 2, where D is the total delay.
15. The answer to Exercise 14 shows that the error in process B's
new time is determined by the total roundtrip message delay D. If
the network's speed varies widely, sometimes D will be short, and
sometimes D will be long. To get a better result, perform the

712

algorithm several times, and adjust the time according to the trial
with the smallest value for D.

Chapter 19: Interview
Puzzles

1. If he brings three socks into the living room, they can't all three
be different colors, so at least two will be either brown or black.
This problem is simple if you have seen a similar problem before,
so it doesn't really test the reasoning ability of anyone who has seen
something similar. It's also easy if you write down some possible
combinations. Overall it's not too bad a question, but it doesn't
really tell the interviewer much.
2. If you put all the marbles in one bowl, or put half of each color in
each bowl, you have a 50% chance of picking a white marble, so
that's a quick lower bound for the possible probability. Similarly if
you put all of the white marbles in one bowl and all of the black
marbles in the other bowl, you have a 50% chance of picking a
white marble.
A better solution is to put a single white marble in one bowl and all
the other marbles in the other bowl. When you pick a marble, there
is a 50% chance that you'll get lucky and pick the bowl that holds
the single white marble. If you're unlucky and pick the other bowl,
there's still a 9 in 19 chance that you'll get lucky and pick a white
marble. Your total odds are as follows:

This problem involves a little probability but is mostly a clever
trick. It would be easier, quicker, and potentially less frustrating to
ask the candidate how much he or she knows about probability.
3. At first this seems like a probability or counting question, but it's
actually a trick question. There aren't enough red marbles to place
one between each pair of blue marbles, so it would be impossible to
do so.

713

This problem is easy if you get the trick, but if you don't, you may
waste a lot of time on it. In either case, the interviewer doesn't learn
much about the candidate.
4. This is really a counting question. You can find the probability by
dividing the number of “good” arrangements by the number of total
arrangements.
First, notice that you don't need to consider arrangements in which
you swap marbles of the same color. All red marbles are the same,
and all blue marbles are the same.
Next, to simplify the procedure, assume you have straightened out
the circle of marbles so that you have a row of 12 slots where a
marble can be positioned. Now place a blue marble in the first slot.
Positioning the other 11 marbles in the remaining 11 slots is
equivalent to positioning the original 12 marbles in 12 slots
arranged in a circle. This situation is easier to handle because you
don't need to worry about the effects of the arrangement wrapping
around the circle so that the first marble is adjacent to the last
marble. Now a blue marble separates the first and last red marbles.
Now you can think of the problem as having 11 slots where you
will place the remaining 11 marbles. If you pick slots for the four
red marbles, the blue ones will fill in the remaining empty slots. If
you think of it this way, the number of possible arrangements is as
follows:

To see how many “good” arrangements are possible, start by
placing the four red marbles in a row. To ensure that no two red
marbles are adjacent, you must put three of the seven remaining
blue marbles between each pair of red marbles.
At this point, four blue marbles are left, and they can go anywhere.
If you think of the red marbles as defining walls, the remaining blue
marbles must go between the walls. (It doesn't matter how the
marbles between the walls are ordered, because you can't tell the
blue marbles apart.)

714

One way to think about this is to imagine eight slots where you will
put either a blue marble or a wall. Now you can pick slots for the
walls and fill in the remaining slots with blue marbles. The number
of ways you can do that is as follows:

The number of “good” arrangements is 70, and the total number of
possible arrangements is 330, so the odds that a random
arrangement is “good” are 70 ÷ 330 = 7/33 ≈ 21%.
This problem is pretty interesting, but it's quite difficult. This kind
of problem is fairly common in probability and statistics courses, so
a candidate who has taken such a course will probably know the
basic approach. Even then it would be a tough calculation, and if the
candidate hasn't taken that kind of course, this problem will be
extremely hard.
All that the interviewer will really learn from this question is
whether the candidate has seen a problem like this before or has
taken such a course.
5. The most obvious approach is to use a linked list. You could also
do this in an array with a For loop. You get bonus points if you
mention both methods and say that the better method depends on
how the list is already stored for use in performing other operations.
This is actually a relevant question! You may never need to reverse
a list of customers in this way, but answering this question shows
that you know about at least one type of data structure. Mentioning
both the linked list and array solutions shows you know about at
least two data structures and that you can look for more solutions
even after you find one.
6. This problem has a couple good approaches. For the algebraic
approach, let M be my current age, and let B be my brother's current
age. Then:

715

Plugging the first equation into the second gives you this:

Rearranging and solving for B gives you this:

Inserting this value into the first equation gives M = 3 × 2 = 6, so I
am 6 right now.
A second approach is to make a table similar to the following,
starting with a guess of age 30 for yourself:

After filling in the first row, you compare the last two columns. In
this case, My Age + 2 is too big, so you guess again with smaller
ages:

In the second row, the difference between the last two columns is
closer but still is too big, so you guess again with even smaller ages:

In this example, the third row finds the solution. (If you overshoot
and My Age + 2 turns out too small, try larger ages.)
This problem is almost worth asking because it lets you see whether
the candidate is more comfortable using algebra or a table. I'm not
sure how useful that information will be, though. Many problems

716

like this one are more involved, so a table won't work well, but just
because the candidate used a table doesn't mean he or she can't use
algebra if it's required.
If you use a problem like this, it's probably best to ask the candidate
why he or she chose a particular approach and what other
approaches might also work.
7. This problem is somewhat relevant for programmers because it
involves a “fencepost problem.” Suppose you're building a fence
with rails between posts. There will be one more post than rails,
because you need a post on each end of the fence. A fencepost
problem (or off-by-1 problem) occurs when a programmer
accidentally counts some object one too many times or one too few
times.
For this problem, the minute hand passes the hour hand a bit after
1:05, a bit longer after 2:10, and so on up to some time after 10:50.
The next time the hands meet after 11:00 is 12:00 midnight. That
means the hands cross between 1:00 and 2:00, between 2:00 and
3:00, and so on up to a time between 10:00 and 11:00. (At this
point, perhaps you can see the fencepost problem.)
If you only count times strictly between noon and midnight, the
hands cross 10 times. If you also count the times they cross at noon
and midnight, the hands cross 12 times.
How the candidate approaches this question may tell you a bit about
how methodical he or she is, but that may be all it tells you. At least
a careful candidate can come up with some solution either right or
wrong without knowing a sneaky trick.
8. (Microsoft has used this question in interviews.) The following
paragraphs describe three ways to look at this problem:

a. A short, off-the-cuff answer is “50%, because boys and girls
are equally likely, so in any given population of children, 50%
are girls.” That's a good “big picture” answer, but it's not
necessarily very intuitive, so the interviewer might ask you to
prove it. (That answer actually does prove it, but digging in at
this point will probably just annoy the interviewer.)
b. Another slightly more intuitive way to look at this problem
is to consider first children, second children, third children, and
so on. All the couples have at least one child. Half of those are

717

boys, and half are girls, so the population of first children is
half boys and half girls.
The couples whose first child is a girl have a second child. Of
those children, half are boys and half are girls, so the
population of second children is half boys and half girls.
The couples whose first and second children are girls have a
third child. Of those children, half are boys and half are girls,
so the population of third children is half boys and half girls.
At this point it should be clear that each cohort is half boys and
half girls, so the population as a whole must be half boys and
half girls.
c. For a third way to look at the problem, consider a couple's
first child. There's a 50% chance it is a boy, and they stop
having children, but there's a 50% chance that they have a girl.
After one child, their expected number of children is 0.5 boys
and 0.5 girls.
If the couple's first child is a girl, they have a second child.
Again, there's a 50% chance of a girl and a 50% chance of a
boy. The expected contribution to the family of this child is the
chance of having a second child in the first place (0.5) times the
chance of having a boy or a girl. That adds another 0.5 × 0.5 =
0.25 expected boys and 0.5 × 0.5 = 0.25 expected girls to the
family, making a total expected 0.75 boys and 0.75 girls.
Hopefully at this point you can see a pattern.
In general, to have an Nth child, the couple must previously
have had N – 1 girls in a row. The chance of that happening is
1/2N–1.
Assuming they did have N – 1 girls in a row, there is a 50%
chance that the next child is a boy and a 50% chance that the
next child is a girl. Therefore, the expected contribution to the
family of the Nth child is 0.5 × 1/2N–1 = 1/2N boys and 0.5 ×
1/2N = 1/2N girls.
If you add up the expected number of children through child N,
you get the following:
Boys: 1/2 + 1/22 + 1/23 + … + 1/2N

Girls: 1/2 + 1/22 + 1/23 + … + 1/2N

718

These values are the same. Each couple has the same expected
number of boys and girls, and so does the population as a
whole.
If you take the limits of these sums as N goes to infinity, these
equations also show that the expected number of children for
each family is one boy and one girl.

This is an interesting problem, but it's fairly easy if you've seen it
before and rather tricky if you haven't. (In the real world, the
chances of having a boy or girl are not exactly 50% and even
depend on the ages of the parents. For more information, see the
Psychology Today article “Why Are Older Parents More Likely to
Have Daughters” at
http://www.psychologytoday.com/blog/
the-scientific-fundamentalist/201104/
why-are-older-parents-more-likely-have-daughters.)
9. Don't make the interviewer mad by pointing out that this is an
unrealistic situation. The question basically asks you to cut the brick
into pieces so that you can make combinations that add up to 1/7th,
2/7ths, 3/7ths, 4/7ths, 5/7ths, 6/7ths or the whole brick.
Clearly you could cut the brick into seven pieces and hand out one
for each day worked.
There are several ways you can arrive at the best solution. In one
approach, you consider how you can pay the contractor after each
possible ending day.
If the job ends after one day, you must give the contractor 1/7th of
the brick, so clearly you need a piece that is 1/7th of the brick.
If the job ends after two days, you must give the contractor 2/7ths of
the brick. You could give him another 1/7th piece, but that won't
give you any extra flexibility later. A better solution is to give him a
piece that is 2/7ths of the brick and keep the 1/7th piece.
Because you have the 1/7th piece in reserve, you can use it and the
2/7ths piece to pay the contractor if the job ends after three days. If
you had used two 1/7th pieces to pay the contractor after two days,
this solution wouldn't work. You would need a third 1/7th piece so
you would need to have three pieces instead of just two.
If you remove two pieces from the brick that are 1/7th and 2/7ths of
the whole brick, the remaining brick contains 4/7th of the brick. If

719

http://www.psychologytoday.com/blog/the-scientific-fundamentalist/201104/why-are-older-parents-more-likely-have-daughters
http://www.psychologytoday.com/blog/the-scientific-fundamentalist/201104/why-are-older-parents-more-likely-have-daughters
http://www.psychologytoday.com/blog/the-scientific-fundamentalist/201104/why-are-older-parents-more-likely-have-daughters

the job ends after four days, you can give the contractor that piece
and keep the others.
If the job ends after five days, you can give the contractor the 4/7ths
piece and the 1/7th piece.
If the job ends after six days, you can give the contractor the 4/7ths
piece and the 2/7ths piece.
Finally if the job ends after seven days, you can give the contractor
all the pieces.
When a problem involves magic numbers such as powers of 2 or 1
less than a power of 2, you should think about binary. In this
example, the three pieces of the brick represent 1, 2, and 4 sevenths
of the brick. The numbers 1 through 7, which are 001, 010, 011,
100, 101, 110, and 111 in binary, tell you which pieces of the brick
to give to the contractor on each day. A 1 means you should give
the contractor the corresponding piece, and a 0 means you should
keep that piece.
For example, 6 is 110 in binary. That means on day 6 you give the
contractor the 4/7ths piece (for the initial 1) and the 2/7ths piece
(for the second 1) but not the 1/7th piece (for the final 0). The total
payment on that day is 4/7 + 2/7 = 6/7.
This problem is easy if you've seen it before and can be confusing if
you haven't, although you probably can come up with a solution if
you work through it starting from day 1. Being aware of magic
numbers can help.
10. This is one of a large family of pan balance puzzles. Whenever
you have a tool such as a pan balance that divides a collection of
objects into sets, you should think about a subdivision approach. If
you can divide a set of objects into two groups and eliminate one
group from consideration at each step, you can use a binary
subdivision approach to find whatever you're looking for.
In this problem, that doesn't quite work. If you put four eggs on
each side of the balance, you can eliminate half of the eggs from
consideration in one weighing. Then you can place the remaining
four eggs, two on each side of the balance, and eliminate two more
from consideration. At that point, you're still left with two eggs, and
you've used up your two weighings.

720

The key to this problem is noticing that the balance doesn't define
only two sets containing eggs in the left pan and eggs in the right
pan. It also defines a third set containing eggs that are not in either
pan. Instead of using binary division to divide the eggs into two
groups and eliminating one, you can use ternary division to divide
the eggs into three groups and eliminate two.
Suppose you have only three eggs. You could put one in the left
pan, one in the right, and omit one. If the two pans balance, you
know the third egg is gold-plated. If the two pans don't balance, you
know the egg in the lighter pan is the gold-plated egg.
That explains how you perform the second weighing to finalize
your choice. You still need to figure out how to use the first
weighing to reduce the number of remaining eggs to three (or
fewer).
The balance lets you eliminate two of the three groups. After one
weighing, the set of eggs still under consideration must include only
three eggs. That means the groups you weigh in the first weighing
should contain three eggs each.
Here's the final solution:

1. Place three eggs in the left pan, three in the right, and omit
two.
2. If the pans balance:

a. The gold-plated egg is one of the two eggs that were not
weighed the first time. Place one of them in each pan.
b. The lighter pan contains the gold-plated egg.

3. If the pans don't balance:
a. Exclude the eggs in the heavier pan and the eggs that
were not weighed the first time.
b. From the remaining three eggs, place one egg in the left
pan and one egg in the right.
c. If the pans balance, the egg that has not been weighed is
gold-plated.
d. If the pans don't balance, the lighter pan contains the
gold-plated egg.

(Note that, if the pans balance in the first weighing, you have
narrowed the number of possibilities to two eggs. The second
weighing can find the gold-plated egg in a set of three eggs, so it

721

would work even if you had only narrowed the possibilities to three
eggs. That means you can use the same technique even if you start
with nine eggs instead of eight.)
This is an interesting problem, but it requires you to know the trick:
You can use a pan balance to divide objects into three
groups—those in the left pan, those in the right pan, and those that
are not in any pan. If you have seen this kind of puzzle before, it's
fairly easy.
11. Number the bottles 1 through 5. Then place on the scale one pill
from bottle 1, two pills from bottle 2, and so on. If all the pills
weighed 1 gram, the total weight would be 1 + 2 + 3 + 4 + 5 = 15.
Subtract the actual weight from 15 and divide by 0.1, the difference
in weight between a real pill and a placebo. That tells you how
many placebos are on the scale, which tells you the number of the
bottle containing the placebos.
The trick to this puzzle is obvious if you've seen a similar puzzle
before.

722

Glossary

2-node— In a 2-3 tree, a node that has two children.

3-node— In a 2-3 tree, a node that has three children.

adaptive quadrature— A technique in which a program detects areas
where its approximation method may produce large errors and then refines
its method in those areas.

adjacent— In a network, if two nodes are connected by a link, they are
adjacent.

adversary— In cryptography, a person trying to intercept and decipher a
message sent by a sender to a receiver.

algorithm— A recipe for getting something done.

ancestor— In a tree, a node's parent, its parent's parent, and so on to the
root node are the node's ancestors.

array— A chunk of contiguous memory that a program can access by
using indices—one index per dimension in the array.

associative array— See hash table.

asymptotic performance— The limit of an algorithm's performance as
the problem size grows very large.

attacker— In cryptography, a person trying to intercept and decipher a
message sent by a sender to a receiver.

augmenting path— A path through a residual capacity network that
improves a maximal flow solution.

AVL tree— A sorted binary tree in which the heights of two subtrees at
any given node differ by at most 1.

B-tree— A balanced tree in which internal nodes (called buckets) can
hold several values and corresponding branches.

B+tree— Similar to a B-tree, except that the tree's nodes store only key
values and pointers to the rest of each record's data instead of holding the
data itself.

723

backtracking— A recursive algorithm that considers partial solutions. If
it finds a partial solution that cannot be extended to a full solution, the
algorithm discards the partial solution, backtracks to the previous feasible
test solution, and continues searching from there.

balanced tree— A tree that rearranges its nodes as necessary to guarantee
that it doesn't become too tall and thin. That allows algorithms that travel
through the tree to run in O(log N) time.

Big Omega notation— An algorithm's big omega run time is Ω(g(N)) if
the function g(N) is a lower bound for the algorithm's runtime function.

Big O notation— An algorithm's big O run time is O(g(N)) if the function
g(N) is an upper bound for the algorithm's runtime function.

Big Theta notation— An algorithm's big theta run time is Θ(g(N)) if the
function g(N) is both a lower and upper bound for the algorithm's runtime
function.

binary search— A search strategy that repeatedly divides the search
space into two halves and then searches the half that contains the target
item.

binary tree— A tree with degree 2.

bipartite matching— The process of matching the nodes in one group of
a bipartite network with the nodes in the other group.

bipartite network— A network in which the nodes can be divided into
two groups, A and B, and every link connects a node in group A with a
node in group B.

block cipher— A cipher in which the plaintext is broken into blocks of
the same size, each block is encrypted, and the blocks are combined to
give the ciphertext.

bottom-up B-tree— A B-tree that performs bucket splits as recursive
calls end and move up toward the root.

branch— Connects a parent and child node in a tree.

branch and bound— A tree search algorithm in which the program
moves down a branch and then decides whether it is possible to improve
its current solution enough to be better than the best solution found so far.

724

If the current solution cannot improve on the best solution so far, the
algorithm stops exploring that part of the tree.

breadth-first traversal— In a tree or network, a traversal that visits all of
a node's children before visiting any other nodes. This makes the traversal
visit nodes close to the starting node before visiting nodes farther away.

bucket— A data structure used to hold items that are mapped into it. In a
hash table, a bucket might be a linked list holding all the items mapped to
the bucket. In a B-tree, a bucket is an internal node that can hold several
values and corresponding branches.

byzantine generals problem— A problem in which a set of generals,
some of whom may be traitors, must reach a consensus on some action.
Each loyal general has a piece of information, and the loyal generals must
learn the values of the other loyal generals.

Caesar substitution cipher— A substitution cipher in which each letter
in the message is shifted by some amount.

capacitated network— A network in which the links have maximum
capacities.

capacity— In a network, the maximum amount of something that can
move through a node or link, such as the maximum current that can flow
through a wire in an electric network or the maximum number of cars that
can move through a link in a street network per unit of time.

cell— An object that makes up a linked list. A cell contains data and a link
to the next cell in the list.

child— A child node is connected to its parent in the tree. Normally a
child is drawn below its parent.

cipher— A pair of algorithms used to encrypt and decrypt messages.

ciphertext— In cryptography, a message that has been encrypted to be
sent securely.

circular array— An array used to hold a queue in which you treat the last
item as if it comes immediately before the first item.

circular linked list— A linked list in which the last link points back to
the first item in the list.

725

cluster computing— Distributed computing that uses a collection of
closely related computers, often on an intranet or special-purpose network.

collision— In a hash table, a collision occurs when you map a value to a
position that is already occupied in the hash table.

collision-resolution policy— When a collision occurs in a hash table, a
collision-resolution policy determines how the hash table handles the new
value.

combination— See selection.

complete tree— A tree in which every level is completely full, except
possibly the bottom level, where all the nodes are pushed as far to the left
as possible.

complexity theory— See computational complexity theory.

composite number— A natural number greater than 1 that is not prime.

computational complexity theory— The related study of the difficulty of
computational problems, focusing on the problems themselves rather than
on specific algorithms.

connected— In an undirected network, nodes A and B are connected if
node B is reachable from node A. An undirected network is connected if
every node is reachable from every other node.

connected component— In a network, a set of nodes that are mutually
connected.

connectivity matrix— A matrix that represents the connections between
nodes in a network.

consensus problem— In distributed computing, a problem in which a
number of processes must agree on a data value even if some of the
processes fail.

coprime— See relatively prime.

cost— In a network, a link may have an associated cost. Less commonly,
a node may have a cost.

726

cryptanalysis— The study of methods attackers use to break an
encryption system.

cryptography— The study of methods for encrypting and decrypting
messages so that a sender can transmit them securely to a receiver without
an attacker's recovering the original message.

cycle— In a network, a path that returns to its starting point.

cycle detection— The process of determining whether a network contains
a cycle.

data parallelism— A form of parallel processing in which emphasis is
placed on distributing data among processors that execute the same or
similar programs.

data structure— A way of arranging data to make solving a particular
problem easier.

deadlock— In distributed computing, when two processes block each
other while each waits for a mutex held by the other.

decipher— See decrypt.

decision tree— A tree that lets you model a problem as a series of
decisions that leads to a solution.

decrypt— In cryptography, to convert a ciphertext message back into
plaintext.

degree— For a node in a tree, the number of children the node has. For a
tree, the maximum degree of any of its nodes. For a node in a network or
graph, the number of links leaving the node.

depth— For a tree node, the node's level.

depth-first traversal— In a tree or network, a traversal that visits some
nodes far from the starting point before visiting all the nodes closest to the
starting point.

deque— Pronounced “deck.” A queue that allows you to add items to and
remove items from either end of the queue.

727

descendant— In a tree, a node's children, their children, and so on are the
node's descendants.

deterministic finite automaton (DFA)— A virtual computer that uses a
set of states to keep track of what it is doing. At each step, it reads some
input. Based on the input and its current state, the computer moves into a
new state. One state is the initial state where the machine starts. One or
more states can be marked as accepting states.

deterministic finite state machine— See deterministic finite automaton.

DFA— See deterministic finite automaton.

dictionary— A hash table maps a key to a value, so hash tables are
sometimes called dictionaries.

dining philosophers problem— A problem in which N philosophers sit
at a table with a fork between each pair. To eat, a philosopher must
acquire both adjacent forks without talking to his neighbors.

directed— In a network, a link is directed if you can traverse it in only
one direction. A network is directed if it contains only directed links.

direct recursion— Occurs when a method calls itself directly.

distributed computing— Multiple computers working together over a
network to perform a task.

edge— See link.

edit distance— For two strings, the number of changes you need to make
to turn the first into the second.

eight queens problem— Positioning eight queens on a chessboard so that
none of the queens can attack any of the others.

embarrassingly parallel— When an algorithm naturally breaks into
parallelizable pieces that require minimal communication.

encipher— See encrypt.

encrypt— In cryptography, to convert a plaintext message into ciphertext.

Euclidian algorithm— See Euclid's algorithm.

728

Euclid's algorithm— An algorithm for quickly finding the GCD of two
numbers.

exhaustive search— Searching all possible items to find a target item.
Searching every possible solution to find the best one.

external node— In a tree, a leaf node.

external sorting— Sorting data that cannot fit in memory. Data can be
sorted on disk files or tape drives.

factorial— The factorial of a number n, written n! and pronounced “n
factorial,” equals n × (n – 1) × (n – 2) × … × 1.

fair— A pseudorandom number generator is fair if it produces all its
possible outputs with the same probability. A PRNG that is not fair is
called biased.

Fermat liar— If p is not prime and the value n with 1 ≤ n ≤ p satisfies the
equation np–1 Mod p = 1, n is called a Fermat liar because it incorrectly
implies that p is prime.

Fermat witness— If p and n are natural numbers where 1 ≤ n ≤ p and np–1

Mod p ∙ 1, n is called a Fermat witness because it proves that p is not
prime.

Fibonacci numbers— The Fibonacci numbers are defined by
Fibonacci(0) = 0, Fibonacci(1) = 1, and Fibonacci(n) = Fibonacci(n – 1) +
Fibonacci(n – 2) for n > 1.

FIFO— See queue.

FIFO list— See queue.

fill percentage— For a hash table, the percentage of the data structure
that is filled. Hash tables with high fill percentages may result in reduced
performance.

first common ancestor— For any two nodes, the node that is the ancestor
of both nodes that is closest to the nodes.

flops— Also spelled FLOPS. Floating-point operations per second.
Calculation speeds are sometimes measured in megaflops, gigaflops,
teraflops (one trillion flops), or petaflops (1,000 teraflops).

729

Floyd's cycle-finding algorithm— See tortoise-and-hare algorithm.

Ford-Fulkerson algorithm— An algorithm for calculating maximal
flows in a network.

four-coloring theorem— A theorem that states that any map can be
colored with at most four colors.

full tree— A tree in which every node has either zero children or as many
children as the tree's degree.

gasket— A type of self-similar fractal in which you start with a geometric
shape such as a square or triangle, divide the shape into smaller similar
shapes, and then recursively fill some, but not all, of the smaller shapes.

GCD— See greatest common divisor.

general and lieutenants problem— A problem in which a general gives
an order to his lieutenants, but the general or some lieutenants might be
traitors. The goal is for the loyal lieutenants to decide on a common
action. If the general is not a traitor, that action must be the one the
general ordered.

generator— In one type of self-similar fractal curve, an initiator sets the
fractal's basic shape. At each level of recursion, some or all of the initiator
is replaced with a generator curve.

graph— A network.

greatest common divisor (GCD)— The largest integer that divides two
integers evenly.

grid computing— Distributed computing that uses a collection of loosely
related computers that may communicate over a public network. A grid
may include different kinds of computers running different operating
systems.

hashing— The process of mapping a key to a location in a hash table.

hash table— A data structure and algorithms that map data to locations in
the data structure.

heap— A complete binary tree in which every node holds a value that is
at least as large as the values in all its children.

730

height— For a node in a tree, the length of the longest path from the node
downward through the tree to a leaf node. For a tree, this is the same as
the root's height.

heuristic— An algorithm that often produces a good result but that is not
guaranteed to produce the best possible result.

Hilbert curve— A space-filling fractal curve created by starting with an
initiator curve and then recursively replacing pieces of the initiator with a
suitably scaled, rotated, and translated generator curve.

hill climbing— A heuristic strategy that at each step takes the action that
moves the algorithm closest to the best possible solution. This is similar to
a hiker trying to find the top of a mountain at night by always moving
uphill.

in-degree— In a directed network, the number of links entering a node.

indirect recursion— Occurs when a method calls itself indirectly by
calling another method that then calls the first method.

initiator— A curve that sets the basic shape for one type of fractal. At
each level of recursion, some or all of the initiator is replaced with a
generator curve.

inorder traversal— In a tree or network, a traversal that visits a node's
left child, and then the node, and then the node's right child.

internal node— A tree node that has at least one child.

key— In cryptography, a piece of information that allows the recipient of
an encrypted message to decode the message. In modern cryptography, it
is assumed that the attacker knows the encryption method, so an attacker
who has the key can also decrypt the message.

knight's tour problem— A knight visits every position on a chessboard
without visiting any square twice. In a closed tour, the final position is one
move away from the starting position. A tour that is not closed is open.

Koch curve— A self-similar fractal created by starting with an initiator
curve and then recursively replacing pieces of the initiator with a suitably
scaled, rotated, and translated generator curve.

leaf node— A tree node with no children.

731

least common ancestor— See first common ancestor.

level— A tree node's level is the distance between it and the root node.

LIFO— See stack.

LIFO list— See stack.

linear array— A one-dimensional array.

linear congruential generator— A pseudorandom number generator that
uses a simple recurrence relation to generate numbers.

linear probing— A technique used to build a hash table in which the
collision-resolution policy adds a constant number, usually 1, to each
location that is already occupied to generate a probe sequence.

linear search— To search linearly through a linear array or other linear
data structure for a value.

link— A reference or pointer from one linked list cell to another, or from
one node to another in a tree or network.

linked list— A list built of cells connected by one or more links.

livelock— In distributed processing, a situation similar to a deadlock in
which processes are not blocked but still cannot get any work done
because of how they try to get access to resources.

loop— In a network, a cycle.

minimal spanning tree— A spanning tree that has the least possible total
cost in the network.

Monte Carlo integration— A numeric integration technique in which a
program picks a large number of pseudorandom points and uses the
fraction of those that lie within a shape to estimate the shape's area.

Monte Carlo simulation— A probabilistic technique in which the
program picks pseudorandom values and determines what percentage
satisfies some criterion to estimate the total number of values that satisfy
the criterion.

732

Moore's Law— The trend noticed by Gordon E. Moore in 1965 that the
number of transistors on integrated circuits doubles roughly every two
years.

multiple recursion— Occurs when a method calls itself more than once.

mutex— A method of ensuring that only one process can perform an
operation at a time. (The name comes from “mutual exclusion”.)

natural number— An integer greater than 0.

Newton-Cotes formulas— A numeric integration technique that uses
polynomials to approximate a curve to find the area beneath it.

Newton-Raphson method— See Newton's method.

Newton's method— A method of finding the roots of a function.

NFA— See nondeterministic finite automaton.

node— An object that holds data in a tree or network. Nodes are
connected by branches in trees, or links or edges in networks and graphs.

node merge— The process of merging two nodes when rebalancing a 2-3
tree.

node split— The process of splitting a node into two nodes when adding a
new value to a balanced tree.

nondeterministic finite automaton (NFA)— Similar to a DFA, except
that multiple links may leave a state for the same input. You can think of
an NFA as simultaneously being in every possible state for its inputs.

NP— The set of problems that can be solved by a nondeterministic
computer in polynomial time.

NP-complete— A problem is NP-complete if every problem in NP can be
reduced to it in polynomial time.

numeric integration— The process of approximating the area under a
curve numerically when you can't use the curve's antiderivative and
calculus to calculate the area exactly.

numeric quadrature— See numeric integration.

733

octtree— A tree data structure used to locate objects in three-dimensional
space.

one-time pad cipher— A cipher in which each letter in the message is
combined with the corresponding letter in a pad of random letters or
offsets. This is similar to a Vigenère cipher, in which the key length is the
same as the message.

open addressing— A method for building hash tables in which keys are
mapped into entries in an array. Different versions of open addressing use
different hashing functions and collision-resolution policies.

optimization problem— A problem that asks you to find the optimal
solution to a particular problem. Optimization problems often have
approximate solutions.

order— In a B-tree of order K, the internal nodes hold between K and 2 ×
K values and have between K + 1 and 2 × K + 1 branches.

ordered tree— A tree in which the ordering of each node's children
matters.

out-degree— In a directed network, the number of links leaving a node.

P— The set of problems that can be solved by a deterministic computer in
polynomial time.

parent node— A node in a tree that has child nodes connected to it by
branches. In a tree, every node except the root has exactly one parent.

partial ordering— A set of dependencies that defines an ordering
relationship for some but not necessarily all the objects in a set.

path— In a network, an alternating series of nodes and links that leads
from one node to another. If there is only one link from any node to an
adjacent node, you can specify a path by listing the nodes or links it
includes.

perfect tree— A full tree in which all the leaves are at the same level.

permutation— An ordered subset of items taken from a set.

plaintext— In cryptography, the message to be sent securely.

734

planar— A network is planar if you can draw it on a plane with none of
the links intersecting.

polynomial run time— An algorithm has polynomial run time if its run
time involves any polynomial involving N. O(N), O(N2), O(N6), and even
O(N4000) are all polynomial run times.

postorder traversal— In a tree or network, a traversal that visits a node's
left child, and then its right child, and then the node.

prefix tree— See trie.

preorder traversal— In a tree or network, a traversal that visits a node,
and then its left child, and then its right child.

primary clustering— In a hash table that uses open addressing, an effect
in which values that map to a cluster of entries end up extending the
cluster to form long blocks of occupied entries. That increases average
probe sequence length.

prime number— A natural number greater than 1 whose only factors are
1 and itself.

PRNG— See pseudorandom number generator.

probabilistic algorithm— An algorithm that produces a correct result
with a certain probability.

probe sequence— The sequence of locations that an open addressing
hash table algorithm tries for a value.

pseudorandom number generator (PRNG)— A number generator that
uses calculations to produce numbers that seem random but that are
predictable.

public-key encryption— An encryption method that uses two keys—a
private key and a public key. The sender uses the public key to encrypt
messages, and the receiver uses the private key to decrypt them.

pushdown stack— See stack.

quadrature— See numeric integration.

735

quadtree— A tree data structure that helps locate objects in
two-dimensional space.

quantum computer— A computer that uses quantum effects such as
entanglement and superposition to manipulate data.

queue— A data structure in which items are added and removed in
first-in-first-out order.

race condition— A situation in distributed processing, particularly when
a single computer has multiple CPUs, in which two processes try to write
to a resource at almost the same time, and the process that writes to the
resource second wins.

random solution search— A heuristic for finding a solution to a problem
by randomly searching its decision tree.

reachable node— In a network, node B is reachable from node A if there
is a path from node A to node B.

receiver— In cryptography, the person trying to receive a message sent
by a sender.

rectangle rule— A numeric integration technique that uses rectangles to
approximate the area below a curve.

recursion— Occurs when a method calls itself either directly or
indirectly.

regular expression— A pattern for matching the characters in a string.

relatively prime— Two integers are relatively prime if their greatest
common divisor is 1.

residual capacity— The extra flow you could add to the link in a
capacitated network.

residual capacity network— A network consisting of links and backlinks
marked with their residual capacities.

root— For an equation y = f(x), the equation's roots are the values of x for
which f(x) = 0.

root node— The unique node at the top of the tree that has no parent.

736

root split— When a series of node splits cascades up a balanced tree until
the root node is split.

secondary clustering— In a hash table that uses open addressing with
quadratic probing, an effect in which values that map to the same address
follow the same probe sequence and produce a long probe sequence.

selection— An unordered subset of a set of objects.

self-similar fractal— A curve in which pieces of the curve resemble the
curve as a whole.

sender— In cryptography, the person trying to securely send a message to
a receiver.

sentinel— A cell that is part of the linked list but that doesn't contain any
meaningful data placed at either end of the list. It is used only as a
placeholder so that algorithms can refer to a cell before the first cell or
after the last cell.

shortest-path tree— A spanning tree that gives shortest paths from its
root node to every other node in the network.

sibling nodes— Two nodes in a tree that have the same parent are
siblings.

Sierpi ski Curve— A space-filling fractal curve created by starting with
an initiator curve and then recursively replacing pieces of the initiator with
a suitably scaled, rotated, and translated generator curve.

Simpson's rule— A numeric integration technique that uses polynomials
of degree 2 to approximate the area below a curve.

simulated annealing— A solution improvement heuristic that initially
makes large changes to a solution and then over time makes smaller and
smaller changes to try to improve the solution.

single recursion— Occurs when a method calls itself exactly once.

sorted tree— A tree in which the nodes are arranged so that they are
processed in sorted order by a particular traversal, usually an inorder
traversal.

737

spanning tree— A tree consisting of a network's nodes and links that
connects every node in the network.

sparse array— An array data structure that contains very few entries that
don't have a default value.

stack— A data structure in which items are added and removed in
last-in-first-out order.

state transition diagram— A network representing a DFA's or FNA's
state transitions.

stride— In a hash table with open addressing and linear probing, the
stride is the value added to each location in a value's probe sequence.

strongly connected— A directed network is strongly connected if every
node is reachable from every other node.

substitution cipher— A cipher in which the letters in the plaintext are
replaced with other letters. Caesar substitution and the Vigenère cipher are
two examples.

subtree— A node and all its descendants in a tree form a subtree.

symmetrically threaded tree— A tree that contains threads forwards and
backwards through the tree's inorder traversal.

symmetric-key encryption— An encryption method that uses one key to
encrypt and decrypt messages. Both the sender and receiver must have the
key.

symmetric traversal— See inorder traversal.

systolic array— An array of data processing units (DPUs) called cells
that use data parallelism to provide parallel processing.

task parallelism— A form of parallel processing in which emphasis is
placed on distributing tasks among processors.

thread— A sequence of links that forms a path through a data structure
such as a tree or network.

threaded tree— A tree that contains one or more threads.

738

top-down B-tree— A B-tree that performs bucket splits whenever
possible as it moves down into the tree, looking for a location to place a
new value.

topological sorting— The process of extending a partial ordering to a full
ordering on a network.

tortoise-and-hare algorithm— An algorithm for detecting and removing
a loop from a linked list. (See the section “Tortoise and Hare” in Chapter
3.)

tower of Hanoi— A puzzle in which the goal is to move a stack of disks
from one peg to another by moving one disk at a time and never placing a
larger disk on a smaller one.

transposition cipher— A cipher in which the plaintext's letters are
rearranged in a specific way to create the ciphertext.

trapezoid rule— A numeric integration technique that uses trapezoids to
approximate the area below a curve.

traversal— To visit all the nodes in a tree or network in some order and
do something to them.

treesort— A sorting algorithm in which you first build a sorted tree and
then use an inorder traversal to produce the sorted items.

triangular array— A two-dimensional array in which the values above
the diagonal (where the item's column is greater than its row) have some
default value, such as 0, null, or blank.

trie— A tree in which nodes represent letters in strings, and the path from
the root to a node defines a prefix that all the strings below the node share.

TRNG— See true random-number generator.

true random-number generator (TRNG)— A number generator that
uses a source of true randomness, such as radioactive decay or
atmospheric noise, to produce truly unpredictable numbers.

Turing machine— A hypothetical computer that manipulates the symbols
on a strip of input tape according to a simple table of rules.

739

two generals problem— A problem in which two generals have armies
encamped just outside an enemy city, at opposite ends of town. Using
messengers that might be captured by the enemy, the generals must
coordinate an attack.

undirected— In a network, a link is undirected if you can traverse it in
either direction. A network is undirected if it contains only undirected
links.

vertex— See node.

Vigenère cipher— A substitution cipher in which each letter in the
message is shifted by an amount determined by a corresponding letter in
the key.

weakly connected— A directed network is weakly connected if every
node is reachable from every other node when you replace the directed
links with undirected links.

weight— In a network, cost.

work assignment problem— Given N people with certain skills and M
jobs that require someone with certain skills, the work assignment
problem is to find the best assignment of people to jobs to maximize the
number of jobs that can be performed.

740

741

Essential Algorithms: A Practical Approach to Computer Algorithms

Published by

John Wiley & Sons, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2013 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-61210-1

ISBN: 978-1-118-61276-7 (ebk)

ISBN: 978-1-118-79729-7 (ebk)

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 646-8600. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons,
Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/
permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the
author make no representations or warranties with respect to the accuracy
or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a
particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding
that the publisher is not engaged in rendering legal, accounting, or other

742

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions

professional services. If professional assistance is required, the services of
a competent professional person should be sought. Neither the publisher
nor the author shall be liable for damages arising herefrom. The fact that
an organization or Web site is referred to in this work as a citation and/or
a potential source of further information does not mean that the author or
the publisher endorses the information the organization or website may
provide or recommendations it may make. Further, readers should be
aware that Internet websites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services please contact
our Customer Care Department within the United States at (877)
762-2974, outside the United States at (317) 572-3993 or fax (317)
572-4002.

Wiley publishes in a variety of print and electronic formats and by
print-on-demand. Some material included with standard print versions of
this book may not be included in e-books or in print-on-demand. If this
book refers to media such as a CD or DVD that is not included in the
version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about
Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2013941603

Trademarks: Wiley and the Wiley logo are trademarks or registered
trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United
States and other countries, and may not be used without written
permission. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc. is not associated with any product or
vendor mentioned in this book.

743

http://booksupport.wiley.com
http://www.wiley.com

About the Author

Rod Stephens started out as a mathematician, but while studying at MIT,
he discovered how much fun algorithms are. He took every algorithms
course MIT offered and has been writing complex algorithms ever since.

During his career, Rod has worked on an eclectic assortment of
applications in such fields as telephone switching, billing, repair
dispatching, tax processing, wastewater treatment, concert ticket sales,
cartography, and training for professional football players.

Rod is a Microsoft Visual Basic Most Valuable Professional (MVP) and
has taught introductory programming at ITT Technical Institute. He has
written more than 2 dozen books that have been translated into languages
from all over the world. He has also written more than 250 magazine
articles covering C#, Visual Basic, Visual Basic for Applications, Delphi,
and Java.

Rod's popular VB Helper website (www.vb-helper.com) receives
several million hits per month and contains tips, tricks, and example
programs for Visual Basic programmers. His C# Helper website
(www.csharphelper.com) contains similar material for C#
programmers.

You can contact Rod at RodStephens@vb-helper.com or
RodStephens@csharphelper.com.

744

http://www.vb-helper.com
http://www.csharphelper.com
d:\control\pi\scripts\working\tmp\1118612760.epub\oebps\mailto:RodStephens@vb-helper.com
d:\control\pi\scripts\working\tmp\1118612760.epub\oebps\mailto:RodStephens@csharphelper.com

Credits
Executive Editor
Robert Elliott

Project Editor
Tom Dinse

Technical Editors
David Coleman
Jack Jianxiu Hao
George Kocur

Production Editor
Daniel Scribner

Copy Editor
Gayle Johnson

Editorial Manager
Mary Beth Wakefield

Freelancer Editorial Manager
Rosemarie Graham

Associate Director of Marketing
David Mayhew

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

745

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Neil Edde

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Katie Crocker

Proofreader
Josh Chase, Word One

Indexer
Robert Swanson

Cover Designer
Ryan Sneed

746

Acknowledgments

Thanks to Bob Elliott, Tom Dinse, Gayle Johnson, and Daniel Scribner for
all of their hard work in making this book possible. Thanks also to
technical editors George Kocur, Dave Colman, and Jack Jianxiu Hao for
helping ensure the information in this book is as accurate as possible.
(Any remaining mistakes are mine not theirs.)

747

Introduction

Algorithms are the recipes that make efficient programming possible.
They explain how to sort records, search for items, calculate numeric
values such as prime factors, find the shortest path between two points in a
street network, and determine the maximum flow of information possible
through a communications network. The difference between using a good
algorithm and a bad one can mean the difference between solving a
problem in seconds, hours, or never.

Studying algorithms lets you build a useful toolkit of methods for solving
specific problems. It lets you understand which algorithms are most
effective under different circumstances so that you can pick the one best
suited for a particular program. An algorithm that provides excellent
performance with one set of data may perform terribly with other data, so
it is important that you know how to pick the algorithm that is the best
match for your scenario.

Even more important, by studying algorithms you can learn general
problem-solving techniques that you can apply to other problems even if
none of the algorithms you already know is a perfect fit for your current
situation. These techniques let you look at new problems in different ways
so that you can create and analyze your own algorithms to solve your
problems and meet unanticipated needs.

In addition to helping you solve problems while on the job, these
techniques may even help you land the job where you can use them! Many
large technology companies, such as Microsoft, Google, Yahoo!, IBM,
and others, want their programmers to understand algorithms and the
related problem-solving techniques. Some of these companies are
notorious for making job applicants work through algorithmic
programming and logic puzzles during interviews.

The better interviewers don't necessarily expect you to solve every puzzle.
In fact, they will probably learn more when you don't solve a puzzle.
Rather than wanting to know the answer, the best interviewers want to see
how you approach an unfamiliar problem. They want to see whether you
throw up your hands and say the problem is unreasonable in a job
interview. Or perhaps you analyze the problem and come up with a
promising line of reasoning for using algorithmic approaches to attack the

748

problem. “Gosh, I don't know. Maybe I'd search the Internet,” would be a
bad answer. “It seems like a recursive divide-and-conquer approach might
work” would be a much better answer.

This book is an easy-to-read introduction to computer algorithms. It
describes a number of important classical algorithms and tells when each
is appropriate. It explains how to analyze algorithms to understand their
behavior. Most importantly, it teaches techniques that you can use to
create new algorithms on your own.

Here are some of the useful algorithms this book describes:
• Numerical algorithms such as randomization, factoring, working

with prime numbers, and numeric integration
• Methods for manipulating common data structures such as arrays,

linked lists, trees, and networks
• Using more-advanced data structures such as heaps, trees, balanced

trees, and B-trees
• Sorting and searching
• Network algorithms such as shortest path, spanning tree,

topological sorting, and flow calculations

Here are some of the general problem-solving techniques this book
explains:

• Brute-force or exhaustive search
• Divide and conquer
• Backtracking
• Recursion
• Branch and bound
• Greedy algorithms and hill climbing
• Least-cost algorithms
• Constricting bounds
• Heuristics

To help you master the algorithms, this book provides exercises that you
can use to explore ways you can modify the algorithms to apply them to
new situations. This also helps solidify the main techniques demonstrated
by the algorithms.

Finally, this book includes some tips for approaching algorithmic
questions that you might encounter in a job interview. Algorithmic

749

techniques let you solve many interview puzzles. Even if you can't use
algorithmic techniques to solve every puzzle, you will at least demonstrate
that you are familiar with approaches that you can use to solve other
problems.

Algorithm Selection
Each of the algorithms in this book was included for one or more of the
following reasons:

• The algorithm is useful, and a seasoned programmer should be
expected to understand how it works and use it in programs.

• The algorithm demonstrates important algorithmic programming
techniques you can apply to other problems.

• The algorithm is commonly studied by computer science students,
so the algorithm or the techniques it uses could appear in a
technical interview.

After reading this book and working through the exercises, you will have
a good foundation in algorithms and techniques you can use to solve your
own programming problems.

Who This Book Is For
This book is intended primarily for three kinds of readers: professional
programmers, programmers preparing for job interviews, and
programming students.

Professional programmers will find the algorithms and techniques
described in this book useful for solving problems they face on the job.
Even when you encounter a problem that isn't directly addressed by an
algorithm in this book, reading about these algorithms will give you new
perspectives from which to view problems so that you can find new
solutions.

750

Programmers preparing for job interviews can use this book to hone their
algorithmic skills. Your interviews may not include any of the problems
described in this book, but they may contain questions that are similar
enough that you can use the techniques you learned in this book to solve
them.

Programming students should be required to study algorithms. Many of
the approaches described in this book are simple, elegant, and powerful,
but they're not all obvious, so you won't necessarily stumble across them
on your own. Techniques such as recursion, divide and conquer, branch
and bound, and using well-known data structures are essential to anyone
who has an interest in programming.

Note
Personally, I think algorithms are just plain fun! They're my equivalent of crossword
puzzles or Sudoku. I love the feeling of putting together a complicated algorithm,
dumping some data into it, and seeing a beautiful three-dimensional image, a curve
matching a set of points, or some other elegant result appear!

Getting the Most Out of This
Book
You can learn some new algorithms and techniques just by reading this
book, but to really master the methods demonstrated by the algorithms,
you need to work with them. You need to implement them in some
programming language. You also need to experiment, modify the
algorithms, and try new variations on old problems. The book's exercises
and interview questions can give you ideas for new ways to use the
techniques demonstrated by the algorithms.

To get the greatest benefit from the book, I highly recommend that you
implement as many of the algorithms as possible in your favorite
programming language or even in more than one language to see how
different languages affect implementation issues. You should study the
exercises and at least write down outlines for solving them. Ideally you
should implement them, too. Often there's a reason why an exercise is

751

included, and you may not discover it until you take a hard look at the
problem.

Finally, look over some of the interview questions available on the
Internet, and figure out how you would approach them. In many
interviews you won't be required to implement a solution, but you should
be able to sketch out solutions. And if you have time to implement
solutions, you will learn even more.

Understanding algorithms is a hands-on activity. Don't be afraid to put
down the book, break out a compiler, and write some actual code!

This Book's Websites
Actually, this book has two websites: Wiley's version and my version.
Both sites contain the book's source code.

The Wiley web page for this book is http://www.wiley.com/
go/essentialalgorithms. You also can go to
http://www.wiley.com and search for the book by title or ISBN.
Once you've found the book, click the Downloads tab to obtain all the
source code for the book. Once you download the code, just decompress it
with your favorite compression tool.

Note
At the Wiley web site, you may find it easiest to search by ISBN. This book's ISBN is
978-1-118-61210-1.

To find my web page for this book, go to
http://www.CSharpHelper.com/algorithms.html.

752

http://www.wiley.com/go/essentialalgorithms
http://www.wiley.com/go/essentialalgorithms
http://www.wiley.com
http://www.CSharpHelper.com/algorithms.html

How This Book Is
Structured
This section describes the book's contents in detail.

Chapter 1, “Algorithm Basics,” explains concepts you must understand
to analyze algorithms. It discusses the difference between algorithms and
data structures, introduces Big O notation, and describes times when
practical considerations are more important than theoretical runtime
calculations.

Chapter 2, “Numerical Algorithms,” explains several algorithms that
work with numbers. These algorithms randomize numbers and arrays,
calculate greatest common divisor and least common multiple, perform
fast exponentiation, and determine whether a number is prime. Some of
the algorithms also introduce the important techniques of adaptive
quadrature and Monte Carlo simulation.

Chapter 3, “Linked Lists,” explains linked-list data structures. These
flexible structures can be used to store lists that may grow over time. The
basic concepts are also important for building other linked data structures,
such as trees and networks.

Chapter 4, “Arrays,” explains specialized array algorithms and data
structures, such as triangular arrays and sparse arrays, that can save a
program time and memory.

Chapter 5, “Stacks and Queues,” explains algorithms and data
structures that let a program store and retrieve items in first-in-first-out
(FIFO) or last-in-first-out (LIFO) order. These data structures are useful in
other algorithms and can be used to model real-world scenarios such as
checkout lines at a store.

Chapter 6, “Sorting,” explains sorting algorithms that demonstrate a
wide variety of useful algorithmic techniques. Different sorting algorithms
work best for different kinds of data and have different theoretical run
times, so it's good to understand an assortment of these algorithms. These
are also some of the few algorithms for which exact theoretical

753

performance bounds are known, so they are particularly interesting to
study.

Chapter 7, “Searching,” explains algorithms that a program can use to
search sorted lists. These algorithms demonstrate important techniques
such as binary subdivision and interpolation.

Chapter 8, “Hash Tables,” explains hash tables—data structures that use
extra memory to allow a program to locate specific items quickly. They
powerfully demonstrate the space-time trade-off that is so important in
many programs.

Chapter 9, “Recursion,” explains recursive algorithms—those that call
themselves. Recursive techniques make some algorithms much easier to
understand and implement, although they also sometimes lead to
problems, so this chapter also describes how to remove recursion from an
algorithm when necessary.

Chapter 10, “Trees,” explains highly recursive tree data structures,
which are useful for storing, manipulating, and studying hierarchical data
and have applications in unexpected places, such as evaluating arithmetic
expressions.

Chapter 11, “Balanced Trees,” explains trees that remain balanced as
they grow over time. In general, tree structures can grow very tall and
thin, and that can ruin the performance of tree algorithms. Balanced trees
solve this problem by ensuring that a tree doesn't grow too tall and skinny.

Chapter 12, “Decision Trees,” explains algorithms that attempt to solve
problems that can be modeled as a series of decisions. These algorithms
are often used on very hard problems, so they often find only approximate
solutions rather than the best solution possible. However, they are very
flexible and can be applied to a wide range of problems.

Chapter 13, “Basic Network Algorithms,” explains fundamental
network algorithms such as visiting all the nodes in a network, detecting
cycles, creating spanning trees, and finding paths through a network.

Chapter 14, “More Network Algorithms,” explains more network
algorithms, such as topological sorting to arrange dependent tasks, graph
coloring, network cloning, and assigning work to employees.

754

Chapter 15, “String Algorithms,” explains algorithms that manipulate
strings. Some of these algorithms, such as searching for substrings, are
built into tools that most programming languages can use without
customized programming. Others, such as parenthesis matching and
finding string differences, require some extra work and demonstrate useful
techniques.

Chapter 16, “Cryptography,” explains how to encrypt and decrypt
information. It covers the basics of encryption and describes several
interesting encryption techniques, such as Vigenère ciphers, block ciphers,
and public key encryption. This chapter does not go into all the details of
specific encryption algorithms such as DES (Data Encryption Standard)
and AES (Advanced Encryption Standard), because they are more
appropriate for a book on encryption.

Chapter 17, “Complexity Theory,” explains two of the most important
classes of problems in computer science: P (problems that can be solved in
deterministic polynomial time) and NP (problems that can be solved in
nondeterministic polynomial time). This chapter describes these classes,
ways to prove that a problem is in one or the other, and the most profound
question in computer science: Is P equal to NP?

Chapter 18, “Distributed Algorithms,” explains algorithms that run on
multiple processors. Almost all modern computers contain multiple
processors, and computers in the future will contain even more, so these
algorithms are essential for getting the most out of a computer's latent
power.

Chapter 19, “Interview Puzzles,” describes tips and techniques you can
use to attack puzzles and challenges that you may encounter during a
programming interview. It also includes a list of some websites that
contain large lists of puzzles that you can use for practice.

Appendix A, “Summary of Algorithmic Concepts,” summarizes the
ideas and strategies used by the algorithms described in this book. Using
these, you can build solutions to other problems that are not specifically
covered by the algorithms described here.

Appendix B, “Solutions to Exercises,” contains the solutions to the
exercises at the end of each chapter.

755

The Glossary defines important algorithmic concepts that are used in this
book. You may want to review the Glossary before going on programming
interviews.

What You Need to Use This
Book
To read this book and understand the algorithms, you don't need any
special equipment. If you really want to master the material, however, you
should implement as many algorithms as possible in an actual
programming language. It doesn't matter which language. Working
through the details of implementing the algorithms in any language will
help you better understand the algorithms' details and any special
treatment required by the language.

Of course, if you plan to implement the algorithms in a programming
language, you need a computer and whatever development environment is
appropriate.

The book's websites contain sample implementations written in C# with
Visual Studio 2012 that you can download and examine. If you want to
run those, you need to install C# 2012 on a computer that can run Visual
Studio reasonably well.

Running any version of Visual Studio requires that you have a reasonably
fast, modern computer with a large hard disk and lots of memory. For
example, I'm fairly happy running my Intel Core 2 system at 1.83 GHz
with 2 GB of memory and a spacious 500 GB hard drive. That's a lot more
disk space than I need, but disk space is relatively cheap, so why not buy a
lot?

You can run Visual Studio on much less powerful systems, but using an
underpowered computer can be extremely slow and frustrating. Visual
Studio has a big memory footprint, so if you're having performance
problems, installing more memory may help.

756

The programs will load and execute with C# Express Edition, so there's no
need to install a more expensive version of C#. You can get more
information on C# Express Edition and download it at
http://www.microsoft.com/visualstudio/eng/
downloads#d-express-windows-desktop.

Conventions
To help you get the most from the text and keep track of what's
happening, I've used several conventions throughout the book.

Splendid Sidebars
Sidebars such as this one contain additional information and side topics.

Warning
Warning boxes like this hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Note
Boxes like this hold notes, tips, hints, tricks, and asides to the current discussion.

As for styles in the text:
• New terms and important words are italicized when they are

introduced. You also can find many of them in the Glossary.
• Keyboard strokes look like this: Ctrl+A. This one means to hold

down the Ctrl key and then press the A key.
• URLs, code, and email addresses within the text are shown in

monofont type, as in http://www.CSharpHelper.com, x
= 10, and RodStephens@CSharpHelper.com.

We present code in one of two ways:

I use a monofont type with no highlighting for most
code examples.

I use bold text to emphasize code that's particularly

757

http://www.microsoft.com/visualstudio/eng/downloads#d-express-windows-desktop
http://www.microsoft.com/visualstudio/eng/downloads#d-express-windows-desktop
http://www.CSharpHelper.com
d:\control\pi\scripts\working\tmp\1118612760.epub\oebps\mailto:RodStephens@CSharpHelper.com

important
in the present context.

Email Me
If you have questions, comments, or suggestions, please feel free to email
me at RodStephens@CSharpHelper.com. I can't promise to
solve all your algorithmic problems, but I do promise to try to point you in
the right direction.

758

d:\control\pi\scripts\working\tmp\1118612760.epub\oebps\mailto:RodStephens@CSharpHelper.com

	Cover
	Chapter 1: Algorithm Basics
	Approach
	Algorithms and Data Structures
	Pseudocode
	Algorithm Features
	Practical Considerations
	Summary
	Exercises

	Chapter 2: Numerical Algorithms
	Randomizing Data
	Finding Greatest Common Divisors
	Performing Exponentiation
	Working with Prime Numbers
	Performing Numerical Integration
	Finding Zeros
	Summary
	Exercises

	Chapter 3: Linked Lists
	Basic Concepts
	Singly Linked Lists
	Doubly Linked Lists
	Sorted Linked Lists
	Linked-List Algorithms
	Linked List Selectionsort
	Multithreaded Linked Lists
	Linked Lists with Loops
	Summary
	Exercises

	Chapter 4: Arrays
	Basic Concepts
	One-dimensional Arrays
	Nonzero Lower Bounds
	Triangular Arrays
	Sparse Arrays
	Matrices
	Summary
	Exercises

	Chapter 5: Stacks and Queues
	Stacks
	Queues
	Summary
	Exercises

	Chapter 6: Sorting
	O(N2) Algorithms
	O(N log N) Algorithms
	Sub O(N log N) Algorithms
	Summary
	Exercises

	Chapter 7: Searching
	Linear Search
	Binary Search
	Interpolation Search
	Summary
	Exercises

	Chapter 8: Hash Tables
	Hash Table Fundamentals
	Chaining
	Open Addressing
	Summary
	Exercises

	Chapter 9: Recursion
	Basic Algorithms
	Graphical Algorithms
	Backtracking Algorithms
	Selections and Permutations
	Recursion Removal
	Summary
	Exercises

	Chapter 10: Trees
	Tree Terminology
	Binary Tree Properties
	Tree Representations
	Tree Traversal
	Sorted Trees
	Threaded Trees
	Specialized Tree Algorithms
	Summary
	Exercises

	Chapter 11: Balanced Trees
	AVL Trees
	2-3 Trees
	B-Trees
	Balanced Tree Variations
	Summary
	Exercises

	Chapter 12: Decision Trees
	Searching Game Trees
	Searching General Decision Trees
	Summary
	Exercises

	Chapter 13: Basic Network Algorithms
	Network Terminology
	Network Representations
	Traversals
	Finding Paths
	Summary
	Exercises

	Chapter 14: More Network Algorithms
	Topological Sorting
	Cycle Detection
	Map Coloring
	Maximal Flow
	Summary
	Exercises

	Chapter 15: String Algorithms
	Matching Parentheses
	Pattern Matching
	String Searching
	Calculating Edit Distance
	Summary
	Exercises

	Chapter 16: Cryptography
	Terminology
	Transposition Ciphers
	Substitution Ciphers
	Block Ciphers
	Public-Key Encryption and RSA
	Other Uses for Cryptography
	Summary
	Exercises

	Chapter 17: Complexity Theory
	Notation
	Complexity Classes
	Reductions
	NP-Hardness
	Detection, Reporting, and Optimization Problems
	NP-Complete Problems
	Summary
	Exercises

	Chapter 18: Distributed Algorithms
	Types of Parallelism
	Distributed Algorithms
	Summary
	Exercises

	Chapter 19: Interview Puzzles
	Asking Interview Puzzle Questions
	Answering Interview Puzzle Questions
	Summary
	Exercises

	Appendix A: Summary of Algorithmic Concepts
	Chapter 1: Algorithm Basics
	Chapter 2: Numeric Algorithms
	Chapter 3: Linked Lists
	Chapter 4: Arrays
	Chapter 5: Stacks and Queues
	Chapter 6: Sorting
	Chapter 7: Searching
	Chapter 8: Hash Tables
	Chapter 9: Recursion
	Chapter 10: Trees
	Chapter 11: Balanced Trees
	Chapter 12: Decision Trees
	Chapter 13: Basic Network Algorithms
	Chapter 14: More Network Algorithms
	Chapter 15: String Algorithms
	Chapter 16: Cryptography
	Chapter 17: Complexity Theory
	Chapter 18: Distributed Algorithms
	Chapter 19: Interview Puzzles

	Appendix B: Solutions to Exercises
	Chapter 1: Algorithm Basics
	Chapter 2: Numerical Algorithms
	Chapter 3: Linked Lists
	Chapter 4: Arrays
	Chapter 5: Stacks and Queues
	Chapter 6: Sorting
	Chapter 7: Searching
	Chapter 8: Hash Tables
	Chapter 9: Recursion
	Chapter 10: Trees
	Chapter 11: Balanced Trees
	Chapter 12: Decision Trees
	Chapter 13: Basic Network Algorithms
	Chapter 14: More Network Algorithms
	Chapter 15: String Algorithms
	Chapter 16: Encryption
	Chapter 17: Complexity Theory
	Chapter 18: Distributed Algorithms
	Chapter 19: Interview Puzzles

	Glossary
	Introduction

