
www.allitebooks.com

http://www.allitebooks.org


ptg

Essential

JavaFX™

GAIL ANDERSON • PAUL ANDERSON

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

www.allitebooks.com

http://www.allitebooks.org


ptg

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. 
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations 
have been printed with initial capital letters or in all capitals.

Sun Microsystems, Inc. has intellectual property rights relating to implementations of the technology described in this 
publication. In particular, and without limitation, these intellectual property rights may include one or more U.S. pat-
ents, foreign patents, or pending applications.

Sun, Sun Microsystems, the Sun logo, J2ME, J2EE, Java Card, and all Sun and Java based trademarks and logos 
are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries. UNIX is 
a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. 
THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR 
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS 
FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS PUBLICATION COULD INCLUDE TECHNICAL 
INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMA-
TION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN 
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE 
PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied war-
ranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or conse-
quential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, 
which may include electronic versions and/or custom covers and content particular to your business, training goals, 
marketing focus, and branding interests. For more information, please contact: U.S. Corporate and Government 
Sales, (800) 382-3419, corpsales@pearsontechgroup.com.

For sales outside the United States please contact: International Sales, international@pearsoned.com.

A control number for this work is on file with The Library of Congress.

Copyright © 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, California 95054 U.S.A. 
All rights reserved.

Printed in the United States of America. This publication is protected by copyright, and permission must be obtained 
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or 
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, 
write to: Pearson Education, Inc., Rights and Contracts Department, 501 Boylston Street, Suite 900, Boston, MA 
02116, Fax: (617) 671-3447.

ISBN-13:  978-0-13-704279-1
ISBN-10:         0-13-704279-5

Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.
First printing, May 2009

www.allitebooks.com

http://www.allitebooks.org


ptg

iii

Contents

Preface xi

Acknowledgments xv

Chapter 1 Getting Started with JavaFX 1
What You Will Learn 1

1.1 What Is JavaFX? 1

1.2 The JavaFX Bundle 2
JavaFX SDK 2
NetBeans IDE 3
JavaFX Production Suite 3

1.3 Where to Get JavaFX 3
Create a NetBeans Project 4
Edit JavaFX Source Code 7
Compile and Run 8
Execution Models 9

Chapter 2 A Taste of JavaFX 13
What You Will Learn 13

2.1 Introducing JavaFX 13

2.2 Project GuitarTuner 14
The Scene Graph Metaphor 15
Hierarchical Scene Graph 16

2.3 JavaFX Program Structure 17
Stage and Scene 17
Object Literals 18

www.allitebooks.com

http://www.allitebooks.org


ptg

iv Contents

2.4 Key JavaFX Features 19
Type Inference 19
Strings 20
Shapes 20
Sequences 21
Calling Java APIs 22
Extending CustomNode 22
Geometry System 24
Layout/Groups 24
JavaFX Script Artifacts 24

2.5 Making Things Look Good 26
Gradients 26
Color 28
Rectangles with Arcs 29
DropShadows 30

2.6 Doing Things 31
Binding 31
Mouse Events 32
Animations 33

2.7 Source Code for Project GuitarTuner 36

Chapter 3 JavaFX Language 43
What You Will Learn 43

3.1 Variables and Types 43
JavaFX Types 44
Printing Variables 46
Pseudo Variables 47

3.2 Operators 47
Arithmetic Operators 48
Assignment Operators 48
Unary Operators 48
Relational Operators 49
Logical Operators 49
Instanceof Operator 50

3.3 Expressions 50

www.allitebooks.com

http://www.allitebooks.org


ptg

Contents v

Block Expressions 50
If Expressions 51
For Expressions 51
While Expressions 52
Break and Continue 52
Binding Expressions 52
Bidirectional Binding 53

3.4 Sequences 54
Sequence Literals 54
Printing Sequences 55
Creating Sequences with for 56
Accessing Sequence Items 57
Inserting Items into Sequences 57
Deleting Items from Sequences 58
Comparing Sequences 59
Sequence Slices 59
Predicates 59
Binding Sequences 60

3.5 Functions 61
Defining Functions 61
Passing Arguments to Functions 61
Returning Values from Functions 62
Binding Function Calls 63
Bound Functions 63
Program Arguments 64
Function Types 65

3.6 Classes and Objects 67
Classes 67
Object Literals 68
Using public-init 69
Init Blocks 70
Using public-read 70
Using this 71
Using null 72
Using Java Objects 72
Binding with Object Literals 73
Overriding bind 75

www.allitebooks.com

http://www.allitebooks.org


ptg

vi Contents

3.7 Inheritance 75
Overriding Functions 76
Using super 76
PostInit Blocks 78
Abstract Base Classes 78
As Operator 80
Mixin Inheritance 81

3.8 Triggers 83
On Replace with Variables 83
On Replace with Sequences 84
On Replace with isInitialized 85
On Replace with Bind 86

3.9 Script Files and Packages 86
Variable Scope 87
Function Scope 87
Script Files 88
Access Modifiers 88
Packages 89

3.10 Exception Handling 91
Try, Catch, Finally 91
Throwing Exceptions 92

3.11 JavaFX Keywords 93

Chapter 4 Graphical Objects 95
What You Will Learn 95

4.1 Setting the Stage 95
Scene 96
Node 96
Cursor 101
Group 102
CustomNode 103

4.2 Shapes 103
Rectangle 107
Circle 107
Ellipse 108

www.allitebooks.com

http://www.allitebooks.org


ptg

Contents vii

Arc 108
Polygon 109
QuadCurve 109
CubicCurve 110
Line 110
Polyline 111
SVGPath 111
ShapeIntersect/ShapeSubtract 113
Text 115

4.3 Paths 116

4.4 Layout Components 119
HBox and VBox Layout Components 120
Flow and Tile Layout Components 121
Stack Layout Component 123

4.5 Geometry 124
Point2D 124
Bounds/Rectangle2D 125
Bounding Rectangles 125

Chapter 5 User Interface Components 129
What You Will Learn 129

5.1 JavaFX UI Controls 129
TextBox 129
UI Components 131
Popup Windows 134

5.2 Swing Components 135
SwingButton 135
SwingCheckBox 135
SwingComboBox 136
SwingComboBoxItem 136
SwingIcon 137
SwingLabel 137
SwingScrollPane 138
SwingList 138
SwingListItem 138
SwingRadioButton 140

www.allitebooks.com

http://www.allitebooks.org


ptg

viii Contents

SwingToggleButton 140
SwingToggleGroup 141
SwingSlider 141
SwingTextField 141

5.3 Swing Example 142
Pizzas Are Circles 142
Toppings Are Circles 144
Selecting Pizza Size with SwingRadioButton 145
Selecting Toppings with SwingCheckBox 146
Integrating with Bound Functions and Binding 147

5.4 Creating Skinnable Components 148
Cascading Style Sheets (CSS) 148
Skinnable TextButton Component 152
Skinnable ChoiceDialog Component 158

Chapter 6 Anatomy of a JavaFX Application 167
What You Will Learn 167

6.1 Project Piano 167

6.2 PianoKey Components 169
Class PianoKey 170
Subclass WhiteKey 171
Single Key Application 173
Subclass BlackKey 176
Two Key Application 178

6.3 Building the Keyboard 180

6.4 SwingButtons and Animation 183

6.5 Adding Help and Improving Visual Effects 188

6.6 Source Code for Project Piano 194

Chapter 7 Animation 205
What You Will Learn 205

7.1 Timelines 206
Animation Basics—Moving an Object 208
Animating Multiple Targets 211

www.allitebooks.com

http://www.allitebooks.org


ptg

Contents ix

Animating Multiple Targets Independently 212
Animating Groups 214
Animation and Binding 216

7.2 Timeline Actions 218
Using action with a Digital Clock Display 219
Using action with a Progress Bar 220

7.3 Transitions 225
Transition Basics—Simple Movement 226
ScaleTransition 227
Rotate and Fade Transitions 228
Compound Transitions 231

7.4 Path Animation 233
Creating a Path 233
PathTransition 235

7.5 Chutes and Ladders 237
Class PathBall (PathBall.fx) 238
Main Program (Main.fx) 242

Chapter 8 Working with Images 249
What You Will Learn 249

8.1 Using Image 249
Class Image 250

8.2 Using ImageView 252
Scaling 256
Transformation and Effects Menagerie 258

8.3 Building a Wall of Photos 264

8.4 Mouse Dragging 270

8.5 Animated Photo Carousel 273
Photo Carousel Scene Graph 274
CarouselPhoto Animation 275
CarouselPhoto Custom Node 276
Carousel Custom Node 279
Class CarouselImage 282
Main Script 282

www.allitebooks.com

http://www.allitebooks.org


ptg

x Contents

Chapter 9 Web Services 285
What You Will Learn 285

9.1 JavaFX Pull Parsers 285
XML Parsing 286
JSON Parsing 293
Animated Photo Carousel 295

9.2 JavaFX HttpRequest 296
Using HttpRequest 296

9.3 Flickr: Interesting Photos 301
Flickr 301
Interesting Photos 301

9.4 Flickr: Searching with Tags 308

9.5 Flickr: Getting User Photos 312

Chapter 10 Mobile Applications 315
What You Will Learn 315

10.1 JavaFX Mobile—What Does It Mean? 315
Mobile Emulator 317
Discovering Your Environment 319
Orientation Changes 321
Mouse and Key Events 323
User Input 326

10.2 Making a JavaFX Application Mobile Ready 327
Detecting the Mobile Environment 329
Detecting Orientation Changes 329
Reducing the Number and Size of Images 330
Adjusting the Animation 331

10.3 Mobile-Only Applications 332
Grouping Elements Together 334

Index 337



ptg

xi

Preface

As we complete the final edits and our printing deadline looms, we’re excited and 
grateful to be involved with JavaFX. In February 2009, JavaFX reached the 
100,000,000th download of the JavaFX runtime.1 The ranks of JavaFX developers will 
undoubtedly grow as more developers see the flexibility and power of JavaFX. This 
synergy, we believe, will fuel continued development of the language and enhance-
ments to the runtime environment.

This book is designed to get you up to speed quickly with JavaFX. JavaFX is a script-
ing language. It’s not Java, but it’s built on top of the Java runtime. You don’t need 
experience with Java to succeed with JavaFX. Indeed, JavaFX’s declarative syntax 
makes life easier if you don’t think like a developer. Instead, JavaFX encourages you to 
think like a designer. 

What does it mean to “think like a designer”? Basically, it means to visualize the struc-
ture of your application or widget and compose your scene out of simple shapes and 
other building blocks. In JavaFX, you compose a scene by declaring objects.

Let’s take an example. Say you visualize a sky with the sun, the sea, and an island 
(think South Pacific). The sky is the background, reflecting the blues of a bright cloud-
less day (think of a linear gradient, going from “blue sky” to “azure”). The sun is a 
Circle, with a radial gradient consisting of yellows and oranges. The island is a qua-
dratic curve (think of a cone-shaped volcano-type island paradise filled with a gradi-
ent of rich browns and tropical greens). And there you have your scene, as shown in 
Figure 1 (in a black and white approximation).2

Not only can you declare visual objects with JavaFX, but you can also declare anima-
tions. Animations give your objects life. Returning to our island paradise, visualize 
the beginning of the day. The colors are muted as the morning light slowly gives 
shape to an ethereal world. The sun rises and the island takes form. The sun continues 

1. Jonathan Schwartz’s Blog: JavaFX Hits 100,000,000 Milestone! February 13, 2009. URL: 
http://blogs.sun.com/jonathan/entry/javafx_hits_100_000_000

2. You’ll find widget Island Paradise with the other JavaFX examples on the authors’ web site 
at http://www.asgteach.com/javafx.

http://www.asgteach.com/javafx
http://blogs.sun.com/jonathan/entry/javafx_hits_100_000_000


ptg

xii Preface

higher in the sky and the whole world brightens. When the sun reaches its zenith, the 
colors of the sea and sky are saturated with “sea green,” “azure,” and “sky blue.” But, 
it’s a temporary brightness. The sun follows its path and eventually falls back into the 
sea in a glow of warm reds. The sky darkens. The sea fades. Eventually the island dis-
appears. Everything is black. You build these behaviors with animation and a power-
ful JavaFX language construct called binding. (Binding lets you declare dependencies 
among objects—when a variable changes, JavaFX automatically updates all objects 
bound to that variable.)

JavaFX animation lets you move objects along a path (the sun rises and sets in an arc) 
and fade objects in and out with timelines. Our “island paradise” controls day and 
night with black and red rectangle “filters.” These filters color the scene as night, 
dawn, daytime, evening, dusk, and back to night, all cycling through an accelerated 
Circadian clock. Animation and binding make it all work.

If you’re a Java programmer, you will feel at home in JavaFX with packages and 
import statements, classes, things called public, and static type checking. (Don’t worry 
about these things if you’re not a Java programmer.) If you’re a JavaScript program-
mer, you will appreciate the value of static type checking coupled with a sophisticated 
type inference engine in JavaFX. (Type inference eases the burden of having to specify 
types everywhere.) But most importantly, we hope you’ll appreciate the simplicity of 
the JavaFX declarative style. For example, take this one-line JavaFX object “literal.”

Circle { centerX: 200 centerY: 40 radius: 25 fill: Color.YELLOW }

If you think the above describes a yellow circle, then you’re on your way! And, if you 
think perhaps it describes a yellow sun, that’s even better.

Figure 1.  Visualizing an island paradise



ptg

Preface xiii

About the Audience

This book is aimed at developers with some previous programming experience (in 
any language). We don’t assume you know Java and we assume you’ve never written 
a JavaFX script before. (The term script in this book refers to both the programs you 
write and the individual files that contain these programs.)

We hope to show you how to use JavaFX effectively. There is a diversity to JavaFX: 
you can use it to build games, create effective web-service-based widgets, or build 
snazzy front-ends to your desktop applications. You can use Swing-based compo-
nents, “native” JavaFX components, or roll your own. You can collaborate with 
designers and import images and other assets to incorporate into your scene graph. 
Our aim is to expose some of this diversity so that you can forge ahead with your own 
successful JavaFX projects.

How to Use This Book

Chapter 1 gets you started with JavaFX. We show you how to download JavaFX and 
begin building projects with the NetBeans IDE. (We use NetBeans to build our exam-
ples, but you can also use Eclipse.)

Chapter 2 gives you a broad overview of JavaFX. It takes you through an example (a 
Guitar Tuner), pointing out how things are done with JavaFX. If you want to get a 
“feel” for the language, this chapter introduces you to many trademark JavaFX fea-
tures.

Chapter 3 through Chapter 5 are “reference-oriented” chapters. Chapter 3 describes 
the JavaFX language, Chapter 4 describes graphical objects, and Chapter 5 discusses 
user interface components. These chapters are organized with small examples to help 
you find information quickly (how do I bind an object or generate a sequence with a 
for loop?). The language chapter covers everything from JavaFX built-in types to 
mixin inheritance. Graphical objects are the basic JavaFX shapes you use to build 
scene graphs and layout objects (islands in the sun, for example). The components 
chapter shows you the JavaFX Swing components and the JavaFX “native” UI compo-
nents. We also show you how to build custom UI components in a more advanced 
section.

Chapter 6 shows you how to design and structure a JavaFX application. It introduces 
a building-block approach with a nod towards object oriented design principles.

Chapter 7 is all about JavaFX animation and timelines. JavaFX animation is both pow-
erful and flexible. Transitions are “pre-packaged high-level” animations that help 
build straightforward motions quickly, such as fade-ins and fade-outs, scaling, and 
moving.



ptg

xiv Preface

Chapter 8 discusses viewing and manipulating images. One example shows you how 
to design an animated photo carousel.

Chapter 9 covers web services. JavaFX provides two important utility classes that 
make it easier to work with web services. An HttpRequest class handles asynchro-
nous web requests and a PullParser class simplifies processing the response data. We 
take you through several Flickr-based web service API calls.

Chapter 10 discusses the JavaFX mobile environment and explores the differences 
between desktop JavaFX and the JavaFX mobile runtime. We discuss guidelines for 
targeting mobile devices and how to make an application mobile-friendly.

About the Examples

You can download the source code for all book examples from the authors’ web site at
http://www.asgteach.com/javafx

In addition, example applications are deployed so you can try them out.

Notational Conventions

We’ve applied a rather light hand with font conventions in an attempt to keep the 
page uncluttered. Here are the conventions we follow.

Element Font Example

JavaFX class Shape, Circle, Color
JavaFX property layoutBounds, opacity, height

JavaFX code def sunPath = Path {

    elements: sunElements

    stroke: Color.GRAY

}

URL http://javafx.com/

file name Main.fx, Carousel.fx
key combinations Ctrl+Space
NetBeans menu selections Properties menu item

code within text The animation varies property opacity from . . . 
code highlighting 
(to show modified or relevant 
portions)

def sunPath = Path {

elements: sunElements

    stroke: Color.GRAY

}

http://www.asgteach.com/javafx
http://javafx.com/


ptg

xv

Acknowledgments

We’d first like to thank Greg Doench, our editor at Prentice Hall, for making the 
impossible a reality. While we were pushing the limits of how quickly one can 
respond to changes and making our manuscript reflect reality, he lassoed the right 
people and made it happen. We’re extremely grateful to have worked with Greg on 
this book and on so many other projects in the past.

We’d also like to thank Octavian Tanase of Sun Microsystems for giving us the oppor-
tunity to write a book on JavaFX. Learning JavaFX has enriched our technical toolbox 
and for that we thank Octavian.

Brian Goetz, Richard Bair, Robert Field, and Marvin Ma from the JavaFX team pro-
vided us with technical guidance. In particular, Brian read over portions of our manu-
script and helped us think in the “JavaFX way.” He gave us insights into the language 
and, more importantly, into the philosophy that makes JavaFX unique. Richard Bair 
and Marvin Ma gave us up-to-the-minute details on new JavaFX developments, 
including access to early versions of the JavaFX 1.2 SDK.

We had invaluable assistance from our son, Kellen Anderson, who created two signif-
icant examples for us. GuitarTuner (discussed in Chapter 2) and Banker, a game-
based widget that puts JavaFX through its paces, accurately reflecting the physics of a 
rolling, banking ball. You can try out Banker on the authors’ web site.

Matthew Duggan proved invaluable as a reviewer, providing insightful comments, 
catching errors and inconsistencies, and improving the manuscript in many places. A 
special thanks to you, Matt!

William Krainski, Kellen Anderson, Mike Shelton, and Peter Dibble provided valu-
able feedback that improved the manuscript. Jasper Liu and Scott Ng worked under a 
very tight time schedule to get the Chinese translation done. Chuti Prasertsith came 
up with an awesome cover design. And finally, the Pearson production staff, headed 
by John Fuller, brought this book to press under the most dire scheduling constraints.

Gail and Paul Anderson
Anderson Software Group, Inc., www.asgteach.com

May 2009

www.asgteach.com


ptg

This page intentionally left blank 

From the Library of sam kaplan



ptg

1

1 Getting Started with 
JavaFX

Welcome to JavaFX. This chapter tells you what JavaFX is, what it does, how to get it, 
and how to get started. After you finish this chapter, you should be able to start work-
ing with JavaFX right away.

What You Will Learn

• What is JavaFX and why should I care?

• What is in the JavaFX Bundle

• Where to get JavaFX

• Using JavaFX with the NetBeans IDE

1.1  What Is JavaFX?

JavaFX is a software technology that lets you create and deliver Rich Internet Applica-
tions (RIAs) with media and content across a wide variety of platforms and devices. 
The language was originally called F3 (Form Follows Function) and was developed 
primarily by Chris Oliver, now at Sun Microsystems. The name was changed to 
JavaFX in 2007.

On Java platforms, JavaFX is a compiled, statically typed, declarative scripting lan-
guage. The language offers automatic data binding, triggers, animation, and an 
expression syntax where code blocks yield values. Sequences, function types, and 
inferred types make JavaFX a concise scripting language. Developers can use object-
oriented JavaFX features to simplify complexity and handle errors with Java-like 
exceptions. JavaFX also lets you easily access the complete Java API, which includes 
an enormous number of third-party Java libraries.

Figure 1.1 is the big picture for JavaFX. This block diagram shows the various pieces 
you can leverage when creating JavaFX applications. As the diagram shows, there are 
extensions for three environments: Desktop, Mobile and TV. All three environments 
support the common API (labeled Common Elements in Figure 1.1). As of this writ-
ing, the runtime for the JavaFX TV environment does not yet exist. There is a runtime 



ptg

2 Chapter 1 Getting Started with JavaFX

for the JavaFX mobile environment, which supports the common API only. (We dis-
cuss the JavaFX mobile environment in Chapter 10.)

On the desktop, JavaFX runs on Windows XP, Vista, and Mac OS. Linux support is 
forthcoming (as of this writing). JavaFX is also capable of running on Android, Win-
dows Mobile, and other mobile operating systems.

1.2  The JavaFX Bundle

The JavaFX platform release currently includes three major components. 

JavaFX SDK

The JavaFX SDK (Software Development Kit) includes the JavaFX compiler, runtime 
tools, graphics, media, and web services. It also includes libraries that let you create 
RIAs (Rich Internet Applications) for desktop, browser, and mobile platforms.

Figure 1.1 JavaFX Platform

Application Framework

Common Elements

JavaFX Runtime

JavaFX
Desktop
Runtime

Desktop
Extensions

JavaFX
Mobile

Runtime

Mobile
Extensions

JavaFX
TV

Runtime

TV
Extensions

Java Virtual Machine (Java Plug In)



ptg

Where to Get JavaFX 3

NetBeans IDE

NetBeans is a sophisticated IDE (Integrated Development Environment) that lets you 
build, preview, and debug JavaFX applications. The code editor supports JavaFX syn-
tax checking, code completion, hyperlinked documentation, and other developer-
friendly features. To decrease development time, the editor offers drag-and-drop from 
palettes of GUI controls, event handlers, transformations, effects, and animation. For 
Mobile applications, NetBeans also supports a Mobile emulator to simulate applica-
tions running on mobile devices.

Currently, JavaFX is a plug-in component for NetBeans. A community-supported 
plug-in for Eclipse IDE users is also available.

JavaFX Production Suite

The JavaFX Production Suite is a set of tools and plug-ins to help designers export 
JavaFX graphics from third-party applications (Adobe Illustrator and Photoshop). 
Using the JavaFX Graphics Viewer, you can preview how graphics will render when 
you deploy to desktop and mobile environments. An SVG (Scalable Vector Graphics) 
conversion tool lets you convert SVG files to JavaFX format.

1.3  Where to Get JavaFX

To access the JavaFX downloads, go to http://java.sun.com/javafx/downloads. You 
will see downloads for the following components.

• JavaFX SDK

• NetBeans for JavaFX

• JavaFX Production Suite

Follow the instructions on the web site to download and install the component you 
want. You can download and install NetBeans with JavaFX together or you can install 
the JavaFX plug-in separately if you already have NetBeans installed.

Here are some other valuable links for JavaFX.

• http://java.sun.com/javafx—Main site for JavaFX

• http://javafx.com—Samples and demos for JavaFX

• http://java.sun.com/javafx/num/docs/api—JavaFX documentation (version num)

• http://www.netbeans.org—NetBeans site

www.allitebooks.com

http://java.sun.com/javafx
http://javafx.com
http://java.sun.com/javafx/num/docs/api
http://www.netbeans.org
http://java.sun.com/javafx/downloads
http://www.allitebooks.org


ptg

4 Chapter 1 Getting Started with JavaFX

• https://openjfx-compiler.dev.java.net—OpenJFX Compiler Project

Once you have NetBeans and JavaFX installed, you are ready to try out JavaFX. 

Create a NetBeans Project

In this section, we show you how to build a NetBeans project for a JavaFX application, 
compile a short program, and run it. 

Launch NetBeans and choose File>New Project as shown in Figure 1.2. 

You will see the New Project dialog, as shown in Figure 1.3.

Figure 1.2 NetBeans Create New Project

https://openjfx-compiler.dev.java.net


ptg

Where to Get JavaFX 5

Under Categories, select JavaFX and click Next as shown. Another dialog will appear 
that lets you chose a Project name, location, and project configuration, as shown in 
Figure 1.4.

Figure 1.3 NetBeans New Project Dialog



ptg

6 Chapter 1 Getting Started with JavaFX

To finish specifying your JavaFX project, perform these steps:

1. Specify CoolApp for the Project Name. 

2. Accept the default for Project Location or click the Browse button to change the 
location of this project.

3. Make sure the checkboxes for Set as Main Project and Create Main File are 
checked.

4. Click Finish.

Netbeans creates the CoolApp application and brings you up into the source editor as 
shown in Figure 1.5.

Figure 1.4 Choose Project Name and Location



ptg

Where to Get JavaFX 7

Edit JavaFX Source Code

You are now ready to edit the source code. Move the scrollbar in the editor window to 
the bottom, as shown in Figure 1.6.

Figure 1.5 CoolApp Application



ptg

8 Chapter 1 Getting Started with JavaFX

Perform these steps to edit the source code. (The line numbers in your edit window 
may not exactly match. We reference the line numbers in Figure 1.6.)

1. Show line numbers. (Place the mouse in the left column of the editor window, right 
click, and select Show Line Numbers from the context menu.)

2. Change "Application title" to "Cool App" (line number 19 in Figure 1.6).

3. In line number 25, change 16 to 24. The line should now read size : 24.

4. Change "Application content" to "JavaFX is Cool" (line number 28).

Compile and Run 

Click the green chevron on the tool bar to Run the Main Project, as shown in 
Figure 1.6. This will compile and run your application. You should see the application 
in a window on your screen, as shown in Figure 1.7.

Figure 1.6 Edit Source Code



ptg

Where to Get JavaFX 9

Execution Models

Netbeans lets you run your JavaFX programs in several different environments. Your 
choices are as follows.

• Standard Execution (default)

• Java Web Start

• Run in Browser

• Run in Mobile Emulator

Standard Execution (the default) is for desktop applications. The Mobile Emulator 
simulates the Mobile environment. You can also run your application in a browser or 
use Java Web Start, a tool for deploying desktop applications with the Java Network 
Launching Protocol (JNLP).

To choose a deployment option, right-click the CoolApp project in the Project view, 
and choose Properties from the drop-down list, as shown in Figure 1.8.

Figure 1.7 Run CoolApp Application



ptg

10 Chapter 1 Getting Started with JavaFX

NetBeans displays the Project Properties dialog. Select Run under Categories as 
shown in Figure 1.9. 

NetBeans now displays a new Project Properties dialog, as shown in Figure 1.10. 

Figure 1.8 Choose Properties

Figure 1.9 Choose Run under Categories (Project Properties)



ptg

Where to Get JavaFX 11

The Standard Execution is pre-selected for you, but you can change to any of the other 
execution models. After you make your selection, click OK. When you run your appli-
cation with the green chevron on the tool bar as before (see Figure 1.6 on page 8), your 
application will run in the environment you selected.

NetBeans Tip

The Project Properties dialog lets you specify arguments to your program when you run it. 
You can also specify JVM (Java Virtual Machine) arguments.

Figure 1.10 Run CoolApp Application



ptg

This page intentionally left blank 

From the Library of sam kaplan



ptg

13

2 A Taste of JavaFX

As the preface hints, JavaFX has a combination of features that makes it unique. This 
chapter gives you a taste of the language and some of these features. Our goal is to 
choose a representative example so you get a feel for the kinds of programs possible 
with JavaFX. The example (a guitar tuner) illustrates language constructs while keep-
ing the discussion concrete. We’ll veer away from the example at times to illustrate 
additional JavaFX features that are relevant. While this overview is in no way com-
plete (remember, it’s just a taste), we hope to entice you to explore JavaFX further.

The source code for GuitarTuner appears at the end of the chapter (see “Source Code 
for Project GuitarTuner” on page 36). To keep the text flowing, we’ll show snippets 
from this application throughout the overview.

What You Will Learn

• What makes JavaFX unique as a scripting language

• All about object literals and declarative constructs

• Introducing the JavaFX scene graph

• Declaring variables, properties, and objects

• Initializing objects and object properties

• Basics in container coordinate space and layout

• Creating a custom node

• Manipulating objects with color, effects, and gradients

• Getting things done with binding, event handlers, and animation

2.1  Introducing JavaFX

What is JavaFX? JavaFX is a scripting language with static typing. You can call a Java 
API as needed from JavaFX and create new object types with classes, but JavaFX also 
provides an easy declarative syntax. (Declarative means you say what you want and 

www.allitebooks.com

http://www.allitebooks.org


ptg

14 Chapter 2 A Taste of JavaFX

the system figures out how to do it for you.) JavaFX provides properties for manipu-
lating objects within a 2D coordinate system, specifying fill and pen stroke colors, and 
creating special effects. You can create shapes and lines, manipulate images, play vid-
eos and sounds, and define animations. 

Let’s begin exploring JavaFX by introducing the basics. Our introduction begins with 
project GuitarTuner where you’ll see the main structure of a JavaFX program. Then, 
you’ll explore a few JavaFX language constructs and see how to improve the appear-
ance of your applications. Finally, you’ll see how to make applications do things.

JavaFX in a Nutshell

JavaFX is statically typed, meaning program data types are known at compile time. JavaFX 
also uses type inference. This means you don’t have to declare the type of every variable 
because JavaFX can generally figure it out for you. This gives JavaFX the efficiency of a stati-
cally typed language combined with the ease of a declarative language.

2.2  Project GuitarTuner

Project GuitarTuner helps you tune your guitar. It displays a visual guitar fret board 
with six strings. The letter (note) corresponding to the guitar string appears next to 
the fret board. When you click a string with the mouse, you’ll hear a synthesized gui-
tar note for the selected string as it vibrates visually. Project GuitarTuner uses the Java 
javax.sound.midi API to generate the sounds. Figure 2.1 shows this application run-
ning when the A string is vibrating. The corresponding JavaFX graphical objects are 
labeled.

Figure 2.1 JavaFX application GuitarTuner

Rectangle (fret board)

GuitarString (6)

Line (2) (frets)



ptg

Project GuitarTuner 15

The Scene Graph Metaphor

JavaFX programs with a graphical user interface define a stage and a scene within that 
stage. The stage represents the top level container for all JavaFX objects; that is, the 
content area for an applet or the frame for a widget. The central metaphor in JavaFX 
for specifying graphics and user interaction is a scene graph. A scene defines a hierar-
chical node structure that contains all the scene’s components. Nodes are represented 
by graphical objects, such as geometric shapes (Circle, Rectangle), text, UI controls, 
image viewers, video viewers, and user-created objects (such as GuitarString in our 
example). Nodes can also be containers that in turn hold more nodes, letting you 
group nodes together in hierarchical structures. (For example, Group is a general-pur-
pose container node, HBox provides horizontal layout alignment, and VBox provides 
vertical layout alignment.) The scene graph is this hierarchical node structure. 

Figure 2.2 shows the scene graph for project GuitarTuner. Compare the visual graphi-
cal elements in Figure 2.1 with the scene graph depicted in Figure 2.2. 

In general, to construct a JavaFX application, you build the scene graph, specifying the 
look and behavior of all its nodes. Then, your application just “runs.” Some applica-
tions need input to go—user actions that activate animations or affect component 

Scene

Figure 2.2 Nested Scene Graph for GuitarTuner

Rectangle

Line

Line

GuitarString

GuitarString

GuitarString

.

.

.

fret board 

frets

E string

Group

Rectangle

Rectangle

Rectangle

Text

GuitarString

Group (CustomNode)

A string

E string

(mouse detection)

(normal)

(vibrating)

(note display)



ptg

16 Chapter 2 A Taste of JavaFX

properties. Other applications just run on their own. (Building the scene graph is anal-
ogous to winding up a toy. When you’re done, the application just runs.)

JavaFX Scene Graph

The power of the scene graph is that, not only do you capture the entire structure of your appli-
cation in a data structure, but you can change the display simply by modifying properties of 
the objects in the scene graph. (For example, if you change a node’s visible property to false,
that node, and any nodes it contains, disappears. If you change a node’s location, it moves.)

Within the scene graph for project GuitarTuner, you see the Scene at the top level, 
which contains a Group. Within the Group there is a Rectangle for the fret board (the 
guitar neck), two Line nodes representing frets, and six GuitarStrings. Each Guitar-
String is in turn its own Group consisting of three Rectangles and a Text node. Nodes 
that contain other nodes (such as Scene and Group) include a content property that 
holds subnodes. The hierarchical nature of the scene graph means that all nodes at the 
same level share the same coordinate space. You therefore build node structures (such 
as GuitarString) that use a relative coordinate system. You’ll see shortly why this is 
useful.

Think Like A Designer

JavaFX encourages you to think like a designer. As a first step, visualize the structure of your 
application or widget and compose your scene out of simple shapes and other building blocks.

The order of nodes within a parent container affects their rendering. That is, the first 
node in the container is “drawn” first. The final node is “drawn” last and is on top of 
the view. Nodes (depending on their placement within the coordinate system) may 
visually block or “clip” previously drawn nodes. In GuitarTuner, the nodes must be in 
a specific order. You draw the fret board first, then the frets, and finally the guitar 
strings, which appear on top. 

Changing the relative order of nodes in a container is easy. The toFront() function 
brings a node to the front (top) and the toBack() function sends a node to the back 
(bottom).

Hierarchical Scene Graph

Figure 2.3 also shows a scene graph of project GuitarTuner. Figure 2.2 and Figure 2.3 
depict the same structure, but Figure 2.3 shows the hierarchical relationship among 
the nodes in the scene using a graphical tree view. Nodes at the same level share the 
same coordinate space. For example, the three Rectangles and Text nodes in the Gui-
tarString share the same coordinate system.



ptg

JavaFX Program Structure 17

2.3  JavaFX Program Structure

JavaFX program structure is simple. For programmers who are used to traditionally 
compiled programs, programming in JavaFX will feel different. With static typing, 
JavaFX gives you feedback at compile time when you use types incorrectly. This 
greatly enhances your ability to write correct code. Furthermore, with the NetBeans 
IDE, you can access JavaDocs for all JavaFX types (classes) and dynamically query 
these class properties and functions, essentially getting feedback at edit time. 

Let’s see how the Stage and Scene form the JavaFX program structure.

Stage and Scene

The Stage is the top-level container and contains the Scene. The Scene, in turn, holds 
nodes that make up the scene graph. Every JavaFX program that has graphical objects 
declares a Stage object.

Here is a top-level implementation of the scene graph for GuitarTuner from Figure 2.2 
(or Figure 2.3). (We’ll look at GuitarString’s node graph shortly.)

Scene

Rectangle Line GuitarString GuitarString. . .

Figure 2.3 Scene Node Graph for project GuitarTuner

Line GuitarString

Group

Rectangle RectangleRectangle Text

(mouse
detection) (normal) (vibrating) (note display)

(frets)(fret board)

GuitarString (CustomNode)

Group

(E) (A) (E)



ptg

18 Chapter 2 A Taste of JavaFX

// Stage and Scene Graph
Stage {

title: "Guitar Tuner" 
Scene {

// content is sequence of SceneGraph nodes
content: [

Group {
content: [

Rectangle { ... }
Line { ... }
Line { ... }
GuitarString { ... }
GuitarString { ... }
GuitarString { ... }
GuitarString { ... }
GuitarString { ... }
GuitarString { ... }

]
} // Group

]
} // Scene

} // Stage

Object Literals

The Stage and Scene objects are instantiated with object literal expressions, or object
literals. Object literals provide a declarative style of programming. Intuitively, declara-
tive means “tell me what you want, not how to do it.” As you will see, the real declar-
ative part of JavaFX is binding. We show why this is so powerful later in the chapter.

Object literals require an object (or class) type (such as Stage or Scene) followed by 
curly braces { }. Any properties you need to initialize appear inside the braces. (Stage 
has a title property and Scene and Group both have content properties.) Each prop-
erty has a name, followed by a colon : and an initial value for the property. You sep-
arate properties with commas, line breaks, or white space. Here, for example is an 
object literal that initializes a Rectangle (properties x and y designate the upper-left 
corner origin).

Rectangle { x: 10, y: 20, height: 15, width: 150 }

The above Stage, Scene, and Group objects are defined with object literals. Note that 
the Scene object nests inside the Stage object. Likewise, a Group nests inside the 
Scene. Square brackets [ ] define a sequence of items for the content property in a 
Scene or Group. Here, the Scene object’s content property is a sequence of all of the 
top-level nodes of the Scene. In the GuitarTuner application, this is a Group node (see 
Figure 2.2 or Figure 2.3). The Group node likewise includes a content property with 
all of its subnodes (Rectangles, Lines, and a custom GuitarString). How you nest these 
nodes determines the structure of the scene graph.



ptg

Key JavaFX Features 19

Here’s the top-level implementation for GuitarString from its scene graph in 
Figure 2.2 (and Figure 2.3). 

// GuitarString - defined as custom class
Group {

content: [
Rectangle { ... }
Rectangle { ... }
Rectangle { ... }
Text { ... }

]
} // Group

The GuitarString consists of a Group node whose content property defines a sequence 
containing three rectangles and a Text object. You’ll see how this fits into the Guitar-
Tuner application later on.

2.4  Key JavaFX Features

GuitarTuner is a fairly typical JavaFX example application. It has a graphical repre-
sentation and responds to user input by changing some of its visual properties (as 
well as producing guitar sounds). Let’s look at some of the key JavaFX features it uses 
to give you a broad look at the language.

Signature JavaFX Features

Included in any list of key JavaFX features are binding, node event handlers, and animation. 
We discuss each of these important constructs in their own section (see “Doing Things” on 
page 31).

Type Inference

JavaFX provides def for read-only variables and var for modifiable variables.
def numberFrets = 2; // read-only Integer
var x = 27.5; // variable Number
var y: Number; // default value is 0.0
var s: String; // default value is ""

The compiler infers types from the values you assign to variables. Read-only number-
Frets has inferred type Integer; variable x has inferred type Number (Float). This 
means you don’t have to specify types everywhere (and the compiler tells you when a 
type is required.)



ptg

20 Chapter 2 A Taste of JavaFX

Strings

JavaFX supports dynamic string building. Curly braces { } within a String expression 
evaluate to the contents of the enclosed variable. You can build Strings by concatenat-
ing these String expressions and String literals. For example, the following snippet 
prints "Greetings, John Doe!".

def s1 = "John Doe";
println("Greetings, {s1}!"); // Greetings, John Doe!

Shapes

JavaFX has numerous shapes that help you create scene graph nodes. There are 
shapes for creating lines (Line, CubicCurve, QuadCurve, PolyLine, Path) and shapes 
for creating geometric figures (Arc, Circle, Ellipse, Rectangle, Polygon). The Guitar-
Tuner application uses only Rectangle and Line, but you’ll see other shape examples 
throughout this book.

Let’s look at shapes Rectangle and Circle. They are both standard JavaFX shapes that 
extend class Shape (in package javafx.scene.shape). You define a Circle by specifying 
values for its radius, centerX, and centerY properties. With Rectangle, you specify val-
ues for properties height, width, x, and y.

Shapes share several properties in common, including properties fill (type Paint to 
fill the interior of the shape), stroke (type Paint to provide the outline of the shape), 
and strokeWidth (an Integer for the width of the outline). 

Here, for example, is a Circle with its center at point (50,50), radius 30, and color 
Color.RED.

Circle {
radius: 30
centerX: 50 
centerY: 50
fill: Color.RED

}

Here is a Rectangle with its top left corner at point (30, 100), height 30, width 80, and 
color Color.BLUE.

Rectangle {
x: 30, y: 100
height: 30, width: 80
fill: Color.BLUE

}

All shapes are also Nodes (javafx.scene.Node). Node is an all-important class that 
provides local geometry for node elements, properties to specify transformations 



ptg

Key JavaFX Features 21

(such as translation, rotation, scaling, or shearing), and properties to specify functions 
for mouse and key events. Nodes also have properties that let you assign CSS styles to 
specify rendering.1 We discuss graphical objects in detail in Chapter 4.

Sequences

Sequences let you define a collection of objects that you can access sequentially. You 
must declare the type of object a sequence will hold or provide values so that its type 
can be inferred. For example, the following statements define sequence variables of 
GuitarString and Rectangle objects.

var guitarStrings: GuitarString[];
var rectangleSequence: Rectangle[];

These statements create read-only sequences with def. Here, sequence noteValues has 
an inferred type of Integer[]; sequence guitarNotes has an inferred type of String[].

def noteValues = [ 40,45,50,55,59,64 ];
def guitarNotes = [ "E","A","D","G","B","E" ];

Sequences have specialized operators and syntax. You will use sequences in JavaFX 
whenever you need to keep track of multiple items of the same object type. The 
GuitarTuner application uses a sequence with a for loop to build multiple Line objects 
(the frets) and GuitarString objects.

// Build Frets
for (i in [0..<numberFrets])

Line { . . . }

// Build Strings
for (i in [0..<numberStrings])

GuitarString { . . . }

The notation [0..<n] is a sequence literal and defines a range of numbers from 0 to 
n-1, inclusive.

You can declare and populate sequences easily. The following declarative approach
inserts Rectangles into a sequence called rectangleSequence, stacking six Rectangles 
vertically.

def rectangleSequence = for (i in [0..5])
Rectangle {

1. Cascading Style Sheets (CSS) help style web pages and let designers give a uniform look and 
feel throughout an application, widget, or entire web site. You can use CSS to similarly style 
JavaFX nodes. (See “Cascading Style Sheets (CSS)” on page 148 for details on applying styles 
to JavaFX nodes.)



ptg

22 Chapter 2 A Taste of JavaFX

x: 20
y: i * 30
height: 20
width: 40

}

You can also insert number values or objects into an existing sequence using the 
insert operator. The following imperative approach inserts the six Rectangles into a 
sequence called varRectangleSequence.

var varRectangleSequence: Rectangle[];
for (i in [0..5])

insert Rectangle {
x: 20
y: i * 30
height: 20
width: 40

} into varRectangleSequence;

JavaFX Tip

The declarative approach with rectangleSequence is always preferred (if possible). By using 
def rather than var and declaring sequences rather than inserting objects into them, type 
inference will more likely help you and the compiler can optimize the code more effectively.

You’ll see more uses of sequence types throughout this book.

Calling Java APIs 

You can call any Java API method in JavaFX programs without having to do anything 
special. The GuitarString node “plays a note” by calling function noteOn found in Java 
class SingleNote. Here is GuitarString function playNote which invokes SingleNote 
member function noteOn.

function playNote(): Void {
synthNote.noteOn(note); // nothing special to call Java methods
vibrateOn();

}

Class SingleNote uses the Java javax.sound.midi package to generate a synthesized 
note with a certain value (60 is “middle C”). Java class SingleNote is part of project 
GuitarTuner. 

Extending CustomNode

JavaFX offers developers such object-oriented features as user-defined classes, over-
riding virtual functions, and abstract base classes (there is also “mixin” inheritance). 



ptg

Key JavaFX Features 23

GuitarTuner uses a class hierarchy with subclass GuitarString inheriting from a 
JavaFX class called CustomNode, as shown in Figure 2.4.

This approach lets you build your own graphical objects. In order for a custom object 
to fit seamlessly into a JavaFX scene graph, you base its behavior on a special class 
provided by JavaFX, CustomNode. Class CustomNode is a scene graph node (a type of 
Node, discussed earlier) that lets you specify new classes that extend from it. Just like 
Java, “extends” is the JavaFX language construct that creates an inheritance relation-
ship. Here, GuitarString extends (inherits from) CustomNode. You then supply the 
additional structure and behavior you need for GuitarString objects and override any 
functions required by CustomNode. JavaFX class constructs are discussed in more 
detail in Chapter 3 (see “Classes and Objects” on page 67).

Here is some of the code from GuitarTuner's GuitarString class. The create function 
returns a Node defining the Group scene graph for GuitarString. (This scene graph 
matches the node structure in Figure 2.2 on page 15 and Figure 2.3 on page 17. 
Listing 2.2 on page 38 shows the create function in more detail.)

public class GuitarString extends CustomNode {
// properties, variables, functions
. . . 
protected override function create(): Node {

return Group {
content: [

Rectangle { ... }
Rectangle { ... }
Rectangle { ... }
Text { ... }

]
} // Group

}
} // GuitarString

GuitarString

CustomNode

Figure 2.4 GuitarString Class Hierarchy

Extensible scene
graph node

Encapsulates
graphical structure
and behavior of
GuitarString node

www.allitebooks.com

http://www.allitebooks.org


ptg

24 Chapter 2 A Taste of JavaFX

Geometry System 

In JavaFX, nodes are positioned on a two-dimensional coordinate system with the ori-
gin at the upper-left corner. Values for x increase horizontally from left to right and y 
values increase vertically from top to bottom. The coordinate system is always relative 
to the parent container.

Layout/Groups

Layout components specify how you want objects drawn relative to other objects. For 
example, layout component HBox (horizontal box) evenly spaces its subnodes in a 
single row. Layout component VBox (vertical box) evenly spaces its subnodes in a sin-
gle column. Other layout choices are Flow, Tile, and Stack (see “Layout Components” 
on page 119). You can nest layout components as needed. 

Grouping nodes into a single entity makes it straightforward to control event han-
dling, animation, group-level properties, and layout for the group as a whole. Each 
group (or layout node) defines a coordinate system that is used by all of its children. 
In GuitarTuner, the top level node in the scene graph is a Group which is centered ver-
tically within the scene. The subnodes are all drawn relative to the origin (0,0) within 
the top-level Group. Centering the Group, therefore, centers its contents as a whole. 

Benefits of Relative Coordinate Space

Nodes with the same parent share the same relative coordinate space. This keeps any coordinate 
space calculations for subnodes separate from layout issues of the parent container. Then, when 
you move the parent, everything under it moves, keeping relative positions intact. 

JavaFX Script Artifacts

Defining the Stage and Scene are central to most JavaFX applications. However, 
JavaFX scripts can also contain package declarations, import statements, class declara-
tions, functions, variable declarations, statements, and object literal expressions. 
You’ve already seen how object literal expressions can initialize nodes in a scene 
graph. Let’s discuss briefly how you can use these other artifacts.

Since JavaFX is statically typed, you must use either import statements or declare all 
types that are not built-in. You’ll typically define a package and then specify import 
statements. (We discuss working with packages in Chapter 3. See “Script Files and 
Packages” on page 86.) Here is the package declaration and import statements for 
GuitarTuner.

package guitartuner;

import javafx.scene.effect.DropShadow;



ptg

Key JavaFX Features 25

import javafx.scene.paint.Color;
import javafx.scene.paint.LinearGradient;

. . . more import statements . . .

import javafx.stage.Stage;
import noteplayer.SingleNote;

If you’re using NetBeans, the IDE can generate import statements for you (type 
Ctrl+Shift+I in the editor window).

You’ll need script-level variables to store data and read-only variables (def) for values 
that don’t change. In GuitarTuner, we define several read-only variables that help 
build the guitar strings and a variable (singleNote) that communicates with the Java 
midi API. Note that noteValues and guitarNotes are def sequence types.

def noteValues = [ 40,45,50,55,59,64 ];
def guitarNotes = [ "E","A","D","G","B","E" ];
def numberFrets = 2;
def numberStrings = 6;
var singleNote = SingleNote { };

When you declare a Stage, you define the nested nodes in the scene graph. Instead of 
declaring nodes only as object literal expressions, it’s also possible to assign these 
object literals to variables. This lets you refer to them later in your code. (For example, 
the Scene object literal and the Group object literal are assigned to variables in order 
to compute the offset for centering the group vertically in the scene.) 

var scene: Scene;
var group: Group;

scene: scene = Scene { ... }
group = Group { ... }

You may also need to execute JavaFX script statements or define utility functions. 
Here’s how GuitarTuner makes the SingleNote object emit a “guitar” sound.

singleNote.setInstrument(27);   // "Clean Guitar"

Once you set up the Stage and scene graph for an application, it’s ready to ready to 
run.2 In GuitarTuner, the application waits for the user to pluck (click) a guitar string. 

2. Java developers may wonder where function main() is. As it turns out, the JavaFX compiler 
generates a main() for you, but from a developer’s view, you have just a script file.



ptg

26 Chapter 2 A Taste of JavaFX

2.5  Making Things Look Good

Using JavaFX features that enhance the appearance of graphical objects will help your 
application look professionally designed. Here are some simple additions you can 
apply.

Gradients

Gradients lend a depth to surfaces and backgrounds by gradually varying the color of 
the object’s fill property. In general, use linear gradients with rectangular shapes and 
radial gradients with circles and ovals. In GuitarTuner, the background is a linear gra-
dient that transitions from Color.LIGHTGRAY (at the top) to the darker Color.GRAY (at 
the bottom) as shown in Figure 2.5. The guitar fret board also uses a linear gradient.

Here is the LinearGradient for the background scene in GuitarTuner, defined for 
property fill. Note that specifying gradients is declarative; you identify the look you 
want and the system figures out how to achieve it, independent of screen resolution, 
color depth, etc.

fill: LinearGradient {
startX: 0.0
startY: 0.0
endX: 0.0
endY: 1.0
proportional: true
stops: [

Stop {
offset: 0.0
color: Color.LIGHTGRAY 

},
Stop {

offset: 1.0

Figure 2.5 Gradients in the GuitarTuner Application

Fret Board
Linear

Gradient

Background
Linear

Gradient



ptg

Making Things Look Good 27

color: Color.GRAY 
}

]
}

The background gradient changes color along the y axis and the color is constant 
along the x axis (properties startX and endX are the same). Property stops is a 
sequence of Stop objects containing an offset and a color. The offset is a value 
between 0 and 1 inclusive; each succeeding offset must have a higher value than the 
preceding one. 

Property proportional indicates whether start and end values are proportional 
(defined between [0..1] if true) or absolute (absolute coordinates if false).

Radial gradients work well for circular shapes, as shown in Figure 2.6. Here you see 
three Circle shapes, all with radial gradients. The first circle defines a gradient with its 
center in the lower left quadrant (centerX is 0.25 and centerY is 0.75). The second cir-
cle’s gradient is centered (centerX and centerY are both 0.5), and the third circle’s gra-
dient appears in the upper right quadrant (centerX is 0.75 and centerY is 0.25).

Here is the radial gradient for the middle circle. 

fill: RadialGradient {
centerX: 0.5 // x center of gradient
centerY: 0.5 // y center of gradient
radius: 0.5 // radius of gradient
stops: [

Stop {
offset: 0
color: Color.WHITE 

},
Stop {

offset: 1

Figure 2.6 Radial Gradients work well with circular shapes



ptg

28 Chapter 2 A Taste of JavaFX

color: Color.DODGERBLUE
}

]
}

Note that the gradient is half the size of the circle (radius is 0.5). Making the gradient 
less than the full size lets the last stop color appear more prominent (the dark color 
predominates).

Color

You specify a shape’s color with property fill. JavaFX has many predefined colors 
ranging alphabetically from Color.ALICEBLUE to Color.YELLOWGREEN. (In the NetBeans 
IDE, press Ctrl+Space when the cursor is after the dot in Color to see a complete list, 
as shown in Figure 2.7.)

You can also specify arbitrary colors with Color.rgb (each RGB value ranges from 0 to 
255), Color.color (each RGB value ranges from 0 to 1), and Color.web (a String corre-
sponding to the traditional hexadecimal-based triad). An optional final argument sets 
the opacity, where 1 is fully opaque and 0 is fully translucent. You can also make a 
shape transparent by setting its fill property to Color.TRANSPARENT.

Here are several examples of color settings. Each example sets the opacity to .5, which 
allows some of the background color to show through.

def c1 = Color.rgb(10, 255, 15, .5);   // bright lime green
def c2 = Color.color(0.5, 0.1, 0.1, .5);    // dark red
def c3 = Color.web("#546270", .5);    // dark blue-gray

Figure 2.7 Explore color choices with the NetBeans IDE



ptg

Making Things Look Good 29

Numeric-based color values (rather than hexadecimal strings or predefined colors) let 
you write functions and animations that numerically manipulate gradients, colors, or 
opacity. For example, the following fill property gets its Color.rgb values from a for
loop’s changing value i. The loop produces three different shades of green, depending 
on the value of i.

def rectangleSequence = for (i in [0..2])
Rectangle {

x: 60 * i
y: 50
height: 50
width: 40
fill: Color.rgb(10 + (i*50), 100 + (i*40), i*50)

}

Figure 2.8 shows the resulting set of rectangles with different fill values.

Rectangles with Arcs

You can soften the corners of Rectangles by specifying properties arcWidth and 
arcHeight, as shown in Figure 2.9. The first Rectangle has regular, square corners. The 
second Rectangle sets arcHeight and arcWidth to 15, and the third one uses value 30
for both. Here’s the object literal for the third Rectangle.

Rectangle {
x: 180
y: 0
height: 70
width: 60
arcHeight: 30
arcWidth: 30
fill: LinearGradient { . . . }

}

Figure 2.8 Manipulating numeric-based Color values



ptg

30 Chapter 2 A Taste of JavaFX

DropShadows

One of the many effects you can specify is DropShadow (effects are declarative). 
Effect DropShadow applies a shadow to its node, giving the node a three-dimensional 
look. In project GuitarTuner, the fret board (guitar neck) uses a default drop shadow, 
as follows.

effect: DropShadow { }

The default object literal provides a drop shadow with these values.
effect: DropShadow {

offsetX: 0.0
offsetY: 0.0
radius: 10.0
color: Color.BLACK
spread: 0.0

}

You can manipulate the location of the shadow by changing offsetX and offsetY.
Negative values for offsetY set the shadow above the object and negative values for 
offsetX set the shadow to the left. Positive values for offsetX and offsetY place the 
shadow to the right and below, respectively. You can also change a shadow’s size 
(radius), color, and spread (how “sharp” the shadow appears). A spread value of 1 
means the shadow is sharply delineated. A value of 0 provides a “fuzzy” appearance. 
Figure 2.10 shows three rectangles with drop shadows that fall below and to the right 
of the rectangles, using these offsets.

effect: DropShadow {
// shadow appears below and to the right of object
offsetX: 5.0
offsetY: 5.0

}

Figure 2.9 Soften Rectangles with rounded corners



ptg

Doing Things 31

2.6  Doing Things

JavaFX has three main constructs for doing things: binding, node properties that 
define event handlers, and animation. Together, these constructs provide powerful yet 
elegant solutions for modifying scene graphs based on user input or other events. 
Let’s see how GuitarTuner uses these constructs to get its tasks done. 

Binding

Binding in JavaFX is a powerful technique and a concise alternative to specifying tra-
ditional callback event handlers. Basically, binding lets you make a property or vari-
able depend on the value of an expression. When you update any of the “bound to” 
objects in the expression, the dependent object automatically changes. Suppose, for 
example, we bind area to height and width, as follows.

var height = 3.0;
var width = 4.0;
def area = bind height * width; // area = 12.0

width = 2.5;  // area = 7.5
height = 4;  // area = 10.0

When either height or width changes, so does area. Once you bind a property (or vari-
able), you can’t update it directly. For example, you get a compile-time error if you try 
to directly update area.

area = 5; // compile time error

If you make area a var and provide a binding expression, you’ll get a runtime error if 
you try to update it directly.

Figure 2.10 Drop shadows provide a three-dimensional effect



ptg

32 Chapter 2 A Taste of JavaFX

In GuitarTuner, the vibrating string changes both its location (property translateY)
and its thickness (property height) at run time to give the appearance of vibration. 
These properties are bound to other values that control how a guitar string node 
changes.

var vibrateH: Number;
var vibrateY: Number;

Rectangle {
x: 0.0
y: yOffset
width: stringLength
height: bind vibrateH // change height when vibrateH changes
fill: stringColor
visible: false
translateY: bind vibrateY // change translateY when vibrateY changes

}

GuitarTuner also uses bind to keep the fret board centered vertically by binding prop-
erty layoutY in the top level group.

group = Group {
layoutY: bind (scene.height - group.layoutBounds.height) /

2 - group.layoutBounds.minY
. . .

}

Node property layoutBounds provides bounds information for its contents. If a user 
resizes the window, the top level group is automatically centered vertically on the 
screen. Binding helps reduce event processing code because (here, for example) you 
don’t have to write an event handler to detect a change in the window size.

Binding is Good

Binding is good for many things. For example, you can change the appearance of a node based 
on changes to the program’s state. You can make a component visible or hidden. You can also 
use binding to declaratively specify layout constraints. Not only does binding produce less 
code, but the code is less error-prone, easier to maintain, and often easier for the compiler to 
optimize.

Mouse Events

JavaFX nodes have properties for handling mouse and key events. These properties 
are set to callback functions that the system invokes when an event triggers. In Guitar-
Tuner, the “mouse detection” rectangle has the following event handler to detect a 
mouse click event. 



ptg

Doing Things 33

onMouseClicked: function(evt: MouseEvent): Void {
if (evt.button == MouseButton.PRIMARY) {

// play and vibrate selected “string”
}

}

The if statement checks for a click of the primary mouse button (generally the left 
mouse button is primary) before processing the event. The event handler function 
(shown in the next section) plays the note and vibrates the string.

Animations

JavaFX specializes in animations. (In fact, we dedicate an entire chapter to animation. 
See Chapter 7 beginning on page 205.) You define animations with timelines and then 
invoke Timeline functions play or playFromStart (there are also functions pause and 
stop). Timelines consist of a sequence of key frame objects that define a frame at a spe-
cific time offset within the timeline. (Key frames are declarative. You say “this is the 
state of the scene at this key time” and let the system figure out how to render the 
affected objects.) Within each key frame, you specify values, an action, or both. Tradi-
tionally, people think of animations as a way to move objects. While this is true, you’ll 
see that JavaFX lets you animate any writable object property. You could, for instance, 
use animation to fade, rotate, resize, or even brighten an image.

Figure 2.11 shows a snapshot of a program with simple animation. It moves a circle 
back and forth across its container.

Here is the timeline that implements this animation using a specialized shorthand 
notation for KeyFrames. The timeline starts out by setting variable x to 0. In gradual, 
linear increments, it changes x so that at four seconds, its value is 350. Now, it per-
forms the action in reverse, gradually changing x so that in four more seconds it is 
back to 0 (autoReverse is true). This action is repeated indefinitely (or until the time-
line is stopped or paused). Constants 0s and 4s are Duration literals.

Figure 2.11 Timelines let you specify animations

www.allitebooks.com

http://www.allitebooks.org


ptg

34 Chapter 2 A Taste of JavaFX

var x: Number;
Timeline {

repeatCount: Timeline.INDEFINITE
autoReverse: true
keyFrames: [

at (0s) { x => 0.0 }
at (4s) { x => 350 tween Interpolator.LINEAR }

]
}.play(); // start Timeline

. . . 
Circle {

. . .
translateX: bind x

}

The JavaFX keyword tween is a key frame operator that lets you specify how a variable 
changes. Here, we use Interpolator.LINEAR for a linear change. That is, x doesn’t 
jump from 0 to 350, but gradually takes on values in a linear fashion. Linear interpola-
tion moves the Circle smoothly from 0 to 350, taking four seconds to complete one 
iteration of the timeline.

JavaFX has other interpolators. Interpolator DISCRETE jumps from the value of one key 
frame to the second. Interpolator EASEIN is similar to LINEAR, except the rate of change 
is slower at the onset. Similarly, EASEOUT is slower at the finish and EASEBOTH provides 
easing on both ends of the timeline.

To make this animation apply to the Circle node, you bind the Circle’s translateX
property to the variable manipulated by the timeline (x). Property translateX repre-
sents a node’s change in the x direction.

Now let’s examine how GuitarTuner uses animation to vibrate the guitar string and 
play its note. Each GuitarString object uses two rectangles to implement its visible 
behavior. One rectangle is a stationary, thin “string” and represents the string in a 
static state. This motionless rectangle is always visible in the scene. The second rectan-
gle is only visible when the string is “played.” This rectangle expands and contracts 
its height quickly using animation (a Timeline). This moving rectangle gives users the 
illusion of a vibrating string. 

To get a uniform vibrating effect, the rectangle must expand and contract evenly on 
the top and bottom. The animation makes the string appear to vibrate by varying the 
height of the rectangle from 1 to 3 while keeping it vertically centered by varying its 
translateY property between 5 and 4. When the string is clicked, the string’s note 
plays and the rectangle vibrates for the allotted time. When the timeline stops, only 
the stationary rectangle is visible.



ptg

Doing Things 35

Let’s first look at the timeline that plays the note. This timeline appears in the event 
handler for the GuitarString node (see the code for GuitarString in Listing 2.2 on 
page 38).

onMouseClicked: function(evt: MouseEvent): Void {
if (evt.button == MouseButton.PRIMARY) {

Timeline {
keyFrames: [

KeyFrame {
time: 0s
action: playNote // play note and start vibration

}
KeyFrame {

time: 2.8s
action: stopNote // stop playing note and stop vibration

}
]

}.play(); // start Timeline
}

}

Here, the timeline is an object literal defined inside the event handler, invoked with 
function play. This timeline defines a sequence of KeyFrame objects, where function 
playNote is invoked at time offset 0 seconds and function stopNote is invoked at time 
offset 2.8 seconds (2.8s). Here are functions playNote and stopNote.

// play note and start vibration
function playNote(): Void {

synthNote.noteOn(note);
vibrateOn();

}

// stop playing note and stop vibration
function stopNote(): Void {

synthNote.noteOff(note);
vibrateOff();

}

Function synthNote.noteOn calls a Java class API to play the guitar string. Function 
vibrateOn causes the string vibration.

function vibrateOn(): Void {
play.visible = true; // make the vibrating rectangle visible
timeline.play(); // start the vibration timeline

}

Here is the vibration timeline. 
def timeline = Timeline {

repeatCount: Timeline.INDEFINITE
autoReverse: true
keyFrames: [



ptg

36 Chapter 2 A Taste of JavaFX

at (0s) { vibrateH => 1.0 }
at (.01s) { vibrateH => 3.0 tween Interpolator.LINEAR }
at (0s) { vibrateY => 5.0 }
at (.01s) { vibrateY => 4.0 tween Interpolator.LINEAR }

]
};

This timeline uses the shorthand notation discussed earlier for key frames and ani-
mates two variables: vibrateH and vibrateY. Variable vibrateH changes the height of 
the rectangle that represents the vibrating string. Variable vibrateY changes the verti-
cal position of the rectangle to keep it centered as the oscillating height changes. 

2.7  Source Code for Project GuitarTuner

Listing 2.1 and Listing 2.2 show the code for class GuitarString in two parts. 
Listing 2.1 includes the class declarations, functions, class-level variables, and proper-
ties for class GuitarString. Note that several variables are declared public-init. This 
JavaFX keyword means that users of the class can provide initial values with object lit-
erals, but otherwise these properties are read-only. The default accessibility for all 
variables is script-private, making the remaining declarations private.

Use def for read-only variables and var for modifiable variables. The GuitarString 
class also provides utility functions that play a note (playNote) or stop playing a note 
(stopNote). Along with the sound, guitar strings vibrate on and off with vibrateOn and 
vibrateOff. These functions implement the behavior of the GuitarString class.

Listing 2.1 Class GuitarString—Properties, Variables, and Functions

package guitartuner;

import javafx.animation.Interpolator;
import javafx.animation.KeyFrame;
import javafx.animation.Timeline;
import javafx.scene.Cursor;
import javafx.scene.CustomNode;
import javafx.scene.Group;
import javafx.scene.input.MouseButton;
import javafx.scene.input.MouseEvent;
import javafx.scene.Node;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import noteplayer.SingleNote;

public class GuitarString extends CustomNode {



ptg

Source Code for Project GuitarTuner 37

    // read-only variables
    def stringColor = Color.WHITESMOKE;
    // "Strings" are oriented sideways, so stringLength is the
    // Rectangle width and stringSize is the Rectangle height
    def stringLength = 300;
    def stringSize = 1;
    def stringMouseSize = 15;
    def timeline = Timeline {
        repeatCount: Timeline.INDEFINITE
        autoReverse: true
        keyFrames: [
            at (0s) { vibrateH => 1.0 }
            at (.01s) { vibrateH => 3.0 tween Interpolator.LINEAR }
            at (0s) { vibrateY => 5.0 }
            at (.01s) { vibrateY => 4.0 tween Interpolator.LINEAR }
        ]
    };

    // properties to be initialized
    public-init var synthNote: SingleNote;
    public-init var note: Integer;
    public-init var yOffset: Number;
    public-init var noteText: String;

    // class variables
    var vibrateH: Number;
    var vibrateY: Number;
    var play: Rectangle;

    function vibrateOn(): Void {
        play.visible = true; 
        timeline.play();
    }
    function vibrateOff(): Void {
        play.visible = false;
        timeline.stop();
    }
    function playNote(): Void {
        synthNote.noteOn(note);
        vibrateOn();
    }
    function stopNote(): Void {
        synthNote.noteOff(note);
        vibrateOff();
    }



ptg

38 Chapter 2 A Taste of JavaFX

Listing 2.2 shows the second part of the code for the GuitarString class. 

Every class that extends CustomNode must define a function create that returns a 
Node object.3 Often the node you return will be a Group, since Group is the most gen-
eral Node type and can include subnodes. But, you can return other Node types, such 
as Rectangle (Shape) or HBox (horizontal box) layout node.

The scene graph for GuitarString is interesting because it actually consists of three 
Rectangle nodes and a Text node. The first Rectangle, used to detect mouse clicks, is 
completely translucent (its opacity is 0). This Rectangle is wider than the guitar string 
so the user can more easily select it with the mouse. Several properties implement its 
behavior: property cursor lets a user know the string is selected and property 
onMouseClicked provides the event handling code (play the note and vibrate the 
string).

The second Rectangle node defines the visible string. The third Rectangle node 
(assigned to variable play) “vibrates” by both moving and changing its height. This 
rectangle is only visible when a note is playing and provides the vibration effect of 
“plucking” a string. The movement and change in height are achieved with animation 
and binding. The Text node simply displays the letter (E, A, D, etc.) associated with 
the guitar string’s note.

Listing 2.2 Scene Graph for GuitarString

    protected override function create(): Node {
        return Group {
            content: [

// Rectangle to detect mouse events for string plucking
     Rectangle {
        x: 0
       y: yOffset

     width: stringLength
    height: stringMouseSize
    // Rectangle has to be "visible" or scene graph will
    // ignore mouse events. Therefore, we make it fully
   // translucent (opacity=0) so it is effectively invisible

     fill: Color.web("#FFFFF", 0)  // translucent
     cursor: Cursor.HAND
    onMouseClicked: function(evt: MouseEvent): Void {

  if (evt.button == MouseButton.PRIMARY){
           Timeline {

            keyFrames: [
    KeyFrame {

3. Well, almost. If you don’t define function create, then you must declare the class abstract.
The Piano example (see “Project Piano” on page 167) uses an abstract class.



ptg

Source Code for Project GuitarTuner 39

       time: 0s
action: playNote

                 }
    KeyFrame {

          time: 2.8s
action: stopNote

                 }
 ]  // keyFrames

      }.play();  // start Timeline
          } // if

                    }
   }   // Rectangle

                // Rectangle to render the guitar string
     Rectangle {
        x: 0.0

      y: 5 + yOffset
     width: stringLength
     height: stringSize

      fill: stringColor
                }

// Special "string" that vibrates by changing its height
    // and location
   play = Rectangle {

        x: 0.0
       y: yOffset

     width: stringLength
    height: bind vibrateH

      fill: stringColor
      visible: false

   translateY: bind vibrateY
                }

 Text {      // Display guitar string note name
    x: stringLength + 8
     y: 13 + yOffset

       font: Font {
          size: 20

                    }
      content: noteText

                }
            ]
        }   // Group
    }
} // GuitarString

Listing 2.3 shows the code for Main.fx, the main program for GuitarTuner.



ptg

40 Chapter 2 A Taste of JavaFX

Listing 2.3 Main.fx

package guitartuner;
import guitartuner.GuitarString;
import javafx.scene.effect.DropShadow;
import javafx.scene.Group;
import javafx.scene.paint.Color;
import javafx.scene.paint.LinearGradient;
import javafx.scene.paint.Stop;
import javafx.scene.Scene;
import javafx.scene.shape.Line;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;
import noteplayer.SingleNote;

def noteValues = [ 40,45,50,55,59,64 ]; // numeric value required by midi
def guitarNotes = [ "E","A","D","G","B","E" ]; 
// guitar note name
def numberFrets = 2;
def numberStrings = 6;
var singleNote =  SingleNote{};
singleNote.setInstrument(27);   // "Clean Guitar"

var scene: Scene;
var group: Group;
Stage {
    title: "Guitar Tuner"
    visible: true
    scene: scene = Scene {

fill: LinearGradient {
startX: 0.0
startY: 0.0
endX: 0.0
endY: 1.0
proportional: true
stops: [

Stop {
offset: 0.0
color: Color.LIGHTGRAY

},
Stop {

offset: 1.0
color: Color.GRAY

}
]

        }
        width: 340
        height: 200
        content: [
            group = Group {

 // Center the whole group vertically within the scene
 layoutY: bind (scene.height - group.layoutBounds.height) / 



ptg

Source Code for Project GuitarTuner 41

2 - group.layoutBounds.minY
     content: [

Rectangle { // guitar neck (fret board)
      effect: DropShadow { }

          x: 0
          y: 0
         width: 300
         height: 121

      fill: LinearGradient {
startX: 0.0
startY: 0.0
endX: 0.0
endY: 1.0
proportional: true
stops: [

Stop {
offset: 0.0
color: Color.SADDLEBROWN 

},
Stop {

offset: 1.0
color: Color.BLACK

}
]

}
} // Rectangle

     for (i in [0..<numberFrets])   // two frets
          Line {

        startX: 100 * (i + 1)
           startY: 0
         endX: 100 * (i + 1)

           endY: 120
         stroke: Color.GRAY

           }
   for (i in [0..<numberStrings])   // six guitar strings

        GuitarString {
        yOffset: i * 20 + 5

         note: noteValues[i]
        noteText: guitarNotes[i]
        synthNote: singleNote

           }
                ]
            }
        ]
    }
}



ptg

This page intentionally left blank 

From the Library of sam kaplan



ptg

43

3 JavaFX Language

Now that you’ve seen JavaFX code in the overview application example, let’s discuss 
the JavaFX scripting language in more detail. This chapter covers the essential aspects 
of the JavaFX language.

What You Will Learn

• Declaring variables and defining their types

• Using operators and expressions

• Using sequences

• Writing functions with arguments and return values

• Using function types

• Defining classes, instance variables, and instance functions

• Creating objects from classes with object literals

• Using inheritance and overriding functions

• Writing init and postinit blocks

• Using abstract classes and mixin inheritance

• Using binding and triggers

• Packaging classes and writing script files

• Exception handling

3.1  Variables and Types

In JavaFX, you define modifiable variables with the keyword var. Use the keyword 
def for read-only variables. Attempts to directly modify def variables result in com-
pile-time errors. 

def maxLength = 100; // read-only

www.allitebooks.com

http://www.allitebooks.org


ptg

44 Chapter 3 JavaFX Language

var count = 0; // readable and writable
count++; // count is writable
maxLength = 500; // compiler error

You can also use def with variables that change through binding (see “Binding 
Expressions” on page 52). Using def allows the compiler to generate more efficient 
code and check the correctness of your program.

Programming Tip

If something can be def, it probably should be.

You may have noticed that the above var and def statements did not specify any types
for the declarations. This is because JavaFX has a sophisticated inference engine that 
determines types by their use. Type inference makes your code more concise. Of 
course, you can always specify types explicitly if you need to. 

def maxLength: Integer = 100; // read-only
var count: Integer = 0; // readable and writable

JavaFX Types

JavaFX is a statically-typed language with the following built-in types: Boolean, Inte-
ger, Number, String, Duration, and Void. Use Boolean for boolean variables, Integer for 
integral variables, Number for floating variables, and String for strings. Use Void with 
functions that do not return values. (Note that the Void keyword begins with a capital 
V in JavaFX.) Duration types support time literals.

Let’s look at the built-in JavaFX types in more detail.

Boolean

The Boolean type is handy for variables representing flags and any application-spe-
cific internal state. Use the keywords true and false for boolean values. The default 
value for Boolean is false.

var isElement: Boolean; // Boolean type, default is false
var flag = true; // Boolean type inferred
isElement = 1; // compiler error
flag++; // compiler error



ptg

Variables and Types 45

Integer

The Integer type is signed integral values representing 32 bits. You can use octal (pre-
fix with 0) or hexadecimal notation (prefix with 0x or 0X) to initialize or assign values. 
The default value for Integer is 0.

var counter: Integer; // Integer type (32 bits), default is 0
def length = 80; // Integer type inferred
var byte = 0x3f; // hexadecimal value
var word = 037; // octal value

Number

Use Number when you need 32-bit floating-point precision. The default value for Num-
ber is 0.0.

var radius: Number; // Number type, default is 0.0
var value = 1.1; // Number type inferred
var big = 1.56e10; // big number
var small = 6.32e-25; // small number

String

The String type represents character strings of any length. You can use double quota-
tion marks (") or single quotation marks (') to enclose character string literals. Single 
quotation marks are legal within double-quoted strings without being escaped (and 
vice versa). The compiler also merges adjacent string literals for you at compile-time, 
making it convenient to define strings on multiple lines. Use curly braces "{}" to 
embed expressions in strings. The default value for String is "".

var s: String; // String type, default is ""
var a = "datapoint"; // String type inferred
var b = "I can't figure it out, that's too hard";
def c = "Hello " // adjacent strings
"and Goodbye"; // "Hello and Goodbye"
var s1 = 'duck'; // single quotes ok
var s2 = 'soup'; // single quotes ok
var s3 = "{s1} {s2}"; // "duck soup"
var s4 = s1 s2; // compiler error
var s5 = "alpha" "bet"; // "alphabet"

Duration

The Duration type represents floating values for units of time. Durations are denoted 
with time literals (ms for milliseconds, s for seconds, m for minutes, and h for hours). 
You typically use Duration types with animation in JavaFX. The default value for 
Duration is 0ms.



ptg

46 Chapter 3 JavaFX Language

var timeSlice: Duration; // Duration type, default is 0ms
var period = 100ms; // Duration type inferred, 100 milliseconds
var halfMinute = 30s; // 30 seconds
var halfHour = 30m; // 30 minutes
var halfDay = 12h; // 12 hours
var halfPast = .5h; // half hour

Void

Use the Void type to define a function that does not return a value.
function startSimulation(): Void {

simulate(100ms);
// no return value

}

(See “Functions” on page 61 for more details about JavaFX functions.)

But Wait, There’s More . . .

You can also use Java wrapper types in JavaFX, but you probably won’t need them 
very often. These types are primarily used for interoperability with Java classes that 
use primitives in their interfaces. Use Character for 16-bit Unicodes, Byte for 8 bits, 
Short for 16 bits, Integer for 32 bits, and Long for 64 bits (all signed integral values). 
For floating values, use Float (32 bits) or Double (64 bits). In JavaFX, the Number type is 
Float (32 bits). Here are some examples.

var ch: Character = 120; // Unicode character (16 bits) - 'x'
var ts: Byte = 127; // 8 bits
var data: Byte = 500; // compiler error - too large for 8 bits
var ts: Short = 10; // Short (16 bits)
var sdata: Short = 50000; // compiler error - too large for 16 bits
var tl: Long = 100000; // Long (64 bits)
var tg: Double = 3.45; // Double (64 bits)
var tf: Float = 1.23; // Float type (32 bits) - same as Number

Printing Variables

Printing the values of JavaFX variables on the console screen is easy. The function 
print(var) prints the value of var and println(var) prints the value of var followed 
by a newline. Here are some examples.

var b = true;       // Boolean type
println(b);         // true
var i = 12;       // Integer type
println(i);          // 12
var f = 3.45;       // Number type
println(f); // 3.45
var s = "javafx"; // String type



ptg

Operators 47

println(s); // javafx
var d = 100ms; // Duration type
println(d); // 100.0ms
var a: Character = 97; // Character type
println(a); // 'a'
print("last");          // last (no newline)
println("");         // empty string with newline

You can also use curly braces "{}" to embed variable values in string expressions.
var i = 12; var s = "javafx";
println("i = {i}, s = {s}");    // i = 12, s = javafx

For more sophisticated formatting, “printf-like” formats are available within "{}".
var i = 12; var s = "javafx";
println("i = {%3d i}, s = {%.4s s}"); // i =  12, s = java
var v = 56.789;
println("v = {%8.2f v}");    // v =    56.79

The first println() prints integer i right-justified in a field of 3 characters followed by 
the first four characters of the string s. The second println() prints floating value v in 
a field of 8 characters with 2 digits to the right of the decimal point. Refer to the Java-
doc for java.lang.System.printf() to learn more about these formatting options.

Pseudo Variables

JavaFX supports several pre-defined variables that you can use in your programs. 
These variables are script-level read-only def variables.

Table 3.1 shows the JavaFX pseudo-variables. 

3.2  Operators

JavaFX has arithmetic, assignment, unary, relational, and logical operators. The 
instanceof operator determines variable types. Let’s look at each of these operators 
separately.

TABLE 3.1 Built-In JavaFX pseudo variables

Name Description

__PROFILE__ Environment (“mobile”, “desktop”, “browser”)
__FILE__ Script file name (full path name)
__DIR__ Script file directory (full path name)



ptg

48 Chapter 3 JavaFX Language

Arithmetic Operators

The arithmetic operators are add (+), subtract (-), multiply (*), divide (/) and divide 
with integer remainder (mod). Here are several examples with Integer variables.

var val = 25; var nt = 4;
var a = val + nt; // a is 29
var b = val - nt; // b is 21
var c = val * nt; // c is 100
var d = val / nt; // d is 6
var e = val mod nt; // e is 1

Mixed type arithmetic will do what is reasonable, as these examples show. 
var fv = 6.5; // fv is Number type
var ic = 6; // ic is Integer type
var td = 100ms; // td is Duration type
var tg = 10ms; // tg is Duration type

var gv = fv * ic; // gv is Number type
var tf = td / fv; // tf is Duration type
var hm = td / tg; // hm is Number type
var mm = td * tg; // compiler error

Assignment Operators

Besides conventional assignments with =, you can also form compound assignments 
with arithmetic operators. Here are some examples with Integer variables.

var val = 25; var nt = 4;
val += nt; // val = val + nt; (val is 29)
val -= nt; // val = val - nt; (val is 25)
val *= nt; // val = val * nt; (val is 100)
val /= nt; // val = val / nt; (val is 25)

The mod operator is not allowed in a compound assignment. Instead, you must do
val = val mod nt; // val is 1

You can also assign a sequence of values with [].
var summerMonths = ["June", "July", "August"];
var powersOfTen = [10, 100, 1000, 10000];

For more on assignments with sequences, see “Sequence Literals” on page 54.

Unary Operators

Although most operators in JavaFX are binary (two operands), there are several unary 
(one operand) operators. These are ++ (preincrement, postincrement), -- (predecre-



ptg

Operators 49

ment, postdecrement), - (negation), and not (logical complement). Here are some 
examples.

var data = 10;
var negate = -data; // negate is -10
var m; var n;
var s = 5; var t = 5;
m = s++; // m is 5, s is 6
n = ++s; // n is 7, s is 7
m = t--; // m is 5, t is 4
n = --t; // n is 3, t is 3
var enabled = false;
var start = not enabled; // start is true

Relational Operators

The relational operators compare values (>, >=, <, <=) and test for equality (==, !=).
Here are several examples.

var f = 10.5; var g = 20.5; var h;
h = (f == g); // h is false
h = (f != g); // h is true
h = (f > g); // h is false
h = (f < g); // h is true
h = (f >= g); // h is false
h = (f <= g); // h is true
h = (f > 10); // h is true

Note that the inferred type is Boolean for variable h in these examples. The last exam-
ple compares different types (Number and Integer). In this case, the Integer is first con-
verted to Number before the comparison.

With Strings, the equality operators (==, !=) in JavaFX perform value comparisons (this 
is different than Java).

def input: String = getInput(); // get input String
var exit = (input == "quit"); // true if input string is "quit"

Logical Operators

The and operator and the or operator let you combine boolean expressions. 
var i = 2; var j = 3; var k = 4;
var p = (j > i and j < k); // p is true
var q = (j > k or i < k); // q is true

Both operators have “short-circuit” behaviors; that is, if the first expression of opera-
tor and is false, the second expression is not evaluated. Likewise, the second expres-
sion of operator or is not evaluated if the first expression is true.



ptg

50 Chapter 3 JavaFX Language

Instanceof Operator

The instanceof operator tells you if an object is a specific type, returning true for a 
correct type match. Here are several examples.

def u = "string of chars"; // String
var v = u instanceof String; // v is true
def w = 6.5; // Number (Float)
v = w instanceof java.lang.Float; // v is true

You typically use instanceof with the as operator to determine if an object is an 
instance of a specific class at runtime. (See “As Operator” on page 80.)

3.3  Expressions

JavaFX is an expression language with value expressions. Many forms of blocks, loops, 
and conditionals in JavaFX are actually expressions in themselves with a value and a 
type. In certain cases, for instance, you can use the return value of an if statement in 
an assignment statement or the return value from a for loop to create a new sequence. 
You can also bind expressions. 

Let’s look at JavaFX expressions in more detail.

Block Expressions

A block in JavaFX is a list of expressions enclosed by curly braces. The value of the 
block expression is the value of the last expression. Blocks can be empty (their type is 
Void) and var and def statements are expressions, too (their value is the value of the 
new variable).

Typically, blocks are used for function bodies and with if statements, for loops, and 
while loops. Blocks can have local var variables and def constants whose scope is 
defined only within the block where they are declared. However, blocks can also 
return values in JavaFX.

var a = 10; var b = 20; var c = 30;
var sum = { // start of block

def d = 40; def e = 50;
a + b + c + d + e // value of last expression

} // end of block
println(sum);     // sum is 150

A block’s type and value is the type and value of the last expression in the block, 
which does not require a terminating semicolon.



ptg

Expressions 51

If Expressions

An if expression alters program flow based on the value of a boolean expression as a 
conditional.

var num;
var i: Integer = getNumber();
if (i >= 0 and i <= 9)

num = "single digit";

The else keyword can also be used with if expressions.
var num;
var i: Integer = getNumber();
if (i >= 0 and i <= 9) {

num = "single digit";
} else if (i >= 10 and i <= 99) {

num = "two digits";
} else

num = "three digits or more";

Since if expressions are value expressions in JavaFX, we can collapse all this code into 
the following terse form (no braces needed).

var i: Integer = getNumber();
var num = if (i >= 0 and i <= 9) "single digit" 

else if (i >= 10 and i <= 99) "two digits" 
else "three digits or more";

Note that if controls the execution of one expression. If that expression includes one 
statement, a block with braces is optional. If that expression includes more than one 
statement, you must use a block.

For Expressions

A for loop is an easy way to do something a certain number of times.
for (i in [1..5]) {

doSomething(); // call function five times
}

The notation [1..5] generates a sequence literal (see “Sequence Literals” on page 54).

A for loop is also convenient for going through a sequence of items.
var strings = ["straight", "forward", "thinking"];
for (s in strings) {

writeText(s); // call function three times with s
}



ptg

52 Chapter 3 JavaFX Language

This for loop fetches three strings from a sequence, one at a time, assigns each one to 
variable s, and passes it as an argument to function writeText.

Programming Tip

Note that you do not declare loop variables with var or def before the keyword in. You cannot 
modify a loop variable and its scope is the loop where it is defined.

A for loop is actually an expression that returns a sequence. We show you how to use 
this powerful technique in “Creating Sequences with for” on page 56.

While Expressions

A while expression loops until a given condition is false. While expressions do not 
return a value. While loops are typically used when you can easily express the loop 
continuation condition as a boolean. Here is an example.

var u = 1234; // count number of digits in number
var numDigits = 0;
while (u != 0) {

numDigits++;
u /= 10;

}
println(numDigits); // numDigits is 4

Break and Continue

The keywords break and continue may only appear inside for and while expressions. 
Use continue to skip to the next iteration and break to exit a loop immediately.

var str: String = getString();
for (weekDay in ["Mon", "Tues", "Wed", "Thu", "Fri"]) {

if (weekDay == "Wed") continue;    // skip Wed
. . .
if (str == weekDay) break;         // exit loop

}

Binding Expressions

One of the most powerful features of JavaFX is binding. The idea is to bind a variable 
in your program to something that changes when your program runs. This creates a 
dependency between your variable and what is changing. When dependencies change, 
your variable automatically updates. JavaFX lets you bind def or var variables to 
expressions (blocks, conditionals, functions, for loops, and object literals).

The format for binding expressions is
def v = bind expression;



ptg

Expressions 53

When expression changes, v is updated.

Let’s look at several examples. Suppose you are calculating a product between two 
numbers. When either number changes, you want the product value to stay current. 
Binding the product expression does the job.

var a = 10; var b = 2;
def product = bind a * b; // bind to expression
println(product);         // 20
a = 100;
println(product);        // 200
b = 5;
println(product);        // 500
product = 10;      // compiler error

The compiler lets you declare bound variables with var, but you cannot modify them 
(see “Overriding bind” on page 75). If you try, you get a runtime error rather than a 
compiler error.

var prod = bind a * b; // bind to expression
prod = 10;        // AssignToBoundException at runtime

Here’s an example that calls a getNumber function to update variable top. Binding the 
if expression insures that top gets a value no greater than 100.

def top = bind if (num <= 100) num else 100; // bind to conditional
var num = getNumber(); // suppose num is 50
println(top); // top is 50
num = getNumber(); // suppose num is 500
println(top); // top is 100

Here’s another example that binds the addition of variables in a block expression to a 
sum variable.

a = 10; b = 20; var c = 30;
def sum = bind { // bind to block expression

def d = 40; def e = 50;
a + b + c + d + e // binds to this statement

}
println(sum);     // sum is 150
b = 50; c = 50;
println(sum);    // sum is 200

Recall that the value of a block expression is the value of its last expression. With bind,
all other expressions in the block must be defined with def or var.

Bidirectional Binding

Bidirectional binding is often used with user interactions to make sure that stored val-
ues and displayed values are in sync. The format for bidirectional binding is

www.allitebooks.com

http://www.allitebooks.org


ptg

54 Chapter 3 JavaFX Language

var v = bind w with inverse;

This format allows updates to occur in both directions. Variable v updates if w
changes, and vice versa. Note that var must be used with bidirectional binding, since 
v is modifiable.

Here’s an example that keeps two variables (field and name) in sync.
var field = "one";
var name = bind field with inverse; // name is "one"
field = "two";      // name is "two"
name = "three";     // field is "three"

3.4  Sequences

A sequence is an ordered list of items in JavaFX, similar to arrays in other languages. 
Sequences are very powerful in JavaFX, because you can use them to store any data 
type, including objects. In this section, we show you how to create sequences and 
access sequence items, as well as insert items into sequences and delete items from 
sequences. We also discuss comparing sequences, sequence slices, predicates, and 
binding sequences.

Sequence Literals

Sequence literals are created with a comma-separated list of items within [].
def primeNumbers = [2, 3, 5, 7, 11, 13]; // Integer values
var brothers = ["groucho", "chico", "harpo"]; // String values

When you declare a sequence, use var if you intend to modify the sequence; otherwise 
use def. The JavaFX compiler can usually determine sequence types by inference, but 
you can include an explicit type (using []) if it’s necessary (the compiler will let you 
know when you need to do this). 

def primeNumbers: Integer[] = [2, 3, 5, 7, 11, 13];
var brothers: String[] = ["groucho", "chico", "harpo"];

There is a convenient notation in JavaFX for generating sequences of values. 
def nineties = [1990..1999]; // [1990, 1991, 1992, ..., 1999]

The notation [v..w] generates a sequence literal with an increasing range of values, 
where v and w are Integer or Number types. Each new value in the range is one more 
than the previous one. Here are some more examples.

var g = [1..5]; // same as [1, 2, 3, 4, 5]
var h = [1.1..5.1]; // same as [1.1, 2.1, 3.1, 4.1, 5.1]
var j = [1..<5]; // same as [1, 2, 3, 4];



ptg

Sequences 55

var k = [1..5.0]; // same as [1.0, 2.0, 3.0, 4.0, 5.0]
var m = [4.5..7]; // same as [4.5, 5.5, 6.5]
var n = [5..1]; // no incrementing values, same as []

The default increment for each new range number is 1, but you can use the notation 
[v..w step n] to step by different values (n is a positive or negative Integer or Number
type). This makes it easier to generate more arbitrary sequences.

var p = [0..9 step 2]; // same as [0, 2, 4, 6, 8]
var q = [5..1 step -1]; // same as [5, 4, 3, 2, 1]
var r = [1..3 step .5]; // same as [1.0, 1.5, 2.0, 2.5, 3.0]

The sizeof operator gives you the length of a sequence.
def primeNumbers = [2, 3, 5, 7, 11, 13];
var length = sizeof(primeNumbers); // length is 6
var length = sizeof primeNumbers; // same thing

The reverse operator reverses items in a sequence.
var brothers = ["groucho", "chico", "harpo"];
var revBros = reverse brothers; // ["harpo", "chico", "groucho"]

And, if you nest sequences, you get a “flattened” sequence.
def boys = ["billy", "joey"];
def girls = ["mary", "susie"];
var kids = [boys, girls]; // ["billy", "joey", "mary", "susie"];

Printing Sequences

You can use print() or println() directly to print all values of a sequence.
def primeNumbers = [2, 3, 5, 7, 11, 13];
println(primeNumbers);         // [ 2, 3, 5, 7, 11, 13 ]
println("{primeNumbers}");   // 23571113

Programming Tip

A sequence name (primeNumbers) with println() makes the sequence values easy to read for 
debugging. In contrast, the string expression "{primeNumbers}" with println() displays a 
string of characters.

If you need to print sequence elements individually, use a for loop.
def primeNumbers = [2, 3, 5, 7, 11, 13];
for (n in primeNumbers) {

    print("{n} ");
}
println(""); // 2 3 5 7 11 13



ptg

56 Chapter 3 JavaFX Language

The indexof operator gives you a sequence item’s integer index number (zero-based). 
This operator can only be applied to a loop induction variable. Here is an example 
using the indexof operator in a for loop. 

var colors = ["red", "blue", "green"];
for (c in colors) {

println("{c} is color #{indexof c}");
}

Each iteration of this for loop displays a color name and the index number (zero-
based) in the sequence.

red is color #0
blue is color #1
green is color #2

Creating Sequences with for

A for expression returns a sequence, so you can use for loops to create new 
sequences. Here are some examples.

var oddNumbers = for (n in [1..9 step 2]) n; // [1, 3, 5, 7, 9]
var cubes = for (n in [1..5]) n * n * n; // [1, 8, 27, 64, 125]

The following example generates a sequence of integers in a for loop (a pair at a time), 
where the second integer is twice the value of the first integer. (Bracket notation [] is 
required in the body of the for loop here.)

def seq = for (n in [2..6]) [n, 2*n];  // [2, 4, 3, 6, 4, 8, 5, 10, 6, 12]

A for expression can have more than one in clause. Here’s an example that calculates 
a sequence of cross products.

var row = [10, 100];
var col = [5, 15];
var crossProduct = for (r in row, c in col) r * c;
println(crossProduct); // [ 50, 150, 500, 1500 ]

Note that the for expression acts like two for loops with loop variable r in the outer 
loop and loop variable c in the inner loop.

A for expression can also have a where clause, which must be a boolean expression. 
This constrains selections, as the following example shows. 

var numbers = for (r in row, c in col where r * c < 500) r * c;
println(numbers);           // [ 50, 150 ]

Here’s a variant of the same example.
for (r in row, c in col where r * c < 500) {

print("r = {r} c = {c}, ");    // r = 10 c = 5, r = 10 c = 15, 
}



ptg

Sequences 57

Accessing Sequence Items

Use the expression seq[index] to access items in sequence seq, where index is zero-
based. If index is outside the bounds of the sequence (positive or negative), the expres-
sion evaluates to the default value for that item’s type.1

Here are several examples.
var brothers = ["groucho", "chico", "harpo"];
var firstBro = brothers[0]; // firstBro is "groucho"
var lastBro = brothers[2]; // lastBro is "harpo"
var noBro = brothers[3]; // noBro is ""
var nonBro = brothers[-1]; // nonBro is ""

You can also use for loops with sizeof to access or modify sequence elements.
var list = [1, 2, 3, 4];
for (i in [0..<sizeof(list)]) {

    print(list[i]);
}
println(""); // 1234

for (i in [0..<sizeof(list)]) {
    list[i] = -1;       // set each element to -1

}

Here are some alternative ways to set sequence elements to specific values with for.
for (n in list) list[indexof n] = -1; // set each element to -1
list = for (n in list) {-1}; // set each element to -1

Inserting Items into Sequences

The insert keyword lets you insert new items into sequences. You may insert items at 
the end of a sequence (insert into), before an indexed element (insert before), or 
after an indexed element (insert after). Here are some examples.

var colors = ["red", "blue"];
insert "green" into colors; // ["red", "blue", "green"]
insert "pink" after colors[1]; // ["red", "blue", "pink", "green"]
insert "cyan" before colors[0]; // ["cyan", "red", "blue", "pink", "green"]

Inserting before or after a negative indexed element inserts at the beginning of the 
sequence. Inserting before or after an indexed element beyond the end of a sequence 
inserts at the end.2

1. This is an example of “The show must go on” philosophy of JavaFX.
2. Again, “The show must go on.”



ptg

58 Chapter 3 JavaFX Language

Programming Tip

Assigning sequences copies values. Look at the following example.
var s = [1..5];
var t = s; // makes a copy
insert 6 into s;
println(t); // [ 1, 2, 3, 4, 5 ]
println(s); // [ 1, 2, 3, 4, 5, 6 ]

This shows that values are copied when you assign a sequence to another sequence. The same is 
true when you pass a sequence as an argument to a function.

Here’s a for loop that inserts Circles into a sequence.
var theCircles: Circle[];
for (i in [1..3])

insert Circle {
radius: 5
fill: Color.RED

} into theCircles;

Here’s a more efficient way to build a sequence of Circles using the expression-nature 
of for loops. 

def theCircles = for (i in [1..3])
Circle {

radius: 5
fill: Color.RED

}

Deleting Items from Sequences

The delete keyword lets you delete items from sequences. Table 3.2 shows you the 
different delete formats.

Here are some examples of delete.
var bros = ["groucho", "chico", "harpo", "zeppo", "gummo"];

TABLE 3.2 Sequence Delete Formats 

delete sequence[index] Delete item at index of sequence. If no element at 
that index, ignore the delete

delete sequence[low..high] Delete the items from low to high inclusive (slice)
delete value from sequence Delete all occurrences of value from sequence. If 

no value found, ignore the delete
delete sequence Delete all elements from sequence but not the 

sequence itself (sequence is empty)



ptg

Sequences 59

delete bros[4]; // delete "gummo"
delete bros[2..3]; // delete "harpo" and "zeppo"
delete "chico" from bros; // delete "chico"
delete bros; // delete "groucho" (empty sequence)

Comparing Sequences

Use the == and != relational operators to compare sequences. Two sequences are equal 
if they have the same values for all items and they have the same length. Both compar-
ison expressions return boolean values (true or false). Here are some examples.

var sample = [1, 3, 5, 7, 9];
var a = (sample == [1..10 step 2]); // a is true
var b = (sample == [1..5 step 2]); // b is false
var c = (sample != [1..10 step 3]); // c is true

The other relational operators (<, <=, >, >=) cannot be used with sequences.

Sequence Slices

The expression sequence[low..high] is called a sequence slice. The values for low and 
high (Integer or Number types) are the beginning and ending of a sequence range 
(inclusive on both ends). Here are several examples.

var bros = ["groucho", "chico", "harpo", "zeppo", "gummo"];
var funnyBros = bros[0..2]; // ["groucho", "chico", "harpo"]
var otherBros = bros[3..]; // ["zeppo", "gummo"]
var movieBros = bros[0..<4]; // ["groucho", "chico", "harpo", "zeppo"]
bros[3..4] = ["Z", "G"]; // ["groucho", "chico", "harpo", "Z", "G"]

Predicates

A predicate is a boolean expression that helps generate new sequences as subsets of 
existing sequences. A predicate is used with sequences in JavaFX as follows.

seq[name | BooleanExpression]

Here, seq is the source sequence, name is the selection variable, | is the predicate sepa-
rator, and BooleanExpression is the constraint. Elements are selected from the source 
sequence if and only if the constraint is true.

The following example generates a sequence of numbers whose square is less than 50.
def seq = [1..100];
def newSeq = seq[n | (n*n) < 50]; // [1, 2, 3, 4, 5, 6, 7]

Here, n is the selection variable from the source seq. An item is only selected for the 
new sequence (newSeq) if its square (n*n) is less than 50.



ptg

60 Chapter 3 JavaFX Language

Note that you can use a for loop with a where clause to generate the same sequence 
without a predicate.

def newSeq = for (n in [1..100] where (n*n) < 50) {n};

Binding Sequences

The format for binding sequences is
def newSeq = bind seq;

If seq changes, newseq is updated. Here’s an example.
var seq = [1, 2, 3];
def myseq = bind seq;    // bind to sequence
insert 4 into seq;
println(myseq);          // [ 1, 2, 3, 4 ]
delete 2 from seq;
println(myseq);           // [ 1, 3, 4 ]

In a graphical context, binding property content keeps a scene graph current. Here, a 
Group object literal binds its content property to sequence nodeSequence. Changes to 
nodeSequence updates the Group’s content.

Group {
content: bind nodeSequence
. . .

}

You can also bind for expressions, since they return sequences. The format is
def newSeq = bind for (elem in seq) expression;

If sequence seq changes, a new sequence newSeq is created. Existing sequence elements 
are not recalculated unless you insert or delete elements.

Here’s an example that updates a scaled sequence of numbers.
var scale = 10;
def t = bind for (item in [1..5]) item * scale; // bind to for expression
println(t);           // [ 10, 20, 30, 40, 50 ]
scale = 100;
println(t);          // [ 100, 200, 300, 400, 500 ]

The for loop multiplies five numbers in a sequence by a scale variable and is bound to 
variable t. If variable scale changes, sequence t is updated. 



ptg

Functions 61

3.5  Functions

Functions help you centralize code from different places in your scripts. Functions can 
take arguments and can return values. You can also bind functions, pass program 
arguments to scripts, and use functions as special types.

Defining Functions

The keyword function defines a function and its block of code. If the function doesn’t 
return anything, use the keyword Void for its return type. Here is a function that 
prints a message when it has been called.

function myPrint(): Void {
println("myPrint called");

}

Passing Arguments to Functions

To pass arguments to functions, include the names and types in the function’s signa-
ture. Here function printStrings prints its two string arguments. The function doesn’t 
return anything (Void return type).

function printStrings(a: String, b: String): Void {
println("{a}{b}");

}

printStrings("alpha", "bet"); // prints "alphabet"

Of course, JavaFX’s inference engine can deduce argument types and return types for 
you, so here is a more compact and general version of printStrings.

function printStrings(a, b) {
println("{a}{b}");

}

printStrings("alpha", "bet"); // prints "alphabet"

One important point about JavaFX function parameters: they are passed by value
inside functions. This makes it impossible to write certain functions in JavaFX, like the 
following swap function which attempts to swap the values of its arguments.

function swap(a, b) {
    var tmp = a;
    a = b;              // won't compile
   b = tmp;            // won't compile

}



ptg

62 Chapter 3 JavaFX Language

Programming Tip

If you pass a sequence to a function as an argument, you cannot change its elements in the 
function (this is different from Java arrays).Object references are also passed by value (see 
“Classes and Objects” on page 67).

Returning Values from Functions

If a function returns a value, you can include its return type when you define the func-
tion. Here’s a concat function that concatenates its parameters into a new string and 
returns it.

function concat(a: String, b: String): String {
return "{a}{b}";

}
var s = concat("set", "up"); // s is "setup"

Of course we can rely on inference to write a more compact version of concat.
function concat(a, b) {

return "{a}{b}";
}
var s = concat("alpha", "bet"); // s is "alphabet"

These have all been simple examples, so let’s show you a more interesting one. The 
following gcd function calculates the greatest common denominator from two inte-
gers passed to the function.

function gcd(x: Integer, y: Integer) {
    var a = x; var b = y;
    while (b != 0) {

var t = a;
a = b;
b = t mod a;

    }
    return a;

}

Here’s a for loop to try out gcd.
for (n in [1..10]) {

    println("gcd of 12 and {n} is {gcd(12, n)}");
}

The output looks like this.
gcd of 12 and 1 is 1
gcd of 12 and 2 is 2
gcd of 12 and 3 is 3
gcd of 12 and 4 is 4
gcd of 12 and 5 is 1



ptg

Functions 63

gcd of 12 and 6 is 6
gcd of 12 and 7 is 1
gcd of 12 and 8 is 4
gcd of 12 and 9 is 3
gcd of 12 and 10 is 2

Binding Function Calls

In addition to binding expressions, you can also bind function calls. The format for 
binding function calls is

def v = bind function(arg1, arg2, ...);

The binding concept is similar to binding expressions. When any of the arguments 
(arg1, arg2, ...) change in the function call, v is updated with the value returned by 
the function.

Let’s show you an example. Suppose you have a hypot function that calculates the 
hypotenuse for right triangles. Here’s an example that binds the hypot function to 
variable hypotenuse to keep its value current when the base or height change.

import java.lang.Math;

function hypot(a, b) {
return Math.sqrt(a * a + b * b);

}
var base = 3; var height = 4;
def hypotenuse = bind hypot(base, height); // bind to function call
println(hypotenuese);             // 5.0
base = 30; height = 40;
println(hypotenuse);             // 50.0

Bound Functions

It may not be sufficient to bind to a function and update only when the function argu-
ments change. You may want to update when variables in the function body change, 
too. To do this, you need a bound function. The format for a bound function is

bound function functionName(arg1, arg2, ...) { . . . }

All expressions in the function body must be defined with def or var. If you call 
bound functions in a non-bind context, they are ordinary functions.

To see how useful bound functions are, here is an example that uses a bound function 
getTotal to update the contents of a Text object when selections are made with GUI 
components.

bound function getTotal(): String {
def item1 = if (itemOne.selected) .75 else 0;
def item2 = if (itemTwo.selected) .50 else 0;



ptg

64 Chapter 3 JavaFX Language

def item3 = if (itemThree.selected) .25 else 0;
def total = item1 + item2 + item3;
return "$ {total}";

}

def finalOrder = Text {
content: bind getTotal() // must use bind here
font: Font {

size: 18
}

}

The Text content property is automatically updated to a new total when any of the 
selections (itemOne.selected, itemTwo.selected, itemThree.selected) inside the 
getTotal function body change.

Think of bound functions as “black boxes.” The dependencies of an ordinary function 
call in bind context are the dependencies of its arguments. Bound functions calculate 
the dependencies dynamically, based on what actually goes into the calculation.

Bound functions are not automatically treated as if their result is bound. You need to 
use bind (as shown in the above example).

Program Arguments

In certain situations (applets, command line scripts) you may want to pass arguments 
to your JavaFX programs at runtime. These program arguments are available to your 
JavaFX programs as strings. To access program arguments, you can specify a run func-
tion.3

To demonstrate, here’s a program that echoes its program arguments to the console 
screen in reverse order.

// Echo.fx - Echo program arguments in reverse
function run(args: String[]) {

for (arg in reverse args)
print("{arg} ");

    println("");
}

$ javafxc Echo.fx
$ javafx Echo one two three
three two one

The program arguments are passed to run as a sequence of Strings. The for loop calls 
reverse to create a new sequence with the strings in reverse order. Inside the for loop, 

3. Like main in Java, run is a magic name.



ptg

Functions 65

the print function prints each argument from this sequence to the screen followed by 
a space. Outside the for loop, the println supplies the newline.

Programming Tip

You can also call FX.getArguments to access program arguments. This approach does not 
require a run function.

var args = FX.getArguments();
for (arg in reverse args)

print("{arg} ");
println("");

Function Types

A more advanced topic with JavaFX functions is function types. In addition to return-
ing built-in types and class types, JavaFX functions can return a function, or more spe-
cifically, a function literal type. Why would you want to do this? Using a technique 
called closures, function literals make libraries more reusable. Let’s investigate this 
technique and show you how to use it.

Suppose you are interested in scaling data in your application; that is, multiplying 
variables in your program by scaling factors at run time. Let’s look at a technique that 
sets up this concept in three steps. The first step is to define a function, as follows.

function scale(n) {
    function(x) { x * n } // function literal

}

The interesting thing about this scale function is that it doesn’t return a value. 
Instead, scale accepts a scaling factor (n) and returns a function literal that multiplies 
its parameter (x) by n. Note that this function literal (an anonymous function) is not
called when scale is invoked.

The second step is to call the scale function with a scaling factor (100) and assign the 
returned function literal to a variable.

var scaleHundred = scale(100); // returns function literal

Now you can use scaleHundred to call the anonymous function in the function literal. 
Think of it as a pointer or reference to a function that accepts a single argument. 

The third step is to use the scaleHundred variable to call the anonymous function in 
the function literal with a variable in your program.

var m = 5;
println(scaleHundred(m)); // prints 500



ptg

66 Chapter 3 JavaFX Language

Note that in order to make this work, the scale function must “remember” the scaling 
factor (100) that was passed to it in the second step. This construct is called a closure.4
When the function in the function literal is invoked with an argument in step three, 
the value of this argument is multiplied by the scaling factor. Of course we can always 
change the scaling factor at run time, which is the point of all this.

scaleHundred = scale(200); // change scaling factor to 200
println(scaleHundred(m)); // prints 1000

To see what’s going on under the hood, here is the scale function again, fully defined.
function scale(n: Number): function(x: Number): Number {

return function(x: Number): Number { x * n }
}

The scale function accepts a Number argument and returns a function literal. This func-
tion literal takes a Number argument and returns a Number type, which is the new scaled 
value. Fortunately, type inference in JavaFX makes explicit type declarations like this 
unnecessary in most cases.

All this seems like a lot of work just to multiply two values. The real power of function 
types and closures is with sequences. Here is an example that multiplies all the values 
of a sequence by a scaling factor of 10.

function mult(n: Integer) {
function(seq: Integer[]) {

var thisSeq = seq;
for (i in thisSeq) { thisSeq[indexof i] *= n; }

}
}

var seq = [1, 2, 3, 4, 5]; // original sequence
var multTen = mult(10); // scaling factor is 10
var newSeq = multTen(seq); // generate new sequence
println(newSeq); // [ 10, 20, 30, 40, 50 ]

The mult function accepts a scaling factor as an argument and returns a function literal 
(an explicit return is not necessary here). This function literal takes a sequence of Inte-
gers as an argument and returns a new sequence of Integers. Inside the function, a for 
loop multiplies each sequence element by the scaling factor. The variable thisSeq is 
necessary because JavaFX does not allow you to modify function parameters (seq).

We could also use the mult function to scale our original sequence.
var seq = [1, 2, 3, 4, 5]; // [ 1, 2, 3, 4, 5 ]
var multTen = mult(10); // scaling factor is 10

4. Specifically, a function literal implements a closure because it retains references to variables 
that are outside the function’s scope (i.e., variables that appear free in the closure).



ptg

Classes and Objects 67

seq = multTen(seq); // generate new sequence, replace old one
println(seq);           // [ 10, 20, 30, 40, 50 ]

Remember, the mult function generates new sequences. Instead of changing the origi-
nal sequence, you are reassigning a new sequence to the original sequence variable.

A common use of function types is with event handlers for graphical objects. JavaFX 
nodes, for instance, let you specify function types for properties that describe event 
handlers. The following example shows a Rectangle component with an event han-
dler that acknowledges when a user clicks inside the Rectangle with the mouse.

Rectangle {
x: 40
y: 40
width: 40
height: 40
fill: Color.RED
onMouseClicked: function(e: MouseEvent): Void {

println("You clicked me");
}

}

Here, property onMouseClicked has function type function(e: MouseEvent): Void.

3.6  Classes and Objects

Besides built-in types, JavaFX lets you create your own data types in applications. 
This powerful feature is the concept behind object-oriented design techniques that 
work well in complex “real world” applications. In this section, we show you how to 
define your own classes and create objects in JavaFX. You’ll also learn how to use 
inheritance to create new classes from existing ones.

Classes

Let’s begin with a simple Point class.5

public class Point {
public var x: Number;

    public var y: Number;
    public function clear(): Void {
        x = 0;
        y = 0;

5. The Point class is in Point.fx and the code that creates and uses Point objects is in Main.fx.
See “Access Modifiers” on page 88 for a more detailed discussion of how to use public and 
other access modifiers with classes.



ptg

68 Chapter 3 JavaFX Language

    }
}

The Point class manages x and y coordinates (both Number types). Every Point object 
has its own x and y (these are called instance variables). Since the instance variables are 
both Number types, they have default values of 0.0. The clear function sets the x and y 
instance variables to zero. Note that clear is defined inside the Point class. This is 
called an instance function. As you will see shortly, instance functions are always called 
with object references. This implies that the instance variables of the object are always 
in the scope of the instance function body. The class, instance variables, and instance 
function are all declared public so that code in separate files may access them.

Object Literals

Most object-oriented languages use special class functions called constructors to cre-
ate objects from classes. In JavaFX, you build an object from a class with an object lit-
eral expression. Here are several examples with the Point class.

// object literal initializes instance variables
var p = Point { x: 10, y: 20 };
println("p = ({p.x}, {p.y})");     // p = (10.0, 20.0)

// empty object literal uses defaults for instance variables
var q = Point {};
println("q = ({q.x}, {q.y})"); // q = (0.0, 0.0)

Object literals begin with a class name followed by curly braces "{}" containing ini-
tializers with : separating instance variables from their values. If you assign an object 
literal to a variable (object reference) in your program, you can call instance functions 
later with the object reference. An empty object literal uses defaults for the instance 
variables. JavaFX lets you use commas, semicolons, or newlines to separate initializ-
ers. Here we use an object literal on one line, but you can use separate lines for each 
initializer if you want.

Programming Tip

In addition to instance variable initializers, you can also declare local variables and define 
functions in object literals. Here’s an example that sets the x and y instance variables in a 
Point object literal using the return value of a function.

var r = Point { 
var n = getNumber()

    x: n
    y: n + 10

}



ptg

Classes and Objects 69

There are lots of advantages to creating objects with object literal expressions. First of 
all, you see the values that each instance variable is initialized to at the point where 
you construct the object. Second, object literals nest well, so you can use an object lit-
eral inside other object literals. Third, sequences of object literals may appear inside 
object literals. Fourth, you can construct object graphs without creating unnecessary 
temporary variables. All this makes object literals useful in the design of complicated 
things (graphical user interfaces, for instance), as you will see later on.

Recall that the Point class has a clear instance function. When you call this function 
with a Point object reference, it resets that object’s x and y coordinates to zero.

p.clear();
println("p = ({p.x}, {p.y})");     // p = (0.0, 0.0)

Using public-init

Once you define a Point object, moving to a new spot is straightforward.
var p = Point { x: 10, y: 20 };
p.x = 30; p.y = 40; // move to (30, 40)

But there is a potential problem. Suppose our Point objects can only have positive val-
ues for their x and y coordinates. With our current class definition, an application 
could do the following.

var p = Point { x: 10, y: 20 };
p.x = -1; // change x coordinate to -1
p.y = -1; // change y coordinate to -1

This compiles and runs, but it’s not the behavior we want. We need a Point class with 
a more controlled interface. Let’s restrict the accessibility of instance variables x and y
and control how users move Point objects.

public class Point {
public-init var x: Number;

    public-init var y: Number;
init {

if (x < 0) x = 0;
if (y < 0) y = 0;

    }
    public function move(newX: Number, newY: Number): Void {

if (newX >= 0 and newY >= 0) {
x = newX;
y = newY;

}
    }
    public function clear(): Void {

x = 0;
y = 0;

    }
}



ptg

70 Chapter 3 JavaFX Language

To change the location of point objects, the Point class has a new instance function 
called move. Note that this function won’t move to a different spot unless the new x
and y values are legal (not negative). But what’s to prevent users from changing x and 
y directly like before? The answer is a public-init access modifier with the declarations 
of instance variables x and y.

With instance variables, the public-init access modifier allows an application to ini-
tialize its value in an object literal, but the instance variable is read-only after that.

Init Blocks

The other new feature introduced in this Point class is an init block.
init {

if (x < 0) x = 0;
if (y < 0) y = 0;

}

Init blocks are optional in classes, but if you write one and create an object with an 
object literal, the init block is executed immediately after the instance variables receive 
their values. 

We don’t want users to set x and y to negative values in object literals, so we use an init 
block to set them to zero if they are negative. Init blocks help you implement tasks 
during initialization and mimic things you typically do with constructors. JavaFX also 
has postinit blocks (see page 78).

These enhancements implement the behaviors we want.
var p = Point { x: 10, y: 20 }; // (10.0, 20.0)
p.move(30, 40); // move to (30.0, 40.0)
p.move(-10, -10); // does not move
p.x = -1; // compiler error
p.y = -1; // compiler error
var q = Point { x: -10, y: -20 }; // (0.0, 0.0)

Using public-read

Next, let’s suppose Point objects must maintain their distance from the origin (0,0).
Here’s a version of Point that implements this new feature.

import java.lang.Math;

public class Point {
public-init var x: Number;

    public-init var y: Number;
    public-read def distance = bind Math.sqrt(x * x  + y * y);

init {
if (x < 0) x = 0;



ptg

Classes and Objects 71

if (y < 0) y = 0;
    }
    public function move(newX: Number, newY: Number): Void {

if (newX >= 0 and newY >= 0) {
x = newX;
y = newY;

}
}
public function clear(): Void {

x = 0;
y = 0;

}
}

The Point class now has a def instance variable called distance. The keyword public-
read makes distance read-only when accessed by applications. 

var p = Point { x: 10, y: 20 }; // (10.0, 20.0)
println("length of p = {p.distance}");    // length of p = 22.36068
p.move(30, 40); // move to (30.0, 40.0)
println("length of p = {p.distance}");    // length of p = 50.0

However, distance cannot be changed or used in an object literal.
p.distance = 50; // compiler error
var q = Point { x: 3, y: 4, distance: 5 }; // compiler error

The distance variable also receives its value from the Java Math.sqrt function. Note 
that we use bind with distance and Math.sqrt. This makes distance update automati-
cally when x changes or y changes. Without bind, Math.sqrt would be called only once. 
Binding is critical here, since it keeps distance up to date as you create, move, or clear 
Point objects. 

Properties

Instance variables that are public, public-init, or public-read are exposed to code outside 
the class. These specialized instance variables are called properties.

Using this

The move instance function for class Point can also be written this way.
public function move(x: Number, y: Number): Void {

if (x >= 0 and y >= 0) {
this.x = x;
this.y = y;

}
}



ptg

72 Chapter 3 JavaFX Language

Here, the function’s parameters have the same names (x, y) as the instance variables in 
our Point class. Consequently, we need the keyword this to distinguish between 
them. The expression this.x refers to the instance variable in the class and x refers to 
the local function parameter. 

Using null

Recall that all JavaFX built-in types have default values. What about defaults for 
object references? If you don’t initialize or assign a reference to an object you create, its 
default is null. You can also assign null to object references.

var p: Point; // p is null (default)
p = Point { x: 10, y: 20 }; // p refers to Point(10.0, 20.0)
p = null; // p is null

A common use for null is to check the validity of a function’s argument when it is a 
class type.

function calculate(p: Point) {
if (p == null) {

/* object not initialized */
}

}

JavaFX Tip

JavaFX does not throw exceptions for null references. If you call an instance function with a 
null reference, the call is ignored. If you access an instance variable with a null reference, 
default values are used.

Using Java Objects

If you need to create Java objects in your JavaFX programs, use operator new and pass 
arguments directly to the Java class constructor, if necessary. To illustrate, here’s an 
example that uses the Java Date and DateFormat objects to give you the current time.

var today = new java.util.Date();
var timeNow = java.text.DateFormat.getTimeInstance().format(today);
println(timeNow);     // 4:41:30 PM

A new Java Date object is passed to getTimeInstance().format and called with 
java.text.DateFormat to return the current time as a string.

Here’s an example that uses Java character strings. Suppose you have an input string 
containing leading spaces and fields of substrings delimited by colons. You want to 
strip leading spaces and replace the colon characters in the input string with spaces. 



ptg

Classes and Objects 73

JavaFX strings are immutable, so you can’t modify the input string directly. But you 
can call Java functions trim and replace with JavaFX strings, as follows.

var str = "  Ted Smith:123 Elm St.:10105";
str = str.trim(); // trim leading spaces
def space: Character = 32; // "space" character
def colon: Character = 58; // ":" character
str = str.<<replace>>(colon, space);
println(str); // Ted Smith 123 Elm St. 10105

Since replace is a JavaFX keyword, use <<replace>> to call the Java string function 
replace. Note that both functions return new strings, which we use to update the orig-
inals.

Alternatively, you can use a Java StringBuffer object inside a JavaFX replaceSpaces
function. Here’s the code.

function replaceSpaces(input: String): String {
def space: Character = 32;
def colon: Character = 58;
var str = new java.lang.StringBuffer(input); // StringBuffer
var index = 0;
// strip any initial spaces first
while ((index <= str.length()-1) and (str.charAt(index) == space))

str.deleteCharAt(index);
for (i in [0..str.length()-1])

if (str.charAt(i) == colon)
str.setCharAt(i, space); // replace colon with space

return str.toString(); // return as String
}

var newString = replaceSpaces("  Ted Smith:123 Elm St.:10105");
println(newString);     // Ted Smith 123 Elm St. 10105

Inside function replaceSpaces, variable str is a StringBuffer object created from the 
Java StringBuffer class using string input as the argument to its constructor. The while 
loop calls StringBuffer methods charAt and deleteCharAt to find and delete leading 
spaces. The for loop uses StringBuffer method setCharAt to replace colon characters 
with space characters. 

Binding with Object Literals

In JavaFX, you can bind directly to an object literal or bind any subset of its initializ-
ers. Binding directly to an object literal creates a new instance.

def v = bind ClassName {
w: expression;

}



ptg

74 Chapter 3 JavaFX Language

If expression changes, a new instance of ClassName is created and assigned to v with w
having expression’s value.

Binding to an initializer in an object literal does not create a new instance.
def v = ClassName {

w: bind expression;
}

If expression changes, w is updated from expression’s value in the same object.

Binding initializers in object literals is most useful with component properties. Here’s 
an example that loads images in a web service call (only skeletal code is shown here).

var loadComplete = false;
var description: String;

function makeServiceCall() {
description = "Loading Photos...";
. . .
loadComplete = true;

}

function alert(msg: String): Void {
loadComplete = false;
description = "Loading Error: {msg}";

}

scene: Scene {
content: [

VBox {
visible: bind not loadComplete // bind to visible property
content: [

Text {
content: bind description // bind to Text content

}
]

}
]

}

Two component properties are bound here. The visible property of a VBox is bound 
to the loadComplete boolean and the content property of a Text component is bound to 
a description string. Both bind expressions update the scene graph dynamically.

A call to makeServiceCall starts loading images. The loadComplete boolean is initially 
false, so the VBox is visible and its Text component displays "Loading Photos". When 
image loading has completed, makeServiceCall sets loadComplete to true and the VBox 
becomes invisible. If an error occurs, the alert function sets loadComplete to false and 



ptg

Inheritance 75

changes the description string to an error message. This makes the visible Text com-
ponent now display the error message.

Programming Tip

Binding component properties is a powerful JavaFX idiom that lets you update your scene 
graph dynamically.

Overriding bind

You can bind class instance variables with the keyword var. This lets you override the 
bind with an object literal initialization. Here’s an example.

var size = 100;

public class Thing {
var num = bind size; // num binds to size

}

var t1 = Thing { }; // t1.num is 100
size = 500; // t1.num is 500
var t2 = Thing { num: 50 }; // t2.num is 50
size = 300; // t1.num is 300, t2.num is 50

Since num is directly initialized in the object literal for t2, the binding of size does not 
apply to that object.

3.7  Inheritance

Code reuse is a major goal of object-oriented programming. When designing a new 
class, you can derive it from an existing one. This is called inheritance and represents 
an “is-a” relationship between classes. Inheritance makes it easy to hook into existing 
frameworks and use existing APIs. With inheritance, you can retain the state and 
behavior of an existing class and specialize certain aspects of it to suit your needs.

In JavaFX, inheritance is implemented by extending classes (just like Java). When you 
use the extends keyword to inherit one class from another, the public functions of the 
“parent” class become part of the public functions of the “child” class. The parent 
class is often called a superclass and the child class a subclass.

JavaFX Tip

JavaFX classes can extend at most one Java or JavaFX class, and any number of Java interfaces 
or JavaFX mixins (see “Mixin Inheritance” on page 81).



ptg

76 Chapter 3 JavaFX Language

Overriding Functions

Even if you don’t use the extends keyword explicitly when you create a new class, the 
JavaFX compiler implicitly extends your new class from superclass Object. Let’s 
return to our Point class to see what this means.

public class Point extends Object {
public-init var x: Number;
public-init var y: Number;
. . .
public override function toString(): String {

return "({x}, {y})";
}

}

The Object superclass includes an instance function called toString that returns a 
String type for every object in JavaFX. Using the override keyword, you can provide a 
different implementation for your extended class. In our Point class, for instance, the 
toString function now returns the x and y coordinates as an ordered pair (x, y). This 
means you can use a Point object in any expression that expects a String type and 
you’ll get a nicely formatted ordered pair.

var p = Point { x: 10, y: 20 }; // (10.0, 20.0)
println("p = {p}"); // p = (10.0, 20.0)
var spot = "{p}"; // spot is a String
println("spot = {spot}"); // spot = (10.0, 20.0)

You’ll see more examples of overriding functions in the next section.

Programming Tip

The default conversion for class types to Strings is the address of the object. To display an 
object’s state in a more meaningful way, override the toString() function.

Using super

Suppose a Pixel class needs to manage color with x and y coordinates. You could 
design this class from scratch, but it would be a lot of work. Why not reuse the Point 
class and extend Pixel from Point? A Pixel, after all, is a Point object with color.

Here is the Pixel class.6 As you see, there is not a lot of code to write when you use 
inheritance.

import javafx.scene.paint.Color;

6. The Pixel class is in Pixel.fx and the Point class is in Point.fx.



ptg

Inheritance 77

public class Pixel extends Point {
public var color: Color;
public override function toString(): String {

return "({color}, {x}, {y})";
}
public override function clear(): Void {

super.clear();      // call clear() in Point class
color = null;

}
}

A Pixel class manages a public color instance variable. Its type (Color) is accessible via 
the import statement shown. When a class defines an instance variable with public,
applications have read and write access to that variable. (Contrast this with public-
init in the Point class for x and y, which grants only read access of these instance vari-
ables to applications after object literal initialization). 

The Pixel class also overrides toString to convert Pixel objects to the string "(color,
x, y)". Clearing a Pixel object is also desirable. The behavior is to reset the x, y coordi-
nates to zero and make the Pixel object have no color (null). To accomplish this, you 
need a way to call the clear instance function in the Point class. That’s what 
super.clear() does. Without this super keyword, clear would call itself recursively 
and the Pixel’s x and y coordinates would never change.

Let’s create several Pixel objects now and try them out.
var p = Pixel { color: Color.RED, x: 30, y: 40 };
println("p = {p}"); // p = ([red=255,green=0,blue=0,...], 30.0, 40.0)
println("length of p = {p.distance}");    // length of p = 50.0

var q = Pixel {}; // default values (color = null)
q.color = Color.BLUE; // change color
q.move(10, 10); // move to (10, 10)
println("q = {q}"); // q = ([red=0,green=0,blue=255,..], 10.0, 10.0)
println("length of q = {q.distance}");    // length of q = 14.142136

p.clear(); // clear Pixel
println("p = {p}");       // p = (null, 0.0, 0.0)
println("length of p = {p.distance}"); // length of p = 0.0

The first Pixel object (p) has a red color at position (30.0, 40.0). The second Pixel 
object (q) is at the origin (0, 0) with no color initially, but we change its color to blue 
and move it to (10.0, 10.0). When we clear Pixel object p, its color is set to null and 
its x, y values are set to zero. Note that distance (defined in class Point) is inherited 
and accessible with Pixel objects.

From these examples, you see that a Pixel is a Point with public-init properties for x,
y, and read-only for distance. What makes a Pixel different from a Point is its color
property, which you can modify. Like Points, Pixels may be moved or cleared.



ptg

78 Chapter 3 JavaFX Language

PostInit Blocks

JavaFX supports init blocks and postinit blocks inside classes. An init block runs 
immediately after the instance variables have been initialized. A postinit block exe-
cutes right after an object has been completely initialized. Here is an example with 
inheritance that shows you both.

class Superclass {
var m: Integer;
init { println("Superclass.init"); }
postinit { println("Superclass.postinit"); }

}
class Subclass extends Superclass {

var n: Integer;
init { println("Subclass.init"); }
postinit { println("Subclass.postinit"); }

}
var s = Subclass { m: 2, n: 3 };

The output shows init blocks in both the superclass and subclass always execute 
before any postinit blocks, even postinit blocks in the superclass.

Superclass.init
Subclass.init
Superclass.postinit
Subclass.postinit

JavaFX Tip

Postinit blocks are rarely used. Their primary purpose is to register listeners or otherwise pub-
lish a completely initialized object.

Abstract Base Classes

Another concept in object-oriented programming is a class that you can’t instantiate. 
These classes define abstract functions that you cannot invoke directly and exist only 
to specify contracts for state and behavior. Abstract functions must be overridden in 
subclasses.

If a class defines abstract functions (and possibly members), it’s called an abstract class.
An interface contains only abstract functions. JavaFX does not support interfaces with 
the keyword interface like Java does,7 but it does have abstract base classes.

7. Java treats abstract classes as separate from interfaces, even if the abstract class has only 
abstract methods.



ptg

Inheritance 79

In JavaFX, the keyword abstract defines abstract classes. The abstract keyword also 
defines a function with no code. Here’s an abstract class called Shape2d that defines a 
two-dimensional shape with an area function.

public abstract class Shape2d { // abstract class
public abstract function area(): Number; // abstract function

}

The Shape2d class does not have state, so no instance variables are necessary. Since 
the specific type of Shape2d is unknown at this point, area must be abstract with no 
code. This class exists only to be inherited from, so let’s define two simple shapes, a 
Circle and a Square.

import java.lang.Math;

public class Circle extends Shape2d {
public var radius: Number;
public override function area(): Number { // redefine area

Math.PI * radius * radius;
}
public override function toString(): String {// redefine toString

return "Circle";
}

}

public class Square extends Shape2d {
public var side: Number;
public override function area(): Number { // redefine area

side * side;
}
public override function toString(): String {// redefine toString

return "Square";
}

}

You must override function area in both Circle and Square (and any other class that 
extends Shape2d) because it’s defined as abstract in Shape2d. If you do not, compila-
tion errors occur. However, overriding toString in both classes is not required (this 
function has default code in class Object and is not abstract). Here, toString is over-
ridden to return the name of the class as a string.

Let’s create two shape objects and try them out.
var shapes: Shape2d[] = [

Circle { radius: 10 },
    Square { side: 20 }

];

for (s in shapes) {
println("{s} has area {s.area()}");

}



ptg

80 Chapter 3 JavaFX Language

Variable shapes is a sequence containing Circle and Square objects of type Shape2d. 
The for loop fetches each object from the sequence and prints their Shape names and 
areas. Here’s the output.

Circle has area 314.15927
Square has area 400.0

JavaFX Tip

When you create a custom graphical node in JavaFX, you extend CustomNode. You must over-
ride function create because CustomNode defines abstract function create.

As Operator

Earlier in the chapter, we introduced the Boolean instanceof operator (see “Instanceof 
Operator” on page 50), which returns true if its argument is a specific type. JavaFX 
also includes an as operator that returns a subclass type if its argument is an object of 
that type at runtime. With Object types, the instanceof and as operators let you spe-
cialize tasks for specific subclass types. 

To illustrate, suppose you need to access the width of a Rectangle component in an 
event handler.

onMouseClicked: function(e: MouseEvent): Void {
println(e.node.width); // does not compile

}

The println statement does not compile because e.node is not a Rectangle type. To 
make this work correctly, you need the instanceof and as operators.

onMouseClicked: function(e: MouseEvent): Void {
if (e.node instanceof Rectangle) {

var w = (e.node as Rectangle).width;
println("Rectangle is {w} wide");

}
}

The instanceof operator verifies that expression e.node is a Rectangle before the as
operator converts it to a Rectangle type. Now you can access the width of the Rectan-
gle and print it with println.

Programming Tip

It’s a good idea to use the instanceof and as operators together to check for specific types at 
runtime. Without instanceof, the as operator fails and throws a ClassCastException if you 
give it the wrong type.



ptg

Inheritance 81

Mixin Inheritance

Occasionally you’ll want to combine behaviors and state from more than one class. 
This is called mixin inheritance. Using the mixin keyword, you can create a mixin class.
Recall that a JavaFX class can extend at most one Java or JavaFX class and any number 
of Java interfaces. A JavaFX class can also extend any number of JavaFX mixin classes.

The format for a mixin class is
mixin class MixinClass { . . . }

Mixin classes cannot be instantiated, just like abstract classes. A class that extends a 
mixin class with the keyword extends is called a mixee.

class Mixee extends MixinClass { . . . } 

A mixin class is a type, so you can use its name with the instanceof and as operators.

Mixin classes can have public abstract functions that mixees must override, which is 
similar to abstract base classes and Java interfaces. If a mixin class has a non-abstract 
function, the mixee has the option of overriding the function in a subclass or using the 
default implementation from the mixin class.

Here’s an example that overrides functions with mixins.
public mixin class Mixin {

public function write(obj: Object): Void {
println("Mixin write");

}
public abstract function log(entry: String): Void; // no implementation

}

public class Base { . . . }

public class Derived extends Base, Mixin {
public override function write(obj: Object): Void {

println("Derived write");
}
public override function log(entry: String): Void { // must override

println("Derived log");
}

}

var d = Derived { };
d.write("something");    // Derived write
d.log("Derived");    // Derived log

The Mixin class defines a write function with a default implementation and an 
abstract log function. A mixee must implement a version of log but is not required to 
provide an implementation for write. Here, the mixee (Derived) uses override to 



ptg

82 Chapter 3 JavaFX Language

implement its own version of write. A call to d.write("something") invokes Derived’s 
write function but if Derived did not override write, the one in the Mixin class would 
be called.

Programming Tip

You must use the keyword mixin here. When you extend from more than one JavaFX class, 
only one non-mixin based class is allowed.

With mixin classes, you can resolve ambiguities in overridden functions with class 
names. To illustrate, look at the following classes.

public mixin class Log {
public function write(str: String): Void {

println("Log write");
}

}

public class Document {
public function write(str: String): Void {

println("Document write");
}

}

public class LogFile extends Document, Log {
public override function write(str: String): Void {

Log.write(str);
}

}
LogFile{}.write("something");      // Log write

Class LogFile extends from Document and a Log mixin class. The Log and Document 
classes both define write functions with the same signature. LogFile overrides the 
write function to call Log.write(str) in the Log class. A call to Document.write(str)
would invoke the write function in Document. Note that compilation errors occur 
with LogFile{}.write("something") if LogFile does not override the write function.

Mixin classes can also declare variables. A variable declaration has a name, type, 
optional default value, and possibly an on replace trigger. A mixin with variable x
means mixees must also have an x (an x is provided if the mixee does not already have 
one; there is only one x in any case). Just like abstract functions, mixees have the 
option of using defaults for the mixin variable or extending the definition with the 
override keyword. This allows the mixee to override the default value and/or add a 
different on replace trigger. Triggers work with mixin classes just as they do with 
ordinary classes. (See “On Replace with Variables” on page 83.)

Here’s an example that overrides variables with mixins.



ptg

Triggers 83

public mixin class Mixin {
public var value: Number = 1.1;
public function getValue(): Number {

return value;
}

}

public class Base { . . .}

public class Derived extends Base, Mixin {
public override var value = 2.2;

}

var d = Derived { };
println(d.getValue());              // 2.2

The Mixin class defines a Number variable that the Derived mixee class overrides with a 
new value. In Derived, a type is not required for value, since Number is inferred. A call 
to d.getValue() returns the overridden value (2.2). If Derived does not override value,
d.getValue() returns the Mixin value (1.1).

JavaFX Tip

Mixin inheritance is not the same as multiple inheritance. Unlike multiple inheritance, which 
can inherit variables with the same name and type from multiple superclasses, mixin inherit-
ance guarantees that only one variable of that name and type will be “mixed” in. This resolves 
ambiguities and makes mixin classes easier to work with.

3.8  Triggers

JavaFX has another feature that lets you execute code when variables in your program 
change their values. This is called a trigger and is implemented with the on replace

keywords. Triggers are similar to binding block expressions except that you are not 
limited to def and var statements inside your blocks (see binding block expressions on 
page 53). In JavaFX, you can use triggers with variables, properties, sequences, and 
with bind. Let’s look at several examples and show you how triggers work.

On Replace with Variables

The simplest use of on replace is to react to a change in the value of a variable in your 
program. The format is

var v = value on replace oldvalue {
. . .

}



ptg

84 Chapter 3 JavaFX Language

When variable v changes, the statements in the block execute. The oldvalue name is 
optional and is set to the previous value of v. The block also executes when you initial-
ize variable v the first time.

Here’s an example of on replace that only inserts positive values in a sequence.
var seq: Integer[];
var value = 0 on replace {

if (value > 0) insert value into seq;
}

value = 12; value = -5; // no negatives in seq
println(seq);      // [ 12 ]
value = 20;
println(seq);     // [ 12, 20 ]

When value changes, the on replace block executes. The if statement makes sure that 
value is positive before inserting it into the sequence.

If you need the previous value when an on replace block executes, include a name 
after the keyword replace (any non-keyword name will do). Here’s an example that 
shows you how this works.

var number = 4 on replace old {
println("old = {old} new = {number}");   // old = 0 new = 4

}

number = 8;     // // old = 4 new = 8

Note that println executes twice here, once when number receives its initial value (4) 
and again when number changes to 8. The old variable is 0 the first time because that’s 
the default value for number.

On Replace with Sequences

You can use on replace with sequences, too. The format is
var seq = [sequence] on replace oldValue[low..high] = newSeq {

. . .
}

When sequence seq changes, oldValue is the previous sequence, low and high are the 
indices of the sequence that changed, and newSeq is the new sequence. (You can use 
any non-keyword for these names.) Note that oldValue[low..high] is a sequence slice.

Here’s an example to see how all this works.
var chars = ['a','b','c'] on replace old[lb..ub] = newchars {

println("old = {old} low = {lb} high = {ub} newchars = {newchars}");
}         // old =  low = 0 high = -1 newchars = abc



ptg

Triggers 85

insert 'd' into chars; // old = abc low = 3 high = 2 newchars = d
delete 'a' from chars; // old = abcd low = 0 high = 0 newchars =
chars[1..2] = ['i', 't']; // old = bcd low = 1 high = 2 newchars = it
println(chars); // [ b, i, t ]

When the chars sequence is initialized, old is empty and newchars is the new 
sequence. Because this is an insertion, low is 0 and high is -1 (one less than low). The 
other sequence expressions generate the values shown (left as an exercise to the 
reader). Note that newchars is empty when you delete from the sequence.

On Replace with isInitialized

The isInitialized function returns true if its argument has been previously set. This 
can be important in on replace blocks, since they always execute at least once. If a vari-
able in your program receives a default value, you may not want to execute the state-
ments in an on replace block. The isInitialized function can prevent this.

To illustrate, here’s a Distance object that converts miles to kilometers and vice versa.
class Distance {

def factor = 1.609344;
var miles: Number on replace {

if (isInitialized(miles))
kilometers = miles * factor;

}
var kilometers: Number on replace {

if (isInitialized(kilometers))
miles = kilometers * 1.0 / factor;

    }
function print() {

println("Miles = {%6.3f miles}, Kilometers = {%6.3f kilometers}")
}

}

Distance{miles: 60}.print();        // Miles = 60.000, Kilometers = 96.561
Distance{kilometers: 500}.print();  // Miles = 310.686, Kilometers = 500.000

Programming Tip

Inside both on replace blocks, isInitialized verifies that variables miles and kilometers
are set before they are used. This avoids executing the conversions for this situation.

Distance{}.print();        // Miles = 0.000, Kilometers = 0.000



ptg

86 Chapter 3 JavaFX Language

On Replace with Bind

Another nice technique with on replace is to use it with bind. The format is
def v = bind w on replace oldValue {

. . .
}

Here, if w changes, v is updated to w’s value and then the code in the on replace block 
executes. As before, oldValue is optional.

Programming Tip

Using def gives you compiler errors if you modify v. If you use var, you’ll get an AssignTo-
BoundException at runtime. In general, use def in declarations with bind. (The exception 
occurs with class instance variables when users can override binding with an object literal. See 
“Using this” on page 71.)

To see an example of on replace with bind, let’s return to our image loading example 
from earlier (see page 74). Recall that a loadComplete boolean was set to true by func-
tion makeServiceCall when image loading was completed. Here is a code snippet that 
binds a loadCarousel variable to the loadComplete boolean and starts up the carousel 
when all the images are loaded.

def loadCarousel: Boolean = bind loadComplete on replace {
if (loadComplete) {

println("starting carousel");
carousel.play();

}
}

Programming Tip

Remember, the on replace block executes when you first initialize the loadComplete boolean 
to false. Here we check the flag and make sure it’s true before starting up the carousel.

3.9  Script Files and Packages

This section discusses program structure, how to access variables and functions from 
different script files, and how to organize your code into packages.

JavaFX lets you structure code as a collection of script level statements (statements 
that are not inside a function or class) or as reusable packages. Let’s look at these two 
approaches in more detail and show you how JavaFX keywords help control the 
accessibility of your variables, objects, and functions.



ptg

Script Files and Packages 87

Variable Scope

There are three types of variables in JavaFX: script variables, class instance variables, 
and local variables. Script variable declarations appear at the top-level of a JavaFX 
script outside of function definitions. Their values are visible everywhere in the script 
file (and, if public, everywhere in the program). The lifetime of a script variable starts 
when the script is loaded and ends when the program terminates. Local variable dec-
larations only appear inside blocks (curly braces); their lifetime ends when you exit the 
block. Class instance variables appear inside JavaFX class definitions. Their scope is 
tied to the lifetime of the object they belong to.

Here is an example of variable declarations and their scope.
var interval = 100ms; // script variable

class Thing {
var val: Integer; // instance variable

}

function doSomething(t: Thing): Void {
var timeSlice = t.val * interval; // local variable
simulate(timeSlice);

}

Function Scope

JavaFX lets you write script functions and class instance functions. A script function is 
callable from anywhere in the script file where it’s defined. Instance functions, on the 
other hand, are defined inside class declarations and must be called with object refer-
ences.

Here are examples of script functions and instance functions.
function totalSum(seq: Integer[]) { // script function

var sum;
for (i in seq) sum += i;
return sum;

}

class Square {
var side: Number;
function area(): Number { side * side; } // instance function

}

As you will see shortly, you can control the accessibility of your JavaFX variables and 
functions with access modifiers.



ptg

88 Chapter 3 JavaFX Language

Script Files

If you want to write JavaFX code quickly and check out its behavior, JavaFX lets you 
organize a program into script files. With this approach, it’s not necessary to include a 
run function or use packages. This can be very useful when you are learning or just 
want to check out a portion of JavaFX code.

To illustrate, here’s a script file that defines a Complex class and an add function to 
add Complex objects.

class Complex {
var real: Number;
var imag: Number;
override function toString(): String {

return "({real}, {imag})";
}

}

function add(a: Complex, b: Complex): Complex {
return Complex { real: a.real + b.real, imag: a.imag + b.imag; }

}

// script-level statements
var c1 = Complex{ real: 1.2, imag: 3.4 };
var c2 = Complex{ real: 3.1, imag: 2.5 };
var c3 = add(c1, c2);
println(c3);     // (4.3, 5.9)

Programming Tip

If you designate any function or variable public in a script file, script-level statements will not 
compile. You have to put script-level statements in a run function. A script file is a compilation 
unit in JavaFX.

Access Modifiers

To make JavaFX programs more modular and reusable, you can use access modifiers 
in your script files. Table 3.3 lists the primary access modifiers that apply to creating 
and using classes, calling functions, and reading and writing script variables or 



ptg

Script Files and Packages 89

instance variables. These access modifiers also apply when overriding and setting or 
binding object literals of instance variables.

JavaFX Tip

JavaFX does not have a private access modifier like other languages (Java, C++). The default 
(no access modifier) is script-private.

Table 3.4 lists the variable access modifiers. You can use protected and package with 
public-read and public-init to grant additional write permissions as indicated in 
Table 3.4.

Packages

Let’s restructure the previous Complex script file and show you how to use it with 
packages. Here’s the approach.

// Complex.fx - Complex class

TABLE 3.3 Primary Access Modifiers

(no access modifier) Script-private. Accessible only within script where it is defined 
(default). Readable and writable.

package Only accessible from within package where it is defined. Readable 
and writable.

protected For class instance variables and functions, accessible to subclasses 
of the class where it is defined. For script variables and script 
functions, accessible from the same package. Readable and writ-
able.

public Accessible anywhere. Readable and writable.

TABLE 3.4 Variable Access Modifiers

public-read Writable only within the current script. Read-only outside the 
script.

public-init Writable only within the current script. Can be initialized in 
an object literal and read anywhere outside the script. Read-
only after initialization outside the script.

protected public-read Writable with sub-classes; otherwise read-only outside the 
script.

protected public-init Writable with sub-classes outside the script; otherwise init-
only.

package public-read Writable in the same package; otherwise read-only.
package public-init Writable in the same package; otherwise init-only.



ptg

90 Chapter 3 JavaFX Language

package complex;

public class Complex {
public var real: Number;
public var imag: Number;
public override function toString(): String {

return "({real}, {imag})";
}

}

public function add(a: Complex, b: Complex): Complex {
return Complex { real: a.real + b.real, imag: a.imag + b.imag; }

}

The file Complex.fx contains the code for class Complex and the add script function. 
All members and functions have public access specifiers and belong to package com-
plex.

Here’s a Main.fx program that instantiates Complex objects and adds them.
// Main.fx - Complex objects
package complex;

var c1 = Complex { real: 1.2, imag: 3.4 };
var c2 = Complex { real: 3.1, imag: 2.5 };
var c3 = Complex.add(c1, c2);
println(c3);     // (4.3, 5.9)

The package statement lets you access public members (Complex, add). Note that Com-
plex.add is required to call the add function. Access to public members is also possible 
with import statements.

Programming Tip

With functions, type inference can generally determine the types of your arguments and 
return values. However, you must explicitly provide types for functions that you intend to call 
from other script files.

JavaFX does not support static member variables and static member functions like 
other languages (Java, C++). You can, however, use script variables with appropriate 
access modifiers to simulate static behaviors. Here’s an example.

// Thing.fx - Thing class
package thing;

public def size1 = 100;
public-read var size2 = 200;

public class Thing {
public var num: Integer;



ptg

Exception Handling 91

public function func() {
return size1 + size2;

}
}

public function myFunction() {
size1 = 300; // compiler error
size2 = 400; // ok

}

// Main.fx - Main program
package thing;

var th = Thing { num: 10 };
println(th.func());                // 300
println(thing.Thing.size2); // 200
thing.Thing.size2 = 500; // compiler error

In Thing.fx, size2 is modifiable but in other files (Main.fx) it is not. The notation 
thing.Thing (package name and file name) is necessary to access script variables in 
Thing.fx. Note that public-read is legal with script variables.

3.10  Exception Handling

In most cases, the JavaFX compiler does a good job of reporting errors at compile time 
when you do something wrong. Occasionally, however, unexpected runtime errors 
occur. In some situations, you might want to deal with runtime errors in some specific 
way. This is called exception handling. In this section, we show you how to handle 
exceptions in your JavaFX programs.

Try, Catch, Finally

Use the keywords try, catch, and finally for thrown exceptions. The formats are
try {

// critical code
} catch (e: myException) {

// exception handler code
}
finally {

// always executes
}

try {
// do something here
return;

}



ptg

92 Chapter 3 JavaFX Language

finally {
// always executes

}

A try block encloses code where an exception could be thrown. A catch handler has a 
signature with an exception type (myException) and catches the thrown exception if 
the type matches. You can have more than one catch handler (each with a different 
signature) and a handler can rethrow the same exception or a different one. A finally
block is optional and always executes, regardless of whether an exception was thrown 
or not. If you omit a catch handler after a try block, you must include a finally block. 
The finally block typically includes cleanup code.

Exceptions can easily be thrown in a JavaFX program, especially if you are using Java 
API methods. Here’s an example with a run function that converts program argu-
ments.

// Numbers.fx - Program argument conversions
import java.lang.*;

function run(args: String[]) {
try {

def intVal = Integer.parseInt(args[0]);
def doubleVal = Double.parseDouble(args[1]);
println(intVal);
println(doubleVal);

} catch (e: NumberFormatException) {
println(e);

}
}

Without try and catch, the program throws an exception at runtime and terminates if 
the program arguments have illegal characters for integers or doubles. To detect these 
runtime errors under program control, enclose the code in a try block with a catch
handler that prints the error message.

$ javafx Numbers 123 45.67
123
45.67

$ javafx Numbers badchars
java.lang.NumberFormatException: For input string: "badchars"

Throwing Exceptions

The keyword throw lets you throw exceptions in JavaFX. The format is
throw new myException(args);



ptg

JavaFX Keywords 93

Note that you must use operator new to create an exception object from the myExcep-
tion class. The constructor arguments typically contain information pertinent to the 
error. You can throw built-in Java exception objects or user-defined exception objects.

Here’s a checkArgument function that throws an IllegalArgumentException if its integer 
argument is negative.

import java.lang.*;

function checkArgument(num: Integer): Void {
if (num < 0)

throw new IllegalArgumentException("neg value");
}

JavaFX Tip

Unlike Java, JavaFX does not have throws clauses on script functions or instance functions 
that throw exceptions.

3.11  JavaFX Keywords

Table 3.5 lists the keywords and reserved words in JavaFX.

Use <<keyword>> to escape a keyword.

str = str.<<replace>>(colon, space); // call Java function replace

TABLE 3.5  JavaFX Keywords and Reserved Words

abstract after and as assert at

attribute before bind bound break catch

class continue def delete else exclusive

extends false finally first for from

function if import indexof in init

insert instanceof into inverse last lazy

mixin mod new not null on

or override package postinit private protected

public-init public public-read replace return reverse

sizeof static step super then this

throw trigger true try tween typeof

var where while with



ptg

This page intentionally left blank 

From the Library of sam kaplan



ptg

95

4 Graphical Objects

Graphical objects and their manipulation are where JavaFX excels. This chapter shows 
you how to define and control graphical objects in JavaFX.

We begin at the top-level Stage and its Scene, followed by the all-important Node 
class. Nodes share a wealth of properties that let you manipulate graphical objects in a 
consistent way.

Nodes specialize into different types: there are nodes that are Shapes, nodes for 
grouping and layout, or developer’s can define their own nodes. Shapes come in all 
forms: Circle, Polygon, Line, and even Path—a shape that lets you describe your own 
Shape.

JavaFX graphical objects also include user interface components. We cover these in the 
next chapter. 

What You Will Learn

• Top-level JavaFX objects Stage and Scene

• Node class and its properties

• Mouse and key event handler properties

• Cursor types

• Group and CustomNode

• Shapes, Paths, and Path Elements

• Layout components and bounding rectangles

4.1  Setting the Stage

JavaFX programs that render graphical material include a top-level Stage. The Stage 
includes a Scene object, which in turn includes a sequence of Nodes. By default the 
Stage style is set to StageStyle.DECORATED, which is rendered differently depending on 



ptg

96 Chapter 4 Graphical Objects

the environment (Windows Vista, Mac OS, Windows XP). StageStyle.UNDECORATED
removes the decoration from the window. Both styles are shown in Figure 4.1.

JavaFX Tip

If you set the Stage’s style to StageStyle.UNDECORATED, you can provide your own “window 
close” button. See the code in Figure 4.19 on page 116 for an example.

Scene

The JavaFX Scene class is the root for all content in a scene graph. The background of 
the scene is specified by the fill property (default is Color.WHITE). The sequence of 
Nodes in the content sequence is rendered on the scene.

Node

Class Node is the base class for all objects in the scene graph. You can add Node 
objects (subtypes of Node) to a scene graph, specify their properties, and apply trans-
formations. Node has many properties that let you customize its look and behavior, 
such as event handlers, clip, effect, opacity, rotate, properties for scaling and trans-
lating, visible, focusable, disable, bounding rectangles, and other properties listed in 
Table 4.1 and Table 4.2. 

Figure 4.2 shows a class hierarchy diagram of some of the JavaFX graphical objects 
discussed in this chapter. 

Stage {
title: "Stage Title"
width: 180
height: 150
style: StageStyle.UNDECORATED
scene: Scene {

fill: Color.BISQUE
content: // content here

}
}

Figure 4.1 Top-level Stage

Default Stage style StageStyle.UNDECORATED



ptg

Setting the Stage 97

Nodes have different subtypes, and as such, exhibit different specializations. For 
example, Group is a type of node that contains multiple subnodes in a content
sequence. Layout nodes are all types of Container, which is a kind of Group. (See 
“Layout Components” on page 119 for a description of the layout nodes.) Shape is a 
type of subnode that is rendered in the coordinate space with properties such as fill
and stroke. Path, in turn, is a subtype of Shape that is made up of connected path ele-
ments. Circle is also a subtype of Shape. All these Node subtypes share common 
properties that help customize rendering, shown in Table 4.1. (See “Cascading Style 
Sheets (CSS)” on page 148 for details on applying styles to JavaFX nodes.) 

TABLE 4.1 Node Rendering Properties 

Property Type Description

clip Node Defines the clipping shape for this Node.
cursor Cursor Mouse cursor for this node and subnodes. If 

null, uses the first parent that has a non-null 
cursor. If still null, uses the cursor of the Scene.

effect Effect Specifies the effect to apply to this node. (See 
Table 8.3 on page 263 for a list of common 
JavaFX Effects.)

opacity Number Specifies how solid (opaque) a node appears (0 
is fully translucent and 1 is fully opaque). Note 
that opacity applies to the entire node, while 
the opacity argument with fill color affects only 
the fill (and not the stroke for example).

Figure 4.2 Node class hierarchy (partial)

Node

HBox

Group Shape

Path

Rectangle

Circle

Ellipse

. . .

clip, cursor, effect, . . .

fill, stroke, . . .content

CustomNode

Container

Flow

VBox

Stack

Tile



ptg

98 Chapter 4 Graphical Objects

rotate Number Angle of rotation about the node’s center, mea-
sured in degrees. 

scaleX Number Factor by which coordinates are scaled about 
the center of the node along the x axis. -1 is nor-
mal scale, but the object is flipped.

scaleY Number Factor by which coordinates are scaled about 
the center of the node along the y axis. -1 is nor-
mal scale, but the object is flipped.

transforms Transform[] Defines sequence of Transform objects that 
apply to this node. Transformations are applied 
before translateX, translateY, scaleX, sca-
leY, and rotate. Transform objects include 
Translate, Scale, Rotate, or Shear.

translateX Number Defines x coordinate of the translation to apply 
to this node. Used to move a node with anima-
tion.

translateY Number Defines y coordinate of the translation to apply 
to this node. Used to move a node with anima-
tion.

layoutX Number Defines x coordinate layout adjustment to 
apply to this node. Used to position a node. 
(New in JavaFX 1.2.)

layoutY Number Defines y coordinate layout adjustment to 
apply to this node. Used to position a node. 
(New in JavaFX 1.2.)

visible Boolean If true, node should be rendered. If false, node 
is not rendered and will not receive mouse 
events or keyboard focus.

id String Similar to the “id” attribute of an HTML ele-
ment; useful to assign style elements from 
external style sheets.

style String Provides inline CSS styles. Uses the syntax 
defined in JavaFX CSS parser.

styleClass String Useful to assign style elements from external 
style sheets to all nodes matching styleClass.

TABLE 4.1 Node Rendering Properties (Continued)

Property Type Description



ptg

Setting the Stage 99

Programming Tip

If you’re dealing with movement or animation, use properties translateX and translateY. If 
you’re dealing with node positioning, use properties layoutX and layoutY.

Table 4.2 lists Node properties that let you customize how a node handles various 
input events (mouse and key events) and other properties that affect its event han-
dling.

TABLE 4.2 Node Mouse/Keyboard Event Properties 

Property Type Description

blocksMouse Boolean If true, consumes mouse events in node 
and does not send them to other nodes 
further up the scene graph. Commonly 
used when nodes overlap.

focused Boolean If true, node is current input focus owner. 
Only one node at a time may be the cur-
rent focus owner.

focusable Boolean If true, node can accept focus.
hover Boolean If true, node is currently being hovered 

over (typically with a mouse).
pressed Boolean If true, node is pressed (typically, the pri-

mary mouse button is down).
disable Boolean Sets disabled state of node (and any 

subnodes).
disabled Boolean If true, node is disabled. A disabled node 

should render itself differently.
onKeyPressed function(:KeyEvent)

:Void
Function called when node has input 
focus and a key has been pressed.

onKeyReleased function(:KeyEvent)
:Void

Function called when node has input 
focus and a key has been released.

onKeyTyped function(:KeyEvent)

:Void
Function called when node has input 
focus and a key has been typed (pressed 
and released).

onMouseClicked function(:

MouseEvent):Void
Function called when mouse button has 
been clicked (pressed and released).

onMouseDragged function(:

MouseEvent):Void
Function called when mouse button is 
pressed and then dragged.

onMouseEntered function(:

MouseEvent):Void
Function called when mouse enters node.



ptg

100 Chapter 4 Graphical Objects

Key Events Tip

Use Node function requestFocus to request focus for nodes that have key event handlers. 

Event handling for mouse and key events lets the user initiate actions. Let’s look at a 
simple mouse event handler that successively rotates a rectangle by 45 degrees, as 
shown in Figure 4.3. View A shows the default state of the rectangle. In View B, the 
user moves the mouse over the rectangle, causing the onMouseEntered event handler to 
be called, which changes the rectangle’s fill color and stroke characteristics. When the 
user clicks the mouse, the rectangle rotates (View C). When the mouse exits the rect-
angle, the fill color and stroke are returned to the default settings. A double-click 
resets the rotation back to zero. 

Listing 4.1 shows the Rectangle object literal and its three mouse event handlers. 

Listing 4.1 Detecting Mouse Events

Rectangle {
    x: 30, y: 30

onMouseExited function(:

MouseEvent):Void
Function called when mouse exits node.

onMouseMoved function(:

MouseEvent):Void
Function called when mouse cursor 
moves within node but no buttons have 
been pushed.

onMousePressed function(:

MouseEvent):Void
Function called when mouse button has 
been pressed.

onMouseReleased function(:

MouseEvent):Void
Function called when mouse button has 
been released.

onMouseWheel-
Moved

function(:

MouseEvent):Void
Function called when mouse scroll wheel 
has moved.

TABLE 4.2 Node Mouse/Keyboard Event Properties (Continued)

Property Type Description

Figure 4.3 Detecting mouse events in a node

View A View B View C



ptg

Setting the Stage 101

    width: 90, height: 50
    stroke: Color.SLATEGRAY
    strokeWidth: 3
    fill: Color.CORNFLOWERBLUE
    onMouseClicked: function(e: MouseEvent): Void {
        if (e.clickCount == 2) { e.node.rotate = 0; }
        else  { e.node.rotate += 45; }
    }
    onMouseEntered: function(e: MouseEvent): Void {
        (e.node as Shape).fill = Color.BLUE;
        (e.node as Shape).strokeDashArray = [9, 5];
    }
    onMouseExited: function(e: MouseEvent): Void {
        (e.node as Shape).fill = Color.CORNFLOWERBLUE;
        (e.node as Shape).strokeDashArray = null;
    }
}

Note that expression (e.node as Shape) is required before accessing Shape-specific 
properties fill and strokeDashArray. (Expression (e.node as Rectangle) also works 
for properties fill and strokeDashArray.) The expression is not necessary with prop-
erty rotate, which is a Node property. You also don’t need instanceof here, since the 
event handler object literal appears in a Rectangle, a subtype of Shape.

Cursor

JavaFX provides various cursor types, as shown in Figure 4.4 and listed in Table 4.3. 
You can set the cursor type of any node with property cursor, as follows.

Rectangle {
cursor: Cursor.HAND
width: 50
height: 100

}

The cursor type propagates to all subnodes unless a subnode redefines it. If cursor is 
null, the first parent with a non-null cursor defines the current node’s cursor type. If 
no cursor is defined within the scene graph, the cursor type of the Scene defines the 
cursor.

Figure 4.4 Cursor types

Left to right: crosshair, default, hand, move, text, wait, horizontal (east, west) resize, 
vertical (north, south) resize, northwest or southeast resize, northeast or southwest resize



ptg

102 Chapter 4 Graphical Objects

There are also multiple cursor types for specialized resizing operations, as listed in 
Table 4.4.

Group

Group is a container class that groups nodes together. Most often, you use Group to 
construct a portion of a scene graph with related nodes. Once these nodes are inserted 
into the group’s content sequence, you can reposition the group without affecting the 
relative position of any of its subnodes. You build a Group object literal with sub-
nodes in property content. Alternatively, you can insert nodes under program control, 
as shown here.

var g1 = Group { }; // instantiate Group g1, empty content sequence
insert Rectangle {

width: 40
height: 20

TABLE 4.3 Common Cursor Types

Cursor Description
CROSSHAIR cross-shaped cursor
DEFAULT arrow
HAND hand
MOVE 4-direction arrow
TEXT I-bar
WAIT hour glass

TABLE 4.4 Resize Cursor Types 

Cursor Description
H_RESIZE double ended horizontal arrow
E_RESIZE

W_RESIZE

V_RESIZE double ended vertical arrow
N_RESIZE

S_RESIZE

NW_RESIZE double ended northwest to 
southeast arrowSE_RESIZE

NE_RESIZE double ended northeast to south-
west arrowSW_RESIZE



ptg

Shapes 103

} into g1.content; // add a Rectangle to g1 content

CustomNode

Class CustomNode is an abstract base class that extends Node. It lets you create cus-
tom nodes for scene graphs. When you extend from CustomNode, you provide a cre-
ate function. Function create typically returns a Group node defining other nodes in 
its content property. Here is the structure of the GuitarString custom node found in 
Chapter 2 (see Listing 2.1 on page 36 and Listing 2.2 on page 38).1

public class GuitarString extends CustomNode {
// properties, variables, functions
. . . 
protected override function create(): Node {
// put any initialization code here

return Group {
content: [

Rectangle { ... }
Rectangle { ... }
Rectangle { ... }
Text { ... }

]
} // Group

}
} // GuitarString

See “PianoKey Components” on page 169 for another example that extends Custom-
Node.

4.2  Shapes

Class Shape is an abstract subclass of JavaFX Node (see Figure 4.2 on page 97). Shape 
objects inherit all properties in Node and adds new properties such as fill and stroke
(outline drawn around the shape). Property fill is type Paint, which can be a color, 
such as Color.RED, or a gradient (LinearGradient or RadialGradient). The default fill
value for all shapes is Color.BLACK except Line, Polyline, and Path, which use default 
value null. You can make shapes transparent by setting their opacity property to 0. 
You can alternatively provide an opacity argument with a color value or use 
Color.TRANSPARENT for property fill. (Property opacity affects the entire node, includ-
ing stroke, whereas providing an opacity modifier with a fill color affects the fill
property only.) See “Gradients” on page 26 and “Color” on page 28 for examples of 
gradients and color.

1. Function create is called from the init block in class CustomNode. If you need to do any 
initialization work prior to the custom node’s content being created, put that code in create.



ptg

104 Chapter 4 Graphical Objects

Property stroke is also type Paint. Shapes include several additional properties that 
let you configure the size, color, and look of a Shape’s outline stroke.

Table 4.5 lists a Shape’s properties.

Figure 4.5 shows three different line cap styles with property strokeLineCap. The top 
line uses StrokeLineCap.SQUARE (the default), the second one uses StrokeLine-
Cap.ROUND, and the bottom line uses StrokeLineCap.BUTT.

TABLE 4.5  Shape Properties 

Property Type Description

fill Paint Interior of a Shape using the settings of the Paint 
context. The default value is Color.BLACK for all 
shapes except Line, Polyline, and Path, which use 
default value null.

smooth Boolean If true, antialiasing rendering hints are applied 
when rendering the Shape.

stroke Paint Parameters of a stroke that is drawn around the 
outline of a Shape using the settings of the specified 
Paint. The default value is null for all shapes except 
Line, Polyline, and Path, which use default value 
Color.BLACK.

strokeDashArray Number[] A sequence representing the lengths of the dash 
segments. Alternate entries in the sequence repre-
sent the lengths of the opaque and transparent seg-
ments of the dashes. The pen is opaque when its 
current cumulative distance maps to an even ele-
ment of the dash sequence and transparent other-
wise.

strokeDashOffset Number Index in the dashing pattern that will correspond to 
the beginning of the stroke.

strokeLineCap Stroke-
LineCap

End cap style as one of the following values: 
StrokeLineCap.BUTT, StrokeLineCap.ROUND, and 
StrokeLineCap.SQUARE.

strokeLineJoin Stroke-
LineJoin

Decoration applied where path segments meet as 
one of the following values: StrokeLine-
Join.BEVEL, StrokeLineJoin.MITER, and Stroke-
LineJoin.ROUND

strokeMiterLimit Number Limit on ratio of miter length to stroke width for 
StrokeLineJoin.MITER line join style.

strokeWidth Number Square pen line width. A value of 0.0 specifies a 
hairline stroke.



ptg

Shapes 105

Listing 4.2 shows the object literals for each of the lines shown in Figure 4.5.

Listing 4.2 Property strokeLineCap

def line1 = Line {
    startX: 10, startY: 20, endX: 200, endY: 20
    strokeWidth: 8
    stroke: Color.BLACK
    strokeLineCap: StrokeLineCap.SQUARE
}
def line2 = Line {
    startX: 10, startY: 50, endX: 200, endY: 50
    strokeWidth: 8
    stroke: Color.BLACK
    strokeLineCap: StrokeLineCap.ROUND
}
def line3 = Line {
    startX: 10, startY: 80, endX: 200, endY: 80
    strokeWidth: 8
    stroke: Color.BLACK
    strokeLineCap: StrokeLineCap.BUTT
}

Figure 4.6 illustrates dashed lines, which are rendered with a sequence of numbers 
provided in property strokeDashArray. If you specify one number, a dashed line will 
have equal parts opaque (visible) and equal parts translucent. Otherwise, the num-
bers in the sequence alternate between the opaque part and the translucent part. The 
top line uses sequence [8 12], which sets the visible dash size to 8 pixels and the 
translucent size to 12. The middle line uses [16 4], to make the dash 16 and the trans-
lucent part 4. The bottom line uses 10 which provides equal-sized dashes and translu-
cent parts. In general, the wider the stroke (property strokeWidth), the larger you 
should make your stroke dash sequence numbers.

Figure 4.5 Line cap styles 

SQUARE (default)

ROUND

BUTT



ptg

106 Chapter 4 Graphical Objects

Listing 4.3 shows the object literals for each of the lines shown in Figure 4.6.

Listing 4.3 Property strokeDashArray

def line1 = Line {
    startX: 10, startY: 20, endX: 200, endY: 20
    strokeWidth: 2
    stroke: Color.BLACK
    strokeDashArray: [8,12]
}
def line2 = Line {
    startX: 10, startY: 50, endX: 200, endY: 50
    strokeWidth: 2
    stroke: Color.BLACK
    strokeDashArray: [16,4] 
}
def line3 = Line {
    startX: 10, startY: 80, endX: 200, endY: 80
    strokeWidth: 2
    stroke: Color.BLACK
    strokeDashArray: 10
}

It’s also possible to have more than two numbers in strokeDashArray. Even index num-
bers map to the opaque part of the dash and odd index numbers map to the translu-
cent part. This lets you build dashed lines with varying-sized dashes. For example, the 
following strokeDashArray sequence creates a dashed line that cycles through pro-
gressively smaller dashes (16, 12, 8, 4) with equal spacing in between (8).

strokeDashArray: [16, 8, 12, 8, 8, 8, 4, 8]

When the number of elements in the strokeDashArray is odd, numbers are assigned to 
opaque and translucent parts in order. In the following example, 20 is assigned to the 
opaque part in the first cycle and the translucent part in the second cycle.

strokeDashArray: [20, 4, 12]

Figure 4.6 Dashed line styles

strokeDashArray: [8,12] 

strokeDashArray: [16,4] 

strokeDashArray: 10 



ptg

Shapes 107

Rectangle

Rectangles have height and width properties and x and y properties for the upper left 
corner origin (default is 0 for the coordinate properties). For rounded rectangles, use 
properties arcHeight and arcWidth and specify the vertical and horizontal diameter of 
the arc at the four corners of the rectangle. Figure 4.7 shows the code for rendering the 
rounded Rectangle shown.

Book Examples

• “Class WhiteKey—Part 2”, Listing 6.3 on page 172, (Chapter 6). Uses a rectangle to 
render a piano key.

• “Class BlackKey—Part 2”, Listing 6.6 on page 177, (Chapter 6). Uses a rectangle to 
render a piano key.

• “Photo1: Displaying an image”, Listing 8.3 on page 254, (Chapter 8). Uses a rectan-
gle to frame an image.

Circle

A Circle has a center point (properties centerX and centerY) and property radius.
Figure 4.8 shows an example object literal that renders the Circle shown.

Rectangle {
    x: 30, y: 10
    width: 60, height: 80
    arcWidth: 20
    arcHeight: 20
    fill: Color.CORAL
    stroke: Color.BLUE
}

Figure 4.7 Rounded Rectangle example

Circle {
    centerX: 50, centerY: 50
    radius: 40
    fill: Color.CORAL
    stroke: Color.BLUE
}

Figure 4.8 Circle example



ptg

108 Chapter 4 Graphical Objects

Book Examples

• “Class WhiteKey—Part 2”, Listing 6.3 on page 172, (Chapter 6). Uses a circle to 
indicate a mouse event on a piano key.

• “Using Timeline to animate a Circle”, Listing 7.1 on page 209, (Chapter 7). Ani-
mates a circle.

• “PathBall”, Listing 7.21 on page 239, (Chapter 7). Creates a custom node with a cir-
cle.

Ellipse

Ellipse is similar to Circle, except that it has separate radius values for the x and y 
directions. Besides centerX and centerY, you also specify radiusX and radiusY.
Figure 4.9 shows an example object literal that renders the Ellipse shown.

Arc

Arcs have a center point (centerX and centerY) and two radii (radiusX and radiusY),
similar to Ellipse. Arcs also have a starting angle (startAngle) and an extent (length).
Both startAngle and length are expressed in degrees. Arc objects have three types: 
ArcType.ROUND (close the shape by connecting the ends of the arc to the center point), 
ArcType.CHORD (close the shape by connecting the ends of the arc with a line segment) 
and ArcType.OPEN (leave the shape open).

Angle 0° is at the right axis, 90° is at the top, 180° is at the left axis, and 270° is at the 
bottom. Positive values for length draw the arc in a counter-clockwise direction and 
negative values draw the arc in a clockwise direction.

Ellipse {
    centerX: 50, centerY: 50
    radiusX: 50, radiusY: 25
    fill: Color.CORAL
    stroke: Color.BLUE
}

Figure 4.9 Ellipse example



ptg

Shapes 109

Figure 4.10 show three arc types and the code that creates type ArcType.ROUND. The arc 
is centered at point (50,50), with a y-axis radius of 25 and an x-axis radius of 50. The 
sweep of the arc begins at angle 45 and extends to angle 315 (a sweep of 270 degrees).

Polygon

Polygons have a sequence of x-coordinate and y-coordinate values for property 
points. A Polygon is a closed shape, so the last point connects to the first point with a 
line. Figure 4.11 shows an example object literal that renders a “stop sign” octagon.

QuadCurve

The QuadCurve class defines a quadratic Bézier parametric curve segment with a 
starting and ending point (startX, startY and endX, endY) using a Bézier control point 
(controlX, controlY). Figure 4.12 shows an example object literal and the resulting 

Arc {
    fill: Color.CORAL
    stroke: Color.BLUE
    centerX: 50 centerY: 50
    radiusX: 50 radiusY: 25
    startAngle: 45
    length: 270
    type: ArcType.ROUND
}

Figure 4.10  Arc examples

ArcType.ROUND

ArcType.CHORD

ArcType.OPEN

0°

90°

180°

270°

Polygon {
    points: [
        20.0,  0.0, 40.0,  0.0,
        60.0, 20.0, 60.0, 40.0,
        40.0, 60.0, 20.0, 60.0,
         0.0, 40.0, 0.0, 20.0,
    ]
    fill: Color.CORAL
    stroke: Color.BLUE
}

Figure 4.11 Polygon example



ptg

110 Chapter 4 Graphical Objects

QuadCurve that the code renders. Point A is the starting point (startX, startY), point 
B is the control point (controlX, controlY), and C is the ending point (endX, endY).

CubicCurve

The CubicCurve class defines a cubic Bézier parametric curve segment that intersects 
both a starting and ending point (startX, startY and endX, endY) using the specified 
Bézier control points (controlX1, controlY1 and controlX2, controlY2). Figure 4.13 
shows an example object literal and the resulting CubicCurve that the code renders. 
Point A is the starting point (startX, startY), points B and C are the control points 
(controlX1, controlY1 and controlX2, controlY2), and point D is the ending point 
(endX, endY).

Line

Lines have starting and ending x and y coordinate points. Property fill defaults to 
null. Figure 4.14 shows an example object literal and the resulting Line that the code 
renders. Here, property strokeDashArray renders a dashed line.

QuadCurve {
    startX: 0.0, startY: 100.0
    endX: 50.0, endY: 100.0
    controlX: 25.0, controlY: 0.0
    fill: Color.CORAL
    stroke: Color.BLUE
}

Figure 4.12 QuadCurve example

A

B

C

CubicCurve {
    startX: 0, startY: 50
    controlX1: 25, controlY1: -50
    controlX2: 75, controlY2: 150
    endX: 100, endY: 50
    fill: Color.CORAL
    stroke: Color.BLUE
}

Figure 4.13 CubicCurve example 

A

B

C

D



ptg

Shapes 111

Polyline

Polylines have a sequence of x-coordinate and y-coordinate values for property 
points. Polyline is similar to Polygon, except that it does not automatically close. 
Figure 4.15 shows an example object literal that renders the Polyline shown. Note that 
the example does not specify a closing side and none is drawn.

SVGPath

SVGPath constructs a shape by parsing SVG (Scalable Vector Graphics) path data 
from a String.2 SVGPath parses only SVG path data, which includes commands and 
point data. 

2. SVG is a standard for specifying graphics. See http://www.w3.org/TR/SVG/paths.html for 
a reference on SVG paths.

Line {
    startX: 10, startY: 100
    endX: 200, endY: 20
    stroke: Color.BLUE
    strokeDashArray: [16, 8]
}

Figure 4.14 Line example 

Polyline {
    points: [
        20.0,  0.0, 40.0,  0.0,
        60.0, 20.0, 60.0, 40.0,
        40.0, 60.0, 20.0, 60.0,
        0.0, 40.0, 0.0, 20.0,
    ]
    fill: Color.CORAL
    stroke: Color.BLUE
    strokeWidth: 6
}

Figure 4.15 Polyline example 

Polyline is not closed

http://www.w3.org/TR/SVG/paths.html


ptg

112 Chapter 4 Graphical Objects

Table 4.6 lists the available SVGPath commands. Capital letter commands indicate 
coordinate values with absolute position and lower case letter commands mean coor-
dinate values with relative position.  

Figure 4.16 shows an example object literal that renders the SVGPath shown. This 
draws a quadratic Bézier curve similar to the QuadCurve object in Figure 4.12 on 
page 110. 

Figure 4.17 shows an SVGPath that produces a spiral graphic. The code that renders 
this spiral is shown in Listing 4.4. 

TABLE 4.6 SVGPath Commands 

Command Description

Absolute Relative
M m move to
L l line to
H h horizontal line to
V v vertical line to
C c curve to
S s smooth curve to
Q q quadratic Bézier curve to
T t smooth quadratic Bézier curve to
A a elliptical arc
Z z close path

SVGPath {
    fill: Color.CORAL
    stroke: Color.BLUE
    strokeWidth: 2
    content : "M0 100"
    "Q25.0 0.0 50 100"
}

Figure 4.16 SVGPath example

A

B

C



ptg

Shapes 113

Listing 4.4 SVGPath that produces a spiral

SVGPath {
    fill: Color.CORAL
    stroke: Color.BLUE
    strokeWidth: 2
    content : "M153 334"

"C153 334 151 334 151 334"
"C151 339 153 344 156 344"
"C164 344 171 339 171 334"
"C171 322 164 314 156 314"
"C142 314 131 322 131 334"
"C131 350 142 364 156 364"
"C175 364 191 350 191 334"
"C191 311 175 294 156 294"
"C131 294 111 311 111 334"
"C111 361 131 384 156 384"
"C186 384 211 361 211 334"
"C211 300 186 274 156 274"

}

ShapeIntersect/ShapeSubtract

ShapeIntersect and ShapeSubtract are composite shapes. You create them by combin-
ing two shapes specified in properties a and b (building block shapes). Building block 
shapes do not accept Shape properties such as fill or stroke. However, composite 
shapes do—they are like any other Shape. Figure 4.18 shows several views illustrating 
ShapeIntersect and ShapeSubtract. 

View A shows the two building block shapes: Rectangle for property a and Ellipse for 
property b.

View B shows ShapeIntersect. The composite shape includes all points in the coordi-
nate space that are in both shapes.

Figure 4.17 SVGPath that creates a spiral



ptg

114 Chapter 4 Graphical Objects

View C shows ShapeSubtract. Here, the composite shape consists of shape a minus 
shape b.

Listing 4.5 shows the code that renders the views in Figure 4.18.

Listing 4.5 ShapeIntersect and ShapeSubtract

// View A
def g1 = Group {
    content: [
        Rectangle {
            width: 100
            height: 50

 stroke: Color.BLUE
            fill: Color.LIGHTSLATEGRAY
        }
        Ellipse {
            centerX: 100
            centerY: 25
            radiusX: 50
            radiusY: 25

stroke: Color.DARKBLUE
            fill: Color.web("#333333", .5)
        }
    ]
}
// View B
def shapeintersect = ShapeIntersect {
    stroke: Color.DARKCYAN
    a: Rectangle {
        width: 100
        height: 50
    }
    b: Ellipse {

Figure 4.18 ShapeIntersect and ShapeSubtract

View A: Rectangle and Ellipse source shapes

View B: ShapeIntersect (only common points)

View C: ShapeSubtract (Rectangle minus Ellipse)



ptg

Shapes 115

        centerX: 100
        centerY: 25
        radiusX: 50
        radiusY: 25
    }
}
// View C
def shapeminus = ShapeSubtract {
    stroke: Color.DARKCYAN
    a: Rectangle { 
        width: 100
        height: 50
    }
    b: Ellipse { 
        centerX: 100
        centerY: 25
        radiusX: 50
        radiusY: 25
    }
}
. . .
VBox {

content: [ g1, shapeintersect, shapeminus ]
}
. . .

Text

Text is a specialized shape for displaying text. Table 4.7 lists the properties for compo-
nent Text.

TABLE 4.7 Text Properties 

Property Type Description

content String Text to be displayed.
font Font Font used to display text.
overline Boolean If true, each text line has a line above it.
strikethrough Boolean If true, each text line has a line through it.
underline Boolean If true, each text line has a line under it.
wrappingWidth Number Width constraint. If > 0, text is wrapped at word 

boundaries to comply.
textAlignment TextAlignment Horizontal text alignment; one of TextAlign-

ment.CENTER, TextAlignment.JUSTIFY, Text-
Alignment.LEFT (default), and 
TextAlignment.RIGHT



ptg

116 Chapter 4 Graphical Objects

TextOrigin.BASELINE aligns the baseline of the text with the y coordinate value, which 
does not include the space taken by descending characters (such as lower case “g” or 
“y”). TextOrigin.BOTTOM aligns the bottom of the text with the y coordinate value and 
includes space taken by descending characters. TextOrigin.TOP aligns the top of the 
text with the y coordinate value. 

Since Text is a Node, you can easily implement a Text component that responds to an 
event. For example, Figure 4.19 shows a Text component used as a window close but-
ton. This code is useful in a run time environment that does not include a browser.

4.3  Paths

A Path lets you string together a sequence of path elements to define arbitrary shapes. 
Use Path when you need to customize a shape beyond the standard JavaFX shapes. 

textOrigin TextOrigin Aligns text with the y coordinate value in local 
coordinates; one of TextOrigin.BASELINE
(default), TextOrigin.BOTTOM, TextOri-
gin.TOP

x Number X coordinate of text origin.
y Number Y coordinate of text origin.

TABLE 4.7 Text Properties (Continued)

Property Type Description

def closeButton = Text {
    content: "X"
    fill: Color.BLACK
    x: 300
    y: 10
    textOrigin: TextOrigin.TOP
    font: Font {
        name: "Bitstream Vera Sans Bold"
        size: 18
    }
    cursor: Cursor.HAND
    visible: bind ("{__PROFILE__}" != "browser")
    onMousePressed: function(e: MouseEvent): Void {
        FX.exit();
    }
}

Figure 4.19 Text component as a close button



ptg

Paths 117

You can also use Path to create a PathTransition. This is a specialized animation that 
lets you move an object along a predefined path.

A Path has path elements. The first path element is always MoveTo. By default, coor-
dinates are expressed in absolute coordinate values. Set property absolute to false for 
relative coordinate values. You’ll note that many JavaFX shapes have corresponding 
path elements (Arc is the shape and ArcTo is the path element). 

Table 4.8 lists the standard path elements.

Figure 4.20 shows a Path that forms an elliptical shape and Listing 4.6 is the code that 
renders it. We first create a sequence of path elements (pathElements) and then use 
them to build a Path. The MoveTo element starts the path at point A, drawing an arc 
in the counter clockwise direction (sweepFlag is false) to point B. A second arc starts 
at point B and finishes back at point A.

TABLE 4.8 Path Elements 

Path Element Description
MoveTo Move to specified x and y point. Required first path element.
ArcTo Forms an arc from the current coordinates to the specified x and y

coordinates using radius. Boolean property sweepFlag specifies 
clockwise (if true) or counter clockwise (if false) sweep direction.

HLineTo Creates a horizontal line from the current point to x.
VLineTo Creates a vertical line from the current point to y.
LineTo Creates a line by drawing a line from the current coordinate to the 

new coordinates.
QuadCurveTo Creates curved path element, defined by two new points, by draw-

ing a Quadratic Bézier curve that intersects both the current coordi-
nates and the specified coordinates (x, y), using the specified point 
(controlX, controlY)  as a Bézier control point.

CubicCurveTo Create curved path element, defined by three new points, by draw-
ing a Cubic Bézier curve that intersects both the current coordinates 
and the specified coordinates (x, y), using the specified points 
(controlX1, controlY1) and (controlX2, controlY2) as Bézier 
control points.

ClosePath Closes current path by drawing a line from the current point to the 
starting point.



ptg

118 Chapter 4 Graphical Objects

Listing 4.6 Path and PathElements

def centerX = 100;
def centerY = 100;
def radiusX = 25;
def radiusY = 50;

// this provides the path elements for the Path
def pathElements = [
    MoveTo {
        x: centerX
        y: centerY + radiusY
    }
    ArcTo {
        x: centerX
        y: centerY - radiusY
        radiusX: radiusX
        radiusY: radiusY
    }
    ArcTo {
        x: centerX
        y: centerY + radiusY
        radiusX: radiusX
        radiusY: radiusY
    }
];

def path = Path {
    stroke: Color.DARKGRAY
    strokeWidth: 2
    elements: pathElements
}

JavaFX Tip

With Path you can define a PathTransition, an animation of a node along a sequence of path 
elements. See “Path Animation” on page 233.

Figure 4.20 Path example using MoveTo and ArcTo
A

B



ptg

Layout Components 119

Book Examples

• “Main PathElements”, Listing 7.24 on page 242, (Chapter 7). Creates an animation 
path with CubicCurveTo, LineTo, and MoveTo elements.

• “PathElements that define the PathTransition”, Listing 8.17 on page 280, 
(Chapter 8). Creates a photo carousel path with MoveTo and ArcTo elements.

4.4  Layout Components

Layout components specialize Container and Group (see Figure 4.2 on page 97). They 
manage their content, which can be a combination of one or more Shapes, Groups, or 
other layout nodes that make it convenient to arrange nodes in a scene. Table 4.9 
describes the layout components available in JavaFX.

TABLE 4.9 Layout Components

Component Description

HBox Provides a horizontal layout of its contents in a single row. Con-
trol space between subnodes with property spacing. Property 
hPos is the horizontal position of the row of nodes within this con-
tainer's width. Property vPos is the vertical position of each node 
within the space allocated to it in the row.

VBox Provides a vertical layout of its contents in a single column. Con-
trol space between subnodes with property spacing. Property 
hPos is the horizontal position of each node within the space allo-
cated to it in the column. Property vPos is the vertical position of 
the column of nodes within this container's height.

Flow Provides a layout of its contents in either a horizontal or vertical 
flow (vertical flow if property vertical is true), wrapping at its 
current width or height boundaries (properties width, height).
Use hGap, vGap for spacing. Properties hPos, vPos depend on ver-
tical or horizontal flow. Each cell is sized to fit its content node.

Tile Provides a layout of its contents in either a horizontal or vertical 
flow (vertical flow if property vertical is true), wrapping at its 
current width or height boundaries (properties width, height).
Use hGap, vGap for spacing and hPos, vPos to position contents 
within each cell. All cells are uniform size. Properties tileHeight
and tileWidth control cell size.

Stack Arranges its content nodes in a back-to-front stack. Useful for tab-
style nodes or stacks of nodes, such as ImageView components.



ptg

120 Chapter 4 Graphical Objects

HBox and VBox Layout Components

HBox and VBox are layout components that manage a sequence of nodes in property 
content. HBox provides a horizontal layout of its contents, one after the other, equally 
spaced and in a single line. (Content that extends beyond the boundaries of the scene 
is clipped.) Similarly, VBox provides a vertical layout of its contents. You can nest 
HBox and VBox components as needed, and you can control the amount of space 
between subnodes with property spacing. Use properties vPos and hPos to control 
subnode positioning and row/column position.

Figure 4.21 shows a VBox layout component that contains two HBox nodes (each with 
three rectangles) and a line between them. The rectangles in each HBox have different 
spacing. The VBox component is positioned with layoutX and layoutY properties.

Listing 4.7 shows the code that renders the scene graph from Figure 4.21.

Listing 4.7 HBox, VBox Layout Example

def colors = [ Color.RED, Color.BLUE, Color.GREEN ];

def rectangles = for (i in [0..5])
    Rectangle {
        width: 20
        height: 50
        fill: colors[i mod 3]
    }

. . .

VBox {
layoutX: 50
layoutY: 20

Figure 4.21 Using HBox and VBox layout components



ptg

Layout Components 121

spacing: 20
content: [

HBox {
spacing: 10
content: [ rectangles[0], rectangles[1], rectangles[2] ]

}
Line {

startX: 0
startY: 0
endX: 100
endY: 0
stroke: Color.BLACK
strokeWidth: 2

}
HBox {

spacing: 20
content: [ rectangles[3], rectangles[4], rectangles[5] ]

}
]

}
. . .

Book Examples

• “Piano—Step 3: Add the keyboard—Part 2”, Listing 6.9 on page 183, (Chapter 6). 
Uses VBox to layout components.

• “Piano—Step 4: Add Swing buttons and note buffer—Part 3”, Listing 6.12 on 
page 187, (Chapter 6). Uses HBox to layout components.

• “Chutes and Ladders Scene Graph”, Listing 7.27 on page 246, (Chapter 7). Uses 
VBox and nested HBox to layout components.

Flow and Tile Layout Components

The Flow layout component provides a layout of its content in either a horizontal 
(default) or vertical flow (property vertical is true). Flow layout wraps content at its 
boundaries (specified by properties width and height). Properties hGap and vGap
define spacing, depending on whether the flow is horizontal or vertical. For example, 
property hGap defines the amount of horizontal space between each node in a horizon-
tal flow or the space between columns in a vertical flow. Likewise, properties hPos and 
vPos depend on vertical or horizontal flow. For horizontal flow, property hPos defines 
the horizontal position of each flow within the Flow container's width. For vertical 
flow, property hPos defines the horizontal position of nodes within each cell. Because 
each node follows the previous node, Flow layout does not necessarily produce a grid 
layout (see Figure 4.22).



ptg

122 Chapter 4 Graphical Objects

The Tile layout component provides a layout of its content in uniformly sized spaces 
or “tiles.” Tile layout lets you specify the size of tiles with properties tileWidth and 
tileHeight and the number of columns and rows (properties columns and rows). Pro-
perties hGap and vGap define the amount of horizontal space between tiles in a row and 
vertical space between tiles in a column, respectively. Properties hPos and vPos posi-
tion a node when the node doesn’t fill its space in a tile. (The default value for vPos is 
VPos.CENTER and for hPos is HPos.CENTER.)

Figure 4.22 shows Flow layout (View A), Tile layout (View B), and Tile layout where 
vPos is set to VPos.TOP (View C). Listing 4.8 lists the code for each view.

Listing 4.8 Flow and Tile Layout Examples

// View A: Flow Layout
Flow {

vertical: true
width: 200, height: 200
layoutX: 20, layoutY: 80
hGap: 20, vGap: 20
content: [ rectangles, circles ]

}
// View B: Tile Layout
Tile {

vertical: true
width: 200, height: 200
layoutX: 20, layoutY: 80
hGap: 20, vGap: 20
content: [ rectangles, circles ]

}
// View C: Tile Layout with vPos
Tile {

Figure 4.22 Flow and Tile layout components

View A: Flow Layout View B: Tile Layout View C: Tile Layout
vPos: VPos.TOP 



ptg

Layout Components 123

vPos: VPos.TOP
vertical: true
width: 200, height: 200
layoutX: 20, layoutY: 80
hGap: 20, vGap: 20
content: [ rectangles, circles ]

}

Book Example

• “Piano—Step 4: Add Swing buttons and note buffer—Part 3”, Listing 6.12 on 
page 187, (Chapter 6). Uses Flow to layout components.

Stack Layout Component

The Stack layout component arranges its content nodes in a back-to-front stack. That 
is, each node is “stacked” on top of previously added nodes. Stack layouts are useful 
for tab-style nodes or stacks of nodes, such as ImageView panels (perhaps a slide 
show). Figure 4.23 shows an example with a tab-style panel selection mechanism. 
Selecting the tab brings that panel to the top of the stack.

Listing 4.9 shows the code that renders the layout in Figure 4.23. The tab has an 
onMouseClicked event handler to move its node to the front with function 
group.toFront.

Figure 4.23 Stack layout component



ptg

124 Chapter 4 Graphical Objects

Listing 4.9 Stack Layout Example

// Build three panels consisting of a tab, tab body, text label, and Text
def panels = for (i in [0..2]) {
    var tab: Rectangle;
    var tabBody: Rectangle;
    var tabLabel: Text;
    var group: Group;
    group = Group {
        effect: DropShadow { }
        content: [
            tab = Rectangle {

. . .
   cursor: Cursor.HAND
   stroke: Color.BLACK

onMouseClicked: function(e: MouseEvent): Void {
      group.toFront();

                }
     arcWidth: 15
    arcHeight: 15

            }
            tabBody = Rectangle { . . . }
            tabLabel = Text { . . . }
            Text { . . . }
        ]
    }
}

// put panels in a Stack layout component
Stack {

// reverse order so that panels[0] is on top
content: [ panels[2], panels[1], panels[0]  ]

}

4.5  Geometry

A scene is a two-dimensional coordinate space with nodes. JavaFX provides several 
convenience classes to help you manage this geometry. You also have “bounding” 
rectangles to manage the relative size and placement of nodes.

Point2D

Class Point2D is a convenience class that encapsulates the x and y coordinates for 
points. You initialize a point with public-init properties x and y (both Numbers). The 
Point2D member function distance calculates the distance between two points. Here 
are some examples.
var origin = Point2D { x: 0, y: 0 }



ptg

Geometry 125

var newPoint = Point2D { x: 3, y: 4 }
println("distance from origin = {newPoint.distance(origin)}"); // 5.0
println("distance from origin = {newPoint.distance(0,0)}"); // 5.0

Bounds/Rectangle2D

Class Bounds (Rectangle2D prior to JavaFX 1.2) is a convenience class that encapsu-
lates geometry properties for bounding rectangles.3 Bounds lets you query the posi-
tion or bounds of objects in your scene graph. It’s particularly useful when centering 
or positioning objects based on the dimensions or positions of other objects. 

Table 4.10 lists the Bounds properties. Each graphical object has multiple bounding 
rectangles that define its size and position. 

Bounding Rectangles

When you add an object (Node) to a scene graph, JavaFX provides four bounding 
rectangles that describe the node’s position and size. Two (boundsInLocal and layout-
Bounds) are relative to the local coordinate system (the current container). Bounding 
rectangle boundsInParent is relative to the coordinate system of the parent node. 
Bounding rectangle boundsInScene is relative to the coordinate system of the scene. 
Table 4.11 lists the properties for these node bounding rectangles, which are all 
Bounds objects.

Typically, you’ll want to use bounding rectangles for position and size information 
instead of a node’s own dimensions or position properties. Which bounding rectangle 
you use depends on the bounding rectangle’s node and your application. Neither 
boundsInLocal or layoutBounds responds to the effects of layoutX, layoutY, translateX,
translateY, rotate, scaleX and scaleY.

3. Beginning with JavaFX 1.2, class Bounds is used to describe the bounds of a node or other 
scene graph object. (Rectangle2D is still used to define the viewport of ImageView and 
MediaView.)

TABLE 4.10 Bounds/Rectangle2D Properties 

Property Type Description
height Number Height of bounding rectangle
width Number Width of bounding rectangle
minX Number Left x value of bounding rectangle
minY Number Top y value of bounding rectangle
maxX Number Right x value of bounding rectangle
maxY Number Bottom y value of bounding rectangle



ptg

126 Chapter 4 Graphical Objects

Bounding rectangle boundsInParent is relative to the parent node and responds to all 
transformations on the node, including those set in transforms, layoutX, layoutY,
translateX, translateY, scaleX, scaleY, and rotate properties. 

Bounding rectangle boundsInScene provides the same dimensions as boundsInParent.
However, the bounding rectangle is defined in terms of the scene’s coordinate system. 
This means coordinate values will change if the parent node has been adjusted with 
properties such as layoutX and layoutY.

Layout Tip

When doing layout, you almost always want to use layoutBounds instead of boundsInScene
and boundsInParent (layoutBounds is more efficient). Also, it is an error to bind properties 
such as centerX and centerY (for Circles) or x and y (for Rectangle or Text) to an expression 
that depends upon its own layoutBounds for the purpose of positioning the node.

Positioning with Bounding Rectangles

Suppose you want to position a VBox layout component over a background Rectangle 
node. Figure 4.24 shows a vertical box (VBox) layout component containing three Text 
components (“Small,” “Medium,” and “Large”). The VBox is positioned (using lay-
outX and layoutY) so that it is on top of the background rectangle.

TABLE 4.11 Node Bounding Rectangles 

Property Type Description
boundsInLocal Bounds

(Rectangle2D
prior to JavaFX 
1.2)

Rectangular bounds of Node in local coordinate 
space, including space for stroke, effect, clip. 
Not included is rotate, transforms, layout, 
translate, scale properties. 

layoutBounds Bounds

(Rectangle2D
prior to JavaFX 
1.2)

Rectangular bounds of Node. Includes trans-
forms, but not rotate, translate, layout, scale 
properties.

boundsInParent Bounds

(Rectangle2D
prior to JavaFX 
1.2)

Rectangular bounds of Node in parent coordi-
nate system; includes effects of transforms, lay-
out, translate, scale, and rotate.

boundsInScene Bounds

(Rectangle2D
prior to JavaFX 
1.2)

Rectangular bounds of Node in scene coordi-
nate system; includes effects of transforms, lay-
out, translate, scale, and rotate.



ptg

Geometry 127

Listing 4.10 shows the code that renders the scene in Figure 4.24. 

To align the VBox directly over the Rectangle, set the VBox properties layoutX and 
layoutY with the background rectangle’s layoutBounds.minX and layoutBounds.minY,
respectively. Read-only variable margin maintains spacing so that the three subnode 
Text components aren’t directly at the top and left edges. 

You must set Text property textOrigin to TextOrigin.TOP. Otherwise, the default 
placement of Text aligns the Text baseline with the top of VBox. With TextOrigin.TOP,
the top of the Text aligns with the top of the VBox.

Note that you position the background Rectangle with properties x and y. The VBox 
component is positioned using layoutX and layoutY.

Listing 4.10 Using Bounding Rectangles for Layout

def controlWidth = 150; 
def controlHeight = 150;
def offsetX = 20; 
def offsetY = 20;

def background = Rectangle {
    width: controlWidth
    height: controlHeight
    x: offsetX y: offsetY
    arcWidth: 20 arcHeight: 20
    stroke: Color.SLATEBLUE
    strokeWidth: 2
    fill: Color.ANTIQUEWHITE
}

def margin = 10;
def vbox = VBox {
    spacing: 20

// Use layoutX and layoutY (new to JavaFX 1.2) to position nodes

Figure 4.24 Using bounding rectangles to position two nodes

background RectangleVBox



ptg

128 Chapter 4 Graphical Objects

    layoutX: background.layoutBounds.minX + margin
    layoutY: background.layoutBounds.minX + margin
    content: [
        Text {
            content: "Small"
            textOrigin: TextOrigin.TOP
        }
        Text {
            content: "Medium"
            textOrigin: TextOrigin.TOP
        }
        Text {
            content: "Large"
            textOrigin: TextOrigin.TOP
        }
    ]
}

Book Example

• “CarouselPhoto Scene Graph”, Listing 8.15 on page 278, (Chapter 8). Uses bound-
ing rectangles to position images and image titles.



ptg

129

5 User Interface 
Components

Graphical objects include user interface components, described in this chapter. JavaFX 
currently offers two flavors: Java Swing-based components that are wrapped for 
seamless integration into JavaFX and “native” JavaFX components. Recently, the 
native JavaFX UI component offerings have increased, and we briefly describe these 
new components in this chapter. We point you to examples throughout the book that 
use the described components, where possible.

You can apply CSS styles to graphical objects (“skin” them), which is especially useful 
for incorporating UI components with a uniform look and feel. You can also build 
your own “skinnable” UI components. (Skinnable components let you apply a uni-
form style to components through external CSS style sheets. By using different style 
sheets, you can change the entire look of your components.)

What You Will Learn

• JavaFX user interface components

• Swing-based user interface components

• Integrating UI controls into applications with binding

• Applying CSS styles to graphical objects

• Creating “skinnable” UI components

5.1  JavaFX UI Controls

JavaFX includes a native TextBox UI component which is discussed below. The JavaFX 
1.2 release also includes additional UI components briefly described in Table 5.2.

TextBox

A TextBox obtains textual input from users. You specify the width with property col-
umns and an event handler with property action. Boolean editable specifies whether 
or not the TextBox is editable by the user (true is the default). Property rawText



ptg

130 Chapter 5 User Interface Components

reflects the text in the TextBox (updated as the user provides input) and text holds the 
input when the event handler is invoked. In addition, properties adjustingSelection,
dot, and mark let you query user text selection. Figure 5.1 shows an example. 

Table 5.1 lists the TextBox properties.

TABLE 5.1  TextBox Properties 

Property Type Description (Default)
action function():Void Function that is called when an action is 

fired on this TextBox (typically with 
<Enter>).

columns Number Horizontal size: approximate number of 
characters (default 10). 

editable Boolean If true, text is editable by user (default true).
font Font Default font for text.
selectOnFocus Boolean If true, focus gain on this TextBox via key-

board or softkey navigation causes a selec-
tion of its text contents (default true).

text String Text contained in this TextBox, updated 
when user commits.

rawText String Raw text value (as user types).
promptText String Displayed when no text has been entered 

into the Control.
adjustingSelection

dot

mark

Boolean

Integer

Integer

Used to query state of text selection. Prop-
erty dot is location of caret, mark is the 
anchor. If dot != mark then there is text 
selection.

var textInput: TextBox;
. . .

textInput = TextBox {
columns: 20
action: function(): Void {

if (textInput.text != "") {
processInput(textInput.text);

}
}

}

Figure 5.1 TextBox UI Component



ptg

JavaFX UI Controls 131

Book Examples

• “FlickrTag (Main.fx)”, Listing 9.20 on page 310, (Chapter 9). Provide a search tag 
for Flickr.

• “Scene Graph (FlickrUser)”, Listing 9.24 on page 314, (Chapter 9). Provide a screen 
name for Flickr.

UI Components

Table 5.2 lists the UI components included with the JavaFX 1.2 release. With these 
components, developers will have a richer selection of built-in UI controls. Unlike the 
JavaFX Swing components (which only run in the desktop environment), these UI 
components are portable across all environments (desktop, mobile, and TV). See 
Figure 1.1, “JavaFX Platform,” on page 2 for an overview of the JavaFX platform. 

TABLE 5.2  UI Components 

UI Component Description

TextBox Textual input with action event handler.
Button Pressable component with action event handler.
Hyperlink Alternative view of Button. Keeps track of whether it has been 

“visited” and optionally renders differently if it has.
ToggleButton Similar to SwingToggleButton. If the component is part of a Tog-

gleGroup, the group ensures that only one ToggleButton is 
selected at a time. Otherwise, toggles between selected and not 
selected states.

RadioButton Extends ToggleButton and provides alternate view (the tradi-
tional radio button look).

ToggleGroup Groups ToggleButtons or RadioButtons so that selection is mutu-
ally exclusive among all buttons in the same group.

CheckBox Tri-state selection control typically skinned as a box with a check-
mark or tick mark when checked.

ListView Scrollable list of selectable items.
ComboBox List of pre-defined Strings with the option of entering a custom 

string.
Label Non-editable text and/or graphic control. Displayed text is modi-

fied to fit within a specific space using ellipses or truncation. 
ScrollBar Scrolling control.
Slider Similar to SwingSlider.



ptg

132 Chapter 5 User Interface Components

Figure 5.2 shows many of these UI components and Listing 5.1 is the source code for 
the application shown.

Listing 5.1 UI Component Menagerie

// Two ToggleButtons in a ToggleGroup and One CheckBox
var toggleGroup = ToggleGroup {}
def tg1 = ToggleButton { text: "First", toggleGroup: toggleGroup }
def tg2 = ToggleButton { text: "Second", toggleGroup: toggleGroup }
def tg3 = CheckBox { text: "CheckBox One" }

ProgressBar Visual progress status indicator. Property progress (if between 0 
and 1) indicates percentage complete, if >= 1 indicates done.

ProgressIndicator Alternate view to ProgressBar. Provides a small, circular progress 
indicator.

TABLE 5.2  UI Components (Continued)

UI Component Description

Figure 5.2 UI component menagerie

ToggleButtons

RadioButtons

Slider

Buttons

Label with text

ProgressBar

ProgressIndicator

(attached to Rectangle opacity)

ListView

Hyperlinks

CheckBox

and graphic



ptg

JavaFX UI Controls 133

// Three RadioButtons in a ToggleGroup
def tb = ToggleGroup {}
def r1 = RadioButton { text: "Small", toggleGroup: tb }
def r2 = RadioButton { text: "Medium", toggleGroup: tb }
def r3 = RadioButton { text: "Large", toggleGroup: tb }

// Slider controls Rectangle’s opacity
def slider = Slider {
    min: 0, max: 1
    vertical: false
    showTickMarks: true, showTickLabels: true
    value: 0.5
    majorTickUnit: .25, minorTickCount: 3
}
def rectangle = Rectangle {
    width: 50, height: 80
    opacity: bind slider.value, fill: Color.BLUE
}

// Two Buttons
def b1 = Button {
    text: "Click Button 1"
    strong: true
    action: function() { println("Button 1 clicked"); }
}
def b2 = Button {
    strong: false
    text: "Click Me Button 2"
    action: function() { println("Button 2 clicked"); }
}

// Two Hyperlinks and a Label
def h1 = Hyperlink { text: "Hyperlink 1" }
def h2: Hyperlink = Hyperlink { text: "Hyperlink 2" }
def l1 = Label { text: "Hi, I am a label." font: Font { ... }
    graphic: ImageView { image: Image { url: "{__DIR__}duke.gif" } }
    textFill: Color.CRIMSON
}

// ProgressBar and ProgressIndicator reporting on same variable n
var n: Number = 0;
var pb = ProgressBar {
    progress: bind ProgressBar.computeProgress(1000, n)
}
var pi = ProgressIndicator {
    progress: bind ProgressIndicator.computeProgress(1000, n)
}
def lv = ListView { items: ["One", "Two", "Three"] }



ptg

134 Chapter 5 User Interface Components

Popup Windows

JavaFX includes two external “windows” you can invoke from applications: Alert and 
Popup. Both components are not part of your main application’s scene graph but have 
their own stage.

Alert provides a high-level, configurable popup dialog. There are three types: con-
firm, inform, and question, instantiated by invoking either Alert function confirm,
inform, or question. The title is the optional first argument. Figure 5.3 shows a ques-
tion alert with Yes/No buttons.

Popup provides a general-purpose component that pops up on the user’s screen. You 
can build a Popup with any scene graph structure that you’d like. Figure 5.4 shows a 
Popup rendered with a Rectangle and Text component.

Figure 5.3 Alert window (question)

// action property in Button
action: function() {

if (Alert.question (
"Important Question???",
"Do you want to continue?"))

statusString = "We will continue!"
else

statusString = "We will stop!";
}

}

Figure 5.4 Popup window

def myPopUp = Popup {
// put Popup contents here

    content: [ . . . ]
}
. . .
// action property in Button
action: function() {

if (myPopUp.visible) myPopUp.hide()
// use absolute screen coordinates
else myPopUp.show(600, 400);

}



ptg

Swing Components 135

5.2  Swing Components

JavaFX provides direct access to a subset of the Java Swing components. These Swing 
components have been wrapped so they are consistent with the JavaFX scene graph 
model and node behavior. Swing components only run in the desktop environment, 
which means you can’t use them in mobile applications.

SwingButton

SwingButton provides a push button graphical UI component. You can adorn it with 
text, an icon, or both. Use property action for event handling, as shown in Figure 5.5. 

Book Examples

• “Piano—Step 4: Add Swing buttons and note buffer—Part 3”, Listing 6.12 on 
page 187, (Chapter 6). Uses SwingButton components to control a piano keyboard.

• “Photo4: Photo Study Scene Graph”, Listing 8.7 on page 261, (Chapter 8). Uses 
SwingButton components to select effects to apply to a photo.

SwingCheckBox

SwingCheckBox is a “checkbox” component that lets users toggle between checked 
and unchecked to represent boolean values. Property selected is true when the box is 
checked. You can enforce the behavior of checking only one SwingCheckBox compo-
nent in a group by assigning the same value for property toggleGroup to all Swing-
CheckBox components in the group. (Figure 5.11 on page 140 shows how to use 
property toggleGroup and enforce mutual exclusion behavior.)

Figure 5.6 illustrates a SwingCheckBox component with an action event handler. A 
node (p) moves to the front of its container if the checkbox is selected. Otherwise, it 
moves to the back. 

SwingButton {
    text: "Group Rotate"
    action: function(): Void {
        shapeArea.rotate += 45;
    }
}

Figure 5.5 SwingButton example



ptg

136 Chapter 5 User Interface Components

SwingComboBox

SwingComboBox provides a selection mechanism from a drop-down list. When you 
make the combo box editable, users can type values into an editable field. You popu-
late the SwingComboBox with a sequence of SwingComboBoxItem components in 
property items. Figure 5.7 shows a SwingComboBox populated with four SwingCom-
boBoxItem selection options.

SwingComboBoxItem

The items in a SwingComboBox are of type SwingComboBoxItem. Property text pro-
vides a text-based name for the item. You can construct an arbitrary object with prop-
erty value. For example, Listing 5.2 builds a different sized Font object for each 
SwingComboBoxItem providing a convenient way to update an object’s font property 
with binding. The Text object’s font property bind expression is shown in bold.

def frontCheck: SwingCheckBox = SwingCheckBox {
    text: "Polygon In Front"
    selected: true
    action: function(): Void {
        if (frontCheck.selected) { p.toFront(); }
        else { p.toBack(); }
    }
}

Figure 5.6 SwingCheckBox example

Figure 5.7 SwingComboBox and SwingComboBoxItems



ptg

Swing Components 137

Listing 5.2 SwingComboBox and SwingComboBoxItem

def fontbox = SwingComboBox {
    width: 100
    items: [
        SwingComboBoxItem {
            text: "12"
            value: Font { size: 12 }
            selected: true
        }
        SwingComboBoxItem {
            text: "14"
            value: Font { size: 14 }
        }
        SwingComboBoxItem {
            text: "18"
            value: Font { size: 18 }
        } ]
}
. . .
Text {
    x: 35, y: 30
    font: bind fontbox.selectedItem.value as Font
    content: "The quick brown fox jumps over the lazy yellow dog."
}

SwingIcon

SwingIcon is an image for decorating components. Use JavaFX Image to set the icon’s 
image. Figure 5.8 shows how to create a button that includes both an icon and text. 

SwingLabel

SwingLabel components display a string, icon, or both. Use property icon (see 
Figure 5.8) to supply images. Figure 5.9 shows a text-only SwingLabel component 
associated with SwingSlider component fillOpacity (see “SwingSlider” on page 141). 

SwingButton {
text: "Duke says 'Hi!'"
icon: SwingIcon { 

image: Image { url: "{__DIR__}duke.gif" } }
action: function(): Void {

// action code here
}

}

Figure 5.8 SwingButton with SwingIcon Example



ptg

138 Chapter 5 User Interface Components

Property labelFor lets you optionally associate a label with a swing component. 
(Property labelFor is null if this label is not associated with a component.)

SwingScrollPane

SwingScrollPane is a container that allows its contents to be scrolled. Set property 
view to its scrollable contents. Figure 5.10 shows a SwingScrollPane component (with 
a SwingList) and Listing 5.3 shows the corresponding code that renders it.

SwingList

SwingList displays a list of SwingListItem objects and allows users to select one or 
more items. Property items holds a sequence of SwingListItem objects. Property 
selectedIndex returns the index of the selected item, and property selectedItem
returns the selected item. When multiple items are selected, selectedIndex is the 
smallest selected index and returns -1 if there is no selection.

SwingListItem

SwingListItem represents a selectable item in a SwingList component. Property 
selected is true when this item has been selected. Property text contains the display 
text and property value is an object associated with this list item. 

SwingLabel {
width: controlWidth - 20
text: " Polygon Opacity"
labelFor: fillOpacity

}
fillOpacity

Figure 5.9 SwingLabel Example

Figure 5.10 SwingScrollPane, SwingList, and SwingListItems



ptg

Swing Components 139

Listing 5.3 shows an example with a SwingListItem. Here, property value is an Effect 
object (DropShadow, InnerShadow, Glow, MotionBlur) that updates a Rectangle using 
binding. The Rectangle’s effect property binding expression is in bold.

Listing 5.3 SwingScrollPane, SwingList, and SwingListItems

var effectList: SwingList;
SwingScrollPane {
    height: 100
    width: 150
    scrollable: true
    view: effectList = SwingList { items: [

  SwingListItem {
    text: "No Effect"
    selected: true
     value: null

            },
  SwingListItem {

   text: "Drop Shadow"
  value: DropShadow {

                }
            }

  SwingListItem {
   text: "Inner Shadow"
  value: InnerShadow {
       offsetX: 4
       offsetY: 4

                }
            }

  SwingListItem {
     text: "Glow"
    value: Glow {
       level: 1

                }
            },

  SwingListItem {
   text: "Motion Blur"
  value: MotionBlur {
       angle: 45
       radius: 10

                }
            }

. . .
        ]
    }
}
. . . 
// Rectangle that receives effect from SwingList component selection
Rectangle {
    x: 30
    y: 10



ptg

140 Chapter 5 User Interface Components

    height: 100
    width: 80
    fill: defaultColor
    stroke: Color.BLACK

effect: bind effectList.selectedItem.value as Effect
}

SwingRadioButton

SwingRadioButton renders a selectable radio button. If you have multiple SwingRa-
dioButton components that share the same SwingToggleGroup (as set in property 
toggleGroup), the SwingToggleGroup enforces mutual exclusion selection. Figure 5.11 
shows a radio button group that exhibits this behavior.

SwingToggleButton

SwingToggleButton provides the same behavior as SwingRadioButton except that it 
looks like a regular button. A SwingToggleButton can be toggled between a pressed 
and released state to represent a boolean value to the user. If you assign multiple 

SwingRadioButton {
            toggleGroup: pizzaSizeGroup
            text: "Small"
            action: function(): Void {

// action . . .
            }
        }
SwingRadioButton {
            toggleGroup: pizzaSizeGroup
            text: "Medium"
            action: function(): Void {

// action . . .
            }
        }
SwingRadioButton {
            toggleGroup: pizzaSizeGroup
            selected: true
            text: "Large"
            action: function(): Void {

// action . . .
            }
        }

Figure 5.11 SwingRadioButton example with mutual exclusion



ptg

Swing Components 141

SwingToggleButton components to the same SwingToggleGroup, the group enforces 
mutual exclusion selection.

SwingToggleGroup

SwingToggleGroup is a class used to enforce mutual exclusion selection for a set of 
buttons (either SwingToggleButton, SwingCheckBox, or SwingRadioButton). When 
buttons are in the same SwingToggleGroup, selecting one button deselects all the 
other buttons with the same toggleGroup setting.

SwingSlider

SwingSlider lets users graphically select a value by sliding a knob within a bounded 
interval. You provide properties maximum and minimum for the upper and lower bounds 
of the slider. Property value is the slider’s current value, which is within the maxi-
mum and minimum range (inclusive). If property vertical is true, the slider is ren-
dered vertically. 

Figure 5.12 shows an example of SwingSlider that lets users set a node’s opacity. The 
slider’s value is in the range 0 to 100, but the binding expression divides by 100.0 to 
get the desired opacity range (0 to 1). Note that properties minimum, maximum, and value
are all Integers.

SwingTextField

SwingTextField allows the display and editing of a single line of text. If property edit-
able is true, users can edit the text. Figure 5.13 shows an editable SwingTextField. 
Here, a Text component’s content property is bound to the SwingTextField’s text
property. As the user types in text, the Text component reflects the new input.

def fillOpacity = SwingSlider {
    minimum: 0
    maximum: 100
    width: controlWidth - 20
    height: 20
    value: 50
}
. . .

var opacity = bind (fillOpacity.value / 100.0);

Figure 5.12 SwingSlider example with binding opacity



ptg

142 Chapter 5 User Interface Components

5.3  Swing Example

Figure 5.14 shows two views from an application called Order Your Pizza. Unfortu-
nately, this application doesn’t really order pizza for you, but it does illustrate several 
Swing components. The application uses radio buttons with mutual exclusion selec-
tion and checkboxes that allow multiple selections. You’ll also see how JavaFX bind-
ings simplify the integration of UI components into your applications.

The example shows how easy it is to build graphical applications above and beyond 
one that simply uses radio buttons, checkboxes, and text components. Here, for exam-
ple, you see visual pizzas and pizza toppings. As users select different sized pizzas, 
the pizza graphic changes size too. Furthermore, if the pizza includes one or more 
toppings, these toppings remain within the boundaries of the pizza.

Let’s begin with the graphical objects first: pizza and pizza toppings.

Pizzas Are Circles

Listing 5.4 shows the code that builds the pizza. Our pizza comes in three sizes (small, 
medium, and large with radius 40, 55, and 70, respectively). Pizzas have a crust 
(strokeWidth is 8) and a drop shadow. Property radius is bound to the sequence 
pizzaSize via the variable pizzaSizeIndex.

Listing 5.4 also defines clipToppings, a circle that matches the three pizza sizes. The 
topping group (pepperoni, sausage, onions) uses this circle for its clip property so 

def tf = SwingTextField {
    columns: 10
    editable: true
    text: "Now is the time"
}
. . .

Text {
    x: 35
    y: 30

content: bind tf.text
    fill: Color.BLACK
}

Figure 5.13 SwingTextField Example



ptg

Swing Example 143

that its size is adjusted appropriately when the user chooses a different sized pizza. 
Note that the node used for property clip is not inserted into the scene graph; it sim-
ply provides a geometric reference for clipping behavior.

Listing 5.4 Pizza and Clip Circles

def pizzaCenterX = 80; 
def pizzaCenterY = 100;
def pizzaSize = [40, 55, 70];
var pizzaSizeIndex = 2; // start with a "Large"
def pizzaArea = Group { layoutX: 20 }

// This is the Pizza
insert Circle {
    centerX: pizzaCenterX
    centerY: pizzaCenterY
    radius: bind pizzaSize[pizzaSizeIndex]
    fill: Color.web("#D72D02")
    stroke: Color.web("#CB7621")
    strokeWidth: 8
    effect: DropShadow { }
} into pizzaArea.content;
// This circle is used to provide clipping reference for the toppings
def clipToppings = Circle {
    centerX: pizzaCenterX
    centerY: pizzaCenterY
    radius: bind pizzaSize[pizzaSizeIndex];
}

Figure 5.14 Order Your Pizza



ptg

144 Chapter 5 User Interface Components

Toppings Are Circles

Listing 5.5 displays the graphical objects that render pizza toppings. The toppings are 
in a group, with a clip property bound to the currently selected pizza size. The top-
pings themselves are small circles built at the coordinate values in sequence toppin-
gLocations. Each pair of numbers initializes the centerX and centerY properties of a 
circle. The for loop builds the toppings and inserts them into the topping Group.

for (i in [0.. <sizeof toppingLocations step 6]) { . . . }

Each pizza topping has its own color and all have their visible property bound to the 
SwingCheckBox component that selects the topping.

Listing 5.5 Toppings

// x and y coordinate values for toppings
def toppingLocations = [
    88, 42, 101, 45, 118, 58, 126, 72, 134, 88, 135, 108, 
    123, 128, 114, 141, 97, 150, 82, 152, 59, 151, 42, 146, 
    30, 131, 23, 118, 23, 96, 28, 75, 41, 58, 60, 45
    77, 53, 90, 60, 109, 69, 112, 84, 113, 100, 120, 115, 
    106, 130, 87, 141, 68, 137, 50, 123, 42, 109, 45, 89, 
    54, 72, 78, 65, 93, 70, 101, 81, 100, 96, 97, 108, 
    88, 124, 65, 118, 61, 108, 59, 95, 67, 85, 81, 85
    85, 98, 79, 105, 70, 105, 67, 94, 78, 94, 77, 100
];

// Group to hold the toppings, clipped to the current pizza size
def toppings = Group { clip: bind clipToppings }

// Build (small) circles for each kind of topping
for( i in [0.. <sizeof toppingLocations step 6]) {
    insert Circle {
        effect: DropShadow {}
        centerX: toppingLocations[i]
        centerY: toppingLocations[i + 1]
        radius: 5
        fill: Color.web("#D47F54");
        visible: bind checkPepperoni.selected
    } into toppings.content;
    insert Circle {
        effect: DropShadow {}
        centerX: toppingLocations[i + 2]
        centerY: toppingLocations[i + 3]
        radius: 5
        fill: Color.web("#FFAA00");
        visible: bind checkSausage.selected
    } into toppings.content;
    insert Circle {
        effect: DropShadow {}
        centerX: toppingLocations[i + 4]



ptg

Swing Example 145

        centerY: toppingLocations[i + 5]
        radius: 5
        fill: Color.BURLYWOOD;
        visible: bind checkOnions.selected
    } into toppings.content;
}
insert toppings into pizzaArea.content;

Selecting Pizza Size with SwingRadioButton

Listing 5.6 builds the components for pizza size selection. The selection mechanism is 
a SwingRadioButton that sets its toggleGroup property to pizzaSizeGroup. This 
enforces the desired mutual exclusion selection behavior (you can only select one size 
at a time). The SwingRadioButton and an associated SwingTextField are grouped into 
an HBox layout component so they appear side by side. Note that the SwingTextField 
component is only enabled when its associated SwingRadioButton is selected. The 
SwingTextField component displays the cost of its associated sized pizza.

The action event handler sets variable pizzaSizeIndex to the selected pizza size (0 for 
small, 1 for medium, and 2 for large). This change renders the correct pizza size and 
causes the bound clip properties in the toppings groups to update their size.

Listing 5.6 Selecting Pizza Size

def pizzaCost = [8.75, 10.75, 12.75];
def pizzaSizeGroup = SwingToggleGroup { }
def smPizza = HBox {
    spacing: 10
    content: [
        SwingTextField {
            columns: 3

  editable: false
            disable: bind not sbSmall.selected

text: " {pizzaCost[0]}"
        }
        sbSmall = SwingRadioButton {
            toggleGroup: pizzaSizeGroup
            text: "Small"

 action: function() {
   pizzaSizeIndex = 0;

            }
        }
    ]
}
def medPizza = HBox {
    spacing: 10
    content: [
        SwingTextField {



ptg

146 Chapter 5 User Interface Components

            columns: 3
  editable: false

            disable: bind not sbMedium.selected
text: "{pizzaCost[1]}"

        }
        sbMedium = SwingRadioButton {
            toggleGroup: pizzaSizeGroup
            text: "Medium"

 action: function() {
   pizzaSizeIndex = 1;

            }
        }
    ]
}
def lgPizza = HBox {
    spacing: 10
    content: [
        SwingTextField {
            columns: 3

  editable: false
            disable: bind not sbLarge.selected

text: "{pizzaCost[2]}"
        }
        sbLarge = SwingRadioButton {
            toggleGroup: pizzaSizeGroup
            selected: true
            text: "Large"

 action: function() {
   pizzaSizeIndex = 2;

            }
        }
    ]
}

Selecting Toppings with SwingCheckBox

Listing 5.7 builds the object literals for the pizza topping checkboxes. Each checkbox 
sets property text to the topping name and property selected to false. The visible
properties of all of the associated graphical “toppings” are bound to the appropriate 
checkbox selected property (see Listing 5.5 on page 144). When the user selects a top-
ping, the graphical representation of that topping appears on top of the pizza through 
the binding. When the topping is deselected, the graphical representation disappears.

Listing 5.7 Selecting Toppings

def checkPepperoni = SwingCheckBox {
    text: "Pepperoni"
    selected: false
}



ptg

Swing Example 147

def checkSausage = SwingCheckBox {
    text: "Sausage"
    selected: false
}
def checkOnions = SwingCheckBox {
    text: "Onions"
    selected: false
}

Integrating with Bound Functions and Binding

Listing 5.8 shows the code that keeps the total price of the pizza order current with 
updates from the user’s selections (pizza size and number of toppings). As the user 
changes selections, the total changes and the new amount is displayed. This happens 
with the aid of bound function getTotal.

A bound function is called whenever any variable in the function body changes. Func-
tion getTotal, then, is executed whenever property selected changes for components 
checkPepperoni, checkSausage, or checkOnions. In addition, getTotal is executed when-
ever pizzaSizeIndex changes. Each of these variables affects the total price.

Note that with bound functions, you cannot assign to local variables (here, add1, add2,
add3, and total). Function getTotal returns a String, making it easy to update Text 
component finalOrder, which binds its content property to function getTotal’s String 
return value.

Listing 5.8 Update Order Total

bound function getTotal(): String {
    def add1 = if (checkPepperoni.selected) .5 else 0;
    def add2 = if (checkSausage.selected) .5 else 0;
    def add3 = if (checkOnions.selected) .5 else 0;
    def total = pizzaCost[pizzaSizeIndex] + add1 + add2 + add3;
    return "$ {total}";
}

def finalOrder = Text {
    content: bind getTotal()
    font: Font {
        size: 18
    }
}



ptg

148 Chapter 5 User Interface Components

Listing 5.9 includes the order button (a SwingButton) with property text set to “Place 
Your Order” and property action makes Text component t visible. This displays the 
thank you message shown in the second view of Figure 5.14 on page 143.

Listing 5.9 Finish Ordering with SwingButton

def orderButton = SwingButton {
    text: "Place Your Order"
    action: function(): Void {
        t.visible = true;
    }
}

def t = Text {
    underline: true
    x: 10
    y: 200
    visible: false;
    font: Font { size: 14 }
    content: "Thank you. \nYour pizza is on its way!"
    textAlignment: TextAlignment.CENTER
    fill: Color.BLACK
}

5.4  Creating Skinnable Components

This section describes how to build custom UI components with “skins” (external style sheets 
to control their look). You can skip this section with no loss of continuity with material in the 
rest of the book. However, you may still want to customize components with CSS, which we 
discuss here.

JavaFX lets you create “skinnable” components—components that use CSS-type 
sheets for styling. Before we show you how to create skinnable components, let’s dis-
cuss how to style JavaFX objects with CSS.

Cascading Style Sheets (CSS)

Cascading Style Sheets (CSS) help define the look of your objects. You can specify 
most properties with style elements and gather common styles into external style 
sheets. This helps separate an object’s look from its behavior. With CSS, you can build 
style sheets that target a company-wide look, target an application, or target an indi-
vidual object. 



ptg

Creating Skinnable Components 149

JavaFX has a built-in CSS parser that works with properties and styles. Most property 
names and style labels are obvious, but the syntax rules are different from JavaFX 
object literal declarations. Several types of errors are possible.

• If you leave off a terminating ; or commit a similar syntax error, you’ll see a Parse-
Exception.

• If you name a property value that is not supported (for example, an unsupported 
color name), you’ll see a StylesheetException.

• If you name an element that is not supported, the parser will let you know, but the 
application will still run.

Style Tip

While JavaFX is very forgiving with terminating punctuation, CSS requires ; to separate style 
elements. Fortunately, the JavaFX parser gives informative error messages when you break the 
rules. The behavior of your application after a ParseException or StylesheetException depends 
on any exception handling in place.

CSS encourages cascading styles; that is, you write a general style for a “look” and 
then refine it for certain situations or specific types of objects. All styles that are 
defined will apply, with the “specialized styles” replacing the “general” styles only 
for the those specialized properties.

CSS style rules can appear in both external style sheets or embedded in object literals. 
Styles can apply to any node using properties style (specify CSS styles directly), 
styleClass (reference a style class in an external style sheet) and id (reference a node-
specific style in an external style sheet). You specify external style sheets with a scene’s 
stylesheets property (either a sequence of URLs or a single URL).

Let’s use the JavaFX Rectangle class to show you the various ways to specify styles. 
Figure 5.15 shows four similar Rectangle objects with slight variations in style. First, 
all rectangles are the same size (properties height and width are both 80). Property 
fill is Color.WHITESMOKE for Rectangle A, Color.YELLOW for Rectangles B and C, and 
Color.DARKRED for Rectangle D. Properties stroke and strokeWidth also vary.



ptg

150 Chapter 5 User Interface Components

Listing 5.10 shows the external style sheet (RectangleStyles.css) used for the applica-
tion in Figure 5.15. It includes three styles that apply to node type 
javafx.scene.shape.Rectangle (you must fully specify the class path). The first style 
applies to all Rectangle nodes, the second style apples to Rectangle nodes with prop-
erty styleClass set to “basic,” and the third style applies to Rectangle nodes with 
property id set to “special.”

Listing 5.10 RectangleStyles.css

"javafx.scene.shape.Rectangle"
{
    fill: whitesmoke;
    stroke: black;
    height: 80;
    width: 80;
    arcWidth: 20;
    arcHeight: 20;
}

"javafx.scene.shape.Rectangle".basic
{
    fill: yellow;
    stroke: coral;
    strokeWidth: 4;
    opacity: 0.8;
}

"javafx.scene.shape.Rectangle"#special
{
    strokeWidth: 8;
}

Listing 5.11 shows the JavaFX program that creates the four Rectangles shown in 
Figure 5.15. Property stylesheets references the external style sheet (Rectangle-

Figure 5.15 Using CSS with JavaFX objects

View A View B View C View D



ptg

Creating Skinnable Components 151

Styles.css) in the local execution environment. Rectangle View A uses the default 
object literal, taking any initialized property values from the external style sheet 
(properties fill, stroke, height, width, arcHeight, and arcWidth).

Rectangles View B, C, and D show how cascading works. Rectangle View B uses the 
default property values, except those specified in style class “basic” (properties fill,
stroke, strokeWidth, and opacity), which override any properties specified in the 
default style. Rectangle View C uses the default style, the “basic” style class, and the 
“special” id style. You can see that Rectangles B and C are identical, except that C has 
a wider outline stroke (strokeWidth is 8).

Finally, Rectangle D specifies inline styles with property style. It uses the default style 
settings and applies the inline styles on top of the default styles.

Style Tip

In practice, you probably won’t use inline styles that often. With object literal notation, you 
can create Rectangles with the styles you want and get error messages at compile time.

Listing 5.11 Using CSS with Rectangles (Main.fx)

Stage {
    title: "JavaFX and CSS"
    width: 450
    height: 200
    scene: Scene {
        fill: Color.LIGHTSTEELBLUE

stylesheets: "{__DIR__}RectangleStyles.css"
        content: HBox {
            layoutX: 20
            layoutY: 20
            spacing: 15
            content: [

     Rectangle {
// default style (View A)

                }
     Rectangle {

// default style "basic" style class (View B)
     styleClass: "basic"

                }
     Rectangle {

// default style + "basic" style class + "special" ID
       // (View C)

     styleClass: "basic"
       id: "special"

                }
     Rectangle {

// default style + inline style (View D)



ptg

152 Chapter 5 User Interface Components

   style: "fill: darkred;"
        "stroke: blue;"
       "strokeWidth: 4;"

        "opacity: 0.5;"
                }
            ]
        }
    }
}

Skinnable TextButton Component

We’ll now create a skinnable component. We’ll start with a straightforward Text-
Button. In the next section, we’ll incorporate TextButton into a more complicated com-
ponent, a skinnable ChoiceDialog.

Figure 5.16 shows an example application with three TextButton components skinned 
differently. The first button uses default settings and the second and third buttons 
provide external CSS styles to customize their look.

A TextButton component has several important properties. Property displayText is 
the text to display, action is the function to call when the component is selected 
(clicked), and disappearOnAction (default is true) handles whether or not you want 
the button to fade after the function is invoked. Here are the TextButton object literals 
for the Submit and Cool buttons in Figure 5.16.

TextButton {
disappearOnAction: false;
displayText: "Submit"
action: function(): Void {

println("You pressed submit.");
}

}

TextButton {

Figure 5.16 Skinnable TextButtons



ptg

Creating Skinnable Components 153

displayText: "Cool"
action: function(): Void {

println("You pressed Cool.");
}

}

Each “skinnable” component requires two classes:1 Control, which exposes properties 
users can define in object literals (or modify with JavaFX statements if the user has 
write permission), and Skin, the graphical representation of the component. Class 
Control is similar to CustomNode (indeed, it extends CustomNode) in that you get a 
specialized Node object that you can add to the scene graph. Control also includes 
property skin, the part of the component that can be styled. Class Skin includes prop-
erty node, the parent of the graphical objects you build for your component, and con-
trol, the part of the component exposed to the user.

When building your own components, you create a class that extends Control and a 
class that extends Skin. You connect them through the respective class variables skin
and control. Listing 5.12 shows TextButton.fx (the control). The create function ini-
tializes Control property skin and invokes create in class Control (using super).

Listing 5.12 TextButton.fx

public class TextButton extends Control {
    public var displayText: String;
    public var action: function(): Void;
    public var disappearOnAction = true;

    protected override function create(): Node {
        skin = TextButtonSkin { };
        super.create();
    }
}

Listing 5.13 shows a partial listing of TextButtonSkin (the skin).

Listing 5.13 TextButtonSkin.fx (partial)

public class TextButtonSkin extends Skin {
    def textButtonControl = bind control as TextButton;

// public variables provide “skinnable” properties for component
. . .

    init {

1. Class Skin is required only for skinnable components. A third class, Behavior, is required to 
implement behavior differences, especially specialized behaviors regarding key events. Text-
Button implements a specialized Skin class but does not implement a Behavior class.



ptg

154 Chapter 5 User Interface Components

        node = Group {
            content: [ . . . graphical objects that make up component . . .]
    }
}

Figure 5.17 illustrates the relationship between a component’s Control class and its 
Skin class.

Let’s look at the complete TextButtonSkin class now, as shown in Listing 5.14. 
Through binding, object textButtonControl points to the Control object, TextButton. 
Next, we specify as public var all “skinnable” properties. Providing reasonable 
default values helps the user minimize the need to customize a component. Each of 
these properties (fillColor, outlineColor, etc.) is plugged into some aspect of the 
component’s graphical makeup. For example, property fillColor defines the button’s 
background fill. The various mouse event properties dictate the button’s fill color 
associated with these events.

TextButton properties displayText, action, and disappearOnAction are referenced 
with object textButtonControl. For example, Text property content binds to text-
ButtonControl.displayText to maintain the button’s text, as shown here.
    def text = Text {
        x: 10
        y: 8
        font: bind buttonFont
        textOrigin: TextOrigin.TOP
        fill: bind textColor

content: bind textButtonControl.displayText

TextButton

Control

TextButtonSkin

Skin

skin control

Figure 5.17 Control is the model; Skin is the view

public vars control
the behavior

public vars control
the look

extendsextends

node



ptg

Creating Skinnable Components 155

    }

Note that class TextButtonSkin includes an init block (init blocks are invoked after a 
class’s instance variables are initialized). The job of init is to build the graphical 
objects that make up the component and assign them to inherited Skin property node
(using the public variables to style them). The TextButtonSkin scene graph includes a 
background Rectangle and a Text component to hold the label.

The TextButton action function (textButtonControl.action) is invoked in the onMouse-
Released event handler. After calling action, the event handler sets up a fade transi-
tion, fading out the node (if disappearOnAction is true). Overridden functions 
contains and intersects are required for classes that extend Skin.

Listing 5.14 TextButtonSkin.fx

public class TextButtonSkin extends Skin {

    def textButtonControl = bind control as TextButton;

    // Skinnable properties with their default values
    public var fillColor: Paint = Color.LIGHTBLUE;
    public var outlineColor: Paint = Color.BLACK;
    public var mouseEnteredColor: Paint = Color.LIGHTSLATEGRAY;
    public var mouseExitedColor: Paint = Color.LIGHTBLUE;
    public var mousePressedColor: Paint = Color.GRAY;
    public var mouseReleasedColor: Paint = Color.GRAY;
    public var textColor: Paint = Color.BLACK;
    public var buttonFont: Font = Font { size: 16, name: "Arial Bold" }
    def button: Rectangle = Rectangle {
        fill: bind fillColor
        stroke: bind outlineColor
        height: bind text.layoutBounds.height + 16;
        width: bind text.layoutBounds.width + 20;
        arcWidth: 10, arcHeight: 10
    }
    def text = Text {
        x: 10, y: 8
        font: bind buttonFont
        textOrigin: TextOrigin.TOP
        fill: bind textColor
        content: bind textButtonControl.displayText
    }
    public override function contains(localX: Number, localY: Number)

: Boolean {
        node.contains(localX, localY);
    }
    public override function intersects(localX: Number, localY: Number,

localWidth: Number, localHeight: Number) : Boolean {
        node.intersects(localX, localY, localWidth, localHeight);
    }



ptg

156 Chapter 5 User Interface Components

    init {
        node = Group {
        //this Group represents a button that is pressed

 cursor: Cursor.HAND
            onMouseEntered: function (evt: MouseEvent): Void {

fillColor = mouseEnteredColor;
            }
            onMouseExited: function (evt: MouseEvent): Void {

fillColor = mouseExitedColor;
            }
            onMousePressed: function(evt: MouseEvent): Void {
                if(evt.button == MouseButton.PRIMARY){

  fillColor = mousePressedColor;
                }
            }
            onMouseReleased: function(evt: MouseEvent): Void {
                if(evt.button == MouseButton.PRIMARY){

  fillColor = mouseReleasedColor;
textButtonControl.action(); // invoke user action

   def fade = FadeTransition {
         node: node
        duration: 1.5s
         fromValue: 1
         toValue: .0

                    }
    if (textButtonControl.disappearOnAction) fade.play();

                }
            }
            content: [ button text ]
        }
    }
}

Listing 5.15 shows the CSS file that styles the TextButton components. It includes two 
styles (both labeled with an id selector). Note that each of the style elements corre-
sponds to public variables in class TextButtonSkin.

Listing 5.15 ComponentStyle.css

"custom.TextButton"#submitID
{
    fillColor: orange;
    mouseEnteredColor: bisque;
    mouseExitedColor: orange;
    mousePressedColor: darkorange;
    mouseReleasedColor: orange;
    outlineColor: brown;
}
"custom.TextButton"#coolButton



ptg

Creating Skinnable Components 157

{
    fillColor: coral;
    mouseEnteredColor: lightblue;
    mouseExitedColor: coral;
    mousePressedColor: darkred;
    mouseReleasedColor: crimson;
    outlineColor: brown;
    buttonFont: bold 20pt "comic sans ms";
}

Listing 5.16 shows the code for the three TextButton components in Figure 5.16 on 
page 152. The first component uses default styling, the second component is styled 
with id selector “submitID,” and the third component is styled with id selector “cool-
Button.”

Listing 5.16 Test Program (Main.fx)

Stage {
    title: "Custom Components"
    scene: Scene {
        stylesheets: "{__DIR__}ComponentStyle.css"
        height: 100
        width: 355
        content: HBox {
            layoutX: 20
            layoutY: 20
            spacing: 20
            content: [

    TextButton {
    // use default styling

 disappearOnAction: false;   // don't disappear
    displayText: "Click Me"
   action: function(): Void {
     println("You clicked me!");

                    }
                }

    TextButton {
  // use id selector "submitID"

      id: "submitID"
 disappearOnAction: false;   // don't disappear

     displayText: "Submit"
   action: function(): Void {

    println("You pressed submit.");
                    }
                }

    TextButton {
 // use id selector "coolButton"

   // disappears after action is called (default behavior)
      id: "coolButton"
     displayText: "Cool"



ptg

158 Chapter 5 User Interface Components

   action: function(): Void { println("You pressed Cool."); }
                }
            ]
        }
    }
}

Skinnable ChoiceDialog Component

The ChoiceDialog component is a high level “pop-up” dialog with a title, display text, 
and two buttons: one to confirm or accept an action and a second button to cancel an 
action. Developers can configure the title, the display text, the text on each button, and 
the action functions associated with each button. 

The ChoiceDialog can be styled by specifying a header fill color, the header text color, 
the background fill and display text color, and the button fill and text colors. The dia-
log itself is translucent, letting the obscured portion be (somewhat) visible through 
the component. Naturally, we’d like to reuse the TextButton component from the pre-
vious section when we build the ChoiceDialog component. 

Figure 5.18 shows the Order Your Pizza application presented earlier in the chapter, 
using the ChoiceDialog component to confirm a pizza order.

Figure 5.18 ChoiceDialog custom component



ptg

Creating Skinnable Components 159

Listing 5.17 shows how the ChoiceDialog is integrated into the Order Your Pizza 
application. The ChoiceDialog (dialog) is initially invisible but appears when you 
click the “Place Your Order” SwingButton. ChoiceDialog function unFade “pops up” 
the dialog.

The ChoiceDialog object literal sets properties windowWidth, heading, displayText, but-
tonConfirm, buttonCancel, and onConfirm. The object literal also includes node proper-
ties layoutX, layoutY, and visible.

Bound function getOrderDescription updates property displayText, which keeps 
track of the user’s pizza choices.

Listing 5.17 Using the ChoiceDialog component

// Display the ChoiceDialog from the “Place Your Order” swing button
def orderButton = SwingButton {
    text: "Place Your Order"
    action: function(): Void {
        t.visible = false;
        dialog.unFade();
    }
}

def pizzaSizes: String[] = ["Small", "Medium", "Large"];

bound function getOrderDescription(): String {
    def s = pizzaSizes[pizzaSizeIndex];
    def top1 = if (checkPepperoni.selected) "Pepperoni" else "NO Pepperoni";
    def top2 = if (checkSausage.selected) "Sausage" else "NO Sausage";
    def top3 = if (checkOnions.selected) "Onions" else "NO Onions";
    return "{s} with {top1} and {top2} and {top3}";
}

def dialog = ChoiceDialog {
    layoutX: 20
    layoutY: 20
    visible: false
    windowWidth: 300
    heading: "Please confirm your pizza order"

displayText: bind getOrderDescription()
    buttonConfirm: "Order"
    buttonCancel: "Make changes"
    onConfirm: function(): Void {

 // Display thank you message
        t.visible = true;
    }
}



ptg

160 Chapter 5 User Interface Components

Let’s examine the Control portion of ChoiceDialog first, since that’s the part exposed 
in the object literal. Listing 5.18 shows class ChoiceDialog. Note that the object literal 
in Listing 5.17 initializes each of the public variables (except Boolean disappearOn-
Action, which defaults to true). Function unFade makes the node visible and reverses 
any fade transition that may have been applied, calling function unFade from class 
ChoiceDialogSkin. The create function initializes Control property skin (as shown 
earlier with class TextButton).

Listing 5.18 ChoiceDialog.fx (Control)

public class ChoiceDialog extends Control {
    public var windowWidth: Number = 150;
    public var heading: String;
    public var displayText: String;
    public var buttonConfirm: String;
    public var buttonCancel: String;
    public var onConfirm: function(): Void;
    public var onCancel: function(): Void;
    public var disappearOnAction = true;
    public function unFade() {
        visible = true;
        (skin as ChoiceDialogSkin).unFade();
    }
    protected override function create(): Node {
        skin = ChoiceDialogSkin { };
        super.create();
    }
}

Class ChoiceDialogSkin defines the component’s graphical objects (Rectangle, Text, 
and TextButton) and installs them in the skin’s scene graph. Figure 5.19 shows the 
ChoiceDialog with these underlying composite parts labeled.

Figure 5.19 ChoiceDialog custom component and its composition

background (Rectangle)

headingBackground

headingText (Text)

displayBackground

displayText

footerBackground

buttonConfirm
buttonCancel

(Rectangle)

(Rectangle)

(TextButton)
(TextButton)

(Rectangle)

(Text)



ptg

Creating Skinnable Components 161

Listing 5.19 and Listing 5.20 show the code for class ChoiceDialogSkin. Listing 5.19 
shows the graphical objects, the init block, and the initialization of Skin property 
choiceDialogControl with ChoiceDialog. Each of the graphical objects (background,
headingBackground, etc.) is labeled in Figure 5.19. Note that most of the code is used to 
position the Text and Rectangle objects and calculates layout parameters. Most object 
literals use bind expressions with either properties in other graphical objects, proper-
ties of ChoiceDialog control (for example, choiceDialogControl.windowWidth), or pub-
lic variables (that take on new values through CSS styles).

The parent Group component binds its opacity property to each of the two TextBut-
ton components using utility function fade. This makes the ChoiceDialog fade when 
either of the two TextButtons fade. (Function fade is in Listing 5.21 on page 164.)

Listing 5.19 ChoiceDialogSkin—Scene Graph

public class ChoiceDialogSkin extends Skin {
    def choiceDialogControl = bind control as ChoiceDialog;

    // Objects that go into the component scene graph:
    def background: Rectangle = Rectangle {
        fill: bind borderFill
        height: bind headingBackground.height
            + displayBackground.height + footerBackground.height + 20
        width: bind headingBackground.width + 20
        arcHeight: 15
        arcWidth: 15
        opacity: 0.7
    }

    def headingBackground: Rectangle = Rectangle {
        x: 10
        y: 10
        width: bind if (choiceDialogControl.windowWidth > 

headingText.layoutBounds.width + 20)
choiceDialogControl.windowWidth else 
headingText.layoutBounds.width + 20

        height: bind headingText.layoutBounds.height + 10
        fill: bind headingFill
        opacity: 0.9
    }
    def headingText: Text = Text{
        layoutY: bind headingBackground.layoutBounds.minY + 10
        font: bind dialogFont
        textOrigin: TextOrigin.TOP
        fill: bind headingTextColor
        content: bind choiceDialogControl.heading
        layoutX: bind headingBackground.layoutBounds.minX + 10
    }
    def displayBackground: Rectangle = Rectangle {
        x: 10



ptg

162 Chapter 5 User Interface Components

        layoutY: bind headingBackground.layoutBounds.maxY
        width: bind headingBackground.width
        height: bind displayText.layoutBounds.height + 10
        fill: bind displayFill
        opacity: 0.5
    }
    def displayText: Text = Text {
        wrappingWidth: bind displayBackground.width - 20
        layoutY: bind headingBackground.layoutBounds.maxY + 10
        font: Font {
            name: "Arial"
            size: 12
        }
        textOrigin: TextOrigin.TOP
        fill: bind displayTextColor
        content: bind choiceDialogControl.displayText
        layoutX: bind (displayBackground.layoutBounds.width - 

displayText.layoutBounds.width) / 2
    }
    def footerBackground: Rectangle = Rectangle {
        x: 10
        layoutY: bind headingBackground.layoutBounds.maxY + 

displayBackground.height
        width: bind background.layoutBounds.width - 20
        height: bind buttonCancel.layoutBounds.height + 20
        fill: footerFill
        opacity: 0.5
    }

    // Position buttonCancel on the right
    def buttonCancel: TextButton = TextButton {
        layoutX: bind background.layoutBounds.maxX - 

buttonCancel.layoutBounds.width - 15 ;
        layoutY: bind headingBackground.layoutBounds.maxY + 

displayBackground.height + 10
        displayText: bind choiceDialogControl.buttonCancel
        action: bind choiceDialogControl.onCancel
    }

    // Position buttonConfirm to the left of buttonCancel
    def buttonConfirm: TextButton = TextButton {
        layoutX: bind background.layoutBounds.maxX - 

buttonConfirm.layoutBounds.width - 
buttonCancel.layoutBounds.width - 20;

        layoutY: bind headingBackground.layoutBounds.maxY + 
displayBackground.height + 10

        displayText: bind choiceDialogControl.buttonConfirm
        action: bind choiceDialogControl.onConfirm
    }
    init {
        node = Group {
            content: [ background, headingBackground, headingText,



ptg

Creating Skinnable Components 163

displayBackground, displayText,
   footerBackground, buttonCancel, buttonConfirm ]

            opacity: bind fade(
(buttonCancel.skin as TextButtonSkin).node.opacity,
(buttonConfirm.skin as TextButtonSkin).node.opacity);

        }
    }
}

Listing 5.20 shows the ChoiceDialogSkin public variables (and public function 
unFade). The code after the first comment describes public properties for ChoiceDia-
log. The code after the second comment uses on replace to update the underlying 
TextButton components. Many of these properties have the same name, although 
some are renamed to be more descriptive in the ChoiceDialogSkin context (for exam-
ple, TextButtonSkin property fillColor is renamed to buttonFill in Choice-
DialogSkin).

Listing 5.20 ChoiceDialogSkin—Public Variables

// Class ChoiceDialogSkin public variables

    public var borderFill: Paint = Color.LIGHTGRAY;
    public var headingFill: Paint = Color.CADETBLUE;
    public var displayFill: Paint = Color.WHITE;
    public var footerFill: Paint = Color.WHITESMOKE;
    public var headingTextColor: Paint = Color.WHITE;
    public var displayTextColor: Paint = Color.BLACK;

    public function unFade() {
        (buttonCancel.skin as TextButtonSkin).node.opacity = 1;
        (buttonConfirm.skin as TextButtonSkin).node.opacity = 1;
    }

    // hook into TextButton styles
    public var buttonFill: Paint on replace {
        (buttonConfirm.skin as TextButtonSkin).fillColor = buttonFill;
        (buttonCancel.skin as TextButtonSkin).fillColor = buttonFill;
    }
    public var mouseEnteredColor: Paint on replace {
        (buttonConfirm.skin as TextButtonSkin).mouseEnteredColor = 

mouseEnteredColor;
        (buttonCancel.skin as TextButtonSkin).mouseEnteredColor = 

mouseEnteredColor;
    }

    public var mouseExitedColor: Paint on replace {
        (buttonConfirm.skin as TextButtonSkin).mouseExitedColor = 

mouseExitedColor;
        (buttonCancel.skin as TextButtonSkin).mouseExitedColor = 

mouseExitedColor;



ptg

164 Chapter 5 User Interface Components

    }
    public var mousePressedColor: Paint on replace {
        (buttonConfirm.skin as TextButtonSkin).mousePressedColor = 

mousePressedColor;
        (buttonCancel.skin as TextButtonSkin).mousePressedColor = 

mousePressedColor;
    }
    public var buttonTextColor: Paint on replace {
        (buttonConfirm.skin as TextButtonSkin).textColor = buttonTextColor;
        (buttonCancel.skin as TextButtonSkin).textColor = buttonTextColor;
    }

    public var dialogFont = Font {size: 16 name: "Arial Bold"} on replace {
        (buttonConfirm.skin as TextButtonSkin).buttonFont = dialogFont;
        (buttonCancel.skin as TextButtonSkin).buttonFont = dialogFont;
    }

Listing 5.21 shows functions contains and intersects (required for classes that extend 
Skin) and function fade. Functions contains and intersects simply call these func-
tions for the root node (property node).

Function fade (called from the init block in Listing 5.19) adjusts the node’s visible
property so that it is visible when both button’s opacity is 1 and not visible if either 
button’s opacity is 0. This ensures that the dialog does not receive mouse events or 
keyboard focus after the dialog disappears (fades).

Listing 5.21 Functions contains, intersects, and fade

public override function contains(localX: Number, localY: Number): Boolean {
node.contains(localX, localY);

}
public override function intersects(localX: Number, localY: Number, localWidth: 

Number, localHeight: Number) : Boolean {
node.intersects(localX, localY, localWidth, localHeight);

}

function fade(o1: Number, o2: Number): Number {
if (o1 == 1 and o2 == 1) {

choiceDialogControl.visible = true;
return 1;

}
if (o1 == 0 or o2 == 0) {

choiceDialogControl.visible = false;
return 0;

}
if (o1 < 1) return o1 else return o2

}



ptg

Creating Skinnable Components 165

With these “skinnable” properties exposed, we can now style the ChoiceDialog with 
CSS. Listing 5.22 shows the external CSS file (ComponentStyle.css) included with the 
updated Order Your Pizza application. The selector ("choice.ChoiceDialog")
includes the component name only. This makes these styles apply to any Choice-
Dialog object in the application, assuring a uniform look.

Listing 5.22 ComponentStyle.css

"choice.ChoiceDialog"
{
    headingTextColor: white;
    headingFill: cadetblue;
    buttonFill: cadetblue;
    mouseEnteredColor: slategray;
    mouseExitedColor: cadetblue;
    mousePressedColor: lightslategray;
    buttonTextColor: white;
    dialogFont: 16pt "comic sans ms";
}



ptg

This page intentionally left blank 

From the Library of sam kaplan



ptg

167

6 Anatomy of a JavaFX 
Application

JavaFX applications with graphical elements have a certain structure. The main pro-
gram defines a Stage and a Scene that holds the graphical objects. In a simple applica-
tion, you declare the graphical objects and the application just runs. Now, however, 
you’ll learn about an application (project Piano) that’s a bit more involved. You’ll see 
how object oriented design principles help describe custom objects. This application 
also lets you explore additional JavaFX features that help build rich applications. In 
this chapter, you’ll see how to use GUI components, layout components, gradients 
and effects, and custom graphical components. You’ll also learn how to apply time-
lines and transitions (animation) to control your application.

The source code for application Piano appears at the end of the chapter (see “Source 
Code for Project Piano” on page 194.

What You Will Learn

• Using inheritance to create well-designed custom graphical objects

• Creating graphical objects with gradients and effects

• Using drop shadow effects with Text objects

• Applying animation to show and hide components

• Using timelines to execute code

• Using GUI components

• Building sequences of objects and event handlers to manipulate them

• Using layout components and dynamic centering to achieve effective rendering

6.1  Project Piano

Project Piano displays a virtual piano keyboard. When you move the mouse over a 
key, that key displays a circle indicator. When you click a key, you’ll hear the synthe-
sized note corresponding to the selected key. A drop shadow also appears around the 



ptg

168 Chapter 6 Anatomy of a JavaFX Application

“pressed” key. The letter (note) corresponding to the piano key appears below the 
keyboard and the note is saved in a note buffer. Figure 6.1 shows this application run-
ning.

When the program starts, a Help window appears. You can hide this Help window by 
clicking the Hide Help button. Clicking the Show Help button brings it back.

The Play button plays the notes currently in the note buffer. By default, you will hear 
a predefined sequence of notes.1 As you play new notes on the keyboard, the program 
adds them to the note buffer. You can clear the note buffer with button Clear Notes. 
The Stop button stops play. Project Piano uses the Java javax.sound.midi API to gener-
ate sound.

Before we examine the scene graph and JavaFX code for the Piano application, you’ll 
see how to build this application from the ground up. You’ll first examine the 
WhiteKey and BlackKey custom nodes that together compose the keyboard. Then 
you’ll build the keyboard, examine the layout of the scene, and add the buttons that 

1. The opening phrase of 1761 French melody ‘Ah! Vous dirai-je, Maman’ (also known as 
‘Twinkle, Twinkle, Little Star’).

Figure 6.1 JavaFX application Piano



ptg

PianoKey Components 169

let you play notes, clear the note buffer, and stop playing. By building this application 
gradually, you’ll see how a stepwise approach helps you create well-designed appli-
cations. Furthermore, understanding the component pieces lets you see how the com-
plete application works.

6.2  PianoKey Components

The Piano application has a keyboard made up of keys. The keys work as individual 
components; that is, each key operates independently. When you press a key, you hear 
a note and see a visual effect that lets you know the key is selected. All keys exhibit 
the same behavior (black keys and white keys). This abstraction of behavior lets you 
create abstract class PianoKey, encapsulating the common traits piano keys share.

However, since white keys and black keys look significantly different from each other, 
we also create two subclasses that specialize the different graphical structure of each 
piano key type. 

Custom graphical components extend JavaFX class CustomNode so that the custom-
ized component fits seamlessly into a JavaFX scene graph. Figure 6.2 shows the Piano 
application’s class hierarchy consisting of class CustomNode, class PianoKey, and two 
subclasses: WhiteKey and BlackKey.

PianoKey

BlackKeyWhiteKey

CustomNode

Figure 6.2 PianoKey Class Hierarchy

Extensible JavaFX 
scene graph node

Encapsulates
behavior common
to all piano keys

Specializes black
or white piano
key behavior



ptg

170 Chapter 6 Anatomy of a JavaFX Application

Class PianoKey

In the Piano application, class PianoKey extends CustomNode and provides all the 
behaviors that are common between white and black piano keys on the virtual key-
board.

Listing 6.1 shows the code for class PianoKey. Class PianoKey is abstract (you’ll see 
why when we look at the code for classes WhiteKey and BlackKey). This class imple-
ments the piano key behaviors that are common to all piano keys. Note that PianoKey 
has no graphical objects defined; defining the “look” of a piano key is relegated to the 
specialized classes, WhiteKey and BlackKey. 

Recall that public-init variables in JavaFX are read-only, but the user provides initial 
values when constructing the object literal that builds the key. In class PianoKey, these 
initial values determine where the key is drawn, the letter associated with the key, and 
the note it emits when played. It also includes a handle to the synthesizer object 
responsible for actually producing sound (synthNote). Variable showKeyPress is pro-
tected so that the subclasses WhiteKey and BlackKey can access it.

Listing 6.1 Class PianoKey

package piano;

import javafx.scene.CustomNode;
import noteplayer.SingleNote;

public abstract class PianoKey extends CustomNode {
    public-init var xOffset: Number; // position x coordinate
    public-init var yOffset: Number; // position y coordinate
    public-init var note: Integer; // numeric value of note
    public-init var keyText: String; // letter equivalent of note
    public-init var synthNote: SingleNote; // synthesizer object
    protected var showKeyPress = false; // toggle to visualize events

// turn the note on
    public function noteOn(): String {
        showPress();
        synthNote.noteOn(note);
        return keyText;
    }

// turn the note off
    public function noteOff(): Void {
        synthNote.noteOff(note);
        clearPress();
    }

// turn on key press visualization
    public function showPress(): Void {



ptg

PianoKey Components 171

        showKeyPress = true;
    }

// turn off key press visualization
    public function clearPress(): Void {
        showKeyPress = false;
    }
}

Subclass WhiteKey

When you extend a class from CustomNode, you must provide function create or tag 
the extended class with keyword abstract. Since class PianoKey does not define func-
tion create it must be abstract. The subclasses (WhiteKey and BlackKey) provide 
implementations for create, which includes the graphical structure of the key. These 
classes also specify mouse detection event handlers for onMouseEntered and onMouse-
Exited. White keys display a blue circle for event onMouseEntered and black keys dis-
play an orange circle. 

Note that to modify the display in a scene graph, you simply manipulate its objects’ 
properties and the JavaFX engine redraws the display for you. So, to make the 
WhiteKey circle visible for a mouse entered event, you set the circle’s visible prop-
erty to true. To make it disappear, set it to false. You can apply this principle to any 
number of properties, such as those that manipulate an object’s size, orientation, loca-
tion, or fill. 

Listing 6.2 shows the first part of class WhiteKey. It includes the gradients that fill the 
rectangular key and the circular key press indicator. The linear gradient helps give a 
key depth for a more realistic look. The WhiteKey’s linear gradient changes in the x 
direction (only startX and endX have different values) and the gradient affects only 
the right half of the key (property startX is .5). The key is white on the left half and 
changes to Color.LIGHTGRAY on the right side. Property stops is a sequence of Stop 
objects containing an offset and a color. The offset is a value between 0 and 1 inclu-
sive; each succeeding offset must have a higher value than the preceding one.

The Circle’s radial gradient is centered and covers half of the Circle’s radius, changing 
from white to blue. 

Listing 6.2 Class WhiteKey—Part 1

public class WhiteKey extends PianoKey {
// linear gradient to fill the “white” key

    def keyFill = LinearGradient {
        startX: .5
        startY: 1
        endX: 1
        endY: 1



ptg

172 Chapter 6 Anatomy of a JavaFX Application

        stops: [
            Stop {

     offset: 0
  color: Color.WHITE }

            Stop {
     offset: 1

 color: Color.LIGHTGREY }
        ]
    };

// radial gradient to fill the “key press” circle indicator
    def circleFill = RadialGradient {
        centerX: 0.5  // 0.5 centers the gradient along the x axis
        centerY: 0.5  // 0.5 centers the gradient along the y axis
        radius: 0.5 // the radius of the gradient
        stops: [
            Stop {

     offset: 0
  color: Color.WHITE }

            Stop {
     offset: 1

 color: Color.DODGERBLUE }
        ]
    };

Listing 6.3 shows the second part of class WhiteKey. Here you see the all-important 
create function, which returns a Group node customized for WhiteKey. Using Group 
here gives you the flexibility of adding multiple objects to a CustomNode’s scene 
graph, since a Group object includes a content sequence for holding multiple graphi-
cal objects. Here, class WhiteKey’s content sequence includes a Rectangle (to render 
the key) and a Circle (to render the play/press indicator). 

Group also lets you define properties that apply to the Node as a whole. Here you see 
several Group-level properties: cursor, effect, onMouseEntered, and onMouseExited.

Class WhiteKey uses shape Rectangle to render a white key. Rectangles have x,y posi-
tions and height and width. You give the Rectangle rounded corners by specifying val-
ues for properties arcWidth and arcHeight. Property stroke specifies the shape’s 
outline color, strokeWidth specifies the width of the outline, and property fill is the 
keyFill LinearGradient.

You define a Circle with a center point (centerX and centerY) and a radius. The Circle 
also includes a radial gradient for the fill property (circleFill).

Listing 6.3 Class WhiteKey—Part 2

// required CustomNode function create that builds the scene graph
protected override function create(): Node {



ptg

PianoKey Components 173

        return Group {
// Group-level properties
 cursor: Cursor.HAND
effect: DropShadow { }

            onMouseEntered: function(e: MouseEvent): Void {
     showPress();

            }
            onMouseExited: function(e: MouseEvent): Void {

     clearPress();
            }

            content: [
  // White Key Rectangle

     Rectangle {
       x: xOffset
       y: yOffset
       width: 35
      height: 112.5
       arcWidth: 10
       arcHeight: 10

     stroke: Color.BLACK
      strokeWidth: 1
       fill: keyFill

    }, // Rectangle
     Circle {

      radius: 10
     centerX: xOffset + 18
     centerY: yOffset + 90

 // control circle’s visibility with bind
visible: bind showKeyPress

      fill: circleFill
                } // Circle
            ]

        } // Group
    }
}

Take a moment to examine the Circle node more closely in Listing 6.3. The Circle’s 
visible property binds with Boolean variable showKeyPress (showKeyPress is a pro-
tected class variable defined in PianoKey). By using bind, the Circle dynamically 
appears and disappears as variable showKeyPress changes. (Boolean showKeyPress is 
true when the mouse is over the key or when the key’s note is “played.”) This is how 
the application controls the key’s indicator circle.

Single Key Application

Let’s back off a bit from our grand Piano application and build a simple starter appli-
cation with a single white key that plays the key’s note and displays its letter. This 



ptg

174 Chapter 6 Anatomy of a JavaFX Application

way, you’ll see how to use a custom node in the scene graph defined in the main pro-
gram. This application doesn’t address layout issues other than defining a scene 
graph that includes one key and a Text object to display the note. Figure 6.3 shows the 
simplified application running.

Listing 6.4 shows the code for the Single Key application. Variable singleNote initial-
izes the synthesizer object that plays the notes. String variable notesPlayed holds the 
letter associated with the note played. Note that the Stage object includes property 
onClose to provide a function with “end of life” code. This includes invoking single-
Note.close, which shuts down the synthesizer channels. The scene’s content sequence 
holds a WhiteKey object and a Text object. 

Listing 6.4 Piano—Step 1: Single Key

var singleNote =  SingleNote { };
var notesPlayed: String;
Stage {

title: "Piano"
onClose: function() {

        singleNote.close();   // close the synthesizer
        FX.exit();

}
width: 250
height: 250
scene: Scene {

fill: Color.LIGHTSTEELBLUE
content: [

            WhiteKey {
// provide required initialization values
     xOffset: 30

Figure 6.3 Piano with a single white key shown before and during a key press

Initial state During key press

Cursor.HAND

Circle Indicator

Extra DropShadow effect 

Note Letter Displayed

when playing a note

Rounded Rectangle



ptg

PianoKey Components 175

     yOffset: 20
  synthNote: singleNote

note: 60 // middle "C"
    keyText: "C"

  onMousePressed: function (e: MouseEvent): Void {
// add a drop shadow effect and play the note
  e.node.effect = DropShadow { };

                    notesPlayed = (e.node as PianoKey).noteOn();
                }

  onMouseReleased: function(e: MouseEvent): Void {
// stop playing the note and remove drop shadow

    e.node.effect = null;
  (e.node as PianoKey).noteOff();

                }
            },

// Text object to display the letter associated with each note
            Text {
                x: 40
                y: 170

    font: Font {
        size: 18

                }
 content: bind notesPlayed

            }
        ]
    }
}

The WhiteKey object literal specifies a value for the keyText property to display the 
note’s letter (C). It also includes event handlers to play the note (adding a drop 
shadow effect) or stop playing the note (removing the drop shadow). Here you see the 
advantage of the scene graph and how easily you can update it. 

onMousePressed: function (e: MouseEvent): Void {
// add a drop shadow effect and play the note
e.node.effect = DropShadow { };
notesPlayed = (e.node as PianoKey).noteOn();

}

What’s going on here? Object e is a MouseEvent containing event information accessi-
ble within the event handler. One of the MouseEvent properties is node, which is the 
graphical object that triggered the event. In this case, e.node is the WhiteKey object 
defined in the scene. So, applying a drop shadow effect to e.node here dynamically 
updates the WhiteKey object.

Similarly, the statement
notesPlayed = (e.node as PianoKey).noteOn();



ptg

176 Chapter 6 Anatomy of a JavaFX Application

“plays” the WhiteKey’s note. The casting expression (e.node as PianoKey) is neces-
sary here; otherwise the compiler complains that function noteOn is not defined within 
class Node. The casting expression tells the static type system that e.node is really a 
PianoKey, making the call to function noteOn with e.node type-safe and legal. As 
shown in Listing 6.1 on page 170, class PianoKey defines function noteOn.

The Text object literal includes a binding expression for its content property.
Text {

x: 40
y: 170
font: Font {

size: 18
}
content: bind notesPlayed

}

When the WhiteKey object’s onMousePressed event handler updates String 
notesPlayed, the Text object’s contents (and scene graph) are simultaneously updated. 

Subclass BlackKey

Class BlackKey provides essentially the same code as class WhiteKey except that its 
Rectangle and Circle components are sized differently and have different fill values. 
Listing 6.5 shows the first part of class BlackKey where the gradients are defined. The 
BlackKey’s linear gradient changes in the x direction (only startX and endX have dif-
ferent values) and the gradient affects only the left half of the key (property endX is .5).
The key is solid black on the right half. 

Listing 6.5 Class BlackKey—Part 1

public class BlackKey extends PianoKey {
    def keyFill = LinearGradient {
        startX: 0
        startY: 1
        endX: .5
        endY: 1
        stops: [

Stop {
offset: 0
color: Color.BURLYWOOD }

Stop {
offset: 1
color: Color.BLACK }

]
};

    def circleFill = RadialGradient {
        centerX: 0.5
        centerY: 0.5



ptg

PianoKey Components 177

        radius: 0.5
        stops: [
            Stop {

     offset: 0
 color: Color.WHITESMOKE }

            Stop {
     offset: 1

  color: Color.ORANGE }
        ]
    };

Listing 6.6 shows the second part of class BlackKey. It includes function create, which 
builds the custom node’s scene graph. Like WhiteKey, this class consists of a Rectangle 
for the key’s graphical structure and a Circle object for the key press indicator and 
other mouse events. The Circle object’s visible property is bound to PianoKey class 
variable showKeyPress, providing the same dynamic behavior you saw with class 
WhiteKey.

Listing 6.6 Class BlackKey—Part 2

    protected override function create(): Node {
        return Group {

 cursor: Cursor.HAND
            onMouseEntered: function(e: MouseEvent): Void {

     showPress();
            }
            onMouseExited: function(e: MouseEvent): Void {

     clearPress();
            }
            content: [

     Rectangle {
     x: 20 + xOffset

       y: yOffset
       width: 22
       height: 65
       arcWidth: 10
       arcHeight: 10

     stroke: Color.BLACK
      strokeWidth: 1
       fill: keyFill

    }, // Rectangle
// Circle shows up when a key is pressed or a note is played

     Circle {
       radius: 7

     centerX: xOffset + 31
     centerY: yOffset + 43

   visible: bind showKeyPress
      fill: circleFill

                } // Circle
            ]



ptg

178 Chapter 6 Anatomy of a JavaFX Application

        } // Group
    }
}

Two Key Application

Now let’s return to the partially built Piano application and add a BlackKey to the 
scene graph. Figure 6.4 shows this modified application running. The black key fill 
also has a linear gradient, but its colors are obviously darker. The circle indicator is 
smaller and the note letter includes both the musical sharp (#) and flat (b) notation. Its 
note “value” is set to 61, which is a half-step higher than the value used for the white 
key.

Figure 6.5 shows the scene node diagram for the simplified Piano application. The 
scene now includes a WhiteKey, BlackKey, and Text component.

Listing 6.7 shows the code for the BlackKey node in the Piano scene graph (in bold). 
The mouse event handlers are the same as those defined for the WhiteKey node.

Figure 6.4 Single white and black key shown before and during a key press

Initial state During key press

Cursor.HAND

Circle Indicator

Extra DropShadow effect 

Note Letter Displayed

when playing a note

Rounded Rectangles



ptg

PianoKey Components 179

Listing 6.7 Piano—Step 2: Two Key

var singleNote = SingleNote { };
var notesPlayed: String;
Stage {
    title: "Piano"
    onClose: function() {
        singleNote.close();   // close the synthesizer
        FX.exit();
    }
    width: 250, height: 250
    scene: Scene {
        fill: Color.LIGHTSTEELBLUE
        content: [

WhiteKey { . . . (unchanged) . . . }
BlackKey {
     xOffset: 65
     yOffset: 20

      note: 61
   keyText: "C#/Db"
  synthNote: singleNote
  onMousePressed: function (e: MouseEvent): Void {

  e.node.effect = DropShadow { };
                    notesPlayed = (e.node as PianoKey).noteOn();
                }

  onMouseReleased: function(e: MouseEvent): Void {
    e.node.effect = null;

  (e.node as PianoKey).noteOff();
                }
            }
            Text { . . . (unchanged) . . . }
        ]
    }
}

Scene

Text

Figure 6.5 Scene Node Diagram for simplified Piano application

BlackKey

WhiteKey



ptg

180 Chapter 6 Anatomy of a JavaFX Application

6.3  Building the Keyboard

Now that you’ve seen how to add WhiteKey and BlackKey custom nodes to the appli-
cation’s scene graph, the next step is to build a piano keyboard with white and black 
keys. Figure 6.6 shows this enhanced yet still simple application running. The keys 
are positioned to look like a keyboard and each note you play appears in the Text 
component positioned under the keyboard. The keyboard spans two octaves—there 
are fourteen white keys and ten black keys. The black keys are “on top of” the white 
keys. The application builds the white keys first and then adds a black key relative to 
the position of certain white keys to achieve the realistic look of a keyboard.

This version of the application introduces a layout component to help position the 
keyboard and text components. Since the keyboard should be treated as a single 
entity, you’ll place the sequence of keys in its own Group. That way, you can position 
the keyboard on the scene without worrying about re-adjusting the placement of the 
individual keys. A VBox layout component positions the keyboard above the Text 
node. Figure 6.7 shows the scene graph diagram of the application with these added 
graphical objects.

Figure 6.6 Piano application enhanced to include the keyboard



ptg

Building the Keyboard 181

Listing 6.8 shows the first part of the code that implements this enhanced application. 
The added code is in bold.

Let’s examine the keyboard first. The String sequence pianoNotes holds the letter notes 
for two octaves of white keys and the Integer sequence noteValues contains their cor-
responding values. The program also has a PianoKey sequence to hold piano keys 
called pianoKeys. The Integer sequence blackKeyIndex holds the index values of the 
white keys that have black keys after them. This is how the black keys are positioned 
relative to the white keys.

You build the keyboard with two for loops (that return sequences); the first for loop 
builds the WhiteKey nodes and the second one builds the BlackKey nodes. Order is 
important here, because if the BlackKeys are placed in the scene graph first, they will 
be obscured by the WhiteKeys drawn over them. 

The sequences are then combined (or flattened) with the following assignment.
// Add the blackKeys to pianoKeys sequence
pianoKeys = [pianoKeys, blackKeys];

Building the keys within a for loop also lets you specify PianoKey properties note and 
keyText with the associated value in the noteValues and pianoNotes sequences. The 
keyText property for WhiteKey and BlackKey objects is shown here.

keyText: "{pianoNotes[i]} " // WhiteKey
keyText: "{pianoNotes[i]}#/{pianoNotes[i+1]}b " // BlackKey

Scene

VBox

Group

white keys

Text (note)

Figure 6.7 Scene Node Diagram for updated Piano application

black keys



ptg

182 Chapter 6 Anatomy of a JavaFX Application

The BlackKey text is based on the WhiteKey letter with the sharp (#) and flat (b) nota-
tion added. Similarly, the BlackKey’s note property is based on the WhiteKey note 
value as shown here.

note: noteValues[i] // WhiteKey
note: noteValues[i] + 1 // BlackKey

The BlackKey must also specify a value for Node property blocksMouse. Because the 
BlackKey overlaps the same coordinate space as two WhiteKeys, mouse events trig-
gered inside BlackKey objects will propagate to the underlying WhiteKey object. To 
prevent this interference, set the BlackKey blocksMouse property to true. This ensures 
that mouse events inside BlackKey components trigger only BlackKey mouse event 
handlers. Setting blocksMouse was not necessary in the previous version of the appli-
cation (as shown in Figure 6.4 on page 178) since the keys did not overlap.

Listing 6.8 Piano—Step 3: Add the keyboard—Part 1

var singleNote =  SingleNote { };
var notesPlayed: String;

def pianoNotes = ["F","G","A","B","C","D","E","F","G","A","B","C","D","E"];
def noteValues = [53,55,57,59,60,62,64,65,67,69,71,72,74,76];
// put a black key after these white key index numbers
def blackKeyIndex = [0, 1, 2, 4, 5, 7, 8, 9, 11, 12];

var pianoKeys: PianoKey[] = for (i in [0..<sizeof pianoNotes])
WhiteKey {

xOffset: i * 35 + 30
yOffset: 25
note: noteValues[i]
keyText: "{pianoNotes[i]} "
synthNote: singleNote
. . . keyboard events unchanged . . .

}
def blackKeys = for (i in blackKeyIndex)

BlackKey {
xOffset: i * 35 + 30
yOffset: 25
note: noteValues[i] + 1
keyText: "{pianoNotes[i]}#/{pianoNotes[i+1]}b "
synthNote: singleNote

        blocksMouse: true
. . . keyboard events unchanged . . .

}

// Add the blackKeys to pianoKeys sequence
pianoKeys = [pianoKeys, blackKeys];



ptg

SwingButtons and Animation 183

Listing 6.9 is the code that defines the enhanced Stage and scene graph. The height 
and width of the stage have increased to hold the keyboard. The scene’s content
sequence includes the VBox layout component at the top level. Its spacing property 
(set to 30) provides space between the keyboard and the Text node. Note that the key-
board (sequence pianoKeys) is in its own Group so VBox doesn’t affect the layout of 
the individual keys.

Listing 6.9 Piano—Step 3: Add the keyboard—Part 2

Stage {
    title: "Piano"
    onClose: function() {
        singleNote.close();   // close the synthesizer
        FX.exit();
    }
    width: 560
    height: 250
    scene: Scene {
        fill: Color.LIGHTSTEELBLUE
        content: [
            VBox {

     layoutX: 30
     layoutY: 25
     spacing: 30
     content: [
        Group {

content: pianoKeys
                    }

        Text {
          x: 40

        font: Font {
            size: 18

           }
     content: bind notesPlayed

                    }
                ]
            }
        ]
    }
}

6.4  SwingButtons and Animation

To enhance the Piano application even more, you’ll want to give it more “things” to 
do. The next version has three buttons that manage stored notes in a note buffer. But-
ton Play plays the stored notes, Stop stops playing the notes, and Clear Notes clears 
the note buffer. Figure 6.8 shows this application after selecting the Play button. As 



ptg

184 Chapter 6 Anatomy of a JavaFX Application

each note plays, a circle indicator shows you which key is playing and the letter 
appears in the Text component below the keyboard. Each key that you click plays a 
note which is also added to the note buffer.

Figure 6.9 shows the scene graph for this version of the application. The top-level 
node is now a Flow layout component with two child nodes: the Group containing the 
keyboard and a horizontal layout component (HBox) to hold the SwingButtons. The 
Flow layout component positions its contents in a vertical flow (property vertical is 
true) and centers the contents of each cell horizontally (property hPos is HPos.CENTER).
The Text object that displays the notes is outside of the Flow layout component.

Listing 6.10 through Listing 6.12 show the modifications required to implement the 
behavior of the Play, Clear Notes, and Stop buttons.

Listing 6.10 shows the new code that lets a user play the notes saved in the note 
buffer. First, you define a sequence variable of PianoKey objects (noteSeq) with related 
index variable (noteSeqIndex). This sequence is the note buffer. Next, you initialize 
noteSeq to hold PianoKey objects that play a short musical phrase. A timeline (notes-
Timeline) plays the notes. The timeline consists of two KeyFrame objects, one invoked 
at time 0s (0 seconds) and the second KeyFrame object invoked after a half second 
(.5s). Property action lets you specify a function to invoke at that time. Here, the first 
function plays the note (from the note buffer) and concatenates the note’s letter with 
those already in the Text component’s content. The second function turns off the cur-
rent PianoKey note and moves the index to the next slot in the note buffer. Property 
repeatCount is bound to the note buffer’s size, so that when the timeline plays, it 
repeats for each note saved in the note buffer. 

Figure 6.8 Piano application enhanced to play notes from a note buffer



ptg

SwingButtons and Animation 185

Function stopPlay stops the timeline and makes sure all associated variables are prop-
erly reset when the timeline stops.

Listing 6.10 Piano—Step 4: Add Swing buttons and note buffer—Part 1

// Code to save the notes in a note buffer
// and to play the notes in the note buffer
// setup to play some notes
var noteSeq: PianoKey[];
var noteSeqIndex = 0;

// "Twinkle, Twinkle, Litter Star"
noteSeq = for (i in [4,4,8,8,9,9,8,8,7,7,6,6,5,5,4]) pianoKeys[i];

var notesTimeline = Timeline {
    repeatCount: bind sizeof noteSeq
    keyFrames: [
        KeyFrame {
            time: 0s
            action: function(): Void {

notesPlayed = "{notesPlayed}{noteSeq[noteSeqIndex].noteOn()} ";
            }
        }
        KeyFrame {
            time: .5s
            action: function(): Void {

noteSeq[noteSeqIndex].noteOff();
    noteSeqIndex++;

Figure 6.9 Scene Node Diagram updated to include GUI buttons

Scene

Flow

HBox

Group

pianoKeys

Text (notes)

SwingButtons

hPos: HPos.CENTER, vertical: true



ptg

186 Chapter 6 Anatomy of a JavaFX Application

            }
        }
    ]
}

function stopPlay(): Void {
 notesPlayed = "";

    notesTimeline.stop();
    if (noteSeqIndex < sizeof noteSeq)
    noteSeq[noteSeqIndex].noteOff();
    noteSeqIndex = 0;
}

Listing 6.11 shows the modified code for the WhiteKey and BlackKey onMousePressed
event handlers (in bold). As a user plays each key, the event handler concatenates the 
note’s letter to the String displayed by the Text component (rather than overwrite it 
with each note). The handler inserts the specific piano key object (e.node) into a 
sequence, so it can be retrieved later. You must use a casting expression here (e.node
as PianoKey), since you can only insert PianoKey objects into sequence noteSeq.

Listing 6.11 Piano—Step 4: Add Swing buttons and note buffer—Part 2

var pianoKeys: PianoKey[] = for (i in [0..<sizeof pianoNotes])
    WhiteKey {

. . .
        onMousePressed: function (e: MouseEvent): Void {
            e.node.effect = DropShadow{};

// concatenate new note played with buffer
            notesPlayed = "{notesPlayed}{(e.node as PianoKey).noteOn()}";
            // remember which piano key was played
            insert (e.node as PianoKey) into noteSeq;
        }

. . .
    } 

def blackKeys = for (i in blackKeyIndex)
    BlackKey {

. . .
        onMousePressed: function (e: MouseEvent): Void {
            e.node.effect = DropShadow{};

// concatenate new note played with buffer
            notesPlayed = "{notesPlayed}{(e.node as PianoKey).noteOn()}";
            // remember which piano key was played
            insert (e.node as PianoKey) into noteSeq;
        }
        . . .
    }



ptg

SwingButtons and Animation 187

Listing 6.12 shows the modifications needed to add SwingButton components to the 
scene graph. The added nodes in the scene graph require a larger scene height (300).
There are three buttons labeled “Clear Notes,” “Play,” and “Stop.” SwingButton prop-
erty text holds the button label and action specifies a function to invoke when the 
button is clicked. All three SwingButtons stop the timeline by calling function stop-
Play. SwingButton “Clear Notes” also removes the PianoKey objects from the note 
buffer sequence. SwingButton “Play” starts the timeline again from the beginning 
(timeline function playFromStart).

Layout component Flow specifies vertical mode (property vertical is true) with the 
vertical gap set to 20 (property vGap). It centers its contents horizontally (property hPos
is HPos.CENTER).

Layout component HBox lets you arrange components horizontally in the scene. 
Here, HBox groups the SwingButton nodes together to achieve the layout shown in 
Figure 6.8 on page 184. Property spacing lets you define spacing between each node. 

The Text component that displays the note buffer sets property wrappingWidth so that 
long note sequences are not clipped. Its layoutX and layoutY properties position it 
under the SwingButton nodes.

Listing 6.12 Piano—Step 4: Add Swing buttons and note buffer—Part 3

Stage {
    title: "Piano"
    onClose: function() {
        singleNote.close();   // close the synthesizer
        FX.exit();
    }
    scene: Scene {
        width: 560
        height: 300
        fill: Color.LIGHTSTEELBLUE
        content: [

Flow {
     layoutX: 30
     layoutY: 20
    vertical: true

      vGap: 20
    hPos: HPos.CENTER
     height: 300
     content: [
        Group {

content: pianoKeys
                    }

 HBox { // Layout for the buttons
         spacing: 30
         content: [

          SwingButton {



ptg

188 Chapter 6 Anatomy of a JavaFX Application

           text: "Clear Notes"
action: function() {
    stopPlay();
   delete noteSeq;

               }
         }  // SwingButton

          SwingButton {
             text: "Play"

action: function() {
    stopPlay();

  notesTimeline.playFromStart();
               }
         }  // SwingButton
          SwingButton {
             text: "Stop"

action: function() {
    stopPlay();

               }
         }  // SwingButton

           ]
     }// HBox

                ]
            }
            Text {

layoutY: 210
     layoutX: 50
    font: Font {
        size: 18

                }
wrappingWidth: 460
 content: bind notesPlayed;

            }
        ]
    }
}

6.5  Adding Help and Improving Visual Effects

Figure 6.10 shows the final version of the JavaFX Piano application. You’ll note the 
addition of a title Text component, a Help window, and a Hide Help button in this 
version. Both the title and Help window text have drop shadows. The application 
background now has a linear gradient as does the Help window background. Addi-
tionally, the title, keyboard, buttons, and Help window are all centered horizontally in 
the scene.



ptg

Adding Help and Improving Visual Effects 189

The most obvious enhancement to this final version of the Piano application is a Help 
window, which appears when the application first comes up. Since this window takes 
up a large portion of the scene, the user can hide it by clicking the Hide Help button.

Figure 6.11 depicts the updated scene graph for the final version of this application. A 
Text component for the title is now inside the Flow layout component. The Text com-
ponent for the notes and the new Help window appear outside the Flow layout com-
ponent. The Help window is a Group, consisting of a Rectangle (for the background) 
and a Text component.

Listing 6.13 through Listing 6.15 show the added and updated code to implement the 
final version.

Listing 6.13 includes new variables, a fade transition to show and hide the Help win-
dow, and a SwingButton the user clicks to show or hide the Help window. Read-only 
variable helpText contains the text displayed by the Help window. 

The listing includes a variable declaration for the Scene (scene) that lets you use scene
in calculations to center components (and re-center them when a user resizes the win-
dow and the Scene’s width property changes).

Figure 6.10 JavaFX application Piano—the final version



ptg

190 Chapter 6 Anatomy of a JavaFX Application

A FadeTransition2 is a specialized Timeline that fades the object specified in property 
node by gradually changing the node’s opacity (1 is fully opaque and 0 is fully translu-
cent). Although you can construct a Timeline object that is equivalent, using Fade-
Transition (variable fadeHelp) is a convenient shortcut. Note that property rate is -1.
(The normal rate value for timelines and transitions is 1.) If you increase the rate to 2,
this makes the transition (or timeline) go twice as fast; rate .5 means twice as slow. 
Negative values make transitions go in reverse. Thus, a rate of -1 is at normal speed, 
but in reverse. We set the rate to reverse since the Help window is visible initially. 
Reversing the transition will make the Help window disappear (fully translucent).

A SwingButton object literal implements the Hide Help/Show Help button. Property 
text is bound to variable helpLabel, which toggles between Hide Help and Show 
Help. Property action provides the statements to show or hide the Help Window. The 
function toggles the transition’s rate, plays fadeHelp, and toggles the button’s text
property.

2. See Section 7.3 (“Transitions”) beginning on page 225 for more details on JavaFX Transitions.

Scene

Flow Text (title)

HBox

Group

pianoKeys

Text (notes)

Rectangle

Text

SwingButtons

Group

Figure 6.11 Scene Node Diagram for project Piano

(Help window)



ptg

Adding Help and Improving Visual Effects 191

Listing 6.13 Piano—Step 5: Final Build—Part 1

def helpText = "Play: You will hear a short tune which you can Stop."
"\nYou can also play arbitrary notes using the mouse."
"\nYour notes will be added to the play buffer."
"\nClear Notes: clears the play buffer.";
var helpLabel = " Hide Help ";

var scene: Scene;
var pianoHelp: Group;

def fadeHelp = FadeTransition {
    duration: 1.5s
    node: pianoHelp
    fromValue: 1.0
    toValue: 0.0
    rate: -1
}

. . . 

HBox { // Layout for the buttons
spacing: 30
content: [

. . . (original SwingButtons go here) . . .
// SwingButton object literal added to HBox layout component
SwingButton {

text: bind helpLabel
action: function(): Void {

fadeHelp.rate = (fadeHelp.rate * - 1.0);
fadeHelp.play();
helpLabel = if (helpLabel == "Show Help") " Hide Help " 

else "Show Help";
}

}  // SwingButton
]

} // HBox
. . .

Listing 6.14 shows the graphical element that makes up the Help window: a Rectangle 
and a Text node grouped together. The Group (pianoHelp) binds property translateX
to a value based on the width of the scene (scene.width) and its own width (piano-
Help.layoutBounds.width). Property layoutBounds defines the rectangular dimensions 
of a node.

The Help window has rounded corners (arcWidth and arcHeight), a drop shadow, and 
a linear gradient. The Help window’s Text component has center alignment, a drop 
shadow, and property wrappingWidth defined. The content property is set to helpText.



ptg

192 Chapter 6 Anatomy of a JavaFX Application

Listing 6.14 Piano—Step 5: Final Build—Part 2

// the Help window scene graph nodes
pianoHelp = Group {
    // center the group horizontally
    layoutY: 290
    translateX: bind (scene.width - pianoHelp.layoutBounds.width) / 2 
    content: [
        Rectangle {
            width: 500
            height: 130
            arcWidth: 10
            arcHeight: 10

fill: LinearGradient {
     startX: 1
     startY: 0

      endX: 1
      endY: 1
     stops: [
        Stop {

         offset: 0
     color: Color.LIGHTSLATEGREY }

        Stop {
         offset: 1

      color: Color.DARKGRAY }
                ]
            }

effect: DropShadow { }
        },
        Text {

 wrappingWidth: 495
 fill: Color.YELLOW

            textAlignment: TextAlignment.CENTER
            font: Font {

     name: "Serif"
      size: 20

            }
 effect: DropShadow {
     offsetX: 2
     offsetY: 2
     radius: 6

   color: Color.BLACK
            }
            x: 40
            y: 45
            content: helpText
        }  // Text
    ]

}



ptg

Adding Help and Improving Visual Effects 193

Listing 6.15 shows the updated Stage and scene graph for the Piano application. The 
scene now has a linear gradient (from Color.LIGHTSLATEGRAY to Color.LIGHTSTEELBLUE)
and the Flow layout component includes the title Text node. The Flow layout compo-
nent centers its contents by setting property hPos to HPos.CENTER.

Listing 6.15 Piano—Step 5: Final Build—Part 3

Stage {
. . .

    scene: scene = Scene {
        width: 560

height: 450
fill: LinearGradient {

            startX: 1
            startY: 0
            endX: 1
            endY: 1
            stops: [
                Stop {

       offset: 0
   color: Color.LIGHTSLATEGRAY

                },
                Stop {

       offset: 1
   color: Color.LIGHTSTEELBLUE

                }
            ]
        }
        content: [
            Flow {

translateX: bind (scene.width-pianoHelp.layoutBounds.width)/2+ 3
     layoutY: 20
    vertical: true

      vGap: 20
    hPos: HPos.CENTER
     height: 420
     content: [

Text {
       fill: Color.YELLOW

   textAlignment: TextAlignment.CENTER
        font: Font {

          name: "Serif"
            size: 24

           }
      effect: DropShadow {
           offsetX: 2
           offsetY: 2
           radius: 6
         color: Color.BLACK

           }
    content: "Welcome to the Piano"



ptg

194 Chapter 6 Anatomy of a JavaFX Application

       }  // Text
        Group {

content: pianoKeys
                    }

 HBox { // Layout for the buttons
         spacing: 30

       content: [ . . . (4 SwingButton components) . . . ]
        }// HBox

                ]
            } // Flow
            Text { // Display the notes

layoutY: 250
                wrappingWidth: bind scene.width - 100 

. . .
            }

pianoHelp
        ]
    }
}

6.6  Source Code for Project Piano

Listing 6.16 through Listing 6.19 shows the complete code for the final version of 
Project Piano.

Listing 6.16 shows the source code for class PianoKey, which extends CustomNode. 
Recall that the JavaFX CustomNode class enables programmers to insert custom 
nodes into the scene graph. Note that class PianoKey is abstract, since it does not pro-
vide an implementation of function create (subclasses BlackKey and WhiteKey pro-
vide their own versions).

Listing 6.16 PianoKey.fx

package piano;

import javafx.scene.CustomNode;
import noteplayer.SingleNote;

public abstract class PianoKey extends CustomNode {
    public-init var xOffset: Number;
    public-init var yOffset: Number;
    public-init var note: Integer;
    public-init var keyText: String;
    public-init var synthNote: SingleNote;
    protected var showKeyPress = false;

    public function noteOn(): String {



ptg

Source Code for Project Piano 195

        showPress();
        synthNote.noteOn(note);
        return keyText;
    }
    public function noteOff(): Void {
        synthNote.noteOff(note);
        clearPress();
    }

    public function showPress(): Void {
        showKeyPress = true;
    }
    public function clearPress(): Void {
        showKeyPress = false;
    }
}

Listing 6.17 shows the source code for class WhiteKey, a subclass of PianoKey. 
WhiteKey consists of a Rectangle and an overlaying Circle that is visible with certain 
mouse events. It uses color gradients for its fill attribute and a drop shadow effect 
around the node.

Listing 6.17 WhiteKey.fx

package piano;

import javafx.scene.Cursor;
import javafx.scene.effect.DropShadow;
import javafx.scene.Group;
import javafx.scene.input.MouseEvent;
import javafx.scene.Node;
import javafx.scene.paint.*;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Rectangle;

public class WhiteKey extends PianoKey {
    def keyFill = LinearGradient {
        startX: .5
        startY: 1
        endX: 1
        endY: 1
        stops: [
            Stop {

     offset: 0
  color: Color.WHITE }

            Stop {
     offset: 1

 color: Color.LIGHTGREY }
        ]
    };



ptg

196 Chapter 6 Anatomy of a JavaFX Application

    def circleFill = RadialGradient {
        centerX: 0.5  // 0.5 centers the gradient along the x axis
        centerY: 0.5  // 0.5 centers the gradient along the y axis
        radius: 0.5 // the radius of the gradient
        stops: [
            Stop {

     offset: 0
  color: Color.WHITE }

            Stop {
     offset: 1

 color: Color.DODGERBLUE }
        ]
    };

    protected override function create(): Node {
        return Group {

 cursor: Cursor.HAND
effect: DropShadow { }

            onMouseEntered: function(e: MouseEvent): Void {
     showPress();

            }
            onMouseExited: function(e: MouseEvent): Void {

     clearPress();
            }
            content: [

  // White Key Rectangle
     Rectangle {

       x: xOffset
       y: yOffset
       width: 35
      height: 112.5
       arcWidth: 10
       arcHeight: 10

     stroke: Color.BLACK
      strokeWidth: 1
       fill: keyFill

    }, // Rectangle
     Circle {

      radius: 10
     centerX: xOffset + 18
     centerY: yOffset + 90

   visible: bind showKeyPress
      fill: circleFill

                } // Circle
            ]
        } // Group
    }
}



ptg

Source Code for Project Piano 197

Listing 6.18 shows the source code for class BlackKey, also a subclass of PianoKey. 
BlackKey consists of a Rectangle and an overlaying Circle visible with certain mouse 
events. It uses color gradients for its fill attribute.

Listing 6.18 BlackKey.fx

package piano;

import javafx.scene.Cursor;
import javafx.scene.Group;
import javafx.scene.input.MouseEvent;
import javafx.scene.Node;
import javafx.scene.paint.*;
import javafx.scene.shape.Circle;
import javafx.scene.shape.Rectangle;

public class BlackKey extends PianoKey {
    def keyFill = LinearGradient {
        startX: 0
        startY: 1
        endX: .5
        endY: 1
        stops: [

Stop {
offset: 0
color: Color.BURLYWOOD }

Stop {
offset: 1
color: Color.BLACK }

 ]
    };
    def circleFill = RadialGradient {
        centerX: 0.5
        centerY: 0.5
        radius: 0.5
        stops: [
            Stop {

     offset: 0
 color: Color.WHITESMOKE }

            Stop {
     offset: 1

  color: Color.ORANGE }
        ]
    };

    protected override function create(): Node {
        return Group {

 cursor: Cursor.HAND
            onMouseEntered: function(e: MouseEvent): Void {

     showPress();
            }



ptg

198 Chapter 6 Anatomy of a JavaFX Application

            onMouseExited: function(e: MouseEvent): Void {
     clearPress();

            }
            content: [

     Rectangle {
     x: 20 + xOffset

       y: yOffset
       width: 22
       height: 65
       arcWidth: 10
       arcHeight: 10

     stroke: Color.BLACK
      strokeWidth: 1
       fill: keyFill

    }, // Rectangle
// Circle shows up when a key is pressed or a note is played

     Circle {
       radius: 7

     centerX: xOffset + 31
     centerY: yOffset + 43

   visible: bind showKeyPress
      fill: circleFill

                } // Circle
            ]
        } // Group
    }
}

Listing 6.19 shows the code for Piano.fx, the main program in the Piano application.

Listing 6.19 Piano.fx (Main Program)

package piano;

import javafx.animation.KeyFrame;
import javafx.animation.Timeline;
import javafx.animation.transition.FadeTransition;
import javafx.ext.swing.SwingButton;
import javafx.geometry.HPos;
import javafx.lang.FX;
import javafx.scene.effect.DropShadow;
import javafx.scene.Group;
import javafx.scene.input.MouseEvent;
import javafx.scene.layout.Flow;
import javafx.scene.layout.HBox;
import javafx.scene.paint.Color;
import javafx.scene.paint.LinearGradient;
import javafx.scene.paint.Stop;
import javafx.scene.Scene;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Font;



ptg

Source Code for Project Piano 199

import javafx.scene.text.Text;
import javafx.scene.text.TextAlignment;
import javafx.stage.Stage;
import noteplayer.SingleNote;
import piano.BlackKey;
import piano.PianoKey;
import piano.WhiteKey;

 // Application with a two-octave keyboard, Text component,
 // and buttons that let you play notes stored in the note buffer
 // Additional code added to implement Help window,
 // center components, add gradients, add title

var singleNote = SingleNote {
};
var notesPlayed: String;

def pianoNotes = ["F","G","A","B","C","D","E","F","G","A","B","C","D","E"];
def noteValues = [53,55,57,59,60,62,64,65,67,69,71,72,74,76];

// put a black key after these white key index numbers
def blackKeyIndex = [0, 1, 2, 4, 5, 7, 8, 9, 11, 12];

def helpText = "Play: You will hear a short tune which you can Stop."
"\nYou can also play arbitrary notes using the mouse."
"\nYour notes will be added to the play buffer."
"\nClear Notes: clears the play buffer.";
var helpLabel = " Hide Help ";
var scene: Scene;
var pianoHelp: Group;
var pianoKeys: PianoKey[] = for (i in [0..<sizeof pianoNotes])
    WhiteKey {
        xOffset: i * 35 + 30
        yOffset: 25
        note: noteValues[i]
        keyText: "{pianoNotes[i]} "
        synthNote: singleNote
        onMousePressed: function (e: MouseEvent): Void {
            // concatenate new note played with buffer
            notesPlayed = "{notesPlayed}{(e.node as PianoKey).noteOn()}";
            // remember which piano key was played
            insert (e.node as PianoKey) into noteSeq;
        }
        onMouseReleased: function(e: MouseEvent): Void {
            (e.node as PianoKey).noteOff();
        }
    }

def blackKeys = for (i in blackKeyIndex)
    BlackKey {
        xOffset: i * 35 + 30
        yOffset: 25



ptg

200 Chapter 6 Anatomy of a JavaFX Application

        note: noteValues[i] + 1
        keyText: "{pianoNotes[i]}#/{pianoNotes[i+1]}b "
        synthNote: singleNote
        blocksMouse: true
        onMousePressed: function (e: MouseEvent): Void {
            e.node.effect = DropShadow { };
            // concatenate new note played with buffer
            notesPlayed = "{notesPlayed}{(e.node as PianoKey).noteOn()}";
            // remember which piano key was played
            insert (e.node as PianoKey) into noteSeq;
        }
        onMouseReleased: function(e: MouseEvent): Void {

e.node.effect = null;
            (e.node as PianoKey).noteOff();
        }
    }
//Add the blackKeys to the PianoKeys
pianoKeys = [pianoKeys, blackKeys];

// Code to save the notes in a note buffer
// and to play the notes in the note buffer
// setup to play some notes
var noteSeq: PianoKey[];
var noteSeqIndex = 0;

// "Twinkle, Twinkle, Litter Star"
noteSeq = for (i in [4,4,8,8,9,9,8,8,7,7,6,6,5,5,4]) pianoKeys[i];

var notesTimeline = Timeline {
    repeatCount: bind sizeof noteSeq
    keyFrames: [
        KeyFrame {
            time: 0s
            action: function(): Void {

notesPlayed = "{notesPlayed}{noteSeq[noteSeqIndex].noteOn()} ";
            }
        }
        KeyFrame {
            time: .5s
            action: function(): Void {

noteSeq[noteSeqIndex].noteOff();
    noteSeqIndex++;

            }
        }
    ]
}

function stopPlay(): Void {
    notesPlayed = "";
    notesTimeline.stop();
    if (noteSeqIndex < sizeof noteSeq)
    noteSeq[noteSeqIndex].noteOff();



ptg

Source Code for Project Piano 201

    noteSeqIndex = 0;
}

// the Help window scene graph nodes
pianoHelp = Group {
    // center the group horizontally
    layoutY: 290
    translateX: bind (scene.width - pianoHelp.layoutBounds.width) / 2
    content: [
        Rectangle {
            width: 500
            height: 130
            arcWidth: 10
            arcHeight: 10

fill: LinearGradient {
     startX: 1
     startY: 0

      endX: 1
      endY: 1
     stops: [
        Stop {

         offset: 0
      color: Color.LIGHTSLATEGREY

                    },
        Stop {

         offset: 1
       color: Color.DARKGRAY

                    }
                ]
            }

 effect: DropShadow{
            };
        },
        Text {

 wrappingWidth: 495
 fill: Color.YELLOW

            textAlignment: TextAlignment.CENTER
            font: Font {

     name: "Serif"
      size: 20

            }
 effect: DropShadow {
     offsetX: 2
     offsetY: 2
     radius: 6

   color: Color.BLACK
            }
            x: 40
            y: 25
            content: helpText
        }  // Text
    ]



ptg

202 Chapter 6 Anatomy of a JavaFX Application

}

def fadeHelp = FadeTransition {
    duration: 1.5s
    node: pianoHelp
    fromValue: 1.0
    toValue: 0.0
    repeatCount: 1
    rate: -1
}

Stage {
    title: "Piano"
    onClose: function() {
        singleNote.close();   // close the synthesizer
        FX.exit();
    }
    scene:
    scene = Scene {
        width: 560
        height: 450
        fill: LinearGradient {
            startX: 1
            startY: 0
            endX: 1
            endY: 1
            stops: [
                Stop {

       offset: 0
   color: Color.LIGHTSLATEGRAY

                },
                Stop {

       offset: 1
   color: Color.LIGHTSTEELBLUE

                }
            ]
        }
        content: [
            Flow {
                translateX: bind (scene.width-pianoHelp.layoutBounds.width)/2+ 3

     layoutY: 20
    vertical: true

      vGap: 20
    hPos: HPos.CENTER
     height: 420
     content: [
        Text {

       fill: Color.YELLOW
   textAlignment: TextAlignment.CENTER

        font: Font {
          name: "Serif"

            size: 24



ptg

Source Code for Project Piano 203

           }
      effect: DropShadow {
           offsetX: 2
           offsetY: 2
           radius: 6
         color: Color.BLACK

           }
    content: "Welcome to the Piano"

       }  // Text
        Group {

content: pianoKeys
                    }

 HBox { // Layout for the buttons
         spacing: 30
         content: [

          SwingButton {
           text: "Clear Notes"

action: function() {
    stopPlay();
   delete noteSeq;

               }
         }  // SwingButton
          SwingButton {
             text: "Play"

action: function() {
    stopPlay();

  notesTimeline.playFromStart();
               }
         }  // SwingButton
          SwingButton {
             text: "Stop"

action: function() {
    stopPlay();

               }
         }  // SwingButton
          SwingButton {

          text: bind helpLabel
action: function() {

                 fadeHelp.rate = (fadeHelp.rate * - 1);
   fadeHelp.play();

                 helpLabel = if (helpLabel == "Show Help")
" Hide Help " else "Show Help";

               }
         }  // SwingButton

           ]
        }// HBox

                ]
            }
            Text { // Display the notes

    layoutY: 250
     layoutX: 50



ptg

204 Chapter 6 Anatomy of a JavaFX Application

                wrappingWidth: bind scene.width - 100
    font: Font {
        size: 18

                }
 content: bind notesPlayed

            }
            pianoHelp
        ]
    }
}



ptg

205

7 Animation

If the scene graph is the central metaphor in JavaFX for specifying graphical objects, 
then animation is its metaphor for doing things. Animation is the heart and soul of 
JavaFX. Simply, it brings objects to life. With animation, you give motion to the JavaFX 
scene graph.

JavaFX provides a rich palette for animation. With Timelines, you can build just about 
any animation you need. Timelines provide a range of properties that let you specify 
how an object’s properties might change over time. With binding, you can manipulate 
script-level variables that consequently change an object’s bound properties. Time-
lines also let you specify interpolators, rate, time, repeat count, new values, and 
actions. You can even nest timelines and create recursive timeline calls. 

With all this flexibility, you might conclude that timelines are complicated to use—
especially if you simply want to fade, rotate, or scale an object. To address the more 
common animations that apply to graphical objects, JavaFX offers specialized time-
lines called transitions. These specialized animations use timelines, making it easy to 
apply common transition-based animations to graphical objects. It’s also possible to 
combine transitions either sequentially or in parallel.

In this chapter, you’ll first look at Timeline objects (the basis for all JavaFX anima-
tions). Next, you’ll see how to build simple animations that change an object’s prop-
erty. You’ll then explore commonly used Timeline properties to build more intricate 
animations. Finally, you’ll see how transitions let you build animations easily.

What You Will Learn

• Using Timelines for animation and code execution

• Using KeyFrame objects to define effective Timelines

• Manipulating node variables within KeyFrame objects 

• Controlling animation with interpolators

• Using basic Timeline properties such as repeatCount and autoReverse

• Animating target variables independently



ptg

206 Chapter 7 Animation

• Animating composite scene graph nodes (Groups)

• Using Timeline actions

• Using Transitions to move, scale, fade, and rotate scene graph nodes

• Animating graphical nodes along a path with PathTransitions

• Building compound transitions with ParallelTransition and SequentialTransition

7.1  Timelines

JavaFX Node property variables, when changed, automatically update the scene 
graph. Therefore, if you change a property’s value, the scene automatically reflects the 
transformed node. Common node properties for animation are translateX and trans-
lateY to move a node in the x or y direction, scaleX and scaleY to scale a node in the x 
or y direction, and rotate, to rotate a node about its center to a new orientation. How-
ever, you can animate any writable node property. To animate objects, then, you sim-
ply manipulate property values with timelines. 

You can also animate properties of a node by binding target properties to script-level 
variables. You then manipulate these script-level variables with timelines, too.

A Timeline is a sequence of KeyFrame objects that the timeline processes. Each Key-
Frame specifies a time offset (property time) within the timeline that animations 
should take place. KeyFrames contain a sequence of KeyValue objects (property val-
ues) or a function (property action) or both. Table 7.1 lists the KeyFrame properties.

TABLE 7.1 KeyFrame Properties 

Property Type Description
time Duration The time offset within a single cycle of a Timeline 

at which the associated values will be set and at 
which the action function will be called.

values KeyValue[] The list of target variables and the desired values 
they should interpolate at the time offset of this 
KeyFrame. Interpolator.LINEAR is default.

action function():Void A function that is called when the time cursor 
passes the specified time offset of this KeyFrame.



ptg

Timelines 207

Timeline objects are meant to be flexible to fit different animation scenarios with 
properties and functions that let you manipulate their behavior. For example, prop-
erty rate controls the basic timing. When rate is 1 (this is the default), the timeline 
runs at normal speed forward through the sequence of KeyFrames. If rate is -1, it runs 
at normal speed in reverse. A rate of 2 runs the timeline twice as fast. Table 7.2 lists 
some of the more common Timeline properties. 

Table 7.3 shows the JavaFX timeline functions. Function play starts the animation at 
its current position. You can pause an animation (function pause) and play will restart 
the animation at the point in the cycle it was paused. Function stop stops the timeline 
and resets its position to the beginning. Function playFromStart starts the timeline at 
the beginning of the timeline cycle. 

canSkip Boolean Defines whether or not the action function can be 
skipped if the master timer gets behind and more 
than one Timeline cycles are skipped between time 
pulses.

timelines Timeline[] A list of sub-timelines that will be started when the 
time cursor passes the specified time offset of this 
KeyFrame.

TABLE 7.2 Common Timeline Properties

Property Type Description
autoReverse Boolean If true, timeline reverses direction on alternating 

cycles
repeatCount Integer Number of cycles in this timeline
keyFrames KeyFrame[] The sequence of KeyFrames in this animation
paused Boolean Read-only variable that is true when timeline is 

paused
running Boolean Read-only variable that is true when timeline is 

running (even if paused)
rate Number The direction/speed at which timeline is expected 

to play (negative rate reverses direction)
currentRate Number Read-only variable that indicates current direction/

speed that the timeline is playing
time Duration The current value of this timeline’s time cursor 

TABLE 7.1 KeyFrame Properties (Continued)

Property Type Description



ptg

208 Chapter 7 Animation

Animation Basics—Moving an Object

Let’s show you a simple animation that moves a circle across the scene, as shown in 
Figure 7.1. When the application first comes up, the circle is on the left and immedi-
ately begins moving slowly to the right. After three seconds, animation stops and the 
circle remains on the right side.

For this example, the timeline includes two KeyFrame objects. The first (keyFrames[0])
specifies time offset 0s (0 seconds). Property values sets target variable circle.trans-
lateX to 0. This is the starting point.

TABLE 7.3 Timeline Functions

Function Description
play Start or resume the timeline. If the timeline is running and 

paused, play resumes at the place in the timeline cycle 
where it was paused. If the timeline was previously stopped, 
play resumes at the beginning of the timeline cycle. Timeline 
property running is true.

playFromStart Start the timeline from the beginning of the timeline cycle. 
Timeline property running is true.

pause Pause the timeline. Timeline property running is true and 
property paused is true.

stop Stop the timeline. Timeline property running is false.

Figure 7.1 Timelines consists of a sequence of KeyFrame objects

KeyFrame {
time: 0s
values:

circle.translateX => 0.0
}

KeyFrame {
time: 3s
values:

circle.translateX => 165.0 
tween Interpolator.LINEAR

}

keyFrames [0] keyFrames [1]



ptg

Timelines 209

JavaFX Node Properties

JavaFX nodes include properties that let you apply transformations to the node. Property 
translateX specifies how far you move a node in the x direction within the scene. Thus, target 
variable circle.translateX controls x-direction movement for object circle.

The second KeyFrame object (keyFrames[1]) specifies time offset 3s (three seconds 
into the timeline cycle). At this time offset, target variable circle.translateX will be 
165.0. Operator tween specifies the type of interpolator. With linear interpolation 
(Interpolator.LINEAR), target variable circle.translateX takes on succeeding values 
(between 0 and 165.0) with a constant rate of increase. (See Table 7.4 on page 211 for 
the JavaFX built-in interpolators.)

Interpolation

Interpolation is used to calculate intermediary values between two known end points. In 
JavaFX animation, interpolation provides the intermediary values between a value in one Key-
Frame and a value in the next KeyFrame. The actual intermediary values depend on the inter-
polator used. JavaFX default interpolation is linear, providing a set of intermediary values 
with a constant rate of increase (or decrease).

Listing 7.1 shows the timeline that provides the animation shown in Figure 7.1. Object 
circle includes property translateX, a property common to all graphical nodes. 
Property translateX lets you move an object in the x direction (it represents the x-
direction change of the object from its original position). The Circle’s position changes 
in the scene as translateX changes. Note that circle property translateX’s default 
value is 0.0; it’s not necessary to provide an initial value in circle’s declaration.

The timeline is an object literal and is invoked with Timeline function play. This starts 
the timeline as soon as the application is fully initialized. Two KeyFrames specify how 
target variable circle.translateX should change.

Listing 7.1 Using Timeline to animate a Circle

def circle: Circle = Circle {
centerX: 40
centerY: 70
radius: 25
fill: Color.SEAGREEN

}

Timeline {
    keyFrames: [
        KeyFrame {
            time: 0s



ptg

210 Chapter 7 Animation

            values: circle.translateX => 0.0
        }
        KeyFrame {
            time: 3s
            values: circle.translateX => 165.0 tween Interpolator.LINEAR
        }
    ]
}.play();

. . .
scene: Scene {

. . .
content: circle

}
. . .

Our initial animation example moves the circle across the scene and stops. We can 
have the circle return to its original location by including property autoReverse (set to 
true) and repeatCount (set to 2). Property autoReverse makes the timeline run in 
reverse automatically. Property repeatCount specifies how many times the timeline 
should play. Note that a play in reverse counts as one cycle, so repeatCount must be at 
least 2 for autoReverse to have an effect.
Timeline {

autoReverse: true
repeatCount: 2
. . .

}

With this modification, the circle moves to the position on the right, returns to its orig-
inal position, and stops. To move the circle back and forth indefinitely, set repeatCount
to Timeline.INDEFINITE. A second modification that makes the animation more realis-
tic is to specify Interpolator.EASEBOTH. This starts the animation slowly, ramps up to 
“normal” speed, then eases up at the end of the cycle. Listing 7.2 shows the new time-
line, with these changes in bold.

Listing 7.2 Moving the Circle back and forth indefinitely

Timeline {
autoReverse: true
repeatCount: Timeline.INDEFINITE

    keyFrames: [
        KeyFrame {
            time: 0s
            values: circle.translateX => 0.0
        }
        KeyFrame {
            time: 3s
            values: circle.translateX => 165.0 tween Interpolator.EASEBOTH



ptg

Timelines 211

        }
    ]
}.play();

Table 7.4 shows the JavaFX built-in timeline interpolators.

Animating Multiple Targets

You can animate more than one target variable in a KeyFrame by using sequence 
notation [ ] for multiple target variables. In this next example, we grow the circle as 
it moves by animating Node properties scaleX and scaleY. The circle grows in both x 
and y directions by a scale factor of 2. By using the same KeyFrame objects, both ani-
mations complete at the same time. Listing 7.3 shows the updated code. 

Listing 7.3 Animate Multiple Targets

def circle: Circle = Circle {
centerX: 40
centerY: 70
radius: 25
fill: Color.SEAGREEN

}

Timeline {
    autoReverse: true
    repeatCount: Timeline.INDEFINITE
    keyFrames: [
        KeyFrame {
            time: 0s
            values: [circle.translateX => 0.0, circle.scaleX => 1, 

 circle.scaleY => 1]
        }
        KeyFrame {
            time: 3s
            values: [circle.translateX => 165.0 tween Interpolator.EASEBOTH,

TABLE 7.4 Built-In JavaFX Timeline Interpolators

Interpolator Description
DISCRETE Provides discrete (no intermediary values are used) behavior
LINEAR Provides intermediary values that are linear (constant rate of 

change)
EASEIN Starts out slowly and ramps up to the “normal” rate
EASEOUT Constant (linear rate of change) but slows down near the end 

of the frame
EASEBOTH Eases at both the beginning and end of the frame



ptg

212 Chapter 7 Animation

  circle.scaleX => 2 tween Interpolator.EASEBOTH,
  circle.scaleY => 2 tween Interpolator.EASEBOTH]

        }
    ]
}.play();

Animation Tip

Use a single timeline when you want to specify changes that complete their cycles at the same 
time with the same basic timeline properties (rate, autoReverse, repeatCount).

Animating Multiple Targets Independently

Sometimes you want to animate properties of the same object, but you want the prop-
erties to change independently. In this case, use separate timelines. This lets you 
define KeyFrames that give a different time cycle to each animation. Separate time-
lines also let you define Timeline properties, such as repeatCount, independently. 

To illustrate animating multiple targets independently, let’s use three timelines: one to 
animate the circle in the x direction, one to animate it in the y direction, and a third to 
grow and shrink the circle. Figure 7.2 shows two frames from this example. The circle 
moves in both directions and also grows and shrinks, all with different cycle times.

Listing 7.4 shows the Circle animation code with three timelines. As the circle grows, 
it appears to move closer to the viewer. As it shrinks, it appears to move away. This 
gives the application a three-dimensional effect.

Figure 7.2 Moving the circle in both directions while growing and shrinking



ptg

Timelines 213

Here, we also use a shorthand notation to define the KeyFrame objects. Since defining 
KeyFrame object literals with target variables is common, JavaFX accepts a shorter 
form using keyword at. This shorthand notation is equivalent to the more verbose 
KeyFrame object literals shown in Listing 7.1 through Listing 7.3.

Listing 7.4 Independent Animations

def circle = Circle { . . . (unchanged) . . . }

// Move the circle in the x direction
Timeline {
    autoReverse: true
    repeatCount: Timeline.INDEFINITE
    keyFrames: [

at (0s) { circle.translateX => 0.0 }
        at (3s) { circle.translateX => 165.0 tween Interpolator.EASEBOTH }
    ]
}.play();

// Move the circle in the y direction
Timeline {
    autoReverse: true
    repeatCount: Timeline.INDEFINITE
    keyFrames: [

at (0s) { circle.translateY => 0.0 }
        at (2s) { circle.translateY => 130.0 tween Interpolator.EASEBOTH }
    ]
}.play();

// Grow and shrink (scale) the circle
Timeline {
    autoReverse: true
    repeatCount: Timeline.INDEFINITE
    keyFrames: [

at (0s) { circle.scaleX => 1 }
        at (0s) { circle.scaleY => 1 }
        at (2.5s) { circle.scaleX => 2 tween Interpolator.EASEBOTH }
        at (2.5s) { circle.scaleY => 2 tween Interpolator.EASEBOTH }
    ]
}.play();

Animation Tip

Use separate timelines when you want to animate target variables independently. Usually ani-
mating objects in two dimensions (both x and y directions) requires two timelines unless both 
dimensions are equal and you want the rate of change to be exactly the same.



ptg

214 Chapter 7 Animation

Animating Groups

You can learn much about how JavaFX shapes behave by grouping nodes together 
and animating the group. This next example does just that. You’ll build on the last 
example and add a rotation to the circle. In order to see the effect, you’ll add a Text 
component to the scene graph and bundle the Circle and Text components together in 
a Group. You want both the Circle and Text components to rotate together. In addi-
tion, you’ll apply a radial gradient to the Circle. As the “group” rotates, both the Cir-
cle and Text spin together. You’ll also maintain the previous animations. In order for 
both the Circle and Text to transform uniformly, you’ll apply all animations to the par-
ent Group node.

Figure 7.3 shows two frames from this example. Note that as the Circle moves, grows, 
and rotates, the Text component is likewise moving, growing and rotating.

Listing 7.5 shows the modified scene graph to implement this animated Group. First, 
the Circle fill property includes a radial gradient so that you can see rotation effects 
on the Circle. Next, we define Group group, which includes both the previously 
defined Circle and a Text object literal.

The Text component is centered within the Circle. Because the Text is part of the same 
enclosing group, it will also move, rotate, and grow with the Circle.

Listing 7.5 Modified Scene Graph for the Animating Group

def circle: Circle = Circle {
    centerX: 40
    centerY: 70

Figure 7.3 Rotating both the Text and Circle requires an enclosing Group node



ptg

Timelines 215

    radius: 25
fill: RadialGradient {

        centerX: 0.25 
        centerY: 0.25 
        radius: 1 // the radius of the gradient
        stops: [
            Stop {

     offset: 0
  color: Color.SEAGREEN

            }
            Stop {

     offset: 1
   color: Color.BLACK

            }
        ]
    }
}

def group: Group = Group {
    content: [
        circle, // defined above
        Text {
            fill: Color.WHITE
            font: Font {

      size: 18
            }
            x: 28
            y: 75
            content: "Hi!"
        }
    ]
}

Listing 7.6 shows the modified timelines. The timelines that control both the x and y 
direction movement now specify variables group.translateX and group.translateY to 
reflect the new animation target. This is the only change required to implement mov-
ing the group instead of the circle. 

The timeline that controls scaling of the Group component manipulates Node proper-
ties group.scaleX and group.scaleY. These variables are 1 (no change from the original 
size) at startup and become 2 (doubling the node’s size in both directions) using 
Interpolator.EASEBOTH. The same timeline animates rotation by manipulating Node 
variable group.rotate, starting at value 0 (no rotation) and becoming 360 (full circle 
rotation).

This timeline plays in reverse automatically and repeats indefinitely. This means the 
Circle first rotates clockwise as the Circle grows, then counter-clockwise as the Circle 
shrinks. (Note that to make the rotation continuously clockwise without reversing, 
you must create a separate timeline for the rotation and set autoReverse to false.)



ptg

216 Chapter 7 Animation

Listing 7.6 Modified Timelines for the Animating Group

// Move the group in the x direction
Timeline {
    autoReverse: true
    repeatCount: Timeline.INDEFINITE
    keyFrames: [
        at (0s) { group.translateX => 0.0 }
        at (3s) { group.translateX => 165.0 tween Interpolator.EASEBOTH }
    ]
}.play();

// Move the group in the y direction
Timeline {
    autoReverse: true
    repeatCount: Timeline.INDEFINITE
    keyFrames: [
        at (0s) { group.translateY => 0.0 }
        at (2s) { group.translateY => 130.0 tween Interpolator.EASEBOTH }
    ]
}.play();

// Modified timeline to both scale and rotate the Group
Timeline {
    autoReverse: true
    repeatCount: Timeline.INDEFINITE
    keyFrames: [

at (0s) { group.scaleX => 1 }
        at (0s) { group.scaleY => 1 }
        at (0s) { group.rotate => 0 }
        at (2.5s) { group.scaleX =>2.0 tween Interpolator.EASEBOTH }
        at (2.5s) { group.scaleY => 2.0 tween Interpolator.EASEBOTH }
        at (2.5s) { group.rotate => 360 tween Interpolator.EASEBOTH }
    ]
}.play();

Animation and Binding

The examples you’ve seen so far include Timelines that animate a single node. You 
can easily construct KeyFrame objects that directly manipulate properties of that node 
such as scaleX or rotate. Let’s now build a timeline that simultaneously animates 
multiple nodes. To do this, you construct script-level variables that become the target 
for KeyFrame animations and bind their node properties to these script-level vari-
ables.

For this example, you’ll animate two circles. The first circle (circle1) changes its fill 
color to several target colors defined in separate KeyFrame objects. The second circle 
(circle2) changes its stroke color using the same timeline. Both circles fade out as the 



ptg

Timelines 217

final KeyFrame manipulation. Figure 7.4 shows two frames in this animation 
sequence.

Listing 7.7 shows the script-level target variables (circleColor, circleOpacity) con-
trolled by the timeline and the circles with properties that bind to these target vari-
ables. Circle circle1 binds property fill to circleColor and opacity to circleOpacity.
Circle circle2 binds property stroke to circleColor and opacity to circleOpacity.

Listing 7.7 Binding node properties to script-level variables

var circleColor: Color = Color.YELLOW;
var circleOpacity = 1.0;

def circle1: Circle = Circle {
    centerX: 120
    centerY: 90
    radius: 50

fill: bind circleColor
    opacity: bind circleOpacity
}

def circle2: Circle = Circle {
    centerX: 220
    centerY: 90
    radius: 35

stroke: bind circleColor
    strokeWidth: 10
    fill: Color.WHITE

opacity: bind circleOpacity
}

. . .
scene: Scene {

content: [ Text { . . . }, circle1, circle2 ]

Figure 7.4 Binding variables lets you easily animate multiple objects

circle1 circle2 circle1 circle2



ptg

218 Chapter 7 Animation

    }
. . .

Listing 7.8 shows the timeline that manipulates the Circle nodes. This timeline uses 
the shorthand notation to specify target variables. Variable circleColor starts at 
Color.Yellow, becomes Color.ORANGE at four seconds, Color.RED at eight seconds, and 
finishes at Color.BLACK at ten seconds. Variable circleOpacity starts out at 1.0 and 
diminishes to 0.0 between time slices (10s) and (14s).

Note that this timeline includes multiple KeyFrame objects (not just two). Without the 
intermediary KeyFrames, variable circleColor would transform from Color.YELLOW to 
Color.BLACK, resulting in a completely different color transformation for the Circle 
nodes.

This timeline is different than the previous examples because it manipulates script-
level variables instead of node properties directly. With this approach, you apply ani-
mation to objects by binding their properties to the script-level variables.

Listing 7.8 Timeline that targets script-level variables

Timeline {
    autoReverse: true
    repeatCount: Timeline.INDEFINITE
    keyFrames: [
        at (0s) { circleColor => Color.YELLOW tween Interpolator.EASEBOTH }
        at (4s) { circleColor => Color.ORANGE tween Interpolator.EASEBOTH }
        at (8s) { circleColor => Color.RED tween Interpolator.EASEBOTH }
        at (10s) { circleOpacity => 1.0 }
        at (10s) { circleColor => Color.BLACK tween Interpolator.EASEBOTH }
        at (14s) { circleOpacity => 0.0 tween Interpolator.EASEBOTH }
    ]
}.play();

7.2  Timeline Actions

The previous animation examples all involve manipulating scene graph node proper-
ties (directly or with binding) to achieve change. You can also use timelines to execute 
code with the Timeline action property.

Using action with a Digital Clock Display

This example creates a timeline that calls a function every second. The function in 
turn uses the JavaFX DateTime class (new with JavaFX 1.2) to update a script-level 
String variable. The Text component’s content property is bound to the String vari-



ptg

Timeline Actions 219

able, updating a digital clock display every second. Timeline.INDEFINITE for the Time-
line’s repeatCount property keeps the clock running indefinitely. Figure 7.5 shows the 
digital clock running. 

Listing 7.9 shows the timeline and function updateTime. The function you specify with 
property action must return Void and have no arguments. You can either name the 
function (as shown in Listing 7.9) or specify an anonymous function as follows.

action: function() {
// statements here

}

Function updateTime instantiates a DateTime object (variable temp). DateTime prop-
erty instant holds the time at which it was created. A call to java.text.DateFormat
formats the time as hh:mm:ss AM/PM (DateFormat.MEDIUM). DateFormat returns the for-
matted String, which is stored in script-level variable dTime.

This timeline needs only one KeyFrame object with time set to 1s and property action
set to the function name updateTime. The canSkip property (set to true) permits the 
runtime to skip a call to the action function (updateTime) if the master timer gets 
behind. In this case, only one call to updateTime is made for each time pulse, regardless 
of how many cycles have occurred since the last time pulse was processed.

The Text object content property binds to variable dTime to dynamically update the 
digital clock display.

Listing 7.9 Digital Clock Timeline

var dTime: String;

function updateTime(): Void {
    var temp = DateTime { }
    dTime = DateFormat.getTimeInstance(DateFormat.MEDIUM).format(temp.instant);
}

Timeline {
    repeatCount: Timeline.INDEFINITE
    keyFrames: [
        KeyFrame {

Figure 7.5 Timelines providing periodic updates



ptg

220 Chapter 7 Animation

            time: 1s
            canSkip: true

 action: updateTime
        }
    ]
}.play();
. . .

Text {
font: Font {

size: 24
}
x: 40
y: 40
content: bind dTime

}
. . .

Using action with a Progress Bar

Another common use for periodic updates is a progress bar.1 Progress bars provide a 
visual display reflecting the progress of a running task. This example includes a 
progress bar that is hidden at startup (property opacity is 0), as shown in scenario 1 of 
Figure 7.6. To begin, the user clicks the rectangle area. The progress bar fades in and 
the timeline starts (scenario 2). The user can toggle the timeline status to pause and 
resume progress bar updates (scenario 3). Finally, when the progress bar reaches 
100% completion, the timeline stops and the progress bar fades out (scenario 4). In 
reality, you would tie a progress bar to some lengthy task; here, progress is simply 
tied to an incrementing counter variable.

1. JavaFX includes two different progress bar components (see Listing 5.1 on page 132 for an 
example using both components). It is nevertheless instructive to see how these might be 
implemented.



ptg

Timeline Actions 221

Listing 7.10 shows the ProgressBar custom node. The progress bar consists of two 
overlaying rectangles: a red indicator rectangle (progressIndicator), which reflects 
progress as its width increases (or decreases on “backward” progress), and a gray 
foundation rectangle (progressFoundation), which is slightly larger than the red indi-
cator rectangle. The indicator’s width is bound to public class variable progress which 
can be changed by code outside of the class. As the progress variable changes, the 
indicator bar takes on a new width (a percentage of the width of the foundation bar).

Listing 7.10 Progress Bar

public class ProgressBar extends CustomNode {

    public var progress: Number = 0.0; // updated externally
    public-init var width = 150.0;

    var progressFoundation: Rectangle = Rectangle {
        width: width
        height: 8
        fill: Color.GRAY
        stroke: Color.BLACK
        arcWidth: 5
        arcHeight: 5
    }

Figure 7.6 Progress Bar reflects periodic updating

(1) At startup: Progress Bar is hidden (2) Starting: Progress Bar is updating

(3) Resumed: Progress Bar is updating (4) At completion: Progress Bar is fading
again after a pause



ptg

222 Chapter 7 Animation

    var progressIndicator: Rectangle = Rectangle {
        y: 2
        height: 4
        arcWidth: 5
        arcHeight: 5
        width: bind ((width * progress) / 100.0) // changes with progress
        fill: Color.CRIMSON
    }

    override function create(): Node {
        return Group { content: [ progressFoundation, progressIndicator ] }
    }
}

Listing 7.11 shows the scene graph for the main program. A Rectangle node handles 
mouse click events by calling function toggleProgress (which starts and stops the 
progress bar timeline). The Text node content property is bound to String variable 
status and variable progressbar is the ProgressBar custom node.

Listing 7.11 Progress Bar Scene Graph

var clicker = 0; // arbitrary variable used to control progress
var status = "Progress Bar: Click Me to Start";
// Instantiate a ProgressBar custom node
var progressBar = ProgressBar {
    opacity: 0
    width: 200
};

// ‘Progress’ means variable clicker increments
function getProgress() {
    return clicker++;
}
. . .
Scene {
. . .

content: [
Rectangle {

width: 200
height: 30
fill: Color.BISQUE
stroke: Color.DARKSLATEGRAY
cursor: Cursor.HAND
onMouseClicked: toggleProgress // See Listing 7.12

}
Text {

font: Font {
size: 12

}



ptg

Timeline Actions 223

x: 5
y: 20
content: bind status

}
progressBar

]
. . .

Listing 7.12 consists of two timelines and an event handler that controls them. Time-
line progressTimeline is the main timeline for this program. The progress timeline has 
one KeyFrame with property time set to 100ms (100 milliseconds). Property action
consists of an anonymous function and property repeatCount is set to Timeline.INDEF-
INITE. This means that every 100 milliseconds the function in property action exe-
cutes.

First, the function updates the progress bar’s progress property. If its value is 100 (100 
percent progress), the timeline stops itself and variable clicker is reset to zero. The 
progress bar fades by calling Timeline opacityTimeline.playFromStart. Timeline 
opacityTimeline changes the progress bar’s opacity to 0, causing it to gradually disap-
pear.

JavaFX Tip

It’s perfectly legal for a timeline to “stop” itself (or pause, play, or playFromStart). However, 
JavaFX requires an explicit Timeline type along with the object literal, as shown here and in 
Listing 7.12.

var progressTimeline: Timeline = Timeline { // object literal
if (progressBar.progress == 100.0) {

progressTimeline.stop();
. . .

}
 . . .
};

Function toggleProgress is the event handler for the Rectangle node’s mouse click. 
This function pauses and resumes the progress bar timeline (with Timeline functions 
pause and play) and updates String variable status. If the progress bar timeline is 
stopped (either because it hasn’t run yet or it has completed), then function tog-
gleProgress starts it up. 



ptg

224 Chapter 7 Animation

Timeline Tip

To see if a timeline is playing, you must check to make sure running is true and paused is false, 
as follows.

var t1: Timeline = Timeline {
. . .

};
. . .
if (t1.running and not t1.paused) {

// Timeline t1 is running and not paused
}

Listing 7.12 Progress Bar Timelines and Controls

// Check status every 100 milliseconds
var progressTimeline: Timeline = Timeline {
    repeatCount: Timeline.INDEFINITE
    keyFrames: [
        KeyFrame {
            time: 100ms
            action: function(): Void {

// update progress variable and stop if progress is 100
                progressBar.progress = getProgress();

// stop this timeline, update status display,
// and fade out the progress bar

                if (progressBar.progress == 100.0) {
    progressTimeline.stop();

  status = "completed (stopped)";
       clicker = 0;

    opacityTimeline.rate = 1;
  opacityTimeline.playFromStart();

                }
            }
        }
    ]
};

// fade in or fade out progress bar
var opacityTimeline: Timeline = Timeline {
    keyFrames: [
        KeyFrame {
            time: 0s
            values: progressBar.opacity => 1.0
        }
        KeyFrame {
            time: 1s
            values: progressBar.opacity => 0.0 tween Interpolator.EASEBOTH
        }
    ]



ptg

Transitions 225

};

// pause the progress time line if it’s running
// resume play if it’s paused
// start it up if it’s stopped (not running)
function toggleProgress (e: MouseEvent): Void {
    if (progressTimeline.running and not progressTimeline.paused) {
        progressTimeline.pause();
        status = "paused . . .";
    }
    else if (progressTimeline.paused) {
        progressTimeline.play();
        status = "resumed . . .";
    }
    else if (not progressTimeline.running) {
        opacityTimeline.rate = -1; // toggle the direction of the timeline
        opacityTimeline.play();
        clicker = 0;
        progressTimeline.playFromStart();
        status = "start . . .";
    }
}

7.3  Transitions

JavaFX transitions are specialized timelines that simplify common animations of 
graphical objects. JavaFX transitions include animations for movement, scaling, rotat-
ing, and fading. Transitions for movement include TranslateTransition (a transition to 
move an object in the x-direction, y-direction, or both) and PathAnimation (a transi-
tion to animate an object along a path). 

Transitions operate on nodes, which can be simple graphical objects, or compound 
nodes such as Groups. Transition properties include node (the target graphical object), 
duration (the length of the transition), interpolator (the transition’s interpolator), 
repeatCount, and autoReverse as well as functions and properties you’ve already seen 
with timelines. 

Table 7.5 lists the JavaFX simple transitions.



ptg

226 Chapter 7 Animation

Table 7.6 lists the JavaFX compound transitions. Compound transitions include prop-
erty content, a sequence of sub-transitions.

Transition Basics—Simple Movement

The example we presented earlier in this chapter (see Figure 7.1 on page 208 and 
Listing 7.2 on page 210 for the code) depicts a Circle moving back and forth across the 
scene. Let’s redo this example now using a TranslateTransition instead of a Timeline.

TABLE 7.5  JavaFX Simple Transitions

Transition Description
TranslateTransition Creates a move/translate animation that spans its duration

by updating the translateX and translateY properties of 
node.

ScaleTransition Creates a scale animation that spans its duration by updat-
ing the scaleX and scaleY properties of node.

RotateTransition Creates a rotation animation that spans its duration by 
updating the rotate property of node. The rotation angle is 
specified in degrees. 

FadeTransition Creates a fade effect animation that spans its duration by 
updating the opacity property of node.

PathTransition Creates a path animation that spans its duration by updat-
ing the translateX and translateY properties of node. It 
updates the node’s rotate property if orientation  is set to 
OrientationType.ORTHOGONAL_TO_TANGENT.

PauseTransition Executes an action at the end of its duration. 

TABLE 7.6  JavaFX Compound Transitions

Compound Transition Description
ParallelTransition Builds a composite transition that includes all transitions 

(sub-transitions) in its content property and starts them in 
parallel. Sub-transitions inherit node if their node property is 
not specified. Properties duration, repeatCount, and 
autoReverse variables have no effect on ParallelTransition. 

SequentialTransition Builds a composite transition that includes all transitions 
(sub-transitions) in its content property and starts them 
sequentially. Sub-transitions inherit node if their node prop-
erty is not specified. Properties duration, repeatCount, and 
autoReverse variables have no effect on Sequential-
Transition.



ptg

Transitions 227

To use a Transition (see Listing 7.13), you specify the node (here, variable circle), a 
duration, and optionally, repeatCount, autoReverse, and interpolator. (The default 
interpolator for Transition is Interpolator.EASEBOTH.)

For a TranslateTransition you specify fromX and toX (to move in the x-direction) and 
fromY and toY (to move in the y-direction). You do not need to specify properties 
translateX or translateY in the target node; the transition automatically updates 
these properties for you.

Listing 7.13 TranslateTransition—Simple Movement

def circle: Circle = Circle {
    centerX: 40
    centerY: 70
    radius: 25
    fill: Color.SEAGREEN
};

TranslateTransition {
    node: circle
    duration: 3s
    fromX: 0
    toX: 165.0
    repeatCount: Timeline.INDEFINITE
    autoReverse: true
}.play(); // Use play, playFromStart, pause, stop just like Timelines

. . .
Scene {

content: circle
. . .
}

Animation Tip

Transitions are often easier to use than timelines. As you see in this example, you don’t have to 
bind variables, specify node properties (such as translateX), or define KeyFrame objects.

ScaleTransition

Let’s use a scale transition now to grow and shrink the circle. ScaleTransition grows or 
shrinks its named node by the multiplier specified in byX (x-direction growth) and byY
(y-direction growth). For multiplier 1, the node is unchanged from its original size, 
multiplier 2 doubles the size of the node, and so forth. ScaleTransition manipulates 
the scaleX and scaleY properties of the named node. 



ptg

228 Chapter 7 Animation

The program in Listing 7.14 moves the circle back and forth across the scene and 
grows and shrinks the circle at the same time. It mimics the behavior shown in 
Listing 7.3 on page 211 using transitions for the animation instead of timelines.

Listing 7.14 ScaleTransition and TranslateTransition

def circle: Circle = Circle {
    centerX: 40
    centerY: 70
    radius: 25
    fill: Color.SEAGREEN
};

// manipulates node property translateX
TranslateTransition {
    node: circle
    duration: 3s
    fromX: 0
    toX: 165.0
    repeatCount: Timeline.INDEFINITE
    autoReverse: true
}.play(); // Use play, playFromStart, pause, stop just like Timelines

// manipulates node property scaleX and scaleY
ScaleTransition {

node: circle
duration: 3s
byX: 2
byY: 2
repeatCount: Timeline.INDEFINITE
autoReverse: true

}.play();

. . .
Scene {

content: circle
. . .
}

Rotate and Fade Transitions

Let’s add two more transitions to the program, and at the same time create a Group 
component with the Circle and Text node to better show rotation (similar to the exam-
ple in Listing 7.5 on page 214 and Listing 7.6 on page 216). In this example, we’ll also 
add a Fade transition.

RotateTransition rotates a node. You specify byAngle, with 0 (degrees) being 
unchanged from the original orientation, 90 is a quarter turn, and 360 a full rotation.



ptg

Transitions 229

FadeTransition manipulates the node’s opacity property, with 1 being fully opaque 
and 0 being fully translucent. 

Figure 7.7 shows this program running. Here, the circle on the left shows the starting 
position. The circle on the right is not quite fully opaque, rotated about 45 degrees, 
moved from its original location, and larger than its original size.

Listing 7.15 shows the code to define these four transitions.

Listing 7.15 Transitions to Scale, Rotate, Fade, and Translate

ScaleTransition {
    node: group
    duration: 3s
    byX: 2
    byY: 2
    repeatCount: Timeline.INDEFINITE
    autoReverse: true
}.play();

RotateTransition {
    node: group
    duration: 2.5s
    byAngle: 360
    repeatCount: Timeline.INDEFINITE
    autoReverse: true
}.play();

FadeTransition {
    node: group
    duration: 6s
    fromValue: 1

Figure 7.7 Four simultaneous transitions effect the Circle and Text group

Starting Position During Transition 



ptg

230 Chapter 7 Animation

    toValue: .3
    repeatCount: Timeline.INDEFINITE
    autoReverse: true
}.play();

TranslateTransition {
    node: group
    duration: 1.5s
    fromX: 0
    toX: 165.0
    fromY: 0
    toY: 130.0
    repeatCount: Timeline.INDEFINITE
    autoReverse: true
}.play();

Listing 7.16 shows the Circle object and the Group node, which contains the Circle 
and Text objects.

Listing 7.16 Circle, Text, and Group

def circle: Circle = Circle {
    centerX: 40
    centerY: 70
    radius: 25
    fill: RadialGradient {
        centerX: 0.25 
        centerY: 0.25 
        radius: 1 
        stops: [
            Stop {

     offset: 0
  color: Color.SEAGREEN

            }
            Stop {

     offset: 1
   color: Color.BLACK

            }
        ]
    }
};

def group: Group = Group {
    content: [
        circle,
        Text {
            fill: Color.WHITE
            font: Font {

      size: 18
            }
            x: 28



ptg

Transitions 231

            y: 75
            content: "Hi!"
        }
    ]
}
. . .
Scene {

content: group
. . .
}

Compound Transitions

You can combine transitions and have them execute (“play”) in parallel or sequen-
tially. In Listing 7.15 you see four transitions created and invoked one after the other 
in the script. This provides parallel execution by default. However, coding becomes 
clearer if you group such transitions together into a ParallelTransition, specifying 
simultaneous execution. Using ParallelTransition becomes especially convenient 
when manipulating transitions from an event handler, for example.

Figure 7.8 shows a program that pauses and restarts the animation when you click the 
text title. The event handler code simply pauses and plays the ParallelTransition, 
without having to individually manipulate the sub-transitions.

JavaFX provides both ParallelTransition and SequentialTransition. These transitions 
are essentially the same, except that their sub-transitions are executed either in paral-
lel (with ParallelTransition) or sequentially (with SequentialTransition). These com-
pound transitions consist of a node (the target of the transitions) and property content

Figure 7.8 Compound transitions make coding easier with multiple transitions

Text component with
onMouseClicked event handler



ptg

232 Chapter 7 Animation

(a sequence of sub-transitions). If the sub-transitions do not specify a node, they 
manipulate the target node specified in the parent transition.

Properties duration, repeatCount, and autoReverse have no effect on ParallelTransition 
and SequentialTransition. You specify these properties in sub-transitions.

Listing 7.17 shows the code for ParallelTransition par, which contains four sub-transi-
tions. These are the same transitions used in the previous example. 

Listing 7.17 ParallelTransition

var par = ParallelTransition {
    node: group
    content: [
        ScaleTransition {
            duration: 3s
            byX: 2
            byY: 2
            repeatCount: Timeline.INDEFINITE

 autoReverse: true
        }

        RotateTransition {
            duration: 2.5s
            byAngle: 360
            repeatCount: Timeline.INDEFINITE

 autoReverse: true
        }

        FadeTransition {
            duration: 6s
            fromValue: 1
            toValue: .3
            repeatCount: Timeline.INDEFINITE

 autoReverse: true
        }

        TranslateTransition {
            duration: 1.5s
            fromX: 0
            toX: 165.0
            fromY: 0
            toY: 130.0
            repeatCount: Timeline.INDEFINITE

 autoReverse: true
        }
    ]
}
par.play();



ptg

Path Animation 233

Listing 7.18 shows the onMouseClicked event handler for the Text component (as 
shown in Figure 7.8 on page 231). Note how simple the mouse click event handler is, 
since you only need to manipulate the parent ParallelTransition par.

Listing 7.18 Scene Graph and Mouse Event Handler

. . .
Scene {

content: [
            Text {

   cursor: Cursor.HAND
onMouseClicked: function(e: MouseEvent): Void {
     if (par.paused) {
         par.play();

                    }
        else {

         par.pause();
                    }
                }

    font: Font {
        size: 16

                }
                x: 10
                y: 30

 content: "Transition Circle"
            }
            group 

]
}

7.4  Path Animation

Path animation lets you move shapes along pre-defined paths. A path is a sequence of 
path elements, where each path element can be any one of several geometric objects, 
such as line to, arc to, quadratic curve to, and cubic curve to. Once you define a path, 
you can animate a node along the path using a PathTransition.

Creating a Path

Let’s build a path animation example with a Rectangle as the target node and a simple 
oval-shaped path. The first step is to construct a path.

Figure 7.9 shows an example path. You always begin a Path with PathElement 
MoveTo. This is the required starting point, here point (30,120). To create the oval 
shape, the first PathElement shape is ArcTo, which draws an arc-shaped line to point 
(300,120). Next, the Path includes PathElement LineTo, which draws a line to point 



ptg

234 Chapter 7 Animation

(300,170). A second ArcTo draws another arc segment to point (30,170). Finally, the 
path is closed with PathElement ClosePath, which draws a line from the current loca-
tion to the starting point. (You could use a LineTo here instead of ClosePath to com-
plete the path.)

Path as Shape

You can also use Path to create custom shapes when you want something other than the stan-
dard JavaFX Shapes: Arc, Circle, CubicCurve, Ellipse, Line, Polygon, Polyline, QuadCurve, 
Rectangle, ShapeIntersection, ShapeSubtraction, and SVGPath. (See “Shapes” on page 103.)

Listing 7.19 is the code that builds the path shown in Figure 7.9. Since Path is a Shape, 
you can specify values for Shape properties such as strokeWidth, stroke, and fill. To 
build a Path, you provide multiple PathElements in property elements. PathElement 
MoveTo is always the first PathElement. Each succeeding PathElement starts at the 
current location, continuing the path according to the rules of its shape. The ArcTo 
sweepFlag property is set to true so that when the arc is drawn clockwise, the curve is 
correct for the oval shape. If sweepFlag is false, the orientation of the curve is oppo-
site, and the shape is no longer an oval. 

Listing 7.19 Path Example

def path: Path = Path {
    strokeWidth: 5
    stroke: Color.DARKSLATEGRAY
    fill: Color.AQUAMARINE

Figure 7.9 A Path connects PathElements

MoveTo (30,120)
(required starting point)

ArcTo (300,120)

LineTo (300,170)
ArcTo (30,170)

ClosePath



ptg

Path Animation 235

    elements: [
        MoveTo { // required starting point
            x: 30
            y: 120
        }
        ArcTo {
            x: 300
            y: 120
            radiusX: 100
            radiusY: 50
            sweepFlag: true
        }
        LineTo {
            x: 300
            y: 170
        }
        ArcTo {
            x: 30
            y: 170
            radiusX: 100
            radiusY: 50
            sweepFlag: true
        }
        ClosePath { // finish with a line to the starting point
        }
    ]
}
. . . 
scene: Scene {

. . . 
content: path

}
. . .

PathTransition

Once you have constructed a path, the hard part of path animation is done. Transition 
PathTransition lets you animate a node along your path. You can use a Path that 
you’ve already built, or you can provide PathElements when you construct the Path-
Transition.

Figure 7.10 shows path animation with a “car” rectangular-shaped node and the Path 
constructed in the previous example. Increasing the Path property strokeWidth to 15 
emphasizes the oval animation path.

Note that as the rectangle shape travels along the path, its orientation changes as the 
path goes from vertical to horizontal. PathTransition property orientation set to Ori-
entationType.ORTHOGONAL_TO_TANGENT keeps the shape’s orientation relative to the 
path.



ptg

236 Chapter 7 Animation

Listing 7.20 is the code that implements the PathTransition in Figure 7.10. The 
PathElements are unchanged; only property strokeWidth is increased.

Shape rectangle is wider than it is high so that when its orientation is changed, it has 
the correct look of a “car” (well, sort of).

The PathTransition is similar to other transitions you’ve seen with properties node,
interpolator, duration, and repeatCount. PathTransition takes an AnimationPath 
object (constructed from a Path object) using function createFromPath. You can alter-
natively provide an SVGPath object instead of Path or use helper function createFrom-
Shape with a Shape object. 

This PathTransition specifies Interpolator.LINEAR for property interpolator. Other-
wise, the “car” would slow down at the beginning and end of each transition cycle.

Note that node rectangle is added to the scene graph after node path, so that the rect-
angle appears on top of the path.

Listing 7.20 PathTransition Example

def path: Path = Path {
strokeWidth: 15

    stroke: Color.DARKSLATEGRAY
    fill: Color.AQUAMARINE
    elements: [ . . . unchanged . . . ]
}

Figure 7.10 Animating a shape along a path



ptg

Chutes and Ladders 237

def rectangle: Rectangle = Rectangle {
x: 30
y: 120
width: 35
height: 20
arcWidth: 10
arcHeight: 10
fill: Color.YELLOW
stroke: Color.BLACK

}

PathTransition {
    node: rectangle
    path: AnimationPath.createFromPath(path)
    orientation: OrientationType.ORTHOGONAL_TO_TANGENT
    interpolator: Interpolator.LINEAR
    duration: 6s
    repeatCount: Timeline.INDEFINITE
}.play();

scene: Scene {
. . . 
content: [ path, rectangle ]

}
. . .

7.5  Chutes and Ladders

In this final section, we’ll put several animation concepts to work to create a JavaFX 
widget that animates a set of “path balls” along a three-part path consisting of a chute, 
the ground, and a ladder. The user animates one or more of the path balls by clicking 
buttons (labeled and color-coded to match the target ball). Figure 7.11 shows the wid-
get in its startup configuration with four path balls lined up along the top. The second 
frame shows the widget after all the path balls are moving at various spots along the 
path. Each path ball has a slightly different path that it follows, since a path ball jour-
ney begins at its own starting point and returns to the same location.

The path for each path ball begins at a specific location along the top line (its origin) 
and proceeds to the top of the chute. The chute consists of three consecutive Cubic-
CurveTo lines strung together. The ground is simply a straight line and the ladder 
strings together consecutive lines at 90-degree angles. The final line stops at each path 
ball’s origin. You’ll see that when a path ball is initialized, it takes on a unique set of 
path elements that define its path. These path elements build the individual PathTran-
sition objects that animate each ball.



ptg

238 Chapter 7 Animation

Class PathBall (PathBall.fx)

Figure 7.12 is a class diagram for class PathBall. Class PathBall extends CustomNode 
and implements the behavior to animate the path ball with function play. The encap-
sulated behavior includes three PathTransitions (for each portion of the path) and a 
SequentialTransition to animate the path ball throughout the complete path.

Figure 7.11 JavaFX application Chutes and Ladders



ptg

Chutes and Ladders 239

Listing 7.21 through Listing 7.23 is the code that implements class PathBall. 
Listing 7.21 shows the class-level variables for PathBall. Each path ball has its own 
color (ballColor), an x-direction origin (centerX), and three sequences of PathEle-
ments (chute, ground, and ladder).

The ball itself is a Circle. Its radius, centerY, and effect properties have standard set-
tings. Property fill is a radial gradient using the class-level variable ballColor with 
Color.BLACK.

Listing 7.21 PathBall

public class PathBall extends CustomNode {
    public-init var ballColor: Color;
    public-init var centerX: Number;
    public-init var chute: PathElement[];
    public-init var ground: PathElement[];
    public-init var ladder: PathElement[];

    def theBall = Circle {
        translateX: centerX
        radius: 15
        effect: DropShadow {
            offsetX: 4
            offsetY: 4
            spread: 0

 color: Color.BLACK

PathBall

CustomNode

Figure 7.12 Chutes and Ladders PathBall class

Extensible JavaFX 
scene graph node

Encapsulates
behavior for
path balls

PathTransitions
SequentialTransition
Ball (Circle)

includes:



ptg

240 Chapter 7 Animation

        }

        fill: RadialGradient {
            centerX: 0.25
            centerY: 0.25
            radius: 1 
            stops: [
                Stop {

       offset: 0
     color: ballColor

                }
                Stop {

       offset: 1
     color: Color.BLACK

                }
            ]
        }
    }

Listing 7.22 includes the transitions defined for each path ball, constructed using the 
class-level PathElement sequences (chute, ground, and ladder). The PathTransition for 
the chute (animChute) and the ladder (animLadder) have adjustments depending on 
class-level variable centerX. This makes the path ball starting and ending locations 
unique.

Note that, although the duration properties will be consistent for each path ball cre-
ated, the paths themselves will be slightly unequal because of the different starting 
locations of each path ball. Thus, if you start Ball 4 and then immediately start Ball 1, 
you’ll see Ball 1 overtake Ball 4 on the last portion (the ladder) of the path because Ball 
1 has further to go within the same time frame.

Also, note that each PathTransition has its own value for property duration. Thus, the 
speed for travel in the chute is faster than the speed for the ground or the ladder (the 
ladder has the slowest speed, taking a full 12 seconds to climb).

Finally, the three PathTransitions are combined into a compound SequentialTransition 
(ballSeqTransition). This connects the three PathTransitions together into a single 
path animation with different speeds for the different segments.

Listing 7.22 PathBall Transitions

    def animChute = PathTransition {
        node: theBall
        path: AnimationPath.createFromPath(Path { elements: [

     MoveTo {
       x: centerX

        y: 0
                }



ptg

Chutes and Ladders 241

     LineTo {
        x: 0
        y: 0

                }
            chute]
        })
        interpolator: Interpolator.LINEAR
        duration: 2.5s
    };
    def animGround = PathTransition {
        node: theBall
        path: AnimationPath.createFromPath(Path { elements: ground })
        interpolator: Interpolator.LINEAR
        duration: 3s
    };
    def animLadder = PathTransition {
        node: theBall
        path: AnimationPath.createFromPath(Path { elements: [

      ladder,
     LineTo {

       x: centerX
        y: 0

            } ]
        })
        interpolator: Interpolator.EASEOUT
        duration: 12s
    };

    def ballSeqTransition = SequentialTransition {
        node: theBall
        content: [ animChute, animGround, animLadder ]
    }

Listing 7.23 implements functions play and create for class PathBall. Function play
starts the path ball’s SequentialTransition from the start. Function create is the over-
ridden CustomNode function so a PathBall object can be inserted into the scene 
graph. Group theGroup holds the path ball Circle object. (You could alternatively 
return the Circle object (theBall) here, but in a subsequent version we add a second 
object to the class scene graph, requiring a Group for the returned Node. See 
Listing 10.11 on page 335.)

Listing 7.23 PathBall Behavior

    public function play(): Void {
        ballSeqTransition.playFromStart();
    }

    def theGroup = Group {
        content: [ theBall ]
    };



ptg

242 Chapter 7 Animation

    protected override function create(): Node {
        return theGroup;
    }
}

Main Program (Main.fx)

Listing 7.24 through Listing 7.27 is the code for Main.fx. The main program builds the 
sequence of PathElements to implement the visible Path objects. (It also supplies these 
PathElements to each PathBall object literal.) In addition to the Path and PathBall 
objects, the scene graph includes a Text component and four JavaFX Button compo-
nents to control the animation. 

Listing 7.24 includes the PathElements for sequences chute, ground, and ladder. Note 
that each sequence begins with required path element MoveTo.

Listing 7.24 Main PathElements

// PathElements for the chute
def chute = [
    MoveTo {
        x: 0
        y: 0
    },
    CubicCurveTo {
        controlX1: -100
        controlY1: 30
        controlX2: 100
        controlY2: 50
        x: 0
        y: 100
    }
    CubicCurveTo {
        controlX1: -100
        controlY1: 130
        controlX2: 100
        controlY2: 150
        x: 0
        y: 200
    }
    CubicCurveTo {
        controlX1: -100
        controlY1: 230
        controlX2: 100
        controlY2: 250
        x: 0
        y: 300
    }



ptg

Chutes and Ladders 243

];

// PathElements for the ground
def ground = [
    MoveTo {
        x: 0
        y: 300
    }
    LineTo {
        x: 150
        y: 300
    }
];

// PathElements for the ladder
def ladder = [
    MoveTo {
        x: 150
        y: 300
    }
    LineTo {
        x: 200
        y: 250
    }
    LineTo {
        x: 150
        y: 200
    }
    LineTo {
        x: 200
        y: 150
    }
    LineTo {
        x: 150
        y: 100
    }
    LineTo {
        x: 200
        y: 50
    }
    LineTo {
        x: 150
        y: 0
    }
];

Listing 7.25 contains the code to create the four Path objects (chute, ground, ladder, 
and a “pole” that appears down the center of the chute). Note that a Path is a type of 
Shape, and as such, can be inserted into the scene graph like any other shape. (In con-



ptg

244 Chapter 7 Animation

trast, a sequence of PathElements is a collection of points and geometry rules and can-
not be inserted into a scene graph.)

Listing 7.25 Create Path Objects

def chutePath = Path {
    fill: Color.YELLOW
    stroke: Color.DARKSLATEGRAY
    strokeWidth: 2
    elements: chute
};

def ladderPath = Path {
    stroke: Color.DARKSLATEGRAY
    strokeWidth: 2
    elements: [ladder,
        LineTo {
            x: 0
            y: 0
        }]
};

def chutePole = Path {
    stroke: Color.GRAY
    strokeWidth: 2
    elements: [
        MoveTo {
            x: 00
            y: 0
        }
        LineTo {
            x: 00
            y: 300
        }
    ]
};

def groundPath = Path {
    stroke: Color.DARKOLIVEGREEN
    strokeWidth: 10
    elements: ground
};

Listing 7.26 contains the script-level variables that define and create the four path 
balls. Note that as each path ball is created, PathBall properties chute, ground, and lad-
der are set to the PathElement sequences built in Listing 7.24.



ptg

Chutes and Ladders 245

Listing 7.26 Script-level Variables to Create the PathBalls

def numberBalls = 4;
def ballColors = [ Color.CRIMSON, Color.CHARTREUSE,

Color.DODGERBLUE, Color.ORANGE ];

def theBalls = for (i in [0..<numberBalls])
    PathBall {
        centerX: i * 40
        ballColor: ballColors[i]
        chute: chute
        ground: ground
        ladder: ladder
    }

Figure 7.13 shows the Chutes and Ladders Scene Graph. A VBox layout component 
positions the Text component and the JavaFX Button components above the Path 
objects. The Button components appear in their own HBox layout component. The 
Path nodes and four PathBall nodes appear in their own Group. The PathBall nodes 
are added last, so they are displayed on top of the Path objects.

Figure 7.13 Chutes and Ladders nested Scene Graph

Scene

VBox

Text

HBox

Group

Path

Buttons

(title)

Path Path Path

PathBalls (sequence)



ptg

246 Chapter 7 Animation

Finally, Listing 7.27 contains the Chutes and Ladders Scene Graph. 

Listing 7.27 Chutes and Ladders Scene Graph

Stage {
    title: "Chutes and Ladders"
    scene: Scene {
        width: 320
        height: 480
        fill: LinearGradient {
            startX: 1
            startY: 0
            endX: 1
            endY: 1
            stops: [
                Stop {

       offset: 0,
    color: Color.LIGHTGRAY

                },
                Stop {

       offset: 1,
   color: Color.LIGHTSTEELBLUE

                }
            ]
        }
        content: [
            VBox {

     layoutY: 20
     layoutX: 30
     spacing: 20

  content: [
        Text {

        font: Font {
            size: 20

           }
     content: "Chutes and Ladders"

                    }
        HBox {

         spacing: 10
         content: [
             for (i in [0 .. <numberBalls])

             Button {
     effect: DropShadow {
         offsetX: 3
         offsetY: 3

          spread: 0
      color: ballColors[

    i mod (sizeof ballColors)]
                 }

      text: "Ball {i+1}"
     action: function() {

       theBalls[i].play();



ptg

Chutes and Ladders 247

                 }
               }

           ]
                    }

        Group {
        translateX: -60
        translateY: 20
         content: [

           groundPath, chutePole, chutePath, ladderPath,
            theBalls

           ]
                    }
                ]
            }
        ]
    }
}



ptg

This page intentionally left blank 

From the Library of sam kaplan



ptg

249

8 Working with Images

There’s no substitute for an evocative picture. Images enhance web sites, widgets, and 
applications. So, it follows that applications that manipulate images give you great 
choices for creating that killer widget or web application.

In this chapter you’ll learn how to use images in your JavaFX applications. JavaFX 
provides flexibility for loading and scaling images, as well as choices in how to dis-
play images using the ImageView component. The ImageView component is a node, 
and as such, you can provide transformations, animations, and effects to enhance 
both the image and your application.

What You Will Learn

• All about Image and ImageView components

• Options for loading images

• Scaling an image during loading

• Scaling an image for display options

• Applying transformations, animations, and effects

• Photo layout examples

• Implementing a mouse dragging application

• Designing a modular application to handle image loading efficiently

• Implementing a “3D-like” animated photo carousel application

8.1  Using Image

JavaFX provides two main classes for manipulating images: class Image lets you 
define an image from a URL and class ImageView lets you display an Image object. 
Because ImageView is a JavaFX node, you can apply any of the scene graph manipula-
tions such as animation, scaling, effects, and opacity changes to ImageView nodes. 



ptg

250 Chapter 8 Working with Images

Before we delve into the fun of image manipulation, let’s look at the workhorse, class 
Image.

Class Image

You load an image by specifying its URL. (Load means read the file that contains the 
bit representation of the image. Images are displayed with scene graph node Image-
View, which includes property image, the Image object.) Here is the code to load a JPG 
image found in the local environment (__DIR__ is a built-in JavaFX variable that holds 
your script file directory location).

def myImage = Image {
url: "{__DIR__}MaasRiver.jpg"

}

The Image class has properties that let you manipulate the loading and scaling of 
images. Table 8.1 lists the common properties of class Image.

Loading images can be an I/O intensive operation. To help ease the burden when you 
have many images to load (or possibly a few, large images), set property background-
Loading to true. This lets you load images in the background. When you do this, a 
placeholder image is displayed in its place. Listing 8.1 shows an example of how to 
load a large image in the background. Note that property placeHolder is also an 

TABLE 8.1 Image Properties 

Property Type Description

url String URL used to fetch the image’s pixel data.
backgroundLoading Boolean If true, loads the image in the background and uses 

a placeholder image.
placeholder Image Displayed while image is loading if background-

Loading is true.
smooth Boolean If true (default), a better quality filtering is used. If 

false, a faster but lesser quality filtering is used.
progress Number The approximate percentage of image loading that 

is complete.
error Boolean Indicates whether an error was detected while 

loading an image.
height Number Resize source image to fit within height. Affected 

by preserveRatio.
width Number Resize source image to fit within width. Affected 

by preserveRatio.
preserveRatio Boolean If true, preserves the aspect ratio of the original 

image when scaling to fit using width and height.



ptg

Using Image 251

Image, but the assumption is that the place holder image is small and the same place 
holder can be used with any number of Image objects.

Listing 8.1 Using backgroundLoading with Image

def myBigImage = Image {
url: "http://url_of_some_large_image.jpg"
backgroundLoading: true
placeholder: Image {

url: "{__DIR__}placeHolderImage.jpg"
}

}

If you use background loading, the image size won’t be accurate until the loading is 
complete. You can monitor the progress of an image’s loading with property progress.
Listing 8.2 shows a timeline that monitors property progress every 100 milliseconds. 
When the image is loaded, the timeline stops. (See “Using action with a Progress Bar” 
on page 220 for an example of a visual progress bar.) 

Listing 8.2 Monitoring Image Loading with Property progress

var progressTimeline: Timeline = Timeline {
        repeatCount: Timeline.INDEFINITE
        keyFrames: [
            KeyFrame {

     time: 100ms
 action: function(): Void {

   if (image.progress > 99.9) then progressTimeline.stop();
  if (image.progress > 75.0) then

                    println("loading status: {image.progress}%")
                }
            }
        ]

    }

def image:Image = Image {
url: "http://url_of_some_large_image.jpg"
backgroundLoading: true
placeholder: Image {

url: "{__DIR__}placeHolderImage.jpg"
}

}
progressTimeline.play();

Image properties width, height, and preserveRatio help you scale images as they load. 
Using these properties to reduce image size helps limit the memory consumed by the 



ptg

252 Chapter 8 Working with Images

Image object. Property preserveRatio keeps the aspect ratio of the Image object con-
sistent with the source image.

If preserveRatio is true and you specify property width only, the image is resized to 
the specified width and the height is adjusted to preserve the aspect ratio. Specifying 
property width with preserveRatio set to false uses the specified width with the orig-
inal height.

If you specify both properties width and height and preserveRatio is false, the image 
is scaled to these dimensions. When preserveRatio is true, however, the height and 
width act as limits and the aspect ratio is consistent with the original image.

8.2  Using ImageView

Class ImageView displays an image. ImageView is a JavaFX node and can be inserted 
into a scene graph and manipulated like any other node. Figure 8.1 shows a simple 
program that displays an image with a black border.

Before we show you the code for this program, lets look at some ImageView proper-
ties. Table 8.2 lists the common properties of class ImageView.

Figure 8.1 Displaying an image



ptg

Using ImageView 253

Properties fitHeight, fitWidth, and preserveRatio are similar to properties height,
width, and preserveRatio of class Image. However, there are differences. In general, 
you will see better performance if you specify Image scaling with the width, height,
and preserveRatio properties of Image. Image scaling is calculated just once as the 
image is loaded, thereby reducing the image’s memory footprint. With ImageView, 
however, scaling is recalculated whenever you apply a transformation. Consequently, 
there isn’t any permanent image size reduction. 

Note that you can display the same Image instance with multiple ImageView objects. 
In this case, you can use ImageView scaling, especially if you need different sizes of 
the same image with different ImageView objects.

Property image holds the Image object that is rendered. Property viewport lets you 
specify a Rectangle2D area where only the portions of the image that fall within the 
viewport area will be displayed.

Listing 8.3 shows the JavaFX code that displays the image shown in Figure 8.1. The 
scene graph includes a Rectangle and an ImageView bundled together in a Group. 
The Rectangle is slightly larger than the ImageView component and positioned so 
that the ImageView is centered on top of it. This creates the frame border.

TABLE 8.2 ImageView Properties 

Property Type Description

fitHeight Number Resize image to fit height. If <= 0, use original 
height of source image.

fitWidth Number Resize image to fit width. If <= 0, use original width 
of source image.

preserveRatio Boolean If true, preserves the aspect ratio of original source 
image when scaling to fit using fitWidth and 
fitHeight.

image Image The displayed image.
viewport Rectangle2D

(does not 
change with 
JavaFX 1.2)

If viewport is non-null, only the portion of the 
image which falls within the viewport will be dis-
played.

x Number The x coordinate origin.
y Number The y coordinate origin.
smooth Boolean If true (default), a better quality filtering is used. If 

false, a faster but lesser quality filtering is used.



ptg

254 Chapter 8 Working with Images

You position the ImageView with properties x and y and specify its contained Image 
with property image. Image property width sets the width to 300 and image property 
preserveRatio (set to true) sets the height to preserve the image’s aspect ratio.

Listing 8.3 Photo1: Displaying an image

Stage {
    title: "Photo Study"
    visible: true
    scene: Scene {
        width: 400
        height: 300
        fill: Color.GRAY
        content: [
            Group {

     content: [
       Rectangle {
          x: 40
          y: 25
         width: 320
         height: 250

       fill: Color.BLACK
                    }

       ImageView {
          x: 50
          y: 35

        image: Image {
      url: "{__DIR__}BalboaPark.jpg"

         preserveRatio: true
           width: 300

           }
                    }

]
            }
        ]

    }
}

Listing 8.3 centers the ImageView over the Rectangle, but the size of the ImageView 
component is known beforehand and the location of the components is fixed. A big 
part of manipulating images is dealing with various-sized images. You don’t always 
know an image’s size before loading it into the Image component. Image properties 
width, height, and preserveRatio help you prioritize decisions regarding image sizing. 
You can also use binding and JavaFX layout geometry to center an ImageView compo-
nent within a framing Rectangle.



ptg

Using ImageView 255

Listing 8.4 is a rewrite of the previous example that centers the ImageView compo-
nent over the Rectangle and makes the Rectangle slightly larger than the ImageView. 
The listing includes other important changes, discussed below. 

Listing 8.4 defines read-only variables that determine centering. The Rectangle binds 
its dimensions to those of the ImageView. By using bind, the Rectangle will resize 
itself after the ImageView node is fully initialized. Without bind, Rectangle properties 
height and width are set with an empty ImageView component (and results in a small 
20 by 20 rectangle).

The ImageView and Rectangle both depend on read-only variables (originX and 
originY) for their initial positioning (properties x and y), which do not change, so 
binding is not necessary here.

Besides implementing dynamic sizing with binding and variables, Listing 8.4 also 
includes code to load the image in the background. When target images are large, 
you’ll notice a delay before an image appears. With this new version, a placeholder 
image appears before the target image is displayed (as shown in Figure 8.2). Although 
this hardly affects our small example, background loading can improve performance 
dramatically with applications that have a large number of images.

Listing 8.4 Photo2: Centering an ImageView Component

def sceneWidth = 400;
def sceneHeight = 300;
def imageWidth = 300;
def originX = sceneWidth/2 - imageWidth/2 - 10;
def originY = 20;
def PlaceHolderImage = Image {
    url: "{__DIR__}placeholder.jpg"
}
def rect = Rectangle {
    x: originX
    y: originY
    width: bind iv.layoutBounds.width + 20
    height: bind iv.layoutBounds.height + 20
    fill: Color.BLACK
}
def iv = ImageView {
    x: originX + 10
    y: originY + 10
    image: Image {
        url: "{__DIR__}BalboaPark.jpg"
        preserveRatio: true
        width: imageWidth
        backgroundLoading: true
        placeholder: PlaceHolderImage
    }
}



ptg

256 Chapter 8 Working with Images

def group = Group {
    content: [ rect, iv ]
}

var scene: Scene;
Stage {
    title: "Photo Study"
    visible: true
    scene: scene = Scene {
        width: sceneWidth
        height: sceneHeight
        fill: Color.GRAY
        content: group
    }
}

Programming Tip

Note that it is necessary to bind image size calculations with background loading, since the 
component’s size won’t be finalized until after the image has finished loading. 

Figure 8.2 shows the placeholder image displayed while the target image is loading.

Scaling

Let’s take the basic example you’ve already seen and apply some transformations to 
the image. The first transformation is scaling. Scaling is interesting because if you 

Figure 8.2 Using a placeholder image with background loading



ptg

Using ImageView 257

scale an object along one axis only (centered), you get the illusion of rotation about 
that axis. As the image shrinks from both sides inward, it appears to present its side 
view. If you continue scaling to factor -1, the image then grows outward and is 
flipped. (Note that this is different than a rotate transformation.) Each time you click 
the image in this example, the timeline that controls the scaling changes direction. 
This allows you to flip back and forth between the two views.

Figure 8.3 shows two snap shot views of a scaled image as it’s shrinking. (The effect is 
somewhat lost here with snap shot views, but print media have these constraints).

Listing 8.5 shows the added code (in bold) that implements this image scaling. There 
are no changes to the variables, Rectangle, or ImageView. The group that holds the 
rectangular frame and the image (read-only variable group) now defines property 
cursor (to indicate an active mouse event handler) and a Scale transformation. The 
Scale object leaves the y-direction scaling unchanged; scaling only occurs in the x-
direction. Scale property x binds to variable scale; variable scale is controlled by the 
animation. Property pivotX controls how the scaling proceeds. By setting pivotX to a 
point centered in the x-direction for the image, shrinking proceeds equally from the 
edges. Conversely, growing proceeds outwards equally towards the edges.

The group’s mouse event handler initiates animation with timeline.play. Each time 
you click the mouse, the timeline direction is reversed. Note that if you click the 
mouse before the timeline completes, it simply reverses direction in place. It’s neces-
sary to use function play here instead of playFromStart to implement this behavior.

Figure 8.3 Scaling an image along one axis provides the illusion of rotation



ptg

258 Chapter 8 Working with Images

Timeline object timeline controls the scaling. It changes variable scale from 1 (normal 
scaling) to -1 (normal size but the object is flipped) and uses interpolator EASEBOTH.

Listing 8.5 Photo3: Scaling an ImageView Component

def sceneWidth = 400;
. . . (unchanged from Listing 8.4) . . .
def rect = Rectangle { . . . }
def iv = ImageView { . . . }

def group = Group {
cursor: Cursor.HAND

    transforms: Scale{
        x: bind scale
        y: 1
        pivotX: sceneWidth / 2
        pivotY: 0
    } // Scale
    onMouseClicked: function(e: MouseEvent): Void {
        // when rate is -1 it plays the timeline in reverse
        // at regular speed
        timeline.rate *= -1.0;
        timeline.play();
    }
    content: [ rect, iv ]
}

var scale = 1.0;
def timeline = Timeline {
    rate: -1
    keyFrames: [
        at (0s) {scale => 1.0},
        at (6s) {scale => -1.0 tween Interpolator.EASEBOTH}
    ]
};
Stage {

. . . (unchanged from Listing 8.4) . . .
}

Transformation and Effects Menagerie

JavaFX offers numerous transformations and effects that you can apply to nodes. Let’s 
enhance our photo study example and create animations, transformations, and effects 
and apply them to the group that holds the ImageView and Rectangle components. 
The code for this appears in Listing 8.6 and Listing 8.7. Figure 8.4 shows this new ver-
sion running. The application has two rows of buttons that let you select a transforma-
tion or effect to apply to the image and rectangle as a group below.



ptg

Using ImageView 259

Button Scale applies the animation demonstrated in the previous program. Button 
Rotate applies successive 45 degree rotations to the group. Button Fade begins a fade-
out transition, which toggles the animation by alternating between fade-in and fade-
out transitions. The remaining buttons all update the group’s effect property. Only 
one effect is applied at a time, but any transformation (rotate, fade, and scale) can be 
applied simultaneously with a single effect.

Button Perspective applies a perspective transformation effect, button Sepia Tone 
applies a sepia tone effect (sepia tone makes the image look like an antique photo-
graph), and button Reflection applies a reflection effect (pictured in Figure 8.4). 
Finally, button No Effect removes any effect that may have been previously applied. 
(These effects all use the default values provided when you drag the specific effect 
into the JavaFX code editor from the NetBeans JavaFX Effects palette.)

Listing 8.6 includes the nodes for the Rectangle and ImageView components 
(unchanged from Listing 8.4) and the Group that contains them. The listing also 
includes a timeline that controls scaling and fading. These animations are initiated 
with SwingButtons (shown in Listing 8.7).

Figure 8.4 Applying various effects and transformations to components

NetBeans JavaFX Effects Palette



ptg

260 Chapter 8 Working with Images

Listing 8.6 Photo4: Applying Transformations and Effects

def sceneWidth = 400;
. . . (unchanged from Listing 8.4) . . .
def rect = Rectangle { . . . }
def iv = ImageView { . . . }

def group = Group {
    layoutY: 85
    transforms: Scale {
        x: bind scale
        y: 1
        pivotX: sceneWidth / 2
        pivotY: 0
    } // Scale
    content: [ rect, iv ]
}

// Control scaling
var scale = 1.0;
def timeline = Timeline {
    rate: -1
    keyFrames: [
        at (0s) {scale => 1.0},
        at (6s) {scale => -1.0 tween Interpolator.EASEBOTH}
    ]
}

// Control fading
def fade = FadeTransition {
    rate: -1
    node: group
    duration: 3s
    fromValue: 1.0
    toValue: 0.2
}

Listing 8.7 shows the scene graph code for this application. The top level layout node 
is a vertical box (VBox) that holds two rows of SwingButtons. The Group that contains 
the Rectangle frame and the ImageView component is positioned below the VBox. 
Each row of buttons is contained within a horizontal box (HBox) layout component.

SwingButtons specify property text (the button’s label) and property action (code to 
execute when the button is clicked). Property action initiates or applies the specified 
transformation or effect. The SwingButton action code is bold so you can easily iden-
tify each transformation. The Scale and Fade actions are animations initiated by func-
tion play. Scale uses a Timeline and Fade uses a FadeTransition. The effects buttons 
(Reflection, Perspective, and Sepia Tone) modify the group’s effect property. Button 
No Effect sets the effect property to null.



ptg

Using ImageView 261

Listing 8.7 Photo4: Photo Study Scene Graph

Stage {
    title: "Photo Study"
    visible: true
    scene: Scene {
        width: sceneWidth
        height: sceneHeight
        fill: Color.GRAY
        content: [
            VBox {

     layoutX: 10
     layoutY: 20
     spacing: 10
     content: [

HBox {
         spacing: 5
         content: [

          SwingButton {
            text: "Scale"

action: function() {
    timeline.rate *= -1.0;
   timeline.play();

               }
             }

          SwingButton {
            text: "Rotate"

action: function() {
    group.rotate += 45.0;

               }
             }

          SwingButton {
             text: "Fade"

action: function() {
     fade.rate = *= -1.0;
    fade.play();

               }
             }

          SwingButton {
           text: "No Effect"

action: function() {
    group.effect = null;

               }
             }

           ]
                    }

HBox {
         spacing: 5
         content: [

          SwingButton {
 text: "Perspective"
action: function() {



ptg

262 Chapter 8 Working with Images

                 group.effect = PerspectiveTransform {
         llx: 13.4,
         lly: 210.0
         lrx: 186.6,
         lry: 190.0
         ulx: 13.4,
         uly: -10.0
         urx: 186.6,

          ury: 10.0
                 }

               }
             }

          SwingButton {
           text: "Sepia Tone"

action: function() {
  group.effect = SepiaTone {

         level: 0.5
                 }

               }
             }

          SwingButton {
 text: "Reflection"
action: function() {

  group.effect = Reflection {
        fraction: 0.75
        topOffset: 0.0
        topOpacity: 0.5
       bottomOpacity: 0.0

                 }
               }

             }
           ]

                    }
                ]
            }, group
        ]
    }
}

Table 8.3 lists common JavaFX effects you can apply to nodes in a scene graph. Note 
that some effects apply more commonly to images, some to text objects, and some are 
common for both. You can, however, apply any effect to any node. 



ptg

Using ImageView 263

Effects Tip

Effects cannot be applied to applications in the mobile environment. 

TABLE 8.3 Common JavaFX Node Effects 

Effect Description
Blend Blend two nodes together specifying mode and node 

input.
Bloom Makes brighter portions of the input node appear to 

glow, based on a configurable threshold.
ColorAdjust Provides per-pixel adjustments of hue, saturation, 

brightness, and contrast.
DropShadow Renders a shadow behind the node with the specified 

color, radius, and offset.
Flood Renders a rectangular region filled with the given Paint.
GaussianBlur Blur Gaussian convolution kernel, with a configurable 

radius.
Glow Makes the input image appear to glow, based on a con-

figurable threshold.
InnerShadow Renders a shadow inside the edges of the given node 

with the specified color, radius, and offset.
Lighting Simulates a light source shining on the given content, 

which can be used to give flat objects a more realistic, 
three-dimensional appearance. Lighting types are Dis-
tantLight, SpotLight, or PointLight.

MotionBlur Motion blur using a Gaussian convolution kernel with a 
configurable radius and angle.

PerspectiveTransform Provides non-affine transformation of the input content 
used to provide a “faux” three-dimensional effect for 
otherwise two-dimensional content.

Reflection Renders a reflected version of the input below the actual 
input content. (The reflected portion does not respond to 
mouse events.)

SepiaTone Produces a sepia tone effect similar to antique photo-
graphs.



ptg

264 Chapter 8 Working with Images

8.3  Building a Wall of Photos

As you can see, there are many ways to manipulate images. Let’s branch out now and 
create an application that formats a wall of images stored in the local environment. 
Figure 8.5 shows this application running in a browser. 

The Wall of Photos application displays nine images arranged in three categories (city, 
animal, and flower) on a grid. Each image is a standard width, set into a rectangular 
area with a photo title displayed under the image. The category headings appear 
above the associated row in a Text component. Each row consists of an HBox layout 

Figure 8.5 Creating a wall of photos



ptg

Building a Wall of Photos 265

node. A VBox layout component holds the category title Text nodes and associated 
row of photos. The Photo node is a custom node class. Figure 8.6 shows the scene 
graph diagram for the Wall of Photos application.

Each image has a title, category, and filename. To hold the data for each image, we cre-
ate a convenience class, PhotoData.

Listing 8.8 shows the class for PhotoData. It includes three public-init variables that 
are initialized with an object literal, as shown here.

PhotoData {
        filename: "paris"
        title: "Eiffel Tower, Paris"
        category: "city"
    }

Note that class PhotoData does not extend CustomNode and cannot be used in a 
scene graph. It is a convenience class to encapsulate the data associated with each 
photo.

HBox

Text (category)

Photo Photo Photo

HBox

Text (category)

Photo Photo Photo

HBox

Text (category)

Photo Photo Photo

Figure 8.6 Scene graph diagram for the Wall of Photos application

Scene
VBox



ptg

266 Chapter 8 Working with Images

Listing 8.8 PhotoData.fx

public class PhotoData {
    public-init var title: String;
    public-init var category: String;
    public-init var filename: String;
}

The first part of the main program (see Listing 8.9) initializes each PhotoData object 
with an object literal, creating a sequence of PhotoData objects. The program loops 
through this sequence and builds HBox layout components that contain three custom 
Photo nodes, displaying the images in the category’s row. 

Listing 8.9 Initializing Sequence PhotoData[]

def photoData: PhotoData[] = [
    PhotoData {
        filename: "paris", title: "Eiffel Tower, Paris", category: "city"
    }
    PhotoData {
        filename: "london", title: "Trafalgar Square, London", category: "city"
    }
    PhotoData {
        filename: "newyork", title: "Brooklyn Bridge, New York",category: "city"
    }
    PhotoData {
        filename: "kitty", title: "Playing Hide and Seek", category: "animal"
    }
    PhotoData {
        filename: "caterpillar", title: "Caterpillar in the Desert", 

category: "animal"
    }
    PhotoData {
        filename: "butterfly", title: "Butterfly in Kauai", category: "animal"
    }
    PhotoData {
        filename: "gladiolus", title: "Gladiolus", category: "flower"
    }
    PhotoData {
        filename: "artichoke", title: "Artichoke Flower", category: "flower"
    }
    PhotoData {
        filename: "brittlebush", title: "BrittleBush Flower", 

category: "flower"
    }
];

Listing 8.10 shows the application’s main script that builds the scene graph with the 
custom Photo nodes, the HBox nodes for each row, and the parent VBox node.



ptg

Building a Wall of Photos 267

Listing 8.10 Wall of Photos (Main.fx)

def boxIndent = 20;
def boxSpace = 10;

def categoryFont = Font {
    size: 20
}
var xOffset = 0.0;
// Each category has its own HBox component that
// includes the category title Text node
// and the custom node Photo that displays
// the image
var cityList = HBox {
    layoutX: boxIndent
    spacing: boxSpace
}
var animalList = HBox {
    layoutX: boxIndent
    spacing: boxSpace
}
var flowerList = HBox {
    layoutX: boxIndent
    spacing: boxSpace
}
// VBox photoList holds all three HBox components
var photoList = VBox {
    spacing: 10
    layoutX: 40
}
var categoryName: String;
var targetList: HBox;

// Create the category title's Text node and set the
// correct category HBox component
function setTargetList(target: HBox, categoryTitle: String): Void {

insert Text {
        layoutY: 20
        font: categoryFont
        fill: Color.WHITE
        content: categoryTitle

} into photoList.content;
targetList = target;
insert target into photoList.content;
xOffset = 0;

}

def photoData: PhotoData[] = [ . . . see Listing 8.9 . . . ];

function loadImages() {
    var citySetupDone = false;
    var animalSetupDone = false;



ptg

268 Chapter 8 Working with Images

    var flowerSetupDone = false;

    for (data in photoData) {
        categoryName = data.category;
        // city
        if (categoryName.equals("city") and not citySetupDone) {
            setTargetList(cityList, "City Photos");

citySetupDone = true;
        }
        // animal
        else if (categoryName.equals("animal")and not animalSetupDone) {
            setTargetList(animalList, "Animal Photos");

animalSetupDone = true;
        }
        // flowers
        else if (categoryName.equals("flower")and not flowerSetupDone) {
            setTargetList(flowerList, "Flower Photos");

flowerSetupDone = true;
        }
        insert Photo {
            imageName: data.filename

 title: data.title
            xOffset: xOffset
        }  into targetList.content;
        xOffset += 222;
    }
}

Stage {
    title: "Wall of Photos"
    scene: Scene {
        fill: Color.BLACK
        height: 700
        width: 750
        content: Group {
            layoutY: 20
            content: photoList
        }
    }
}

loadImages();

Listing 8.11 shows CustomNode Photo. Class Photo builds each ImageView compo-
nent, framing Rectangle, and Text node that holds the image’s title. The images are in 
the local environment ({__DIR__}images/) and all are JPG files with a consistent width 
and varying heights. Class initialization variables imageName and title are set in the 
main program from the PhotoData object. Property xOffset reflects the horizontal 
position of the Photo node, indicating whether it’s in the first, second, or third slot in 
the row of photos. (Variable xOffset is only used when we implement photo drag-



ptg

Building a Wall of Photos 269

ging, an enhancement shown in the next section.) No scaling is performed with the 
Image or ImageView components.

Listing 8.11 CustomNode Photo (Photo.fx)

public class Photo extends CustomNode {
    public-init var imageName: String;
    public-init var title: String;
    public-init var xOffset: Number;

    def MaxPhotoHeight = 150;
    var group: Group;

    protected override function create(): Node {
        var text: Text;
        var pic: ImageView;

        group = Group {
            content: [

     Rectangle {
       width: 210

    height: MaxPhotoHeight
   stroke: Color.DARKGRAY

                }
 pic = ImageView {

       layoutX: 5
       layoutY: 5
      image: Image {

   url: "{__DIR__}images/{imageName}.jpg"
                    }
                }

    text = Text {
      fill: Color.WHITE
      content: title

                }
            ]
        }
        text.layoutX = (pic.layoutBounds.maxX - pic.layoutBounds.minX) / 

2 - (text.boundsInLocal.maxX - text.boundsInLocal.minX) / 2;
        text.layoutY = MaxPhotoHeight + 20;
        return group;
    }
}



ptg

270 Chapter 8 Working with Images

8.4  Mouse Dragging

Mouse dragging is a common action with graphical applications. In JavaFX, you can 
drag any type of node in a scene graph, including groups, layout nodes, text compo-
nents, shapes, and of course, images (ImageView components).

In this section, you’ll see how to add mouse dragging capabilities to the Wall of Pho-
tos application. Users can select a photo to drag (with a mouse press event), move the 
photo (with a mouse move event), and end drag operations (with a mouse release 
event). The application restricts how you can move the photo, as follows. Although 
you can drag the photo anywhere on the scene, when you release the mouse (and 
dragging stops) the photo returns to the nearest slot (first, middle, or last) within its 
own category row. That is, you can change photo locations only within the same row. 
Figure 8.7 shows the application during a photo drag operation.

Adding mouse dragging to the Wall of Photos application requires changes to the 
Photo custom node only. Listing 8.12 shows the updated code with changes in bold. 
Mouse dragging requires three different mouse event handlers in a press-drag-release 
gesture. Property onMousePressed specifies the press handler which starts the process. 
The handler records the current placement of the node as reflected in node properties 
translateX and translateY.

onMousePressed: function(e: MouseEvent): Void {
startDragX = translateX;
startDragY = translateY;

}

The onMouseDragged handler is continuously invoked as the user drags the mouse. The 
event includes the x and y offsets (dragX and dragY) relative to the most recent press 
event if the MouseEvent is part of a press-drag-release gesture (otherwise the value is 
0). Updating translateX and translateY with these offsets moves the node in the 
scene graph.

onMouseDragged: function(e: MouseEvent): Void {
translateX = startDragX + e.dragX;
translateY = startDragY + e.dragY;

}

The onMouseReleased handler is called at the end of the mouse dragging gesture. Here, 
the node returns to its original vertical position (keeping the node in its own row) by 
resetting translateY to zero. Function findXPos finds the nearest slot in the row. In this 
case, the node will be at location 0 (xPos1), 222 (xPos2), or 444 (xPos3) by setting trans-
lateX to the new location after adjusting for its original location (in xOffset).

onMouseReleased: function(e: MouseEvent): Void {
translateY = 0;
findXPos();

}



ptg

Mouse Dragging 271

When the user releases the mouse, the node “jumps back” back to its own row and 
slides into either the first, second, or third slot in the row.

Listing 8.12 Updated CustomNode Photo (Photo.fx)

public class Photo extends CustomNode {

    public-init var imageName: String;
    public-init var title: String;

Figure 8.7 Implementing dragging actions



ptg

272 Chapter 8 Working with Images

    public-init var xOffset: Number;

    def MaxPhotoHeight = 150;
def xPos1 = 0;

    def xPos2 = 222;
    def xPos3 = 444;

    var group: Group;
var startDragX: Number;

    var startDragY: Number;

function findXPos(): Void {
        var newX = xOffset + translateX;
        if (Math.abs(newX - xPos1) < Math.abs(newX - xPos2) and
        Math.abs(newX - xPos3) < Math.abs(newX - xPos1)) {
            translateX = xPos3 - xOffset;
        }
        else if (Math.abs(newX - xPos2) < Math.abs(newX - xPos1) and
        Math.abs(newX - xPos3) < Math.abs(newX - xPos2)){
            translateX = xPos3 - xOffset;
        }
        else if (Math.abs(newX - xPos2) < Math.abs(newX - xPos1)) {
            translateX = xPos2 - xOffset;
        }
        else {
            translateX = xPos1 - xOffset;
        }
    }

    protected override function create(): Node {
        var text: Text;
        var pic: ImageView;

content: [
     Rectangle {

       width: 210
    height: MaxPhotoHeight
    stroke: Color.DARKGRAY
     cursor: Cursor.HAND

      blocksMouse: true

     onMousePressed: function(e: MouseEvent): Void {
      startDragX = translateX;
      startDragY = translateY;

}
     onMouseDragged: function(e: MouseEvent): Void {

    translateX = startDragX + e.dragX;
    translateY = startDragY + e.dragY;

                    }
     onMouseReleased: function(e: MouseEvent): Void {
        translateY = 0;
         findXPos();



ptg

Animated Photo Carousel 273

                    }
                }

   pic = ImageView {
       layoutX: 5
       layoutY: 5
      image: Image {

   url: "{__DIR__}images/{imageName}.jpg"
                    }
                }

    text = Text {
      fill: Color.WHITE
      content: title

                }
            ]
        }
        text.layoutX = (pic.layoutBounds.maxX - pic.layoutBounds.minX) / 

2 - (text.boundsInLocal.maxX - text.boundsInLocal.minX) / 2;
        text.layoutY = MaxPhotoHeight + 20;
        return group;
    }

}

8.5  Animated Photo Carousel

Our final example in this chapter is a rotating photo carousel, as shown in Figure 8.8. 
As each photo fades in, it pauses and then begins a slow trek along a path, shrinking 
to (approximately) a third of its size half-way through the rotation. As the photo 
moves towards its starting spot, it returns to its original size. (This simultaneous scal-
ing and movement provide a “3D effect.” The image appears to move away as it 
shrinks and move forward as it grows.) After the photo completes the path animation, 
it disappears. A new photo fades in every three and a half seconds, so you see a con-
tinuous stream of photos appearing, moving and scaling, and finally disappearing. 
The newest photo always appears on top of the photo right ahead of it. 

Although this example uses only nine images stored in the local environment, we’ll 
design the photo carousel so that you can make web service calls to fetch the photos 
instead (see Chapter 9, “Flickr: Interesting Photos” on page 301). Working with more 
than just nine photos (the web service example has 100) means we’ll have to pay 
attention to image loading and the scene graph structure. To that end, you’ll see that a 
carousel is initialized with a small number of carousel photo slots (CarouselPhoto 
objects). The image information is stored separately. As each CarouselPhoto object 
gets its turn to travel along the carousel, it accepts an image object to display. Of 
course, Image background loading is also crucial for a smooth-running carousel.



ptg

274 Chapter 8 Working with Images

Photo Carousel Scene Graph

Figure 8.9 shows a scene graph diagram of the Photo Carousel application. The Scene 
contains a Carousel object, which includes a sequence of CarouselPhoto objects. The 
CarouselPhoto is a custom node with ImageView, Text, and Rectangle components. 
The Carousel also keeps its images in a sequence of CarouselImage objects. A 
CarouselImage is a convenience class (not a custom node) that includes the Image 
component and its title. The CarouselPhoto’s ImageView component does not initial-
ize its Image component until it is activated in the carousel.

Figure 8.8 Animated Slide Show



ptg

Animated Photo Carousel 275

CarouselPhoto Animation

Each CarouselPhoto includes a SequentialTransition object, which defines its anima-
tion behavior in the carousel. Figure 8.10 shows a diagram of the CarouselPhoto ani-
mation. In the sequential transition, each CarouselPhoto first fades in (from opacity 0 
to opacity 1), then pauses. After the pause transition completes, a parallel transition 
begins. In parallel, the CarouselPhoto scales down as it begins its path transition. 
Half-way through the path transition, the scale transition completes and auto reverses 
so that it returns to full size at the same time that the path transition completes.

Group

ImageView

Figure 8.9 Scene graph diagram for the Photo Carousel application

Scene
Carousel

Text

Rectangle

CarouselPhoto

Group

ImageView

Text

Rectangle

CarouselPhoto

Group

ImageView

Text

Rectangle

CarouselPhoto

. . .

CarouselImage CarouselImage CarouselImage. . .



ptg

276 Chapter 8 Working with Images

CarouselPhoto Custom Node

Listing 8.13 through Listing 8.15 show the code for the CarouselPhoto custom node. 
Listing 8.13 includes the class variables and the timeline that jump starts a Carousel-
Photo animation sequence. Public function play starts the timeline, which makes the 
node visible and positions it so that the photo is centered when it fades in. Function 
carouselAnimation.playFromStart starts the CarouselPhoto’s animation sequence 
(shown in Listing 8.14). The timeline has a second key frame object invoked when the 
animation completes. This key frame makes the node invisible once again.

Listing 8.13 CarouselPhoto Class Variables and Timeline

public class CarouselPhoto extends CustomNode {
    // Initialized class variables
    public-init var x: Number;
    public-init var y: Number;
    public-init var carouselElements: PathElement[];

    // Public variables in binding expressions
    public var image: Image;
    public var photoTitle: String;

    // Class variables
    var pic: ImageView;

Figure 8.10 Nested transition diagram for the CarouselPhoto animation sequence

SequentialTransition

FadeTransition

PauseTransition

ScaleTransition

PathTransition

ParallelTransition

CarouselPhoto Animation



ptg

Animated Photo Carousel 277

    var group: Group;
    var title: Text;
    var rec: Rectangle;
    def animationDuration = 26s;

    def timeline = Timeline {
        keyFrames: [
            KeyFrame {

      time: 0s
                action: function(): Void {

      opacity = 0.0;
      visible = true;

translateX = -( layoutBounds.width / 2) ;
                    translateY = -( layoutBounds.height / 2) ;

  carouselAnimation.playFromStart();
       toFront();

                }
            }
            KeyFrame {

 time: animationDuration + 4.0s
 action: function(): Void {

      visible = false;
                }
            }
        ]
    }

    public function play() {
        timeline.playFromStart();
    }

SequentialTransition carouselAnimation is responsible for animating the Carousel-
Photo. First, a fade transition fades in the node. Next, a pause transition starts. Lastly, 
the parallel transition begins. The parallel transition starts a scale transition and a 
path transition. The scale transition completes in half the time, auto reverses, and 
repeats. The path transition follows a path from the path elements supplied with the 
object literal initialization variable carouselElements (defined in the Carousel object).

Listing 8.14 CarouselPhoto Animation Sequence

def carouselAnimation = SequentialTransition {
        node: this
        content: [

 FadeTransition {
    duration: 1.5s
    fromValue: 0.0
    toValue: 1.0

            }
 PauseTransition {
    duration: 2.5s



ptg

278 Chapter 8 Working with Images

            }
 ParallelTransition {
     node: this
     content: [

     ScaleTransition {
    duration: animationDuration / 2

          toX: .4
          toY: .4

autoReverse: true
        repeatCount: 2

                    }
      PathTransition {

     duration: animationDuration
   interpolator: Interpolator.EASEOUT
  path: AnimationPath.createFromPath(Path {

       elements: carouselElements
           })

                    }
                ]
            }  // ParallelTransition
        ]
    };

Listing 8.15 includes the CarouselPhoto scene graph (its diagram is shown in 
Figure 8.9 on page 275). Note that the ImageView component binds property image to 
a public class variable, allowing the underlying image to change under program con-
trol. Similarly, the Text component binds its content property to a public class vari-
able. The size of the Rectangle depends on the size of the ImageView component with 
bind expressions for height and width. Similarly, the placement of the title (the Text 
component) depends on the size of the ImageView component. The title appears 
below the image and is centered. Its width depends on the width of the ImageView 
component.

Listing 8.15 CarouselPhoto Scene Graph

    protected override function create(): Node {
        group = Group {
            content: [

   pic = ImageView {
       x: x + 5
       y: y + 5

     image: bind image
                }

    title = Text {
        x: x
        y: y

     fill: Color.LIGHTGRAY
  wrappingWidth: bind rec.width - 10
  textAlignment: TextAlignment.CENTER



ptg

Animated Photo Carousel 279

layoutX: bind pic.layoutBounds.width / 
2 - title.boundsInLocal.width / 2

                    layoutY: bind pic.layoutBounds.height + 15
    content: bind photoTitle

                }
   rec = Rectangle {

    fill: Color.web("#666666")
        x: x
        y: y

height: bind pic.layoutBounds.height + 
title.layoutBounds.height + 10;

width: bind pic.layoutBounds.width + 10
                }
            ]
        }
        rec.toBack();
        return group;
    }
}

Carousel Custom Node

Listing 8.16 through Listing 8.18 show the Carousel custom node. The Carousel builds 
the sequence of CarouselPhoto objects and controls the animation by selecting the 
next slot (CarouselPhoto). This initiates the animation sequence and the next image 
slides into the selected CarouselPhoto object. 

Listing 8.16 includes the Carousel class initialization variables that control the size 
and placement of the PathTransition path elements. These variables are dependent on 
screen size and are initialized by the main script.

Programming Tip

The main script supplies the screen size and images to the carousel, which are all the carousel 
needs to configure itself.

Sequence carouselPhotos is initialized to hold MaxPhotoSlots elements (in 
Listing 8.18). Sequence images holds the CarouselImage elements. The images
sequence is built by successive calls to public function addImage. Thus, the number of 
images is not dependent on the number of slots in the carousel. There is not a one-to-
one correspondence between carousel slots and images. This permits a large number 
of images if needed, or even just one image displayed multiple times.

Listing 8.16 Carousel class variables and function addImage

public class Carousel extends CustomNode {



ptg

280 Chapter 8 Working with Images

    // Initialized class variables that are dependent on screen size
    public-init var centerX: Number;
    public-init var centerY: Number;
    public-init var radiusX: Number;
    public-init var radiusY: Number;

    var group: Group;
// How many slots the carousel will have

    def MaxPhotoSlots = 12;
    // Sequence images includes each Image object
    var images: CarouselImage[];

    // variables used to grab the next image for
    // the carousel photo slot
    var imageNumber = 0;
    var currentSlot = 0;

    public function addImage(filename: String, title: String): Void {
        insert
        CarouselImage {

 filename: filename
            title: title
        } into images;
    }

Listing 8.17 includes the path elements that initialize each CarouselPhoto’s PathTran-
sition (see Listing 8.14 on page 277 for the PathTransition code). The path element 
starts with object MoveTo and then defines two ArcTo objects, creating an elliptical 
animation path based on the coordinate values supplied by the main script. 

Listing 8.17 PathElements that define the PathTransition

    // PathElements used to control each CarouselPhoto animation
    // PathElements are dependent on screen size
    def carouselElements = [
        MoveTo {
            x: centerX

y: centerY + radiusY
        },
        ArcTo {
            x: centerX

y: centerY - radiusY
            radiusX: radiusX 
            radiusY: radiusY 
            sweepFlag: false
        },
        ArcTo {
            x: centerX 

y: centerY + radiusY
            radiusX: radiusX



ptg

Animated Photo Carousel 281

            radiusY: radiusY
            sweepFlag: false
        }
    ];

Listing 8.18 includes the public play function, which starts the carousel by invoking 
its timeline. The timeline object runs indefinitely. Every three and a half seconds the 
timeline selects the next image to slide into the next carousel slot and start its anima-
tion.

The public create function builds the Carousel node, which includes a sequence of 
CarouselPhoto objects initialized with the necessary path elements and coordinates.

Listing 8.18 Carousel Animation and Scene Graph

    // Start the Carousel
    public function play(): Void {
        timeline.play();
    }

    // Control the Carousel's animation
    def timeline = Timeline {
        repeatCount: Timeline.INDEFINITE
        keyFrames: [
            KeyFrame {

     time: 3.5s
 action: function(): Void {

if (imageNumber >= sizeof images) {
        imageNumber = 0;

                    }
if (currentSlot >= MaxPhotoSlots) {

        currentSlot = 0;
}

 var slot = carouselPhotos[currentSlot];
 slot.image = images[imageNumber].image;

                    slot.photoTitle = images[imageNumber].title;
       slot.play();
      currentSlot++;
      imageNumber++;

                }
            }
        ]
    }

    // carouselPhotos is the sequence of CarouselPhoto slots
    def carouselPhotos = for (i in [0 .. MaxPhotoSlots - 1]) {
        CarouselPhoto {
            carouselElements: carouselElements
            x: centerX

y: centerY + radiusY



ptg

282 Chapter 8 Working with Images

            visible: false
        }
    }

    protected override function create(): Node {
        return group = Group {

content: carouselPhotos
        }
    }
}

Class CarouselImage

Class CarouselImage (see Listing 8.19) is a convenience class that includes an Image 
object plus the title of the image. You initialize it with a title and the image filename 
(which the class assumes is stored in the local environment).

The Image object sets backgroundLoading to true and provides load-time scaling with 
properties width and height. Property preserveRatio is set to true, which means the 
height and width act as maximum limits, not absolute sizes.

Listing 8.19 CarouselImage Class

public class CarouselImage {
    public-init var title: String;
    public-init var filename: String;
    public var image: Image = Image {
        url: "{__DIR__}images/{filename}.jpg"
        width: 220
        height: 200
        preserveRatio: true
        backgroundLoading: true
    }
}

Main Script

Listing 8.20 shows the main script that initiates the Photo Carousel application. It 
instantiates the Carousel with dimensions that depend on the size of the application 
Scene object. The PhotoData sequence contains the same data shown earlier (see 
Listing 8.9 on page 266). Class PhotoData was also shown earlier (see Listing 8.8 on 
page 266). Function loadImages accesses each PhotoData object and invokes Carousel 
function addImage, building the Carousel’s image sequence. After all the images are 
initialized (but not necessarily loaded), the carousel action begins with Carousel func-
tion play.



ptg

Animated Photo Carousel 283

The main script scene graph includes the Carousel in the scene with a linear gradient 
fill (black to dark gray). Function loadImages is called after the scene graph is defined.

Listing 8.20 Photo Carousel Main Script (Main.fx)

def sceneHeight = 500;
def sceneWidth = 400;
var carousel = Carousel {
    centerX: sceneWidth / 2.2
    centerY: sceneHeight / 2.4
    radiusX: sceneWidth * .26
    radiusY: sceneHeight * .24
};

def photoData: PhotoData[] = [ . . . see Listing 8.9 . . . ];

function loadImages(): Void {
    for (data in photoData) {
        carousel.addImage(data.filename, data.title);
    }
    carousel.play();
}

Stage {
    title: "Photo Carousel"
    width: sceneWidth
    height: sceneHeight
    scene: Scene {
        fill: LinearGradient {
            startX: 1
            startY: .2
            endX: 1,
            endY: 1
            stops: [
                Stop {

       offset: 0
     color: Color.BLACK

                },
                Stop {

       offset: 1
   color: Color.web("#666666")

                }
            ]
        }
        content: carousel 
    }
}

loadImages();



ptg

This page intentionally left blank 

From the Library of sam kaplan



ptg

285

9 Web Services

Web services open up a whole world of data. Whether you’re interested in the 
weather, real estate values, stock quotes (probably not), videos, buying things, finding 
restaurants, or finding airline flights and hotels, there’s a web service API out there 
that probably provides the data you’re looking for. In this chapter you’ll learn how to 
call web services with JavaFX using HttpRequest to invoke the web service and Pull-
Parser to process the response document. You’ll see how to do this first without actu-
ally invoking a web service. Then, you’ll use the Flickr web service API to build 
examples with “real data.” This chapter uses the JavaFX Image and ImageView 
classes along with concepts presented in the previous chapter for working with 
images.

What You Will Learn

• XML and JSON document structure

• Using PullParser to process XML and JSON documents

• Using HttpRequest to make asynchronous HTTP requests

• Monitoring HttpRequest execution cycle with callbacks

• Accessing the response InputStream with HttpRequest and PullParser

• Handling errors with HttpRequest

• Using the JavaFX TextBox component

• Build custom PullParser objects to process Flickr web service response data

• Invoking Flickr web service methods

• Integrating Flickr data with the animated photo carousel application

9.1  JavaFX Pull Parsers

The JavaFX PullParser is a class that parses XML or JSON data under program con-
trol. As the pull parser parses data, it generates events. When you setup a pull parser 



ptg

286 Chapter 9 Web Services

class, you specify which events you’re interested in. XML and JSON documents are 
similar in that they both self-describe hierarchical structures. However, PullParser 
objects differ for each format and each target data source. Both XML and JSON are 
commonly used to describe data returned from web service calls, but you can use 
either XML or JSON to describe any sort of configurable data.

To explore the JavaFX PullParser class, we’ll present the Wall of Photos application 
that renders a grid of photos with categories and titles from the previous chapter (see 
“Building a Wall of Photos” on page 264). To describe the photos, the updated appli-
cation includes an XML document that specifies the categories, filenames, and titles of 
each image. Then, we’ll modify the PullParser object to parse a JSON document with 
the same data.

The Advantage of Using Configurable Data

The Wall of Photos application in the previous chapter statically defines the photo data in 
object literals for each image (see Listing 8.9 on page 266). A PullParser is a better approach, 
because you can change images and photo information without editing your JavaFX source 
code.

XML Parsing

XML is a markup language that structures data. XML markup is both easy to parse 
and human readable. Since XML is a common data format, JavaFX includes a Pull-
Parser class that parses XML data under program control. In this section, you’ll see 
how to use the XML parser in an example that describes photos. 

XML is a simple, hierarchical structure that is self-descriptive. Here is an XML exam-
ple that describes a person.
<person>

<name>John Doe</name>
<address>

<street>123 Main Street</street>
<city>OurTown</city>
<state name="California" abbr="CA"/>

</address>
<phone>555-333-1234</phone>

</person>

From this XML, it’s clear that the above structure describes a person object consisting 
of name, address, and phone number. Object address, in turn, includes street, city, and 
state. Objects (or tags) include an open tag (such as <name>) and a pairing close tag (</
name>). Nesting within tag objects provides the hierarchical structure (or levels). 



ptg

JavaFX Pull Parsers 287

The JavaFX PullParser identifies tag <person> here as a level 0 START_ELEMENT, <name> is 
a level 1 START_ELEMENT, and </name> is a level 1 END_ELEMENT.

Tags can also specify named attributes. In the above example, tag <state> specifies 
attribute name and attribute abbr. In addition, tag <state> uses an alternate form of clo-
sure where the closing mark is included with the open tag.

<state name="California" abbr="CA"/>

The JavaFX PullParser includes function getAttributeValue to retrieve these attribute 
values. 

Table 9.1 shows the common properties of class PullParser.

TABLE 9.1 Class PullParser Common Properties 

Variable Type Description

documentType String Type of content handled by parser. Either 
PullParser.XML or PullParser.JSON.

encoding String Content character encoding.
event Event Current parser event, which changes as 

the parser moves through the XML or 
JSON document.

ignoreWhiteSpace Boolean If true, ignores whitespaces and new lines 
for a TEXT event.

input InputStream Source content to parse. Applications 
must close the stream when the parser is 
done.

onEvent function(e:

Event): Void
Callback, reports the current parse event 
(Event) to the function.

START_DOCUMENT

END_DOCUMENT

Integer Value of Event.type indicating the start 
(or end) of JSON or XML document.

START_ELEMENT

END_ELEMENT

Integer Value of Event.type indicating the start 
(or end) of an XML element or JSON 
object.

TEXT Integer Value of Event.type indicating text in an 
XML or JSON element.

START_ARRAY

END_ARRAY

Integer Value of Event.type indicating the start 
(or end) of a JSON array.

START_ARRAY_ELEMENT

END_ARRAY_ELEMENT

Integer Value of Event.type indicating the start 
(or end) of a JSON array element.



ptg

288 Chapter 9 Web Services

To see how to use the PullParser class to parse XML documents, let’s return to the Wall 
of Photos example from the previous chapter (see Figure 8.5 on page 264). Then, 
you’ll see the PullParser object that parses it.

Listing 9.1 shows the XML document that describes the photos. Tag <?xml> generates 
a PullParser START_DOCUMENT event type and tag <photo> generates a PullParser 
START_ELEMENT event type with level 0. Tag <category> generates a PullParser 
START_ELEMENT event type with level 1. Its attribute (name) specifies the category name, 
reported with the PullParser event function getAttributeValue, which returns String 
"city" for the first <category> tag.

Likewise, multiple  (level 2). 

Listing 9.2 PullParser Object for XML (Main.fx)

var categoryName: String;
var myparser = PullParser {
    documentType: PullParser.XML
    input: new FileInputStream("photo.xml")
    onEvent: function(e: Event): Void {
        if (e.type == PullParser.START_ELEMENT and e.level == 1) {
            categoryName = e.getAttributeValue(QName{name: "name"});
            // city
            if (categoryName.equals("city")) {
                setTargetList(cityList, "City Photos");
            }



ptg

290 Chapter 9 Web Services

            // animal
            else if (categoryName.equals("animal")) {
                setTargetList(animalList, "Animal Photos");
            }
            // flowers
            else if (categoryName.equals("flower")) {
                setTargetList(flowerList, "Flower Photos");
            }
        }
        if (e.type == PullParser.START_ELEMENT and e.level == 2) {
            // Build a Photo node using filename and title
            insert
            Photo {

 imageName: e.getAttributeValue(QName{name: "filename"})
   title: e.getAttributeValue(QName{name: "title"})
   xOffset: xOffset

            } into targetList.content;
            xOffset += 222;
        }
    }
}
myparser.parse();
myparser.input.close();

Once you define a PullParser object in your program, you invoke it with the parse
member function. To invoke PullParser myparser, for example, use

myparser.parse();

PullParser Tip

It is the responsibility of the caller to close the InputStream specified for PullParser property 
input, as shown above with myparser.input.close().

Listing 9.3 shows the other support components and functions for the Wall of Photos 
application.

Listing 9.3 Support Components and Functions (Main.fx)

def boxIndent = 20;
def boxSpace = 10;
def categoryFont = Font {
    size: 20
}
var xOffset = 0.0;
// Each category has its own HBox component that
// includes the category title Text node
// and the custom node Photo that displays
// the image



ptg

JavaFX Pull Parsers 291

var cityList = HBox {
    layoutX: boxIndent
    spacing: boxSpace
}
var animalList = HBox {
    layoutX: boxIndent
    spacing: boxSpace
}
var flowerList = HBox {
    layoutX: boxIndent
    spacing: boxSpace
}
// photoList holds all three HBox components
var photoList = VBox {
    spacing: 10
    layoutX: 40
}
var targetList: HBox;

// Create the category title's Text node and set the
// correct category HBox component
function setTargetList(target: HBox, categoryTitle: String): Void {

insert Text {
layoutY: 20
font: categoryFont
fill: Color.WHITE
content: categoryTitle

} into photoList.content;
targetList = target;
insert target into photoList.content;
xOffset = 0;

}

Listing 9.4 shows the scene graph for the Wall of Photos application.

Listing 9.4 Scene Graph for Wall of Photos Application (Main.fx)

Stage {
    title: "XML Photos"
    scene: Scene {
        fill: Color.BLACK
        height: 700
        width: 750
        content: Group {
            layoutY: 20
            content: photoList
        }
    }
}



ptg

292 Chapter 9 Web Services

Listing 9.5 shows the CustomNode Photo that builds each ImageView component, 
framing Rectangle, and Text node (the image’s title). The images are in the local envi-
ronment ({__DIR__}images/) and all are JPG files with a consistent width and various 
heights. Note that CustomNode Photo is unchanged from the original Wall of Photos 
application (as shown in Listing 8.11 on page 269).

Listing 9.5 CustomNode Photo (Photo.fx)

public class Photo extends CustomNode {
    public-init var imageName: String;
    public-init var title: String;
    public-init var xOffset: Number;

    def MaxPhotoHeight = 150;
    var group: Group;

    protected override function create(): Node {
        var text: Text;
        var pic: ImageView;

        group = Group {
            content: [

     Rectangle {
       width: 210

    height: MaxPhotoHeight
   stroke: Color.DARKGRAY

                }
 pic = ImageView {

       layoutX: 5
       layoutY: 5
      image: Image {

   url: "{__DIR__}images/{imageName}.jpg"
                    }
                }

    text = Text {
      fill: Color.WHITE
      content: title

                }
            ]
        }
        text.layoutX = (pic.layoutBounds.maxX - pic.layoutBounds.minX) / 

2 - (text.boundsInLocal.maxX - text.boundsInLocal.minX) / 2;
        text.layoutY = MaxPhotoHeight + 20;
        return group;
    }
}



ptg

JavaFX Pull Parsers 293

JSON Parsing

JavaFX’s PullParser can parse JSON (JavaScript Object Notation) data as well as XML 
data. JSON, like XML, is also used for data exchange applications and is common with 
web services response data. Like XML, JSON is self documenting. In addition, JSON 
tends to be more compact than XML. 

JSON objects (nodes) consist of name-value pairs with a colon : separator. Braces { }
delimit objects and commas separate name-value pairs. Brackets [ ] specify array ele-
ments.

Listing 9.6 describes the same set of images as Listing 9.1 (see page 288), using JSON 
instead of XML. Nodes "city", "animal", and "flower" all contain three array ele-
ments each that describe the "filename" and "title" of each image.

Listing 9.6 photo.json

{"photo": {"city": [
{"filename": "paris","title": "Eiffel Tower, Paris"},
{"filename": "london", "title": "Trafalgar Square, London"},
{"filename": "newyork", "title": "Brooklyn Bridge, New York"}],

"animal": [
{"filename": "kitty", "title": "Playing Hide and Seek"},
{"filename": "catepillar", "title": "Catepillar in the Desert"},
{"filename": "butterfly", "title": "Butterfly in Kauai"}],

"flower": [
{"filename": "gladiolus", "title": "Gladiolus"},
{"filename": "artichoke", "title": "Artichoke Flower"},
{"filename": "brittlebush", "title": "BrittleBush Flower"}]

}}

Listing 9.7 is a PullParser defined for this JSON document. It sets property document-
Type to PullParser.JSON, property input to file "photo.json", and property onEvent to 
the event handler that responds to parsing events.

The event handler listens for JSON parsing event level 1 START_VALUE (to get the cate-
gory names and add HBox components to the scene graph), level 2 TEXT (to parse the 
title and filename values), and level 2 END_VALUE (to build the Photo object from the 
saved title and filename values). 

No other changes are required in the application to parse the JSON document instead 
of the XML document.



ptg

294 Chapter 9 Web Services

Listing 9.7 PullParser Object for JSON

var imageTitle: String;
var imageFilename: String;

var myparser = PullParser {
    documentType: PullParser.JSON
    input: new FileInputStream("photo.json")
    onEvent: function(e: Event): Void {
        if (e.type == PullParser.START_VALUE and e.level == 1) {
         // city
            if (e.name.equals("city")) {
                setTargetList(cityList, "City Photos");
            }

         // animal
            else if (e.name.equals("animal")) {
                setTargetList(animalList, "Animal Photos");
            }

         // flowers
            else if (e.name.equals("flower")) {
                setTargetList(flowerList, "Flower Photos");
            }
        }
        if (e.type == PullParser.TEXT and e.level == 2) {
         // save the text so we can build a Photo object
            if (e.name.equals("filename")) {

  imageFilename = e.text;
            }
            else if (e.name.equals("title")) {

  imageTitle = e.text;
            }
        }
        if (e.type == PullParser.END_ELEMENT and e.level == 2) {
            var pic: Photo;
            insert
            pic = Photo {

  imageName: imageFilename
   title: imageTitle
   xOffset: xOffset

            }
into targetList.content;

            xOffset += 222;
        }
    }
}
myparser.parse();
myparser.input.close();



ptg

JavaFX Pull Parsers 295

Animated Photo Carousel

The previous chapter includes an animated Photo Carousel using the same nine 
images (see “Animated Photo Carousel” on page 273) with object literals that build 
the Image objects, as seen here in Figure 9.1.

In the same way we upgraded the Wall of Photos application with PullParser, you can 
enhance the Photo Carousel application to parse either an XML or JSON document for 
the image information.

Listing 9.8 shows the upgraded loadImages function that now uses a PullParser object 
to read the images for the carousel from an XML document. (Listing 8.20 on page 283 
shows the original loadImages function.)

Note that the PullParser in Listing 9.8 is much simpler than the XML PullParser used 
for the Wall of Photos application (shown in Listing 9.2 on page 289) even though the 
source XML document is the same. The Wall of Photos application must determine 

Figure 9.1 Animated Slide Show implemented with XML PullParser



ptg

296 Chapter 9 Web Services

the category name for each photo. Here, the Photo Carousel application doesn’t use 
categories.

Listing 9.8 Function loadImages implemented with XML PullParser

function loadImages(): Void {
    var myparser = PullParser {
        documentType: PullParser.XML
        input: new FileInputStream("photo.xml")
        onEvent: function(e: Event): Void {
            if (e.type == PullParser.START_ELEMENT and e.level == 2) {
                // Add the image to the carousel
                carousel.addImage(e.getAttributeValue(QName{name: "filename"}),

         e.getAttributeValue(QName{name: "title"}));
            }
        }
    }
    myparser.parse();
    myparser.input.close();
    carousel.play();
}

9.2  JavaFX HttpRequest

Besides PullParser, a second JavaFX class helps you with web service requests: 
HttpRequest. Class HttpRequest provides an API that makes asynchronous HTTP 
requests. (The key word here is asynchronous. The web service call goes out and your 
callbacks are invoked during the request and response process.) There are several 
types of HTTP requests: GET, PUT, POST, and DELETE. Request type GET lets you 
request data from a URL (a location). For example, browsers use HTTP requests to 
display markup (returning, for example, XHTML or HTML). You can also use GET 
requests to invoke RESTful Web Services, which return either XML or JSON data (this 
is how we’ll invoke web services). We’ll discuss HttpRequest with method GET. 

Using HttpRequest

HttpRequest lets you specify a location (URL) and method (such as GET or PUT) and 
start an HTTP operation with function start. HttpRequest properties (such as 
started, connecting, reading and done) change their state as the operation proceeds. 
You can specify callback functions (for example, onStarted, onConnecting, onRead,
onInput, and onException) in your program that respond to specific execution steps in 
the request and access the appropriate HttpRequest properties. For requests that read 
or write large amounts of data, you can monitor the percentage progress using prop-
erties read and toread.



ptg

JavaFX HttpRequest 297

Table 9.2 shows the callback functions for an HTTP GET request with HttpRequest. 
Unless indicated otherwise, all callback functions are invoked at most once in a GET 
HttpRequest operation.

Programming Tip

Note that InputStream  must be closed in a finally block with the onError and onInput call-
back functions when you are done reading. Here is a code snippet that shows you how to do this 
with the onInput callback function.
onInput: function(inputStream: java.io.InputStream) {

try {
// process InputStream inputStream

TABLE 9.2 HttpRequest Common Callbacks for Read Operations 

Callback Type When Callback Is Invoked
onStarted function():Void HTTP request has started execution.
onConnecting function():Void Request is attempting to connect to location.
onDoneConnect function():Void Request is now connected to location.
onReadingHeaders function():Void Request is starting to read HTTP response 

headers, responseCode, responseMessage
and error, if any.

onResponseCode function(

:Integer):Void
HTTP response code from the server is 
available.

onResponseMessage function(

:String):Void
HTTP response message from the server is 
available.

onError function(

:InputStream)

:Void

InputStream containing an error response 
from the server is available. The provided 
InputStream  must be closed when done 
reading in a finally block.

onDoneHeaders function():Void Request is done reading response headers. 
onReading function():Void Request is starting to read the response 

body.
onToRead function(:Long)

:Void
Indicates total number of bytes to read, if 
available. (If negative, then not available.)

onRead function(:Long)

:Void
Indicates number of bytes read so far. 
(Invoked possibly multiple times.)

onInput function(

:InputStream)

:Void

Request body is available. The provided 
InputStream  must be closed when done 
reading in a finally block.

onDoneRead function():Void Request is done reading the response body.
onDone function():Void Request has finished execution.



ptg

298 Chapter 9 Web Services

} finally {
// close InputStream inputStream
inputStream.close();

}
}

Let’s perform a simple Get request with URL http://javafx.com/. We won’t process 
any input; however, we’ll define callback functions that monitor each step in the 
request. As the HttpRequest object executes the request, various callback functions 
display output. Figure 9.2 shows the results of running this test application.

Listing 9.9 shows the code for the HttpRequest object literal and the defined callback 
functions for this test application. Script variable message is updated with new content 
as the request proceeds. The call to initiate the HttpRequest is getRequest.start();

Listing 9.9 HttpRequest Test Run

var message: String;
def getRequest: HttpRequest = HttpRequest {

    location: "http://javafx.com/"
    method: HttpRequest.GET

    onStarted: function() {
        message = "{message} onStarted - started performing method: 

Figure 9.2 Testing the HttpRequest class

http://javafx.com/


ptg

JavaFX HttpRequest 299

{getRequest.method} on location: {getRequest.location}\n";
    }

    onConnecting: function() {
        message = "{message} onConnecting\n";
    }
    onDoneConnect: function() {
        message = "{message} onDoneConnect\n";
    }
    onReadingHeaders: function() {
        message = "{message} onReadingHeaders\n";
    }
    onResponseCode: function(code:Integer) {
        message = "{message} onResponseCode - responseCode: {code}\n";
    }
    onResponseMessage: function(msg: String) {
        message = "{message} onResponseMessage - responseMessage: {msg}\n";
    }

    onResponseHeaders: function(headerNames: String[]) {
        for (name in headerNames) {
            println("    {name}: {getRequest.getResponseHeaderValue(name)}");
        }
    }

    onReading: function() {
        message = "{message} onReading\n";
    }

    onToRead: function(bytes: Long) {
        if (bytes < 0) {
            message = "{message} onToRead - 

Content length not specified by server; bytes: {bytes}\n";
        } else {
            message = "{message} onToRead - 

total number of content bytes to read: {bytes}\n";
        }
    }

    // onRead can be used to show the
    // progress of reading the content from the location.
    onRead: function(bytes: Long) {
        message = "{message} ...{bytes} ";
    }

    // The response content is available in argument inputStream
    onInput: function(inputStream: java.io.InputStream) {
        // use input stream to access content here.
        // can use input.available() to see how many bytes are available.
        try {
            message = "{message}\n onInput - bytes of content available: "

   "{inputStream.available()}\n";



ptg

300 Chapter 9 Web Services

        } finally {
// close InputStream to free up resources
 inputStream.close();

            message = "{message} closed input.\n";
        }
    }

    onException: function(ex: java.lang.Exception) {
        message = "{message} onException - exception: 

{ex.getClass()} {ex.getMessage()}\n";
    }
    onDoneRead: function() {
        message = "{message} onDoneRead\n";
    }
    onDone: function() {
        message = "{message} onDone\n";
    }
}

getRequest.start();

Listing 9.10 includes the scene graph for the HttpRequest test program. Note that the 
Text object literal content property binds to the script variable message.

Listing 9.10 HttpRequest Test Scene Graph

Stage {
    title: "HttpRequest Test"
    width: 600
    height: 350
    scene: Scene {
        content: Text {
            font: Font {

      size: 16
            }
            x: 10,
            y: 30

content: bind message
 wrappingWidth: 550

        }
    }
}



ptg

Flickr: Interesting Photos 301

9.3  Flickr: Interesting Photos

With our tools finally assembled (PullParser, HttpRequest, and a modular Photo Car-
ousel application), it’s time to integrate HttpRequest with the Photo Carousel to dis-
play photos from Flickr’s web site. 

Flickr

Flickr (www.flickr.com) is an online social, photo management, and photo sharing site 
where people post their favorite photos, tag them, and make them available for 
friends, groups, or the world to see. Flickr users can tag images, provide titles, and 
organize images in creative ways. Flickr has a web services API that lets you write 
programs to manipulate public Flickr data. 

You can access the Flickr API using RESTful web service calls. You issue an HTTP 
GET request using a specific endpoint (location) and include a valid API key. 

Flickr Tip

To apply for a Flickr API Key, go to http://www.flickr.com/services/api/keys/apply/.
The process is quick and painless. Once Flickr provides you with a key, you can access the 
Flickr API through a web service call.

Here’s the general format to invoke a RESTful web service call with Flickr.
http://api.flickr.com/services/rest/?method=flickr.GROUP.METHOD_NAME

&api_key=YOUR_API_KEY&argument=ARG

where GROUP refers to the general Flickr API method group, METHOD_NAME is the specific 
API method, YOUR_API_KEY is your API key assigned by Flickr, and argument is an 
argument to the API method with value ARG. (Arguments depend on the API method 
invoked.) You invoke the web service call using JavaFX class HttpRequest.

Interesting Photos

Let’s begin our exploration of Flickr by invoking method flickr.interesting-
ness.getList, which returns a list of interesting photos from Flickr for the most recent 
day. The only required argument for this method is api_key. Optional arguments 
include the number of photos per page (default is 100), the number of pages returned 
(default is 1), a date (default is today), and extras (a comma-delimited list of extra 
information to include for each returned record).

To use HttpRequest, you specify the endpoint for HttpRequest property location as a 
string.

www.flickr.com
http://www.flickr.com/services/api/keys/apply/
http://api.flickr.com/services/rest/?method=flickr.GROUP.METHOD_NAME&api_key=YOUR_API_KEY&argument=ARG
http://api.flickr.com/services/rest/?method=flickr.GROUP.METHOD_NAME&api_key=YOUR_API_KEY&argument=ARG


ptg

302 Chapter 9 Web Services

location: "http://api.flickr.com/services/rest/?method=flickr.interestingness"
".getList&api_key=YOUR_API_KEY&per_page=3";

Listing 9.11 is a sample XML response for method flickr.interestingness.getList
with argument per_page set to 3.

Listing 9.11 Sample Flickr XML Response

<rsp stat="ok">
<photos page="1" pages="167" perpage="3" total="500">

<photo id="3375155189" owner="35237096496@N01" secret="fcbe3c544f"
server="3568" farm="4" title="Ray of Light" ispublic="1" isfriend="0"
isfamily="0"/>

<photo id="3376883783" owner="22598208@N02" secret="54cc825a1f"
server="3432" farm="4" title="A Windy Day for Strobists" ispublic="1"
isfriend="0" isfamily="0"/>

<photo id="3375633598" owner="66076061@N00" secret="7720f002d4"
server="3439" farm="4" title="Burleigh Heads Sunset" ispublic="1"
isfriend="0" isfamily="0"/>

</photos>
</rsp>

Note that Flickr returns an XML response document and expects you to construct the 
URL that will fetch each image. You do this by combining <photo> tag attributes id,
secret, server, and farm, and providing an optional photo size specification with a 
JPG file extension. Here is an example URL string, assuming that properties farm,
server, id, and secret are stored in JavaFX object meta. (The _m suffix indicates a small 
sized photo, 240 pixels on its longest side.)

url: "http://farm{meta.farm}.static.flickr.com/{meta.server}/"
"{meta.id}_{meta.secret}_m.jpg"

Listing 9.12 shows a sample XML response if there’s an error with Flickr (such as an 
invalid API key or an unrecognized method). Note that this is a valid HttpRequest 
response (no problem with internet connections or valid web addresses), but Flickr is 
unable to generate the requested data.

Listing 9.12 Sample Flickr Error Response

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="fail">

<err code="[error-code]" msg="[error-message]" />
</rsp>

Now let’s look at the PullParser object that extracts photo information from the XML 
response (and makes sure the response is valid). From the example XML response 
document in Listing 9.11 and the error response in Listing 9.12, you see that tag <rsp>



ptg

Flickr: Interesting Photos 303

is level 0, <photos> is level 1 and <photo> is level 2. Each <photo> element includes 
attributes id, owner, secret, server, farm, and title, which are needed to build a 
JavaFX Image and also store a photo’s title. The PullParser Event function getAt-
tributeValue returns a value for each of these attributes.

Furthermore, an error response includes tag <err> at level 1 and attribute msg holds 
the error message.

Assuming the response is error-free, the PullParser builds object literal FlickrMeta to 
store meta data for each photo. It then passes this information to the carousel with

carousel.addImage(meta);

When the PullParser sees event type END_DOCUMENT, it indicates completion by setting 
boolean loadComplete to true.

If an error occurs, the parser calls function alert (shown in Listing 9.15) with the error 
message and sets script variable error to true. (The PullParser checks for two error sit-
uations. First, if the Flickr response returns an error status, and second, if Flickr 
returns a normal status but no photos are returned.)

Listing 9.13 PullParser to parse Flickr response data

    def parser = PullParser {
        onEvent: function(event: Event) {
            if (event.type == PullParser.START_ELEMENT) {

 if (event.qname.name == "err" and event.level == 1) {
      error = true;

  alert("Flickr Failed Status", 
event.getAttributeValue(QName {name: "msg"

         }));
                }
                else if (event.qname.name == "photos" and event.level == 1) {
                    if (event.getAttributeValue(QName {name: "total"}) == "0") {

        error = true;
   alert("Oops", "No Photos Found");

                    }
                }

else if (event.qname.name == "photo" and event.level == 2) {
    def meta = FlickrMeta {
        id: event.getAttributeValue(QName{name: "id"})
       owner: event.getAttributeValue(QName{name: "owner"})
       secret: event.getAttributeValue(QName{name: "secret"})
       server: event.getAttributeValue(QName{name: "server"})

        farm: event.getAttributeValue(QName{name: "farm"})
       title: event.getAttributeValue(QName{name: "title"})

                    }
    carousel.addImage(meta);

                }
            } else if (event.type == PullParser.END_DOCUMENT) {



ptg

304 Chapter 9 Web Services

   if (not error) {
     loadComplete = true;

   println("photo data loaded");
                }

   else error = false;
            } 
        }
    }

Listing 9.14 shows class FlickrMeta, which is a convenience class to encapsulate the 
information for each photo.

Listing 9.14 FlickrMeta Class

public class FlickrMeta {
    public-init var id: String;
    public-init var owner: String;
    public-init var secret: String;
    public-init var server: String;
    public-init var farm: String;
    public-init var title: String;
}

Let’s now look at the HttpRequest object that invokes the web service API call. 
Listing 9.15 includes function makeServiceCall, which builds the HttpRequest object. 
It accepts arguments parser, the PullParser shown in Listing 9.13, and location, the 
HttpRequest URL for the RESTful web service. Function alert helps with error han-
dling.

The onRead callback function displays successive “. . . “ strings to provide feedback to 
the user that response data is arriving. The onInput callback function parses the 
response using the PullParser object. The finally block closes the input stream when 
parsing is complete.

Listing 9.15 Function makeServiceCall

function alert(alertTitle: String, msg: String): Void {
    loadComplete = false;
    println("{alertTitle}: {msg}");
    description = "{alertTitle}:\n{msg}";
}

function makeServiceCall(location: String, parser: PullParser): Void {
    description = "Loading Photos From Flickr ...";
    var errorMessage: String;
    var httpRequestError: Boolean = false;

    // Submit HttpRequest



ptg

Flickr: Interesting Photos 305

    var request: HttpRequest = HttpRequest {

        location: location
        method: HttpRequest.GET

        onRead: function(bytes: Long) {
            description = "{description} ... ";
        }

        onException: function(exception: Exception) {
            exception.printStackTrace();
            alert("Error", "{exception}");

httpRequestError = true;

        onResponseCode: function(responseCode: Integer) {
            if (responseCode != HttpStatus.OK) {
                description = request.responseMessage;
            }
        }

        onInput: function(input: java.io.InputStream) {
            try {

   parser.input = input;
    parser.parse();

            } finally {
    input.close();

            }
        }
    }
    request.start();
}

Listing 9.16 shows function loadImageMetadata, which constructs the web service end-
point (in variable location) and the PullParser for the expected response. It then calls 
makeServiceCall, shown above in Listing 9.15.

Listing 9.16 Function loadImageMetadata

function loadImageMetadata(): Void {
    var errorMessage: String;
    println("Loading image metadata...");
    description = "Loading Photos From Flickr ...";
    var location = "http://api.flickr.com/services/rest/?method="

"flickr.interestingness.getList&api_key={apiKey}&per_page={perPage}";

    def parser = PullParser {
. . . see Listing 9.13 on page 303 . . .

    }
    makeServiceCall(location, parser);
}



ptg

306 Chapter 9 Web Services

With the details of constructing the PullParser and HttpRequest objects behind us, 
Listing 9.17 shows the main script and how these pieces all work together. If you com-
pare Listing 9.17 with Listing 8.20 on page 283, you’ll see that the structure is similar. 
While the original Photo Carousel example uses static object literal notation to initial-
ize the photo data, both scripts still add each image to the carousel with function 
carousel.addImage and begin carousel movement with function carousel.play.

Listing 9.17 also includes the following trigger block.
var loadCarousel: Boolean = bind loadComplete on replace  {
    if (loadComplete) {
        println("starting carousel");
        carousel.play();
    }
}

This binds variable loadCarousel to Boolean loadComplete. Key words on replace
mean the enclosed block is executed when loadComplete changes value. Since the 
block executes both when loadComplete is first initialized (to false) as well as when it 
becomes true, we check to make sure the change is to true before calling Carousel 
function play.

Listing 9.17 FlickrInteresting Photo Carousel Main Script (Main.fx)

def apiKey = "Your Flickr API Key";
var description: String;
def perPage = 100;

def sceneHeight = 500;
def sceneWidth = 400;
var carousel = Carousel {
    centerX: sceneWidth / 2
    centerY: sceneHeight / 2.4
    radiusX: sceneWidth * .26
    radiusY: sceneHeight * .24
};

function makeServiceCall(location: String, parser: PullParser): Void {
. . . see Listing 9.15 . . .

}

function loadImageMetadata(): Void {
. . . see Listing 9.16 . . .

}

var loadCarousel: Boolean = bind loadComplete on replace  {
    if (loadComplete) {
        println("starting carousel");
        carousel.play();
    }



ptg

Flickr: Interesting Photos 307

}

var loadComplete = false;
var error = false;
Stage {
    title: "Carousel Slide Show"
    width: sceneWidth
    height: sceneHeight
    scene: Scene {
        fill: LinearGradient {

. . . unchanged . . .
        }
        content: [
            VBox {
                visible: bind not loadComplete

 layoutY: sceneHeight / 4
 layoutX: sceneWidth / 5

     spacing: 20
     content: [
        Text {

       fill: Color.WHITE
    wrappingWidth: sceneWidth - 100

     content: bind description
                    }
                ]
            }
        carousel ]
    }
}
loadImageMetadata();

The Carousel object has not changed with the update that uses Flickr data and it still 
builds images based on the PullParser. Now, however, the images include the Flickr 
meta data. Listing 9.18 shows the FlickrImage convenience class, which includes the 
Image object and the Flickr data. Note that Image property backgroundLoading is true. 
This lets the (100) images from Flickr load in the background while the carousel starts 
moving. Since each photo starts its animation in three and a half second intervals, 
there’s plenty of time to load a photo before it is displayed. The Image url property is 
built from the Flickr data saved in object FlickrMeta (Listing 9.14 on page 304).

Listing 9.18 FlickrImage Class

public class FlickrImage {
    public-init var meta: FlickrMeta;
    public def image: Image = Image {
        url: "http://farm{meta.farm}.static.flickr.com/{meta.server}/"

"{meta.id}_{meta.secret}_m.jpg";
        width: 240
        height: 200



ptg

308 Chapter 9 Web Services

        preserveRatio: true
        backgroundLoading: true
    }
}

Listing 9.19 shows Carousel function addImage, called from the PullParser object (see 
Listing 9.13 on page 303) for each photo returned by Flickr. Repeated addImage func-
tion invocations build a sequence of FlickrImage objects (as many as Flickr returns).

Listing 9.19 Carousel Function addImage

public class Carousel extends CustomNode {

. . .

    var images: FlickrImage[];

    public function addImage(metadata: FlickrMeta): Void {
        insert FlickrImage {
            meta: metadata
        } into images;
    }

. . .

}

9.4  Flickr: Searching with Tags

Flickr has an extensive API. Method interestingness.getList is simple in that there 
are no required arguments (other than the API key). But let’s say you’d like to display 
photos in a carousel based on a set of tags. Depending on the tags you provide (such 
as “red,green” or “surfer”), you’ll get a different set of photos. Figure 9.3 shows the 
FlickrTag application as the user provides search tags and then as the carousel is 
showing photos based on the tag (“surfer”).



ptg

Flickr: Searching with Tags 309

Fortunately, Flickr is very consistent with its response data. You can use the same 
PullParser object, as well as the same HttpRequest object with any of the methods that 
return photo data. For searching, you just have to change the endpoint (HttpRequest 
property location) and provide a TextBox object to get input from the user. Let’s start 
with the Flickr API search method.

Flickr method flickr.photos.search returns a list of photos matching the provided 
tags. The default search criteria matches “any” of the provided tags. (This example 
supports the default search criteria.) Only public photos are returned. Here is the end-
point for HttpRequest property location to use method flickr.photos.search.

location: "http://api.flickr.com/services/rest/?method=flickr."
"photos.search&api_key={apiKey}&tags={photoTags}&per_page={perPage}";

where apiKey, photoTags, and perPage are script variables containing the API key, 
search tags, and photos per page information, respectively. (Argument per_page is 
optional.)

The XML response returned is the same format as the response for flickr.interest-
ingness.getList (see “Sample Flickr XML Response” on page 302). However, in order 
to provide the text for the search tags, you’ll have to obtain input from the user. 
JavaFX provides two choices for reading user input: Component TextBox and Swing 

Figure 9.3 Providing input with component TextBox



ptg

310 Chapter 9 Web Services

component TextField. This example uses TextBox, since TextBox is also applicable in 
the JavaFX mobile environment.

Listing 9.20 shows the changes in project FlickrTag to implement searching Flickr for 
photos based on tags. New or modified code is displayed in bold.

Function loadImageMetadata defines the URL (location) for method photos.search
and specifies argument tags.

The scene graph now includes an additional Text component to display instructions 
and a TextBox to read user input. The TextBox action function invokes the web ser-
vice call with function loadImageMetaData. Both components go into the VBox compo-
nent which becomes invisible after the Flickr response data has been processed.

Listing 9.20 FlickrTag (Main.fx)

def apiKey = "Your Flickr API Key";
var description: String;
var photoTags: String;
def perPage = 100;

def sceneHeight = 500;
def sceneWidth = 400;
var carousel = Carousel {

. . . unchanged . . .
};

function alert(alertTitle: String, msg: String): Void {
. . . unchanged . . .

}

function makeServiceCall(location: String, parser: PullParser): Void {
. . . unchanged . . . 

}

function loadImageMetadata(): Void {
    var errorMessage: String;
    println("Loading image metadata...");
    description = "Loading Photos From Flickr ...";

var location = "http://api.flickr.com/services/rest/?method="
"flickr.photos.search&api_key={apiKey}"
"&tags={photoTags}&per_page={perPage}";

    def parser = PullParser {
. . . unchanged . . .

        }
    }
    makeServiceCall(location, parser);
}



ptg

Flickr: Searching with Tags 311

var loadCarousel: Boolean = bind loadComplete on replace  {
. . . unchanged . . .

}

var loadComplete = false;
var error = false;
var textInput: TextBox;
Stage {
    title: "Carousel Slide Show"
    width: sceneWidth
    height: sceneHeight
    scene: Scene {
        fill: LinearGradient {

. . . unchanged . . .
        }
        content: [
            VBox {
                visible: bind not loadComplete

 layoutY: sceneHeight / 4
 layoutX: sceneWidth / 20

     spacing: 20
     content: [

Text {
       fill: Color.WHITE

    wrappingWidth: sceneWidth - 100
  content: "Type tags separated by commas"

                    }
    textInput = TextBox {
         columns: 20

     action: function(): Void {
      if (textInput.text != "") {

  photoTags = textInput.text;
loadImageMetadata();

             }
           }

                    }
        Text {

       fill: Color.WHITE
    wrappingWidth: sceneWidth - 100

     content: bind description
                    }
                ]
            }
        carousel ]
    }
}



ptg

312 Chapter 9 Web Services

9.5  Flickr: Getting User Photos

Our final Flickr application (FlickrUser) requests a list of photos with a user-supplied 
Flickr screen name. Public photos are displayed from that user’s account. This exam-
ple is different than the previous two because it requires two web service calls to get 
the job done. The application, therefore, needs two PullParser objects—one to process 
the response from each call. The PullParser object that the previous two examples 
used to parse photo response data can be reused by this application. The other Pull-
Parser is new.

The first web service call obtains a user’s account ID. People typically know their con-
tacts on Flickr by screen name; accessing a user’s account ID is more challenging. This 
call then, will lookup a user’s account ID from the supplied screen name. Here is the 
endpoint URL for HttpRequest property location to invoke method flickr.peo-
ple.findByUsername. This method takes argument api_key (of course) and username, a 
user’s Flickr screen name.

location: "http://api.flickr.com/services/rest/?method="
"flickr.people.findByUsername&api_key={apiKey}&username={username}";

Listing 9.21 shows a sample XML response for this method.

Listing 9.21 Sample XML Response for method findByUsername

<rsp stat="ok">
<user id="FlickrID_here" nsid="FlickrID_here">

<username>Flickr_username_here</username>
</user>

</rsp>

Listing 9.22 shows function getAccountName, which sets the location variable with the 
correct method endpoint and defines the PullParser object that processes the 
response. It then invokes the web service by calling makeServiceCall (see Listing 9.15 
on page 304 for the code for function makeServiceCall).

Inside the PullParser object, the onEvent callback function invokes loadImageMetadata,
which requests the public photos belonging to the user ID returned in the response.

Listing 9.22 Function getAccountName (FlickrUser)

function getAccountName(): Void {
    error = false;
    description = "Getting Username From Flickr ...";
    var errorMessage: String;
    var location = "http://api.flickr.com/services/rest/?method="

"flickr.people.findByUsername&api_key={apiKey}&username={username}";



ptg

Flickr: Getting User Photos 313

    var parser = PullParser {
        onEvent: function(event: Event): Void {
            if (event.type == PullParser.START_ELEMENT and event.level == 1) {
                if (event.qname.name == "user") {

    user_id = event.getAttributeValue(QName{name: "nsid"}) ;
     loadImageMetadata();

                }
                else if (event.qname.name == "err") {

    alert("Flickr Error",
                    event.getAttributeValue(QName{name: "msg"}));

      error = true;;
                }
            }
        }
    }
    makeServiceCall(location, parser);
}

The second web service call gets a user’s list of photos. Here is the endpoint URL for 
HttpRequest property location to invoke method flickr.people.getPublicPhotos.
This method requires arguments api_key and user_id, the user’s Flickr user ID.

location: "http://api.flickr.com/services/rest/?method="
"flickr.people.getPublicPhotos&api_key={apiKey}&"
"user_id={user_id}&per_page={perPage}";

Listing 9.23 shows function loadImageMetadata, which is unchanged from earlier ver-
sions (see the PullParser in Listing 9.13 on page 303), except for variable location.

Listing 9.23 Function loadImageMetadata (FlickrUser)

function loadImageMetadata(): Void {
    var errorMessage: String;
    println("Loading image metadata...");
    description = "Loading Photos From Flickr ...";

var location = "http://api.flickr.com/services/rest/?method="
"flickr.people.getPublicPhotos&api_key={apiKey}&"
"user_id={user_id}&per_page={perPage}";

    def parser = PullParser {
. . . unchanged from Listing 9.13 on page 303 . . .

        }
    }
    makeServiceCall(location, parser);
}

The application is already set up to use component TextBox to gather input from the 
user. Listing 9.24 shows the updated scene graph for application FlickrUser. Note that 



ptg

314 Chapter 9 Web Services

if the user supplies an unrecognized screen name, the error flag is set to true. This 
prevents the application from calling the second web service or starting up the carou-
sel. Instead, an error message is displayed and the user gets another opportunity to 
provide a screen name.

Listing 9.24 Scene Graph (FlickrUser)

var loadComplete = false;
var error = false;
var textInput: TextBox;
Stage {
    title: "Carousel Slide Show"
    width: sceneWidth
    height: sceneHeight
    scene: Scene {
        fill: LinearGradient {

. . . unchanged . . .
        }
        content: [
            VBox {
                visible: bind not loadComplete

 layoutY: sceneHeight / 4
 layoutX: sceneWidth / 20

     spacing: 20
     content: [
        Text {

       fill: Color.WHITE
    wrappingWidth: sceneWidth - 100

content: "Provide a Flickr screen name"
                    }

    textInput = TextBox {
         columns: 20

     action: function(): Void {
      if (textInput.text != "") {

 username = textInput.text;
 getAccountName();

             }
           }

                    }
        Text {

       fill: Color.WHITE
    wrappingWidth: sceneWidth - 100

     content: bind description
                    }
                ]
            }
            carousel ]
    }
}



ptg

315

10 Mobile Applications

The promise of JavaFX to target different screens (desktop, mobile device, or TV) is 
possible because JavaFX has separate profiles for each platform. Each profile can, and 
eventually will, have separate extensions that leverage a target device. JavaFX also 
offers common elements, guaranteed to work with any profile. With this division of 
runtime systems, you can prepare an application to work anywhere. Alternatively, 
you can tailor an application for a specific environment.

Preparing an application to run on a mobile device requires two areas of attention. 
First, make sure your application fits a mobile device form factor. Second, don’t use 
code outside the common profile.

What You Will Learn

• JavaFX common profile

• Targeting a mobile application

• JavaFX mobile emulators

• Discovering the execution environment dynamically

• Responding to orientation changes

• Mouse and key events for mobile applications

• Mobile handset keypad and key press events

• Making an application mobile ready

• Differences between mobile and desktop profiles

10.1  JavaFX Mobile—What Does It Mean?

If you’re targeting applications for mobile devices, JavaFX provides three generic 
mobile device emulators for testing code. But before we show you how to use these 
emulators, let’s discuss what JavaFX Mobile provides today and what it promises for 
tomorrow.



ptg

316 Chapter 10 Mobile Applications

Figure 10.1 is the big picture for JavaFX. This block diagram shows the various pieces 
of JavaFX you can leverage when creating applications. As the diagram shows, there 
are extensions for three environments: Desktop, Mobile and TV. All three environ-
ments support the common API (labeled Common Elements in Figure 10.1). As of this 
writing, the runtime for the JavaFX TV environment does not yet exist. There is a runt-
ime for the JavaFX mobile environment, which supports the common API only. 

Mobility Tip

The JavaFX Swing components and the javafx.scene.effect package are not included in the 
Common Elements. However, the new JavaFX “native” UI components are in the Common 
Elements and can be used in mobile applications.

Figure 10.1 JavaFX Platform

Application Framework

Common Elements

JavaFX Runtime

JavaFX
Desktop
Runtime

Desktop
Extensions

JavaFX
Mobile

Runtime

Mobile
Extensions

JavaFX
TV

Runtime

TV
Extensions

Java Virtual Machine (Java Plug In)



ptg

JavaFX Mobile—What Does It Mean? 317

Table 10.1 summarizes the current limitations of JavaFX in the mobile environment. 
Note that some of these limitations are due to the nature of mobile handsets (such as 
mouse events and applet-specific features).

Our first step is to create a simple JavaFX application and deploy it with the JavaFX 
mobile emulators. We’ll start with an application that displays information about its 
runtime environment.

Mobile Emulator

To deploy this application with the emulator in NetBeans, right click the project name, 
select the Properties menu and choose Run. From the radio button choices under 
Application Execution Model, select Run in Mobile Emulator, as shown in 
Figure 10.2.

TABLE 10.1 Limitations in the Mobile Environment 

Feature Not Available with Mobile Runtime

javafx.scene.Cursor Cursor property (no effect)
javafx.ext.Swing Swing UI components
javafx.reflect Provides reflective values
javafx.scene.effect

javafx.scene.effect.light
Creates visual effects

ShapeIntersect

ShapeSubtract
Composite shapes

AppletStageExtension Provides browser-specific behavior
FXEvaluator

StringLocalizer
From javafx.util package

Mouse Events onMouseEntered (not relevant), general mouse 
movements (such as hover, not recorded)

Figure 10.2 JavaFX running in the Mobile Emulator



ptg

318 Chapter 10 Mobile Applications

There are currently three JavaFX mobile emulators: Default (DefaultFxPhone1), Touch 
(DefaultFxTouchPhone1), and Qwerty (QwertyFxPhone1). Figure 10.3 and Figure 10.4 
show our simple application running in the standard mobile emulators. In 
Figure 10.3, View A shows the default emulator and View B shows the touch emula-
tor. Figure 10.4 shows the qwerty emulator.

This application includes a Text component that displays information about the cur-
rent environment (screen size and profile). Knowing something about the current 
environment is useful for applications that target both desktop and mobile profiles. A 
Rectangle shape acts as a background for the Text component.

Figure 10.3 JavaFX mobile emulator (default emulators)

View A: DefaultFxPhone1

View B: DefaultFxTouchPhone1



ptg

JavaFX Mobile—What Does It Mean? 319

Discovering Your Environment

JavaFX provides several ways for applications to discover their execution environ-
ment.

__PROFILE__

The pseudo variable __PROFILE__ is set to "browser" (running as an applet in a 
browser), "mobile" (running in the mobile environment), or "desktop" (not an applet 
and not mobile). Here, Boolean isMobile is true in a mobile environment.

def isMobile = __PROFILE__ == "mobile";

FX.getProperty

Object FX is available in all JavaFX applications. FX function getProperty returns sys-
tem-level properties based on a key String argument. In a mobile environment, key 
argument "javafx.me.profiles" returns information on the JavaFX runtime version, 
as well as the mobile runtime version. In a non-mobile environment, FX.getProperty
with this key returns null.

def isMobile = FX.getProperty("javafx.me.profiles") != null;

Figure 10.4 JavaFX mobile emulator (qwerty emulator)



ptg

320 Chapter 10 Mobile Applications

Stage

The Stage object reflects the mobile device screen height and width. 
def stage: Stage = Stage {
    title: "Mobility"
    scene: Scene {
        content: [ . . . ]
    }
}
def height = stage.height; // height of screen
def width = stage.width; // width of screen

Listing 10.1 is the code for the application running in Figure 10.3 and Figure 10.4. 
After determining whether or not the environment is the mobile runtime, the applica-
tion builds a profile string. This variable (profileString) includes the screen dimen-
sions and the __PROFILE__ pseudo variable. 

Next, the application defines a background Rectangle (r1) and a Text component (t1).
The background rectangle binds its dimensions to expressions that depend on the 
Stage object stage. The Text object sets its location relative to the background rectan-
gle and binds property wrappingWidth to an expression using the rectangle’s width. 
Thus, the dimensions of the background rectangle and the Text wrappingWidth depend 
on the screen size.

The scene graph includes a Group object that holds the Text and Rectangle. The 
Groups’s horizontal position depends on the Stage width. Grouping Text and Rectan-
gle together makes it easy to maintain the relative position of these two components.

Listing 10.1 MobileTest1

def isMobile = __PROFILE__ == "mobile";
def profileString:String = bind "height={stage.height}, width={stage.width}.\n"
 "profile={__PROFILE__}.";

def r1 = Rectangle {
    height: bind stage.height / 2
    width: bind stage.width -  50
    fill: Color.web("#3333ee", .3)
    stroke: Color.CADETBLUE
}

def t1 = Text {
    x: r1.x + 15
    y: r1.y + 15
    wrappingWidth: bind r1.width - 30
    font: Font {
        size: 16
    }



ptg

JavaFX Mobile—What Does It Mean? 321

    textOrigin: TextOrigin.TOP
    content: bind profileString
}

def stage: Stage = Stage {
    title: "Mobility"
    scene: Scene {
        content: [
            Group {

 layoutX: bind stage.width / 2 - r1.layoutBounds.width / 2
     layoutY: 20

  content: [ r1, t1 ]
            }
        ]
    }
}

Orientation Changes

When a mobile device changes orientation, you may want your application to 
respond. This means updating your application’s scene graph. Fortunately, JavaFX 
makes detecting changes in orientation straightforward with binding expressions 
and/or triggers. Perhaps the more difficult part in responding to orientation changes 
is deciding what components in your scene graph should change and how.

For example, in the mobility test application from Figure 10.3, the text component 
should not rotate (you want the text to remain readable), but the Text object literal’s 
dimensions should expand or contract depending on the dimensions of the display.

Figure 10.5 shows an enhanced version of our mobility test application. View A 
shows the application running in the emulator with normal (0 degree rotation) orien-
tation. The text display includes the word “vertical” at the bottom. View B shows the 
emulator with a 90-degree rotation, giving a horizontal orientation to the display. You 
can see that the text component wrapping width and the background rectangle adjust 
to the change in screen size. The text now includes the word “horizontal” at the bot-
tom.



ptg

322 Chapter 10 Mobile Applications

Listing 10.2 shows the code that responds to these orientation changes. To display the 
word “vertical” with a vertical display and the word “horizontal” with a horizontal 
display, we define a new String variable (orientationString) that includes the correct 
orientation word. The program updates this String using an on replace block that trig-
gers when object stage.height changes. (The dimensions of object stage reflect 
changes in orientation.) If the height is greater than the width, the phone is oriented 
vertically and String orientationString is updated with the correct label.

Text component t1 now binds its content property to orientationString so that when 
the orientation changes, the scene graph reflects the new content. Because property 
wrappingWidth is already bound to the background rectangle’s width (which is bound 
to stage.width), the text reformats to fit into the new dimensions.

Listing 10.2 MobileTest2

def isMobile = __PROFILE__ == "mobile";

def profileString:String = bind "height={stage.height}, width={stage.width}.\n"
 "profile={__PROFILE__}.";

var orientationString: String;
def height = bind stage.height on replace {
    if (stage.height > stage.width) {

Figure 10.5 Responding to orientation changes

View A: Vertical Orientation

View B: Horizontal Orientation

vertical

horizontal



ptg

JavaFX Mobile—What Does It Mean? 323

        orientationString = "{profileString}\nvertical";
    }
    else {
        orientationString = "{profileString}\nhorizontal";
    }
}

def r1 = Rectangle {
    height: bind stage.height / 2
    width: bind stage.width -  50
    fill: Color.web("#3333ee", .3)
    stroke: Color.CADETBLUE
}

def t1 = Text {
    x: r1.x + 15
    y: r1.y + 15
    wrappingWidth: bind r1.width - 30
    font: Font {
        size: 16
    }
    textOrigin: TextOrigin.TOP

content: bind orientationString
}

def stage: Stage = Stage {
. . . code unchanged . . .

}

Mobility Tip

Group components together that respond to orientation changes in the same way. This will 
simplify your program. For example, Text components are not typically rotated, but you may 
need to resize them when the display size changes. Similarly, ImageView is also not rotated but 
may need scaling. Non-text based graphical objects may require a 90-degree rotation.

Mouse and Key Events

The default emulator includes a keypad with a selection button, arrow keys, soft keys, 
and numeric keys. The default touch phone emulator has no keypad, but includes a 
virtual keypad with the TextBox component. The mouse mimics touch gestures, 
which should be viewed as an approximation of real-phone behavior. For example, 
touch gestures require nice, fat targets, whereas mouse devices can point with preci-
sion on the screen.



ptg

324 Chapter 10 Mobile Applications

Let’s update the mobile test program to change the rectangle’s background color with 
either a mouse click (emulating the touch phone’s touch gesture) or a keypad select 
key (on the default emulator).

Figure 10.6 shows the default emulator with most of the keys labeled. 

Figure 10.7 shows the qwerty emulator with several keys labeled.

The onKeyPressed property lets you specify a key press event handler, as shown here.
onKeyPressed: function(ke: KeyEvent): Void {

println("keycode={ke.text}, code={ke.code}");
if (ke.code == KeyCode.VK_ENTER)

bgColor = if (bgColor == Color.BISQUE) Color.THISTLE else Color.BISQUE
}

The println statement displays the key text and key code for each key press. 
(Figure 10.6 and Figure 10.7 label key press codes.) If the key code is VK_ENTER, the 

Figure 10.6 Mobile emulator key press events

VK_SOFTKEY_0 VK_SOFTKEY_1

VK_CLEAR
VK_SOFTKEY_2

VK_ENTER
VK_UP

VK_DOWN

VK_LEFT

VK_RIGHT

VK_1

VK_9

VK_ASTERISK VK_POUND



ptg

JavaFX Mobile—What Does It Mean? 325

background color bgColor alternates between two colors (Color.THISTLE and 
Color.BISQUE).

Before key events can be detected, the node that has the key press event handler must 
have focus. Rectangle r1 gains focus with the following statement.

r1.requestFocus();

Property onMouseClicked lets you change background colors with the touch phone 
emulator. Here’s the mouse event handler.

onMouseClicked: function(e: MouseEvent): Void {
bgColor = if (bgColor == Color.BISQUE) Color.THISTLE else Color.BISQUE

}

Listing 10.3 shows the object literal for Rectangle r1 with both the key press and 
mouse click event handler. 

Listing 10.3 Key Press Events

var bgColor = Color.BISQUE;
def r1 = Rectangle {
    height: bind stage.height / 2
    width: bind stage.width -  50

fill: bind bgColor
    stroke: Color.CADETBLUE

Figure 10.7 Mobile emulator (qwerty) key press events

VK_SOFTKEY_0

VK_SOFTKEY_2

VK_ENTER
VK_DOWN

VK_RIGHT

VK_Z
VK_M

VK_SOFTKEY_1



ptg

326 Chapter 10 Mobile Applications

onKeyPressed: function(ke: KeyEvent): Void {
        println("keycode={ke.text}, code={ke.code}");
        if (ke.code == KeyCode.VK_ENTER)
        bgColor = if (bgColor == Color.BISQUE) Color.THISTLE else Color.BISQUE
    }
    onMouseClicked: function(e: MouseEvent): Void {
        println("mouse clicked");
        bgColor = if (bgColor == Color.BISQUE) Color.THISTLE else Color.BISQUE
    }
}
def t1 = Text { . . . }

def stage: Stage = Stage {
    title: "Mobility"
    scene: Scene {
        content: [
            Group {

 layoutX: bind stage.width / 2 - r1.layoutBounds.width / 2
     layoutY: 20

  content: [ r1, t1 ]
            }
        ]
    }
}
r1.requestFocus();

User Input

The JavaFX UI component TextBox gathers text-based user input. When the compo-
nent has focus, the emulator accepts keyboard input, as shown in Figure 10.8. Select 
the Enter key to confirm input. With the QwertyFxPhone1 emulator, use the emula-
tor’s keypad for input.



ptg

Making a JavaFX Application Mobile Ready 327

10.2  Making a JavaFX Application Mobile Ready

In the previous chapter, we presented three Flickr-based applications that display 
photos in an animated photo carousel. FlickrInteresting displays photos from today’s 
set of “interesting” photos. FlickrTag displays photos based on a user-supplied search 
tag. Finally, FlickrUser displays public photos from a Flickr account based on a 
screenname supplied by the user. Figure 10.9 shows the FlickrInteresting application 
running in the desktop environment (View A) and in the mobile environment (View 
B).

Figure 10.8 Text input with the qwerty mobile emulator



ptg

328 Chapter 10 Mobile Applications

In this section, we’ll show you how to make these applications run in both the mobile 
and non-mobile environments. (Note that the updated applications replace the previ-
ous ones; they are not mobile-only, but run in both environments.) Here is a checklist 
of modifications that make the applications both mobile and desktop friendly.

• Construct the animation path elements based on the screen dimensions deter-
mined at run time (Main.fx).

• Detect orientation changes and reposition the carousel (Main.fx).

• Request 50 images per page instead of 100 in the mobile environment (Main.fx).

• Scale the images during load to a smaller size in the mobile environment (Flickr-
Image.fx).

• Scale down the images for the ScaleTransition by factor .3 instead of .4 in the 
mobile environment (CarouselPhoto.fx).

• Shorten the duration of the photo carousel animation in the mobile environment 
(CarouselPhoto.fx).

All three Flickr applications require the same modifications. 

Figure 10.9 Standard (View A) and mobile (View B) versions of FlickrInteresting

View A: Desktop Environment

View B: Mobile Environment



ptg

Making a JavaFX Application Mobile Ready 329

Detecting the Mobile Environment

First, add script public variable isMobile, which is true when the application detects 
the mobile environment. Variable isMobile is used to set the sceneHeight and scene-
Width variables, which in turn determine the size of the carousel. The isMobile vari-
able is public so that other classes in the application can access it. Listing 10.4 shows 
the added code (in bold) that sets isMobile to true if the application is running in the 
mobile environment.

Listing 10.4 Determine if in Mobile Environment (Main.fx)

public def isMobile = __PROFILE__ == "mobile";
def perPage = if (isMobile) 50 else 100;

def sceneHeight = if (isMobile) 320 else 500;
def sceneWidth = if (isMobile) 240 else 400;
def carousel: Carousel = Carousel {
    centerX: sceneWidth / 2.2
    centerY: sceneHeight / 2.4
    radiusX: sceneWidth * .26
    radiusY: sceneHeight * .24
};

Because variable isMobile is public, Main.fx requires a run function for script-level 
statements (those not in a function or class). Listing 10.5 shows the added run func-
tion.

Listing 10.5 Adding a run Function (Main.fx)

def stage: Stage = Stage {
    title: "Carousel Slide Show"
    scene: Scene {

. . .
}

}

function run() {
    stage.height = sceneHeight;
    stage.width = sceneWidth;
}

Detecting Orientation Changes

The application detects orientation changes with on replace and the stage height 
(stage.height), shown in Listing 10.6. If the application is vertical, the carousel is posi-
tioned at its original location (translateX and translateY are 0). If the application is 



ptg

330 Chapter 10 Mobile Applications

horizontal, the carousel moves to the right and up in the display (translateX is 45 and 
translateY is -55). The size of the carousel does not change with a different orienta-
tion.

Listing 10.6 Detect orientation changes (Main.fx)

def height = bind stage.height on replace {
if (stage.height > stage.width) { // vertical

carousel.translateX = 0;
carousel.translateY = 0;

}
else { // horizontal

carousel.translateX = 45;
carousel.translateY = -55;

}
}

Reducing the Number and Size of Images

The Flickr web services have an optional per_page argument that specifies how many 
photos to return per page (we get one page back). Set this to 50 in the mobile environ-
ment (the default is 100). Listing 10.7 shows the new endpoint with the per_page argu-
ment included. (Read-only variable perPage is initialized in Listing 10.4.)

Listing 10.7 Save mobile environment info 

function loadImageMetadata(): Void {
    var errorMessage: String;
    description = "Loading Photos From Flickr ...";
    def location = "http://api.flickr.com/services/rest/?method="
        "flickr.people.getPublicPhotos&api_key={apiKey}"
        "&user_id={user_id}&per_page={perPage}";

. . .

}

Listing 10.8 shows the updated FlickrImage class that scales its Image component 
based on whether it’s running in the mobile environment or not. Note that the syntax 
for accessing public variable isMobile must include the package name (flickr) and 
the class (Main).

Listing 10.8 Scale images (FlickrImage.fx)

public class FlickrImage {
    public-init var meta: FlickrMeta;
    public var image: Image = Image {
        url: "http://farm{meta.farm}.static.flickr.com/{meta.server}/"



ptg

Making a JavaFX Application Mobile Ready 331

"{meta.id}_{meta.secret}_m.jpg";
width: if (flickr.Main.isMobile) 180 else 240
height: if (flickr.Main.isMobile) 160 else 200

        preserveRatio: true
        backgroundLoading: true
    }
}

Adjusting the Animation

Class CarouselPhoto builds the transitions that apply to the images as they travel 
around the carousel. In the mobile environment, the path elements define a smaller 
path. (The path is built from path elements based on the screen size.) In the mobile 
environment, the path animation duration is also reduced, since the path size is 
smaller. Listing 10.9 shows these changes made to CarouselPhoto.fx.

Listing 10.9 Modify ScaleTransition and Animation Time (CarouselPhoto.fx)

. . .
def animationDuration = if (flickr.Main.isMobile) 20s else 26s;

. . .

    public def carouselAnimation = SequentialTransition {
        node: this
        content: [

 FadeTransition {
    duration: 1.5s
    fromValue: 0.0
    toValue: 1.0

            }
 PauseTransition {
    duration: 2.5s

            }

 ParallelTransition {
     node: this
     content: [

     ScaleTransition {
duration: animationDuration / 2
toX: if (flickr.Main.isMobile) .3 else .4

         toY: if (flickr.Main.isMobile) .3 else .4
autoReverse: true

        repeatCount: 2
                    }

      PathTransition {
duration: animationDuration

   interpolator: Interpolator.EASEOUT
  path: AnimationPath.createFromPath(Path {

       elements: carouselElements



ptg

332 Chapter 10 Mobile Applications

           })
                    }

                ]
            }  // ParallelTransition
        ]
    };
. . .

10.3  Mobile-Only Applications

It’s not always possible or desirable to have all applications run in both the desktop 
and mobile environments. Take, for example, the Chutes and Ladders application in 
Chapter 7 (see “Chutes and Ladders” on page 237). The original application includes 
buttons that take up precious real estate and drop shadow effects, which are unavail-
able in the mobile environment. Besides form factor modifications, you also have to 
change the look of the application. (You can’t conditionally apply a drop shadow 
effect in a mobile environment. The javafx.scene.effect package is unavailable at the 
compilation level.)

Figure 10.10 shows the desktop version (View A) and the mobile version (View B) of 
Chutes and Ladders. Not only is the mobile form smaller, the title is removed from 
the top of the display, inserted in the center, and rotated. There are no buttons. The 
path balls have numbers instead of drop shadows.

We also changed the way a user selects a path ball for animation. The user can either 
“touch” the path ball (mouse clicks) or type the number on the phone key pad corre-
sponding to the path ball.



ptg

Mobile-Only Applications 333

As in the previous section, we’ll highlight the changes to the original Chutes and Lad-
ders application for the mobile environment. However, this time we create a new pro-
gram that targets the mobile environment. Therefore, in this case, we don’t have to 
worry about whether or not the application is running in the mobile environment—it 
always is.

Here’s the checklist of modifications.

• Reduce the form factor for the mobile environment.

• Remove the buttons and replace with mouse events and key press events.

• Remove the drop shadows and add numbers to the path balls.

• Move the title from the top of the display to the middle. Add color and a rotation 
animation.

• Detect orientation changes and rotate all elements of the scene except the title Text 
component.

For this discussion, we show you only the modifications for key press events, mouse 
click events, and orientation changes.

Figure 10.10 Standard (View A) and mobile (View B) versions of Chutes and Ladders

View A: Desktop Environment

View B: Mobile Environment



ptg

334 Chapter 10 Mobile Applications

Grouping Elements Together

Listing 10.10 shows the Group that includes the path shapes and the sequence of path 
balls (theBalls) that make up the animated portion of the application. These are all 
together so that the group can respond to orientation changes. Property transforms
defines a Rotate transformation that initializes its angle property to 0. Variable 
rotateAngle controls the group’s rotation.

This group also includes the key press event handler (property onKeyPressed). The 
handler initiates the animation corresponding to the numbered key (1-4). For exam-
ple, KeyCode.VK_1 corresponds to “1” on the default mobile phone emulator. 

Listing 10.10 Group Scene Graph (Main.fx)

var rotateAngle = 0;
def group: Group = Group {
    translateX: 40
    translateY: 20

transforms: Rotate {
        angle: bind rotateAngle
        pivotX: bind (stage.width / 2) - 20
        pivotY: bind (stage.height / 2) - 10
    }

onKeyPressed: function(ke: KeyEvent): Void {
        println("keycode={ke.text}, code={ke.code}");
        if (ke.code == KeyCode.VK_1) {

 theBalls[0].play();
        }
         else if (ke.code == KeyCode.VK_2) {

 theBalls[1].play();
        }
        else if (ke.code == KeyCode.VK_3) {

 theBalls[2].play();
        }
        else if (ke.code == KeyCode.VK_4) {

 theBalls[3].play();
        }
    }
    content: [ groundPath, chutePole, chutePath, ladderPath, theBalls ]
} // Group

// listen for keyPress events
group.requestFocus();

Listing 10.11 shows the Circle, Text, and Group object literals for the path ball and the 
mouse click event handler that is added to the path ball object literal.



ptg

Mobile-Only Applications 335

Listing 10.11 PathBall Group Object Literal (PathBall.fx)

    def theBall = Circle {
        radius: 15
        fill: ballColor
    }
    def text = Text {
        x: -3
        y: 2
        content: "{displayNum}"
        fill: Color.WHITE
        font: Font {
            size: 10
        }
    }
    def theGroup: Group = Group {
        translateX: centerX
        onMouseClicked: function(e: MouseEvent): Void {
            play();
        }
        content: [ theBall, text ]
    }

Listing 10.12 shows the on replace trigger that responds to orientation changes. If the 
orientation is vertical, variable rotateAngle is set to 0. If the orientation is horizontal, 
rotateAngle is set to 90. (Recall that the group’s Rotate transformation angle property 
binds to variable rotateAngle.)

Listing 10.12 On replace trigger for orientation changes (Main.fx)

def height = bind stage.height on replace {
    if (stage.height > stage.width) { // vertical
        rotateAngle = 0;
        group.translateX = 40;
        group.translateY = 20;
    }
    else { // horizontal
        rotateAngle = 90;
        group.translateX = 45;
        group.translateY = 75;
    }
}

Figure 10.11 shows the vertical (View A) and horizontal (View B) rotation. The Chutes 
and Ladders title is not affected by orientation changes.



ptg

336 Chapter 10 Mobile Applications

Figure 10.11 Chutes and Ladders orientation changes

View A: Rotated 0 degrees

View B: Rotated 90 degrees



ptg

337

Index

A
abstract class 78

example using 169
access modifiers 88–89

default 89
primary (Table) 89
variable (Table) 89

action KeyFrame property 184, 206
adjustingSelection TextBox property 130
after with insert keyword 57
Alert popup dialog 134
and operator 49
animation 33–36, 206–218

and binding 216–218
basics 208
Chutes and Ladders example 237–247
FadeTransition 226, 229, 260
interpolation 209
Interpolator.DISCRETE 34, 211
Interpolator.EASEBOTH 34, 211
Interpolator.EASEIN 34, 211
Interpolator.EASEOUT 34, 211
Interpolator.LINEAR 34, 211
ParallelTransition 226, 231
PathTransition 226233–237
PauseTransition 226
Photo Carousel example 273–283
RotateTransition 226, 228
ScaleTransition 226, 227
SequentialTransition 226
timeline actions 218–225
transitions 225–237
TranslateTransition 226, 227
translateX Node property 34
translateY Node property 34

AnimationPath class 236
API Key for Flickr 301
Arc 108
arcHeight Rectangle property 29
ArcTo 117, 118, 235
sweepFlag property 117

arcWidth Rectangle property 29
arguments, passing to functions 61
arguments, program 64
arithmetic operators 48
as operator 80, 176
assignment operators 48
asynchronous HTTP requests 296–300
at with KeyFrame objects 213
autoReverse Timeline property 33, 207, 210

B
background loading of images 256
backgroundLoading Image property 250
before with insert keyword 57
Behavior class 153
bidirectional binding 53
binding 31–32

bound functions 63, 147
example with object property 173
expressions 52
function calls 63
object literals 73
object property 176
on replace 86
overriding bind 75
sequences 60
with animation 216–218

Blend effect 263
block expression 50
blocksMouse Node property 99

example 182
Bloom effect 263
Boolean type 44
bound function 63

example using 147
bounding rectangles 125

(Table) 126
positioning with 126

Bounds 125
properties (Table) 125

boundsInLocal Node property 126
boundsInParent Node property 126
boundsInScene Node property 126
break keyword 52
Button UI component 131
Byte type 46

C
canSkip KeyFrame property 207
Cascading Style Sheets, See CSS
casting expression 80, 176
catch keyword 91
centering, dynamic 32
character strings (Java) 72
Character type 46
charAt Java function 73
CheckBox UI component 131
ChoiceDialog class (Control) 160



ptg

338 Index

ChoiceDialog custom skinnable UI component 158
ChoiceDialogSkin class (Skin) 160–164
Chutes and Ladders 237–247

mobile ready 332–336
nested scene graph (Figure) 245

Circle 20, 107
class instance variables, scope of 87
ClassCastException and as operator 80
classes 67–75

abstract 78
init blocks 70
instance function 68
instance variable 68
mixin inheritance 81–83
null value 72
object literal expression 68
overriding bind 75
overriding functions 76
postinit blocks 78
public-init access modifier 69
public-read access modifier 70
super keyword 76
this keyword 71

clip Node property 97
example using 144

close button 116
ClosePath 117, 235
closures 65
Color class 28
color 28
rgb 28
web 28

Color.color 28
Color.rgb 28
Color.TRANSPARENT 28
Color.web 28
ColorAdjust effect 263
columns TextBox property 130
ComboBox UI component 131
Common Elements 316
concatenate Strings 20, 62
content Group property 16
continue keyword 52
Control class 153
create CustomNode function 23, 38, 103, 171
createFromPath AnimationPath function 236
createFromShape AnimationPath function 236
CROSSHAIR Cursor type 102
CSS 148–152
CSS file for TextButton 156
CubicCurve 110
CubicCurveTo 117
curly braces

block expressions 50
embed expressions in Strings 45

currentRate Timeline property 207
Cursor class 101

common types (Table) 102
resize types (Table) 102

cursor Node property 38, 97
CustomNode class 23, 103, 169
create function 23, 38, 103, 171
extending 22, 170
Photo example 268

D
DateTime class 219
declarative approach 22
declarative language 14
def keyword 19, 43

(Tip) 44
default access modifier 89
DEFAULT Cursor type 102
default mobile emulator 318
delete keyword 58

formats of (Table) 58
deleteCharAt Java function 73
Desktop extensions 316
Digital Clock Example 219
__DIR__ pseudo variable 47
disable Node property 99
disabled Node property 99
dot TextBox property 130
double quotation marks, with String 45
Double type 46
dragging, mouse 270–273
dragX MouseEvent property 270
dragY MouseEvent property 270
DropShadow effect 30, 263
Duration type 33, 45

E
Eclipse IDE 3
effect

(Table) 263
Blend 263
Bloom 263
ColorAdjust 263
DropShadow 30, 263
Flood 263
GaussianBlur 263
Glow 263
InnerShadow 263
Lighting 263
MotionBlur 263
PerspectiveTransform 260, 263
Reflection 260, 263
SepiaTone 260, 263

effect Node property 97
Ellipse 108
else keyword 51
emulator, mobile 317
equal to operator 49
error Image property 250
event

key 32
mouse 32

Examples
Chutes and Ladders 237–247
Chutes and Ladders (Mobile) 332–336
Digital Clock 219
Flickr Interesting 301–308
Flickr Interesting (Mobile) 327–332
Flickr Tag 308–311
Flickr User 312–314
GuitarTuner 14–19, 36–41
Order Your Pizza 142–148
Order Your Pizza 2 158–165



ptg

Index 339

Photo Carousel 273–283
Photo Wall 264–269
Photo Wall Drag 270–273
Piano 194–204
Progress Bar 220–225

exception handling 91–93
expressions 50–54

bidirectional binding 53
binding 52
block 50
for 51
if 51
object literals 18
while 52

extends keyword 75

F
F3 language 1
FadeTransition 190, 226, 229, 260
false keyword 44
__FILE__ pseudo variable 47
FileInputStream Java class 289
fill Shape property 20, 28, 104
finally keyword 91
fitHeight ImageView property 253
fitWidth ImageView property 253
Flickr API Key 301
Flickr API web service calls 301
Flickr Interesting 301–308

mobile ready 327–332
Flickr Tag 308–311
Flickr User 312–314
Flickr, construct URL for images 302
Float type 46
floating-point values 45
Flood effect 263
Flow layout component 119, 121

example using 187
focusable Node property 99
focused Node property 99
font Text property 115
for expression 51, 56
Form Follows Function 1
formatting with print, println 47
from with delete keyword 58
function 61–67

binding 63
bound 63
closures 65
defining 61
overriding 76
overriding in mixins 82
passing arguments 61
return values 62
run 64
scope of 87
sequence argument (Tip) 62
types 65–67

function literal 65
function types 65–67
FX.getArguments (Tip) 65
FX.getProperty function 319

G
GaussianBlur effect 263
geometry

Bounds 125
Point2D 124
Rectangle2D 125

GET HttpRequest operation 297
Glow effect 263
gradients 26–28

LinearGradient fill 26
RadialGradient fill 27

graphical node 15
greater than (or equal to) operator 49
Group class 15, 102
GuitarTuner 14–19

hierarchical scene graph (Figure) 17
nested scene graph (Figure) 15
source code 36–41

H
h (hour time unit literal) 45
HAND Cursor type 102
HBox layout component 15, 24, 119, 120

example using 187
height Image property 250
hexadecimal values 45
HLineTo 117
hover Node property 99
HttpRequest class 296–300

callbacks for read operations (Table) 297
GET operation 297
start function 298

Hyperlink UI component 131

I
id Node property 98, 150
if expression 51
Image class 250–252

properties (Table) 250
background loading (Tip) 256
example using 307

image ImageView property 253
ImageView 252–262

properties (Table) 253
imperative approach 22
import statement 24

with NetBeans 25
with script files 90

indexof operator 56, 57
inheritance 2275–83

abstract class 78
as operator 80, 176
extends keyword 75
instanceof operator 80
mixee 81
mixins 81–83
overriding functions 76
postinit blocks 78
super keyword 76
variables and mixins 82

init blocks 70



ptg

340 Index

InnerShadow effect 263
insert keyword 22, 57
instance function 68

scope of 87
instance variable 68
instanceof operator 50, 80
instant DateTime property 219
Integer type 45
interpolation 209
Interpolator.DISCRETE 34, 211
Interpolator.EASEBOTH 34, 211
Interpolator.EASEIN 34, 211
Interpolator.EASEOUT 34, 211
Interpolator.LINEAR 34, 211
into with insert keyword 57
inverse, bidirectional binding 54
isInitialized function 85

J
Java API method, calling a 22
Java character strings 72
Java Network Launching Protocol 9
Java objects 72
Java StringBuffer object 73
Java types 46
Java Web Start 9
JavaFX

downloading software 3
execution models 9
Java Web Start 9
platform (Figure) 2, 316
Production Suite 3
SDK 2

JavaFX keywords (Table) 93
JavaFX Production Suite 3
JavaFX SDK 2
JNLP 9
JSON parsing 293–296

K
key events 32

KeyCode class 324
mobile environment 323–326
requestFocus Node function 100, 325

KeyCode class 324
KeyFrame class 33, 35
action property 184
properties (Table) 206
time property 185

keyFrames Timeline property 207
keywords

(Table) 93
escaping 93

L
layout components 15, 24119–124

(Table) 119
Flow 119, 121
HBox 119, 120
Stack 119, 123

Tile 119, 122
VBox 119, 120, 183

layoutBounds Node property 126
layoutX Node property 98
layoutY Node property 98
less than (or equal to) operator 49
Lighting effect 263
Line 110
line cap styles 105
LinearGradient fill 26, 171
proportional property 27

LineTo 117, 235
ListView UI component 131
local variables

in object literal expression 68
scope of 87

logical operators 49
Long type 46

M
m (minutes time unit literal) 45
mark TextBox property 130
milliseconds time unit literal 45
mixee, mixin inheritance 81
mixin inheritance 81–83

overriding functions 82
overriding variables 82
variables 82

mixin keyword 81
mobile emulator 9

run application in (NetBeans) 317
types of 318

mobile environment
limitations (Table) 317
changes to Stage 322
Chutes and Ladders example 332–336
detecting orientation changes 321, 335
Flickr Interesting example 327–332
FX.getProperty function 319
key events 323–326
mouse events 323–326
__PROFILE__ pseudo variable 319
screen dimensions 320

Mobile extensions 316
mod operator 48
MotionBlur effect 263
mouse dragging 270–273
mouse events 32, 101

mobile environment 323–326
MouseButton.PRIMARY 33
MouseEvent class 33
dragX 270
dragY 270

move an object, animation 208
MOVE Cursor type 102
MoveTo 117, 235
ms (milliseconds time unit literal) 45
mutual exclusion selection behavior 131, 141

N
negation operator 49
nesting sequences 55



ptg

Index 341

NetBeans IDE 3
compile and run 8
edit source code 7
generate import statements 25
mobile emulator 9
new project 4
project properties 10
project, create 4
run application in mobile emulator 317
run the Main project 8

new operator with Java objects 72
Node 15, 2096–103

effects (Table) 263
mouse/keyboard event properties (Table) 99
rendering properties (Table) 97
key events 32
mouse events 32
relative order 16
requestFocus function 100, 325
toBack function 16
toFront function 16

not (logical complement) operator 49
not equal to operator 49
null value 72
Number type 45

O
object literal expressions 18
object literals 18, 68

advantages of 69
binding 73
local variables (Tip) 68

object reference 62, 68
octal values 45
Oliver, Chris 1
on replace keywords 83
onKeyPressed Node property 99
onKeyReleased Node property 99
onKeyTyped Node property 99
onMouseClicked Node property 32, 38, 99, 101
onMouseDragged Node property 99, 270
onMouseEntered Node property 99
onMouseExited Node property 100
onMouseMoved Node property 100
onMousePressed Node property 100, 270
onMouseReleased Node property 100, 270
onMouseWheelMoved Node property 100
opacity Node property 97
operators 47–50
and 49
arithmetic 48
as 80, 176
assignment 48
equal to 49
greater than (or equal to) 49
indexof 56, 57
instanceof 50
less than (or equal to) 49
logical 49
mod 48
negation 49
not 49
not equal to 49
or 49

relational 49
remainder 48
reverse 55
sizeof 55

or operator 49
Order Your Pizza Swing Example 142–148

with custom ChoiceDialog component 158–165
orientation PathTransition property 235
orientation with mobility 321, 335
OrientationType.ORTHOGONAL_TO_TANGENT

235
origin, geometric 24
overline Text property 115
overriding bind 75
overriding functions 76

mixin inheritance 82
overriding variables, mixin inheritance 82

P
package access modifier 89
package statement 24, 90
packages 89–91
ParallelTransition 226, 231
parse PullParser function 290
Path 116–119, 234
Path Element

(Table) 117
and animation 234
ArcTo 117, 118, 235
ClosePath 117, 235
CubicCurveTo 117
HLineTo 117
LineTo 117, 235
MoveTo 117, 235
QuadCurveTo 117
VLineTo 117

PathTransition 226233–237
AnimationPath class 236
orientation property 235

pause Timeline function 208
paused Timeline property 207
PauseTransition 226
periodic updates 219, 220
PerspectiveTransform effect 260, 263
Photo Carousel 273–283

nested scene graph (Figure) 275
Photo Wall 264–269

nested scene graph (Figure) 265
Photo Wall Drag 270–273
Piano

hierarchical scene graph (Figure) 190
PianoKey class hierarchy (Figure) 169
source code 194–204

PianoKey class 170
placeholder Image property 250
play Timeline function 208
playFromStart Timeline function 208
Point2D 124
Polygon 109
Polyline 111
Popup component 134
postdecrement operator (--) 48
postincrement operator (++) 48
postinit blocks 78



ptg

342 Index

predecrement operator (--) 48
predicate, generate sequences 59
preincrement operator (++) 48
preserveRatio Image property 250, 252
preserveRatio ImageView property 253
press-drag-release mouse gesture 270
pressed Node property 99
primary access modifiers (Table) 89
print function 46

formatting 47
printing sequences 55
println function 46

formatting 47
__PROFILE__ pseudo variable 47

using to detect mobility 319
program arguments 64
progress bar 220
Progress Bar Example 220–225
progress Image property 250
ProgressBar UI component 132
ProgressIndicator UI component 132
promptText TextBox property 130
properties 71
proportional LinearGradient property 27
protected access modifier 89
pseudo variables 47, 319
public access modifier 89
public functions and run 88
public variables and run 88
public-init access modifier 36, 69, 89, 170
public-read access modifier 70, 89
PullParser class 285–296

properties (Table) 287
FileInputStream Java class 289
parse function 290

Q
QuadCurve 109
QuadCurveTo 117
qwerty mobile emulator 318, 319

R
RadialGradient fill 27, 172
RadioButton UI component 131
rate Timeline property 207
rawText TextBox property 130
Rectangle 20, 107
arcHeight property 29
arcWidth property 29
rounded corners 29, 191

Rectangle2D 125
Reflection effect 260, 263
relational operators 49

sequence comparison 59
remainder operator 48
repeatCount Timeline property 207, 210
replace Java function 73
replace keyword (with on) 83
requestFocus Node function 100, 325
RESTful web service call 301
return values from functions 62
reverse operator 55

rotate Node property 98, 261
Rotate transformation 334
RotateTransition 226, 228
rotating in response to orientation changes 335
rounded rectangle 29, 191
run function 64, 329
running Timeline property 207

S
s (seconds time unit literal) 45
Scalable Vector Graphics, See SVG
ScaleTransition 226, 227
scaleX Node property 98
scaleY Node property 98
scaling 256–259
Scene 96
scene graph 15, 16
scope

class instance variables 87
instance functions 87
local variables 87
script functions 87
script variables 87

script files 88–91
script functions, scope of 87
script variables, scope of 87
script-level variables 25
script-private access 36
ScrollBar UI component 131
SepiaTone effect 260, 263
sequence 21–22, 54–60

accessing items 57
binding 60
comparison 59
delete keyword 58
example 182
for expression 56
formats of delete keyword (Table) 58
indexof operator 56, 57
insert keyword 22, 57
literal 54
nesting 55
of values 54
on replace 84
predicates 59
printing 55
reverse operator 55
sizeof operator 55
slices 59
step in range literal 55
where clause 56

sequence literal 21, 54
SequentialTransition 226
setCharAt Java function 73
Shape 20103–116

common properties (Table) 104
Arc 108
Circle 107
CubicCurve 110
Ellipse 108
line cap styles 105
Lines 110
Polygon 109
Polyline 111



ptg

Index 343

QuadCurve 109
Rectangle 107
ShapeIntersect 113
ShapeSubtract 113
SVGPath 111
Text 115

ShapeIntersect 113
ShapeSubtract 113
Short type 46
single quotation marks, with String 45
sizeof operator 55
Skin class 153
skinnable UI component 148–152

Behavior class 153
Control class 153
custom 152, 158
Skin class 153

slices, sequence 59
slide show, animated 274
Slider UI component 131
smooth Image property 250
smooth ImageView property 253
smooth Shape property 104
Stack layout component 119, 123
Stage 15, 95

dimensions and mobility 320
orientation changes 322

StageStyle.DECORATED 95
StageStyle.UNDECORATED 96
start HttpRequest function 298
static typing 14
step in range literal 55
stop Timeline function 208
strikethrough Text property 115
String type 20, 45
{ } 20, 45
concatenate 20, 62
curly braces 45
double quotation marks 45
single quotation marks 45

StringBuffer object (Java) 73
stroke Shape property 20, 104
strokeDashArray Shape property 101, 104, 106
strokeDashOffset Shape property 104
strokeLineCap Shape property 104
strokeLineJoin Shape property 104
strokeMiterLimit Shape property 104
strokeWidth Shape property 20, 104
style Node property 98
styleClass Node property 98, 150
stylesheets Scene property 151
super keyword 76
SVG 3
SVG file 3
SVGPath 111
sweepFlag ArcTo property 117
Swing components 135–142

example application 142–148
SwingButton 135, 187, 260
SwingCheckBox 135
SwingComboBox 136
SwingComboBoxItem 136
SwingIcon 137
SwingLabel 137
SwingList 138
SwingListItem 138

SwingRadioButton 140
SwingScrollPane 138
SwingSlider 141
SwingTextField 141
SwingToggleButton 140
SwingToggleGroup class 141

SwingButton component 135, 260
example using 187

SwingCheckBox component 135
example using 146

SwingComboBox component 136
SwingComboBoxItem component 136
SwingIcon component 137
SwingLabel component 137
SwingList component 138
SwingListItem component 138
SwingRadioButton component 140

example using 145
SwingScrollPane component 138
SwingSlider component 141
SwingTextField component 141

example using 145
SwingToggleButton component 140
SwingToggleGroup class 141

T
Text 115

properties (Table) 115
close button 116

TEXT Cursor type 102
textAlignment Text property 115
TextBox UI component 129–131

properties (Table) 130
example using 310

TextButton class (Control) 153
TextButton custom skinnable UI component 152

CSS file 156
TextButtonSkin class (Skin) 155
textOrigin Text property 116
this keyword 71
throw keyword 92
Tile layout component 119, 122
time KeyFrame property 185, 206
time Timeline property 207
Timeline class 33206–218

functions (Table) 208
interpolators (Table) 211
properties (Table) 207
actions 218–225
check running status (Tip) 224
pause function 33, 208
play function 33, 208
playFromStart function 33, 208
stop function 33, 208
stop itself (Tip) 223

timelines KeyFrame property 207
toBack Node function 16
toFront Node function 16
ToggleButton UI component 131
ToggleGroup class 131
touch mobile emulator 318
transforms Node property 256–259
transforms Node property 98, 334
transitions 225–237



ptg

344 Index

(Table) 226
basics 226

TranslateTransition 226, 227
translateX Node property 34, 98

animation 209
translateY Node property 34, 98
triggers 83–86

binding 86
isInitialized function 85
on replace example 306
on replace keywords 83
sequences 84
variables 83

trim Java function 73
true keyword 44
try keyword 91
TV extensions 316
tween key frame operator 34, 209
two-dimensional coordinate system 24
type inference 14, 19, 44
types 44–46

Boolean 44
Byte 46
Character 46
Double 46
Duration 45
Float 46
Integer 45
Java wrapper types 46
Long 46
Number 45
Short 46
String 45
Void 46, 61

U
UI components

(Table) 131
Alert popup dialog 134
Button 131
CheckBox 131
custom ChoiceDialog component 158
custom TextButton component 152
Hyperlink 131
ListView 131
Popup window 134
ProgressBar 132
ProgressIndicator 132
RadioButton 131
ScrollBar 131
skin with CSS 148–152
Slider 131
TextBox 129–131
ToggleButton 131
ToggleGroup class 131

underline Text property 115
url Image property 250

V
values KeyFrame property 206
var keyword 19, 43
variable 1943–44

access modifiers (Table) 89
on replace 83
overriding in mixins 82
scope of 87
script-level 25

VBox layout component 15, 24, 119, 120
example using 183

viewport ImageView property 253
visible Node property 98
VLineTo 117
Void type 46, 61

W
WAIT Cursor type 102
web services

Flick Interesting example 301–308
Flick Tag example 308–311
Flick User example 312–314
Flickr 301

where clause 56
while expression 52
width Image property 250
windows

Alert popup dialog 134
Popup component 134

with inverse, bidirectional binding 54
wrappingWidth Text property 115

X
XML parsing 286–292


	Contents
	Preface
	Acknowledgments
	Chapter 1 Getting Started with JavaFX
	What You Will Learn
	1.1 What Is JavaFX?
	1.2 The JavaFX Bundle
	JavaFX SDK
	NetBeans IDE
	JavaFX Production Suite

	1.3 Where to Get JavaFX
	Create a NetBeans Project
	Edit JavaFX Source Code
	Compile and Run
	Execution Models


	Chapter 2 A Taste of JavaFX
	What You Will Learn
	2.1 Introducing JavaFX
	2.2 Project GuitarTuner
	The Scene Graph Metaphor
	Hierarchical Scene Graph

	2.3 JavaFX Program Structure
	Stage and Scene
	Object Literals

	2.4 Key JavaFX Features
	Type Inference
	Strings
	Shapes
	Sequences
	Calling Java APIs
	Extending CustomNode
	Geometry System
	Layout/Groups
	JavaFX Script Artifacts

	2.5 Making Things Look Good
	Gradients
	Color
	Rectangles with Arcs
	DropShadows

	2.6 Doing Things
	Binding
	Mouse Events
	Animations

	2.7 Source Code for Project GuitarTuner

	Chapter 3 JavaFX Language
	What You Will Learn
	3.1 Variables and Types
	JavaFX Types
	Printing Variables
	Pseudo Variables

	3.2 Operators
	Arithmetic Operators
	Assignment Operators
	Unary Operators
	Relational Operators
	Logical Operators
	Instanceof Operator

	3.3 Expressions
	Block Expressions
	If Expressions
	For Expressions
	While Expressions
	Break and Continue
	Binding Expressions
	Bidirectional Binding

	3.4 Sequences
	Sequence Literals
	Printing Sequences
	Creating Sequences with for
	Accessing Sequence Items
	Inserting Items into Sequences
	Deleting Items from Sequences
	Comparing Sequences
	Sequence Slices
	Predicates
	Binding Sequences

	3.5 Functions
	Defining Functions
	Passing Arguments to Functions
	Returning Values from Functions
	Binding Function Calls
	Bound Functions
	Program Arguments
	Function Types

	3.6 Classes and Objects
	Classes
	Object Literals
	Using public-init
	Init Blocks
	Using public-read
	Using this
	Using null
	Using Java Objects
	Binding with Object Literals
	Overriding bind

	3.7 Inheritance
	Overriding Functions
	Using super
	PostInit Blocks
	Abstract Base Classes
	As Operator
	Mixin Inheritance

	3.8 Triggers
	On Replace with Variables
	On Replace with Sequences
	On Replace with isInitialized
	On Replace with Bind

	3.9 Script Files and Packages
	Variable Scope
	Function Scope
	Script Files
	Access Modifiers
	Packages

	3.10 Exception Handling
	Try, Catch, Finally
	Throwing Exceptions

	3.11 JavaFX Keywords

	Chapter 4 Graphical Objects
	What You Will Learn
	4.1 Setting the Stage
	Scene
	Node
	Cursor
	Group
	CustomNode

	4.2 Shapes
	Rectangle
	Circle
	Ellipse
	Arc
	Polygon
	QuadCurve
	CubicCurve
	Line
	Polyline
	SVGPath
	ShapeIntersect/ShapeSubtract
	Text

	4.3 Paths
	4.4 Layout Components
	HBox and VBox Layout Components
	Flow and Tile Layout Components
	Stack Layout Component

	4.5 Geometry
	Point2D
	Bounds/Rectangle2D
	Bounding Rectangles


	Chapter 5 User Interface Components
	What You Will Learn
	5.1 JavaFX UI Controls
	TextBox
	UI Components
	Popup Windows

	5.2 Swing Components
	SwingButton
	SwingCheckBox
	SwingComboBox
	SwingComboBoxItem
	SwingIcon
	SwingLabel
	SwingScrollPane
	SwingList
	SwingListItem
	SwingRadioButton
	SwingToggleButton
	SwingToggleGroup
	SwingSlider
	SwingTextField

	5.3 Swing Example
	Pizzas Are Circles
	Toppings Are Circles
	Selecting Pizza Size with SwingRadioButton
	Selecting Toppings with SwingCheckBox
	Integrating with Bound Functions and Binding

	5.4 Creating Skinnable Components
	Cascading Style Sheets (CSS)
	Skinnable TextButton Component
	Skinnable ChoiceDialog Component


	Chapter 6 Anatomy of a JavaFX Application
	What You Will Learn
	6.1 Project Piano
	6.2 PianoKey Components
	Class PianoKey
	Subclass WhiteKey
	Single Key Application
	Subclass BlackKey
	Two Key Application

	6.3 Building the Keyboard
	6.4 SwingButtons and Animation
	6.5 Adding Help and Improving Visual Effects
	6.6 Source Code for Project Piano

	Chapter 7 Animation
	What You Will Learn
	7.1 Timelines
	Animation Basics—Moving an Object
	Animating Multiple Targets
	Animating Multiple Targets Independently
	Animating Groups
	Animation and Binding

	7.2 Timeline Actions
	Using action with a Digital Clock Display
	Using action with a Progress Bar

	7.3 Transitions
	Transition Basics—Simple Movement
	ScaleTransition
	Rotate and Fade Transitions
	Compound Transitions

	7.4 Path Animation
	Creating a Path
	PathTransition

	7.5 Chutes and Ladders
	Class PathBall (PathBall.fx)
	Main Program (Main.fx)


	Chapter 8 Working with Images
	What You Will Learn
	8.1 Using Image
	Class Image

	8.2 Using ImageView
	Scaling
	Transformation and Effects Menagerie

	8.3 Building a Wall of Photos
	8.4 Mouse Dragging
	8.5 Animated Photo Carousel
	Photo Carousel Scene Graph
	CarouselPhoto Animation
	CarouselPhoto Custom Node
	Carousel Custom Node
	Class CarouselImage
	Main Script


	Chapter 9 Web Services
	What You Will Learn
	9.1 JavaFX Pull Parsers
	XML Parsing
	JSON Parsing
	Animated Photo Carousel

	9.2 JavaFX HttpRequest
	Using HttpRequest

	9.3 Flickr: Interesting Photos
	Flickr
	Interesting Photos

	9.4 Flickr: Searching with Tags
	9.5 Flickr: Getting User Photos

	Chapter 10 Mobile Applications
	What You Will Learn
	10.1 JavaFX Mobile—What Does It Mean?
	Mobile Emulator
	Discovering Your Environment
	Orientation Changes
	Mouse and Key Events
	User Input

	10.2 Making a JavaFX Application Mobile Ready
	Detecting the Mobile Environment
	Detecting Orientation Changes
	Reducing the Number and Size of Images
	Adjusting the Animation

	10.3 Mobile-Only Applications
	Grouping Elements Together


	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X


