
www.allitebooks.com

http://www.allitebooks.org

Ext JS 4 Plugin and Extension
Development

A hands-on development of several Ext JS plugins
and extensions

Abdullah Al Mohammad

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Ext JS 4 Plugin and Extension Development

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Production Reference: 1130913

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-372-5

www.packtpub.com

Cover Image by Suresh Mogre (suresh.mogre.99@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Abdullah Al Mohammad

Reviewers
Adrian Teodorescu

Li Xudong

Acquisition Editor
Usha Iyer

Commissioning Editor
Neha Nagwekar

Technical Editors
Sampreshita Maheshwari

Menza Mathew

Copy Editor
Sayanee Mukherjee

Alfida Paiva

Adithi Shetty

Laxmi Subraniam

Project Coordinator
Joel Goveya

Proofreader
Lucy Rowland

Indexer
Mariammal Chettiyar

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Abdullah Al Mohammad lives in Rajshahi, Bangladesh. He is a senior freelance
software developer having over six years experience. He graduated from Rajshahi
University of Engineering and Technology with a B.Sc. in Computer Science and
Engineering and began working at HawarIT as a software engineer. He worked
there for four years and gained solid experience and then started his career as a
freelance developer.

I would like to thank my family, especially my mom and my elder
brother, who always provided me with proper guidelines, and my
wife for her constant support. I would also like to thank my ex-
colleagues from whom I've learned a lot and with whom I've enjoyed
working. I would also like to thank Sencha team members as it is
because of their hard work I got this loving framework.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Adrian Teodorescu is a professional software developer with more than 15 years'
experience. Since 2009, Adrian has been devoting most of his time to Sencha libraries,
and he is currently focused on building custom components for Ext JS and Sencha
Touch. He developed a pivot table for Ext JS, which you can test on his website:
www.mzsolutions.eu.

To all the people who believed in me.

Li Xudong is a front-end developer in Beijing, China, and is skilled in JavaScript,
CSS, HTML, NodeJS, and Python, and wants to make things better.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Plugins and Extensions	 5

What is a plugin?	 5
What is an extension?	 6
Differences between an extension and a plugin	 6
Choosing the best option	 7

By configuring an existing class	 7
By creating a subclass or an extension	 7
By creating a plugin	 8

Building an Ext JS plugin	 8
Building an Ext JS extension	 11
Summary	 14

Chapter 2: Ext JS-provided Plugins and Extensions	 15
The MultiSelect extension	 15
The ItemSelector extension	 17
The TreeViewDragDrop plugin	 19
The CheckColumn extension	 21
The CellEditing plugin	 23
The RowEditing plugin	 26
The LiveSearchGridPanel extension	 28
Summary	 30

Chapter 3: Ext JS Community Extensions and Plugins	 31
The Callout extension	 31
The SmartLegend extension	 33
The TitleChart extension	 34
The BoxSelect extension	 35
The MultiDate extension	 37
The MultiMonth extension	 38

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

The MultiSelect extension	 39
The TinyMCETextArea extension	 40
The FilterBar plugin	 41
The DragSelector plugin	 42
Summary	 43

Chapter 4: Labeled Spinner	 45
Functional requirements	 45
Planning and coding the labeled spinner	 46
Summary	 50

Chapter 5: Chart Downloader	 51
Functional requirements	 51
Planning and coding the chart downloader	 51
Summary	 57

Chapter 6: Grid Search	 59
Functional requirements	 59
Planning and coding the grid search	 60
Summary	 68

Chapter 7: Input Field with Clear Button	 69
Functional requirements	 69
Planning and coding of the clear button	 70
Summary	 79

Chapter 8: Message Bar	 81
Functional requirements	 81
Planning and coding the message bar	 82
Summary	 88

Chapter 9: Intuitive Multiselect Combobox	 89
Features of BoxSelect	 90
Using BoxSelect	 90

Basic configuration	 90
Templates	 91
Single value selection	 93
Remote query with unknown values	 94
Adding new records with autosuggestion	 95
BoxSelect specific configurations	 97
Value handling and events	 99

Summary	 99
Index	 101

www.allitebooks.com

http://www.allitebooks.org

Preface
In this modern world of JavaScript, Ext JS offers a vast collection of cross-browser
utilities, a great collection of UI widgets, charts, data object stores, and much
more. When developing an application, we mostly look for the best support for
the functionality and components that offer the framework. But we almost always
face the situation when the framework does not have the specific functionality
or component that we need. Fortunately, Ext JS has a powerful class system that
makes it easy to extend an existing functionality or component, or to build new
functionalities or components.

In this book, we start by providing a very clear concept of Ext JS plugins
and extensions with examples, going through several Ext JS libraries and
community-provided plugins and extensions and several hands-on
developments of real-life, useful Ext JS plugins and extensions.

What this book covers
Chapter 1, Plugins and Extensions, introduces and defines the Ext JS plugins and
extensions, the differences between them, and shows how to develop a plugin and
an extension with examples.

Chapter 2, Ext JS-provided Plugins and Extensions, introduces some of the very useful
and popular plugins and extensions available within the Ext JS library.

Chapter 3, Ext JS Community Extensions and Plugins, introduces some of the popular
Ext JS community extensions and plugins.

Chapter 4, Labeled Spinner, goes through hands-on development of an Ext JS extension
called Labeled spinner field. This chapter shows how we can extend the Ext.form.field.
Spinner class, and add functionality so that this extension can show a configurable
label beside the value within the spinner field and some more advanced features.

www.allitebooks.com

http://www.allitebooks.org

Preface

[2]

Chapter 5, Chart Downloader, goes through hands-on development of an Ext JS plugin,
which will help to download a chart as an image. This plugin will generate a button
that, when it is clicked, will perform the required functionality so that the plugin
container's chart item can be downloaded as an image.

Chapter 6, Grid Search, goes through hands-on development of an Ext JS plugin,
which will provide a search facility within a grid. This plugin was originally
developed by Ing. Jozef Sakáloš and is a very useful and popular plugin. In this
chapter, this plugin will be re-written for the Ext JS 4x Version.

Chapter 7, Input Field with ClearButton, goes through hands-on development
of Stephen Friedrich's ClearButton plugin. This plugin is targeted for the text
components that show a "clear" button over the text field. When the clear button is
clicked, the text field is set to empty.

Chapter 8, Message Bar, goes through hands-on development of an Ext JS extension,
which will be a fancy animated message bar. The message bar will provide the
facility of having a configurable duration timer for showing the message, a close
button, and also be able to customize the look, and can provide optional icons for
different types of states such as valid or invalid, or information during runtime.

Chapter 9, Intuitive Multi-select Combobox, explores an excellent Ext JS extension,
BoxSelect, which was originally developed by Kevin Vaughan. This extension is
really very useful and provides a friendlier combobox for multiple selections, which
creates easy and individually removable labels for each selection and lots more.

What you need for this book
The examples in this book use the Ext JS 4.1.3 SDK, available from the Ext JS website
at http://www.sencha.com/products/extjs/download.

Who this book is for
The book is aimed at web application developers who are familiar with the basics of
Ext JS and want to build custom Ext JS plugins and extensions. Experienced Ext JS
developers can also increase their skills in the field of Ext JS plugins and extensions.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[3]

Code words in text are shown as follows: "we will extend the Ext.form.field.Spinner
class which will add functionality".

A block of code is set as follows:

onSpinUp : function() {
 this.setValue(++this.value);
},

onSpinDown : function() {
 this.setValue(--this.value);
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "we can
find the Get value button within the window".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[4]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so,
you can save other readers from frustration and help us improve subsequent
versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once
your errata are verified, your submission will be accepted and the errata will be
uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

Plugins and Extensions
This chapter introduces and defines the Ext JS plugins and extensions, the differences
between them, and finally shows how to develop a plugin and an extension.

In this chapter we will cover:

•	 What a plugin is
•	 What an extension is
•	 Differences between an extension and a plugin, and choosing the best option
•	 Building an Ext JS plugin
•	 Building an Ext JS extension

In this modern world of JavaScript, Ext JS is the best JavaScript framework that
includes a vast collection of cross-browser utilities, UI widgets, charts, data object
stores, and much more.

When developing an application, we mostly look for the best functionality support
and components that offer it to the framework. But we usually face situations
wherein the framework lacks the specific functionality or component that we need.
Fortunately, Ext JS has a powerful class system that makes it easy to extend an
existing functionality or component, or build new ones altogether.

What is a plugin?
An Ext JS plugin is a class that is used to provide additional functionalities to an
existing component. Plugins must implement a method named init, which is
called by the component and is passed as the parameter at the initialization time, at
the beginning of the component's lifecycle. The destroy method is invoked by the
owning component of the plugin, at the time of the component's destruction. We
don't need to instantiate a plugin class. Plugins are inserted in to a component using
the plugin's configuration option for that component.

Plugins and Extensions

[6]

Plugins are used not only by components to which they are attached, but also by all
the subclasses derived from that component. We can also use multiple plugins in a
single component, but we need to be aware that using multiple plugins in a single
component should not let the plugins conflict with each other.

What is an extension?
An Ext JS extension is a derived class or a subclass of an existing Ext JS class, which
is designed to allow the inclusion of additional features. An Ext JS extension is
mostly used to add custom functionalities or modify the behavior of an existing Ext
JS class. An Ext JS extension can be as basic as the preconfigured Ext JS classes, which
basically supply a set of default values to an existing class configuration. This type of
extension is really helpful in situations where the required functionality is repeated
at several places. Let us assume we have an application where several Ext JS
windows have the same help button at the bottom bar. So we can create an extension
of the Ext JS window, where we can add this help button and can use this extension
window without providing the repeated code for the button. The advantage is that
we can easily maintain the code for the help button in one place and can get the
change in all places.

Differences between an extension and
a plugin
The Ext JS extensions and plugins are used for the same purpose; they add extended
functionality to Ext JS classes. But they mainly differ in terms of how they are written
and the reason for which they are used.

Ext JS extensions are extension classes or subclasses of Ext JS classes. To use these
extensions, we need to instantiate these extensions by creating an object. We can
provide additional properties, functions, and can even override any parent member
to change its behavior. The extensions are very tightly coupled to the classes from
which they are derived. The Ext JS extensions are mainly used when we need to
modify the behavior of an existing class or component, or we need to create a fully
new class or component.

Chapter 1

[7]

Ext JS plugins are also Ext JS classes, but they include the init function. To use
the plugins we don't need to directly instantiate these classes; instead, we need to
register the plugins in the plugins' configuration option within the component. After
adding, the options and functions will become available to the component itself.
The plugins are loosely coupled with the components they are plugged in, and they
can be easily detachable and interoperable with multiple components and derived
components. Plugins are used when we need to add features to a component. As
plugins must be attached to an existing component, creating a fully new component,
as done in the extensions, is not useful.

Choosing the best option
When we need to enhance or change the functionality of an existing Ext JS
component, we have several ways to do that, each of which has both advantages
and disadvantages.

Let us assume we need to develop an SMS text field having a simple functionality of
changing the text color to red whenever the text length exceeds the allocated length
for a message; this way the user can see that they are typing more than one message.
Now, this functionality can be implemented in three different ways in Ext JS, which
is discussed in the following sections.

By configuring an existing class
We can choose to apply configuration to the existing classes. For example, we can
create a text field by providing the required SMS functionality as a configuration
within the listener's configuration, or we can provide event handlers after the text
field is instantiated with the on method.

This is the easiest option when the same functionality is used only at a few places.
But as soon as the functionality is repeated at several places or in several situations,
code duplication may arise.

By creating a subclass or an extension
By creating an extension, we can easily solve the problem as discussed in the
previous section. So, if we create an extension for the SMS text field by extending
the Ext JS text field, we can use this extension at as many places as we need, and
can also create other extensions by using this extension. So, the code is centralized
for this extension, and changing one place can reflect in all the places where this
extension is used.

Plugins and Extensions

[8]

But there is a problem: when the same functionality is needed for SMS in other
subclasses of Ext JS text fields such as Ext JS text area field, we can't use the
developed SMS text field extension to take advantage of the SMS functionality. Also,
assume a situation where there are two subclasses of a base class, each of which
provides their own facility, and we want to use both the features on a single class,
then it is not possible in this implementation.

By creating a plugin
By creating a plugin, we can gain the maximum re-use of a code. As a plugin for one
class, it is usable by the subclasses of that class, and also, we have the flexibility to use
multiple plugins in a single component. This is the reason why if we create a plugin
for the SMS functionality we can use the SMS plugin both in the text field and in the
text area field. Also, we can use other plugins, including this SMS plugin, in the class.

Building an Ext JS plugin
Let us start developing an Ext JS plugin. In this section we will develop a simple
SMS plugin, targeting the Ext JS textareafield component. The feature we wish
to provide for the SMS functionality is that it should show the number of characters
and the number of messages on the bottom of the containing field. Also, the color
of the text of the message should change in order to notify the users whenever they
exceed the allowed length for a message.

Here, in the following code, the SMS plugin class has been created within the
Examples namespace of an Ext JS application:

Ext.define('Examples.plugin.Sms', {

 alias : 'plugin.sms',

 config : {

 perMessageLength : 160,
 defaultColor : '#000000',
 warningColor : '#ff0000'

 },

 constructor : function(cfg) {

 Ext.apply(this, cfg);

 this.callParent(arguments);
 },

 init : function(textField) {

Chapter 1

[9]

 this.textField = textField;
 if (!textField.rendered) {
 textField.on('afterrender', this.handleAfterRender, this);
 }
 else {
 this.handleAfterRender();
 }
 },
 handleAfterRender : function() {

 this.textField.on({
 scope : this,
 change : this.handleChange
 });

 var dom = Ext.get(this.textField.bodyEl.dom);

 Ext.DomHelper.append(dom, {
 tag : 'div',
 cls : 'plugin-sms'
 });

 },

 handleChange : function(field, newValue) {

 if (newValue.length > this.getPerMessageLength()) {
 field.setFieldStyle('color:' + this.getWarningColor());
 }
 else {
 field.setFieldStyle('color:' + this.getDefaultColor());
 }
 this.updateMessageInfo(newValue.length);

 },

 updateMessageInfo : function(length) {

 var tpl = ['Characters: {length}
', 'Messages:
 {messages}'].join('');
 var text = new Ext.XTemplate(tpl);
 var messages = parseInt(length / this.getPerMessageLength());

 if ((length / this.getPerMessageLength()) - messages > 0) {
 ++messages;
 }

 Ext.get(this.getInfoPanel()).update(text.apply({
 length : length,
 messages : messages
 }));

Plugins and Extensions

[10]

 },

 getInfoPanel : function() {

 return this.textField.el.select('.plugin-sms');

 }
});

Downloading the example code
You can download the example code files for all Packt
books you have purchased from your account at
http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly
to you.

In the preceding plugin class, you can see that within this class we have defined
a "must implemented" function called init. Within the init function, we check
whether the component, on which this plugin is attached, has rendered or not,
and then call the handleAfterRender function whenever the rendering is.
Within this function, a code is provided, such that when the change event fires
off the textareafield component, the handleChange function of this class
should get executed; simultaneously, create an HTML <div> element within the
handleAfterRender function, where we want to show the message information
regarding the characters and message counter. And the handleChange function is
the handler that calculates the message length in order to show the colored, warning
text, and call the updateMessageInfo function to update the message information
text for the characters length and the number of messages.

Now we can easily add the following plugin to the component:

{
 xtype : 'textareafield',
 plugins : ['sms']
}

Also, we can supply configuration options when we are inserting the plugin within
the plugins configuration option to override the default values, as follows:

plugins : [Ext.create('Examples.plugin.Sms', {
 perMessageLength : 20,
 defaultColor : '#0000ff',
 warningColor : "#00ff00"
})]

Chapter 1

[11]

Building an Ext JS extension
Let us start developing an Ext JS extension. In this section we will develop an SMS
extension that exactly satisfies the same requirements as the earlier-developed
SMS plugin.

We already know that an Ext JS extension is a derived class of existing Ext JS class,
we are going to extend the Ext JS's textarea field that facilitates for typing multiline
text and provides several event handling, rendering and other functionalities.

Here is the following code where we have created the Extension class under the
SMS view within the Examples namespace of an Ext JS application:

Ext.define('Examples.view.sms.Extension', {
 extend : 'Ext.form.field.TextArea',
 alias : 'widget.sms',

 config : {

 perMessageLength : 160,
 defaultColor : '#000000',
 warningColor : '#ff0000'

 },

 constructor : function(cfg) {

 Ext.apply(this, cfg);

 this.callParent(arguments);
 },

 afterRender : function() {

 this.on({
 scope : this,
 change : this.handleChange
 });

 var dom = Ext.get(this.bodyEl.dom);

 Ext.DomHelper.append(dom, {
 tag : 'div',
 cls : 'extension-sms'
 });

 },

 handleChange : function(field, newValue) {

www.allitebooks.com

http://www.allitebooks.org

Plugins and Extensions

[12]

 if (newValue.length > this.getPerMessageLength()) {
 field.setFieldStyle('color:' + this.getWarningColor());
 }
 else {
 field.setFieldStyle('color:' + this.getDefaultColor());
 }
 this.updateMessageInfo(newValue.length);

 },

 updateMessageInfo : function(length) {

 var tpl = ['Characters: {length}
', 'Messages:
 {messages}'].join('');
 var text = new Ext.XTemplate(tpl);
 var messages = parseInt(length / this.getPerMessageLength());

 if ((length / this.getPerMessageLength()) - messages > 0) {
 ++messages;
 }

 Ext.get(this.getInfoPanel()).update(text.apply({
 length : length,
 messages : messages
 }));

 },

 getInfoPanel : function() {

 return this.el.select('.extension-sms');

 }
});

As seen in the preceding code, the extend keyword is used as a class property to
extend the Ext.form.field.TextArea class in order to create the extension class.
Within the afterRender event handler, we provide a code so that when the change
event fires off the textarea field, we can execute the handleChange function of this
class and also create an Html <div> element within this afterRender event handler
where we want to show the message information regarding the characters counter
and message counter. And from this section, the logic to show the warning, message
character counter, and message counter is the same as we used in the SMS plugin.

Now we can easily create an instance of this extension:

Ext.create('Examples.view.sms.Extension');

Chapter 1

[13]

Also, we can supply configuration options when we are creating the instance of this
class to override the default values:

Ext.create('Examples.view.sms.Extension', {
 perMessageLength : 20,
 defaultColor : '#0000ff',
 warningColor : "#00ff00"
});

The following is the screenshot where we've used the SMS plugin and extension:

In the above screenshot we have created an Ext JS window and incorporated the SMS
extension and SMS plugin. As we have already discussed on the benefit of writing a
plugin, we can not only use the SMS plugin with text area field, but we can also use
it with text field.

Plugins and Extensions

[14]

Summary
We have learned from this chapter what a plugin and an extension are, the
differences between the two, the facilities they offer, how to use them, and take
decisions on choosing either an extension or a plugin for the needed functionality.
In this chapter we've also developed a simple SMS plugin and an SMS extension.

Ext JS-provided
Plugins and Extensions

This chapter introduces some of the very useful and popular plugins and extensions
available in the Ext JS library.

In this chapter we will cover:

•	 MultiSelect
•	 ItemSelector
•	 TreeViewDragDrop
•	 CheckColumn
•	 CellEditing
•	 RowEditing
•	 LiveSearchGridPanel

The MultiSelect extension
Ext.ux.form.MultiSelect is a form field type which allows the selection of one or
more items from a list. A list is populated using a data store. Items can be reordered
via the drag-and-drop method, if the ddReorder property of this class is set to true.

Ext JS-provided Plugins and Extensions

[16]

Here, in the following code, a form panel class has been defined, in which the
MultiSelect extension has been used as an item of this form:

Ext.define('Examples.view.multiselect.MultiSelectFormPanel', {
 extend : 'Ext.form.Panel',
 alias : 'widget.multiselectformpanel',
 requires : ['Ext.ux.form.MultiSelect'],

 constructor : function(config) {

 Ext.apply(this, {
 bodyPadding : 10,
 items : [{
 anchor : '100%',
 xtype : 'multiselect',
 fieldLabel : 'Multi Select',
 name : 'multiselect',
 store : Ext.create('Examples.store.DummyStore'),
 valueField : 'name',
 displayField : 'name',
 ddReorder : true,
 listeners : {
 change : {
 fn : this.getMultiSelectValue
 },
 scope : this
 }
 }]
 });
 this.callParent(arguments);

 },

 getMultiSelectValue : function() {
 var title = "Multiselect values",
 value = this.getForm().findField('multiselect').getValue();
 Ext.Msg.alert(title, value);
 }
});

Chapter 2

[17]

You can see in the preceding code that the ddReorder option is set to true in
order to reorder the items by the drag-and-drop method. And also, by using the
getMultiSelectValue function as the change event handler of the multiselect
field, a message, with the selected value of the multiselect field, can be displayed.

In the following screenshot, you can see the result of the MultiSelectFormPanel
class that we have defined, which is used within a window:

You can see that we can select multiple values, and as soon as we select the items
in the list, the selected values of the multiselect field is shown as the message, the
selected value of the multiselect field is shown as the message.

The available configuration options, properties, methods, and events for this
extension is documented at http://docs.sencha.com/extjs/4.1.3/#!/api/Ext.
ux.form.MultiSelect.

The ItemSelector extension
ItemSelector is a specialized MultiSelect field that renders as a pair with the
MultiSelect field; one with the available options and the other with the selected
options. A set of buttons in between, allows the items to be moved between the
fields and reordered within the selection. Also, they can be moved via
drag-and–drop method.

Here, in the following code, a form panel class is defined, in which we are using the
ItemSelector extension as an item of this form:

Ext.define('Examples.view.itemselector.ItemSelectorFormPanel', {
 extend : 'Ext.form.Panel',
 alias : 'widget.itemselectorformpanel',
 requires : ['Ext.ux.form.ItemSelector'],

Ext JS-provided Plugins and Extensions

[18]

 constructor : function(config) {

 Ext.apply(this, {
 bodyPadding : 10,
 items : [{
 anchor : '100%',
 xtype: 'itemselector',
 name: 'itemselector',
 store : Ext.create('Examples.store.DummyStore'),
 valueField : 'name',
 displayField : 'name',
 fromTitle: 'Available',
 toTitle: 'Selected'

 }]
 });
 this.callParent(arguments);

 }
});

You can see in the following screenshot that the ItemSelector extension is a pair of
MultiSelect field where one is loaded with data store:

Chapter 2

[19]

We can select the values from this available field and can move those values to the
Selected field. We can use the arrow buttons or drag-and-drop, to move the values
within those fields or reorder between those. If we use the getValue function of
this ItemSelector extension, it will return the collection of values available at the
Selected field.

The documentation for this extension is available at http://docs.sencha.com/
extjs/4.1.3/#!/api/Ext.ux.form.ItemSelector, where you will get all the
available configuration options, properties, methods, and events for this extension.

The TreeViewDragDrop plugin
This plugin provides a drag and/or drop functionality for a TreeView class. It
creates a specialized instance of DragZone, which knows how to drag out of a
TreeView class, and loads the data object which is passed on to the cooperating
methods of DragZone with the following properties:

•	 copy: Boolean
It is the value of the copy property of TreeView or true if the TreeView class
was configured with allowCopy set to true and the Ctrl key was pressed
when the drag operation was begun.

•	 view: TreeView
It is the source TreeView from which the drag originated.

•	 ddel: HtmlElement
It is the drag proxy element which moves with the mouse.

•	 item: HtmlElement
It is the TreeView node upon which the mousedown event was registered.

•	 records: Array

It is an array of models representing the selected data being dragged from
the source TreeView.

Ext JS-provided Plugins and Extensions

[20]

It also creates a specialized instance of Ext.dd.DropZone, which cooperates with
other DropZone classes. These DropZone classes are members of the same ddGroup,
which processes such data objects. Adding this plugin to a view means that two new
events may be fired from the client TreeView, before the drag-and-drop.

Note that the plugin must be added to the tree view, and not to the
tree panel. For example, by using viewConfig:

viewConfig: {
 plugins: { ptype: 'treeviewdragdrop' }
}

Here, in the following code snippet, a tree class has been defined, in which the
TreeViewDragDrop plugin is used to drag-and-drop the nodes:

Ext.define('Examples.view.treeviewdragdrop.TreeViewDragDropTree', {
 extend : 'Ext.tree.Panel',
 alias : 'widget.treeviewdragdroptree',
 requires : ['Examples.store.SampleTreeStore',
 'Ext.tree.plugin.TreeViewDragDrop'],

 constructor : function(config) {

 Ext.apply(this, {
 border : false,
 store : Ext.create('Examples.store.SampleTreeStore'),
 viewConfig : {
 plugins : [
 'treeviewdragdrop'
]
 },
 useArrows : true
 });

 this.callParent(arguments);

 }
});

Chapter 2

[21]

In the following screenshot you can see the result of the TreeViewDragDropTree
class that we have defined, which is used within a window:

You can see that when we are dragging the 09/29/2006 node, a visible floating
message stating that one node is selected, is shown, and then we can easily drop
that node within other nodes.

This plugin is well documented at http://docs.sencha.com/extjs/4.1.3/#!/
api/Ext.tree.plugin.TreeViewDragDrop, where you will get all the available
configuration options, properties, methods, and events for this plugin.

The CheckColumn extension
Ext.ux.CheckColumn is an extension of Ext.grid.column.Column that renders a
checkbox in each column cell. This checkbox toggles the truthiness of the associated
data field on a click. In addition to toggling a Boolean value within the record data,
this class adds or removes a CSS class x-grid-checked, on the <td> element based
on whether or not it is checked to alter the background image used for a column.

www.allitebooks.com

http://www.allitebooks.org

Ext JS-provided Plugins and Extensions

[22]

Here in the following code we are defining a grid class in which we are using the
CheckColumn extension to provide a checkbox within each cell of a column:

Ext.define('Examples.view.checkcolumn.CheckColumnGrid', {
 extend : 'Ext.grid.Panel',
 alias : 'widget.checkcolumngrid',
 requires : ['Examples.store.DummyStore',
 'Ext.ux.CheckColumn'],

 constructor : function(config) {

 Ext.apply(this, {
 border : false,
 store : Ext.create('Examples.store.DummyStore'),
 columns : [{
 header : 'Name',
 dataIndex : 'name',
 flex : 1
 },
 {
 header : 'Birth date',
 dataIndex : 'birthdate',
 renderer : Ext.util.Format.dateRenderer('m/d/Y')
 },
 {
 xtype : 'checkcolumn',
 header : 'Attending?',
 dataIndex : 'attending'
 }]

 });

 this.callParent(arguments);

 }
});

Chapter 2

[23]

Here, in the following screenshot, you can see the result of the CheckColumnGrid
class that we have defined which is used within a window:

You can see the Attending? column, where the CheckColumn extension has
generated the checkboxes that use the store values to determine whether the
checkbox should be checked or not.

The available configuration options, properties, methods, and events for this
extension is documented at http://docs.sencha.com/extjs/4.1.3/#!/api/Ext.
ux.CheckColumn.

The CellEditing plugin
The Ext.grid.plugin.CellEditing plugin injects editing at the cell level for a
Grid. The editor field can be a field instance or a field configuration which needs to
be provided within the editor configuration option within the columns definition.
With the CellEditing plugin we can edit a cell at any time. If an editor is not
specified for a particular column, that cell cannot be edited and it will be skipped
when activated via the mouse or the keyboard.

When we configure a column to use an editor for cell editing, we should choose an
appropriate field type to match the data type that this editor field will be editing.
For example, to edit a date value in the cell, it would be useful to specify Ext.form.
field.Date as the editor.

Ext JS-provided Plugins and Extensions

[24]

Here, in the following code we are defining a grid class in which we are using the
CellEditing plugin to edit the cells:

Ext.define('Examples.view.cellediting.CellEditingGrid', {
 extend : 'Ext.grid.Panel',
 alias : 'widget.celleditingGrid',
 requires : ['Examples.store.DummyStore',
 'Ext.grid.plugin.CellEditing',
 'Ext.form.field.Date'],

 constructor : function(config) {

 Ext.apply(this, {
 store : Ext.create('Examples.store.DummyStore'),
 columns : [{
 header : 'Name',
 dataIndex : 'name',
 flex : 1,
 editor : 'textfield'
 },
 {
 header : 'Birth date',
 dataIndex : 'birthdate',
 renderer : Ext.util.Format.dateRenderer('m/d/Y'),
 flex : 1,
 editor : {
 xtype : 'datefield',
 allowBlank : false
 }
 }],
 selType : 'cellmodel',
 plugins : [Ext.create('Ext.grid.plugin.CellEditing', {
 clicksToEdit : 1
 })]
 });

 this.callParent(arguments);

 }
});

Chapter 2

[25]

You can see in the code that in the columns definition, the editor configuration has
been provided with the textfield option to edit the Name cells and the datefield
option to edit the Birth date cells. To support cell editing, it's specified that the
grid should use the cellmodel option for selType, and create an instance of the
CellEditing plugin. The plugin has been configured to activate each editor after a
single click, by setting the clicksToEdit configuration option to 1. The value can be
set to 2 too, for the clicksToEdit option to activate the editor by double-click. There
is another configuration option called triggerEvent, which also triggers the editing,
and supercedes the clicksToEdit configuration option. The value for triggerEvent
option can be set to cellclick, celldblclick, cellfocus, and rowfocus.

Here, in the following screenshot you can see the result of the CellEditingGrid
class that we have defined which is used within a window:

You can see that a date field allows you to choose a date from a date picker as soon
as the cell is clicked.

This plugin is well documented at http://docs.sencha.com/extjs/4.1.3/#!/
api/Ext.grid.plugin.CellEditing, where you will get all the available
configuration options, properties, methods, and events for this plugin.

Ext JS-provided Plugins and Extensions

[26]

The RowEditing plugin
The Ext.grid.plugin.RowEditing plugin injects editing at the row level for a
Grid. When editing begins, a small floating dialog will be shown for the appropriate
row. Each editable column will show a field for editing. There is a button to save
or cancel all changes for the edit. The editor field can be a field instance or a field
configuration and we need to provide this within the editor configuration option
within the column definition. If an editor is not specified for a particular column, the
cell of that column will not be editable and the value of the cell will be displayed.

When we configure a column to use an editor for row editing, we should choose an
appropriate field type to match the data type that this editor field will be editing.
For example, to edit a date value in the cell, it would be useful to specify Ext.form.
field.Date as the editor.

Here, in the following code we are defining a grid class in which we are using the
RowEditing plugin to edit the row:

Ext.define('Examples.view.rowediting.RowEditingGrid',{
 extend : 'Ext.grid.Panel',
 alias : 'widget.roweditingGrid',
 requires : ['Examples.store.DummyStore',
 'Ext.grid.plugin.RowEditing',
 'Ext.form.field.Date'],

 constructor : function(config) {

 Ext.apply(this, {
 store : Ext.create('Examples.store.DummyStore'),
 columns : [{
 header : 'Name',
 dataIndex : 'name',
 flex : 1,
 editor : 'textfield'
 },
 {
 header : 'Birth date',
 dataIndex : 'birthdate',
 renderer : Ext.util.Format.dateRenderer('m/d/Y'),
 flex : 1,
 editor : {
 xtype : 'datefield',
 allowBlank : false
 }
 }],

Chapter 2

[27]

 selType : 'rowmodel',
 plugins : [Ext.create('Ext.grid.plugin.RowEditing',{
 clicksToEdit : 1
 })]
 });

 this.callParent(arguments);

 }
});

You can see in the code that in the columns definition, the editor configuration has
been provided with the textfield option to edit the Name cells and the datefield
option to edit the Birth date cells. To support row editing, it's specified that the grid
should use rowmodel as the value for the selType configuration. An instance of the
RowEditing plugin has been created, which has been configured to activate each
editor after a single click.

In the following screenshot you can see the result of the RowEditing grid class that
we have defined which is used within a window:

You can see that a floating dialog is showing just on top of the editing row with the
provided editors including the Update and Cancel buttons.

The available configuration options, properties, methods, and events for this
plug-in is documented at http://docs.sencha.com/extjs/4.1.3/#!/api/Ext.
grid.plugin.RowEditing.

Ext JS-provided Plugins and Extensions

[28]

The LiveSearchGridPanel extension
Ext.ux.LiveSearchGridPanel is a GridPanel class that supports live search.

Here, in the following code, a grid panel class is defined by extending the
LiveSearchGridPanel extension:

Ext.define('Examples.view.livesearch.LiveSearchGrid', {
 extend : 'Ext.ux.LiveSearchGridPanel',
 alias : 'widget.livesearchgrid',
 requires : ['Examples.store.DummyStore'],

 constructor : function(config) {

 Ext.apply(this, {
 border : false,
 store : Ext.create('Examples.store.DummyStore'),
 columns : [{
 header : 'Name',
 dataIndex : 'name',
 flex : 1
 },
 {
 header : 'Birth date',
 dataIndex : 'birthdate',
 renderer : Ext.util.Format.dateRenderer('m/d/Y'),
 flex : 1
 }]
 });

 this.callParent(arguments);

 }
});

Chapter 2

[29]

In the following screenshot you can see the result of the LiveSearchGrid class that
we have defined, which is used within a window:

You can see that a grid panel with a Search input box, previous and next buttons,
Regular expression, and Case sensitive options, and a status bar for proper
messaging is generated. This extension, GridPanel, highlights the matched text and
selects the first row of the matched text rows. Then we can also use the previous and
next buttons to move the selection between those rows.

The documentation for this extension is available at http://docs.sencha.com/
extjs/4.1.3/#!/api/Ext.ux.LiveSearchGridPanel, where all the available
configuration options, properties, methods, and events for this extension
is documented.

Ext JS-provided Plugins and Extensions

[30]

Summary
Ext JS is really a rich library that provides several ready-to-use, useful extensions
and plugins. In this chapter we went through some of those popular extensions and
plugins, and learned how to use them.

In the next chapter we will go through hands-on development of an extension called
Labeled Spinner by extending the Ext.form.field.Spinner class.

Ext JS Community
Extensions and Plugins

The Ext JS Community has a rich collection of extensions and plugins. This chapter
introduces us to some of the popular extensions and plugins of Ext JS Community.

In this chapter we will cover:

•	 Callout
•	 SmartLegend
•	 TitleChart
•	 BoxSelect
•	 MultiDate
•	 MultiMonth
•	 MultiSelect
•	 TinyMCETextArea
•	 FilterBar
•	 DragSelector

The Callout extension
Callout is an extension class, which is a CSS styleable floating callout container with
an optional arrow, developed by John Yanarella. It is useful for creating hint overlays
and interactive callout windows/popovers.

www.allitebooks.com

http://www.allitebooks.org

Ext JS Community Extensions and Plugins

[32]

We can see a callout popover in the following screenshot:

An Ext.ux.callout.Callout extension can be easily configured to:

•	 Show its associated callout arrow at various locations, including top, bottom,
left, right, top-left, top-right, bottom-left, bottom-right, left-top, left-bottom,
right-top, right-bottom

•	 Position itself relative to a target Ext.Element or Ext.Component, and it will
maintain that relative position when that target moves or the browser resizes

•	 Automatically hides itself in response to mouse clicks outside the
callout bounds

•	 Automatically dismisses itself after a configurable delay
•	 Fade in when shown, and fade out when hidden

A live demo is available for this extension at http://lab.codecatalyst.com/Ext.
ux.callout.Callout. This extension is licensed under Massachusetts Institute
of Technology (MIT). The download link, details of the copyright, and license
for this extension are available at https://github.com/CodeCatalyst/Ext.
ux.callout.Callout.

Chapter 3

[33]

The SmartLegend extension
SmartLegend is an extension which implements the chart legend with a more
advanced behavior, developed by Alexander Tokarev. This extension class is
basically the same as Ext.chart.Legend, except that some of its methods were
refactored for a better re-use.

Following is the screenshot of a chart where the SmartLegend extension is used:

The following are some of the features of SmartLegend:

•	 The sizes of legend items are adjusted to the font size
•	 Legend items can be configured to display any particular text, not only fixed

series titles or values
•	 Legend draws itself in several rows or columns, depending on the orientation

Ext JS Community Extensions and Plugins

[34]

A live demo for this extension is located at http://nohuhu.org/demos/demo_
smartlegend.html.This extension is licensed under GPLv3. The download
link, details of the copyright, and license for this extension are available at
https://github.com/nohuhu/Ext.ux.chart.SmartLegend.

The TitleChart extension
This class is an extension for Ext.chart.Chart that implements a titled chart,
which was developed by Alexander Tokarev. By using this extension we can easily
configure our chart title.

Following is the screenshot of a chart where the TitleChart extension is used:

Chapter 3

[35]

The available configuration options are:

•	 titleLocation: left, right, top or bottom. The title text will be rotated
accordingly when location is right or left.

•	 titleFont: The font properties for chart title, in CSS format.
•	 titlePadding: The space between chart canvas edge and title, in pixels.
•	 titleMargin: The space between title and actual chart area.

A live demo for this extension is located at http://nohuhu.org/demos/
demo_titlechart.html. This extension is licensed under GPLv3. The download
link, details of the copyright, and license for this extension are available at
https://github.com/nohuhu/Ext.ux.chart.TitleChart.

The BoxSelect extension
Ext.ux.form.field.BoxSelect is a combobox, extended for more intuitive
multiselect capabilities using individually labeled selected items, developed by
Kevin Vaughan.

In the following screenshot you can see how multiple items are selected within a
BoxSelect combobox:

Ext JS Community Extensions and Plugins

[36]

In the following screenshot you can see how the selected values and the dropdowns
are both configured via templates:

The following are some of the features of BoxSelect:

•	 Individually removable labeled items for each selected value.
•	 Customizable item templates, in addition to combobox's support of

customizable drop-down list templates.
•	 Keyboard-based selection and navigation of selected values (left/right, Shift,

Ctrl + A, Backspace, Delete).
•	 On-demand loading of values from remote stores when an unknown value is

set, that is, setting queryMode = 'remote' and forceSelection = true.
•	 Creation of new value records for forceSelection = false.
•	 Configurable pinning of combo pick list for multiSelect = true.
•	 Configurable rendering of labeled items (auto-sized or stacked).
•	 As BoxSelect extends ComboBox, most (if not all) of the functionality and

configuration options of ComboBox should work as expected.

This extension is licensed under MIT. Examples and reference for this extension are
available at http://kveeiv.github.io/extjs-boxselect/examples/boxselect.
html. The download link, details of the copyright, and license for this extension are
available at https://github.com/kveeiv/extjs-boxselect.

Chapter 3

[37]

The MultiDate extension
MultiDate is a form field extension, which is extended from Ext.form.
field.Date, which allows entering of multiple dates and date ranges with
flexible format-matching and powerful drop-down picker, developed by
Alexander Tokarev.

Following is the screenshot of a MultiDate field:

The following are some of the features for MultiDate:

•	 No limit for number of dates or date ranges.
•	 Separate settings for input format, display format, and submit format of

range values.
•	 Fully themed with CSS sheet provided.
•	 Backwards compatibility: multivalue input can be turned off by setting one

option; in this case, behavior is similar to the stockDate field.
•	 Support for configurable work weekdays selection.
•	 Press Space in picker to select/unselect single day.
•	 Shift + Space or Shift + click in picker selects the work week.
•	 Ctrl + Backspace in picker clears the selection.
•	 Ctrl + click in picker selects the freeform ranges: Ctrl + click once to set the

start date and Ctrl + click again to set the end date and select all dates in
between. This works across several months/years too.

Ext JS Community Extensions and Plugins

[38]

•	 Ctrl + Shift + click in picker selects freeform ranges but includes only
work days.

•	 Press Enter in picker to confirm the selection.
•	 Press Esc in picker to cancel the selection.

A live demo for this extension is located at http://nohuhu.org/demos/
demo_uxmultidate.html. This extension is licensed under GPLv3. The download
link, details of the copyright, and license for this extension are available at
https://github.com/nohuhu/Ext.ux.form.field.MultiDate.

The MultiMonth extension
MultiMonth is a form field extension that allows entering month ranges, with
flexible format matching and customized drop-down picker, developed by
Alexander Tokarev.

Following is the screenshot of a MultiMonth field:

The following are some of the features of MultiMonth:

•	 Allows the entering of starting and ending months
•	 Separate settings for input format, display, and submit formats
•	 Fully themed with CSS sheet provided
•	 Switched behavior: set multiValue property to false and the field will

allow only single month to be entered

Chapter 3

[39]

A live demo for this extension is located at http://nohuhu.org/demos/
demo_uxmultimonth.html. This extension is licensed under GPLv3. The download
link, details of the copyright, and license for this extension are available at
https://github.com/nohuhu/Ext.ux.form.field.MultiDate.

The MultiSelect extension
MultiSelect is a form field for entering the values and value ranges of arbitrary
type, with drop-down picker featuring live search with smart matching, visual
selection, and more, developed by Alexander Tokarev.

The following is the screenshot of a MultiSelect field:

This extension implements a form field that allows the entering of multiple values
and value ranges of arbitrary type, with drop-down picker that provides live search
and visual item selection.

Following are some of the features of MultiSelect:

•	 No limit for the number of items and item ranges.
•	 Separate settings for input format, display format, and submit format of

single and range values.
•	 Fully themed form field with CSS sheet provided.
•	 Two modes of operation: multiple values and single value.

Ext JS Community Extensions and Plugins

[40]

•	 Drop-down picker with live search and smart matching.
•	 Optimized for large datasets.
•	 Accepts preconfigured stores with the list of values to display.
•	 Supports lazy store population; data is loaded only when a picker

is activated.
•	 Configurable column definition; no arbitrary limit on number and width

of columns.
•	 Press Enter in picker or click on the plus icon to select single items.
•	 Press Tab to select a list and press Enter, or click on the minus icon to

unselect an item.
•	 Ctrl + Enter in picker confirms a selection.
•	 Ctrl + Backspace in picker clears a selection.
•	 Esc in picker to cancel a selection.

A live demo for this extension is located at http://nohuhu.org/demos/demo_
uxmultiselect.html. This extension is licensed under GPLv3. The download
link, details of the copyright, and license for this extension are available at
https://github.com/nohuhu/Ext.ux.form.field.MultiSelect.

The TinyMCETextArea extension
TinyMCETextArea is an Ext JS text area with integrated TinyMCE WYSIWYG Editor,
developed by Oleg Schildt.

The following is the screenshot of a TinyMCETextArea text area:

Chapter 3

[41]

A live demo for this extension is located at http://www.point-constructor.
com/tinyta_demo. This extension is licensed under GPLv3. You can download
this extension at https://market.sencha.com/extensions/ext-ux-form-
tinymcetextarea/versions/2.6/download.

The FilterBar plugin
FilterBar is a plugin that enables filters on the grid headers, developed
by ldonofrio.

The following is the screenshot of a grid where the FilterBar plugin is used:

Here are some of the features of the FilterBar plugin:

•	 Allows preconfigured filter's types and auto-based on-store field data types
•	 Conditional operator selection for better query
•	 Autogenerated stores for combo and list filters (local collect or server in

autoStoresRemoteProperty response property)
•	 Supports the clearAll and showHide buttons rendered in an action column

or in new generated small column

www.allitebooks.com

http://www.allitebooks.org

Ext JS Community Extensions and Plugins

[42]

This plugin is licensed under GPLv3. The download link for this plugin is available
at https://market.sencha.com/extensions/ext-ux-grid-filterbar/
versions/218/download.

The DragSelector plugin
DragSelector is a plugin that helps selecting grid rows by dragging the mouse over
the rows, developed by Harald Hanek. The initial developer of the original code is
Claudio Walser. This plugin is really helpful as it supports selecting multiple rows
very quickly. It supports the selection of grid rows in the following ways:

•	 Selecting by dragging over the rows
•	 Press the Ctrl key and select by dragging, keeping the existing selections
•	 Press the Ctrl key and deselect the existing selections, by intersecting the

existing selections by dragging the mouse.

In the following screenshot, we can see the DragSelector plugin in action:

Chapter 3

[43]

A live demo for this plugin is located at http://harrydeluxe.github.io/
extjs-ux/example/grid/dragselector.html. This plugin is licensed under
LGPLv3. You can download this plugin at https://github.com/harrydeluxe/
extjs-ux/blob/master/ux/grid/plugin/DragSelector.js.

Summary
In this chapter, we went through some of the popular Ext JS community extensions
and plugins. There are a lot of Ext JS community extensions and plugins, out of
which we may find our required ones; and day by day the community extensions
and plugins are growing.

Labeled Spinner
In this chapter we are going to develop an Ext JS extension called Labeled spinner.
To develop this extension, we will extend the Ext.form.field.Spinner class, which
will add a functionality that will show a configurable label besides the value within
the spinner field, and some more advanced features.

In this chapter we will cover:

•	 Functional requirements
•	 Planning and coding the labeled spinner

Functional requirements
We want to develop a field for numeric values which will provide the facility of
having up/down spinner buttons to increase or decrease the numeric values.
Also, a user can edit the value within the field. There will also be a configuration
option to show a user-defined label as a unit name just beside the numeric value
within the field. There will also be options to get the value from this field, which will
be just the numeric value and also the numeric value including the unit name exactly
as it shows within the field.

Labeled Spinner

[46]

Planning and coding the labeled spinner
To meet the functional requirements, we will create an extension class by extending
the Ext JS's Ext.form.field.Spinner class from which we will get most of
the facilities that we need to provide. We need to implement the onSpinUp and
onSpinDown functions of the Ext.form.field.Spinner class to handle the spinner
button click event to provide our logic to increase or decrease the values. By default,
pressing the up and down arrow keys will also trigger the onSpinUp and onSpinDown
methods. Now, let us start coding:

Ext.define('Examples.ux.LabeledSpinner', {
 extend : 'Ext.form.field.Spinner',
 alias : 'widget.labeledspinner',

 onSpinUp : function() {
 this.setValue(++this.value);
 },

 onSpinDown : function() {
 this.setValue(--this.value);
 }
});

And now we have a working extension that can increase or decrease its value. Here
is the screenshot where we used this extension:

You can see that we now have a field with up/down spinner buttons with which we
can increase or decrease the value by 1.

Chapter 4

[47]

Now, we will add a functionality that this field can show the unit label text just
beside the numeric value. We will define the setValue function from which we can
set the value including the label unit. We will also add some config properties to
this class so that we can set the values as we needed:

Ext.define('Examples.ux.LabeledSpinner', {
 extend : 'Ext.form.field.Spinner',
 alias : 'widget.labeledspinner',

 config : {
 labelText : ",
 minValue: 0,
 value: 0
 },

 onSpinUp : function() {
 var value = parseFloat(this.getValue().split(' ')[0]);
 this.setValue(++value);
 },

 onSpinDown : function() {
 var value = parseFloat(this.getValue().split(' ')[0]);
 this.setValue(--value);
 },

 setValue : function(value) {
 value = (value ||this.minValue) + ' ' +this.getLabelText();
 this.callParent(arguments);
 }
});

In the following screenshot, we can see the label just beside the numeric value within
the field:

Labeled Spinner

[48]

Within the code, you can find that we have provided some config options,
added the setValue function, and modified a little of the onSpinUp and
onSpinDown functions.

Now, we will define the getValue function so that we can get the numeric value from
this field and define the getLabeledValue function that will return the numeric value,
including the unit label, exactly as it shows on the field. We will also define the onBlur
handler to check and fix it with a minimum value, if there is any wrong input and will
do some changes on the existing code. Here is the complete code for our extension:

Ext.define('Examples.ux.LabeledSpinner', {
 extend : 'Ext.form.field.Spinner',
 alias : 'widget.labeledspinner',

 config : {
 labelText : '',
 minValue : 0,
 maxValue : Number.MAX_VALUE,
 step : 1,
 value : 0
 },

 onBlur : function() {
 if (isNaN(this.getValue())) {
 this.setValue(this.getLabeledValue(this.getMinValue()));
 }
 else{
 this.setValue(this.getLabeledValue());
 }
 },

 onSpinUp : function() {
 var val = this.getValue() || this.getMinValue();
 this.setChangedValue(val + this.step);
 },

 onSpinDown : function() {
 var val = this.getValue() || this.getMinValue();

 this.setChangedValue(val - this.step);
 },

 getLabeledValue : function(value) {
 value = Ext.isDefined(value) ? value : this.getValue();
 if (value.toString().indexOf(this.getLabelText()) == -1) {
 return value + ' ' + this.getLabelText();
 } else {
 return value;
 }

Chapter 4

[49]

 },

 setValue : function(value) {
 if(!this.readOnly){
 value = this.getLabeledValue(value);
 }
 this.callParent(arguments);
 },

 getValue : function() {
 var me = this,
 val = me.rawToValue(me.processRawValue(me.getRawValue()));

 val = parseFloat(val.split(' ')[0]);
 return val;
 },

 setChangedValue : function(value){
 if(!isNaN(value)){
 this.setValue(Ext.Number.constrain(value,
 this.getMinValue(), this.getMaxValue()));
 }
 }

});

And following is the screenshot of our working LabeledSpinner extension:

In the preceding screenshot, we can find the Get value button within the window.
When this button is clicked, we print the values on the window by calling both the
getValue and getLabeledValue functions.

Labeled Spinner

[50]

Summary
In this chapter, we've developed a new component by extending Ext JS's existing
class and we've learned how we can easily create Ext JS extensions and inject our
required functionality. In the next chapter, we will develop an Ext JS plugin called
the Chart download, which generates a button on the container's toolbar and can
download the container's chart item as an image when this button is clicked.

Chart Downloader
In this chapter we are going to develop an Ext JS plugin, which will help us to
download a chart as an image. This plugin will generate a button and when the
button is clicked, it will perform the required functionality, such that the plugin
container's chart item will be downloaded as an image.

In this chapter we will cover:

•	 Functional requirements
•	 Planning and coding the chart downloader

Functional requirements
We want to develop a plugin that will facilitate downloading a chart as an image.
The plugin will generate a button at the container's bottom toolbar. If the container
does not contain any toolbar at the bottom, this plugin should create a bottom
toolbar for the container and then it will generate the button within the toolbar.
When this button is clicked, the plugin will search for a chart item within the
container and will download the chart as an image.

Planning and coding the chart
downloader
The plugin's container may or may not have the bottom bar, so we need to search for
the bottom bar within the container. If found, we will use that, otherwise we need to
create the bottom bar, and then we can add the download button to that bottom bar.

www.allitebooks.com

http://www.allitebooks.org

Chart Downloader

[52]

Now let us start coding for the plugin.

Ext.define('Examples.plugin.ChartDownload', {

 alias : 'plugin.chartdownload',

 config : {
 chartXtype: 'chart',
 downloadButtonText: 'Download as image',
 chartNotFoundErrorMsg: 'No valid chart type found!',
 errorText: 'Error'
 }
…

Here we are providing a configuration option chartXtype so that we can configure
this plugin with a proper xtype of the chart, which we are targeting to download as
an image. Now let us define the required init function for this plugin:

init : function(container) {

 this.container = container;

 if (!container.rendered) {
 container.on('afterrender', this.handleAfterRender, this);
 } else {
 this.handleAfterRender();
 }

}

And now let us define the handleAfterRender function:
handleAfterRender : function(container) {

 this.chart = this.container.down(this.getChartXtype());

 if(!Ext.isDefined(this.chart) || this.chart ==null){
 Ext.Function.defer(function(){
 this.showErrorMessage({
 title: this.getErrorText(),
 text: this.getChartNotFoundErrorMsg()
 })
 }, 1000, this);
 }

 else{

 this.addDownloadButton();
 }

},

Chapter 5

[53]

In this function, we are trying to get the chart component, and if the chart component
isn't found, we will show an error message. And if the chart component is found, we
will call the addDownloadButton function, which will create and add the download
button. Now let us define the addDownloadButton function:

addDownloadButton: function(){

 var toolbar = this.getToolbar(),
 itemsToAdd = [],
 placeholder = '->',
 button = {
 iconCls : 'icon-export',
 text : this.getDownloadButtonText(),
 handler: this.saveChart,
 scope : this
 };

 if(toolbar.items.items.length === 0){
 itemsToAdd.push(placeholder);
 }

 itemsToAdd.push(button);
 toolbar.add(itemsToAdd);
}

In this function, first we are trying to get the bottom toolbar by calling the
getToolbar function and then adding the download button to that toolbar.
Now let us define the getToolbar function:

getToolbar: function(){

 var dockedItems = this.container.getDockedItems(),
 toolbar = null,
 hasToolbar = false;

 if(dockedItems.length>0){
 Ext.each(dockedItems, function(item){
 if(item.xtype ==='toolbar' && item.dock == 'bottom'){
 hasToolbar = true;
 toolbar = item;
 return false;
 }
 });
 }

Chart Downloader

[54]

 if(!hasToolbar){
 toolbar = this.container.addDocked({
 xtype: 'toolbar',
 dock: 'bottom'
 })[0];
 }

 return toolbar;

}

You can see that in this function we are trying to get the container's bottom toolbar
and if the toolbar is found, we are using that, and if not found, we are creating a new
bottom toolbar. Now let us define the saveChart function, which will be called by
clicking on the Download button:

saveChart: function(){

 this.chart.save({
 type : 'image/png'
 });

}

Here we use the plugin within a window:

Ext.define('Examples.view.chartdownloadplugin.
ChartDownloadPluginWindow', {
 extend : 'Ext.Window',
 alias : 'widget.chartdownloadpluginwindow',
 requires : ['Examples.view.chartdownloadplugin.Chart',
 'Examples.plugin.ChartDownload'],

 constructor : function(config) {

 Ext.apply(this, {
 modal : true,
 width : 400,
 height : 300,
 title : 'ChartDownloadPlugin',
 layout : {
 type:'fit'
 },
 plugins:['chartdownload'],
 items : [Ext.create('Examples.view.chartdownloadplugin.
Chart')],
 buttons : [{
 text : 'OK',
 handler : function() {

Chapter 5

[55]

 this.close();
 },
 scope : this
 }]
 });
 this.callParent(arguments);
 }
});

And the following screenshot is the output where we used our chart
downloader plugin:

You can see that the Download as image button is generated at the window's bottom
bar, and users can download the image by clicking on this button.

Now let us test this with another container that has no bottom bar defined:

Ext.define('Examples.view.chartdownloadplugin.
ChartDownloadPluginWindow', {
 extend : 'Ext.Window',
 alias : 'widget.chartdownloadpluginwindow',
 requires : ['Examples.view.chartdownloadplugin.Chart',
 'Examples.plugin.ChartDownload'],

 constructor : function(config) {

Chart Downloader

[56]

 Ext.apply(this, {
 modal : true,
 width : 400,
 height : 300,
 title : 'ChartDownloadPlugin',
 layout : {
 type:'fit'
 },
 items : [{
 xtype:'panel',
 plugins:['chartdownload'],
 layout:'fit',
 items:[Ext.create('Examples.view.chartdownloadplugin.Chart')]
 }],
 buttons : [{
 text : 'OK',
 handler : function() {
 this.close();
 },
 scope : this
 }]
 });
 this.callParent(arguments);

 }
});

And the following screenshot is the output:

You can see that the download button is now generated within the nested panel's
bottom bar.

Chapter 5

[57]

Summary
In this chapter we've developed an Ext JS plugin that can download a chart as an
image. Through this chapter we've learned the way we can create the Ext JS plugins
and how easily we can inject functionality through the Ext JS plugins. In the next
chapter, we will go through a very popular plugin for grid searching, where users
can select or deselect the grid columns on which they want to apply the search.

Grid Search
In this chapter we are going to develop an Ext JS plugin, which will provide a search
facility within a grid. This plugin was originally developed by Ing. Jozef Sakáloš
and it is really useful and popular plugin. We will rewrite this plugin for the
Ext JS 4x Version.

In this chapter we will cover:

•	 Functional requirements
•	 Planning and coding the grid search

Functional requirements
We want to develop a plugin, which will help users to search within a grid panel
through a text field. The plugin will also offer users the option to select or deselect
the columns of the grid on which they want to apply the searching. There will be a
clear button to clear the search text. There will be a configuration option where users
can set the number of characters they want in order to trigger the search by typing
within the search textbox.

Grid Search

[60]

Planning and coding the grid search
To develop the plugin, we will create a menu where the user can select and deselect
the columns of the grid, a text field where the user can write their search query, and
a clear button that will help to clear the search query. At first we will develop the
required UI fields and then we will add the corresponding functionality to those
fields. Now let us start coding:

Ext.define("Examples.plugin.GridSearch", {

 extend : 'Ext.util.Observable',
 alias : 'plugin.gridsearch',

 config : {

 iconCls : 'icon-zoom',
 checkIndexes : "all",
 mode : 'local',
 minChars : 1,
 width : 100,
 searchText : 'Search',
 selectAllText : 'Select all',
 position: 'bottom' ,
 paramNames: {
 fields:'fields'
 ,query:'query'
 }

 },

 init : function(cmp) {

 this.grid = cmp.view.up('gridpanel');

 if (this.grid.rendered)
 this.onRender();
 else {
 this.grid.on('render', this.onRender, this);
 }

 },
…

Chapter 6

[61]

You can see that we have defined several configuration options and also the required
init function for the plugin. Now let us define the onRender function:

onRender : function() {

 var tb = this.getToolbar();
 this.menu = new Ext.menu.Menu();

 this.field = Ext.create("Ext.form.field.Trigger", {
 width : this.width,
 selectOnFocus : undefined === this.selectOnFocus ?
 true : this.selectOnFocus,
 triggerCls : 'x-form-clear-trigger',
 minLength : this.minLength
 });

 tb.add('->', {
 text : this.searchText,
 menu : this.menu,
 iconCls : this.iconCls
 }, this.field);

}

In this function, first we are trying to get the toolbar by calling the getToolbar
function as we need to render our plugin UI on the toolbar. Then we are creating
the menu field, which will hold the column selections, and then the search field.
After this, we will add the menu field and the search field to that toolbar. Now let us
define the getToolbar function:

getToolbar: function(){

 var me = this,
 dockedItems = this.grid.getDockedItems(),
 toolbar = null,
 hasToolbar = false;

 if(dockedItems.length>0){
 Ext.each(dockedItems, function(item){
 if(item.xtype ==='toolbar' && item.dock == me.position){
 hasToolbar = true;
 toolbar = item;
 return false;
 }
 });

www.allitebooks.com

http://www.allitebooks.org

Grid Search

[62]

 }

 if(!hasToolbar){
 toolbar = this.grid.addDocked({
 xtype: 'toolbar',
 dock: this.position
 })[0];
 }

 return toolbar;

}

In this function we are looking for a toolbar item, which is docked at the location
defined in the position configuration option. We will render our plugin UI on this
returned toolbar.

Now let us use this plugin within a grid and the output of the plugin should look
like the following screenshot:

Chapter 6

[63]

So, now we have our plugin looking exactly the same as the requirement. Now let us
start adding functionality. First let us modify the onRender function of our
plugin code:

this.field = Ext.create("Ext.form.field.Trigger", {
 width : this.width,
 selectOnFocus : undefined === this.selectOnFocus ?
 true : this.selectOnFocus,
 triggerCls : 'x-form-clear-trigger',
 onTriggerClick : Ext.bind(this.onTriggerClear, this),
 minLength : this.minLength
});

You can see that we have provided the onTriggerClear handler for the
onTriggerClick event to clear the search. We need to add and handle some
keyboard events: pressing the Enter key will trigger searching and pressing the
Esc key will trigger clearing the search. So, we need to add the following code after
defining the trigger field:

this.field.on('render', function() {

 if (this.minChars) {
 this.field.el.on({
 scope : this,
 buffer : 300,
 keyup : this.onKeyUp
 });
 }

 var map = new Ext.KeyMap(this.field.el, [{
 key : Ext.EventObject.ENTER,
 scope : this,
 fn : this.onTriggerSearch
 }, {
 key : Ext.EventObject.ESC,
 scope : this,
 fn : this.onTriggerClear
 }]);
 map.stopEvent = true;
}, this, {
 single : true
});

Grid Search

[64]

Now, we need to prepare the menu to load the column names and we will call
the initMenu function to do that. And that's all we needed to do within the
onRender function.

Now let us define the onKeyUp handler:

onKeyUp : function(e) {

 if (e.isNavKeyPress()) {
 return;
 }

 var length = this.field.getValue().toString().length;
 if (0 === length || this.minChars <= length) {
 this.onTriggerSearch();
 }

}

Let us go ahead with defining the initMenu function:

initMenu : function() {

 var menu = this.menu;
 menu.removeAll();

 menu.add(new Ext.menu.CheckItem({
 text : this.selectAllText,
 checked : !(this.checkIndexes instanceof Array),
 hideOnClick : false,
 handler : function(item) {
 var checked = item.checked;
 menu.items.each(function(i) {
 if (item !== i && i.setChecked && !i.disabled) {
 i.setChecked(checked);
 }
 });
 }
 }), '-');

 var cm = this.grid.headerCt.items.items;

 var group = undefined;
 Ext.each(cm, function(item) {
 var config = item.initialConfig;

Chapter 6

[65]

 var disable = false;

 if (config.header && config.dataIndex) {
 Ext.each(this.disableIndexes, function(item) {
 disable = disable ? disable :
 item === config.dataIndex;
 });
 if (!disable) {
 menu.add(new Ext.menu.CheckItem({
 text : config.header,
 hideOnClick : false,
 group : group,
 checked : 'all' === this.checkIndexes,
 dataIndex : config.dataIndex
 }));
 }
 }
 }, this);

 if (this.checkIndexes instanceof Array) {
 Ext.each(this.checkIndexes, function(di) {
 var item = menu.items.find(function(itm) {
 return itm.dataIndex === di;
 });
 if (item) {
 item.setChecked(true, true);
 }
 }, this);
 }

}

You can see how we are preparing the menu for selecting and deselecting the
columns in the preceding initMenu function. Now let us define the onTriggerClear
function, which is responsible for clearing the search query:

onTriggerClear : function() {

 if (this.field.getValue()) {
 this.field.reset();
 this.field.focus();
 this.onTriggerSearch();
 }

}

Grid Search

[66]

Next we define the onTriggerSearch function:

onTriggerSearch : function() {

 if (!this.field.isValid()) {
 return;
 }
 var val = this.field.getValue(),
 store = this.grid.store,
 proxy = store.getProxy();
…

We need to check against the value set for the mode configuration option and need
to provide separate logic if the value is set to 'local' or if the proxy of the store is a
server proxy. Now we need to add the following code within the onTriggerSearch
function when the mode is set with 'local':

if ('local' === this.mode) {
 store.clearFilter();
 if (val) {
 store.filterBy(function(r) {
 var retval = false;
 this.menu.items.each(function(item) {
 if (!item.dataIndex || !item.checked || retval) {
 return;
 }

 var rv = r.get(item.dataIndex), rv = rv instanceof Date ?
 Ext.Date.format(rv, this.getDateFormat(item)) : rv;
 var re = new RegExp(Ext.String.escape(val), 'gi');
 retval = re.test(rv);
 }, this);
 if (retval) {
 return true;
 }
 return retval;
 }, this);
 }
}

Chapter 6

[67]

And if the value is not set to local, we need to check whether the proxy is a server
proxy or not. And here is the code that we need to add within the onTriggerSearch
function after the if ('local' === this.mode) block:

else if(proxy instanceof Ext.data.proxy.Server) {

 if(store.lastOptions && store.lastOptions.params) {
 store.lastOptions.params[store.paramNames.start] = 0;
 }

 var fields = [];
 this.menu.items.each(function(item) {
 if(item.checked && item.dataIndex) {
 fields.push(item.dataIndex);
 }
 });

 delete(proxy.extraParams[this.paramNames.fields]);
 delete(proxy.extraParams[this.paramNames.query]);
 if (store.lastOptions && store.lastOptions.params) {
 delete(proxy.lastOptions.params[this.paramNames.fields]);
 delete(proxy.lastOptions.params[this.paramNames.query]);
 }
 if(fields.length) {
 proxy.extraParams[this.paramNames.fields] = Ext.encode(fields);
 proxy.extraParams[this.paramNames.query] = val;
 }

 store.load();
}

Now we define the getDateFormat function:

getDateFormat : function(menuItem) {

 var columnNames = Ext.Array.pluck(this.grid.columns, 'dataIndex'),
 columnIndex = Ext.Array.indexOf(columnNames, menuItem.dataIndex),
 format = this.grid.columns[columnIndex].format;

 return this.dateFormat || format;
}

Grid Search

[68]

Following is the screenshot of our working plugin:

You can see that our plugin filters data according to the search query.

Summary
In this chapter we've developed an Ext JS plugin to provide searching facility within
a grid. Now we have a clear idea about how powerful the Ext JS plugins are. We can
easily use this plugin within a grid and can provide this excellent searching feature
whenever we need.

In the next chapter we will go through another useful plugin targeted for text
components that show a clear button over the text field, and we will see how clicking
on the button will clear the texts from the text field.

Input Field with Clear Button
In this chapter we will go through Stephen Friedrich's ClearButton plugin.
This plugin is targeted for text components that show a "clear" button over the
text field. When the clear button is clicked on, the text field is emptied. Also, the
icon image and its positioning can be controlled using CSS.

The topics covered are:

•	 Functional requirements
•	 Planning and coding of the clear button

Functional requirements
We want a plugin that will help users to clear the text within the text components,
such as Ext.form.field.Text, Ext.form.field.TextArea, Ext.form.field.
ComboBox, and Ext.form.field.Date. The plugin should provide a button to
click on in order to clear the text within a text component. This plugin should
have several useful configuration options and CSS styles, where we can set our
requirements, such as the clear button should always/only show up when the mouse
enters within the input field, or it should be shown when the input field is empty or
is cleared when the user presses Esc. The clear button can be customized for button
image/position via CSS, and so on.

Input Field with Clear Button

[70]

Planning and coding of the clear button
To develop this plugin we will first create the clear button that will be rendered over
the text component, and will apply the CSS styles according to the configuration
options. After that, we need to add several event handlers for the clear button, such
as click, mouseover, mouseout, mouseup, and mousedown, and also, several event
handlers for the text component, such as destroy, resize, change, mouseover, and
mouseout. Let us now start coding:

Ext.define('Examples.plugin.ClearButton', {
 alias : 'plugin.clearbutton',

 hideClearButtonWhenEmpty : true,
 hideClearButtonWhenMouseOut : true,
 animateClearButton : true,
 clearOnEscape : true,
 clearButtonCls : 'ext-ux-clearbutton',
 textField : null,
 animateWithCss3 : false,

 constructor : function(cfg) {
 Ext.apply(this, cfg);

 this.callParent(arguments);
 },

 init : function(textField) {
 this.textField = textField;
 if (!textField.rendered) {
 textField.on('afterrender', this.handleAfterRender, this);
 }
 else {
 this.handleAfterRender();
 }
 }

In the preceding code snippet, you can see that we have defined several
configuration options, and the required init function.

Chapter 7

[71]

Now let us define the handleAfterRender function:

handleAfterRender : function(textField) {
 this.isTextArea = (this.textField.inputEl.dom.type.
 toLowerCase() == 'textarea');
 this.createClearButtonEl();
 this.addListeners();
 this.repositionClearButton();
 this.updateClearButtonVisibility();
 this.addEscListener();
}

Within this handleAfterRender function, at first, we are checking whether
the textfield is a textarea or not, as we need to handle textarea with custom
functionality since this field may have a scrollbar. And then we call the
createClearButtonEl function to create the element and the DOM for the
clear button.

Now let us define the createClearButtonEl function:

createClearButtonEl : function() {
 var animateWithClass = this.animateClearButton &&
 this.animateWithCss3;
 this.clearButtonEl = this.textField.bodyEl.createChild({
 tag : 'div',
 cls : this.clearButtonCls
 });
 if (this.animateClearButton) {
 this.animateWithCss3 = this.supportsCssTransition(
 this.clearButtonEl);
 }
 if (this.animateWithCss3) {
 this.clearButtonEl.addCls(this.clearButtonCls + '-off');
 }
 else {
 this.clearButtonEl.setStyle('visibility', 'hidden');
 }
}

Input Field with Clear Button

[72]

In the preceding function the clear button has been created and assigned
an animation, based on the configuration options. In this function we also
checked whether the browser supports CSS3 transitions or not, by calling the
supportsCssTransition function.

Now, let us define the supportsCssTransition function:

supportsCssTransition: function(el) {
 var styles = ['transitionProperty', 'WebkitTransitionProperty',
 'MozTransitionProperty', 'OTransitionProperty',
 'msTransitionProperty', 'KhtmlTransitionProperty'];

 var style = el.dom.style;
 for(var i = 0, length = styles.length; i < length; ++i) {
 if(style[styles[i]] !== 'undefined') {
 return true;
 }
 }
 return false;
}

The next function we are calling within the handleAfterRender function is the
addListeners function to add listeners to the field, its input element, and the clear
button to handle resizing events such as mouseover, mouseout, and click.

Now, let us define the addListeners function:

addListeners: function() {
 var textField = this.textField;
 var bodyEl = textField.bodyEl;
 bodyEl.on('mouseover', this.handleMouseOverInputField, this);
 bodyEl.on('mouseout', this.handleMouseOutOfInputField, this);

 textField.on('destroy', this.handleDestroy, this);
 textField.on('resize', this.repositionClearButton, this);
 textField.on('change', function() {
 this.repositionClearButton();
 this.updateClearButtonVisibility();
 }, this);

 var clearButtonEl = this.clearButtonEl;
 clearButtonEl.on('mouseover', this.handleMouseOverClearButton,
 this);
 clearButtonEl.on('mouseout', this.handleMouseOutOfClearButton,
 this);

Chapter 7

[73]

 clearButtonEl.on('mousedown', this.handleMouseDownOnClearButton,
 this);
 clearButtonEl.on('mouseup', this.handleMouseUpOnClearButton,
 this);
 clearButtonEl.on('click', this.handleMouseClickOnClearButton,
 this);
}

Next we define the mouseover event handler – handleMouseOverInputField,
and the mouseout event handler – handleMouseOutOfInputField, for bodyEl
of textField:

handleMouseOverInputField: function(event, htmlElement, object) {
 this.clearButtonEl.addCls(this.clearButtonCls +
 '-mouse-over-input');
 if (event.getRelatedTarget() == this.clearButtonEl.dom) {
 this.clearButtonEl.removeCls(this.clearButtonCls +
 '-mouse-over-button');
 this.clearButtonEl.removeCls(this.clearButtonCls +
 '-mouse-down');
 }
 this.updateClearButtonVisibility();
},
handleMouseOutOfInputField: function(event, htmlElement, object) {
 this.clearButtonEl.removeCls(this.clearButtonCls +
 '-mouse-over-input');
 if (event.getRelatedTarget() == this.clearButtonEl.dom) {
 this.clearButtonEl.addCls(this.clearButtonCls +
 '-mouse-over-button');
 }
 this.updateClearButtonVisibility();
}

Now let us define the "destroy" event handler of textField since when the
field is destroyed, we also need to destroy the clear button element to prevent
memory leaks:

handleDestroy: function() {
 this.clearButtonEl.destroy();
}

Input Field with Clear Button

[74]

Now let us start defining the handlers for the clear button's mouseover, mouseout,
mousedown, mouseup, and click events:

handleMouseOverClearButton: function(event, htmlElement, object) {
 event.stopEvent();
 if (this.textField.bodyEl.contains(event.getRelatedTarget())) {
 return;
 }
 this.clearButtonEl.addCls(this.clearButtonCls +
 '-mouse-over-button');
 this.updateClearButtonVisibility();
},

handleMouseOutOfClearButton: function(event, htmlElement, object){
 event.stopEvent();
 if (this.textField.bodyEl.contains(event.getRelatedTarget())) {
 return;
 }
 this.clearButtonEl.removeCls(this.clearButtonCls +
 '-mouse-over-button');
 this.clearButtonEl.removeCls(this.clearButtonCls +
 '-mouse-down');
 this.updateClearButtonVisibility();
},

handleMouseDownOnClearButton: function(event, htmlElement,
 object){
 if (!this.isLeftButton(event)) {
 return;
 }
 this.clearButtonEl.addCls(this.clearButtonCls +
 '-mouse-down');
},

handleMouseUpOnClearButton: function(event, htmlElement, object) {
 if (!this.isLeftButton(event)) {
 return;
 }
 this.clearButtonEl.removeCls(this.clearButtonCls +
 '-mouse-down');
},

handleMouseClickOnClearButton: function(event, htmlElement, object) {
 if (!this.isLeftButton(event)) {
 return;
 }
 this.textField.setValue('');
 this.textField.focus();
}

Chapter 7

[75]

The next function we will call within the handleAfterRender function is the
repositionClearButton function, to reposition the clear button element based
on the inputEl element of textField. Now, let us define this function:

repositionClearButton: function() {
 var clearButtonEl = this.clearButtonEl;
 if (!clearButtonEl) {
 return;
 }
 var clearButtonPosition = this.calculateClearButtonPosition(
 this.textField);
 clearButtonEl.dom.style.right = clearButtonPosition.right +
 'px';
 clearButtonEl.dom.style.top = clearButtonPosition.top + 'px';
}

You can see that we get the clear button's position value by calling the
calculateClearButtonPosition function. This function calculates the
position of the clear button, based on the inputEl element of textField.
Now, let us define this function:

calculateClearButtonPosition: function(textField) {
 var positions = textField.inputEl.getBox(true, true);
 var top = positions.y;
 var right = positions.x;
 if (this.fieldHasScrollBar()) {
 right += Ext.getScrollBarWidth();
 }
 if (this.textField.triggerWrap) {
 right += this.textField.getTriggerWidth();
 }
 return {
 right: right,
 top: top
 };
}

Input Field with Clear Button

[76]

You can see that we checked whether the field has a scrollbar or not, and if the field
has a scrollbar, we add the value of the Ext.getScrollBarWidth function to the
right position. Now, let us define the fieldHasScrollBar function:

fieldHasScrollBar: function() {
 if (!this.isTextArea) {
 return false;
 }

 var inputEl = this.textField.inputEl;
 var overflowY = inputEl.getStyle('overflow-y');
 if (overflowY == 'hidden' || overflowY == 'visible') {
 return false;
 }
 if (overflowY == 'scroll') {
 return true;
 }
 if (inputEl.dom.scrollHeight <= inputEl.dom.clientHeight) {
 return false;
 }
 return true;
}

And then we called the updateClearButtonVisibility function within the
handleAfterRender function for fixing the clear button's visibility:

updateClearButtonVisibility: function() {
 var oldVisible = this.isButtonCurrentlyVisible();
 var newVisible = this.shouldButtonBeVisible();

 var clearButtonEl = this.clearButtonEl;
 if (oldVisible != newVisible) {
 if(this.animateClearButton && this.animateWithCss3) {
 this.clearButtonEl.removeCls(this.clearButtonCls +
 (oldVisible ? '-on' : '-off'));
 clearButtonEl.addCls(this.clearButtonCls + (
 newVisible ? '-on' : '-off'));
 }
 else {
 clearButtonEl.stopAnimation();
 clearButtonEl.setVisible(newVisible,
 this.animateClearButton);
 }

Chapter 7

[77]

 clearButtonEl.setStyle('background-color',
 this.textField.inputEl.getStyle('background-color'));

 if (!(this.isTextArea && Ext.isGecko) && !Ext.isIE) {
 var deltaPaddingRight = clearButtonEl.getWidth() - this.
 clearButtonEl.getMargin('l');
 var currentPaddingRight = this.textField.inputEl.
 getPadding('r');
 var factor = (newVisible ? +1 : -1);
 this.textField.inputEl.dom.style.paddingRight = (
 currentPaddingRight + factor * deltaPaddingRight) + 'px';
 }
 }
}

You can see that we took the value of the current visible state, and what will
be the new visible state, by calling the isButtonCurrentlyVisible and
shouldButtonBeVisible functions. The isButtonCurrentlyVisible function is a
wrapper around clearButtonEl.isVisible() to handle the setVisible animation
that may still be in progress, and the shouldButtonBeVisible function checks the
configuration options and the current mouse status to determine whether the clear
button should be visible or not. Now, let us define these functions:

isButtonCurrentlyVisible: function() {
 if (this.animateClearButton && this.animateWithCss3) {
 return this.clearButtonEl.hasCls(this.clearButtonCls + '-on');
 }
 var cachedVisible = Ext.core.Element.data(
 this.clearButtonEl.dom, 'isVisible');
 if (typeof(cachedVisible) == 'boolean') {
 return cachedVisible;
 }
 return this.clearButtonEl.isVisible();
},

shouldButtonBeVisible: function() {
 if (this.hideClearButtonWhenEmpty && Ext.isEmpty(
 this.textField.getValue())) {

 return false;
 }

 var clearButtonEl = this.clearButtonEl;

Input Field with Clear Button

[78]

 if (this.hideClearButtonWhenMouseOut && !clearButtonEl.hasCls(
 this.clearButtonCls + '-mouse-over-button') && !clearButtonEl.
 hasCls(this.clearButtonCls + '-mouse-over-input')) {

 return false;
 }

 return true;
}

And the last function that we called within the handleAfterRender function is
the addEscListener function. What we need to do is, if the configuration option
clearOnEscape is set to true, add a key listener that will clear this field. Now, let us
define this function:

addEscListener: function() {
 if (!this.clearOnEscape) {
 return;
 }

 this.textField.inputEl.on('keydown', function(e) {
 if (e.getKey() == Ext.EventObject.ESC) {
 if (this.textField.isExpanded) {
 return;
 }
 Ext.Function.defer(this.textField.setValue, 1,
 this.textField, ['']);
 e.stopEvent();
 }
 },
 this);
}

Chapter 7

[79]

The following screenshot is the output where we've used this plugin for textfield,
textareafield, combobox, and the date field:

You can see that on hovering over the textfield component, the clear button is visible
and clicking on this button will clear the respective field.

Summary
In this chapter we've gone through an Ext JS plugin, which provides a clear button
for text components to clear the content within it. We can see that developing a
single plugin can be used in several types of components, and how easily we can
inject the functionality of the plugin.

In the next chapter we will develop an Ext JS extension for a fancy animated message
bar. The message bar will provide a facility to have a configurable duration timer for
showing a message. It will have a close button, and it will also be able to show an
"error" and a "successful" icon, beside the message.

Message Bar
In this chapter, we are going to develop an Ext JS extension, which will be a fancy
animated message bar. The message bar will provide the facility for having a
configurable duration timer for showing the message, a close button, and also will be
able to customize the look and can provide optional icons for different types of states
such as valid, invalid, or information during runtime.

In this chapter, we will cover:

•	 Functional requirements
•	 Planning and coding the message bar

Functional requirements
We are targeting to develop an Ext JS extension that can be used to show messages.
This extension can be used within a container as a docked item to show messages.
The message bar will be closed automatically when the configured timer is
completed. This message bar will also provide a close button and on clicking on this
button the message bar will be closed. The opening and closing of the message bar
will be in a smooth animated form. This message bar can also accept configuration at
runtime to show several types of state that it can change its look to, and can show a
proper icon.

Message Bar

[82]

Planning and coding the message bar
To develop this extension, we can use the Ext JS toolbar and dock it to the bottom
of the container. Then we can add a functionality where this toolbar can show the
message text. Then we need to add a functionality when the message bar is called to
show the message; the message bar appears and disappears when the close button
is clicked upon or when the configured timer is completed. As per our functional
requirement, we can see that the Ext JS library provided StatusBar extension is
doing a lot that we needed to provide functionality for this message bar extension.
So, we can modify that extension and add our own functionality and CSS styles to
fulfill our requirement. Now let us start coding:

Ext.define('Examples.ux.MessageBar', {
 extend: 'Ext.toolbar.Toolbar',
 alias: 'widget.ux-msgbar',
 activeThreadId: 0,
 dock: 'bottom',
 config: {
 cls: 'x-messagebar',
 emptyText: '',
 defaultText: '',
 autoClear: 5000
 },

 initComponent: function () {
 this.callParent(arguments);
 },
…

After defining the class configuration, now let us create the element where the
message text will be shown—the icon and the close button. Now let us define the
afterRender handler where we will create those elements:

afterRender: function () {

 this.el.addCls('x-message-msgbar-body');

 this.currIconCls = this.iconCls || this.defaultIconCls;
 var me = this;

 setTimeout(function () {

 var tpl = new Ext.XTemplate(
 '<div id="{id}-bar" class="{bodyCls}"',

Chapter 8

[83]

 ' style="width: {width}px; {left}">',
 '<div class="{msgCls}"></div>',
 '<div style="float:right" class="{closeCls}">X</div>',
 '</div>'
);

 tpl = tpl.apply({
 id: me.id,
 bodyCls: 'x-message-msgbar-body',
 width: me.ownerCt.getWidth() - 10,
 left: Ext.isIE8 ? 'left:5px' : '',
 msgCls: 'x-message-bar-msg',
 closeCls: 'x-message-bar-close'
 });

 me.ownerCt.el.createChild(tpl);

 Ext.select('.x-message-bar-close').on('click', function () {
 me.clearMessage();
 });

 }, 500);

 this.hide();
 this.callParent(arguments);
}

You can see how we are creating those elements. We have also defined the click
handler for the close button. We are calling the clearMessage function whenever
the close button is clicked. We will define this function later in this chapter.
We need to take care that whenever the container is resized, we also need to resize
the message bar element. So, now let us add some code to handle this within the
afterRender handler:

this.ownerCt.on('resize', function (ownerContainer, width, height) {
 if (width == this.parentWidth && height == this.parentHeight) {
 return;
 }

 var bar = Ext.get(this.id + '-bar');

 if (bar) {
 bar.setStyle('width', (this.ownerCt.getWidth()-10) + 'px');
 }
}, this);

Message Bar

[84]

Now let us define the showMessage function, which will be called to show the
message with the provided configuration:

showMessage: function (msg) {

 if (Ext.isString(msg)) {
 msg = {
 text: msg
 }
 }

 this.setMessage({
 text: msg.text,
 iconCls: 'x-message-'
 + (msg.type || '') + ' ',
 clear: Ext.isDefined(msg.clear) ? msg.clear : true
 });

}

Within this function, we are checking the provided configuration and preparing the
configuration properly and sending that to the setMessage function. Now let us
define the setMessage function:

setMessage: function (o) {
 if (o && (o.text == '' || o.text == ' ')) {
 return;
 } else {
 var cmp = Ext.get(this.id + '-bar');
 if (cmp) {
 cmp.slideIn('b', {
 duration: 300,
 easing: 'easeIn',
 callback: function () {
 this.setMessageData(o);
 },
 scope: this
 });
 }
 }
}

Chapter 8

[85]

In this function, we are checking whether the message text is empty or not, and if
it is not empty, we are opening the message bar and calling the setMessageData
function to set the message text, UI, and proper icon for the message bar. Let us now
define the setMessageData function:

setMessageData: function (o) {
 o = o || {};
 if (o.text !== undefined) {
 this.setText(o.text);
 }
 if (o.iconCls !== undefined) {
 var bar = Ext.get(this.id + '-bar');
 if (o.iconCls == 'x-message-error ') {
 bar.removeCls('x-message-msg-body');
 bar.addCls('x-message-error-body');
 } else {
 bar.removeCls('x-message-error-body');
 bar.addCls('x-message-msg-body');
 }
 this.setIcon(o.iconCls);
 }
 if (o.clear) {
 var c = o.clear, wait = this.autoClear, defaults = {
 useDefaults: true,
 anim: true
 };
 if (Ext.isObject(c)) {
 c = Ext.applyIf(c, defaults);
 if (c.wait) {
 wait = c.wait;
 }
 } else if (Ext.isNumber(c)) {
 wait = c;
 c = defaults;
 } else if (Ext.isBoolean(c)) {
 c = defaults;
 }
 c.threadId = this.activeThreadId;
 if (this.clearTimer) {
 clearTimeout(this.clearTimer);
 }
 this.clearTimer = Ext.defer(this.clearMessage, wait, this, [c]);
 }
}

Message Bar

[86]

You can see that within this function we are setting the message text, icon, and UI.
To set the message text we are calling the setText function, to change the UI we
are adding and removing the corresponding CSS classes, and to set the icon we are
calling the setIcon function. Also, when the clear configuration option is set to true,
we are applying the configured timer to hide the message bar when the timer is
completed. Now let us define the clearMessage function:

clearMessage: function (o) {
 o = o || {};
 if (o.threadId && o.threadId !== this.activeThreadId) {
 return this;
 }
 var bar = Ext.get(this.id + '-bar');
 if (bar) {
 Ext.get(this.id + '-bar').slideOut('b', {
 duration: 300,
 easing: 'easeOut',
 callback: function () {
 var text = o.useDefaults ? this.defaultText : this.emptyText,
 iconCls = o.useDefaults ? (this.defaultIconCls ? this.
defaultIconCls : '') : '';
 this.setMessage({
 text: text,
 iconCls: iconCls
 });
 },
 scope: this
 });
 }
 return this;
}

And here in this clearMessage function we are hiding the message bar.

Chapter 8

[87]

Now let us have some test with this extension. Here in the following screenshot you
can see our message bar extension in action. We have created an Ext JS window and
added the message bar as a docked item.

You can see that the message bar appears with the configured data when you click
on the Show message button. And when we choose the Invalid icon option, we
can see how the message bar changes its look. Here you can see the result when we
choose the Invalid icon:

From the preceding screenshots we can see that our extension is working exactly the
way we wanted.

Message Bar

[88]

Summary
In this chapter, we've developed an Ext JS extension, a fancy animated message
bar. Throughout this chapter we've learned how easily we can create our own
customized control. As we've already learned about the power of Ext JS extension
and how easily we can create Ext JS extensions, we can see that it is really easy to
create our own control, which helps to fulfill our custom requirements.

In the next chapter, we will go through another Ext JS extension BoxSelect, which
was originally developed by Kevin Vaughan. This extension is really very useful and
provides a friendlier combobox for multiple selections that create removable labels
for each selection easily and individually.

Intuitive Multiselect
Combobox

In this chapter we will explore an excellent Ext JS extension: BoxSelect, which was
originally developed by Kevin Vaughan. This extension is really very useful and
provides a friendlier combobox for multiple selections that creates removable labels
for each selection, easily and individually, and lots more.

The topics covered are:

•	 Features of BoxSelect
•	 The BoxSelect extension:

°° Basic configuration
°° Templates
°° Single value selection
°° Remote query with unknown values
°° Adding new records with autosuggestion
°° BoxSelect specific configurations
°° Value handling and events

Intuitive Multiselect Combobox

[90]

Features of BoxSelect
BoxSelect is an extended ComboBox component developed for more intuitive
multiselect capabilities. BoxSelect comes with lots of examples and proper
documentation. The following features are provided by the BoxSelect extension:

•	 Selected items can be removed individually.
•	 Customizable item templates for controlling the display of the

selected values.
•	 Supports keyboard-based selection and navigation for the selected values.
•	 Supports on-demand loading of values from remote stores when an

unknown value is set, and the queryMode option is set to remote and
forceSelection is set to true.

•	 Setting forceSelection to false creates new records.
•	 When multiSelect is set to true the pick list can be configured to tell if it

should collapse or not, after making a selection.
•	 Selected items can be configured to be stacked or autosized.
•	 Most of the existing functionalities and configuration options of ComboBox

should work with BoxSelect.

Using BoxSelect
BoxSelect extends the ComboBox control to provide a more multiselect, friendly
ComboBox control. The examples included in this chapter show the differences
between the default ComboBox control and this extension, and provide general
information about the advanced usage of BoxSelect.

Basic configuration
BoxSelect should support all configuration values as the ComboBox supports.
There are some changes for the default values for this extension:

•	 The multiSelect option is set to true by default.
•	 The forceSelection option is set to true by default.
•	 In most cases, the multiple selections are made from a preformed list, but

we can also configure the BoxSelect extension to add new records with an
autosuggestion list.

Chapter 9

[91]

•	 The ComboBox component doesn't support typeAhead when the
multiSelect option is set to true, but even though the value of typeAhead
is set to false by default for the BoxSelect extension, support for this
feature has been added for multiSelect when set to true.

•	 The value option can be used to initialize the multiSelect values.
The same format of values is accepted for the setValue method.

Now, let us start using the BoxSelect extension with the following configuration:

{
 "value": [
 "TX",
 "CA"
],
 "fieldLabel": "Select multiple states",
 "displayField": "name",
 "valueField": "abbr",
 "width": 500,
 "labelWidth": 130,
 "emptyText": "Pick a state, any state",
 "store": "States",
 "queryMode": "local"
}

And the screenshot should be as follows:

In the preceding screenshot, we can see how easily we can select multiple values
within the BoxSelect combobox extension.

Templates
We can easily configure the display of the selected values and the drop-down list
items through templates:

•	 labelTpl: It is the template configuration option which controls the display of
the selected values within the input field.

•	 listConfig: It is the template configuration option which controls the display
of the drop-down list items. This option is available within the default
ComboBox field and also supported by BoxSelect.

Intuitive Multiselect Combobox

[92]

Now, let us see how we can set the configuration for customizing the labelTpl and
the listConfig options:

{
 "delimiter": ", ",
 "value": "AZ, CA, NC",
 "labelTpl": "<img src=\"{flagUrl}\"
 style=\"height: 25px;
 vertical-align: middle;
 margin: 2px;\" /> {name} ({abbr})",
 "listConfig": {
 "tpl": [
 "<tpl for=\".\">",
 "<li role=\"option\"
 class=\"x-boundlist-item\"
 style=\"background-image:url({flagUrl});
 background-repeat: no-repeat;
 background-size: 25px;
 padding-left: 30px;\">{name}: {slogan}",
 "</tpl>"
]
 },
 "fieldLabel": "Select multiple states",
 "displayField": "name",
 "valueField": "abbr",
 "width": 500,
 "labelWidth": 130,

 "store": "States",
 "queryMode": "local"
}

Following is the screenshot of the BoxSelect extension using the preceding
configuration for labelTpl and listConfig:

Chapter 9

[93]

In the preceding screenshot, we can see that the BoxSelect extension is working
fine and is showing the selected items with the configured labelTpl and
listConfig comboboxes.

Single value selection
The BoxSelect extension is targeted for multiple selections, but it also supports
single selection by setting the multiSelect option to false. If we need the single
selection option by default, we can add the following line of code before the
BoxSelect extension is created:

Ext.ux.form.field.BoxSelect.prototype.multiSelect = false;

Now, let us configure the BoxSelect extension for a single selection:

{
 "fieldLabel": "Select a state",
 "multiSelect": false,
 "filterPickList": true,
 "displayField": "name",
 "valueField": "abbr",
 "width": 500,
 "labelWidth": 130,
 "emptyText": "Pick a state, any state",
 "store": "States",
 "queryMode": "local"
}

And the output should be as follows:

In the preceding screenshot, we can now select only a single value within the
combobox when the multiSelect option is set to false.

Intuitive Multiselect Combobox

[94]

Remote query with unknown values
When we set the queryMode option to remote and the forceSelection option to
true, and we pass a value to the BoxSelect extension that is not in the store, a query
will be sent to the store's configured proxy "x" with the name of the valueField
option and a set of unknown values separated by the configured delimiter as the
parameters. For example, if the valueField option is abbr, the delimiter value
is |, and unknown values 'NC', 'VA', and, 'ZZ' are set, the following parameters will
be passed to the store's configured proxy:

{ abbr: 'NC|VA|ZZ' }

This attempt to load the unknown values will be performed only once per
initValue/setValue call. The records which are still unknown after this request
will be removed from the field's value, but all known values will be retained. In
the preceding example, the 'ZZ' entry was discarded.

Now, let us configure the BoxSelect extension for remote stores:

{
 "fieldLabel": "With Remote Store",
 "store": "RemoteStates",
 "pageSize": 25,
 "queryMode": "remote",
 "delimiter": "|",
 "value": "NC|VA|ZZ",
 "triggerOnClick": false,
 "labelTpl": "{name} ({abbr})",
 "listConfig": {
 "tpl": [
 "<tpl for=\".\">",
 "<li role=\"option\"
 class=\"x-boundlist-item\">{name}: {slogan}",
 "</tpl>"
]
 },
 "displayField": "name",
 "valueField": "abbr",
 "width": 500,
 "labelWidth": 130
}

Chapter 9

[95]

Following is the screenshot where we have used this configuration for the
BoxSelect extension:

In the preceding screenshot we can see that our configured BoxSelect is working
fine for the remote store, and the value for 'NC' and 'VA' is retrieved where the value
for 'ZZ' is discarded.

Adding new records with autosuggestion
In this example we will show the use of forceSelection, when set to false, to
enable the entry of new values with autosuggestion provided from the attached
store. The new records will be created using the user input for both the configured
displayField and valueField. These new records are not added to the ComboBox
store automatically.

New entries can be created by any of the following four ways:

•	 When we type the configured delimiter which is default to ',', the value that
we entered before the delimiter will be used to create a new record.

•	 When we paste texts in to the field, the value will be split according to the
configured delimiter, which is default to ',' and any values entered will be
parsed in to new/existing records.

•	 The createNewOnEnter option is set to false by default. If set to true, a
new entry will be created when we press the Enter key. This configuration
option only applies if the forceSelection option is set to false.

•	 The createNewOnBlur option is set to false by default. If set to true, a new
entry will be created when the focus leaves the input field. This configuration
option only applies if forceSelection is set to false, and is superseded by
autoSelect and selectOnTab.

Intuitive Multiselect Combobox

[96]

Now, let us configure the BoxSelect extension for autosuggestion:

{
 "fieldLabel": "Enter multiple email addresses",
 "width": 500,
 "growMin": 75,
 "growMax": 120,
 "labelWidth": 130,
 "store": [
 "test@example.com",
 "somebody@somewhere.net",
 "johnjacob@jingleheimerschmidts.org",
 "rumpelstiltskin@guessmyname.com",
 "fakeaddresses@arefake.com",
 "bob@thejoneses.com"
],
 "queryMode": "local",
 "forceSelection": false,
 "createNewOnEnter": true,
 "createNewOnBlur": true,
 "filterPickList": true,
 "displayField": "name",
 "valueField": "abbr"
}

Using this configuration we will get the BoxSelect component as follows:

In the preceding screenshot, we can see how the BoxSelect component is offering an
autosuggestion list where we can select those list items or create new records.

Chapter 9

[97]

BoxSelect specific configurations
The following configuration options are specific to the BoxSelect extension:

•	 The createNewOnEnter option is set to false by default. If this option is set
to true and the forceSelection option is set to false, a new entry will be
created as soon as the user presses the Enter key.

•	 The createNewOnBlur option is set to false by default. If this option is set
to true and the forceSelection option is set to false, a new entry will be
created when the focus leaves the input field. This configuration option is
superseded by autoSelect and selectOnTab.

•	 The stacked option is set to false by default. If this option is set to true, the
labeled items will fill the available width of the list instead of being only as
wide as the displayed value.

•	 The pinList option is set to true by default. If this option is set to false,
the pick list will automatically collapse after a selection is made, when
multiSelect is true. This mimics the default behavior when multiSelect
is false.

•	 The triggerOnClick option is set to true by default. When the option is set
to true, the pick list will emulate a trigger when clicking in the field just like
when a ComboBox component is set with the editable option to false.

•	 The grow option is set to true by default. If this option is set to false, the
list of selections will scroll when necessary, and the height of the field will
not change. This setting has no effect if a fixed height is set for the field,
either directly (for example, through a height configuration), or by the
containing layout.

•	 The growMin option is set to false by default. If this option is set to true,
any numeric value will be used for the field's minimum height.

•	 The growMax option is set to false by default. If this option is set to true,
any numeric value will be used for the field's maximum height and the list of
selections will scroll when necessary.

•	 The filterPickList option is set to false by default. If this option is set
to true, the currently selected values will be hidden from the expanded
pick list.

Intuitive Multiselect Combobox

[98]

Now, let us configure the BoxSelect component by changing some of the default
values to see the effect:

{
 "fieldLabel": "Select multiple states",
 "displayField": "name",
 "width": 500,
 "labelWidth": 130,
 "store": "States",
 "queryMode": "local",
 "valueField": "abbr",
 "value": "WA, TX",
 "stacked": true,
 "pinList": false,
 "filterPickList": true
}

Following is the screenshot of the BoxSelect component where we've used
this configuration:

In the preceding screenshot, we can see that the labeled items are filling the full
width available as we set the stacked option to true. The pick list is automatically
collapsing as soon as a selection is made as we set the pinList option to false,
and the current selected values are hidden from the expanded pick list as we set the
filterPickList option to true.

Chapter 9

[99]

Value handling and events
The following methods are available within BoxSelect, which helps to work with
the value of the combobox:

•	 addValue(mixedValue): Adds a value or values to the current value of
the field.

•	 removeValue(mixedValue): Removes a value or values from the current
value of the field.

•	 getValueRecords(): Returns the records for the field's current value.
•	 getSubmitData(): Allows submitting the field as a JSON encoded array.

Also the BoxSelect component provides the following two events for managing the
selected items:

•	 valueSelectionChange
•	 valueFocusChange

Summary
In this chapter we've explored the features and also went through the usage of the
BoxSelect combobox extension. We've learned how to configure the BoxSelect
extension and its proper usage. We can see that by using Ext JS's extension feature
we can easily use the full strength of the Ext JS library's ComboBox field and can add
our own custom functionality to fulfill our needs.

Throughout this book we have learned the fundamentals of Ext JS plugins and
extensions, we have introduced some of the popular Ext JS libraries and community
provided plugins and extensions, and we have also provided several hands-on real
world plugins and extensions development with proper explanations and code.
We now have clear knowledge about the proper usage and development of Ext JS
plugins and extensions.

Index
A
addDownloadButton function 53
addEscListener function 78
addListeners function 72
addValue(mixedValue) method 99
afterRender event handler 12
afterRender handler 82, 83
autoSelect option 97
autosuggestion

new records, adding with 95, 96

B
BoxSelect extension

about 35, 36, 90
configuration 90
configuration option 97, 98
event 99
features 36, 90
new records, adding with

autosuggestion 95, 96
reference link 36
remote query, setting 94, 95
single value selection 93
template 91, 92
URL, for downloading 36
using 90
value handling 99

C
calculateClearButtonPosition function 75
Callout extension

about 32
reference link 32
URL, for downloading 32

CellEditingGrid class 25
CellEditing plugin

about 23, 25
URL, for documentation 25

chart downloader
coding 51-56
functional requirements 51
planning 51-56

CheckColumn extension
about 21, 23
URL, for documentation 23

clear button
coding 70-79
functional requirements 69
planning 70-79

clearMessage function 83, 86
ComboBox control 90
config property 47
configuration, existing class 7
configuration option, BoxSelect

extension 97, 98
createClearButtonEl function 71
createNewOnBlur option 97
createNewOnEnter option 97

D
ddReorder property 15
destroy method 5
DragSelector plugin

about 42
grid rows, selecting 42
reference link 43
URL, for downloading 43

DragZone class
copy property 19

[102]

ddel property 19
item property 19
property 19
records property 19
view property 19

E
event, BoxSelect extension

valueFocusChange 99
valueSelectionChange 99

existing class
configuring 7

extend keyword 12
Ext.form.field.Spinner class 45
Ext JS class 6
Ext JS Community

about 31
BoxSelect extension 35, 36
Callout extension 31, 32
DragSelector plugin 42
extension 31
FilterBar plugin 41
MultiDate extension 37, 38
MultiMonth extension 38, 39
MultiSelect extension 39, 40
plugin 31
SmartLegend extension 33, 34
TinyMCETextArea extension 40, 41
TitleChart extension 34, 35

Ext JS component
existing class, configuring 7
Ext JS extension, creating 7
Ext JS plugin, creating 8
functionality, changing 7

Ext JS extension
about 5, 6
BoxSelect 89-99
building 11-13
CheckColumn extension 21, 23
creating 7
differentiating, with Ext JS plugin 6
ItemSelector extension 17-19
labeled spinner 45-49
LiveSearchGridPanel extension 28, 29
message bar 81-87
MultiSelect extension 15, 17

Ext JS library
Ext JS extension 15
Ext JS plugin 15

Ext JS plugin
about 5, 6
building 8, 10
CellEditing plugin 23, 25
chart downloader 51-56
clear button 69-79
creating 8
differentiating, with Ext JS extension 6
grid search 59-68
RowEditing plugin 26, 27
TreeViewDragDrop plugin 19-21

F
fieldHasScrollBar function 76
FilterBar plugin

about 41
features 41
URL, for downloading 42

filterPickList option 97
forceSelection option 97

G
getDateFormat function 67
getLabeledValue function 48, 49
getMultiSelectValue function 17
getSubmitData() method 99
getToolbar function 53, 61
getValue function 19, 48, 49
getValueRecords() method 99
grid search

coding 60-68
functional requirement 59
planning 60-68

growMax option 97
growMin option 97

H
handleAfterRender

function 10, 52, 71, 72, 75-78
handleChange function 10, 12

[103]

I
init function 5, 7, 10, 52, 61, 70
initMenu function 64

about 65
defining 64

isButtonCurrentlyVisible function 77
ItemSelector extension

about 17-19
URL, for documentation 19

L
labeled spinner

about 45
coding 46-49
functional requirements 45
planning 46-49

labelTpl template 91
listConfig template 91
LiveSearchGrid class 29
LiveSearchGridPanel extension

about 28, 29
URL, for documentation 29

M
Massachusetts Institute of

Technology (MIT) 32
message bar

coding 82-87
functional requirements 81
planning 82-87

mouseout event handler 73
mouseover event handler 73
MultiDate extension

about 37, 38
features 37, 38
reference link 38
URL, for downloading 38

MultiMonth extension
about 38, 39
features 38
reference link 39
URL, for downloading 39

MultiSelect extension
about 15, 17, 39
features 39

reference link 40
URL, for documentation 17
URL, for downloading 40

MultiSelectFormPanel class 17

N
new records

adding, with autosuggestion 95, 96

O
onBlur handler 48
onKeyUp handler

defining 64
on method 7
onRender function 61-64
onSpinDown function 46, 48
onSpinUp function 46, 48
onTriggerClear function 65
onTriggerClear handler 63
onTriggerClick event 63
onTriggerSearch function 66, 67

defining 66

P
pinList option 97

R
remote query

setting 94
setting, with unknown values 95

removeValue(mixedValue) method 99
repositionClearButton function 75
RowEditing plugin

about 26, 27
URL, for documentation 27

S
saveChart function 54
selectOnTab option 97
setIcon function 86
setMessageData function 85
setMessage function 84
setText function 86
setValue function 47, 48

[104]

shouldButtonBeVisible function 77
showMessage function 84
single value selection 93
SmartLegend extension

about 33, 34
features 33
reference link 34
URL, for downloading 34

stacked option 97
supportsCssTransition function 72

T
template, BoxSelect extension 91, 92
textareafield component 8, 10
textfield component 79
TinyMCETextArea extension

about 40, 41
reference link 41

TitleChart extension
about 34, 35
configuration options 35
reference link 35
URL, for downloading 35

TreeView class 19
TreeViewDragDrop plugin

about 19-21
URL, for documentation 21

triggerOnClick option 97

U
updateMessageInfo function 10

V
valueFocusChange event 99
value handling, BoxSelect extension 99
valueSelectionChange event 99
viewConfig method 20

Thank you for buying
Ext JS 4 Plugin and Extension Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Ext JS 4
ISBN: 978-1-84951-684-6 Paperback: 434 pages

Sencha Ext JS for a beginner

1.	 Learn the basics and create your first classes

2.	 Handle data and understand the way it works,
create powerful widgets and new components

3.	 Dig into the new architecture defined by Sencha
and work on real world projects

Instant Ext JS Starter [Instant]
ISBN: 978-1-78216-610-8 Paperback: 56 pages

Find out what Ext JS actually is, what you can do
with it, and why it's so great

1.	 Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results

2.	 Install and set up the environment with this
quick Starter guide

3.	 Learn the basics of the framework and built-in
utility functions

4.	 Use MVC architecture, components, and
containers

Please check www.PacktPub.com for information on our titles

Mastering Ext JS
ISBN: 978-1-78216-400-5 Paperback: 358 pages

Learn how to build powerful and professional
applications by mastering the Ext JS framework

1.	 Build an application with Ext JS from scratch

2.	 Learn expert tips and tricks to make your web
applications look stunning

3.	 Create professional screens such as login,
menus, grids, tree, forms, and charts

Sencha Architect App
Development
ISBN: 978-1-78216-981-9 Paperback: 120 pages

Develop your own Ext JS and Sencha Touch
application using Sencha Architect

1.	 Use Sencha Architect's features to improve
productivity

2.	 Create your own application in Ext JS and
Sencha Touch

3.	 Simulate, build, package and deploy your
application using Sencha Command and
Sencha Architect

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Plugins and Extensions
	What is a plugin?
	What is an extension?
	Differences between an extension and a plugin
	Choosing the best option
	By configuring an existing class
	Creating a subclass or an extension
	Creating a plugin

	Building an ExtJS plugin
	Building an ExtJS extension
	Summary

	Chapter 2: ExtJS-provided
Plugins and Extensions
	The MultiSelect extension
	The ItemSelector extension
	The TreeViewDragDrop plugin
	The CheckColumn extension
	The CellEditing plugin
	The RowEditing plugin
	The LiveSearchGridPanel extension
	Summary

	Chapter 3: ExtJS Community
Extensions and Plugins
	The Callout extension
	The SmartLegend extension
	The TitleChart extension
	The BoxSelect extension
	The MultiDate extension
	The MultiMonth extension
	The MultiSelect extension
	The TinyMCETextArea extension
	The FilterBar plugin
	The DragSelector plugin
	Summary

	Chapter 4: Labeled Spinner
	Functional requirements
	Planning and coding labeled spinner
	Summary

	Chapter 5: Chart Downloader
	Functional requirements
	Planning and coding the chart downloader
	Summary

	Chapter 6: Grid Search
	Functional requirements
	Planning and coding the grid search
	Summary

	Chapter 7: Input Field with Clear Button
	Functional requirements
	Planning and coding of the clear button
	Summary

	Chapter 8: Message Bar
	Functional requirements
	Planning and coding the message bar
	Summary

	Chapter 9: Intuitive Multiselect Combobox
	Features of BoxSelect
	Using BoxSelect
	Basic configuration
	Templates
	Single value selection
	Remote query with unknown values
	Adding new records with autosuggestion
	BoxSelect specific configurations
	Value handling and events

	Summary

	Index

