
Shelve in:
Databases/MS SQL Server

User level:
Intermediate–Advanced

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Korotkevitch

www.apress.com

Expert SQL Server In-Memory
OLTP
Expert SQL Server In-Memory OLTP is a deep dive into one of the most signifi cant
features of SQL Server 2014 – support for In-Memory Online Transaction Processing.
The book describes the architecture and internals of the In-Memory OLTP Engine
and explains how to develop, deploy, and maintain systems using it. With it you can
dramatically increase transactional throughput to handle thousands of transactions
per second supporting millions of customers.

Dmitri Korotkevitch, the fi ve-star author of Pro SQL Server Internals, now brings
his same combination of clear thinking and deep expertise to the question of how to
recognize the opportunities and benefi t from Microsoft’s In-Memory OLTP feature set
in SQL Server 2014.

Learn the architecture and the internals in order to recognize when In-Memory
OLTP can make a difference. Learn useful scenarios for thoughtfully incorporating
in-memory support into existing applications. Recognize opportunities for In-Memory
OLTP in new development. Don’t be without Dmitri Korotkevitch and the deep
expertise he imparts in Expert SQL Server In-Memory OLTP as you move forward in
using SQL Server’s new and important In-Memory OLTP feature set.

• Covers In-Memory OLTP internals and architecture, including data
storage, indexing, multi-version concurrency control, transaction logging,
and recovery

• Illustrates In-Memory OLTP programmability and the process of
native compilation

• Guides in using In-Memory OLTP in new development and existing systems

SOURCE CODE ONLINE 9 781484 211373

54999
ISBN 978-1-4842-1137-3

www.allitebooks.com

http://www.allitebooks.org

Expert SQL Server
In-Memory OLTP

Dmitri Korotkevitch

www.allitebooks.com

http://www.allitebooks.org

Expert SQL Server In-Memory OLTP

Copyright © 2015 by Dmitri Korotkevitch

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1137-3

ISBN-13 (electronic): 978-1-4842-1136-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jonathan Gennick
Development Editor: Douglas Pundick
Technical Reviewer: Sergey Olontsev
Editorial Board: Steve Anglin, Mark Beckner, Gary Cornell, Louise Corrigan, Jim DeWolf,

Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham,
Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Jill Balzano
Copy Editor: Mary Behr
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

www.allitebooks.com

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

To all my friends from the SQL Server community and outside of it

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author �� xiii

About the Technical Reviewer ��� xv

Acknowledgments ��� xvii

Introduction �� xix

 ■Chapter 1: Why In-Memory OLTP? �� 1

 ■Chapter 2: In-Memory OLTP Objects ��� 7

 ■Chapter 3: Memory-Optimized Tables �� 27

 ■Chapter 4: Hash Indexes ��� 39

 ■Chapter 5: Nonclustered Indexes ��� 61

 ■Chapter 6: In-Memory OLTP Programmability ������������������������������ 79

 ■Chapter 7: Transaction Processing in In-Memory OLTP ������������� 103

 ■Chapter 8: Data Storage, Logging, and Recovery ����������������������� 121

 ■Chapter 9: Garbage Collection �� 135

 ■Chapter 10: Deployment and Management �������������������������������� 147

 ■Chapter 11: Utilizing In-Memory OLTP �� 169

 ■Appendix A: Memory Pointers Management ������������������������������ 209

 ■ Appendix B: Page Splitting and Page Merging in
Nonclustered Indexes ��� 213

www.allitebooks.com

http://www.allitebooks.org

■ Contents at a GlanCe

vi

 ■Appendix C: Analyzing the States of Checkpoint File Pairs �������� 219

 ■Appendix D: In-Memory OLTP Migration Tools ��������������������������� 233

Index �� 245

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author �� xiii

About the Technical Reviewer ��� xv

Acknowledgments ��� xvii

Introduction �� xix

 ■Chapter 1: Why In-Memory OLTP? �� 1

Background ��� 1

In-Memory OLTP Engine Architecture �� 3

Summary ��� 5

 ■Chapter 2: In-Memory OLTP Objects ��� 7

Preparing a Database to Use In-Memory OLTP ��������������������������������������� 7

Creating Memory-Optimized Tables �� 8

Working with Memory-Optimized Tables �� 11

In-Memory OLTP in Action: Resolving Latch Contention ������������������������ 16

Summary ��� 24

 ■Chapter 3: Memory-Optimized Tables �� 27

On-Disk vs� Memory-Optimized Tables ��� 27

Introduction to the Multiversion Concurrency Control �������������������������� 31

Data Row Format��� 33

Native Compilation of Memory-Optimized Tables ��������������������������������� 35

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

Memory-Optimized Tables: Surface Area and Limitations ��������������������� 36

Supported Data Types ��� 36

Constraints and Table Features �� 37

Database-Level Limitations �� 37

High Availability Technologies Support �� 38

Summary ��� 38

 ■Chapter 4: Hash Indexes ��� 39

Hashing Overview ��� 39

Much Ado About Bucket Count �� 40

Bucket Count and Performance �� 41

Choosing the Right Bucket Count ��� 46

Changing the Bucket Count in the Index �� 47

Hash Indexes and SARGability��� 48

Statistics on Memory-Optimized Tables �� 52

Summary ��� 58

 ■Chapter 5: Nonclustered Indexes ��� 61

Working with Nonclustered Indexes �� 61

Creating Nonclustered Indexes ��� 62

Using Nonclustered Indexes ��� 62

Nonclustered Indexes Internals ��� 67

Bw-Tree Overview �� 67

Index Pages and Delta Records �� 69

Obtaining Information About Nonclustered Indexes ������������������������������ 71

Hash Indexes vs� Nonclustered Indexes �� 74

Summary ��� 78

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

ix

 ■Chapter 6: In-Memory OLTP Programmability ������������������������������ 79

Native Compilation �� 79

Natively Compiled Stored Procedures �� 84

Creating Natively Compiled Stored Procedures �� 84

Supported T-SQL Features �� 86

Atomic Blocks ��� 88

Optimization of Natively Compiled Stored Procedures ��� 91

Interpreted T-SQL and Memory-Optimized Tables ��������������������������������� 92

Performance Comparison �� 92

Memory-Optimized Table Types and Variables �������������������������������������� 99

Summary ��� 101

 ■Chapter 7: Transaction Processing in In-Memory OLTP ������������� 103

ACID, Transaction Isolation Levels, and Concurrency Phenomena
Overview ��� 103

Transaction Isolation Levels in In-Memory OLTP ��������������������������������� 106

Cross-Container Transactions ��� 112

Transaction Lifetime �� 114

Summary ��� 119

 ■Chapter 8: Data Storage, Logging, and Recovery ����������������������� 121

Data Storage ��� 121

Checkpoint File Pairs States ��� 123

Transaction Logging �� 128

Recovery ��� 131

Summary ��� 133

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

 ■Chapter 9: Garbage Collection �� 135

Garbage Collection Process Overview ��� 135

Garbage Collection-Related Data Management Views ������������������������ 140

Exploring the Garbage Collection Process��� 140

Summary ��� 145

 ■Chapter 10: Deployment and Management �������������������������������� 147

Hardware Considerations �� 147

CPU ��� 148

I/O Subsystem �� 148

Memory �� 149

Administration and Monitoring Tasks �� 151

Limiting the Amount of Memory Available to In-Memory OLTP ����������������������������� 151

Monitoring Memory Usage for Memory-Optimized Tables ���������������������������������� 153

Monitoring In-Memory OLTP Transactions �� 157

Collecting Execution Statistics for Natively Compiled Stored Procedures ������������ 159

Metadata Changes and Enhancements ��� 162

Catalog Views ��� 162

Data Management Views �� 162

Extended Events and Performance Counters ��� 165

Summary ��� 168

 ■Chapter 11: Utilizing In-Memory OLTP �� 169

Design Considerations for the Systems Utilizing In-Memory OLTP ����� 169

Addressing In-Memory OLTP Limitations �� 171

8,060-Byte Maximum Row Size Limit��� 171

Lack of Uniqueness and Foreign Key Constraints �� 176

Case-Sensitivity Binary Collation for Indexed Columns ��������������������������������������� 182

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

xi

Thinking Outside the In-Memory Box �� 185

Importing Batches of Rows from Client Applications ��� 185

Using Memory-Optimized Objects as Replacements for Temporary
and Staging Tables ��� 188

Using In-Memory OLTP as Session - or Object State-Store ���������������������������������� 196

Using In-Memory OLTP in Systems with Mixed Workloads ����������������� 203

Summary ��� 207

 ■Appendix A: Memory Pointers Management ������������������������������ 209

Memory Pointers Management ��� 209

Summary ��� 211

 ■ Appendix B: Page Splitting and Page Merging in
Nonclustered Indexes ��� 213

Nonclustered Indexes Internal Maintenance ��������������������������������������� 213

Page Splitting ��� 213

Page Merging ��� 215

Summary ��� 217

 ■Appendix C: Analyzing the States of Checkpoint File Pairs �������� 219

Sys�db_dm_xtp_checkpoint_files View �� 219

The Lifetime of Checkpoint File Pairs �� 220

Summary ��� 232

 ■Appendix D: In-Memory OLTP Migration Tools ��������������������������� 233

Management Data Warehouse Enhancements ������������������������������������ 233

Memory Optimization and Native Compilation Advisors ���������������������� 242

Summary ��� 244

Index �� 245

xiii

About the Author

Dmitri Korotkevitch is a Microsoft SQL Server MVP
and a Microsoft Certified Master (SQL Server 2008)
with 20 years of IT experience including over
15 years of experience working with Microsoft SQL
Server as an application and database developer,
database administrator, and database architect.
Dmitri specializes in the design, development, and
performance tuning of complex OLTP systems that
handle thousands of transactions per second around
the clock.

Dmitri regularly speaks at various Microsoft
and SQL PASS events, and he provides SQL Server
training to clients around the world. He blogs at
http://aboutsqlserver.com, and he can be reached
at dk@aboutsqlserver.com.

http://aboutsqlserver.com
http://dk@aboutsqlserver.com

xv

About the Technical
Reviewer

Sergey Olontsev have been working with SQL Server
for more than 10 years both as a database administrator
and a developer, focusing on high availability and
disaster recovery solutions, ETL, troubleshooting and
performance tuning, and developing highly scalable
solutions. He has MCM certification and has won an
MVP award for SQL Server; he is also a regular speaker
at SQL Server user group meetings, SQL Saturday
events, and other conferences across Russia, Europe,
and the USA. Currently Sergey is living in Moscow,
Russia and is working for Kaspersky Lab, where he
is responsible for developing and supporting several
large internal databases. Maximum performance

and minimum latency while processing data are major goals in his current job, so his
company started using In-Memory OLTP to implement it in the most critical parts.

xvii

Acknowledgments

First and foremost, I would like to thank my family for their patience, understanding, and
continuous support. It would be impossible for me to write this book without it!

I am very grateful to my technical reviewer, Sergey Olontsev. His comments and
suggestions were enormously helpful and dramatically improved the quality of the book.

The same goes to the entire Apress team and especially to Jill Balzano, Mary Behr, and
Douglas Pundick. Special thanks to Jonathan Gennick, who convinced me to write this book
in the first place. We had very productive lunch, Jonathan, had we not?

Finally, I would like to thank my colleagues Vladimir Zatuliveter for his help with the
Chapter 11 code and Jason Vorbeck for providing me the testing environment I used during
my work on the book.

http://dx.doi.org/10.1007/978-1-4842-1136-6_11

xix

Introduction

Writing is an interesting process. You feel happy and energized when looking at the blank
Microsoft Word document with the Chapter 1 title. The energy and happiness, however,
quickly disappear and are replaced by tiredness and the constant pressure of deadlines.
Finally, when the book is done, you feel extremely exhausted and promise yourself that
you will never ever do it again.

It does not take long, however, to begin missing the process, pressure, and sleepless
nights. So when Jonathan Gennick from Apress asked me to consider writing a book on
In-Memory OLTP, it was an easy sell for him. After all, In-Memory OLTP is a fascinating
subject, and it changes the way you design OLTP systems. I was really disappointed that I
was unable to dive deeper into it during my work on my Pro SQL Server Internals book.

The Microsoft implementation of in-memory data is hardly the first solution on the
market. Nevertheless, it has several key differences from competitors’ implementations.
The biggest are the level of integration it provides with the classic Database Engine and its
simplicity for the end users. You can move data into memory and start using it with just a
handful of mouse clicks.

I would consider this simplicity, however, a double-edged sword. While it can
significantly reduce technology adoption time and cost, it can also open the door to
incorrect decisions and suboptimal implementations. As with any other technology,
In-Memory OLTP has been designed for a specific set of tasks, and it can hurt performance
of the systems when implemented incorrectly. Neither is it a “set it and forget it” type of
solution; you have to carefully plan it before and maintain it after the deployment.

In-Memory OLTP is a great technology and it can dramatically improve the performance
of systems. Nevertheless, you need to understand how it works under the hood to get the
most from it. The goal I set for this book is to provide you with such an understanding.
I will explain the internals of the In-Memory OLTP Engine and its components. I believe that
knowledge is the cornerstone in successful In-Memory OLTP implementations and it will
help you to make educated decisions on how and when to use the technology.

If you read my Pro SQL Server Internals book, you will notice some familiar content
from there. However, this book is a much deeper dive into In-Memory OLTP and you will
find plenty of new topics covered. You will also learn how to address some of In-Memory
OLTP’s limitations and how to benefit from it in existing systems when those limitations
make in-memory migration cost ineffective.

I want to reiterate that this book is covering In-Memory OLTP in SQL Server 2014.
Even though the core implementation principles will remain the same in SQL Server 2016
and future SQL Server releases, you should expect significant improvements in them.
In-Memory OLTP is one of the flagship SQL Server technologies, and Microsoft is fully
committed to it and is investing a large amount of engineering resources for this product.

Finally, I would like to thank you again for choosing this book and for your trust in me.
I hope that you will enjoy reading it as much as I enjoyed writing it.

http://dx.doi.org/10.1007/978-1-4842-1136-6_1

■ IntroduCtIon

xx

How This Book Is Structured
This book consists of 11 chapters and structured in the following way:

•	 Chapter 1 and Chapter 2 are the introductory chapters, which
will provide you the overview of technology and show how
In-Memory OLTP objects work together.

•	 Chapter 3, Chapter 4, and Chapter 5 explain how In-Memory
OLTP stores and works with data and indexes in memory.

•	 Chapter 6 talks about native compilation and the
programmability aspect of the technology.

•	 Chapter 7 explains how In-Memory OLTP handles concurrency
in a multi-user environment.

•	 Chapter 8 demonstrates how In-Memory OLTP persists data on
disk and how it works with the transaction log.

•	 Chapter 9 covers the In-Memory OLTP garbage collection process.

•	 Chapter 10 discusses the best practices for In-Memory OLTP
deployments and shows how to perform common database
administration tasks related to In-Memory OLTP.

•	 Chapter 11 demonstrates how to address some of the In-Memory
OLTP surface area limitations and how to benefit from In-Memory
OLTP components without moving data into memory.

The book also includes four appendixes:

•	 Appendix A explains how In-Memory OLTP works with memory
pointers in a multi-user environment.

•	 Appendix B covers how page splitting and merging processes are
implemented.

•	 Appendix C shows you how to analyze the state of checkpoint file
pairs and navigates you through their lifetime.

•	 Appendix D discusses SQL Server tools and wizards that can
simplify In-Memory OLTP migration.

Downloading the Code
You can download the code used in this book from the Source Code section of the
Apress web site (www.apress.com) or from the Publications section of my blog
(http://aboutsqlserver.com). The source code consists of a SQL Server Management
Studio solution, which includes a set of projects (one per chapter). Moreover, it includes
several .Net C# projects, which provide the client application code used in the examples
in Chapters 2 and 11.

http://dx.doi.org/10.1007/978-1-4842-1136-6_1
http://dx.doi.org/10.1007/978-1-4842-1136-6_2
http://dx.doi.org/10.1007/978-1-4842-1136-6_3
http://dx.doi.org/10.1007/978-1-4842-1136-6_4
http://dx.doi.org/10.1007/978-1-4842-1136-6_5
http://dx.doi.org/10.1007/978-1-4842-1136-6_6
http://dx.doi.org/10.1007/978-1-4842-1136-6_7
http://dx.doi.org/10.1007/978-1-4842-1136-6_8
http://dx.doi.org/10.1007/978-1-4842-1136-6_9
http://dx.doi.org/10.1007/978-1-4842-1136-6_10
http://dx.doi.org/10.1007/978-1-4842-1136-6_11
http://dx.doi.org/10.1007/978-1-4842-1136-6_A
http://dx.doi.org/10.1007/978-1-4842-1136-6_B
http://dx.doi.org/10.1007/978-1-4842-1136-6_C
http://dx.doi.org/10.1007/978-1-4842-1136-6_D
www.apress.com
http://aboutsqlserver.com
http://dx.doi.org/10.1007/978-1-4842-1136-6_2
http://dx.doi.org/10.1007/978-1-4842-1136-6_11

 ■ IntroduCtIon

xxi

I have tested all of the scripts in an environment with 3GB of RAM available to SQL
Server. In some cases, if you have less memory available, you will need to reduce amount
of test data generated by some of the scripts. You can also consider dropping some of the
unused test tables to free up more memory.

Contacting the Author
You can visit my blog at http://aboutsqlserver.com or email me at
dk@aboutsqlserver.com. As usual, I will be happy to answer any questions you have.

http://aboutsqlserver.com
mailto:dk@aboutsqlserver.com

1

Chapter 1

Why In-Memory OLTP?

This introductory chapter explains the importance of in-memory databases and the
problems they address. It provides an overview of the Microsoft In-Memory OLTP
implementation (code name Hekaton) and its design goals. Finally, this chapter discusses
the high-level architecture of the In-Memory OLTP Engine and how it is integrated into
SQL Server.

Background
Way back when SQL Server and other major databases were originally designed,
hardware was very expensive. Servers at that time had just one or very few CPUs, and a
small amount of installed memory. Database servers had to work with data that resided
on disk, loading it into memory on demand.

The situation has changed dramatically since then. During the last 30 years,
memory prices have dropped by a factor of 10 every 5 years. Hardware has become
more affordable. It is now entirely possible to buy a server with 32 cores and 1TB of RAM
for less than $50,000. While it is also true that databases have become larger, it is often
possible for active operational data to fit into the memory.

Obviously, it is beneficial to have data cached in the buffer pool. It reduces the load
on the I/O subsystem and improves system performance. However, when systems work
under a heavy concurrent load, it is often not enough. SQL Server manages and protects
page structures in memory, which introduces large overhead and does not scale well.
Even with row-level locking, multiple sessions cannot modify data on the same data page
simultaneously and must wait for each other.

Perhaps the last sentence needs to be clarified. Obviously, multiple sessions can
modify data rows on the same data page, holding exclusive (X) locks on different rows
simultaneously. However, they cannot update physical data page and row objects
simultaneously because it could corrupt the in-memory page structure. SQL Server
addresses this problem by protecting pages with latches. Latches work in a similar
manner to locks, protecting internal SQL Server data structures on the physical level
by serializing access to them, so only one thread can update data on the data page in
memory at any given point of time.

In the end, this limits the improvements that can be achieved with the current
database systems architecture. Although you can scale hardware by adding more CPUs
and cores, that serialization quickly becomes a bottleneck and a limiting factor in

Chapter 1 ■ Why In-MeMory oLtp?

2

improving system scalability. Likewise, you cannot improve performance by increasing
the CPU clock speed because the silicon chips would melt down. Therefore, the only
feasible way to improve database system performance is by reducing the number of CPU
instructions that need to be executed to perform an action.

Unfortunately, code optimization is not enough by itself. Consider the situation
where you need to update a row in a table. Even when you know the clustered key value,
that operation needs to traverse the clustered index tree, obtaining latches and locks
on the data pages and a row. In some cases, it needs to update nonclustered indexes,
obtaining the latches and locks there. All of that generates log records and requires
writing them and the dirty data pages to disk.

All of those actions can lead to a hundred thousand or even millions of CPU
instructions to execute. Code optimization can help reduce this number to some degree,
but it is impossible to reduce it dramatically without changing the system architecture
and the way the system stores and works with data.

These trends and architectural limitations led the Microsoft team to the conclusion
that a true in-memory solution should be built using different design principles and
architecture than the classic SQL Server Database Engine. The original concept was
proposed at the end of 2008, serious planning and design started in 2010, and actual
development began in 2011.

The main goal of the project was to build a solution that will be 100 times faster
than the existing SQL Server Engine, which explains the code name Hekaton (Greek for
one hundred). This goal has yet to be achieved; however, the first production release of
In-Memory OLTP can provide 20X-40X performance improvements in certain scenarios.

It is also worth mentioning that the Hekaton design has been targeted towards the
OLTP workload. As all of us know, specialized solutions designed for particular tasks and
workloads usually outperform general-purpose systems in the targeted areas. The same
is true for In-Memory OLTP. It shines with large and very busy OLTP systems that support
hundreds or even thousands of concurrent users. At the same time, In-Memory OLTP is
not necessarily the best choice for Data Warehouse workload, where other SQL Server
components could outperform it.

In-Memory OLTP has been designed with the following goals:

•	 Optimize data storage for main memory: Data in In-Memory
OLTP is not stored on on-disk data pages nor does it mimic an
on-disk storage structure when loaded into memory. This permits
the elimination of the complex buffer pool structure and the
code that manages it. Moreover, indexes are not persisted on
disk, and they are re-created upon startup when the data from
memory-resident tables is loaded into memory.

•	 Eliminate latches and locks: All In-Memory OLTP internal
data structures are latch- and lock-free. In-Memory OLTP uses
a new multiversion concurrency control to provide transaction
consistency. From a user standpoint, it behaves similar to the
regular SNAPSHOT transaction isolation level; however, it does not
use a locking or tempdb version store under the hood. This schema
allows multiple sessions to work with the same data without locking
and blocking each other and improves the scalability of the system,
allowing it to fully utilize modern multi-CPU/multi-core hardware.

Chapter 1 ■ Why In-MeMory oLtp?

3

•	 Use native compilation: T-SQL is an interpreted language
that provides great flexibility at the cost of CPU overhead. Even
a simple statement requires hundreds of thousands of CPU
instructions to execute. The In-Memory OLTP Engine addresses
this by compiling row-access logic and stored procedures into
native machine code.

The In-Memory OLTP Engine is fully integrated in the SQL Server Engine, which is
the key differentiator of the Microsoft implementation compared to other in-memory
database solutions. You do not need to perform complex system refactoring, splitting
data between in-memory and conventional database servers, or moving all of the data
from the database into memory. You can separate in-memory and disk data on a table-
by-table basis, which allows you to move active operational data into memory, keeping
other tables and historical data on disk. In some cases, that migration can even be done
transparently to client applications.

It sounds too good to be true and, unfortunately, there are still plenty of roadblocks
that you may encounter when working with this technology. The first release of In-Memory
OLTP supports just a subset of the SQL Server data types and features, which often
requires you to perform code and schema refactoring to utilize it. We will discuss those
limitations later in the book; however, you need to know that Microsoft is fully committed
to this project. You can expect that future versions of In-Memory OLTP will have a bigger
surface area and fewer restrictions compared to the initial release. In fact, you can
already see the changes in the CTP releases of SQL Server 2016 and in SQL Databases in
Microsoft Azure.

In-Memory OLTP Engine Architecture
In-Memory OLTP is fully integrated into SQL Server, and other SQL Server features and
client applications can access it transparently. Internally, however, it works and behaves
very differently than the SQL Server Storage Engine. Figure 1-1 shows the architecture of
the SQL Server Engine including the In-Memory OLTP components.

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Why In-MeMory oLtp?

4

In-Memory OLTP stores the data in memory-optimized tables. These tables reside
completely in memory and have a different structure compared to the classic on-disk tables.
With one small exception, memory-optimized tables do not store data on the data pages
linking the rows together through the chains of memory pointers. It is also worth noting
that memory-optimized tables do not share memory with on-disk tables and live outside
of the buffer pool.

 ■ Note We will discuss memory-optimized tables in detail in Chapter 3.

There are two ways the Database Engine can work with memory-optimized tables.
The first is the interop engine. It allows you to reference memory-optimized tables from
interpreted T-SQL code. The data location is transparent to the queries; you can access
memory-optimized tables, join them together and with on-disk tables, and work with
them in the usual way. Most T-SQL features and language constructs are supported in
this mode.

You can also access and work with memory-optimized tables using natively
compiled stored procedures. You can define those procedures similarly to the regular
T-SQL stored procedures using several additional language constructs introduced by
In-Memory OLTP.

Natively compiled stored procedures have been compiled into machine code and
loaded into SQL Server process memory. Those procedures can introduce significant
performance improvements compared to the interop engine; however, they support just a
limited set of T-SQL constructs and can access only memory-optimized tables.

Figure 1-1. SQL Server Engine architecture

http://dx.doi.org/10.1007/978-1-4842-1136-6_3

Chapter 1 ■ Why In-MeMory oLtp?

5

 ■ Note We will discuss natively compiled stored procedures in Chapter 6.

Now, it’s time to see how In-Memory OLTP components work together, which we
will do in the next chapter.

Summary
In-Memory OLTP has been designed using different design principles and architecture
than the classic SQL Server Engine. It is a specialized product targeted towards the
OLTP workload and can provide up to 20X-40X performance improvements in certain
scenarios. Nevertheless, it is fully integrated into the SQL Server Database Engine.
The data storage is transparent to the client applications, which do not require any code
changes if they use the features supported by In-Memory OLTP.

The data from memory-optimized tables is stored in memory separately from the
buffer pool. All of the In-Memory OLTP data structures are completely latch- and
lock-free, which allows scaling the systems by adding more CPUs to the servers.

In-Memory OLTP uses native compilation to the machine code for any row-access
logic. Moreover, it allows performing native compilation of the stored procedures, which
dramatically increase their performance.

The first release of In-Memory OLTP has a large number of limitations; however,
Microsoft is fully committed to the project and will address these limitations in future
In-Memory OLTP releases.

http://dx.doi.org/10.1007/978-1-4842-1136-6_6

7

Chapter 2

In-Memory OLTP Objects

This chapter provides a high-level overview of In-Memory OLTP objects. It shows how
to create databases with an In-Memory OLTP filegroup, and how to define memory-
optimized tables and access them through the interop engine and natively compiled
stored procedures. Finally, this chapter demonstrates performance improvements that
can be achieved with the In-Memory OLTP Engine when a large number of concurrent
sessions insert the data into the database and latch contention becomes the bottleneck.

Preparing a Database to Use In-Memory OLTP
The In-Memory OLTP Engine has been fully integrated into the Enterprise Edition of
SQL Server and is always installed with the product. It requires the 64-bit version of SQL
Server; it is not supported in the 32-bit version. You do not need to install any additional
packages nor perform any configuration changes on the SQL Server level in order to use
it as long as you are using the correct version and edition of the product. However, any
database that utilizes In-Memory OLTP objects should have a separate filegroup to store
memory-optimized data.

You can create this filegroup at database creation time or alter an existing database
and add the filegroup using the CONTAINS MEMORY_OPTIMIZED_DATA keyword.

Listing 2-1 shows the first example. The FILENAME property of the filegroup specifies
the folder in which In-Memory OLTP files would be located.

Listing 2-1. Creating a Database with the In-Memory OLTP Filegroup

create database InMemoryOLTPDemo
on primary
(
 name = N'InMemoryOLTPDemo'
 ,filename = N'M:\Data\InMemoryOLTPDemo.mdf'
),
filegroup HKData CONTAINS MEMORY_OPTIMIZED_DATA
(
 name = N'InMemory_OLTP_Data'
 ,filename = N'H:\HKData\InMemory_OLTP_Data'
),

Chapter 2 ■ In-MeMory oLtp objeCts

8

filegroup LOGDATA
(name = N'LogData1', filename = N'M:\Data\LogData1.ndf'),
(name = N'LogData2', filename = N'M:\Data\LogData2.ndf'),
(name = N'LogData3', filename = N'M:\Data\LogData3.ndf'),
(name = N'LogData4', filename = N'M:\Data\LogData4.ndf'),
log on
(
 name = N'InMemoryOLTPDemo_log'
 ,filename = N'L:\Log\InMemoryOLTPDemo_log.ldf'
)

Under the hood, In-Memory OLTP utilizes a streaming mechanism based on
FILESTREAM technology. While coverage of FILESTREAM is outside the scope of this book,
I would like to mention that it is optimized for sequential I/O access. In fact, In-Memory
OLTP does not use random I/O access at all. It uses sequential append-only writes during
a normal workload and sequential reads on the database startup and recovery stages. You
should keep this behavior in mind and place In-Memory OLTP filegroups into the disk
arrays optimized for sequential performance.

Lastly, similar to FILESTREAM filegroups, the In-Memory OLTP filegroup can include
multiple containers placed on the different disk arrays.

 ■ Note you can read more about FILESTREAM at http://technet.microsoft.com/
en-us/library/gg471497.aspx.

I will discuss the best practices in hardware and sQL server configurations in Chapter 10.

Unfortunately, SQL Server 2014 does not allow you to remove an In-Memory OLTP
filegroup from the database even after you drop all memory-optimized tables and objects.
This limitation prevents you from restoring the database on non-Enterprise editions of
SQL Server if such need ever arises.

 ■ Tip you can move a database between different editions of sQL server as long as you
do not use any features incompatible with the new (lower) edition. you can read more about
it at https://msdn.microsoft.com/en-us/library/cc280724.aspx.

Creating Memory-Optimized Tables
Syntax-wise, creation of memory-optimized tables is very similar to on-disk tables.
You can use the regular CREATE TABLE statement specifying that the table is memory-
optimized.

The code in Listing 2-2 creates three memory-optimized tables in the database.
Please ignore all unfamiliar constructs; I will discuss them in detail later.

http://technet.microsoft.com/en-us/library/gg471497.aspx
http://technet.microsoft.com/en-us/library/gg471497.aspx
http://dx.doi.org/10.1007/978-1-4842-1136-6_10
https://msdn.microsoft.com/en-us/library/cc280724.aspx

Chapter 2 ■ In-MeMory oLtp objeCts

9

Listing 2-2. Creating Memory-Optimized Tables

create table dbo.WebRequests_Memory
(
 RequestId int not null identity(1,1)
 primary key nonclustered
 hash with (bucket_count=1000000),
 RequestTime datetime2(4) not null
 constraint DEF_WebRequests_Memory_RequestTime
 default sysutcdatetime(),
 URL varchar(255) not null,
 RequestType tinyint not null, -- GET/POST/PUT
 ClientIP varchar(15)
 collate Latin1_General_100_BIN2 not null,
 BytesReceived int not null,

 index IDX_RequestTime nonclustered(RequestTime)
)
with (memory_optimized=on, durability=schema_and_data);

create table dbo.WebRequestHeaders_Memory
(
 RequestHeaderId int not null identity(1,1)
 primary key nonclustered
 hash with (bucket_count=5000000),
 RequestId int not null,
 HeaderName varchar(64) not null,
 HeaderValue varchar(256) not null,

 index IDX_RequestID nonclustered hash(RequestID)
 with (bucket_count=1000000)
)
with (memory_optimized=on, durability=schema_and_data);

create table dbo.WebRequestParams_Memory
(
 RequestParamId int not null identity(1,1)
 primary key nonclustered
 hash with (bucket_count=5000000),
 RequestId int not null,
 ParamName varchar(64) not null,
 ParamValue nvarchar(256) not null,

 index IDX_RequestID nonclustered hash(RequestID)
 with (bucket_count=1000000)
)
with (memory_optimized=on, durability=schema_and_data);

Chapter 2 ■ In-MeMory oLtp objeCts

10

Each memory-optimized table has a DURABILITY setting. The default SCHEMA_AND_
DATA value indicates that the data in the tables is fully durable and persists on disk for
recovery purposes. Operations on such tables are logged in the database transaction log.

SCHEMA_ONLY is another value, which indicates that data in memory-optimized tables
is not durable and would be lost in the event of a SQL Server restart, crash, or failover to
another node. Operations against non-durable, memory-optimized tables are not logged
in the transaction log. Non-durable tables are extremely fast and can be used if you need
to store temporary data in use cases similar to temporary tables in tempdb.

Indexes of memory-optimized tables must be created inline and defined as part of
a CREATE TABLE statement. Unfortunately, it is impossible to alter a memory-optimized
table and/or create any additional indexes after a table is created.

 ■ Tip you can drop and recreate a memory-optimized table to change its definition and/
or indexes.

Memory-optimized tables have other limitations besides the inability to alter them.
To name just a few, they cannot have triggers, cannot reference or be referenced with
foreign key constraints, nor can they have unique constraints defined. Most importantly,
memory-optimized tables do not support off-row (ROW-OVERFLOW and LOB) data storage,
which limits the maximum row size to 8,060 bytes and prevents you from using certain
data types.

 ■ Note I will discuss memory-optimized tables and their limitations in detail in Chapter 3.

Memory-optimized tables support two types of indexes, HASH and NONCLUSTERED.
Hash indexes are optimized for point lookup operations, which is the search of one
or multiple rows with equality predicate(s). This is a conceptually new index type in
SQL Server, and the Storage Engine does not have anything similar to it implemented.
Nonclustered indexes, on the other hand, are somewhat similar to B-Tree indexes on
on-disk tables. Note that Microsoft used to call nonclustered indexes range indexes in SQL
Server 2014 CTP releases and whitepapers.

 ■ Note I will discuss hash indexes in detail in Chapter 4. nonclustered indexes are
covered in Chapter 5.

In-Memory OLTP has one important requirement regarding text columns that
participate in the indexes. Those columns must use a binary BIN2 collation. That collation
is case- and accent-sensitive, which could be the breaking change in the system behavior
when you migrate on-disk tables to become memory-optimized.

http://dx.doi.org/10.1007/978-1-4842-1136-6_3
http://dx.doi.org/10.1007/978-1-4842-1136-6_4
http://dx.doi.org/10.1007/978-1-4842-1136-6_5

Chapter 2 ■ In-MeMory oLtp objeCts

11

 ■ Note I will talk about utilizing In-Memory oLtp in existing systems in Chapter 11.

Working with Memory-Optimized Tables
You can access data in memory-optimized tables either using interpreted T-SQL or from
natively compiled stored procedures. In interpreted mode, SQL Server treats memory-
optimized tables pretty much the same way as on-disk tables. It optimizes queries and
caches execution plans, regardless of where the table is located. The same set of operators
is used during query execution. From a high level, when SQL Server needs to get a row
from a table, and the operator's GetRow() method is called, it is routed either to the Storage
Engine or to the In-Memory OLTP Engine, depending on the underlying table type.

Most T-SQL features and constructs are supported in interpreted mode. Some
limitations still exist; for example, you cannot truncate a memory-optimized table nor use
it as the target in MERGE statement. Fortunately, the list of such limitations is very small.

Listing 2-3 shows an example of a T-SQL stored procedure that inserts data into
the memory-optimized tables created in Listing 2-2. For simplicity sake, the procedure
accepts the data that needs to be inserted into the dbo.WebRequestParams_Memory table
as the regular parameters limiting it to five values. Obviously, in production code it is
better to use table-valued parameters in such a scenario.

Listing 2-3. Stored Procedure That Inserts Data to Memory-Optimized Tables Through
the Interop Engine

create proc dbo.InsertRequestInfo_Memory
(
 @URL varchar(255)
 ,@RequestType tinyint
 ,@ClientIP varchar(15)
 ,@BytesReceived int
 -- Header fields
 ,@Authorization varchar(256)
 ,@UserAgent varchar(256)
 ,@Host varchar(256)
 ,@Connection varchar(256)
 ,@Referer varchar(256)
 -- Hardcoded parameters.. Just for the demo purposes
 ,@Param1 varchar(64) = null
 ,@Param1Value nvarchar(256) = null
 ,@Param2 varchar(64) = null
 ,@Param2Value nvarchar(256) = null
 ,@Param3 varchar(64) = null
 ,@Param3Value nvarchar(256) = null
 ,@Param4 varchar(64) = null
 ,@Param4Value nvarchar(256) = null
 ,@Param5 varchar(64) = null
 ,@Param5Value nvarchar(256) = null
)

http://dx.doi.org/10.1007/978-1-4842-1136-6_11

Chapter 2 ■ In-MeMory oLtp objeCts

12

as
begin
 set nocount on
 set xact_abort on

 declare
 @RequestId int

 begin tran
 insert into dbo.WebRequests_Memory
 (URL,RequestType,ClientIP,BytesReceived)
 values
 (@URL,@RequestType,@ClientIP,@BytesReceived);

 select @RequestId = SCOPE_IDENTITY();

 insert into dbo.WebRequestHeaders_Memory
 (RequestId,HeaderName,HeaderValue)
 values
 (@RequestId,'AUTHORIZATION',@Authorization)
 ,(@RequestId,'USERAGENT',@UserAgent)
 ,(@RequestId,'HOST',@Host)
 ,(@RequestId,'CONNECTION',@Connection)
 ,(@RequestId,'REFERER',@Referer);

 ;with Params(ParamName, ParamValue)
 as
 (
 select ParamName, ParamValue
 from (
 values
 (@Param1, @Param1Value)
 ,(@Param2, @Param2Value)
 ,(@Param3, @Param3Value)
 ,(@Param4, @Param4Value)
 ,(@Param5, @Param5Value)
) v(ParamName, ParamValue)
 where
 ParamName is not null and
 ParamValue is not null
)
 insert into dbo.WebRequestParams_Memory
 (RequestID,ParamName,ParamValue)
 select @RequestID, ParamName, ParamValue
 from Params;
 commit
end

Chapter 2 ■ In-MeMory oLtp objeCts

13

As you see, the stored procedure that works through the interop engine does not
require any specific language constructs to access memory-optimized tables.

Natively compiled stored procedures are also defined with a regular CREATE
PROCEDURE statement and they use T-SQL language. However, there are several additional
options that must be specified at the creation stage.

The code in Listing 2-4 creates the natively compiled stored procedure that
accomplishes the same logic as the dbo.InsertRequestInfo_Memory stored procedure
defined in Listing 2-3.

Listing 2-4. Natively Complied Stored Procedure

create proc dbo.InsertRequestInfo_NativelyCompiled
(
 @URL varchar(255) not null
 ,@RequestType tinyint not null
 ,@ClientIP varchar(15) not null
 ,@BytesReceived int not null
 -- Header fields
 ,@Authorization varchar(256) not null
 ,@UserAgent varchar(256) not null
 ,@Host varchar(256) not null
 ,@Connection varchar(256) not null
 ,@Referer varchar(256) not null
 -- Parameters.. Just for the demo purposes
 ,@Param1 varchar(64) = null
 ,@Param1Value nvarchar(256) = null
 ,@Param2 varchar(64) = null
 ,@Param2Value nvarchar(256) = null
 ,@Param3 varchar(64) = null
 ,@Param3Value nvarchar(256) = null
 ,@Param4 varchar(64) = null
 ,@Param4Value nvarchar(256) = null
 ,@Param5 varchar(64) = null
 ,@Param5Value nvarchar(256) = null
)
with native_compilation, schemabinding, execute as owner
as
begin atomic with
(
 transaction isolation level = snapshot
 ,language = N'English'
)
 declare
 @RequestId int

 insert into dbo.WebRequests_Memory
 (URL,RequestType,ClientIP,BytesReceived)
 values
 (@URL,@RequestType,@ClientIP,@BytesReceived);

Chapter 2 ■ In-MeMory oLtp objeCts

14

 select @RequestId = SCOPE_IDENTITY();

 insert into dbo.WebRequestHeaders_Memory
 (RequestId,HeaderName,HeaderValue)
 values
 (@RequestId,'AUTHORIZATION',@Authorization);

 insert into dbo.WebRequestHeaders_Memory
 (RequestId,HeaderName,HeaderValue)
 values
 (@RequestId,'USERAGENT',@UserAgent);

 insert into dbo.WebRequestHeaders_Memory
 (RequestId,HeaderName,HeaderValue)
 values
 (@RequestId,'HOST',@Host);

 insert into dbo.WebRequestHeaders_Memory
 (RequestId,HeaderName,HeaderValue)
 values
 (@RequestId,'CONNECTION',@Connection);

 insert into dbo.WebRequestHeaders_Memory
 (RequestId,HeaderName,HeaderValue)
 values
 (@RequestId,'REFERER',@Referer);

 if @Param1 collate Latin1_General_100_BIN2
 is not null and
 @Param1Value
 collate Latin1_General_100_BIN2
 is not null
 begin
 insert into dbo.WebRequestParams_Memory
 (RequestID,ParamName,ParamValue)
 values
 (@RequestId,@Param1,@Param1Value);

 if @Param2
 collate Latin1_General_100_BIN2
 is not null and
 @Param2Value
 collate Latin1_General_100_BIN2
 is not null
 begin
 insert into dbo.WebRequestParams_Memory
 (RequestID,ParamName,ParamValue)
 values
 (@RequestId,@Param2,@Param2Value);

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ In-MeMory oLtp objeCts

15

 if @Param3
 collate Latin1_General_100_BIN2
 is not null and
 @Param3Value
 collate Latin1_General_100_BIN2
 is not null
 begin
 insert into dbo.WebRequestParams_Memory
 (RequestID,ParamName,ParamValue)
 values
 (@RequestId,@Param3,@Param3Value);

 if @Param4
 collate Latin1_General_100_BIN2
 is not null and
 @Param4Value
 collate Latin1_General_100_BIN2
 is not null
 begin
 insert into dbo.WebRequestParams_Memory
 (RequestID,ParamName,ParamValue)
 values
 (@RequestId,@Param4,@Param4Value);

 if @Param5
 collate Latin1_General_100_BIN2
 is not null and
 @Param5Value
 collate Latin1_General_100_BIN2
 is not null
 insert into dbo.WebRequestParams_Memory
 (RequestID,ParamName,ParamValue)
 values
 (@RequestId,@Param5,@Param5Value);
 end
 end
 end
 end
end

You should specify that the stored procedure is natively compiled using the WITH
NATIVE_COMPILATION clause. All natively-compiled stored procedures are schema-bound,
and they require you to specify the SCHEMABINDING option. Finally, setting the execution
context is a requirement. Natively compiled stored procedures do not support the
EXECUTE AS CALLER security context to avoid expensive permission checks at execution
time, and they require you to specify the EXECUTE AS OWNER, EXECUTE AS USER, or
EXECUTE AS SELF context in the definition.

Chapter 2 ■ In-MeMory oLtp objeCts

16

Natively compiled stored procedures execute as atomic blocks indicated by the
BEGIN ATOMIC keyword, which is an all or nothing approach. Either all of the statements
in the procedure succeed or all of them fail.

When a natively compiled stored procedure is called outside of the context of an
active transaction, it starts a new transaction and either commits or rolls it back at the end
of the execution.

In cases where a procedure is called in the context of an active transaction, SQL
Server creates a savepoint at the beginning of the procedure’s execution. In case of an
error in the procedure, SQL Server rolls back the transaction to the created savepoint.
Based on the severity and type of error, the transaction is either going to be able to
continue and commit or become doomed and uncommittable.

Even though the dbo.InsertRequestInfo_Memory and dbo.InsertRequestInfo_
NativelyCompiled stored procedures accomplish the same task, their implementation
is slightly different. Natively compiled stored procedures have a very extensive list of
limitations and unsupported T-SQL features. In the example above, you can see that
neither the INSERT statement with multiple VALUES nor CTE/Subqueries were supported.
Note that string comparison and manipulation logic require BIN2 collation, which is not
the case in interop mode.

 ■ Note I will discuss natively compiled stored procedures, atomic transactions, and
supported t-sQL language constructs in greater depth in Chapter 6.

Finally, it is worth mentioning that natively compiled stored procedures can
access only memory-optimized tables. It is impossible to query on-disk tables or, as
another example, join memory-optimized and on-disk tables together. You have to use
interpreted T-SQL and the interop engine for such tasks.

In-Memory OLTP in Action: Resolving Latch
Contention
Latches are lightweight synchronization objects, which SQL Server uses to protect the
consistency of internal data structures. Multiple sessions (or, in that context, threads)
cannot modify the same object simultaneously.

Consider the situation when multiple sessions try to access the same data page
in the buffer pool. While it is safe for the multiple sessions/threads to read the data
simultaneously, data modifications must be serialized and have exclusive access to the
page. If such rule is not enforced, multiple threads could update a different part of the
data page at once, overwriting each other's changes and making the data inconsistent,
which would lead to page corruption.

Latches help to enforce that rule. The threads that need to read data from the page
obtain shared (S) latches, which are compatible with each other. Data modification, on
the other hand, requires an exclusive (X) latch, which prevents other readers and writers
from accessing the data page.

http://dx.doi.org/10.1007/978-1-4842-1136-6_6

Chapter 2 ■ In-MeMory oLtp objeCts

17

 ■ Note even though latches are conceptually very similar to locks, there is a subtle
difference between them. Locks enforce logical consistency of the data. For example, they
reduce or prevent concurrency phenomena, such as dirty or phantom reads. Latches, on
the other hand, enforce physical data consistency, such as preventing corruption of the data
page structures.

Usually, latches have a very short lifetime and are barely noticeable in the system.
However, in very busy OLTP systems, with a large number of CPUs and a high rate of
simultaneous data modifications, latch contention can become the bottleneck. You can
see the sign of such a bottleneck by the large percent of PAGELATCH waits in wait statistics
or by analyzing the sys.dm_os_latch_stats data management view.

 ■ Tip one of the common cases of latch contention, allocation maps contention, also
presents itself with PAGELATCH waits in wait statistics. the widely known example is
PAGELATCH, which indicates contention on the allocation map pages in tempdb. you can
address such contention by increasing the number of data files in the filegroups with
volatile data.

In-Memory OLTP can be extremely helpful in addressing latch contention due to its
latch-free architecture. It can help to dramatically increase data modification throughput
in some scenarios. In this section, you will see one such example.

In my test environment, I use SQL Server 2014 RTM CU5 installed in the virtual
machine with 32 vCPUs and 128GB of RAM. The disk subsystem consists of two separate
RAID-10 arrays utilizing 15K SAS drives.

I created the database shown in Listing 2-1 with 16 data files in LOGDATA filegroup
in order to minimize allocation maps latch contention. The log file has been placed on
one of the disk arrays, while data and In-Memory OLTP filegroups share the second one.
It is worth noting that placing on-disk and In-Memory filegroups on the different arrays
in production often leads to better I/O performance. However, it will not affect the test
scenarios where we do not mix on-disk and In-Memory OLTP workloads in the same tests.

As the first step, let's create the set of on-disk tables that mimics the structure of
memory-optimized tables created earlier in the chapter, and the stored procedure that
inserts data into those tables. Listing 2-5 shows the code to accomplish this.

Listing 2-5. Creating On-Disk Tables and a Stored Procedure

create table dbo.WebRequests_Disk
(
 RequestId int not null identity(1,1),
 RequestTime datetime2(4) not null
 constraint DEF_WebRequests_Disk_RequestTime
 default sysutcdatetime(),

Chapter 2 ■ In-MeMory oLtp objeCts

18

 URL varchar(255) not null,
 RequestType tinyint not null, -- GET/POST/PUT
 ClientIP varchar(15) not null,
 BytesReceived int not null,

 constraint PK_WebRequests_Disk
 primary key nonclustered(RequestID)
 on [LOGDATA]
) on [LOGDATA];

create unique clustered index IDX_WebRequests_Disk_RequestTime_RequestId
on dbo.WebRequests_Disk(RequestTime,RequestId)
on [LOGDATA];

/* Foreign Keys have not been defined to make
 on-disk and memory-optimized tables as
 similar as possible */
create table dbo.WebRequestHeaders_Disk
(
 RequestId int not null,
 HeaderName varchar(64) not null,
 HeaderValue varchar(256) not null,

 constraint PK_WebRequestHeaders_Disk
 primary key clustered(RequestID,HeaderName)
 on [LOGDATA]
);

create table dbo.WebRequestParams_Disk
(
 RequestId int not null,
 ParamName varchar(64) not null,
 ParamValue nvarchar(256) not null,

 constraint PK_WebRequestParams_Disk
 primary key clustered(RequestID,ParamName)
 on [LOGDATA]
);
go

Chapter 2 ■ In-MeMory oLtp objeCts

19

create proc dbo.InsertRequestInfo_Disk
(
 @URL varchar(255)
 ,@RequestType tinyint
 ,@ClientIP varchar(15)
 ,@BytesReceived int
 -- Header fields
 ,@Authorization varchar(256)
 ,@UserAgent varchar(256)
 ,@Host varchar(256)
 ,@Connection varchar(256)
 ,@Referer varchar(256)
 -- Parameters.. Just for the demo purposes
 ,@Param1 varchar(64) = null
 ,@Param1Value nvarchar(256) = null
 ,@Param2 varchar(64) = null
 ,@Param2Value nvarchar(256) = null
 ,@Param3 varchar(64) = null
 ,@Param3Value nvarchar(256) = null
 ,@Param4 varchar(64) = null
 ,@Param4Value nvarchar(256) = null
 ,@Param5 varchar(64) = null
 ,@Param5Value nvarchar(256) = null
)
as
begin
 set nocount on
 set xact_abort on

 declare
 @RequestId int

 begin tran
 insert into dbo.WebRequests_Disk
 (URL,RequestType,ClientIP,BytesReceived)
 values
 (@URL,@RequestType,@ClientIP,@BytesReceived);

 select @RequestId = SCOPE_IDENTITY();

 insert into dbo.WebRequestHeaders_Disk
 (RequestId,HeaderName,HeaderValue)
 values
 (@RequestId,'AUTHORIZATION',@Authorization)
 ,(@RequestId,'USERAGENT',@UserAgent)
 ,(@RequestId,'HOST',@Host)
 ,(@RequestId,'CONNECTION',@Connection)
 ,(@RequestId,'REFERER',@Referer);

Chapter 2 ■ In-MeMory oLtp objeCts

20

 ;with Params(ParamName, ParamValue)
 as
 (
 select ParamName, ParamValue
 from (
 values
 (@Param1, @Param1Value)
 ,(@Param2, @Param2Value)
 ,(@Param3, @Param3Value)
 ,(@Param4, @Param4Value)
 ,(@Param5, @Param5Value)
) v(ParamName, ParamValue)
 where
 ParamName is not null and
 ParamValue is not null
)
 insert into dbo.WebRequestParams_Disk
 (RequestID,ParamName,ParamValue)
 select @RequestId, ParamName, ParamValue
 from Params;
 commit
end;

In these tests, we will compare insert throughput of on-disk and memory-optimized
tables using dbo.InsertRequestInfo_Disk, dbo.InsertRequestInfo_Memory, and dbo.
InsertRequestInfo_NativelyCompiled stored procedures, calling them simultaneously
from the multiple sessions in the loop. Each call will insert one row into the dbo.
WebRequests table, five rows into the dbo.WebRequestHeaders table, and from one to five
rows into the dbo.WebRequestDisks table, which makes nine rows total in average in the
single transaction.

 ■ Note the test application and scripts are included in the companion materials of
the book.

In case of the dbo.InsertRequestInfo_Disk stored procedure and on-disk tables,
my test server achieved a maximum throughput of about 3,700–3,800 batches/calls per
second with 45 concurrent sessions. A further increase in the number of sessions did
not help and, in fact, even slightly reduced the throughput. Figure 2-1 shows several
performance counters at time of test.

Chapter 2 ■ In-MeMory oLtp objeCts

21

Even though we maxed out insert throughput, CPU load on the server was very low,
which clearly indicates that the CPU was not the bottleneck during the test. At the same
time, the server suffered from the large number of latches, which were used to serialize
access to the data pages in the buffer pool. Even though wait time of each individual latch
was very low, the total latch wait time was high due to the excessive number of them
acquired every second.

You can confirm that latches were the bottleneck by analyzing wait statistics
collected during the test. Figure 2-2 illustrates the output from the sys.dm_os_wait_
stats view. You can see that latch waits are at the top of the list.

Figure 2-1. Performance counters when data was inserted into on-disk tables

Figure 2-2. Wait statistics collected during the test (insert into on-disk tables)

The situation changed when I repeated the tests with the dbo.InsertRequestInfo_
Memory stored procedure, which inserted data into memory-optimized tables through
the interop engine. I maxed out the throughput with 150 concurrent sessions, which is
more than three times more sessions compared to the previous test with on-disk tables.
In this scenario, SQL Server was able to handle 30,000–32,000 batches/calls per second.
A further increase in the number of concurrent sessions did not change the throughput;
however, the duration of each call linearly increased as more sessions were added.

Figure 2-3 illustrates performance counters during the test. As you see, there were no
latches with memory-optimized tables and the CPUs were fully utilized.

Chapter 2 ■ In-MeMory oLtp objeCts

22

As you can see in Figure 2-4, the only significant wait in the system is WRITELOG,
which is related to the transaction log write performance.

Figure 2-3. Performance counters when data was inserted into memory-optimized tables
through the interop engine

Figure 2-4. Wait statistics collected during the test (insert into memory-optimized tables
through interop engine)

Figure 2-5. Performance counters when data was inserted into memory-optimized tables
using natively compiled stored procedure

The natively compiled dbo.InsertRequestInfo_NativelyCompiled stored
procedure improved the situation even further. With 150 concurrent sessions, SQL Server
was able to handle 45,000-50,000 batches/calls per second, which translates to 400,000-
450,000 individual inserts per second.

Figure 2-5 illustrates performance counters during test execution. Even with the
increase in throughput, the natively compiled stored procedure put less load on the CPU
than the interop engine, and disk performance became the clear bottleneck in this setup.

Chapter 2 ■ In-MeMory oLtp objeCts

23

Waits in the wait statistics are very similar to the previous test, with WRITELOG wait at
the top of the list (see Figure 2-6).

Figure 2-6. Wait statistics collected during the test (insert into memory-optimized tables
using natively compiled stored procedure)

We can confirm that disk performance has become the limiting factor in our setup
by running the same test with non-durable, memory-optimized tables. You can do this by
dropping and recreating the database, and creating the same set of memory-optimized
tables using the DURABILITY=SCHEMA_ONLY option. No other code changes are required.

Figure 2-7 shows performance counters collected during the test with 225
concurrent sessions calling the dbo.InsertRequestInfo_NativelyCompiled stored
procedure to insert data into non-durable tables. As you can see, in that scenario we were
able to fully utilize the CPU on the system after we removed the I/O bottleneck, which
improve throughput for another 50% compared to durable memory-optimized tables.

Figure 2-7. Performance counters when data was inserted into non-durable memory-
optimized tables using a natively compiled stored procedure

Finally, it is worth noting that In-Memory OLTP uses different and more efficient
logging, which leads to a much smaller transaction log footprint. Figure 2-8 illustrates log
file write statistics collected during 1 minute of test execution using sys.dm_io_virtual_
file_stats DMF. The order of outputs in the figure corresponds to the order in which the
tests were run: on-disk table inserts, inserts into memory-optimized tables through the
interop engine, and natively compiled stored procedures, respectively.

Chapter 2 ■ In-MeMory oLtp objeCts

24

As you see, in interop mode In-Memory OLTP inserted about eight times more
data; however, it used just three times more space in the transaction log than with on-
disk tables. The situation is even better with natively compiled stored procedures. Even
though it wrote about 15 percent more to the log, it inserted about 50 percent more data
compared to interop mode.

 ■ Note I will discuss In-Memory oLtp transaction logging in greater depth in Chapter 8.

Obviously, different scenarios will lead to different results, and performance
improvements would greatly depend on the hardware, database schema, and use-case
and workload in the system. However, it is not uncommon to see 3x-5x improvements
when you access memory-optimized tables through the interop engine and a 10x-30x rate
with natively compiled stored procedures.

More importantly, In-Memory OLTP allows us to improve the performance of the
system by scaling up and upgrading hardware. For example, in our scenario we can
achieve better throughput by adding more CPUs and/or increasing I/O performance.
This would be impossible to do with on-disk tables where latch contention becomes the
bottleneck.

Summary
The In-Memory OLTP Engine is fully integrated into the Enterprise Edition of SQL Server
and is always installed with the 64-bit version of the product. However, every database
that uses In-Memory OLTP objects should have the separate In-Memory OLTP filegroup
created. This filegroup should be placed in the disk array optimized for sequential I/O
performance.

You can create memory-optimized tables with the regular CREATE TABLE statement
marking tables as MEMORY_OPTIMIZED and specifying table durability option. The data in
the tables with SCHEMA_AND_DATA durability is persisted on disk. Tables with SCHEMA_ONLY
durability do not persist the data and they can be used as In-Memory temporary tables
that provide extremely fast performance.

Figure 2-8. Transaction log write statistics during the tests

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-1136-6_8
http://www.allitebooks.org

Chapter 2 ■ In-MeMory oLtp objeCts

25

Memory-optimized tables do not support all T-SQL features and data types.
Moreover, they cannot have rows that exceed 8,060 bytes in size and they do not support
ROW-OVERFLOW and LOB storage. Finally, memory-optimized tables and indexes cannot be
altered after the table was created.

You can access memory-optimized tables from either interpreted T-SQL through
the interop engine or from natively compiled stored procedures. Almost all T-SQL
features are supported in interpreted mode. Conversely, natively compiled stored
procedures support a very limited set of features; however, they can introduce significant
performance improvements compared to the interop engine.

27

Chapter 3

Memory-Optimized Tables

This chapter discusses memory-optimized tables in detail. It shows how memory-optimized
tables store their data and how SQL Server accesses them. It covers the format of the data
rows in memory-optimized tables and talks about the process of native compilation.

Finally, the chapter provides an overview of the memory-optimized tables
limitations that exist in the first release of the In-Memory OLTP Engine.

On-Disk vs. Memory-Optimized Tables
Data and index structures in memory-optimized tables are different from those in on-disk
tables. In on-disk tables, the data is stored in the 8KB data pages grouped together in
eight-page extents on per-index or per-heap basis. Every page stores the data from one or
multiple data rows. Moreover, the data from variable-length or LOB columns can be stored
off-row on ROW_OVERFLOW and LOB data pages when it does not fit on one in-row page.

All pages and rows in on-disk tables are referenced by in-file offsets, which is the
combination of file_id, data page offset/position in the file and, in case of a data row,
row offset/position on the data page.

Finally, every nonclustered index stores its own copy of the data from the index key
columns referencing the main row by row-id, which is either the clustered index key value
or a physical address (offset) of the row in the heap table.

Figures 3-1 and 3-2 illustrate these concepts. They show clustered and nonclustered
index B-Trees defined on a table. As you see, pages are linked through in-file offsets. The
nonclustered index persists the separate copy of the data and references the clustered
index through clustered index key values.

Chapter 3 ■ MeMory-optiMized tables

28

Figure 3-1. Clustered index on on-disk tables

Chapter 3 ■ MeMory-optiMized tables

29

Every time you need to access the data from the page, SQL Server loads the copy of
the page to the memory, caching it in the buffer pool. However, the format and structure
of the data page in the buffer pool does not change, and pages there still use in-file offsets
to reference each other. The SQL Server component called the Buffer Manager manages
the buffer pool, and it tracks the data page’s in-memory locations, translating in-file
offsets to the corresponding memory addresses of the page structures.

Consider the situation when SQL Server needs to scan several data pages in the
index. The Scheduler requests the page from the Buffer Manager, using file_id and
page_id to identify it. The Buffer Manager, in turn, checks if the page is already cached,
reading it from disk when necessary. When the page is read and processed, SQL Server
obtains the address of the next page in the index and repeats the process.

It is also entirely possible that SQL Server needs to access multiple pages in order to
read a single row. This happens in case of off-row storage and/or when the execution plan
uses nonclustered indexes and issues Key or RID Lookup operations, obtaining the data
from the clustered index or heap.

Figure 3-2. Nonclustered index on on-disk tables

Chapter 3 ■ MeMory-optiMized tables

30

The process of locating a page in the buffer pool is very fast; however, it still introduces
overhead that affects performance of the queries. The performance hit is much worse when
the data page is not in memory and a physical I/O operation is required.

The In-Memory OLTP Engine uses a completely different approach with
memory-optimized tables. With the exception of Bw-Trees in nonclustered indexes,
which I will discuss in Chapter 5, in-memory objects do not use data pages. Data rows
reference each other through the memory pointers. Every row knows the memory
address of a next row in the chain, and SQL Server does not need to do any extra steps to
locate it.

Every memory-optimized table has at least one index row chain to link rows together
and, therefore, every table must have at least one index defined. In the case of durable
memory-optimized tables, there is the requirement of creating a primary key constraint,
which can serve for such a purpose.

To illustrate the concepts of row chains, let's create the memory-optimized table as
shown in Listing 3-1.

Listing 3-1. Creating the Memory-Optimized Table

create table dbo.People
(
 Name varchar(64)
 collate Latin1_General_100_BIN2 not null
 constraint PK_People
 primary key nonclustered
 hash with (bucket_count = 1024),
 City varchar(64)
 collate Latin1_General_100_BIN2 not null,

 index IDX_City
 nonclustered hash(City)
 with (bucket_count = 1024),
)
with (memory_optimized = on, durability = schema_only);

This table has two hash indexes defined on the Name and City columns. I am not
going to discuss hash indexes in depth here but as a general overview, they consist of a
hash table (an array of hash buckets), each of which contains a memory pointer to the
data row. SQL Server applies a hash function to the index key columns, and the result of
the function determines to which bucket a row belongs. All rows that have the same hash
value and belong to the same bucket are linked together in a row chain; every row has a
pointer to the next row in a chain.

 ■ Note i will discuss hash indexes in detail in Chapter 4.

http://dx.doi.org/10.1007/978-1-4842-1136-6_5
http://dx.doi.org/10.1007/978-1-4842-1136-6_4

Chapter 3 ■ MeMory-optiMized tables

31

Figure 3-3 illustrates this. Solid arrows represent pointers in the index on the Name
column. Dotted arrows represent pointers in the index on the City column. For simplicity
sake, let's assume that the hash function generates a hash value based on the first letter of
the string. Two numbers, displayed in each row, indicate row lifetime, which I will explain
in the next section of this chapter.

Figure 3-3. Memory-optimized table with two hash indexes

In contrast to on-disk tables, indexes on memory-optimized tables are not created
as separate data structures but rather embedded as pointers in the data rows, which, in a
nutshell, makes every index covering.

 ■ Note to be precise, nonclustered indexes on memory-optimized tables introduce
additional data structures in memory. however, they are much more efficient compared to
nonclustered indexes on on-disk tables and do not require Key or RID Lookup operations to
access the data. i will discuss nonclustered indexes in details in Chapter 5.

Introduction to the Multiversion
Concurrency Control
As you already noticed in Figure 3-3, every row in a memory-optimized table has two
values, called BeginTs and EndTs, which define the lifetime of the row. A SQL Server
instance maintains the Global Transaction Timestamp value, which is auto-incremented
when the transaction commits and is unique for every committed transaction. BeginTs
stores the Global Transaction Timestamp of the transaction that is inserted a row, and
EndTs stores the timestamp of the transaction that deleted a row. A special value called
Infinity is used as EndTs for the rows that have not been deleted.

http://dx.doi.org/10.1007/978-1-4842-1136-6_5

Chapter 3 ■ MeMory-optiMized tables

32

The rows in memory-optimized tables are never updated. The update operation
creates the new version of the row with the new Global Transaction Timestamp set
as BeginTs and marks the old version of the row as deleted by populating the EndTs
timestamp with the same value.

Every transaction has a transaction timestamp, which is the Global Transaction
Timestamp value at the moment the transaction starts. BeginTs and EndTs control
the visibility of a row for the transactions. A transaction can see a row only when its
transaction timestamp is between the BeginTs and EndTs timestamps of the row.

To illustrate that, let's assume that we ran the statement shown in Listing 3-2 and
committed the transaction when the Global Transaction Timestamp value was 100.

Listing 3-2. Updating Data in the dbo.People Table

update dbo.People
set City = 'Cincinnati'
where Name = 'Ann'

Figure 3-4 illustrates the data in the table after an update transaction has been
committed. As you see, we now have two rows with Name='Ann' and different lifetime.
The new row has been appended to the row chain referenced by the hash backet for the
value of 'A' in the index on the Name column. The hash index on City column did not
have any rows referenced by the 'C' bucket, therefore the new row becomes the first in
the row chain referenced from that bucket.

Figure 3-4. Data in the table after update

Let's assume that you need to run a query that selects all rows with Name='Ann' in the
transaction, which started when the Global Transaction Timestamp was 110. SQL Server
calculates the hash value for Ann, which is 'A', and finds the corresponding bucket in the hash
index on the Name column. It follows the pointer from that bucket, which references a row with
Name='Adam'. This row has BeginTs of 10 and EndTs of Infinity; therefore, it is visible to the
transaction. However, the Name value does not match the predicate and the row is ignored.

Chapter 3 ■ MeMory-optiMized tables

33

In the next step, SQL Server follows the pointer from the Adam index pointer array,
which references the first Ann row. This row has BeginTs of 100 and EndTs of Infinity;
therefore, it is visible to the transaction and needs to be selected.

As a final step, SQL Server follows the next pointer in the index. Even though the last
row also has Name='Ann', it has EndTs of 100 and is invisible to the transaction.

As you should have already noticed, this concurrency behavior and data consistency
corresponds to the SNAPSHOT transaction isolation level when every transaction sees the
data as of the time transaction started. SNAPSHOT is default transaction isolation level in
the In-Memory OLTP Engine, which also supports REPEATABLE READ and SERIALIZABLE
isolation levels. However, REPEATABLE READ and SERIALIZABLE transactions in In-Memory
OLTP behave differently than with on-disk tables. In-Memory OLTP raises an exception
and rolls back a transaction if REPEATABLE READ or SERIALIZABLE data consistency rules
were violated rather than blocks a transacton as with on-disk tables.

In-Memory OLTP documentation also indicates that autocommitted (single
statement) transactions can run in READ COMMITTED isolation level. However, this is a
bit misleading. SQL Server promotes and executes such transactions in the SNAPSHOT
isolation level and does not require you to explicitly specify the isolation level in your
code. The Autocommitted READ COMMITTED transaction would not see the changes
committed after the transaction started, which is a different behavior compared to the
READ COMMITTED transactions against on-disk tables.

 ■ Note i will discuss concurrency model in in-Memory oltp in Chapter 7.

SQL Server keeps track of the active transactions in the system and detects stale
rows with the EndTs timestamp older than the Global Transaction Timestamp of the
oldest active transaction in the system. Stale rows are invisible for active transactions in
the system, and eventually they are removed from the index row chains and deallocated
by the garbage collection process.

 ■ Note the garbage collection process is covered in more detail in Chapter 9.

Data Row Format
As you can guess, the format of the data rows in memory-optimized tables is entirely
different from on-disk tables and consists of two different sections, Row Header and
Payload, as shown in Figure 3-5.

http://dx.doi.org/10.1007/978-1-4842-1136-6_7
http://dx.doi.org/10.1007/978-1-4842-1136-6_9

Chapter 3 ■ MeMory-optiMized tables

34

You are already familiar with the BeginTs and EndTs timestamps in the row header.
The next element there is StmtId, which references the statement that is inserted that
row. Every statement in a transaction has a unique 4-byte StmtId value, which works as a
Halloween protection technique and allows the statement to skip rows it just inserted.

haLLOWeeN prOteCtION

the halloween effect is a known problem in the relation databases world. it was
discovered by ibM researchers almost 40 years ago. in a nutshell, it refers to the
situation when the execution of a data modification query is affected by the previous
modifications it performed.

you can think of the following statement as a classic example of the halloween problem:

insert into T
 select * from T

Without halloween protection, this query would fall into an infinitive loop, reading the
data it just inserted, and inserting it over and over again.

With on-disk tables, sQl server implements halloween protection by adding spool
operators to the execution plan. these operators create a temporary copy of the data
before processing it. in our example, all data from the table is cached in the Table
Spool first, which will work as the source of the data for the insert.

StmtId helps to avoid the halloween problem in memory-optimized tables.
statements check the StmtId of the rows, and skip those they just inserted.

The next element in the header, the 2-byte IdxLinkCount, indicates how many
indexes (pointers) reference the row (or, in the other words, in how many index chains
this row is participating). SQL Server uses it to detect rows that can be deallocated by the
garbage collection process.

An array of 8-byte index pointers is the last element of the row header. As you already
know, every memory-optimized table should have at least one index to link data rows
together. At most, you can define eight indexes per memory-optimized table, including
the primary key constraint.

The actual row data is stored in the Payload section of the row. The Payload format may
vary depending on the table schema. SQL Server works with the Payload through a DLL that
is generated and compiled for the table (more on that in the next section of this chapter).

Figure 3-5. The structure of a data row in a memory-optimized table

Chapter 3 ■ MeMory-optiMized tables

35

I would like to reiterate that a key principle of In-Memory OLTP is that Payload data
is never updated. When a table row needs to be updated, In-Memory OLTP deletes the
version of the row by setting the EndTs attribute of the original row and inserts the new
data row version with the new BeginTs value and an EndTs value of Infinity.

Native Compilation of Memory-Optimized Tables
One of the key differences between the Storage and In-Memory OLTP Engines resides
in how engines work with row data. The data in on-disk tables is always stored using the
same and pre-defined data row format. Strictly speaking, there are several different storage
formats based on data compression settings and type of rows; however, the number of
possible formats are very small and they do not depend on the table schema. For example,
clustered indexes from the multiple tables defined with the same data compression option
would store the data in the same way regardless of the tables' schemas.

As usual, that approach comes with benefits and downsides. It is extremely flexible
and allows us to alter a table and mix per- and post-altered versions of the rows together.
For example, adding a new nullable column to the table is the metadata-level operation,
which does not change existing rows. The Storage Engine analyzes table metadata and
different row attributes, and handles multiple versions of the rows correctly.

However, such flexibility comes at cost. Consider the situation when the query needs
to access the data from the variable-length column in the row. In this scenario, SQL
Server needs to find the offset of the variable-length array section in the row, calculate
an offset and length of the column data from that array, and analyze if the column data is
stored in-row or off-row before getting the required data. All of that can lead to thousands
of CPU instructions to execute.

The In-Memory OLTP Engine uses a completely opposite approach. SQL Server
creates and compiles the separate DLLs for every memory-optimized table in the
system. Those DLLs are loaded into the SQL Server process, and they are responsible for
accessing and manipulating the data in Payload section of the row. The In-Memory OLTP
Engine is generic and it does not know anything about underlying row structures; all data
access is done through those DLLs.

As you can guess, this approach significantly reduces processing overhead; however,
it comes at the cost of reduced flexibility. In the first release of In-Memory OLTP,
generated DLLs require all rows to have the same structure and, therefore, it is impossible
to alter the table after it is created.

This restriction can lead to supportability and performance issues when tables and
indexes are defined incorrectly. One such example is the wrong hash index bucket count
estimation, which can lead to an excessive number of rows in the row chains, which
reduces index seek performance. I will discuss this problem in detail in Chapter 4.

 ■ Note sQl server places the source code and compiled dlls in the XTP subfolder of the
sQl server DATA directory. i will talk about those files and the native compilation process in
more detail in Chapter 6.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-1136-6_4
http://dx.doi.org/10.1007/978-1-4842-1136-6_6
http://www.allitebooks.org

Chapter 3 ■ MeMory-optiMized tables

36

Memory-Optimized Tables: Surface Area
and Limitations
The first release of the In-Memory OLTP Engine has an extensive list of limitations. Let’s
look at those limitations in detail.

Supported Data Types
As mentioned, memory-optimized tables do not support off-row storage and do restrict
the maximum data row size to 8,060 bytes. Therefore, only a subset of the data types is
supported. The supported list includes:

•	 bit

•	 Integer types: tinyint, smallint, int, bigint

•	 Floating and fixed point types: float, real

•	 numeric, and decimal. The In-Memory OLTP Engine uses either
8 or 16 bytes to store such data types, which is different from
on-disk tables where storage size can be 5, 9, 13, or 17 bytes,
depending on precision.

•	 Money types: money and smallmoney

•	 Date/time types: smalldatetime, datetime, datetime2, date, and
time. The In-Memory OLTP Engine uses 4 bytes to store values
of date data type and 8 bytes for the other data types, which
is different from on-disk tables where storage size is based on
precision.

•	 uniqueidentifiers

•	 Non-LOB string types: (n)char(N), (n)varchar(N), and sysname

•	 Non-LOB binary types: binary(N) and varbinary(N)

Unfortunately, you cannot use any data types that use LOB storage. None of the
following data types are supported: (n)varchar(max), xml, clr data types, (n)text,
and image.

It is also worth remembering that the maximum row size limitation of 8,060 bytes
applies to the size of the columns in table definition rather than to the actual row size. For
example, it is impossible to define memory-optimized tables with two varchar(4100)
columns even if you plan to keep data row sizes below the 8,060 bytes threshold.

Chapter 3 ■ MeMory-optiMized tables

37

Constraints and Table Features
In addition to the limited set of supported data types and inability to alter the table,
memory-optimized tables have other requirements and limitations. None of the following
objects are supported:

•	 FOREIGN KEY constraints

•	 CHECK constraints

•	 UNIQUE constraints or indexes with exception of the PRIMARY KEY

•	 DML triggers

•	 IDENTITY columns with SEED and INCREMENT different than (1,1)

•	 Computed and sparse columns

•	 Non-binary collations for the text columns participating in
the indexes

•	 Nullable indexed columns. A column can be defined as nullable
when it does not participate in the indexes.

Every memory-optimized table, durable or non-durable, should have at least one
and at most eight indexes. Moreover, the durable memory-optimized table should have
a unique primary key constraint defined. This constraint is counted as one of the indexes
towards the eight-index limit.

If is also worth noting that columns participating in the primary key constraint are
non-updatable. You can delete the old and insert the new row as the workaround.

Database-Level Limitations
In-Memory OLTP has several limitations that affect some of the database settings and
operations. They include the following:

•	 You cannot create a Database Snapshot on databases that use
In-Memory OLTP.

•	 The AUTO_CLOSE database option must be set to OFF.

•	 CREATE DATABASE FOR ATTACH_REBUILD_LOG is not supported.

•	 DBCC CHECKDB skips the memory-optimized tables.

•	 DBCC CHECKTABLE fails if called to check memory-optimized table.

 ■ Note you can see the full list of limitations in the first release of the in-Memory oltp at
http://msdn.microsoft.com/en-us/library/dn246937.aspx.

http://msdn.microsoft.com/en-us/library/dn246937.aspx

Chapter 3 ■ MeMory-optiMized tables

38

High Availability Technologies Support
Memory-optimized tables are fully supported in an AlwaysOn Failover Cluster and
Availability Groups, and with Log Shipping. However, in the case of a Failover Cluster,
data from durable memory-optimized tables must be loaded into memory in case of a
failover, which could increase failover time.

In the case of AlwaysOn Availability Groups, only durable memory-optimized tables
are replicated to secondary nodes. You can access and query those tables on the readable
secondary nodes if needed. Data from non-durable memory-optimized tables, on the
other hand, is not replicated and will be lost in the case of a failover.

You can set up transactional replication on databases with memory-optimized
tables; however, those tables cannot be used as articles in publications.

In-Memory OLTP is not supported in database mirroring sessions. This does not
appear to be a big limitation, however. In-Memory OLTP is an Enterprise Edition feature,
which allows you to replace database mirroring with AlwaysOn Availability Groups.

Summary
As the opposite to on-disk tables, where data is stored in 8KB data pages, memory-optimized
tables link data rows into the index row chains using regular memory pointers. Every row
has multiple pointers, one per index row chain. Every table must have at least one and at
most eight indexes defined.

A SQL Server instance maintains the Global Transaction Timestamp value, which
is auto-incremented when the transaction commits and is unique for every committed
transaction. Every data row has BeginTs and EndTs timestamps that define row lifetimes.
A transaction can see a row only when its transaction timestamp (timestamp at time
when transaction starts) is between the BeginTs and EndTs timestamps of the row.

Row data in memory-optimized tables are never updated. When a table row needs to
be updated, In-Memory OLTP creates the new version of the row with new BeginTs value
and deletes the old version of the row by populating its EndTs timestamp.

SQL Server generates and compiles native DLLs for every memory-optimized
table in the system. Those DLLs are loaded into the SQL Server process, and they are
responsible for accessing and manipulating the row data.

The first release of In-Memory OLTP has an extensive list of limitations. Those
limitations include the inability to alter the table after it is created; a 8,060 byte maximum
data row size limit without any off-row storage support; the inability to define triggers,
foreign key, check, and unique constraints on tables; and quite a few others.

The In-Memory OLTP Engine is fully supported in AlwaysOn Failover Clusters,
Availability Groups, and Log Shipping. Databases with memory-optimized tables
can participate in transactional replication; however, you cannot replicate
memory-optimized tables.

39

Chapter 4

Hash Indexes

This chapter discusses hash indexes, the new type of indexes introduced in the
In-Memory OLTP Engine. It will show their internal structure and explain how SQL Server
works with them. You will learn about the most critical property of hash indexes,
bucket_count, which defines the number of hash buckets in the index hash array. You will
see how incorrect bucket count estimations affect system performance. Finally, this chapter
talks about the SARGability of hash indexes and statistics on memory-optimized tables.

Hashing Overview
Hashing is a widely-known concept in Computer Science that performs the
transformation of the data into short fixed-length values. Hashing is often used in
scenarios when you need to optimize point-lookup operations that search within the set
of large strings or binary data using equality predicate(s). Hashing significantly reduces
an index key size, making them compact, which, in turn, improves the performance of
lookup operations.

A properly defined hashing algorithm, often called a hash function, provides
relatively random hash distribution. A hash function is always deterministic, which
means that the same input always generates the same hash value. However, a hash
function does not guarantee uniqueness, and different input values can generate the
same hashes. That situation is called collision and the chance of it greatly depends on
the quality of the hash algorithm and the range of allowed hash keys. For example, a
hash function that generates a 2-byte hash has a significantly higher chance of collision
compared to a function that generates a 4-byte hash.

Hash tables, often called hash maps, are the data structures that store hash keys,
mapping them to the original data. The hash keys are assigned to buckets, in which
original data can be found. Ideally, each unique hash key is stored in the individual
bucket; however, when the number of buckets in the table is not big enough, it is entirely
possible that multiple unique hash keys would be placed into the same bucket. Such
situation is also often referenced as a hash collision in context of hash tables.

Chapter 4 ■ hash Indexes

40

 ■ Tip the HASHBYTES function allows you to generate hashes in t-sQL using one of the
industry standard algorithms such as MD5, SHA2_512, and a few others. however, the output
of the HASHBYTES function is not ideal for point-lookup optimization due to the large size of
the output. You can use a CHECKSUM function that generates a 4-byte hash instead.

You can index the hash generated by the CHECKSUM function and use it as the replacement
for the indexes on uniqueidentifier columns. It is also useful when you need to perform
point-lookup operations on the large (>900 bytes) strings or binary data, which cannot be
indexed. I discussed this scenario in Chapter 6 of my book Pro SQL Server Internals.

Much Ado About Bucket Count
In the In-Memory OLTP Engine, hash indexes are, in a nutshell, hash tables with buckets
implemented as array of a predefined size. Each bucket contains a pointer to a data row.
SQL Server applies a hash function to the index key values, and the result of the function
determines to which bucket a row belongs. All rows that have the same hash value and
belong to the same bucket are linked together through a chain of index pointers in the
data rows.

Figure 4-1 illustrates an example of a memory-optimized table with two hash indexes
defined. You saw this diagram in the previous chapter; it’s displayed here for reference
purposes. Remember that in this example we assumed that a hash function generates a
hash value based on the first letter of the string. Obviously, a real hash function used in
In-Memory OLTP is much more random and does not use character-based hashes.

Figure 4-1. A memory-optimized table with two hash indexes

http://dx.doi.org/10.1007/978-1-4842-1136-6_6

Chapter 4 ■ hash Indexes

41

The number of buckets is the critical element in hash index performance. An
efficient hash function allows you to avoid most collisions during hash key generation;
however, you will have collisions in the hash table when the number of buckets is not big
enough, and SQL Server has to store different hashes together in the same buckets. Those
collisions lead to longer row chains, which requires SQL Server to scan more rows during
the query processing.

Bucket Count and Performance
Let’s consider a hash function that generates a hash based on the first two letters of
the string and can return 26 * 26 = 676 different hash keys. This is a purely hypothetical
example, which I am using just for illustration purposes.

Assuming that the hash table can accommodate all 676 different hash buckets and
you have the data shown in Figure 4-2, you will need to traverse at most two rows in the
chain when you run a query that looks for a specific value.

Figure 4-2. Hash table lookup: 676 buckets

Chapter 4 ■ hash Indexes

42

The dotted arrows in Figure 4-2 illustrate the steps needed to look up the rows for
Ann. The process requires you to traverse two rows after you find the right hash bucket in
the table.

However, the situation changes if your hash table does not have enough buckets to
separate unique hash keys from each other. Figure 4-3 illustrates the situation when a
hash table has only 26 buckets and each of them stores multiple different hash keys. Now
the same lookup of the Ann row requires you to traverse the chain of nine rows total.

The same principle applies to the hash indexes where choosing an incorrect number
of buckets can lead to serious performance issues.

Let’s create two non-durable memory-optimized tables, and populate them with
1,000,000 rows each, as shown in Listing 4-1. Both tables have exactly the same schema
with a primary key constraint defined as the hash index. The number of buckets in the
index is controlled by the bucket_count property. Internally, however, SQL Server rounds
the provided value to the next power of two, so the HashIndex_HighBucketCount table
would have 1,048,576 buckets in the index and the HashIndex_LowBucketCount table
would have 1,024 buckets.

Listing 4-1. Bucket_count and Performance: Creating Memory-Optimized Tables

create table dbo.HashIndex_LowBucketCount
(
 Id int not null
 constraint PK_HashIndex_LowBucketCount
 primary key nonclustered
 hash with (bucket_count=1000),
 Value int not null
)
with (memory_optimized=on, durability=schema_only);

create table dbo.HashIndex_HighBucketCount
(
 Id int not null
 constraint PK_HashIndex_HighBucketCount
 primary key nonclustered

Figure 4-3. Hash table lookup: 26 buckets

Chapter 4 ■ hash Indexes

43

 hash with (bucket_count=1000000),
 Value int not null
)
with (memory_optimized=on, durability=schema_only);
go

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N3 as t2) -- 1,048,576 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.HashIndex_HighBucketCount(Id, Value)
 select Id, Id
 from ids
 where Id <= 1000000;

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N3 as t2) -- 1,048,576 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.HashIndex_LowBucketCount(Id, Value)
 select Id, Id
 from ids
 where Id <= 1000000;

Table 4-1 shows the execution time of the INSERT statements in my test environment.
As you can see, inserting data into the HashIndex_HighBucketCount table is about 27
times faster compared to the HashIndex_LowBucketCount counterpart.

Table 4-1. Execution Time of INSERT Statements

dbo.HashIndex_HighBucketCount
(1,048,576 buckets)

dbo.HashIndex_LowBucketCount
(1024 buckets)

3,578 ms 99,312 ms

Listing 4-2 shows the query that returns the bucket count and row chains
information using the sys.dm_db_xtp_hash_index_stats view. Keep in mind that this
view scans the entire table, which is time consuming when the tables are large.

Chapter 4 ■ hash Indexes

44

Listing 4-2. Obtaining Information About Hash Indexes

select
 s.name + '.' + t.name as [Table]
 ,i.name as [Index]
 ,stat.total_bucket_count as [Total Buckets]
 ,stat.empty_bucket_count as [Empty Buckets]
 ,floor(100. * empty_bucket_count / total_bucket_count)
 as [Empty Bucket %]
 ,stat.avg_chain_length as [Avg Chain]
 ,stat.max_chain_length as [Max Chain]
from
 sys.dm_db_xtp_hash_index_stats stat
 join sys.tables t on
 stat.object_id = t.object_id
 join sys.indexes i on
 stat.object_id = i.object_id and
 stat.index_id = i.index_id
 join sys.schemas s on
 t.schema_id = s.schema_id

Figure 4-4 shows the output of the query. As you can see, the HashIndex_
HighBucketCount table has on average one row in the row chains, while the HashIndex_
LowBucketCount table has almost a thousand rows per chain. It is worth noting that even
though the hash function used by In-Memory OLTP provides relatively good random data
distribution, some level of hash collision is still present.

The incorrect bucket count estimation and long row chains can significantly affect
performance of both reader and writer queries. You have already seen the performance
impact for the insert operation. Now let’s look at a select query.

Listing 4-3 shows the code that triggers 65,536 Index Seek operations in each
memory-optimized table. I wrote this query in very inefficient way just to be able to
demonstrate the impact of the long row chains.

Listing 4-3. Bucket_count and Performance: Selecting Data in the Tables

declare
 @T table(Id int not null primary key)

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows

Figure 4-4. sys.dm_db_xtp_hash_index_stats output

Chapter 4 ■ hash Indexes

45

,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into @T(Id)
 select Id from Ids;

select t.id, c.Cnt
from @T t
 cross apply
 (
 select count(*) as Cnt
 from dbo.HashIndex_HighBucketCount h
 where h.Id = t.Id
) c;

select t.id, c.Cnt
from @T t
 cross apply
 (
 select count(*) as Cnt
 from dbo.HashIndex_LowBucketCount h
 where h.Id = t.Id
) c;

You can confirm that the queries traversed the row chains 65,536 times by analyzing
the execution plan shown in Figure 4-5.

Table 4-2 shows the queries’ execution time in my environment where the query
against HashIndex_LowBucketCount table was about 20 times slower.

Figure 4-5. Execution plan of the queries

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ hash Indexes

46

While you can clearly see that underestimation of the bucket counts can degrade
system performance, overestimation is not good either. First, every bucket uses 8 bytes to
store the memory pointer, and a large number of unused buckets is a waste of precious
system memory. For example, defining the index with bucket_count=100000000 will
introduce 134,217,728 buckets, which will require 128MB of RAM. This does not seem
much in the scope of the single index; however, it could become an issue as the number
of indexes grows up.

Moreover, SQL Server needs to scan all buckets in the index when it performs an
Index Scan operation, and extra buckets add some overhead to the process. Listing 4-4
shows the queries that demonstrate such an overhead.

Listing 4-4. Bucket_count and Performance: Index Scan Queries

select count(*) from dbo.HashIndex_HighBucketCount;
select count(*) from dbo.HashIndex_LowBucketCount;

Table 4-3 shows the execution time in my environment. As you see, the overhead of
scanning extra buckets is not significant; however, it still exists.

Table 4-2. Execution Time of SELECT Statements

dbo.HashIndex_HighBucketCount
(1,048,576 buckets)

dbo.HashIndex_LowBucketCount
(1024 buckets)

644 ms 13,524 ms

Table 4-3. Execution Time of SELECT Statements

dbo.HashIndex_HighBucketCount
(1,048,576 buckets)

dbo.HashIndex_LowBucketCount
(1024 buckets)

313 ms 280 ms

Choosing the Right Bucket Count
Choosing the right number of buckets in a hash index is a tricky but very important
subject. To make matters worse, you have to make the right decision at the design stage; it
is impossible to alter the index and change the bucket_count once a table is created.

In ideal situation, you should have the number of buckets that would exceed
cardinality (number of unique keys) of the index. Obviously, you should take future
system growth and projected workload changes into consideration. It is not a good idea
to create an index based on the current data cardinality if you expect the system to handle
much more data in the future.

Chapter 4 ■ hash Indexes

47

 ■ Note Microsoft suggests setting the bucket_count to be between one and two times
the number of distinct values in the index. You can read more at https://msdn.microsoft.
com/en-us/library/dn494956.aspx.

Low-cardinality columns with a large number of duplicated values are usually bad
candidates for hash indexes. The same data values generate the same hash and, therefore,
rows will be linked to long row chains. Obviously, there are always exceptions, and you
should analyze the queries and workload in your system, taking into consideration the
data modification overhead introduced by the long row chains.

In existing indexes, you can analyze the output of the sys.dm_db_xpt_hash_index_
stats view to determine if the number of buckets in the index is sufficient. If the number
of empty buckets is less than 10 percent of the total number of buckets in the index, the
bucket count is likely to be too low. Ideally, at least 33 percent of the buckets in the index
should be empty.

With all that being said, it is often better to err on the side of caution and
overestimate rather than underestimate the number. Even though overestimation
impacts the performance of the Index Scan, this impact is much lower compared to the
one introduced by long row chains. Obviously, you need to remember that every bucket
uses 8 bytes of memory whether it is empty or not.

Changing the Bucket Count in the Index
As you already know, it is impossible to alter the table and change the bucket_count in
the index after the table is created. The only option of changing it is to recreate the table,
which is impossible to do while keeping the table online.

To make matter worse, the sp_rename stored procedure does not work with memory-
optimized tables. It is impossible to create a new memory-optimized table with the
desired structure, dump data there, and drop an old table and rename a new table
afterwards. You will need to recreate an old table and copy data the second time if you
want to keep the table name intact.

 ■ Tip You can use synonyms referencing the new table under the old table name,
making it transparent to the code. You can read more about synonyms at
https://msdn.microsoft.com/en-us/library/ms187552.aspx.

When you want to keep the table name intact, you can export data to and import
data from the flat files using the bcp utility. Alternatively, you can create and use either an
on-disk or memory-optimized table as a temporary staging place.

Obviously, a memory-optimized table is the faster choice compared to an on-disk
table; however, you should consider memory requirements during the process. Even
though the garbage collector eventually deallocates deleted rows from the memory,
it would not happen instantly after you dropped the table. You should have enough
memory to accommodate at least two extra copies of the data to be on the safe side.

https://msdn.microsoft.com/en-us/library/dn494956.aspx
https://msdn.microsoft.com/en-us/library/dn494956.aspx
https://msdn.microsoft.com/en-us/library/ms187552.aspx

Chapter 4 ■ hash Indexes

48

Do not create any unnecessary indexes on the staging table. Use heaps in the case of
an on-disk table or a single primary key constraint with a memory-optimized table. This
will help you to reduce memory consumption and speed up the process.

Finally, avoid using non-durable memory-optimized tables to stage the data. Even
though this could significantly speed up the process and reduce transaction log overhead,
you can lose the data if an unexpected crash or failover occurred during the data
movement.

 ■ Tip You can reduce transaction log overhead by staging data in another database
temporarily created for such a purpose. You will still write the data to transaction log in the
staging database; however, those log records won’t need to be backed up or transmitted
over the network to the secondary servers. It is also beneficial to use the SELECT INTO
operator when copying data into an on-disk table to make the operation minimally logged.

Hash Indexes and SARGability
In the database world, queries are treated as SARGable (Search ARGument Able) when
they and their predicates allow the Database Engine to utilize Index Seek operations
during query execution.

Hash indexes have different SARGability rules as compared to B-Tree indexes
defined on on-disk tables. They are efficient only in the case of a point-lookup equality
search, which allows SQL Server to calculate the corresponding hash value of the index
key(s) and find a bucket that references the desired chain of rows.

In the case of composite hash indexes, SQL Server calculates the hash value for
the combined value of all key columns. A hash value calculated on a subset of the key
columns would be different and, therefore, a query should have equality predicates on all
key columns for the index to be useful.

This behavior is different from indexes on on-disk tables. Consider the situation
where you want to define an index on (LastName, FirstName) columns. In the case of
on-disk tables, that index can be used for an Index Seek operation, regardless of whether
the predicate on the FirstName column is specified in the where clause of a query.
Alternatively, a composite hash index on a memory-optimized table requires queries to
have equality predicates on both LastName and FirstName in order to calculate a hash
value that allows for choosing the right hash bucket in the index.

Let’s create on-disk and memory-optimized tables with composite indexes on the
(LastName, FirstName) columns, populating them with the same data as shown in
Listing 4-5.

Chapter 4 ■ hash Indexes

49

Listing 4-5. Composite Hash Index: Test Tables Creation

create table dbo.CustomersOnDisk
(
 CustomerId int not null identity(1,1),
 FirstName varchar(64) collate Latin1_General_100_BIN2 not null,
 LastName varchar(64) collate Latin1_General_100_BIN2 not null,
 Placeholder char(100) null,

 constraint PK_CustomersOnDisk
 primary key clustered(CustomerId)
);

create nonclustered index IDX_CustomersOnDisk_LastName_FirstName
on dbo.CustomersOnDisk(LastName, FirstName)
go

create table dbo.CustomersMemoryOptimized
(
 CustomerId int not null identity(1,1)
 constraint PK_CustomersMemoryOptimized
 primary key nonclustered
 hash with (bucket_count = 30000),
 FirstName varchar(64) collate Latin1_General_100_BIN2 not null,
 LastName varchar(64) collate Latin1_General_100_BIN2 not null,
 Placeholder char(100) null,

 index IDX_CustomersMemoryOptimized_LastName_FirstName
 nonclustered hash(LastName, FirstName)
 with (bucket_count = 1024),
)
with (memory_optimized = on, durability = schema_only)
go

-- Inserting cross-joined data for all first and last names 50 times
-- using GO 50 command in Management Studio
;with FirstNames(FirstName)
as
(
 select Names.Name
 from
 (
 values('Andrew'),('Andy'),('Anton'),('Ashley'),('Boris'),
 ('Brian'),('Cristopher'),('Cathy'),('Daniel'),('Donny'),
 ('Edward'),('Eddy'),('Emy'),('Frank'),('George'),('Harry'),
 ('Henry'),('Ida'),('John'),('Jimmy'),('Jenny'),('Jack'),
 ('Kathy'),('Kim'),('Larry'),('Mary'),('Max'),('Nancy'),

Chapter 4 ■ hash Indexes

50

 ('Olivia'),('Paul'),('Peter'),('Patrick'),('Robert'),
 ('Ron'),('Steve'),('Shawn'),('Tom'),('Timothy'),
 ('Uri'),('Vincent')
) Names(Name)
)
,LastNames(LastName)
as
(
 select Names.Name
 from
 (
 values('Smith'),('Johnson'),('Williams'),('Jones'),('Brown'),
 ('Davis'),('Miller'),('Wilson'),('Moore'),('Taylor'),
 ('Anderson'),('Jackson'),('White'),('Harris')
) Names(Name)
)
insert into dbo.CustomersOnDisk(LastName, FirstName)
 select LastName, FirstName
 from FirstNames cross join LastNames
go 50

insert into dbo.CustomersMemoryOptimized(LastName, FirstName)
 select LastName, FirstName
 from dbo.CustomersOnDisk;

For the first test, let’s run select statements against both tables, specifying both
LastName and FirstName as predicates in the queries, as shown in Listing 4-6.

Listing 4-6. Composite Hash Index: Selecting Data Using Both Index Columns
as Predicates

select CustomerId, FirstName, LastName
from dbo.CustomersOnDisk
where FirstName = 'Paul' and LastName = 'White';

select CustomerId, FirstName, LastName
from dbo.CustomersMemoryOptimized
where FirstName = 'Paul' and LastName = 'White';

As you can see in Figure 4-6, SQL Server is able to use an Index Seek operation in
both cases.

Chapter 4 ■ hash Indexes

51

In the next step, let’s check what happens if you remove the filter by FirstName from
the queries. The code is shown in Listing 4-7.

Listing 4-7. Composite Hash Index: Selecting Data Using the Leftmost Index
Column Only

select CustomerId, FirstName, LastName
from dbo.CustomersOnDisk
where LastName = 'White';

select CustomerId, FirstName, LastName
from dbo.CustomersMemoryOptimized
where LastName = 'White';

In the case of the on-disk index, SQL Server is still able to utilize an Index Seek
operation. This is not the case for the composite hash index defined on the memory-
optimized table. You can see the execution plans for the queries in Figure 4-7.

Figure 4-6. Composite hash index: execution plans when queries use both index columns
as predicates

Chapter 4 ■ hash Indexes

52

Statistics on Memory-Optimized Tables
Even though SQL Server creates index- and column-level statistics on memory-optimized
tables, it does not update the statistics automatically. This behavior leads to a very
interesting situation: indexes on memory-optimized tables are created with the tables
and, therefore, the statistics are created at the time when the tables are empty and are
never updated automatically afterwards.

You can validate it by running the DBCC SHOW_STATISTICS statement shown in
Listing 4-8.

Listing 4-8. Analyzing Index Statistics

dbcc show_statistics
(
 'dbo.HashIndex_HighBucketCount'
 ,'PK_HashIndex_HighBucketCount'
)

The output shown in Figure 4-8 illustrates that the statistics is empty.

Figure 4-8. Output of DBCC SHOW_STATISTICS statement

Figure 4-7. Composite hash index: execution plans when queries use the leftmost index
column only

Chapter 4 ■ hash Indexes

53

You need to keep this behavior in mind while designing a statistics maintenance
strategy in the system. You should update the statistics after the data is loaded into the
table when SQL Server or the database restarts. Moreover, if the data in a memory-
optimized table is volatile, which is usually the case, you should manually update
statistics on a regular basis.

You can update individual statistics with the UPDATE STATISTICS command.
Alternatively, you can use the sp_updatestats stored procedure to update all statistics
in the database. The sp_updatestats stored procedure always updates all statistics on
memory-optimized tables, which is different from how it works for on-disk tables, where
such a stored procedure skips statistics that do not need to be updated.

SQL Server always performs a full scan while updating statistics on memory-
optimized tables. This behavior is also different from on-disk tables, whereas SQL Server
samples the data by default. Finally, you need to specify the NORECOMPUTE option when you
run CREATE STATISTICS or UPDATE STATISTICS statements. Listing 4-9 shows an example.

Listing 4-9. Updating Statistics on Memory-Optimized Table

update statistics dbo.HashIndex_HighBucketCount
with fullscan, norecompute;

If you run the DBCC SHOW_STATISTICS statement from Listing 4-8 again, you should
see that the statistics have been updated (see Figure 4-9).

Missing statistics can introduce suboptimal execution plans with the nested loop
joins when SQL Server chooses inner and outer inputs for the operator. As you know,
the nested loop join algorithm processes the inner input for every row from the outer
input, and it is more efficient to put smaller input to the outer side. Listing 4-10 shows the
algorithm for the inner nested loop join as the reference.

Listing 4-10. Inner Nested Loop Join Algorithm

for each row R1 in outer table
 for each row R2 in inner table
 if R1 joins with R2
 return join (R1, R2)

Missing statistics can lead to a situation when SQL Server choses the inner and outer
inputs incorrectly, which can lead to highly inefficient plans.

Let’s create two tables, populating them with some data, as shown in Listing 4-11.

Figure 4-9. Output of DBCC SHOW_STATISTICS statement after the statistics are updated

Chapter 4 ■ hash Indexes

54

Listing 4-11. Missing Statistics and Inefficient Execution Plans: Table Creation

create table dbo.T1
(
 ID int not null identity(1,1)
 primary key nonclustered hash
 with (bucket_count = 8192),
 T1Col int not null,
 Placeholder char(100) not null
 constraint DEF_T1_Placeholder
 default('1'),

 index IDX_T1Col
 nonclustered hash(T1Col)
 with (bucket_count = 1024)
)
with (memory_optimized = on, durability = schema_only);

create table dbo.T2
(
 ID int not null identity(1,1)
 primary key nonclustered hash
 with (bucket_count = 8192),
 T2Col int not null,
 Placeholder char(100) not null
 constraint DEF_T2_Placeholder
 default('2'),

 index IDX_T2Col
 nonclustered hash(T2Col)
 with (bucket_count = 1024)
)
with (memory_optimized = on, durability = schema_only);

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N3 as t2) -- 4,096 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
 insert into dbo.T1(T1Col)
 select 1 from Ids;

insert into dbo.T2(T2Col)
 select -1 from dbo.T1;

update dbo.T1
set T1Col = 2
where ID = 4096;

update dbo.T2
set T2Col = -2
where ID = 1;

Chapter 4 ■ hash Indexes

55

The data in both tables distributed unevenly. You can confirm it by running the
query in Listing 4-12. Figure 4-10 illustrates the data distribution in the tables.

Listing 4-12. Missing Statistics and Inefficient Execution Plans: Checking Data
Distribution in the Tables

select 'T1' as [Table], T1Col as [Value], count(*) as [Count]
from dbo.T1
group by T1Col

union all

select 'T2' as [Table], T2Col as [Value], count(*) as [Count]
from dbo.T2
group by T2Col;

As the next step, let’s run two queries that join the data from the tables as it is shown
in Listing 4-13. Both queries will return just a single row.

Listing 4-13. Missing Statistics and Inefficient Execution Plans: Test Queries

select *
from dbo.T1 t1 join dbo.T2 t2 on
 t1.ID = t2.ID
where
 t1.T1Col = 2 and
 t2.T2Col = -1;

select *
from dbo.T1 t1 join dbo.T2 t2 on
 t1.ID = t2.ID
where
 t1.T1Col = 1 and
 t2.T2Col = -2

Figure 4-10. Missing statistics and inefficient execution plans: data distribution

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ hash Indexes

56

As you can see in Figure 4-11, SQL Server generated identical execution plans for
both queries using the T1 table in the outer part of the join. This plan is very efficient for
the first query; there is the only one row with T1Col = 2 and, therefore, SQL Server had to
perform an inner input lookup just once. Unfortunately, it is not the case for the second
query, which leads to 4,095 Index Seek operations on the T2 table.

Figure 4-11. Missing statistics and inefficient execution plans: execution plans

Chapter 4 ■ hash Indexes

57

Let’s update statistics on both tables, as shown in Listing 4-14.

Listing 4-14. Missing Statistics and Inefficient Execution Plans: Updating Statistics

update statistics dbo.T1 with fullscan, norecompute;
update statistics dbo.T2 with fullscan, norecompute;

dbcc show_statistics('dbo.T1','IDX_T1Col');
dbcc show_statistics('dbo.T2','IDX_T2Col');

Figure 4-12 illustrates that the statistics have been updated.

Now, if you run the queries from Listing 4-13 again, SQL Server can generate an
efficient execution plan for the second query, as shown in Figure 4-13.

Figure 4-12. Missing statistics and inefficient execution plans: index statistics

Chapter 4 ■ hash Indexes

58

Figure 4-13. Missing statistics and inefficient execution plans: execution plans after
statistics update

 ■ Note You can read more about statistics on memory-optimized tables at
http://msdn.microsoft.com/en-us/library/dn232522.aspx.

Summary
Hash indexes consist of an array of hash buckets, each of which stores the pointer to the
chain of rows with the same index key column(s) hash. Hash indexes help to optimize
point-lookup operations when queries search for the rows using equality predicates. In
case of composite hash indexes, the query should have equality predicates on all key
columns for the index to be useful.

Choosing the right bucket count is extremely important. Underestimations
lead to long row chains, which could seriously degrade performance of the queries.
Overestimations increase memory consumption and decrease performance of the
index scans.

Low-cardinality columns lead to the long row chains and are usually bad candidates
for hash indexes.

http://msdn.microsoft.com/en-us/library/dn232522.aspx

Chapter 4 ■ hash Indexes

59

You should analyze index cardinality and consider future system growth when
choosing the right bucket count. Ideally, you should have at least 33 percent of buckets
empty. You can get information about buckets and row chains with the sys.dm_db_xtp_
hash_index_stats view.

SQL Server creates statistics on the indexes on memory-optimized tables; however,
statistics are not updated automatically. You should update statistics manually using the
UPDATE STATISTICS statement or the sp_updatestats procedure on a regular basis.

61

Chapter 5

Nonclustered Indexes

This chapter discusses nonclustered indexes, which is the second type of indexes
supported by the In-Memory OLTP Engine. It shows how to define nonclustered indexes,
talks about their SARGability rules, and explains their internal structure.

Working with Nonclustered Indexes
Nonclustered indexes are another type of indexes supported by the In-Memory OLTP
Engine. In contrast to hash indexes, which are optimized to support point-lookup
equality searches, nonclustered indexes help you search data based on a range of values.
They have a somewhat similar structure to regular indexes on on-disk tables. They are not
exactly the same, however, and I will discuss their internal implementation in depth later
in this chapter.

terMINOLOGY ISSUe

Nonclustered indexes were introduced in SQL Server 2014 CTP 2, and the
documentation and whitepapers for that version used the term “range indexes”
to reference them. However, in the production release of SQL Server 2014,
Microsoft changed the terminology to “nonclustered indexes.”

That terminology can be confusing because hash indexes are also not clustered.
In fact, the concepts of heaps and clustered indexes cannot be applied to In-Memory
OLTP. Data rows are not stored in any particular order nor are they grouped together
on the data pages in memory.

It is also worth mentioning that the minimal index_id value of In-Memory OLTP
indexes is 2, which corresponds to nonclustered indexes in on-disk tables.

CHaPTer 5 ■ NONCLuSTereD INDexeS

62

Creating Nonclustered Indexes
Nonclustered indexes are created inline as part of the CREATE TABLE statement. The
syntax is similar to hash index creation; however, you should omit the keyword HASH
and you do not need to specify the number of buckets in the index properties. Collation
requirement still exists; you cannot index text data unless a column uses BIN2 binary
collation.

The code in Listing 5-1 creates a memory-optimized table with two nonclustered
indexes, one composite and another on the single column.

Listing 5-1. Creating a Table with Two Nonclustered Indexes

create table dbo.Customers
(
 CustomerId int identity(1,1) not null
 constraint PK_Customers
 primary key nonclustered
 hash with (bucket_count=1000),
 FirstName varchar(32)
 collate Latin1_General_100_BIN2 not null,
 LastName varchar(64)
 collate Latin1_General_100_BIN2 not null,
 FullName varchar(97)
 collate Latin1_General_100_BIN2 not null,

 index IDX_LastName_FirstName
 nonclustered(LastName, FirstName),

 index IDX_FullName
 nonclustered(FullName)
)
with (memory_optimized=on, durability=schema_only);

Using Nonclustered Indexes
Similar to B-Tree indexes in on-disk tables, the data in nonclustered indexes is sorted
accordingly to the value of index key columns. As result, nonclustered indexes are
beneficial in a large number of use cases. They can lead to an Index Seek operation
in scenarios when query predicates allow SQL Server to locate and isolate a subset
of the index keys for processing. With very few exceptions, the SARGability rules for
nonclustered indexes match the rules for indexes defined on on-disk tables.

Listing 5-2 shows several queries against the dbo.Customers table. SQL Server is able
to use Index Seek with all of them.

CHaPTer 5 ■ NONCLuSTereD INDexeS

63

Listing 5-2. Queries That Lead to Index Seek Operations

-- Point-Lookup specifying all columns in the index
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName = 'White' and FirstName = 'Paul';

-- Point-lookup using leftmost index column
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName = 'White';

-- Using ">", ">=", "<", "<=" comparison
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName > 'White';

-- Prefix Search
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName like 'Wh%';

-- IN list
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName in ('White','Moore');

Similar to B-Tree indexes, Index Seek is impossible when query predicates do
not allow isolating a subset of the index keys for processing. Listing 5-3 shows several
examples of such queries.

Listing 5-3. Queries That Lead to Index Scan Operations

-- Omitting left-most index column(s)
select CustomerId, FirstName, LastName
from dbo.Customers
where FirstName = 'Paul';

-- Substring Search
select CustomerId, FirstName, LastName
from dbo.Customers
where LastName like '%hit%';

-- Functions
select CustomerId, FirstName, LastName
from dbo.Customers
where len(LastName) = 5;

CHaPTer 5 ■ NONCLuSTereD INDexeS

64

As the opposite of B-Tree indexes on on-disk tables, nonclustered indexes are
unidirectional, and SQL Server is unable to scan index keys in the order opposite of how
they were sorted. You should keep this behavior in mind when you define an index and
choose the sorting order for the columns.

Let's illustrate that with an example; we’ll create an on-disk table with the same
structure as dbo.Customers, and populate both tables with the same data. Listing 5-4
shows the code to do so.

Listing 5-4. Nonclustered Indexes and Sorting Order: On-disk Table Creation

create table dbo.Customers_OnDisk
(
 CustomerId int identity(1,1) not null,
 FirstName varchar(32) not null,
 LastName varchar(64) not null,
 FullName varchar(97) not null,

 constraint PK_Customers_OnDisk
 primary key clustered(CustomerId)
);

create nonclustered index IDX_Customers_OnDisk_LastName_FirstName
on dbo.Customers_OnDisk(LastName, FirstName);

create nonclustered index IDX_Customers_OnDisk_FullName
on dbo.Customers_OnDisk(FullName);
go

;with FirstNames(FirstName)
as
(
 select Names.Name
 from
 (
 values('Andrew'),('Andy'),('Anton'),('Ashley'),('Boris'),
 ('Brian'),('Cristopher'),('Cathy'),('Daniel'),('Don'),
 ('Edward'),('Eddy'),('Emy'),('Frank'),('George'),('Harry'),
 ('Henry'),('Ida'),('John'),('Jimmy'),('Jenny'),('Jack'),
 ('Kathy'),('Kim'),('Larry'),('Mary'),('Max'),('Nancy'),
 ('Olivia'),('Paul'),('Peter'),('Patrick'),('Robert'),
 ('Ron'),('Steve'),('Shawn'),('Tom'),('Timothy'),
 ('Uri'),('Vincent')
) Names(Name)
)
,LastNames(LastName)
as
(
 select Names.Name

CHaPTer 5 ■ NONCLuSTereD INDexeS

65

 from
 (
 values('Smith'),('Johnson'),('Williams'),('Jones'),('Brown'),
 ('Davis'),('Miller'),('Wilson'),('Moore'),('Taylor'),
 ('Anderson'),('Jackson'),('White'),('Harris')
) Names(Name)
)
insert into dbo.Customers(LastName, FirstName, FullName)
 select LastName, FirstName, FirstName + ' ' + LastName
 from FirstNames cross join LastNames;

insert into dbo.Customers_OnDisk(LastName, FirstName, FullName)
 select LastName, FirstName, FullName
 from dbo.Customers;

Let’s run the queries that select several rows in ascending order, which match the
index sorting order. The queries are shown in Listing 5-5.

Listing 5-5. Nonclustered Indexes and Sorting Order: Selecting Data in the Same Order
with the Index Key Column

select top 3 CustomerId, FirstName, LastName, FullName
from dbo.Customers_OnDisk
order by FullName ASC;

select top 3 CustomerId, FirstName, LastName, FullName
from dbo.Customers
order by FullName ASC;

Figure 5-1 shows the execution plans for the queries. SQL Server scans the indexes
starting with the lowest key and stops after it read three rows. The execution plans are
similar for both queries with the exception of required Key Lookup with on-disk data.
SQL Server uses it to obtain the values of the FirstName and LastName columns from the
clustered index of the table.

Key Lookup is not required with memory-optimized tables where the index pointers
are part of the actual data rows and the indexes are covering the queries.

CHaPTer 5 ■ NONCLuSTereD INDexeS

66

The situation changes if you need to sort the output in the descending order, as
shown in Listing 5-6.

Listing 5-6. Nonclustered Indexes and Sorting Order: Selecting Data in the Opposite
Order with Index Key Column

select top 3 CustomerId, FirstName, LastName, FullName
from dbo.Customers_OnDisk
order by FullName DESC;

select top 3 CustomerId, FirstName, LastName, FullName
from dbo.Customers
order by FullName DESC;

As you can see in Figure 5-2, SQL Server is able to scan the on-disk table index in the
order opposite of how it was defined. However, this is not the case for memory-optimized
tables where indexes are unidirectional. SQL Server decides to scan the primary key and
sort the data afterwards.

Figure 5-1. Execution plans when the order by results match the index sorting order

CHaPTer 5 ■ NONCLuSTereD INDexeS

67

Finally, index statistics limitations, which were discussed in Chapter 4, still apply
to the nonclustered indexes. SQL Server creates statistics at the time of index creation;
however, they are never updated automatically. You should update statistics manually on
a regular basis.

Nonclustered Indexes Internals
Nonclustered indexes use a lock- and latch-free variation of B-Tree, called Bw-Tree, which
was designed by Microsoft Research in 2011. Let’s look at the Bw-Tree structure in detail.

Bw-Tree Overview
Similar to B-Trees, index pages in a Bw-Tree contain a set of ordered index key values.
However, Bw-Tree pages do not have a fixed size and they are unchangeable after they are
built. The maximum page size, however, is 8KB.

Rows from a leaf level of the nonclustered index contain the pointers to the data row
chains with the same index key values. This works in a similar manner to hash indexes,
when multiple rows and/or versions of a row are linked together. Each index in the
table adds a pointer to the index pointer array in the row, regardless of its type: hash or
nonclustered.

Root and intermediate levels in nonclustered indexes are called internal pages.
Similar to B-Tree indexes, internal pages point to the next level in the index. However,
instead of pointing to the actual data page, internal pages use a logical page id (PID),

Figure 5-2. Execution plans when the order by results are the opposite of the index sorting order

http://dx.doi.org/10.1007/978-1-4842-1136-6_4

CHaPTer 5 ■ NONCLuSTereD INDexeS

68

which is a position (offset) in a separate array-like structure called a mapping table. In
turn, each element in the mapping table contains a pointer to the actual index page.

Figure 5-3 shows an example of a nonclustered index and a mapping table. Each
index row from the internal page stores the highest key value on the next-level page and
PID. This is different from a B-Tree index, where intermediate- and root-level index rows
store the lowest key value of the next-level page instead. Another difference is that the
pages in a Bw-Tree are not linked in a double-linked list. Each page knows the PID of the
next page on the same level and does not know PID of the previous page. Even though it
appears as a pointer (arrow) in Figure 5-3, that link is done through the mapping table,
similar to links to pages on the next level.

Even though a Bw-Tree looks very similar to a B-Tree, there is one conceptual
difference: the leaf level of an on-disk B-Tree index consists of separate index rows for
each data row in the index. If multiple data rows have the same key value, the index
would have multiple leaf level rows with the same index key stored.

Alternatively, in-memory nonclustered indexes store one index row (pointer) to the
row chain that includes all of the data rows that have the same key value. Only one index
row (pointer) per key value is stored in the index. You can see this in Figure 5-3, where the
leaf level of the index has single rows for the key values of Ann and Nancy, even though the
row chain includes more than one data row for each value.

 ■ Tip You can compare the structure of B-Tree and Bw-Tree indexes by looking at
Figures 3-1 and 3-2 from Chapter 3, which show clustered and nonclustered B-Tree indexes
on on-disk tables.

Figure 5-3. Nonclustered index structure

http://dx.doi.org/10.1007/978-1-4842-1136-6_3

CHaPTer 5 ■ NONCLuSTereD INDexeS

69

Index Pages and Delta Records
As mentioned, pages in nonclustered indexes are unchangeable once they are built. SQL
Server builds a new version of the page when it needs to be updated and replaces the
page pointer in the mapping table, which avoids changing internal pages that reference
an old (obsolete) page.

Every time SQL Server needs to change a leaf-level index page it creates one or two
delta records that represent the changes. INSERT and DELETE operations generate a single
insert or delete delta record, while an UPDATE operation generates two delta records,
deleting old and inserting new values. Delta records create a chain of memory pointers
with the last pointer to the actual index page. SQL Server also replaces a pointer in the
mapping table with the address of the first delta record in the chain.

Figure 5-4 shows an example of a leaf-level page and delta records if the following
actions occurred in the sequence: R1 index row is updated, R2 row is deleted, and R3 row
is inserted.

Figure 5-4. Delta records and nonclustered index leaf page

 ■ Note The internal implementation of the In-Memory OLTP engine guarantees that
multiple sessions cannot simultaneously update memory pointers in the various In-Memory
OLTP objects, thereby overwriting each other’s changes. This process is covered in detail in
appendix a.

The internal and leaf pages of nonclustered indexes consist of two areas: a header
and data. The header area includes information about the page such as the following:

•	 PID: The position (offset) in the mapping table

•	 Page type: The type of the page, such as leaf, internal, delta, or special

•	 Right page PID: The position (offset) of the next page in the
mapping table

CHaPTer 5 ■ NONCLuSTereD INDexeS

70

•	 Height: The number of levels from the current page to the leaf
level of the index

•	 The number of key values (index rows) stored on the page

•	 Delta records statistics: Includes the number of delta records
and space used by the delta key values

•	 The max value of a key on the page

The data area of the page includes either two or three arrays depending on the index
keys data types. The arrays are

•	 Values: An array of 8-byte pointers. Internal pages in the index
store the PID of next-level pages. Leaf-level pages store pointers
to the first row in the chain of rows with the corresponding key
value. It is worth noting that even though PID requires 4 bytes to
store a value, SQL Server uses 8-byte elements to preserve the
same page structure between internal and leaf pages.

•	 Keys: An array of key values stored on the page.

•	 Offsets: An array of two-byte offsets where individual key values
in keys array start. Offsets are stored only if keys have variable-
length data.

Delta records, in a nutshell, are one-record index data pages. The structure of delta
data pages is similar to the structure of internal and leaf pages. However, instead of arrays
of values and keys, delta data pages store operation code (insert or delete) and a single
key value and pointer to the first data row in a row chain.

Figure 5-5 shows an example of a leaf-level index page with an insert delta record.

Figure 5-5. A leaf-level index page with an insert delta record

CHaPTer 5 ■ NONCLuSTereD INDexeS

71

SQL Server needs to traverse and analyze all delta records when accessing an index
page. As you can guess, a long chain of delta records affects performance. When this is
the case, SQL Server consolidates delta records and rebuilds an index page, creating a
new one. The newly created page has the same PID and replaces the old page, which is
marked for garbage collection. Replacement of the page is accomplished by changing a
pointer in the mapping table. SQL Server does not need to change internal pages because
they use the mapping table to reference leaf-level pages.

The process of rebuilding is triggered at the moment a new delta record is created
for pages that already have 16 delta records in a chain. The action described by the delta
record, which triggers the rebuild, is incorporated into the newly created page.

Two other processes can create new or delete existing index pages, in addition to
delta records consolidation. The first process, page splitting, occurs when a page does not
have enough free space to accommodate a new data row. Another process, page merging,
occurs when a delete operation leaves an index page less than 10% from the maximum
page size, which is 8KB now, or when an index page contains just a single row.

 ■ Note The page splitting and page merging processes are covered in depth in appendix B.

Obtaining Information About Nonclustered Indexes
In addition to the sys.dm_db_xtp_hash_index_stats view, which was discussed in
Chapter 4, SQL Server provides two other views to obtain information about indexes on
memory-optimized tables. Those views provide the data collected since the time when
memory-optimized tables were loaded into memory, which occurs at database startup.

You can obtain information about index access methods and ghost rows in both
hash and nonclustered indexes with the sys.dm_db_xtp_index_stats view. The notable
columns in the view are the following:

•	 scans_started shows the number of times that row chains in
the index were scanned. Due to the nature of the index, every
operation, such as SELECT, INSERT, UPDATE, and DELETE, requires
SQL Server to scan a row chain and increment this column.

•	 rows_returned represents the cumulative number of rows
returned to the next operator in the execution plan. It does
not necessarily match the number of rows returned to a client
because further operators in the execution plan can change it.

•	 rows_touched represents the cumulative number of rows
accessed in the index.

http://dx.doi.org/10.1007/978-1-4842-1136-6_4

CHaPTer 5 ■ NONCLuSTereD INDexeS

72

•	 rows_expired shows the number of detected stale rows. I will
discuss this in greater detail when I talk about the garbage
collection process in Chapter 9.

•	 rows_expired_removed returns the number of stale rows that
have been unlinked from the index row chains. I will also discuss
this in more detail when I talk about garbage collection.

Listing 5-7 shows the query that returns the information about indexes defined on
the dbo.Customers table.

Listing 5-7. Querying the sys.dm_db_xtp_index_stats View

select
 s.name + '.' + t.name as [table]
 ,i.index_id
 ,i.name as [index]
 ,i.type_desc as [type]
 ,st.scans_started
 ,st.rows_returned
 ,iif(st.scans_started = 0, 0,
 floor(st.rows_returned / st.scans_started))
 as [rows per scan]
from
 sys.dm_db_xtp_index_stats st join sys.tables t on
 st.object_id = t.object_id
 join sys.indexes i on
 st.object_id = i.object_id and
 st.index_id = i.index_id
 join sys.schemas s on
 s.schema_id = t.schema_id
where
 s.name = 'dbo' and t.name = 'Customers'

Figure 5-6 illustrates the output of the query. Large number of Rows Per Scan can
indicates heavy index scans, which can be the sign of a suboptimal indexing strategy
and/or poorly written queries.

Figure 5-6. Output from the sys.dm_db_xtp_index_stats view

http://dx.doi.org/10.1007/978-1-4842-1136-6_9

CHaPTer 5 ■ NONCLuSTereD INDexeS

73

 ■ Note You can read more about the sys.dm_db_xtp_index_stats view at
http://msdn.microsoft.com/en-us/library/dn133081.aspx.

The sys.dm_db_xtp_nonclustered_index_stats view returns information about
nonclustered indexes. It includes information about the total number of pages in the
index plus page splits, merges, and consolidation-related statistics.

Listing 5-8 shows information about nonclustered indexes defined on the
dbo.Customers table. Figure 5-7 shows the output of the query.

Listing 5-8. Querying the sys.dm_db_xtp_nonclustered_index_stats View

select
 s.name + '.' + t.name as [table]
 ,i.index_id
 ,i.name as [index]
 ,i.type_desc as [type]
 ,st.delta_pages
 ,st.leaf_pages
 ,st.internal_pages
 ,st.leaf_pages + st.delta_pages + st.internal_pages
 as [total pages]
from
 sys.dm_db_xtp_nonclustered_index_stats st
 join sys.tables t on
 st.object_id = t.object_id
 join sys.indexes i on
 st.object_id = i.object_id and
 st.index_id = i.index_id
 join sys.schemas s on
 s.schema_id = t.schema_id
where
 s.name = 'dbo' and t.name = 'Customers'

Figure 5-7. Output from the sys.dm_db_xtp_nonclustered_index_stats view

 ■ Note You can read more about the sys.dm_db_xtp_nonclustered_index_stats view
at https://msdn.microsoft.com/en-us/library/dn645468.aspx.

http://msdn.microsoft.com/en-us/library/dn133081.aspx
http://msdn.microsoft.com/en-us/library/dn133081.aspx
https://msdn.microsoft.com/en-us/library/dn645468.aspx

CHaPTer 5 ■ NONCLuSTereD INDexeS

74

Hash Indexes vs. Nonclustered Indexes
As you already know, hash indexes are useful only for point-lookup searches in cases
when queries use equality predicates on all index columns. Nonclustered indexes, on the
other hand, can be used in a much wider scope, which often makes the choice obvious.
You should use nonclustered indexes when your queries benefit from scenarios other
than point-lookups.

The situation is less obvious in the case of point-lookups. With the hash indexes,
SQL Server can locate the hash bucket, which is the entry point to the data row chain, in a
single step by calling the hash function and calculating the hash value. With nonclustered
indexes, SQL Server has to traverse Bw-Tree to find a leaf page, and the number of steps
depends on the height of the index and number of delta records there.

Even though nonclustered indexes require more steps to find an entry point to
the data row chain, the chain can be smaller compared to hash indexes. Row chains in
nonclustered indexes are built based on unique index key values. In hash indexes, row
chains are built based on a non-unique hash key and can be larger due to hash collisions,
especially when the bucket_count is insufficient.

Let’s compare hash and nonclustered index performance in a point-lookup scenario.
Listing 5-9 creates four tables of the same structure. Three of them have hash indexes
defined on the Value column using a different bucket_count. The fourth table has a
nonclustered index defined on the same column instead. Finally, the code populates all
tables with the same data.

Listing 5-9. Hash and Nonclustered Indexes’ Point Lookup Performance: Tables Creation

create table dbo.Hash_131072
(
 Id int not null
 constraint PK_Hash_131072
 primary key nonclustered
 hash with (bucket_count=131072),
 Value int not null,

 index IDX_Value hash(Value)
 with (bucket_count=131072)
)
with (memory_optimized=on, durability=schema_only);

create table dbo.Hash_16384
(
 Id int not null
 constraint PK_Hash_16384
 primary key nonclustered
 hash with (bucket_count=16384),
 Value int not null,

CHaPTer 5 ■ NONCLuSTereD INDexeS

75

 index IDX_Value hash(Value)
 with (bucket_count=16384)
)
with (memory_optimized=on, durability=schema_only);

create table dbo.Hash_1024
(
 Id int not null
 constraint PK_Hash_1014
 primary key nonclustered
 hash with (bucket_count=1024),
 Value int not null,

 index IDX_Value hash(Value)
 with (bucket_count=1024)
)
with (memory_optimized=on, durability=schema_only);

create table dbo.NonClusteredIdx
(
 Id int not null
 constraint PK_NonClusteredIdx
 primary key nonclustered
 hash with (bucket_count=131072),
 Value int not null,

 index IDX_Value nonclustered(Value)
)
with (memory_optimized=on, durability=schema_only);
go

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N1 as t2) -- 131,072 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.Hash_131072(Id,Value)
 select Id, Id
 from ids
 where Id <= 75000;

insert into dbo.Hash_16384(Id,Value)
 select Id, Value
 from dbo.Hash_131072;

CHaPTer 5 ■ NONCLuSTereD INDexeS

76

insert into dbo.Hash_1024(Id,Value)
 select Id, Value
 from dbo.Hash_131072;

insert into dbo.NonClusteredIdx(Id,Value)
 select Id, Value
 from dbo.Hash_131072;

Different numbers of buckets led to the different index row chain sizes in the indexes.
In this case, the Hash_131072, Hash_16384, and Hash_1024 tables have on average 1, 4,
and 73 rows per chain, respectively.

 ■ Tip You can analyze hash index properties using the sys.dm_db_xtp_hash_index_stats
view and the code from Listing 4-2 from Chapter 4.

As the next step, let’s compare point-lookup performance using the code from
Listing 5-10. This code triggers 65,536 point lookup selects against each table.

Listing 5-10. Hash and Nonclustered Indexes’ Point Lookup Performance: Selecting Data

declare
 @T table(Value int not null primary key)

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into @T(Value)
 select Id from Ids;

select t.Value, c.Cnt
from @T t
 cross apply
 (
 select count(*) as Cnt
 from dbo.Hash_131072 h
 where h.Value = t.Value
) c;

http://dx.doi.org/10.1007/978-1-4842-1136-6_4

CHaPTer 5 ■ NONCLuSTereD INDexeS

77

select t.Value, c.Cnt
from @T t
 cross apply
 (
 select count(*) as Cnt
 from dbo.Hash_16384 h
 where h.Value = t.Value
) c;

select t.Value, c.Cnt
from @T t
 cross apply
 (
 select count(*) as Cnt
 from dbo.Hash_1024 h
 where h.Value = t.Value
) c;

select t.Value, c.Cnt
from @T t
 cross apply
 (
 select count(*) as Cnt
 from dbo.NonClusteredIdx h
 where h.Value = t.Value
) c;

Table 5-1 shows the execution time of the queries in my environment. As you can
see, the nonclustered index point-lookup select is slightly slower compared to hash
indexes with relatively short row chains; however, it is faster in the case of the long row
chains and incorrect bucket count estimations.

Table 5-1. Execution Time of Queries

Hash_131072 Hash_16384 Hash_1024 NonClusteredIdx

Average Index Row
Chain Size

1 4 73 N/A

Execution Time 141 ms 156 ms 219 ms 171 ms

Memory requirements are another factor to consider. With the hash indexes,
memory usage depends on the number of buckets. The amount of memory required
for the nonclustered indexes depends on the size of the index key and index cardinality
(uniqueness of index key values). For example, if a table has a varchar column with
1,000,000 unique values of 100 bytes each, the nonclustered index on that column would
require about 800MB to support a Bw-Tree structure. Alternatively, a hash index with
2,097,152 buckets will use just 16MB of memory.

CHaPTer 5 ■ NONCLuSTereD INDexeS

78

With all that being said, hash indexes are a good choice only in cases where the
workload and data are relatively static and, therefore, you can correctly estimate
bucket_count and you do not expect anything other than point-lookup queries in the
future. In all other cases, nonclustered indexes are the safer choice.

Summary
Nonclustered indexes are the second type of indexes supported by the In-Memory OLTP
Engine. They have similar SARGability rules with the B-Tree indexes defined on on-disk
tables with the exception of the scans in the order opposite of the index key sorting order.

Internally, nonclustered indexes use a lock- and latch-free variation of B-Tree, called
Bw-Tree, which consists of internal and leaf data pages referencing each other through
the mapping table. Leaf data pages store one row per each individual key value with the
pointer to the chain of the data rows with the same key.

SQL Server never updates index pages. Any changes are referenced through the
delta records that correspond to individual INSERT and DELETE operations on the page.
SQL Server consolidates the large chains of delta records and performs splitting and
merging of the data pages when needed. All of those processes create the new data pages,
marking the old ones for garbage collection.

Nonclustered indexes are a good choice in scenarios when point-lookup is not an
option and/or when it is hard to estimate the number of buckets in the hash index.

79

Chapter 6

In-Memory OLTP
Programmability

This chapter focuses on the programmability aspects of the In-Memory OLTP Engine in
SQL Server. It describes the process of native compilation, and it provides an overview
of the natively compiled stored procedures and T-SQL features that are supported in
In-Memory OLTP. Finally, this chapter compares the performance of several use cases
that access and modify data in memory-optimized tables using natively compiled stored
procedures and interpreted T-SQL with the interop engine.

Native Compilation
As you already know, memory-optimized tables can be accessed from regular T-SQL
code using the query interop engine. This approach is very flexible. As long as you
work within the supported feature set, the location of the data is transparent. The code
does not need to know, nor does it need to worry about, if it works with on-disk or with
memory-optimized tables.

Unfortunately, this flexibility comes at a cost. T-SQL is an interpreted and
CPU-intensive language. Even a simple T-SQL statement requires thousands, and
sometimes millions, of CPU instructions to execute. Even though the in-memory data
location speeds up data access and eliminates latching and locking contentions, the
overhead of T-SQL interpretation sets limits on the level of performance improvements
achievable with In-Memory OLTP.

In practice, it is common to see a 2X-4X system throughput increase when
memory-optimized data is accessed through the interop engine. To improve performance
even further, In-Memory OLTP utilizes native compilation. As a first step, it converts any
row-data manipulation and access logic into C code, which is compiled into DLLs and
loaded into SQL Server’s process memory. These DLLs (one per table) consist of native
CPU instructions, and they execute without any further code interpretation overhead of
T-SQL statements.

Consider the simple situation where you need to read the value of a fixed-length
column from a data row. In the case of on-disk tables, SQL Server obtains the starting
offset and length of the column from the system catalogs, and it performs the
required manipulations to convert the sequence of bytes to the required data type.

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

80

With memory-optimized tables, the DLL already knows the column offset and data
type. SQL Server can read data from a pre-defined offset in a row using a pointer of the
correct data type without any further overhead involved. As you can guess, this approach
dramatically reduces the number of CPU instructions required for the operation.

On the flip side, this approach brings some limitations. You cannot change the
format of a row after the DLL is generated. The compiled code would not know anything
about the changes. This problem is more complicated than it seems, and a simple
recompilation of the DLL does not address it.

Again, consider the situation where you need to add another nullable column to a
table. This is a metadata-level operation for on-disk tables, which does not change the
data in existing table rows. T-SQL would be able to detect that column data is not present
by analyzing the various data row properties at runtime.

The situation is far more complicated in the case of memory-optimized tables and
natively compiled code. It is easy to generate a new version of the DLL that knows about
the new data column; however, that is not enough. The DLL needs to handle different
versions of rows and different data formats depending on the presence of column data.
While this is technically possible, it adds extra logic to the DLL, which leads to additional
processing instructions, which slows data access. Moreover, the logic to support multiple
data formats remains in the code forever, degrading performance even further with each
table alteration.

While, technically speaking, it is possible to convert all existing data rows to the new
format, this operation requires exclusive access to the table, which violates In-Memory
OLTP lock- and latch-free principles and is not supported in SQL Server 2014.

 ■ Tip the only way to alter a table and change its schema and index definition is to drop
and recreate the table, staging data somewhere during the process. this was discussed in
detail in Chapter 4.

To reduce the overhead of the T-SQL interpretation even further, the In-Memory
OLTP Engine allows you to perform native compilation of the stored procedures. These
stored procedures are compiled in the same way as table-related DLLs and are also
loaded to the SQL Server process memory.

Native compilation utilizes both the SQL Server and In-Memory OLTP Engines.
As a first step, SQL Server parses the T-SQL code and, in the case of stored procedures,
it generates an execution plan using the Query Optimizer. At the end of this stage,
SQL Server generates a structure called MAT (Mixed Abstract Tree), which represents
metadata, imperative logic, expressions, and query plans. I will discuss how SQL Server
optimizes natively compiled stored procedures later in this chapter.

As a next step, In-Memory OLTP transforms MAT to another structure called PIT
(Pure Imperative Tree), which is used to generate source code that is compiled and linked
into the DLL.

Figure 6-1 illustrates the process of native compilation in SQL Server.

http://dx.doi.org/10.1007/978-1-4842-1136-6_4

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

81

The code generated for native compilation uses the plain C language and is very
efficient. It is very hard to read, however. For example, every method is implemented
as a single function, which does not call other functions but rather implements its code
inline using GOTO as a control flow statement. The intention has never been to generate
human-readable code; it is used as the source for native compilation only.

Binary DLL files are not persisted in a database backup. SQL Server recreates
table-related DLLs on database startup and stored procedures-related DLLs at the time
of the first call. This approach mitigates security risks from hackers, who can substitute
DLLs with malicious copies. It is important to remember this behavior because it can add
overhead at database startup time and change the execution plans of natively compiled
stored procedures after a database restart.

Figure 6-1. Native compilation in SQL Server

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

82

 ■ Tip natively compiled stored procedures are usually faster than interpreted t-SQL
ones. however, their compilation time can be significantly longer compared to t-SQL stored
procedures. you should remember this behavior and avoid using extremely short timeouts in
natively compiled stored procedure calls.

SQL Server places binary DLLs and all other native compilation-related files in an
XTP subfolder under the main SQL Server data directory. It groups files on a per-database
basis by creating another level of subfolders. Figure 6-2 shows the content of the folder
for the database (with ID=5), which contains the memory-optimized tables and a natively
compiled stored procedures you created in previous chapters of this book.

All of the file names start with the prefix xtp_ followed either by the p (stored
procedure) or t (table) character, which indicates the object type. The two last parts of the
name include the database and object IDs for the object.

File extensions determine the type of the file, such as:

•	 *.mat.xml files store an XML representation of the MAT structure.

•	 *.c files are the source file generated by the C code generator.

•	 *.obj are the object files generated by the C compiler.

•	 *.pub are symbol files produced by the C compiler.

Figure 6-2. Folder with natively compiled objects

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

83

•	 *.out are log files from the C compiler.

•	 *.dll are natively compiled DLLs generated by the C linker.
Those files are loaded into SQL Server memory and used by the
In-Memory OLTP Engine.

 ■ Tip you can open and analyze the C source code and XML Mat in the text editor
application to get a sense of the native compilation process.

Listing 6-1 shows how to obtain a list of the natively compiled objects loaded into
SQL Server memory. It also returns the list of tables and stored procedures from the
database to show the correlation between a DLL file name and object IDs.

Listing 6-1. Obtaining a List of Natively Compiled Objects Loaded into SQL Server Memory

select
 s.name + '.' + o.name as [Object Name]
 ,o.object_id
from
 (
 select schema_id, name, object_id
 from sys.tables
 where is_memory_optimized = 1
 union all
 select schema_id, name, object_id
 from sys.procedures
) o join sys.schemas s on
 o.schema_id = s.schema_id;

select base_address, file_version, language, description, name
from sys.dm_os_loaded_modules
where description = 'XTP Native DLL';

Figure 6-3 illustrates the output of the code.

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

84

Natively Compiled Stored Procedures
Natively compiled stored procedures are the stored procedures that are compiled into
native code. They are extremely efficient, and they can provide major performance
improvements when working with memory-optimized tables, compared to interpreted
T-SQL statements, which access those tables through the query interop component.

 ■ Note In this chapter, I will reference regular interpreted (non-natively compiled) stored
procedures as T-SQL procedures.

Creating Natively Compiled Stored Procedures
As you already know, you can create natively compiled stored procedures using the
regular CREATE PROCEDURE statement and T-SQL language. However, those procedures
have several additional options that need to be specified. Listing 6-2 shows the structure
of natively compiled stored procedures along with those options.

Listing 6-2. Natively Compiled Stored Procedure Structure

create proc dbo.NativelyCompiledProc
(
 /* Parameters */
 @Param1 int not null = 1
 ,@Param2 int
)

Figure 6-3. Natively compiled objects loaded into SQL Server memory

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

85

with
 native_compilation -- Indicates natively compiled SP
 ,schemabinding -- Required
 ,execute as owner -- execute as OWNER/SELF/USER is required
as
-- Natively compiled SPs are executed as atomic blocks (all or nothing)
begin atomic with
(
 transaction isolation level = snapshot -- Isolation Level is required
 ,language = N'English' -- Required langugage setting for SP
 ,delayed_durability = off -- Optional
 ,datefirst = 7 -- Optional
 ,dateformat = 'mdy' -- Optional
)
 /* Stored Procedure Body */
end

You can define parameters of natively compiled stored procedures the same way
as with T-SQL procedures. However, natively compiled stored procedures allow you to
specify if parameters are required and must be provided at the time of a call using the
NOT NULL construct in the definition. SQL Server raises an error if you do not provide their
values at the time of the call.

 ■ Important It is recommended that you avoid type conversion and do not use named
parameters when you call natively compiled stored procedures. It is more efficient to use the
exec Proc value [..,value] rather than the exec Proc @Param=value [..,@Param=value]
calling format.

you can detect inefficient parameterization with the hekaton_slow_parameter_parsing
extended event.

All natively compiled stored procedures must be schema bound and have the
security context EXECUTE AS OWNER/SELF/USER specified. The default EXECUTE AS CALLER
context is not supported to avoid the overhead of per-statement permission checks
during the execution.

Two other required options include the transaction isolation level and the language
setting, which controls a message’s language and default date format. Natively compiled
stored procedures do not use the runtime SET LANGUAGE session option, relying on the
LANGUAGE setting instead.

You can control date format, first day of the week, and delayed durability of a
stored procedure using the DATEFORMAT, DATEFIRST, and DELAYED_DURABILITY settings,
respectively.

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

86

 ■ Note Delayed durability is a SQL Server 2014 feature that controls how SQL Server
hardens log records, flushing them from the log buffer to the transaction log. enabling delayed
durability can help to improve transaction throughput in very busy oLtp systems at the cost of
a possible small data loss in the event of an unexpected SQL Server shutdown or crash.

you can read more about delayed durability at https://msdn.microsoft.com/en-us/
library/dn449490.aspx. you can also read about it in Chapter 29 of my Pro SQL Server
Internals book.

Natively compiled stored procedures are executed as the atomic blocks, which is
all or nothing approach; either all statements in the procedure succeed or all of them fail.
I will discuss how atomic blocks work later in the chapter.

As mentioned, you can define the natively compiled stored procedure body pretty
much the same way as regular T-SQL procedures. However, the natively compiled stored
procedures support only a limited set of T-SQL constructs. Let’s look at the supported
features and limitations in different T-SQL areas in detail.

Supported T-SQL Features
One of the biggest limitations of natively compiled stored procedures is that they can access
only memory-optimized tables. The only option to join data from memory-optimized and
on-disk tables is to use the interpreted T-SQL and interop engine.

The following T-SQL features and constructs are supported and can be used in
natively compiled stored procedures.

Control Flow
The following control flow options are supported:

•	 IF and WHILE.

•	 Assigning a value to a variable with the SELECT and SET operators.

•	 RETURN.

•	 TRY/CATCH/THROW (RAISERROR is not supported). It is
recommended that you use a single TRY/CATCH block for the entire
stored procedure for better performance.

•	 It is possible to declare variables as NOT NULL as long as they have
an initializer as part of the DECLARE statement.

https://msdn.microsoft.com/en-us/library/dn449490.aspx
https://msdn.microsoft.com/en-us/library/dn449490.aspx
http://dx.doi.org/10.1007/978-1-4842-1136-6_29

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

87

Query Surface Area
The following query surface area functions are supported:

•	 SELECT, INSERT, UPDATE, and DELETE. However, you cannot use
multiple VALUE clauses with the single INSERT statement.

•	 CROSS JOIN and INNER JOIN are the only join types supported.
Moreover, you can use joins only with SELECT operators.

•	 Expressions in the SELECT list and the WHERE and HAVING clauses
are supported as long as they use supported operators.

•	 IS NULL and IS NOT NULL.

•	 GROUP BY is supported with the exception of grouping by string or
binary data.

•	 TOP and ORDER BY. However, you cannot use WITH TIES and
PERCENT in the TOP clause. Moreover, the TOP operator is limited
to 8,192 rows when the TOP <constant> is used, or even a lesser
number of rows in the case of joins. You can address this last
limitation by using a TOP <variable> approach. However, it is
less efficient in terms of performance.

•	 INDEX, FORCESCAN, FORCESEEK, FORCE ORDER, INNER LOOP JOIN,
and OPTIMIZE FOR hints.

Note that the DISTINCT operator is not supported.

Operators
The following operators are supported:

•	 Comparison operators, such as =, <, <=, >, >=, <> and BETWEEN.

•	 Unary and binary operators, such as +, -, *, /, %. Note that +
operators are supported for both numbers and strings.

•	 Bitwise operators, such as &, |, ~, ^.

•	 Logical operators, such as AND, OR, and NOT. However, the OR and
NOT operators are not supported in the WHERE and HAVING clauses
of the query.

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

88

Build-In Functions
The following build-in functions are supported:

•	 Math functions: ACOS, ASIN, ATAN, ATN2, COS, COT, DEGREES, EXP,
LOG, LOG10, PI, POWER, RAND, SIN, SQRT, SQUARE, and TAN.

•	 Date/time functions: CURRENT_TIMESTAMP, DATEADD,
DATEDIFF, DATEFROMPARTS, DATEPART, DATETIME2FROMPARTS,
DATETIMEFROMPARTS, DAY, EOMONTH, GETDATE, GETUTCDATE, MONTH,
SMALLDATETIMEFROMPARTS, SYSDATETIME, SYSUTCDATETIME,
and YEAR.

•	 String functions: LEN, LTRIM, RTRIM, and SUBSTRING.

•	 Error functions: ERROR_LINE, ERROR_MESSAGE, ERROR_NUMBER,
ERROR_PROCEDURE, ERROR_SEVERITY, and ERROR_STATE.

•	 NEWID and NEWSEQUENTIALID.

•	 CAST and CONVERT. However, it is impossible to convert between a
non-Unicode and a Unicode string.

•	 ISNULL.

•	 SCOPE_IDENTITY.

•	 You can use @@ROWCOUNT within a natively-compiled stored
procedure; however, its value is reset to 0 at the beginning and
end of the procedure.

Atomic Blocks
Natively compiled stored procedures execute as atomic blocks, which is an all or nothing
approach; either all statements in the procedure succeed or all of them fail.

When a natively compiled stored procedure is called outside of the context of an
active transaction, it starts a new transaction and either commits or rolls it back at the end
of the execution.

In cases where a procedure is called in the context of an active transaction, SQL
Server creates a savepoint at the beginning of the procedure’s execution. In case of an
error in the procedure, SQL Server rolls back the transaction to the created savepoint.
Based on the severity and type of the error, the transaction is either going to be able to
continue and commit or become doomed and uncommittable.

Let’s create a memory-optimized table and natively compiled stored procedure, as
shown in Listing 6-3.

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

89

Listing 6-3. Atomic Blocks and Transactions: Object Creation

create table dbo.MOData
(
 ID int not null
 primary key nonclustered
 hash with (bucket_count=10),
 Value int null
)
with (memory_optimized=on, durability=schema_only);

insert into dbo.MOData(ID, Value)
values(1,1), (2,2)
go

create proc dbo.AtomicBlockDemo
(
 @ID1 int not null
 ,@Value1 bigint not null
 ,@ID2 int
 ,@Value2 bigint
)
with native_compilation, schemabinding, execute as owner
as
begin atomic
with (transaction isolation level = snapshot, language=N'English')

 update dbo.MOData set Value = @Value1 where ID = @ID1;

 if @ID2 is not null
 update dbo.MOData set Value = @Value2 where ID = @ID2;
end;

At this point, the MOData table has two rows with values (1,1) and (2,2). As a first
step, let’s start the transaction and call a stored procedure twice, as shown in Listing 6-4.

Listing 6-4. Atomic Blocks and Transactions: Calling a Stored Procedure

begin tran
 exec dbo.AtomicBlockDemo 1, -1, 2, -2
 exec dbo.AtomicBlockDemo 1, 0, 2, 999999999999999

The first call of the stored procedure succeeds, while the second call triggers an
arithmetic overflow error as shown:

Msg 8115, Level 16, State 0, Procedure AtomicBlockDemo, Line 49

Arithmetic overflow error converting bigint to data type int.

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

90

You can check that the transaction is still active and committable with this select:
SELECT @@TRANCOUNT as [@@TRANCOUNT], XACT_STATE() as [XACT_STATE()]. It returns
the following results:

@@TRANCOUNT XACT_STATE()
----------- ------------
1 1

If you commit the transaction and check the content of the table, you will see that the
data reflects the changes caused by the first stored procedure call. Even though the first
update statement from the second call succeeded, SQL Server rolled it back because the
natively compiled stored procedure executed as an atomic block. You can see the data in
the MOData table:

ID Value
----------- -----------
1 -1
2 -2

As a second example, let’s trigger a critical error, which dooms the transaction,
making it uncommittable. One such situation is a write/write conflict, when multiple
sessions are trying to update the same rows. You can trigger it by executing the code in
Listing 6-5 in two different sessions.

 ■ Note I will talk about write/write conflicts and the In-Memory oLtp concurrency model
in Chapter 7.

Listing 6-5. Atomic Blocks and Transactions: Write/Write Conflict

begin tran
 exec dbo.AtomicBlockDemo 1, 0, null, null

When you run the code in the second session, it triggers the following exception:

Msg 41302, Level 16, State 110, Procedure AtomicBlockDemo, Line 13

The current transaction attempted to update a record that has been updated
since this transaction started. The transaction was aborted.

Msg 3998, Level 16, State 1, Line 1

Uncommittable transaction is detected at the end of the batch. The
transaction is rolled back.

http://dx.doi.org/10.1007/978-1-4842-1136-6_7

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

91

If you check @@TRANCOUNT in the second session, you will see that SQL Server
terminates the transaction.

@@TRANCOUNT

0

Finally, it is worth mentioning that atomic blocks are an In-Memory OLTP feature
and are not supported in T-SQL stored procedures.

Optimization of Natively Compiled Stored Procedures
Interpreted T-SQL stored procedures are compiled at the time of first execution.
Additionally, they can be recompiled after they are evicted from plan cache and in a few
other cases, such as outdated statistics, changes in database schema, or recompilation,
which are explicitly requested in the code.

This behavior is different from natively compiled stored procedures, which are
compiled at creation time. They are never recompiled, only with the exception of SQL
Server or a database restart. In these cases, recompilation occurs at the time of the first
stored procedure call.

SQL Server does not sniff parameters at the time of compilation, optimizing
statements for UNKNOWN values. It uses memory optimized table statistics during
optimization. However, as you already know, these statistics are not updated
automatically, and they can be outdated at that time.

Fortunately, cardinality estimation errors have a smaller impact on performance in
the case of natively compiled stored procedures. Contrary to on-disk tables, where such
errors can lead to highly inefficient plans due to an incorrect index choice and, therefore,
a high number of Key or RID Lookup operations, all indexes in memory-optimized tables
reference the same data row and, in a nutshell, are covering indexes. Moreover, errors will
not affect the choice of join strategy—the inner nested loop is the only physical join type
supported in natively compiled stored procedures in the first release of In-Memory OLTP.

Outdated statistics at the time of compilation, however, can still lead to inefficient
plans. One such example is a query with multiple predicates on indexed columns. SQL
Server needs to know the index’s selectivity to choose the most efficient one. Another
example is the incorrect choice of inner and outer input for the nested loop join, which
you saw in Chapter 4.

It is better to recompile natively compiled stored procedures if the data in the table
has significantly changed. You can do it with the following actions:

 1. Update the statistics to reflect the current data distribution in
the table(s).

 2. Script permissions assigned to natively compiled stored
procedures.

 3. Drop and recreate procedures. These actions force
recompilation.

 4. Assign required permissions to the procedures.

http://dx.doi.org/10.1007/978-1-4842-1136-6_4

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

92

Finally, it is worth mentioning that the presence of natively compiled stored
procedures requires you to adjust the deployment process in the system. It is common
to create all database schema objects, including tables and stored procedures, at the
beginning of deployment. While the time of deployment does not matter for T-SQL
procedures, such a strategy compiles natively compiled stored procedures at a time when
database tables are empty. You should recompile (recreate) natively compiled procedures
later, after the tables are populated with data and statistics are up to date.

Interpreted T-SQL and Memory-Optimized Tables
The query interop component provides transparent, memory-optimized table access to
interpreted T-SQL code. In the interpreted mode, SQL Server treats memory-optimized
tables pretty much the same way as on-disk tables. It optimizes queries and caches
execution plans, regardless of where the table is located. The same set of operators is
used during query execution. From a high level, when the operator's GetRow() method
is called, it is routed either to the Storage Engine or to the In-Memory OLTP Engine,
depending on the underlying table type.

Most T-SQL features are supported in interpreted mode. There are still a few
exceptions, however:

•	 TRUNCATE TABLE.

•	 MERGE operator with memory-optimized table as the target.

•	 Context connection from CLR code.

•	 Referencing memory-optimized tables in indexed views. You
can reference memory-optimized tables in partitioned views,
combining data from memory-optimized and on-disk tables.

•	 DYNAMIC and KEYSET cursors, which are automatically
downgraded to STATIC.

•	 Cross-database queries and transactions.

•	 Linked servers.

As you can see, the list of limitations is pretty small. However, the flexibility of query
interop access comes at a cost. Natively compiled stored procedures are usually more
efficient compared to their interpreted T-SQL counterparts. In some cases, such as joins
between memory-optimized and on-disk tables, query interop is the only choice; however,
it is usually preferable to use natively compiled stored procedures when possible.

Performance Comparison
Let’s run several tests comparing performance of several use cases that work with
memory-optimized tables using natively compiled stored procedures and the
interop engine.

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

93

Let’s create two memory-optimized tables using a schema_only durability option to
avoid any I/O and transaction logging overhead during the tests. You can see the code in
Listing 6-6, which also creates a numbers’ table and populates it with the values.

Listing 6-6. Native Compilation and Interop Mode Performance Comparison: Creating
Test Tables

create table dbo.Customers
(
 CustomerId int not null
 primary key nonclustered
 hash with (bucket_count=200000),
 Name nvarchar(255)
 collate Latin1_General_100_BIN2 not null,
 CreatedOn datetime2(0) not null
 constraint DEF_Customers_CreatedOn
 default sysutcdatetime(),
 Placeholder char(200) not null,

 index IDX_Name nonclustered(Name)
)
with (memory_optimized=on, durability=schema_only);

create table dbo.Orders
(
 OrderId int not null
 primary key nonclustered
 hash with (bucket_count=5000000),
 CustomerId int not null,
 OrderNum varchar(32)
 collate Latin1_General_100_BIN2 not null,
 OrderDate datetime2(0) not null
 constraint DEF_Orders_OrderDate
 default sysutcdatetime(),
 Amount money not null,
 Placeholder char(200) not null,

 index IDX_CustomerId
 nonclustered hash(CustomerId)
 with (bucket_count=200000),

 index IDX_OrderNum nonclustered(OrderNum)
)
with (memory_optimized=on, durability=schema_only);

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

94

create table dbo.Numbers
(
 Num int not null
 Constraint PK_Numbers
 primary key clustered
);

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,N6(C) as (select 0 from N5 as t1 cross join N3 as t2) -- 1,048,576 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N6)
insert into dbo.Numbers(Num)
 select Id from Ids;

As the first step, we will measure INSERT performance using three different
approaches and batches of different sizes. The first two stored procedures,
InsertCustomers_Row and InsertCustomers_NativelyCompiled, will run INSERT
statements on per-row basis using the interop engine and native compilation,
respectively. The third stored procedure, InsertCustomers_Batch, will insert all rows in
the single batch through the interop engine. Listing 6-7 shows the implementation of the
stored procedures.

Listing 6-7. Native Compilation and Interop Mode Performance Comparison: Inserting
Data into the dbo.Customers Table

create proc dbo.InsertCustomers_Row
(
 @NumCustomers int
)
as
begin
 set nocount on
 set xact_abort on

 declare
 @I int = 1;

 begin tran
 while @I <= @NumCustomers
 begin
 insert into dbo.Customers(CustomerId,Name,Placeholder)
 values(@I,N'Customer ' + convert(nvarchar(10),@I),'Data');

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

95

 set @I += 1;
 end;
 commit
end
go

create proc dbo.InsertCustomers_Batch
(
 @NumCustomers int
)
as
begin
 set nocount on
 set xact_abort on

 if @NumCustomers > 1048576
 begin
 raiserror('@NumCustomers should not exceed 1,048,576',10,1);
 return;
 end;

 begin tran
 insert into dbo.Customers(CustomerId,Name,Placeholder)
 select Num, N'Customer ' + convert(nvarchar(10),Num),'Data'
 from dbo.Numbers
 where Num <= @NumCustomers
 commit
end
go

create proc dbo.InsertCustomers_NativelyCompiled
(
 @NumCustomers int not null
)
with native_compilation, schemabinding, execute as owner
as
begin atomic with
(
 transaction isolation level = snapshot
 ,language = N'English'
)
 declare
 @I int = 1;

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

96

 while @I <= @NumCustomers
 begin
 insert into dbo.Customers(CustomerId,Name,Placeholder)
 values(@I,N'Customer ' + convert(nvarchar(10),@I), 'Data');

 set @I += 1;
 end;
end;

Table 6-1 shows the execution time of each stored procedure for the batches
of 10,000, 50,000, and 100,000 rows in my environment. As you can see, the natively
compiled stored procedure is about four times faster at row-by-row inserts and about
30-40 percent faster even compared to batch inserts through the interop engine.

Table 6-1. Execution Times of InsertCustomers Stored Procedures

10,000 rows 50,000 rows 100,000 rows

InsertCustomers_Row 220ms 1,160ms 2,170ms

InsertCustomers_Batch 98ms 446ms 886ms

InsertCustomers_NativelyCompiled 60ms 270ms 533ms

As the next step, let’s compare performance of UPDATE operations. Listing 6-8
shows a natively compiled stored procedure that updates 50 percent of the rows in the
Customers table.

Listing 6-8. Native Compilation and Interop Mode Performance Comparison: Natively
Compiled Stored Procedure That Updates Data in the dbo.Customers Table

create proc dbo.UpdateCustomers
(
 @Placeholder char(100) not null
)
with native_compilation, schemabinding, execute as owner
as
begin atomic with
(
 transaction isolation level = snapshot
 ,language = N'English'
)
 update dbo.Customers
 set Placeholder = @Placeholder
 where CustomerId % 2 = 0;
end;

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

97

Table 6-2 shows the execution time of the UpdateCustomers stored procedure and
the same UPDATE statement executed through the interop engine. As you see, the natively
compiled stored procedure is about three times faster than the interop approach.

Table 6-2. Execution Times of Update Operations

dbo.UpdateCustomers Natively Compiled
Stored Procedure

UPDATE Statement Executed Through
Interop Engine

113ms 380 ms

In the next step, let’s compare the performance of a SELECT query that joins data
from the Customers and Orders tables and performs sorting and aggregations. I have
populated the Orders table with 1,000,000 rows evenly distributed between 100,000
customers before the test. Listing 6-9 shows the natively compiled stored procedure with
the query.

Listing 6-9. Native Compilation and Interop Mode Performance Comparison: Natively
Compiled Stored Procedure with SELECT Query

create proc dbo.GetTopCustomers
with native_compilation, schemabinding, execute as owner
as
begin atomic with
(
 transaction isolation level = snapshot
 ,language = N'English'
)
 select top 10
 c.CustomerId, c.Name, count(o.OrderId) as [Order Cnt]
 ,max(o.OrderDate) as [Most Recent Order Date]
 ,sum(o.Amount) as [Total Amount]
 from
 dbo.Customers c join dbo.Orders o on
 c.CustomerId = o.CustomerId
 group by
 c.CustomerId, c.Name
 order by
 sum(o.Amount) desc;
end;

Table 6-3 shows the execution times of the stored procedure and the same query
executed through the interop engine. As you see, the natively compiled stored procedure
is about eight times faster in this scenario.

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

98

It is very important to remember, however, that natively compiled stored procedures
do not support hash and merge joins, which could outperform nested loop joins on large
and unsorted inputs.

Finally, let’s compare the performance of DELETE operations. Listing 6-10 shows a
natively compiled stored procedure that deletes the data from both tables.

Listing 6-10. Native Compilation and Interop Mode Performance Comparison: Natively
Compiled Stored Procedure That Deletes the Data from Both Tables

create proc dbo.DeleteCustomersAndOrders
with native_compilation, schemabinding, execute as owner
as
begin atomic with
(
 transaction isolation level = snapshot
 ,language = N'English'
)
 delete from dbo.Orders;
 delete from dbo.Customers;
end;

Table 6-4 shows the execution times of the stored procedure and DELETE statements
executed through the interop engine. In both cases, the Customers and Orders tables
were populated with the same data, which is 100,000 and 1,000,000 rows respectively.
Again, the natively compiled stored procedure is faster.

Table 6-3. Execution Times of Select Operations

dbo.GetTopCustomers Natively Compiled
Stored Procedure

SELECT Statement Executed Through
Interop Engine

366ms 2,763 ms

Table 6-4. Execution Times of Delete Operations

dbo.DeleteCustomersAndOrders Natively
Compiled Stored Procedure

DELETE Statements Executed Through
Interop Engine

1,053 ms 1,640 ms

As you have seen, native compilation provides significant performance
improvements compared to the interop engine. It is beneficial to use it as long as
the limitations do not prevent you from implementing the logic, and the additional
administration and maintenance overhead is acceptable.

Lastly, you should remember that SQL Server 2014 does not support parallel execution
plans for the statements that access memory-optimized tables. It makes In-Memory OLTP
the bad candidate for Data Warehouse workload with the large scans and complex
aggregations. We will discuss those scenarious in greater details in Chapter 11.

http://dx.doi.org/10.1007/978-1-4842-1136-6_11

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

99

Memory-Optimized Table Types and Variables
SQL Server allows you to create memory-optimized table types. Table variables of these
types are called memory-optimized table variables. In contrast to regular disk-based table
variables, memory-optimized table variables live in memory only and do not utilize tempdb.

Memory-optimized table variables provide great performance. They can be used
as a replacement for disk-based table variables and, in some cases, temporary tables.
Obviously, they have the same set of functional limitations as memory-optimized tables.

Contrary to disk-based table types, you can define indexes on memory-optimized
table types. The same statistics-related limitations still apply; however, as discussed, due
to the nature of indexes on memory-optimized tables, cardinality estimation errors yield
a much lower negative impact compared to those of on-disk tables.

 ■ Important as the opposite of on-disk table variables, statement-level recompile
does not allow Query optimizer to obtain the number of rows in memory-optimized table
variables. It always estimates that memory-optimized table variables have just a single row.

SQL Server does not support inline declaration of memory-optimized table
variables. For example, the code shown in Listing 6-11 will not compile and it will raise
an error. The reason behind this limitation is that SQL Server compiles a DLL for every
memory-optimized table type, which will not work in the case of inline declaration.

Listing 6-11. (Non-functional) Inline Declaration of Memory-Optimized Table Variables

declare
 @IDList table
 (
 ID int not null
 primary key nonclustered hash
 with (bucket_count=10000)
)
 with (memory_optimized=on)

Msg 319, Level 15, State 1, Line 91

Incorrect syntax near the keyword 'with'. If this statement is a common
table expression, an xmlnamespaces clause or a change tracking context
clause, the previous statement must be terminated with a semicolon.

You should define and use a memory-optimized table type instead, as shown in
Listing 6-12.

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

100

Listing 6-12. Creating a Memory-Optimized Table Type and Memory-Optimized Table
Variable

create type dbo.mtvIDList as table
(
 ID int not null
 primary key nonclustered hash
 with (bucket_count=10000)
)
with (memory_optimized=on)
go

declare
 @IDList dbo.mtvIDList

You can pass memory-optimized table variables as table-valued parameters (TVP)
to natively compiled and regular T-SQL procedures. As with on-disk based table-valued
parameters, it is a very efficient way to pass a batch of rows to a T-SQL routine.

 ■ Note I will discuss the scenarios of passing a batch of rows to t-SQL routines and
using memory-optimized table variables as the replacement of temporary tables in greater
detail in Chapter 11.

You can use memory-optimized table variables to imitate row-by-row processing
using cursors, which are not supported in natively compiled stored procedures.
Listing 6-13 illustrates an example of using a memory-optimized table variable to imitate
a static cursor. Obviously, it is better to avoid cursors and use set-based logic if at all
possible.

Listing 6-13. Using a Memory-Optimized Table Variable to Imitate a Cursor

create type dbo.MODataStage as table
(
 ID int not null
 primary key nonclustered
 hash with (bucket_count=1000),
 Value int null
)
with (memory_optimized=on)
go

create proc dbo.CursorDemo
with native_compilation, schemabinding, execute as owner
as
begin atomic
with

http://dx.doi.org/10.1007/978-1-4842-1136-6_11

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

101

(
 transaction isolation level = snapshot
 ,language=N'English'
)
 declare
 @tblCursor dbo.MODataStage
 ,@ID int = -1
 ,@Value int
 ,@RC int = 1

 /* Staging data in temporary table to imitate STATIC cursor */
 insert into @tblCursor(ID, Value)
 select ID, Value
 from dbo.MOData

 while @RC = 1
 begin
 select top 1 @ID = ID, @Value = Value
 from @tblCursor
 where ID > @ID
 order by ID

 select @RC = @@rowcount
 if @RC = 1
 begin
 /* Row processing */
 update dbo.MOData set Value = Value * 2 where ID = @ID
 end
 end
end

Summary
SQL Server uses native compilation to minimize the processing overhead of the
interpreted T-SQL language. It generates separate DLLs for every memory-optimized
object and loads it into process memory.

SQL Server supports native compilation of regular T-SQL stored procedures. It
compiles them into DLLs at creation time or, in the case of a server or database restart, at
the time of the first call. SQL Server optimizes natively compiled stored procedures and
embeds an execution plan into the code. That plan never changes unless the procedure
is recompiled after a SQL Server or database restart. You should drop and recreate
procedures if data distribution has been significantly changed after compilation.

While natively compiled stored procedures are incredibly fast, they support a limited
set of T-SQL language features. You can avoid such limitations by using interpreted T-SQL
code that accesses memory-optimized tables through the query interop component of
SQL Server. Almost all T-SQL language features are supported in this mode.

Chapter 6 ■ In-MeMory oLtp prograMMabILIty

102

Memory-optimized table types and memory-optimized table variables are the in-
memory analog of table types and table variables. They live in memory only, and they do
not use tempdb. You can use memory-optimized table variables as a staging area for the
data and to pass a batch of rows to a T-SQL routine. Memory-optimized table types allow
you to create indexes similar to memory-optimized tables.

103

Chapter 7

Transaction Processing in
In-Memory OLTP

This chapter discusses transaction processing in In-Memory OLTP. It elucidates what
isolation levels are supported with native compilation and cross-container transactions,
provides an overview of concurrency phenomena encountered in the database systems,
and explains how In-Memory OLTP addresses them. Finally, this chapter talks about the
lifetime of In-Memory OLTP transactions in detail.

ACID, Transaction Isolation Levels, and
Concurrency Phenomena Overview
Transactions are the unit of work that read and modify data in a database and help to
enforce consistency and durability of the data in a system. Every transaction in a properly
implemented transaction management system has four different characteristics known as
atomicity, consistency, isolation, and durability, often referenced as ACID.

•	 Atomicity guarantees that each transaction executes as an
“all or nothing” approach. All changes done within a transaction
are either committed or rolled back in full. Consider the classic
example of transferring money between checking and savings
bank accounts. That action consists of two separate operations:
decreasing the balance of the checking account and increasing
the balance of the savings account. Transaction atomicity
guarantees that both operations either succeed or fail together,
and a system will never be in the situation when money was
deducted from the checking account but never added to the
savings account.

•	 Consistency ensures that any database transaction brings the
database from one consistent state to another and none of
defined database rules and constraints were violated.

Chapter 7 ■ transaCtion proCessing in in-MeMory oLtp

104

•	 Isolation ensures that the changes done in the transaction are
isolated and invisible to other transactions until the transaction is
committed. By the book, transaction isolation should guarantee
that concurrent execution of the multiple transactions should bring
the system to the same state as if those transactions were executed
serially. However, in most database systems, such a requirement is
often relaxed and controlled by transaction isolation levels.

•	 Durability guarantees that after a transaction is committed,
all changes done by the transaction stay permanent and will
survive a system crash. SQL Server achieves durability by using
Write-Ahead Logging hardening log records in transaction log
synchronously with data modifications.

The isolation requirements are the most complex to implement in multi-user
environments. Even though it is possible to completely isolate different transactions
from each other, this could lead to a high level of blocking and other concurrency issues
in systems with volatile data. SQL Server addresses this situation by introducing several
transaction isolation levels that relax isolation requirements at the cost of possible
concurrency phenomena related to read data consistency:

•	 Dirty Reads: A transaction reads uncommitted (dirty) data from
other uncommitted transactions.

•	 Non-Repeatable Reads: Subsequent attempts to read the same
data from within the same transaction return different results.
This data inconsistency issue arises when the other transactions
modified, or even deleted, data between the reads done by the
affected transaction.

•	 Phantom Reads: This phenomenon occurs when subsequent
reads within the same transaction return new rows (the ones that
the transaction did not read before). This happens when another
transaction inserted the new data in between the reads done by
the affected transaction.

Table 7-1 shows the data inconsistency issues that are possible for different transaction
isolation levels. It is worth mentioning that every isolation level resolves write/write conflicts,
preventing multiple active transactions from updating the same rows simultaneously.

Table 7-1. Transaction Isolation Levels and Concurrency Phenomena

Isolation Level Dirty Reads Non-Repeatable Reads Phantom Reads

READ
UNCOMMITTED

YES YES YES

READ COMMITTED NO YES YES

REPEATABLE READ NO NO YES

SERIALIZABLE NO NO NO

SNAPSHOT NO NO NO

Chapter 7 ■ transaCtion proCessing in in-MeMory oLtp

105

With the exception of the SNAPSHOT isolation level, SQL Server uses locking to
address concurrency phenomena when dealing with on-disk tables. When a transaction
modifies a row, it acquires exclusive (X) locks on the row and holds it until the end of the
transaction. That exclusive (X) lock prevents other sessions from accessing uncommitted
data until the transaction is completed and the locks are released. This behavior is also
known as pessimistic concurrency.

Such behavior also means that, in the case of a write/write conflict, the last
modification wins. For example, when two transactions are trying to modify the same
row, SQL Server blocks one of them until another transaction is committed, allowing
blocked transactions to modify the data afterwards. No errors or exceptions are raised;
however, changes done by the first transaction are overwritten.

In the case of on-disk tables and pessimistic concurrency, transaction isolation
levels control how a session acquires and releases shared (S) locks when reading the data.
Table 7-2 demonstrates that behavior.

Table 7-2. Transaction Isolation Levels and Shared (S) Locks Behavior with On-disk Tables

Isolation Level Shared (S) Locks Behavior Comments

READ UNCOMMITTED (S) locks not acquired Transaction can see
uncommitted changes from the
other sessions (dirty reads)

READ COMMITTED (S) locks acquired and
released immediately

Transaction will be blocked
when it tries to read
uncommitted rows with
exclusive (X) locks held by the
other sessions (no dirty reads)

REPEATABLE READ (S) locks acquired and held
till the end of transaction

Other sessions cannot modify
a row after it was read (no non-
repeatable reads). However, they
can still insert phantom rows

SERIALIZABLE Range (S) locks acquired
and held till end of
transaction

Other sessions cannot modify a
row after it was read nor insert
new rows in between rows that
were read (no non-repeatable
or phantom reads)

The SNAPSHOT isolation level uses a row-versioning model by creating the new
version of the row after modification. In this model, all data modifications done by other
transactions are invisible to the transaction after it starts.

Though it is implemented differently in the case of on-disk and memory-optimized
tables, logically it behaves the same. A transaction will read a version of the row valid at
the time when the transaction started, and sessions do not block each other. However,
when two transactions try to update the same data, one of them will be aborted and rolled
back to resolve the write/write conflict. This behavior is known as optimistic concurrency.

Chapter 7 ■ transaCtion proCessing in in-MeMory oLtp

106

 ■ Note While SERIALIZABLE and SNAPSHOT isolation levels provide the same level of
protection against data inconsistency issues, there is a subtle difference in their behavior.
a SNAPSHOT isolation level transaction sees data as of the beginning of a transaction. With
the SERIALIZABLE isolation level, the transaction sees data as of the time when the data
was accessed for the first time.

Consider the situation when a session is reading data from a table in the middle of a
transaction. if another session changed the data in that table after the transaction started
but before data was read, the transaction in the SERIALIZABLE isolation level would see the
changes while the SNAPSHOT transaction would not.

Transaction Isolation Levels in In-Memory OLTP
In-Memory OLTP supports three transaction isolation levels: SNAPSHOT, REPEATABLE
READ, and SERIALIZABLE. However, In-Memory OLTP uses a completely different
approach to enforce data consistency rules as compared to on-disk tables. Rather than
block or being blocked by other sessions, In-Memory OLTP validates data consistency
at the transaction COMMIT time and throws an exception and rolls back the transaction if
rules were violated.

•	 In the SNAPSHOT isolation level, any changes done by other
sessions are invisible to the transaction. A SNAPSHOT transaction
always works with a snapshot of the data as of the time when
transaction started. The only validation at the time of commit
is checking for primary key violations, which is called snapshot
validation.

•	 In the REPEATABLE READ isolation level, In-Memory OLTP
validates that the rows that were read by the transaction have not
been modified or deleted by the other transactions. A REPEATABLE
READ transaction would not be able to commit if this was the case.
That action is called repeatable read validation.

•	 In the SERIALIZABLE isolation level, SQL Server performs
repeatable read validation and also checks for phantom rows that
were possibly inserted by the other sessions. This process is called
serializable validation.

Let’s look at a few examples that demonstrate this behavior. As a first step, shown in
Listing 7-1, let’s create a memory-optimized table and insert a few rows there.

Chapter 7 ■ transaCtion proCessing in in-MeMory oLtp

107

Listing 7-1. Data Consistency and Transaction Isolation Levels: Table Creation

create table dbo.HKData
(
 ID int not null,
 Col int not null,

 constraint PK_HKData
 primary key nonclustered hash(ID)
 with (bucket_count=64),
)
with (memory_optimized=on, durability=schema_only);

insert into dbo.HKData(ID, Col)
values(1,1),(2,2),(3,3),(4,4),(5,5);

Table 7-3 shows how concurrency works in the REPEATABLE READ transaction
isolation level.

Table 7-3. Concurrency in the REPEATABLE READ Transaction Isolation Level

Session 1 Session 2 Results

begin tran
 select ID, Col
 from dbo.HKData
 with (repeatableread)

update dbo.HKData
set Col = -2
where ID = 2

 select ID, Col
 from dbo.HKData
 with (repeatableread)

Return old version of a row
(Col = 2)

commit Msg 41305, Level 16,
State 0, Line 0

The current transaction failed
to commit due to a repeatable
read validation failure.

begin tran
 select ID, Col
 from dbo.HKData
 with (repeatableread)

insert into dbo.HKData
values(10,10)

 select ID, Col
 from dbo.HKData
 with (repeatableread)

Does not return
new row (10,10)

commit Success

Chapter 7 ■ transaCtion proCessing in in-MeMory oLtp

108

As you can see, with memory-optimized tables, other sessions were able to
modify data that was read by the active REPEATABLE READ transaction. This led to a
transaction abort at the time of COMMIT when the repeatable read validation failed. This
is a completely different behavior than that of on-disk tables, where other sessions are
blocked,unable to modify data until the REPEATABLE READ transaction successfully
commits and releases shared (S) locks it held.

It is also worth noting that in the case of memory-optimized tables, the REPEATABLE
READ isolation level protects you from the Phantom Read phenomenon, which is not the
case with on-disk tables.

As a next step, let’s repeat these tests in the SERIALIZABLE isolation level. You can see
the code and the results of the execution in Table 7-4.

Table 7-4. Concurrency in the SERIALIZABLE Transaction Isolation Level

Session 1 Session 2 Results

begin tran
 select ID, Col
 from dbo.HKData
 with (serializable)

update dbo.HKData
set Col = -2
where ID = 2

 select ID, Col
 from dbo.HKData
 with (serializable)

Return old version of a row
(Col = 2)

commit Msg 41305, Level 16, State 0,
Line 0

The current transaction failed
to commit due to a repeatable
read validation failure.

begin tran
 select ID, Col
 from dbo.HKData
 with (serializable)

insert into dbo.HKData
values(10,10)

 select ID, Col
 from dbo.HKData
 with (serializable)

Does not return new row
(10,10)

commit Msg 41325, Level 16, State 0,
Line 0

The current transaction
failed to commit due to a
serializable validation failure.

Chapter 7 ■ transaCtion proCessing in in-MeMory oLtp

109

As you can see, the SERIALIZABLE isolation level prevents the session from
committing a transaction when another session inserted a new row and violated the
serializable validation. Like the REPEATABLE READ isolation level, this behavior is different
from that of on-disk tables, where the SERIALIZABLE transaction successfully blocks other
sessions until it is done.

Finally, let’s repeat the tests in the SNAPSHOT isolation level. The code and results are
shown in Table 7-5.

Table 7-5. Concurrency in the SNAPSHOT Transaction Isolation Level

Session 1 Session 2 Results

begin tran
 select ID, Col
 from dbo.HKData
 with (snapshot)

update dbo.HKData
set Col = -2
where ID = 2

 select ID, Col
 from dbo.HKData
 with (snapshot)

Return old version of a row
(Col = 2)

commit Success

begin tran
 select ID, Col
 from dbo.HKData
 with (snapshot)

insert into dbo.HKData
values(10,10)

 select ID, Col
 from dbo.HKData
 with (snapshot)

Does not return new row
(10,10)

commit Success

The SNAPSHOT isolation level behaves in a similar manner to on-disk tables, and
it protects from the Non-Repeatable Reads and Phantom Reads phenomena. As you
can guess, it does not need to perform repeatable read and serializable validations at
the commit stage and, therefore, it reduces the load on SQL Server. However, there is
still snapshot validation, which checks for primary key violations and is done in any
transaction isolation level.

Chapter 7 ■ transaCtion proCessing in in-MeMory oLtp

110

Table 7-6. Snapshot Validation

Session 1 Session 2 Results

begin tran
 insert into dbo.HKData
 with (snapshot)
 (ID, Col)
 values(100,100)

begin tran
 insert into dbo.HKData
 with (snapshot)
 (ID, Col)
 values(100,100)

commit Successfully commit the first
session

commit Msg 41325, Level 16, State 1,
Line 0

The current transaction
failed to commit due to a
serializable validation failure.

Table 7-6 shows the code that leads to the primary key violation condition. In
contrast to on-disk tables, the exception is raised on the commit stage rather than at the
time of the second INSERT operation.

It is worth mentioning that the error number and message are the same with the
serializable validation failure even though SQL Server validated the different rule.

Write/write conflicts work the same way regardless of the transaction isolation level
in In-Memory OLTP. SQL Server does not allow a transaction to modify a row that has
been modified by other uncommitted transactions. Table 7-7 illustrates this behavior.
The code uses the SNAPSHOT isolation level; however, the behavior does not change with
different isolation levels.

Chapter 7 ■ transaCtion proCessing in in-MeMory oLtp

111

Table 7-7. Write/Write Conflicts in In-Memory OLTP

Session 1 Session 2 Results

begin tran
 select ID, Col
 from dbo.HKData
 with (snapshot)

begin tran
 update dbo.HKData
 with (snapshot)
 set Col = -3
 where ID = 2
commit

 update dbo.HKData
 with (snapshot)
 set Col = -2
 where ID = 2

Msg 41302, Level 16, State 110, Line 1

The current transaction attempted to
update a record that has been updated
since this transaction started. The
transaction was aborted.

Msg 3998, Level 16, State 1, Line 1

Uncommittable transaction is detected
at the end of the batch. The transaction
is rolled back.

The statement has been terminated.

begin tran
 select ID, Col
 from dbo.HKData
 with (snapshot)

begin tran
 update dbo.HKData
 with (snapshot)
 set Col = -3
 where ID = 2

 update dbo.HKData
 with (snapshot)
 set Col = -2
 where ID = 2

Msg 41302, Level 16, State 110, Line 1

The current transaction attempted to
update a record that has been updated
since this transaction started. The
transaction was aborted.

Msg 3998, Level 16, State 1, Line 1

Uncommittable transaction is detected
at the end of the batch. The transaction
is rolled back.

The statement has been terminated.

commit Successful commit of Session 2
transaction

Chapter 7 ■ transaCtion proCessing in in-MeMory oLtp

112

Cross-Container Transactions
Any access to memory-optimized tables from interpreted T-SQL is done through the
Query Interop Engine and leads to cross-container transactions. You can use different
transaction isolation levels for on-disk and memory-optimized tables. However, not all
combinations are supported. Table 7-8 illustrates possible combinations for transaction
isolation levels in cross-container transactions.

Table 7-8. Isolation Levels for Cross-Container Transactions

Isolation Levels for On-Disk Tables Isolation Levels for Memory-Optimized Tables

READ UNCOMMITTED, READ
COMMITTED,READ COMMITTED
SNAPSHOT

SNAPSHOT, REPEATABLE READ, SERIALIZABLE

REPEATABLE READ, SERIALIZABLE SNAPSHOT only

SNAPSHOT Not supported

As you already know, internal implementations of REPEATABLE READ and
SERIALIZABLE isolation levels are very different for on-disk and memory-optimized
tables. Data consistency rules with on-disk tables rely on locking while In-Memory OLTP
uses pre-commit validation. In cross-container transactions, SQL Server only supports
SNAPSHOT isolation levels for memory-optimized tables when on-disk tables require
REPEATABLE READ or SERIALIZABLE isolation.

Moreover, SQL Server does not allow access to memory-optimized tables when on-
disk tables require SNAPSHOT isolation. Cross-container transactions, in a nutshell, consist
of two internal transactions: one for on-disk and another one for memory-optimized
tables. It is impossible to start both internal transactions at exactly the same time and
guarantee the state of the data at the moment the transaction starts.

Listing 7-2 illustrates a transaction that tries to access data from memory-optimized
and on-disk tables using incompatible transaction isolation levels.

Listing 7-2. Using Incompatible Isolation Levels in a Cross-Container Transaction

select sum(OrderTotal)
from
(
 select OrderTotal
 from dbo.Orders with (repeatableread) /* Memory-Optimized table */
 where CustomerId = @CustomerId

 union all

 select OrderTotal
 from dbo.OrderHistory with (repeatableread) /* On-Disk table */
 where CustomerId = @CustomerId
) o

Chapter 7 ■ transaCtion proCessing in in-MeMory oLtp

113

As you already know, reading on-disk data in a REPEATABLE READ isolation level
requires you to use SNAPSHOT isolation levels with memory-optimized tables and,
therefore, the query from Listing 7-2 returns the error shown in Listing 7-3.

Listing 7-3. Incompatible Isolation Levels in a Cross-Container Transaction

Msg 41333, Level 16, State 1, Line 3

The following transactions must access memory optimized tables
and natively compiled stored procedures under snapshot isolation:
RepeatableRead transactions, Serializable transactions, and transactions
that access tables that are not memory optimized in RepeatableRead or
Serializable isolation.

As the general guideline, it is recommended to use the READ COMMITTED/SNAPSHOT
combination in cross-container transactions during the regular workload. This
combination provides the minimal blocking and least pre-commit overhead and should
be acceptable in a large number of use cases. Other combinations are more appropriate
during data migrations when it is important to avoid non-repeatable and phantom reads
phenomena.

As you may have already noticed, SQL Server requires you to specify the transaction
isolation level with a table hint when you are accessing memory-optimized tables. This
does not apply to individual statements that execute outside of the explicitly started
(with BEGIN TRAN) transaction. Those statements are called autocommitted transactions,
and each of them executes in a separate transaction that is active for the duration of the
statement execution. Listing 7-4 illustrates code with three statements. Each of them will
run in their own autocommitted transactions.

Listing 7-4. Autocommitted Transactions

delete from dbo.HKData;

insert into dbo.HKData(ID, Col)
values(1,1),(2,2),(3,3),(4,4),(5,5);

select ID, Col
from dbo.HKData;

An isolation level hint is not required for statements running in autocommitted
transactions. When the hint is omitted, the statement runs in the SNAPSHOT isolation level.

 ■ Note sQL server allows you to keep a NOLOCK hint while accessing memory-optimized
tables from autocommitted transactions. that hint is ignored. a READUNCOMMITTED hint,
however, is not supported and triggers an error.

Chapter 7 ■ transaCtion proCessing in in-MeMory oLtp

114

There is the useful database option MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT,
which is disabled by default. When this option is enabled, SQL Server allows you to
omit the isolation level hint in non-autocommitted transactions promoting them to the
SNAPSHOT isolation level as with autocommitted transactions. Consider enabling this
option when you migrate an existing system to In-Memory OLTP and have T-SQL code
that accesses tables that become memory-optimized.

Transaction Lifetime
Although I have already discussed a few key elements used by In-Memory OLTP to
manage data access and the concurrency model, let’s review them here.

•	 The Global Transaction Timestamp is an auto-incremented value
that uniquely identifies every transaction in the system. SQL
Server increments and obtains this value at the transaction pre-
commit stage.

•	 TransactionId is another identifier (timestamp) that also
uniquely identifies a transaction. SQL Server obtains and
increments its value at the moment when the transaction starts.

•	 Every row has BeginTs and EndTs timestamps, which correspond
to the Global Transaction Timestamp of the transaction that
inserted or deleted this version of a row.

Figure 7-1 shows the lifetime of a transaction that works with memory-optimized
tables.

Figure 7-1. Transaction lifetime

Chapter 7 ■ transaCtion proCessing in in-MeMory oLtp

115

At the time when a new transaction starts, it generates a new TransactionId and
obtains the current Global Transaction Timestamp value. The Global Transaction
Timestamp value dictates what rows are visible to the transaction, and it should be in
between the BeginTs and EndTs for the rows to be visible. During data modifications,
however, the transaction analyzes if there are any uncommitted versions of the rows,
which prevents write/write conflicts when multiple sessions modify the same data.

When a transaction needs to delete a row, it updates the EndTs timestamp with
the TransactionId value, which also has a flag that the timestamp contains the
TransactionId rather than the Global Transaction Timestamp. The Insert operation
creates a new row with the BeginTs of theTransactionId and the EndTs of Infinity.
Finally, the update operation consists of delete and insert operations internally.

Figure 7-2 shows the data rows after we created and populated the dbo.HKData
table in Listing 7-1, assuming that the rows were created by a transaction with the Global
Transaction Timestamp of 5. (The hash index structure is omitted for simplicity’s sake.)

Figure 7-2. Data in the dbo.HKData table after insert

Let’s assume that you have a transaction that started at the time when the Global
Transaction Timestamp value was 10 and the TransactionId generated as -8. (I am
using a negative value for TransactionId to illustrate the difference between two types of
timestamps in the figures.)

Let’s assume that the transaction performs the operations shown in Listing 7-5. The
explicit transaction has already started, and the BEGIN TRAN statement is not included in
the listing. All three statements are executing in the context of a single active transaction.

Listing 7-5. Data Modification Operations

insert into dbo.HKData with (snapshot)
(ID, Col)
values(10,10);

update dbo.HKData with (snapshot)
set Col = -2
where ID = 2;

delete from dbo.HKData with (snapshot)
where ID = 4;

Figure 7-3 illustrates the state of the data after data modifications. An INSERT
statement created a new row, a DELETE statement updated the EndTs value in the row with
ID=4, and an UPDATE statement changed the EndTs value of the row with ID=2 and created
a new version of the row with the same ID.

Chapter 7 ■ transaCtion proCessing in in-MeMory oLtp

116

It is important to note that the transaction maintains a write set, or pointers to
rows that have been inserted and deleted by a transaction, which is used to generate
transaction log records.

In addition to the write set, in the REPEATABLE READ and SERIALIZABLE isolation
levels, transactions maintain a read set of the rows read by a transaction and use it for
repeatable read validation. Finally, in the SERIALIZABLE isolation level, transactions
maintain a scan set, which contains the information about predicates used by the queries
in transaction. The scan set is used for serializable validation.

When a COMMIT request is issued, the transaction starts the validation phase. First, it
generates a new Global Transaction Timestamp value and replaces the TransactionId
with this value in all BeginTs and EndTs timestamps in the rows it modified. Figure 7-4
illustrates this action, assuming that the Global Transaction Timestamp value is 11.

Figure 7-3. Data in the dbo.HKData table after modifications

Figure 7-4. Validation phase after BeginTs and EndTs values are replaced

At this moment, the rows modified by transactions become visible to other
transactions in the system even though the transaction has yet to be committed. Other
transactions can see uncommitted rows, which leads to a situation called commit
dependency. These transactions are not blocked at the time when they access those rows;

Chapter 7 ■ transaCtion proCessing in in-MeMory oLtp

117

however, they do not return data to clients nor commit until the original transaction
on which they have a commit dependency commits itself. I will talk about commit
dependencies shortly.

As the next step, the transaction starts a validation phase. SQL Server performs
several validations based on the isolation level of the transaction, as shown in Table 7-9.

Table 7-9. Validations Done in the Different Transaction Isolation Levels

Snapshot Validation Repeatable Read
Validation

Serializable
Validation

Checking for primary
key violations

Checking for non-
repeatable reads

Checking for
phantom reads

SNAPSHOT YES NO NO

REPEATABLE READ YES YES NO

SERIALIZABLE YES YES YES

 ■ Important repeatable read and serializable validations add an overhead to the
system. Do not use REPEATABLE READ and SERIALIZABLE isolation levels unless you have a
legitimate use case for such data consistency. We will discuss two of those use cases, such
as supporting uniqueness and referential integrity, in Chapter 11.

After the required rules have been validated, the transaction waits for the commit
dependencies to clear and the transaction on which it depends to commit. If those
transactions fail to commit for any reason, such as a validation rules violation, the
dependent transaction is also be rolled back and an error 41301 is generated.

Figure 7-5 illustrates a commit dependency scenario. Transaction Tx2 can access
uncommitted rows from transaction Tx1 during Tx1 validation and commit phases
and, therefore, Tx2 has commit dependency on Tx1. After the Tx2 validation phase is
completed, Tx2 has to wait for Tx1 to commit and the commit dependency to clear before
entering the commit phase.

http://dx.doi.org/10.1007/978-1-4842-1136-6_11

Chapter 7 ■ transaCtion proCessing in in-MeMory oLtp

118

If Tx1, for example, failed to commit due to serializable validation violation, Tx2
would be rolled back with Error 41301, as shown in Figure 7-6.

Figure 7-5. Commit Dependency: Successful Commit

Figure 7-6. Commit Dependency: Validation Error

 ■ Note you can track commit dependencies using the dependency_acquiredtx_event
and waiting_for_dependenciestx_event extended events.

Chapter 7 ■ transaCtion proCessing in in-MeMory oLtp

119

Finally, when all commit dependencies are cleared, the transaction moves to the
commit phase, generates one or more log records, saves them to the transaction log, and
completes the transaction.

Commit dependency is technically the case of blocking in In-Memory OLTP.
However, the validation and commit phases of the transactions are relatively short, and
that blocking should not be excessive. It is also worth noting that transaction logging in
In-Memory OLTP is more efficient compared to on-disk transactions. I will discuss it in
more detail in Chapter 8.

 ■ Note you can read more about the concurrency model in in-Memory oLtp at
https://msdn.microsoft.com/en-us/library/dn479429.aspx.

Summary
In-Memory OLTP supports three transaction isolation levels, SNAPSHOT, REPEATABLE READ,
and SERIALIZABLE. In contrast to on-disk tables, where non-repeatable and phantom
reads are addressed by acquiring and holding the locks, In-Memory OLTP validates data
consistency rules on the transaction commit stage. An exception will be raised and the
transaction will be rolled back if rules were violated.

Repeatable read and serializable validation adds an overhead to transaction
processing. It is recommended to use the SNAPSHOT isolation level during a regular
workload unless REPEATABLE READ or SERIALIZABLE data consistency is required.

You can use different transaction isolation levels for on-disk and memory-optimized
tables in cross-container transactions; however, not all combinations are supported. The
recommended practice is using the READ COMMITTED isolation level for on-disk and the
SNAPSHOT isolation level for memory-optimized tables.

SQL Server does not require you to specify transaction isolation level when you
access memory-optimized tables through the interop engine in autocommitted (single
statement) transactions. SQL Server automatically promotes such transactions to the
SNAPSHOT isolation level. However, you should specify an isolation level hint when a
transaction is explicitly started with BEGIN TRAN statement. You can avoid this by enabling
the MEMORY_OPTIMIZED_ELEVATE_TO_SNAPSHOT database option. This option is useful
when you migrate existing system to use In-Memory OLTP.

http://dx.doi.org/10.1007/978-1-4842-1136-6_8
https://msdn.microsoft.com/en-us/library/dn479429.aspx

121

Chapter 8

Data Storage, Logging,
and Recovery

This chapter discusses how In-Memory OLTP stores the data from durable memory-
optimized tables on disk. It illustrates the concept of checkpoint file pairs used by SQL
Server to persist the data, provides an overview of checkpoint process in In-Memory OLTP,
and discusses recovery of memory-optimized data. Finally, this chapter demonstrates how
In-Memory OLTP logs the data in a transaction log and why In-Memory OLTP logging is
more efficient compared to on-disk tables.

Data Storage
The data from durable memory-optimized tables is stored separately from on-disk
tables. SQL Server uses a streaming mechanism to store it, which is based on FILESTREAM
technology. In-Memory OLTP and FILESTREAM, however, store data separately from
each other and you should have two separate filegroups: one for In-Memory OLTP and
another for FILESTREAM data when the database uses both technologies.

There is a conceptual difference between how on-disk and memory-optimized
data are stored. On-disk tables store the single, most recent version of the row. Multiple
updates of the row change the same row object multiple times. Deletion of the row
removes it from the database. Finally, it is always possible to locate a data row in a data
file when needed.

In-Memory OLTP uses a completely different approach and persists multiple
versions of the row on disk. Multiple updates of the data row generate multiple row
objects, each of which has a different lifetime. SQL Server appends them to binary files
stored in the In-Memory OLTP filegroup, which are called checkpoint file pairs (CFP).

It is impossible to predict where a data row is stored in checkpoint file pairs. Nor are
there use cases for such an operation. The only purposes these files serve is to provide
data durability and improve the performance of loading data into memory on database
startup.

As you can guess by the name, each checkpoint file pair consists of two files: a
data file and a delta file. Each CFP covers operations for a range of Global Transaction
Timestamp values, logging operations on the rows that have BeginTs in this range. Every
time you insert a row, it is saved into a data file. Every time you delete a row,

Chapter 8 ■ Data Storage, Logging, anD reCovery

122

the information about the deleted row is saved into a delta file. An update generates two
operations, INSERT and DELETE, and it saves this information to both files. Figure 8-1
provides a high-level overview of the structure of checkpoint file pairs.

Figure 8-2 shows an example of a database with six check point file pairs in the
different states. The vertical rectangles with a solid fill represent data files. The rectangles
with a dotted fill represent delta files. This is just an illustration. In reality, every database
will have at least eight checkpoint file pairs in the various states, which we will cover in
detail shortly.

Figure 8-1. Data in checkpoint files

Chapter 8 ■ Data Storage, Logging, anD reCovery

123

Internally, SQL Server stores checkpoint file pair metadata in an 8,192 slot array.
Even though, in theory, it allows you to store up to 8,192 * 128MB = 1TB of data, Microsoft
does not recommend nor support configurations with more than 256GB of data stored in
durable memory-optimized tables. There is no restriction on the amount of data stored in
non-durable memory-optimized tables.

Using a separate delta file to log deletions allows SQL Server to avoid modifications
in data files and random I/O in cases when rows are deleted. Both data and delta files are
append-only. Moreover, when files are closed (again, more on this shortly), they become
read-only.

Checkpoint File Pairs States
Each checkpoint file pair can be in one of several states during its lifetime, as illustrated in
Figure 8-3.

Figure 8-2. A database with multiple checkpoint file pairs

Chapter 8 ■ Data Storage, Logging, anD reCovery

124

Let's look at all of these states in more detail.

PRECREATED CFP State
When you create the first memory-optimized table in the database, SQL Server generates
the set of checkpoint file pairs. Those files are empty and they are created to minimize
wait time when new files are needed.

The total number of new files is based on the storage and hardware configuration.
SQL Server creates a separate checkpoint file pair per scheduler (logical CPU) with a
minimum of eight CFPs. The initial size of the files is based on the amount of server
memory, as shown in Table 8-1.

Figure 8-3. Checkpoint file pair states

Chapter 8 ■ Data Storage, Logging, anD reCovery

125

UNDER CONSTRUCTION CFP State and CHECKPOINT Process
As you already know, SQL Server uses the transaction log to persist information about
data modifications in the database. Transaction log records can be used to reconstruct
any data changes in the event of an unexpected shutdown or crash; however, that process
can be very time-consuming if a large number of log records need to be replayed.

SQL Server uses checkpoints to mitigate that problem. Even though on-disk and
In-Memory OLTP checkpoint processes are independent from each other, they do the
same thing: persist the data changes on disk, reducing database recovery time. The last
checkpoint identifies up to which point the data changes have been persisted and from
which log records need to be replayed.

With on-disk tables, the frequency of checkpoint operations depends on the server-
level recovery interval and database-level TARGET_RECOVERY_TIME settings. While
such an approach helps SQL Server to improve write performance by batching multiple
random I/O writes together, it leads to spikes in I/O activity at the time when checkpoint
occurs.

In contrast, In-Memory OLTP implements continuous checkpoints. It continuously
scans the transaction log, streaming and appending the changes to checkpoint file pairs
in the UNDER CONSTRUCTION state. The new versions of the rows are appended to the data
files and deletions are appended to delta files. The continuous checkpoint also appends
information about deletions to CFPs in the ACTIVE state, which we will discuss shortly.

As mentioned, the rows in checkpoint file pairs are never updated. Instead, the new
row version is appended to the data file and the old version is marked as deleted in the
delta files. This leads to sequential streaming I/O, which is significantly faster compared
to random I/O even in the case of SSD drives.

ACTIVE CFP State
The continuous checkpoint process continuously persists the data from memory-
optimized tables on disk. However, there is still a checkpoint event, which performs
several actions.

•	 It scans the remaining (unscanned) portion of the transaction log
and hardens all remaining log records to checkpoint file pairs.
You can consider it as the continuous checkpoint catching up and
processing the remaining part of the log up to the checkpoint event.

•	 It transitions all UNDER CONSTRACTION CFPs to the ACTIVE state.

Table 8-1. Initial Size of Checkpoint Files

Server Memory Data File Size Delta File Size

Less than 16GB 16MB 1MB

16GB or more 128MB 8MB

Chapter 8 ■ Data Storage, Logging, anD reCovery

126

•	 It creates a checkpoint inventory, which contains the information
about all files from the previous checkpoint along with any files
added by the current checkpoint. The checkpoint inventory
and the Global Transaction Timestamp are hardened in the
transaction log and available to SQL Server during the recovery
process. The combination of ACTIVE CFPs and the tail of the log
allow SQL Server to recover the data from memory-optimized
tables if needed.

The checkpoint event changes the state of all UNDER CONSTRUCTION checkpoint file
pairs to ACTIVE. SQL Server does not stream new data into ACTIVE CFPs so data files
become read-only; however, it still uses the delta files storing the information about the
DELETE and UPDATE operations that occurred against the versions of the rows from the
corresponding data files.

In the case of memory-optimized tables, a checkpoint is invoked either manually
with the CHECKPOINT command, or automatically when the transaction log has grown
more than 512MB since the last checkpoint. It is worth mentioning that SQL Server does
not differentiate log activity between on-disk and memory-optimized tables when using
this 512MB threshold. It is entirely possible that a checkpoint is triggered even when there
were no transactions against memory-optimized tables.

Typically, the combined size of the ACTIVE checkpoint file pairs on disk is about
twice the size of the durable memory-optimized tables in memory. However, in some
cases, SQL Server may require more space to store memory-optimized data.

MERGE TARGET and MERGED SOURCE CFP States and Merge
Process
Overtime, as data modifications progress, the percent of deleted rows in the ACTIVE
checkpoint file pairs increases. This condition adds unnecessary storage overhead and
slows down the data loading process during recovery. SQL Server addresses this situation
with a process called merge.

A background task called the Merge Policy Evaluator periodically analyzes if adjacent
ACTIVE CFPs can be merged together in a way that active, non-deleted rows from the
merged data files would fit into the new 16MB or 128MB data file. When it happens, SQL
Server creates the new CFP in a MERGE TARGET state and populates it with the data from
the multiple ACTIVE CFPs, filtering out deleted rows.

Even though the Merge Policy Evaluator can identify multiple possible merges,
every CFP can participate only in one of them. Table 8-2 shows several examples of the
possible merges.

Chapter 8 ■ Data Storage, Logging, anD reCovery

127

In most cases, you can rely on the automatic merge process. However, you can trigger
a manual merge using the sys.sp_xtp_merge_checkpoint_files stored procedure. You
will see such an example in Appendix C.

Once the merge process is complete, the next checkpoint event transitions the MERGE
TARGET CFP to ACTIVE and former ACTIVE CFPs to MERGED SOURCE states.

REQUIRED FOR BACKUP/HA, IN TRANSITION TO TOMBSTONE,
and TOMBSTONE CFP States
After the next checkpoint event occurs, the MERGED SOURCE CFPs are no longer needed
for database recovery. Former MERGE TARGET and now ACTIVE CFPs can be used for this
purpose. However, those CFPs are still needed if you want to restore the database from a
backup, so they are switched to the REQUIRED FOR BACKUP/HA state.

The checkpoint file pairs stay in that state until the log truncation point passed their
LSNs. In FULL recovery model that means that a log backup has been taken, log records
were sent to secondary nodes, and other processes that read transaction log have not
fallen behind. Obviously, in a SIMPLE recovery model, log backup is not required and the
log truncation point is controlled by checkpoints.

Once it happens, CFPs are transitioned to the IN TRANSITION TO TOMBSTONE
state, where they become eligible for garbage collection. Another In-Memory OLTP
background thread switches them to the TOMBSTONE state, which they stay in until they are
deallocated by the FILESTREAM garbage collector thread.

 ■ Note in reality, it is possible that multiple log backups are required for the CFp to switch
to the IN TRANSITION TO TOMBSTONE state.

As with the merge process, in most cases you can rely on automatic garbage
collection in both In-Memory OLTP and FILESTREAM; however, you can force garbage
collection using the sys.sp_xtp_checkpoint_force_garbage_collection and
sys.sp_filestream_force_garbage_collection stored procedures. You can see these
procedures in action in Appendix C.

Table 8-2. Merge Examples

Adjacent Source Files (% Full) Merge Results

CFP0(40%), CFP1(45%), CFP2(60%) CFP0 + CFP1 (85%)

CFP0(10%), CFP1(15%), CFP2(70%), CFP3(10%) CFP0 + CFP1 + CFP2 (95%)

CFP0(55%), CFP1(50%) No Merge is done

Chapter 8 ■ Data Storage, Logging, anD reCovery

128

 ■ Note you can analyze the state of a checkpoint file pair using the sys.dm_db_xtp_
checkpoint_files DMv. appendix C talks about this view in greater depth and shows how
CFp states change through their lifetime.

Transaction Logging
As mentioned in the previous chapter, transaction logging in In-Memory OLTP is more
efficient compared to Storage Engine. Both engines share the same transaction log and
perform write-ahead logging (WAL); however, the log records format and algorithms are
very different.

With on-disk tables, SQL Server generates transaction log records on a per-index basis.
For example, when you insert a single row into a table with clustered and nonclustered
indexes, it will log insert operations in every individual index separately. Moreover, it will
log internal operations, such as extent and page allocations, page splits, and a few others.

All log records are saved in a transaction log and hardened on disk pretty much
synchronously at the time when they were created. Even though every database has
a cache called Log Buffer to batch log writes, that cache is very small, about 60KB.
Moreover, some operations, such as COMMIT and CHECKPOINT, flush that cache whether it
is full or not.

Finally, SQL Server has to include before-update (UNDO) and after-update (REDO)
versions of the row to the log records. Checkpoint process is asynchronous and it does
not check the state of transaction that modified the page. It is entirely possible for the
checkpoint to save the dirty data pages from uncommitted transactions and the UNDO part
of the log records are required to roll back the changes.

Transaction logging in In-Memory OLTP addresses these inefficiencies. The first
major difference is that In-Memory OLTP generates and saves log records at the time of
the transaction COMMIT rather than during each data row modification. Therefore, rolled-
back transactions do not generate any log activity.

The format of a log record is also different. Log records do not include any UNDO
information. Dirty data from uncommitted transactions will never materialize on disk
and, therefore, In-Memory OLTP log data does not need to support the UNDO stage of
crash recovery nor log uncommitted changes.

In-Memory OLTP generates log records based on the transactions write set. All data
modifications are combined together in one or very few log records based on the write set
and inserted rows’ size.

Let's examine this behavior and run the code shown in Listing 8-1. It starts a
transaction and inserts 500 rows into a memory-optimized table. Then it examines the
content of the transaction log using the undocumented sys.fn_dblog system function.

Chapter 8 ■ Data Storage, Logging, anD reCovery

129

Listing 8-1. Transaction Logging in In-Memory OLTP: Memory-Optimized Table
Logging

create table dbo.HKData
(
 ID int not null,
 Col int not null,

 constraint PK_HKData
 primary key nonclustered hash(ID)
 with (bucket_count=1024),
)
with (memory_optimized=on, durability=schema_and_data)
go

declare
 @I int = 1

begin tran
 while @I <= 500
 begin
 insert into dbo.HKData with (snapshot)
 (ID, Col)
 values(@I, @I)

 set @I += 1
 end
commit
go

select *
from sys.fn_dblog(NULL, NULL)
order by [Current LSN];

Figure 8-4 illustrates the content of the transaction log. You can see the single
transaction record for the In-Memory OLTP transaction.

Figure 8-4. Transaction log content after the In-Memory OLTP transaction

Let’s repeat this test with an on-disk table of a similar structure. Listing 8-2 shows the
code that creates a table and populates it with data.

Chapter 8 ■ Data Storage, Logging, anD reCovery

130

Listing 8-2. Transaction Logging in In-Memory OLTP: On-Disk Table Logging

create table dbo.DiskData
(
 ID int not null,
 Col int not null,

 constraint PK_DiskData
 primary key nonclustered(ID)
)
go

declare
 @I int = 1

begin tran
 while @I <= 500
 begin
 insert into dbo.DiskData(ID, Col)
 values(@I, @I)

 set @I += 1
 end
commit

As you can see in Figure 8-5, the same transaction generated more than 1,000 log
records.

Figure 8-5. Transaction log content after on-disk table modification

You can use another undocumented function, sys.fn_dblog_xtp, to examine the
logical content of an In-Memory OLTP log record. Listing 8-3 shows the code that utilizes
this function and Figure 8-6 shows the output of that code. You should use the LSN of the
LSN_HK log record from the Listing 8-2 output as the parameter of the function.

Chapter 8 ■ Data Storage, Logging, anD reCovery

131

Listing 8-3. Analyzing an In-Memory OLTP Log Record

select [Current LSN], object_name(table_id) as [Table]
 ,operation_desc, tx_end_timestamp, total_size
from sys.fn_dblog_xtp
(
 '0x0000001f:0000593b:0002'
 ,'0x0000001f:0000593b:0002'
)

Finally, it is worth stating again that any data modification on non-durable tables
(DURABILITY=SCHEMA_ONLY) is not logged in the transaction log nor is its data persisted
on disk.

Recovery
During the recovery stage, SQL Server locates the most recent checkpoint inventory and
passes it to the In-Memory OLTP Engine, which starts recovering memory-optimized
data in parallel with on-disk tables. The In-Memory OLTP Engine obtains the list of all
ACTIVE checkpoint file pairs and starts loading data from them. It loads only the non-
deleted versions of rows using delta files as the filter. It checks that a row from a data file is
not deleted and is not referenced in the delta files. Based on the results of this check,
a row is either loaded to memory or discarded.

The process of loading data is highly scalable. SQL Server creates one thread per
logical CPU, and each thread processes an individual checkpoint file pair. In a large
number of cases, the performance of the I/O subsystem becomes the limiting factor in
data-loading performance.

Figure 8-6. In-Memory OLTP transaction log record details

Chapter 8 ■ Data Storage, Logging, anD reCovery

132

As the opposite of on-disk tables, indexes on memory-optimized tables are not
persisted. As you remember, indexes in In-Memory OLTP are just the memory pointers,
and the memory addresses of the rows change after they are reloaded into the memory.
Therefore, indexes must be recreated during the recovery stage.

Figure 8-7 illustrates the data-loading process.

Figure 8-7. Loading data to memory

After the data from CFPs has been loaded, SQL Server completes the recovery by
applying the changes from the tail of the transaction log, bringing the database back to
the state as of the time of crash or shut down. As you already know, In-Memory OLTP
does not log uncommitted changes and, therefore, no UNDO stage is required during the
recovery.

Chapter 8 ■ Data Storage, Logging, anD reCovery

133

Summary
The data from durable memory-optimized tables is placed into a separate file group
utilizing FILESTREAM technology under the hood. The data is stored in the set of
checkpoint file pairs. Each pair consists of two files, data and delta. Data files store the
row version data. Delta files store the information about deleted rows.

The data in checkpoint file pairs is never updated. A DELETE operation generates the
new entry in delta files. An UPDATE operation stores the new version of the row in the data
file, marking the old version as deleted in the delta file. SQL Server utilizes the sequential
streaming API to write data to those files without any random I/O involved.

Every checkpoint file pair covers a particular interval of Global Transaction
Timestamps and goes through a set of predefines states. SQL Server stores the new row
data in CFPs in the UNDER CONSTRUCTION state. These CFPs are converted to the ACTIVE
state at a checkpoint event. Data files of ACTIVE CFPs are closed and they do not accept the
new row versions; however, they still log the information about deletions in the delta files.

SQL Server merges the data from the ACTIVE checkpoint file pairs, filtering out
deleted rows. After the merge is completed and the source CFPs are backed up, SQL
Server marks them for garbage collection and deallocates them.

ACTIVE checkpoint file pairs are used during database recovery along with the tail of
the log. The In-Memory OLTP recovery process is highly scalable and very fast. Indexes
on memory-optimized tables are not persisted on disk and recreated when data is loaded
into the memory.

Transaction logging in In-Memory OLTP is more efficient compared to on-disk
tables. Transactions are logged at time of COMMIT based on the transaction write set. Log
records are compact and contain information about multiple row-related operations.

135

Chapter 9

Garbage Collection

This chapter covers the garbage collection process used in the In-Memory OLTP Engine.
It provides an overview of the various components involved in garbage collection and
demonstrates how they interact with each other.

Garbage Collection Process Overview
In-memory OLTP is a row-versioning system. UPDATE operations generate new versions
of rows rather than updating row data. DELETE operations do not remove the rows but
rather update the EndTs row timestamp. Rows created by aborted transactions are not
deallocated immediately and they stay as part of the index row chains even after rollback.

As you know, every row has two timestamps (BeginTs and EndTs) that indicate
row lifetime: when the row was created and when it was deleted. Transactions can only
see the versions of rows that were valid at the time when the transaction started. In
practice, this means that a row is visible for the transaction only if the Global Transaction
Timestamp value at the start of transaction is between the BeginTs and EndTs timestamps
of the row.

At some point, when the EndTs timestamp of a row is older than the Global
Transaction Timestamp of the Oldest Active Transaction in the system, the row expires.
Expired rows are invisible for active transactions and eventually they need to be
deallocated to reclaim system memory and speed up index chain navigation. This process
is called garbage collection.

The garbage collection process in In-Memory OLTP has been designed with the
following goals:

•	 Non-blocking: The garbage collection process should not block
user threads and should produce minimal performance impact
on the system.

•	 Responsive: The garbage collection process should react to
memory pressure.

•	 Cooperative and Scalable: The garbage collection process
should not rely on a single system thread to perform memory
deallocation and should use regular worker threads during the
process.

Chapter 9 ■ GarbaGe ColleCtion

136

The cooperative nature of garbage collection makes it quite different from the typical
SQL Server background processes. Even though there is a dedicated system garbage
collection thread called the idle worker thread, the major part of the work is done by
the regular user worker threads. This allows the process to scale and keep up with the
workload in the system.

User threads participate in the garbage collection process in two different ways. They
unlink old, expired rows from the row chains and perform actual deallocation. These
actions are separate from each other, as you will see shortly.

Let’s look at the process in detail. Figure 9-1 illustrates the logical structure of a table
with two hash indexes on the Name and City columns. You saw this figure in previous
chapters; however, in this chapter I added another element called idxLinkCount, which
indicates in how many index chains the rows are participating. It is displayed with the
underline font in the figure; note that all rows have a value of two, which corresponds to
the number of indexes in the table.

Assume that you have a session that runs two queries, as shown in Listing 9-1, at
time when the Oldest Active Transaction Timestamp is 110 and the Global Transaction
Timestamp is 125.

Listing 9-1. First Batch

select * from dbo.People where Name = 'Adam';
select * from dbo.People where Name = 'Carl';

The first SELECT scanned the Name index row chain for the bucket with value A and
detected the Ann row with an EndTs of 100. The Oldest Active Transaction Timestamp
is 110, so this row is expired and invisible for the active transactions in the system. As
result, the user thread unlinked the row from the Name index row chain and decreased the
idxLinkCnt value.

Figure 9-1. Initial state of the data

Chapter 9 ■ GarbaGe ColleCtion

137

The second SELECT detects the deleted Carl row. However, the EndTs of this row is
greater than the Oldest Active Transaction Timestamp, so this row can still be visible for
some of the active transactions. Therefore, this row cannot be unlinked from the index
chain. Figure 9-2 illustrates the state of the data after the execution of the queries.

Now, let’s assume that some of the active transactions were completed and you
ran the second batch of the queries from Listing 9-2 at the time when the Oldest Active
Transaction Timestamp was 120 and the Global Transaction Timestamp was 130.

Listing 9-2. Second Batch

select * from dbo.People where City = 'Cincinatti';
select * from dbo.People where City = 'Dallas';

The first SELECT found the expired Ann row in the City index chain and removed it
from there. At this point, the row is not participating in any row chains and, therefore, can
be deallocated. However, the row is not deallocated immediately; this is done at a later
stage.

The Carl row now is also expired and invisible for the active transactions. The
second SELECT removed it from the City index chain; however, it is still present in the
Name index chain and cannot be deallocated. Figure 9-3 shows the state of the data at this
moment.

Figure 9-2. State of the data after the first two queries

Chapter 9 ■ GarbaGe ColleCtion

138

 ■ Important You should remember that the Oldest Active Transaction Timestamp
controls when expired rows can be removed from the index chains and deallocated.
long-running and abandon transactions can defer garbage collection and lead to a situation
when the system runs out of memory due to an excessive number of expired rows.

When the transaction is complete, In-Memory OLTP places the information about it
in the queue used by the idle worker thread, which is responsible for garbage collection
management. The idle worker thread wakes up every minute or, in case of a heavy
load, when the number of completed transactions exceeds the predefined threshold. It
analyzes the list of completed transactions and the Oldest Active Transaction Timestamp
in the system, and separates completed transactions to 16 different queues called
generations, sorting them based on their Global Transaction Timestamp values.

•	 Generation 0 contains the list of transactions that were
completed earlier than the current Oldest Active Transaction
Timestamp. Rows generated by those transactions are
immediately available for the garbage collection.

•	 Generations 1-14 stores the list of transactions that were
completed after the current Oldest Active Transaction
Timestamp. Each generation can hold information about up to
16 transactions. As you can guess, a system can hold up to 224
transactions in generations 1-14 queues.

•	 Generation 15 stores the information about the remaining
transactions completed after the current Oldest Active Transaction
Timestamp. There is no limit on the number of transactions that
can be stored there.

Figure 9-3. State of the data after the second two queries

Chapter 9 ■ GarbaGe ColleCtion

139

Every transaction in the queue exposes its write set to the idle worker thread, which
builds the set of the 16-row work items for deallocation. Those work items are distributed
across another set of worker queues-one queue per scheduler-and then they are picked
up and processed by the user threads. The user threads pick up the items and perform
deallocation after they complete their work on the other user transactions.

Figure 9-4 illustrates an example of the garbage collection workflow in a system that
has an Oldest Active Transaction Timestamp of 10,000.

The user thread usually picks up the work items from the queue that belong to the
same scheduler on which it is running. However, if the queue is empty, the thread checks
the queues from the other CPUs that belong to the same NUMA node. Finally, in case of a
heavy load in the system, the thread can pick up a work item from any queue, regardless
of the NUMA node to which it belongs.

With the hot data and actively used indexes, user threads detect expired rows
relatively quickly. However, with rarely used indexes and/or rarely accessed data, there is
the possibility that expired rows may not be detected in a timely manner.

This is addressed by the idle worker thread, which periodically scans the indexes
and detects expired rows there. The idle worker thread can either deallocate those rows
immediately or add them to the work items after those rows have been unlinked from all
index chains. This process is called a dusty corners scan.

As you can see, the garbage collection process in In-Memory OLTP is done
asynchronously. Deleted rows and rows from aborted transactions continue to use
system memory until they are deallocated. You need to remember this and reserve
enough memory in the system to accommodate those rows.

Figure 9-4. Garbage Collection Workflow

Chapter 9 ■ GarbaGe ColleCtion

140

Garbage Collection-Related
Data Management Views
SQL Server exposes several data management views that can be used to monitor and
analyze the garbage collection process.

•	 sys.dm_xtp_gc_stats provides statistics about the garbage
collection process. It includes information about the number of
rows examined by the garbage collection subsystem, the number
of rows processed by user and idle worker threads, and quite a
few other attributes. You can read more about this view at
https://msdn.microsoft.com/en-us/library/dn133196.aspx.

•	 sys.dm_xtp_gc_queue_stats provides information about garbage
collector worker queues. It provides information about total
number of work items that were enqueued and dequeued, current
queue length, last time the queue was accessed, and maximum
depth the queue has seen. You can monitor the current queue
length, making sure that the garbage collector is keeping up. More
information is available at https://msdn.microsoft.com/en-us/
library/dn268336.aspx.

•	 sys.dm_db_xtp_gc_cycle_stats provides information about the
last (up to 1,024) garbage collection execution cycles including
the time and duration of the cycle, and distribution of transactions
between generations. You can use this view to find spikes in the
garbage collection activity and during long-running transactions
troubleshooting. You can read more about this view at
https://msdn.microsoft.com/en-us/library/dn268337.aspx.

•	 Finally, sys.dm_db_xtp_index_stats includes several garbage
collection-related metrics. The rows_expired column indicates
how many rows have expired. Rows_expired_removed indicates
the number of rows unlinked from the index chain. Phantom row
columns provide information about rows inserted by aborted
transactions. You can read more about this view at
https://msdn.microsoft.com/en-us/library/dn133081.aspx.

Exploring the Garbage Collection Process
Let’s examine the garbage collection process and its asynchronous nature. As the first
step, create a memory-optimized table and populate it with 65,536 rows, as shown in
Listing 9-3.

https://msdn.microsoft.com/en-us/library/dn133196.aspx
https://msdn.microsoft.com/en-us/library/dn268336.aspx
https://msdn.microsoft.com/en-us/library/dn268336.aspx
https://msdn.microsoft.com/en-us/library/dn268337.aspx
https://msdn.microsoft.com/en-us/library/dn133081.aspx

Chapter 9 ■ GarbaGe ColleCtion

141

Listing 9-3. Table Creation

create table dbo.GCDemo
(
 ID int not null,
 Placeholder char(8000) not null,

 constraint PK_GCDemo
 primary key nonclustered hash(ID)
 with (bucket_count=16384),
)
with (memory_optimized=on, durability=schema_only)
go

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into dbo.GCDemo(Id, Placeholder)
 select Id, Replicate('0',8000)
 from ids;

Let’s look at amount of memory used in the table, index statistics, and garbage
collection worker queues statistics using the code from Listing 9-4.

Listing 9-4. Analyzing Table Memory Usage, Index, and Worker Queues Statistics

select
 convert(decimal(7,2),memory_allocated_for_table_kb / 1024.)
 as [memory allocated for table]
 ,convert(decimal(7,2),memory_used_by_table_kb / 1024.)
 as [memory used by table]
from
 sys.dm_db_xtp_table_memory_stats
where
 object_id = object_id(N'dbo.GCDemo');

select rows_touched, rows_expired, rows_expired_removed
from sys.dm_db_xtp_index_stats
where object_id = object_id(N'dbo.GCDemo');

select
 sum(total_enqueues) as [total enqueues]
 ,sum(total_dequeues) as [total dequeues]
from
 sys.dm_xtp_gc_queue_stats

Chapter 9 ■ GarbaGe ColleCtion

142

Figure 9-5 illustrates the output of the queries. As you can see, the table has about
586MB allocated and 512MB of used space. None of the rows have been deleted or
touched (scanned). I also restarted my test server right before the test, so the garbage
collection worker queues are empty.

Let’s run a few queries, analyzing the statistics after each run. In this book, I discuss
results after each step; however, when you run this in your test environment, it is better
to run all queries at once, persisting results in the temporary tables as is done in the
script included with the companion materials of this book. This will help you to avoid the
situation when idle worker threads start unexpectedly in the middle of execution.

As the first step, run the script that deletes 1,500 rows in the individual transactions
(see Listing 9-5).

Listing 9-5. Deleting 1,500 Rows from the Table

declare
 @I int = 1

while @I <= 1500
begin
 delete from dbo.GCDemo where ID = @I;
 set @I += 1;
end;

Now run the code from Listing 9-4 again and look at the output. As you can see
in Figure 9-6, index statistics indicate that the deletion statement touched 1,500 rows;
however, none of them were marked as expired even though deletion statements ran in
the individual autocommitted transactions.

Figure 9-5. Memory and garbage collection statistics after table creation

Chapter 9 ■ GarbaGe ColleCtion

143

As the next step, run a SELECT query that scans the entire index, as shown in Listing 9-6.

Listing 9-6. Scanning Table

select count(*) from dbo.GCDemo

Figure 9-7 illustrates the statistics after the scan. As you can see, In-Memory OLTP
correctly identified rows as expired and unlinked them from the index row chains.
However, none of the work items were enqueued in garbage collector worker items
queues because the idle worker thread has not started yet.

If you look at the statistics again after the idle worker thread execution, you will see
the output shown in Figure 9-8. As you can see, the idle worker thread put items into
the garbage collection worker queues where items are waiting for the user threads to
deallocate them.

Figure 9-6. Memory and garbage collection statistics after deletion

Figure 9-7. Memory and garbage collection statistics after scan

Chapter 9 ■ GarbaGe ColleCtion

144

If you scan the table with the query from Listing 9-6 again, you will see the statistics
shown in Figure 9-9. A user thread processed and deallocated multiple items from the
worker queues, releasing about 3MB of memory.

The sys.dm_db_xtp_gc_cycle_stats view shows that the garbage collection idle
worker thread performed just a handful of cycles (remember, I restarted SQL Server in my
test environment before the test) and processed all completed transactions at once. You
can see the partial output from the view in Figure 9-10.

The situation will change if you repeat entire test, deleting more rows from the table.
The garbage collection process will be triggered based on the number of completed
transactions in the queue rather than based on the timer.

Figure 9-11 shows the summary statistics from my environment when I repeated the
test, deleting 32,768 rows in the individual transactions. Note that the garbage collection
process was started at the middle of deletions rather than based on a timer.

Figure 9-8. Memory and garbage collection statistics after the idle worker thread cycle

Figure 9-9. Memory and garbage collection statistics after the second scan

Figure 9-10. Sys.dm_db_xtp_gc_cycle_stats view after the test

Chapter 9 ■ GarbaGe ColleCtion

145

You can also confirm it by looking at the sys.dm_db_xtp_gc_cycle_stats view
output in Figure 9-12. It shows a much higher number of cycles with very short delays in
between them.

Summary
The garbage collection process in In-Memory OLTP is designed to be non-blocking,
cooperative, and scalable. Even though it is managed by a dedicated system thread (the
idle worker thread) most of the work is done by the user threads. The idle worker thread
wakes up every minute or when the number of completed transactions exceeds an
internal threshold.

Deleted rows can be deallocated only after they are expired and their EndTs
timestamp is older the than Oldest Active Transaction Timestamp in the system.
Moreover, they need to be removed from all index row chains before deallocation. When
user thread encounters an expired row, the thread unlinks it from the row chain. The
idle worker thread periodically scans rarely accessed parts of the indexes during its dusty
corners scan and processes expired rows that were missed by the user threads.

Figure 9-11. Memory and garbage collection statistics during the second set of tests

Figure 9-12. Sys.dm_db_xtp_gc_cycle_stats view after the second test

Chapter 9 ■ GarbaGe ColleCtion

146

User threads provide information about completed transactions to the idle worker
thread, which builds the list of work items that consist of 16-row batches to deallocate.
The work items are distributed between garbage collector worker queues-one queue per
scheduler in the system. In turn, user threads pickup one or several items from the worker
queues and deallocate them.

Long-running and uncommitted transactions prevent rows from expiring by freezing
the Oldest Active Transaction Timestamp in the system. This defers the garbage collection
process and can lead to a situation where deleted rows use a large amount of memory.

147

Chapter 10

Deployment and
Management

This chapter discusses the deployment and management aspects of systems that
utilize In-Memory OLTP. It provides a set of guidelines about hardware and server
configurations, and it covers In-Memory OLTP-related database administration
and management tasks. Finally, this chapter gives an overview of the changes and
enhancements in the catalog and data management objects related to In-Memory OLTP.

Hardware Considerations
In-Memory OLTP uses hardware in a different, and often more efficient, way than SQL
Server Storage Engine. It is often possible to achieve high OLTP throughput even with
mid-range servers. Moreover, In-Memory OLTP is highly scalable and it is possible to
increase transaction throughput by adding more CPUs and memory to the server, and
more drives to the disk array, as the load and amount of data in the system grows.

Obviously, you should not forget that In-Memory OLTP plays in the same sandbox
with other SQL Server components, sharing resources with them. Memory becomes one
of the most critical resources for which In-Memory OLTP and Storage Engines compete.
The memory used by memory-optimized data is inaccessible to the Storage Engine and,
therefore, cannot be used by the buffer pool. It is entirely possible that using In-Memory
OLTP on servers with an insufficient amount of memory would degrade performance of
the queries against on-disk tables if an excessive amount of physical I/O were required.
You should remember this when designing the system and avoid putting unnecessary
data into memory-optimized tables.

 ■ Tip Consider splitting hot and rarely accessed historical data between memory-
optimized and on-disk tables. We will discuss this scenario in more depth in Chapter 11.

Let’s discuss In-Memory OLTP requirements for different hardware components.
Obviously, you need to take the workload from other SQL Server components into
consideration when you build servers that utilize In-Memory OLTP.

http://dx.doi.org/10.1007/978-1-4842-1136-6_11

Chapter 10 ■ Deployment anD management

148

CPU
The number of CPUs in the system greatly depends on the required OLTP throughput.
However, as mentioned, it is entirely possible to achieve high transactional throughput
even with a mid-range server. It is impossible to predict how many CPUs you will need
without performing some testing and analysis; however, it is beneficial to use the proper
hardware, which will allow you to scale and add more CPUs as load grows.

It is better to use Intel rather than AMD processors for OLTP workload even though
some AMD processors have a lower SQL Server license cost. This situation may change
in the future; however, as of summer 2015, Intel-based processors provide much better
single-threaded performance, which is critical for In-Memory OLTP and OLTP workloads
in general.

When possible, you should choose processors with a higher base clock speed. With
SQL Server 2014 Enterprise Edition per-core licensing, you can often get a better OLTP
performance/cost ratio by using high-end CPUs with a lower number of cores compared
to slower CPUs with a higher number of cores.

Finally, you should have hyperthreading enabled on the servers. Microsoft states that
hyperthreading can provide up to a 40 percent performance boost in some cases.

I/O Subsystem
As a general rule, you should place an In-Memory OLTP filegroup on the dedicated
disk array optimized for sequential I/O performance. The sequential-only nature of
In-Memory OLTP I/O patterns makes the choice between SSD- and magnetic media-
based disk arrays more complicated. Even though solid state drives outperform magnetic
media, high-performance magnetic media-based disk arrays can provide good enough
sequential I/O performance to handle an In-Memory OLTP workload. Moreover, other
factors, such as HBA and network bandwidth, can limit I/O throughput, making the disk
performance difference negligible.

I/O read performance, however, is crucial at the database recovery stage. As you
know, the In-Memory OLTP recovery process is highly scalable, with multiple schedulers
loading data from the different checkpoint file pairs in parallel. Usually, I/O performance
becomes the limiting factor in how fast SQL Server can recover memory-optimized data.

Recovery performance becomes even more important if a database has a low RTO
metric (recovery time objective) in its SLA (service-level agreement). Even though
databases with an In-Memory OLTP filegroup support piecemeal restore, SQL Server
must bring all In-Memory OLTP data online together with the PRIMARY filegroup. You
cannot postpone In-Memory OLTP filegroup recovery to a later stage in the restore.

One of the ways to improve recovery performance is to create multiple containers in
the In-Memory OLTP filegroup, placing them in different disk arrays using different HBA
adapters and, in the case of network storage, different access paths. SQL Server spreads
checkpoint files across containers and will load them in parallel from multiple drives.

Listing 10-1 shows how to create a database with two containers in an In-Memory
OLTP filegroup, placing them into the H:\HKData and K:\HKData folders, respectively.

Chapter 10 ■ Deployment anD management

149

Listing 10-1. Creating a Database with Two Containers in an In-Memory OLTP Filegroup

create database HKMultiContainers
on primary
(
 name = N'HKMultiContainers'
 ,filename = N'M:\HKMultiContainers.mdf'
),
filegroup HKData CONTAINS MEMORY_OPTIMIZED_DATA
(
 name = N'HKMultiContainers_HKData1'
 ,filename = N'H:\HKData\HKMultiContainers'
),
(
 name = N'HKMultiContainers_HKData2'
 ,filename = N'K:\HKData\HKMultiContainers'
)
log on
(
 name = N'HKMultiContainers_Log'
 ,filename = N'L:\KMultiContainers_log.ldf'
);

Continuous checkpoint and merge processes, on the other hand, do not usually put
an extreme load on the disk subsystem. These processes utilize a streaming API and use a
limited amount of threads to write data to the disk.

As for disk space, Microsoft recommends that you have enough space to
accommodate 2X-3X of the size of the data from the durable memory-optimized tables.
You should consider being closer to the higher mark to be on the safe side, especially if
you expect your amount of data to grow.

Memory
You need to have enough memory in the system to accommodate the data from all
of memory-optimized tables. SQL Server fails a transaction when it cannot allocate
memory for the new row objects. Usually, SQL Server performs memory allocation during
INSERT and UPDATE operations; however, a DELETE operation could also fail if a table
has nonclustered indexes and there is not enough memory to accommodate new delta
records or perform page merge operations.

Figure 10-1 shows an error message indicating an out of memory condition.

Figure 10-1. Out-of-memory error

Chapter 10 ■ Deployment anD management

150

An out-of-memory situation essentially makes In-Memory OLTP data read-only. You
can still query the data; however, you cannot perform any data modifications until the
problem is resolved. When such conditions occur, it is beneficial to check the status of
the garbage collection process to make sure that it has not been deferred by the old active
transactions. We will discuss how to detect such transactions later in the chapter.

In a large number of cases, the only option to address an out-of-memory situation
is to increase the amount of memory available to SQL Server and the In-Memory OLTP
Engine. When this is impossible, you should detect the largest memory consumers in In-
Memory OLTP and reduce their memory footprint by either refactoring or migrating them
to on-disk tables. We will talk about how to detect them later in the chapter.

Estimating the Amount of Memory for In-Memory OLTP
Estimating the amount of memory required for memory-optimized tables is not a trivial
task. As a rule of thumb, you can double the size of the data in the table as a basis for
the estimation. For a more accurate estimate, however, you should factor the memory
requirements for several different components:

•	 Data rows consist of a 24-byte header, an index pointer array
(which is 8 bytes per index), and the payload (actual row data).
For example, if your table has 1,000,000 rows and 3 indexes, and
each row is about 200 bytes on average, you will need (24 + 3 * 8 +
200) * 1,000,000 = ~236.5MB of memory to store row data without
any versioning overhead included in this number.

•	 Hash indexes use 8 bytes per bucket. If a table has two hash
indexes defined with 1,500,000 buckets each, SQL Server will
create indexes with 2,097,152 buckets, rounding the number of
buckets specified in the index properties to next power of two.
Those two indexes will use 2,097,152 * 2 * 8 = 32MB of memory.

•	 Nonclustered index memory usage is based on the number of
unique index keys and index key size. If a table has a nonclustered
index with 250,000 unique key values and each key value on
average uses 30 bytes, it would use (30 + 8(pointer)) * 250,000 =
~9MB of memory. You can ignore the page header and non-leaf
pages in your estimation as their sizes are insignificant compared
to the leaf-level row size.

•	 Row versioning memory estimation depends on the duration
of the longest transactions and the average number of data
modifications (inserts and updates) per second. For example, if
some processes in a system have 10-second transactions and, on
average, the system handles 1,000 data modifications per second,
you can estimate 10 * 1,000 * 248(row size) = ~2.4MB of memory
for row versioning storage.

Chapter 10 ■ Deployment anD management

151

Obviously, these numbers outline the minimally required amount of memory. You
should factor in future growth and changes in workload, and reserve some additional
memory just to be safe.

As mentioned, it is also very important to remember that In-Memory OLTP does
not work in vacuum; SQL Server needs to have enough memory available to the other
components. Make sure to include this in your analysis.

You should also remember In-Memory OLTP memory requirements when you
design High Availability and/or Disaster Recovery strategies in your system. It is not
uncommon to see configurations where secondary and/or standby servers use less
powerful hardware than the primary one. This approach helps to reduce hardware cost by
allowing the system to operate with degraded performance in the event of a disaster.

You should be extremely careful with such an approach in case your database is
using In-Memory OLTP technology. An insufficient amount of memory on secondary
servers could break Always On synchronization and/or prevent you from restoring the
database in the event of a disaster. The latter can also happen in scenarios when you want
to bring the copy of the production database to development or testing environments
where SQL Server does not have enough memory to accommodate In-Memory OLTP
data from production.

Administration and Monitoring Tasks
Let's look at several common In-Memory OLTP-related database administration and
monitoring tasks.

Limiting the Amount of Memory Available to In-Memory
OLTP
SQL Server uses a Resource Governor to manage workload and system resource
consumption. Internally, the Resource Governor uses resource pools, which represent
a subset of the physical resources available to SQL Server. You can think about each
resource pool as a virtual instance inside SQL Server, and you can control resources
available to the resource pool by specifying its parameters. Finally, you can distribute the
workload between resource pools or, to be precise, between resource pool workgroups
using a classification process. Classification is done based on user-defined function,
which allow you to define complex algorithms for such a purpose.

 ■ Note you can read more about the resource governor at
https://msdn.microsoft.com/en-us/bb933866.aspx.

Every Resource Governor configuration has two predefined resource pools created,
internal and default. As you can guess by the name, the internal pool handles the internal
SQL Server workload and the default pool handles the unclassified workload, which is
all of the user workload that had not been classified to the other resource pools. You can
create other resource pools as needed.

https://msdn.microsoft.com/en-us/bb933866.aspx

Chapter 10 ■ Deployment anD management

152

As mentioned, you can control CPU, memory, and I/O allocations between resource
pools by specifying parameters, such as MIN_CPU_PERCENT and MAX_CPU_PERCENT, MIN_
MEMORY_PERCENT and MAX_MEMORY_PERCENT, AFFINITY and a few others. You can bind a
database to the resource pool, which, in the case of In-Memory OLTP, will allow you to
limit the amount of memory for memory-optimized data in the system. Each database
can be bound to a single resource pool; however, multiple databases can share the same
pool. In this case, the limit would apply to all of them.

A resource pool can utilize up to 80 percent of the system memory, which sets the
limit on the amount of memory available to In-Memory OLTP. That threshold guarantees
that other SQL Server components have enough system memory to work and that the
system remains stable under the memory pressure.

Listing 10-2 illustrates how to create and configure the resource pool, allowing it to
use 40 percent of the system memory.

Listing 10-2. Creating a Resource Pool

create resource pool InMemoryDataPool
with
(
 min_memory_percent=40
 ,max_memory_percent=40
);

alter resource governor reconfigure;

When the resource pool is created, you can bind a database to it by using the sys.sp_
xtp_bind_db_resource_pool stored procedure, as shown in Listing 10-3. Unfortunately,
it does not automatically transfer previously allocated memory to the new pool so you
need to take the database offline and bring it back online in order to do so. Remember
that this leads to a recovery process, which can be time-consuming in the case of large
amounts of In-Memory OLTP data.

Listing 10-3. Binding a Database to the Resource Pool

exec sys.sp_xtp_bind_db_resource_pool
 @database_name = 'InMemoryOLTPDemo'
 ,@pool_name = 'InMemoryDataPool';

-- You need to take DB offline and bring it
-- back online for the changes to take effect
alter database InMemoryOLTPDemo set offline;
alter database InMemoryOLTPDemo set online;

Similarly, you can remove the binding by calling the sys.sp_xtp_unbind_db_
resource_pool stored procedure, as shown in Listing 10-4. The database will be bound
back to the default resource pool after the call.

Chapter 10 ■ Deployment anD management

153

Listing 10-4. Removing the Binding Between a Database and a Resource Pool

exec sys.sp_xtp_unbind_db_resource_pool
 @database_name = 'InMemoryOLTPDemo';

-- You need to take DB offline and bring it
-- back online for the changes to take effect
alter database InMemoryOLTPDemo set offline;
alter database InMemoryOLTPDemo set online;

Monitoring Memory Usage for Memory-Optimized
Tables
You can monitor memory usage of the various In-Memory OLTP objects by using a set of
data management views along with the Memory Usage by Memory Optimized Objects
report in SQL Server Management Studio.

The sys.dm_db_xtp_table_memory_stats view provides high-level memory usage
statistics for the user and system memory-optimized tables in the current database.
Listing 10-5 illustrates the query that uses this view.

Listing 10-5. Using sys.dm_db_xtp_table_memory_stats View

select
 ms.object_id
 ,s.name + '.' + t.name as [table]
 ,ms.memory_allocated_for_table_kb
 ,ms.memory_used_by_table_kb
 ,ms.memory_allocated_for_indexes_kb
 ,ms.memory_used_by_indexes_kb
from
 sys.dm_db_xtp_table_memory_stats ms
 left outer join sys.tables t on
 ms.object_id = t.object_id
 left outer join sys.schemas s on
 t.schema_id = s.schema_id
order by
 ms.memory_allocated_for_table_kb desc

Figure 10-2 shows the output of the query when I ran it against one of the databases.
Rows with negative object_id belong to the system tables.

Chapter 10 ■ Deployment anD management

154

 ■ Note you can read more about the sys.dm_db_xtp_table_memory_stats view at
https://msdn.microsoft.com/en-us/library/dn169142.aspx.

The sys.dm_db_xtp_memory_consumers view provides information about database-
level memory consumers. The memory_consumer_type column indicates the type of
memory consumer in the output and can have one of three possible values:

•	 VARHEAP (2) indicates the database heap that is used to store user
data and internal pages of nonclustered indexes.

•	 HASH (3) indicates memory used by the hash indexes.

•	 PGPOOL (5) shows the database page pool used by runtime
operations. There is one memory consumer of such type per
database.

You can use the sys.dm_db_xtp_memory_consumers view to track the memory
allocation on a per-index basis, as shown in Listing 10-6.

Listing 10-6. Using sys.dm_db_xtp_memory_consumers View

select
 mc.object_id
 ,s.name + '.' + t.name as [table]
 ,i.name as [index]
 ,mc.memory_consumer_type_desc
 ,mc.memory_consumer_desc
 ,convert(decimal(9,3),mc.allocated_bytes / 1024. / 1024.)
 as [allocated (MB)]
 ,convert(decimal(9,3),mc.used_bytes / 1024. / 1024.)
 as [used (MB)]
 ,mc.allocation_count

Figure 10-2. Output from sys.dm_db_xtp_table_memory_stats view

https://msdn.microsoft.com/en-us/library/dn169142.aspx

Chapter 10 ■ Deployment anD management

155

from
 sys.dm_db_xtp_memory_consumers mc
 left outer join sys.tables t on
 mc.object_id = t.object_id
 left outer join sys.indexes i on
 mc.object_id = i.object_id and
 mc.index_id = i.index_id
 left outer join sys.schemas s on
 t.schema_id = s.schema_id
where -- Greater than 1MB
 mc.allocated_bytes > 1048576
order by
 [allocated (MB)] desc

Figure 10-3 shows the partial output of the query. Rows with a negative object_id
belong to the system tables.

Figure 10-3. Output from sys.dm_db_memory_consumers view

 ■ Note you can read more about the sys.dm_db_xtp_memory_consumers view at
https://msdn.microsoft.com/en-us/library/dn133206.aspx.

The sys.dm_xtp_system_memory_consumers view provides information about
memory used by system In-Memory OLTP components. Listing 10-7 illustrates the query
that uses this view. Figure 10-4 shows the output of the query in my system.

Listing 10-7. Using sys.dm_xtp_system_memory_consumers View

select
 memory_consumer_type_desc
 ,memory_consumer_desc
 ,convert(decimal(9,3),allocated_bytes / 1024. / 1024.)
 as [allocated (MB)]
 ,convert(decimal(9,3),used_bytes / 1024. / 1024.)
 as [used (MB)]
 ,allocation_count
from
 sys.dm_xtp_system_memory_consumers
order by
 [allocated (MB)] desc

https://msdn.microsoft.com/en-us/library/dn133206.aspx

Chapter 10 ■ Deployment anD management

156

You can access the Memory Usage by Memory Optimized Objects report in the
Reports ➤ Standard Reports section in the database context menu of the SQL Server
Management Studio Object Explorer. Figure 10-5 illustrates the output of the report. As you
can see, this report returns similar data to the sys.dm_db_xtp_table_memory_stats view.

Figure 10-4. Output from sys.dm_xtp_system_memory_consumers view

Chapter 10 ■ Deployment anD management

157

Monitoring In-Memory OLTP Transactions
The sys.dm_db_xtp_transactions view provides information about active In-Memory
OLTP transactions in the system. The most notable columns in the view are the following:

•	 xtp_transaction_id is the internal ID of the transaction in the
In-Memory OLTP Transaction Manager.

•	 transaction_id is the transaction id in the system. You can use
it in joins with other transaction management views, such as
sys.dm_tran_active_transactions. In-Memory OLTP-only
transactions, such as transactions started by natively compiled
stored procedures, return transaction_id as 0.

•	 session_id indicates the session that started a transaction.

Figure 10-5. Memory Usage By Memory Optimized Objects report output

Chapter 10 ■ Deployment anD management

158

•	 begin_tsn and end_tsn indicate transaction timestamps.

•	 state and state_desc indicate the state of a transaction. The
possible values are (0)-ACTIVE, (1)-COMMITTED, (2)-ABORTED,
(3)-VALIDATING.

•	 result and result_desc indicate the result of a transaction. The
possible values are (0)-IN PROGRESS, (1)-SUCCESS, (2)-ERROR,
(3)-COMMIT DEPENDENCY, (4)-VALIDATION FAILED (RR) indicates
repeatable read rules violation, (5)-VALIDATION FAILED (SR)
indicates serializable rules violation, (6)-ROLLBACK.

You can use the sys.dm_db_xtp_transactions view to detect long-running and
orphan transactions in the system. As you remember, these transactions can defer the
garbage collection process and lead to out-of-memory errors.

Listing 10-8 shows a query that returns information about the five oldest active
In-Memory OLTP transactions in the system.

Listing 10-8. Getting Information About the Five Oldest Active In-Memory OLTP
Transactions

select top 5
 t.session_id
 ,t.transaction_id
 ,t.begin_tsn
 ,t.end_tsn
 ,t.state_desc
 ,t.result_desc
 ,substring(
 qt.text
 ,er.statement_start_offset / 2 + 1
 ,(case er.statement_end_offset
 when -1 then datalength(qt.text)
 else er.statement_end_offset
 end - er.statement_start_offset
) / 2 +1
) as SQL
from
 sys.dm_db_xtp_transactions t
 left outer join sys.dm_exec_requests er on
 t.session_id = er.session_id
 outer apply
 sys.dm_exec_sql_text(er.sql_handle) qt
where
 t.state in (0,3) /* ACTIVE/VALIDATING */
order by
 t.begin_tsn

Figure 10-6 illustrates the output of the query.

Chapter 10 ■ Deployment anD management

159

 ■ Note you can read more about the sys.dm_db_xtp_transactions view at
https://msdn.microsoft.com/en-us/library/dn133194.aspx.

Collecting Execution Statistics for Natively Compiled
Stored Procedures
By default, SQL Server does not collect execution statistics for natively compiled
stored procedures due to the performance impact it introduces. You can enable such a
collection at the procedure level with sys.sp_xtp_control_proc_exec_stats and at the
statement-level with sys.sp_xtp_control_query_exec_stats system stored procedures.

Both procedures accept a Boolean @new_collection_value parameter, which
indicates if the collection needs to be enabled or disabled. In addition, sys.sp_xtp_
control_query_exec_stats allows you to provide @database_id and @object_id to
specify a stored procedure to monitor. It is also worth noting that SQL Server does not
persist collection settings, and you will need to re-enable statistics collection after each
SQL Server restart.

 ■ Note execution statistics collection degrades the performance of the system. Do not
collect execution statistics unless you are performing troubleshooting. moreover, consider
limiting collection to specific stored procedures to reduce the performance impact on the
system.

When statistics have been collected, you can access them through the sys.dm_exec_
procedure_stats and sys.dm_exec_query_stats views. Listing 10-9 shows the code that
returns execution statistics for stored procedures using the sys.dm_exec_procedure_
stats view. The code does not limit an output to natively compiled stored procedures;
however, you can do it by joining sys.dm_exec_procedure_stats and sys.sql_modules
views filtering by uses_native_compliation = 1 value.

Figure 10-6. The five oldest active In-Memory OLTP transactions in the system

https://msdn.microsoft.com/en-us/library/dn133194.aspx

Chapter 10 ■ Deployment anD management

160

Listing 10-9. Analyzing Stored Procedures Execution Statistics

select
 object_name(object_id) as [Proc Name]
 ,execution_count as [Exec Cnt]
 ,total_worker_time as [Total CPU]
 ,convert(int,total_worker_time / 1000 / execution_count)
 as [Avg CPU] -- in Milliseconds
 ,total_elapsed_time as [Total Elps]
 ,convert(int,total_elapsed_time / 1000 / execution_count)
 as [Avg Elps] -- in Milliseconds
 ,cached_time as [Cached]
 ,last_execution_time as [Last Exec]
 ,sql_handle
 ,plan_handle
 ,total_logical_reads as [Reads]
 ,total_logical_writes as [Writes]
from
 sys.dm_exec_procedure_stats
order by
 [AVG CPU] desc

Figure 10-7 illustrates the output of the code from Listing 10-9. As you can see, neither
the sql_handle nor plan_handle columns are populated. Execution plans for natively
compiled stored procedures are embedded into the code and are not cached in the plan
cache. Nor are I/O related statistics provided. Natively compiled stored procedures work
with memory-optimized tables only, and therefore there is no I/O involved.

Figure 10-7. Data from thesys.dm_exec_procedure_stats view

Listing 10-10 shows the code that obtains execution statistics for individual
statements using the sys.dm_exec_query_stats view.

Listing 10-10. Analyzing Stored Procedure Statement Execution Statistics

select
 substring(qt.text
 ,(qs.statement_start_offset/2)+1
 ,(case qs.statement_end_offset
 when -1 then datalength(qt.text)
 else qs.statement_end_offset
 end - qs.statement_start_offset) / 2 +1
) as SQL

Chapter 10 ■ Deployment anD management

161

 ,qs.execution_count as [Exec Cnt]
 ,qs.total_worker_time as [Total CPU]
 ,convert(int,qs.total_worker_time / 1000 /
 qs.execution_count) as [Avg CPU] -- In MS
 ,total_elapsed_time as [Total Elps]
 ,convert(int,qs.total_elapsed_time / 1000 /
 qs.execution_count) as [Avg Elps] -- In MS
 ,qs.creation_time as [Cached]
 ,last_execution_time as [Last Exec]
 ,qs.plan_handle
 ,qs.total_logical_reads as [Reads]
 ,qs.total_logical_writes as [Writes]
from
 sys.dm_exec_query_stats qs
 cross apply sys.dm_exec_sql_text(qs.sql_handle) qt
where
 qs.plan_generation_num is null
order by
 [AVG CPU] desc

Figure 10-8 illustrates the output of the code from Listing 10-10. Like procedure
execution statistics, it is impossible to obtain the execution plans of the statements.
However, you can analyze the CPU time consumed by individual statements and the
frequency of their execution.

Figure 10-8. Data from the sys.dm_exec_query_stats view

 ■ Note you can read more about the sys.sp_xtp_control_proc_exec_stats procedure
at https://msdn.microsoft.com/en-us/library/dn435918.aspx. more information
about the sys.sp_xtp_control_query_exec_stats procedure is available at
https://msdn.microsoft.com/en-us/library/dn435917.aspx.

https://msdn.microsoft.com/en-us/library/dn435918.aspx
https://msdn.microsoft.com/en-us/library/dn435917.aspx

Chapter 10 ■ Deployment anD management

162

Metadata Changes and Enhancements
In-Memory OLTP introduces a large number of changes in catalog and data management
views.

Catalog Views
In-Memory OLTP introduces the new catalog view sys.hash_indexes. As you can guess
by the name, this view provides information about hash indexes defined in the database.
It is inherited from and has the same columns as the sys.indexes view, adding one extra
column called bucket_count. You can read about this view at https://msdn.microsoft.
com/en-us/library/dn133205.aspx.

Other catalog view changes include the following:

•	 The sys.tables view has three new columns. The Is_memory_
optimized column indicates if a table is memory-optimized. The
durability and durability_desc columns indicate a durability
mode for memory-optimized tables. The values are (0)-SCHEMA_
AND_DATA and (1)-SCHEMA_ONLY.

•	 The sys.indexes view has a new possible value in the type and
type_description columns, such as (7)-NONCLUSTERED HASH.
Nonclustered Bw-Tree indexes use the value of (2)-NONCLUSTERED
as the regular nonclustered B-Tree indexes defined on on-disk
tables.

•	 The sys.sql_modules and sys.all_sql_modules have a new
column called uses_native_compilation.

•	 The sys.table_types view has a new column called is_memory_
optimized, which indicates if a type represents a memory-
optimized table variable.

•	 The sys.data_spaces view now has a new type and type_desc
value of (FX)-MEMORY_OPTIMIZED_DATA_FILEGROUP.

Data Management Views
In-Memory OLTP introduces a large set of new data management views, which can be
easily detected by the xtp_ prefix in their names. The naming convention also provides
information about their scope. Sys.dm_xtp_* views return instance-level and sys.
dm_db_xtp_* views provide database-level information. Let’s look at them in more detail,
grouping them by areas.

https://msdn.microsoft.com/en-us/library/dn133205.aspx
https://msdn.microsoft.com/en-us/library/dn133205.aspx

Chapter 10 ■ Deployment anD management

163

Object and Index Statistics
The following data management views provide index- and data modification-related
statistics:

•	 sys.dm_db_xtp_object_stats reports the number of rows
affected by data modification operations on a per-objects
basis. You can use this view to analyze the volatility of the
data from memory-optimized tables, correlating it with index
usage statistics. As with on-disk tables, you can improve data
modification performance by removing rarely used indexes
defined on volatile tables. More information about this view is
available at https://msdn.microsoft.com/en-us/library/
dn133191.aspx.

•	 sys.dm_db_xtp_index_stats returns information about index
usage, including data about expired rows. You can read about
this view at https://msdn.microsoft.com/en-us/library/
dn133081.aspx.

•	 sys.dm_db_xtp_hash_index_stats provides information about
hash indexes, such as number of buckets in the index, number
of empty buckets, and row chain length information. This view
is useful when you need to analyze the state of hash indexes and
fine-tune their bucket_count allocations. You can read about
this view at https://msdn.microsoft.com/en-us/library/
dn296679.aspx.

Listing 10-11 shows the script that you can use to find hash indexes with potentially
suboptimal bucket_count value.

Listing 10-11. Obtaining Information About Hash Indexes with Potentially Suboptimal
bucket_count Value

select
 s.name + '.' + t.name as [Table]
 ,i.name as [Index]
 ,stat.total_bucket_count as [Total Buckets]
 ,stat.empty_bucket_count as [Empty Buckets]
 ,floor(100. * empty_bucket_count / total_bucket_count)
 as [Empty Bucket %]
 ,stat.avg_chain_length as [Avg Chain]
 ,stat.max_chain_length as [Max Chain]
from
 sys.dm_db_xtp_hash_index_stats stat
 join sys.tables t on
 stat.object_id = t.object_id
 join sys.indexes i on
 stat.object_id = i.object_id and
 stat.index_id = i.index_id

https://msdn.microsoft.com/en-us/library/dn133191.aspx
https://msdn.microsoft.com/en-us/library/dn133191.aspx
https://msdn.microsoft.com/en-us/library/dn133081.aspx
https://msdn.microsoft.com/en-us/library/dn133081.aspx
https://msdn.microsoft.com/en-us/library/dn296679.aspx
https://msdn.microsoft.com/en-us/library/dn296679.aspx

Chapter 10 ■ Deployment anD management

164

 join sys.schemas s on
 t.schema_id = s.schema_id
where
 stat.avg_chain_length > 3 or
 stat.max_chain_length > 50 or
 floor(100. * empty_bucket_count /
 total_bucket_count) > 50

Memory Usage Statistics
We already discussed memory usage-related views in this chapter. However, as a quick
overview, the views are the following:

•	 sys.dm_xtp_system_memory_consumers reports information
about system-level memory consumers in the system. More
information about this view is available at https://msdn.
microsoft.com/en-us/library/dn133200.aspx.

•	 sys.dm_db_xtp_table_memory_stats provides memory usage
statistics on per-object level. You can read more at https://msdn.
microsoft.com/en-us/library/dn169142.aspx.

•	 sys.dm_db_xtp_memory_consumers provides information about
database-level memory consumers. You can use this view
to analyze per-index memory allocation in the system. The
documentation is available at https://msdn.microsoft.com/en-
us/library/dn133206.aspx.

Transaction Management
The following views provide transaction-related statistics in the system:

•	 sys.dm_xtp_transaction_stats reports statistics about
transactional activity in the system since the last server restart.
It includes the number of transactions, information about
transaction log activity, and quite a few other metrics. More
information about this view is available at https://msdn.
microsoft.com/en-us/library/dn133198.aspx.

•	 sys.dm_db_xtp_transactions provides information about
currently active transactions in the system. We discussed this view
in this chapter and you can read more about it at https://msdn.
microsoft.com/en-us/library/dn133194.aspx.

https://msdn.microsoft.com/en-us/library/dn133200.aspx
https://msdn.microsoft.com/en-us/library/dn133200.aspx
https://msdn.microsoft.com/en-us/library/dn169142.aspx
https://msdn.microsoft.com/en-us/library/dn169142.aspx
https://msdn.microsoft.com/en-us/library/dn133206.aspx
https://msdn.microsoft.com/en-us/library/dn133206.aspx
https://msdn.microsoft.com/en-us/library/dn133198.aspx
https://msdn.microsoft.com/en-us/library/dn133198.aspx
https://msdn.microsoft.com/en-us/library/dn133194.aspx
https://msdn.microsoft.com/en-us/library/dn133194.aspx

Chapter 10 ■ Deployment anD management

165

Garbage Collection
The following views provide information about garbage collection process in the system:

•	 sys.dm_xtp_gc_stats reports the overall statistics about the
garbage collection process. More information is available at
https://msdn.microsoft.com/en-us/library/dn133196.aspx.

•	 sys.dm_xtp_gc_queue_stats provides information about the
state of garbage collection worker item queues. You can use this
view to monitor if the garbage collection deallocation process
is keeping up with the system load. You can read more about
this view at https://msdn.microsoft.com/en-us/library/
dn268336.aspx.

•	 sys.dm_db_xtp_gc_cycle_stats provides information about idle
worker thread generation queues. We discussed this view in detail
in Chapter 9 and you can read more about it at https://msdn.
microsoft.com/en-us/library/dn268337.aspx.

Checkpoint
The following views provide information about checkpoint operations in the current
database:

•	 sys.dm_db_xtp_checkpoint_stats reports the overall statistics
about database checkpoint operations. It includes log file
I/O statistics, amount of data processed during continuous
checkpoint, time since last checkpoint operation, and quite a few
other metrics. More information about this view is available at
https://msdn.microsoft.com/en-us/library/dn133197.aspx.

•	 sys.dm_db_xtp_checkpoint_files provides information about
checkpoint file pairs in the database. Appendix C shows this
view in action and you can read more about it at https://msdn.
microsoft.com/en-us/library/dn133201.aspx.

•	 sys.dm_db_xtp_merge_requests tracks checkpoint merge
requests in the database. You can read more about it at
https://msdn.microsoft.com/en-us/library/dn465868.aspx.

Extended Events and Performance Counters
SQL Server 2014 introduces three new xEvent packages that contain a large number
of Extended Events. You can use the code from Listing 10-12 to get the list of Extended
Events from those packages along with their descriptions.

https://msdn.microsoft.com/en-us/library/dn133196.aspx
https://msdn.microsoft.com/en-us/library/dn268336.aspx
https://msdn.microsoft.com/en-us/library/dn268336.aspx
http://dx.doi.org/10.1007/978-1-4842-1136-6_9
https://msdn.microsoft.com/en-us/library/dn268337.aspx
https://msdn.microsoft.com/en-us/library/dn268337.aspx
https://msdn.microsoft.com/en-us/library/dn133197.aspx
https://msdn.microsoft.com/en-us/library/dn133201.aspx
https://msdn.microsoft.com/en-us/library/dn133201.aspx
https://msdn.microsoft.com/en-us/library/dn465868.aspx

Chapter 10 ■ Deployment anD management

166

Listing 10-12. Analyzing In-Memory OLTP Extended Events

select
 xp.name as [package]
 ,xo.name as [event]
 ,xo.description as [description]
from
 sys.dm_xe_packages xp
 join sys.dm_xe_objects xo on
 xp.guid = xo.package_guid
where
 xp.name like 'XTP%'
order by
 xp.name, xo.name

Figure 10-9 shows the partial output from the query.

Figure 10-9. In-Memory OLTP Extended Events

Chapter 10 ■ Deployment anD management

167

Similarly, you can see the new performance counters with the query shown in
Listing 10-13. Figure 10-10 shows a partial output of the query.

Listing 10-13. Analyzing In-Memory OLTP Performance Counters

select object_name, counter_name
from sys.dm_os_performance_counters
where object_name like 'XTP%'
order by object_name, counter_name

Figure 10-10. In-Memory OLTP Performance Counters

Chapter 10 ■ Deployment anD management

168

 ■ Note you can read about In-memory oltp performance counters at
https://msdn.microsoft.com/en-us/library/dn511015.aspx.

Summary
Choosing the right hardware is a crucial part of achieving good In-Memory OLTP
performance and transactional throughput. In-Memory OLTP uses hardware in a
different manner than the Storage Engine and you need to carefully plan the deployment
and server configuration when a system uses In-Memory OLTP.

In-Memory OLTP benefits from single-threaded CPU performance. You should
choose Intel-based CPUs with a high base clock speed and have hyperthreading enabled
in the system.

You should store In-Memory OLTP checkpoint files in the disk array, which is
optimized for sequential I/O performance. You can consider using multiple containers in
an In-Memory OLTP filegroup, placing them on the different drives if database recovery
time is critical.

Obviously, you should have enough memory in the system to accommodate In-
Memory OLTP data, leaving enough memory for other SQL Server components. You
can restrict In-Memory OLTP memory usage by configuring memory in the Resource
Governor resource pool and binding the database there.

In-Memory OLTP provides a large set of data management views, performance
counters, and Extended Events which you can use for system monitoring.

https://msdn.microsoft.com/en-us/library/dn511015.aspx

169

Chapter 11

Utilizing In-Memory OLTP

This chapter discusses several design considerations for systems utilizing In-Memory OLTP
and shows a set of techniques that can be used to address some of In-Memory OLTP’s
limitations. Moreover, this chapter demonstrates how to benefit from In-Memory
OLTP in scenarios when refactoring of existing systems is cost-ineffective. Finally, this
chapter talks about systems with mixed workload patterns and how to benefit from the
technology in those scenarios.

Design Considerations for the Systems Utilizing
In-Memory OLTP
As with any new technology, adoption of In-Memory OLTP comes at a cost. You will
need to acquire and/or upgrade to the Enterprise Edition of SQL Server 2014, spend time
learning the technology, and, if you are migrating an existing system, refactor code and
test the changes. It is important to perform a cost/benefits analysis and determine if
In-Memory OLTP provides you with adequate benefits to outweigh the costs.

In-Memory OLTP is hardly a magical solution that will improve server performance
by simply flipping a switch and moving data into memory. It is designed to address a
specific set of problems, such as latch and lock contentions on very active OLTP systems.
Moreover, it helps improve the performance of the small and frequently executed OLTP
queries that perform point-lookups and small range scans.

In-Memory OLTP is less beneficial in the case of Data Warehouse systems with
low concurrent activity, large amounts of data, and queries that require large scans and
complex aggregations. While in some cases it is still possible to achieve performance
improvements by moving data into memory, you can often obtain better results by
implementing columnstore indexes, indexed views, data compression, and other
database schema changes. It is also worth remembering that most performance
improvements with In-Memory OLTP are achieved by using natively compiled stored
procedures, which can rarely be used in Data Warehouse workloads due to the limited set
of T-SQL features that they support.

The situation is more complicated with systems that have a mixed workload, such as
an OLTP workload against hot, recent data and a Data Warehouse/Reporting workload
against old, historical data. In those cases, you can partition the data into multiple tables,

Chapter 11 ■ Utilizing in-MeMory oltp

170

moving recent data into memory and keeping old, historical data on-disk. Partition
views can be beneficial in this scenario by hiding the storage details from the client
applications. We will discuss such implementation later in this chapter.

Another important factor is whether you plan to use In-Memory OLTP during the
development of new or the migration of existing systems. It is obvious that you need
to make changes in existing systems, addressing the limitations of memory-optimized
tables, such as missing support of triggers, foreign key constraints, check and unique
constraints, calculated columns, and quite a few other restrictions.

There are other factors that can greatly increase migration costs. The first is the
8,060-byte maximum row size limitation in memory-optimized tables without any
off-row data storage support. This limitation can lead to a significant amount of work
when the existing active OLTP tables use LOB data types, such as (n)varchar(max), xml,
geography and a few others. While it is possible to change the data types, limiting the size
of the strings or storing XML as text or in binary format, such changes are complex, time-
consuming, and require careful planning. Don’t forget that In-Memory OLTP does not
allow you to create a table if there is a possibility that the size of a row exceeds 8,060 bytes.
For example, you cannot create a table with three varchar(3000) columns even if you do
not plan to exceed the 8,060-byte row size limit.

Indexing of memory-optimizing tables is another important factor. While nonclustered
indexes can mimic some of the behavior of indexes in on-disk tables, there is still a
significant difference between them. Nonclustered indexes are unidirectional, and they
would not help much if the data needs to be accessed in the opposite sorting order of an
index key. This often requires you to reevaluate your index strategy when a table is moved
from disk into memory. However, the bigger issue with indexing is the requirement of
case-sensitive binary collation of the indexed text columns. This is a breaking change in
system behavior, and it often requires non-trivial changes in the code and some sort of
data conversion.

It is also worth noting that using binary collations for data will lead to changes in
the T-SQL code. You will need to specify collations for variables in stored procedures
and other T-SQL routines, unless you change the database collation to be a binary one.
However, if the database and server collations do not match, you will need to specify a
collation for the columns in temporary tables created in tempdb.

There are plenty of other factors to consider. However, the key point is that you
should perform a thorough analysis before starting a migration to In-Memory OLTP. Such
a migration can have a very significant cost, and it should not be done unless it benefits
the system.

SQL Server 2014 provides the tools that can help during In-Memory OLTP migration.
These tools are based on the Management Data Warehouse, and they provide you with a
set of data collectors and reports that can help identify the objects that would benefit the
most from the migration. While those tools can be beneficial during the initial analysis
stage, you should not make a decision based solely on their output. Take into account all
of the other factors and considerations we have already discussed in this book.

 ■ Note We will discuss migration tools in detail in appendix D.

Chapter 11 ■ Utilizing in-MeMory oltp

171

New development, on the other hand, is a very different story. You can design a new
system and database schema taking In-Memory OLTP limitations into account. It is also
possible to adjust some functional requirements during the design phase. As an example,
it is much easier to store data in a case-sensitive way from the beginning compared to
changing the behavior of existing systems after they were deployed to production.

You should remember, however, that In-Memory OLTP is an Enterprise Edition
feature, and it requires powerful hardware with a large amount of memory. It is an
expensive feature due to its licensing costs. Moreover, it is impossible to “set it and
forget it.” Database professionals should actively participate in monitoring and system
maintenance after deployment. They need to monitor system memory usage, analyze
data and recreate hash indexes if bucket counts need to be adjusted, update statistics,
redeploy natively compiled stored procedures, and perform other tasks as well.

All of that makes In-Memory OLTP a bad choice for Independent Software Vendors
who develop products that need be deployed to a large number of customers. Moreover,
it is not practical to support two versions of a system—with and without In-Memory
OLTP—due to the increase in development and support costs.

Addressing In-Memory OLTP Limitations
Let’s take a closer look at some of the In-Memory OLTP limitations and the ways to
address them. Obviously, there is more than one way to skin a cat, and you can work
around these limitations differently.

8,060-Byte Maximum Row Size Limit
The 8,060-byte maximum row size limit is, perhaps, one of the biggest roadblocks in
widespread technology adoption. This limitation essentially prevents you from using
(max) data types along with CLR and system data types that require off-row storage,
such as XML, geometry, geography and a few others. Even though you can address this by
changing the database schema and T-SQL code, these changes are often expensive and
time-consuming.

When you encounter such a situation, you should analyze if LOB data types are
required in the first place. It is not uncommon to see a column that never stores more
than a few hundred characters defined as (n)varchar(max). Consider an Order Entry
system and DeliveryInstruction column in the Orders table. You can safely limit
the size of the column to 500-1,000 characters without compromising the business
requirements of the system.

Another example is a system that collects some semistructured sensor data from the
devices and stores it in the XML column. If the amount of semistructured data is relatively
small, you can store it in varbinary(N) column, which will allow you to move the table
into memory.

 ■ Tip it is more efficient to use varbinary rather than nvarchar to store XMl data in
cases when you cannot use the XML data type.

Chapter 11 ■ Utilizing in-MeMory oltp

172

Unfortunately, sometimes it is impossible to change the data types and you have to
keep LOB columns in the tables. Nevertheless, you have a couple options to proceed.

The first approach is to split data between two tables, storing the key attributes in
memory-optimized and rarely-accessed LOB attributes in on-disk tables. Again, consider
the situation where you have an Order Entry system with the Products table defined as
shown in Listing 11-1.

Listing 11-1. Products Table Definition

create table dbo.Products
(
 ProductId int not null identity(1,1),
 ProductName nvarchar(64) not null,
 ShortDescription nvarchar(256) not null,
 Description nvarchar(max) not null,
 Picture varbinary(max) null,

 constraint PK_Products
 primary key clustered(ProductId)
)

As you can guess, in this scenario, it is impossible to change the data types of the
Picture and Description columns, which prevents you from making the Products table
memory-optimized.

You can split that table into two, as shown in Listing 11-2. The Picture and
Description columns are stored in an on-disk table while all other columns are stored
in the memory-optimized table. This approach will improve performance for the queries
against the ProductsInMem table and will allow you to access it from natively compiled
stored procedures in the system.

Listing 11-2. Splitting Data Between Two Tables

create table dbo.ProductsInMem
(
 ProductId int not null identity(1,1)
 constraint PK_ProductsInMem
 primary key nonclustered hash
 with (bucket_count = 65536),
 ProductName nvarchar(64)
 collate Latin1_General_100_BIN2 not null,
 ShortDescription nvarchar(256) not null,

 index IDX_ProductsInMem_ProductName
 nonclustered(ProductName)
)
with (memory_optimized = on, durability = schema_and_data);

Chapter 11 ■ Utilizing in-MeMory oltp

173

create table dbo.ProductAttributes
(
 ProductId int not null,
 Description nvarchar(max) not null,
 Picture varbinary(max) null,

 constraint PK_ProductAttributes
 primary key clustered(ProductId)
);

Unfortunately, it is impossible to define a foreign key constraint referencing a
memory-optimized table, and you should support referential integrity in your code.

You can hide some of the implementation details from the SELECT queries by
defining a view as shown in Listing 11-3. You can also define INSTEAD OF triggers on the
view and use it as the target for data modifications; however, it is more efficient to update
data in the tables directly.

Listing 11-3. Creating a View That Combines Data from Both Tables

create view dbo.Products(ProductId, ProductName,
 ShortDescription, Description, Picture)
as
 select
 p.ProductId, p.ProductName, p.ShortDescription
 ,pa.Description, pa.Picture
 from
 dbo.ProductsInMem p left outer join
 dbo.ProductAttributes pa on
 p.ProductId = pa.ProductId

As you should notice, the view is using an outer join. This allows SQL Server to
perform join elimination when the client application does not reference any columns
from the ProductAttributes table when querying the view. For example, if you ran the
query from Listing 11-4, you would see the execution plan as shown in Figure 11-1. As you
can see, there are no joins in the plan and the ProductAttributes table is not accessed.

Listing 11-4. Query Against the View

select ProductId, ProductName
from dbo.Products

Chapter 11 ■ Utilizing in-MeMory oltp

174

You can use a different approach and store LOB data in memory-optimized tables,
splitting it into multiple 8,000-byte chunks. Listing 11-5 shows the table that can be used
for such a purpose.

Listing 11-5. Spllitting LOB Data into Multiple Rows: Table Schema

create table dbo.LobData
(
 ObjectId int not null,
 PartNo smallint not null,
 Data varbinary(8000) not null,

 constraint PK_LobData
 primary key nonclustered hash(ObjectID, PartNo)
 with (bucket_count=1048576),

 index IDX_ObjectID
 nonclustered hash(ObjectId)
 with (bucket_count=1048576)

)
with (memory_optimized = on, durability = schema_and_data)

Listing 11-6 demonstrates how to insert XML data into the table using T-SQL code in
interop mode. It uses an inline table-valued function called dbo.SplitData that accepts
the varbinary(max) parameter and splits it into multiple 8,000-byte chunks.

Listing 11-6. Spllitting LOB Data into Multiple Rows: Populating Data

create function dbo.SplitData
(
 @LobData varbinary(max)
)
returns table
as
return

Figure 11-1. Execution plan of the query

Chapter 11 ■ Utilizing in-MeMory oltp

175

(
 with Parts(Start, Data)
 as
 (
 select 1, substring(@LobData,1,8000)
 where @LobData is not null

 union all

 select
 Start + 8000
 ,substring(@LobData,Start + 8000,8000)
 from Parts
 where len(substring(@LobData,Start + 8000,8000)) > 0
)
 select
 row_number() over(order by Start) as PartNo
 ,Data
 from
 Parts
)
go

declare
 @X xml

select @X =
 (select * from master.sys.objects for xml raw)

insert into dbo.LobData(ObjectId, PartNo, Data)
 select 1, PartNo, Data
 from dbo.SplitData(convert(varbinary(max),@X))

Figure 11-2 illustrates the contents of the LobData table after the insert.

Figure 11-2. Dbo.LobData table content

Chapter 11 ■ Utilizing in-MeMory oltp

176

You can construct original data using the code shown in Listing 11-7. Alternatively,
you can develop a CLR aggregate and concatenate binary data there.

Listing 11-7. Spllitting LOB Data into Multiple Rows: Getting Data

;with ConcatData(BinaryData)
as
(
 select
 convert(varbinary(max),
 (
 select convert(varchar(max),Data,2) as [text()]
 from dbo.LobData
 where ObjectId = 1
 order by PartNo
 for xml path('')
),2)
)
select convert(xml,BinaryData)
from ConcatData

The biggest downside of this approach is the inability to split and merge large
objects in natively compiled stored procedures due to the missing (max) parameters and
variables support. You should use the interop engine for this purpose. However, it is still
possible to achieve performance improvements by moving data into memory even when
the interop engine is in use.

This approach is also beneficial when memory-optimized tables are used just for the
data storage, and all split and merge logic is done inside the client applications. We will
discuss this implementation in much greater depth later in this chapter.

Lack of Uniqueness and Foreign Key Constraints
The inability to create unique and foreign key constraints rarely prevents us from
adopting new technology. However, these constraints keep the data clean and allow us to
detect data quality issues and bugs in the code at early stages of development.

Unfortunately, In-Memory OLTP does not allow you to define foreign keys or unique
indexes and constraints besides a primary key. To make matter worse, the lock-free
nature of In-Memory OLTP makes uniqueness support in the code tricky. In-Memory
OLTP transactions do not see any uncommitted changes done by other transactions. For
example, if you ran the code from Table 11-1 in the default SNAPSHOT isolation level, both
transactions would successfully commit without seeing each other’s changes.

 ■ Note SQl Server limits the Cte recursion level to 100 by default. you need to specify
OPTION (MAXRECURSION 0) in the statement that uses the SplitData function in case of
very large input.

Chapter 11 ■ Utilizing in-MeMory oltp

177

Fortunately, this situation can be addressed by using the SERIALIZABLE transaction
isolation level. As you remember, In-Memory OLTP validates the serializable consistency
rules by maintaining a transaction scan set. As part of the serializable rules validation
at commit stage, In-Memory OLTP checks for phantom rows, making sure that other
sessions do not insert any rows that were previously invisible to the transaction.

Listing 11-8 shows a natively compiled stored procedure that runs in the
SERIALIZABLE isolation level and inserts a row into the ProductsInMem table we defined
earlier. Any inserts done through this stored procedure guarantee uniqueness of the
ProductName even in a multi-user concurrent environment.

The SELECT query builds a transaction scan set, which will be used for serializable
rule validation. This validation will fail if any other session inserts a row with the same
ProductName while the transaction is still active. Unfortunately, the first release of In-Memory
OLTP does not support subqueries in natively compiled stored procedures and it is
impossible to write the code using an IF EXISTS construct.

Table 11-1. Inserting the Duplicated Rows in the SNAPSHOT Isolation Level

Session 1 Session 2

set transaction isolation level
snapshot

begin tran

 if not exists
 (
 select *
 from dbo.ProductsInMem
 where ProductName = 'Surface 3'
)

set transaction isolation level snapshot
begin tran

 insert into dbo.ProductsInMem
 (ProductName)
 values
 ('Surface 3')

 if not exists
 (
 select *
 from dbo.ProductsInMem
 where ProductName = 'Surface 3'
)

commit

 insert into dbo.ProductsInMem
 (ProductName)
 values
 ('Surface 3')

commit

Chapter 11 ■ Utilizing in-MeMory oltp

178

Listing 11-8. InsertProduct Stored procedure

create procedure dbo.InsertProduct
(
 @ProductName nvarchar(64) not null
 ,@ShortDescription nvarchar(256) not null
 ,@ProductId int output
)
with native_compilation, schemabinding, execute as owner
as
begin atomic with
(
 transaction isolation level = serializable
 ,language = N'English'
)
 declare
 @Exists bit = 0

 -- Building scan set and checking existense of the product
 select @Exists = 1
 from dbo.ProductsInMem
 where ProductName = @ProductName

 if @Exists = 1
 begin
 ;throw 50000, 'Product Already Exists', 1;
 return
 end

 insert into dbo.ProductsInMem(ProductName, ShortDescription)
 values(@ProductName, @ShortDescription);

 select @ProductID = scope_identity()
end

You can validate the behavior of the stored procedure by running it in two parallel
sessions, as shown in Table 11-2. Session 2 successfully inserts a row and commits the
transaction. Session 1, on the other hand, fails on commit stage with Error 41325.

Chapter 11 ■ Utilizing in-MeMory oltp

179

Obviously, this approach will work and enforce the uniqueness only when you
have full control over the data access code in the system and have all INSERT and UPDATE
operations performed through the specific set of stored procedures and/or code. The
INSERT and UPDATE statements executed directly against a table could easily violate
uniqueness rules. However, you can reduce the risk by revoking the INSERT and UPDATE
permissions from users, giving them EXECUTE permission on the stored procedures
instead.

You can use the same technique to enforce referential integrity rules. Listing 11-9
creates the Orders and OrderLineItems tables, and two stored procedures called
InsertOrderLineItems and DeleteOrders enforce referential integrity between those
tables there. I omitted the OrderId update scenario, which is very uncommon in the
real world.

Listing 11-9. Enforcing Referential Integrity

create table dbo.Orders
(
 OrderId int not null identity(1,1)
 constraint PK_Orders
 primary key nonclustered hash
 with (bucket_count=1048576),

Table 11-2. Validating dbo.InsertProduct Stored Procedure

Session 1 Session 2

begin tran
 declare
 @ProductId int
 exec dbo.InsertProduct
 'Surface 3'
 ,'Microsoft Tablet'
 ,@ProductId output
commit

declare
 @ProductId int
exec dbo.InsertProduct
 'Surface 3'
 ,'Microsoft Tablet'
 ,@ProductId output
-- Executes and commits successfully

Error: Msg 41325, Level 16,
State 0, Line 62

The current transaction failed
to commit due to a serializable
validation failure.

Chapter 11 ■ Utilizing in-MeMory oltp

180

 OrderNum varchar(32)
 collate Latin1_General_100_BIN2 not null,
 OrderDate datetime2(0) not null
 constraint DEF_Orders_OrderDate
 default GetUtcDate(),
 /* Other Columns */
 index IDX_Orders_OrderNum
 nonclustered(OrderNum)
)
with (memory_optimized = on, durability = schema_and_data);

create table dbo.OrderLineItems
(
 OrderId int not null,
 OrderLineItemId int not null identity(1,1)
 constraint PK_OrderLineItems
 primary key nonclustered hash
 with (bucket_count=4194304),
 ArticleId int not null,
 Quantity decimal(8,2) not null,
 Price money not null,
 /* Other Columns */

 index IDX_OrderLineItems_OrderId
 nonclustered hash(OrderId)
 with (bucket_count=1048576)
)
with (memory_optimized = on, durability = schema_and_data);
go

create type dbo.tvpOrderLineItems as table
(
 ArticleId int not null
 primary key nonclustered hash
 with (bucket_count = 1024),
 Quantity decimal(8,2) not null,
 Price money not null
 /* Other Columns */
)
with (memory_optimized = on);
go

create proc dbo.DeleteOrder
(
 @OrderId int not null
)

Chapter 11 ■ Utilizing in-MeMory oltp

181

with native_compilation, schemabinding, execute as owner
as
begin atomic
with
(
 transaction isolation level = serializable
 ,language=N'English'
)
 -- This stored procedure emulates ON DELETE NO ACTION
 -- foreign key constraint behavior
 declare
 @Exists bit = 0

 select @Exists = 1
 from dbo.OrderLineItems
 where OrderId = @OrderId

 if @Exists = 1
 begin
 ;throw 60000, N'Referential Integrity Violation', 1;
 return
 end

 delete from dbo.Orders where OrderId = @OrderId
end
go

create proc dbo.InsertOrderLineItems
(
 @OrderId int not null
 ,@OrderLineItems dbo.tvpOrderLineItems readonly
)
with native_compilation, schemabinding, execute as owner
as
begin atomic
with
(
 transaction isolation level = repeatable read
 ,language=N'English'
)
 declare
 @Exists bit = 0

 select @Exists = 1
 from dbo.Orders
 where OrderId = @OrderId

Chapter 11 ■ Utilizing in-MeMory oltp

182

 if @Exists = 0
 begin
 ;throw 60001, N'Referential Integrity Violation', 1;
 return
 end

 insert into dbo.OrderLineItems(OrderId, ArticleId, Quantity, Price)
 select @OrderId, ArticleId, Quantity, Price
 from @OrderLineItems
end

It is worth noting that the InsertOrderLineItems procedure is using the REPEATABLE
READ isolation level. In this scenario, you need to make sure that the referenced Order row
has not been deleted during the execution and that REPEATABLE READ enforces this with
less overhead than SERIALIZABLE.

Case-Sensitivity Binary Collation for Indexed Columns
As discussed, the requirement of having binary collation for the indexed text columns
introduces a breaking change in the application behavior if case-insensitive collations
were used before. Unfortunately, there is very little you can do about it. You can convert
all the data and search parameters to uppercase or lowercase to address the situation;
however, this is not always possible.

Another option is to store uppercase or lowercase data in another column, indexing
and using it in the queries. Listing 11-10 shows such an example.

Listing 11-10. Storing Indexed Data in Another Column

create table dbo.Articles
(
 ArticleID int not null
 constraint PK_Articles
 primary key nonclustered hash
 with (bucket_count = 16384),
 ArticleName nvarchar(128) not null,
 ArticleNameUpperCase nvarchar(128)
 collate Latin1_General_100_BIN2 not null,
 -- Other Columns
 index IDX_Articles_ArticleNameUpperCase
 nonclustered(ArticleNameUpperCase)
);

-- Example of the query that uses upper case column
select ArticleId, ArticleName
from dbo.Articles
where ArticleNameUpperCase = upper(@ArticleName);

Chapter 11 ■ Utilizing in-MeMory oltp

183

Unfortunately, memory-optimized tables don’t support calculated columns and you
will need to maintain the data in both columns manually in the code.

However, in the grand scheme of things, binary collations have benefits. The
comparison operations on the columns that store data in binary collations are much
more efficient compared to non-binary counterparts. You can achieve significant
performance improvements when a large number of rows need to be processed.

One such example is a substring search in large tables. Consider the situation when
you need to search by part of the product name in a large Products table. Unfortunately,
a substring search will lead to the following predicate WHERE ProductName LIKE '%' +
@Param + '%', which is not SARGable, and SQL Server cannot use an Index Seek
operation in such a scenario. The only option is to scan the data, evaluating every row in
the table, which is significantly faster with binary collation.

Let’s look at an example and create the table shown in Listing 11-11. The table has
four text columns that store Unicode and non-Unicode data in binary and non-binary
format. Finally, we populate it with 65,536 rows of random data.

Listing 11-11. Binary Collation Performance: Table Creation

create table dbo.CollationTest
(
 ID int not null,
 VarCol varchar(108) not null,
 NVarCol nvarchar(108) not null,
 VarColBin varchar(108)
 collate Latin1_General_100_BIN2 not null,
 NVarColBin nvarchar(108)
 collate Latin1_General_100_BIN2 not null,

 constraint PK_CollationTest
 primary key nonclustered hash(ID)
 with (bucket_count=131072)
)
with (memory_optimized=on, durability=schema_only);

create table #CollData
(
 ID int not null,
 Col1 uniqueidentifier not null
 default NEWID(),
 Col2 uniqueidentifier not null
 default NEWID(),
 Col3 uniqueidentifier not null
 default NEWID()
);

Chapter 11 ■ Utilizing in-MeMory oltp

184

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as T1 cross join N1 as T2) -- 4 rows
,N3(C) as (select 0 from N2 as T1 cross join N2 as T2) -- 16 rows
,N4(C) as (select 0 from N3 as T1 cross join N3 as T2) -- 256 rows
,N5(C) as (select 0 from N4 as T1 cross join N4 as T2) -- 65,536 rows
,IDs(ID) as (select row_number() over (order by (select NULL)) from N5)
insert into #CollData(ID)
 select ID from IDs;

insert into dbo.CollationTest(ID,VarCol,NVarCol,VarColBin,NVarColBin)
 select
 ID
 /* VarCol */
 ,convert(varchar(36),Col1) + convert(varchar(36),Col2) +
 convert(varchar(36),Col3)
 /* NVarCol */
 ,convert(nvarchar(36),Col1) + convert(nvarchar(36),Col2) +
 convert(nvarchar(36),Col3)
 /* VarColBin */
 ,convert(varchar(36),Col1) + convert(varchar(36),Col2) +
 convert(varchar(36),Col3)
 /* NVarColBin */
 ,convert(nvarchar(36),Col1) + convert(nvarchar(36),Col2) +
 convert(nvarchar(36),Col3)
 from
 #CollData

As the next step, run queries from Listing 11-12, comparing the performance of a
search in different scenarios. All of the queries scan primary key hash index, evaluating
the predicate for every row in the table.

Listing 11-12. Binary Collation Performance: Test Queries

declare
 @Param varchar(16)
 ,@NParam varchar(16)

-- Getting substring for the search
select
 @Param = substring(VarCol,43,6)
 ,@NParam = substring(NVarCol,43,6)
from
 dbo.CollationTest
where
 ID = 1000;

Chapter 11 ■ Utilizing in-MeMory oltp

185

select count(*)
from dbo.CollationTest
where VarCol like '%' + @Param + '%';

select count(*)
from dbo.CollationTest
where NVarCol like '%' + @NParam + N'%';

select count(*)
from dbo.CollationTest
where VarColBin like '%' + upper(@Param) + '%'
 collate Latin1_General_100_Bin2;

select count(*)
from dbo.CollationTest
where NVarColBin like '%' + upper(@NParam) + N'%'
 collate Latin1_General_100_Bin2;

The execution time of all queries in my system are shown in Table 11-3. As you can
see, the queries against binary collation columns are significantly faster, especially in the
case of Unicode data.

Table 11-3. Binary Collation Performace: Test Results

varchar column with
non-binary collation

varchar column with
binary collation

nvarchar column with
non-binary collation

nvarchar column with
binary collation

191ms 109ms 769ms 62ms

Finally, it is worth noting that this behavior is not limited to memory-optimized
tables. You will get a similar level of performance improvement with on-disk tables when
binary collations are used.

Thinking Outside the In-Memory Box
Even though the limitations of the first release of In-Memory OLTP can make refactoring
an existing systems cost-ineffective, you can still benefit from it by using some In-Memory
OLTP components.

Importing Batches of Rows from Client Applications
In Chapter 12 of my book Pro SQL Server Internals, I compare the performance of
several methods that inserted a batch of rows from the client application. I looked at the
performance of calling individual INSERT statements; encoding the data into XML and
passing it to a stored procedure; using the .Net SqlBulkCopy class; and passing data to a

http://dx.doi.org/10.1007/978-1-4842-1136-6_12

Chapter 11 ■ Utilizing in-MeMory oltp

186

stored procedure utilizing table-valued parameters. Table-valued parameters became
the clear winner of the tests, providing performance on par with the SqlBulkCopy
implementation plus the flexibility of using stored procedures during the import.
Listing 11-13 illustrates the database schema and stored procedure I used in the tests.

Listing 11-13. Importing a Batch of Rows: Table, TVP, and Stored Procedure

create table dbo.Data
(
 ID int not null,
 Col1 varchar(20) not null,
 Col2 varchar(20) not null,
 /* Seventeen more columns Col3 - Col19*/
 Col20 varchar(20) not null,

 constraint PK_DataRecords
 primary key clustered(ID)
)
go

create type dbo.tvpData as table
(
 ID int not null,
 Col1 varchar(20) not null,
 Col2 varchar(20) not null,
 /* Seventeen more columns: Col3 - Col19 */
 Col20 varchar(20) not null,

 primary key(ID)
)
go

create proc dbo.InsertDataTVP
(
 @Data dbo.tvpData readonly
)
as
 insert into dbo.Data
 (
 ID,Col1,Col2,Col3,Col4,Col5,Col6,Col7
 ,Col8,Col9,Col10,Col11,Col12,Col13,Col14
 ,Col15,Col16,Col17,Col18,Col19,Col20
)
 select ID,Col1,Col2,Col3,Col4,Col5,Col6
 ,Col7,Col8,Col9,Col10,Col11,Col12
 ,Col13,Col14,Col15,Col16,Col17,Col18
 ,Col19,Col20
 from @Data;

Chapter 11 ■ Utilizing in-MeMory oltp

187

Listing 11-14 shows the ADO.Net code that performed the import in case of table-
valued parameter.

Listing 11-14. Importing a Batch of Rows: Client Code

using (SqlConnection conn = GetConnection())
{
 /* Creating and populating DataTable object with dummy data */
 DataTable table = new DataTable();
 table.Columns.Add("ID", typeof(Int32));
 for (int i = 1; i <= 20; i++)
 table.Columns.Add("Col" + i.ToString(), typeof(string));
 for (int i = 0; i < packetSize; i++)
 table.Rows.Add(i, "Parameter: 1"
 ,"Parameter: 2"
 /* Other columns */
 ,"Parameter: 20");

 /* Calling SP with TVP parameter */
 SqlCommand insertCmd =
 new SqlCommand("dbo.InsertDataTVP", conn);
 insertCmd.Parameters.Add("@Data", SqlDbType.Structured);
 insertCmd.Parameters[0].TypeName = "dbo.tvpData";
 insertCmd.Parameters[0].Value = table;
 insertCmd.ExecuteNonQuery();
}

You can improve performance even further by replacing the dbo.tvpData table-
valued type to be memory-optimized, which is transparent to the stored procedure and
client code. Listing 11-15 shows the new type definition.

Listing 11-15. Importing a Batch of Rows: Defining a Memory-Optimized Table Type

create type dbo.tvpData as table
(
 ID int not null,
 Col1 varchar(20) not null,
 Col2 varchar(20) not null,
 /* Seventeen more columns: Col3 - Col19 */
 Col20 varchar(20) not null,

 primary key nonclustered hash(ID)
 with (bucket_count=65536)
)
with (memory_optimized=on);

Chapter 11 ■ Utilizing in-MeMory oltp

188

The degree of performance improvement depends on the table schema, and it grows
with the size of the batch. In my test environment, I got about 5-10 percent improvement
on the small 5,000-row batches, 20-25 percent improvement on the 50,000-row batches,
and 45-50 percent improvement on the 500,000-row batches.

You should remember, however, that memory-optimized table types cannot spill to
tempdb, which can be dangerous in case of very large batches and with servers with an
insufficient amount of memory. You should also define the bucket_count for the primary
key based on the typical batch size, as discussed in Chapter 4 of this book.

 ■ Note you can download the test application from this book’s companion materials and
compare the performance of the various import methods.

Using Memory-Optimized Objects as Replacements for
Temporary and Staging Tables
Memory-optimized tables and table variables can be used as replacements for on-disk
temporary and staging tables. However, the level of performance improvement may vary,
and it greatly depends on the table schema, workload patterns, and amount of data in
the table.

Let’s look at a few examples and, first, compare the performance of a memory-
optimized table variable with on-disk temporary objects in a simple scenario, which you
will often encounter in OLTP systems. Listing 11-16 shows stored procedures that insert
up to 256 rows into the object, scanning it afterwards.

Listing 11-16. Comparing Performance of a Memory-Optimized Table Variable with
On-Disk Temporary Objects

create type dbo.ttTemp as table
(
 Id int not null
 primary key nonclustered hash
 with (bucket_count=512),
 Placeholder char(255)
)
with (memory_optimized=on)
go

create proc dbo.TestInMemTempTables(@Rows int)
as
 declare
 @ttTemp dbo.ttTemp
 ,@Cnt int

http://dx.doi.org/10.1007/978-1-4842-1136-6_4

Chapter 11 ■ Utilizing in-MeMory oltp

189

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
 ,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
 ,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
 ,Ids(Id) as (select row_number() over (order by (select null)) from N4)
 insert into @ttTemp(Id)
 select Id from Ids where Id <= @Rows;

 select @Cnt = count(*) from @ttTemp
go

create proc dbo.TestTempTables(@Rows int)
as
 declare
 @Cnt int

 create table #TTTemp
 (
 Id int not null primary key,
 Placeholder char(255)
)

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
 ,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
 ,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
 ,Ids(Id) as (select row_number() over (order by (select null)) from N4)
 insert into #TTTemp(Id)
 select Id from Ids where Id <= @Rows;

 select @Cnt = count(*) from #TTTemp
go

create proc dbo.TestTempVars(@Rows int)
as
 declare
 @Cnt int

 declare
 @ttTemp table
 (
 Id int not null primary key,
 Placeholder char(255)
)

Chapter 11 ■ Utilizing in-MeMory oltp

190

 ;with N1(C) as (select 0 union all select 0) -- 2 rows
 ,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
 ,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
 ,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
 ,Ids(Id) as (select row_number() over (order by (select null)) from N4)
 insert into @ttTemp(Id)
 select Id from Ids where Id <= @Rows;

 select @Cnt = count(*) from @ttTemp
go

Table 11-4 illustrates the execution time of the stored procedures called 10,000 times
in the loop. As you can see, the memory-optimized table variable outperformed on-disk
objects. The level of performance improvements growth with the amount of data when
on-disk tables need to allocate more data pages to store it.

It is also worth mentioning that performance improvements can be even more
significant in the systems with a heavy concurrent load due to possible allocation pages
contention in tempdb.

You should remember that memory-optimized table variables do not keep index
statistics, similar to on-disk table variables. The Query Optimizer generates execution
plans with the assumption that they store just the single row. This cardinality estimation
error can lead to highly inefficient plans, especially when a large amount of data and joins
are involved.

 ■ Important as the opposite of on-disk table variables, statement-level recompile with OPTION
(RECOMPILE) does not allow SQl Server to obtain the number of rows in memory-optimized
table variables. the Query optimizer always assumes that they store just a single row.

Memory-optimized tables can be used as the staging area for ETL processes. As a
general rule, they outperform on-disk tables in INSERT performance, especially if you are
using user database and durable tables for the staging.

Scan performance, on the other hand, greatly depends on the row size and number
of data pages in on-disk tables. Traversing memory pointers is a fast operation and it is
significantly faster compared to getting a page from the buffer pool. However, on-page

Table 11-4. Execution Time of Stored Procedures (10,000 Executions)

16 rows 64 rows 256 rows

Memory-Optimized Table Variable 920ms 1,496ms 3,343ms

Table Variable 1,203ms 2,994ms 8,493ms

Temporary Table 5,420ms 7,270ms 13,356ms

Chapter 11 ■ Utilizing in-MeMory oltp

191

row access could be faster than traversing long memory pointers chain. It is possible
that with the small data rows and large number of rows per page, on-disk tables would
outperform memory-optimized tables in the case of scans.

Query parallelism is another important factor to consider. The first release of
In-Memory OLTP does not support parallel execution plans. Therefore, large scans
against on-disk tables could be significantly faster when they use parallelism.

Update performance depends on the number of indexes in memory-optimized
tables, along with update patterns. For example, page splits in on-disk tables significantly
decrease the performance of update operations.

Let’s look at a few examples based on a simple ETL process that inserts data into an
imaginary Data Warehouse with one fact, FactSales, and two dimension, the DimDates
and DimProducts tables. The schema is shown in Listing 11-17.

Listing 11-17. ETL Performance: Data Warehouse Schema

create table dw.DimDates
(
 ADateId int identity(1,1) not null,
 ADate date not null,
 ADay tinyint not null,
 AMonth tinyint not null,
 AnYear smallint not null,
 ADayOfWeek tinyint not null,

 constraint PK_DimDates
 primary key clustered(ADateId)
);

create unique nonclustered index IDX_DimDates_ADate
on dw.DimDates(ADate);

create table dw.DimProducts
(
 ProductId int identity(1,1) not null,
 Product nvarchar(64) not null,
 ProductBin nvarchar(64)
 collate Latin1_General_100_BIN2
 not null,

 constraint PK_DimProducts
 primary key clustered(ProductId)
);

create unique nonclustered index IDX_DimProducts_Product
on dw.DimProducts(Product);

Chapter 11 ■ Utilizing in-MeMory oltp

192

create unique nonclustered index IDX_DimProducts_ProductBin
on dw.DimProducts(ProductBin);

create table dw.FactSales
(
 ADateId int not null,
 ProductId int not null,
 OrderId int not null,
 OrderNum varchar(32) not null,
 Quantity decimal(9,3) not null,
 UnitPrice money not null,
 Amount money not null,

 constraint PK_FactSales
 primary key clustered(ADateId,ProductId,OrderId),

 constraint FK_FactSales_DimDates
 foreign key(ADateId)
 references dw.DimDates(ADateId),

 constraint FK_FactSales_DimProducts
 foreign key(ProductId)
 references dw.DimProducts(ProductId)
);

Let’s compare the performance of two ETL processes utilizing on-disk and memory-
optimized tables as the staging areas. We will use another table called InputData with
1,650,000 rows as the data source to reduce import overhead so we can focus on the
INSERT operation performance. Listing 11-18 shows the code of the ETL processes.

Listing 11-18. ETL Performance: ETL Process

create table dw.FactSalesETLDisk
(
 OrderId int not null,
 OrderNum varchar(32) not null,
 Product nvarchar(64) not null,
 ADate date not null,
 Quantity decimal(9,3) not null,
 UnitPrice money not null,
 Amount money not null,
 /* Optional Placeholder Column */
 -- Placeholder char(255) null,
 primary key (OrderId, Product)
)
go

Chapter 11 ■ Utilizing in-MeMory oltp

193

create table dw.FactSalesETLMem
(
 OrderId int not null,
 OrderNum varchar(32) not null,
 Product nvarchar(64)
 collate Latin1_General_100_BIN2 not null,
 ADate date not null,
 Quantity decimal(9,3) not null,
 UnitPrice money not null,
 Amount money not null,
 /* Optional Placeholder Column */
 -- Placeholder char(255) null,

 constraint PK_FactSalesETLMem
 primary key nonclustered hash(OrderId, Product)
 with (bucket_count = 2000000)

 /* Optional Index */
 -- index IDX_Product nonclustered(Product)
)
with (memory_optimized=on, durability=schema_and_data)
go

/*** ETL Process ***/

/* On Disk Table */

-- Step 1: Staging Table Insert
insert into dw.FactSalesETLDisk
 (OrderId,OrderNum,Product,ADate
 ,Quantity,UnitPrice,Amount)
 select OrderId,OrderNum,Product,ADate
 ,Quantity,UnitPrice,Amount
 from dbo.InputData;

/* Optional Index Creation */
--create index IDX1 on dw.FactSalesETLDisk(Product);

-- Step 2: DimProducts Insert
insert into dw.DimProducts(Product)
 select distinct f.Product
 from dw.FactSalesETLDisk f
 where not exists
 (
 select *
 from dw.DimProducts p
 where p.Product = f.Product
);

Chapter 11 ■ Utilizing in-MeMory oltp

194

-- Step 3: FactSales Insert
insert into dw.FactSales(ADateId,ProductId,OrderId,OrderNum,
 Quantity,UnitPrice,Amount)
 select d.ADateId,p.ProductId,f.OrderId,f.OrderNum,
 f.Quantity,f.UnitPrice,f.Amount
 from
 dw.FactSalesETLDisk f join dw.DimDates d on
 f.ADate = d.ADate
 join dw.DimProducts p on
 f.Product = p.Product;

/* Memory-Optimized Table */

-- Step 1: Staging Table Insert
insert into dw.FactSalesETLMem
 (OrderId,OrderNum,Product,ADate
 ,Quantity,UnitPrice,Amount)
 select OrderId,OrderNum,Product,ADate
 ,Quantity,UnitPrice,Amount
 from dbo.InputData;

-- Step 2: DimProducts Insert
insert into dw.DimProducts(Product)
 select distinct f.Product
 from dw.FactSalesETLMem f
 where not exists
 (
 select *
 from dw.DimProducts p
 where f.Product = p.ProductBin
);

-- Step 3: FactSales Insert
insert into dw.FactSales(ADateId,ProductId,OrderId,OrderNum,
 Quantity,UnitPrice,Amount)
 select d.ADateId,p.ProductId,f.OrderId,f.OrderNum,
 f.Quantity,f.UnitPrice,f.Amount
 from
 dw.FactSalesETLMem f join dw.DimDates d on
 f.ADate = d.ADate
 join dw.DimProducts p on
 f.Product = p.ProductBin;

I have repeated the tests in four different scenarios, varying row size, with and
without Placeholder columns and the existence of nonclustered indexes on Product
columns. Table 11-5 illustrates the average execution time in my environment for the
scenarios when tables don’t have nonclustered indexes. Table 11-6 illustrates the scenario
with additional nonclustered indexes on the Product column.

Chapter 11 ■ Utilizing in-MeMory oltp

195

As you can see, memory-optimized table INSERT performance can be significantly
better compared to the on-disk table. The performance gain increases with the row size
and when extra indexes are added to the table. Even though extra indexes slow down the
insert in both cases, their impact is smaller in the case of memory-optimized tables.

On the other hand, the performance difference during the scans is insignificant. In
both cases, the most work is done by accessing DimProducts and inserting data into the
FactSales on-disk tables.

Listing 11-19 illustrates the code that allows us to compare UPDATE performance of
the tables. The first statement changes a fixed-length column and does not increase the
row size. The second statement, on the other hand, increases the size of the row, which
triggers the large number of page splits in the on-disk table.

Listing 11-19. ETL Performance: UPDATE Performance

update dw.FactSalesETLDisk set Quantity += 1;
update dw.FactSalesETLDisk set OrderNum += '1234567890';

update dw.FactSalesETLMem set Quantity += 1;
update dw.FactSalesETLMem set OrderNum += '1234567890';

Tables 11-7 and 11-8 illustrate the average execution time of the tests in my
environment. As you can see, the page split operation can significantly degrade update
performance for on-disk tables. This is not the case with memory-optimized tables,
where new row versions are generated all the time.

Table 11-5. Execution Time of the Tests: No Additional Indexes

On-Disk Staging Table Memory-Optimized Staging Table

Small Row Large Row Small Row Large Row

Staging Table Insert 5,586ms 7,246ms 3,453ms 3,655ms

DimProducts Insert 1,263ms 1,316ms 976ms 993ms

FactSales Insert 13,333ms 13,303ms 13,266ms 13,201ms

Total Time 20,183ms 21,965ms 17,796ms 17,849ms

Table 11-6. Execution Time of the Tests: With Additional Indexes

On-Disk Staging Table Memory-Optimized Staging Table

Small Row Large Row Small Row Large Row

Staging Table Insert 9,233ms 11,656ms 4,751ms 4,893ms

DimProducts Insert 513ms 520ms 506ms 513ms

FactSales Insert 13,163ms 13,276ms 12,283ms 12,300ms

Total Time 22,909ms 25,453ms 17,540ms 17,706ms

Chapter 11 ■ Utilizing in-MeMory oltp

196

Nonclustered indexes, on the other hand, do not affect update performance of
on-disk tables as long as their key columns were not updated. It is not the case with
memory-optimized tables where multiple index chains need to be maintained.

As you can see, using memory-optimized tables with a Data Warehouse workload
completely fits into the“It depends” category. In some cases, you will benefit from it,
while in others performance is degraded. You should carefully test your scenarios before
deciding if memory-optimized objects should be used.

Finally, it is worth mentioning that all tests in that section were executed with warm
cache and serial execution plans. Physical I/O and parallelism could significantly affect the
picture. Moreover, you will get different results if you don’t need to persist the staging data
and can use temporary and non-durable memory-optimized tables during the processes.

Using In-Memory OLTP as Session - or Object State-Store
Modern software systems have become extremely complex. They consist of a large
number of components and services responsible for various tasks, such as interaction
with users, data processing, integration with other systems, reporting, and quite a few
others. Moreover, modern systems must be scalable and redundant. They need to be able
to handle load growth and survive hardware failures and crashes.

The common approach to solving scalability and redundancy issues is to design the
systems in a way that permits to deploy and run multiple instances of individual services.
It allows adding more servers and instances as the load grows and helps you survive
hardware failures by distributing the load across other active servers. The services are
usually implemented in stateless way, and they don’t store or rely on any local data.

Most systems, however, have data that needs to be shared across the instances. For
example, front-end web servers usually need to maintain web session states. Back-end
processing services often need to have shared cache with some data.

Table 11-7. Execution Time of Update Statements: No Additional Indexes

On-Disk Staging Table Memory-Optimized Staging Table

Small Row Large Row Small Row Large Row

Fixed-Length
Column Update

2,625ms 2,712ms 2,900ms 2,907ms

Row Size Increase 4,510ms 8,391ms 2,950ms 3,050ms

Table 11-8. Execution Time of Update Statements: With Additional Indexes

On-Disk Staging Table Memory-Optimized Staging Table

Small Row Large Row Small Row Large Row

Fixed-Length
Column Update

2,694ms 2,709ms 4,680ms 5,083ms

Row Size Increase 4,456ms 8,561ms 4,756ms 5,186ms

Chapter 11 ■ Utilizing in-MeMory oltp

197

Historically, there were two approaches to address this issue. The first one was to use
dedicated storage/cache and host it somewhere in the system. Remember the old ASP.Net
model that used either a SQL Server database or a separate web server to store session
data? The problem with this approach is limited scalability and redundancy. Storing
session data in web server memory is fast but it is not redundant. A SQL Server database,
on the other hand, can be protected but it does not scale well under the load due to page
latch contention and other issues.

Another approach was to replicate content of the cache across multiple servers.
Each instance worked with the local copy of the cache while another background process
distributed the changes to the other servers. Several solutions on the market provide such
capability; however, they are usually expensive. In some cases, the license cost for such
software could be in the same order of magnitude as SQL Server licenses.

Fortunately, you can use In-Memory OLTP as the solution. In the nutshell, it looks
similar to the ASP.Net SQL Server session-store model; however, In-Memory OLTP
throughput and performance improvements address the scalability issues of the old
on-disk solution.

You can improve performance even further by using non-durable memory-
optimized tables. Even though the data will be lost in case of failover, this is acceptable in
most cases.

However, the 8,060-byte maximum row size limit introduces challenges to the
implementation. It is entirely possible that a serialized object will exceed 8,060 bytes. You
can address this by splitting the data into multiple chunks and storing them in multiple
rows in memory-optimized table.

You saw an example of a T-SQL implementation earlier in the chapter. However,
using T-SQL code and an interop engine will significantly decrease the throughput of the
solution. It is better to manage serialization and split/merge functional on the client side.

Listing 11-20 shows the table and natively compiled stored procedures that you can
use to store and manipulate the data in the database. The client application calls the
LoadObjectFromStore and SaveObjectToStore stored procedures to load and save the
data. The PurgeExpiredObjects stored procedure removes expired rows from the table,
and it can be called from a SQL Agent or other processes based on the schedule.

Listing 11-19. Implementing Session Store: Database Schema

create table dbo.ObjStore
(
 ObjectKey uniqueidentifier not null,
 ExpirationTime datetime2(2) not null,
 ChunkNum smallint not null,
 Data varbinary(8000) not null,

 constraint PK_ObjStore
 primary key nonclustered hash(ObjectKey, ChunkNum)
 with (bucket_count = 131072),

 index IDX_ObjectKey
 nonclustered hash(ObjectKey)
 with (bucket_count = 131072)
)

Chapter 11 ■ Utilizing in-MeMory oltp

198

with (memory_optimized = on, durability = schema_only);
go

create type dbo.tvpObjData as table
(
 ChunkNum smallint not null
 primary key nonclustered hash
 with (bucket_count = 1024),
 Data varbinary(8000) not null
)
with(memory_optimized=on)
go

create proc dbo.SaveObjectToStore
(
 @ObjectKey uniqueidentifier not null
 ,@ExpirationTime datetime2(2) not null
 ,@ObjData dbo.tvpObjData not null readonly
)
with native_compilation, schemabinding, exec as owner
as
begin atomic
with
(
 transaction isolation level = snapshot
 ,language = N'English'
)
 delete dbo.ObjStore
 where ObjectKey = @ObjectKey

 insert into dbo.ObjStore(ObjectKey, ExpirationTime, ChunkNum, Data)
 select @ObjectKey, @ExpirationTime, ChunkNum, Data
 from @ObjData
end
go

create proc dbo.LoadObjectFromStore
(
 @ObjectKey uniqueidentifier not null
)
with native_compilation, schemabinding, exec as owner
as
begin atomic
with
(
 transaction isolation level = snapshot
 ,language = N'English'
)

Chapter 11 ■ Utilizing in-MeMory oltp

199

 declare
 @CurrentTime datetime2(2) = sysutcdatetime();

 select t.Data
 from dbo.ObjStore t
 where t.ObjectKey = @ObjectKey and ExpirationTime >= @CurrentTime
 order by t.ChunkNum
end
go

create proc dbo.PurgeExpiredObjects
with native_compilation, schemabinding, exec as owner
as
begin atomic
with
(
 transaction isolation level = snapshot
 ,language = N'English'
)
 declare @CurrentTime
 datetime2(2) = sysutcdatetime();

 delete dbo.ObjStore
 where ExpirationTime < @CurrentTime
end

The client implementation includes several static classes. The ObjStoreUtils class
provides four methods to serialize and deserialize objects into the byte arrays, and split
and merge those arrays to/from 8,000-byte chunks. You can see the implementation in
Listing 11-20.

Listing 11-20. Implementing Session Store: ObjStoreUtils class

public static class ObjStoreUtils
{
 /// <summary>
 /// Serialize object of type T to the byte array
 /// </summary>
 public static byte[] Serialize<T>(T obj)
 {
 using (var ms = new MemoryStream())
 {
 var formatter = new BinaryFormatter();
 formatter.Serialize(ms, obj);

 return ms.ToArray();
 }
 }

Chapter 11 ■ Utilizing in-MeMory oltp

200

 /// <summary>
 /// Deserialize byte array to the object
 /// </summary>
 public static T Deserialize<T>(byte[] data)
 {
 using (var output = new MemoryStream(data))
 {
 var binForm = new BinaryFormatter();
 return (T) binForm.Deserialize(output);
 }
 }

 /// <summary>
 /// Split byte array to the multiple chunks
 /// </summary>
 public static List<byte[]> Split(byte[] data, int chunkSize)
 {
 var result = new List<byte[]>();

 for (int i = 0; i < data.Length; i += chunkSize)
 {
 int currentChunkSize = chunkSize;
 if (i + chunkSize > data.Length)
 currentChunkSize = data.Length - i;

 var buffer = new byte[currentChunkSize];
 Array.Copy(data, i, buffer, 0, currentChunkSize);

 result.Add(buffer);
 }
 return result;
 }

 /// <summary>
 /// Combine multiple chunks into the byte array
 /// </summary>
 public static byte[] Merge(List<byte[]> arrays)
 {
 var rv = new byte[arrays.Sum(a => a.Length)];
 int offset = 0;
 foreach (byte[] array in arrays)
 {
 Buffer.BlockCopy(array, 0, rv, offset, array.Length);
 offset += array.Length;
 }
 return rv;
 }
}

Chapter 11 ■ Utilizing in-MeMory oltp

201

The ObjStoreDataAccess class shown in Listing 11-21 loads and saves binary data to
and from the database. It utilizes another static class called DBConnManager, which returns
the SqlConnection object to the target database. This class is not shown in the listing.

Listing 11-21. Implementing Session Store: ObjStoreDataAccess class

public static class ObjStoreDataAccess
{
 /// <summary>
 /// Saves data to the database
 /// </summary>
 public static void SaveObjectData(Guid key,
 DateTime expirationTime, List<byte[]> chunks)
 {
 using (var cnn = DBConnManager.GetConnection())
 {
 using (var cmd = cnn.CreateCommand())
 {
 cmd.CommandText = "dbo.SaveObjectToStore";
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Parameters.Add("@ObjectKey",
 SqlDbType.UniqueIdentifier).Value = key;
 cmd.Parameters.Add("@ExpirationTime",
 SqlDbType.DateTime2).Value = expirationTime;

 var tvp = new DataTable();
 tvp.Columns.Add("ChunkNum", typeof(short));
 tvp.Columns.Add("ChunkData", typeof(byte[]));

 for(int i=0; i<chunks.Count; i++)
 tvp.Rows.Add(i, chunks[i]);

 var tvpParam = new SqlParameter("@ObjData",
 SqlDbType.Structured)
 {
 TypeName = "dbo.tvpObjData",
 Value = tvp
 };

 cmd.Parameters.Add(tvpParam);
 cmd.ExecuteNonQuery();
 }
 }
 }

Chapter 11 ■ Utilizing in-MeMory oltp

202

 /// <summary>
 /// Load data from the database
 /// </summary>
 public List<byte[]> LoadObjectData(Guid key)
 {
 using (var cnn = DBConnManager.GetConnection())
 {
 using (var cmd = cnn.CreateCommand())
 {
 cmd.CommandText = "dbo.LoadObjectFromStore";
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.Parameters.Add("ObjectKey",
 SqlDbType.UniqueIdentifier).Value = key;

 var result = new List<byte[]>();
 using (var reader = cmd.ExecuteReader())
 {
 while (reader.Read())
 result.Add((byte[])reader["Data"]);
 }
 return result;
 }
 }
 }
}

Finally, the ObjStoreService class shown in Listing 11-22 puts everything together
and manages the entire process. It implements two simple methods, Load and Save,
calling the helper classes defined above.

Listing 11-22. Implementing Session Store: ObjStoreService class

public static class ObjStoreService
{
 private const int MaxChunkSize = 8000;

 /// <summary>
 /// Saves object in the object store
 /// </summary>
 public static void Save(Guid key,
 DateTime expirationTime, object obj)
 {
 var objectBytes = ObjStoreUtils.Serialize(obj);
 var chunks = ObjStoreUtils.Split(objectBytes, MaxChunkSize);

 ObjStoreDataAccess.SaveObjectData(key, expirationTime, chunks);
 }

Chapter 11 ■ Utilizing in-MeMory oltp

203

 /// <summary>
 /// Loads object from the object store
 /// </summary>
 public static T Load<T>(Guid key) where T: class
 {
 var chunks = ObjStoreDataAccess.LoadObjectData(key);
 if (chunks.Count == 0)
 return null;
 var objectBytes = ObjStoreUtils.Merge(chunks);

 return ObjStoreUtils.Deserialize<T>(objectBytes);
 }
}

Obviously, this is oversimplified example, and production implementation could be
significantly more complex, especially if there is the possibility that multiple sessions can
update the same object simultaneously. You can implement retry logic or create some
sort of object locking management in the system if this is the case.

It is also worth mentioning that you can compress binary data before saving it
into the database. The compression will introduce unnecessary overhead in the case
of small objects; however, it could provide significant space savings and performance
improvements if the objects are large.

I did not include compression code in the example, although you can easily
implement it with the GZipStream or DeflateStream classes.

 ■ Note the code and test application are included in companion materials of this book.

Using In-Memory OLTP in Systems with Mixed
Workloads
In-Memory OLTP can provide significant performance improvements in OLTP systems.
However, with a Data Warehouse workload, results may vary. The complex queries that
perform large scans and aggregations do not necessarily benefit from In-Memory OLTP.

In-Memory OLTP is targeted to the Enterprise market and strong SQL Server
teams. It is common to see separate Data Warehouse solutions in those environments.
Nevertheless, even in those environments, some degree of reporting and analysis
workload is always present in OLTP systems.

The situation is even worse when systems do not have dedicated Data Warehouse
and Analysis databases, and OLTP and Data Warehouse queries run against the same
data. Moving the data into memory could negatively impact the performance of reporting
queries.

Chapter 11 ■ Utilizing in-MeMory oltp

204

One of the solutions in this scenario is to partition the data between memory-
optimized and on-disk tables. You can put recent and hot data into memory-optimized
tables, keeping old, historical data on-disk. Moreover, it is very common to see different
access patterns in the systems when hot data is mainly customer-facing and accessed by
OLTP queries while old, historical data is used for reporting and analysis.

Data partitioning also allows you to create a different set of indexes in the tables
based on their access patterns. In some cases, you can even use columnstore indexes
with the old data, which significantly reduces the storage size and improves the
performance of Data Warehouse queries. Finally, you can use partitioned views to hide
partitioning details from the client applications.

Listing 11-23 shows an example of such implementation. The memory-optimized
table called RecentOrders stores the most recent orders that were submitted in 2015. The
on-disk LastYearOrders table stores the data for 2014. Lastly, the OldOrders table stores
the old orders that were submitted prior to 2014. The view Orders combines the data
from all three tables.

Listing 11-23. Data Partitioning: Tables and Views

-- Storing Orders with OrderDate >= 2015-01-01
create table dbo.RecentOrders
(
 OrderId int not null identity(1,1),
 OrderDate datetime2(0) not null,
 OrderNum varchar(32)
 collate Latin1_General_100_BIN2 not null,
 CustomerId int not null,
 Amount money not null,
 /* Other columns */
 constraint PK_RecentOrders
 primary key nonclustered hash(OrderId)
 with (bucket_count=1048576),

 index IDX_RecentOrders_CustomerId
 nonclustered(CustomerId)
)
with (memory_optimized=on, durability=schema_and_data)
go

create partition function pfLastYearOrders(datetime2(0))
as range right for values
('2014-04-01','2014-07-01','2014-10-01','2015-01-01')
go

create partition scheme psLastYearOrders
as partition pfLastYearOrders
all to ([LastYearOrders])
go

Chapter 11 ■ Utilizing in-MeMory oltp

205

create table dbo.LastYearOrders
(
 OrderId int not null,
 OrderDate datetime2(0) not null,
 OrderNum varchar(32)
 collate Latin1_General_100_BIN2 not null,
 CustomerId int not null,
 Amount money not null,
 /* Other columns */
 -- We have to include OrderDate to PK
 -- due to partitioning
 constraint PK_LastYearOrders
 primary key clustered(OrderDate,OrderId)
 with (data_compression=row)
 on psLastYearOrders(OrderDate),

 constraint CHK_LastYearOrders
 check
 (
 OrderDate >= '2014-01-01' and
 OrderDate < '2015-01-01'
)
);

create nonclustered index IDX_LastYearOrders_CustomerId
on dbo.LastYearOrders(CustomerID)
with (data_compression=row)
on psLastYearOrders(OrderDate);
go

create partition function pfOldOrders(datetime2(0))
as range right for values
(/* Old intervals */
 '2012-10-01','2013-01-01','2013-04-01'
 ,'2013-07-01','2013-10-01','2014-01-01'
)
go

create partition scheme psOldOrders
as partition pfOldOrders
all to ([OldOrders])
go

create table dbo.OldOrders
(
 OrderId int not null,
 OrderDate datetime2(0) not null,
 OrderNum varchar(32)
 collate Latin1_General_100_BIN2 not null,
 CustomerId int not null,

Chapter 11 ■ Utilizing in-MeMory oltp

206

 Amount money not null,
 /* Other columns */
 constraint CHK_OldOrders
 check(OrderDate < '2014-01-01')
)
on psOldOrders(OrderDate);

create clustered columnstore index CCI_OldOrders
on dbo.OldOrders
with (data_compression=columnstore_Archive)
on psOldOrders(OrderDate);
go

create view dbo.Orders(OrderId,OrderDate,
 OrderNum,CustomerId,Amount)
as
 select OrderId,OrderDate,OrderNum,CustomerId,Amount
 from dbo.RecentOrders
 where OrderDate >= '2015-01-01'

 union all

 select OrderId,OrderDate,OrderNum,CustomerId,Amount
 from dbo.LastYearOrders

 union all

 select OrderId,OrderDate,OrderNum,CustomerId,Amount
 from dbo.OldOrders
go

As you know, memory-optimized tables do not support CHECK constraints, which
prevent Query Optimizer from analyzing what data is stored in the RecentOrders table.
You can specify that in a where clause of the first SELECT in the view. This will allow SQL
Server to eliminate access to the table if queries do not need data from there. You can see
this by running the code from Listing 11-24.

Listing 11-24. Data Partitioning: Querying Data

select top 10
 CustomerId
 ,sum(Amount) as [TotalSales]
from dbo.Orders
where
 OrderDate >='2013-07-01' and
 OrderDate < '2014-07-01'
group by
 CustomerId
order by
 sum(Amount) desc

Chapter 11 ■ Utilizing in-MeMory oltp

207

Figure 11-3 shows the partial execution plan of the query. As you can see, the query
does not access the memory-optimized table at all.

The biggest downside of this approach is the inability to seam lessly move the data
from a memory-optimized table to an on-disk table as the operational period changes.
With on-disk tables, it is possible to make the data movement transparent by utilizing
the online index rebuild and partition switches. However, it will not work with memory-
optimized tables where you have to copy the data to the new location and delete it from
the source table afterwards.

This should not be a problem if the system has a maintenance window when such
operations can be performed. Otherwise, you will need to put significant development
efforts into preventing customers from modifying data on the move.

 ■ Note Chapter 15 in my book Pro SQL Server Internals discusses various data
partitioning aspects including how to move data between different tables and file groups
while keeping it transparent to the users.

Summary
In-Memory OLTP can dramatically improve the performance of OLTP systems.
However, it can lead to large implementation cost especially when you need to migrate
existing systems. You should perform a cost/benefits analysis, making sure that the
implementation cost is acceptable. It is still possible to benefit from In-Memory OLTP
objects even when you cannot utilize the technology in its full scope.

Some of the In-Memory OLTP limitations can be addressed in the code. You can
split the data between multiple tables to work around the 8,060-byte maximum row size
limitation or, alternatively, store large objects in multiple rows in the table. Uniqueness
and referential integrity can be enforced with REPEATABLE READ and SERIALIZABLE
transaction isolation levels.

Figure 11-3. Execution plan of the query

http://dx.doi.org/10.1007/978-1-4842-1136-6_15

Chapter 11 ■ Utilizing in-MeMory oltp

208

You should be careful when using In-Memory OLTP with a Data Warehouse
workload and queries that perform large scans. While it can help in some scenarios,
it could degrade performance of the systems in others. You can implement data
partitioning, combining the data from memory-optimized and on-disk tables when this is
the case.

209

Appendix A

Memory Pointers
Management

This chapter explains how SQL Server works with memory pointers that link In-Memory
OLTP objects together.

Memory Pointers Management
The In-Memory OLTP Engine relies on memory pointers, using them to link objects
together. For example, pointers embedded into data rows link them into the index chains,
which, in turn, are referenced by the hash and nonclustered index objects. The lock- and
latch-free nature of In-Memory OLTP adds the challenge of managing memory pointers
in highly volatile environments where multiple sessions can try to simultaneously change
them, overwriting each other’s changes.

Consider the situation when multiple sessions are trying to insert rows into the
same index row chain. Each session traverses that chain to locate the last row there
and update its pointer with the address of the newly created row. SQL Server must
guarantee that every row is added to the chain even when there are multiple sessions
running in different parallel threads and they are trying to perform that pointer update
simultaneously.

SQL Server uses an InterlockedCompareExchange mechanism to guarantee that.
InterlockedCompareExchange functions change the value of the pointer, checking that
the existing (pre-update) value matches the expected (old) value provided as another
parameter. Only when the check succeeds is the pointer value updated.

To illustrate this, assume that you have two sessions that want to simultaneously
insert new delta records for the same nonclustered index leaf page. As a first step, shown
in Figure A-1, the sessions create delta records and set their pointers to a page based on
the address from the mapping table.

Appendix A ■ MeMory pointers MAnAgeMent

210

In the next step, both sessions call the InterlockedCompareExchange function to try
to update the mapping table by changing the reference from a page to the delta records
they just created. InterlockedCompareExchange serializes the update of the mapping
table element and changes it only if its current preupdate value matches the old pointer
(address of the page) provided as the parameter. The first InterlockedCompareExchange
call succeeds. The second call, however, fails because the mapping table element
references the delta record from another session rather than the page. Therefore, the
second session needs to redo or rollback the action based on the requirements and
a use case.

Figure A-2 illustrates such a scenario. As you can see, with the exception of a very
short serialization during the InterlockedCompareExchange call, there is no locking or
latching of the data during the modifications.

Figure A-1. Data modifications and concurrency: Step 1

Figure A-2. Data modifications and concurrency: Step 2

Appendix A ■ MeMory pointers MAnAgeMent

211

SQL Server uses the same approach with InterlockedCompareExchange every time
the pointer chain needs to be preserved, such as when it creates another version of a row
during an update, when it needs to change a pointer in the index mapping or hash tables,
and in quite a few other cases.

Summary
SQL Server uses an InterlockedCompareExchange mechanism to guarantee that multiple
sessions cannot update the same memory pointers simultaneously, losing references to
each other’s objects. InterlockedCompareExchange functions change the value of the
pointer, checking that the existing (preupdate) value matches the expected (old) value
provided as another parameter. Only when the check succeeds is the pointer value
updated.

213

Appendix B

Page Splitting and Page
Merging in Nonclustered
Indexes

This appendix provides an overview of nonclustered index internal operations, such as
page splitting and page merging.

Nonclustered Indexes Internal Maintenance
The In-Memory OLTP Engine has several internal operations to maintain the structure of
nonclustered indexes. As you already know from Chapter 5, page consolidation rebuilds
the nonclustered index page, consolidating all changes defined by the page delta records.
It helps avoid the performance hit introduced by long delta record chains. The newly
created page has the same PID in the mapping table and replaces the old page, which is
marked for garbage collection.

Two other processes can create new index pages, page splitting and page
merging. Both are complex actions and deserve detailed explanations of their internal
implementation.

Page Splitting
Page splitting occurs when a page does not have enough free space to accommodate a
new data row. Even though the process is similar to a B-Tree on-disk index page split,
there is one conceptual difference. In B-Tree indexes, the page split moves the part of
the data to the new data page, freeing up space on the original page. In Bw-Tree indexes,
however, the pages are non-modifiable, and SQL Server replaces the old page with two
new ones, splitting the data between them.

Let’s look at this situation in more detail. Figure B-1 shows the internal and leaf
pages of the nonclustered index. Let’s assume that one of the sessions wants to insert a
row with a key of value Bob.

http://dx.doi.org/10.1007/978-1-4842-1136-6_5

Appendix B ■ pAge Splitting And pAge Merging in noncluStered indexeS

214

When the delta record is created, SQL Server adjusts the delta records statistics on
the index page and detects that there is no space on the page to accommodate the new
index value once the delta records are consolidated. It triggers a page split process, which
is done in two atomic steps.

In the first step, SQL Server creates two new leaf-level pages and splits the old page
values between them. After that, it repoints the mapping table to the first newly created
page and marks the old page and the delta records for garbage collection; Figure B-2
illustrates this state. At this state, there are no references to the second newly created
leaf-level page from the internal pages. The first leaf-level page, however, maintains the
link between pages (through the mapping table), and SQL Server is able to access and
scan the second page if needed.

During the second step, SQL Server creates another internal page with key values
that represent the new leaf-level page layout. When the new page is created, SQL Server
switches the pointer in the mapping table and marks the old internal page for garbage
collection. Figure B-3 illustrates this action.

Figure B-1. Page splitting: Initial state

Figure B-2. Page splitting: First step

Appendix B ■ pAge Splitting And pAge Merging in noncluStered indexeS

215

Eventually, the old data pages and delta records are deallocated by the garbage
collection process.

Page Merging
Page merging occurs when a delete operation leaves an index page less than 10% from
the maximum page size, which is 8KB now, or when an index page contains just a single
row. During this operation, SQL Server merges the data from two adjacent index pages,
replacing them with the new, combined, data page.

Assume that you have the page layout shown in Figure B-3, and you want to delete
the index key value Bob, which means that all data rows with the name Bob have been
already deleted. This leaves an index page with the single value Boris, which triggers
page merging.

In the first step, SQL Server creates a delete delta record for Bob and another special
kind of delta record called merge delta. Figure B-4 illustrates the layout after the first step.

Figure B-3. Page splitting: Second step

Figure B-4. Page merging: First step

Appendix B ■ pAge Splitting And pAge Merging in noncluStered indexeS

216

During the second step of page merging, SQL Server creates a new internal page that
does not reference the leaf-level page that it is about to be merged. After that, SQL Server
switches the mapping table to point to the newly created internal page and marks the old
page for garbage collection. Figure B-5 illustrates this action.

Finally, SQL Server builds a new leaf-level page, copying the Boris value there. After
the new page is created, it updates the mapping table and marks the old pages and delta
records for garbage collection.

Figure B-6 shows the final data layout after page merging is completed.

You can get page consolidation, merging, and splitting statistics from the
sys.dm_db_xtp_nonclustered_index_stats view.

 ■ Note You can read documentation about the sys.dm_db_xtp_nonclustered_index_
stats view at https://msdn.microsoft.com/en-us/library/dn645468.aspx.

Figure B-5. Page merging: Second step

Figure B-6. Page merging: Third (final) step

https://msdn.microsoft.com/en-us/library/dn645468.aspx

Appendix B ■ pAge Splitting And pAge Merging in noncluStered indexeS

217

Summary
The In-Memory OLTP Engine uses several internal operations to maintain the structure of
nonclustered indexes. Page consolidation rebuilds the index page, combining page data
with the delta records. It helps avoid the performance impact introduced by long delta
records chains.

Page splitting occurs when the index page does not have enough space to
accommodate the new rows. In contrast to page splitting on-disk B-Tree indexes, which
moves part of the data to the new page, Bw-Tree page splitting replaces the old data page
with new pages that contain the data.

Page merging occurs when an index page is less than 10% of the maximum page size
or when it has just a single row. SQL Server merges the data from adjacent data pages and
replaces them with the new page with the merged data.

219

Appendix C

Analyzing the States of
Checkpoint File Pairs

SQL Server persists data from durable memory-optimized tables in checkpoint file
pairs. This appendix demonstrates how to analyze their states using the sys.db_dm_xtp_
checkpoint_files view and shows the state transitions through the CFP lifetime.

Sys.db_dm_xtp_checkpoint_files View
The sys.db_dm_xtp_checkpoint_files view provides information about database
checkpoint files, including their state, size, and physical location. We will use this view
extensively in this appendix. Let’s look at the most important columns.

•	 The container_id and container_guid columns provide
information about the FILESTREAM container to which the
checkpoint file belongs. Container_id corresponds to the
file_id column in the sys.database_files view.

•	 checkpoint_file_id is a GUID that represents the ID of the file.

•	 checkpoint_pair_file_id is the ID of the second, data or delta,
file in the pair.

•	 relative_file_path shows the relative file path in the container.

•	 state and state_desc describe the state of the file. As you already
know from Chapter 8, the checkpoint file pair can be in one of the
following states (the number represents the state column value):
(0) - PRECREATED, (1) - UNDER CONSTRUCTION, (2) - ACTIVE,
(3) - MERGE TARGET, (4) - MERGED SOURCE, (5) - REQUIRED
FOR BACKUP/HA, (6) - IN TRANSITION TO TOMBSTONE,
(7) - TOMBSTONE.

•	 file_type and file_type_desc describe the type of file:
(0) - DATA_FILE, (1) - DELTA_FILE. These columns return NULL
if the CFP is in the TOMBSTONE state.

http://dx.doi.org/10.1007/978-1-4842-1136-6_8

Appendix C ■ AnAlyzing the StAteS of CheCkpoint file pAirS

220

•	 lower_bound_tsn and upper_bound_tsn indicate the timestamp
of the earliest and latest transactions covered by the data file.
These columns are populated only for ACTIVE, MERGE TARGET, and
MERGED SOURCE states.

•	 internal_storage_slot is the index of the file in the internal
storage array. As you already know from Chapter 8, In-Memory
OLTP persists the metadata information about checkpoint file
pairs in an internal 8,192-slot array. This column of the view is
populated only for UNDER CONSTRUCTION and ACTIVE CFPs.

•	 file_size_in_bytes and file_size_used_in_bytes provide
information about file size and space used in the file. When the
file is still being populated, file_size_used_in_bytes is updated
at the time of the checkpoint event. These columns return NULL
for files in the REQUIRED FOR BACKUP/HA, IN TRANSITION TO
TOMBSTONE, and TOMBSTONE states.

•	 inserted_row_countand deleted_row_count provide the
number of rows in the data and delta files. Drop_table_deleted_
row_count shows the number of rows in the tables that were
dropped.

Let’s use this view and analyze the state transitions of the checkpoint file pairs.

The Lifetime of Checkpoint File Pairs
As the first step in this test, let’s enable the undocumented trace flag TF9851 using the
DBCC TRACEON(9851,-1) command. This trace flag disables the automatic merge process,
which will allow you to have more control over your test environment.

 ■ Important do not set TF9851 in production.

Let’s create the database with an In-Memory OLTP file group and perform the
full backup starting the backup chain, as shown in Listing C-1. I am doing it in the test
environment and not following best practices (such as placing In-Memory OLTP and
on-disk data on different drives, creating secondary file groups for on-disk data, and a few
others). Obviously, you should remember to follow best practices when you design your
real databases.

http://dx.doi.org/10.1007/978-1-4842-1136-6_8

Appendix C ■ AnAlyzing the StAteS of CheCkpoint file pAirS

221

Listing C-1. Creating a Database and Performing Backup

create database [AppendixC]
on primary
(
 name = N'AppendixC'
 ,filename = N'C:\Data\AppendixC.mdf'
),
filegroup HKData CONTAINS MEMORY_OPTIMIZED_DATA
(
 name = N'AppendixC_HKData'
 ,filename = N'C:\Data\HKData\AppendixC'
)
log on
(
 name = N'AppendixC_Log'
 ,filename = N'C:\Data\AppendixC_log.ldf'
)
go

backup database [AppendixC]
to disk = N'C:\Data\Backups\AppendixC.bak'
with noformat, init, name = 'AppendixC - Full', compression;

The database is currently empty and, therefore, it does not have any checkpoint file
pairs created. You can confirm this by querying the sys.dm_db_xtp_checkpoint_files
view, as shown in Listing C-2.

Listing C-2. Checking Checkpoint File Pairs

use [AppendixC]
go

select
 checkpoint_file_id
 ,checkpoint_pair_file_id
 ,file_type_desc
 ,state_desc
 ,file_size_in_bytes
 ,relative_file_path
from
 sys.dm_db_xtp_checkpoint_files
order by
 state, file_type

Appendix C ■ AnAlyzing the StAteS of CheCkpoint file pAirS

222

Figure C-1 shows that result set is empty and that the sys.dm_db_xtp_checkpoint_
files view does not return any data.

As the next step, let’s create a durable memory-optimized table, as shown in Listing C-3.

Listing C-3. Creating a Durable Memory-Optimized Table

create table dbo.HKData
(
 ID int not null,
 Placeholder char(8000) not null,

 constraint PK_HKData
 primary key nonclustered hash(ID)
 with (bucket_count=10000),
)
with
(
 memory_optimized=on
 ,durability=schema_and_data
)

If you check the state of the checkpoint file pairs now and run the code from Listing C-2
again, you will see the output shown in Figure C-2. The total number of files and their size
may be different in your environment and will depend on the hardware. My test virtual
machine has four vCPU and 8GB of RAM, so I have eight checkpoint file pairs in the
PRECREATED state with 16MB data and 1MB delta files. I also have one CFP in the UNDER
CONSTRUCTION state.

Figure C-1. State of checkpoint file pairs after database creation

Appendix C ■ AnAlyzing the StAteS of CheCkpoint file pAirS

223

Let’s enlarge the output for the files from the UNDER CONSTRUCTION CFP, as shown
in Figure C-3. As you can see, the checkpoint_pair_file_id values reference the
checkpoint_file_id of the second file in the pair.

Relative_file_path provides the path to the file relative to the FILESTREAM
container in the In-Memory OLTP file group. Figure C-4 shows the checkpoint files in the
folder on the disk.

Figure C-2. State of checkpoint file pairs after creating the durable memory-optimized table

Figure C-3. UNDER CONSTRUCTION checkpoint file pair

Appendix C ■ AnAlyzing the StAteS of CheCkpoint file pAirS

224

Now, populate the dbo.HKData table with 1,000 rows and check the status of the
checkpoint files, as shown in Listing C-4. The query filters out the checkpoint file pairs in
the PRECREATED state from the output.

Listing C-4. Populating the dbo.HKData Table and Checking the States of the CFPs

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into dbo.HKData(Id, Placeholder)
 select Id, Replicate('0',8000)
 from ids
 where Id <= 1000;

select
 checkpoint_file_id
 ,file_type_desc
 ,state_desc
 ,lower_bound_tsn
 ,upper_bound_tsn
 ,file_size_in_bytes
 ,inserted_row_count
 ,deleted_row_count
from
 sys.dm_db_xtp_checkpoint_files
where
 state_desc <> 'PRECREATED'
order by
 state, file_type;

Figure C-4. Checkpoint files on disk

Appendix C ■ AnAlyzing the StAteS of CheCkpoint file pAirS

225

As you can see in Figure C-5, SQL Server populates the data file in the UNDER
CONSTRUCTION CFP by inserting 1,000 rows there. The NULL value in the lower_bound_tsn
column indicates that this CFP covers transactions from the time of database creation.
Similarly, the NULL value in the upper_bound_tsn column indicates that this CFP covers
current transactions.

Let’s run a manual CHECKPOINT and check the status of checkpoint file pairs, as
shown in Listing C-5.

Listing C-5. Forcing CHECKPOINT and Checking the Status of CFPs

checkpoint
go

select
 checkpoint_file_id
 ,file_type_desc
 ,state_desc
 ,lower_bound_tsn
 ,upper_bound_tsn
 ,file_size_in_bytes
 ,file_size_used_in_bytes
 ,inserted_row_count
 ,deleted_row_count
from
 sys.dm_db_xtp_checkpoint_files
where
 state_desc <> 'PRECREATED'
order by
 state, file_type;

As you can see in Figure C-6, the CHECKPOINT operation transitions the UNDER
CONSTRUCTION CFP to the ACTIVE state. The upper_bound_tsn columns are now
populated, indicating the maximum timestamp for transactions covered by the
checkpoint file pair.

Figure C-5. UNDER CONSTRUCTION CFP state after insert

Appendix C ■ AnAlyzing the StAteS of CheCkpoint file pAirS

226

Let’s insert another 1,000 rows to the dbo.HKData table and check the status of the
CFPs. Listing C-6 shows the code to perform this.

Listing C-6. Populating the dbo.HKData Table with Another Batch of Rows and Checking
the States of the CFPs Afterwards

;with N1(C) as (select 0 union all select 0) -- 2 rows
,N2(C) as (select 0 from N1 as t1 cross join N1 as t2) -- 4 rows
,N3(C) as (select 0 from N2 as t1 cross join N2 as t2) -- 16 rows
,N4(C) as (select 0 from N3 as t1 cross join N3 as t2) -- 256 rows
,N5(C) as (select 0 from N4 as t1 cross join N4 as t2) -- 65,536 rows
,Ids(Id) as (select row_number() over (order by (select null)) from N5)
insert into dbo.HKData(Id, Placeholder)
 select 1000 + Id, Replicate('0',8000)
 from ids
 where Id <= 1000;

select
 checkpoint_file_id
 ,file_type_desc
 ,state_desc
 ,lower_bound_tsn
 ,upper_bound_tsn
 ,file_size_in_bytes
 ,inserted_row_count
 ,deleted_row_count
from
 sys.dm_db_xtp_checkpoint_files
where
 state_desc <> 'PRECREATED'
order by
 state, file_type;

Figure C-7 shows the states of the checkpoint file pairs after the second insert. As you
can see, SQL Server creates another CFP in the UNDER CONSTRUCTION state with
lower_bound_tsn = 4.

Figure C-6. The CFP state after CHECKPOINT

Appendix C ■ AnAlyzing the StAteS of CheCkpoint file pAirS

227

Another CHECKPOINT would transition the UNDER CONSTRUCTION CFP to the ACTIVE
state, as shown in Figure C-8. You can force it by running the code from Listing C-5 again.
At this point, you have two ACTIVE checkpoint file pairs covering different ranges of
transaction timestamps.

As the next step, let’s delete 66.7% of the rows from the table, as shown in Listing C-7.
In this listing, you are also running the query that combines the information about the
data and delta files, and demonstrates that both checkpoint file pairs are mostly empty.

Listing C-7. Deleting 66.7% of the Rows from the Table

delete from dbo.HKData
where ID % 3 <> 0;

select
 data.checkpoint_file_id
 ,data.state_desc
 ,data.lower_bound_tsn
 ,data.upper_bound_tsn
 ,data.inserted_row_count
 ,delta.deleted_row_count

Figure C-7. States of CFPsafter the second INSERT

Figure C-8. States of CFPs after second CHECKPOINT

Appendix C ■ AnAlyzing the StAteS of CheCkpoint file pAirS

228

 ,convert(decimal(5,2),
 100. - 100. * delta.deleted_row_count /
 IIF(data.inserted_row_count = 0,1,data.inserted_row_count)
) as [% Full]
from
 sys.dm_db_xtp_checkpoint_files data join
 sys.dm_db_xtp_checkpoint_files delta on
 data.checkpoint_pair_file_id =
 delta.checkpoint_file_id
where
 data.file_type_desc = 'DATA' and
 data.state_desc <> 'PRECREATED';

As you can see in Figure C-9, both files are just 33.3% full so they are perfect
candidates for the merge.

You can trigger the merge by calling the sys.sp_xtp_merge_checkpoint_files
system stored procedure. This procedure requires you to provide the lower and upper
bounds for the merge and it does not accept NULL as the parameter value. You can use any
tsn, which is covered by the CFP file participating in the merge.

As already discussed, in most cases you can rely on the automatic merge and do not
need to call this procedure manually. One of the cases when manual merge is beneficial
is the situation when the size of the data in the durable memory-optimized tables is
close to 256GB and you want granular control over the merge process, avoiding situations
when you do not have enough space in the checkpoint file pairs to store the data.
Listing C-8 shows the code that calls the stored procedure.

Listing C-8. Trigerring the Merge Process

exec sys.sp_xtp_merge_checkpoint_files
 @database_name = 'AppendixC'
 ,@transaction_lower_bound = 1
 ,@transaction_upper_bound = 8;

Figure C-9. States after deletion

Appendix C ■ AnAlyzing the StAteS of CheCkpoint file pAirS

229

You can check the status of merge requests by examining the sys.dm_db_xtp_merge_
requests view, as shown in Listing C-9. Figure C-10 illustrates the output of the query.

Listing C-9. Checking the Status of the Merge Request

select
 request_state_desc
 ,destination_file_id
 ,lower_bound_tsn
 ,upper_bound_tsn
 ,source0_file_id
 ,source1_file_id
from
 sys.dm_db_xtp_merge_requests;

 ■ Note you can read more about the sys.sp_xtp_merge_checkpoint_files stored
procedure at https://msdn.microsoft.com/en-us/library/dn198330.aspx. More
information about sys.dm_db_xtp_merge_requests is available at https://msdn.
microsoft.com/en-us/library/dn465868.aspx.

Figure C-11 illustrates the state of checkpoint file pairs after the merge is initiated.
As you can see, SQL Server creates the new checkpoint file pair in the MERGE TARGET state
and merges data from ACTIVE CFPs there. You can also see the correlation between the
checkpoint_file_id of CFPs with destination_file_id and source_file_id columns
in sys.dm_db_xtp_merge_requests view.

Figure C-10. Merge request status

https://msdn.microsoft.com/en-us/library/dn198330.aspx
https://msdn.microsoft.com/en-us/library/dn465868.aspx
https://msdn.microsoft.com/en-us/library/dn465868.aspx

Appendix C ■ AnAlyzing the StAteS of CheCkpoint file pAirS

230

The next CHECKPOINT will transition the checkpoint file pairs that participated in
merge from ACTIVE to MERGED SOURCE and from MERGE TARGET CFP to ACTIVE states.
Figure C-12 demonstrates this. Now the merge is considered to be complete and the
request state value from the sys.dm_db_xtp_merge_requests view is changed to
INSTALLED.

After the next CHECKPOINT, the MERGED SOURCE CFPs will be transitioned to the
REQUIRED FOR BACKUP/HA state, as shown in Figure C-13.

Figure C-11. The state of checkpoint file pairs after the merge is initiated

Figure C-12. The state of the checkpoint file pairs after the merge is completed

Appendix C ■ AnAlyzing the StAteS of CheCkpoint file pAirS

231

After the transaction log backup is taken, log records are transmitted to secondary
nodes, and the checkpoint event occurs, these CFPs are eventually picked up by the
garbage collection thread and moved to IN TRANSITION TO TOMBSTONE and TOMBSTONE
states and eventually deallocated. You can also force manual garbage collection by calling
the sys.sp_xtp_checkpoint_force_garbage_collection stored procedure. Listing C-10
illustrates this.

Listing C-10. Performing Log Backup and Forcing Garbage Collection

backup log [AppendixC]
to disk = N'C:\Data\Backups\AppendixC.bak'
with noformat, noinit, name = 'AppendixC - Log', compression
go

checkpoint
go

exec sys.sp_xtp_checkpoint_force_garbage_collection;

 ■ Note in reality, it could take more than one log backup and checkpoint event to
transition Cfps to the IN TRANSITION TO TOMBSTONE state. you can execute the code from
listing C-10 multiple times if it happens in your system.

you can read more about the sys.sp_xtp_checkpoint_force_garbage_collection stored
procedure at https://msdn.microsoft.com/en-us/library/dn451428.aspx.

Figure C-14 illustrates CFPs in the TOMBSTONE state. Eventually, they will be cleared
from the result sets and deallocated.

Figure C-13. The MERGED SOURCE CFPs are transitioned to the REQUIRED FOR
BACKUP/HA state after the next checkpoint

https://msdn.microsoft.com/en-us/library/dn451428.aspx

Appendix C ■ AnAlyzing the StAteS of CheCkpoint file pAirS

232

Summary
Every checkpoint file pair transitions through various states during its lifetime. You can
analyze these states using the sys.dm_db_xtp_checkpoint_files data management
view. This view returns information about individual checkpoint files, including their
type, size, state, number of inserted and deleted rows, and quite a few other properties.

The merge process merges information from the ACTIVE checkpoint file pairs that
have a large percent of deleted rows, creating a new CFP. In most cases, you can rely on
the automatic merge process; however, you can trigger a manual merge using the
sys.sp_xtp_merge_checkpoint_files stored procedure. You can monitor the status of
merge requests using the sys.dm_db_xtp_merge_requests view.

Merged checkpoint file pairs should be included in the log backup before they are
deallocated. As with the merge, you can rely on the automatic garbage collection process
in most cases. However, you can trigger the manual garbage collection process using the
sys.sp_xtp_checkpoint_force_garbage_collection stored procedure.

Figure C-14. CFPs in the TOMBSTONE state

233

Appendix d

In-Memory OLTP
Migration Tools

This appendix discusses several SQL Server 2014 tools that help with In-Memory OLTP
migration.

Management Data Warehouse Enhancements
One of the challenges during In-Memory OLTP migration is determining the list of
objects that will benefit the most from it. The Pareto principle can be easily applied here:
if migration targets are identified correctly, you can achieve 80 percent of possible gains
by spending 20 percent of your time.

Management Data Warehouse in SQL Server 2014 has several enhancements that
can help you to identify migration targets in the system. It detects the tables that suffer
from lock and latch contention along with frequently executed stored procedures that
consume the most CPU resources on the server. Management Data Warehouse provides a
set of reports that allows you to estimate the amount of migration work and performance
gain you will achieve after it is done.

Let’s go through the process and configure Management Data Warehouse in the
system. You can collect metrics from SQL Server 2008 and 2012 instances as long as you
are using Management Data Warehouse from SQL Server 2014.

 ■ Note In this appendix, I am using the demo application and WebRequests*_Disk
tables from Chapter 2 of this book. I also added several LOB columns and trigger to the
tables to illustrate how tools provide information about constructs that are not supported in
In-Memory OLTP.

You can configure Management Data Warehouse in the Management ➤ Data
Collection section of SQL Server Management Studio, as shown in Figure D-1.

http://dx.doi.org/10.1007/978-1-4842-1136-6_2

APPendIx d ■ In-MeMOry OLTP MIgrATIOn TOOLs

234

In the first step in the process you need to choose the server and database where you
will store the collected data. You can choose an existing database or create a new one, as
shown in Figure D-2.

After the server and the database are selected, you can setup Management Data
Warehouse security by assigning logins to the database roles, as shown in Figure D-3.

Figure D-1. The Configure Management Data Warehouse menu

Figure D-2. Selecting the server and database for Management Data Warehouse

APPendIx d ■ In-MeMOry OLTP MIgrATIOn TOOLs

235

This is the final configuration step of the wizard, and clicking the Next button will
bring you to the confirmation page. Click the Finish button; successful execution will bring
the Success page shown in Figure D-4.

Figure D-3. Configuring Management Data Warehouse security

APPendIx d ■ In-MeMOry OLTP MIgrATIOn TOOLs

236

After Management Data Warehouse is created, you should configure and start the
Data Collectors by completing another wizard from the Management ➤ Data Collection
menu. Figure D-5 illustrates its location.

Figure D-5. The Configure Data Collection menu

Figure D-4. Configuring Management Data Warehouse - Success confirmation

In this wizard, you should provide connection information to Management Data
Warehouse and choose Transaction Performance Data Collection Sets in the list of the
data collectors, as shown in Figure D-6.

APPendIx d ■ In-MeMOry OLTP MIgrATIOn TOOLs

237

After the wizard is completed, you will see two Data Collection Sets, as shown in
Figure D-7. Make sure that both of them are started and collecting the information.

You can analyze collected data by using the Transaction Performance Analysis
Overview report, which is available in the Management Data Warehouse database, as
shown in Figure D-8.

Figure D-6. The Configure Data Collection Wizard

Figure D-7. Data Collection Sets

APPendIx d ■ In-MeMOry OLTP MIgrATIOn TOOLs

238

The Transaction Performance Analysis Overview report is shown in Figure D-9.

From this page, you have access to three drill-down reports. Tables Usage Analysis
and Table Contention Analysis provide table-related statistics based on how often tables
are accessed and how much they suffer from lock and latch contention.

Figure D-10 illustrates the output of the Table Contention Analysis report. As you can
see, it displays the output in four quadrants based on the amount of work required for the
migration and the estimated performance gain it will provide. Migration of the objects
from the upper right quadrant will provide the most performance gain with the lowest
amount of work involved.

Figure D-8. Management Data Warehouse reports

Figure D-9. The Transaction Performance Analysis Overview report

APPendIx d ■ In-MeMOry OLTP MIgrATIOn TOOLs

239

You can see the statistics on the table level by clicking the object in the report.
Figure D-11 shows the details for the WebRequestHeaders_Disk table in the system. The
first output illustrates access method-related statistics. The demo application does not
read the data from the table, which affects the numbers you see in the Figure.

Figure D-10. The Table Contention Analysis report

APPendIx d ■ In-MeMOry OLTP MIgrATIOn TOOLs

240

The second output shows lock- and latch-related statistics for the table. The table
suffers from a large amount of page latches, as you saw in Chapter 2.

Finally, the third output illustrates the number of migration blockers and issues that
need to be addressed before migration.

Similarly, the Procedure Usage Analysis report shows stored procedure usage based
on CPU time consumed. Figure D-12 illustrates the output of the report. The demo
application called just the single procedure, which is displayed here.

Figure D-11. Table-Level Statistics

http://dx.doi.org/10.1007/978-1-4842-1136-6_2

APPendIx d ■ In-MeMOry OLTP MIgrATIOn TOOLs

241

You can drill down to the procedure-level statistics, which displays the execution
count, execution time metrics, and tables that are referenced by the stored procedure.
Figure D-13 illustrates this page.

Figure D-12. The Procedure Usage Analysis Report

Figure D-13. Procedure-Level Statistics

APPendIx d ■ In-MeMOry OLTP MIgrATIOn TOOLs

242

Management Data Warehouse is a great tool that can help you identify objects that
will benefit from migration. However, you should not rely solely on its results. Look and
analyze the entire system before making any decisions.

Finally, it is worth mentioning that, as with any tool, the quality of output greatly
depends on the quality of input. You need to collect a representative workload from a
production server to get accurate results.

Memory Optimization and Native
Compilation Advisors
In addition to Management Data Warehouse, SQL Server 2014 includes two other
tools that can help with In-Memory OLTP migration. The Memory Optimization and
Native Compilation Advisors analyze database tables and stored procedures to identify
unsupported constructs. Moreover, the Memory Optimization Advisor can perform the
actual migration, creating an In-Memory OLTP filegroup and memory-optimized table,
and move data from the on-disk table there.

You can access both advisors from the object context menu in SSMS. Figure D-14
shows table context menu with the Memory Optimization Advisor menu item highlighted.

Figure D-14. The Memory Optimization Advisor menu

As the first step, the wizard analyzes the table and displays constructs that are
unsupported by In-Memory OLTP. Figure D-15 shows the output of the validation on
the WebRequestHeaders_Disk table. As mentioned, I added several LOB columns and a
trigger to the table, which were reported by the advisor.

APPendIx d ■ In-MeMOry OLTP MIgrATIOn TOOLs

243

If the table does not use any unsupported constructs, the advisor proceeds with the
option of creating an In-Memory OLTP filegroup and performing actual table migration.

The simplicity of the wizard, however, is a two-edged sword. It can simplify the
migration process and, in some cases, allow the enabling of In-Memory OLTP and
moving data into memory with a few mouse clicks. However, as you already know,
In-Memory OLTP deployments require careful hardware and infrastructure planning,
redesigning of indexing strategies, changes in database maintenance and monitoring,
and quite a few other steps to be successful. Improperly done migration can lead to
suboptimal results, and the simplicity of the advisor increases that chance.

The advisor is a very useful tool for identifying migration roadblocks. You should be
very careful, however, to rely on it performing the actual migration process.

As the opposite of the Memory Optimization Advisor, the Native Compilation Advisor
does not create a natively compiled version of the stored procedures. It just analyzes
whether stored procedures have unsupported constructs that prevent native compilation.

Figure D-16 illustrates the output of the Native Compilation Advisor for the
InsertRequestInfo_Disk stored procedure defined in Chapter 2.

Figure D-15. The Memory Optimization Advisor validation results

http://dx.doi.org/10.1007/978-1-4842-1136-6_2

APPendIx d ■ In-MeMOry OLTP MIgrATIOn TOOLs

244

Figure D-16. Native Compilation Advisor output

In-Memory OLTP migration tools can help you identify targets for migration and
help during the process. However, it is best to take their advice with a grain of salt and not
explicitly rely on their output. After all, you know your system better than any automatic
tool does.

Summary
SQL Server 2014 provides several tools that can help with In-Memory OLTP migration.
Management Data Warehouse allows you to collect transaction performance metrics
and identify the possible targets for migration. The Memory Optimization and Native
Compilation Advisors analyze tables and stored procedures to identify the constructs
unsupported by In-Memory OLTP.

Those tools are beneficial and can save you a good amount of time during the
migration process. However, you should not rely strictly on their output when you
perform the analysis. You need to analyze the entire system, including infrastructure
and hardware, indexing strategies, database maintenance routines, and other factors to
achieve the best results with In-Memory OLTP.

245

��������� A
Administration and monitoring tasks

execution statistics, 159
in-memory OLTP transactions, 157
memory-optimized tables, 153
Resource Governor

classification process, 151
internal and default resource

pools, 151
recovery process, 152
resource pools, 151–152

Autocommitted transactions, 113

��������� B
Buffer pool, 29

��������� C
Checkpoint file pairs (CFPs), 121, 219

ACTIVE checkpoint file, 227
database creation, 222
dbo.HKData table, 226
forcing CHECKPOINT, 225
in TOMBSTONE state, 231
lifetime of, 220
log backup and garbage

collection, 231
memory-optimized table, 222
merge requests, 228
on disk, 224
sys.db_dm_xtp_checkpoint

_files view, 219
UNDER CONSTRUCTION, 223

Commit dependency, 116

Cross-container transactions
autocommitted transactions, 113
incompatible transaction isolation

levels, 112
SNAPSHOT isolation, 112
transaction levels, 112

��������� D, E, F
Data-loading process, 132
Data storage

CFP, 121
ACTIVE CFP state, 125
CHECKPOINT process, 125
INSERT and DELETE, 122
IN TRANSITION TO

TOMBSTONE state, 127
MERGED SOURCE CFP

state, 126
MERGE TARGET state, 126
PRECREATED CFP state, 124
REQUIRED FOR BACKUP/HA

state, 127
TOMBSTONE state, 127
UNDER CONSTRUCTION CFP

state, 125
multiple CFPs, 123
on-disk tables, 121

Deployment and management
administration and

monitoring tasks, 151
hardware components, 147

CPU, 148
I/O performance, 148
memory, 149

Dusty corners scan, 139

Index

■ index

246

��������� G
Garbage collection process

BeginTs and EndTs timestamps, 135
cooperative and scalable, 135
data management views, 140
DELETE operation, 135
dusty corners scan, 139
generations, 138
idle worker thread, 136
idxLinkCount element, 136
memory-optimized table, 140
memory statistics

after scan, 143
idle worker thread cycle, 144
table creation, 142
table deletion, 143

non-blocking, 135
responsive, 135
SELECT operation, 137
summary statistics, 144
UPDATE operation, 135
worker queues, 139
workflow, 139

Generations, 138
GetRow() method, 11, 92

��������� H
Hash indexes

bucket_count
change option, 47
creation, 42
data selection, 44
hash table lookup, 41
sys.dm_db_xtp_hash_index_stats, 43

definition, 39
SARGability

index seek operation, 50
test tables creation, 49

Hash indexes vs. nonclustered indexes
point lookup performance

data selection, 76
execution time, 77
tables creation, 74

��������� I, J, K
Idle worker thread, 136
In-memory OLTP

advantages, 1
8,060-byte maximum row size limit, 171

case-insensitive collections, 182
dbo.SplitData, 174
execution plan, 174
INSTEAD OF triggers, 173
outer join, 173
Picture and Description columns, 172
Products table, 172
SplitData function, 176
unique and foreign key

constraints, 176
catalog views, 162
cost/benefits analysis, 169
data management views, 162

checkpoint operations, 165
garbage collection, 165
memory usage statistics, 164
object and index statistics, 163
transaction management, 164

engine architecture, 4
Enterprise Edition feature, 171
extended events, 165
goals, 2
importing batch of rows, 185

client code, 187
memory-optimized table type, 187
Table, TVP and stored

procedures, 186
limitations, 1
Management Data Warehouse, 233
memory-optimized tables

ETL performance, 191
indexing of, 170
nonclustered indexes, 194, 196
query parallelism, 191
scan performance, 190
stored procedures,

execution time, 190
UPDATE performance, 195
with on-disk temporary objects, 188

mixed workloads, 203
performance counters, 167
performance improvements, 169
session/object state-store, 196

dedicated storage/cache, 197
ObjStoreDataAccess class, 201
ObjStoreService class, 202
ObjStoreUtils class, 199
replicate content, 197
scalability issues, 197
Session Store implementation, 197

SQL Server 2014 Management
Studio, 170

■ Index

247

In-Memory OLTP objects
database creation, 7
latches (see Latches)
memory-optimized tables

creation, 9
durability setting, 10
hash indexes, 10
limitations, 10
natively complied stored

procedure, 13
nonclustered indexes, 10
performance counters, 22–23
T-SQL stored procedure, 11
wait statistics, 22–23

InterlockedCompareExchange
mechanism, 209

��������� L
Latches

features, 16
on-disk tables

creation, 17
performance counters, 21
transaction log, 24
wait statistics, 21

Log Buffer, 128

��������� M
Management Data Warehouse, 233

data collection sets, 237
Memory Optimization and Native

Compilation Advisors, 242
menu configuration, 233
procedure-Level statistics, 241
security configuration, 235
server and database, 234
success confirmation, 236
Table Contention Analysis report, 238
Table-Level statistics, 240
Transaction Performance Analysis

Overview report, 237
Usage Analysis report, 240

Memory-optimized tables
availability groups, 38
BeginTs timestamp, 32–33
constraints, 37
creation, 30
data row

halloween effect, 34
index pointers, 34
payload, 34

data updation, 32
EndTs timestamp, 32–33
hash indexes, 40
limitations, 37
native complication, 35
vs. on-disk tables

clustered index, 28
nonclustered index, 29

statistics
data distribution, 55
DBCC SHOW_STATISTICS

statement, 52
execution plans, 56
nested loop join algorithm, 53
table creation, 54
test queries, 55
updation, 57

supported data types, 36
variables, 99

Memory pointers management, 209
data modifications and

concurrency, 210
InterlockedCompareExchange

function, 209
Merge Policy Evaluator, 126
Mixed abstract tree (MAT), 80

��������� N
Native compilation

interop mode performance
comparison

data insertion, 94
delete operations, 98
select operations, 98
test tables creation, 93
update operations, 97

stored procedure (see T-SQL stored
procedure)

T-SQL features
CAST, 88
control flow, 86
CONVERT, 88
date/time functions, 88
error functions, 88
ISNULL, 88
math functions, 88

■ index

248

NEWID, 88
NEWSEQUENTIALID, 88
operators, 87
query surface area, 87
@@ROWCOUNT, 88
SCOPE_IDENTITY, 88
string functions, 88

Nonclustered indexes
Bw-Tree indexes, 67
creation, 62
definition, 61
delta record, 70
index scan operations, 63
index seek operations, 63
leaf pages, 69
page merging, 215
page splitting, 213
sorting order

execution plans, 66–67
index key column, 65–66
on-disk table creation, 64

sys.dm_db_xtp_index_stats view, 72

��������� O
Optimistic concurrency, 105

��������� P, Q
Page merging, 215
Page splitting, 213
Pareto principle, 233
Pessimistic concurrency, 105
Phantom Read phenomenon, 108
Pure imperative tree (PIT), 80

��������� R, S
Recovery, 131

��������� T, U, V
Transaction isolation levels, 104

concurrency phenomena, 104
dirty reads, 104
in-memory OLTP, 106

memory-optimized table, 106
Phantom Read phenomenon, 108

REPEATABLE READ, 106
SERIALIZABLE, 106
SNAPSHOT, 106

Non-Repeatable Reads, 104
optimistic concurrency, 105
pessimistic concurrency, 105
Phantom Reads, 104
REPEATABLE READ, 107
SERIALIZABLE, 108
shared locks, 105
SNAPSHOT, 105, 109

Transaction logging, 128
COMMIT, 128
in-memory OLTP transaction, 129
log buffer, 128
on-disk table modification, 130
UNDO and REDO, 128

Transaction processing, 103
atomicity, 103
consistency, 103
durability, 104
isolation, 104
lifetime

COMMIT request, 116
data modification operations, 115
insert operation, 115
memory-optimized tables, 114
scan set, 116
validation phase, 117
write set, 116

T-SQL stored procedure
atomic blocks

object creation, 89
write/write conflict, 90

C code, 81
creation, 84
DLL, 81
file types, 82
folder, 82
interpretation, 92
limitations, 86
MAT, 80
objects list, 83
optimization, 91
PIT, 80
query optimizer, 80

��������� W, X, Y, Z
Write-ahead logging (WAL), 128

Native compilation (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Why In-Memory OLTP?
	 Background
	 In-Memory OLTP Engine Architecture
	 Summary

	Chapter 2: In-Memory OLTP Objects
	 Preparing a Database to Use In-Memory OLTP
	 Creating Memory-Optimized Tables
	 Working with Memory-Optimized Tables
	 In-Memory OLTP in Action: Resolving Latch Contention
	 Summary

	Chapter 3: Memory-Optimized Tables
	 On-Disk vs. Memory-Optimized Tables
	 Introduction to the Multiversion Concurrency Control
	 Data Row Format
	 Native Compilation of Memory-Optimized Tables
	 Memory-Optimized Tables: Surface Area and Limitations
	 Supported Data Types
	 Constraints and Table Features
	 Database-Level Limitations

	 High Availability Technologies Support
	 Summary

	Chapter 4: Hash Indexes
	 Hashing Overview
	 Much Ado About Bucket Count
	 Bucket Count and Performance
	 Choosing the Right Bucket Count
	 Changing the Bucket Count in the Index

	 Hash Indexes and SARGability
	 Statistics on Memory-Optimized Tables
	 Summary

	Chapter 5: Nonclustered Indexes
	 Working with Nonclustered Indexes
	 Creating Nonclustered Indexes
	 Using Nonclustered Indexes

	 Nonclustered Indexes Internals
	 Bw-Tree Overview
	 Index Pages and Delta Records

	 Obtaining Information About Nonclustered Indexes
	 Hash Indexes vs. Nonclustered Indexes
	 Summary

	Chapter 6: In-Memory OLTP Programmability
	 Native Compilation
	 Natively Compiled Stored Procedures
	 Creating Natively Compiled Stored Procedures
	 Supported T-SQL Features
	Control Flow
	Query Surface Area
	 Operators
	Build-In Functions

	 Atomic Blocks
	 Optimization of Natively Compiled Stored Procedures

	 Interpreted T-SQL and Memory-Optimized Tables
	 Performance Comparison
	 Memory-Optimized Table Types and Variables
	 Summary

	Chapter 7: Transaction Processing in In-Memory OLTP
	 ACID, Transaction Isolation Levels, and Concurrency Phenomena Overview
	 Transaction Isolation Levels in In-Memory OLTP
	 Cross-Container Transactions
	 Transaction Lifetime
	 Summary

	Chapter 8: Data Storage, Logging, and Recovery
	 Data Storage
	 Checkpoint File Pairs States
	PRECREATED CFP State
	UNDER CONSTRUCTION CFP State and CHECKPOINT Process
	ACTIVE CFP State
	MERGE TARGET and MERGED SOURCE CFP States and Merge Process
	REQUIRED FOR BACKUP/HA, IN TRANSITION TO TOMBSTONE, and TOMBSTONE CFP States

	 Transaction Logging
	 Recovery
	 Summary

	Chapter 9: Garbage Collection
	 Garbage Collection Process Overview
	 Garbage Collection-Related Data Management Views
	 Exploring the Garbage Collection Process
	 Summary

	Chapter 10: Deployment and Management
	 Hardware Considerations
	 CPU
	 I/O Subsystem
	 Memory
	Estimating the Amount of Memory for In-Memory OLTP

	 Administration and Monitoring Tasks
	 Limiting the Amount of Memory Available to In-Memory OLTP
	 Monitoring Memory Usage for Memory-Optimized Tables
	 Monitoring In-Memory OLTP Transactions
	 Collecting Execution Statistics for Natively Compiled Stored Procedures

	 Metadata Changes and Enhancements
	 Catalog Views
	 Data Management Views
	Object and Index Statistics
	Memory Usage Statistics
	Transaction Management
	Garbage Collection
	Checkpoint

	 Extended Events and Performance Counters

	 Summary

	Chapter 11: Utilizing In-Memory OLTP
	 Design Considerations for the Systems Utilizing In-Memory OLTP
	 Addressing In-Memory OLTP Limitations
	 8,060-Byte Maximum Row Size Limit
	 Lack of Uniqueness and Foreign Key Constraints
	 Case-Sensitivity Binary Collation for Indexed Columns

	 Thinking Outside the In-Memory Box
	 Importing Batches of Rows from Client Applications
	 Using Memory-Optimized Objects as Replacements for Temporary and Staging Tables
	 Using In-Memory OLTP as Session - or Object State-Store

	 Using In-Memory OLTP in Systems with Mixed Workloads
	 Summary

	Appendix A: Memory Pointers Management
	 Memory Pointers Management
	 Summary

	Appendix B: Page Splitting and Page Merging in Nonclustered Indexes
	 Nonclustered Indexes Internal Maintenance
	 Page Splitting
	 Page Merging

	 Summary

	Appendix C: Analyzing the States of Checkpoint File Pairs
	 Sys.db_dm_xtp_checkpoint_files View
	 The Lifetime of Checkpoint File Pairs
	 Summary

	Appendix D: In-Memory OLTP Migration Tools
	 Management Data Warehouse Enhancements
	 Memory Optimization and Native Compilation Advisors
	 Summary

	Index

