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Introduction

Writing is an interesting process. You feel happy and energized when looking at the blank 
Microsoft Word document with the Chapter 1 title. The energy and happiness, however, 
quickly disappear and are replaced by tiredness and the constant pressure of deadlines. 
Finally, when the book is done, you feel extremely exhausted and promise yourself that 
you will never ever do it again. 

It does not take long, however, to begin missing the process, pressure, and sleepless 
nights. So when Jonathan Gennick from Apress asked me to consider writing a book on 
In-Memory OLTP, it was an easy sell for him. After all, In-Memory OLTP is a fascinating 
subject, and it changes the way you design OLTP systems. I was really disappointed that I 
was unable to dive deeper into it during my work on my Pro SQL Server Internals book. 

The Microsoft implementation of in-memory data is hardly the first solution on the 
market. Nevertheless, it has several key differences from competitors’ implementations. 
The biggest are the level of integration it provides with the classic Database Engine and its 
simplicity for the end users. You can move data into memory and start using it with just a 
handful of mouse clicks.

I would consider this simplicity, however, a double-edged sword. While it can 
significantly reduce technology adoption time and cost, it can also open the door to 
incorrect decisions and suboptimal implementations. As with any other technology,  
In-Memory OLTP has been designed for a specific set of tasks, and it can hurt performance 
of the systems when implemented incorrectly. Neither is it a “set it and forget it” type of 
solution; you have to carefully plan it before and maintain it after the deployment. 

In-Memory OLTP is a great technology and it can dramatically improve the performance 
of systems. Nevertheless, you need to understand how it works under the hood to get the 
most from it. The goal I set for this book is to provide you with such an understanding.  
I will explain the internals of the In-Memory OLTP Engine and its components. I believe that 
knowledge is the cornerstone in successful In-Memory OLTP implementations and it will 
help you to make educated decisions on how and when to use the technology.

If you read my Pro SQL Server Internals book, you will notice some familiar content 
from there. However, this book is a much deeper dive into In-Memory OLTP and you will 
find plenty of new topics covered. You will also learn how to address some of In-Memory 
OLTP’s limitations and how to benefit from it in existing systems when those limitations 
make in-memory migration cost ineffective. 

I want to reiterate that this book is covering In-Memory OLTP in SQL Server 2014. 
Even though the core implementation principles will remain the same in SQL Server 2016 
and future SQL Server releases, you should expect significant improvements in them. 
In-Memory OLTP is one of the flagship SQL Server technologies, and Microsoft is fully 
committed to it and is investing a large amount of engineering resources for this product. 

Finally, I would like to thank you again for choosing this book and for your trust in me. 
I hope that you will enjoy reading it as much as I enjoyed writing it. 

http://dx.doi.org/10.1007/978-1-4842-1136-6_1
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How This Book Is Structured
This book consists of 11 chapters and structured in the following way: 

•	 Chapter 1 and Chapter 2 are the introductory chapters, which  
will provide you the overview of technology and show how  
In-Memory OLTP objects work together. 

•	 Chapter 3, Chapter 4, and Chapter 5 explain how In-Memory 
OLTP stores and works with data and indexes in memory. 

•	 Chapter 6 talks about native compilation and the 
programmability aspect of the technology.

•	 Chapter 7 explains how In-Memory OLTP handles concurrency 
in a multi-user environment. 

•	 Chapter 8 demonstrates how In-Memory OLTP persists data on 
disk and how it works with the transaction log. 

•	 Chapter 9 covers the In-Memory OLTP garbage collection process.

•	 Chapter 10 discusses the best practices for In-Memory OLTP 
deployments and shows how to perform common database 
administration tasks related to In-Memory OLTP.

•	 Chapter 11 demonstrates how to address some of the In-Memory 
OLTP surface area limitations and how to benefit from In-Memory 
OLTP components without moving data into memory.

The book also includes four appendixes:

•	 Appendix A explains how In-Memory OLTP works with memory 
pointers in a multi-user environment.

•	 Appendix B covers how page splitting and merging processes are 
implemented.

•	 Appendix C shows you how to analyze the state of checkpoint file 
pairs and navigates you through their lifetime.

•	 Appendix D discusses SQL Server tools and wizards that can 
simplify In-Memory OLTP migration.

Downloading the Code
You can download the code used in this book from the Source Code section of the  
Apress web site (www.apress.com) or from the Publications section of my blog  
(http://aboutsqlserver.com). The source code consists of a SQL Server Management 
Studio solution, which includes a set of projects (one per chapter). Moreover, it includes 
several .Net C# projects, which provide the client application code used in the examples 
in Chapters 2 and 11. 

http://dx.doi.org/10.1007/978-1-4842-1136-6_1
http://dx.doi.org/10.1007/978-1-4842-1136-6_2
http://dx.doi.org/10.1007/978-1-4842-1136-6_3
http://dx.doi.org/10.1007/978-1-4842-1136-6_4
http://dx.doi.org/10.1007/978-1-4842-1136-6_5
http://dx.doi.org/10.1007/978-1-4842-1136-6_6
http://dx.doi.org/10.1007/978-1-4842-1136-6_7
http://dx.doi.org/10.1007/978-1-4842-1136-6_8
http://dx.doi.org/10.1007/978-1-4842-1136-6_9
http://dx.doi.org/10.1007/978-1-4842-1136-6_10
http://dx.doi.org/10.1007/978-1-4842-1136-6_11
http://dx.doi.org/10.1007/978-1-4842-1136-6_A
http://dx.doi.org/10.1007/978-1-4842-1136-6_B
http://dx.doi.org/10.1007/978-1-4842-1136-6_C
http://dx.doi.org/10.1007/978-1-4842-1136-6_D
www.apress.com
http://aboutsqlserver.com
http://dx.doi.org/10.1007/978-1-4842-1136-6_2
http://dx.doi.org/10.1007/978-1-4842-1136-6_11
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I have tested all of the scripts in an environment with 3GB of RAM available to SQL 
Server. In some cases, if you have less memory available, you will need to reduce amount 
of test data generated by some of the scripts. You can also consider dropping some of the 
unused test tables to free up more memory.

Contacting the Author
You can visit my blog at http://aboutsqlserver.com or email me at  
dk@aboutsqlserver.com. As usual, I will be happy to answer any questions you have.

http://aboutsqlserver.com
mailto:dk@aboutsqlserver.com
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Chapter 1

Why In-Memory OLTP?

This introductory chapter explains the importance of in-memory databases and the 
problems they address. It provides an overview of the Microsoft In-Memory OLTP 
implementation (code name Hekaton) and its design goals. Finally, this chapter discusses 
the high-level architecture of the In-Memory OLTP Engine and how it is integrated into 
SQL Server.

Background
Way back when SQL Server and other major databases were originally designed, 
hardware was very expensive. Servers at that time had just one or very few CPUs, and a 
small amount of installed memory. Database servers had to work with data that resided 
on disk, loading it into memory on demand.

The situation has changed dramatically since then. During the last 30 years, 
memory prices have dropped by a factor of 10 every 5 years. Hardware has become 
more affordable. It is now entirely possible to buy a server with 32 cores and 1TB of RAM 
for less than $50,000. While it is also true that databases have become larger, it is often 
possible for active operational data to fit into the memory.

Obviously, it is beneficial to have data cached in the buffer pool. It reduces the load 
on the I/O subsystem and improves system performance. However, when systems work 
under a heavy concurrent load, it is often not enough. SQL Server manages and protects 
page structures in memory, which introduces large overhead and does not scale well. 
Even with row-level locking, multiple sessions cannot modify data on the same data page 
simultaneously and must wait for each other.

Perhaps the last sentence needs to be clarified. Obviously, multiple sessions can 
modify data rows on the same data page, holding exclusive (X) locks on different rows 
simultaneously. However, they cannot update physical data page and row objects 
simultaneously because it could corrupt the in-memory page structure. SQL Server 
addresses this problem by protecting pages with latches. Latches work in a similar 
manner to locks, protecting internal SQL Server data structures on the physical level 
by serializing access to them, so only one thread can update data on the data page in 
memory at any given point of time.

In the end, this limits the improvements that can be achieved with the current 
database systems architecture. Although you can scale hardware by adding more CPUs 
and cores, that serialization quickly becomes a bottleneck and a limiting factor in 
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improving system scalability. Likewise, you cannot improve performance by increasing 
the CPU clock speed because the silicon chips would melt down. Therefore, the only 
feasible way to improve database system performance is by reducing the number of CPU 
instructions that need to be executed to perform an action.

Unfortunately, code optimization is not enough by itself. Consider the situation 
where you need to update a row in a table. Even when you know the clustered key value, 
that operation needs to traverse the clustered index tree, obtaining latches and locks 
on the data pages and a row. In some cases, it needs to update nonclustered indexes, 
obtaining the latches and locks there. All of that generates log records and requires 
writing them and the dirty data pages to disk.

All of those actions can lead to a hundred thousand or even millions of CPU 
instructions to execute. Code optimization can help reduce this number to some degree, 
but it is impossible to reduce it dramatically without changing the system architecture 
and the way the system stores and works with data.

These trends and architectural limitations led the Microsoft team to the conclusion 
that a true in-memory solution should be built using different design principles and 
architecture than the classic SQL Server Database Engine. The original concept was 
proposed at the end of 2008, serious planning and design started in 2010, and actual 
development began in 2011.

The main goal of the project was to build a solution that will be 100 times faster  
than the existing SQL Server Engine, which explains the code name Hekaton (Greek for 
one hundred). This goal has yet to be achieved; however, the first production release of  
In-Memory OLTP can provide 20X-40X performance improvements in certain scenarios.

It is also worth mentioning that the Hekaton design has been targeted towards the 
OLTP workload. As all of us know, specialized solutions designed for particular tasks and 
workloads usually outperform general-purpose systems in the targeted areas. The same 
is true for In-Memory OLTP. It shines with large and very busy OLTP systems that support 
hundreds or even thousands of concurrent users. At the same time, In-Memory OLTP is 
not necessarily the best choice for Data Warehouse workload, where other SQL Server 
components could outperform it.

In-Memory OLTP has been designed with the following goals:

•	 Optimize data storage for main memory: Data in In-Memory 
OLTP is not stored on on-disk data pages nor does it mimic an  
on-disk storage structure when loaded into memory. This permits 
the elimination of the complex buffer pool structure and the  
code that manages it. Moreover, indexes are not persisted on 
disk, and they are re-created upon startup when the data from 
memory-resident tables is loaded into memory.

•	 Eliminate latches and locks: All In-Memory OLTP internal 
data structures are latch- and lock-free. In-Memory OLTP uses 
a new multiversion concurrency control to provide transaction 
consistency. From a user standpoint, it behaves similar to the 
regular SNAPSHOT transaction isolation level; however, it does not 
use a locking or tempdb version store under the hood. This schema 
allows multiple sessions to work with the same data without locking 
and blocking each other and improves the scalability of the system, 
allowing it to fully utilize modern multi-CPU/multi-core hardware.
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•	 Use native compilation: T-SQL is an interpreted language 
that provides great flexibility at the cost of CPU overhead. Even 
a simple statement requires hundreds of thousands of CPU 
instructions to execute. The In-Memory OLTP Engine addresses 
this by compiling row-access logic and stored procedures into 
native machine code.

The In-Memory OLTP Engine is fully integrated in the SQL Server Engine, which is 
the key differentiator of the Microsoft implementation compared to other in-memory 
database solutions. You do not need to perform complex system refactoring, splitting 
data between in-memory and conventional database servers, or moving all of the data 
from the database into memory. You can separate in-memory and disk data on a table-
by-table basis, which allows you to move active operational data into memory, keeping 
other tables and historical data on disk. In some cases, that migration can even be done 
transparently to client applications.

It sounds too good to be true and, unfortunately, there are still plenty of roadblocks 
that you may encounter when working with this technology. The first release of In-Memory 
OLTP supports just a subset of the SQL Server data types and features, which often 
requires you to perform code and schema refactoring to utilize it. We will discuss those 
limitations later in the book; however, you need to know that Microsoft is fully committed 
to this project. You can expect that future versions of In-Memory OLTP will have a bigger 
surface area and fewer restrictions compared to the initial release. In fact, you can 
already see the changes in the CTP releases of SQL Server 2016 and in SQL Databases in 
Microsoft Azure.

In-Memory OLTP Engine Architecture
In-Memory OLTP is fully integrated into SQL Server, and other SQL Server features and 
client applications can access it transparently. Internally, however, it works and behaves 
very differently than the SQL Server Storage Engine. Figure 1-1 shows the architecture of 
the SQL Server Engine including the In-Memory OLTP components.

www.allitebooks.com

http://www.allitebooks.org
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In-Memory OLTP stores the data in memory-optimized tables. These tables reside 
completely in memory and have a different structure compared to the classic on-disk tables. 
With one small exception, memory-optimized tables do not store data on the data pages 
linking the rows together through the chains of memory pointers. It is also worth noting 
that memory-optimized tables do not share memory with on-disk tables and live outside 
of the buffer pool.

 ■ Note We will discuss memory-optimized tables in detail in Chapter 3.

There are two ways the Database Engine can work with memory-optimized tables. 
The first is the interop engine. It allows you to reference memory-optimized tables from 
interpreted T-SQL code. The data location is transparent to the queries; you can access 
memory-optimized tables, join them together and with on-disk tables, and work with 
them in the usual way. Most T-SQL features and language constructs are supported in  
this mode.

You can also access and work with memory-optimized tables using natively 
compiled stored procedures. You can define those procedures similarly to the regular 
T-SQL stored procedures using several additional language constructs introduced by  
In-Memory OLTP.

Natively compiled stored procedures have been compiled into machine code and 
loaded into SQL Server process memory. Those procedures can introduce significant 
performance improvements compared to the interop engine; however, they support just a 
limited set of T-SQL constructs and can access only memory-optimized tables.

Figure 1-1. SQL Server Engine architecture

http://dx.doi.org/10.1007/978-1-4842-1136-6_3
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 ■ Note We will discuss natively compiled stored procedures in Chapter 6.

Now, it’s time to see how In-Memory OLTP components work together, which we 
will do in the next chapter.

Summary
In-Memory OLTP has been designed using different design principles and architecture 
than the classic SQL Server Engine. It is a specialized product targeted towards the 
OLTP workload and can provide up to 20X-40X performance improvements in certain 
scenarios. Nevertheless, it is fully integrated into the SQL Server Database Engine.  
The data storage is transparent to the client applications, which do not require any code 
changes if they use the features supported by In-Memory OLTP.

The data from memory-optimized tables is stored in memory separately from the 
buffer pool. All of the In-Memory OLTP data structures are completely latch- and  
lock-free, which allows scaling the systems by adding more CPUs to the servers.

In-Memory OLTP uses native compilation to the machine code for any row-access 
logic. Moreover, it allows performing native compilation of the stored procedures, which 
dramatically increase their performance.

The first release of In-Memory OLTP has a large number of limitations; however, 
Microsoft is fully committed to the project and will address these limitations in future  
In-Memory OLTP releases.

http://dx.doi.org/10.1007/978-1-4842-1136-6_6
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Chapter 2

In-Memory OLTP Objects

This chapter provides a high-level overview of In-Memory OLTP objects. It shows how 
to create databases with an In-Memory OLTP filegroup, and how to define memory-
optimized tables and access them through the interop engine and natively compiled 
stored procedures. Finally, this chapter demonstrates performance improvements that 
can be achieved with the In-Memory OLTP Engine when a large number of concurrent 
sessions insert the data into the database and latch contention becomes the bottleneck.

Preparing a Database to Use In-Memory OLTP 
The In-Memory OLTP Engine has been fully integrated into the Enterprise Edition of 
SQL Server and is always installed with the product. It requires the 64-bit version of SQL 
Server; it is not supported in the 32-bit version. You do not need to install any additional 
packages nor perform any configuration changes on the SQL Server level in order to use 
it as long as you are using the correct version and edition of the product. However, any 
database that utilizes In-Memory OLTP objects should have a separate filegroup to store 
memory-optimized data.

You can create this filegroup at database creation time or alter an existing database 
and add the filegroup using the CONTAINS MEMORY_OPTIMIZED_DATA keyword.

Listing 2-1 shows the first example. The FILENAME property of the filegroup specifies 
the folder in which In-Memory OLTP files would be located.

Listing 2-1. Creating a Database with the In-Memory OLTP Filegroup

create database InMemoryOLTPDemo
on primary
(
    name = N'InMemoryOLTPDemo'
    ,filename = N'M:\Data\InMemoryOLTPDemo.mdf'
),
filegroup HKData CONTAINS MEMORY_OPTIMIZED_DATA
(
    name = N'InMemory_OLTP_Data'
    ,filename = N'H:\HKData\InMemory_OLTP_Data'
),
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filegroup LOGDATA
(name = N'LogData1', filename = N'M:\Data\LogData1.ndf'),
(name = N'LogData2', filename = N'M:\Data\LogData2.ndf'),
(name = N'LogData3', filename = N'M:\Data\LogData3.ndf'),
(name = N'LogData4', filename = N'M:\Data\LogData4.ndf'),
log on
(
    name = N'InMemoryOLTPDemo_log'
    ,filename = N'L:\Log\InMemoryOLTPDemo_log.ldf'
)

Under the hood, In-Memory OLTP utilizes a streaming mechanism based on 
FILESTREAM technology. While coverage of FILESTREAM is outside the scope of this book, 
I would like to mention that it is optimized for sequential I/O access. In fact, In-Memory 
OLTP does not use random I/O access at all. It uses sequential append-only writes during 
a normal workload and sequential reads on the database startup and recovery stages. You 
should keep this behavior in mind and place In-Memory OLTP filegroups into the disk 
arrays optimized for sequential performance.

Lastly, similar to FILESTREAM filegroups, the In-Memory OLTP filegroup can include 
multiple containers placed on the different disk arrays.

 ■ Note you can read more about FILESTREAM at http://technet.microsoft.com/ 
en-us/library/gg471497.aspx.

I will discuss the best practices in hardware and sQL server configurations in Chapter 10.

Unfortunately, SQL Server 2014 does not allow you to remove an In-Memory OLTP 
filegroup from the database even after you drop all memory-optimized tables and objects. 
This limitation prevents you from restoring the database on non-Enterprise editions of 
SQL Server if such need ever arises.

 ■ Tip you can move a database between different editions of sQL server as long as you 
do not use any features incompatible with the new (lower) edition. you can read more about 
it at https://msdn.microsoft.com/en-us/library/cc280724.aspx.

Creating Memory-Optimized Tables
Syntax-wise, creation of memory-optimized tables is very similar to on-disk tables. 
You can use the regular CREATE TABLE statement specifying that the table is memory-
optimized.

The code in Listing 2-2 creates three memory-optimized tables in the database. 
Please ignore all unfamiliar constructs; I will discuss them in detail later.

http://technet.microsoft.com/en-us/library/gg471497.aspx
http://technet.microsoft.com/en-us/library/gg471497.aspx
http://dx.doi.org/10.1007/978-1-4842-1136-6_10
https://msdn.microsoft.com/en-us/library/cc280724.aspx
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Listing 2-2. Creating Memory-Optimized Tables

create table dbo.WebRequests_Memory
(
    RequestId int not null identity(1,1)
        primary key nonclustered
        hash with (bucket_count=1000000),
    RequestTime datetime2(4) not null
        constraint DEF_WebRequests_Memory_RequestTime
        default sysutcdatetime(),
    URL varchar(255) not null,
    RequestType tinyint not null, -- GET/POST/PUT
    ClientIP varchar(15)
        collate Latin1_General_100_BIN2 not null,
    BytesReceived int not null,
 
    index IDX_RequestTime nonclustered(RequestTime)
)
with (memory_optimized=on, durability=schema_and_data);
 
create table dbo.WebRequestHeaders_Memory
(
    RequestHeaderId int not null identity(1,1)
        primary key nonclustered
        hash with (bucket_count=5000000),
    RequestId int not null,
    HeaderName varchar(64) not null,
    HeaderValue varchar(256) not null,
 
    index IDX_RequestID nonclustered hash(RequestID)
    with (bucket_count=1000000)
)
with (memory_optimized=on, durability=schema_and_data);
 
create table dbo.WebRequestParams_Memory
(
    RequestParamId int not null identity(1,1)
        primary key nonclustered
        hash with (bucket_count=5000000),
    RequestId int not null,
    ParamName varchar(64) not null,
    ParamValue nvarchar(256) not null,
 
    index IDX_RequestID nonclustered hash(RequestID)
    with (bucket_count=1000000)
)
with (memory_optimized=on, durability=schema_and_data);
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Each memory-optimized table has a DURABILITY setting. The default SCHEMA_AND_
DATA value indicates that the data in the tables is fully durable and persists on disk for 
recovery purposes. Operations on such tables are logged in the database transaction log.

SCHEMA_ONLY is another value, which indicates that data in memory-optimized tables 
is not durable and would be lost in the event of a SQL Server restart, crash, or failover to 
another node. Operations against non-durable, memory-optimized tables are not logged 
in the transaction log. Non-durable tables are extremely fast and can be used if you need 
to store temporary data in use cases similar to temporary tables in tempdb.

Indexes of memory-optimized tables must be created inline and defined as part of 
a CREATE TABLE statement. Unfortunately, it is impossible to alter a memory-optimized 
table and/or create any additional indexes after a table is created.

 ■ Tip you can drop and recreate a memory-optimized table to change its definition and/
or indexes.

Memory-optimized tables have other limitations besides the inability to alter them. 
To name just a few, they cannot have triggers, cannot reference or be referenced with 
foreign key constraints, nor can they have unique constraints defined. Most importantly, 
memory-optimized tables do not support off-row (ROW-OVERFLOW and LOB) data storage, 
which limits the maximum row size to 8,060 bytes and prevents you from using certain 
data types.

 ■ Note I will discuss memory-optimized tables and their limitations in detail in Chapter 3.

Memory-optimized tables support two types of indexes, HASH and NONCLUSTERED. 
Hash indexes are optimized for point lookup operations, which is the search of one 
or multiple rows with equality predicate(s). This is a conceptually new index type in 
SQL Server, and the Storage Engine does not have anything similar to it implemented. 
Nonclustered indexes, on the other hand, are somewhat similar to B-Tree indexes on 
on-disk tables. Note that Microsoft used to call nonclustered indexes range indexes in SQL 
Server 2014 CTP releases and whitepapers.

 ■ Note I will discuss hash indexes in detail in Chapter 4. nonclustered indexes are 
covered in Chapter 5.

In-Memory OLTP has one important requirement regarding text columns that 
participate in the indexes. Those columns must use a binary BIN2 collation. That collation 
is case- and accent-sensitive, which could be the breaking change in the system behavior 
when you migrate on-disk tables to become memory-optimized.

http://dx.doi.org/10.1007/978-1-4842-1136-6_3
http://dx.doi.org/10.1007/978-1-4842-1136-6_4
http://dx.doi.org/10.1007/978-1-4842-1136-6_5
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 ■ Note I will talk about utilizing In-Memory oLtp in existing systems in Chapter 11.

Working with Memory-Optimized Tables 
You can access data in memory-optimized tables either using interpreted T-SQL or from 
natively compiled stored procedures. In interpreted mode, SQL Server treats memory-
optimized tables pretty much the same way as on-disk tables. It optimizes queries and 
caches execution plans, regardless of where the table is located. The same set of operators 
is used during query execution. From a high level, when SQL Server needs to get a row 
from a table, and the operator's GetRow() method is called, it is routed either to the Storage 
Engine or to the In-Memory OLTP Engine, depending on the underlying table type.

Most T-SQL features and constructs are supported in interpreted mode. Some 
limitations still exist; for example, you cannot truncate a memory-optimized table nor use 
it as the target in MERGE statement. Fortunately, the list of such limitations is very small.

Listing 2-3 shows an example of a T-SQL stored procedure that inserts data into 
the memory-optimized tables created in Listing 2-2. For simplicity sake, the procedure 
accepts the data that needs to be inserted into the dbo.WebRequestParams_Memory table 
as the regular parameters limiting it to five values. Obviously, in production code it is 
better to use table-valued parameters in such a scenario.

Listing 2-3. Stored Procedure That Inserts Data to Memory-Optimized Tables Through 
the Interop Engine

create proc dbo.InsertRequestInfo_Memory
(
   @URL varchar(255)
   ,@RequestType tinyint
   ,@ClientIP varchar(15)
   ,@BytesReceived int
   -- Header fields
   ,@Authorization varchar(256)
   ,@UserAgent varchar(256)
   ,@Host varchar(256)
   ,@Connection varchar(256)
   ,@Referer varchar(256)
   -- Hardcoded parameters.. Just for the demo purposes
   ,@Param1 varchar(64) = null
   ,@Param1Value nvarchar(256) = null
   ,@Param2 varchar(64) = null
   ,@Param2Value nvarchar(256) = null
   ,@Param3 varchar(64) = null
   ,@Param3Value nvarchar(256) = null
   ,@Param4 varchar(64) = null
   ,@Param4Value nvarchar(256) = null
   ,@Param5 varchar(64) = null
   ,@Param5Value nvarchar(256) = null
)

http://dx.doi.org/10.1007/978-1-4842-1136-6_11
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as
begin
   set nocount on
   set xact_abort on
 
   declare
      @RequestId int
 
   begin tran
      insert into dbo.WebRequests_Memory
         (URL,RequestType,ClientIP,BytesReceived)
      values
         (@URL,@RequestType,@ClientIP,@BytesReceived);
 
      select @RequestId = SCOPE_IDENTITY();
 
      insert into dbo.WebRequestHeaders_Memory
         (RequestId,HeaderName,HeaderValue)
      values
         (@RequestId,'AUTHORIZATION',@Authorization)
         ,(@RequestId,'USERAGENT',@UserAgent)
         ,(@RequestId,'HOST',@Host)
         ,(@RequestId,'CONNECTION',@Connection)
         ,(@RequestId,'REFERER',@Referer);
         
      ;with Params(ParamName, ParamValue)
      as
      (
         select ParamName, ParamValue
         from (
            values
              (@Param1, @Param1Value)
               ,(@Param2, @Param2Value)
               ,(@Param3, @Param3Value)
               ,(@Param4, @Param4Value)
               ,(@Param5, @Param5Value)
            ) v(ParamName, ParamValue)
         where
            ParamName is not null and
            ParamValue is not null
      )
      insert into dbo.WebRequestParams_Memory
            (RequestID,ParamName,ParamValue)
         select @RequestID, ParamName, ParamValue
         from Params;
   commit
end
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As you see, the stored procedure that works through the interop engine does not 
require any specific language constructs to access memory-optimized tables.

Natively compiled stored procedures are also defined with a regular CREATE 
PROCEDURE statement and they use T-SQL language. However, there are several additional 
options that must be specified at the creation stage.

The code in Listing 2-4 creates the natively compiled stored procedure that 
accomplishes the same logic as the dbo.InsertRequestInfo_Memory stored procedure 
defined in Listing 2-3.

Listing 2-4. Natively Complied Stored Procedure

create proc dbo.InsertRequestInfo_NativelyCompiled
(
   @URL varchar(255) not null
   ,@RequestType tinyint not null
   ,@ClientIP varchar(15) not null
   ,@BytesReceived int not null
   -- Header fields
   ,@Authorization varchar(256) not null
   ,@UserAgent varchar(256) not null
   ,@Host varchar(256) not null
   ,@Connection varchar(256) not null
   ,@Referer varchar(256) not null
   -- Parameters.. Just for the demo purposes
   ,@Param1 varchar(64) = null
   ,@Param1Value nvarchar(256) = null
   ,@Param2 varchar(64) = null
   ,@Param2Value nvarchar(256) = null
   ,@Param3 varchar(64) = null
   ,@Param3Value nvarchar(256) = null
   ,@Param4 varchar(64) = null
   ,@Param4Value nvarchar(256) = null
   ,@Param5 varchar(64) = null
   ,@Param5Value nvarchar(256) = null
)
with native_compilation, schemabinding, execute as owner
as
begin atomic with
(
   transaction isolation level = snapshot
   ,language = N'English'
)
   declare
      @RequestId int
 
   insert into dbo.WebRequests_Memory
      (URL,RequestType,ClientIP,BytesReceived)
   values
      (@URL,@RequestType,@ClientIP,@BytesReceived);
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   select @RequestId = SCOPE_IDENTITY();
 
   insert into dbo.WebRequestHeaders_Memory
      (RequestId,HeaderName,HeaderValue)
   values
      (@RequestId,'AUTHORIZATION',@Authorization);
 
   insert into dbo.WebRequestHeaders_Memory
      (RequestId,HeaderName,HeaderValue)
   values
      (@RequestId,'USERAGENT',@UserAgent);
 
   insert into dbo.WebRequestHeaders_Memory
      (RequestId,HeaderName,HeaderValue)
   values
      (@RequestId,'HOST',@Host);
 
   insert into dbo.WebRequestHeaders_Memory
      (RequestId,HeaderName,HeaderValue)
   values
      (@RequestId,'CONNECTION',@Connection);
 
   insert into dbo.WebRequestHeaders_Memory
      (RequestId,HeaderName,HeaderValue)
   values
      (@RequestId,'REFERER',@Referer);
    
   if @Param1 collate Latin1_General_100_BIN2
          is not null and
      @Param1Value
         collate Latin1_General_100_BIN2
            is not null
   begin
      insert into dbo.WebRequestParams_Memory
         (RequestID,ParamName,ParamValue)
      values
         (@RequestId,@Param1,@Param1Value);
 
      if @Param2
            collate Latin1_General_100_BIN2
               is not null and
         @Param2Value
            collate Latin1_General_100_BIN2
               is not null
      begin
         insert into dbo.WebRequestParams_Memory
            (RequestID,ParamName,ParamValue)
         values
            (@RequestId,@Param2,@Param2Value);
 

www.allitebooks.com
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         if @Param3
               collate Latin1_General_100_BIN2
                  is not null and
            @Param3Value
               collate Latin1_General_100_BIN2
                  is not null
         begin
            insert into dbo.WebRequestParams_Memory
               (RequestID,ParamName,ParamValue)
            values
               (@RequestId,@Param3,@Param3Value);
 
            if @Param4
                  collate Latin1_General_100_BIN2
                     is not null and
               @Param4Value
                  collate Latin1_General_100_BIN2
                     is not null
            begin
               insert into dbo.WebRequestParams_Memory
                  (RequestID,ParamName,ParamValue)
               values
                  (@RequestId,@Param4,@Param4Value);
 
               if @Param5
                     collate Latin1_General_100_BIN2
                        is not null and
                  @Param5Value
                     collate Latin1_General_100_BIN2
                        is not null
                  insert into dbo.WebRequestParams_Memory
                     (RequestID,ParamName,ParamValue)
                  values
                     (@RequestId,@Param5,@Param5Value);
            end
         end
      end
   end
end

You should specify that the stored procedure is natively compiled using the WITH 
NATIVE_COMPILATION clause. All natively-compiled stored procedures are schema-bound, 
and they require you to specify the SCHEMABINDING option. Finally, setting the execution 
context is a requirement. Natively compiled stored procedures do not support the 
EXECUTE AS CALLER security context to avoid expensive permission checks at execution 
time, and they require you to specify the EXECUTE AS OWNER, EXECUTE AS USER, or 
EXECUTE AS SELF context in the definition.
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Natively compiled stored procedures execute as atomic blocks indicated by the 
BEGIN ATOMIC keyword, which is an all or nothing approach. Either all of the statements 
in the procedure succeed or all of them fail.

When a natively compiled stored procedure is called outside of the context of an 
active transaction, it starts a new transaction and either commits or rolls it back at the end 
of the execution.

In cases where a procedure is called in the context of an active transaction, SQL 
Server creates a savepoint at the beginning of the procedure’s execution. In case of an 
error in the procedure, SQL Server rolls back the transaction to the created savepoint. 
Based on the severity and type of error, the transaction is either going to be able to 
continue and commit or become doomed and uncommittable.

Even though the dbo.InsertRequestInfo_Memory and dbo.InsertRequestInfo_
NativelyCompiled stored procedures accomplish the same task, their implementation 
is slightly different. Natively compiled stored procedures have a very extensive list of 
limitations and unsupported T-SQL features. In the example above, you can see that 
neither the INSERT statement with multiple VALUES nor CTE/Subqueries were supported. 
Note that string comparison and manipulation logic require BIN2 collation, which is not 
the case in interop mode.

 ■ Note I will discuss natively compiled stored procedures, atomic transactions, and 
supported t-sQL language constructs in greater depth in Chapter 6.

Finally, it is worth mentioning that natively compiled stored procedures can 
access only memory-optimized tables. It is impossible to query on-disk tables or, as 
another example, join memory-optimized and on-disk tables together. You have to use 
interpreted T-SQL and the interop engine for such tasks.

In-Memory OLTP in Action: Resolving Latch 
Contention
Latches are lightweight synchronization objects, which SQL Server uses to protect the 
consistency of internal data structures. Multiple sessions (or, in that context, threads) 
cannot modify the same object simultaneously.

Consider the situation when multiple sessions try to access the same data page 
in the buffer pool. While it is safe for the multiple sessions/threads to read the data 
simultaneously, data modifications must be serialized and have exclusive access to the 
page. If such rule is not enforced, multiple threads could update a different part of the 
data page at once, overwriting each other's changes and making the data inconsistent, 
which would lead to page corruption.

Latches help to enforce that rule. The threads that need to read data from the page 
obtain shared (S) latches, which are compatible with each other. Data modification, on 
the other hand, requires an exclusive (X) latch, which prevents other readers and writers 
from accessing the data page.

http://dx.doi.org/10.1007/978-1-4842-1136-6_6
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 ■ Note even though latches are conceptually very similar to locks, there is a subtle 
difference between them. Locks enforce logical consistency of the data. For example, they 
reduce or prevent concurrency phenomena, such as dirty or phantom reads. Latches, on 
the other hand, enforce physical data consistency, such as preventing corruption of the data 
page structures.

Usually, latches have a very short lifetime and are barely noticeable in the system. 
However, in very busy OLTP systems, with a large number of CPUs and a high rate of 
simultaneous data modifications, latch contention can become the bottleneck. You can 
see the sign of such a bottleneck by the large percent of PAGELATCH waits in wait statistics 
or by analyzing the sys.dm_os_latch_stats data management view.

 ■ Tip one of the common cases of latch contention, allocation maps contention, also 
presents itself with PAGELATCH waits in wait statistics. the widely known example is 
PAGELATCH, which indicates contention on the allocation map pages in tempdb. you can 
address such contention by increasing the number of data files in the filegroups with 
volatile data.

In-Memory OLTP can be extremely helpful in addressing latch contention due to its 
latch-free architecture. It can help to dramatically increase data modification throughput 
in some scenarios. In this section, you will see one such example.

In my test environment, I use SQL Server 2014 RTM CU5 installed in the virtual 
machine with 32 vCPUs and 128GB of RAM. The disk subsystem consists of two separate 
RAID-10 arrays utilizing 15K SAS drives.

I created the database shown in Listing 2-1 with 16 data files in LOGDATA filegroup 
in order to minimize allocation maps latch contention. The log file has been placed on 
one of the disk arrays, while data and In-Memory OLTP filegroups share the second one. 
It is worth noting that placing on-disk and In-Memory filegroups on the different arrays 
in production often leads to better I/O performance. However, it will not affect the test 
scenarios where we do not mix on-disk and In-Memory OLTP workloads in the same tests.

As the first step, let's create the set of on-disk tables that mimics the structure of 
memory-optimized tables created earlier in the chapter, and the stored procedure that 
inserts data into those tables. Listing 2-5 shows the code to accomplish this.

Listing 2-5. Creating On-Disk Tables and a Stored Procedure

create table dbo.WebRequests_Disk
(
   RequestId int not null identity(1,1),
   RequestTime datetime2(4) not null
      constraint DEF_WebRequests_Disk_RequestTime
      default sysutcdatetime(),
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   URL varchar(255) not null,
   RequestType tinyint not null, -- GET/POST/PUT
   ClientIP varchar(15) not null,
   BytesReceived int not null,
    
   constraint PK_WebRequests_Disk
   primary key nonclustered(RequestID)
   on [LOGDATA]
) on [LOGDATA];
 
create unique clustered index IDX_WebRequests_Disk_RequestTime_RequestId
on dbo.WebRequests_Disk(RequestTime,RequestId)
on [LOGDATA];
  
/* Foreign Keys have not been defined to make
   on-disk and memory-optimized tables as
   similar as possible */
create table dbo.WebRequestHeaders_Disk
(
   RequestId int not null,
   HeaderName varchar(64) not null,
   HeaderValue varchar(256) not null,
    
   constraint PK_WebRequestHeaders_Disk
   primary key clustered(RequestID,HeaderName)
   on [LOGDATA]
);
 
create table dbo.WebRequestParams_Disk
(
   RequestId int not null,
   ParamName varchar(64) not null,
   ParamValue nvarchar(256) not null,
    
   constraint PK_WebRequestParams_Disk
   primary key clustered(RequestID,ParamName)
   on [LOGDATA]
);
go
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create proc dbo.InsertRequestInfo_Disk
(
   @URL varchar(255)
   ,@RequestType tinyint
   ,@ClientIP varchar(15)
   ,@BytesReceived int
   -- Header fields
   ,@Authorization varchar(256)
   ,@UserAgent varchar(256)
   ,@Host varchar(256)
   ,@Connection varchar(256)
   ,@Referer varchar(256)
   -- Parameters.. Just for the demo purposes
   ,@Param1 varchar(64) = null
   ,@Param1Value nvarchar(256) = null
   ,@Param2 varchar(64) = null
   ,@Param2Value nvarchar(256) = null
   ,@Param3 varchar(64) = null
   ,@Param3Value nvarchar(256) = null
   ,@Param4 varchar(64) = null
   ,@Param4Value nvarchar(256) = null
   ,@Param5 varchar(64) = null
   ,@Param5Value nvarchar(256) = null
)
as
begin
   set nocount on
   set xact_abort on
 
   declare
      @RequestId int
 
   begin tran
      insert into dbo.WebRequests_Disk
         (URL,RequestType,ClientIP,BytesReceived)
      values
         (@URL,@RequestType,@ClientIP,@BytesReceived);
 
      select @RequestId = SCOPE_IDENTITY();
 
      insert into dbo.WebRequestHeaders_Disk
         (RequestId,HeaderName,HeaderValue)
      values
         (@RequestId,'AUTHORIZATION',@Authorization)
         ,(@RequestId,'USERAGENT',@UserAgent)
         ,(@RequestId,'HOST',@Host)
         ,(@RequestId,'CONNECTION',@Connection)
         ,(@RequestId,'REFERER',@Referer);
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      ;with Params(ParamName, ParamValue)
      as
      (
         select ParamName, ParamValue
         from (
            values
               (@Param1, @Param1Value)
               ,(@Param2, @Param2Value)
               ,(@Param3, @Param3Value)
               ,(@Param4, @Param4Value)
               ,(@Param5, @Param5Value)
            ) v(ParamName, ParamValue)
         where
            ParamName is not null and
            ParamValue is not null
      )
      insert into dbo.WebRequestParams_Disk
         (RequestID,ParamName,ParamValue)
         select @RequestId, ParamName, ParamValue
            from Params;
   commit
end;

In these tests, we will compare insert throughput of on-disk and memory-optimized 
tables using dbo.InsertRequestInfo_Disk, dbo.InsertRequestInfo_Memory, and dbo.
InsertRequestInfo_NativelyCompiled stored procedures, calling them simultaneously 
from the multiple sessions in the loop. Each call will insert one row into the dbo.
WebRequests table, five rows into the dbo.WebRequestHeaders table, and from one to five 
rows into the dbo.WebRequestDisks table, which makes nine rows total in average in the 
single transaction.

 ■ Note the test application and scripts are included in the companion materials of  
the book.

In case of the dbo.InsertRequestInfo_Disk stored procedure and on-disk tables, 
my test server achieved a maximum throughput of about 3,700–3,800 batches/calls per 
second with 45 concurrent sessions. A further increase in the number of sessions did 
not help and, in fact, even slightly reduced the throughput. Figure 2-1 shows several 
performance counters at time of test.
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Even though we maxed out insert throughput, CPU load on the server was very low, 
which clearly indicates that the CPU was not the bottleneck during the test. At the same 
time, the server suffered from the large number of latches, which were used to serialize 
access to the data pages in the buffer pool. Even though wait time of each individual latch 
was very low, the total latch wait time was high due to the excessive number of them 
acquired every second.

You can confirm that latches were the bottleneck by analyzing wait statistics 
collected during the test. Figure 2-2 illustrates the output from the sys.dm_os_wait_
stats view. You can see that latch waits are at the top of the list.

Figure 2-1. Performance counters when data was inserted into on-disk tables

Figure 2-2. Wait statistics collected during the test (insert into on-disk tables)

The situation changed when I repeated the tests with the dbo.InsertRequestInfo_
Memory stored procedure, which inserted data into memory-optimized tables through 
the interop engine. I maxed out the throughput with 150 concurrent sessions, which is 
more than three times more sessions compared to the previous test with on-disk tables. 
In this scenario, SQL Server was able to handle 30,000–32,000 batches/calls per second. 
A further increase in the number of concurrent sessions did not change the throughput; 
however, the duration of each call linearly increased as more sessions were added.

Figure 2-3 illustrates performance counters during the test. As you see, there were no 
latches with memory-optimized tables and the CPUs were fully utilized.
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As you can see in Figure 2-4, the only significant wait in the system is WRITELOG, 
which is related to the transaction log write performance.

Figure 2-3. Performance counters when data was inserted into memory-optimized tables 
through the interop engine

Figure 2-4. Wait statistics collected during the test (insert into memory-optimized tables 
through interop engine)

Figure 2-5. Performance counters when data was inserted into memory-optimized tables 
using natively compiled stored procedure

The natively compiled dbo.InsertRequestInfo_NativelyCompiled stored 
procedure improved the situation even further. With 150 concurrent sessions, SQL Server 
was able to handle 45,000-50,000 batches/calls per second, which translates to 400,000-
450,000 individual inserts per second.

Figure 2-5 illustrates performance counters during test execution. Even with the 
increase in throughput, the natively compiled stored procedure put less load on the CPU 
than the interop engine, and disk performance became the clear bottleneck in this setup.
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Waits in the wait statistics are very similar to the previous test, with WRITELOG wait at 
the top of the list (see Figure 2-6).

Figure 2-6. Wait statistics collected during the test (insert into memory-optimized tables 
using natively compiled stored procedure)

We can confirm that disk performance has become the limiting factor in our setup 
by running the same test with non-durable, memory-optimized tables. You can do this by 
dropping and recreating the database, and creating the same set of memory-optimized 
tables using the DURABILITY=SCHEMA_ONLY option. No other code changes are required.

Figure 2-7 shows performance counters collected during the test with 225 
concurrent sessions calling the dbo.InsertRequestInfo_NativelyCompiled stored 
procedure to insert data into non-durable tables. As you can see, in that scenario we were 
able to fully utilize the CPU on the system after we removed the I/O bottleneck, which 
improve throughput for another 50% compared to durable memory-optimized tables.

Figure 2-7. Performance counters when data was inserted into non-durable memory-
optimized tables using a natively compiled stored procedure

Finally, it is worth noting that In-Memory OLTP uses different and more efficient 
logging, which leads to a much smaller transaction log footprint. Figure 2-8 illustrates log 
file write statistics collected during 1 minute of test execution using sys.dm_io_virtual_
file_stats DMF. The order of outputs in the figure corresponds to the order in which the 
tests were run: on-disk table inserts, inserts into memory-optimized tables through the 
interop engine, and natively compiled stored procedures, respectively.
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As you see, in interop mode In-Memory OLTP inserted about eight times more 
data; however, it used just three times more space in the transaction log than with on-
disk tables. The situation is even better with natively compiled stored procedures. Even 
though it wrote about 15 percent more to the log, it inserted about 50 percent more data 
compared to interop mode.

 ■ Note I will discuss In-Memory oLtp transaction logging in greater depth in Chapter 8.

Obviously, different scenarios will lead to different results, and performance 
improvements would greatly depend on the hardware, database schema, and use-case 
and workload in the system. However, it is not uncommon to see 3x-5x improvements 
when you access memory-optimized tables through the interop engine and a 10x-30x rate 
with natively compiled stored procedures.

More importantly, In-Memory OLTP allows us to improve the performance of the 
system by scaling up and upgrading hardware. For example, in our scenario we can 
achieve better throughput by adding more CPUs and/or increasing I/O performance. 
This would be impossible to do with on-disk tables where latch contention becomes the 
bottleneck.

Summary
The In-Memory OLTP Engine is fully integrated into the Enterprise Edition of SQL Server 
and is always installed with the 64-bit version of the product. However, every database 
that uses In-Memory OLTP objects should have the separate In-Memory OLTP filegroup 
created. This filegroup should be placed in the disk array optimized for sequential I/O 
performance.

You can create memory-optimized tables with the regular CREATE TABLE statement 
marking tables as MEMORY_OPTIMIZED and specifying table durability option. The data in 
the tables with SCHEMA_AND_DATA durability is persisted on disk. Tables with SCHEMA_ONLY 
durability do not persist the data and they can be used as In-Memory temporary tables 
that provide extremely fast performance.

Figure 2-8. Transaction log write statistics during the tests

www.allitebooks.com
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Memory-optimized tables do not support all T-SQL features and data types. 
Moreover, they cannot have rows that exceed 8,060 bytes in size and they do not support 
ROW-OVERFLOW and LOB storage. Finally, memory-optimized tables and indexes cannot be 
altered after the table was created.

You can access memory-optimized tables from either interpreted T-SQL through 
the interop engine or from natively compiled stored procedures. Almost all T-SQL 
features are supported in interpreted mode. Conversely, natively compiled stored 
procedures support a very limited set of features; however, they can introduce significant 
performance improvements compared to the interop engine.
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Chapter 3

Memory-Optimized Tables

This chapter discusses memory-optimized tables in detail. It shows how memory-optimized 
tables store their data and how SQL Server accesses them. It covers the format of the data 
rows in memory-optimized tables and talks about the process of native compilation.

Finally, the chapter provides an overview of the memory-optimized tables 
limitations that exist in the first release of the In-Memory OLTP Engine.

On-Disk vs. Memory-Optimized Tables
Data and index structures in memory-optimized tables are different from those in on-disk 
tables. In on-disk tables, the data is stored in the 8KB data pages grouped together in 
eight-page extents on per-index or per-heap basis. Every page stores the data from one or 
multiple data rows. Moreover, the data from variable-length or LOB columns can be stored 
off-row on ROW_OVERFLOW and LOB data pages when it does not fit on one in-row page.

All pages and rows in on-disk tables are referenced by in-file offsets, which is the 
combination of file_id, data page offset/position in the file and, in case of a data row, 
row offset/position on the data page.

Finally, every nonclustered index stores its own copy of the data from the index key 
columns referencing the main row by row-id, which is either the clustered index key value 
or a physical address (offset) of the row in the heap table.

Figures 3-1 and 3-2 illustrate these concepts. They show clustered and nonclustered 
index B-Trees defined on a table. As you see, pages are linked through in-file offsets. The 
nonclustered index persists the separate copy of the data and references the clustered 
index through clustered index key values.
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Figure 3-1. Clustered index on on-disk tables
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Every time you need to access the data from the page, SQL Server loads the copy of 
the page to the memory, caching it in the buffer pool. However, the format and structure 
of the data page in the buffer pool does not change, and pages there still use in-file offsets 
to reference each other. The SQL Server component called the Buffer Manager manages 
the buffer pool, and it tracks the data page’s in-memory locations, translating in-file 
offsets to the corresponding memory addresses of the page structures.

Consider the situation when SQL Server needs to scan several data pages in the 
index. The Scheduler requests the page from the Buffer Manager, using file_id and 
page_id to identify it. The Buffer Manager, in turn, checks if the page is already cached, 
reading it from disk when necessary. When the page is read and processed, SQL Server 
obtains the address of the next page in the index and repeats the process.

It is also entirely possible that SQL Server needs to access multiple pages in order to 
read a single row. This happens in case of off-row storage and/or when the execution plan 
uses nonclustered indexes and issues Key or RID Lookup operations, obtaining the data 
from the clustered index or heap.

Figure 3-2. Nonclustered index on on-disk tables
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The process of locating a page in the buffer pool is very fast; however, it still introduces 
overhead that affects performance of the queries. The performance hit is much worse when 
the data page is not in memory and a physical I/O operation is required.

The In-Memory OLTP Engine uses a completely different approach with  
memory-optimized tables. With the exception of Bw-Trees in nonclustered indexes, 
which I will discuss in Chapter 5, in-memory objects do not use data pages. Data rows 
reference each other through the memory pointers. Every row knows the memory 
address of a next row in the chain, and SQL Server does not need to do any extra steps to 
locate it.

Every memory-optimized table has at least one index row chain to link rows together 
and, therefore, every table must have at least one index defined. In the case of durable 
memory-optimized tables, there is the requirement of creating a primary key constraint, 
which can serve for such a purpose.

To illustrate the concepts of row chains, let's create the memory-optimized table as 
shown in Listing 3-1.

Listing 3-1. Creating the Memory-Optimized Table

create table dbo.People
(
   Name varchar(64)
         collate Latin1_General_100_BIN2 not null
      constraint PK_People
      primary key nonclustered
      hash with (bucket_count = 1024),
   City varchar(64)
         collate Latin1_General_100_BIN2 not null,
 
   index IDX_City
   nonclustered hash(City)
   with (bucket_count = 1024),
)
with (memory_optimized = on, durability = schema_only);

This table has two hash indexes defined on the Name and City columns. I am not 
going to discuss hash indexes in depth here but as a general overview, they consist of a 
hash table (an array of hash buckets), each of which contains a memory pointer to the 
data row. SQL Server applies a hash function to the index key columns, and the result of 
the function determines to which bucket a row belongs. All rows that have the same hash 
value and belong to the same bucket are linked together in a row chain; every row has a 
pointer to the next row in a chain.

 ■ Note  i will discuss hash indexes in detail in Chapter 4.

http://dx.doi.org/10.1007/978-1-4842-1136-6_5
http://dx.doi.org/10.1007/978-1-4842-1136-6_4
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Figure 3-3 illustrates this. Solid arrows represent pointers in the index on the Name 
column. Dotted arrows represent pointers in the index on the City column. For simplicity 
sake, let's assume that the hash function generates a hash value based on the first letter of 
the string. Two numbers, displayed in each row, indicate row lifetime, which I will explain 
in the next section of this chapter.

Figure 3-3. Memory-optimized table with two hash indexes

In contrast to on-disk tables, indexes on memory-optimized tables are not created 
as separate data structures but rather embedded as pointers in the data rows, which, in a 
nutshell, makes every index covering.

 ■ Note  to be precise, nonclustered indexes on memory-optimized tables introduce 
additional data structures in memory. however, they are much more efficient compared to 
nonclustered indexes on on-disk tables and do not require Key or RID Lookup operations to 
access the data. i will discuss nonclustered indexes in details in Chapter 5.

Introduction to the Multiversion  
Concurrency Control 
As you already noticed in Figure 3-3, every row in a memory-optimized table has two 
values, called BeginTs and EndTs, which define the lifetime of the row. A SQL Server 
instance maintains the Global Transaction Timestamp value, which is auto-incremented 
when the transaction commits and is unique for every committed transaction. BeginTs 
stores the Global Transaction Timestamp of the transaction that is inserted a row, and 
EndTs stores the timestamp of the transaction that deleted a row. A special value called 
Infinity is used as EndTs for the rows that have not been deleted.

http://dx.doi.org/10.1007/978-1-4842-1136-6_5
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The rows in memory-optimized tables are never updated. The update operation 
creates the new version of the row with the new Global Transaction Timestamp set 
as BeginTs and marks the old version of the row as deleted by populating the EndTs 
timestamp with the same value.

Every transaction has a transaction timestamp, which is the Global Transaction 
Timestamp value at the moment the transaction starts. BeginTs and EndTs control 
the visibility of a row for the transactions. A transaction can see a row only when its 
transaction timestamp is between the BeginTs and EndTs timestamps of the row.

To illustrate that, let's assume that we ran the statement shown in Listing 3-2 and 
committed the transaction when the Global Transaction Timestamp value was 100.

Listing 3-2. Updating Data in the dbo.People Table

update dbo.People
set City = 'Cincinnati'
where Name = 'Ann'

Figure 3-4 illustrates the data in the table after an update transaction has been 
committed. As you see, we now have two rows with Name='Ann' and different lifetime. 
The new row has been appended to the row chain referenced by the hash backet for the 
value of 'A' in the index on the Name column. The hash index on City column did not 
have any rows referenced by the 'C' bucket, therefore the new row becomes the first in 
the row chain referenced from that bucket.

Figure 3-4. Data in the table after update

Let's assume that you need to run a query that selects all rows with Name='Ann' in the 
transaction, which started when the Global Transaction Timestamp was 110. SQL Server 
calculates the hash value for Ann, which is 'A', and finds the corresponding bucket in the hash 
index on the Name column. It follows the pointer from that bucket, which references a row with 
Name='Adam'. This row has BeginTs of 10 and EndTs of Infinity; therefore, it is visible to the 
transaction. However, the Name value does not match the predicate and the row is ignored.
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In the next step, SQL Server follows the pointer from the Adam index pointer array, 
which references the first Ann row. This row has BeginTs of 100 and EndTs of Infinity; 
therefore, it is visible to the transaction and needs to be selected.

As a final step, SQL Server follows the next pointer in the index. Even though the last 
row also has Name='Ann', it has EndTs of 100 and is invisible to the transaction.

As you should have already noticed, this concurrency behavior and data consistency 
corresponds to the SNAPSHOT transaction isolation level when every transaction sees the 
data as of the time transaction started. SNAPSHOT is default transaction isolation level in 
the In-Memory OLTP Engine, which also supports REPEATABLE READ and SERIALIZABLE 
isolation levels. However, REPEATABLE READ and SERIALIZABLE transactions in In-Memory 
OLTP behave differently than with on-disk tables. In-Memory OLTP raises an exception 
and rolls back a transaction if REPEATABLE READ or SERIALIZABLE data consistency rules 
were violated rather than blocks a transacton as with on-disk tables.

In-Memory OLTP documentation also indicates that autocommitted (single 
statement) transactions can run in READ COMMITTED isolation level. However, this is a 
bit misleading. SQL Server promotes and executes such transactions in the SNAPSHOT 
isolation level and does not require you to explicitly specify the isolation level in your 
code. The Autocommitted READ COMMITTED transaction would not see the changes 
committed after the transaction started, which is a different behavior compared to the 
READ COMMITTED transactions against on-disk tables.

 ■ Note  i will discuss concurrency model in in-Memory oltp in Chapter 7.

SQL Server keeps track of the active transactions in the system and detects stale  
rows with the EndTs timestamp older than the Global Transaction Timestamp of the 
oldest active transaction in the system. Stale rows are invisible for active transactions in 
the system, and eventually they are removed from the index row chains and deallocated 
by the garbage collection process.

 ■ Note  the garbage collection process is covered in more detail in Chapter 9.

Data Row Format
As you can guess, the format of the data rows in memory-optimized tables is entirely 
different from on-disk tables and consists of two different sections, Row Header and 
Payload, as shown in Figure 3-5.

http://dx.doi.org/10.1007/978-1-4842-1136-6_7
http://dx.doi.org/10.1007/978-1-4842-1136-6_9
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You are already familiar with the BeginTs and EndTs timestamps in the row header. 
The next element there is StmtId, which references the statement that is inserted that 
row. Every statement in a transaction has a unique 4-byte StmtId value, which works as a 
Halloween protection technique and allows the statement to skip rows it just inserted.

haLLOWeeN prOteCtION

the halloween effect is a known problem in the relation databases world. it was 
discovered by ibM researchers almost 40 years ago. in a nutshell, it refers to the 
situation when the execution of a data modification query is affected by the previous 
modifications it performed.

you can think of the following statement as a classic example of the halloween problem:

insert into T
      select * from T

Without halloween protection, this query would fall into an infinitive loop, reading the 
data it just inserted, and inserting it over and over again.

With on-disk tables, sQl server implements halloween protection by adding spool 
operators to the execution plan. these operators create a temporary copy of the data 
before processing it. in our example, all data from the table is cached in the Table 
Spool first, which will work as the source of the data for the insert.

StmtId helps to avoid the halloween problem in memory-optimized tables. 
statements check the StmtId of the rows, and skip those they just inserted.

The next element in the header, the 2-byte IdxLinkCount, indicates how many 
indexes (pointers) reference the row (or, in the other words, in how many index chains 
this row is participating). SQL Server uses it to detect rows that can be deallocated by the 
garbage collection process.

An array of 8-byte index pointers is the last element of the row header. As you already 
know, every memory-optimized table should have at least one index to link data rows 
together. At most, you can define eight indexes per memory-optimized table, including 
the primary key constraint.

The actual row data is stored in the Payload section of the row. The Payload format may 
vary depending on the table schema. SQL Server works with the Payload through a DLL that 
is generated and compiled for the table (more on that in the next section of this chapter).

Figure 3-5. The structure of a data row in a memory-optimized table
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I would like to reiterate that a key principle of In-Memory OLTP is that Payload data 
is never updated. When a table row needs to be updated, In-Memory OLTP deletes the 
version of the row by setting the EndTs attribute of the original row and inserts the new 
data row version with the new BeginTs value and an EndTs value of Infinity.

Native Compilation of Memory-Optimized Tables
One of the key differences between the Storage and In-Memory OLTP Engines resides 
in how engines work with row data. The data in on-disk tables is always stored using the 
same and pre-defined data row format. Strictly speaking, there are several different storage 
formats based on data compression settings and type of rows; however, the number of 
possible formats are very small and they do not depend on the table schema. For example, 
clustered indexes from the multiple tables defined with the same data compression option 
would store the data in the same way regardless of the tables' schemas.

As usual, that approach comes with benefits and downsides. It is extremely flexible 
and allows us to alter a table and mix per- and post-altered versions of the rows together. 
For example, adding a new nullable column to the table is the metadata-level operation, 
which does not change existing rows. The Storage Engine analyzes table metadata and 
different row attributes, and handles multiple versions of the rows correctly.

However, such flexibility comes at cost. Consider the situation when the query needs 
to access the data from the variable-length column in the row. In this scenario, SQL 
Server needs to find the offset of the variable-length array section in the row, calculate 
an offset and length of the column data from that array, and analyze if the column data is 
stored in-row or off-row before getting the required data. All of that can lead to thousands 
of CPU instructions to execute.

The In-Memory OLTP Engine uses a completely opposite approach. SQL Server 
creates and compiles the separate DLLs for every memory-optimized table in the 
system. Those DLLs are loaded into the SQL Server process, and they are responsible for 
accessing and manipulating the data in Payload section of the row. The In-Memory OLTP 
Engine is generic and it does not know anything about underlying row structures; all data 
access is done through those DLLs.

As you can guess, this approach significantly reduces processing overhead; however, 
it comes at the cost of reduced flexibility. In the first release of In-Memory OLTP, 
generated DLLs require all rows to have the same structure and, therefore, it is impossible 
to alter the table after it is created.

This restriction can lead to supportability and performance issues when tables and 
indexes are defined incorrectly. One such example is the wrong hash index bucket count 
estimation, which can lead to an excessive number of rows in the row chains, which 
reduces index seek performance. I will discuss this problem in detail in Chapter 4.

 ■ Note  sQl server places the source code and compiled dlls in the XTP subfolder of the 
sQl server DATA directory. i will talk about those files and the native compilation process in 
more detail in Chapter 6.

www.allitebooks.com
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Memory-Optimized Tables: Surface Area  
and Limitations
The first release of the In-Memory OLTP Engine has an extensive list of limitations. Let’s 
look at those limitations in detail.

Supported Data Types
As mentioned, memory-optimized tables do not support off-row storage and do restrict 
the maximum data row size to 8,060 bytes. Therefore, only a subset of the data types is 
supported. The supported list includes:

•	 bit

•	 Integer types: tinyint, smallint, int, bigint

•	 Floating and fixed point types: float, real

•	 numeric, and decimal. The In-Memory OLTP Engine uses either 
8 or 16 bytes to store such data types, which is different from 
on-disk tables where storage size can be 5, 9, 13, or 17 bytes, 
depending on precision.

•	 Money types: money and smallmoney

•	 Date/time types: smalldatetime, datetime, datetime2, date, and 
time. The In-Memory OLTP Engine uses 4 bytes to store values 
of date data type and 8 bytes for the other data types, which 
is different from on-disk tables where storage size is based on 
precision.

•	 uniqueidentifiers

•	 Non-LOB string types: (n)char(N), (n)varchar(N), and sysname

•	 Non-LOB binary types: binary(N) and varbinary(N)

Unfortunately, you cannot use any data types that use LOB storage. None of the 
following data types are supported: (n)varchar(max), xml, clr data types, (n)text,  
and image.

It is also worth remembering that the maximum row size limitation of 8,060 bytes 
applies to the size of the columns in table definition rather than to the actual row size. For 
example, it is impossible to define memory-optimized tables with two varchar(4100) 
columns even if you plan to keep data row sizes below the 8,060 bytes threshold.
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Constraints and Table Features
In addition to the limited set of supported data types and inability to alter the table, 
memory-optimized tables have other requirements and limitations. None of the following 
objects are supported:

•	 FOREIGN KEY constraints

•	 CHECK constraints

•	 UNIQUE constraints or indexes with exception of the PRIMARY KEY

•	 DML triggers

•	 IDENTITY columns with SEED and INCREMENT different than (1,1)

•	 Computed and sparse columns

•	 Non-binary collations for the text columns participating in  
the indexes

•	 Nullable indexed columns. A column can be defined as nullable 
when it does not participate in the indexes.

Every memory-optimized table, durable or non-durable, should have at least one 
and at most eight indexes. Moreover, the durable memory-optimized table should have 
a unique primary key constraint defined. This constraint is counted as one of the indexes 
towards the eight-index limit.

If is also worth noting that columns participating in the primary key constraint are 
non-updatable. You can delete the old and insert the new row as the workaround.

Database-Level Limitations
In-Memory OLTP has several limitations that affect some of the database settings and 
operations. They include the following:

•	 You cannot create a Database Snapshot on databases that use 
In-Memory OLTP.

•	 The AUTO_CLOSE database option must be set to OFF.

•	 CREATE DATABASE FOR ATTACH_REBUILD_LOG is not supported.

•	 DBCC CHECKDB skips the memory-optimized tables.

•	 DBCC CHECKTABLE fails if called to check memory-optimized table.

 ■ Note  you can see the full list of limitations in the first release of the in-Memory oltp at 
http://msdn.microsoft.com/en-us/library/dn246937.aspx.

http://msdn.microsoft.com/en-us/library/dn246937.aspx
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High Availability Technologies Support
Memory-optimized tables are fully supported in an AlwaysOn Failover Cluster and 
Availability Groups, and with Log Shipping. However, in the case of a Failover Cluster, 
data from durable memory-optimized tables must be loaded into memory in case of a 
failover, which could increase failover time.

In the case of AlwaysOn Availability Groups, only durable memory-optimized tables 
are replicated to secondary nodes. You can access and query those tables on the readable 
secondary nodes if needed. Data from non-durable memory-optimized tables, on the 
other hand, is not replicated and will be lost in the case of a failover.

You can set up transactional replication on databases with memory-optimized 
tables; however, those tables cannot be used as articles in publications.

In-Memory OLTP is not supported in database mirroring sessions. This does not 
appear to be a big limitation, however. In-Memory OLTP is an Enterprise Edition feature, 
which allows you to replace database mirroring with AlwaysOn Availability Groups.

Summary
As the opposite to on-disk tables, where data is stored in 8KB data pages, memory-optimized 
tables link data rows into the index row chains using regular memory pointers. Every row 
has multiple pointers, one per index row chain. Every table must have at least one and at 
most eight indexes defined.

A SQL Server instance maintains the Global Transaction Timestamp value, which 
is auto-incremented when the transaction commits and is unique for every committed 
transaction. Every data row has BeginTs and EndTs timestamps that define row lifetimes. 
A transaction can see a row only when its transaction timestamp (timestamp at time 
when transaction starts) is between the BeginTs and EndTs timestamps of the row.

Row data in memory-optimized tables are never updated. When a table row needs to 
be updated, In-Memory OLTP creates the new version of the row with new BeginTs value 
and deletes the old version of the row by populating its EndTs timestamp.

SQL Server generates and compiles native DLLs for every memory-optimized 
table in the system. Those DLLs are loaded into the SQL Server process, and they are 
responsible for accessing and manipulating the row data.

The first release of In-Memory OLTP has an extensive list of limitations. Those 
limitations include the inability to alter the table after it is created; a 8,060 byte maximum 
data row size limit without any off-row storage support; the inability to define triggers, 
foreign key, check, and unique constraints on tables; and quite a few others.

The In-Memory OLTP Engine is fully supported in AlwaysOn Failover Clusters, 
Availability Groups, and Log Shipping. Databases with memory-optimized tables  
can participate in transactional replication; however, you cannot replicate  
memory-optimized tables.
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Chapter 4

Hash Indexes

This chapter discusses hash indexes, the new type of indexes introduced in the  
In-Memory OLTP Engine. It will show their internal structure and explain how SQL Server 
works with them. You will learn about the most critical property of hash indexes,  
bucket_count, which defines the number of hash buckets in the index hash array. You will 
see how incorrect bucket count estimations affect system performance. Finally, this chapter 
talks about the SARGability of hash indexes and statistics on memory-optimized tables.

Hashing Overview
Hashing is a widely-known concept in Computer Science that performs the 
transformation of the data into short fixed-length values. Hashing is often used in 
scenarios when you need to optimize point-lookup operations that search within the set 
of large strings or binary data using equality predicate(s). Hashing significantly reduces 
an index key size, making them compact, which, in turn, improves the performance of 
lookup operations.

A properly defined hashing algorithm, often called a hash function, provides 
relatively random hash distribution. A hash function is always deterministic, which 
means that the same input always generates the same hash value. However, a hash 
function does not guarantee uniqueness, and different input values can generate the 
same hashes. That situation is called collision and the chance of it greatly depends on 
the quality of the hash algorithm and the range of allowed hash keys. For example, a 
hash function that generates a 2-byte hash has a significantly higher chance of collision 
compared to a function that generates a 4-byte hash.

Hash tables, often called hash maps, are the data structures that store hash keys, 
mapping them to the original data. The hash keys are assigned to buckets, in which 
original data can be found. Ideally, each unique hash key is stored in the individual 
bucket; however, when the number of buckets in the table is not big enough, it is entirely 
possible that multiple unique hash keys would be placed into the same bucket. Such 
situation is also often referenced as a hash collision in context of hash tables.
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 ■ Tip the HASHBYTES function allows you to generate hashes in t-sQL using one of the 
industry standard algorithms such as MD5, SHA2_512, and a few others. however, the output 
of the HASHBYTES function is not ideal for point-lookup optimization due to the large size of 
the output. You can use a CHECKSUM function that generates a 4-byte hash instead.

You can index the hash generated by the CHECKSUM function and use it as the replacement 
for the indexes on uniqueidentifier columns. It is also useful when you need to perform 
point-lookup operations on the large (>900 bytes) strings or binary data, which cannot be 
indexed. I discussed this scenario in Chapter 6 of my book Pro SQL Server Internals.

Much Ado About Bucket Count
In the In-Memory OLTP Engine, hash indexes are, in a nutshell, hash tables with buckets 
implemented as array of a predefined size. Each bucket contains a pointer to a data row. 
SQL Server applies a hash function to the index key values, and the result of the function 
determines to which bucket a row belongs. All rows that have the same hash value and 
belong to the same bucket are linked together through a chain of index pointers in the 
data rows.

Figure 4-1 illustrates an example of a memory-optimized table with two hash indexes 
defined. You saw this diagram in the previous chapter; it’s displayed here for reference 
purposes. Remember that in this example we assumed that a hash function generates a 
hash value based on the first letter of the string. Obviously, a real hash function used in 
In-Memory OLTP is much more random and does not use character-based hashes.

Figure 4-1. A memory-optimized table with two hash indexes

http://dx.doi.org/10.1007/978-1-4842-1136-6_6
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The number of buckets is the critical element in hash index performance. An 
efficient hash function allows you to avoid most collisions during hash key generation; 
however, you will have collisions in the hash table when the number of buckets is not big 
enough, and SQL Server has to store different hashes together in the same buckets. Those 
collisions lead to longer row chains, which requires SQL Server to scan more rows during 
the query processing.

Bucket Count and Performance
Let’s consider a hash function that generates a hash based on the first two letters of 
the string and can return 26 * 26 = 676 different hash keys. This is a purely hypothetical 
example, which I am using just for illustration purposes.

Assuming that the hash table can accommodate all 676 different hash buckets and 
you have the data shown in Figure 4-2, you will need to traverse at most two rows in the 
chain when you run a query that looks for a specific value.

Figure 4-2. Hash table lookup: 676 buckets
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The dotted arrows in Figure 4-2 illustrate the steps needed to look up the rows for 
Ann. The process requires you to traverse two rows after you find the right hash bucket in 
the table.

However, the situation changes if your hash table does not have enough buckets to 
separate unique hash keys from each other. Figure 4-3 illustrates the situation when a 
hash table has only 26 buckets and each of them stores multiple different hash keys. Now 
the same lookup of the Ann row requires you to traverse the chain of nine rows total.

The same principle applies to the hash indexes where choosing an incorrect number 
of buckets can lead to serious performance issues.

Let’s create two non-durable memory-optimized tables, and populate them with 
1,000,000 rows each, as shown in Listing 4-1. Both tables have exactly the same schema 
with a primary key constraint defined as the hash index. The number of buckets in the 
index is controlled by the bucket_count property. Internally, however, SQL Server rounds 
the provided value to the next power of two, so the HashIndex_HighBucketCount table 
would have 1,048,576 buckets in the index and the HashIndex_LowBucketCount table 
would have 1,024 buckets.

Listing 4-1. Bucket_count and Performance: Creating Memory-Optimized Tables

create table dbo.HashIndex_LowBucketCount
(
    Id int not null
        constraint PK_HashIndex_LowBucketCount
        primary key nonclustered
        hash with (bucket_count=1000),
    Value int not null
)
with (memory_optimized=on, durability=schema_only);
 
create table dbo.HashIndex_HighBucketCount
(
    Id int not null
        constraint PK_HashIndex_HighBucketCount
        primary key nonclustered

Figure 4-3. Hash table lookup: 26 buckets
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        hash with (bucket_count=1000000),
    Value int not null
)
with (memory_optimized=on, durability=schema_only);
go
 
;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N3 as t2) -- 1,048,576 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.HashIndex_HighBucketCount(Id, Value)
    select Id, Id
    from ids
    where Id <= 1000000;
 
;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N3 as t2) -- 1,048,576 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.HashIndex_LowBucketCount(Id, Value)
    select Id, Id
    from ids
    where Id <= 1000000;

Table 4-1 shows the execution time of the INSERT statements in my test environment. 
As you can see, inserting data into the HashIndex_HighBucketCount table is about 27 
times faster compared to the HashIndex_LowBucketCount counterpart.

Table 4-1. Execution Time of INSERT Statements

dbo.HashIndex_HighBucketCount 
(1,048,576 buckets)

dbo.HashIndex_LowBucketCount  
(1024 buckets)

3,578 ms 99,312 ms

Listing 4-2 shows the query that returns the bucket count and row chains 
information using the sys.dm_db_xtp_hash_index_stats view. Keep in mind that this 
view scans the entire table, which is time consuming when the tables are large.
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Listing 4-2. Obtaining Information About Hash Indexes

select
    s.name + '.' + t.name as [Table]
    ,i.name as [Index]
    ,stat.total_bucket_count as [Total Buckets]
    ,stat.empty_bucket_count as [Empty Buckets]
    ,floor(100. * empty_bucket_count / total_bucket_count)
        as [Empty Bucket %]
    ,stat.avg_chain_length as [Avg Chain]
    ,stat.max_chain_length as [Max Chain]
from
    sys.dm_db_xtp_hash_index_stats stat
        join sys.tables t on
            stat.object_id = t.object_id
        join sys.indexes i on
            stat.object_id = i.object_id and
            stat.index_id = i.index_id
        join sys.schemas s on
            t.schema_id = s.schema_id

Figure 4-4 shows the output of the query. As you can see, the HashIndex_
HighBucketCount table has on average one row in the row chains, while the HashIndex_
LowBucketCount table has almost a thousand rows per chain. It is worth noting that even 
though the hash function used by In-Memory OLTP provides relatively good random data 
distribution, some level of hash collision is still present.

The incorrect bucket count estimation and long row chains can significantly affect 
performance of both reader and writer queries. You have already seen the performance 
impact for the insert operation. Now let’s look at a select query.

Listing 4-3 shows the code that triggers 65,536 Index Seek operations in each 
memory-optimized table. I wrote this query in very inefficient way just to be able to 
demonstrate the impact of the long row chains.

Listing 4-3. Bucket_count and Performance: Selecting Data in the Tables

declare
    @T table(Id int not null primary key)
 
;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows

Figure 4-4. sys.dm_db_xtp_hash_index_stats output
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,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into @T(Id)
    select Id from Ids;
 
select t.id, c.Cnt
from @T t
    cross apply
     (
            select count(*) as Cnt
            from dbo.HashIndex_HighBucketCount h
            where h.Id = t.Id
    ) c;
 
select t.id, c.Cnt
from @T t
    cross apply
     (
            select count(*) as Cnt
            from dbo.HashIndex_LowBucketCount h
            where h.Id = t.Id
    ) c;

You can confirm that the queries traversed the row chains 65,536 times by analyzing 
the execution plan shown in Figure 4-5.

Table 4-2 shows the queries’ execution time in my environment where the query 
against HashIndex_LowBucketCount table was about 20 times slower.

Figure 4-5. Execution plan of the queries

www.allitebooks.com
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While you can clearly see that underestimation of the bucket counts can degrade 
system performance, overestimation is not good either. First, every bucket uses 8 bytes to 
store the memory pointer, and a large number of unused buckets is a waste of precious 
system memory. For example, defining the index with bucket_count=100000000 will 
introduce 134,217,728 buckets, which will require 128MB of RAM. This does not seem 
much in the scope of the single index; however, it could become an issue as the number 
of indexes grows up.

Moreover, SQL Server needs to scan all buckets in the index when it performs an 
Index Scan operation, and extra buckets add some overhead to the process. Listing 4-4 
shows the queries that demonstrate such an overhead.

Listing 4-4. Bucket_count and Performance: Index Scan Queries

select count(*) from dbo.HashIndex_HighBucketCount;
select count(*) from dbo.HashIndex_LowBucketCount;

Table 4-3 shows the execution time in my environment. As you see, the overhead of 
scanning extra buckets is not significant; however, it still exists.

Table 4-2. Execution Time of SELECT Statements

dbo.HashIndex_HighBucketCount 
(1,048,576 buckets)

dbo.HashIndex_LowBucketCount  
(1024 buckets)

644 ms 13,524 ms

Table 4-3. Execution Time of SELECT Statements

dbo.HashIndex_HighBucketCount 
(1,048,576 buckets)

dbo.HashIndex_LowBucketCount  
(1024 buckets)

313 ms 280 ms

Choosing the Right Bucket Count
Choosing the right number of buckets in a hash index is a tricky but very important 
subject. To make matters worse, you have to make the right decision at the design stage; it 
is impossible to alter the index and change the bucket_count once a table is created.

In ideal situation, you should have the number of buckets that would exceed 
cardinality (number of unique keys) of the index. Obviously, you should take future 
system growth and projected workload changes into consideration. It is not a good idea 
to create an index based on the current data cardinality if you expect the system to handle 
much more data in the future.
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 ■ Note  Microsoft suggests setting the bucket_count to be between one and two times 
the number of distinct values in the index. You can read more at https://msdn.microsoft.
com/en-us/library/dn494956.aspx.

Low-cardinality columns with a large number of duplicated values are usually bad 
candidates for hash indexes. The same data values generate the same hash and, therefore, 
rows will be linked to long row chains. Obviously, there are always exceptions, and you 
should analyze the queries and workload in your system, taking into consideration the 
data modification overhead introduced by the long row chains.

In existing indexes, you can analyze the output of the sys.dm_db_xpt_hash_index_
stats view to determine if the number of buckets in the index is sufficient. If the number 
of empty buckets is less than 10 percent of the total number of buckets in the index, the 
bucket count is likely to be too low. Ideally, at least 33 percent of the buckets in the index 
should be empty.

With all that being said, it is often better to err on the side of caution and 
overestimate rather than underestimate the number. Even though overestimation 
impacts the performance of the Index Scan, this impact is much lower compared to the 
one introduced by long row chains. Obviously, you need to remember that every bucket 
uses 8 bytes of memory whether it is empty or not.

Changing the Bucket Count in the Index
As you already know, it is impossible to alter the table and change the bucket_count in 
the index after the table is created. The only option of changing it is to recreate the table, 
which is impossible to do while keeping the table online.

To make matter worse, the sp_rename stored procedure does not work with memory-
optimized tables. It is impossible to create a new memory-optimized table with the 
desired structure, dump data there, and drop an old table and rename a new table 
afterwards. You will need to recreate an old table and copy data the second time if you 
want to keep the table name intact.

 ■ Tip  You can use synonyms referencing the new table under the old table name,  
making it transparent to the code. You can read more about synonyms at  
https://msdn.microsoft.com/en-us/library/ms187552.aspx.

When you want to keep the table name intact, you can export data to and import 
data from the flat files using the bcp utility. Alternatively, you can create and use either an 
on-disk or memory-optimized table as a temporary staging place.

Obviously, a memory-optimized table is the faster choice compared to an on-disk 
table; however, you should consider memory requirements during the process. Even 
though the garbage collector eventually deallocates deleted rows from the memory, 
it would not happen instantly after you dropped the table. You should have enough 
memory to accommodate at least two extra copies of the data to be on the safe side.

https://msdn.microsoft.com/en-us/library/dn494956.aspx
https://msdn.microsoft.com/en-us/library/dn494956.aspx
https://msdn.microsoft.com/en-us/library/ms187552.aspx
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Do not create any unnecessary indexes on the staging table. Use heaps in the case of 
an on-disk table or a single primary key constraint with a memory-optimized table. This 
will help you to reduce memory consumption and speed up the process.

Finally, avoid using non-durable memory-optimized tables to stage the data. Even 
though this could significantly speed up the process and reduce transaction log overhead, 
you can lose the data if an unexpected crash or failover occurred during the data 
movement.

 ■ Tip  You can reduce transaction log overhead by staging data in another database 
temporarily created for such a purpose. You will still write the data to transaction log in the 
staging database; however, those log records won’t need to be backed up or transmitted 
over the network to the secondary servers. It is also beneficial to use the SELECT INTO 
operator when copying data into an on-disk table to make the operation minimally logged.

Hash Indexes and SARGability
In the database world, queries are treated as SARGable (Search ARGument Able) when 
they and their predicates allow the Database Engine to utilize Index Seek operations 
during query execution.

Hash indexes have different SARGability rules as compared to B-Tree indexes 
defined on on-disk tables. They are efficient only in the case of a point-lookup equality 
search, which allows SQL Server to calculate the corresponding hash value of the index 
key(s) and find a bucket that references the desired chain of rows.

In the case of composite hash indexes, SQL Server calculates the hash value for 
the combined value of all key columns. A hash value calculated on a subset of the key 
columns would be different and, therefore, a query should have equality predicates on all 
key columns for the index to be useful.

This behavior is different from indexes on on-disk tables. Consider the situation 
where you want to define an index on (LastName, FirstName) columns. In the case of 
on-disk tables, that index can be used for an Index Seek operation, regardless of whether 
the predicate on the FirstName column is specified in the where clause of a query. 
Alternatively, a composite hash index on a memory-optimized table requires queries to 
have equality predicates on both LastName and FirstName in order to calculate a hash 
value that allows for choosing the right hash bucket in the index.

Let’s create on-disk and memory-optimized tables with composite indexes on the 
(LastName, FirstName) columns, populating them with the same data as shown in 
Listing 4-5.
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Listing 4-5. Composite Hash Index: Test Tables Creation

create table dbo.CustomersOnDisk
(
    CustomerId int not null identity(1,1),
    FirstName varchar(64) collate Latin1_General_100_BIN2 not null,
    LastName varchar(64) collate Latin1_General_100_BIN2 not null,
    Placeholder char(100) null,
 
    constraint PK_CustomersOnDisk
    primary key clustered(CustomerId)
);
 
create nonclustered index IDX_CustomersOnDisk_LastName_FirstName
on dbo.CustomersOnDisk(LastName, FirstName)
go
 
create table dbo.CustomersMemoryOptimized
(
    CustomerId int not null identity(1,1)
        constraint PK_CustomersMemoryOptimized
        primary key nonclustered
        hash with (bucket_count = 30000),
    FirstName varchar(64) collate Latin1_General_100_BIN2 not null,
    LastName varchar(64) collate Latin1_General_100_BIN2 not null,
    Placeholder char(100) null,
 
    index IDX_CustomersMemoryOptimized_LastName_FirstName
    nonclustered hash(LastName, FirstName)
    with (bucket_count = 1024),
)
with (memory_optimized = on, durability = schema_only)
go
 
-- Inserting cross-joined data for all first and last names 50 times
-- using GO 50 command in Management Studio
;with FirstNames(FirstName)
as
(
    select Names.Name
    from
    (
        values('Andrew'),('Andy'),('Anton'),('Ashley'),('Boris'),
        ('Brian'),('Cristopher'),('Cathy'),('Daniel'),('Donny'),
        ('Edward'),('Eddy'),('Emy'),('Frank'),('George'),('Harry'),
        ('Henry'),('Ida'),('John'),('Jimmy'),('Jenny'),('Jack'),
        ('Kathy'),('Kim'),('Larry'),('Mary'),('Max'),('Nancy'),
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        ('Olivia'),('Paul'),('Peter'),('Patrick'),('Robert'),
        ('Ron'),('Steve'),('Shawn'),('Tom'),('Timothy'),
        ('Uri'),('Vincent')
    ) Names(Name)
)
,LastNames(LastName)
as
(
    select Names.Name
    from
    (
        values('Smith'),('Johnson'),('Williams'),('Jones'),('Brown'),
            ('Davis'),('Miller'),('Wilson'),('Moore'),('Taylor'),
            ('Anderson'),('Jackson'),('White'),('Harris')
    ) Names(Name)
)
insert into dbo.CustomersOnDisk(LastName, FirstName)
    select LastName, FirstName
    from FirstNames cross join LastNames
go 50
 
insert into dbo.CustomersMemoryOptimized(LastName, FirstName)
    select LastName, FirstName
    from dbo.CustomersOnDisk;

For the first test, let’s run select statements against both tables, specifying both 
LastName and FirstName as predicates in the queries, as shown in Listing 4-6.

Listing 4-6. Composite Hash Index: Selecting Data Using Both Index Columns  
as Predicates

select CustomerId, FirstName, LastName
from dbo.CustomersOnDisk
where FirstName = 'Paul' and LastName = 'White';
 
select CustomerId, FirstName, LastName
from dbo.CustomersMemoryOptimized
where FirstName = 'Paul' and LastName = 'White';

As you can see in Figure 4-6, SQL Server is able to use an Index Seek operation in 
both cases.
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In the next step, let’s check what happens if you remove the filter by FirstName from 
the queries. The code is shown in Listing 4-7.

Listing 4-7. Composite Hash Index: Selecting Data Using the Leftmost Index  
Column Only

select CustomerId, FirstName, LastName
from dbo.CustomersOnDisk
where LastName = 'White';
 
select CustomerId, FirstName, LastName
from dbo.CustomersMemoryOptimized
where LastName = 'White';

In the case of the on-disk index, SQL Server is still able to utilize an Index Seek 
operation. This is not the case for the composite hash index defined on the memory-
optimized table. You can see the execution plans for the queries in Figure 4-7.

Figure 4-6. Composite hash index: execution plans when queries use both index columns 
as predicates
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Statistics on Memory-Optimized Tables
Even though SQL Server creates index- and column-level statistics on memory-optimized 
tables, it does not update the statistics automatically. This behavior leads to a very 
interesting situation: indexes on memory-optimized tables are created with the tables 
and, therefore, the statistics are created at the time when the tables are empty and are 
never updated automatically afterwards.

You can validate it by running the DBCC SHOW_STATISTICS statement shown in 
Listing 4-8.

Listing 4-8. Analyzing Index Statistics

dbcc show_statistics
(
    'dbo.HashIndex_HighBucketCount'
    ,'PK_HashIndex_HighBucketCount'
)

The output shown in Figure 4-8 illustrates that the statistics is empty.

Figure 4-8. Output of DBCC SHOW_STATISTICS statement

Figure 4-7. Composite hash index: execution plans when queries use the leftmost index 
column only
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You need to keep this behavior in mind while designing a statistics maintenance 
strategy in the system. You should update the statistics after the data is loaded into the 
table when SQL Server or the database restarts. Moreover, if the data in a memory-
optimized table is volatile, which is usually the case, you should manually update 
statistics on a regular basis.

You can update individual statistics with the UPDATE STATISTICS command. 
Alternatively, you can use the sp_updatestats stored procedure to update all statistics 
in the database. The sp_updatestats stored procedure always updates all statistics on 
memory-optimized tables, which is different from how it works for on-disk tables, where 
such a stored procedure skips statistics that do not need to be updated.

SQL Server always performs a full scan while updating statistics on memory-
optimized tables. This behavior is also different from on-disk tables, whereas SQL Server 
samples the data by default. Finally, you need to specify the NORECOMPUTE option when you 
run CREATE STATISTICS or UPDATE STATISTICS statements. Listing 4-9 shows an example.

Listing 4-9. Updating Statistics on Memory-Optimized Table

update statistics dbo.HashIndex_HighBucketCount
with fullscan, norecompute;

If you run the DBCC SHOW_STATISTICS statement from Listing 4-8 again, you should 
see that the statistics have been updated (see Figure 4-9).

Missing statistics can introduce suboptimal execution plans with the nested loop 
joins when SQL Server chooses inner and outer inputs for the operator. As you know, 
the nested loop join algorithm processes the inner input for every row from the outer 
input, and it is more efficient to put smaller input to the outer side. Listing 4-10 shows the 
algorithm for the inner nested loop join as the reference.

Listing 4-10. Inner Nested Loop Join Algorithm

for each row R1 in outer table
    for each row R2 in inner table
        if R1 joins with R2
            return join (R1, R2)

Missing statistics can lead to a situation when SQL Server choses the inner and outer 
inputs incorrectly, which can lead to highly inefficient plans.

Let’s create two tables, populating them with some data, as shown in Listing 4-11.

Figure 4-9. Output of DBCC SHOW_STATISTICS statement after the statistics are updated
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Listing 4-11. Missing Statistics and Inefficient Execution Plans: Table Creation

create table dbo.T1
(
    ID int not null identity(1,1)
        primary key nonclustered hash
        with (bucket_count = 8192),
    T1Col int not null,
    Placeholder char(100) not null
        constraint DEF_T1_Placeholder
        default('1'),
 
    index IDX_T1Col
    nonclustered hash(T1Col)
    with (bucket_count = 1024)
)
with (memory_optimized = on, durability = schema_only);
 
create table dbo.T2
(
    ID int not null identity(1,1)
        primary key nonclustered hash
        with (bucket_count = 8192),
    T2Col int not null,
    Placeholder char(100) not null
        constraint DEF_T2_Placeholder
        default('2'),
 
    index IDX_T2Col
    nonclustered hash(T2Col)
    with (bucket_count = 1024)
)
with (memory_optimized = on, durability = schema_only);
 
;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N3 as t2) -- 4,096 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
    insert into dbo.T1(T1Col)
        select 1 from Ids;
 
insert into dbo.T2(T2Col)
    select -1 from dbo.T1;
 
update dbo.T1
set T1Col = 2
where ID = 4096;
 
update dbo.T2
set T2Col = -2
where ID = 1;
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The data in both tables distributed unevenly. You can confirm it by running the 
query in Listing 4-12. Figure 4-10 illustrates the data distribution in the tables.

Listing 4-12. Missing Statistics and Inefficient Execution Plans: Checking Data 
Distribution in the Tables

select 'T1' as [Table], T1Col as [Value], count(*) as [Count]
from dbo.T1
group by T1Col
 
union all
 
select 'T2' as [Table], T2Col as [Value], count(*) as [Count]
from dbo.T2
group by T2Col;

As the next step, let’s run two queries that join the data from the tables as it is shown 
in Listing 4-13. Both queries will return just a single row.

Listing 4-13. Missing Statistics and Inefficient Execution Plans: Test Queries

select *
from dbo.T1 t1 join dbo.T2 t2 on
    t1.ID = t2.ID
where
    t1.T1Col = 2 and
    t2.T2Col = -1;
 
select *
from dbo.T1 t1 join dbo.T2 t2 on
    t1.ID = t2.ID
where
    t1.T1Col = 1 and
    t2.T2Col = -2

Figure 4-10. Missing statistics and inefficient execution plans: data distribution

www.allitebooks.com

http://www.allitebooks.org
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As you can see in Figure 4-11, SQL Server generated identical execution plans for 
both queries using the T1 table in the outer part of the join. This plan is very efficient for 
the first query; there is the only one row with T1Col = 2 and, therefore, SQL Server had to 
perform an inner input lookup just once. Unfortunately, it is not the case for the second 
query, which leads to 4,095 Index Seek operations on the T2 table.

Figure 4-11. Missing statistics and inefficient execution plans: execution plans
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Let’s update statistics on both tables, as shown in Listing 4-14.

Listing 4-14. Missing Statistics and Inefficient Execution Plans: Updating Statistics

update statistics dbo.T1 with fullscan, norecompute;
update statistics dbo.T2 with fullscan, norecompute;
 
dbcc show_statistics('dbo.T1','IDX_T1Col');
dbcc show_statistics('dbo.T2','IDX_T2Col');

Figure 4-12 illustrates that the statistics have been updated.

Now, if you run the queries from Listing 4-13 again, SQL Server can generate an 
efficient execution plan for the second query, as shown in Figure 4-13.

Figure 4-12. Missing statistics and inefficient execution plans: index statistics
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Figure 4-13. Missing statistics and inefficient execution plans: execution plans after 
statistics update

 ■ Note  You can read more about statistics on memory-optimized tables at  
http://msdn.microsoft.com/en-us/library/dn232522.aspx.

Summary
Hash indexes consist of an array of hash buckets, each of which stores the pointer to the 
chain of rows with the same index key column(s) hash. Hash indexes help to optimize 
point-lookup operations when queries search for the rows using equality predicates. In 
case of composite hash indexes, the query should have equality predicates on all key 
columns for the index to be useful.

Choosing the right bucket count is extremely important. Underestimations 
lead to long row chains, which could seriously degrade performance of the queries. 
Overestimations increase memory consumption and decrease performance of the 
index scans.

Low-cardinality columns lead to the long row chains and are usually bad candidates 
for hash indexes.

http://msdn.microsoft.com/en-us/library/dn232522.aspx
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You should analyze index cardinality and consider future system growth when 
choosing the right bucket count. Ideally, you should have at least 33 percent of buckets 
empty. You can get information about buckets and row chains with the sys.dm_db_xtp_
hash_index_stats view.

SQL Server creates statistics on the indexes on memory-optimized tables; however, 
statistics are not updated automatically. You should update statistics manually using the 
UPDATE STATISTICS statement or the sp_updatestats procedure on a regular basis.
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Chapter 5

Nonclustered Indexes

This chapter discusses nonclustered indexes, which is the second type of indexes 
supported by the In-Memory OLTP Engine. It shows how to define nonclustered indexes, 
talks about their SARGability rules, and explains their internal structure.

Working with Nonclustered Indexes
Nonclustered indexes are another type of indexes supported by the In-Memory OLTP 
Engine. In contrast to hash indexes, which are optimized to support point-lookup 
equality searches, nonclustered indexes help you search data based on a range of values. 
They have a somewhat similar structure to regular indexes on on-disk tables. They are not 
exactly the same, however, and I will discuss their internal implementation in depth later 
in this chapter.

terMINOLOGY ISSUe

Nonclustered indexes were introduced in SQL Server 2014 CTP 2, and the 
documentation and whitepapers for that version used the term “range indexes”  
to reference them. However, in the production release of SQL Server 2014,  
Microsoft changed the terminology to “nonclustered indexes.”

That terminology can be confusing because hash indexes are also not clustered.  
In fact, the concepts of heaps and clustered indexes cannot be applied to In-Memory 
OLTP. Data rows are not stored in any particular order nor are they grouped together 
on the data pages in memory.

It is also worth mentioning that the minimal index_id value of In-Memory OLTP 
indexes is 2, which corresponds to nonclustered indexes in on-disk tables.
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Creating Nonclustered Indexes
Nonclustered indexes are created inline as part of the CREATE TABLE statement. The 
syntax is similar to hash index creation; however, you should omit the keyword HASH 
and you do not need to specify the number of buckets in the index properties. Collation 
requirement still exists; you cannot index text data unless a column uses BIN2 binary 
collation.

The code in Listing 5-1 creates a memory-optimized table with two nonclustered 
indexes, one composite and another on the single column.

Listing 5-1. Creating a Table with Two Nonclustered Indexes

create table dbo.Customers
(
    CustomerId int identity(1,1) not null
        constraint PK_Customers
        primary key nonclustered
        hash with (bucket_count=1000),
    FirstName varchar(32)
        collate Latin1_General_100_BIN2 not null,
    LastName varchar(64)
        collate Latin1_General_100_BIN2 not null,
    FullName varchar(97)
        collate Latin1_General_100_BIN2 not null,
 
    index IDX_LastName_FirstName
    nonclustered(LastName, FirstName),
 
    index IDX_FullName
    nonclustered(FullName)
)
with (memory_optimized=on, durability=schema_only);

Using Nonclustered Indexes
Similar to B-Tree indexes in on-disk tables, the data in nonclustered indexes is sorted 
accordingly to the value of index key columns. As result, nonclustered indexes are 
beneficial in a large number of use cases. They can lead to an Index Seek operation 
in scenarios when query predicates allow SQL Server to locate and isolate a subset 
of the index keys for processing. With very few exceptions, the SARGability rules for 
nonclustered indexes match the rules for indexes defined on on-disk tables.

Listing 5-2 shows several queries against the dbo.Customers table. SQL Server is able 
to use Index Seek with all of them.
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Listing 5-2. Queries That Lead to Index Seek Operations

-- Point-Lookup specifying all columns in the index
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName = 'White' and FirstName = 'Paul';
 
-- Point-lookup using leftmost index column
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName = 'White';
 
-- Using ">", ">=", "<", "<=" comparison
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName > 'White';
 
-- Prefix Search
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName like 'Wh%';
 
-- IN list
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName in ('White','Moore');

Similar to B-Tree indexes, Index Seek is impossible when query predicates do 
not allow isolating a subset of the index keys for processing. Listing 5-3 shows several 
examples of such queries.

Listing 5-3. Queries That Lead to Index Scan Operations

-- Omitting left-most index column(s)
select CustomerId, FirstName, LastName
from dbo.Customers
where FirstName = 'Paul';
 
-- Substring Search
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName like '%hit%';
 
-- Functions
select CustomerId, FirstName, LastName
from dbo.Customers
where len(LastName) = 5;
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As the opposite of B-Tree indexes on on-disk tables, nonclustered indexes are 
unidirectional, and SQL Server is unable to scan index keys in the order opposite of how 
they were sorted. You should keep this behavior in mind when you define an index and 
choose the sorting order for the columns.

Let's illustrate that with an example; we’ll create an on-disk table with the same 
structure as dbo.Customers, and populate both tables with the same data. Listing 5-4 
shows the code to do so.

Listing 5-4. Nonclustered Indexes and Sorting Order: On-disk Table Creation

create table dbo.Customers_OnDisk
(
    CustomerId int identity(1,1) not null,
    FirstName varchar(32) not null,
    LastName varchar(64) not null,
    FullName varchar(97) not null,
 
    constraint PK_Customers_OnDisk
    primary key clustered(CustomerId)
);
 
create nonclustered index IDX_Customers_OnDisk_LastName_FirstName
on dbo.Customers_OnDisk(LastName, FirstName);
 
create nonclustered index IDX_Customers_OnDisk_FullName
on dbo.Customers_OnDisk(FullName);
go
 
;with FirstNames(FirstName)
as
(
    select Names.Name
    from
    (
        values('Andrew'),('Andy'),('Anton'),('Ashley'),('Boris'),
        ('Brian'),('Cristopher'),('Cathy'),('Daniel'),('Don'),
        ('Edward'),('Eddy'),('Emy'),('Frank'),('George'),('Harry'),
        ('Henry'),('Ida'),('John'),('Jimmy'),('Jenny'),('Jack'),
        ('Kathy'),('Kim'),('Larry'),('Mary'),('Max'),('Nancy'),
        ('Olivia'),('Paul'),('Peter'),('Patrick'),('Robert'),
        ('Ron'),('Steve'),('Shawn'),('Tom'),('Timothy'),
        ('Uri'),('Vincent')
    ) Names(Name)
)
,LastNames(LastName)
as
(
    select Names.Name
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    from
    (
        values('Smith'),('Johnson'),('Williams'),('Jones'),('Brown'),
        ('Davis'),('Miller'),('Wilson'),('Moore'),('Taylor'),
        ('Anderson'),('Jackson'),('White'),('Harris')
    ) Names(Name)
)
insert into dbo.Customers(LastName, FirstName, FullName)
    select LastName, FirstName, FirstName + ' ' + LastName
    from FirstNames cross join LastNames;
 
insert into dbo.Customers_OnDisk(LastName, FirstName, FullName)
    select LastName, FirstName, FullName
    from dbo.Customers;

Let’s run the queries that select several rows in ascending order, which match the 
index sorting order. The queries are shown in Listing 5-5.

Listing 5-5. Nonclustered Indexes and Sorting Order: Selecting Data in the Same Order 
with the Index Key Column

select top 3 CustomerId, FirstName, LastName, FullName
from dbo.Customers_OnDisk
order by FullName ASC;
 
select top 3 CustomerId, FirstName, LastName, FullName
from dbo.Customers
order by FullName ASC;

Figure 5-1 shows the execution plans for the queries. SQL Server scans the indexes 
starting with the lowest key and stops after it read three rows. The execution plans are 
similar for both queries with the exception of required Key Lookup with on-disk data. 
SQL Server uses it to obtain the values of the FirstName and LastName columns from the 
clustered index of the table.

Key Lookup is not required with memory-optimized tables where the index pointers 
are part of the actual data rows and the indexes are covering the queries.
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The situation changes if you need to sort the output in the descending order, as 
shown in Listing 5-6.

Listing 5-6. Nonclustered Indexes and Sorting Order: Selecting Data in the Opposite 
Order with Index Key Column

select top 3 CustomerId, FirstName, LastName, FullName
from dbo.Customers_OnDisk
order by FullName DESC;
 
select top 3 CustomerId, FirstName, LastName, FullName
from dbo.Customers
order by FullName DESC;

As you can see in Figure 5-2, SQL Server is able to scan the on-disk table index in the 
order opposite of how it was defined. However, this is not the case for memory-optimized 
tables where indexes are unidirectional. SQL Server decides to scan the primary key and 
sort the data afterwards.

Figure 5-1. Execution plans when the order by results match the index sorting order
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Finally, index statistics limitations, which were discussed in Chapter 4, still apply 
to the nonclustered indexes. SQL Server creates statistics at the time of index creation; 
however, they are never updated automatically. You should update statistics manually on 
a regular basis.

Nonclustered Indexes Internals
Nonclustered indexes use a lock- and latch-free variation of B-Tree, called Bw-Tree, which 
was designed by Microsoft Research in 2011. Let’s look at the Bw-Tree structure in detail.

Bw-Tree Overview
Similar to B-Trees, index pages in a Bw-Tree contain a set of ordered index key values. 
However, Bw-Tree pages do not have a fixed size and they are unchangeable after they are 
built. The maximum page size, however, is 8KB.

Rows from a leaf level of the nonclustered index contain the pointers to the data row 
chains with the same index key values. This works in a similar manner to hash indexes, 
when multiple rows and/or versions of a row are linked together. Each index in the 
table adds a pointer to the index pointer array in the row, regardless of its type: hash or 
nonclustered.

Root and intermediate levels in nonclustered indexes are called internal pages. 
Similar to B-Tree indexes, internal pages point to the next level in the index. However, 
instead of pointing to the actual data page, internal pages use a logical page id (PID), 

Figure 5-2. Execution plans when the order by results are the opposite of the index sorting order

http://dx.doi.org/10.1007/978-1-4842-1136-6_4
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which is a position (offset) in a separate array-like structure called a mapping table. In 
turn, each element in the mapping table contains a pointer to the actual index page.

Figure 5-3 shows an example of a nonclustered index and a mapping table. Each 
index row from the internal page stores the highest key value on the next-level page and 
PID. This is different from a B-Tree index, where intermediate- and root-level index rows 
store the lowest key value of the next-level page instead. Another difference is that the 
pages in a Bw-Tree are not linked in a double-linked list. Each page knows the PID of the 
next page on the same level and does not know PID of the previous page. Even though it 
appears as a pointer (arrow) in Figure 5-3, that link is done through the mapping table, 
similar to links to pages on the next level.

Even though a Bw-Tree looks very similar to a B-Tree, there is one conceptual 
difference: the leaf level of an on-disk B-Tree index consists of separate index rows for 
each data row in the index. If multiple data rows have the same key value, the index 
would have multiple leaf level rows with the same index key stored.

Alternatively, in-memory nonclustered indexes store one index row (pointer) to the 
row chain that includes all of the data rows that have the same key value. Only one index 
row (pointer) per key value is stored in the index. You can see this in Figure 5-3, where the 
leaf level of the index has single rows for the key values of Ann and Nancy, even though the 
row chain includes more than one data row for each value.

 ■ Tip  You can compare the structure of B-Tree and Bw-Tree indexes by looking at 
Figures 3-1 and 3-2 from Chapter 3, which show clustered and nonclustered B-Tree indexes 
on on-disk tables.

Figure 5-3. Nonclustered index structure

http://dx.doi.org/10.1007/978-1-4842-1136-6_3
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Index Pages and Delta Records
As mentioned, pages in nonclustered indexes are unchangeable once they are built. SQL 
Server builds a new version of the page when it needs to be updated and replaces the 
page pointer in the mapping table, which avoids changing internal pages that reference 
an old (obsolete) page.

Every time SQL Server needs to change a leaf-level index page it creates one or two 
delta records that represent the changes. INSERT and DELETE operations generate a single 
insert or delete delta record, while an UPDATE operation generates two delta records, 
deleting old and inserting new values. Delta records create a chain of memory pointers 
with the last pointer to the actual index page. SQL Server also replaces a pointer in the 
mapping table with the address of the first delta record in the chain.

Figure 5-4 shows an example of a leaf-level page and delta records if the following 
actions occurred in the sequence: R1 index row is updated, R2 row is deleted, and R3 row 
is inserted.

Figure 5-4. Delta records and nonclustered index leaf page

 ■ Note  The internal implementation of the In-Memory OLTP engine guarantees that 
multiple sessions cannot simultaneously update memory pointers in the various In-Memory 
OLTP objects, thereby overwriting each other’s changes. This process is covered in detail in 
appendix a.

The internal and leaf pages of nonclustered indexes consist of two areas: a header 
and data. The header area includes information about the page such as the following:

•	 PID: The position (offset) in the mapping table

•	 Page type: The type of the page, such as leaf, internal, delta, or special

•	 Right page PID: The position (offset) of the next page in the 
mapping table
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•	 Height: The number of levels from the current page to the leaf 
level of the index

•	 The number of key values (index rows) stored on the page

•	 Delta records statistics: Includes the number of delta records 
and space used by the delta key values

•	 The max value of a key on the page

The data area of the page includes either two or three arrays depending on the index 
keys data types. The arrays are

•	 Values: An array of 8-byte pointers. Internal pages in the index 
store the PID of next-level pages. Leaf-level pages store pointers 
to the first row in the chain of rows with the corresponding key 
value. It is worth noting that even though PID requires 4 bytes to 
store a value, SQL Server uses 8-byte elements to preserve the 
same page structure between internal and leaf pages.

•	 Keys: An array of key values stored on the page.

•	 Offsets: An array of two-byte offsets where individual key values 
in keys array start. Offsets are stored only if keys have variable-
length data.

Delta records, in a nutshell, are one-record index data pages. The structure of delta 
data pages is similar to the structure of internal and leaf pages. However, instead of arrays 
of values and keys, delta data pages store operation code (insert or delete) and a single 
key value and pointer to the first data row in a row chain.

Figure 5-5 shows an example of a leaf-level index page with an insert delta record.

Figure 5-5. A leaf-level index page with an insert delta record
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SQL Server needs to traverse and analyze all delta records when accessing an index 
page. As you can guess, a long chain of delta records affects performance. When this is 
the case, SQL Server consolidates delta records and rebuilds an index page, creating a 
new one. The newly created page has the same PID and replaces the old page, which is 
marked for garbage collection. Replacement of the page is accomplished by changing a 
pointer in the mapping table. SQL Server does not need to change internal pages because 
they use the mapping table to reference leaf-level pages.

The process of rebuilding is triggered at the moment a new delta record is created 
for pages that already have 16 delta records in a chain. The action described by the delta 
record, which triggers the rebuild, is incorporated into the newly created page.

Two other processes can create new or delete existing index pages, in addition to 
delta records consolidation. The first process, page splitting, occurs when a page does not 
have enough free space to accommodate a new data row. Another process, page merging, 
occurs when a delete operation leaves an index page less than 10% from the maximum 
page size, which is 8KB now, or when an index page contains just a single row.

 ■ Note  The page splitting and page merging processes are covered in depth in appendix B.

Obtaining Information About Nonclustered Indexes
In addition to the sys.dm_db_xtp_hash_index_stats view, which was discussed in 
Chapter 4, SQL Server provides two other views to obtain information about indexes on 
memory-optimized tables. Those views provide the data collected since the time when 
memory-optimized tables were loaded into memory, which occurs at database startup.

You can obtain information about index access methods and ghost rows in both 
hash and nonclustered indexes with the sys.dm_db_xtp_index_stats view. The notable 
columns in the view are the following:

•	 scans_started shows the number of times that row chains in 
the index were scanned. Due to the nature of the index, every 
operation, such as SELECT, INSERT, UPDATE, and DELETE, requires 
SQL Server to scan a row chain and increment this column.

•	 rows_returned represents the cumulative number of rows 
returned to the next operator in the execution plan. It does 
not necessarily match the number of rows returned to a client 
because further operators in the execution plan can change it.

•	 rows_touched represents the cumulative number of rows 
accessed in the index.

http://dx.doi.org/10.1007/978-1-4842-1136-6_4
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•	 rows_expired shows the number of detected stale rows. I will 
discuss this in greater detail when I talk about the garbage 
collection process in Chapter 9.

•	 rows_expired_removed returns the number of stale rows that 
have been unlinked from the index row chains. I will also discuss 
this in more detail when I talk about garbage collection.

Listing 5-7 shows the query that returns the information about indexes defined on 
the dbo.Customers table.

Listing 5-7. Querying the sys.dm_db_xtp_index_stats View

select
    s.name + '.' + t.name as [table]
    ,i.index_id
    ,i.name as [index]
    ,i.type_desc as [type]
    ,st.scans_started
    ,st.rows_returned
    ,iif(st.scans_started = 0, 0,
        floor(st.rows_returned / st.scans_started))
                as [rows per scan]
from
    sys.dm_db_xtp_index_stats st join sys.tables t on
        st.object_id = t.object_id
    join sys.indexes i on
        st.object_id = i.object_id and
        st.index_id = i.index_id
    join sys.schemas s on
        s.schema_id = t.schema_id
where
    s.name = 'dbo' and t.name = 'Customers'

Figure 5-6 illustrates the output of the query. Large number of Rows Per Scan can 
indicates heavy index scans, which can be the sign of a suboptimal indexing strategy  
and/or poorly written queries.

Figure 5-6. Output from the sys.dm_db_xtp_index_stats view

http://dx.doi.org/10.1007/978-1-4842-1136-6_9
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 ■ Note  You can read more about the sys.dm_db_xtp_index_stats view at  
http://msdn.microsoft.com/en-us/library/dn133081.aspx.

The sys.dm_db_xtp_nonclustered_index_stats view returns information about 
nonclustered indexes. It includes information about the total number of pages in the 
index plus page splits, merges, and consolidation-related statistics.

Listing 5-8 shows information about nonclustered indexes defined on the  
dbo.Customers table. Figure 5-7 shows the output of the query.

Listing 5-8. Querying the sys.dm_db_xtp_nonclustered_index_stats View

select
    s.name + '.' + t.name as [table]
    ,i.index_id
    ,i.name as [index]
    ,i.type_desc as [type]
    ,st.delta_pages
    ,st.leaf_pages
    ,st.internal_pages
    ,st.leaf_pages + st.delta_pages + st.internal_pages
                as [total pages]
from
    sys.dm_db_xtp_nonclustered_index_stats st
        join sys.tables t on
            st.object_id = t.object_id
        join sys.indexes i on
            st.object_id = i.object_id and
            st.index_id = i.index_id
        join sys.schemas s on
            s.schema_id = t.schema_id
where
    s.name = 'dbo' and t.name = 'Customers'

Figure 5-7. Output from the sys.dm_db_xtp_nonclustered_index_stats view

 ■ Note  You can read more about the sys.dm_db_xtp_nonclustered_index_stats view 
at https://msdn.microsoft.com/en-us/library/dn645468.aspx.

http://msdn.microsoft.com/en-us/library/dn133081.aspx
http://msdn.microsoft.com/en-us/library/dn133081.aspx
https://msdn.microsoft.com/en-us/library/dn645468.aspx
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Hash Indexes vs. Nonclustered Indexes
As you already know, hash indexes are useful only for point-lookup searches in cases 
when queries use equality predicates on all index columns. Nonclustered indexes, on the 
other hand, can be used in a much wider scope, which often makes the choice obvious. 
You should use nonclustered indexes when your queries benefit from scenarios other 
than point-lookups.

The situation is less obvious in the case of point-lookups. With the hash indexes, 
SQL Server can locate the hash bucket, which is the entry point to the data row chain, in a 
single step by calling the hash function and calculating the hash value. With nonclustered 
indexes, SQL Server has to traverse Bw-Tree to find a leaf page, and the number of steps 
depends on the height of the index and number of delta records there.

Even though nonclustered indexes require more steps to find an entry point to 
the data row chain, the chain can be smaller compared to hash indexes. Row chains in 
nonclustered indexes are built based on unique index key values. In hash indexes, row 
chains are built based on a non-unique hash key and can be larger due to hash collisions, 
especially when the bucket_count is insufficient.

Let’s compare hash and nonclustered index performance in a point-lookup scenario. 
Listing 5-9 creates four tables of the same structure. Three of them have hash indexes 
defined on the Value column using a different bucket_count. The fourth table has a 
nonclustered index defined on the same column instead. Finally, the code populates all 
tables with the same data.

Listing 5-9. Hash and Nonclustered Indexes’ Point Lookup Performance: Tables Creation

create table dbo.Hash_131072
(
    Id int not null
    constraint PK_Hash_131072
        primary key nonclustered
        hash with (bucket_count=131072),
    Value int not null,
 
    index IDX_Value hash(Value)
    with (bucket_count=131072)
)
with (memory_optimized=on, durability=schema_only);
 
create table dbo.Hash_16384
(
    Id int not null
        constraint PK_Hash_16384
        primary key nonclustered
        hash with (bucket_count=16384),
    Value int not null,
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    index IDX_Value hash(Value)
    with (bucket_count=16384)
)
with (memory_optimized=on, durability=schema_only);
 
create table dbo.Hash_1024
(
    Id int not null
        constraint PK_Hash_1014
        primary key nonclustered
        hash with (bucket_count=1024),
    Value int not null,
 
    index IDX_Value hash(Value)
    with (bucket_count=1024)
)
with (memory_optimized=on, durability=schema_only);
 
create table dbo.NonClusteredIdx
(
    Id int not null
        constraint PK_NonClusteredIdx
        primary key nonclustered
        hash with (bucket_count=131072),
    Value int not null,
 
    index IDX_Value nonclustered(Value)
)
with (memory_optimized=on, durability=schema_only);
go
 
;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N1 as t2) -- 131,072 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.Hash_131072(Id,Value)
    select Id, Id
    from ids
    where Id <= 75000;
 
insert into dbo.Hash_16384(Id,Value)
    select Id, Value
    from dbo.Hash_131072;
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insert into dbo.Hash_1024(Id,Value)
    select Id, Value
    from dbo.Hash_131072;
 
insert into dbo.NonClusteredIdx(Id,Value)
    select Id, Value
    from dbo.Hash_131072;

Different numbers of buckets led to the different index row chain sizes in the indexes. 
In this case, the Hash_131072, Hash_16384, and Hash_1024 tables have on average 1, 4, 
and 73 rows per chain, respectively.

 ■ Tip  You can analyze hash index properties using the sys.dm_db_xtp_hash_index_stats 
view and the code from Listing 4-2 from Chapter 4.

As the next step, let’s compare point-lookup performance using the code from 
Listing 5-10. This code triggers 65,536 point lookup selects against each table.

Listing 5-10. Hash and Nonclustered Indexes’ Point Lookup Performance: Selecting Data

declare
    @T table(Value int not null primary key)
 
;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into @T(Value)
    select Id from Ids;
 
select t.Value, c.Cnt
from @T t
    cross apply
    (
       select count(*) as Cnt
       from dbo.Hash_131072 h
       where h.Value = t.Value
    ) c;
 

http://dx.doi.org/10.1007/978-1-4842-1136-6_4
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select t.Value, c.Cnt
from @T t
    cross apply
    (
       select count(*) as Cnt
       from dbo.Hash_16384 h
       where h.Value = t.Value
    ) c;
 
select t.Value, c.Cnt
from @T t
    cross apply
    (
       select count(*) as Cnt
       from dbo.Hash_1024 h
       where h.Value = t.Value
    ) c;
 
select t.Value, c.Cnt
from @T t
    cross apply
    (
       select count(*) as Cnt
       from dbo.NonClusteredIdx h
       where h.Value = t.Value
    ) c;

Table 5-1 shows the execution time of the queries in my environment. As you can 
see, the nonclustered index point-lookup select is slightly slower compared to hash 
indexes with relatively short row chains; however, it is faster in the case of the long row 
chains and incorrect bucket count estimations.

Table 5-1. Execution Time of Queries

Hash_131072 Hash_16384 Hash_1024 NonClusteredIdx

Average Index Row 
Chain Size

1 4 73 N/A

Execution Time 141 ms 156 ms 219 ms 171 ms

Memory requirements are another factor to consider. With the hash indexes, 
memory usage depends on the number of buckets. The amount of memory required 
for the nonclustered indexes depends on the size of the index key and index cardinality 
(uniqueness of index key values). For example, if a table has a varchar column with 
1,000,000 unique values of 100 bytes each, the nonclustered index on that column would 
require about 800MB to support a Bw-Tree structure. Alternatively, a hash index with 
2,097,152 buckets will use just 16MB of memory.
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With all that being said, hash indexes are a good choice only in cases where the 
workload and data are relatively static and, therefore, you can correctly estimate  
bucket_count and you do not expect anything other than point-lookup queries in the 
future. In all other cases, nonclustered indexes are the safer choice.

Summary
Nonclustered indexes are the second type of indexes supported by the In-Memory OLTP 
Engine. They have similar SARGability rules with the B-Tree indexes defined on on-disk 
tables with the exception of the scans in the order opposite of the index key sorting order.

Internally, nonclustered indexes use a lock- and latch-free variation of B-Tree, called 
Bw-Tree, which consists of internal and leaf data pages referencing each other through 
the mapping table. Leaf data pages store one row per each individual key value with the 
pointer to the chain of the data rows with the same key.

SQL Server never updates index pages. Any changes are referenced through the  
delta records that correspond to individual INSERT and DELETE operations on the page. 
SQL Server consolidates the large chains of delta records and performs splitting and 
merging of the data pages when needed. All of those processes create the new data pages, 
marking the old ones for garbage collection.

Nonclustered indexes are a good choice in scenarios when point-lookup is not an 
option and/or when it is hard to estimate the number of buckets in the hash index.
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Chapter 6

In-Memory OLTP 
Programmability

This chapter focuses on the programmability aspects of the In-Memory OLTP Engine in 
SQL Server. It describes the process of native compilation, and it provides an overview 
of the natively compiled stored procedures and T-SQL features that are supported in 
In-Memory OLTP. Finally, this chapter compares the performance of several use cases 
that access and modify data in memory-optimized tables using natively compiled stored 
procedures and interpreted T-SQL with the interop engine.

Native Compilation
As you already know, memory-optimized tables can be accessed from regular T-SQL  
code using the query interop engine. This approach is very flexible. As long as you 
work within the supported feature set, the location of the data is transparent. The code 
does not need to know, nor does it need to worry about, if it works with on-disk or with 
memory-optimized tables.

Unfortunately, this flexibility comes at a cost. T-SQL is an interpreted and  
CPU-intensive language. Even a simple T-SQL statement requires thousands, and 
sometimes millions, of CPU instructions to execute. Even though the in-memory data 
location speeds up data access and eliminates latching and locking contentions, the 
overhead of T-SQL interpretation sets limits on the level of performance improvements 
achievable with In-Memory OLTP.

In practice, it is common to see a 2X-4X system throughput increase when  
memory-optimized data is accessed through the interop engine. To improve performance 
even further, In-Memory OLTP utilizes native compilation. As a first step, it converts any 
row-data manipulation and access logic into C code, which is compiled into DLLs and 
loaded into SQL Server’s process memory. These DLLs (one per table) consist of native 
CPU instructions, and they execute without any further code interpretation overhead of 
T-SQL statements.

Consider the simple situation where you need to read the value of a fixed-length 
column from a data row. In the case of on-disk tables, SQL Server obtains the starting 
offset and length of the column from the system catalogs, and it performs the  
required manipulations to convert the sequence of bytes to the required data type.  
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With memory-optimized tables, the DLL already knows the column offset and data 
type. SQL Server can read data from a pre-defined offset in a row using a pointer of the 
correct data type without any further overhead involved. As you can guess, this approach 
dramatically reduces the number of CPU instructions required for the operation.

On the flip side, this approach brings some limitations. You cannot change the 
format of a row after the DLL is generated. The compiled code would not know anything 
about the changes. This problem is more complicated than it seems, and a simple 
recompilation of the DLL does not address it.

Again, consider the situation where you need to add another nullable column to a 
table. This is a metadata-level operation for on-disk tables, which does not change the 
data in existing table rows. T-SQL would be able to detect that column data is not present 
by analyzing the various data row properties at runtime.

The situation is far more complicated in the case of memory-optimized tables and 
natively compiled code. It is easy to generate a new version of the DLL that knows about 
the new data column; however, that is not enough. The DLL needs to handle different 
versions of rows and different data formats depending on the presence of column data. 
While this is technically possible, it adds extra logic to the DLL, which leads to additional 
processing instructions, which slows data access. Moreover, the logic to support multiple 
data formats remains in the code forever, degrading performance even further with each 
table alteration.

While, technically speaking, it is possible to convert all existing data rows to the new 
format, this operation requires exclusive access to the table, which violates In-Memory 
OLTP lock- and latch-free principles and is not supported in SQL Server 2014.

 ■ Tip  the only way to alter a table and change its schema and index definition is to drop 
and recreate the table, staging data somewhere during the process. this was discussed in 
detail in Chapter 4.

To reduce the overhead of the T-SQL interpretation even further, the In-Memory 
OLTP Engine allows you to perform native compilation of the stored procedures. These 
stored procedures are compiled in the same way as table-related DLLs and are also 
loaded to the SQL Server process memory.

Native compilation utilizes both the SQL Server and In-Memory OLTP Engines. 
As a first step, SQL Server parses the T-SQL code and, in the case of stored procedures, 
it generates an execution plan using the Query Optimizer. At the end of this stage, 
SQL Server generates a structure called MAT (Mixed Abstract Tree), which represents 
metadata, imperative logic, expressions, and query plans. I will discuss how SQL Server 
optimizes natively compiled stored procedures later in this chapter.

As a next step, In-Memory OLTP transforms MAT to another structure called PIT 
(Pure Imperative Tree), which is used to generate source code that is compiled and linked 
into the DLL.

Figure 6-1 illustrates the process of native compilation in SQL Server.

http://dx.doi.org/10.1007/978-1-4842-1136-6_4
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The code generated for native compilation uses the plain C language and is very 
efficient. It is very hard to read, however. For example, every method is implemented  
as a single function, which does not call other functions but rather implements its code 
inline using GOTO as a control flow statement. The intention has never been to generate 
human-readable code; it is used as the source for native compilation only.

Binary DLL files are not persisted in a database backup. SQL Server recreates  
table-related DLLs on database startup and stored procedures-related DLLs at the time 
of the first call. This approach mitigates security risks from hackers, who can substitute 
DLLs with malicious copies. It is important to remember this behavior because it can add 
overhead at database startup time and change the execution plans of natively compiled 
stored procedures after a database restart.

Figure 6-1. Native compilation in SQL Server
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 ■ Tip  natively compiled stored procedures are usually faster than interpreted t-SQL 
ones. however, their compilation time can be significantly longer compared to t-SQL stored 
procedures. you should remember this behavior and avoid using extremely short timeouts in 
natively compiled stored procedure calls.

SQL Server places binary DLLs and all other native compilation-related files in an 
XTP subfolder under the main SQL Server data directory. It groups files on a per-database 
basis by creating another level of subfolders. Figure 6-2 shows the content of the folder 
for the database (with ID=5), which contains the memory-optimized tables and a natively 
compiled stored procedures you created in previous chapters of this book.

All of the file names start with the prefix xtp_ followed either by the p (stored 
procedure) or t (table) character, which indicates the object type. The two last parts of the 
name include the database and object IDs for the object.

File extensions determine the type of the file, such as:

•	 *.mat.xml files store an XML representation of the MAT structure.

•	 *.c files are the source file generated by the C code generator.

•	 *.obj are the object files generated by the C compiler.

•	 *.pub are symbol files produced by the C compiler.

Figure 6-2. Folder with natively compiled objects
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•	 *.out are log files from the C compiler.

•	 *.dll are natively compiled DLLs generated by the C linker. 
Those files are loaded into SQL Server memory and used by the 
In-Memory OLTP Engine.

 ■ Tip  you can open and analyze the C source code and XML Mat in the text editor 
application to get a sense of the native compilation process.

Listing 6-1 shows how to obtain a list of the natively compiled objects loaded into 
SQL Server memory. It also returns the list of tables and stored procedures from the 
database to show the correlation between a DLL file name and object IDs.

Listing 6-1. Obtaining a List of Natively Compiled Objects Loaded into SQL Server Memory

select
    s.name + '.' + o.name as [Object Name]
    ,o.object_id
from
     (
        select schema_id, name, object_id
        from sys.tables
        where is_memory_optimized = 1
        union all
        select schema_id, name, object_id
        from sys.procedures
    ) o join sys.schemas s on
        o.schema_id = s.schema_id;
 
select base_address, file_version, language, description, name
from sys.dm_os_loaded_modules
where description = 'XTP Native DLL';

Figure 6-3 illustrates the output of the code.
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Natively Compiled Stored Procedures
Natively compiled stored procedures are the stored procedures that are compiled into 
native code. They are extremely efficient, and they can provide major performance 
improvements when working with memory-optimized tables, compared to interpreted 
T-SQL statements, which access those tables through the query interop component.

 ■ Note  In this chapter, I will reference regular interpreted (non-natively compiled) stored 
procedures as T-SQL procedures.

Creating Natively Compiled Stored Procedures
As you already know, you can create natively compiled stored procedures using the 
regular CREATE PROCEDURE statement and T-SQL language. However, those procedures 
have several additional options that need to be specified. Listing 6-2 shows the structure 
of natively compiled stored procedures along with those options.

Listing 6-2. Natively Compiled Stored Procedure Structure

create proc dbo.NativelyCompiledProc
(
    /* Parameters */
    @Param1 int not null = 1
    ,@Param2 int
)

Figure 6-3. Natively compiled objects loaded into SQL Server memory
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with
    native_compilation    -- Indicates natively compiled SP
    ,schemabinding    -- Required
    ,execute as owner    -- execute as OWNER/SELF/USER is required
as
-- Natively compiled SPs are executed as atomic blocks (all or nothing)
begin atomic with
(
    transaction isolation level = snapshot    -- Isolation Level is required
    ,language = N'English'    -- Required langugage setting for SP
    ,delayed_durability = off    -- Optional
    ,datefirst = 7    -- Optional
    ,dateformat = 'mdy'    -- Optional
)
    /* Stored Procedure Body */
end

You can define parameters of natively compiled stored procedures the same way 
as with T-SQL procedures. However, natively compiled stored procedures allow you to 
specify if parameters are required and must be provided at the time of a call using the 
NOT NULL construct in the definition. SQL Server raises an error if you do not provide their 
values at the time of the call.

 ■ Important It is recommended that you avoid type conversion and do not use named 
parameters when you call natively compiled stored procedures. It is more efficient to use the  
exec Proc value [..,value] rather than the exec Proc @Param=value [..,@Param=value] 
calling format.

you can detect inefficient parameterization with the hekaton_slow_parameter_parsing 
extended event.

All natively compiled stored procedures must be schema bound and have the 
security context EXECUTE AS OWNER/SELF/USER specified. The default EXECUTE AS CALLER 
context is not supported to avoid the overhead of per-statement permission checks 
during the execution.

Two other required options include the transaction isolation level and the language 
setting, which controls a message’s language and default date format. Natively compiled 
stored procedures do not use the runtime SET LANGUAGE session option, relying on the 
LANGUAGE setting instead.

You can control date format, first day of the week, and delayed durability of a 
stored procedure using the DATEFORMAT, DATEFIRST, and DELAYED_DURABILITY settings, 
respectively.
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 ■ Note  Delayed durability is a SQL Server 2014 feature that controls how SQL Server 
hardens log records, flushing them from the log buffer to the transaction log. enabling delayed 
durability can help to improve transaction throughput in very busy oLtp systems at the cost of 
a possible small data loss in the event of an unexpected SQL Server shutdown or crash.

you can read more about delayed durability at https://msdn.microsoft.com/en-us/
library/dn449490.aspx. you can also read about it in Chapter 29 of my Pro SQL Server 
Internals book.

Natively compiled stored procedures are executed as the atomic blocks, which is  
all or nothing approach; either all statements in the procedure succeed or all of them fail. 
I will discuss how atomic blocks work later in the chapter.

As mentioned, you can define the natively compiled stored procedure body pretty 
much the same way as regular T-SQL procedures. However, the natively compiled stored 
procedures support only a limited set of T-SQL constructs. Let’s look at the supported 
features and limitations in different T-SQL areas in detail.

Supported T-SQL Features
One of the biggest limitations of natively compiled stored procedures is that they can access 
only memory-optimized tables. The only option to join data from memory-optimized and 
on-disk tables is to use the interpreted T-SQL and interop engine.

The following T-SQL features and constructs are supported and can be used in 
natively compiled stored procedures.

Control Flow
The following control flow options are supported:

•	 IF and WHILE.

•	 Assigning a value to a variable with the SELECT and SET operators.

•	 RETURN.

•	 TRY/CATCH/THROW (RAISERROR is not supported). It is 
recommended that you use a single TRY/CATCH block for the entire 
stored procedure for better performance.

•	 It is possible to declare variables as NOT NULL as long as they have 
an initializer as part of the DECLARE statement.

https://msdn.microsoft.com/en-us/library/dn449490.aspx
https://msdn.microsoft.com/en-us/library/dn449490.aspx
http://dx.doi.org/10.1007/978-1-4842-1136-6_29
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Query Surface Area
The following query surface area functions are supported:

•	 SELECT, INSERT, UPDATE, and DELETE. However, you cannot use 
multiple VALUE clauses with the single INSERT statement.

•	 CROSS JOIN and INNER JOIN are the only join types supported. 
Moreover, you can use joins only with SELECT operators.

•	 Expressions in the SELECT list and the WHERE and HAVING clauses 
are supported as long as they use supported operators.

•	 IS NULL and IS NOT NULL.

•	 GROUP BY is supported with the exception of grouping by string or 
binary data.

•	 TOP and ORDER BY. However, you cannot use WITH TIES and 
PERCENT in the TOP clause. Moreover, the TOP operator is limited 
to 8,192 rows when the TOP <constant> is used, or even a lesser 
number of rows in the case of joins. You can address this last 
limitation by using a TOP <variable> approach. However, it is 
less efficient in terms of performance.

•	 INDEX, FORCESCAN, FORCESEEK, FORCE ORDER, INNER LOOP JOIN, 
and OPTIMIZE FOR hints.

Note that the DISTINCT operator is not supported.

Operators
The following operators are supported:

•	 Comparison operators, such as =, <, <=, >, >=, <> and BETWEEN.

•	 Unary and binary operators, such as +, -, *, /, %. Note that + 
operators are supported for both numbers and strings.

•	 Bitwise operators, such as &, |, ~, ^.

•	 Logical operators, such as AND, OR, and NOT. However, the OR and 
NOT operators are not supported in the WHERE and HAVING clauses 
of the query.
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Build-In Functions
The following build-in functions are supported:

•	 Math functions: ACOS, ASIN, ATAN, ATN2, COS, COT, DEGREES, EXP, 
LOG, LOG10, PI, POWER, RAND, SIN, SQRT, SQUARE, and TAN.

•	 Date/time functions: CURRENT_TIMESTAMP, DATEADD, 
DATEDIFF, DATEFROMPARTS, DATEPART, DATETIME2FROMPARTS, 
DATETIMEFROMPARTS, DAY, EOMONTH, GETDATE, GETUTCDATE, MONTH, 
SMALLDATETIMEFROMPARTS, SYSDATETIME, SYSUTCDATETIME,  
and YEAR.

•	 String functions: LEN, LTRIM, RTRIM, and SUBSTRING.

•	 Error functions: ERROR_LINE, ERROR_MESSAGE, ERROR_NUMBER, 
ERROR_PROCEDURE, ERROR_SEVERITY, and ERROR_STATE.

•	 NEWID and NEWSEQUENTIALID.

•	 CAST and CONVERT. However, it is impossible to convert between a 
non-Unicode and a Unicode string.

•	 ISNULL.

•	 SCOPE_IDENTITY.

•	 You can use @@ROWCOUNT within a natively-compiled stored 
procedure; however, its value is reset to 0 at the beginning and 
end of the procedure.

Atomic Blocks
Natively compiled stored procedures execute as atomic blocks, which is an all or nothing 
approach; either all statements in the procedure succeed or all of them fail.

When a natively compiled stored procedure is called outside of the context of an 
active transaction, it starts a new transaction and either commits or rolls it back at the end 
of the execution.

In cases where a procedure is called in the context of an active transaction, SQL 
Server creates a savepoint at the beginning of the procedure’s execution. In case of an 
error in the procedure, SQL Server rolls back the transaction to the created savepoint. 
Based on the severity and type of the error, the transaction is either going to be able to 
continue and commit or become doomed and uncommittable.

Let’s create a memory-optimized table and natively compiled stored procedure, as 
shown in Listing 6-3.
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Listing 6-3. Atomic Blocks and Transactions: Object Creation

create table dbo.MOData
(
    ID int not null
        primary key nonclustered
        hash with (bucket_count=10),
    Value int null
)
with (memory_optimized=on, durability=schema_only);
 
insert into dbo.MOData(ID, Value)
values(1,1), (2,2)
go
 
create proc dbo.AtomicBlockDemo
(
    @ID1 int not null
    ,@Value1 bigint not null
    ,@ID2 int
    ,@Value2 bigint
)
with native_compilation, schemabinding, execute as owner
as
begin atomic
with (transaction isolation level = snapshot, language=N'English')
 
    update dbo.MOData set Value = @Value1 where ID = @ID1;
 
    if @ID2 is not null
        update dbo.MOData set Value = @Value2 where ID = @ID2;
end;

At this point, the MOData table has two rows with values (1,1) and (2,2). As a first 
step, let’s start the transaction and call a stored procedure twice, as shown in Listing 6-4.

Listing 6-4. Atomic Blocks and Transactions: Calling a Stored Procedure

begin tran
    exec dbo.AtomicBlockDemo 1, -1, 2, -2
    exec dbo.AtomicBlockDemo 1, 0, 2, 999999999999999

The first call of the stored procedure succeeds, while the second call triggers an 
arithmetic overflow error as shown:

Msg 8115, Level 16, State 0, Procedure AtomicBlockDemo, Line 49

Arithmetic overflow error converting bigint to data type int.
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You can check that the transaction is still active and committable with this select: 
SELECT @@TRANCOUNT as [@@TRANCOUNT], XACT_STATE() as [XACT_STATE()]. It returns 
the following results:

@@TRANCOUNT    XACT_STATE()
-----------    ------------
1              1

If you commit the transaction and check the content of the table, you will see that the 
data reflects the changes caused by the first stored procedure call. Even though the first 
update statement from the second call succeeded, SQL Server rolled it back because the 
natively compiled stored procedure executed as an atomic block. You can see the data in 
the MOData table:

ID          Value
----------- -----------
1           -1
2           -2

As a second example, let’s trigger a critical error, which dooms the transaction, 
making it uncommittable. One such situation is a write/write conflict, when multiple 
sessions are trying to update the same rows. You can trigger it by executing the code in 
Listing 6-5 in two different sessions.

 ■ Note  I will talk about write/write conflicts and the In-Memory oLtp concurrency model 
in Chapter 7.

Listing 6-5. Atomic Blocks and Transactions: Write/Write Conflict

begin tran
    exec dbo.AtomicBlockDemo 1, 0, null, null

When you run the code in the second session, it triggers the following exception:

Msg 41302, Level 16, State 110, Procedure AtomicBlockDemo, Line 13

The current transaction attempted to update a record that has been updated 
since this transaction started. The transaction was aborted.

Msg 3998, Level 16, State 1, Line 1

Uncommittable transaction is detected at the end of the batch. The 
transaction is rolled back.

http://dx.doi.org/10.1007/978-1-4842-1136-6_7
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If you check @@TRANCOUNT in the second session, you will see that SQL Server 
terminates the transaction.

@@TRANCOUNT
-----------
0

Finally, it is worth mentioning that atomic blocks are an In-Memory OLTP feature 
and are not supported in T-SQL stored procedures.

Optimization of Natively Compiled Stored Procedures
Interpreted T-SQL stored procedures are compiled at the time of first execution. 
Additionally, they can be recompiled after they are evicted from plan cache and in a few 
other cases, such as outdated statistics, changes in database schema, or recompilation, 
which are explicitly requested in the code.

This behavior is different from natively compiled stored procedures, which are 
compiled at creation time. They are never recompiled, only with the exception of SQL 
Server or a database restart. In these cases, recompilation occurs at the time of the first 
stored procedure call.

SQL Server does not sniff parameters at the time of compilation, optimizing 
statements for UNKNOWN values. It uses memory optimized table statistics during 
optimization. However, as you already know, these statistics are not updated 
automatically, and they can be outdated at that time.

Fortunately, cardinality estimation errors have a smaller impact on performance in 
the case of natively compiled stored procedures. Contrary to on-disk tables, where such 
errors can lead to highly inefficient plans due to an incorrect index choice and, therefore, 
a high number of Key or RID Lookup operations, all indexes in memory-optimized tables 
reference the same data row and, in a nutshell, are covering indexes. Moreover, errors will 
not affect the choice of join strategy—the inner nested loop is the only physical join type 
supported in natively compiled stored procedures in the first release of In-Memory OLTP.

Outdated statistics at the time of compilation, however, can still lead to inefficient 
plans. One such example is a query with multiple predicates on indexed columns. SQL 
Server needs to know the index’s selectivity to choose the most efficient one. Another 
example is the incorrect choice of inner and outer input for the nested loop join, which 
you saw in Chapter 4.

It is better to recompile natively compiled stored procedures if the data in the table 
has significantly changed. You can do it with the following actions:

 1. Update the statistics to reflect the current data distribution in 
the table(s).

 2. Script permissions assigned to natively compiled stored 
procedures.

 3. Drop and recreate procedures. These actions force 
recompilation.

 4. Assign required permissions to the procedures.

http://dx.doi.org/10.1007/978-1-4842-1136-6_4
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Finally, it is worth mentioning that the presence of natively compiled stored 
procedures requires you to adjust the deployment process in the system. It is common 
to create all database schema objects, including tables and stored procedures, at the 
beginning of deployment. While the time of deployment does not matter for T-SQL 
procedures, such a strategy compiles natively compiled stored procedures at a time when 
database tables are empty. You should recompile (recreate) natively compiled procedures 
later, after the tables are populated with data and statistics are up to date.

Interpreted T-SQL and Memory-Optimized Tables
The query interop component provides transparent, memory-optimized table access to 
interpreted T-SQL code. In the interpreted mode, SQL Server treats memory-optimized 
tables pretty much the same way as on-disk tables. It optimizes queries and caches 
execution plans, regardless of where the table is located. The same set of operators is 
used during query execution. From a high level, when the operator's GetRow() method 
is called, it is routed either to the Storage Engine or to the In-Memory OLTP Engine, 
depending on the underlying table type.

Most T-SQL features are supported in interpreted mode. There are still a few 
exceptions, however:

•	 TRUNCATE TABLE.

•	 MERGE operator with memory-optimized table as the target.

•	 Context connection from CLR code.

•	 Referencing memory-optimized tables in indexed views. You 
can reference memory-optimized tables in partitioned views, 
combining data from memory-optimized and on-disk tables.

•	 DYNAMIC and KEYSET cursors, which are automatically 
downgraded to STATIC.

•	 Cross-database queries and transactions.

•	 Linked servers.

As you can see, the list of limitations is pretty small. However, the flexibility of query 
interop access comes at a cost. Natively compiled stored procedures are usually more 
efficient compared to their interpreted T-SQL counterparts. In some cases, such as joins 
between memory-optimized and on-disk tables, query interop is the only choice; however, 
it is usually preferable to use natively compiled stored procedures when possible.

Performance Comparison
Let’s run several tests comparing performance of several use cases that work with 
memory-optimized tables using natively compiled stored procedures and the  
interop engine.
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Let’s create two memory-optimized tables using a schema_only durability option to 
avoid any I/O and transaction logging overhead during the tests. You can see the code in 
Listing 6-6, which also creates a numbers’ table and populates it with the values.

Listing 6-6. Native Compilation and Interop Mode Performance Comparison: Creating 
Test Tables

create table dbo.Customers
(
    CustomerId int not null
        primary key nonclustered
        hash with (bucket_count=200000),
    Name nvarchar(255)
        collate Latin1_General_100_BIN2 not null,
    CreatedOn datetime2(0) not null
        constraint DEF_Customers_CreatedOn
        default sysutcdatetime(),
    Placeholder char(200) not null,
 
    index IDX_Name nonclustered(Name)
)
with (memory_optimized=on, durability=schema_only);
 
create table dbo.Orders
(
    OrderId int not null
        primary key nonclustered
        hash with (bucket_count=5000000),
    CustomerId int not null,
    OrderNum varchar(32)
        collate Latin1_General_100_BIN2 not null,
    OrderDate datetime2(0) not null
        constraint DEF_Orders_OrderDate
        default sysutcdatetime(),
    Amount money not null,
    Placeholder char(200) not null,
 
    index IDX_CustomerId
    nonclustered hash(CustomerId)
    with (bucket_count=200000),
 
    index IDX_OrderNum nonclustered(OrderNum)
)
with (memory_optimized=on, durability=schema_only);
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create table dbo.Numbers
(
    Num int not null
        Constraint PK_Numbers
        primary key clustered
);
 
;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N3 as t2) -- 1,048,576 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.Numbers(Num)
    select Id from Ids;

As the first step, we will measure INSERT performance using three different 
approaches and batches of different sizes. The first two stored procedures, 
InsertCustomers_Row and InsertCustomers_NativelyCompiled, will run INSERT 
statements on per-row basis using the interop engine and native compilation, 
respectively. The third stored procedure, InsertCustomers_Batch, will insert all rows in 
the single batch through the interop engine. Listing 6-7 shows the implementation of the 
stored procedures.

Listing 6-7. Native Compilation and Interop Mode Performance Comparison: Inserting 
Data into the dbo.Customers Table

create proc dbo.InsertCustomers_Row
(
    @NumCustomers int
)
as
begin
    set nocount on
    set xact_abort on
 
    declare
        @I int = 1;
     
    begin tran
        while @I <= @NumCustomers
        begin
            insert into dbo.Customers(CustomerId,Name,Placeholder)
            values(@I,N'Customer ' + convert(nvarchar(10),@I),'Data');
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            set @I += 1;
        end;
    commit
end
go
 
create proc dbo.InsertCustomers_Batch
(
    @NumCustomers int
)
as
begin
    set nocount on
    set xact_abort on
 
    if @NumCustomers > 1048576
    begin
        raiserror('@NumCustomers should not exceed 1,048,576',10,1);
        return;
    end;
     
    begin tran
        insert into dbo.Customers(CustomerId,Name,Placeholder)
            select Num, N'Customer ' + convert(nvarchar(10),Num),'Data'
            from dbo.Numbers
            where Num <= @NumCustomers
    commit
end
go
 
create proc dbo.InsertCustomers_NativelyCompiled
(
    @NumCustomers int not null
)
with native_compilation, schemabinding, execute as owner
as
begin atomic with
(
    transaction isolation level = snapshot
    ,language = N'English'
)
    declare
        @I int = 1;
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    while @I <= @NumCustomers
    begin
        insert into dbo.Customers(CustomerId,Name,Placeholder)
        values(@I,N'Customer ' + convert(nvarchar(10),@I), 'Data');
 
        set @I += 1;
    end;
end;

Table 6-1 shows the execution time of each stored procedure for the batches 
of 10,000, 50,000, and 100,000 rows in my environment. As you can see, the natively 
compiled stored procedure is about four times faster at row-by-row inserts and about  
30-40 percent faster even compared to batch inserts through the interop engine.

Table 6-1. Execution Times of InsertCustomers Stored Procedures

10,000 rows 50,000 rows 100,000 rows

InsertCustomers_Row 220ms 1,160ms 2,170ms

InsertCustomers_Batch 98ms 446ms 886ms

InsertCustomers_NativelyCompiled 60ms 270ms 533ms

As the next step, let’s compare performance of UPDATE operations. Listing 6-8  
shows a natively compiled stored procedure that updates 50 percent of the rows in the 
Customers table.

Listing 6-8. Native Compilation and Interop Mode Performance Comparison: Natively 
Compiled Stored Procedure That Updates Data in the dbo.Customers Table

create proc dbo.UpdateCustomers
(
    @Placeholder char(100) not null
)
with native_compilation, schemabinding, execute as owner
as
begin atomic with
(
    transaction isolation level = snapshot
    ,language = N'English'
)
    update dbo.Customers
    set Placeholder = @Placeholder
    where CustomerId % 2 = 0;
end;
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Table 6-2 shows the execution time of the UpdateCustomers stored procedure and 
the same UPDATE statement executed through the interop engine. As you see, the natively 
compiled stored procedure is about three times faster than the interop approach.

Table 6-2. Execution Times of Update Operations

dbo.UpdateCustomers Natively Compiled 
Stored Procedure

UPDATE Statement Executed Through 
Interop Engine

113ms 380 ms

In the next step, let’s compare the performance of a SELECT query that joins data 
from the Customers and Orders tables and performs sorting and aggregations. I have 
populated the  Orders table with 1,000,000 rows evenly distributed between 100,000 
customers before the test. Listing 6-9 shows the natively compiled stored procedure with 
the query.

Listing 6-9. Native Compilation and Interop Mode Performance Comparison: Natively 
Compiled Stored Procedure with SELECT Query

create proc dbo.GetTopCustomers
with native_compilation, schemabinding, execute as owner
as
begin atomic with
(
    transaction isolation level = snapshot
    ,language = N'English'
)
    select top 10
        c.CustomerId, c.Name, count(o.OrderId) as [Order Cnt]
        ,max(o.OrderDate) as [Most Recent Order Date]
        ,sum(o.Amount) as [Total Amount]
    from
        dbo.Customers c join dbo.Orders o on
            c.CustomerId = o.CustomerId
    group by
        c.CustomerId, c.Name
    order by
        sum(o.Amount) desc;
end;

Table 6-3 shows the execution times of the stored procedure and the same query 
executed through the interop engine. As you see, the natively compiled stored procedure 
is about eight times faster in this scenario.
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It is very important to remember, however, that natively compiled stored procedures 
do not support hash and merge joins, which could outperform nested loop joins on large 
and unsorted inputs.

Finally, let’s compare the performance of DELETE operations. Listing 6-10 shows a 
natively compiled stored procedure that deletes the data from both tables.

Listing 6-10. Native Compilation and Interop Mode Performance Comparison: Natively 
Compiled Stored Procedure That Deletes the Data from Both Tables

create proc dbo.DeleteCustomersAndOrders
with native_compilation, schemabinding, execute as owner
as
begin atomic with
(
    transaction isolation level = snapshot
    ,language = N'English'
)
    delete from dbo.Orders;
    delete from dbo.Customers;
end;

Table 6-4 shows the execution times of the stored procedure and DELETE statements 
executed through the interop engine. In both cases, the Customers and Orders tables 
were populated with the same data, which is 100,000 and 1,000,000 rows respectively. 
Again, the natively compiled stored procedure is faster.

Table 6-3. Execution Times of Select Operations

dbo.GetTopCustomers Natively Compiled 
Stored Procedure

SELECT Statement Executed Through 
Interop Engine

366ms 2,763 ms

Table 6-4. Execution Times of Delete Operations

dbo.DeleteCustomersAndOrders Natively 
Compiled Stored Procedure

DELETE Statements Executed Through 
Interop Engine

1,053 ms 1,640 ms

As you have seen, native compilation provides significant performance 
improvements compared to the interop engine. It is beneficial to use it as long as 
the limitations do not prevent you from implementing the logic, and the additional 
administration and maintenance overhead is acceptable.

Lastly, you should remember that SQL Server 2014 does not support parallel execution 
plans for the statements that access memory-optimized tables. It makes In-Memory OLTP 
the bad candidate for Data Warehouse workload with the large scans and complex 
aggregations. We will discuss those scenarious in greater details in Chapter 11.

http://dx.doi.org/10.1007/978-1-4842-1136-6_11
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Memory-Optimized Table Types and Variables
SQL Server allows you to create memory-optimized table types. Table variables of these 
types are called memory-optimized table variables. In contrast to regular disk-based table 
variables, memory-optimized table variables live in memory only and do not utilize tempdb.

Memory-optimized table variables provide great performance. They can be used 
as a replacement for disk-based table variables and, in some cases, temporary tables. 
Obviously, they have the same set of functional limitations as memory-optimized tables.

Contrary to disk-based table types, you can define indexes on memory-optimized 
table types. The same statistics-related limitations still apply; however, as discussed, due 
to the nature of indexes on memory-optimized tables, cardinality estimation errors yield 
a much lower negative impact compared to those of on-disk tables.

 ■ Important as the opposite of on-disk table variables, statement-level recompile 
does not allow Query optimizer to obtain the number of rows in memory-optimized table 
variables. It always estimates that memory-optimized table variables have just a single row.

SQL Server does not support inline declaration of memory-optimized table 
variables. For example, the code shown in Listing 6-11 will not compile and it will raise 
an error. The reason behind this limitation is that SQL Server compiles a DLL for every 
memory-optimized table type, which will not work in the case of inline declaration.

Listing 6-11. (Non-functional) Inline Declaration of Memory-Optimized Table Variables

declare
    @IDList table
     (
        ID int not null
            primary key nonclustered hash
            with (bucket_count=10000)
    )
    with (memory_optimized=on)

Msg 319, Level 15, State 1, Line 91

Incorrect syntax near the keyword 'with'. If this statement is a common 
table expression, an xmlnamespaces clause or a change tracking context 
clause, the previous statement must be terminated with a semicolon.

You should define and use a memory-optimized table type instead, as shown in 
Listing 6-12.
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Listing 6-12. Creating a Memory-Optimized Table Type and Memory-Optimized Table 
Variable

create type dbo.mtvIDList as table
(
    ID int not null
        primary key nonclustered hash
        with (bucket_count=10000)
)
with (memory_optimized=on)
go
  
declare
    @IDList dbo.mtvIDList

You can pass memory-optimized table variables as table-valued parameters (TVP) 
to natively compiled and regular T-SQL procedures. As with on-disk based table-valued 
parameters, it is a very efficient way to pass a batch of rows to a T-SQL routine.

 ■ Note  I will discuss the scenarios of passing a batch of rows to t-SQL routines and 
using memory-optimized table variables as the replacement of temporary tables in greater 
detail in Chapter 11.

You can use memory-optimized table variables to imitate row-by-row processing 
using cursors, which are not supported in natively compiled stored procedures.  
Listing 6-13 illustrates an example of using a memory-optimized table variable to imitate 
a static cursor. Obviously, it is better to avoid cursors and use set-based logic if at all 
possible.

Listing 6-13. Using a Memory-Optimized Table Variable to Imitate a Cursor

create type dbo.MODataStage as table
(
    ID int not null
        primary key nonclustered
        hash with (bucket_count=1000),
    Value int null
)
with (memory_optimized=on)
go
  
create proc dbo.CursorDemo
with native_compilation, schemabinding, execute as owner
as
begin atomic
with

http://dx.doi.org/10.1007/978-1-4842-1136-6_11
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(
    transaction isolation level = snapshot
    ,language=N'English'
)
    declare
        @tblCursor dbo.MODataStage
        ,@ID int = -1
        ,@Value int
        ,@RC int = 1
  
    /* Staging data in temporary table to imitate STATIC cursor */
    insert into @tblCursor(ID, Value)
        select ID, Value
        from dbo.MOData
  
    while @RC = 1
    begin
        select top 1 @ID = ID, @Value = Value
        from @tblCursor
        where ID > @ID
        order by ID
  
        select @RC = @@rowcount
        if @RC = 1
        begin
            /* Row processing */
            update dbo.MOData set Value = Value * 2 where ID = @ID
        end
    end
end

Summary
SQL Server uses native compilation to minimize the processing overhead of the 
interpreted T-SQL language. It generates separate DLLs for every memory-optimized 
object and loads it into process memory.

SQL Server supports native compilation of regular T-SQL stored procedures. It 
compiles them into DLLs at creation time or, in the case of a server or database restart, at 
the time of the first call. SQL Server optimizes natively compiled stored procedures and 
embeds an execution plan into the code. That plan never changes unless the procedure 
is recompiled after a SQL Server or database restart. You should drop and recreate 
procedures if data distribution has been significantly changed after compilation.

While natively compiled stored procedures are incredibly fast, they support a limited 
set of T-SQL language features. You can avoid such limitations by using interpreted T-SQL 
code that accesses memory-optimized tables through the query interop component of 
SQL Server. Almost all T-SQL language features are supported in this mode.
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Memory-optimized table types and memory-optimized table variables are the in-
memory analog of table types and table variables. They live in memory only, and they do 
not use tempdb. You can use memory-optimized table variables as a staging area for the 
data and to pass a batch of rows to a T-SQL routine. Memory-optimized table types allow 
you to create indexes similar to memory-optimized tables.
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Chapter 7

Transaction Processing in 
In-Memory OLTP

This chapter discusses transaction processing in In-Memory OLTP. It elucidates what 
isolation levels are supported with native compilation and cross-container transactions, 
provides an overview of concurrency phenomena encountered in the database systems, 
and explains how In-Memory OLTP addresses them. Finally, this chapter talks about the 
lifetime of In-Memory OLTP transactions in detail.

ACID, Transaction Isolation Levels, and 
Concurrency Phenomena Overview
Transactions are the unit of work that read and modify data in a database and help to 
enforce consistency and durability of the data in a system. Every transaction in a properly 
implemented transaction management system has four different characteristics known as 
atomicity, consistency, isolation, and durability, often referenced as ACID.

•	 Atomicity guarantees that each transaction executes as an  
“all or nothing” approach. All changes done within a transaction 
are either committed or rolled back in full. Consider the classic 
example of transferring money between checking and savings 
bank accounts. That action consists of two separate operations: 
decreasing the balance of the checking account and increasing 
the balance of the savings account. Transaction atomicity 
guarantees that both operations either succeed or fail together, 
and a system will never be in the situation when money was 
deducted from the checking account but never added to the 
savings account.

•	 Consistency ensures that any database transaction brings the 
database from one consistent state to another and none of 
defined database rules and constraints were violated.
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•	 Isolation ensures that the changes done in the transaction are 
isolated and invisible to other transactions until the transaction is 
committed. By the book, transaction isolation should guarantee 
that concurrent execution of the multiple transactions should bring 
the system to the same state as if those transactions were executed 
serially. However, in most database systems, such a requirement is 
often relaxed and controlled by transaction isolation levels.

•	 Durability guarantees that after a transaction is committed, 
all changes done by the transaction stay permanent and will 
survive a system crash. SQL Server achieves durability by using 
Write-Ahead Logging hardening log records in transaction log 
synchronously with data modifications.

The isolation requirements are the most complex to implement in multi-user 
environments. Even though it is possible to completely isolate different transactions 
from each other, this could lead to a high level of blocking and other concurrency issues 
in systems with volatile data. SQL Server addresses this situation by introducing several 
transaction isolation levels that relax isolation requirements at the cost of possible 
concurrency phenomena related to read data consistency:

•	 Dirty Reads: A transaction reads uncommitted (dirty) data from 
other uncommitted transactions.

•	 Non-Repeatable Reads: Subsequent attempts to read the same 
data from within the same transaction return different results. 
This data inconsistency issue arises when the other transactions 
modified, or even deleted, data between the reads done by the 
affected transaction.

•	 Phantom Reads: This phenomenon occurs when subsequent 
reads within the same transaction return new rows (the ones that 
the transaction did not read before). This happens when another 
transaction inserted the new data in between the reads done by 
the affected transaction.

Table 7-1 shows the data inconsistency issues that are possible for different transaction 
isolation levels. It is worth mentioning that every isolation level resolves write/write conflicts, 
preventing multiple active transactions from updating the same rows simultaneously.

Table 7-1. Transaction Isolation Levels and Concurrency Phenomena

Isolation Level Dirty Reads Non-Repeatable Reads Phantom Reads

READ 
UNCOMMITTED

YES YES YES

READ COMMITTED NO YES YES

REPEATABLE READ NO NO YES

SERIALIZABLE NO NO NO

SNAPSHOT NO NO NO
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With the exception of the SNAPSHOT isolation level, SQL Server uses locking to 
address concurrency phenomena when dealing with on-disk tables. When a transaction 
modifies a row, it acquires exclusive (X) locks on the row and holds it until the end of the 
transaction. That exclusive (X) lock prevents other sessions from accessing uncommitted 
data until the transaction is completed and the locks are released. This behavior is also 
known as pessimistic concurrency.

Such behavior also means that, in the case of a write/write conflict, the last 
modification wins. For example, when two transactions are trying to modify the same 
row, SQL Server blocks one of them until another transaction is committed, allowing 
blocked transactions to modify the data afterwards. No errors or exceptions are raised; 
however, changes done by the first transaction are overwritten.

In the case of on-disk tables and pessimistic concurrency, transaction isolation 
levels control how a session acquires and releases shared (S) locks when reading the data. 
Table 7-2 demonstrates that behavior.

Table 7-2. Transaction Isolation Levels and Shared (S) Locks Behavior with On-disk Tables

Isolation Level Shared (S) Locks Behavior Comments

READ UNCOMMITTED (S) locks not acquired Transaction can see 
uncommitted changes from the 
other sessions (dirty reads)

READ COMMITTED (S) locks acquired and 
released immediately

Transaction will be blocked 
when it tries to read 
uncommitted rows with 
exclusive (X) locks held by the 
other sessions (no dirty reads)

REPEATABLE READ (S) locks acquired and held 
till the end of transaction

Other sessions cannot modify 
a row after it was read (no non-
repeatable reads). However, they 
can still insert phantom rows

SERIALIZABLE Range (S) locks acquired  
and held till end of 
transaction

Other sessions cannot modify a 
row after it was read nor insert 
new rows in between rows that 
were read (no non-repeatable 
or phantom reads)

The SNAPSHOT isolation level uses a row-versioning model by creating the new 
version of the row after modification. In this model, all data modifications done by other 
transactions are invisible to the transaction after it starts.

Though it is implemented differently in the case of on-disk and memory-optimized 
tables, logically it behaves the same. A transaction will read a version of the row valid at 
the time when the transaction started, and sessions do not block each other. However, 
when two transactions try to update the same data, one of them will be aborted and rolled 
back to resolve the write/write conflict. This behavior is known as optimistic concurrency. 
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 ■ Note  While SERIALIZABLE and SNAPSHOT isolation levels provide the same level of 
protection against data inconsistency issues, there is a subtle difference in their behavior.  
a SNAPSHOT isolation level transaction sees data as of the beginning of a transaction. With 
the SERIALIZABLE isolation level, the transaction sees data as of the time when the data 
was accessed for the first time.

Consider the situation when a session is reading data from a table in the middle of a 
transaction. if another session changed the data in that table after the transaction started 
but before data was read, the transaction in the SERIALIZABLE isolation level would see the 
changes while the SNAPSHOT transaction would not.

Transaction Isolation Levels in In-Memory OLTP
In-Memory OLTP supports three transaction isolation levels: SNAPSHOT, REPEATABLE 
READ, and SERIALIZABLE. However, In-Memory OLTP uses a completely different 
approach to enforce data consistency rules as compared to on-disk tables. Rather than 
block or being blocked by other sessions, In-Memory OLTP validates data consistency 
at the transaction COMMIT time and throws an exception and rolls back the transaction if 
rules were violated.

•	 In the SNAPSHOT isolation level, any changes done by other 
sessions are invisible to the transaction. A SNAPSHOT transaction 
always works with a snapshot of the data as of the time when 
transaction started. The only validation at the time of commit 
is checking for primary key violations, which is called snapshot 
validation.

•	 In the REPEATABLE READ isolation level, In-Memory OLTP 
validates that the rows that were read by the transaction have not 
been modified or deleted by the other transactions. A REPEATABLE 
READ transaction would not be able to commit if this was the case. 
That action is called repeatable read validation.

•	 In the SERIALIZABLE isolation level, SQL Server performs 
repeatable read validation and also checks for phantom rows that 
were possibly inserted by the other sessions. This process is called 
serializable validation.

Let’s look at a few examples that demonstrate this behavior. As a first step, shown in 
Listing 7-1, let’s create a memory-optimized table and insert a few rows there.
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Listing 7-1. Data Consistency and Transaction Isolation Levels: Table Creation

create table dbo.HKData
(
    ID int not null,
    Col int not null,
 
    constraint PK_HKData
    primary key nonclustered hash(ID)
    with (bucket_count=64),
)
with (memory_optimized=on, durability=schema_only);
 
insert into dbo.HKData(ID, Col)
values(1,1),(2,2),(3,3),(4,4),(5,5);

Table 7-3 shows how concurrency works in the REPEATABLE READ transaction 
isolation level. 

Table 7-3. Concurrency in the REPEATABLE READ Transaction Isolation Level

Session 1 Session 2 Results

begin tran 
  select ID, Col
  from dbo.HKData
    with (repeatableread)

update dbo.HKData
set Col = -2
where ID = 2

  select ID, Col
  from dbo.HKData
    with (repeatableread)

Return old version of a row  
(Col = 2)

commit Msg 41305, Level 16,  
State 0, Line 0

The current transaction failed 
to commit due to a repeatable 
read validation failure.

begin tran
  select ID, Col
  from dbo.HKData
    with (repeatableread)

insert into dbo.HKData
values(10,10)

  select ID, Col
  from dbo.HKData
    with (repeatableread)

Does not return  
new row (10,10)

commit Success
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As you can see, with memory-optimized tables, other sessions were able to 
modify data that was read by the active REPEATABLE READ transaction. This led to a 
transaction abort at the time of COMMIT when the repeatable read validation failed. This 
is a completely different behavior than that of on-disk tables, where other sessions are 
blocked,unable to modify data until the REPEATABLE READ transaction successfully 
commits and releases shared (S) locks it held.

It is also worth noting that in the case of memory-optimized tables, the REPEATABLE 
READ isolation level protects you from the Phantom Read phenomenon, which is not the 
case with on-disk tables.

As a next step, let’s repeat these tests in the SERIALIZABLE isolation level. You can see 
the code and the results of the execution in Table 7-4. 

Table 7-4. Concurrency in the SERIALIZABLE Transaction Isolation Level

Session 1 Session 2 Results

begin tran
  select ID, Col
  from dbo.HKData
    with (serializable)

update dbo.HKData
set Col = -2
where ID = 2

  select ID, Col
  from dbo.HKData
    with (serializable)

Return old version of a row 
(Col = 2)

commit Msg 41305, Level 16, State 0, 
Line 0

The current transaction failed 
to commit due to a repeatable 
read validation failure.

begin tran
  select ID, Col
  from dbo.HKData
    with (serializable)

insert into dbo.HKData
values(10,10)

  select ID, Col
  from dbo.HKData
    with (serializable)

Does not return new row 
(10,10)

commit Msg 41325, Level 16, State 0, 
Line 0

The current transaction 
failed to commit due to a 
serializable validation failure.
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As you can see, the SERIALIZABLE isolation level prevents the session from 
committing a transaction when another session inserted a new row and violated the 
serializable validation. Like the REPEATABLE READ isolation level, this behavior is different 
from that of on-disk tables, where the SERIALIZABLE transaction successfully blocks other 
sessions until it is done.

Finally, let’s repeat the tests in the SNAPSHOT isolation level. The code and results are 
shown in Table 7-5. 

Table 7-5. Concurrency in the SNAPSHOT Transaction Isolation Level

Session 1 Session 2 Results

begin tran
  select ID, Col
  from dbo.HKData
    with (snapshot)

update dbo.HKData
set Col = -2
where ID = 2

  select ID, Col
  from dbo.HKData
    with (snapshot)

Return old version of a row 
(Col = 2)

commit Success

begin tran
  select ID, Col
  from dbo.HKData
    with (snapshot)

insert into dbo.HKData
values(10,10)

  select ID, Col
  from dbo.HKData
    with (snapshot)

Does not return new row 
(10,10)

commit Success

The SNAPSHOT isolation level behaves in a similar manner to on-disk tables, and 
it protects from the Non-Repeatable Reads and Phantom Reads phenomena. As you 
can guess, it does not need to perform repeatable read and serializable validations at 
the commit stage and, therefore, it reduces the load on SQL Server. However, there is 
still snapshot validation, which checks for primary key violations and is done in any 
transaction isolation level.
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Table 7-6. Snapshot Validation

Session 1 Session 2 Results

begin tran
  insert into dbo.HKData
    with (snapshot)
  (ID, Col)
  values(100,100)

begin tran
  insert into dbo.HKData
    with (snapshot)
  (ID, Col)
  values(100,100)

commit Successfully commit the first 
session

commit Msg 41325, Level 16, State 1, 
Line 0

The current transaction 
failed to commit due to a 
serializable validation failure.

Table 7-6 shows the code that leads to the primary key violation condition. In 
contrast to on-disk tables, the exception is raised on the commit stage rather than at the 
time of the second INSERT operation.

It is worth mentioning that the error number and message are the same with the 
serializable validation failure even though SQL Server validated the different rule.

Write/write conflicts work the same way regardless of the transaction isolation level 
in In-Memory OLTP. SQL Server does not allow a transaction to modify a row that has 
been modified by other uncommitted transactions. Table 7-7 illustrates this behavior. 
The code uses the SNAPSHOT isolation level; however, the behavior does not change with 
different isolation levels.
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Table 7-7. Write/Write Conflicts in In-Memory OLTP

Session 1 Session 2 Results

begin tran
  select ID, Col
  from dbo.HKData
    with (snapshot)

begin tran
  update dbo.HKData
    with (snapshot)
  set Col = -3
  where ID = 2
commit

  update dbo.HKData
    with (snapshot)
  set Col = -2
  where ID = 2

Msg 41302, Level 16, State 110, Line 1

The current transaction attempted to 
update a record that has been updated 
since this transaction started. The 
transaction was aborted.

Msg 3998, Level 16, State 1, Line 1

Uncommittable transaction is detected 
at the end of the batch. The transaction 
is rolled back.

The statement has been terminated.

begin tran
  select ID, Col
  from dbo.HKData
    with (snapshot)

begin tran
  update dbo.HKData
    with (snapshot)
  set Col = -3
  where ID = 2

  update dbo.HKData
    with (snapshot)
  set Col = -2
  where ID = 2

Msg 41302, Level 16, State 110, Line 1

The current transaction attempted to 
update a record that has been updated 
since this transaction started. The 
transaction was aborted.

Msg 3998, Level 16, State 1, Line 1

Uncommittable transaction is detected 
at the end of the batch. The transaction 
is rolled back.

The statement has been terminated.

commit Successful commit of Session 2 
transaction
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Cross-Container Transactions
Any access to memory-optimized tables from interpreted T-SQL is done through the 
Query Interop Engine and leads to cross-container transactions. You can use different 
transaction isolation levels for on-disk and memory-optimized tables. However, not all 
combinations are supported. Table 7-8 illustrates possible combinations for transaction 
isolation levels in cross-container transactions.

Table 7-8. Isolation Levels for Cross-Container Transactions

Isolation Levels for On-Disk Tables Isolation Levels for Memory-Optimized Tables

READ UNCOMMITTED, READ 
COMMITTED,READ COMMITTED 
SNAPSHOT

SNAPSHOT, REPEATABLE READ, SERIALIZABLE

REPEATABLE READ, SERIALIZABLE SNAPSHOT only

SNAPSHOT Not supported

As you already know, internal implementations of REPEATABLE READ and 
SERIALIZABLE isolation levels are very different for on-disk and memory-optimized 
tables. Data consistency rules with on-disk tables rely on locking while In-Memory OLTP 
uses pre-commit validation. In cross-container transactions, SQL Server only supports 
SNAPSHOT isolation levels for memory-optimized tables when on-disk tables require 
REPEATABLE READ or SERIALIZABLE isolation.

Moreover, SQL Server does not allow access to memory-optimized tables when on-
disk tables require SNAPSHOT isolation. Cross-container transactions, in a nutshell, consist 
of two internal transactions: one for on-disk and another one for memory-optimized 
tables. It is impossible to start both internal transactions at exactly the same time and 
guarantee the state of the data at the moment the transaction starts.

Listing 7-2 illustrates a transaction that tries to access data from memory-optimized 
and on-disk tables using incompatible transaction isolation levels.

Listing 7-2. Using Incompatible Isolation Levels in a Cross-Container Transaction

select sum(OrderTotal)
from
(
    select OrderTotal
    from dbo.Orders with (repeatableread) /* Memory-Optimized table */
    where CustomerId = @CustomerId
 
    union all

    select OrderTotal
    from dbo.OrderHistory with (repeatableread) /* On-Disk table */
    where CustomerId = @CustomerId
) o
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As you already know, reading on-disk data in a REPEATABLE READ isolation level 
requires you to use SNAPSHOT isolation levels with memory-optimized tables and, 
therefore, the query from Listing 7-2 returns the error shown in Listing 7-3.

Listing 7-3. Incompatible Isolation Levels in a Cross-Container Transaction

Msg 41333, Level 16, State 1, Line 3

The following transactions must access memory optimized tables 
and natively compiled stored procedures under snapshot isolation: 
RepeatableRead transactions, Serializable transactions, and transactions 
that access tables that are not memory optimized in RepeatableRead or 
Serializable isolation.

As the general guideline, it is recommended to use the READ COMMITTED/SNAPSHOT 
combination in cross-container transactions during the regular workload. This 
combination provides the minimal blocking and least pre-commit overhead and should 
be acceptable in a large number of use cases. Other combinations are more appropriate 
during data migrations when it is important to avoid non-repeatable and phantom reads 
phenomena.

As you may have already noticed, SQL Server requires you to specify the transaction 
isolation level with a table hint when you are accessing memory-optimized tables. This 
does not apply to individual statements that execute outside of the explicitly started 
(with BEGIN TRAN) transaction. Those statements are called autocommitted transactions, 
and each of them executes in a separate transaction that is active for the duration of the 
statement execution. Listing 7-4 illustrates code with three statements. Each of them will 
run in their own autocommitted transactions.

Listing 7-4. Autocommitted Transactions

delete from dbo.HKData;
 
insert into dbo.HKData(ID, Col)
values(1,1),(2,2),(3,3),(4,4),(5,5);
 
select ID, Col
from dbo.HKData;

An isolation level hint is not required for statements running in autocommitted 
transactions. When the hint is omitted, the statement runs in the SNAPSHOT isolation level.

 ■ Note sQL server allows you to keep a NOLOCK hint while accessing memory-optimized 
tables from autocommitted transactions. that hint is ignored. a READUNCOMMITTED hint, 
however, is not supported and triggers an error.
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There is the useful database option MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT, 
which is disabled by default. When this option is enabled, SQL Server allows you to 
omit the isolation level hint in non-autocommitted transactions promoting them to the 
SNAPSHOT isolation level as with autocommitted transactions. Consider enabling this 
option when you migrate an existing system to In-Memory OLTP and have T-SQL code 
that accesses tables that become memory-optimized.

Transaction Lifetime
Although I have already discussed a few key elements used by In-Memory OLTP to 
manage data access and the concurrency model, let’s review them here.

•	 The Global Transaction Timestamp is an auto-incremented value 
that uniquely identifies every transaction in the system. SQL 
Server increments and obtains this value at the transaction pre-
commit stage.

•	 TransactionId is another identifier (timestamp) that also 
uniquely identifies a transaction. SQL Server obtains and 
increments its value at the moment when the transaction starts.

•	 Every row has BeginTs and EndTs timestamps, which correspond 
to the Global Transaction Timestamp of the transaction that 
inserted or deleted this version of a row.

Figure 7-1 shows the lifetime of a transaction that works with memory-optimized 
tables.

Figure 7-1. Transaction lifetime
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At the time when a new transaction starts, it generates a new TransactionId and 
obtains the current Global Transaction Timestamp value. The Global Transaction 
Timestamp value dictates what rows are visible to the transaction, and it should be in 
between the BeginTs and EndTs for the rows to be visible. During data modifications, 
however, the transaction analyzes if there are any uncommitted versions of the rows, 
which prevents write/write conflicts when multiple sessions modify the same data.

When a transaction needs to delete a row, it updates the EndTs timestamp with 
the TransactionId value, which also has a flag that the timestamp contains the 
TransactionId rather than the Global Transaction Timestamp. The Insert operation 
creates a new row with the BeginTs of theTransactionId and the EndTs of Infinity. 
Finally, the update operation consists of delete and insert operations internally. 

Figure 7-2 shows the data rows after we created and populated the dbo.HKData 
table in Listing 7-1, assuming that the rows were created by a transaction with the Global 
Transaction Timestamp of 5. (The hash index structure is omitted for simplicity’s sake.)

Figure 7-2. Data in the dbo.HKData table after insert

Let’s assume that you have a transaction that started at the time when the Global 
Transaction Timestamp value was 10 and the TransactionId generated as -8. (I am 
using a negative value for TransactionId to illustrate the difference between two types of 
timestamps in the figures.)

Let’s assume that the transaction performs the operations shown in Listing 7-5. The 
explicit transaction has already started, and the BEGIN TRAN statement is not included in 
the listing. All three statements are executing in the context of a single active transaction.

Listing 7-5. Data Modification Operations 

insert into dbo.HKData with (snapshot)
(ID, Col)
values(10,10);
 
update dbo.HKData with (snapshot)
set Col = -2
where ID = 2;
 
delete from dbo.HKData with (snapshot)
where ID = 4;

Figure 7-3 illustrates the state of the data after data modifications. An INSERT 
statement created a new row, a DELETE statement updated the EndTs value in the row with 
ID=4, and an UPDATE statement changed the EndTs value of the row with ID=2 and created 
a new version of the row with the same ID.
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It is important to note that the transaction maintains a write set, or pointers to 
rows that have been inserted and deleted by a transaction, which is used to generate 
transaction log records. 

In addition to the write set, in the REPEATABLE READ and SERIALIZABLE isolation 
levels, transactions maintain a read set of the rows read by a transaction and use it for 
repeatable read validation. Finally, in the SERIALIZABLE isolation level, transactions 
maintain a scan set, which contains the information about predicates used by the queries 
in transaction. The scan set is used for serializable validation.

When a COMMIT request is issued, the transaction starts the validation phase. First, it 
generates a new Global Transaction Timestamp value and replaces the TransactionId 
with this value in all BeginTs and EndTs timestamps in the rows it modified. Figure 7-4 
illustrates this action, assuming that the Global Transaction Timestamp value is 11.

Figure 7-3. Data in the dbo.HKData table after modifications

Figure 7-4. Validation phase after BeginTs and EndTs values are replaced

At this moment, the rows modified by transactions become visible to other 
transactions in the system even though the transaction has yet to be committed. Other 
transactions can see uncommitted rows, which leads to a situation called commit 
dependency. These transactions are not blocked at the time when they access those rows; 
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however, they do not return data to clients nor commit until the original transaction 
on which they have a commit dependency commits itself. I will talk about commit 
dependencies shortly.

As the next step, the transaction starts a validation phase. SQL Server performs 
several validations based on the isolation level of the transaction, as shown in Table 7-9.

Table 7-9. Validations Done in the Different Transaction Isolation Levels

Snapshot Validation Repeatable Read 
Validation

Serializable 
Validation

Checking for primary 
key violations

Checking for non-
repeatable reads

Checking for 
phantom reads

SNAPSHOT YES NO NO

REPEATABLE READ YES YES NO

SERIALIZABLE YES YES YES

 ■ Important repeatable read and serializable validations add an overhead to the 
system. Do not use REPEATABLE READ and SERIALIZABLE isolation levels unless you have a 
legitimate use case for such data consistency. We will discuss two of those use cases, such 
as supporting uniqueness and referential integrity, in Chapter 11.

After the required rules have been validated, the transaction waits for the commit 
dependencies to clear and the transaction on which it depends to commit. If those 
transactions fail to commit for any reason, such as a validation rules violation, the 
dependent transaction is also be rolled back and an error 41301 is generated.

Figure 7-5 illustrates a commit dependency scenario. Transaction Tx2 can access 
uncommitted rows from transaction Tx1 during Tx1 validation and commit phases 
and, therefore, Tx2 has commit dependency on Tx1. After the Tx2 validation phase is 
completed, Tx2 has to wait for Tx1 to commit and the commit dependency to clear before 
entering the commit phase.

http://dx.doi.org/10.1007/978-1-4842-1136-6_11
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If Tx1, for example, failed to commit due to serializable validation violation, Tx2 
would be rolled back with Error 41301, as shown in Figure 7-6. 

Figure 7-5. Commit Dependency: Successful Commit

Figure 7-6. Commit Dependency: Validation Error

 ■ Note you can track commit dependencies using the dependency_acquiredtx_event 
and waiting_for_dependenciestx_event extended events.
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Finally, when all commit dependencies are cleared, the transaction moves to the 
commit phase, generates one or more log records, saves them to the transaction log, and 
completes the transaction.

Commit dependency is technically the case of blocking in In-Memory OLTP. 
However, the validation and commit phases of the transactions are relatively short, and 
that blocking should not be excessive. It is also worth noting that transaction logging in 
In-Memory OLTP is more efficient compared to on-disk transactions. I will discuss it in 
more detail in Chapter 8.

 ■ Note  you can read more about the concurrency model in in-Memory oLtp at  
https://msdn.microsoft.com/en-us/library/dn479429.aspx.

Summary
In-Memory OLTP supports three transaction isolation levels, SNAPSHOT, REPEATABLE READ, 
and SERIALIZABLE. In contrast to on-disk tables, where non-repeatable and phantom 
reads are addressed by acquiring and holding the locks, In-Memory OLTP validates data 
consistency rules on the transaction commit stage. An exception will be raised and the 
transaction will be rolled back if rules were violated.

Repeatable read and serializable validation adds an overhead to transaction 
processing. It is recommended to use the SNAPSHOT isolation level during a regular 
workload unless REPEATABLE READ or SERIALIZABLE data consistency is required.

You can use different transaction isolation levels for on-disk and memory-optimized 
tables in cross-container transactions; however, not all combinations are supported. The 
recommended practice is using the READ COMMITTED isolation level for on-disk and the 
SNAPSHOT isolation level for memory-optimized tables.

SQL Server does not require you to specify transaction isolation level when you 
access memory-optimized tables through the interop engine in autocommitted (single 
statement) transactions. SQL Server automatically promotes such transactions to the 
SNAPSHOT isolation level. However, you should specify an isolation level hint when a 
transaction is explicitly started with BEGIN TRAN statement. You can avoid this by enabling 
the MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT database option. This option is useful 
when you migrate existing system to use In-Memory OLTP.

http://dx.doi.org/10.1007/978-1-4842-1136-6_8
https://msdn.microsoft.com/en-us/library/dn479429.aspx
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Chapter 8

Data Storage, Logging,  
and Recovery

This chapter discusses how In-Memory OLTP stores the data from durable memory-
optimized tables on disk. It illustrates the concept of checkpoint file pairs used by SQL 
Server to persist the data, provides an overview of checkpoint process in In-Memory OLTP, 
and discusses recovery of memory-optimized data. Finally, this chapter demonstrates how 
In-Memory OLTP logs the data in a transaction log and why In-Memory OLTP logging is 
more efficient compared to on-disk tables.

Data Storage 
The data from durable memory-optimized tables is stored separately from on-disk 
tables. SQL Server uses a streaming mechanism to store it, which is based on FILESTREAM 
technology. In-Memory OLTP and FILESTREAM, however, store data separately from 
each other and you should have two separate filegroups: one for In-Memory OLTP and 
another for FILESTREAM data when the database uses both technologies.

There is a conceptual difference between how on-disk and memory-optimized 
data are stored. On-disk tables store the single, most recent version of the row. Multiple 
updates of the row change the same row object multiple times. Deletion of the row 
removes it from the database. Finally, it is always possible to locate a data row in a data 
file when needed.

In-Memory OLTP uses a completely different approach and persists multiple 
versions of the row on disk. Multiple updates of the data row generate multiple row 
objects, each of which has a different lifetime. SQL Server appends them to binary files 
stored in the In-Memory OLTP filegroup, which are called checkpoint file pairs (CFP). 

It is impossible to predict where a data row is stored in checkpoint file pairs. Nor are 
there use cases for such an operation. The only purposes these files serve is to provide 
data durability and improve the performance of loading data into memory on database 
startup.

As you can guess by the name, each checkpoint file pair consists of two files: a 
data file and a delta file. Each CFP covers operations for a range of Global Transaction 
Timestamp values, logging operations on the rows that have BeginTs in this range. Every 
time you insert a row, it is saved into a data file. Every time you delete a row,  
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the information about the deleted row is saved into a delta file. An update generates two 
operations, INSERT and DELETE, and it saves this information to both files. Figure 8-1 
provides a high-level overview of the structure of checkpoint file pairs.

Figure 8-2 shows an example of a database with six check point file pairs in the 
different states. The vertical rectangles with a solid fill represent data files. The rectangles 
with a dotted fill represent delta files. This is just an illustration. In reality, every database 
will have at least eight checkpoint file pairs in the various states, which we will cover in 
detail shortly.

Figure 8-1. Data in checkpoint files
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Internally, SQL Server stores checkpoint file pair metadata in an 8,192 slot array. 
Even though, in theory, it allows you to store up to 8,192 * 128MB = 1TB of data, Microsoft 
does not recommend nor support configurations with more than 256GB of data stored in 
durable memory-optimized tables. There is no restriction on the amount of data stored in 
non-durable memory-optimized tables.

Using a separate delta file to log deletions allows SQL Server to avoid modifications 
in data files and random I/O in cases when rows are deleted. Both data and delta files are 
append-only. Moreover, when files are closed (again, more on this shortly), they become 
read-only.

Checkpoint File Pairs States
Each checkpoint file pair can be in one of several states during its lifetime, as illustrated in 
Figure 8-3.

Figure 8-2. A database with multiple checkpoint file pairs
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Let's look at all of these states in more detail.

PRECREATED CFP State
When you create the first memory-optimized table in the database, SQL Server generates 
the set of checkpoint file pairs. Those files are empty and they are created to minimize 
wait time when new files are needed.

The total number of new files is based on the storage and hardware configuration. 
SQL Server creates a separate checkpoint file pair per scheduler (logical CPU) with a 
minimum of eight CFPs. The initial size of the files is based on the amount of server 
memory, as shown in Table 8-1.

Figure 8-3. Checkpoint file pair states



Chapter 8 ■ Data Storage, Logging, anD reCovery 

125

UNDER CONSTRUCTION CFP State and CHECKPOINT Process
As you already know, SQL Server uses the transaction log to persist information about 
data modifications in the database. Transaction log records can be used to reconstruct 
any data changes in the event of an unexpected shutdown or crash; however, that process 
can be very time-consuming if a large number of log records need to be replayed. 

SQL Server uses checkpoints to mitigate that problem. Even though on-disk and 
In-Memory OLTP checkpoint processes are independent from each other, they do the 
same thing: persist the data changes on disk, reducing database recovery time. The last 
checkpoint identifies up to which point the data changes have been persisted and from 
which log records need to be replayed.

With on-disk tables, the frequency of checkpoint operations depends on the server-
level recovery interval and database-level TARGET_RECOVERY_TIME settings. While 
such an approach helps SQL Server to improve write performance by batching multiple 
random I/O writes together, it leads to spikes in I/O activity at the time when checkpoint 
occurs.

In contrast, In-Memory OLTP implements continuous checkpoints. It continuously 
scans the transaction log, streaming and appending the changes to checkpoint file pairs 
in the UNDER CONSTRUCTION state. The new versions of the rows are appended to the data 
files and deletions are appended to delta files. The continuous checkpoint also appends 
information about deletions to CFPs in the ACTIVE state, which we will discuss shortly.

As mentioned, the rows in checkpoint file pairs are never updated. Instead, the new 
row version is appended to the data file and the old version is marked as deleted in the 
delta files. This leads to sequential streaming I/O, which is significantly faster compared 
to random I/O even in the case of SSD drives.

ACTIVE CFP State
The continuous checkpoint process continuously persists the data from memory-
optimized tables on disk. However, there is still a checkpoint event, which performs 
several actions.

•	 It scans the remaining (unscanned) portion of the transaction log 
and hardens all remaining log records to checkpoint file pairs. 
You can consider it as the continuous checkpoint catching up and 
processing the remaining part of the log up to the checkpoint event.

•	 It transitions all UNDER CONSTRACTION CFPs to the ACTIVE state.

Table 8-1. Initial Size of Checkpoint Files

Server Memory Data File Size Delta File Size

Less than 16GB 16MB 1MB

16GB or more 128MB 8MB
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•	 It creates a checkpoint inventory, which contains the information 
about all files from the previous checkpoint along with any files 
added by the current checkpoint. The checkpoint inventory 
and the Global Transaction Timestamp are hardened in the 
transaction log and available to SQL Server during the recovery 
process. The combination of ACTIVE CFPs and the tail of the log 
allow SQL Server to recover the data from memory-optimized 
tables if needed.

The checkpoint event changes the state of all UNDER CONSTRUCTION checkpoint file 
pairs to ACTIVE. SQL Server does not stream new data into ACTIVE CFPs so data files 
become read-only; however, it still uses the delta files storing the information about the 
DELETE and UPDATE operations that occurred against the versions of the rows from the 
corresponding data files.

In the case of memory-optimized tables, a checkpoint is invoked either manually 
with the CHECKPOINT command, or automatically when the transaction log has grown 
more than 512MB since the last checkpoint. It is worth mentioning that SQL Server does 
not differentiate log activity between on-disk and memory-optimized tables when using 
this 512MB threshold. It is entirely possible that a checkpoint is triggered even when there 
were no transactions against memory-optimized tables.

Typically, the combined size of the ACTIVE checkpoint file pairs on disk is about 
twice the size of the durable memory-optimized tables in memory. However, in some 
cases, SQL Server may require more space to store memory-optimized data.

MERGE TARGET and MERGED SOURCE CFP States and Merge 
Process
Overtime, as data modifications progress, the percent of deleted rows in the ACTIVE 
checkpoint file pairs increases. This condition adds unnecessary storage overhead and 
slows down the data loading process during recovery. SQL Server addresses this situation 
with a process called merge. 

A background task called the Merge Policy Evaluator periodically analyzes if adjacent 
ACTIVE CFPs can be merged together in a way that active, non-deleted rows from the 
merged data files would fit into the new 16MB or 128MB data file. When it happens, SQL 
Server creates the new CFP in a MERGE TARGET state and populates it with the data from 
the multiple ACTIVE CFPs, filtering out deleted rows.

Even though the Merge Policy Evaluator can identify multiple possible merges, 
every CFP can participate only in one of them. Table 8-2 shows several examples of the 
possible merges.
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In most cases, you can rely on the automatic merge process. However, you can trigger 
a manual merge using the sys.sp_xtp_merge_checkpoint_files stored procedure. You 
will see such an example in Appendix C.

Once the merge process is complete, the next checkpoint event transitions the MERGE 
TARGET CFP to ACTIVE and former ACTIVE CFPs to MERGED SOURCE states.

REQUIRED FOR BACKUP/HA, IN TRANSITION TO TOMBSTONE, 
and TOMBSTONE CFP States
After the next checkpoint event occurs, the MERGED SOURCE CFPs are no longer needed 
for database recovery. Former MERGE TARGET and now ACTIVE CFPs can be used for this 
purpose. However, those CFPs are still needed if you want to restore the database from a 
backup, so they are switched to the REQUIRED FOR BACKUP/HA state. 

The checkpoint file pairs stay in that state until the log truncation point passed their 
LSNs. In FULL recovery model that means that a log backup has been taken, log records 
were sent to secondary nodes, and other processes that read transaction log have not 
fallen behind. Obviously, in a SIMPLE recovery model, log backup is not required and the 
log truncation point is controlled by checkpoints.

Once it happens, CFPs are transitioned to the IN TRANSITION TO TOMBSTONE 
state, where they become eligible for garbage collection. Another In-Memory OLTP 
background thread switches them to the TOMBSTONE state, which they stay in until they are 
deallocated by the FILESTREAM garbage collector thread.

 ■ Note in reality, it is possible that multiple log backups are required for the CFp to switch 
to the IN TRANSITION TO TOMBSTONE state.

As with the merge process, in most cases you can rely on automatic garbage 
collection in both In-Memory OLTP and FILESTREAM; however, you can force garbage 
collection using the sys.sp_xtp_checkpoint_force_garbage_collection and  
sys.sp_filestream_force_garbage_collection stored procedures. You can see these 
procedures in action in Appendix C.

Table 8-2. Merge Examples

Adjacent Source Files (% Full) Merge Results

CFP0(40%), CFP1(45%), CFP2(60%) CFP0 + CFP1 (85%)

CFP0(10%), CFP1(15%), CFP2(70%), CFP3(10%) CFP0 + CFP1 + CFP2 (95%)

CFP0(55%), CFP1(50%) No Merge is done
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 ■ Note you can analyze the state of a checkpoint file pair using the sys.dm_db_xtp_
checkpoint_files DMv. appendix C talks about this view in greater depth and shows how 
CFp states change through their lifetime.

Transaction Logging
As mentioned in the previous chapter, transaction logging in In-Memory OLTP is more 
efficient compared to Storage Engine. Both engines share the same transaction log and 
perform write-ahead logging (WAL); however, the log records format and algorithms are 
very different.

With on-disk tables, SQL Server generates transaction log records on a per-index basis. 
For example, when you insert a single row into a table with clustered and nonclustered 
indexes, it will log insert operations in every individual index separately. Moreover, it will 
log internal operations, such as extent and page allocations, page splits, and a few others.

All log records are saved in a transaction log and hardened on disk pretty much 
synchronously at the time when they were created. Even though every database has 
a cache called Log Buffer to batch log writes, that cache is very small, about 60KB. 
Moreover, some operations, such as COMMIT and CHECKPOINT, flush that cache whether it 
is full or not.

Finally, SQL Server has to include before-update (UNDO) and after-update (REDO) 
versions of the row to the log records. Checkpoint process is asynchronous and it does 
not check the state of transaction that modified the page. It is entirely possible for the 
checkpoint to save the dirty data pages from uncommitted transactions and the UNDO part 
of the log records are required to roll back the changes.

Transaction logging in In-Memory OLTP addresses these inefficiencies. The first 
major difference is that In-Memory OLTP generates and saves log records at the time of 
the transaction COMMIT rather than during each data row modification. Therefore, rolled-
back transactions do not generate any log activity. 

The format of a log record is also different. Log records do not include any UNDO 
information. Dirty data from uncommitted transactions will never materialize on disk 
and, therefore, In-Memory OLTP log data does not need to support the UNDO stage of 
crash recovery nor log uncommitted changes.

In-Memory OLTP generates log records based on the transactions write set. All data 
modifications are combined together in one or very few log records based on the write set 
and inserted rows’ size.

Let's examine this behavior and run the code shown in Listing 8-1. It starts a 
transaction and inserts 500 rows into a memory-optimized table. Then it examines the 
content of the transaction log using the undocumented sys.fn_dblog system function.



Chapter 8 ■ Data Storage, Logging, anD reCovery 

129

Listing 8-1. Transaction Logging in In-Memory OLTP: Memory-Optimized Table 
Logging

create table dbo.HKData
(
    ID int not null,
    Col int not null,
 
    constraint PK_HKData
    primary key nonclustered hash(ID)
    with (bucket_count=1024),
)
with (memory_optimized=on, durability=schema_and_data)
go
 
declare
    @I int = 1
 
begin tran
    while @I <= 500
    begin
        insert into dbo.HKData with (snapshot)
           (ID, Col)
        values(@I, @I)
 
           set @I += 1
    end
commit
go
 
select *
from sys.fn_dblog(NULL, NULL)
order by [Current LSN];

Figure 8-4 illustrates the content of the transaction log. You can see the single 
transaction record for the In-Memory OLTP transaction.

Figure 8-4. Transaction log content after the In-Memory OLTP transaction

Let’s repeat this test with an on-disk table of a similar structure. Listing 8-2 shows the 
code that creates a table and populates it with data.
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Listing 8-2. Transaction Logging in In-Memory OLTP: On-Disk Table Logging

create table dbo.DiskData
(
    ID int not null,
    Col int not null,
 
    constraint PK_DiskData
    primary key nonclustered(ID)
)
go
 
declare
    @I int = 1
 
begin tran
    while @I <= 500
    begin
        insert into dbo.DiskData(ID, Col)
        values(@I, @I)
 
        set @I += 1
    end
commit

As you can see in Figure 8-5, the same transaction generated more than 1,000 log 
records.

Figure 8-5. Transaction log content after on-disk table modification

You can use another undocumented function, sys.fn_dblog_xtp, to examine the 
logical content of an In-Memory OLTP log record. Listing 8-3 shows the code that utilizes 
this function and Figure 8-6 shows the output of that code. You should use the LSN of the 
LSN_HK log record from the Listing 8-2 output as the parameter of the function.
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Listing 8-3. Analyzing an In-Memory OLTP Log Record

select [Current LSN], object_name(table_id) as [Table]
        ,operation_desc, tx_end_timestamp, total_size
from sys.fn_dblog_xtp
(
    '0x0000001f:0000593b:0002'
    ,'0x0000001f:0000593b:0002'
)

Finally, it is worth stating again that any data modification on non-durable tables 
(DURABILITY=SCHEMA_ONLY) is not logged in the transaction log nor is its data persisted  
on disk.

Recovery
During the recovery stage, SQL Server locates the most recent checkpoint inventory and 
passes it to the In-Memory OLTP Engine, which starts recovering memory-optimized 
data in parallel with on-disk tables. The In-Memory OLTP Engine obtains the list of all 
ACTIVE checkpoint file pairs and starts loading data from them. It loads only the non-
deleted versions of rows using delta files as the filter. It checks that a row from a data file is 
not deleted and is not referenced in the delta files. Based on the results of this check,  
a row is either loaded to memory or discarded.

The process of loading data is highly scalable. SQL Server creates one thread per 
logical CPU, and each thread processes an individual checkpoint file pair. In a large 
number of cases, the performance of the I/O subsystem becomes the limiting factor in 
data-loading performance.

Figure 8-6. In-Memory OLTP transaction log record details
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As the opposite of on-disk tables, indexes on memory-optimized tables are not 
persisted. As you remember, indexes in In-Memory OLTP are just the memory pointers, 
and the memory addresses of the rows change after they are reloaded into the memory. 
Therefore, indexes must be recreated during the recovery stage.

Figure 8-7 illustrates the data-loading process.

Figure 8-7. Loading data to memory

After the data from CFPs has been loaded, SQL Server completes the recovery by 
applying the changes from the tail of the transaction log, bringing the database back to 
the state as of the time of crash or shut down. As you already know, In-Memory OLTP 
does not log uncommitted changes and, therefore, no UNDO stage is required during the 
recovery.
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Summary
The data from durable memory-optimized tables is placed into a separate file group 
utilizing FILESTREAM technology under the hood. The data is stored in the set of 
checkpoint file pairs. Each pair consists of two files, data and delta. Data files store the 
row version data. Delta files store the information about deleted rows.

The data in checkpoint file pairs is never updated. A DELETE operation generates the 
new entry in delta files. An UPDATE operation stores the new version of the row in the data 
file, marking the old version as deleted in the delta file. SQL Server utilizes the sequential 
streaming API to write data to those files without any random I/O involved.

Every checkpoint file pair covers a particular interval of Global Transaction 
Timestamps and goes through a set of predefines states. SQL Server stores the new row 
data in CFPs in the UNDER CONSTRUCTION state. These CFPs are converted to the ACTIVE 
state at a checkpoint event. Data files of ACTIVE CFPs are closed and they do not accept the 
new row versions; however, they still log the information about deletions in the delta files.

SQL Server merges the data from the ACTIVE checkpoint file pairs, filtering out 
deleted rows. After the merge is completed and the source CFPs are backed up, SQL 
Server marks them for garbage collection and deallocates them.

ACTIVE checkpoint file pairs are used during database recovery along with the tail of 
the log. The In-Memory OLTP recovery process is highly scalable and very fast. Indexes 
on memory-optimized tables are not persisted on disk and recreated when data is loaded 
into the memory.

Transaction logging in In-Memory OLTP is more efficient compared to on-disk 
tables. Transactions are logged at time of COMMIT based on the transaction write set. Log 
records are compact and contain information about multiple row-related operations.
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Chapter 9

Garbage Collection

This chapter covers the garbage collection process used in the In-Memory OLTP Engine. 
It provides an overview of the various components involved in garbage collection and 
demonstrates how they interact with each other.

Garbage Collection Process Overview
In-memory OLTP is a row-versioning system. UPDATE operations generate new versions 
of rows rather than updating row data. DELETE operations do not remove the rows but 
rather update the EndTs row timestamp. Rows created by aborted transactions are not 
deallocated immediately and they stay as part of the index row chains even after rollback.

As you know, every row has two timestamps (BeginTs and EndTs) that indicate 
row lifetime: when the row was created and when it was deleted. Transactions can only 
see the versions of rows that were valid at the time when the transaction started. In 
practice, this means that a row is visible for the transaction only if the Global Transaction 
Timestamp value at the start of transaction is between the BeginTs and EndTs timestamps 
of the row.

At some point, when the EndTs timestamp of a row is older than the Global 
Transaction Timestamp of the Oldest Active Transaction in the system, the row expires. 
Expired rows are invisible for active transactions and eventually they need to be 
deallocated to reclaim system memory and speed up index chain navigation. This process 
is called garbage collection.

The garbage collection process in In-Memory OLTP has been designed with the 
following goals:

•	 Non-blocking: The garbage collection process should not block 
user threads and should produce minimal performance impact 
on the system.

•	 Responsive: The garbage collection process should react to 
memory pressure.

•	 Cooperative and Scalable: The garbage collection process 
should not rely on a single system thread to perform memory 
deallocation and should use regular worker threads during the 
process.
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The cooperative nature of garbage collection makes it quite different from the typical 
SQL Server background processes. Even though there is a dedicated system garbage 
collection thread called the idle worker thread, the major part of the work is done by 
the regular user worker threads. This allows the process to scale and keep up with the 
workload in the system.

User threads participate in the garbage collection process in two different ways. They 
unlink old, expired rows from the row chains and perform actual deallocation. These 
actions are separate from each other, as you will see shortly.

Let’s look at the process in detail. Figure 9-1 illustrates the logical structure of a table 
with two hash indexes on the Name and City columns. You saw this figure in previous 
chapters; however, in this chapter I added another element called idxLinkCount, which 
indicates in how many index chains the rows are participating. It is displayed with the 
underline font in the figure; note that all rows have a value of two, which corresponds to 
the number of indexes in the table.

Assume that you have a session that runs two queries, as shown in Listing 9-1, at 
time when the Oldest Active Transaction Timestamp is 110 and the Global Transaction 
Timestamp is 125.

Listing 9-1. First Batch

select * from dbo.People where Name = 'Adam';
select * from dbo.People where Name = 'Carl';

The first SELECT scanned the Name index row chain for the bucket with value A and 
detected the Ann row with an EndTs of 100. The Oldest Active Transaction Timestamp 
is 110, so this row is expired and invisible for the active transactions in the system. As 
result, the user thread unlinked the row from the Name index row chain and decreased the 
idxLinkCnt value.

Figure 9-1. Initial state of the data
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The second SELECT detects the deleted Carl row. However, the EndTs of this row is 
greater than the Oldest Active Transaction Timestamp, so this row can still be visible for 
some of the active transactions. Therefore, this row cannot be unlinked from the index 
chain. Figure 9-2 illustrates the state of the data after the execution of the queries.

Now, let’s assume that some of the active transactions were completed and you 
ran the second batch of the queries from Listing 9-2 at the time when the Oldest Active 
Transaction Timestamp  was 120 and the Global Transaction Timestamp was 130.

Listing 9-2. Second Batch

select * from dbo.People where City = 'Cincinatti';
select * from dbo.People where City = 'Dallas';

The first SELECT found the expired Ann row in the City index chain and removed it 
from there. At this point, the row is not participating in any row chains and, therefore, can 
be deallocated. However, the row is not deallocated immediately; this is done at a later 
stage.

The Carl row now is also expired and invisible for the active transactions. The 
second SELECT removed it from the City index chain; however, it is still present in the 
Name index chain and cannot be deallocated. Figure 9-3 shows the state of the data at this 
moment. 

Figure 9-2. State of the data after the first two queries



Chapter 9 ■ GarbaGe ColleCtion

138

 ■ Important  You should remember that the Oldest Active Transaction Timestamp  
controls when expired rows can be removed from the index chains and deallocated.   
long-running and abandon transactions can defer garbage collection and lead to a situation 
when the system runs out of memory due to an excessive number of expired rows.

When the transaction is complete, In-Memory OLTP places the information about it 
in the queue used by the idle worker thread, which is responsible for garbage collection 
management. The idle worker thread wakes up every minute or, in case of a heavy 
load, when the number of completed transactions exceeds the predefined threshold. It 
analyzes the list of completed transactions and the Oldest Active Transaction Timestamp 
in the system, and separates completed transactions to 16 different queues called 
generations, sorting them based on their Global Transaction Timestamp values.

•	 Generation 0 contains the list of transactions that were 
completed earlier than the current Oldest Active Transaction 
Timestamp. Rows generated by those transactions are 
immediately available for the garbage collection.

•	 Generations 1-14 stores the list of transactions that were 
completed after the current Oldest Active Transaction 
Timestamp. Each generation can hold information about up to 
16 transactions. As you can guess, a system can hold up to 224 
transactions in generations 1-14 queues.

•	 Generation 15 stores the information about the remaining 
transactions completed after the current Oldest Active Transaction 
Timestamp. There is no limit on the number of transactions that 
can be stored there.

Figure 9-3. State of the data after the second two queries
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Every transaction in the queue exposes its write set to the idle worker thread, which 
builds the set of the 16-row work items for deallocation. Those work items are distributed 
across another set of worker queues-one queue per scheduler-and then they are picked 
up and processed by the user threads. The user threads pick up the items and perform 
deallocation after they complete their work on the other user transactions.

Figure 9-4 illustrates an example of the garbage collection workflow in a system that 
has an Oldest Active Transaction Timestamp of 10,000.

The user thread usually picks up the work items from the queue that belong to the 
same scheduler on which it is running. However, if the queue is empty, the thread checks 
the queues from the other CPUs that belong to the same NUMA node. Finally, in case of a 
heavy load in the system, the thread can pick up a work item from any queue, regardless 
of the NUMA node to which it belongs.

With the hot data and actively used indexes, user threads detect expired rows 
relatively quickly. However, with rarely used indexes and/or rarely accessed data, there is 
the possibility that expired rows may not be detected in a timely manner.

This is addressed by the idle worker thread, which periodically scans the indexes 
and detects expired rows there. The idle worker thread can either deallocate those rows 
immediately or add them to the work items after those rows have been unlinked from all 
index chains. This process is called a dusty corners scan. 

As you can see, the garbage collection process in In-Memory OLTP is done 
asynchronously. Deleted rows and rows from aborted transactions continue to use 
system memory until they are deallocated. You need to remember this and reserve 
enough memory in the system to accommodate those rows.

Figure 9-4. Garbage Collection Workflow
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Garbage Collection-Related  
Data Management Views
SQL Server exposes several data management views that can be used to monitor and 
analyze the garbage collection process.

•	 sys.dm_xtp_gc_stats provides statistics about the garbage 
collection process. It includes information about the number of 
rows examined by the garbage collection subsystem, the number 
of rows processed by user and idle worker threads, and quite a 
few other attributes. You can read more about this view at  
https://msdn.microsoft.com/en-us/library/dn133196.aspx.

•	 sys.dm_xtp_gc_queue_stats provides information about garbage 
collector worker queues. It provides information about total 
number of work items that were enqueued and dequeued, current 
queue length, last time the queue was accessed, and maximum 
depth the queue has seen. You can monitor the current queue 
length, making sure that the garbage collector is keeping up. More 
information is available at https://msdn.microsoft.com/en-us/
library/dn268336.aspx.

•	 sys.dm_db_xtp_gc_cycle_stats provides information about the 
last (up to 1,024) garbage collection execution cycles including 
the time and duration of the cycle, and distribution of transactions 
between generations. You can use this view to find spikes in the 
garbage collection activity and during long-running transactions 
troubleshooting. You can read more about this view at  
https://msdn.microsoft.com/en-us/library/dn268337.aspx.

•	 Finally, sys.dm_db_xtp_index_stats includes several garbage 
collection-related metrics. The rows_expired column indicates 
how many rows have expired. Rows_expired_removed indicates 
the number of rows unlinked from the index chain. Phantom row 
columns provide information about rows inserted by aborted 
transactions. You can read more about this view at  
https://msdn.microsoft.com/en-us/library/dn133081.aspx.

Exploring the Garbage Collection Process
Let’s examine the garbage collection process and its asynchronous nature. As the first 
step, create a memory-optimized table and populate it with 65,536 rows, as shown in 
Listing 9-3. 

https://msdn.microsoft.com/en-us/library/dn133196.aspx
https://msdn.microsoft.com/en-us/library/dn268336.aspx
https://msdn.microsoft.com/en-us/library/dn268336.aspx
https://msdn.microsoft.com/en-us/library/dn268337.aspx
https://msdn.microsoft.com/en-us/library/dn133081.aspx
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Listing 9-3. Table Creation

create table dbo.GCDemo
(
    ID int not null,
    Placeholder char(8000) not null,
 
    constraint PK_GCDemo
    primary key nonclustered hash(ID)
    with (bucket_count=16384),
)
with (memory_optimized=on, durability=schema_only)
go
 
;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into dbo.GCDemo(Id, Placeholder)
    select Id, Replicate('0',8000)
    from ids;

Let’s look at amount of memory used in the table, index statistics, and garbage 
collection worker queues statistics using the code from Listing 9-4.

Listing 9-4. Analyzing Table Memory Usage, Index, and Worker Queues Statistics

select
    convert(decimal(7,2),memory_allocated_for_table_kb / 1024.)
                as [memory allocated for table]
    ,convert(decimal(7,2),memory_used_by_table_kb / 1024.)
                as [memory used by table]
from
    sys.dm_db_xtp_table_memory_stats
where
    object_id = object_id(N'dbo.GCDemo');
 
select rows_touched, rows_expired, rows_expired_removed
from sys.dm_db_xtp_index_stats
where object_id = object_id(N'dbo.GCDemo');
 
select
    sum(total_enqueues) as [total enqueues]
    ,sum(total_dequeues) as [total dequeues]
from
    sys.dm_xtp_gc_queue_stats
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Figure 9-5 illustrates the output of the queries. As you can see, the table has about 
586MB allocated and 512MB of used space. None of the rows have been deleted or 
touched (scanned). I also restarted my test server right before the test, so the garbage 
collection worker queues are empty.

Let’s run a few queries, analyzing the statistics after each run. In this book, I discuss 
results after each step; however, when you run this in your test environment, it is better 
to run all queries at once, persisting results in the temporary tables as is done in the 
script included with the companion materials of this book. This will help you to avoid the 
situation when idle worker threads start unexpectedly in the middle of execution.

As the first step, run the script that deletes 1,500 rows in the individual transactions 
(see Listing 9-5).

Listing 9-5. Deleting 1,500 Rows from the Table

declare
    @I int = 1
 
while @I <= 1500
begin
    delete from dbo.GCDemo where ID = @I;
    set @I += 1;
end;

Now run the code from Listing 9-4 again and look at the output. As you can see 
in Figure 9-6, index statistics indicate that the deletion statement touched 1,500 rows; 
however, none of them were marked as expired even though deletion statements ran in 
the individual autocommitted transactions.

Figure 9-5. Memory and garbage collection statistics after table creation
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As the next step, run a SELECT query that scans the entire index, as shown in Listing 9-6.

Listing 9-6. Scanning Table 

select count(*) from dbo.GCDemo

Figure 9-7 illustrates the statistics after the scan. As you can see, In-Memory OLTP 
correctly identified rows as expired and unlinked them from the index row chains. 
However, none of the work items were enqueued in garbage collector worker items 
queues because the idle worker thread has not started yet.

If you look at the statistics again after the idle worker thread execution, you will see 
the output shown in Figure 9-8. As you can see, the idle worker thread put items into 
the garbage collection worker queues where items are waiting for the user threads to 
deallocate them.

Figure 9-6. Memory and garbage collection statistics after deletion

Figure 9-7. Memory and garbage collection statistics after scan
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If you scan the table with the query from Listing 9-6 again, you will see the statistics 
shown in Figure 9-9. A user thread processed and deallocated multiple items from the 
worker queues, releasing about 3MB of memory.

The sys.dm_db_xtp_gc_cycle_stats view shows that the garbage collection idle 
worker thread performed just a handful of cycles (remember, I restarted SQL Server in my 
test environment before the test) and processed all completed transactions at once. You 
can see the partial output from the view in Figure 9-10.

The situation will change if you repeat entire test, deleting more rows from the table. 
The garbage collection process will be triggered based on the number of completed 
transactions in the queue rather than based on the timer.

Figure 9-11 shows the summary statistics from my environment when I repeated the 
test, deleting 32,768 rows in the individual transactions. Note that the garbage collection 
process was started at the middle of deletions rather than based on a timer. 

Figure 9-8. Memory and garbage collection statistics after the idle worker thread cycle

Figure 9-9. Memory and garbage collection statistics after the second scan

Figure 9-10. Sys.dm_db_xtp_gc_cycle_stats view after the test
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You can also confirm it by looking at the sys.dm_db_xtp_gc_cycle_stats view 
output in Figure 9-12. It shows a much higher number of cycles with very short delays in 
between them.

Summary
The garbage collection process in In-Memory OLTP is designed to be non-blocking, 
cooperative, and scalable. Even though it is managed by a dedicated system thread (the 
idle worker thread) most of the work is done by the user threads. The idle worker thread 
wakes up every minute or when the number of completed transactions exceeds an 
internal threshold.

Deleted rows can be deallocated only after they are expired and their EndTs 
timestamp is older the than Oldest Active Transaction Timestamp in the system. 
Moreover, they need to be removed from all index row chains before deallocation. When 
user thread encounters an expired row, the thread unlinks it from the row chain. The 
idle worker thread periodically scans rarely accessed parts of the indexes during its dusty 
corners scan and processes expired rows that were missed by the user threads.

Figure 9-11. Memory and garbage collection statistics during the second set of tests

Figure 9-12. Sys.dm_db_xtp_gc_cycle_stats view after the second test
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User threads provide information about completed transactions to the idle worker 
thread, which builds the list of work items that consist of 16-row batches to deallocate. 
The work items are distributed between garbage collector worker queues-one queue per 
scheduler in the system. In turn, user threads pickup one or several items from the worker 
queues and deallocate them.

Long-running and uncommitted transactions prevent rows from expiring by freezing 
the Oldest Active Transaction Timestamp in the system. This defers the garbage collection 
process and can lead to a situation where deleted rows use a large amount of memory.
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Chapter 10

Deployment and 
Management

This chapter discusses the deployment and management aspects of systems that 
utilize In-Memory OLTP. It provides a set of guidelines about hardware and server 
configurations, and it covers In-Memory OLTP-related database administration 
and management tasks. Finally, this chapter gives an overview of the changes and 
enhancements in the catalog and data management objects related to In-Memory OLTP.

Hardware Considerations
In-Memory OLTP uses hardware in a different, and often more efficient, way than SQL 
Server Storage Engine. It is often possible to achieve high OLTP throughput even with 
mid-range servers. Moreover, In-Memory OLTP is highly scalable and it is possible to 
increase transaction throughput by adding more CPUs and memory to the server, and 
more drives to the disk array, as the load and amount of data in the system grows.

Obviously, you should not forget that In-Memory OLTP plays in the same sandbox 
with other SQL Server components, sharing resources with them. Memory becomes one 
of the most critical resources for which In-Memory OLTP and Storage Engines compete. 
The memory used by memory-optimized data is inaccessible to the Storage Engine and, 
therefore, cannot be used by the buffer pool. It is entirely possible that using In-Memory 
OLTP on servers with an insufficient amount of memory would degrade performance of 
the queries against on-disk tables if an excessive amount of physical I/O were required. 
You should remember this when designing the system and avoid putting unnecessary 
data into memory-optimized tables.

 ■ Tip Consider splitting hot and rarely accessed historical data between memory-
optimized and on-disk tables. We will discuss this scenario in more depth in Chapter 11.

Let’s discuss In-Memory OLTP requirements for different hardware components. 
Obviously, you need to take the workload from other SQL Server components into 
consideration when you build servers that utilize In-Memory OLTP.

http://dx.doi.org/10.1007/978-1-4842-1136-6_11
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CPU
The number of CPUs in the system greatly depends on the required OLTP throughput. 
However, as mentioned, it is entirely possible to achieve high transactional throughput 
even with a mid-range server. It is impossible to predict how many CPUs you will need 
without performing some testing and analysis; however, it is beneficial to use the proper 
hardware, which will allow you to scale and add more CPUs as load grows.

It is better to use Intel rather than AMD processors for OLTP workload even though 
some AMD processors have a lower SQL Server license cost. This situation may change 
in the future; however, as of summer 2015, Intel-based processors provide much better 
single-threaded performance, which is critical for In-Memory OLTP and OLTP workloads 
in general.

When possible, you should choose processors with a higher base clock speed. With 
SQL Server 2014 Enterprise Edition per-core licensing, you can often get a better OLTP 
performance/cost ratio by using high-end CPUs with a lower number of cores compared 
to slower CPUs with a higher number of cores.

Finally, you should have hyperthreading enabled on the servers. Microsoft states that 
hyperthreading can provide up to a 40 percent performance boost in some cases.

I/O Subsystem
As a general rule, you should place an In-Memory OLTP filegroup on the dedicated 
disk array optimized for sequential I/O performance. The sequential-only nature of 
In-Memory OLTP I/O patterns makes the choice between SSD- and magnetic media-
based disk arrays more complicated. Even though solid state drives outperform magnetic 
media, high-performance magnetic media-based disk arrays can provide good enough 
sequential I/O performance to handle an In-Memory OLTP workload. Moreover, other 
factors, such as HBA and network bandwidth, can limit I/O throughput, making the disk 
performance difference negligible.

I/O read performance, however, is crucial at the database recovery stage. As you 
know, the In-Memory OLTP recovery process is highly scalable, with multiple schedulers 
loading data from the different checkpoint file pairs in parallel. Usually, I/O performance 
becomes the limiting factor in how fast SQL Server can recover memory-optimized data.

Recovery performance becomes even more important if a database has a low RTO 
metric (recovery time objective) in its SLA (service-level agreement). Even though 
databases with an In-Memory OLTP filegroup support piecemeal restore, SQL Server 
must bring all In-Memory OLTP data online together with the PRIMARY filegroup. You 
cannot postpone In-Memory OLTP filegroup recovery to a later stage in the restore.

One of the ways to improve recovery performance is to create multiple containers in 
the In-Memory OLTP filegroup, placing them in different disk arrays using different HBA 
adapters and, in the case of network storage, different access paths. SQL Server spreads 
checkpoint files across containers and will load them in parallel from multiple drives.

Listing 10-1 shows how to create a database with two containers in an In-Memory 
OLTP filegroup, placing them into the H:\HKData and K:\HKData folders, respectively.
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Listing 10-1. Creating a Database with Two Containers in an In-Memory OLTP Filegroup

create database HKMultiContainers
on primary
(
    name = N'HKMultiContainers'
    ,filename = N'M:\HKMultiContainers.mdf'
),
filegroup HKData CONTAINS MEMORY_OPTIMIZED_DATA
(
    name = N'HKMultiContainers_HKData1'
    ,filename = N'H:\HKData\HKMultiContainers'
),
(
    name = N'HKMultiContainers_HKData2'
    ,filename = N'K:\HKData\HKMultiContainers'
)
log on
(
    name = N'HKMultiContainers_Log'
    ,filename = N'L:\KMultiContainers_log.ldf'
);

Continuous checkpoint and merge processes, on the other hand, do not usually put 
an extreme load on the disk subsystem. These processes utilize a streaming API and use a 
limited amount of threads to write data to the disk.

As for disk space, Microsoft recommends that you have enough space to 
accommodate 2X-3X of the size of the data from the durable memory-optimized tables. 
You should consider being closer to the higher mark to be on the safe side, especially if 
you expect your amount of data to grow.

Memory
You need to have enough memory in the system to accommodate the data from all 
of memory-optimized tables. SQL Server fails a transaction when it cannot allocate 
memory for the new row objects. Usually, SQL Server performs memory allocation during 
INSERT and UPDATE operations; however, a DELETE operation could also fail if a table 
has nonclustered indexes and there is not enough memory to accommodate new delta 
records or perform page merge operations.

Figure 10-1 shows an error message indicating an out of memory condition.

Figure 10-1. Out-of-memory error
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An out-of-memory situation essentially makes In-Memory OLTP data read-only. You 
can still query the data; however, you cannot perform any data modifications until the 
problem is resolved. When such conditions occur, it is beneficial to check the status of 
the garbage collection process to make sure that it has not been deferred by the old active 
transactions. We will discuss how to detect such transactions later in the chapter.

In a large number of cases, the only option to address an out-of-memory situation 
is to increase the amount of memory available to SQL Server and the In-Memory OLTP 
Engine. When this is impossible, you should detect the largest memory consumers in In-
Memory OLTP and reduce their memory footprint by either refactoring or migrating them 
to on-disk tables. We will talk about how to detect them later in the chapter.

Estimating the Amount of Memory for In-Memory OLTP
Estimating the amount of memory required for memory-optimized tables is not a trivial 
task. As a rule of thumb, you can double the size of the data in the table as a basis for 
the estimation. For a more accurate estimate, however, you should factor the memory 
requirements for several different components:

•	 Data rows consist of a 24-byte header, an index pointer array 
(which is 8 bytes per index), and the payload (actual row data). 
For example, if your table has 1,000,000 rows and 3 indexes, and 
each row is about 200 bytes on average, you will need (24 + 3 * 8 + 
200) * 1,000,000 = ~236.5MB of memory to store row data without 
any versioning overhead included in this number.

•	 Hash indexes use 8 bytes per bucket. If a table has two hash 
indexes defined with 1,500,000 buckets each, SQL Server will 
create indexes with 2,097,152 buckets, rounding the number of 
buckets specified in the index properties to next power of two. 
Those two indexes will use 2,097,152 * 2 * 8 = 32MB of memory.

•	 Nonclustered index memory usage is based on the number of 
unique index keys and index key size. If a table has a nonclustered 
index with 250,000 unique key values and each key value on 
average uses 30 bytes, it would use (30 + 8(pointer)) * 250,000 = 
~9MB of memory. You can ignore the page header and non-leaf 
pages in your estimation as their sizes are insignificant compared 
to the leaf-level row size.

•	 Row versioning memory estimation depends on the duration 
of the longest transactions and the average number of data 
modifications (inserts and updates) per second. For example, if 
some processes in a system have 10-second transactions and, on 
average, the system handles 1,000 data modifications per second, 
you can estimate 10 * 1,000 * 248(row size) = ~2.4MB of memory 
for row versioning storage.
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Obviously, these numbers outline the minimally required amount of memory. You 
should factor in future growth and changes in workload, and reserve some additional 
memory just to be safe.

As mentioned, it is also very important to remember that In-Memory OLTP does 
not work in vacuum; SQL Server needs to have enough memory available to the other 
components. Make sure to include this in your analysis.

You should also remember In-Memory OLTP memory requirements when you 
design High Availability and/or Disaster Recovery strategies in your system. It is not 
uncommon to see configurations where secondary and/or standby servers use less 
powerful hardware than the primary one. This approach helps to reduce hardware cost by 
allowing the system to operate with degraded performance in the event of a disaster.

You should be extremely careful with such an approach in case your database is 
using In-Memory OLTP technology. An insufficient amount of memory on secondary 
servers could break Always On synchronization and/or prevent you from restoring the 
database in the event of a disaster. The latter can also happen in scenarios when you want 
to bring the copy of the production database to development or testing environments 
where SQL Server does not have enough memory to accommodate In-Memory OLTP 
data from production.

Administration and Monitoring Tasks
Let's look at several common In-Memory OLTP-related database administration and 
monitoring tasks.

Limiting the Amount of Memory Available to In-Memory 
OLTP
SQL Server uses a Resource Governor to manage workload and system resource 
consumption. Internally, the Resource Governor uses resource pools, which represent 
a subset of the physical resources available to SQL Server. You can think about each 
resource pool as a virtual instance inside SQL Server, and you can control resources 
available to the resource pool by specifying its parameters. Finally, you can distribute the 
workload between resource pools or, to be precise, between resource pool workgroups 
using a classification process. Classification is done based on user-defined function, 
which allow you to define complex algorithms for such a purpose.

 ■ Note you can read more about the resource governor at  
https://msdn.microsoft.com/en-us/bb933866.aspx.

Every Resource Governor configuration has two predefined resource pools created, 
internal and default. As you can guess by the name, the internal pool handles the internal 
SQL Server workload and the default pool handles the unclassified workload, which is 
all of the user workload that had not been classified to the other resource pools. You can 
create other resource pools as needed.

https://msdn.microsoft.com/en-us/bb933866.aspx
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As mentioned, you can control CPU, memory, and I/O allocations between resource 
pools by specifying parameters, such as MIN_CPU_PERCENT and MAX_CPU_PERCENT, MIN_
MEMORY_PERCENT and MAX_MEMORY_PERCENT, AFFINITY and a few others. You can bind a 
database to the resource pool, which, in the case of In-Memory OLTP, will allow you to 
limit the amount of memory for memory-optimized data in the system. Each database 
can be bound to a single resource pool; however, multiple databases can share the same 
pool. In this case, the limit would apply to all of them.

A resource pool can utilize up to 80 percent of the system memory, which sets the 
limit on the amount of memory available to In-Memory OLTP. That threshold guarantees 
that other SQL Server components have enough system memory to work and that the 
system remains stable under the memory pressure.

Listing 10-2 illustrates how to create and configure the resource pool, allowing it to 
use 40 percent of the system memory. 

Listing 10-2. Creating a Resource Pool

create resource pool InMemoryDataPool
with
(
    min_memory_percent=40
    ,max_memory_percent=40
);
 
alter resource governor reconfigure;

When the resource pool is created, you can bind a database to it by using the sys.sp_
xtp_bind_db_resource_pool stored procedure, as shown in Listing 10-3. Unfortunately, 
it does not automatically transfer previously allocated memory to the new pool so you 
need to take the database offline and bring it back online in order to do so. Remember 
that this leads to a recovery process, which can be time-consuming in the case of large 
amounts of In-Memory OLTP data.

Listing 10-3. Binding a Database to the Resource Pool

exec sys.sp_xtp_bind_db_resource_pool
    @database_name = 'InMemoryOLTPDemo'
    ,@pool_name = 'InMemoryDataPool';
 
-- You need to take DB offline and bring it
-- back online for the changes to take effect
alter database InMemoryOLTPDemo set offline;
alter database InMemoryOLTPDemo set online;

Similarly, you can remove the binding by calling the sys.sp_xtp_unbind_db_
resource_pool stored procedure, as shown in Listing 10-4. The database will be bound 
back to the default resource pool after the call.
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Listing 10-4. Removing the Binding Between a Database and a Resource Pool

exec sys.sp_xtp_unbind_db_resource_pool
    @database_name = 'InMemoryOLTPDemo';
 
-- You need to take DB offline and bring it
-- back online for the changes to take effect
alter database InMemoryOLTPDemo set offline;
alter database InMemoryOLTPDemo set online;

Monitoring Memory Usage for Memory-Optimized  
Tables 
You can monitor memory usage of the various In-Memory OLTP objects by using a set of 
data management views along with the Memory Usage by Memory Optimized Objects 
report in SQL Server Management Studio. 

The sys.dm_db_xtp_table_memory_stats view provides high-level memory usage 
statistics for the user and system memory-optimized tables in the current database. 
Listing 10-5 illustrates the query that uses this view.

Listing 10-5. Using sys.dm_db_xtp_table_memory_stats View

select
    ms.object_id
    ,s.name + '.' + t.name as [table]
    ,ms.memory_allocated_for_table_kb
    ,ms.memory_used_by_table_kb
    ,ms.memory_allocated_for_indexes_kb
    ,ms.memory_used_by_indexes_kb
from
    sys.dm_db_xtp_table_memory_stats ms
       left outer join sys.tables t on
           ms.object_id = t.object_id
       left outer join sys.schemas s on
           t.schema_id = s.schema_id
order by
    ms.memory_allocated_for_table_kb desc

Figure 10-2 shows the output of the query when I ran it against one of the databases. 
Rows with negative object_id belong to the system tables. 
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 ■ Note  you can read more about the sys.dm_db_xtp_table_memory_stats view at 
https://msdn.microsoft.com/en-us/library/dn169142.aspx.

The sys.dm_db_xtp_memory_consumers view provides information about database-
level memory consumers. The memory_consumer_type column indicates the type of 
memory consumer in the output and can have one of three possible values:

•	 VARHEAP (2) indicates the database heap that is used to store user 
data and internal pages of nonclustered indexes.

•	 HASH (3) indicates memory used by the hash indexes.

•	 PGPOOL (5) shows the database page pool used by runtime 
operations. There is one memory consumer of such type per 
database.

You can use the sys.dm_db_xtp_memory_consumers view to track the memory 
allocation on a per-index basis, as shown in Listing 10-6.

Listing 10-6. Using sys.dm_db_xtp_memory_consumers View

select
    mc.object_id
    ,s.name + '.' + t.name as [table]
    ,i.name as [index]
    ,mc.memory_consumer_type_desc
    ,mc.memory_consumer_desc
    ,convert(decimal(9,3),mc.allocated_bytes / 1024. / 1024.)
        as [allocated (MB)]
    ,convert(decimal(9,3),mc.used_bytes / 1024. / 1024.)
        as [used (MB)]
    ,mc.allocation_count

Figure 10-2. Output from sys.dm_db_xtp_table_memory_stats view

https://msdn.microsoft.com/en-us/library/dn169142.aspx
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from
    sys.dm_db_xtp_memory_consumers mc
       left outer join sys.tables t on
           mc.object_id = t.object_id
       left outer join sys.indexes i on
           mc.object_id = i.object_id and
           mc.index_id = i.index_id
       left outer join sys.schemas s on
           t.schema_id = s.schema_id
where -- Greater than 1MB
    mc.allocated_bytes > 1048576
order by
    [allocated (MB)] desc

Figure 10-3 shows the partial output of the query. Rows with a negative object_id 
belong to the system tables. 

Figure 10-3. Output from sys.dm_db_memory_consumers view

 ■ Note  you can read more about the sys.dm_db_xtp_memory_consumers view at 
https://msdn.microsoft.com/en-us/library/dn133206.aspx.

The sys.dm_xtp_system_memory_consumers view provides information about 
memory used by system In-Memory OLTP components. Listing 10-7 illustrates the query 
that uses this view. Figure 10-4 shows the output of the query in my system.

Listing 10-7. Using sys.dm_xtp_system_memory_consumers View

select
    memory_consumer_type_desc
    ,memory_consumer_desc
    ,convert(decimal(9,3),allocated_bytes / 1024. / 1024.)
        as [allocated (MB)]
    ,convert(decimal(9,3),used_bytes / 1024. / 1024.)
        as [used (MB)]
    ,allocation_count
from
   sys.dm_xtp_system_memory_consumers
order by
   [allocated (MB)] desc

https://msdn.microsoft.com/en-us/library/dn133206.aspx
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You can access the Memory Usage by Memory Optimized Objects report in the 
Reports ➤ Standard Reports section in the database context menu of the SQL Server 
Management Studio Object Explorer. Figure 10-5 illustrates the output of the report. As you 
can see, this report returns similar data to the sys.dm_db_xtp_table_memory_stats view.

Figure 10-4. Output from sys.dm_xtp_system_memory_consumers view
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Monitoring In-Memory OLTP Transactions
The sys.dm_db_xtp_transactions view provides information about active In-Memory 
OLTP transactions in the system. The most notable columns in the view are the following:

•	 xtp_transaction_id is the internal ID of the transaction in the 
In-Memory OLTP Transaction Manager.

•	 transaction_id is the transaction id in the system. You can use 
it in joins with other transaction management views, such as 
sys.dm_tran_active_transactions. In-Memory OLTP-only 
transactions, such as transactions started by natively compiled 
stored procedures, return transaction_id as 0.

•	 session_id indicates the session that started a transaction.

Figure 10-5. Memory Usage By Memory Optimized Objects report output
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•	 begin_tsn and end_tsn indicate transaction timestamps.

•	 state and state_desc indicate the state of a transaction. The 
possible values are (0)-ACTIVE, (1)-COMMITTED, (2)-ABORTED, 
(3)-VALIDATING.

•	 result and result_desc indicate the result of a transaction. The 
possible values are (0)-IN PROGRESS, (1)-SUCCESS, (2)-ERROR, 
(3)-COMMIT DEPENDENCY, (4)-VALIDATION FAILED (RR) indicates 
repeatable read rules violation, (5)-VALIDATION FAILED (SR) 
indicates serializable rules violation, (6)-ROLLBACK.

You can use the sys.dm_db_xtp_transactions view to detect long-running and 
orphan transactions in the system. As you remember, these transactions can defer the 
garbage collection process and lead to out-of-memory errors.

Listing 10-8 shows a query that returns information about the five oldest active  
In-Memory OLTP transactions in the system.

Listing 10-8. Getting Information About the Five Oldest Active In-Memory OLTP 
Transactions

select top 5
    t.session_id
    ,t.transaction_id
    ,t.begin_tsn
    ,t.end_tsn
    ,t.state_desc
    ,t.result_desc
    ,substring(
        qt.text
        ,er.statement_start_offset / 2 + 1
        ,(case er.statement_end_offset
             when -1 then datalength(qt.text)
             else er.statement_end_offset
          end - er.statement_start_offset
        ) / 2 +1
    ) as SQL
from
    sys.dm_db_xtp_transactions t
        left outer join sys.dm_exec_requests er on
            t.session_id = er.session_id
        outer apply
            sys.dm_exec_sql_text(er.sql_handle) qt
where
    t.state in (0,3) /* ACTIVE/VALIDATING */
order by
    t.begin_tsn

Figure 10-6 illustrates the output of the query. 
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 ■ Note  you can read more about the sys.dm_db_xtp_transactions view at  
https://msdn.microsoft.com/en-us/library/dn133194.aspx.

Collecting Execution Statistics for Natively Compiled 
Stored Procedures
By default, SQL Server does not collect execution statistics for natively compiled 
stored procedures due to the performance impact it introduces. You can enable such a 
collection at the procedure level with sys.sp_xtp_control_proc_exec_stats and at the 
statement-level with sys.sp_xtp_control_query_exec_stats system stored procedures.

Both procedures accept a Boolean @new_collection_value parameter, which 
indicates if the collection needs to be enabled or disabled. In addition, sys.sp_xtp_
control_query_exec_stats allows you to provide @database_id and @object_id to 
specify a stored procedure to monitor. It is also worth noting that SQL Server does not 
persist collection settings, and you will need to re-enable statistics collection after each 
SQL Server restart.

 ■ Note  execution statistics collection degrades the performance of the system. Do not 
collect execution statistics unless you are performing troubleshooting. moreover, consider 
limiting collection to specific stored procedures to reduce the performance impact on the 
system.

When statistics have been collected, you can access them through the sys.dm_exec_
procedure_stats and sys.dm_exec_query_stats views. Listing 10-9 shows the code that 
returns execution statistics for stored procedures using the sys.dm_exec_procedure_
stats view. The code does not limit an output to natively compiled stored procedures; 
however, you can do it by joining sys.dm_exec_procedure_stats and sys.sql_modules 
views filtering by uses_native_compliation = 1 value.

Figure 10-6. The five oldest active In-Memory OLTP transactions in the system

https://msdn.microsoft.com/en-us/library/dn133194.aspx
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Listing 10-9. Analyzing Stored Procedures Execution Statistics 

select
    object_name(object_id) as [Proc Name]
    ,execution_count as [Exec Cnt]
    ,total_worker_time as [Total CPU]
    ,convert(int,total_worker_time / 1000 / execution_count)
       as [Avg CPU] -- in Milliseconds
    ,total_elapsed_time as [Total Elps]
    ,convert(int,total_elapsed_time / 1000 / execution_count)
       as [Avg Elps] -- in Milliseconds
    ,cached_time as [Cached]
    ,last_execution_time as [Last Exec]
    ,sql_handle
    ,plan_handle
    ,total_logical_reads as [Reads]
    ,total_logical_writes as [Writes]
from
    sys.dm_exec_procedure_stats
order by
    [AVG CPU] desc

Figure 10-7 illustrates the output of the code from Listing 10-9. As you can see, neither 
the sql_handle nor plan_handle columns are populated. Execution plans for natively 
compiled stored procedures are embedded into the code and are not cached in the plan 
cache. Nor are I/O related statistics provided. Natively compiled stored procedures work 
with memory-optimized tables only, and therefore there is no I/O involved.

Figure 10-7. Data from thesys.dm_exec_procedure_stats view

Listing 10-10 shows the code that obtains execution statistics for individual 
statements using the sys.dm_exec_query_stats view.

Listing 10-10. Analyzing Stored Procedure Statement Execution Statistics 

select
   substring(qt.text
      ,(qs.statement_start_offset/2)+1
      ,(case qs.statement_end_offset
           when -1 then datalength(qt.text)
           else qs.statement_end_offset
        end - qs.statement_start_offset) / 2 +1
   ) as SQL
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   ,qs.execution_count as [Exec Cnt]
   ,qs.total_worker_time as [Total CPU]
   ,convert(int,qs.total_worker_time / 1000 /
     qs.execution_count) as [Avg CPU] -- In MS
   ,total_elapsed_time as [Total Elps]
   ,convert(int,qs.total_elapsed_time / 1000 /
     qs.execution_count) as [Avg Elps] -- In MS
   ,qs.creation_time as [Cached]
   ,last_execution_time as [Last Exec]
   ,qs.plan_handle
   ,qs.total_logical_reads as [Reads]
   ,qs.total_logical_writes as [Writes]
from
   sys.dm_exec_query_stats qs
      cross apply sys.dm_exec_sql_text(qs.sql_handle) qt
where
   qs.plan_generation_num is null
order by
   [AVG CPU] desc

Figure 10-8 illustrates the output of the code from Listing 10-10. Like procedure 
execution statistics, it is impossible to obtain the execution plans of the statements. 
However, you can analyze the CPU time consumed by individual statements and the 
frequency of their execution. 

Figure 10-8. Data from the sys.dm_exec_query_stats view

 ■ Note  you can read more about the sys.sp_xtp_control_proc_exec_stats procedure 
at https://msdn.microsoft.com/en-us/library/dn435918.aspx. more information 
about the sys.sp_xtp_control_query_exec_stats procedure is available at  
https://msdn.microsoft.com/en-us/library/dn435917.aspx.

https://msdn.microsoft.com/en-us/library/dn435918.aspx
https://msdn.microsoft.com/en-us/library/dn435917.aspx
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Metadata Changes and Enhancements
In-Memory OLTP introduces a large number of changes in catalog and data management 
views.

Catalog Views
In-Memory OLTP introduces the new catalog view sys.hash_indexes. As you can guess 
by the name, this view provides information about hash indexes defined in the database. 
It is inherited from and has the same columns as the sys.indexes view, adding one extra 
column called bucket_count. You can read about this view at https://msdn.microsoft.
com/en-us/library/dn133205.aspx.

Other catalog view changes include the following:

•	 The sys.tables view has three new columns. The Is_memory_
optimized column indicates if a table is memory-optimized. The 
durability and durability_desc columns indicate a durability 
mode for memory-optimized tables. The values are (0)-SCHEMA_
AND_DATA and (1)-SCHEMA_ONLY.

•	 The sys.indexes view has a new possible value in the type and 
type_description columns, such as (7)-NONCLUSTERED HASH. 
Nonclustered Bw-Tree indexes use the value of (2)-NONCLUSTERED 
as the regular nonclustered B-Tree indexes defined on on-disk 
tables.

•	 The sys.sql_modules and sys.all_sql_modules have a new 
column called uses_native_compilation.

•	 The sys.table_types view has a new column called is_memory_
optimized, which indicates if a type represents a memory-
optimized table variable.

•	 The sys.data_spaces view now has a new type and type_desc 
value of (FX)-MEMORY_OPTIMIZED_DATA_FILEGROUP.

Data Management Views
In-Memory OLTP introduces a large set of new data management views, which can be 
easily detected by the xtp_ prefix in their names. The naming convention also provides 
information about their scope. Sys.dm_xtp_* views return instance-level and sys.
dm_db_xtp_* views provide database-level information. Let’s look at them in more detail, 
grouping them by areas.

https://msdn.microsoft.com/en-us/library/dn133205.aspx
https://msdn.microsoft.com/en-us/library/dn133205.aspx
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Object and Index Statistics
The following data management views provide index- and data modification-related 
statistics:

•	 sys.dm_db_xtp_object_stats reports the number of rows 
affected by data modification operations on a per-objects 
basis. You can use this view to analyze the volatility of the 
data from memory-optimized tables, correlating it with index 
usage statistics. As with on-disk tables, you can improve data 
modification performance by removing rarely used indexes 
defined on volatile tables. More information about this view is 
available at https://msdn.microsoft.com/en-us/library/
dn133191.aspx.

•	 sys.dm_db_xtp_index_stats returns information about index 
usage, including data about expired rows. You can read about 
this view at https://msdn.microsoft.com/en-us/library/
dn133081.aspx.

•	 sys.dm_db_xtp_hash_index_stats provides information about 
hash indexes, such as number of buckets in the index, number 
of empty buckets, and row chain length information. This view 
is useful when you need to analyze the state of hash indexes and 
fine-tune their bucket_count allocations. You can read about 
this view at https://msdn.microsoft.com/en-us/library/
dn296679.aspx.

Listing 10-11 shows the script that you can use to find hash indexes with potentially 
suboptimal bucket_count value.

Listing 10-11. Obtaining Information About Hash Indexes with Potentially Suboptimal 
bucket_count Value

select
    s.name + '.' + t.name as [Table]
    ,i.name as [Index]
    ,stat.total_bucket_count as [Total Buckets]
    ,stat.empty_bucket_count as [Empty Buckets]
    ,floor(100. * empty_bucket_count / total_bucket_count)
        as [Empty Bucket %]
    ,stat.avg_chain_length as [Avg Chain]
    ,stat.max_chain_length as [Max Chain]
from
    sys.dm_db_xtp_hash_index_stats stat
        join sys.tables t on
            stat.object_id = t.object_id
        join sys.indexes i on
            stat.object_id = i.object_id and
            stat.index_id = i.index_id

https://msdn.microsoft.com/en-us/library/dn133191.aspx
https://msdn.microsoft.com/en-us/library/dn133191.aspx
https://msdn.microsoft.com/en-us/library/dn133081.aspx
https://msdn.microsoft.com/en-us/library/dn133081.aspx
https://msdn.microsoft.com/en-us/library/dn296679.aspx
https://msdn.microsoft.com/en-us/library/dn296679.aspx
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        join sys.schemas s on
            t.schema_id = s.schema_id
where
    stat.avg_chain_length > 3 or
    stat.max_chain_length > 50 or
    floor(100. * empty_bucket_count /
        total_bucket_count) > 50

Memory Usage Statistics
We already discussed memory usage-related views in this chapter. However, as a quick 
overview, the views are the following:

•	 sys.dm_xtp_system_memory_consumers reports information 
about system-level memory consumers in the system. More 
information about this view is available at https://msdn.
microsoft.com/en-us/library/dn133200.aspx.

•	 sys.dm_db_xtp_table_memory_stats provides memory usage 
statistics on per-object level. You can read more at https://msdn.
microsoft.com/en-us/library/dn169142.aspx.

•	 sys.dm_db_xtp_memory_consumers provides information about 
database-level memory consumers. You can use this view 
to analyze per-index memory allocation in the system. The 
documentation is available at https://msdn.microsoft.com/en-
us/library/dn133206.aspx.

Transaction Management
The following views provide transaction-related statistics in the system:

•	 sys.dm_xtp_transaction_stats reports statistics about 
transactional activity in the system since the last server restart. 
It includes the number of transactions, information about 
transaction log activity, and quite a few other metrics. More 
information about this view is available at https://msdn.
microsoft.com/en-us/library/dn133198.aspx.

•	 sys.dm_db_xtp_transactions provides information about 
currently active transactions in the system. We discussed this view 
in this chapter and you can read more about it at https://msdn.
microsoft.com/en-us/library/dn133194.aspx.

https://msdn.microsoft.com/en-us/library/dn133200.aspx
https://msdn.microsoft.com/en-us/library/dn133200.aspx
https://msdn.microsoft.com/en-us/library/dn169142.aspx
https://msdn.microsoft.com/en-us/library/dn169142.aspx
https://msdn.microsoft.com/en-us/library/dn133206.aspx
https://msdn.microsoft.com/en-us/library/dn133206.aspx
https://msdn.microsoft.com/en-us/library/dn133198.aspx
https://msdn.microsoft.com/en-us/library/dn133198.aspx
https://msdn.microsoft.com/en-us/library/dn133194.aspx
https://msdn.microsoft.com/en-us/library/dn133194.aspx
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Garbage Collection
The following views provide information about garbage collection process in the system:

•	 sys.dm_xtp_gc_stats reports the overall statistics about the 
garbage collection process. More information is available at 
https://msdn.microsoft.com/en-us/library/dn133196.aspx.

•	 sys.dm_xtp_gc_queue_stats provides information about the 
state of garbage collection worker item queues. You can use this 
view to monitor if the garbage collection deallocation process 
is keeping up with the system load. You can read more about 
this view at https://msdn.microsoft.com/en-us/library/
dn268336.aspx.

•	 sys.dm_db_xtp_gc_cycle_stats provides information about idle 
worker thread generation queues. We discussed this view in detail 
in Chapter 9 and you can read more about it at https://msdn.
microsoft.com/en-us/library/dn268337.aspx.

Checkpoint
The following views provide information about checkpoint operations in the current 
database:

•	 sys.dm_db_xtp_checkpoint_stats reports the overall statistics 
about database checkpoint operations. It includes log file 
I/O statistics, amount of data processed during continuous 
checkpoint, time since last checkpoint operation, and quite a few 
other metrics. More information about this view is available at 
https://msdn.microsoft.com/en-us/library/dn133197.aspx.

•	 sys.dm_db_xtp_checkpoint_files provides information about 
checkpoint file pairs in the database. Appendix C shows this 
view in action and you can read more about it at https://msdn.
microsoft.com/en-us/library/dn133201.aspx.

•	 sys.dm_db_xtp_merge_requests tracks checkpoint merge 
requests in the database. You can read more about it at  
https://msdn.microsoft.com/en-us/library/dn465868.aspx.

Extended Events and Performance Counters
SQL Server 2014 introduces three new xEvent packages that contain a large number 
of Extended Events. You can use the code from Listing 10-12 to get the list of Extended 
Events from those packages along with their descriptions.

https://msdn.microsoft.com/en-us/library/dn133196.aspx
https://msdn.microsoft.com/en-us/library/dn268336.aspx
https://msdn.microsoft.com/en-us/library/dn268336.aspx
http://dx.doi.org/10.1007/978-1-4842-1136-6_9
https://msdn.microsoft.com/en-us/library/dn268337.aspx
https://msdn.microsoft.com/en-us/library/dn268337.aspx
https://msdn.microsoft.com/en-us/library/dn133197.aspx
https://msdn.microsoft.com/en-us/library/dn133201.aspx
https://msdn.microsoft.com/en-us/library/dn133201.aspx
https://msdn.microsoft.com/en-us/library/dn465868.aspx
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Listing 10-12. Analyzing In-Memory OLTP Extended Events

select
    xp.name as [package]
    ,xo.name as [event]
    ,xo.description as [description]
from
    sys.dm_xe_packages xp
        join sys.dm_xe_objects xo on
            xp.guid = xo.package_guid
where
    xp.name like 'XTP%'
order by
    xp.name, xo.name

Figure 10-9 shows the partial output from the query.

Figure 10-9. In-Memory OLTP Extended Events
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Similarly, you can see the new performance counters with the query shown in  
Listing 10-13. Figure 10-10 shows a partial output of the query.

Listing 10-13. Analyzing In-Memory OLTP Performance Counters

select object_name, counter_name
from sys.dm_os_performance_counters
where object_name like 'XTP%'
order by object_name, counter_name 

Figure 10-10. In-Memory OLTP Performance Counters
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 ■ Note  you can read about In-memory oltp performance counters at  
https://msdn.microsoft.com/en-us/library/dn511015.aspx.

Summary
Choosing the right hardware is a crucial part of achieving good In-Memory OLTP 
performance and transactional throughput. In-Memory OLTP uses hardware in a 
different manner than the Storage Engine and you need to carefully plan the deployment 
and server configuration when a system uses In-Memory OLTP.

In-Memory OLTP benefits from single-threaded CPU performance. You should 
choose Intel-based CPUs with a high base clock speed and have hyperthreading enabled 
in the system.

You should store In-Memory OLTP checkpoint files in the disk array, which is 
optimized for sequential I/O performance. You can consider using multiple containers in 
an In-Memory OLTP filegroup, placing them on the different drives if database recovery 
time is critical.

Obviously, you should have enough memory in the system to accommodate In-
Memory OLTP data, leaving enough memory for other SQL Server components. You 
can restrict In-Memory OLTP memory usage by configuring memory in the Resource 
Governor resource pool and binding the database there.

In-Memory OLTP provides a large set of data management views, performance 
counters, and Extended Events which you can use for system monitoring.

https://msdn.microsoft.com/en-us/library/dn511015.aspx
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Chapter 11

Utilizing In-Memory OLTP

This chapter discusses several design considerations for systems utilizing In-Memory OLTP 
and shows a set of techniques that can be used to address some of In-Memory OLTP’s  
limitations. Moreover, this chapter demonstrates how to benefit from In-Memory 
OLTP in scenarios when refactoring of existing systems is cost-ineffective. Finally, this 
chapter talks about systems with mixed workload patterns and how to benefit from the 
technology in those scenarios.

Design Considerations for the Systems Utilizing 
In-Memory OLTP
As with any new technology, adoption of In-Memory OLTP comes at a cost. You will 
need to acquire and/or upgrade to the Enterprise Edition of SQL Server 2014, spend time 
learning the technology, and, if you are migrating an existing system, refactor code and 
test the changes. It is important to perform a cost/benefits analysis and determine if  
In-Memory OLTP provides you with adequate benefits to outweigh the costs.

In-Memory OLTP is hardly a magical solution that will improve server performance 
by simply flipping a switch and moving data into memory. It is designed to address a 
specific set of problems, such as latch and lock contentions on very active OLTP systems. 
Moreover, it helps improve the performance of the small and frequently executed OLTP 
queries that perform point-lookups and small range scans.

In-Memory OLTP is less beneficial in the case of Data Warehouse systems with 
low concurrent activity, large amounts of data, and queries that require large scans and 
complex aggregations. While in some cases it is still possible to achieve performance 
improvements by moving data into memory, you can often obtain better results by 
implementing columnstore indexes, indexed views, data compression, and other 
database schema changes. It is also worth remembering that most performance 
improvements with In-Memory OLTP are achieved by using natively compiled stored 
procedures, which can rarely be used in Data Warehouse workloads due to the limited set 
of T-SQL features that they support.

The situation is more complicated with systems that have a mixed workload, such as 
an OLTP workload against hot, recent data and a Data Warehouse/Reporting workload 
against old, historical data. In those cases, you can partition the data into multiple tables, 
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moving recent data into memory and keeping old, historical data on-disk. Partition 
views can be beneficial in this scenario by hiding the storage details from the client 
applications. We will discuss such implementation later in this chapter.

Another important factor is whether you plan to use In-Memory OLTP during the 
development of new or the migration of existing systems. It is obvious that you need 
to make changes in existing systems, addressing the limitations of memory-optimized 
tables, such as missing support of triggers, foreign key constraints, check and unique 
constraints, calculated columns, and quite a few other restrictions.

There are other factors that can greatly increase migration costs. The first is the 
8,060-byte maximum row size limitation in memory-optimized tables without any 
off-row data storage support. This limitation can lead to a significant amount of work 
when the existing active OLTP tables use LOB data types, such as (n)varchar(max), xml, 
geography and a few others. While it is possible to change the data types, limiting the size 
of the strings or storing XML as text or in binary format, such changes are complex, time-
consuming, and require careful planning. Don’t forget that In-Memory OLTP does not 
allow you to create a table if there is a possibility that the size of a row exceeds 8,060 bytes. 
For example, you cannot create a table with three varchar(3000) columns even if you do 
not plan to exceed the 8,060-byte row size limit.

Indexing of memory-optimizing tables is another important factor. While nonclustered 
indexes can mimic some of the behavior of indexes in on-disk tables, there is still a 
significant difference between them. Nonclustered indexes are unidirectional, and they 
would not help much if the data needs to be accessed in the opposite sorting order of an 
index key. This often requires you to reevaluate your index strategy when a table is moved 
from disk into memory. However, the bigger issue with indexing is the requirement of 
case-sensitive binary collation of the indexed text columns. This is a breaking change in 
system behavior, and it often requires non-trivial changes in the code and some sort of 
data conversion.

It is also worth noting that using binary collations for data will lead to changes in 
the T-SQL code. You will need to specify collations for variables in stored procedures 
and other T-SQL routines, unless you change the database collation to be a binary one. 
However, if the database and server collations do not match, you will need to specify a 
collation for the columns in temporary tables created in tempdb.

There are plenty of other factors to consider. However, the key point is that you 
should perform a thorough analysis before starting a migration to In-Memory OLTP. Such 
a migration can have a very significant cost, and it should not be done unless it benefits 
the system.

SQL Server 2014 provides the tools that can help during In-Memory OLTP migration. 
These tools are based on the Management Data Warehouse, and they provide you with a 
set of data collectors and reports that can help identify the objects that would benefit the 
most from the migration. While those tools can be beneficial during the initial analysis 
stage, you should not make a decision based solely on their output. Take into account all 
of the other factors and considerations we have already discussed in this book.

 ■ Note We will discuss migration tools in detail in appendix D.
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New development, on the other hand, is a very different story. You can design a new 
system and database schema taking In-Memory OLTP limitations into account. It is also 
possible to adjust some functional requirements during the design phase. As an example, 
it is much easier to store data in a case-sensitive way from the beginning compared to 
changing the behavior of existing systems after they were deployed to production.

You should remember, however, that In-Memory OLTP is an Enterprise Edition 
feature, and it requires powerful hardware with a large amount of memory. It is an 
expensive feature due to its licensing costs. Moreover, it is impossible to “set it and 
forget it.” Database professionals should actively participate in monitoring and system 
maintenance after deployment. They need to monitor system memory usage, analyze 
data and recreate hash indexes if bucket counts need to be adjusted, update statistics, 
redeploy natively compiled stored procedures, and perform other tasks as well.

All of that makes In-Memory OLTP a bad choice for Independent Software Vendors 
who develop products that need be deployed to a large number of customers. Moreover, 
it is not practical to support two versions of a system—with and without In-Memory 
OLTP—due to the increase in development and support costs.

Addressing In-Memory OLTP Limitations
Let’s take a closer look at some of the In-Memory OLTP limitations and the ways to 
address them. Obviously, there is more than one way to skin a cat, and you can work 
around these limitations differently.

8,060-Byte Maximum Row Size Limit
The 8,060-byte maximum row size limit is, perhaps, one of the biggest roadblocks in 
widespread technology adoption. This limitation essentially prevents you from using 
(max) data types along with CLR and system data types that require off-row storage, 
such as XML, geometry, geography and a few others. Even though you can address this by 
changing the database schema and T-SQL code, these changes are often expensive and 
time-consuming.

When you encounter such a situation, you should analyze if LOB data types are 
required in the first place. It is not uncommon to see a column that never stores more 
than a few hundred characters defined as (n)varchar(max). Consider an Order Entry 
system and DeliveryInstruction column in the Orders table. You can safely limit 
the size of the column to 500-1,000 characters without compromising the business 
requirements of the system.

Another example is a system that collects some semistructured sensor data from the 
devices and stores it in the XML column. If the amount of semistructured data is relatively 
small, you can store it in varbinary(N) column, which will allow you to move the table 
into memory.

 ■ Tip it is more efficient to use varbinary rather than nvarchar to store XMl data in 
cases when you cannot use the XML data type.
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Unfortunately, sometimes it is impossible to change the data types and you have to 
keep LOB columns in the tables. Nevertheless, you have a couple options to proceed.

The first approach is to split data between two tables, storing the key attributes in 
memory-optimized and rarely-accessed LOB attributes in on-disk tables. Again, consider 
the situation where you have an Order Entry system with the  Products table defined as 
shown in Listing 11-1. 

Listing 11-1. Products Table Definition

create table dbo.Products
(
    ProductId int not null identity(1,1),
    ProductName nvarchar(64) not null,
    ShortDescription nvarchar(256) not null,
    Description nvarchar(max) not null,
    Picture varbinary(max) null,
 
    constraint PK_Products
    primary key clustered(ProductId)
)

As you can guess, in this scenario, it is impossible to change the data types of the 
Picture and Description columns, which prevents you from making the Products table 
memory-optimized.

You can split that table into two, as shown in Listing 11-2. The Picture and 
Description columns are stored in an on-disk table while all other columns are stored 
in the memory-optimized table. This approach will improve performance for the queries 
against the ProductsInMem table and will allow you to access it from natively compiled 
stored procedures in the system. 

Listing 11-2. Splitting Data Between Two Tables

create table dbo.ProductsInMem
(
    ProductId int not null identity(1,1)
        constraint PK_ProductsInMem
        primary key nonclustered hash
        with (bucket_count = 65536),
    ProductName nvarchar(64)
        collate Latin1_General_100_BIN2 not null,
    ShortDescription nvarchar(256) not null,
 
    index IDX_ProductsInMem_ProductName
    nonclustered(ProductName)
)
with (memory_optimized = on, durability = schema_and_data);
 



Chapter 11 ■ Utilizing in-MeMory oltp

173

create table dbo.ProductAttributes
(
    ProductId int not null,
    Description nvarchar(max) not null,
    Picture varbinary(max) null,
         
    constraint PK_ProductAttributes
    primary key clustered(ProductId)
);

Unfortunately, it is impossible to define a foreign key constraint referencing a 
memory-optimized table, and you should support referential integrity in your code.

You can hide some of the implementation details from the SELECT queries by 
defining a view as shown in Listing 11-3. You can also define INSTEAD OF triggers on the 
view and use it as the target for data modifications; however, it is more efficient to update 
data in the tables directly.

Listing 11-3. Creating a View That Combines Data from Both Tables

create view dbo.Products(ProductId, ProductName,
    ShortDescription, Description, Picture)
as
    select
        p.ProductId, p.ProductName, p.ShortDescription
        ,pa.Description, pa.Picture
    from
        dbo.ProductsInMem p left outer join
            dbo.ProductAttributes pa on
                p.ProductId = pa.ProductId

As you should notice, the view is using an outer join. This allows SQL Server to 
perform join elimination when the client application does not reference any columns 
from the ProductAttributes table when querying the view. For example, if you ran the 
query from Listing 11-4, you would see the execution plan as shown in Figure 11-1. As you 
can see, there are no joins in the plan and the ProductAttributes table is not accessed.

Listing 11-4. Query Against the View

select ProductId, ProductName
from dbo.Products
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You can use a different approach and store LOB data in memory-optimized tables, 
splitting it into multiple 8,000-byte chunks. Listing 11-5 shows the table that can be used 
for such a purpose.

Listing 11-5. Spllitting LOB Data into Multiple Rows: Table Schema 

create table dbo.LobData
(
    ObjectId int not null,
    PartNo smallint not null,
    Data varbinary(8000) not null,
 
    constraint PK_LobData
    primary key nonclustered hash(ObjectID, PartNo)
    with (bucket_count=1048576),
 
    index IDX_ObjectID
    nonclustered hash(ObjectId)
    with (bucket_count=1048576) 
 
)
with (memory_optimized = on, durability = schema_and_data)

Listing 11-6 demonstrates how to insert XML data into the table using T-SQL code in 
interop mode. It uses an inline table-valued function called dbo.SplitData that accepts 
the varbinary(max) parameter and splits it into multiple 8,000-byte chunks. 

Listing 11-6. Spllitting LOB Data into Multiple Rows: Populating Data

create function dbo.SplitData
(
    @LobData varbinary(max)
)
returns table
as
return

Figure 11-1. Execution plan of the query



Chapter 11 ■ Utilizing in-MeMory oltp

175

(
    with Parts(Start, Data)
    as
    (
        select 1, substring(@LobData,1,8000)
        where @LobData is not null
                 
        union all
                 
        select
            Start + 8000
            ,substring(@LobData,Start + 8000,8000)
        from Parts
        where len(substring(@LobData,Start + 8000,8000)) > 0
    )
    select
        row_number() over(order by Start) as PartNo
        ,Data
    from
        Parts
)
go
 
declare
    @X xml
 
select @X =
    (select * from master.sys.objects for xml raw)
 
insert into dbo.LobData(ObjectId, PartNo, Data)
    select 1, PartNo, Data
    from dbo.SplitData(convert(varbinary(max),@X))

Figure 11-2 illustrates the contents of the LobData table after the insert.

Figure 11-2. Dbo.LobData table content
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You can construct original data using the code shown in Listing 11-7. Alternatively, 
you can develop a CLR aggregate and concatenate binary data there. 

Listing 11-7. Spllitting LOB Data into Multiple Rows: Getting Data 

;with ConcatData(BinaryData)
as
(
    select
        convert(varbinary(max),
            (
                select convert(varchar(max),Data,2) as [text()]
                from dbo.LobData
                where ObjectId = 1
                order by PartNo
                for xml path('')
            ),2)
)
select convert(xml,BinaryData)
from ConcatData

The biggest downside of this approach is the inability to split and merge large 
objects in natively compiled stored procedures due to the missing (max) parameters and 
variables support. You should use the interop engine for this purpose. However, it is still 
possible to achieve performance improvements by moving data into memory even when 
the interop engine is in use.

This approach is also beneficial when memory-optimized tables are used just for the 
data storage, and all split and merge logic is done inside the client applications. We will 
discuss this implementation in much greater depth later in this chapter.

Lack of Uniqueness and Foreign Key Constraints
The inability to create unique and foreign key constraints rarely prevents us from 
adopting new technology. However, these constraints keep the data clean and allow us to 
detect data quality issues and bugs in the code at early stages of development. 

Unfortunately, In-Memory OLTP does not allow you to define foreign keys or unique 
indexes and constraints besides a primary key. To make matter worse, the lock-free 
nature of In-Memory OLTP makes uniqueness support in the code tricky. In-Memory 
OLTP transactions do not see any uncommitted changes done by other transactions. For 
example, if you ran the code from Table 11-1 in the default SNAPSHOT isolation level, both 
transactions would successfully commit without seeing each other’s changes.

 ■ Note SQl Server limits the Cte recursion level to 100 by default. you need to specify 
OPTION (MAXRECURSION 0) in the statement that uses the SplitData function in case of 
very large input.
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Fortunately, this situation can be addressed by using the SERIALIZABLE transaction 
isolation level. As you remember, In-Memory OLTP validates the serializable consistency 
rules by maintaining a transaction scan set. As part of the serializable rules validation 
at commit stage, In-Memory OLTP checks for phantom rows, making sure that other 
sessions do not insert any rows that were previously invisible to the transaction.

Listing 11-8 shows a natively compiled stored procedure that runs in the 
SERIALIZABLE isolation level and inserts a row into the ProductsInMem table we defined 
earlier. Any inserts done through this stored procedure guarantee uniqueness of the 
ProductName even in a multi-user concurrent environment.

The SELECT query builds a transaction scan set, which will be used for serializable 
rule validation. This validation will fail if any other session inserts a row with the same 
ProductName while the transaction is still active. Unfortunately, the first release of In-Memory 
OLTP does not support subqueries in natively compiled stored procedures and it is 
impossible to write the code using an IF EXISTS construct.

Table 11-1. Inserting the Duplicated Rows in the SNAPSHOT Isolation Level

Session 1 Session 2

set transaction isolation level 
snapshot

begin tran

  if not exists
  (
    select *
    from dbo.ProductsInMem
    where ProductName = 'Surface 3'
  )

set transaction isolation level snapshot
begin tran

  insert into dbo.ProductsInMem
    (ProductName)
  values
    ('Surface 3')

  if not exists
  (
    select *
    from dbo.ProductsInMem
    where ProductName = 'Surface 3'
  )

commit

  insert into dbo.ProductsInMem
    (ProductName)
  values
    ('Surface 3')

commit
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Listing 11-8. InsertProduct Stored procedure 

create procedure dbo.InsertProduct
(
    @ProductName nvarchar(64) not null
    ,@ShortDescription nvarchar(256) not null
    ,@ProductId int output
)
with native_compilation, schemabinding, execute as owner
as
begin atomic with
(
    transaction isolation level = serializable
    ,language = N'English'
)
    declare
        @Exists bit = 0
 
    -- Building scan set and checking existense of the product
    select @Exists = 1
    from dbo.ProductsInMem
    where ProductName = @ProductName
 
    if @Exists = 1
    begin
       ;throw 50000, 'Product Already Exists', 1;
       return
    end
 
    insert into dbo.ProductsInMem(ProductName, ShortDescription)
    values(@ProductName, @ShortDescription);
 
    select @ProductID = scope_identity()
end

You can validate the behavior of the stored procedure by running it in two parallel 
sessions, as shown in Table 11-2. Session 2 successfully inserts a row and commits the 
transaction. Session 1, on the other hand, fails on commit stage with Error 41325.
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Obviously, this approach will work and enforce the uniqueness only when you 
have full control over the data access code in the system and have all INSERT and UPDATE 
operations performed through the specific set of stored procedures and/or code. The 
INSERT and UPDATE statements executed directly against a table could easily violate 
uniqueness rules. However, you can reduce the risk by revoking the INSERT and UPDATE 
permissions from users, giving them EXECUTE permission on the stored procedures 
instead.

You can use the same technique to enforce referential integrity rules. Listing 11-9  
creates the Orders and OrderLineItems tables, and two stored procedures called 
InsertOrderLineItems and DeleteOrders enforce referential integrity between those 
tables there. I omitted the OrderId update scenario, which is very uncommon in the  
real world.

Listing 11-9. Enforcing Referential Integrity

create table dbo.Orders
(
    OrderId int not null identity(1,1)
        constraint PK_Orders
        primary key nonclustered hash
        with (bucket_count=1048576),

Table 11-2. Validating dbo.InsertProduct Stored Procedure

Session 1 Session 2

begin tran
  declare
    @ProductId int
  exec dbo.InsertProduct
    'Surface 3'
    ,'Microsoft Tablet'
    ,@ProductId output
commit

declare
    @ProductId int
exec dbo.InsertProduct
  'Surface 3'
  ,'Microsoft Tablet'
  ,@ProductId output
-- Executes and commits successfully

Error: Msg 41325, Level 16,  
State 0, Line 62

The current transaction failed 
to commit due to a serializable 
validation failure.
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    OrderNum varchar(32)
        collate Latin1_General_100_BIN2 not null,
    OrderDate datetime2(0) not null
        constraint DEF_Orders_OrderDate
        default GetUtcDate(),
    /* Other Columns */
    index IDX_Orders_OrderNum
    nonclustered(OrderNum)
)
with (memory_optimized = on, durability = schema_and_data);
 
create table dbo.OrderLineItems
(
    OrderId int not null,
    OrderLineItemId int not null identity(1,1)
        constraint PK_OrderLineItems
        primary key nonclustered hash
        with (bucket_count=4194304),
    ArticleId int not null,
    Quantity decimal(8,2) not null,
    Price money not null,
    /* Other Columns */
 
    index IDX_OrderLineItems_OrderId
    nonclustered hash(OrderId)
    with (bucket_count=1048576)
)
with (memory_optimized = on, durability = schema_and_data);
go
 
create type dbo.tvpOrderLineItems as table
(
    ArticleId int not null
        primary key nonclustered hash
        with (bucket_count = 1024),
    Quantity decimal(8,2) not null,
    Price money not null
    /* Other Columns */
)
with (memory_optimized = on);
go
 
create proc dbo.DeleteOrder
(
    @OrderId int not null
)
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with native_compilation, schemabinding, execute as owner
as
begin atomic
with
(
    transaction isolation level = serializable
    ,language=N'English'
)
    -- This stored procedure emulates ON DELETE NO ACTION
    -- foreign key constraint behavior
    declare
        @Exists bit = 0
 
    select @Exists = 1
    from dbo.OrderLineItems
    where OrderId = @OrderId
 
    if @Exists = 1
    begin
        ;throw 60000, N'Referential Integrity Violation', 1;
        return
    end
 
    delete from dbo.Orders where OrderId = @OrderId
end
go
 
create proc dbo.InsertOrderLineItems
(
    @OrderId int not null
    ,@OrderLineItems dbo.tvpOrderLineItems readonly
)
with native_compilation, schemabinding, execute as owner
as
begin atomic
with
(
    transaction isolation level = repeatable read
    ,language=N'English'
)
    declare
        @Exists bit = 0
 
    select @Exists = 1
    from dbo.Orders
    where OrderId = @OrderId
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    if @Exists = 0
    begin
        ;throw 60001, N'Referential Integrity Violation', 1;
        return
    end
 
    insert into dbo.OrderLineItems(OrderId, ArticleId, Quantity, Price)
        select @OrderId, ArticleId, Quantity, Price
        from @OrderLineItems
end

It is worth noting that the InsertOrderLineItems procedure is using the REPEATABLE 
READ isolation level. In this scenario, you need to make sure that the referenced Order row 
has not been deleted during the execution and that REPEATABLE READ enforces this with 
less overhead than SERIALIZABLE.

Case-Sensitivity Binary Collation for Indexed Columns 
As discussed, the requirement of having binary collation for the indexed text columns 
introduces a breaking change in the application behavior if case-insensitive collations 
were used before. Unfortunately, there is very little you can do about it. You can convert 
all the data and search parameters to uppercase or lowercase to address the situation; 
however, this is not always possible.

Another option is to store uppercase or lowercase data in another column, indexing 
and using it in the queries. Listing 11-10 shows such an example.

Listing 11-10. Storing Indexed Data in Another Column

create table dbo.Articles
(
    ArticleID int not null
        constraint PK_Articles
        primary key nonclustered hash
        with (bucket_count = 16384),
    ArticleName nvarchar(128) not null,
    ArticleNameUpperCase nvarchar(128)
        collate Latin1_General_100_BIN2 not null,
    -- Other Columns
    index IDX_Articles_ArticleNameUpperCase
    nonclustered(ArticleNameUpperCase)
);
 
-- Example of the query that uses upper case column
select ArticleId, ArticleName
from dbo.Articles
where ArticleNameUpperCase = upper(@ArticleName);
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Unfortunately, memory-optimized tables don’t support calculated columns and you 
will need to maintain the data in both columns manually in the code.

However, in the grand scheme of things, binary collations have benefits. The 
comparison operations on the columns that store data in binary collations are much 
more efficient compared to non-binary counterparts. You can achieve significant 
performance improvements when a large number of rows need to be processed.

One such example is a substring search in large tables. Consider the situation when 
you need to search by part of the product name in a large Products table. Unfortunately,  
a substring search will lead to the following predicate WHERE ProductName LIKE '%' +  
@Param + '%', which is not SARGable, and SQL Server cannot use an Index Seek 
operation in such a scenario. The only option is to scan the data, evaluating every row in 
the table, which is significantly faster with binary collation.

Let’s look at an example and create the table shown in Listing 11-11. The table has 
four text columns that store Unicode and non-Unicode data in binary and non-binary 
format. Finally, we populate it with 65,536 rows of random data.

Listing 11-11. Binary Collation Performance: Table Creation

create table dbo.CollationTest
(
    ID int not null,
    VarCol varchar(108) not null,
    NVarCol nvarchar(108)  not null,
    VarColBin varchar(108)
        collate Latin1_General_100_BIN2 not null,
    NVarColBin nvarchar(108)
        collate Latin1_General_100_BIN2 not null,
 
    constraint PK_CollationTest
    primary key nonclustered hash(ID)
    with (bucket_count=131072)
)
with (memory_optimized=on, durability=schema_only);
 
create table #CollData
(
    ID int not null,
    Col1 uniqueidentifier not null
        default NEWID(),
    Col2 uniqueidentifier not null
        default NEWID(),
    Col3 uniqueidentifier not null
        default NEWID()
);
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;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
,IDs(ID) as (select row_number() over (order by (select NULL)) from N5)
insert into #CollData(ID)
    select ID from IDs;
 
insert into dbo.CollationTest(ID,VarCol,NVarCol,VarColBin,NVarColBin)
    select
        ID
        /* VarCol */
        ,convert(varchar(36),Col1) + convert(varchar(36),Col2) +
        convert(varchar(36),Col3)
        /* NVarCol */
        ,convert(nvarchar(36),Col1) + convert(nvarchar(36),Col2) +
        convert(nvarchar(36),Col3)
        /* VarColBin */
        ,convert(varchar(36),Col1) + convert(varchar(36),Col2) +
        convert(varchar(36),Col3)
        /* NVarColBin */
        ,convert(nvarchar(36),Col1) + convert(nvarchar(36),Col2) +
        convert(nvarchar(36),Col3)
    from
        #CollData

As the next step, run queries from Listing 11-12, comparing the performance of a 
search in different scenarios. All of the queries scan primary key hash index, evaluating 
the predicate for every row in the table.

Listing 11-12. Binary Collation Performance: Test Queries

declare
    @Param varchar(16)
    ,@NParam varchar(16)
 
-- Getting substring for the search
select
    @Param = substring(VarCol,43,6)
    ,@NParam = substring(NVarCol,43,6)
from
    dbo.CollationTest
where
    ID = 1000;
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select count(*)
from dbo.CollationTest
where VarCol like '%' + @Param + '%';
 
select count(*)
from dbo.CollationTest
where NVarCol like '%' + @NParam + N'%';
 
select count(*)
from dbo.CollationTest
where VarColBin like '%' + upper(@Param) + '%'
            collate Latin1_General_100_Bin2;
 
select count(*)
from dbo.CollationTest
where NVarColBin like '%' + upper(@NParam) + N'%'
            collate Latin1_General_100_Bin2;

The execution time of all queries in my system are shown in Table 11-3. As you can 
see, the queries against binary collation columns are significantly faster, especially in the 
case of Unicode data.

Table 11-3. Binary Collation Performace: Test Results

varchar column with 
non-binary collation

varchar column with 
binary collation

nvarchar column with 
non-binary collation

nvarchar column with 
binary collation

191ms 109ms 769ms 62ms

Finally, it is worth noting that this behavior is not limited to memory-optimized 
tables. You will get a similar level of performance improvement with on-disk tables when 
binary collations are used.

Thinking Outside the In-Memory Box
Even though the limitations of the first release of In-Memory OLTP can make refactoring 
an existing systems cost-ineffective, you can still benefit from it by using some In-Memory 
OLTP components.

Importing Batches of Rows from Client Applications
In Chapter 12 of my book Pro SQL Server Internals, I compare the performance of 
several methods that inserted a batch of rows from the client application. I looked at the 
performance of calling individual INSERT statements; encoding the data into XML and 
passing it to a stored procedure; using the .Net SqlBulkCopy class; and passing data to a  

http://dx.doi.org/10.1007/978-1-4842-1136-6_12
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stored procedure utilizing table-valued parameters. Table-valued parameters became 
the clear winner of the tests, providing performance on par with the SqlBulkCopy 
implementation plus the flexibility of using stored procedures during the import.  
Listing 11-13 illustrates the database schema and stored procedure I used in the tests. 

Listing 11-13. Importing a Batch of Rows: Table, TVP, and Stored Procedure

create table dbo.Data
(
    ID int not null,
    Col1 varchar(20) not null,
    Col2 varchar(20) not null,
    /* Seventeen more columns Col3 - Col19*/
    Col20 varchar(20) not null,
 
    constraint PK_DataRecords
    primary key clustered(ID)
)
go
  
create type dbo.tvpData as table
(
    ID int not null,
    Col1 varchar(20) not null,
    Col2 varchar(20) not null,
    /* Seventeen more columns: Col3 - Col19 */
    Col20 varchar(20) not null,
 
    primary key(ID)
)
go
 
create proc dbo.InsertDataTVP
(
    @Data dbo.tvpData readonly
)
as
    insert into dbo.Data
    (
        ID,Col1,Col2,Col3,Col4,Col5,Col6,Col7
        ,Col8,Col9,Col10,Col11,Col12,Col13,Col14
        ,Col15,Col16,Col17,Col18,Col19,Col20
    )
        select ID,Col1,Col2,Col3,Col4,Col5,Col6
            ,Col7,Col8,Col9,Col10,Col11,Col12
            ,Col13,Col14,Col15,Col16,Col17,Col18
            ,Col19,Col20
        from @Data;



Chapter 11 ■ Utilizing in-MeMory oltp

187

Listing 11-14 shows the ADO.Net code that performed the import in case of table-
valued parameter. 

Listing 11-14. Importing a Batch of Rows: Client Code

using (SqlConnection conn = GetConnection())
{
    /* Creating and populating DataTable object with dummy data */
    DataTable table = new DataTable();
    table.Columns.Add("ID", typeof(Int32));
    for (int i = 1; i <= 20; i++)
        table.Columns.Add("Col" + i.ToString(), typeof(string));
    for (int i = 0; i < packetSize; i++)
        table.Rows.Add(i, "Parameter: 1"
            ,"Parameter: 2"
            /* Other columns */
            ,"Parameter: 20");
 
    /* Calling SP with TVP parameter */
    SqlCommand insertCmd =
        new SqlCommand("dbo.InsertDataTVP", conn);
    insertCmd.Parameters.Add("@Data", SqlDbType.Structured);
    insertCmd.Parameters[0].TypeName = "dbo.tvpData";
    insertCmd.Parameters[0].Value = table;
    insertCmd.ExecuteNonQuery();
}

You can improve performance even further by replacing the dbo.tvpData table-
valued type to be memory-optimized, which is transparent to the stored procedure and 
client code. Listing 11-15 shows the new type definition. 

Listing 11-15. Importing a Batch of Rows: Defining a Memory-Optimized Table Type

create type dbo.tvpData as table
(
    ID int not null,
    Col1 varchar(20) not null,
    Col2 varchar(20) not null,
    /* Seventeen more columns: Col3 - Col19 */
    Col20 varchar(20) not null,
 
    primary key nonclustered hash(ID)
    with (bucket_count=65536)
)
with (memory_optimized=on);
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The degree of performance improvement depends on the table schema, and it grows 
with the size of the batch. In my test environment, I got about 5-10 percent improvement 
on the small 5,000-row batches, 20-25 percent improvement on the 50,000-row batches, 
and 45-50 percent improvement on the 500,000-row batches.

You should remember, however, that memory-optimized table types cannot spill to 
tempdb, which can be dangerous in case of very large batches and with servers with an 
insufficient amount of memory. You should also define the bucket_count for the primary 
key based on the typical batch size, as discussed in Chapter 4 of this book.

 ■ Note you can download the test application from this book’s companion materials and 
compare the performance of the various import methods.

Using Memory-Optimized Objects as Replacements for 
Temporary and Staging Tables
Memory-optimized tables and table variables can be used as replacements for on-disk 
temporary and staging tables. However, the level of performance improvement may vary, 
and it greatly depends on the table schema, workload patterns, and amount of data in  
the table. 

Let’s look at a few examples and, first, compare the performance of a memory-
optimized table variable with on-disk temporary objects in a simple scenario, which you 
will often encounter in OLTP systems. Listing 11-16 shows stored procedures that insert 
up to 256 rows into the object, scanning it afterwards. 

Listing 11-16. Comparing Performance of a Memory-Optimized Table Variable with 
On-Disk Temporary Objects

create type dbo.ttTemp as table
(
    Id int not null
        primary key nonclustered hash
        with (bucket_count=512),
    Placeholder char(255)
)
with (memory_optimized=on)
go
 
create proc dbo.TestInMemTempTables(@Rows int)
as
    declare
        @ttTemp dbo.ttTemp
        ,@Cnt int
 

http://dx.doi.org/10.1007/978-1-4842-1136-6_4
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    ;with N1(C) as (select 0 union all select 0) -- 2 rows
    ,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
    ,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
    ,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
    ,Ids(Id) as (select row_number() over (order by (select null)) from N4)
    insert into @ttTemp(Id)
        select Id from Ids where Id <= @Rows;
 
    select @Cnt = count(*) from @ttTemp
go
 
create proc dbo.TestTempTables(@Rows int)
as
    declare
        @Cnt int
 
    create table #TTTemp
    (
        Id int not null primary key,
        Placeholder char(255)
    )
 
    ;with N1(C) as (select 0 union all select 0) -- 2 rows
    ,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
    ,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
    ,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
    ,Ids(Id) as (select row_number() over (order by (select null)) from N4)
    insert into #TTTemp(Id)
        select Id from Ids where Id <= @Rows;
 
    select @Cnt = count(*) from #TTTemp
go
 
create proc dbo.TestTempVars(@Rows int)
as
    declare
        @Cnt int
 
    declare
        @ttTemp table
        (
            Id int not null primary key,
            Placeholder char(255)
        )
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    ;with N1(C) as (select 0 union all select 0) -- 2 rows
    ,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
    ,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
    ,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
    ,Ids(Id) as (select row_number() over (order by (select null)) from N4)
    insert into @ttTemp(Id)
        select Id from Ids where Id <= @Rows;
 
    select @Cnt = count(*) from @ttTemp
go

Table 11-4 illustrates the execution time of the stored procedures called 10,000 times 
in the loop. As you can see, the memory-optimized table variable outperformed on-disk 
objects. The level of performance improvements growth with the amount of data when 
on-disk tables need to allocate more data pages to store it.

It is also worth mentioning that performance improvements can be even more 
significant in the systems with a heavy concurrent load due to possible allocation pages 
contention in tempdb. 

You should remember that memory-optimized table variables do not keep index 
statistics, similar to on-disk table variables. The Query Optimizer generates execution 
plans with the assumption that they store just the single row. This cardinality estimation 
error can lead to highly inefficient plans, especially when a large amount of data and joins 
are involved.

 ■ Important as the opposite of on-disk table variables, statement-level recompile with OPTION 
(RECOMPILE) does not allow SQl Server to obtain the number of rows in  memory-optimized 
table variables. the Query optimizer always assumes that they store just a single row.

Memory-optimized tables can be used as the staging area for ETL processes. As a 
general rule, they outperform on-disk tables in INSERT performance, especially if you are 
using user database and durable tables for the staging.

Scan performance, on the other hand, greatly depends on the row size and number 
of data pages in on-disk tables. Traversing memory pointers is a fast operation and it is 
significantly faster compared to getting a page from the buffer pool. However, on-page 

Table 11-4. Execution Time of Stored Procedures (10,000 Executions)

16 rows 64 rows 256 rows

Memory-Optimized Table Variable 920ms 1,496ms 3,343ms

Table Variable 1,203ms 2,994ms 8,493ms

Temporary Table 5,420ms 7,270ms 13,356ms
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row access could be faster than traversing long memory pointers chain. It is possible 
that with the small data rows and large number of rows per page, on-disk tables would 
outperform memory-optimized tables in the case of scans.

Query parallelism is another important factor to consider. The first release of  
In-Memory OLTP does not support parallel execution plans. Therefore, large scans 
against on-disk tables could be significantly faster when they use parallelism.

Update performance depends on the number of indexes in memory-optimized 
tables, along with update patterns. For example, page splits in on-disk tables significantly 
decrease the performance of update operations.

Let’s look at a few examples based on a simple ETL process that inserts data into an 
imaginary Data Warehouse with one fact, FactSales, and two dimension, the DimDates 
and DimProducts tables. The schema is shown in Listing 11-17. 

Listing 11-17. ETL Performance: Data Warehouse Schema

create table dw.DimDates
(
    ADateId int identity(1,1) not null,
    ADate date not null,
    ADay tinyint not null,
    AMonth tinyint not null,
    AnYear smallint not null,
    ADayOfWeek tinyint not null,
 
    constraint PK_DimDates
    primary key clustered(ADateId)
);
 
create unique nonclustered index IDX_DimDates_ADate
on dw.DimDates(ADate);
 
create table dw.DimProducts
(
    ProductId int identity(1,1) not null,
    Product nvarchar(64) not null,
    ProductBin nvarchar(64)
        collate Latin1_General_100_BIN2
        not null,
 
    constraint PK_DimProducts
    primary key clustered(ProductId)
);
 
create unique nonclustered index IDX_DimProducts_Product
on dw.DimProducts(Product);
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create unique nonclustered index IDX_DimProducts_ProductBin
on dw.DimProducts(ProductBin);
 
create table dw.FactSales
(
    ADateId int not null,
    ProductId int not null,
    OrderId int not null,
    OrderNum varchar(32) not null,
    Quantity decimal(9,3) not null,
    UnitPrice money not null,
    Amount money not null,
 
    constraint PK_FactSales
    primary key clustered(ADateId,ProductId,OrderId),
 
    constraint FK_FactSales_DimDates
    foreign key(ADateId)
    references dw.DimDates(ADateId),
 
    constraint FK_FactSales_DimProducts
    foreign key(ProductId)
    references dw.DimProducts(ProductId)
);

Let’s compare the performance of two ETL processes utilizing on-disk and memory-
optimized tables as the staging areas. We will use another table called InputData with 
1,650,000 rows as the data source to reduce import overhead so we can focus on the 
INSERT operation performance. Listing 11-18 shows the code of the ETL processes.

Listing 11-18. ETL Performance: ETL Process

create table dw.FactSalesETLDisk
(
    OrderId int not null,
    OrderNum varchar(32) not null,
    Product nvarchar(64) not null,
    ADate date not null,
    Quantity decimal(9,3) not null,
    UnitPrice money not null,
    Amount money not null,
    /* Optional Placeholder Column */
    -- Placeholder char(255) null,
    primary key (OrderId, Product)
)
go
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create table dw.FactSalesETLMem
(
    OrderId int not null,
    OrderNum varchar(32) not null,
    Product nvarchar(64)
        collate Latin1_General_100_BIN2 not null,
    ADate date not null,
    Quantity decimal(9,3) not null,
    UnitPrice money not null,
    Amount money not null,
    /* Optional Placeholder Column */
    -- Placeholder char(255) null,
 
    constraint PK_FactSalesETLMem
    primary key nonclustered hash(OrderId, Product)
    with (bucket_count = 2000000)
 
    /* Optional Index */
    -- index IDX_Product nonclustered(Product)
)
with (memory_optimized=on, durability=schema_and_data)
go
 
/*** ETL Process ***/
 
/* On Disk Table */
 
-- Step 1: Staging Table Insert
insert into dw.FactSalesETLDisk
    (OrderId,OrderNum,Product,ADate
        ,Quantity,UnitPrice,Amount)
        select OrderId,OrderNum,Product,ADate
            ,Quantity,UnitPrice,Amount
        from dbo.InputData;
 
/* Optional Index Creation */
--create index IDX1 on dw.FactSalesETLDisk(Product);
 
-- Step 2: DimProducts Insert
insert into dw.DimProducts(Product)
    select distinct f.Product
    from dw.FactSalesETLDisk f
    where not exists
        (
            select *
            from dw.DimProducts p
            where p.Product = f.Product
        );
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-- Step 3: FactSales Insert
insert into dw.FactSales(ADateId,ProductId,OrderId,OrderNum,
    Quantity,UnitPrice,Amount)
        select d.ADateId,p.ProductId,f.OrderId,f.OrderNum,
            f.Quantity,f.UnitPrice,f.Amount
        from
            dw.FactSalesETLDisk f join dw.DimDates d on
                f.ADate = d.ADate
            join dw.DimProducts p on
                f.Product = p.Product;
 
/* Memory-Optimized Table */
 
-- Step 1: Staging Table Insert
insert into dw.FactSalesETLMem
    (OrderId,OrderNum,Product,ADate
        ,Quantity,UnitPrice,Amount)
        select OrderId,OrderNum,Product,ADate
            ,Quantity,UnitPrice,Amount
        from dbo.InputData;
 
-- Step 2: DimProducts Insert
insert into dw.DimProducts(Product)
    select distinct f.Product
    from dw.FactSalesETLMem f
    where not exists
        (
            select *
            from dw.DimProducts p
            where f.Product = p.ProductBin
        );
 
-- Step 3: FactSales Insert
insert into dw.FactSales(ADateId,ProductId,OrderId,OrderNum,
    Quantity,UnitPrice,Amount)
        select d.ADateId,p.ProductId,f.OrderId,f.OrderNum,
            f.Quantity,f.UnitPrice,f.Amount
        from
            dw.FactSalesETLMem f join dw.DimDates d on
                f.ADate = d.ADate
            join dw.DimProducts p on
                f.Product = p.ProductBin;

I have repeated the tests in four different scenarios, varying row size, with and 
without Placeholder columns and the existence of nonclustered indexes on Product 
columns. Table 11-5 illustrates the average execution time in my environment for the 
scenarios when tables don’t have nonclustered indexes. Table 11-6 illustrates the scenario 
with additional nonclustered indexes on the Product column. 
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As you can see, memory-optimized table INSERT performance can be significantly 
better compared to the on-disk table. The performance gain increases with the row size 
and when extra indexes are added to the table. Even though extra indexes slow down the 
insert in both cases, their impact is smaller in the case of memory-optimized tables.

On the other hand, the performance difference during the scans is insignificant. In 
both cases, the most work is done by accessing DimProducts and inserting data into the 
FactSales on-disk tables.

Listing 11-19 illustrates the code that allows us to compare UPDATE performance of 
the tables. The first statement changes a fixed-length column and does not increase the 
row size. The second statement, on the other hand, increases the size of the row, which 
triggers the large number of page splits in the on-disk table.

Listing 11-19. ETL Performance: UPDATE Performance

update dw.FactSalesETLDisk set Quantity += 1;
update dw.FactSalesETLDisk set OrderNum += '1234567890';
 
update dw.FactSalesETLMem set Quantity += 1;
update dw.FactSalesETLMem set OrderNum += '1234567890';

Tables 11-7 and 11-8 illustrate the average execution time of the tests in my 
environment. As you can see, the page split operation can significantly degrade update 
performance for on-disk tables. This is not the case with memory-optimized tables, 
where new row versions are generated all the time.

Table 11-5. Execution Time of the Tests: No Additional Indexes

On-Disk Staging Table Memory-Optimized Staging Table

Small Row Large Row Small Row Large Row

Staging Table Insert 5,586ms 7,246ms 3,453ms 3,655ms

DimProducts Insert 1,263ms 1,316ms 976ms 993ms

FactSales Insert 13,333ms 13,303ms 13,266ms 13,201ms

Total Time 20,183ms 21,965ms 17,796ms 17,849ms

Table 11-6. Execution Time of the Tests: With Additional Indexes

On-Disk Staging Table Memory-Optimized Staging Table

Small Row Large Row Small Row Large Row

Staging Table Insert 9,233ms 11,656ms 4,751ms 4,893ms

DimProducts Insert 513ms 520ms 506ms 513ms

FactSales Insert 13,163ms 13,276ms 12,283ms 12,300ms

Total Time 22,909ms 25,453ms 17,540ms 17,706ms
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Nonclustered indexes, on the other hand, do not affect update performance of  
on-disk tables as long as their key columns were not updated. It is not the case with 
memory-optimized tables where multiple index chains need to be maintained. 

As you can see, using memory-optimized tables with a Data Warehouse workload 
completely fits into the“It depends” category. In some cases, you will benefit from it, 
while in others performance is degraded. You should carefully test your scenarios before 
deciding if memory-optimized objects should be used.

Finally, it is worth mentioning that all tests in that section were executed with warm 
cache and serial execution plans. Physical I/O and parallelism could significantly affect the 
picture. Moreover, you will get different results if you don’t need to persist the staging data 
and can use temporary and non-durable memory-optimized tables during the processes.

Using In-Memory OLTP as Session - or Object State-Store
Modern software systems have become extremely complex. They consist of a large 
number of components and services responsible for various tasks, such as interaction 
with users, data processing, integration with other systems, reporting, and quite a few 
others. Moreover, modern systems must be scalable and redundant. They need to be able 
to handle load growth and survive hardware failures and crashes. 

The common approach to solving scalability and redundancy issues is to design the 
systems in a way that permits to deploy and run multiple instances of individual services. 
It allows adding more servers and instances as the load grows and helps you survive 
hardware failures by distributing the load across other active servers. The services are 
usually implemented in stateless way, and they don’t store or rely on any local data.

Most systems, however, have data that needs to be shared across the instances. For 
example, front-end web servers usually need to maintain web session states. Back-end 
processing services often need to have shared cache with some data.

Table 11-7. Execution Time of Update Statements: No Additional Indexes

On-Disk Staging Table Memory-Optimized Staging Table

Small Row Large Row Small Row Large Row

Fixed-Length 
Column Update

2,625ms 2,712ms 2,900ms 2,907ms

Row Size Increase 4,510ms 8,391ms 2,950ms 3,050ms

Table 11-8. Execution Time of Update Statements: With Additional Indexes

On-Disk Staging Table Memory-Optimized Staging Table

Small Row Large Row Small Row Large Row

Fixed-Length 
Column Update

2,694ms 2,709ms 4,680ms 5,083ms

Row Size Increase 4,456ms 8,561ms 4,756ms 5,186ms
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Historically, there were two approaches to address this issue. The first one was to use 
dedicated storage/cache and host it somewhere in the system. Remember the old ASP.Net 
model that used either a SQL Server database or a separate web server to store session 
data? The problem with this approach is limited scalability and redundancy. Storing 
session data in web server memory is fast but it is not redundant. A SQL Server database, 
on the other hand, can be protected but it does not scale well under the load due to page 
latch contention and other issues.

Another approach was to replicate content of the cache across multiple servers. 
Each instance worked with the local copy of the cache while another background process 
distributed the changes to the other servers. Several solutions on the market provide such 
capability; however, they are usually expensive. In some cases, the license cost for such 
software could be in the same order of magnitude as SQL Server licenses.

Fortunately, you can use In-Memory OLTP as the solution. In the nutshell, it looks 
similar to the ASP.Net SQL Server session-store model; however, In-Memory OLTP 
throughput and performance improvements address the scalability issues of the old  
on-disk solution. 

You can improve performance even further by using non-durable memory-
optimized tables. Even though the data will be lost in case of failover, this is acceptable in 
most cases.

However, the 8,060-byte maximum row size limit introduces challenges to the 
implementation. It is entirely possible that a serialized object will exceed 8,060 bytes. You 
can address this by splitting the data into multiple chunks and storing them in multiple 
rows in memory-optimized table.

You saw an example of a T-SQL implementation earlier in the chapter. However, 
using T-SQL code and an interop engine will significantly decrease the throughput of the 
solution. It is better to manage serialization and split/merge functional on the client side.

Listing 11-20 shows the table and natively compiled stored procedures that you can 
use to store and manipulate the data in the database. The client application calls the 
LoadObjectFromStore and SaveObjectToStore stored procedures to load and save the 
data. The PurgeExpiredObjects stored procedure removes expired rows from the table, 
and it can be called from a SQL Agent or other processes based on the schedule. 

Listing 11-19. Implementing Session Store: Database Schema

create table dbo.ObjStore
(
    ObjectKey uniqueidentifier not null,
    ExpirationTime datetime2(2) not null,
    ChunkNum smallint not null,
    Data varbinary(8000) not null,
 
    constraint PK_ObjStore
    primary key nonclustered hash(ObjectKey, ChunkNum)
    with (bucket_count = 131072),
 
    index IDX_ObjectKey
    nonclustered hash(ObjectKey)
    with (bucket_count = 131072)
)
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with (memory_optimized = on, durability = schema_only);
go
 
create type dbo.tvpObjData as table
(
    ChunkNum smallint not null
        primary key nonclustered hash
        with (bucket_count = 1024),
    Data varbinary(8000) not null
)
with(memory_optimized=on)
go
 
create proc dbo.SaveObjectToStore
(
    @ObjectKey uniqueidentifier not null
    ,@ExpirationTime datetime2(2) not null
    ,@ObjData dbo.tvpObjData not null readonly
)
with native_compilation, schemabinding, exec as owner
as
begin atomic
with
(
    transaction isolation level = snapshot
    ,language = N'English'
)
    delete dbo.ObjStore
    where ObjectKey = @ObjectKey
 
    insert into dbo.ObjStore(ObjectKey, ExpirationTime, ChunkNum, Data)
        select @ObjectKey, @ExpirationTime, ChunkNum, Data
        from @ObjData
end
go
 
create proc dbo.LoadObjectFromStore
(
    @ObjectKey uniqueidentifier not null
)
with native_compilation, schemabinding, exec as owner
as
begin atomic
with
(
    transaction isolation level = snapshot
    ,language = N'English'
)
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    declare
        @CurrentTime datetime2(2) = sysutcdatetime();
 
    select t.Data
    from dbo.ObjStore t
    where t.ObjectKey = @ObjectKey and ExpirationTime >= @CurrentTime
    order by t.ChunkNum
end
go
 
create proc dbo.PurgeExpiredObjects
with native_compilation, schemabinding, exec as owner
as
begin atomic
with
(
    transaction isolation level = snapshot
    ,language = N'English'
)
    declare @CurrentTime
        datetime2(2) = sysutcdatetime();
 
    delete dbo.ObjStore
    where ExpirationTime < @CurrentTime
end

The client implementation includes several static classes. The ObjStoreUtils class 
provides four methods to serialize and deserialize objects into the byte arrays, and split 
and merge those arrays to/from 8,000-byte chunks. You can see the implementation in 
Listing 11-20. 

Listing 11-20. Implementing Session Store: ObjStoreUtils class

public static class ObjStoreUtils
{
    /// <summary>
    /// Serialize object of type T to the byte array
    /// </summary>
    public static byte[] Serialize<T>(T obj)
    {
        using (var ms = new MemoryStream())
        {
            var formatter = new BinaryFormatter();
            formatter.Serialize(ms, obj);
 
            return ms.ToArray();
        }
    }
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    /// <summary>
    /// Deserialize byte array to the object
    /// </summary>
    public static T Deserialize<T>(byte[] data)
    {
        using (var output = new MemoryStream(data))
        {
            var binForm = new BinaryFormatter();
            return (T) binForm.Deserialize(output);
        }
    }
 
    /// <summary>
    /// Split byte array to the multiple chunks
    /// </summary>
    public static List<byte[]> Split(byte[] data, int chunkSize)
    {
        var result = new List<byte[]>();
 
        for (int i = 0; i < data.Length; i += chunkSize)
        {
            int currentChunkSize = chunkSize;
            if (i + chunkSize > data.Length)
                currentChunkSize = data.Length - i;
 
            var buffer = new byte[currentChunkSize];
            Array.Copy(data, i, buffer, 0, currentChunkSize);
 
            result.Add(buffer);
        }
        return result;
    }
 
    /// <summary>
    /// Combine multiple chunks into the byte array
    /// </summary>
    public static byte[] Merge(List<byte[]> arrays)
    {
        var rv = new byte[arrays.Sum(a => a.Length)];
        int offset = 0;
        foreach (byte[] array in arrays)
        {
            Buffer.BlockCopy(array, 0, rv, offset, array.Length);
            offset += array.Length;
        }
        return rv;
    }
}
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The ObjStoreDataAccess class shown in Listing 11-21 loads and saves binary data to 
and from the database. It utilizes another static class called DBConnManager, which returns 
the SqlConnection object to the target database. This class is not shown in the listing. 

Listing 11-21. Implementing Session Store: ObjStoreDataAccess class

public static class ObjStoreDataAccess
{
    /// <summary>
    /// Saves data to the database
    /// </summary>
    public static void SaveObjectData(Guid key,
                DateTime expirationTime, List<byte[]> chunks)
    {
        using (var cnn = DBConnManager.GetConnection())
        {
            using (var cmd = cnn.CreateCommand())
            {
                cmd.CommandText = "dbo.SaveObjectToStore";
                cmd.CommandType = CommandType.StoredProcedure;
                cmd.Parameters.Add("@ObjectKey",
                    SqlDbType.UniqueIdentifier).Value = key;
                cmd.Parameters.Add("@ExpirationTime",
                    SqlDbType.DateTime2).Value = expirationTime;
 
                var tvp = new DataTable();
                tvp.Columns.Add("ChunkNum", typeof(short));
                tvp.Columns.Add("ChunkData", typeof(byte[]));
 
                for(int i=0; i<chunks.Count; i++)
                    tvp.Rows.Add(i, chunks[i]);
 
                var tvpParam = new SqlParameter("@ObjData",
                     SqlDbType.Structured)
                {
                    TypeName = "dbo.tvpObjData",
                    Value = tvp
                };
 
                cmd.Parameters.Add(tvpParam);
                cmd.ExecuteNonQuery();
            }
        }
    }
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    /// <summary>
    /// Load data from the database
    /// </summary>
    public List<byte[]> LoadObjectData(Guid key)
    {
        using (var cnn = DBConnManager.GetConnection())
        {
            using (var cmd = cnn.CreateCommand())
            {
                cmd.CommandText = "dbo.LoadObjectFromStore";
                cmd.CommandType = CommandType.StoredProcedure;
                cmd.Parameters.Add("ObjectKey",
                    SqlDbType.UniqueIdentifier).Value = key;
 
                var result = new List<byte[]>();
                using (var reader = cmd.ExecuteReader())
                {
                    while (reader.Read())
                        result.Add((byte[])reader["Data"]);
                }
                return result;
            }
        }
    }
}

Finally, the ObjStoreService class shown in Listing 11-22 puts everything together 
and manages the entire process. It implements two simple methods, Load and Save, 
calling the helper classes defined above. 

Listing 11-22. Implementing Session Store: ObjStoreService class

public static class ObjStoreService
{
    private const int MaxChunkSize = 8000;
 
    /// <summary>
    /// Saves object in the object store
    /// </summary>
    public static void Save(Guid key,
                DateTime expirationTime, object obj)
    {
        var objectBytes = ObjStoreUtils.Serialize(obj);
        var chunks = ObjStoreUtils.Split(objectBytes, MaxChunkSize);
 
        ObjStoreDataAccess.SaveObjectData(key, expirationTime, chunks);
    }
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    /// <summary>
    /// Loads object from the object store
    /// </summary>
    public static T Load<T>(Guid key) where T: class
    {
        var chunks = ObjStoreDataAccess.LoadObjectData(key);
        if (chunks.Count == 0)
            return null;
        var objectBytes = ObjStoreUtils.Merge(chunks);
 
        return ObjStoreUtils.Deserialize<T>(objectBytes);
    }
}

Obviously, this is oversimplified example, and production implementation could be 
significantly more complex, especially if there is the possibility that multiple sessions can 
update the same object simultaneously. You can implement retry logic or create some 
sort of object locking management in the system if this is the case.

It is also worth mentioning that you can compress binary data before saving it 
into the database. The compression will introduce unnecessary overhead in the case 
of small objects; however, it could provide significant space savings and performance 
improvements if the objects are large.

I did not include compression code in the example, although you can easily 
implement it with the GZipStream or DeflateStream classes.

 ■ Note the code and test application are included in companion materials of this book.

Using In-Memory OLTP in Systems with Mixed 
Workloads
In-Memory OLTP can provide significant performance improvements in OLTP systems. 
However, with a Data Warehouse workload, results may vary. The complex queries that 
perform large scans and aggregations do not necessarily benefit from In-Memory OLTP. 

In-Memory OLTP is targeted to the Enterprise market and strong SQL Server 
teams. It is common to see separate Data Warehouse solutions in those environments. 
Nevertheless, even in those environments, some degree of reporting and analysis 
workload is always present in OLTP systems.

The situation is even worse when systems do not have dedicated Data Warehouse 
and Analysis databases, and OLTP and Data Warehouse queries run against the same 
data. Moving the data into memory could negatively impact the performance of reporting 
queries.
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One of the solutions in this scenario is to partition the data between memory-
optimized and on-disk tables. You can put recent and hot data into memory-optimized 
tables, keeping old, historical data on-disk. Moreover, it is very common to see different 
access patterns in the systems when hot data is mainly customer-facing and accessed by 
OLTP queries while old, historical data is used for reporting and analysis.

Data partitioning also allows you to create a different set of indexes in the tables 
based on their access patterns. In some cases, you can even use columnstore indexes 
with the old data, which significantly reduces the storage size and improves the 
performance of Data Warehouse queries. Finally, you can use partitioned views to hide 
partitioning details from the client applications.

Listing 11-23 shows an example of such implementation. The memory-optimized 
table called RecentOrders stores the most recent orders that were submitted in 2015. The 
on-disk LastYearOrders table stores the data for 2014. Lastly, the OldOrders table stores 
the old orders that were submitted prior to 2014. The view Orders combines the data 
from all three tables.

Listing 11-23. Data Partitioning: Tables and Views

-- Storing Orders with OrderDate >= 2015-01-01
create table dbo.RecentOrders
(
    OrderId int not null identity(1,1),
    OrderDate datetime2(0) not null,
    OrderNum varchar(32)
        collate Latin1_General_100_BIN2 not null,
    CustomerId int not null,
    Amount money not null,
    /* Other columns */
    constraint PK_RecentOrders
    primary key nonclustered hash(OrderId)
    with (bucket_count=1048576),
 
    index IDX_RecentOrders_CustomerId
    nonclustered(CustomerId)
)
with (memory_optimized=on, durability=schema_and_data)
go
 
create partition function pfLastYearOrders(datetime2(0))
as range right for values
('2014-04-01','2014-07-01','2014-10-01','2015-01-01')
go
 
create partition scheme psLastYearOrders
as partition pfLastYearOrders
all to ([LastYearOrders])
go
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create table dbo.LastYearOrders
(
    OrderId int not null,
    OrderDate datetime2(0) not null,
    OrderNum varchar(32)
        collate Latin1_General_100_BIN2 not null,
    CustomerId int not null,
    Amount money not null,
    /* Other columns */
    -- We have to include OrderDate to PK
    -- due to partitioning
    constraint PK_LastYearOrders
    primary key clustered(OrderDate,OrderId)
    with (data_compression=row)
    on psLastYearOrders(OrderDate),
 
    constraint CHK_LastYearOrders
    check
    (
        OrderDate >= '2014-01-01' and
        OrderDate < '2015-01-01'
    )
);
 
create nonclustered index IDX_LastYearOrders_CustomerId
on dbo.LastYearOrders(CustomerID)
with (data_compression=row)
on psLastYearOrders(OrderDate);
go
 
create partition function pfOldOrders(datetime2(0))
as range right for values
(  /* Old intervals */
  '2012-10-01','2013-01-01','2013-04-01'
  ,'2013-07-01','2013-10-01','2014-01-01'
)
go
 
create partition scheme psOldOrders
as partition pfOldOrders
all to ([OldOrders])
go
 
create table dbo.OldOrders
(
    OrderId int not null,
    OrderDate datetime2(0) not null,
    OrderNum varchar(32)
        collate Latin1_General_100_BIN2 not null,
    CustomerId int not null,
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    Amount money not null,
    /* Other columns */
    constraint CHK_OldOrders
    check(OrderDate < '2014-01-01')
)
on psOldOrders(OrderDate);
 
create clustered columnstore index CCI_OldOrders
on dbo.OldOrders
with (data_compression=columnstore_Archive)
on psOldOrders(OrderDate);
go
 
create view dbo.Orders(OrderId,OrderDate,
    OrderNum,CustomerId,Amount)
as
    select OrderId,OrderDate,OrderNum,CustomerId,Amount
    from dbo.RecentOrders
    where OrderDate >= '2015-01-01'
 
    union all
 
    select OrderId,OrderDate,OrderNum,CustomerId,Amount
    from dbo.LastYearOrders
 
    union all
 
    select OrderId,OrderDate,OrderNum,CustomerId,Amount
    from dbo.OldOrders
go

As you know, memory-optimized tables do not support CHECK constraints, which 
prevent Query Optimizer from analyzing what data is stored in the RecentOrders table. 
You can specify that in a where clause of the first SELECT in the view. This will allow SQL 
Server to eliminate access to the table if queries do not need data from there. You can see 
this by running the code from Listing 11-24.

Listing 11-24. Data Partitioning: Querying Data

select top 10
    CustomerId
    ,sum(Amount) as [TotalSales]
from dbo.Orders
where
    OrderDate >='2013-07-01' and
    OrderDate < '2014-07-01'
group by
    CustomerId
order by
    sum(Amount) desc



Chapter 11 ■ Utilizing in-MeMory oltp

207

Figure 11-3 shows the partial execution plan of the query. As you can see, the query 
does not access the memory-optimized table at all.

The biggest downside of this approach is the inability to seam lessly move the data 
from a memory-optimized table to an on-disk table as the operational period changes. 
With on-disk tables, it is possible to make the data movement transparent by utilizing 
the online index rebuild and partition switches. However, it will not work with memory-
optimized tables where you have to copy the data to the new location and delete it from 
the source table afterwards.

This should not be a problem if the system has a maintenance window when such 
operations can be performed. Otherwise, you will need to put significant development 
efforts into preventing customers from modifying data on the move.

 ■ Note Chapter 15 in my book Pro SQL Server Internals discusses various data 
partitioning aspects including how to move data between different tables and file groups 
while keeping it transparent to the users.

Summary
In-Memory OLTP can dramatically improve the performance of OLTP systems. 
However, it can lead to large implementation cost especially when you need to migrate 
existing systems. You should perform a cost/benefits analysis, making sure that the 
implementation cost is acceptable. It is still possible to benefit from In-Memory OLTP 
objects even when you cannot utilize the technology in its full scope.

Some of the In-Memory OLTP limitations can be addressed in the code. You can 
split the data between multiple tables to work around the 8,060-byte maximum row size 
limitation or, alternatively, store large objects in multiple rows in the table. Uniqueness 
and referential integrity can be enforced with REPEATABLE READ and SERIALIZABLE 
transaction isolation levels.

Figure 11-3. Execution plan of the query

http://dx.doi.org/10.1007/978-1-4842-1136-6_15
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You should be careful when using In-Memory OLTP with a Data Warehouse 
workload and queries that perform large scans. While it can help in some scenarios, 
it could degrade performance of the systems in others. You can implement data 
partitioning, combining the data from memory-optimized and on-disk tables when this is 
the case.
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Appendix A

Memory Pointers 
Management

This chapter explains how SQL Server works with memory pointers that link In-Memory 
OLTP objects together.

Memory Pointers Management
The In-Memory OLTP Engine relies on memory pointers, using them to link objects 
together. For example, pointers embedded into data rows link them into the index chains, 
which, in turn, are referenced by the hash and nonclustered index objects. The lock- and 
latch-free nature of In-Memory OLTP adds the challenge of managing memory pointers 
in highly volatile environments where multiple sessions can try to simultaneously change 
them, overwriting each other’s changes.

Consider the situation when multiple sessions are trying to insert rows into the 
same index row chain. Each session traverses that chain to locate the last row there 
and update its pointer with the address of the newly created row. SQL Server must 
guarantee that every row is added to the chain even when there are multiple sessions 
running in different parallel threads and they are trying to perform that pointer update 
simultaneously.

SQL Server uses an InterlockedCompareExchange mechanism to guarantee that. 
InterlockedCompareExchange functions change the value of the pointer, checking that 
the existing (pre-update) value matches the expected (old ) value provided as another 
parameter. Only when the check succeeds is the pointer value updated.

To illustrate this, assume that you have two sessions that want to simultaneously 
insert new delta records for the same nonclustered index leaf page. As a first step, shown 
in Figure A-1, the sessions create delta records and set their pointers to a page based on 
the address from the mapping table.
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In the next step, both sessions call the InterlockedCompareExchange function to try 
to update the mapping table by changing the reference from a page to the delta records 
they just created. InterlockedCompareExchange serializes the update of the mapping 
table element and changes it only if its current preupdate value matches the old pointer 
(address of the page) provided as the parameter. The first InterlockedCompareExchange 
call succeeds. The second call, however, fails because the mapping table element 
references the delta record from another session rather than the page. Therefore, the 
second session needs to redo or rollback the action based on the requirements and  
a use case.

Figure A-2 illustrates such a scenario. As you can see, with the exception of a very 
short serialization during the InterlockedCompareExchange call, there is no locking or 
latching of the data during the modifications. 

Figure A-1. Data modifications and concurrency: Step 1

Figure A-2. Data modifications and concurrency: Step 2
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SQL Server uses the same approach with InterlockedCompareExchange every time 
the pointer chain needs to be preserved, such as when it creates another version of a row 
during an update, when it needs to change a pointer in the index mapping or hash tables, 
and in quite a few other cases.

Summary
SQL Server uses an InterlockedCompareExchange mechanism to guarantee that multiple 
sessions cannot update the same memory pointers simultaneously, losing references to 
each other’s objects. InterlockedCompareExchange functions change the value of the 
pointer, checking that the existing (preupdate) value matches the expected (old) value 
provided as another parameter. Only when the check succeeds is the pointer value 
updated.
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Appendix B

Page Splitting and Page 
Merging in Nonclustered 
Indexes

This appendix provides an overview of nonclustered index internal operations, such as 
page splitting and page merging.

Nonclustered Indexes Internal Maintenance
The In-Memory OLTP Engine has several internal operations to maintain the structure of 
nonclustered indexes. As you already know from Chapter 5, page consolidation rebuilds 
the nonclustered index page, consolidating all changes defined by the page delta records. 
It helps avoid the performance hit introduced by long delta record chains. The newly 
created page has the same PID in the mapping table and replaces the old page, which is 
marked for garbage collection.

Two other processes can create new index pages, page splitting and page 
merging. Both are complex actions and deserve detailed explanations of their internal 
implementation.

Page Splitting
Page splitting occurs when a page does not have enough free space to accommodate a 
new data row. Even though the process is similar to a B-Tree on-disk index page split, 
there is one conceptual difference. In B-Tree indexes, the page split moves the part of 
the data to the new data page, freeing up space on the original page. In Bw-Tree indexes, 
however, the pages are non-modifiable, and SQL Server replaces the old page with two 
new ones, splitting the data between them.

Let’s look at this situation in more detail. Figure B-1 shows the internal and leaf 
pages of the nonclustered index. Let’s assume that one of the sessions wants to insert a 
row with a key of value Bob.

http://dx.doi.org/10.1007/978-1-4842-1136-6_5


Appendix B ■ pAge Splitting And pAge Merging in noncluStered indexeS

214

When the delta record is created, SQL Server adjusts the delta records statistics on 
the index page and detects that there is no space on the page to accommodate the new 
index value once the delta records are consolidated. It triggers a page split process, which 
is done in two atomic steps.

In the first step, SQL Server creates two new leaf-level pages and splits the old page 
values between them. After that, it repoints the mapping table to the first newly created 
page and marks the old page and the delta records for garbage collection; Figure B-2 
illustrates this state. At this state, there are no references to the second newly created   
leaf-level page from the internal pages. The first leaf-level page, however, maintains the 
link between pages (through the mapping table), and SQL Server is able to access and 
scan the second page if needed.

During the second step, SQL Server creates another internal page with key values 
that represent the new leaf-level page layout. When the new page is created, SQL Server 
switches the pointer in the mapping table and marks the old internal page for garbage 
collection. Figure B-3 illustrates this action.

Figure B-1. Page splitting: Initial state

Figure B-2. Page splitting: First step
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Eventually, the old data pages and delta records are deallocated by the garbage 
collection process.

Page Merging
Page merging occurs when a delete operation leaves an index page less than 10% from 
the maximum page size, which is 8KB now, or when an index page contains just a single 
row. During this operation, SQL Server merges the data from two adjacent index pages, 
replacing them with the new, combined, data page.

Assume that you have the page layout shown in Figure B-3, and you want to delete 
the index key value Bob, which means that all data rows with the name Bob have been 
already deleted. This leaves an index page with the single value Boris, which triggers  
page merging.

In the first step, SQL Server creates a delete delta record for Bob and another special 
kind of delta record called merge delta. Figure B-4 illustrates the layout after the first step.

Figure B-3. Page splitting: Second step

Figure B-4. Page merging: First step
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During the second step of page merging, SQL Server creates a new internal page that 
does not reference the leaf-level page that it is about to be merged. After that, SQL Server 
switches the mapping table to point to the newly created internal page and marks the old 
page for garbage collection. Figure B-5 illustrates this action.

Finally, SQL Server builds a new leaf-level page, copying the Boris value there. After 
the new page is created, it updates the mapping table and marks the old pages and delta 
records for garbage collection.

Figure B-6 shows the final data layout after page merging is completed.

You can get page consolidation, merging, and splitting statistics from the  
sys.dm_db_xtp_nonclustered_index_stats view.

 ■ Note You can read documentation about the sys.dm_db_xtp_nonclustered_index_
stats view at https://msdn.microsoft.com/en-us/library/dn645468.aspx.

Figure B-5. Page merging: Second step

Figure B-6. Page merging: Third (  final) step

https://msdn.microsoft.com/en-us/library/dn645468.aspx
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Summary
The In-Memory OLTP Engine uses several internal operations to maintain the structure of 
nonclustered indexes. Page consolidation rebuilds the index page, combining page data 
with the delta records. It helps avoid the performance impact introduced by long delta 
records chains.

Page splitting occurs when the index page does not have enough space to 
accommodate the new rows. In contrast to page splitting on-disk B-Tree indexes, which 
moves part of the data to the new page, Bw-Tree page splitting replaces the old data page 
with new pages that contain the data.

Page merging occurs when an index page is less than 10% of the maximum page size 
or when it has just a single row. SQL Server merges the data from adjacent data pages and 
replaces them with the new page with the merged data.
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Appendix C

Analyzing the States of 
Checkpoint File Pairs

SQL Server persists data from durable memory-optimized tables in checkpoint file 
pairs. This appendix demonstrates how to analyze their states using the sys.db_dm_xtp_
checkpoint_files view and shows the state transitions through the CFP lifetime.

Sys.db_dm_xtp_checkpoint_files View
The sys.db_dm_xtp_checkpoint_files view provides information about database 
checkpoint files, including their state, size, and physical location. We will use this view 
extensively in this appendix. Let’s look at the most important columns.

•	 The container_id and container_guid columns provide 
information about the FILESTREAM container to which the 
checkpoint file belongs. Container_id corresponds to the  
file_id column in the sys.database_files view.

•	 checkpoint_file_id is a GUID that represents the ID of the file.

•	 checkpoint_pair_file_id is the ID of the second, data or delta, 
file in the pair.

•	 relative_file_path shows the relative file path in the container.

•	 state and state_desc describe the state of the file. As you already 
know from Chapter 8, the checkpoint file pair can be in one of the 
following states (the number represents the state column value): 
(0) - PRECREATED, (1) - UNDER CONSTRUCTION, (2) - ACTIVE, 
(3) - MERGE TARGET, (4) - MERGED SOURCE, (5) - REQUIRED 
FOR BACKUP/HA, (6) - IN TRANSITION TO TOMBSTONE,  
(7) - TOMBSTONE.

•	 file_type and file_type_desc describe the type of file:  
(0) - DATA_FILE, (1) - DELTA_FILE. These columns return NULL 
if the CFP is in the TOMBSTONE state.

http://dx.doi.org/10.1007/978-1-4842-1136-6_8
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•	 lower_bound_tsn and upper_bound_tsn indicate the timestamp 
of the earliest and latest transactions covered by the data file. 
These columns are populated only for ACTIVE, MERGE TARGET, and 
MERGED SOURCE states.

•	 internal_storage_slot is the index of the file in the internal 
storage array. As you already know from Chapter 8, In-Memory 
OLTP persists the metadata information about checkpoint file 
pairs in an internal 8,192-slot array. This column of the view is 
populated only for UNDER CONSTRUCTION and ACTIVE CFPs.

•	 file_size_in_bytes and file_size_used_in_bytes provide 
information about file size and space used in the file. When the 
file is still being populated, file_size_used_in_bytes is updated 
at the time of the checkpoint event. These columns return NULL 
for files in the REQUIRED FOR BACKUP/HA, IN TRANSITION TO 
TOMBSTONE, and TOMBSTONE states.

•	 inserted_row_countand deleted_row_count provide the 
number of rows in the data and delta files. Drop_table_deleted_
row_count shows the number of rows in the tables that were 
dropped.

Let’s use this view and analyze the state transitions of the checkpoint file pairs.

The Lifetime of Checkpoint File Pairs
As the first step in this test, let’s enable the undocumented trace flag TF9851 using the 
DBCC TRACEON(9851,-1) command. This trace flag disables the automatic merge process, 
which will allow you to have more control over your test environment.

 ■ Important do not set TF9851 in production.

Let’s create the database with an In-Memory OLTP file group and perform the 
full backup starting the backup chain, as shown in Listing C-1. I am doing it in the test 
environment and not following best practices (such as placing In-Memory OLTP and 
on-disk data on different drives, creating secondary file groups for on-disk data, and a few 
others). Obviously, you should remember to follow best practices when you design your 
real databases.

http://dx.doi.org/10.1007/978-1-4842-1136-6_8


Appendix C ■ AnAlyzing the StAteS of CheCkpoint file pAirS

221

Listing C-1. Creating a Database and Performing Backup

create database [AppendixC]
on primary
(
    name = N'AppendixC'
    ,filename = N'C:\Data\AppendixC.mdf'
),
filegroup HKData CONTAINS MEMORY_OPTIMIZED_DATA
(
    name = N'AppendixC_HKData'
    ,filename = N'C:\Data\HKData\AppendixC'
)
log on
(
    name = N'AppendixC_Log'
    ,filename = N'C:\Data\AppendixC_log.ldf'
)
go
 
backup database [AppendixC]
to disk = N'C:\Data\Backups\AppendixC.bak'
with noformat, init, name = 'AppendixC - Full', compression;

The database is currently empty and, therefore, it does not have any checkpoint file 
pairs created. You can confirm this by querying the sys.dm_db_xtp_checkpoint_files 
view, as shown in Listing C-2.

Listing C-2. Checking Checkpoint File Pairs

use [AppendixC]
go
 
select
    checkpoint_file_id
    ,checkpoint_pair_file_id
    ,file_type_desc
    ,state_desc
    ,file_size_in_bytes
    ,relative_file_path
from
    sys.dm_db_xtp_checkpoint_files
order by
    state, file_type
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Figure C-1 shows that result set is empty and that the sys.dm_db_xtp_checkpoint_
files view does not return any data.

As the next step, let’s create a durable memory-optimized table, as shown in Listing C-3. 

Listing C-3. Creating a Durable Memory-Optimized Table

create table dbo.HKData
(
    ID int not null,
    Placeholder char(8000) not null,
 
    constraint PK_HKData
    primary key nonclustered hash(ID)
    with (bucket_count=10000),
)
with
(
    memory_optimized=on
    ,durability=schema_and_data
)

If you check the state of the checkpoint file pairs now and run the code from Listing C-2  
again, you will see the output shown in Figure C-2. The total number of files and their size 
may be different in your environment and will depend on the hardware. My test virtual 
machine has four vCPU and 8GB of RAM, so I have eight checkpoint file pairs in the 
PRECREATED state with 16MB data and 1MB delta files. I also have one CFP in the UNDER 
CONSTRUCTION state.

Figure C-1. State of checkpoint file pairs after database creation
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Let’s enlarge the output for the files from the UNDER CONSTRUCTION CFP, as shown 
in Figure C-3. As you can see, the checkpoint_pair_file_id values reference the 
checkpoint_file_id of the second file in the pair. 

Relative_file_path provides the path to the file relative to the FILESTREAM 
container in the In-Memory OLTP file group. Figure C-4 shows the checkpoint files in the 
folder on the disk.

Figure C-2. State of checkpoint file pairs after creating the durable memory-optimized table

Figure C-3. UNDER CONSTRUCTION checkpoint file pair
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Now, populate the dbo.HKData table with 1,000 rows and check the status of the 
checkpoint files, as shown in Listing C-4. The query filters out the checkpoint file pairs in 
the PRECREATED state from the output.

Listing C-4. Populating the dbo.HKData Table and Checking the States of the CFPs

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into dbo.HKData(Id, Placeholder)
    select Id, Replicate('0',8000)
    from ids
    where Id <= 1000;
 
select
    checkpoint_file_id
    ,file_type_desc
    ,state_desc
    ,lower_bound_tsn
    ,upper_bound_tsn
    ,file_size_in_bytes
    ,inserted_row_count
    ,deleted_row_count
from
    sys.dm_db_xtp_checkpoint_files
where
    state_desc <> 'PRECREATED'
order by
    state, file_type;

Figure C-4. Checkpoint files on disk
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As you can see in Figure C-5, SQL Server populates the data file in the UNDER 
CONSTRUCTION CFP by inserting 1,000 rows there. The NULL value in the lower_bound_tsn 
column indicates that this CFP covers transactions from the time of database creation. 
Similarly, the NULL value in the upper_bound_tsn column indicates that this CFP covers 
current transactions.

Let’s run a manual CHECKPOINT and check the status of checkpoint file pairs, as 
shown in Listing C-5. 

Listing C-5. Forcing CHECKPOINT and Checking the Status of CFPs

checkpoint
go
 
select
    checkpoint_file_id
    ,file_type_desc
    ,state_desc
    ,lower_bound_tsn
    ,upper_bound_tsn
    ,file_size_in_bytes
    ,file_size_used_in_bytes
    ,inserted_row_count
    ,deleted_row_count
from
    sys.dm_db_xtp_checkpoint_files
where
    state_desc <> 'PRECREATED'
order by
    state, file_type;

As you can see in Figure C-6, the CHECKPOINT operation transitions the UNDER 
CONSTRUCTION CFP to the ACTIVE state. The upper_bound_tsn columns are now 
populated, indicating the maximum timestamp for transactions covered by the 
checkpoint file pair.

Figure C-5. UNDER CONSTRUCTION CFP state after insert
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Let’s insert another 1,000 rows to the dbo.HKData table and check the status of the 
CFPs. Listing C-6 shows the code to perform this. 

Listing C-6. Populating the dbo.HKData Table with Another Batch of Rows and Checking 
the States of the CFPs Afterwards

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into dbo.HKData(Id, Placeholder)
    select 1000 + Id, Replicate('0',8000)
    from ids
    where Id <= 1000;
 
select
    checkpoint_file_id
    ,file_type_desc
    ,state_desc
    ,lower_bound_tsn
    ,upper_bound_tsn
    ,file_size_in_bytes
    ,inserted_row_count
    ,deleted_row_count
from
    sys.dm_db_xtp_checkpoint_files
where
    state_desc <> 'PRECREATED'
order by
    state, file_type;

Figure C-7 shows the states of the checkpoint file pairs after the second insert. As you 
can see, SQL Server creates another CFP in the UNDER CONSTRUCTION state with  
lower_bound_tsn = 4.

Figure C-6. The CFP state after CHECKPOINT
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Another CHECKPOINT would transition the UNDER CONSTRUCTION CFP to the ACTIVE 
state, as shown in Figure C-8. You can force it by running the code from Listing C-5 again. 
At this point, you have two ACTIVE checkpoint file pairs covering different ranges of 
transaction timestamps. 

As the next step, let’s delete 66.7% of the rows from the table, as shown in Listing C-7. 
In this listing, you are also running the query that combines the information about the 
data and delta files, and demonstrates that both checkpoint file pairs are mostly empty.

Listing C-7. Deleting 66.7% of the Rows from the Table

delete from dbo.HKData
where ID % 3 <> 0;
 
select
    data.checkpoint_file_id
    ,data.state_desc
    ,data.lower_bound_tsn
    ,data.upper_bound_tsn
    ,data.inserted_row_count
    ,delta.deleted_row_count

Figure C-7. States of CFPsafter the second INSERT

Figure C-8. States of CFPs after second CHECKPOINT
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    ,convert(decimal(5,2),
        100. - 100. * delta.deleted_row_count /
            IIF(data.inserted_row_count = 0,1,data.inserted_row_count)
        ) as [% Full]
from
    sys.dm_db_xtp_checkpoint_files data join
        sys.dm_db_xtp_checkpoint_files delta on
            data.checkpoint_pair_file_id =
                delta.checkpoint_file_id
where
    data.file_type_desc = 'DATA' and
    data.state_desc <> 'PRECREATED';

As you can see in Figure C-9, both files are just 33.3% full so they are perfect 
candidates for the merge.

You can trigger the merge by calling the sys.sp_xtp_merge_checkpoint_files 
system stored procedure. This procedure requires you to provide the lower and upper 
bounds for the merge and it does not accept NULL as the parameter value. You can use any 
tsn, which is covered by the CFP file participating in the merge.

As already discussed, in most cases you can rely on the automatic merge and do not 
need to call this procedure manually. One of the cases when manual merge is beneficial 
is the situation when the size of the data in the durable memory-optimized tables is  
close to 256GB and you want granular control over the merge process, avoiding situations 
when you do not have enough space in the checkpoint file pairs to store the data.  
Listing C-8 shows the code that calls the stored procedure. 

Listing C-8. Trigerring the Merge Process

exec sys.sp_xtp_merge_checkpoint_files
    @database_name = 'AppendixC'
    ,@transaction_lower_bound = 1
    ,@transaction_upper_bound = 8;

Figure C-9. States after deletion
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You can check the status of merge requests by examining the sys.dm_db_xtp_merge_
requests view, as shown in Listing C-9. Figure C-10 illustrates the output of the query.

Listing C-9. Checking the Status of the Merge Request

select
    request_state_desc
    ,destination_file_id
    ,lower_bound_tsn
    ,upper_bound_tsn
    ,source0_file_id
    ,source1_file_id
from
    sys.dm_db_xtp_merge_requests;  

 ■ Note  you can read more about the sys.sp_xtp_merge_checkpoint_files stored 
procedure at https://msdn.microsoft.com/en-us/library/dn198330.aspx. More 
information about sys.dm_db_xtp_merge_requests is available at https://msdn.
microsoft.com/en-us/library/dn465868.aspx.

Figure C-11 illustrates the state of checkpoint file pairs after the merge is initiated. 
As you can see, SQL Server creates the new checkpoint file pair in the MERGE TARGET state 
and merges data from ACTIVE CFPs there. You can also see the correlation between the 
checkpoint_file_id of CFPs with destination_file_id and source_file_id columns 
in sys.dm_db_xtp_merge_requests view.

Figure C-10. Merge request status

https://msdn.microsoft.com/en-us/library/dn198330.aspx
https://msdn.microsoft.com/en-us/library/dn465868.aspx
https://msdn.microsoft.com/en-us/library/dn465868.aspx
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The next CHECKPOINT will transition the checkpoint file pairs that participated in 
merge from ACTIVE to MERGED SOURCE and from MERGE TARGET CFP to ACTIVE states. 
Figure C-12 demonstrates this. Now the merge is considered to be complete and the 
request state value from the sys.dm_db_xtp_merge_requests view is changed to 
INSTALLED.

After the next CHECKPOINT, the MERGED SOURCE CFPs will be transitioned to the 
REQUIRED FOR BACKUP/HA state, as shown in Figure C-13.

Figure C-11. The state of checkpoint file pairs after the merge is initiated

Figure C-12. The state of the checkpoint file pairs after the merge is completed
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After the transaction log backup is taken, log records are transmitted to secondary 
nodes, and the checkpoint event occurs, these CFPs are eventually picked up by the 
garbage collection thread and moved to IN TRANSITION TO TOMBSTONE and TOMBSTONE 
states and eventually deallocated. You can also force manual garbage collection by calling 
the sys.sp_xtp_checkpoint_force_garbage_collection stored procedure. Listing C-10 
illustrates this. 

Listing C-10. Performing Log Backup and Forcing Garbage Collection

backup log [AppendixC]
to disk = N'C:\Data\Backups\AppendixC.bak'
with noformat, noinit, name = 'AppendixC - Log', compression
go
 
checkpoint
go
 
exec sys.sp_xtp_checkpoint_force_garbage_collection; 

 ■ Note  in reality, it could take more than one log backup and checkpoint event to 
transition Cfps to the IN TRANSITION TO TOMBSTONE state. you can execute the code from 
listing C-10 multiple times if it happens in your system.

you can read more about the sys.sp_xtp_checkpoint_force_garbage_collection stored 
procedure at https://msdn.microsoft.com/en-us/library/dn451428.aspx.

Figure C-14 illustrates CFPs in the TOMBSTONE state. Eventually, they will be cleared 
from the result sets and deallocated. 

Figure C-13. The MERGED SOURCE CFPs are transitioned to the REQUIRED FOR 
BACKUP/HA state after the next checkpoint

https://msdn.microsoft.com/en-us/library/dn451428.aspx
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Summary
Every checkpoint file pair transitions through various states during its lifetime. You can 
analyze these states using the sys.dm_db_xtp_checkpoint_files data management 
view. This view returns information about individual checkpoint files, including their 
type, size, state, number of inserted and deleted rows, and quite a few other properties.

The merge process merges information from the ACTIVE checkpoint file pairs that 
have a large percent of deleted rows, creating a new CFP. In most cases, you can rely on 
the automatic merge process; however, you can trigger a manual merge using the  
sys.sp_xtp_merge_checkpoint_files stored procedure. You can monitor the status of 
merge requests using the sys.dm_db_xtp_merge_requests view.

Merged checkpoint file pairs should be included in the log backup before they are 
deallocated. As with the merge, you can rely on the automatic garbage collection process 
in most cases. However, you can trigger the manual garbage collection process using the 
sys.sp_xtp_checkpoint_force_garbage_collection stored procedure.

Figure C-14. CFPs in the TOMBSTONE state
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Appendix d

In-Memory OLTP  
Migration Tools

This appendix discusses several SQL Server 2014 tools that help with In-Memory OLTP 
migration.

Management Data Warehouse Enhancements
One of the challenges during In-Memory OLTP migration is determining the list of 
objects that will benefit the most from it. The Pareto principle can be easily applied here: 
if migration targets are identified correctly, you can achieve 80 percent of possible gains 
by spending 20 percent of your time.

Management Data Warehouse in SQL Server 2014 has several enhancements that 
can help you to identify migration targets in the system. It detects the tables that suffer 
from lock and latch contention along with frequently executed stored procedures that 
consume the most CPU resources on the server. Management Data Warehouse provides a 
set of reports that allows you to estimate the amount of migration work and performance 
gain you will achieve after it is done.

Let’s go through the process and configure Management Data Warehouse in the 
system. You can collect metrics from SQL Server 2008 and 2012 instances as long as you 
are using Management Data Warehouse from SQL Server 2014.

 ■ Note  In this appendix, I am using the demo application and WebRequests*_Disk 
tables from Chapter 2 of this book. I also added several LOB columns and trigger to the 
tables to illustrate how tools provide information about constructs that are not supported in 
In-Memory OLTP.

You can configure Management Data Warehouse in the Management ➤ Data 
Collection section of SQL Server Management Studio, as shown in Figure D-1. 

http://dx.doi.org/10.1007/978-1-4842-1136-6_2
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In the first step in the process you need to choose the server and database where you 
will store the collected data. You can choose an existing database or create a new one, as 
shown in Figure D-2.

After the server and the database are selected, you can setup Management Data 
Warehouse security by assigning logins to the database roles, as shown in Figure D-3.

Figure D-1. The Configure Management Data Warehouse menu

Figure D-2. Selecting the server and database for Management Data Warehouse
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This is the final configuration step of the wizard, and clicking the Next button will 
bring you to the confirmation page. Click the Finish button; successful execution will bring 
the Success page shown in Figure D-4.

Figure D-3. Configuring Management Data Warehouse security
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After Management Data Warehouse is created, you should configure and start the 
Data Collectors by completing another wizard from the Management ➤ Data Collection 
menu. Figure D-5 illustrates its location.

Figure D-5. The Configure Data Collection menu

Figure D-4. Configuring Management Data Warehouse - Success confirmation

In this wizard, you should provide connection information to Management Data 
Warehouse and choose Transaction Performance Data Collection Sets in the list of the 
data collectors, as shown in Figure D-6.
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After the wizard is completed, you will see two Data Collection Sets, as shown in 
Figure D-7. Make sure that both of them are started and collecting the information. 

You can analyze collected data by using the Transaction Performance Analysis 
Overview report, which is available in the Management Data Warehouse database, as 
shown in Figure D-8. 

Figure D-6. The Configure Data Collection Wizard

Figure D-7. Data Collection Sets
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The Transaction Performance Analysis Overview report is shown in Figure D-9.

From this page, you have access to three drill-down reports. Tables Usage Analysis 
and Table Contention Analysis provide table-related statistics based on how often tables 
are accessed and how much they suffer from lock and latch contention.

Figure D-10 illustrates the output of the Table Contention Analysis report. As you can 
see, it displays the output in four quadrants based on the amount of work required for the 
migration and the estimated performance gain it will provide. Migration of the objects 
from the upper right quadrant will provide the most performance gain with the lowest 
amount of work involved. 

Figure D-8. Management Data Warehouse reports

Figure D-9. The Transaction Performance Analysis Overview report
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You can see the statistics on the table level by clicking the object in the report. 
Figure D-11 shows the details for the WebRequestHeaders_Disk table in the system. The 
first output illustrates access method-related statistics. The demo application does not 
read the data from the table, which affects the numbers you see in the Figure.

Figure D-10. The Table Contention Analysis report



APPendIx d ■ In-MeMOry OLTP MIgrATIOn TOOLs 

240

The second output shows lock- and latch-related statistics for the table. The table 
suffers from a large amount of page latches, as you saw in Chapter 2.

Finally, the third output illustrates the number of migration blockers and issues that 
need to be addressed before migration. 

Similarly, the Procedure Usage Analysis report shows stored procedure usage based 
on CPU time consumed. Figure D-12 illustrates the output of the report. The demo 
application called just the single procedure, which is displayed here. 

Figure D-11. Table-Level Statistics

http://dx.doi.org/10.1007/978-1-4842-1136-6_2
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You can drill down to the procedure-level statistics, which displays the execution 
count, execution time metrics, and tables that are referenced by the stored procedure. 
Figure D-13 illustrates this page. 

Figure D-12. The Procedure Usage Analysis Report

Figure D-13. Procedure-Level Statistics
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Management Data Warehouse is a great tool that can help you identify objects that 
will benefit from migration. However, you should not rely solely on its results. Look and 
analyze the entire system before making any decisions.

Finally, it is worth mentioning that, as with any tool, the quality of output greatly 
depends on the quality of input. You need to collect a representative workload from a 
production server to get accurate results.

Memory Optimization and Native  
Compilation Advisors
In addition to Management Data Warehouse, SQL Server 2014 includes two other 
tools that can help with In-Memory OLTP migration. The Memory Optimization and 
Native Compilation Advisors analyze database tables and stored procedures to identify 
unsupported constructs. Moreover, the Memory Optimization Advisor can perform the 
actual migration, creating an In-Memory OLTP filegroup and memory-optimized table, 
and move data from the on-disk table there.

You can access both advisors from the object context menu in SSMS. Figure D-14 
shows table context menu with the Memory Optimization Advisor menu item highlighted.

Figure D-14. The Memory Optimization Advisor menu

As the first step, the wizard analyzes the table and displays constructs that are 
unsupported by In-Memory OLTP. Figure D-15 shows the output of the validation on 
the WebRequestHeaders_Disk table. As mentioned, I added several LOB columns and a 
trigger to the table, which were reported by the advisor.
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If the table does not use any unsupported constructs, the advisor proceeds with the 
option of creating an In-Memory OLTP filegroup and performing actual table migration.

The simplicity of the wizard, however, is a two-edged sword. It can simplify the 
migration process and, in some cases, allow the enabling of In-Memory OLTP and 
moving data into memory with a few mouse clicks. However, as you already know, 
In-Memory OLTP deployments require careful hardware and infrastructure planning, 
redesigning of indexing strategies, changes in database maintenance and monitoring, 
and quite a few other steps to be successful. Improperly done migration can lead to 
suboptimal results, and the simplicity of the advisor increases that chance.

The advisor is a very useful tool for identifying migration roadblocks. You should be 
very careful, however, to rely on it performing the actual migration process.

As the opposite of the Memory Optimization Advisor, the Native Compilation Advisor 
does not create a natively compiled version of the stored procedures. It just analyzes 
whether stored procedures have unsupported constructs that prevent native compilation.

Figure D-16 illustrates the output of the Native Compilation Advisor for the 
InsertRequestInfo_Disk stored procedure defined in Chapter 2.

Figure D-15. The Memory Optimization Advisor validation results

http://dx.doi.org/10.1007/978-1-4842-1136-6_2
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Figure D-16. Native Compilation Advisor output

In-Memory OLTP migration tools can help you identify targets for migration and 
help during the process. However, it is best to take their advice with a grain of salt and not 
explicitly rely on their output. After all, you know your system better than any automatic 
tool does.

Summary
SQL Server 2014 provides several tools that can help with In-Memory OLTP migration. 
Management Data Warehouse allows you to collect transaction performance metrics 
and identify the possible targets for migration. The Memory Optimization and Native 
Compilation Advisors analyze tables and stored procedures to identify the constructs 
unsupported by In-Memory OLTP.

Those tools are beneficial and can save you a good amount of time during the 
migration process. However, you should not rely strictly on their output when you 
perform the analysis. You need to analyze the entire system, including infrastructure 
and hardware, indexing strategies, database maintenance routines, and other factors to 
achieve the best results with In-Memory OLTP.
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