
www.allitebooks.com

http://www.allitebooks.org

Extending Puppet

Design, manage, and deploy your Puppet architecture
with the help of real-world scenarios

Alessandro Franceschi

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Extending Puppet

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2014

Production reference: 1170614

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-144-1

www.packtpub.com

Cover image by Alessandro Franceschi (alvagante@yahoo.it)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Alessandro Franceschi

Reviewers
Dhruv Ahuja

C. N. A. Corrêa

Brice Figureau

Commissioning Editor
Edward Gordon

Acquisition Editor
Llewellyn Rozario

Content Development Editor
Azharuddin Sheikh

Technical Editors
Rohit Kumar Singh

Pratish Soman

Copy Editors
Sayanee Mukherjee

Karuna Narayanan

Alfida Paiva

Adithi Shetty

Laxmi Subramanian

Project Coordinator
Kartik Vedam

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Hemangini Bari

Production Coordinator
Adonia Jones

Cover Work
Adonia Jones

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

I first met Alessandro in person at the inaugural Puppet Camp in San Francisco,
2009, but by this time, we'd already chatted on IRC and the Puppet Users mailing
list. This was a small event by the standards of Puppet community events today,
with about 60 people in attendance, and it's been great to see how many of that
original crowd have continued to be active participants in the community,
especially Alessandro.

While I was running Puppet at Google, I kept getting a lot of questions from
attendees about how we were managing to scale our Puppet infrastructure
technically. Alessandro, however, was already prodding me about how I was
managing workflow and code layout for reusability and shareability, a topic
that he's been very much focused on over the last five years.

When I initially left Google and moved to Puppet Labs in late 2010 to handle
products, it became even more apparent how much Alessandro cared about guiding
the community towards standards for Puppet content that allowed for reusability
and shareability, yet allowed sysadmins to work quickly. We saw this with his
promotion of the "params pattern" to consolidate input variables in a single location,
and to allow for a first step towards separating data from code, well before the
existence of Hiera as a formal project.

Alessandro saw this need well before most of us, and regularly raised it with the
community as well as just about every time we ran into each other at conferences
and events. As new projects appeared that added to the capabilities of the Puppet
ecosystem, he modified his thinking and raised new proposals.

I'm thrilled to see this new book by Alessandro on Puppet architectures and
design patterns, and I can't think of a better person to write it. He's cared about
these principles for a long time, and he's promoted them as a responsible
community member.

Nigel Kersten

CIO, Puppet Labs

www.allitebooks.com

http://www.allitebooks.org

About the Author

Alessandro Franceschi is a freelance Puppet and DevOps consultant. Surviving
IT battlegrounds since 1995, he has worked as an entrepreneur, web developer,
trainer, and system and network administrator.

He has been using Puppet since 2007, automating a remarkable amount of customers'
infrastructures of different sizes, natures, and complexities.

He has attended several PuppetConf and Puppet Camps as a speaker and
participant, always enjoying the vibrant and friendly community, learning
something new each time.

During the following years, he started to publish his Puppet code, trying to make it
reusable in different scenarios.

The result of this work is the Example42 Puppet modules set, a widely used
collection of modules based on reusability principles and with some optional,
opinionated twists to automate firewalling, monitoring, systems' inventory, and
application deployments.

For more information on Example42 modules, visit www.example42.com. His Twitter
handle is @alvagante.

www.allitebooks.com

www.example42.com
http://www.allitebooks.org

Acknowledgments

This is my first book. When Packt Publishing asked me to write a book about Puppet,
I was surprised, flattered, and intrigued. The idea of sharing my experience about
this wonderful tool was really attractive.

I have been using Puppet for seven years. I have loved it since the beginning.

I have seen a great community of people doing wonderful things with it, and I tried
to credit as many people as possible, knowing that many worthy contributors have
been forgotten.

I have assisted in its evolution and the tumultuous growth of the company behind it,
Puppet Labs.

I have definitely not seen any attack ships on fire off the shoulder of Orion, but I
think I have gathered enough experience about Puppet to have valuable things to
write about and share.

Please forgive my approximate grasp of the language; if you are a native English
speaker, you will surely find some sentences weird or just wrong.

I tried to avoid the temptation to build phrases based on my mother language
constructs; I believe I have failed in more than one place.

Various people have helped me with suggestions and corrections; they couldn't solve
all my language idiosyncrasies and content limitations, but their input has been very
important to make this book better.

I'd like to thank in particular Brice Figureau, Joshua Hoblitt, and Azharuddin Sheikh
for the invaluable help and corrections, and Nigel Kersten, Jon Forrest, Calogero
Bonasia, Monica Colangelo, and Kartik Vedam for the precious suggestions.

A big hug to Chiara, who is always patient and supportive, and to all my family,
even the younger one who is extremely skilled in kicking me out of the bed,
encouraging early morning writing sessions.

It's time to enjoy some more weekends together, finally.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Dhruv Ahuja is a senior DevOps engineer at a leading financial data vendor.
He specializes in orchestration and configuration management in an enterprise,
heterogeneous setting. His first brush with Puppet was in 2011 when he developed
a solution for dynamically scaling compute nodes for a multipurpose grid platform.
He also holds a Master's degree in Advanced Software Engineering from King's
College London, and won the Red Hat UK Channel Consultant of the Year award in
2012 for delivering progressive solutions. A long history in conventional software
development and traditional systems administration equip him with aptness in both
areas. In this era of infrastructure as code, he believes that declarative abstraction is
essential for a maintainable systems life-cycle process.

C. N. A. Corrêa (@cnacorrea) is an IT operations manager and consultant, and is
also a Puppet enthusiast and an old-school Linux hacker. He has a Master's degree
in Systems Virtualization and holds CISSP and RHCE certifications. Backed by
a 15-year career in systems administration, Carlos leads the IT operations teams
for companies in Brazil, Africa, and the USA. He is also a part-time professor for
graduate and undergraduate courses in Brazil. Carlos has co-authored several
research papers on network virtualization and OpenFlow, and has presented at
peer-reviewed IEEE and ACM conferences worldwide.

I thank God for all the opportunities of hard work and all the lovely
people I always find on my way. To the sweetest of them all, my
wife Nanda, I thank for all the loving care and support that pushes
me forward. Also, to my parents, Nilton and Zélia, for being such a
big inspiration for all the things I do.

www.allitebooks.com

http://www.allitebooks.org

Brice Figureau works at Days of Wonder, a board game publisher best known
for its award-winning train game Ticket to Ride, where he designs, manages, and
programs distributed online game servers and the infrastructure they run on.
In several previous job roles, he programmed 3D-rendering engines, Photoshop
plugins, early mobile Internet services, and voice-recognition-based phone services
and learned system administration. He likes to spend time contributing to various
open source projects and has started some of his own. He's been using Puppet since
Version 0.23.7 and contributed several major features to the Puppet core code that
helped make Puppet what it is now. He also maintains www.planetpuppet.org and
helps to organize the Paris DevOps Meetups and the DevopsDays Paris conference
when time permits. You might find him hanging around in IRC under the masterzen
nickname on Twitter with the @_masterzen_ handle, or at different open source,
DevOps, or Configuration Management conferences around the world.

www.allitebooks.com

www.planetpuppet.org
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com

Table of Contents
Preface	 1
Chapter 1: Puppet Essentials	 7

The Puppet ecosystem	 8
Why configuration management matters	 9

Puppet components	 10
Installation and configuration	 11
Puppet in action	 14

Resources	 15
The resource abstraction layer	 17

Nodes	 18
Classes and defines	 19

Class inheritance	 22
Resource defaults	 23
Resource references	 23
Variables, facts, and scopes	 24

System's facts	 24
User variables in Puppet DSL	 25
User variables in an ENC	 26
User variables in Hiera	 26
Puppet's built-in variables	 27
A variable's scope	 28

Meta parameters	 29
Managing order and dependencies	 29

Run stages	 31
Reserved names and allowed characters	 31
Conditionals	 32
Comparison operators	 33

The In operator	 34
Expressions combinations	 34

Exported resources	 34

Table of Contents

[ii]

Virtual resources	 36
Modules	 36

The paths of a module and autoloading	 37
ERB templates	 39

Summary	 41
Chapter 2: Hiera	 43

Installing and configuring Hiera	 44
Global settings	 45
Backend-specific settings	 46
The hiera.yaml examples	 46

Working with the command line on a YAML backend	 48
Using Hiera in Puppet	 54

Dealing with hashes in the Puppet code	 55
Puppet 3 automatic parameter lookup	 56
Evolving usage patterns for class parameters	 56

Additional Hiera backends	 58
The hiera-file backend	 58
The hiera-gpg backend	 59
The hiera-eyaml backend	 62
The hiera-http and hiera-mysql backends	 64

Using Hiera as an ENC	 65
Summary	 66

Chapter 3: PuppetDB	 67
Installation and configuration	 68

PuppetDB configurations	 69
The init script configuration	 70
Configuration settings	 70
Logging configuration	 75

Configurations on the Puppet Master	 75
Dashboards	 76

PuppetDB performance dashboard	 77
Puppetboard – query PuppetDB from the Web	 78

The PuppetDB API	 79
Querying PuppetDB (Read)	 79
The PuppetDB commands (Write)	 81

Querying PuppetDB for fun and profit	 82
The /facts endpoint	 83
The /resources endpoint	 83
The /nodes endpoint	 84
The /catalogs endpoint	 85
The /facts-names endpoint	 85

Table of Contents

[iii]

The /metrics endpoint	 85
The /reports endpoint	 86
The /events endpoint	 86
The /event-counts endpoint	 87
The /aggregated-event-counts endpoint	 87
The /server-time endpoint	 87
The /version endpoint	 87

The puppetdbquery module	 88
Query format	 88

Query from the command line	 88
Query from Puppet manifests	 89
The PuppetDB Hiera backend	 89

How Puppet code may change in the future	 90
Summary	 92

Chapter 4: Designing Puppet Architectures	 93
The components of Puppet architecture	 94

Defining the classes to include in each node	 96
Defining the parameters to use for each node	 97
Defining the configuration files provided to the nodes	 100
Defining custom resources and classes	 101

The Foreman	 101
Roles and profiles	 103
The data and the code	 104
Sample architectures	 106

The default approach	 106
Basic ENC, logic in the site module, and Hiera backend	 109
The Foreman and Hiera	 110
The Hiera-based setup	 111
The Hiera-only setup	 112
Foreman smart variables	 112
Fact-driven truths	 113
Nodeless site.pp	 114
Node inheritance done right	 115

Summary	 116
Chapter 5: Using and Writing Reusable Modules	 117

The evolution of modules' layouts	 118
Class parameters – from zero to data bindings	 118
The params pattern	 119
Data in modules	 121
Files and class names	 122
The anchor pattern	 123

Table of Contents

[iv]

The parameters dilemma	 124
Naming standards	 126

Reusability patterns	 127
Managing files	 128

Managing configuration hash patterns	 130
Managing multiple configuration files	 132
Managing users and dependencies	 134
Managing the installation options	 135
Managing extra resources	 137

Summary	 138
Chapter 6: Higher Abstraction Modules	 139

Understanding the need for higher abstractions	 140
The OpenStack example	 141

Component (application) modules	 141
Raising abstraction – the official openstack module	 142
Raising abstraction – the Puppet Labs OpenStack module	 143
Raising abstraction – the scenario-based approach	 145
Taking an alternate approach	 146

An approach to reusable stack modules	 148
Summary	 153

Chapter 7: Deploying and Migrating Puppet	 155
Examining the potential scenarios and approaches	 155

New infrastructures	 156
Existing manually managed infrastructures	 157

Node migration	 158
Node update	 159

Existing automated infrastructures	 160
Upgrading the Puppet Master	 161

Patterns for extending Puppet coverage	 162
Raising the bar, step by step	 162
Knowing the territory	 163
Defining priorities	 164

Automate servers deployment	 165
Automate common configurations	 165
Automate the most important roles	 166
Refine and automate application deployments 	 166
Integrate what already works well	 167
Automate monitoring	 167

Evaluating solutions	 168
Coding	 169
Applying changes	 171

Things change	 173
Infrastructure as code	 173

Table of Contents

[v]

Versioning	 174
Reproducibility and predictability	 174
Testing	 175
Maintenance	 175

Evolution of the system administrator	 175
Designing a Puppet-friendly infrastructure	 176

Summary	 177
Chapter 8: Code Workflow Management	 179

Writing the Puppet code	 179
Geppetto	 180
Vim	 181

Git workflows	 182
Git's basic principles and commands	 182
Git hooks	 183
Environments and branches	 184

Branch-based automatic environments	 184
Simplified developer workdir environments	 185

Code review	 185
Gerrit	 186
Online resources for peer review	 187

Testing the Puppet code	 187
Using rspec-puppet	 188
rspec-system-puppet and Beaker	 190
Vagrant	 190

Deploying the Puppet code	 194
Using librarian-puppet for deployments	 195
Deploying code with r10k	 196

Propagating Puppet changes	 197
Puppet Continuous Integration tools	 197

Travis	 198
Jenkins	 199

Summary	 200
Chapter 9: Scaling Puppet Infrastructures	 201

Scaling Puppet	 201
As simple as puppet apply	 202
Default Puppet Master	 203
Puppet Master with Passenger	 204

Installing and configuring Passenger	 205
Multi-Master scaling	 209

Managing certificates	 209
Managing SSL termination	 211
Managing code and data	 213

Table of Contents

[vi]

Load balancing alternatives	 213
Masterless Puppet	 214
Configurations and infrastructure optimizations	 215

Traffic compression	 215
Caching	 215
Distributing Puppet execution times	 216
Checking the interval for changes in files	 216

Scaling stored configs	 217
Measuring performance	 219

Puppet metrics	 220
Optimizing code	 221
Testing different Puppet versions	 223

Summary	 224
Chapter 10: Writing Puppet Plugins	 225

Anatomy of a Puppet run, under the hood	 226
ENC and Hiera extendibility	 228
Modules' pluginsync	 228
Puppet indirector and its termini	 230

Custom functions	 233
Custom facts	 236

Ruby facts distributed via pluginsync	 237
External facts in the facts.d directory	 239

Custom types and providers	 241
Custom report handlers	 247
Custom faces	 249
Summary	 253

Chapter 11: Beyond the System	 255
Puppet on a network equipment	 255

A Proxy mode with the puppet device application	 257
Native Puppet on the network equipment	 260

Cisco onePK	 260
Juniper and netdev_stdlib	 261

Puppet for cloud and virtualization	 263
VMware	 263

VM provisioning on vCenter and vSphere	 263
The integration of vCloud Automation Center	 264
The configuration of vCenter	 264

Amazon Web Services	 265
Cloud provisioning on AWS	 265

AWS provisioning and configuration with resource types	 267
Managing CloudFormation	 268

Cloud provisioning on Google Compute Engine	 268

Table of Contents

[vii]

Puppet on storage devices	 269
Summary	 269

Chapter 12: Future Puppet	 271
Introducing the future parser	 272

Lambdas and Iterations	 273
Manipulating and validating hashes and arrays	 275
Other features	 277

Restrictions and backward incompatibilities	 277
Directory environments	 278
Heredoc support	 279
The new type system	 280

Other new features	 281
EPP Templates	 281
The contain function	 282
Serialization with MessagePack	 283

Improved error system	 284
Data in modules	 284
Facter 2	 286
Trapperkeeper	 289
Summary	 290

Index	 293

Preface
Puppet has changed the way we manage our systems. When it was released,
other configuration management tools were around, but it was clear that it had
something special. It came at the right time with the right approach. The challenges
of IT infrastructures were beginning to step up to a new level, and the need to
automate common activities such as a quick setup and configuration of systems
was becoming a requirement. Puppet presented a sane model, based on abstraction
of resources and the definition of the expected state of a system, using a clear and
sysadmin-friendly language.

There are various books about Puppet around, and most of them are very good. This
one tries to contribute with solid and no frills content (few pictures and few large
blocks of copied and pasted text) and some new perspectives and topics. It begins
with an intense technical overview of Puppet, Hiera, and PuppetDB so that you can
use them to design appropriate Puppet architectures that fit your IT infrastructure.

We will explore where our data can be placed, how to design reusable modules,
and how they can be used as building blocks for higher abstraction classes. We
will try to give a clearer and wider view of what it means to work with Puppet,
and what are the challenges we might face when we introduce it on our systems,
from code management to deployment rollouts. We will dive into Puppet's internal
details and its extension points, showing the multiple ways we can tweak, extend,
and hack with it. We will also give a look to less traditional fields, such as Puppet as
a configuration-management tool for network devices or cloud services.

The last chapter is about the future: how Puppet is evolving and what we can expect
to do with it in the next years.

I'd dare to say that this is the book I'd have liked to read when I was trying to
connect the dots and figure out how to do things in the "right way", struggling to
grasp Puppet's inner concepts and reusability patterns.

www.allitebooks.com

http://www.allitebooks.org

Preface

[2]

Years of pain, experience, evolution, and research are poured in these pages and I
really hope they can be useful for your personal adventure exploring Puppet.

What this book covers
Chapter 1, Puppet Essentials, is an intense and condensed summary of the most
important Puppet concepts: the baseline needed to understand the chapters that
follow and a good occasion to refresh and maybe enrich knowledge about the
Puppet language and model.

Chapter 2, Hiera, is dedicated to how to manage our data with Hiera: how to define
the lookup hierarchy, organize data, and use different backends.

Chapter 3, PuppetDB, covers the installation, configuration, and usage of PuppetDB,
and explores the great possibilities that it may enable in the next generations of
modules.

Chapter 4, Designing Puppet Architectures, outlines the components to manage when
defining a Puppet architecture: the available tools, how to integrate them, how to
cope with data and code, and organize resources to be applied to nodes.

Chapter 5, Using and Writing Reusable Modules, covers the most important Puppet
element from the user's perspective, modules, and how to write them in order to be
able to reuse them in different infrastructures.

Chapter 6, Higher Abstraction Modules, takes a step further and focuses on modules
that use different application modules to compose more complex and wider
scenarios.

Chapter 7, Deploying and Migrating Puppet, analyzes the approaches that can be
taken when introducing Puppet in a new or existing infrastructure: methodologies,
patterns, techniques, and tips for a successful deployment.

Chapter 8, Code Workflow Management, focuses on how to manage Puppet code,
from when it is written in an editor to its management with an SCM, its testing and
deployment to production.

Chapter 9, Scaling Puppet Infrastructures, covers the challenges you might face in
growing infrastructures and how it is possible to make Puppet scale with them.

Chapter 10, Writing Puppet Plugins, covers the many available possibilities to extend
the core code with custom plugins and gives a deeper view on how Puppet internals
are organized.

Preface

[3]

Chapter 11, Beyond the System, takes a journey outside the traditional territories,
exploring how we can manage with Puppet network and storage equipment and
cloud instances.

Chapter 12, Future Puppet, is a step towards Puppet 4 and how its new features may
influence the way we work with Puppet.

What you need for this book
You can test the Puppet code present in this book on any Linux system connected
to the Internet. You can use the Vagrant environment provided in the example code
and have your test machines running a VirtualBox instance on your computer. For
this, you need both Vagrant and VirtualBox installed on your system.

Who this book is for
This book is accessible to any Puppet user.

If you are totally new to Puppet, be sure to have given a thorough read of
Chapter 1, Puppet Essentials, and to have well understood its principles before
continuing your reading.

If you are an intermediate user, enjoy reading the following chapters in order.

If you are an advanced user, you may pick in different pages' useful information and
new insights on topic you should already know.

Conventions
In this book you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"For inline documentation about a resource, use the describe subcommand."

Preface

[4]

A block of code is set as follows:

:backends:
 - http
:http:
 :host: 127.0.0.1
 :port: 5984
 :output: json
 :failure: graceful
 :paths:
 - /configuration/%{fqdn}
 - /configuration/%{env}
 - /configuration/common

Any command-line input or output is written as follows:

puppet agent -t

puppet resource package

puppet resource service

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "At the
end of a Puppet run, we can have metrics that let us understand how much time the
Master spent in compiling and delivering the catalog (Config retrieval time)."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website, or added
to any list of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Puppet Essentials
There are moments in our professional life when we encounter technologies that
trigger an inner wow effect. We realize there's something special in them, and
we start to wonder how they can be useful for our current needs and, eventually,
wider projects.

Puppet, for me, has been one of these turning point technologies. I have reasons to
think that we might share a similar feeling.

If you are new to Puppet, you are probably starting from the wrong place, since there
are better fitting titles around to grasp its basic concepts.

This book won't indulge too much in the fundamentals, but don't despair as this
chapter might help for a quick start.

It provides the basic Puppet background needed to understand the rest of the
contents and may also offer valuable information to more experienced users.

In this chapter, we are going to review the following topics:

•	 The Puppet ecosystem: The components, its history, and the basic concepts
behind configuration management

•	 How to install and configure Puppet: Commands and paths to understand
where things are placed

•	 The core components and concepts: Terms such as manifests, resources,
nodes, and classes will become familiar

•	 The main language elements: Variables, references, resource defaults,
ordering, conditionals, comparison operators, and virtual and exported
resources

•	 How Puppet stores the changes it makes and how to revert them

Puppet Essentials

[8]

The contents of this chapter are quite dense; take your time to review and assimilate
them; if they sound new or look too complex, it is because the path towards Puppet
awareness is never too easy.

The Puppet ecosystem
Puppet is a configuration management and automation tool. We use it to install,
configure, and manage the components of our servers.

Written in Ruby and released with an open source license (Apache 2), it can run on
any Linux distribution, many other UNIX variants (Solaris, *BSD, AIX, and Mac OS
X), and Windows.

Its development started in 2005 by Luke Kanies as an alternate approach to the
existing configuration management tools (most notably, CFEngine and BladeLogic).

The project has grown year after year. Kanies' own company, Reductive Labs, which
was renamed in 2010 to Puppet Labs, has received a total funding of $45.5 million
in various funding rounds (among the investors, there are names such as VMware,
Google, and Cisco).

Now, it is one of the top 100 fastest growing companies in the US. It employs
more than 250 people, and has a solid business based on open source software,
consulting services, training, and certifications. It also has Puppet Enterprise,
which is the commercial version that is based on the same open source Puppet
code base, but it provides a web GUI that improves and helps in easier Puppet
usage and administration.

The Puppet ecosystem features a vibrant, large, and active community that discusses
it at the Puppet Users and Puppet Developers Google group, on the crowded
Freenode's #puppet IRC channel, at the various Puppet Camps that are held multiple
times a year all over the world, and at the annual PuppetConf, which is improving
and getting bigger year after year.

Various software products are complementary to Puppet; some of them are
developed by Puppet Labs, which are as follows:

•	 Hiera is a key-value lookup tool that is the current choice of reference for
storing data related to your Puppet infrastructure

•	 MCollective is an orchestration framework that allows parallel execution
of tasks on multiple servers. It is a separate project by Puppet Labs, which
works well with Puppet

Chapter 1

[9]

•	 Facter is a required complementary tool as it is executed on each managed
node and gathers local information in key/value pairs (facts) that are used
by Puppet

•	 Geppetto is an IDE that is based on Eclipse that allows easier and assisted
development of Puppet code

•	 Puppet Dashboard is an open source web console for Puppet
•	 PuppetDB is a powerful backend that can store all the data gathered and

generated by Puppet
•	 Puppet Enterprise is the commercial solution to manage Puppet, Mcollective,

and PuppetDB via a web frontend

The community has produced other tools and resources; the most noticeable ones are
the following:

•	 The Foreman is a systems lifecycle management tool that integrates perfectly
with Puppet

•	 Puppetboard is a web frontend for PuppetDB
•	 Kermit is a web frontend for Puppet and Mcollective
•	 A lot of community code is released as modules, which are reusable

components that allow the management of any kind of application and
software via Puppet

Why configuration management matters
IT operations have changed drastically in the last few years; virtualization, cloud,
business needs, and emerging technologies have accelerated the pace of how systems
are provisioned, configured, and managed.

The manual setup of a growing number of operating systems is no longer a
sustainable option. At the same time, in-house custom solutions to automate the
installation and the management of systems cannot scale in terms of required
maintenance and development efforts.

For these reasons, configuration management tools such as Puppet, Chef, CFEngine,
Rudder, Salt, and Ansible (to mention only the most known open source ones) are
becoming increasingly popular in many infrastructures.

They allow a centralized and controlled approach to systems' management, based
on code and data structures, which can be managed via a Software Change
Management (SCM) tool (git is the choice of reference in Puppet world).

Puppet Essentials

[10]

Once we can express the status of our infrastructure with versioned code, we gain
powerful benefits:

•	 We can reproduce our setups in a consistent way; what is executed once can
be executed any time; the procedure to configure a server from scratch can be
repeated without the risk of missing parts.

•	 The log of our code commits reflects the history of changes on our
infrastructure: who did what, when, and if commits comments are
pertinent, then why.

•	 We can scale quickly; the configurations we did for a server can be applied to
all the servers of the same kind.

•	 We have aligned and coherent environments. Our development, test, QA,
staging, and production servers can share the same setup procedures and
configurations.

With these kinds of tools, we can have a system provisioned from zero to production
in a few minutes, or we can quickly propagate a configuration change over our
whole infrastructure automatically.

Their power is huge and has to be handled with care as we can automate massive
and parallelized setups and configurations of systems; we might automate
distributed destructions. With great power comes great responsibility.

Puppet components
Before diving into the installation and configuration details, we need to clarify and
explain some Puppet terminology to get the whole picture.

Puppet features a declarative Domain Specific Language (DSL), which expresses the
desired state and properties of the managed resources.

Resources can be any component of a system, for example, packages to install,
services to start, files to manage, users to create, and also custom and specific
resources such as MySQL grants, Apache virtual hosts, and so on.

Puppet code is written in manifests, which are simple text files with a .pp
extension. Resources can be grouped in classes (do not consider them as classes
as in OOP; they aren't). Classes and all the files needed to define the required
configurations are generally placed in modules, which are directories structured
in a standard way that are supposed to manage specific applications or a system's
features (there are modules to manage Apache, MySQL, sudo, sysctl, networking,
and so on).

Chapter 1

[11]

When Puppet is executed, it first runs facter, a companion application, which
gathers a series of variables about the system (the IP address, the hostname, the
operating system, the MAC address, and so on), which are called facts, and are sent
to the Master.

Facts and user-defined variables can be used in manifests to manage how and what
resources to provide to the clients.

When the Master receives a connection, then it looks in its manifests (starting from
/etc/puppet/manifests/site.pp) what resources have to be applied for that client
host, also called a node.

The Master parses all the DSL code and produces a catalog that is sent back to the
client (in the PSON format, which is a JSON variant used in Puppet). The production
of the catalog is often referred to as catalog compilation, even if the term is not
perfectly appropriate (there is no other program that is compiled from the source
code to binary), and is going to be discontinued. In this book, we will still use it as it
is quite common and widely used.

Once the client receives the catalog, it starts to apply all the resources declared there,
irrespective of whether packages are installed (or removed), services have started,
configuration files are created or changed, and so on. The same catalog can be applied
multiple times; if there are changes on a managed resource (for example, a manual
modification of a configuration file), they are reverted to the state defined by Puppet; if
the system's resources are already at the desired state, nothing happens.

This property is called idempotence and is at the root of the Puppet declarative
model. Since it defines the desired state of a system, it must operate in a way that
ensures that this state is obtained wherever the starting conditions and the number
of times Puppet is applied.

Puppet can report the changes it makes on the system and audit the drift between
the system's state and the desired state as defined in its catalog.

Installation and configuration
Puppet uses a client-server paradigm. Clients (also called agents) are installed on
all the systems to be managed; the server(s) (also called the Master) is installed on a
central machine(s) from where we control the whole infrastructure.

We can find Puppet's packages on the most recent OS, either in the default
repositories on in the additional ones (for example, EPEL for Red Hat derivatives).

www.allitebooks.com

http://www.allitebooks.org

Puppet Essentials

[12]

The client package is generally called puppet, so the installation is a matter of typing
something like the following:

apt-get install puppet # On Debian derivatives
yum install puppet # On Red Hat derivatives

To install the server components, we can run the following command:

apt-get install puppetmaster # On Debian derivatives
yum install puppet-server # On RedHat derivatives

To have updated packages for the latest versions, we should use
Puppet Labs' repositories: http://docs.puppetlabs.com/
guides/puppetlabs_package_repositories.html.
To install Puppet on other operating systems, check http://docs.
puppetlabs.com/guides/installation.html.

Both agents (clients) and the Master (server) use the configuration file /etc/puppet/
puppet.conf, which is divided in [sections] and has an INI-like format. All the
parameters present in the configuration file may be overridden while invoking
puppet from the command line. All of them have default values; here is a sample
with some of the most important ones:

[main]
 logdir = /var/log/puppet
 vardir = /var/lib/puppet
 rundir = /var/run/puppet
 ssldir = $vardir/ssl
[agent]
 server = puppet
 certname = $fqdn # Here, by default, is the node's fqdn
 runinterval = 30
[master]
 autosign = false
 manifest = /etc/puppet/manifests/site.pp
 modulepath = /etc/puppet/modules:/usr/share/puppet/modules

A very useful command to see all the current configuration settings is as follows:

puppet config print all

http://docs.puppetlabs.com/guides/puppetlabs_package_repositories.html
http://docs.puppetlabs.com/guides/puppetlabs_package_repositories.html
http://docs.puppetlabs.com/guides/installation.html
http://docs.puppetlabs.com/guides/installation.html

Chapter 1

[13]

With the previous information, we have all that we need to understand the main files
and directories that we deal with when we work with Puppet:

1.	 Logs are in /var/log/puppet (but also on normal syslog files, with the
facility daemon), both for agents and Master.

2.	 The Puppet operational data is in /var/lib/puppet.
3.	 SSL certificates are stored in /var/lib/puppet/ssl. By default, the agent

tries to contact a Master hostname called puppet, so either name our server
puppet.$domain or provide the correct name in the server parameter.

4.	 When the agent communicates with the Master, it presents itself with its
certname (this is also the hostname placed in its SSL certificates). By
default, the certname is the fully qualified domain name (FQDN) of the
agent's system.

5.	 By default, the agent runs as a daemon that connects to the Master every 30
minutes and fetches its configuration (the catalog, to be precise).

6.	 On the Master, we have to sign each client's certificates request (manually). If
we can cope with the relevant security concerns, we may automatically sign
them (autosign = true).

7.	 The first manifest file (that contains Puppet DSL code) that the Master
parses when a client connects, in order to produce the configuration to apply
to it, is /etc/puppet/manifests/site.pp. This is important as all our code
starts from here.

8.	 Puppet modules are searched for and automatically loaded from the
directories /etc/puppet/modules and /usr/share/puppet/modules
on the Master.

Puppet Enterprise is provided with custom packages that reproduce the
full stack, Ruby included, and uses different directories.
/etc/puppetlabs/puppet/ is the main configuration directory; here,
we find puppet.conf and other configuration files. The other directories
are configured by default with these paths:

 vardir = /var/opt/lib/pe-puppet
 logdir = /var/log/pe-puppet
 rundir = /var/run/pe-puppet
 modulepath = /etc/puppetlabs/puppet/modules:
 /opt/puppet/share/puppet/modules

In this book, we will mostly refer to the open source version; besides, the
previous paths, all the principles, and usage patterns are the same.

Puppet Essentials

[14]

Puppet in action
Client-server communication is done using REST-like API calls on an SSL socket;
basically, it's all HTTPS traffic from clients to the server's port 8140/TCP.

The first time we execute Puppet on a node, its x509 certificates are created and
placed in ssldir, and then the Puppet Master is contacted in order to retrieve the
node's catalog.

On the Puppet Master, unless we have autosign enabled, we must manually sign
the client's certificates using the cert subcommand:

puppet cert list # List the unsigned clients certificates

puppet cert list --all # List all certificates

puppet cert sign <certname> # Sign the given certificate

Once the node's certificate has been recognized as valid and been signed, a trust
relationship is created, and a secure client-server communication can be established.

If we happen to recreate a new machine with an existing certname, we have to
remove the certificate of the old client from the server with the following command:

puppet cert clean <certname> # Remove a signed certificate

At times, we may also need to remove the certificates on the client; we can do this
with the following command:

mv /var/lib/puppet/ssl /var/lib/puppet/ssl.bak

This is safe enough as the whole directory is recreated with new certificates when
Puppet is run again (never do this on the Master as it'll remove all the clients'
certificates previously signed, along with the Master's certificate, whose public key
has been copied to all clients).

A typical Puppet run is composed of different phases. It's important to know them in
order to troubleshoot problems:

1.	 Execute Puppet on the client. On a root shell, run puppet agent -t.
2.	 If pluginsync = true (default from Puppet 3.0), the client retrieves any

extra plugin (facts, types, and providers) present in the modules on the
Master's $modulepath client output with the following command:
Info: Retrieving plugin

Chapter 1

[15]

3.	 The client runs facter and sends its facts to the server client output:
Info: Loading facts in /var/lib/puppet/lib/facter/... [...]

4.	 The Master looks for the client's certname in its nodes' list.
5.	 The Master compiles the catalog for the client using also its facts.

Master's logs:
Compiled catalog for <client> in environment production in 8.22
seconds

6.	 If there are syntax errors in the processed Puppet code, they are exposed
here, and the process terminates; otherwise, the server sends the catalog to
the client in the PSON format.
Client output:
Info: Caching catalog for <client>

7.	 The client receives the catalog and starts to apply it locally. If there are
dependency loops, the catalog can't be applied and the whole run fails.
Client output:
Info: Applying configuration version '1355353107'

8.	 All changes to the system are shown on stdout or in logs. If there are errors
(in red or pink, according to Puppet versions), they are relevant to specific
resources but do not block the application of other resources (unless they
depend on the failed ones).

9.	 At the end of the Puppet run, the client sends to the server a report of what
has been changed.
Client output:
Finished catalog run in 13.78 seconds

10.	 The server sends the report to a report collector if enabled.

Resources
When dealing with Puppet's DSL, most of the time we use resources as they are
single units of configuration that express the properties of objects on the system. A
resource declaration is always composed by the following parts:

•	 type: a package, service, file, user, mount, exec, and so on
•	 title: how it is called and referred in other parts of the code

Puppet Essentials

[16]

•	 One or more attributes

type { 'title':
 argument => value,
 other_arg => value,
}

Inside a catalog, for a given type, there can be only one title; otherwise, we get an
error as follows:

Error: Duplicate declaration: <Type>[<name>] is already declared in file
<manifest_file> at line <line_number>; cannot redeclare on node <node_
name>.

Resources can be native (written in Ruby), or defined by users in Puppet DSL.

These are examples of common native resources; what they do should be quite
obvious:

 file { 'motd':
 path => '/etc/motd',
 content => "Tomorrow is another day\n",
 }

 package { 'openssh':
 ensure => present,
 }

 service { 'httpd':
 ensure => running, # Service must be running
 enable => true, # Service must be enabled at boot time
 }

We can write code of this kind in manifests, which are files with a .pp extension
that contain valid Puppet code. It's possible to test the effect of this code on the local
system with the puppet apply command, which expects the path of a manifest file
as the argument:

puppet apply /etc/puppet/manifests/site.pp

We can also directly execute Puppet code with the --execute (-e) option:

puppet apply –e "package { 'openssh': ensure => present }"

In this case, instead of a manifest file, the argument is a fragment of valid Puppet DSL.

Chapter 1

[17]

For inline documentation about a resource, use the describe subcommand,
for example:

puppet describe file

For a complete reference of the native resource types and their
arguments, check http://docs.puppetlabs.com/references/
latest/type.html.

The resource abstraction layer
From the previous resource examples, we can deduce that the Puppet DSL allows us
to concentrate on the types of objects (resources) to manage, and it doesn't bother us
on how these resources may be applied on different operating systems.

This is one of Puppet's strong points; resources are abstracted from the underlying
OS; we don't have to care or specify how, for example, to install a package on Red Hat
Linux, Debian, Solaris, or Mac OS; we just have to provide a valid package name.

This is possible thanks to Puppet's Resource Abstraction Layer (RAL), which is
engineered around the concept of types and providers.

Types, as we have seen, map to an object on the system.

There are more than 50 native types in Puppet (some of them are applicable only to
a specific OS); the most commonly used ones are augeas, cron, exec, file, group,
host, mount, package, service, and user.

To have a look at their Ruby code and learn how to create custom types, check this file:

ls -l $(facter rubysitedir)/puppet/type

For each type, there is at least one provider, which is the component that enables that
type on a specific OS. For example, the package type is known for having a large
number of providers that manage the packages' installations on many OSes, which
are aix, appdmg, apple, aptitude, apt, aptrpm, blastwave, dpkg, fink, freebsd,
gem, hpux, macports, msi, nim, openbsd, pacman, pip, pkgdmg, pkg, pkgutil,
portage, ports, rpm, rug, sunfreeware, sun, up2date, urpmi, yum, and zypper.

We can find them with the following command:

ls -l $(facter rubysitedir)/puppet/provider/package/

The Puppet executable offers a powerful subcommand to interrogate and operate
with the RAL puppet resource.

http://docs.puppetlabs.com/references/latest/type.html
http://docs.puppetlabs.com/references/latest/type.html

Puppet Essentials

[18]

For a list of all the users present on the system, type the following:

puppet resource user

For a specific user, type the following:

puppet resource user root

Other examples that might show glimpses of the power of RAL to map a system's
resources are as follows:

puppet resource package

puppet resource mount

puppet resource host

puppet resource file /etc/hosts

puppet resource service

The output is in the Puppet DSL format; we can use it in our manifests to reproduce
that resource wherever we want.

The puppet resource subcommand can also be used to modify the properties of a
resource directly from the command line, and since it uses the Puppet RAL, we don't
have to know how to do that on a specific OS, for example, to enable the httpd service:

puppet resource service httpd ensure=running enable=true

Nodes
We can place the above resources in our first manifest file (/etc/puppet/
manifests/site.pp) or in the one included from there, and they would be applied
to all our Puppet-managed nodes. This is okay for quick samples out of books, but
in real life, things are much different. We have hundreds of different resources
to manage and apply, with different logic and properties to (dozens? hundreds?
thousands?) different systems.

To help you organize your Puppet code, there are two different language elements;
with node, we can confine resources to a given host and apply them only to it; with
class, we can group different resources (or other classes) that generally have a
common function or task.

Whatever is declared in a node definition is included only in the catalog compiled for
that node. The general syntax is as follows:

node $name [inherits $parent_node] {
 [Puppet code, resources and classes applied to the node]
}

Chapter 1

[19]

Here $name is a placeholder for the certname of the client (by default, it's FQDN)
or a regular expression; it's possible to inherit in a node whatever is defined in the
parent node and inside the curly braces; we can place any kind of Puppet code,
such as resource declarations, class inclusions, and variable definitions. Here are
some examples:

node 'mysql.example.com' {
 package { 'mysql-server':
 ensure => present,
 }
 service { 'mysql':
 ensure => 'running',
 }
}

However, generally in nodes we just include classes, so a better real-life example
would be the following one:

node 'mysql.example.com' {
 include common
 include mysql
}

The previous include statements do what we might expect; they include all the
resources declared in the referred class.

Note that there are alternatives to the usage of the node statement; we can use an
External Node Classifier (ENC) to define which variables and classes are assigned
to nodes, or we can have a nodeless setup, where resources applied to nodes are
defined in a case statement based on the hostname or a similar fact that identifies a
node.

Classes and defines
A class can be defined (the resources provided by the class are defined for later
usage, but are not yet included in the catalog) with this syntax:

class mysql {
 $mysql_service_name = $::osfamily ? {
 'RedHat' => 'mysqld',
 default => 'mysql',
 }
 package { 'mysql-server':
 ensure => present,
 }
 service { 'mysql':

Puppet Essentials

[20]

 name => $mysql_service_name,
 ensure => 'running',
 }
 […]
}

Once defined, a class can be declared (the resources provided by the class are
actually included in the catalog) in two ways:

•	 Just by including it (we can include the same class many times, but it is
evaluated only once):
include mysql

•	 Using the parameterized style (available since Puppet 2.6), where we can
optionally pass parameters to the class if available (we can declare a class
with this syntax only once for each node in our catalog):

class { 'mysql': }

A parameterized class has a syntax similar to the following code:

class mysql (
 $root_password,
 $config_file_template = undef,
 ...
) {
 […]
}

In this code, the expected parameters are defined between parentheses, which may
or may not have a default value (parameters without default values, such as the
$root_password in this sample, must be set explicitly while declaring the class). The
declaration of a parameterized class has exactly the same syntax as that of a normal
resource:

class { 'mysql':
 $root_password => 's3cr3t',
}

Puppet 3.0 introduced a feature called data binding; if we don't pass a value for
a given parameter, as in the above example, before using the default value if
present, Puppet performs an automatic lookup to a Hiera variable with the name
$class::$parameter. In this example, it would be mysql::root_password.

This is an important feature that radically changes the approach on how to manage
data in Puppet architectures. We will come back to this topic in the following chapters.

Chapter 1

[21]

Besides classes, Puppet also has defines, which can be considered as classes that
can be used multiple times on the same host (with a different title). Defines are also
called defined types, since they are types that can be defined using Puppet DSL,
contrary to the native types that are written in Ruby.

They have a similar syntax:

define mysql::user (
 $password, # Mandatory parameter, no defaults set
 $host = 'localhost', # Parameter with a default value
 [...]
) {
 # Here all the resources
}

They are also used in a similar way:

mysql::user { 'al':
 $password => 'secret',
}

Note that defines (also called user-defined types, defined resource types, or
definitions), like the one above, even if written in Puppet DSL, have exactly the same
usage pattern of native types, that are written in Ruby (packages, services, files, and
so on).

In types, besides the parameters that are explicitly exposed, there are two variables
that are automatically set: $title is the defined title, and $name, which defaults to
the value of $title, can be set to an alternate value.

Since a define can be declared more than once inside a catalog (with different titles),
it's important to avoid to declare, inside a define, resources with a static title. For
example, this is wrong:

define mysql::user (...) {
 exec { 'create_mysql_user':
 […]
 }
}

www.allitebooks.com

http://www.allitebooks.org

Puppet Essentials

[22]

This is because when there are two different mysql::user declarations, it will
generate an error like the following:

Duplicate definition: Exec[create_mysql_user] is already defined in file
/etc/puppet/modules/mysql/manifests/user.pp at line 2; cannot redefine at
/etc/puppet/modules/mysql/manifests/user.pp:2 on node test.example42.com

A correct version could use the $title variable, which is inherently different
each time:

define mysql::user (...) {
 exec { "create_mysql_user_${title}":
 […]
 }
}

Class inheritance
We have seen that in Puppet, classes are just containers of resources and have
nothing to do with Object-oriented Programming classes; so the definition of class
inheritance is somehow limited to a few specific cases.

When using class inheritance, the main class (puppet in the following sample) is
always evaluated first, and all the variables and resource defaults that it sets are
available in the scope of the child class (puppet::server).

Moreover, the child class can override the arguments of a resource defined in the
parent class:

class puppet {
 file { '/etc/puppet/puppet.conf':
 content => template('puppet/client/puppet.conf'),
 }
}
class puppet::server inherits puppet {
 File['/etc/puppet/puppet.conf'] {
 content => template('puppet/server/puppet.conf'),
 }
}

Note the syntax used when declaring a resource; we use a syntax like file { '/
etc/puppet/puppet.conf': [...] }. When referring to it, the syntax is File['/
etc/puppet/puppet.conf'].

Chapter 1

[23]

Resource defaults
It is possible to set the default argument values for a resource type in order to reduce
code duplication. The general syntax to define a resource default is as follows:

Type {
 argument => default_value,
}

Common examples are as follows:

Exec {
 path => '/sbin:/bin:/usr/sbin:/usr/bin',
}
File {
 mode => 0644,
 owner => 'root',
 group => 'root',
}

Resource defaults can be overridden when declaring a specific resource of the
same type.

It is worth noting that the area of effect of the resource defaults might bring
unexpected results. The general suggestion is as follows:

•	 Place global resource defaults in /etc/puppet/manifests/site.pp outside
any node definition.

•	 Place local resource defaults at the beginning of a class that uses them
(mostly for clarity sake, as they are independent of the parse-order).

We cannot expect a resource default that is defined in a class to be working in
another class, unless it is a child class with an inheritance relationship.

Resource references
In Puppet, any resource is uniquely identified by its type and its name. We cannot
have two resources of the same type with the same name in a node's catalog.

We have seen that we declare resources with a syntax like the following one:

type { 'name':
 arguments => values,
}

Puppet Essentials

[24]

When we need to reference them (typically when we define dependencies between
resources) in our code, the following is the syntax (note the square brackets and the
capital letter):

Type['name']

Some examples are as follows:

file { 'motd': ... }
apache::virtualhost { 'example42.com': }
exec { 'download_myapp': }

These examples are referenced, respectively, with the following code:

File['motd']
Apache::Virtualhost['example42.com']
Exec['download_myapp']

Variables, facts, and scopes
When writing our manifests, we can set and use variables; they help us in organizing
which resources we want to apply, how they are parameterized, and how they
change according to our logic, infrastructure, and our needs.

They may have different sources:

•	 Facter (variables, called facts, automatically generated on the Puppet client)
•	 User-defined variables in Puppet code (variables that are defined using

Puppet DSL)
•	 User-defined variables from an ENC
•	 User-defined variables on Hiera
•	 Puppet's built-in variables

System's facts
When we install Puppet on a system, the facter package is installed as a
dependency. Facter is executed on the client each time Puppet is run, and it collects a
large set of key-value pairs that reflect many properties of the system. They are called
facts and provide valuable information such as the system's operatingsystem,
operatingsystemrelease, osfamily, ipaddress, hostname, fqdn, and macaddress
to name just some of the most used ones.

All the facts gathered on the client are available as variables to the Puppet Master
and can be used inside manifests to provide a catalog that fits the client.

Chapter 1

[25]

We can see all the facts of our nodes running locally:

facter -p

(The -p argument is the short version of --puppet and also shows eventual custom
facts that are added to the native ones, via our modules.)

User variables in Puppet DSL
Variable definition inside the Puppet DSL follows the general syntax:
$variable = value

Let's see some examples. Here, the value is set as string, boolean, array, or hash as
shown in the following code:

$redis_package_name = 'redis'
$install_java = true
$dns_servers = ['8.8.8.8' , '8.8.4.4']
$config_hash = { user => 'joe', group => 'admin' }

Here, the value is the result of a function call (which may have values, as arguments,
strings, other data types, or other variables):

$config_file_content = template('motd/motd.erb')

$dns_servers = hiera(name_servers)
$dns_servers_count = inline_template('<%= @dns_servers.length %>')

Here, the value is determined according to the value of another variable (here, the
$::osfamily fact is used), using the selector construct:

$mysql_service_name = $::osfamily ? {
 'RedHat' => 'mysqld',
 default => 'mysql',
}

A special value for a variable is undef (similar to Ruby's nil), which basically
removes any value to the variable. This can be useful in resources when we want to
disable (and make Puppet ignore) an existing attribute:

$config_file_source = undef
file { '/etc/motd':
 source => $config_file_source,
 content => $config_file_content,
}

Puppet Essentials

[26]

Note that we can't change the value assigned to a variable inside the same class
(more precisely, inside the same scope; we will review them later).

$counter = '1'
$counter = $counter + 1

The preceding code will produce the following error:

Cannot reassign variable counter

User variables in an ENC
When an ENC is used for classifying nodes, it returns the classes to include in the
requested node and variables. All the variables provided by an ENC are at the top
scope (we can reference them with $::variablename all over our manifests).

User variables in Hiera
Hiera is another very popular and useful place to place user data (yes, variables);
we will review it extensively in Chapter 2, Hiera; here, let's just point out a few basic
usage patterns. We can use it to manage any kind of variable whose value can
change according to custom logic in a hierarchical way. Inside manifests, we can look
up a Hiera variable using the hiera() function. Some examples are as follows:

$dns = hiera(dnsservers)

class { 'resolver':

 dns_server => $dns,

}

The previous code can also be written as:

class { 'resolver':

 dns_server => hiera(dnsservers),

}

In our Hiera YAML files, we would have something like the following:

dnsservers:
 - 8.8.8.8
 - 8.8.4.4

Chapter 1

[27]

If our Puppet Master uses Puppet Version 3 or greater, then we can benefit from the
Hiera automatic lookup for class parameters, which is the ability to define in Hiera
values for any parameter exposed by the class. The above example would become
something like the following:

include resolver

and then, in Hiera YAML files:

resolver::dns_server:

 - 8.8.8.8

 - 8.8.4.4

Puppet's built-in variables
A bunch of other variables is available and can be used in manifests or templates:

Variables set by the client (agent):

•	 $clientcert: This is the name of the node (the certname setting in its
puppet.conf, by default, is the host's FQDN)

•	 $clientversion: This is the Puppet version of the agent

Variables set by the server (Master):

•	 $environment: This is a very important special variable, which defines the
Puppet's environment of a node (for different environments, the Puppet
Master can serve manifests and modules from different paths)

•	 $servername, $serverip: Respectively the Master's FQDN and IP address.
•	 $serverversion: The Puppet version on the Master (is always better to have

Masters with Puppet version equal or newer than the clients)
•	 $settings::<setting_name>: Any configuration setting of the Puppet

Master's puppet.conf

Variables set by the parser during catalog compilation:

•	 $module_name: This is the name of the module that contains the current
resource's definition

•	 $caller_module_name: This is the name of the module that contains the
current resource's declaration

Puppet Essentials

[28]

A variable's scope
One of the parts where Puppet development can be misleading and not so intuitive is
how variables are evaluated according to the place in the code where they are used.

Variables have to be declared before they can be used, and this is dependent on
the parse-order; so, also for this reason, Puppet language can't be considered
completely declarative.

In Puppet, there are different scopes, which are partially isolated areas of code where
variables and resource default values can be confined and accessed.

There are four types of scopes, from general to local there are:

•	 Top scope: Any code defined outside nodes and classes, as what is generally
placed in /etc/puppet/manifests/site.pp

•	 Node scope: Code defined inside the node's definitions
•	 Class scope: Code defined inside a class or define
•	 Sub class scope: Code defined in a class that inherits another class

We always write code within a scope, and we can directly access variables (that is, by
just specifying their name without using the fully qualified name) defined only in the
same scope or in a parent or containing one. So:

•	 Top scope variables can be accessed from anywhere
•	 Node scope variables can be accessed in classes (used by the node) but not at

the Top scope
•	 Class (also called local) variables are directly available, with their plain name,

only from within the same class, or define where they are set or in a child
class

The variables' value or resources default arguments that are defined at a more general
level can be overridden at a local level (Puppet always uses the most local value).

It's possible to refer to variables outside a scope by specifying their fully qualified
name, which contains the name of the class where the variables is defined, for
example, $::apache::config_dir is a variable called config_dir, and is defined in
the apache class.

One important change introduced in Puppet 3.x is the forcing of static scoping for
variables; this indicates that the parent scope for a class can only be its parent class.

Chapter 1

[29]

Earlier, Puppet versions had dynamic scoping, where parent scopes were assigned
both by inheritance (like in static scoping) and by simple declaration; that is, any
class has as a parent the first scope where it has been declared. This means that
since we can include classes multiple times, the order used by Puppet to parse our
manifests may change the parent scope, and therefore, how a variable is evaluated.

This can obviously lead to any kind of unexpected problems if we are not
particularly careful about how classes are declared, with variables evaluated in
different parse-order dependent ways. The solution is Puppet 3's static scoping and
the need to reference to out-of-scope variables with their fully qualified name.

Meta parameters
Meta parameters are general-purpose parameters available to any resource type even
if not explicitly defined. They can be used for different purposes:

•	 Manage the ordering of dependencies and resources (more on them in the
next section): before, require, subscribe, notify, stage

•	 Manage resources' application policies: audit (audit the changes done on the
attributes of a resource), noop (do not apply any real change for a resource),
schedule (apply the resources only within a given time schedule), and
loglevel (manage the log verbosity)

•	 Add information to a resource using alias (adds an alias that can be used to
reference a resource) and tag (adds a tag that can be used to refer to a group
resources according to custom needs; we will see a use case later in this
chapter in the external resources section)

Managing order and dependencies
Puppet language is declarative and not procedural (*); it defines states. The order in
which resources are written in manifests does not affect the order in which they are
applied to the desired state.

(*) This is not entirely true; contrary to resources, variables definitions
are parse-order dependent, so the order is important when it is used to
define variables. As a general rule, just set variables before using them,
which sounds logical but is actually procedural.

There are cases where we need to set some kind of ordering among resources, for
example, we want to manage a configuration file only after the relevant package
has been installed, or have a service automatically restart when its configuration
files changes.

Puppet Essentials

[30]

Also, we may want to install packages only after we've configured our packaging
systems (apt sources, yum repos, and so on), or install our application only after the
whole system and the middleware has been configured.

To manage these cases, there are three different methods, which can coexist, as follows:

1.	 Use the meta parameters before, require, notify, and subscribe
2.	 Use the chaining arrows operator (respective to the meta parameters: ->, <-,

<~, and ~>)
3.	 Use run stages

In a typical package/service/configuration file example, we want the package to
be installed first. Then, configure it and start the service, and eventually manage its
restart if the configuration file changes.

This can be expressed with meta parameters:

package { 'exim':
 before => File['exim.conf'],
}
file { 'exim.conf':
 notify => Service['exim'],
}
service { 'exim': }

This is equivalent to the following chaining arrows syntax:

package {'exim': } ->
file {'exim.conf': } ~>
service{'exim': }

However, the same ordering can be expressed using the alternate reverse meta
parameters:

package { 'exim': }
file { 'exim.conf':
 require => Package['exim'],
}
service { 'exim':
 subscribe => File['exim.conf'],
}

They can also be expressed as follows:

service{'exim': } <~
file{'exim.conf': } <-
package{'exim': }

Chapter 1

[31]

Run stages
Puppet 2.6 introduced the concept of run stages to help users manage the order of
dependencies when applying groups of resources.

Puppet provides a default main stage; we can add any number of stages and manage
their ordering with the stage resource type using the normal syntax for resources
declaration as we have seen previously:

stage { 'pre':
 before => Stage['main'],
}

This is equivalent to:

stage { 'pre': }
Stage['pre'] -> Stage['main']

We can assign any class to a defined stage with the stage meta parameter:

class { 'yum':
 stage => 'pre',
}

In this way, all the resources provided by the yum class , which is included in
pre-stage are applied before all the other resources (in the default main stage).

The idea of stages at the beginning seemed a good solution to better handle large sets
of dependencies in Puppet. In reality, some drawbacks and the augmented risk of
having dependency cycles make them less useful than expected.

As a rule of thumb, it is recommended to use them for simple classes (that don't
include other classes) and where really necessary (for example, to set up package
management configurations at the beginning of a Puppet run, or deploy our
application after all the other resources have been managed).

Reserved names and allowed characters
As with every language, Puppet DSL has some restrictions on the names we can give
to its elements and the allowed characters.

As a general rule, for names of resources, variables, parameters, classes, and
modules, we can use only lowercase letters, numbers, and the underscore (_). Usage
of hyphens (-) should be avoided (in some cases, it is forbidden; in others, it depends
on Puppet's version).

www.allitebooks.com

http://www.allitebooks.org

Puppet Essentials

[32]

We can use uppercase letters in variable names (but not at their beginning), and use
any character for resources' titles.

Names are case-sensitive, and there are some reserved words that cannot be used as
names for resources, classes or defines, or as unquoted word strings in the code:

and, case, class, default, define, else, elsif, false, if, in,
import, inherits, node, or, true, undef, unless, main, settings,
$string.

Conditionals
Puppet provides different constructs to manage conditionals inside manifests.

Selectors, as we have seen, let us set the value of a variable or an argument inside a
resource declaration according to the value of another variable. Selectors, therefore,
just return values and are not used to conditionally manage entire blocks of code.

Here's an example of a selector:

$package_name = $::osfamily ? {
 'RedHat' => 'httpd',
 'Debian' => 'apache2',
 default => undef,
}

A case statement is used to execute different blocks of code according to the values
of a variable. It's recommended to have a default block for unmatched entries. Case
statements can't be used inside resource declarations. We can achieve the same result
of the previous selector with this case sample:

case $::osfamily {
 'Debian': { $package_name = 'apache2' }
 'RedHat': { $package_name = 'httpd' }
 default: { fail ("OS $::operatingsystem not supported") }
}

The if, elsif, and else conditionals, like case, are used to execute different blocks
of code, and can't be used inside resources' declarations. We can use any of
Puppet's comparison expressions, and we can combine more than one for complex
pattern matching.

Chapter 1

[33]

The previous sample variables assignment can also be expressed in this way:

if $::osfamily == 'Debian' {
 $package_name = 'apache2'
} elsif $::osfamily == 'RedHat' {
 $package_name = 'httpd'
} else {
 fail ("OS $::operatingsystem not supported")
}

An unless statement is the opposite of if. It evaluates a Boolean condition, and if
it's false, it executes a block of code.

Comparison operators
Puppet supports comparison operators that resolve to true or false. They are
as follows:

•	 Equal ==, returns true if the operands are equal. Used with numbers,
strings, arrays, hashes, and Booleans, as shown in the following example:
if $::osfamily == 'Debian' { [...] }

•	 Not equal != , returns true if the operands are different:
if $::kernel != 'Linux' { [...] }

•	 Less than <, greater than >, less than or equal to <= and greater than or
equal to >= can be used to compare numbers:
if $::uptime_days > 365 { [...] }
if $::operatingsystemrelease <= 6 { [...] }

•	 Regex match =~ compares a string (the left operator) with a regular
expression (the right operator). Resolves true, if it matches. Regular
expressions are enclosed between forward slashes and follow the normal
Ruby syntax:
if $mode =~ /(server|client)/ { [...] }
if $::ipaddress =~ /^10\./ { [...] }

•	 Regex not match !~ , opposite to =~, resolves false if the operands match.

Puppet Essentials

[34]

The In operator
The in operator checks if a string is present in another string, an array, or in the keys
of a hash; it is case-sensitive:

if '64' in $::architecture
if $monitor_tool in ['nagios' , 'icinga' , 'sensu']

Expressions combinations
It's possible to combine multiple comparisons with and and or as shown in the
following code:

if ($::osfamily == 'RedHat') and ($::operatingsystemrelease == '5') {
[...] }
if (operatingsystem == 'Ubuntu') or ($::operatingsystem == 'Mint') { [
...] }

Exported resources
When we need to provide a host with information about the resources present in
another host, things in Puppet become trickier. The only official solution has been,
for a long time, to use exported resources; resources are declared in the catalog of a
node (based on its facts and variables) but applied (collected) on another node. Some
alternative approaches are now possible with PuppetDB; we will review them in
Chapter 3, PuppetDB.

Resources are declared with the special @@ notation, which marks them as exported
so that they are not applied to the node where they are declared:

@@host { $::fqdn:
 ip => $::ipaddress,
}
@@concat::fragment { "balance-fe-${::hostname}":
 target => '/etc/haproxy/haproxy.cfg',
 content => "server ${::hostname} ${::ipaddress} maxconn 5000",
 tag => "balance-fe",
}

Once a catalog that contains exported resources has been applied on a node and
stored by the Puppet Master, the exported resources can be collected with the <<|
|>> operator, where it is possible to specify search queries:

Host <<| |>>
Concat::Fragment <<| tag == "balance-fe" |>>
Sshkey <<| |>>
Nagios_service <<| |>>

Chapter 1

[35]

In order to use exported resources, we need to enable on the Puppet Master the
storeconfigs option and specify the backend to use. For a long time, the only
available backend was Rails' active records, which typically used MySQL for data
persistence. This solution was the best for its time but suffered severe scaling
limitations. Luckily, things have changed a lot with the introduction of PuppetDB,
which is a fast and reliable storage solution for all the data generated by Puppet,
including exported resources.

In order to configure a Puppet Master to enable storeconfigs with PuppetDB, we
have to add these lines in the [master] section of puppet.conf (more on this in a
later chapter):

storeconfigs = true
storeconfigs_backend = puppetdb

If we want to use the old ActiveRecord backend, with a SQLite backend (which is
useful to test exported resources without the need to install any other component, but
definitively not applicable in production environments), the configuration is (we need
to have installed the sqlite packages and ruby bindings) shown in the following code:

storeconfigs = true
dbadapter = sqlite3

To use ActiveRecords with a MySQL backend, we need these configurations:

storeconfigs = true
dbadapter = mysql
dbuser = puppet
dbpassword = secretpassword
dbserver = localhost
dbsocket = /var/run/mysqld/mysqld.sock # If server is local

Obviously, we will need to grant the relevant credentials on MySQL:

mysql -u root -p
mysql> create database puppet;
mysql> grant all privileges on puppet.* to puppet@localhost
 identified by 'secretpassword';

Puppet Essentials

[36]

Virtual resources
Virtual resources define a desired state for a resource without adding it to the
catalog. Like normal resources, they are applied only on the node where they are
declared, but like virtual resources, we can apply only a subset of the ones we have
declared; they also have a similar usage syntax; we declare them with a single @ prefix
(instead of the @@ prefix used for exported resources), and we collect them with <| |>
(instead of <<| |>>).

A useful and rather typical example involves user management.

We can declare all our users in a single class, included by all our nodes:

class my_users {
 @user { 'al': […] tag => 'admins' }
 @user { 'matt': […] tag => 'developers' }
 @user { 'joe': [… tag => 'admins' }
[…]
}

These users are actually not created on the system; we can decide which ones we
want on a specific node with a syntax like the following:

User <| tag == admins |>

This is equivalent to:

realize(User['al'] , User['joe'])

Note that the realize function needs to address resources by their name.

Modules
Modules are self-contained, distributable, and (ideally) reusable recipes to manage
specific applications or system's elements.

They are basically just a directory with a predefined and standard structure that
enforces configuration over naming conventions for the managed provided classes,
extensions, and files.

The $modulepath configuration entry defines where modules are searched; this can
be a list of colon-separated directories.

Chapter 1

[37]

The paths of a module and autoloading
Modules have a standard structure, for example, for a MySQL module:

mysql/ # Main module directory

mysql/manifests/ # Manifests directory. Puppet code here.
mysql/lib/ # Plugins directory. Ruby code here
mysql/templates/ # ERB Templates directory
mysql/files/ # Static files directory
mysql/spec/ # Puppet-rspec test directory
mysql/tests/ # Tests / Usage examples directory

mysql/Modulefile # Module's metadata descriptor

This layout enables useful conventions that are widely used in the Puppet world; we
must know these to understand where to look for files and classes.

For example, when we use modules and write the code:

include mysql

Puppet automatically looks for a class called mysql defined in the file $modulepath/
mysql/manifests/init.pp.

The init.pp script is a special case that applies for classes that have the same name
of the module. For subclasses there's a similar convention that takes in consideration
the subclass name:

include mysql::server

It autoloads the file $modulepath/mysql/manifests/server.pp.

A similar scheme is followed also for defines or classes at lower levels:

mysql::conf { ...}

This define is searched in $modulepath/mysql/manifests/conf.pp

include mysql::server::ha

This class is searched in $modulepath/mysql/manifests/server/ha.pp.

Puppet Essentials

[38]

It's generally recommended to follow these naming conventions that allow the
autoloading of classes and defines without the need to explicitly import the
manifests that contain them.

Even if this is not considered a good practice, we can currently define
more than one class or define inside the same manifest; when Puppet
parses a manifest, it parses its whole contents.

A module's naming conventions apply also to the files that Puppet provides to clients.

We have seen that the file resource accepts two different and alternative arguments
to manage the content of a file: source and content. Both of them have a naming
convention when used inside a module.

ERB templates are typically parsed via the template function with a syntax like
the following:

content => template('mysql/my.cnf.erb'),

This template is found in $modulepath/mysql/templates/my.cnf.erb.

This also applies for subdirectories, so for example:

content => template('apache/vhost/vhost.conf.erb'),

uses a template located in $modulepath/apache/templates/vhost/vhost.conf.
erb.

A similar approach is followed with static files provided via the source argument:

source => 'puppet:///modules/mysql/my.cnf'

serves a file placed in $modulepath/mysql/files/my.cnf.

source => 'puppet:///modules/site/openssh/sshd_config'

serves a file placed in $modulepath/site/openssh/sshd_config

Finally, the whole content of the lib subdirectory in a module has a standard
scheme. Here, we can place Ruby code that extends Puppet's functionality and
is automatically redistributed from the Master to all clients (if the pluginsync
configuration parameter is set to true, this is the default value for Puppet 3 and is
widely recommended in any setup).

mysql/lib/augeas/lenses/ # Custom Augeas lenses.

mysql/lib/facter/ # Custom facts.

Chapter 1

[39]

mysql/lib/puppet/type/ # Custom types.

mysql/lib/puppet/provider/<type_name>/ # Custom providers.

mysql/lib/puppet/parser/functions/ # Custom functions.

ERB templates
Files provisioned by Puppet can be templates written in Ruby's ERB templating
language.

An ERB template can contain whatever text we need, and have inside <% %> tags an
interpolation of variables or Ruby code. We can access in a template, all the Puppet
variables (facts or user-assigned) with the <%= tag:

File managed by Puppet on <%= @fqdn %>
search <%= @domain %>

It is recommended, and will be mandatory in future Puppet versions to refer to
variables in a scope using the @ prefix).

To use out of scope variables, we can use the scope.lookupvar method:

path <%= scope.lookupvar('apache::vhost_dir') %>

This uses the variable's fully qualified name. If the variable is at top scope:

path <%= scope.lookupvar('::fqdn') %>

Since Puppet 3, we can use this alternate syntax:

path <%= scope['apache::vhost_dir'] %>

In ERB templates, we can also use more elaborate Ruby code inside a <% opening tag,
for example, to reiterate over an array:

<% @dns_servers.each do |ns| %>
nameserver <%= ns %>
<% end %>

The <% tag is used to place line of text if some conditions are met:

<% if scope.lookupvar('puppet::db') == "puppetdb" -%>
 storeconfigs_backend = puppetdb
<% end -%>

Noticed the -%> ending tag here? When the dash is present, no line is introduced on
the generated file as it would happen if we had written <% end %>.

Puppet Essentials

[40]

Restoring files from a filebucket
Puppet, by default, makes a local copy of all the files that it changes on a system. This
functionality is managed with the filebucket type, which allows storing a copy of
the original files either on a central server or locally on the managed system.

When we run Puppet, we see messages like:

info: /Stage[main]/Ntp/File[ntp.conf]: Filebucketed /etc/ntp.conf to
puppet with sum 7fda24f62b1c7ae951db0f746dc6e0cc

The checksum of the original file is useful to retrieve it; in fact, files are saved in
the directory /var/lib/puppet/clientbucket in a series of subdirectories named
according to the same checksum. So, given the above example, we can see the
original file content with the command:

cat /var/lib/puppet/clientbucket/7/f/d/a/2/4/f/6/
7fda24f62b1c7ae951db0f746dc6e0cc/contents

We can show the original path with the command:

cat /var/lib/puppet/clientbucket/7/f/d/a/2/4/f/6/
7fda24f62b1c7ae951db0f746dc6e0cc/paths

A quick way to search for the saved copies of a file, therefore, is to use a command
like the following:

grep -R /etc/ntp.conf /var/lib/puppet/clientbucket/

Puppet provides the filebucket subcommand to retrieve saved files. In the above
example, we can recover the original file with a (not particularly handy) command,
as follows:

puppet filebucket restore -l --bucket /var/lib/puppet/clientbucket /etc/
ntp.conf 7fda24f62b1c7ae951db0f746dc6e0cc

It's possible to configure a remote filebucket, typically on the Puppet Master, using
the special filebucket type:

filebucket { 'central':
 path => false, # This is required for remote filebuckets.
 server => 'my.s.com', # Optional, by default is the puppetmaster
}

Chapter 1

[41]

Once filebucket is declared, we can assign it to a file with the backup argument:

file { '/etc/ntp.conf':
 backup => 'central',
}

This is generally done using a resource default defined at top scope (typically in our
/etc/puppet/manifests/site.pp):

File { backup => 'central', }

Summary
In this chapter, we have reviewed and summarized the basic Puppet principles that
are a prerequisite to better understand the contents of the book. We have seen how
Puppet is configured and what its main components are: manifests, resources, nodes,
and classes, and the power of the Resource Abstraction Layer.

The most useful language elements have been described: variables, references,
resources defaults and ordering, conditionals, and comparison operators. We have
taken a look at exported and virtual resources and analyzed the structure of a
module. We also learned how to work with ERB templates. Finally, we have seen
how Puppet's filebucket works and how to recover files modified by Puppet.

We are now ready to face a very important component of the Puppet ecosystem:
Hiera, and see how it can be used to separate our data from Puppet code.

www.allitebooks.com

http://www.allitebooks.org

Hiera
The history of Puppet is an interesting example of how best practices have evolved
with time, following new usage patterns and contributions from the community.

Once people started to write manifests and express the desired state of their systems
with Puppet's DSL, they found themselves placing custom variables and parameters
that expressed various resources of their infrastructures (IP addresses, hostnames,
paths, URLs, names, properties, lists of objects, and so on) inside the code used to
create the needed resource types.

At times, variables were used to classify and categorize nodes (systems'
roles, operational environments, and so on); at other times, facts (such as
$::operatingsystem) were used to provide resources with the right names
and paths according to the underlying OS.

Variables could be defined in different places; they could be set via an ENC,
inside node declarations, or inside classes.

There wasn't (and actually, still there isn't) any strict rule on how and where the
user's data could be placed, but the general outcome was that we often found
ourselves having our custom data defined inside our manifests.

Now, in my very personal and definitely non-orthodox opinion, this is not
necessarily or inherently a bad thing; seeing the data we provide when we define
our resources gives us a clearer visibility on how things are done and doesn't compel
us to look in different places in order to understand what our code is doing.

Nevertheless, such an approach may be fit for relatively simple setups where we
don't need to cope with large chunks of data that might come from different sources
and change a lot according to different factors.

Hiera

[44]

Also, we might need to have different people working on Puppet who write the code
and design its logic and who need to apply configurations, mostly dealing with data.

More generally, the concept of separating data from code is a well-established and
sane development practice, which also makes sense in the Puppet world.

The person who faced this issue in the most resolutive way is R.I. Pienaar. First,
he developed the extlookup function (included in Puppet core for a long time),
which allows users to read data from external CSV files. Then, he took a further
step and developed Hiera, a key-value lookup tool, where data used by our
manifests can be placed and evaluated differently according to a custom
hierarchy from different data sources.

One of the greatest features of Hiera is its modular pluggable design that allows
the usage of different backends that may retrieve data from different sources, such
as YAML or JSON files, Puppet classes, MySQL, Redis, REST services, and more.

In this chapter, we will cover the following topics:

•	 Installing and configuring Hiera
•	 Defining custom hierarchies and backends
•	 Using the Hiera command-line tool
•	 Using the hiera(), hiera_array(), and hiera_hash() functions inside

our Puppet manifests
•	 Integrating Hiera in Puppet 3
•	 Providing files via Hiera with the hiera-file backend
•	 Encrypting our data with the hiera-gpg and hiera-eyaml backends
•	 Using Hiera as an External Node Classifier with hiera_include()

Installing and configuring Hiera
From Puppet 3.x, Hiera has been officially integrated, and it is installed as a
dependency when we install Puppet.

On Puppet 2.x, we need to install Hiera separately on the node where the Puppet
Master resides: we need both the hiera and hiera-puppet packages, either via the
OS native packaging system or via gem.

Chapter 2

[45]

Hiera is not required on the clients unless they operate in a Masterless setup.

Its configuration file is hiera.yaml, and its path depends on how it is invoked,
which can be either of the following ways:

•	 When invoked from Puppet, the path will be /etc/puppet/hiera.yaml
(/etc/puppetlabs/puppet/hiera.yaml for Puppet Enterprise)

•	 When invoked from the CLI or when used within Ruby code, the path
is /etc/hiera.yaml

It makes sense to create a symlink, and be sure to always use and edit the same file
using the following command:

ln -s /etc/hiera.yaml /etc/puppet/hiera.yaml

The file is a YAML hash, where the top-level keys are Ruby symbols with a
colon (:) prefix, which may either be global or backend-specific settings.

Global settings
Global settings are general configurations that are independent of the used backend.
They are listed as follows:

•	 :hierarchy: This is a string or an array that describes the data sources
to be looked for. Data sources are checked from the top to bottom and
may be dynamic, that is, contain variables (we reference them with
%{variablename}). The default value is common.

•	 :backends: This is a string or an array that defines the backends to be used.
The default value is yaml.

•	 :logger: This is a string of a logger where messages are sent. The default
value is console.

•	 :merge_behavior: This is a string that describes how hash values
are merged across different data sources. The default value is native;
the first key found in the hierarchy is returned. Alternative values such
as deep and deeper require the deep_merge Ruby Gem.

Hiera

[46]

Backend-specific settings
Any backend may have its specific settings; the following are used by the native
YAML, JSON, and Puppet ones:

•	 :datadir: This is a string. It is used by the JSON and YAML backends,
and it is the directory where the data sources that are defined in the
hierarchy can be found. We can place variables (%{variablename})
here for a dynamic lookup.

•	 :datasource: This is a string. It is used by the Puppet backend. This is
the name of the Puppet class where we need to look for variables.

The hiera.yaml examples
The default content for the hiera.yaml configuration file is as follows:

:backends: yaml
:yaml:
 :datadir: /var/lib/hiera
:hierarchy: common
:logger: console

Using these settings, Hiera key-values are read from a YAML file with the
path /var/lib/hiera/common.yaml.

A real-world configuration that uses the extra GPG backend may look like the
following YAML:

:backends:
 - yaml
 - gpg

:hierarchy:
 - "%{::environment}/nodes/%{::fqdn}"
 - "%{::environment}/roles/%{::role}"
 - "%{::environment}/zones/%{::zone}"
 - "%{::environment}/common"

:yaml:
 :datadir: /etc/puppet/hieradata
:gpg:
 :datadir: /etc/puppet/gpgdata
 :key_dir: /etc/puppet/gpgkeys

Chapter 2

[47]

The previous example uses custom $::role and $::zone variables
that identify the function of the node and its data center, zone, or
location. They are not native facts, so we should define them as custom
facts or as top scope variables.
Also, an example like the previous one expects to have modules that
fully manage the differences in operating systems so that we don't have
to manage in our hierarchy different settings for a different OS.
Beware of the hierarchy array. If the individual values begin with a
variable to interpolate, we need to quote them with double quotes (").

The following is an example with the usage of the file backend to manage not only
key-value entries but also whole files:

:backends:
 - yaml
 - file
 - gpg

:hierarchy:
 - "%{::env}/fqdn/%{::fqdn}"
 - "%{::env}/role/%{::role}"
 - "%{::env}/zone/%{::zone}"
 - "%{::env}/common"
:yaml:
 :datadir: /etc/puppet/data

:file:
 :datadir: /etc/puppet/data

:gpg:
 :key_dir: /etc/puppet/gpgkeys
 :datadir: /etc/puppet/gpgdata

Hiera

[48]

Besides the added backend with its configuration, an alternate
approach is used to manage different environments (intended as the
operational environments of the nodes, for example, Production,
Staging, Test, and Development).
Here, to identify the node's operational environment, we use a custom
top scope variable or fact called $::env and not Puppet's internal
variable $::environment. The difference is important since it can
lead to confusion.
The $::environment variable is used to map different Puppet
environments to different directories for modules and manifests.
This is useful, for example, to test our Puppet code on some servers.
Our custom $::env variable (we could call it in any other way, such
as $::tier or $::stage) identifies the operational environment of
the node, whether it's used for development or testing, or provides
production services. We can use such a variable to manage our
configuration logic accordingly.

Working with the command line on a
YAML backend
When we use a backend based on files such as JSON or YAML, which are the most
commonly used, we have to recreate on the filesystem the hierarchy defined in our
hiera.yaml file; the files that contain Hiera data must be placed in these directories.

Let's see Hiera in action. Provide a sample hierarchy configuration as follows:

:hierarchy:
 - "nodes/%{::fqdn}"
 - "env/%{::env}"
 - common

:yaml:
 :datadir: /etc/puppet/hieradata

We have to create a directory structure as follows:

mkdir -p /etc/puppet/hieradata/nodes

mkdir -p /etc/puppet/hieradata/env

Chapter 2

[49]

Then, work on the YAML files as shown:

vi /etc/puppet/hieradata/nodes/web01.example42.com.yaml

vi /etc/puppet/hieradata/env/production.yaml

vi /etc/puppet/hieradata/env/test.yaml

vi /etc/puppet/hieradata/common.yaml

The previous files are plain YAML files where we can specify the values for any
Hiera-managed variable. These values can be strings, arrays, or hashes.

We can place our default settings in /etc/puppet/hieradata/common.yaml
as follows:

A simple string assigned to a key
timezone: 'Europe/Rome'

A string with variable interpolation
nagios_server: "nagios.%{::domain}"

A string with another variable defined in Hiera (!)
dns_nameservers: "%{hiera('dns_servers')}"

A string assigned to a key that maps to the
template parameter of the openssh class (on Puppet3)
openssh::template: 'site/common/openssh/sshd_config.erb'

An array of values
ldap_servers:
 - 10.42.10.31
 - 10.42.10.32

An array with a single value
ntp::ntp_servers:
 - 10.42.10.71

A hash of values
users:
 al:
 home: '/home/al'
 comment: 'Al'
 jenkins:
 password: '!'
 comment: 'Jenkins'

Hiera

[50]

Given the previous example, execute a Hiera invocation as follows:

hiera ldap_servers

It will return the following array:

["10.42.10.31", "10.42.10.32"]

If we define a different value for a key in a data source that is higher in the hierarchy,
that value is returned. Let's create a data source for the test environment by editing
the file /etc/puppet/hieradata/env/test.yaml as follows:

ldap_servers:
- 192.168.0.31
users:
 qa:
 home: '/home/qa'
 comment: 'QA Tester'

Consider a normal Hiera lookup for the ldap_servers key as follows:

hiera ldap_servers

It will still return the common value ["10.42.10.31", "10.42.10.32"].

However, we can explicitly pass the env variable as follows:

hiera ldap_servers env=test

The returned value is the one for the test env as follows:

["192.168.0.31"]

If we have a more specific setting for a given node, that value is returned.
Suppose we edit the file ldap.example42.com.yaml in /etc/puppet/hieradata/
nodes/ with the following code:

ldap_servers:
- 127.0.0.1

When we query Hiera and refer to a specific node's FQDN using the
following command:

hiera ldap_servers fqdn=ldap.example42.com

The result is the one from the higher source in the hierarchy:

["127.0.0.1"]

Chapter 2

[51]

We have seen that by default, Hiera returns the first value found while
traversing the data sources' hierarchy, from the first to the last. When
more backends are specified, the whole hierarchy of the first backend is
fully traversed, and then the same is done for the second and so on.

Hiera also provides some alternate lookup options. When we deal with arrays,
for example, we can decide to merge all the values found in the hierarchy instead
of returning the first one found. We make our query to specify the -a or --array
option as follows:

hiera -a ldap_servers fqdn=ldap.example42.com

The result contains all the entries for the ldap_servers key in all the data sources
of our hierarchy as follows:

["127.0.0.1", "10.42.10.31", "10.42.10.32"]

Note that the value defined for the env=test case is not returned unless we specify
it using the following command:

hiera -a ldap_servers fqdn=ldap.example42.com env=test

In this case, the output would be as follows:

["127.0.0.1", "192.168.0.31", "10.42.10.31", "10.42.10.32"]

When working with hashes, interesting things can be done.

Let's see what's the value of the users key for the test environment:

hiera users env=test

The output is the hash we configured in test.yaml:

{"qa"=>{"home"=>"/home/qa", "comment"=>"QA Tester"}}

As it normally does, Hiera returns the first value it encounters while traversing the
hierarchy, but in this case, we might prefer to have a hash that contains all the values
found. Similar to the -a option for arrays, we have at our disposal the -h (--hash)
option for hashes:

hiera -h users env=test

The result is a hash that contains all the users defined in different data sources:

{"al"=>{"home"=>"/home/al", "comment"=>"Al"},

 "jenkins"=>{"password"=>"!", "comment"=>"Jenkins"},

 "qa"=>{"home"=>"/home/qa", "comment"=>"QA Tester"}}

www.allitebooks.com

http://www.allitebooks.org

Hiera

[52]

Note that hashes are not ordered according to the matching order as arrays are.

Let's perform one more experiment. Let's add a new user specific to our ldap.
example42.com node and give different values to a parameter that is already
defined in the common data source. We edit the file ldap.example42.com.yaml
in vi /etc/puppet/hieradata/nodes/ with the following code:

users:
 openldap:
 groups: 'apps'
 jenkins:
 ensure: absent

Consider a hash lookup as follows:

hiera -h users fqdn=ldap.example42.com env=test

As expected, this would return all the users found in all the hierarchy levels:

{"al"=>{"home"=>"/home/al", "comment"=>"Al"},
 "jenkins"=>{"ensure"=>"absent"},
 "qa"=>{"home"=>"/home/qa", "comment"=>"QA Tester"},
 "openldap"=>{"groups"=>"apps"}}

Let's take a look at the parameters of the jenkins user; being defined both at the
node level and in the common data source, the returned value is the one for the
higher data source in the hierarchy.

Hiera's management of hashes can be quite powerful, and we can make optimal
use of it. For example, we can use them inside Puppet manifests with the create_
resources function, with the hash of users data and a single line of code as follows:

create_resources(user, hiera_hash($users))

Based on highly customizable Hiera data, we can manage all the users of our nodes.

We can tune how Hiera manages the merging of hashes with the
merge_behavior global setting, which allows deeper merging at a
single-key levels. Read the official documentation at http://docs.
puppetlabs.com/hiera/1/lookup_types.html#hash-merge
for more details.

http://docs.puppetlabs.com/hiera/1/lookup_types.html#hash-merge
http://docs.puppetlabs.com/hiera/1/lookup_types.html#hash-merge

Chapter 2

[53]

Quite often, we need to understand where a given key is set in our hierarchy and
what values will be computed for it. The -d (debug) option is rather useful for this.
The previous line will return an output as follows:

hiera -d -h users fqdn=ldap.example42.com env=test
DEBUG: 2013-12-07 13:11:07 +0100: Hiera YAML backend starting
DEBUG: <datetime>: Looking up users in YAML backend
DEBUG: <datetime>: Looking for data source nodes/ldap.example42.com
DEBUG: <datetime>: Found users in nodes/ldap.example42.com
DEBUG: <datetime>: Looking for data source env/test
DEBUG: <datetime>: Found users in env/test
DEBUG: <datetime>: Looking for data source common
DEBUG: <datetime>: Found users in common
{"al"=>{"home"=>"/home/al", "comment"=>"Al"},
 "jenkins"=>{"ensure"=>"absent"},
 "qa"=>{"home"=>"/home/qa", "comment"=>"QA Tester"},
 "openldap"=>{"groups"=>"apps"}}

This output also tells us where Hiera is actually looking for data sources.

In a real Puppet environment, it is quite useful to use the --yaml option, which,
when used with a real facts file of a node, allows us to evaluate exactly how Hiera
computes its keys for real servers.

On the Puppet Master, the facts of all the managed clients are collected in
$vardir/yaml/facts, so this is the best place to see how Hiera evaluates keys
for different clients:

hiera --yaml /var/lib/puppet/yaml/facts/<node>.yaml ldap_servers

Hiera can use other sources to retrieve the facts of a node and return its key values
accordingly. We can interrogate the Puppet Master's inventory service with the
following command:

hiera -i ldap.example42.com ldap_servers

As an alternative, we can query mcollective (from a machine where the mco
client is installed):

hiera -m ldap.example42.com ldap_servers

Hiera

[54]

Using Hiera in Puppet
Using the Hiera functions, the data stored in Hiera can be retrieved by the
Puppet Master while compiling the catalog. In our manifests, we can have
something like the following:

$dns_servers = hiera("dns_servers")

Note that the name of the Puppet variable need not be the same as that of the
Hiera one, so the previous code can also be as follows:

$my_dns_servers = hiera("dns_servers")

This assigns to the variable $my_dns_servers the top value (the first one found
while crossing the hierarchy of data sources) retrieved by Hiera for the key
dns_servers.

We can also merge arrays and hashes here; so in order to retrieve an array of all
the values in the hierarchy's data sources of a given key and not just the first one,
we can use hiera_array() as follows:

$my_dns_servers = hiera_array("dns_servers")

If we expect a hash value for a given key, we can use the hiera() function to retrieve
the top value found, or we can use hiera_hash() to merge all the found values in a
single hash:

$openssh_settings = hiera_hash("openssh_settings")

All these Hiera functions may receive additional parameters, which are as follows:

•	 Second argument: If present and not blank, then this is the default value to
use if no value is found for the given key.

•	 Third argument: This overrides the configured hierarchy by adding a custom
data source at the top of it. This might be useful in cases where we need to
evaluate data using a logic that is not contemplated by the current hierarchy
and for which it isn't worth the effort to add an extra layer in the global
configuration.

The following code shows the usage of additional parameters:

$my_dns_servers = hiera("dns_servers","8.8.8.8","$country")

Chapter 2

[55]

Dealing with hashes in the Puppet code
With a hash, it is possible to express complex and structured data that has to be
managed inside the Puppet code.

Remember that Hiera always returns the value of the first defined level keys,
for example, we have a hash with nested hashes as shown in the following code:

 network::interfaces_hash:
 eth0:
 ipaddress: 10.0.0.193
 netmask: 255.255.255.0
 network: 10.0.0.0
 broadcast: 10.0.0.255
 gateway: 10.0.0.1
 post_up:
 - '/sbin/ifconfig eth3 up'
 - '/sbin/ifconfig eth4 up'
 eth2:
 enable_dhcp: true
 eth3:
 auto: false
 method: manual
 eth4:
 auto: false
 method: manual

We can create a variable as follows inside our Puppet code that loads it:

$int_hash=hiera('network::interfaces_hash')

Then, refer to single values inside its data structure with the following code:

$ip_eth0=$int_hash['eth0']['ipaddress']

Otherwise, if we need to access this value from a template, we can directly write it in
our erb file:

ipaddress <%= @int_hash['eth0']['ipaddress'] %>

A complex hash like the previous one is typically used with a create_
resources function as follows:
create_resources('network::interface', $interfaces_hash)

Here, the custom network::interface define is expected to accept as
an argument a hash to configure one or more network interfaces.

Hiera

[56]

Puppet 3 automatic parameter lookup
With Puppet 3, Hiera is shipped directly with the core code, but the integration goes
far beyond; an automatic Hiera lookup is done for each class' parameter using the
key $class::$argument; this functionality is called data bindings or automatic
parameter lookup.

For example, consider the following class definition:

class openssh (
 $template = 'openssh/sshd.config.erb',
) { . . . }

The value of $template will be evaluated according to the following logic:

1.	 If the user directly and explicitly passes the template argument, then its
value is used:
class { 'openssh':
 template => 'site/openssh/sshd_config.erb',
}

2.	 If no value is explicitly set, Puppet 3 automatically looks for the Hiera
key openssh::template.

3.	 Finally, if no value is found in Hiera, then the default 'openssh/sshd.
config.erb' value is used.

To emulate a similar behavior on Puppet versions earlier than Version 3,
we should write something like the following:

class openssh (
 $template = hiera("openssh::template",'openssh/sshd.config.erb'),
) { . . . }

Evolving usage patterns for class parameters
This strong integration has definitely boosted the adoption of Hiera and is changing
the way Puppet code is organized and classes are declared.

Before Puppet 2.6, we could declare classes by just including them, optionally, more
than once in our catalog, using the following code line:

include openssh

Chapter 2

[57]

We could also manage the behavior of the class just by setting variables and having
them dynamically evaluated inside the class, with something like the following code:

class openssh {
 file { 'sshd_config':
 content => template($openssh_template),
 }
}

This approach suffered the risks of having inconsistent values due to dynamic
scoping of variables and parse ordering. Also, when using variables inside the
module's code, it wasn't easy to understand what were the variables that could
affect the class's behavior, and there was no public API that was easily accessible.

The introduction of parameterized classes in Puppet 2.6 allowed classes to expose
their arguments in a clear way using the following code:

class openssh (
 $template = 'openssh/sshd.config.erb',
) { . . . }

Now, we can pass them explicitly and consistently in a class declaration as shown:

class { 'openssh':
 template => 'site/openssh/sshd_config.erb',
}

But the fact that we can declare a specific class using parameters only once
in a node's catalog presented new challenges on how our custom code had to
be organized; we could not include classes wherever needed, but we had to
reorganize our manifests in order to avoid duplicate declarations.

From Puppet 3 onwards, it is possible to have the best of both worlds, as we can
use the original way to include classes:

include openssh

We can use this statement in different parts of our manifests and be sure that
the value of the template parameter is always looked up on the Hiera key
openssh::template.

Hiera

[58]

Additional Hiera backends
The possibility of creating and adding different backends where data is to be
stored is one of the strong points of Hiera as it allows storing Puppet data in
any possible source.

This allows integrations with existing tools and gives more options to provide data
in a safe and controlled way, for example, a custom web frontend or a CMDB.

Let's review some of the most interesting backends that exist.

The hiera-file backend
The hiera-file backend (https://github.com/adrienthebo/hiera-file)
conceived by Adrien Thebo to manage a type of data that previously couldn't be
stored in a sane way in Hiera, that is, plain files.

To install it, just clone the previous git repository in modulepath or use its gem
as follows:

gem install hiera-file

We configure it by specifying the file backend, the hierarchy setting we want,
and the datadir path where our files are placed:

:backends:
 - file
:hierarchy:
 - "fqdn/%{fqdn}"
 - "role/%{role}"
 - "common"
:file:
 :datadir: /etc/puppet/data

Here, the key used for Hiera lookups is actually the name of a file present in
the .d subdirectories inside datadir according to our hierarchy.

For example, consider the following Puppet code:

file { '/etc/ssh/sshd_config':
 ensure => present,
 content => hiera('sshd_config'),
}

https://github.com/adrienthebo/hiera-file

Chapter 2

[59]

Given the previous hierarchy (the first file found is returned), the previous code will
create a sshd_config file at /etc/ssh/ with the content taken from files searched in
these places.

/etc/puppet/data/fqdn/<fqdn>.d/sshd_config
/etc/puppet/data/role/<role>.d/sshd_config
/etc/puppet/data/common.d/sshd_config

In the previous example, <fqdn> and <role> have to be substituted with the actual
FQDN and the role of our nodes.

If we want to provide an ERB template using hiera-file, we can use the
following syntax:

file { '/etc/ssh/sshd_config':
 ensure => present,
 content => inline_template(hiera('sshd_config.erb')),
}

This will look for and parse an erb template in the following places:

/etc/puppet/data/fqdn/<fqdn>.d/sshd_config.erb
/etc/puppet/data/role/<role>.d/sshd_config.erb
/etc/puppet/data/common.d/sshd_config.erb

The hiera-file backend is quite simple to use and very powerful because it
allows us to move to Hiera what is generally placed in (site) modules, that is,
plain files with which we manage and configure our applications.

The hiera-gpg backend
Here's another plugin that makes a lot of sense; a backend that allows us to
encrypt sensitive data, hiera-gpg (https://github.com/crayfishx/hiera-gpg).
It's written by Craig Dunn, who is the author of other very interesting plugins that
we are going to review later.

Puppet code and data are generally versioned with an SCM and are distributed
accordingly; it has always been an issue to decide how and where to store reserved
data such as passwords, private keys, and credentials. They generally were the
values assigned to variables either in clear text or as MD5/SHA hashes, but the
possibility to expose them has always been a concern for Puppeteers, and various
more or less imaginative solutions have been attempted (sometimes, the solution has
been to simply ignore the problem and have no solution).

https://github.com/crayfishx/hiera-gpg

Hiera

[60]

Backends such as hiera-gpg are a good solution for these cases. We can install it
via its gem (we also need to have the gpg executable in our PATH, gcc, and the
Ruby development libraries package (ruby-devel)):

gem install hiera-gpg

A sample hiera.yaml code is as follows:

:backends:
 - gpg
:hierarchy:
 - %{env}
 - common
:gpg:
 :datadir: /etc/puppet/gpgdata
:key_dir: /etc/puppet/gpg

The key_dir declaration is where our gpg keys are searched for; if we don't specify
it, by default they are searched for in ~/.gnupg; so on our Puppet Master, this would
be the .gnupg directory in the home of the puppet user.

First of all, we must create a GPG key with the following command:

gpg –-gen-key

We will be asked for the kind of key, its size and duration (the default settings
are acceptable), a name, an e-mail, and a passphrase (even if gpg will complain,
do not specify a passphrase because hiera-gpg doesn't support them).

Once the key is created, we can show it with:

gpg --list-key

The output is something like the following:

/root/.gnupg/pubring.gpg

pub 2048R/C96EECCF 2013-12-08

uid Puppet Master (Puppet) <al@lab42.it>

sub 2048R/0AFB6B1F 2013-12-08

Chapter 2

[61]

Now, we can encrypt files, move into our gpg datadir, and create normal YAML
files that contain our secrets, for example:

mysql::root_password: 'V3rys3cr3T!'

Note that this is a temporary file that we will probably want to delete because we'll
use its encrypted version, which has to be created with the following command:

gpg --encrypt -o common.gpg -r C96EECCF common.yaml

The -r argument expects our key ID (as seen via gpg –list-key), and -o expects
the output file, which must have the same name/path of our datasource with
a .gpg suffix.

Then, we can finally use Hiera to get the key's value from the encrypted files,
shown as follows:

hiera mysql::root_password -d

The output text contains debug information and the decrypted value as follows:

DEBUG: <datetime>: Hiera YAML backend starting
DEBUG: <datetime>: Looking up mysql::root_password in YAML backend
DEBUG: <datetime>: Looking for data source common
DEBUG: <datetime>: [gpg_backend]: Loaded gpg_backend
DEBUG: <datetime>: [gpg_backend]: Lookup called, key mysql::root_
password resolution type is priority
DEBUG: <datetime>: [gpg_backend]: GNUPGHOME is /root/.gnupg
DEBUG: <datetime>: [gpg_backend]: loaded cipher: /etc/puppet/gpgdata/
common.gpg
DEBUG: <datetime>: [gpg_backend]: result is a String ctx
#<GPGME::Ctx:0x7fb6aaa2f810> txt ---
mysql::root_password: 'V3rys3cr3T!'
DEBUG: <datetime>: [gpg_backend]: GPG decrypt returned valid data
DEBUG: <datetime>: [gpg_backend]: Data contains valid YAML
DEBUG: <datetime>: [gpg_backend]: Key mysql::root_password found in
YAML document, Passing answer to hiera
DEBUG: <datetime>: [gpg_backend]: Assigning answer variable

Now, we can delete the cleartext common.yaml file and safely commit in our
repository the encrypted GPG file and use our public key for further edits.

When we need to edit our file, we can decrypt it with the following command:

gpg -o common.yaml -d common.gpg

Hiera

[62]

Note that we'll need the gpg private key to decrypt a file; this is required on the
Puppet Master, and we need it on any system where we intend to edit these files.

The hiera-gpg backend is a neat solution that is used to manage sensitive data,
but it has some drawbacks. The most relevant one is that we have to work with
full files and we don't have a clear control over who makes changes to it unless
we distribute the gpg private key to each member of our team.

Other projects have tried to address these limitations: hiera-eyaml by Tom
Poulton (https://github.com/TomPoulton/hiera-eyaml), hiera_yamlgpg
(https://github.com/compete/hiera_yamlgpg), and Raziel (https://github.
com/jbraeuer/raziel). All of them allow us to work on plain YAML files and
encrypt only single values. Therefore, they allow editing of single key entries by
any user who has the gpg public key (no private key is required to be shared in
order to decrypt and edit a whole file).

The hiera-eyaml backend
Let's see how hiera-eyaml works as it seems to be the most used and
most maintained of the mentioned projects. We install its gem using the
following command:

gem install hiera-eyaml

We edit the hiera.yaml file to configure it as follows:

:backends:
 - eyaml
:hierarchy:
 - "nodes/%{fqdn}"
 - "env/%{env}"
 - common
:eyaml:
 :datadir: /etc/puppet/hieradata
 :pkcs7_private_key: /etc/puppet/keys/private_key.pkcs7.pem
 :pkcs7_public_key: /etc/puppet/keys/public_key.pkcs7.pem

Now, we have at our disposal the powerful eyaml command, which makes the
whole experience pretty easy and straightforward. We can use it to create our keys,
encrypt and decrypt files or single strings, and directly edit on the fly files with
encrypted values.

https://github.com/TomPoulton/hiera-eyaml
https://github.com/compete/hiera_yamlgpg
https://github.com/jbraeuer/raziel
https://github.com/jbraeuer/raziel

Chapter 2

[63]

First, let's create our keys using the following command:

eyaml createkeys

They are placed in the ./keys directory. Make sure that the user under which
the Puppet Master runs (usually puppet) has read access to the private key.

Now, we can generate the encrypted value of any Hiera key with the
following command:

eyaml encrypt -l 'mysql::root_password' -s 'V3ryS3cr3T!'

This will print on stdout both the plain encrypted string and a block of
configuration that we can directly copy in our .eyaml files, as follows:

mysql::root_password: >

 ENC[PKCS7,MIIBeQYJKoZIhvcNAQcDoIIBajCCAWYCAQAxggEhMII […]

 +oefgBBdAJ60kXMMh/RHpaXQYX3T]

Note that the value is in the format ENC[PKCS7,Encrypted_Value].

Since we have the password stored in plain text in our bash history, we should
clean it using the following command:

history | grep encrypt

 572 eyaml encrypt -l 'mysql::root_password' -s 'V3ryS3cr3T!'

history -d 572

Luckily, we have to generate the keys in a similar fashion only once, since great
things happen when we have to change our encrypted values in our eyaml files.
We can directly edit them with the following command:

eyaml edit /etc/puppet/hieradata/common.eyaml

Our editor will open the file and decrypt the encrypted values on the fly so that we
can edit our secrets in clear text and save the file again (of course, we can do this only
on a machine where we have access to the private key). This particularly makes the
management and maintenance of our secrets handy.

To view the decrypted content of an eyaml file, we can use the following command:

eyaml decrypt -f /etc/puppet/hieradata/common.eyaml

Since hiera-eyaml manages both clear text and encrypted values, we can use it as
our only backend if we want to work only on YAML files.

Hiera

[64]

The hiera-http and hiera-mysql backends
The hiera-http (https://github.com/crayfishx/hiera-http) and hiera-mysql
(https://github.com/crayfishx/hiera-mysql) backends are other powerful
Hiera backends written by Craig Dunn. They perfectly interpret Hiera's modular
and extendable design and allow us to retrieve our data either via a REST interface
or via MySQL queries on a database.

A quick view of how they could be configured might give you an idea of how they
can fit in different cases. To configure hiera-http in hiera.yaml, we can use
settings like the one shown in the following code:

:backends:
 - http
:http:
 :host: 127.0.0.1
 :port: 5984
 :output: json
 :failure: graceful
 :paths:
 - /configuration/%{fqdn}
 - /configuration/%{env}
 - /configuration/common

To configure hiera-mysql, we might have settings like the following:

:backends:
 - mysql
:mysql:
 :host: localhost
 :user: root
 :pass: examplepassword
 :database: config
 :query: SELECT val FROM configdata WHERE var='%{key}' AND
environment='%{env}'

We will not get into the details of these; you can refer to the official documentation
to know the implementation and usage details.

However, note how easy and intuitive the syntax to configure them is, and what
powerful possibilities they open to let users manage Puppet data from, for example,
a web interface, without touching Puppet code or even logging to a server and
working with a SCM such as git.

https://github.com/crayfishx/hiera-http
https://github.com/crayfishx/hiera-mysql

Chapter 2

[65]

Using Hiera as an ENC
Hiera provides an interesting function called hiera_include, which allows users to
include all the classes defined for a given key.

This, in practice, exploits the Hiera flexibility to provide classes to nodes as an
External Node Classifier does.

It's enough to place the following line in our site.pp file at /etc/puppet/
manifests/:

hiera_include('classes')

Define in our data sources a classes key with an array of the classes to be included.

In a YAML-based backend, it would look like the following:

classes:
 - apache
 - mysql
 - php

This is exactly the same as having some declarations in our site.pp as follows:

include apache
include mysql
include php

The classes key (can have any name, but classes is a standard de facto) contains
an array that is merged along the hierarchy. So we can define in a common.yaml file
the classes that we want to include in all our nodes, and include specific classes for
specific servers, adding them to the different layers of our hierarchy.

Along with the hiera-file backend, this function can help us have a fully
Hiera-driven configuration on our Puppet architecture. It is one of the many
options we have that will help us glue together the pieces that define and build
our infrastructure.

Hiera

[66]

Summary
Hiera is a powerful and integrated solution to manage Puppet data outside our
code. It requires some extra knowledge and abstraction, but it brings with it a lot of
flexibility and extendibility, thanks to its backend plugins.

In this chapter, we have seen how it works and how to use it, especially when
coupled with Puppet 3's data bindings. We have also reviewed the most used
plugins and grasped the power that comes with them.

Now, it is time to explore another relatively new and great component of a Puppet
infrastructure that is going to change how we use and write Puppet code: PuppetDB.

PuppetDB
A model based on agents that receive and apply a catalog received from the Puppet
Master has an intrinsic limitation. The client has no visibility and direct awareness
about the state of resources of the other nodes.

It is not possible, for example, to execute functions that do different things according
to different external conditions, during the catalog application. There are many cases
where information about other nodes and services could be useful to manage local
configurations. For example, we might have to perform the following actions:

•	 Start a service only when we are sure that the database, the queues, or any
external resource it relies upon are already available in some external nodes

•	 Configure a load balancer that dynamically adds new servers, if they exist
•	 Manage the setup of a cluster; this setup involves specific sequences of

commands to be executed in a certain order on different nodes

The declarative nature of Puppet's DSL might look inappropriate to manage setups
or operations where activities have to be done in a procedural way whose sequence
might be based on the availability of external resources.

Part of the problem can be solved using facts that are being executed on the client;
they provide direct information about its environment.

In the following chapters, we will see how to write custom facts, but the basic
concept is that they can contain the output of any command we may want to
execute, which can check the state of applications, the availability of remote services,
and the system's conditions.

We can use these facts in our manifests to define the resources to apply on the client
and manage some of the previous cases. Still, we cannot have direct information on
a node about resources on other nodes, besides what can be checked remotely.

PuppetDB

[68]

The challenge, or at least a part of it, was tackled several years ago with the
introduction of exported resources, as we have seen in Chapter 1, Puppet Essentials.
They are special resources declared on one node but applied on another one.

Exported resources need the activation of the storeconfigs option, which used
Rails' ActiveRecord libraries for data persistence.

The stored configurations based on ActiveRecord have served the Puppet users for
years, but they suffered from performance issues, which could be almost unbearable
on large installations with many exported resources.

In 2011, Deepak Giridharagopal, a Puppet Labs Lead Engineer, tackled the
whole problem from a totally detached point of view and developed PuppetDB,
a marvelous piece of software that copes not only with stored configurations but
also with all Puppet-generated data.

In this chapter, we will cover the following topics:

•	 How to install and configure PuppetDB
•	 An overview of the available dashboards
•	 A detailed analysis of the PuppetDB API
•	 How to use the puppetdbquery module
•	 How PuppetDB can influence our future Puppet code

Installation and configuration
PuppetDB is an open source Closure application complementary to Puppet. It does
exactly what the name suggests; it stores Puppet data that comprises the following:

•	 All the facts of the managed nodes
•	 A copy of the catalog compiled by the Master and sent to each node
•	 The reports of the subsequent Puppet runs with all the events that

have occurred

What is stored must be queried, and for this, PuppetDB exposes a REST-like API
that allows access to all its data.

Chapter 3

[69]

Out of the box, it can act as an alternative for the following two functions done
earlier using the ActiveRecord libraries:

•	 The backend for stored configurations, where we can store our
exported resources

•	 A replacement of the Inventory Service (an API we can use to query the
facts of all the managed nodes)

While read operations are based on a REST-like API, data is written by commands
sent by the Puppet Master and queued asynchronously by PuppetDB to a pool
of internal workers. These workers deliver data to the persistence layer that is
based either on the embedded HSQLDB (usable mostly for testing or for small
environments) or on PostgreSQL.

On medium and large sites, PuppetDB should be installed on dedicated machines
(eventually, with PostgreSQL on separated nodes); on a small scale, it can be placed
on the same server where the Puppet Master resides.

A complete setup involves the following:

•	 The configuration of the init scripts, the main configuration files,
and logging on the PuppetDB server

•	 The connection settings to PuppetDB in the /etc/puppet/puppetdb.conf
and /etc/puppet/routes.yaml files on our Puppet Master

Generally, communication is always between the Puppet Master and PuppetDB,
based on certificates signed by the CA on the Master. However, we can have a
Masterless setup, where each node communicates directly with PuppetDB.

Masterless PuppetDB setups won't be discussed in this book; for details, refer to
http://docs.puppetlabs.com/puppetdb/1.5/connect_puppet_apply.html.

PuppetDB configurations
The configuration of PuppetDB involves the following operations on different files:

•	 The configuration file sourced by the init script, which affects how the
service is started

•	 The main configuration settings placed in one or more files
•	 The logging configuration

http://docs.puppetlabs.com/puppetdb/1.5/connect_puppet_apply.html

PuppetDB

[70]

The init script configuration
In the configuration file for the init script (/etc/sysconfig/puppetdb on RedHat
or /etc/default/puppetdb on Debian), we can manage Java settings such as
JAVA_ARGS or JAVA_BIN or PuppetDB settings such as USER (the user with which
the PuppetDB process will run), INSTALL_DIR (the installation directory), or CONFIG
(the configuration file path or the path of the directory containing the .ini files).

To configure the maximum Java heap size, we can set JAVA_ARGS="-
Xmx512m" (the recommended settings are 128m + 1m for each managed
node if we use PostgreSQL, or 1g if we use the embedded HSQLDB.
Raise this value if we see OutOfMemoryError exceptions in logs).
To expose the JMX interface, we can set JAVA_ARGS="-Dcom.sun.
management.jmxremote -Dcom.sun.management.jmxremote.
port=1099".
This will open a JMX socket on port 1099. Note, anyway, that all
the JMX metrics are exposed also via the REST interface using
the /metric namespace.

Configuration settings
On Puppet Labs packages, configurations are placed in various .ini files in
the /etc/puppetdb/conf.d/ directory.

The settings are managed in different [sections]; let's see the most important ones.

Application wide settings are placed under the following section:

[global]

Here are defined the paths where PuppetDB stores its files (vardir), configures
Log4j (logging-config), and some limits on the maximum number of results that
a resource or event query may return. If these limits are exceeded, the query returns
an error:

vardir = /var/lib/puppetdb # Must be writable by Puppetdb user
logging-config = /etc/puppetdb/log4j.properties
resource-query-limit = 20000
event-query-limit = 20000

All settings related to the commands used to store data on PuppetDB are placed
under the following section:

[command-processing]

Chapter 3

[71]

Of particular interest is the threads setting that defines how many concurrent
command processing threads to use (the default value is CPUs / 2). We can raise
this value if our command queue (visible from the performance dashboard that
we will analyze later) is constantly larger than zero. In such cases, we should also
evaluate if the bottleneck may be on the database's performance.

Other settings are related to the maximum disk space (in MB) that can be dedicated
to persistent (store-usage) and temporary (temp-usage) ActiveMQ message
storage. The settings are also dedicated to how long the messages that are not
delivered have to be kept in a Dead Letter Office before being archived and
compressed (dlo-compression-threshold). The valid units here, as in some
other settings, are days, hours, minutes, seconds, and milliseconds as we can
see in the following example:

threads = 4
store-usage = 102400
temp-usage = 51200
dlo-compression-threshold = 1d # Same of 24h, 1440m, 86400s

All the settings related to database persistence are under the following section:

[database]

Here, we define what database to use, how to connect to it, and some important
parameters about data retention.

If we use the (default) HSQLDB backend, our settings will be as follows:

classname = org.hsqldb.jdbcDriver
subprotocol = hsqldb
subname = file:/var/lib/puppetdb/db/db;hsqldb.tx=mvcc;sql.syntax_
pgs=true

For a (recommended) PostgreSQL backend, we need something like the
following settings:

classname = org.postgresql.Driver
subprotocol = postgresql
subname = //<HOST>:<PORT>/<DATABASE>
username = <USERNAME>
password = <PASSWORD>

PuppetDB

[72]

On our PostgreSQL server, we need to create a database and a user for PuppetDB
as follows:

sudo -u postgres sh

createuser -DRSP puppetdb

createdb -E UTF8 -O puppetdb puppetdb

Also, we have to edit pg_hba.conf on the PostgreSQL server to allow access from
our PuppetDB host (here, it is 10.42.42.30; it can be 127.0.0.1 if PostgreSQL
and PuppetDB are on the same host), as shown in the following configuration:

TYPE DATABASE USER CIDR-ADDRESS METHOD
host all all 10.42.42.30/32 md5

Given the above examples and a PostgreSQL server with the IP, 10.42.42.35,
the connection settings would be as follows:

subname = //10.42.42.35:5432/puppetdb
username = puppetdb
password = <the password entered with the createuser command>

If PuppetDB and PostgreSQL server are on separated hosts, we may prefer to
encrypt the traffic between them. To do so, we have to enable SSL/TLS on both sides.
For a complete overview of the steps required, refer to the official documentation:
http://docs.puppetlabs.com/puppetdb/latest/postgres_ssl.html

Other interesting settings manage how often, in minutes, the database is compacted
to free up space and remove unused rows (gc-interval) when to autodeactivate
nodes that are not reporting (node-ttl), when to completely remove the deactivated
nodes (node-purge-ttl), and what is the retention time for reports (report-ttl,
default 14d). Values for these settings can be expressed in d, h, m, s, and ms:

gc-interval = 60
node-ttl = 15d # Nodes not reporting for 15 days are deactivated
node-purge-ttl = 10d # Nodes purged 10 days after deactivation
report-ttl = 14d # Event reports are kept for 14 days

http://docs.puppetlabs.com/puppetdb/latest/postgres_ssl.html

Chapter 3

[73]

The node-ttl and node-purge-ttl settings are particularly useful
in dynamic and elastic environments where nodes are frequently
added and decommissioned. Setting them allows us to automatically
remove old nodes from our PuppetDB, and if we use exported
resources for monitoring or load balancing, these settings definitively
help in keeping PuppetDB data clean and relevant. Obviously,
node-ttl must be higher than our nodes' Puppet-run interval.
Be aware, though, that if we have the (questionable) habit of disabling
regular Puppet execution for manual maintenance, tests, or whatever
reason, we may risk deactivating the nodes that are still working.
Finally, note that the nodes' automatic deactivation or purging is done
when there is database compaction, so the gc-interval parameter
must always be set with smaller intervals.

Another useful parameter is log-slow-statements that defines the number
of seconds after any SQL query is considered slow. Slow queries are logged but
still executed:

log-slow-statements = 10

Finally, some settings can be used to fine-tune the database's connection pool;
we won't probably need to change the default values (in minutes):

conn-max-age = 60 # Maximum idle time
conn-keep-alive = 45 # Client-side keep-alive interval
conn-lifetime = 60 # The maximum lifetime of a connection

We can manage the HTTP settings (used for the web performance dashboard,
the REST interface, and the commands) under the following section:

[jetty]

To manage HTTP's unencrypted traffic, we just have to define the listening IP
(host; the default is localhost) and port as follows:

host = 0.0.0.0 # Listen on any interface (Read Note below)
port = 8080 # If not set, unencrypted HTTP access is disabled

PuppetDB

[74]

Generally, the communication between Puppet Master and PuppetDB
is via HTTPS (using certificates signed by the Puppet Master's CA).
However, if we enable HTTP to view the web dashboard (that just
shows usage metrics, which are not particularly sensible), be aware
that the HTTP port can be used also to query and issue commands to
PuppetDB (so, it definitively should not be accessed by unauthorized
users). Therefore, if we open HTTP access to hosts other than the local
host, we should either proxy or firewall the HTTP port to allow access
to authorized clients/users only.
This is not an uncommon case, since the HTTPS connection requires
a client host's SSL authentication, so it is not usable (in a comfortable
way) to access the web dashboard from a browser.

For HTTPS access, some more settings are available to manage the listening address
(ssl-host) and port (ssl-port), the path to the PuppetDB server certificate's
PEM file (ssl-cert), its private key PEM file (ssl-key), and the path of the CA
certificate's PEM file (ssl-ca-cert) used for client authentication. In the following
example, the paths used are the ones of Puppet's certificates that leverage on the
PuppetMaster's CA:

ssl-host = 0.0.0.0
ssl-port = 8081
ssl-key = /var/lib/puppet/ssl/private_keys/puppetdb.site.com.pem
ssl-cert = /var/lib/puppet/ssl/public_keys/puppetdb.site.com.pem
ssl-ca-cert = /var/lib/puppet/ssl/certs/ca.pem

The previous settings have been introduced in PuppetDB 1.4, and if present, they are
preferred to the earlier (and now deprecated) parameters that managed SSL via the
Java keystore files.

Here, we report a sample configuration that uses the Java keystore files as reference;
we may find them on older installations:

keystore = /etc/puppetdb/ssl/keystore.jks
truststore = /etc/puppetdb/ssl/truststore.jks
key-password = s3cr3t # Passphrase to unlock the keystore file
trust-password = s3cr3t # Passphrase to unlock the truststore file

Chapter 3

[75]

To set up SSL configurations, PuppetDB provides a very handy script
that does the right thing according to the PuppetDB version and,
eventually, according to the current configurations. Use it and follow
the onscreen instructions:
/usr/sbin/puppetdb-ssl-setup.

Other optional settings define the cipher suites (cipher-suites) that are allowed,
SSL protocols (ssl-protocols), and the path of a file that contains a list of certificate
names (one per line) of the hosts allowed to communicate (via HTTPS) with
PuppetDB (certificate-whitelist). If these are not set, any host can contact
the PuppetDB, given that its client certificate is signed by the configured CA.

Finally, in our configuration file(s), we can enable real-time debugging in the [repl]
section. This can be enabled to modify the behavior of PuppetDB at runtime and is
used for debugging purposes mostly by developers, so it is disabled by default.

For more information, refer to http://docs.puppetlabs.com/puppetdb/latest/
repl.html.

Logging configuration
Logging is done via Log4j and is configured in the log4j.properties file under the
logging-config settings. By default, informational logs are placed in /var/log/
puppetdb/puppetdb.log. Log settings can be changed at runtime and be applied
without restarting the service.

Configurations on the Puppet Master
To configure the Puppet Master to use PuppetDB, various settings are involved.
These settings are as follows:

•	 On /etc/puppet/puppet.conf, the PuppetDB backend has to be enabled
for storeconfigs and, optionally, for reports:
[main]
storeconfigs = true
storeconfigs_backend = puppetdb
report = true
reports = puppetdb

http://docs.puppetlabs.com/puppetdb/latest/repl.html
http://docs.puppetlabs.com/puppetdb/latest/repl.html

PuppetDB

[76]

The following settings are already disabled by default
and should remain disabled or absent with puppetdb
thin_storeconfigs = false
async_storeconfigs = false

•	 On /etc/puppet/puppetdb.conf, the server name and port of PuppetDB
are configured. We can also define if the Puppet Master should serve the
catalog to clients also when PuppetDB is unavailable by setting soft_write_
failure = true. In this case, a catalog is created without the exported
resources and facts, the catalog, and reports are not stored. This option
should not be enabled when the exported resources are used. The default
values are as follows:
server = puppetdb
port = 8081
soft_write_failure = false

•	 In /etc/puppet/routes.yaml, the facts' terminus has to be configured
to make PuppetDB the authoritative source for the inventory service
(create the file if it doesn't exist, and run puppet config print route_file
to verify its path):

master:
 facts:
 terminus: puppetdb
 cache: yaml

Dashboards
The PuppetDB ecosystem provides web dashboards that definitively help
user interaction:

•	 PuppetDB comes with an integrated performance dashboard
•	 Puppetboard is a web frontend that allows easy and direct access to

PuppetDB data

Chapter 3

[77]

PuppetDB performance dashboard
PuppetDB integrates a performance dashboard out of the box; we can use it to
check how the software is working in real time. It can be accessed via HTTP at
http://puppetdb.server:8080/dashboard/ (if we've set host = 0.0.0.0 on the
PuppetDB configuration). Remember that we should limit HTTP access to authorized
clients only, either by firewalling the host's port or setting host = localhost and
having a local reverse proxy where you can manage access lists or authentication.

The PuppetDB performance dashboard

http://puppetdb.server:8080/dashboard/

PuppetDB

[78]

From the previous screenshot, the most interesting metrics are as follows:

•	 JVM Heap memory usage: This metric drops when the JVM runs a
garbage collection.

•	 Nodes: The total number of nodes whose information is stored on PuppetDB.
•	 Resources: The total number of resources present in all the catalogs that

are stored.
•	 Catalog duplication: How much the stored catalogs have in common.
•	 Command queue: How many commands are currently in queue; this

value should not be constantly greater than a few units.
•	 Command processing: How many commands are delivered per second.
•	 Processed: How many commands have been processed since the

service started.
•	 Retried: How many times the commands' submission has been retried since

startup. A retry can be due to temporary reasons. A relatively low figure here
is physiological; if we see it growing, we are having ongoing problems.

•	 Discarded: How many commands have been discarded since startup after
all the retry attempts. It should not be more than zero.

•	 Rejected: How many commands were rejected and how many deliveries
failed since startup. It should not be more than zero.

Puppetboard – query PuppetDB from the Web
The amount of information stored on PuppetDB is huge and precious, and while
it can be queried from the command line, a visual interface can help users explore
Puppet's data.

Daniele Sluijters, a community member, started a project that has quickly become
the visual interface of reference for PuppetDB. This project is Puppetboard, a web
frontend written in Python that allows easy browsing of nodes' facts, reports, events,
and PuppetDB metrics.

It also allows us to directly query PuppetDB, so all the example queries from the
command line, which we'll see in this chapter, can be issued directly from the
web interface.

This is a relatively young and quite dynamic project that follows the evolution of
PuppetDB's APIs; refer to its GitHub project for the latest installation and usage
instructions at https://github.com/nedap/puppetboard.

https://github.com/nedap/puppetboard

Chapter 3

[79]

The PuppetDB API
PuppetDB uses a Command/Query Responsibility Separation (CQRS) pattern:

•	 Read: These activities are done for queries on the available REST-like
endpoints

•	 Write: These commands update catalog, facts, and reports and
deactivate nodes

APIs are versioned (v1, v2, v3, and so on), and the most recent ones add
functionalities and try to keep backward compatibility.

Querying PuppetDB (Read)
The URL for queries is structured as follows:

http[s]://<server>:<port>/<version>/<endpoint>?query=<query>

The available endpoints for queries are metrics, fact-names, facts, nodes,
resources, reports, events, event-counts, aggregate-event-counts,
and server-time.

Query strings are URL-encoded JSON arrays in prefix notation, which makes
them look a bit unusual. The general format is as follows:

["<operator>" , "<field>" , "<value>"]

The comparison operators are =, >=, >, < , <=, and ~ (regexp matching).
Some examples are as follows:

["=", "type", "Service"]
[">=", "timestamp", "2013-12-18T14:00:00"]
["~", "certname", "www\\d+\\.example\\.com"]

The expressions can be combined with and, not, and or. An example
(here, split into multiple lines for clarity) is as follows:

["and",
 ["=", "type", "File"],
 ["=", "title", "/etc/hosts"]
]

PuppetDB

[80]

It's possible to build complex subqueries using the in operator, the extract
statement, and subqueries such as select-resources or select-facts.
An example usable on the /facts endpoint to return the IPs of all the nodes
that have an apache service is as follows:

["and",
 ["=", "name", "ipaddress"],
 ["in", "certname",
 ["extract", "certname",
 ["select-resources",
 ["and",
 ["=", "type", "Service"],
 ["=", "title", "apache"]]]]]]

Since Version 3 of API, it is possible to paginate and sort the result of queries.
Each endpoint may support one or more query parameters, such as order-by,
limit, include-total, and offset.

It's quite easy to query PuppetDB directly with curl; here is the simplest example,
with curl executed on HTTP on the same PuppetDB host:

curl 'http://localhost:8080/v3/facts/web01.example.com'

Note the URL to a specific endpoint (facts), the API version (v3), and the specific
client certname.

When we have to use queries, we must URL encode chars such as [and], and for
this, we can use curl's - data-urlencode option. When we use it, we have to specify
to use the -X GET option (otherwise, a post will be done):

curl -X GET 'http://localhost:8080/v3/events' --data-urlencode
 'query=["=", "certname" , "puppet.example.com"]'

The response, in the JSON array format (note the starting and ending square brackets
[]) contains one or more entries as follows:

[{
 "status" : "noop",
 "timestamp" : "2013-12-18T09:20:54.856Z",
 "certname" : "puppet.example.com",
 "containing-class" : null,
 "containment-path" : null,
 "report" : "3df0ea2301842c647f7cc6920eaf9148750b6ba1",
 "run-start-time" : "2013-12-18T09:20:26.930Z",
 "resource-title" : "/etc/puppet/puppetdb.conf",
 "configuration-version" : "1387358430",

Chapter 3

[81]

 "run-end-time" : "2013-12-18T09:20:50.643Z",
 "property" : "content",
 "message" : "current_value {md5}f4b9b4bf9565e0803e0115f4048d006,
 should be {md5}dc6af7f008160afc29afe4bbdada55a (noop)",
 "new-value" : "{md5}dc6af7f008160afc29afe4bbdada55a",
 "old-value" : "{md5}f4b9b4bf9565e0803e0115f4048d006",
 "line" : 25,
 "file" : "/etc/puppet/modules/puppet/manifests/server/puppetdb.pp",
 "report-receive-time" : "2013-12-18T09:20:56.940Z",
 "resource-type" : "File"
}]

Look at some of the most interesting fields: timestamp, certname,
resource-title, resource-type, property, file, and line.
Note that the name and kind of fields may vary according to the
endpoint used (for example, on other endpoints, we have title
and type, instead of resource-title and resource-type).
We can experiment with test queries on various endpoints, as the
ones listed later in this chapter, to have a better idea of the kind and
name of the fields returned.

When we make requests over HTTPS, we have to reference the certificates'
files to use:

curl 'https://puppetdb:8081/v3/facts/web01.example.com' \
 --cacert /var/lib/puppet/ssl/certs/ca.pem \
 --cert /var/lib/puppet/ssl/certs/<node>.pem \
 --key /var/lib/puppet/ssl/private_keys/<node>.pem

The PuppetDB commands (Write)
Explicit commands are used (via HTTP's URL-encoded POST to the /commands URL)
to populate and modify data.

The commands available on the current PuppetDB version (1.6 at the time of writing
this book) are as follows:

•	 replace catalog: This replaces the stored catalog of a node. Currently,
PuppetDB stores only the last catalog compiled by Puppet Master for
each node.

•	 replace facts: This replaces the stored facts of a node. Also, in this case,
only the ones received from the latest Puppet run are kept.

PuppetDB

[82]

•	 store report: This saves the last report of a node's Puppet run.
The report-ttl configuration parameter manages report retention
(14 days by default).

•	 deactivate node: This deactivates a decommissioned node so that its
exported resources can't be collected anywhere. A node is reactivated
if a new Puppet run is done on it.

This PuppetDB command is invoked whenever we execute on the
Puppet Master the shell command puppet node deactivate
<certname>. An automatic deactivation of the nodes that do not
report can also be done via the node-ttl configuration option.

On /var/log/puppetdb/puppetdb.log, all the executed commands are shown.

When the Puppet Master receives a client's facts, it immediately submits them to
PuppetDB:

2013-12-18 10:20:28,387 INFO [command-proc-48] [puppetdb.command]
[1773a546-993e-479d-bf29-616d6369cc41] [replace facts] web01.example.
com

Then, the catalog is compiled, sent to the client, and stored on PuppetDB:

2013-12-18 10:20:43,847 INFO [command-proc-49] [puppetdb.command]
[72cafd22-2281-422a-bab3-4623dd343891] [replace catalog] web01.
example.com

Finally, when the report of the Puppet run is received from the client, the Puppet
Master submits it to PuppetDB:

2013-12-18 10:20:57,279 INFO [command-proc-49] [puppetdb.command]
[b0c22f66-1796-45d7-8ed0-17a1ecac3e1e] [store report] puppet v2.7.23 –
web01.example.com

Querying PuppetDB for fun and profit
PuppetDB stores and exposes a large amount of information. What we can do with
it? Probably, much more than what we might guess now. In this section, we explore
the REST endpoints that are available, in detail.

Diving into such details might be useful to better understand what can be queried
and may trigger new ideas on what we can do with such information.

In these samples, we use curl with HTTP directly from the server where
PuppetDB is installed.

Chapter 3

[83]

The /facts endpoint
Show all the facts of all our nodes (be careful, there may be a lot!):

curl 'http://localhost:8080/v3/facts'

Show the IP addresses of all our nodes (a similar search can be done for any fact):

curl 'http://localhost:8080/v3/facts/ipaddress'

Show the node that has a specific IP address:

curl 'http://localhost:8080/v3/facts/ipaddress/10.42.42.27'

Show all the facts of a specific node:

curl -X GET http://localhost:8080/v3/facts --data-urlencode \
 'query=["=", "certname", "web01.example.com"]'

The response is always a JSON array with an entry per fact; each entry is as follows:

{ "certname": <node name>, (IE: www01.example.com)
 "name": <fact name>, (IE: operatingsystem)
 "value": <fact value> (IE: ubuntu) }

The /resources endpoint
Show all the resources of the Mount type for all the nodes:

curl 'http://localhost:8080/v3/resources/Mount'

Show all the resources of a given node:

curl -X GET http://localhost:8080/v3/resources --data-urlencode \
 'query=["=", "certname", "web01.example.com"]'

Show all nodes that have Service['apache'] with ensure = running:

curl -X GET http://localhost:8080/v3/resources/Service \
--data-urlencode 'query=["and" , ["=", "title", "apache"],
 ["=", ["parameter", "ensure"], "running"]]'

Same procedure as mentioned earlier using a different approach:

curl -X GET http://localhost:8080/v3/resources/Service/apache \
--data-urlencode 'query=["=", ["parameter", "ensure"], "running"]'

PuppetDB

[84]

Show all the resources managed for a given node in a given manifest:

curl -X GET http://localhost:8080/v3/resources/ --data-urlencode \
 'query=["and" ["=", "file", "/etc/puppet/manifests/apache.pp"], \
 ["=", "certname", "web01.example.com"]]'

The response format of the resource's endpoint shows how we can query everything
about the resources managed by Puppet and defined in our manifests:

{"certname": "<node name>", (IE: www01.example.com)
 "resource": "<the resource's unique hash>", (IE: f3h34ds...)
 "type": "<resource type>", (IE: Service)
 "title": "<resource title>", (IE: apache)
 "exported": "<true|false>", (IE: false)
 "tags": ["<tag>", "<tag>"], (IE: "apache", "class" ...)
 "file": "<manifest path>", (IE: "/etc/puppet/manifests/site.pp")
 "line": "<manifest line>", (IE: "3")
 "parameters": {<parameter>: <value>, (IE: "enable" : true,)
 <parameter>: <value>,
 ...}}

The /nodes endpoint
Show all the (not deactivated) nodes:

curl 'http://localhost:8080/v3/nodes'

Show all the facts of a specific node (a better alternative to the earlier example):

curl 'http://localhost:8080/v3/nodes/www01.example.com/facts'

Show all the resources of a specific node (a better alternative to the earlier example):

curl 'http://localhost:8080/v3/nodes/www01.example.com/resources'

Show all the nodes with the CentOS operating system:

curl -X GET http://localhost:8080/v3/nodes --data-urlencode \
 'query=["=", ["fact","operatingsystem"], "CentOS"]'

The response format is as follows:

{"name": <string>,
 "deactivated": <timestamp>,
 "catalog_timestamp": <timestamp>,
 "facts_timestamp": <timestamp>,
 "report_timestamp": <timestamp>}

When using the sub URLs of facts and resources, we get replies in the same format
as the relative endpoint.

Chapter 3

[85]

The /catalogs endpoint
Get the whole catalog (the one that was generated more recently) of a node
(all the resources and edges):

curl 'http://localhost:8080/v3/catalogs/www01.example.com'

The /facts-names endpoint
Get the names (just the names, not the values) of all the stored facts:

curl 'http://localhost:8080/v3/facts-names'

The /metrics endpoint
These are mostly useful to check PuppetDB's performances and operational statistics.
Some of them are visible from the performance dashboard.

Get the names of all the metrics available:

curl 'http://localhost:8080/v3/metrics/mbeans'

The result shows a remarkable list of items in the JMX Mbean ObjectName style:

<Mbean-doman>:type=<Type>[,name:<Name>]

An example, in URL encoded format:

"com.jolbox.bonecp:type=BoneCP" : "/metrics/mbean/com.jolbox.
bonecp%3Atype%3DBoneCP"

The metrics that are available are about the nodes' population, database connection,
delivery status of the processed commands, HTTP access hits, the processing of
commands, HTTP access, storage operations, JVM statistics, and the Message
Queue system.

Let's see some examples. To view the total number of nodes registered on PuppetDB
we can run the following command:

curl http://localhost:8080/v3/metrics/mbean/com.puppetlabs.puppetdb.
query.population%3Atype%3Ddefault%2Cname%3Dnum-nodes

The average number of resources per node is obtained with the command:

curl http://localhost:8080/v3/metrics/mbean/com.puppetlabs.puppetdb.
query.population%3Atype%3Ddefault%2Cname%3Davg-resources-per-node

PuppetDB

[86]

Statistics about the time used for the replace-catalog command:

curl http://localhost:8080/v3/metrics/mbean/com.puppetlabs.puppetdb.
scf.storage%3Atype%3Ddefault%2Cname%3Dreplace-catalog-time

The /reports endpoint
Show the summaries of all the saved reports of a given node:

curl -X GET http://localhost:8080/v3/reports --data-urlencode \
 'query=["=", "certname", "db.example.com"]'

The /events endpoint
Search all the reports for failures:

curl -X GET 'http://localhost:8080/v3/events' --data-urlencode \
 'query=["=", "status" , "failure"]'

Search all the reports for failures on the Service type:

curl -X GET 'http://localhost:8080/v3/events' --data-urlencode \
 'query=["and", ["=", "status" , "failure"], \
 ["=", "resource-type", "Service"]]'

Search all the reports for any change to the file with the title "hosts":

curl -X GET 'http://localhost:8080/v3/events' --data-urlencode \
 'query=["and", ["=", "resource-type", "File"], \
 ["=", "resource-title", "hosts"]]'

Search all the reports for changes in the content of the file with the title "hosts":

curl -X GET 'http://localhost:8080/v3/events' --data-urlencode \
 'query=["and", ["=", "resource-type", "File"], \
 ["=", "resource-title", "hosts"], \
 ["=", "property", "content"]]'

Show the changes on the specified file only after a given timestamp:

curl -X GET 'http://localhost:8080/v3/events' --data-urlencode \
 'query=["and", ["=", "resource-type", "File"], \
 ["=", "resource-title", "hosts"], \
 [">", "timestamp", "2013-12-18T14:00:00"]]'

Show all the changes in a timestamp range:

curl -X GET 'http://localhost:8080/v3/events' --data-urlencode \
 'query=["and", [">", "timestamp", "2013-12-18T14:00:00"] , \
 ["<", "timestamp","2013-12-18T15:00:00"]]'

Chapter 3

[87]

Show all the changes related to resources provided by a specific manifest file:

curl -X GET 'http://localhost:8080/v3/events' --data-urlencode \
'query=["=","file","/etc/puppet/modules/hosts/manifests/init.pp"]'

The /event-counts endpoint
Show the count of resources of the Service type, summarized per resource:

curl -X GET 'http://localhost:8080/v3/event-counts' \
 --data-urlencode 'query=["=", "resource-type", "Service"]' \
 --data-urlencode 'summarize-by=resource'

Show the count of resources of the Package type, summarized per node name:

curl -X GET 'http://localhost:8080/v3/event-counts' \
 --data-urlencode 'query=["=", "resource-type", "Package"]' \
 --data-urlencode 'summarize-by=certname'

The /aggregated-event-counts endpoint
Show the aggregated count of events for a node:

curl -G 'http://localhost:8080/v3/aggregate-event-counts' \
 --data-urlencode 'query=["=", "certname", "db.example.com"]' \
 --data-urlencode 'summarize-by=containing-class'

Show the aggregated count for all the events on the services on any node:

curl -G 'http://localhost:8080/v3/aggregate-event-counts' \
 --data-urlencode 'query=["=", "resource-type", "Service"]' \
 --data-urlencode 'summarize-by=certname'

The /server-time endpoint
Show PuppetDB server's time in the ISO-8601 format (this is the format that we'll
deal with when querying timestamps):

curl http://localhost:8080/v3/server-time

The /version endpoint
Show PuppetDB's version:

curl http://localhost:8080/v3/version

PuppetDB

[88]

The puppetdbquery module
By now, we have realized how comprehensive the amount of information stored
on PuppetDB is, as it provides a complete view of all our nodes' facts, catalogs, and
reports. This is useful for a review of what happens on our infrastructure and for the
metrics we can extract via queries on all the resources managed by Puppet, but this
is not enough.

One of historical Puppet's limitations is the fact that a node basically has
knowledge only about itself via its catalog and can interact with other nodes
only via exported resources.

This is going to change. With Eric Dalén's puppetdbquery module we can access
all PuppetDB data, and use it from different places:

•	 On the CLI, with a new a Puppet face
•	 In our manifests, with dedicated functions
•	 On Hiera, with a dedicated backend

We can install it from the Forge:

puppet module install dalen-puppetdbquery

Query format
The puppetdbquery module uses a custom format for queries. This format is
different (and easier to use) from the native one. All the queries that we can
execute with this module are in the following format:

Type[Name]{attribute1=foo and attribute2=bar}

By default, they are made on normal resources and use the @@ prefix to query
the exported resources. The comparison operators are =, !=, >, <, and ~
(regexp matching). The expressions can be combined with and, not, and or.

Query from the command line
The module introduces the query command (as a Puppet face) that allows direct
interaction with PuppetDB from the command line for inline help:

puppet help query

To search for all the RedHat family nodes with version 6, we can type the following:

puppet query nodes '(osfamily=RedHat and lsbmajdistrelease=6)'

Chapter 3

[89]

The same query, when executed on facts, shows all the facts for the resulting nodes:

puppet query facts '(osfamily=RedHat and lsbmajdistrelease=6)'

To show only the IP address of the queried nodes:

puppet query facts --facts ipaddress '(osfamily=RedHat and
lsbmajdistrelease=6)'

Query from Puppet manifests
The functions provided by the module can be used inside manifests to populate the
catalog with data retrieved from PuppetDB.

query_nodes has two arguments: the query to use and, optionally, the fact to
return (by default, it provides the certname). The output is an array. Here are
some usage samples:

$webservers = query_nodes('osfamily=Debian and Class[Apache]')
$webserver_ip = query_nodes('osfamily=Debian and Class[Apache]',
ipaddress)

query_facts requires two arguments too: the query to use to discover nodes and the
list of facts to return for them. It returns a nested hash in the JSON format. Here is a
sample use case:

query_facts('Class[Apache]{port=443}', ['osfamily', 'ipaddress'])

These functions are dramatically useful to retrieve data from PuppetDB and provide
resources on a node according to the resources in catalogs compiled for other nodes.

The PuppetDB Hiera backend
Another powerful feature of the puppetdbquery module is the presence
of a Hiera backend that allows us to use PuppetDB data for our Hiera keys.
It requires at least one other backend, so it's configured as follows:

:backends:
 - yaml
 - puppetdb

:hierarchy:
 - nodes/%{fqdn}
 - common

PuppetDB

[90]

The fun begins when we can use a query in our keys, instead of something like the
following code:

ntp::servers:
 - 'ntp1.example.com'
 - 'ntp2.example.com'

We can have a dynamic query as follows:

ntp::servers::_nodequery: 'Class[Ntp::Server]'

This returns an array with the certname of all the nodes that have the ntp::server
class in our infrastructure. If we want their IP addresses instead (the same applies for
any other fact), use:

ntp::servers::_nodequery: ['Class[Ntp::Server]', 'ipaddress']

The preceding code can also be written with the following format (the result is
the same):

ntp::servers::_nodequery:
 query: 'Class[Ntp::Server]'
 fact: 'ipaddress'

How Puppet code may change in
the future
Now, hold on, stop to read, and think again about what we've seen in this chapter
and particularly in the last section. Variables that define our infrastructure can be
dynamically populated according to the number of hosts that have specific classes
or resources. If we add hosts with these services, they can be automatically used by
the other hosts.

This is what we need to configure with Puppet dynamic and elastic
environments, where new services are made available to other nodes that
are consequently configured.

Chapter 3

[91]

For example, we can set a variable that returns all the IP addresses of the nodes that
have Apache installed:

$web_servers_ip = query_nodes('Class[apache]', ipaddress)

This variable can be used in an ERB template that configures a load balancer. This
is a simple case that probably doesn't fit real scenarios where we probably have
different Apache web servers doing different tasks on different servers, but it can
give us an idea.

In other cases, we might need to know the value of a fact of a given node and use it
on another node. In the following example, cluster_id might be a custom fact that
returns an ID generated on the db01 host; its value might be used on another host
(a cluster member) to configure it accordingly:

$shared_cluster_id = query_facts('hostname=db01', cluster_id)

It's important to understand the kind of data we find and query on PuppetDB.
What we find with the puppetdbquery module, for example, are resources contained
in the last catalog generated by the Puppet Master and stored for each node. We are
not sure whether these resources have been applied successfully (we should query
the event's endpoint for this, but currently, this is not possible with this module),
and we are not sure that the services expected are available.

Also, consider how frequently Puppet runs on our nodes, as its convergence time
may vary. If the interval is too large, the infrastructure may adapt slowly to new
changes, and if it's too small, we may have more risks of some race conditions
where a catalog that exposes a new service for a node has not yet been applied.
In the meantime, it is already used to configure other nodes to use a service that
might not be already configured.

These are probably hypothetical edge cases that we can tackle and manage in the
same way in which we would manage a temporarily faulty service, for example,
excluding nonresponsive servers from a load balancing pool. Just be aware of them.

PuppetDB

[92]

Summary
In this chapter, the word PuppetDB has been used zillions of times as an
obsessive mantra. While we can use Puppet without it, as we have done for years,
it's important to realize that PuppetDB is going to be present in every relevant
Puppet infrastructure, and we can bet that more and more applications and tools
will emerge around it.

The fact that it's a robust piece of software that is engineered in a brilliant way makes
us feel comfortable about the idea that Puppet Labs has decided to use it as the
central point of consolidation and gathering for all the data generated by Puppet.

We have seen how to configure PuppetDB and its integration with the Puppet
Master and how to interpret its performance dashboard. We have explored the
principles of the PuppetDB CQRS API with REST-like endpoints for queries and
commands for writing. We have also explored, in some detail, the list of available
endpoints with various sample queries.

Finally, we have seen how most of the information gathered by PuppetDB can be
queried from our manifests using the puppetdbquery module, and how this can
dramatically influence how we manage interactions among different nodes.

Now that we have firmly grasped the principles of Puppet, Hiera, and PuppetDB,
we can explore how they can be glued together to build different architectures.

Designing Puppet
Architectures

Puppet is an extensible automation framework, a tool, and a language. We can
do great things with it, and we can do them in many different ways. Besides the
technicalities of learning the basics of its DSL, one of the biggest challenges for new
and not-so-new users of Puppet is to organize code and put things together in a
manageable and appropriate way.

It's hard to find a comprehensive documentation on how to use public code
(modules) with our custom modules and data, where to place our logic, how to
maintain and scale it, and generally, how to manage the resources that we want in
our nodes and the data that defines them safely and effectively.

There's not really a single answer that fits all these cases. There are best practices,
recommendations, and many debates in the community, but ultimately, it all
depends on our own needs and infrastructure, which vary according to multiple
factors, such as the following:

•	 The number and variety of nodes and application stacks to manage
•	 The infrastructure design and number of data centers or separate

networks to manage
•	 The number and skills of people who work with Puppet
•	 The number of teams who work with Puppet
•	 Puppet's presence and integration with other tools
•	 Policies for change in production

Designing Puppet Architectures

[94]

In this chapter, we will outline the elements needed to design a Puppet architecture,
reviewing the following elements in particular:

•	 The tasks to deal with (manage nodes, data, code, files, and so on) and the
available components to manage them

•	 Foreman, which is probably the most used ENC around, with Puppet
Enterprise

•	 The pattern of roles and profiles
•	 Data separation challenges and issues
•	 How the various components can be used together in different ways with

some sample setups

The components of Puppet architecture
With Puppet, we manage our systems via the catalog that the Puppet Master compiles
for each node. This is the total of the resources we have declared in our code, based on
the parameters and variables whose values reflect our logic and needs.

Most of the time, we also provide configuration files either as static files or via ERB
templates, populated according to the variables we have set.

We can identify the following major tasks when we have to manage what we want to
configure on our nodes:

•	 Definition of the classes to be included in each node
•	 Definition of the parameters to use for each node
•	 Definition of the configuration files provided to the nodes

These tasks can be provided by different, partly interchangeable components, which
are as follows:

•	 site.pp is the first file parsed by the Puppet Master (by default, its path
is /etc/puppet/manifests/site.pp) and eventually, all the files that are
imported from there (import nodes/*.pp would import and parse all the
code defined in the files with the .pp suffix in the /etc/puppet/manifests/
nodes/ directory). Here, we have code in the Puppet language.

•	 An ENC (External Node Classifier) is an alternative source that can be used
to define classes and parameters to apply to nodes. It's enabled with the
following lines on the Puppet Master's puppet.conf:
[master]
 node_terminus = exec
 external_nodes = /etc/puppet/node.rb

Chapter 4

[95]

What's referred by the external_nodes parameter can be any script
that uses any backend; it's invoked with the client's certname as the first
argument (/etc/puppet/node.rb web01.example.com) and should return
a YAML formatted output that defines the classes to include for that node,
the parameters, and the Puppet environment to use.
Besides the well-known Puppet-specific ENCs such as The Foreman and
Puppet Dashboard (a former Puppet Labs project now maintained by the
community members), it's not uncommon to write new custom ones that
leverage on existing tools and infrastructure-management solutions.

•	 LDAP can be used to store nodes' information (classes, environment,
and variables) as an alternative to the usage of an ENC. To enable LDAP
integration, add the following lines to the Master's puppet.conf:
[master]
 node_terminus = ldap
 ldapserver = ldap.example.com
 ldapbase = ou=Hosts,dc=example,dc=com

Then, we have to add Puppet's schema to our LDAP server. For more
information and details, refer to http://docs.puppetlabs.com/guides/
ldap_nodes.html.

•	 Hiera is the hierarchical key-value datastore we have discussed in Chapter 2,
Hiera. It is is embedded in Puppet 3 and available as an add-on for previous
versions. Here, we can set parameters but also include classes and eventually
provide content for files.

•	 Public modules can be retrieved from Puppet Forge, GitHub, or other
sources; they typically manage applications and systems' settings. Being
public, they might not fit all our custom needs, but they are supposed to
be reusable, support different OSes, and adapt to different usage cases. We
are supposed to be able to use them without any modification, as if they
were public libraries, committing our fixes and enhancements back to the
upstream repository. A common but less-recommended alternative is to
fork a public module and adapt it to our needs. This might seem a quicker
solution, but doesn't definitively help the open source ecosystem and would
prevent us from having benefits from updates on the original repository.

•	 Site module(s) are custom modules with local resources and files where
we can place all the logic we need or the resources we can't manage with
public modules. They may be one or more and may be called site or have
the name of our company, customer, or project. Site modules have particular
sense as a companion to public modules when they are used without local
modifications. On site modules, we can place local settings, files, custom
logic, and resources.

http://docs.puppetlabs.com/guides/ldap_nodes.html
http://docs.puppetlabs.com/guides/ldap_nodes.html

Designing Puppet Architectures

[96]

The distinction between public reusable modules and site modules is
purely formal; they are both Puppet modules with a standard structure.
It might make sense to place the ones we develop internally in a
dedicated directory (module paths), which is different from the one
where we place shared modules downloaded from public sources.

Let's see how these components might fit our Puppet tasks.

Defining the classes to include in each node
This is typically done when we talk about node classification in Puppet. This is the
task that the Puppet Master accomplishes when it receives a request from a client
node and has to determine the classes and parameters to use for that specific node.

Node classification can be done in the following different ways:

•	 We can use the node declaration in site.pp and other manifests eventually
imported from there. In this way, we identify each node by certname and
declare all the resources and classes we want for it, as shown in the following
code:
node 'web01.example.com' {
 include ::general
 include ::apache
}

Here, we may even decide to follow a nodeless layout, where we don't
use the node declaration at all and rely on facts to manage the classes and
parameters to be assigned to our nodes. An example of this approach is
examined later in this chapter.

•	 On an ENC, we can define the classes (and parameters) that each node
should have. The returned YAML for our simple case would be something
like the following lines of code:

classes:
 - general:
 - apache:
parameters:
 dns_servers:

Chapter 4

[97]

 - 8.8.8.8
 - 8.8.4.4
 smtp_server: smtp.example.com
environment: production

•	 Via LDAP, where we can have a hierarchical structure where a node can
inherit the classes (referenced with the puppetClass attribute) set in a parent
node (parentNode).

•	 Via Hiera, using the hiera_include function just add in site.pp as follows:
hiera_include('classes').

Then, define our hierarchy under the key named classes, what to include
for each node. For example, with a YAML backend, our case would be
represented with the following lines of code:

classes:
 - general
 - apache

•	 In site module(s), any custom logic can be placed as, for example, the classes
and resources to include for all the nodes or for specific groups of nodes.

Defining the parameters to use for each node
This is another crucial part, as with parameters, we can characterize our nodes and
define the resources we want for them.

Generally, to identify and characterize a node in order to differentiate it from the
others and provide the specific resources we want for it, we need very few key
parameters, such as the following (the names used here may be common but are
arbitrary and are not Puppet's internal ones):

•	 role is almost a standard de facto name to identify the kind of server. A
node is supposed to have just one role, which might be something like
webserver, app_be, db, or anything that identifies the function of the node.
Note that web servers that serve different web applications should have
different roles (that is, webserver_site, webserver_blog, and so on). We
can have one or more nodes with the same role.

Designing Puppet Architectures

[98]

•	 env or any name that identifies the operational environment of the node (if it
is a development, test, qa, or production server).

Note that this doesn't necessarily match Puppet's internal environment
variable. Someone prefers to merge the env information inside role,
having roles such as webserver_prod and webserver_devel.

•	 Zone, site, data center, country, or any parameter that might identify the
network, country, availability zone, or datacenter where the node is placed.
A node is supposed to belong to only one of this. We might not require this
in our infrastructure.

•	 Tenant, component, application, project, and cluster might be the other
kind of variables that characterize our node. There's not a real standard
on their naming, and their usage and necessity strictly depend on the
underlying infrastructure.

With parameters such as these, any node can be fully identified and be served with
any specific configuration. It makes sense to provide them, where possible, as facts.

The parameters we use in our manifests may have a different nature:

•	 role/env/zone as defined earlier are used to identify the nodes; they
typically are used to determine the values of other parameters

•	 OS-related parameters such as package names and file paths
•	 Parameters that define the services of our infrastructure (DNS servers, NTP

servers, and so on)
•	 Username and passwords, which should be reserved, used to manage

credentials
•	 Parameters that express any further custom logic and classifying need

(master, slave, host_number, and so on)
•	 Parameters exposed by the parameterized classes or defines we use

Often, the value of some parameters depend on the value of other ones. For example,
the DNS or NTP server may change according to the zone or region on a node. When
we start to design our Puppet architecture, it's important to have a general idea of
the variations involved and the possible exceptions, as we will probably define our
logic according to them. As a general rule, we will use the identifying parameters
(role/env/zone) to define most of the other parameters most of the time, so we'll
probably need to use them in our Hiera hierarchy or in Puppet selectors. This also
means that we probably will need to set them as top scope variables (for example,
via an ENC) or facts.

Chapter 4

[99]

As with the classes that have to be included, parameters may be set by various
components; some of them are actually the same, as in Puppet, a node's classification
involves both classes to include and parameters to apply. These components are:

•	 In site.pp, we can set variables. If they are outside nodes' definitions,
they are at top scope; if they are inside, they are at node scope. Top scope
variables should be referenced with a :: prefix, for example, $::role. Node
scope variables are available inside the node's classes with their plain name,
for example, $role.

•	 An ENC returns parameters, treated as top scope variables, alongside
classes, and the logic of how they can be set depends entirely on its structure.
Popular ENCs such as The Foreman, Puppet Dashboard, and the Puppet
Enterprise Console allow users to set variables for single nodes or for groups,
often in a hierarchical fashion. The kind and amount of parameters set here
depend on how much information we want to manage on the ENC and how
much to manage somewhere else.

•	 LDAP, when used as a node's classifier, returns variables for each node as
defined with the puppetVar attribute. They are all set at top scope.

•	 In Hiera, we set keys that we can map to Puppet variables with the hiera(),
hiera_array() and hiera_hash()functions inside our Puppet code. Puppet
3's data bindings automatically map class' parameters to Hiera keys, so for
these cases, we don't have to explicitly use hiera* functions. The defined
hierarchy determines how the keys' values change according to the values of
other variables. On Hiera, ideally, we should place variables related to our
infrastructure and credentials but not OS-related variables (they should stay
in modules if we want them to be reusable).

A lot of documentation about Hiera shows sample hierarchies with
facts such as osfamily and operatingsystem. In my very personal
opinion, such variables should not stay there (weighting the hierarchy
size), as OS differences should be managed in the classes and modules
used and not in Hiera.

•	 On public shared modules, we typically deal with OS-specific parameters.
Modules should be considered as reusable components that know all about
how to manage an application on different OS but nothing about custom
logic. They should expose parameters and defines that allow users to
determine their behavior and fit their own needs.

•	 On site module(s), we may place infrastructural parameters, credentials, and
any custom logic, more or less based on other variables.

Designing Puppet Architectures

[100]

•	 Finally, it's possible and generally recommended to create custom facts that
identify the node directly from the agent. An example of this approach is a
totally facts-driven infrastructure, where all the node-identifying variables,
upon which all the other parameters are defined, are set as facts.

Defining the configuration files provided to
the nodes
It's almost certain that we will need to manage configuration files with Puppet
and that we need to store them somewhere, either as plain static files to serve via
Puppet's fileserver functionality using the source argument of the File type or via
.erb templates.

While it's possible to configure custom fileserver shares for static files and absolute
paths for templates, it's definitively recommended to rely on the modules'
autoloading conventions and place such files inside custom or public modules,
unless we decide to use Hiera for them.

Configuration files, therefore, are typically placed in:

•	 Public modules: These may provide default templates that use variables
exposed as parameters by the modules' classes and defines. As users, we
don't directly manage the module's template but the variables used inside
it. A good and reusable module should allow us to override the default
template with a custom one. In this case, our custom template should be
placed in a site module. If we've forked a public shared module and maintain
a custom version we might be tempted to place there all our custom files and
templates. Doing so, we lose in reusability and gain, maybe, in short term
usage simplicity.

•	 Site module(s): These are, instead, a more correct place for custom files and
templates, if we want to maintain a setup based on public shared modules,
which are not forked, and custom site ones where all our stuff stays confined
in a single or few modules. This allows us to recreate similar setups just by
copying and modifying our site modules, as all our logic, files and resources
are concentrated there.

•	 Hiera: Thanks to the smart hiera-file backend, Hiera can be an interesting
alternative place where to store configuration files, both static ones or
templates. We can benefit of the hierarchy logic that works for us and can
manage any kind of file without touching modules.

Chapter 4

[101]

•	 Custom fileserver mounts can be used to serve any kind of static files from
any directory of the Puppet Master. They can be useful if we need to provide
via Puppet files generated/managed by third-party scripts or tools. An entry
in /etc/puppet/fileserver.conf like:

[data]
path /etc/puppet/static_files
allow *.example.com

Allows serving a file like /etc/puppet/static_files/generated/file.
txt with the argument:
source => 'puppet:///data/generated/file.txt',

Defining custom resources and classes
We'll probably need to provide custom resources, which are not declared in the
shared modules, to our nodes, because these resources are too specific. We'll
probably want to create some grouping classes, for example, to manage the common
baseline of resources and classes we want applied to all our nodes.

This is typically a bunch of custom code and logic that we have to place somewhere.
The usual locations are as follows:

•	 Shared modules: These are forked and modified to including custom
resources; as already outlined, this approach doesn't pay in the long term.

•	 Site module(s): These are preferred place-to-place custom stuff, included
some classes where we can manage common baselines, role classes, and other
containers' classes.

•	 Hiera, partially, if we are fond of the create_resources function fed by
hashes provided in Hiera. In this case, somewhere (in a site or shared
module or maybe, even in site.pp), we have to place the create_
resources statements.

The Foreman
The Foreman is definitively the biggest open source software product related to
Puppet and not directly developed by Puppet Labs.

The project was started by Ohad Levy, who now works at Red Hat and
leads its development, supported by a great team of internal employees and
community members.

Designing Puppet Architectures

[102]

The Foreman can work as a Puppet ENC and reporting tool; it presents an alternative
to the Inventory System, and most of all, it can manage the whole lifecycle of the
system, from provisioning to configuration and decommissioning.

Some of its features have been quite ahead of their times. For example, the
foreman() function made possible for a long time what is done now with the
puppetdbquery module.

It allows direct query of all the data gathered by The Foreman: facts, nodes
classification, and Puppet-run reports.

Let's look at this example that assigns to the $web_servers variable the list of hosts
that belong to the web hostgroup, which have reported successfully in the last hour:

$web_servers = foreman("hosts", "hostgroup ~ web and status.failed = 0
and last_report < \"1 hour ago\"")

This was possible long before PuppetDB was even conceived.

The Foreman really deserves at least a book by itself, so here, we will just summarize
its features and explore how it can fit in a Puppet architecture.

We can decide which components to use:

•	 Systems provisioning and life-cycle management
•	 Nodes IP addressing and naming
•	 The Puppet ENC function based on a complete web interface
•	 Management of client certificates on the Puppet Master
•	 The Puppet reporting function with a powerful query interface
•	 The Facts querying function, equivalent to the Puppet Inventory system

For some of these features, we may need to install Foreman's Smart Proxies on some
infrastructural servers. The proxies are registered on the central Foreman server
and provide a way to remotely control relevant services (DHCP, PXE, DNS, Puppet
Master, and so on).

The Web GUI based on Rails is quite complete and appealing, but it might prove
cumbersome when we have to deal with a large number of nodes. For this reason,
we can also manage Foreman via the CLI.

The original foreman-cli command has been around for years but is now
deprecated for the new hammer (https://github.com/theforeman/hammer-cli)
with the Foreman plugin, which is very versatile and powerful as it allows us to
manage, via the command line, most of what we can do on the web interface.

https://github.com/theforeman/hammer-cli

Chapter 4

[103]

Roles and profiles
In 2012, Craig Dunn wrote a blog post (http://www.craigdunn.
org/2012/05/239/) that quickly became a point of reference on how to organize
Puppet code. He discussed his concept of roles and profiles. The role describes what
the server represents, a live web server, a development web server, a mail server,
and so on. Each node can have one and only one role. Note that in his post, he
manages environments inside roles (two web servers on two different environments
have two different roles):

node www1 {
 include ::role::www::dev
}
node www2 {
 include ::role::www::live
}
node smtp1 {
 include ::role::mailserver
}

Then, he introduces the concept of profiles, which include and manage modules to
define a logical technical stack. A role can include one or more profiles:

class role {
 include profile::base
}
class role::www inherits role {
 include ::profile::tomcat
}

In environment-related subroles, we can manage the exceptions we need (here,
for example, the www::dev role includes both the database and webserver::dev
profiles):

class role::www::dev inherits role::www {
 include ::profile::webserver::dev
 include ::profile::database
}
class role::www::live inherits role::www {
 include ::profile::webserver::live
}

Usage of class inheritance here is not mandatory, but it is useful to minimize
code duplication.

http://www.craigdunn.org/2012/05/239/
http://www.craigdunn.org/2012/05/239/

Designing Puppet Architectures

[104]

This model expects modules to be the only components where resources are actually
defined and managed; they are supposed to be reusable (we use them without
modifying them) and manage only the components they are written for.

In profiles, we can manage resources and the ordering of classes; we can initialize
variables and use them as values for arguments in the declared classes, and we can
generally benefit from having an extra layer of abstraction:

Class profile::base {
 include ::networking
 include ::users
}
class profile::tomcat {
 class { '::jdk': }
 class { '::tomcat': }
}
class profile::webserver {
 class { '::httpd': }
 class { '::php': }
 class { '::memcache': }
}

In profiles subclasses, we can manage exceptions or particular cases:

class profile::webserver::dev inherits profile::webserver {
 Class['::php'] {
 loglevel => "debug"
 }
}

This model is quite flexible and has gained a lot of attention and endorsement from
Puppet Labs. It's not the only approach that we can follow to organize the resources
we need for our nodes in a sane way, but it's the current best practice and a good
point of reference, as it formalizes the concept of role and exposes how we can
organize and add layers of abstraction between our nodes and the used modules.

The data and the code
Hiera's crusade and possibly main reason to exist is data separation. In practical
terms, this means to convert Puppet code like the following one:

$dns_server = $zone ? {
 'it' => '1.2.3.4',
 default => '8.8.8.8',
}

Chapter 4

[105]

class { '::resolver':
 server => $dns_servers,
}

Into something where there's no trace of local settings like:

$dns_server = hiera('dns_server')
class { '::resolver':
 server => $dns_servers,
}

With Puppet 3, the preceding code can be even more simplified with just the
following line:

include ::resolver

This expects the resolver::server key evaluated as needed in our Hiera
data sources.

The advantages of having data (in this case, the IP of the DNS server, whatever is the
logic to elaborate it) in a separated place are clear:

•	 We can manage and modify data without changing our code
•	 Different people can work on data and code
•	 Hiera's pluggable backend system dramatically enhances how and where

data can be managed, allowing seamless integration with third-party tools
and data sources

•	 Code layout is simpler and more error proof
•	 The lookup hierarchy is configurable

Nevertheless, there are a few little drawbacks or maybe, just the necessary side
effects or needed evolutionary steps. They are as follows:

•	 What we've learned about Puppet and used to do without Hiera is obsolete
•	 We don't see, directly in our code, the values we are using
•	 We have two different places where we can look to understand what

code does
•	 We need to set the variables we use in our hierarchy as top scope variables or

facts, or anyway, we need to refer to them with a fixed fully qualified name
•	 We might have to refactor a lot of existing code to move our data and logic

into Hiera

Designing Puppet Architectures

[106]

A personal note: I've been quite a late jumper on the Hiera wagon.
While developing modules with the ambition that they can be reusable,
I decided I couldn't exclude users who weren't using this additional
component. So, until Puppet 3 with Hiera integrated in it became
mainstream, I didn't want to force the usage of Hiera in my code.
Now things are different. Puppet 3's data bindings change the whole
scene, Hiera is deeply integrated and is here to stay, and so, even if we
can happily live without using it, I would definitively recommend its
usage in most of the cases.

Sample architectures
We have outlined the main tasks and components we can use to put things together
in a Puppet architecture; we have looked at Foreman, Hiera, and the roles and
profiles pattern. Now, let's see some real examples based on them.

The default approach
By default, Puppet doesn't use an ENC and lets us classify nodes directly in /etc/
puppet/manifests/site.pp (or in files imported from there) with the node statement.
So, a very basic setup would have site.pp with a content like the following:

node www01 {
 # Place here resources to apply to this node in Puppet DSL:
 # file, package service, mount...
}
node lb01 {
 # Resources for this node: file, package service...
}

This is all we basically need; no modules with their classes, no Hiera, no ENC. We
just need good old plain Puppet code as they teach us in schools, so to speak.

This basic approach, useful just for the first tests, obviously does not scale well and
would quickly become a huge mess of duplicated code.

The next step is to use classes that group resources, and if these classes are placed
inside modules, we can include them directly without the need to explicitly import
the containing files:

node www01 {
 include ::apache
 include ::php
}

Chapter 4

[107]

Also, this approach, even if definitively cleaner, will quickly be overwhelmed by
redundant code. So, we will probably want to introduce grouping classes that group
other classes and resources according to the desired logic.

One common example is a general class, which includes all the modules, classes,
and resources we want to apply to all our nodes.

Another example is a role class, which includes all the extra resources needed by a
particular kind of node:

node www01 {
 include ::general
 include ::role::www
}

We can then have other grouping classes to better organize and reuse our resources,
such as the profiles we have just discussed.

Note that with the names mentioned earlier, we would need two different
local (site) modules: general and role. I personally prefer to place all
the local, custom resources in a single module, to be called site, or even
better, with the name of the project, customer, or company. Given this, the
previous example could be:

node www01 {
 include ::site
 include ::site::role::www
}

These are only naming matters that have consequences on directories'
layout and eventually on permissions management on our SCM, but the
principle of grouping resources according to custom logic is the same.

Until now, we have just included classes, and often, the same classes are included
by nodes that need different effects from them, for example, slightly different
configuration files, or specific resources, or any kind of variation we have in the real
world when configuring the same application on different systems.

Here is where we need to use variables and parameters to alter the behavior of a
class according to custom needs.

Here is where the complexity begins, because there are various elements to consider,
such as:

•	 What are the variables that identify our node
•	 If they are sufficient to manage all the variations in our nodes
•	 Where we want to place our logic that copes with them

Designing Puppet Architectures

[108]

•	 Where configurations should be provided as plain static files, where it is better
to use templates, and where we could just modify single lines inside files

•	 How these choices may affect the risk of doing a change that affects
unexpected nodes

The most frequent and dangerous mistakes with Puppet are due to people
making changes in code (or data) that are supposed to be made for a
specific node but affect other nodes as well. Most of the time, this happens
when people don't know the structure and logic of the Puppet codebase
they are working on well enough. There are no easy rules to prevent such
problems; just some general suggestions such as the following:

•	 Promote code peer review and communication among the
Puppeteers

•	 Test code changes on canary nodes
•	 Use naming conventions and coherent code organization to

maximize the principle of least surprise
•	 Embrace code simplicity, readability, and documentation
•	 Be wary of the scope and extent of our abstraction layers

We also need classes that actually allow things to be changed via parameters or
variables if we want to avoid placing our logic directly inside them.

Patterns on how to manage variables and their effect on the applied resources
have changed a lot with the evolution of Puppet and the introduction of new tools
and functionalities.

We won't indulge in how things were done in the good old times; in a modern and
currently recommended Puppet setup, we expect to have:

•	 At least Puppet 3 on the Puppet Master to eventually enjoy data bindings
•	 Classes that expose parameters that allow us to manage them
•	 Reusable public modules that allow us to adapt them to our use case

without modifications

In this case, we can basically follow two different approaches. We can keep on
including classes and set the values we want for the parameters we need to modify
on Hiera. So, in our example, we could have something as follows in site/
manifests/role/www.pp:

class site::role::www {
 include ::apache
 include ::php
}

Chapter 4

[109]

On Hiera, we can have a file such as hieradata/env/devel.yaml, where we set
parameters like the following:

 apache::port: 8080

Alternatively, we might use explicit class declarations like:

class site::role::www {
 $apache_port = $env ? {
 devel => '8080',
 default => '80',
 }
 class { '::apache':
 port => $apache_port,
 }
 include ::php
}

In such a declaration, the data and logic on how to determine it is definitively inside
the code.

Basic ENC, logic in the site module, and
Hiera backend
ENC and Hiera can be alternative or complementary; this approach gets advantages
from both and uses the site module for most of the logic for class inclusion, the
configuration files, and the custom resources.

In Hiera, all the class parameters are placed.

In ENC, when it's not possible to set variables via facts, we set the variables that
identify our nodes and can be used on our Hiera's hierarchy.

In site.pp or in the same ENC, we include just a single site class, and here, we
manage our grouping logic. For example, with general baseline and role classes:

class site {
 include ::site::general
 if $::role {
 include "::site::roles::${::role}"
 }
}

Designing Puppet Architectures

[110]

In our role classes, which are included if the $role variable is set on the ENC,
we can manage all the role-specific resources, eventually dealing with differences
according to the environment, other identifying variables directly in the role class, or
using profiles.

Note that in this chapter, we've always referred to class names with
their full name, so a class such as mysql is referred with ::mysql.
This is useful to avoid name collisions when, for example, role
names may clash with existing modules. If we don't use the leading
:: chars, we will have problems, for example, with a class called
site::role::mysql, which may mess with the main class, mysql.

The Foreman and Hiera
The Foreman can act as a Puppet ENC; it's probably the most common ENC around,
and we can use both Foreman and Hiera in our architecture.

In this case, we should strictly separate responsibilities and scopes even if they might
be overlapping; let's review our components and how they might fit in a scenario
based on The Foreman, Hiera, and the usual site module(s):

•	 Classes to be included in nodes can be done in The Foreman, the site module,
or both. It mostly depends on how much logic we want in The Foreman,
and how many activities have to be done via its interface and how many are
moved into site module(s). We can decide to define roles and profiles in the
site module and use The Foreman just to define top scope variables and the
inclusion of a single basic class, as in the previous example. Alternatively, we
may prefer to use The Foreman's HostGroups to classify and group nodes,
moving most of the classes' grouping logic into The Foreman.

•	 Variables to be assigned to nodes can be done in both The Foreman and
Hiera. It probably makes sense to set only the variables we need to identify
nodes (if they are not provided by facts), in The Foreman, and generally, the
ones we might need to use in Hiera's hierarchy. All the other variables and
the logic on how to derive them should stay in Hiera.

•	 Files should stay in our site module, or eventually, in Hiera (with the hiera-
file plugin).

Chapter 4

[111]

The Hiera-based setup
A common scenario involves the usage of Hiera to manage both the classes to include
them in nodes and their parameters and eventually few handy resource defaults.

No ENC is used; site.pp just needs the following:

hiera_include('classes')

Classes and parameters can be assigned to nodes enjoying the flexibility of our
hierarchy, so in a common.yaml we can have:

Common classes on all nodes
classes:
 - puppet
 - openssh
 - timezone
 - resolver
Common Class Parameters
timezone::timezone: 'Europe/Rome'
resolver::dns_servers:
 - 8.8.8.8
 - 8.8.4.4

In a specific datasource file such as role/web.yaml, we can add the classes and the
parameters we want to apply to that group of nodes:

classes:
 - stack_lamp
stack_lamp::apache_include: true
stack_lamp::php_include: true
stack_lamp::mysql_include: false

The modules we use (here, an example is stack_lamp; however, it could be
something like profile::webserver or apache and php) should expose as
parameters anything that is needed to configure things as expected.

Configuration files and templates can be placed in a site module.

Designing Puppet Architectures

[112]

The Hiera-only setup
The Hiera-only setup is a somewhat extreme approach. Everything is managed by
Hiera: the classes to include in nodes, their parameters, and also the configuration
files to serve to the clients. Configuration files are delivered via the hiera-file
plugin; also, in this scenario, we need modules and relevant classes that expose
parameters to manage the content of files.

Secrets, credentials, and sensitive data may be encrypted via hiera-eyaml or
hiera-gpg.

We may wonder whether a site module is still needed, as most of its common
functions (provide custom files, manage logic, define and manage variables) can be
moved into Hiera.

The answer is probably yes: even in a similar, strongly Hiera-oriented scenario, a
site module is usually needed. We might, for example, use custom classes to manage
edge cases or exceptions that could be difficult to replicate with Hiera without
adding a specific entry in the hierarchy.

One important point to consider when moving most of our logic in Hiera is how
much this costs in terms of the length of the hierarchy. Sometimes, a simple, even
if not elegant, custom class that deals with a particular edge case may save us from
adding a layer in the hierarchy.

Foreman smart variables
Smart variables are The Foreman's alternative approach to Hiera for the full
management of the variables used by nodes.

The Foreman can automatically detect the parameters exposed by classes and allows
us to set values for them according to custom logic, providing them via the ENC
functionality (support for parameterized classes via ENC has been available since
Puppet 2.6.5).

To each class, we can map one or more smart variables, which may have different
values according to customizable conditions and hierarchies.

The logic is somewhat similar to Hiera, with the notable difference that we can have
a different hierarchy for each variable and have other ways to define its content
according to custom queries and conditions.

User's experience benefits from the web interface and may result in being easier
than editing directly Hiera files. The Foreman's auditing features allows us to track
changes as an SCM would do on plain files.

Chapter 4

[113]

We don't have the multiple backends flexibility as we have with Hiera, and we'll be
completely tied to The Foreman for the management on our nodes.

Personally, I have no idea of how many people are extensively using smart variables
in their setups; just be aware that there exists this alternative for data management.

Fact-driven truths
A fact-driven approach was theorized by Jordan Sissel, the Logstash's author, in
a 2010's blog post (http://www.semicomplete.com/blog/geekery/puppet-
nodeless-configuration). The most authoritative information we can have about a
node comes from its own facts.

We may decide to use facts in various places, such as in our hierarchy, in our site
code, in templates, and if our facts permit us to identify the nodes' role, environment,
zone, or any identifying variable, we might not even need nodes classification and
manage everything in our site module or via Hiera.

It is now very easy to add custom facts by placing a file in the node's /etc/facter/
facts.d directory. This can be done, for instance, by a cloud provisioning script.

Alternatively, if our node names are standardized and informative, we can easily
define our identifying variables in custom facts, which might be provided by our
site module.

If all the variables that identify our node come from facts, we can have site.pp as
simple as:

include site

In our site/manifests/init.pp, we have something like the following code:

class site {
 if $::role {
 include "site::roles::role_${::role}"
 }
}

The top scope $::role variable would be, obviously, a fact.

Logic for data and classes to include can be managed where we prefer in site
modules, Hiera or the ENC.

The principle here is that as much data as possible and especially the nodes'
identifying variables, should come from facts.

Designing Puppet Architectures

[114]

Also, in this case, common sense applies and extreme usage deviations should be
avoided; in particular; a custom Ruby fact should compute its output without any
local data. If we start placing data inside the fact in order to return data, we are
probably doing something wrong.

Nodeless site.pp
We have seen that site.pp does not necessarily need to have node definitions in
its content in imported files. We don't need them when we drive everything via
facts, where we manage class inclusion in Hiera, and we don't need them with an
approach where conditionals based on host names are used to set the top scope
variables that identify nodes:

nodeless site.pp

Roles are based on hostnames
case $::hostname {
 /^web/: { $role = 'web' }
 /^puppet$/: { $role = 'puppet' }
 /^lb/: { $role = 'lb' }
 /^log/: { $role = 'log' }
 /^db/: { $role = 'db' }
 /^el/: { $role = 'el' }
 /^monitor/: { $role = 'monitor' }
 default: { $role = 'default' }
}

Env is based on hostname or (sub) domain
if 'devel' in $::fqdn { $env = 'devel' }
elsif 'test' in $::fqdn { $env = 'test' }
elsif 'qa' in $::fqdn { $env = 'qa' }
else { $env = 'prod' }

include site
hiera_include('classes')

Here, the $role and $env variables are set at the top scope according to hostnames
named in a way that we can parse them with Puppet code.

At the end, we just include our site class or use hiera_include to manage the
grouping logic for what classes to include in our nodes.

Chapter 4

[115]

Such an approach makes sense only where we don't have to manage many different
hostnames or roles and where the names of our nodes follow a naming pattern that
lets us derive identifying variables.

Note that the $::hostname or $clientcert variables might
be forged and return untrusted values. Since Puppet 3.4, if we set
trusted_node_data = true in puppet.conf, we have the
special variable, $trusted['certname'] to identify a verified
hostname, at our disposal.

Node inheritance done right
Node inheritance has a bad reputation. All the Puppet books around, even the ones of
a giant like James Turnbull, and the official Puppet Labs documentation describe it as a
bad practice, and this puzzles me, as I had successfully used this approach for years.

The main problem, I think, has been a documentation issue, as it's not well explained
to users that node inheritance makes sense when used to assign variables, but it is
dangerous when used to manage class grouping.

Let's see an example of a wrong approach to node inheritance:

node default {
 include general
}
node 'it' inherits default {
 $zone = 'it'
}
node 'web01.it.example.com' inherits 'it' {
 $role = 'web'
 include role::web
}

The issue in this extremely simplified example is that when Puppet parses general,
it hasn't set the $role and $zone values, and the result for the resources declared in
general, depending on them, would probably not be what was expected.

When node inheritance is used only to set and eventually override variables and not
to include classes, none of these problems are present:

node basenode {
 dns_server = '8.8.8.8'
}
node 'it' inherits basenode {
 $zone = 'it'

Designing Puppet Architectures

[116]

 $dns_server = '1.2.3.4'
}
node 'web01.it.example.com' inherits 'it' {
 $role = 'web'
 include site
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/supportand register to have the files e-mailed directly to you.
The upstream git repository is available at https://github.com/
example42/puppet-architectures.

Now, I would not use this approach anymore, as it requires an include line for each
node, and it sets variables at node scope. This implies that while they can be used in
the node's classes, we cannot refer to them with a fully qualified name, and so, for
example, we cannot use them on a Hiera hierarchy.

Still, in situations where an ENC and Hiera are not used and the node names are not
descriptive, this is a working and effective way to identify nodes using the benefits of
a hierarchical structure, based on inheritance.

Summary
This has been a hard chapter, probably to read, surely to write, because there is a
wide spectrum of available alternatives when we deal with the challenges we have
when we design Puppet architectures.

We have examined the tasks we have to deal with: how to manage nodes, how to
group them, how to set the parameters of the classes we use, and where to place
the configuration files we use. We have reviewed several tools at our disposal: The
Foreman, Hiera, and our custom site modules.

We have seen some examples on how these elements can be managed in different
combinations. Now, it is time to explore modules, an important component of a
Puppet setup, more deeply and see how to write really reusable ones.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/example42/puppet-architectures
https://github.com/example42/puppet-architectures

Using and Writing
Reusable Modules

The members of the Puppet community have always wondered how to write code
that could be reused. In the early days, this was done with recipes collected on the
old Wiki, where people shared fragments of code for specific tasks. Then, we were
introduced to modules, which allowed users to present all the configuration files,
Puppet, and Ruby code needed to manage a specific application in a unique directory.

People started writing modules, someone even made a full collection of them (the
father of all the modules' collections is David Schmitt; then, others followed), and
at the European Puppet Camp in 2010, Luke Kanies announced the launch of the
Puppet Forge, a central repository of modules that can be installed and managed
directly from the command line.

It seemed to be the solution to the already growing mess of unstructured, sparse,
uninteroperable, and incompatible modules, but to be realistic, it took some time
before becoming the powerful resource that it is now.

In this chapter, we will review the following:

•	 The evolution of modules' layouts
•	 The parameters dilemma – what class parameters have to be exposed

and where
•	 The principles for the reusability of modules

Using and Writing Reusable Modules

[118]

The evolution of modules' layouts
Over the years, different modules' layouts have been explored, following the
evolution of Puppet's features and the refinement of usage patterns.

There has never been a unique way of writing a module, but patterns and best
practices have emerged, and we are going to review the most relevant ones.

Class parameters – from zero to data bindings
The introduction of parameterized classes with Puppet 2.6 has been a crucial step in
standardizing the interfaces of classes. In the earlier versions, there wasn't a unique
way to pass data to a class, and variables defined anywhere could be dynamically
used inside Puppet code or in templates to manage the module's behavior; there was
no standard API to access or set them. We used to define parameterless classes in a
similar fashion:

class apache {
 # Variables used in DSL or in templates were dynamically scoped
 # and referenced without using their fully qualified name.
 # IE: $port, not $apache::port or $::apache_port
}

Such classes were declared always and only with the following line:

include apache

The introduction of parameters in classes has been important, because it allowed a
single entry point for class' data as in this example:

class apache (
 $port = 80) {
}

The default value of the parameter can be overridden with an explicit declaration, as
shown in the following code:

class { 'apache':
 port => 8080,
}

Such a solution has not been completely decisive. The usage of parameterized classes
introduced new challenges such as the need to declare them only once in our catalog
for each node. This forced people to rethink some of their assumptions on how and
where to make class inclusion in their code.

Chapter 5

[119]

We could still use include apache as many times as we wanted in our manifests,
but we didn't have any method to set specific parameters if the class didn't explicitly
manage a way to look up for external variables, for example, with the following syntax:

class apache (
 $port = hiera('apache::port','80') {
}

This obviously would have required all the module's users to use Hiera.

I would dare to say that the circle has been closed with Puppet 3's data bindings. The
automatic Hiera lookup of class parameters allows us to set parameters via either the
explicit declaration or plain inclusion with the values of parameters set in Hiera.

After years of pain, alternative solutions, creative and unorthodox approaches, and
evolution of the tool, I'd say that now the mainstream and recommended way to use
classes is to just include them and manage their parameters via Hiera using Puppet
3's data-binding feature.

In a manifest, we can declare classes with the following simple line:

include apache

We can be sure that whatever parse order is followed by Puppet, its data can
be defined in Hiera files. So, with a YAML backend, we'll use a syntax that is as
simple as:

 apache::port: '8080'

The params pattern
When people had to cope with different OS in a module, they typically started
using selectors or conditionals to assign the correct values based on facts such as
operatingsystem and operatingsystemrelease and the more recent osfamily
to variables or parameters.

A typical case with a selector is as follows:

class apache {
 $apache_name = $::operatingsystem ? {
 /(?i:Debian|Ubuntu|Mint)/ => 'apache2',
 /(?i:RedHat|CentOS|Scientific)/ => 'httpd',
 default => 'apache'
 }

Using and Writing Reusable Modules

[120]

 package { $apache_name:
 ensure => present,
 }
}

Having this mix of variables' definitions and resource declarations was far from
elegant, and in some time, people started placing the management of the module's
variables in a dedicated class, which was usually called params.

They can be set with selectors, as in the previous example, or more commonly, inside
the case statements, which are always based on facts related to the underlying OS:

class apache::params {
 case $::osfamily {
 'RedHat': {
 $apache_name = 'httpd'
 }
 'Debian': {
 $apache_name = 'apache2'
 }
 default: {
 fail("Operating system ${::operatingsystem} not supported")
 }
 }

The main class only has to include the params class and refer to internal variables
using their fully qualified name as follows:

class apache {
 include apache::params
 package { $apache::params::apache_name:
 ensure => present,
 }
}

This is a basic implementation of the so-called params pattern, and it has the
advantage of having a single place where we define all the internal variables of a
module or the default values for its parameters.

Chapter 5

[121]

In the next example, the package name is also exposed as a parameter (this can be
considered a reusability feature, as it allows users to override the default package
name for the application that is going to be installed). As the default value is defined
in params.pp, the main apache class has to inherit it, as shown in the following code:

class apache (
 $package_name = $apache::params::package_name,
) inherits apache::params {
 package { $apache::params::package_name:
 ensure => present,
 }
}

The params pattern has been widely used, and it works well. Still, it mixes code and
data, even if this is done only in a dedicated subclass.

Data in modules
The first proposals about a way to separate modules' data from their code date
back to 2010 with a blog post from Dan Bode titled Proposal: Managing Puppet's
configuration data at http://bodepd.com/wordpress/?p=64.

In those times, Hiera was not yet available (the post refers to its ancestor, extlookup).
However, most of the principles described in the blog post have been considered
when a solution was implemented.

When Hiera was introduced, it seemed a good solution to manage OS-related
variations via its hierarchy. It soon became clear that global site-related data, as it can
be the one we place on our data sources, is not an appropriate backend for modules'
internal data if we want them to be reusable and distributable.

Possible solutions inspired or derived from Dan's post have been identified for some
time. One such solution was released on Puppet 3.3.0 as an experimental feature,
an implementation of what's generally summarized by the term data in modules.
It featured a module's local hiera.yaml and the relevant Hiera data to manage the
module's variables.

It finally seemed the long sought-after solution to have data separation also for a
module's internal data, but it failed to pass Puppet Labs' user acceptance tests.

It was not so easy for modules' authors to manage, and this implementation has been
removed in the following Puppet versions; however, the issue is too important to
be ignored. So, R.I. Pienaar proposed an implementation based on an independent
module, which is given at https://github.com/ripienaar/puppet-module-data.

http://bodepd.com/wordpress/?p=64
https://github.com/ripienaar/puppet-module-data

Using and Writing Reusable Modules

[122]

This approach is much simpler to use and doesn't require big changes to the existing
code. Being implemented as a module, this solution can be used on most Puppet
installations (Version 3.x is required) and does exactly what we can expect.

We will come back to this in Chapter 12, Future Puppet, as the topic is hot and its
evolution is ongoing. For a more detailed (and better-written) overview of the
evolution of data in modules, check out this excellent blog post by Puppet Labs'
Gary Larizza at http://garylarizza.com/blog/2013/12/08/when-to-hiera/.

Files and class names
Besides the init.pp file, with the main class, all the other classes and defines in the
manifests' directory of a module can have any name; still, some names are more
common than the others. We have seen that params.pp is a sort of standard de
facto pattern and is not the only one; it's common, for example, to have files such as
server.pp and client.pp with subclasses to manage the server/client components
of an application.

R.I. Pienaar (definitively one of the most influential contributors to Puppet's
evolution) recommended a module layout in a blog post. This module layout
involves splitting the main module's resources in three different classes and relevant
files: install.pp to manage the installation of the application, config.pp to manage
its configuration, and service.pp to manage its service(s). So, a typical package-
service-configuration module can have the following code in its init.pp file:

class postgresql […] { […]
 class{'postgresql::install': } ->
 class{'postgresql::config': } ~>
 class{'postgresql::service': }
}

In the referred subclasses, the module can have the relevant resources to manage.
This pattern has pros and cons. Its advantages are as follows:

•	 Clear separation of the components provided by the module
•	 Easier to manage relationships and dependencies that are based not on single

resources that may vary, but on whole subclasses that are always the same
•	 More compact and easier to read init.pp
•	 Naming standardization for common components

http://garylarizza.com/blog/2013/12/08/when-to-hiera/

Chapter 5

[123]

Some drawbacks, in my very personal opinion, are as follows:

•	 Various extra objects are added to the catalog to do the same things. This
might have performance implications at a large scale even if the reduced
number of relationships might balance the final count.

•	 It is more cumbersome to manage the relationship logic via users' parameters
(for example, when we want to provide a parameter that defines whether to
restart a service or not after a change in the configurations).

•	 For simple package-service-configuration modules, it looks redundant to
have three extra classes with just one resource for each.

In any case, beware that such an approach requires the contain function (available
from Puppet 3.4.0) or the anchor pattern to work correctly.

The anchor pattern
Puppet has had a long-standing issue that affected and confused many users for
years (https://tickets.puppetlabs.com/browse/PUP-99): one of its effects is
that when we define a dependency on a class, Puppet extends this dependency to the
resources declared in that class, as we may expect, but not to other classes eventually
declared (included) there.

This may create problems and lead to unexpected behaviors (dependencies not
managed in the order expected) when referring to a class such as postgresql, which
we have seen, where the main class includes other subclasses.

A widely used workaround is the anchor pattern defined by Puppet Lab's Jeff
McCune. It is based on the anchor type included in Puppet Labs' stdlib module.
The anchor type can be declared as a normal resource in the following way:

anchor { 'postgresql::start': }
anchor { 'postgresql::end': }

It can then be used to contain the declared classes in a dependency chain as follows:

anchor { 'postgresql::start': } ->
class{'postgresql::install': } ->
class{'postgresql::config': } ~>
class{'postgresql::service': } ->
anchor { 'postgresql::end': }

https://tickets.puppetlabs.com/browse/PUP-99

Using and Writing Reusable Modules

[124]

In this way, we can create a relationship that involves a whole class with a chaining
arrow as follows:

class { 'postgresql': } -> class { 'wordpress': }

By doing so, we are sure that all the resources provided in the postgresql class
are applied before the wordpress class' declarations, because they are explicitly
contained in the anchor resource type.

The parameters dilemma
In modules, we typically set up applications. Most of the time, this is done by
installing packages, configuring files, and managing services.

We can write a module that does exactly what we need for our working scenario,
or we can try to design it keeping in mind people with different needs and
infrastructures who may use it.

These people might be us in the future when we'll have to manage a Puppet setup
for another project or cope with different kinds of servers or manage unexpected or
nonstandard requirements. While facing these new challenges, we might regret not
having written our code in an abstract enough and reusable way.

Parameters are our APIs to the module's functionality; their values affect the
module's behavior and how users can adapt it to fulfill their needs.

Hypothetically, we could enforce exactly what we need inside our code and forgo
the need to have any parameter. Maybe, our code could be simpler to use and read in
the beginning, but this would be a technical debt we will have to pay sooner or later.

We need parameters, and we need them to allow a user's customization of what the
module does in order to adapt it to different use cases.

Still, it is not so obvious to define what parameters to use and where to place them;
let's review some possible cases.

There might be different kinds of parameters, and they can perform the
following tasks:

•	 Manage variables that provide the main configuration settings for an
application (for example, ntp_server, munin_server, or similar)

•	 Manage most or all configuration settings for an application (for a sample
ntp.conf file, they would be driftfile, statistics, server, restrict,
and so on)

Chapter 5

[125]

•	 Manage triggers that define which components of the module should be
used (install_server, enable_passenger, and similar parameters)

•	 Manage the attributes of the resources declared inside a class or define
(config_file_source, package_name, and whatever attribute we value
as important enough to be exposed for customization)

•	 Manage the behavior of the module or some of its components
(service_autorestart, debug and ensure)

•	 Manage external parameters related to applications, references, or classes
(such as db_server and db_user) that are not directly managed by the
module but are needed to configure its application

There are also various places where these parameters can be exposed and can act as
entry points where we can feed our configuration data. They are as follows:

•	 The main module's class, which is defined in the init.pp file
•	 Single subclasses that may act as single responsibility points for

specific features (class names such as modulename::server or
modulename::db::mysql with their own parameters that can be directly set)

•	 Configuration classes, which are used as entry points for various
settings, to override a module's defaults (modulename::settings,
modulename::globals)

•	 Normal defines provided by the module

There is no established and common structure or agreement regarding the kind of
parameters and where to expose them.

They depend on several factors. However, the main design decision that the
module's author has to take, which heavily affects the kind of parameters to expose,
is how the configurations are provided: are they file-based or setting-based? These
configurations are explained as follows:

•	 File-based: They expect the module to manage the application's
configuration via complete files, which are generally provided as ERB
templates whose content is derived from the parameters exposed by the
classes or defines that use it

•	 Setting-based: They have a more granular approach; the application's
configuration files are managed as single configuration entries, typically
single lines, which compose the final file

Using and Writing Reusable Modules

[126]

In the first case, where files are managed as a whole, the module's classes should do
the following:

•	 Expose parameters that define at least the application's main settings and
optionally most or all the other settings, as long as they are managed in the
default template

•	 Allow users to provide a custom ERB template that overrides the module's
default one and can be used to manage custom settings that are not
manageable via parameters

•	 Allow users to provide configurations as plain static files to serve via the
source argument, as some users may prefer to manage the configuration
files the way they are

In the second case, the module should do the following:

•	 Provide native or defined types that allow the manipulation of single lines
inside a configuration file

•	 Eventually provide classes (either a single main one or many subclasses) that
expose all the possible configuration settings for the managed application
(thre might be many and hard to keep updated) as parameters

I don't have a clear answer to what would be the preferred approach;
I suppose it depends on the kind of the managed application,
the users' preference, and the complexity and structure of the
configuration files. The good news is that a module's author can
accommodate both the approaches and leave the choice to the user.

Naming standards
The module's ecosystem has grown erratically, with many people redoing
modules for the same application, either forking the existing ones or developing
them from scratch.

In this case, quantity is not a plus; there's really no advantage for Puppet users to
have dozens of different modules for a single application, written with different
layouts, parameters names, entry points, OS coverage, and feature sets.

Even worse, when we use modules that have dependencies on other modules (as
described in Modulefile), we may quickly end up having conflicts that may prevent
us from installing a module with the puppet module command and force us to fork
and fix it just for our case.

Chapter 5

[127]

Modules' interoperability is a wider issue that has not yet been solved, but there is
something that can be done if there is a common will: an attempt to standardize the
naming conventions for modules' classes and parameters' names.

The various benefits are as follows:

•	 Saner and simpler user experience
•	 Easier modules' interoperability
•	 Suggested reusability patterns
•	 Predictability in usage and development

It's common sense that such an effort should be driven by Puppet Labs, but for the
moment, it remains a community effort under the label stdmod, and can be found
at https://github.com/stdmod.

The naming conventions defined there embrace some standard de facto naming and
try to define general rules for parameters and class names. For the ones that affect the
resources' arguments, the pattern is [prefix_]resource_attribute, so this implies
the following parameters' names:

config_file_path , config_file_content, package_name,
 init_config_file_path, client_package_name

Many other names are defined; the basic principle is that a stdmod compliant module
is not expected to have them all, but if it exposes parameters that have the same
functions, it should call them as defined by the standard.

Reusability patterns
Modules' reusability is a topic that has got more and more attention during the last
few years; as more people started using Puppet, the need of having some common
and shared code to manage common things became more evident.

The following are the reusable modules' main characteristics:

•	 They can be used by different people without the need to modify their content
•	 They support different operating systems and allow easy extension to

new ones
•	 They allow users to override the default files provided by the module
•	 They might have an opinionated approach to the managed resources but

don't force it
•	 They follow a single responsibility principle and should manage only the

application they are made for

https://github.com/stdmod

Using and Writing Reusable Modules

[128]

Reusability, we must underline, is not an all or nothing feature; we might have
different levels of reusability to fulfill the needs of a variant percentage of users.
For example, a module might support Red Hat and Debian derivatives but not
Solaris or AIX; is it reusable? If we use the latter OS, definitely not; if we don't
use them, then yes, it is reusable for us.

I am personally a bit extreme about reusability, and according to me, a module
should also be able to do the following:

•	 Allow users to provide alternative classes for eventual dependencies
from other modules to ease interoperability

•	 Allow any kind of treatment of the managed configuration files, be it file
or setting based

•	 Allow alternative installation methods
•	 Allow users to provide their own classes for users or other resources,

which could be managed in custom and alternative ways
•	 Allow users to modify the default settings (calculated inside the module

according to the underlining OS) for package and service names, file paths, and
other more or less internal variables that are not always exposed as parameters

•	 Expose parameters that allow the removal of resources provided by the
module (this is a functionality feature more than a reusability one)

•	 Abstract monitoring and firewalling features so that they are not directly
tied to specific modules or applications

Managing files
Everything is a file in UNIX, and most of the time, Puppet manages files. A module
can expose parameters that allow its users to manipulate configuration files, and it
can follow one or both of the file/setting approaches, as they are not alternative and
can coexist.

To manage the contents of a file, Puppet provides the following alternative solutions:

•	 Use ERB templates populated with variables that come from
parameters, facts, or any scope (argument for File type: content =>
template('modulename/path/templatefile.erb'))

•	 Use the source parameter to retrieve static files from the PuppetMaster's
fileserver

Chapter 5

[129]

•	 Manage the file content via concat (https://github.com/puppetlabs/
puppetlabs-concat), a module that provides resources, which allow us to
build a file joining different fragments

•	 Manage the file contents via augeas, a native type that interfaces with the
Augeas configuration editing tool (http://augeas.net/)

•	 Manage it with an alternative in file-line-editing tools

For the first two cases, we can expose parameters that allow defining the module's
main configuration file either directly via the source and content arguments or by
specifying the name of the template to be passed to the template() function
as follows:

class redis (
 $config_file = $redis::params::file,
 $config_file_source = undef,
 $config_file_template = undef,
 $config_file_content = undef,
) {

We can manage the configuration file's arguments with the following code:

 $managed_config_file_content = $config_file_content ? {
 undef => $config_file_template ? {
 undef => undef,
 default => template($config_file_template),
 },
 default => $config_file_content,
 }

The $managed_config_file_content variable computed here takes the value of the
$config_file_content variable if present; otherwise, it uses the template define
with $config_file_template. Also, if this parameter is unset, the value is undef.
These variables are then used as follows:

 if $redis::config_file {
 file { 'redis.conf':
 path => $redis::config_file,
 source => $redis::config_file_source,
 content => $redis::managed_config_file_content,
 }
 }
}

https://github.com/puppetlabs/puppetlabs-concat
https://github.com/puppetlabs/puppetlabs-concat
http://augeas.net/

Using and Writing Reusable Modules

[130]

Users can therefore populate redis.conf in the following different ways:

•	 Via a custom ERB template (placed in the site module) as follows:
class { 'redis':
 config_file_template => 'site/redis/redis.conf.erb',
}

•	 By directly providing the content attribute as follows:
class { 'redis':
 config_file_content =>
 template('site/redis/redis.conf.erb'),
}

•	 Using a static file sourced from a file server as follows:

class { 'redis':
 config_file_source => 'puppet:///modules/site/redis/redis.conf',
}

In case users prefer to manage the file in other ways (Augeas, concat, and so on),
they can just include the main class as follows, which, by default, does not manage
the configuration file's contents and uses any method to alter them:

class { 'redis': }

A good module could also provide custom defines that allow easy and direct
ways to alter configuration files' single lines, either using Augeas or other file
line-management tools.

Managing configuration hash patterns
If we want a full "infrastructure as data" setup and be able to manage all our
configuration settings as data, we can follow these two approaches regarding
the number, name, and kind of parameters to expose:

•	 Provide a parameter for each configuration entry we want to manage
•	 Provide a single parameter that expects a hash where any configuration

entry may be defined

The first approach requires a substantial and ongoing effort, as we have to keep our
module's classes updated with all the current and future configuration settings our
application may have.

Chapter 5

[131]

Its benefit is that it allows us to manage them as plain and easily readable data on,
for example, Hiera YAML files. Such an approach is followed, for example, by the
OpenStack modules (https://github.com/stackforge), where the configurations
of the single components of OpenStack are managed on a settings-based approach
that is fed by the parameters of various classes and subclasses.

For example, the Nova module (https://github.com/stackforge/puppet-
nova) has many subclasses where there are exposed parameters that map to Nova's
configuration entries and are applied via the nova_config native type, which is
basically a line-editing tool that works line-by-line.

An alternative and quicker approach is to just define a single parameter such as
config_file_options_hash that accepts any settings as a hash, as shown in the
following code:

class openssh (
 $config_file_options_hash = { },
}

Then, users can manage the hash in a custom template via a custom function such as
the hash_lookup() provided by the stdmod shared module (https://github.com/
stdmod/stdmod) as follows:

File Managed by Puppet
[...]
 Port <%= scope.function_hash_lookup(['Port','22']) %>
 PermitRootLogin <%= scope.function_hash_lookup(['PermitRootLogin','
yes']) %>
 UsePAM <%= scope.function_hash_lookup(['UsePAM','yes']) %>
[...]

Also, the users can manage the hash by referring directly to a specific key of the
config_file_options_hash parameter in the following way:

 Port <%= scope.lookupvar('openssh::config_file_options_hash')
['Port'] ||=
 '22' %>
 PermitRootLogin <%=
 scope.lookupvar('openssh::config_file_options_hash')
 ['PermitRootLogin'] ||= 'yes' %>
 UsePAM <%=
 scope.lookupvar('openssh::config_file_options_hash')['UsePAM']
 ||= 'yes' %>
[...]

https://github.com/stackforge
https://github.com/stackforge/puppet-nova
https://github.com/stackforge/puppet-nova
https://github.com/stdmod/stdmod
https://github.com/stdmod/stdmod

Using and Writing Reusable Modules

[132]

Needless to say that Hiera is a good place to define these parameters; on a YAML-
based backend, we can set these parameters with the following settings:

openssh::config_file_template: 'site/openssh/sshd_config.erb'
openssh::config_file_options_hash:
 Port: '22222'
 PermitRootLogin: 'no'

We may also prefer to use an explicit parameterized class declaration as follows:

class { 'openssh':
 config_file_template => 'site/openssh/sshd_config.erb'
 config_file_options_hash => {
 Port => '22222',
 PermitRootLogin => 'no',
 }
}

Managing multiple configuration files
An application may have different configuration files, and our module should
provide ways to manage them. In these cases, we may have the following various
options to implement in a reusable module:

•	 Expose parameters that let us configure the whole configuration directory
•	 Expose parameters that let us configure specific extra files
•	 Provide a general-purpose define that eases the management of

configuration files

To manage the whole configuration directory, the following parameters should
be enough:

class redis (
 $config_dir_path = $redis::params::config_dir,
 $config_dir_source = undef,
 $config_dir_purge = false,
 $config_dir_recurse = true,
) {
 $config_dir_ensure = $ensure ? {
 'absent' => 'absent',
 'present' => 'directory',
 }

Chapter 5

[133]

 if $redis::config_dir_source {
 file { 'redis.dir':
 ensure => $redis::config_dir_ensure,
 path => $redis::config_dir_path,
 source => $redis::config_dir_source,
 recurse => $redis::config_dir_recurse,
 purge => $redis::config_dir_purge,
 force => $redis::config_dir_purge,
 }
 }
}

Such a code would allow us to provide a custom location on the Puppet Master to
use as source for the whole configuration directory as follows:

class { 'redis':
 config_dir_source => 'puppet:///modules/site/redis/conf/',
}

We can also provide a custom source according to specific node names or roles,
and purge any config file that is not managed. All the destination files not present
on the source directory would be deleted. Use this option only when we want to
have complete control over the contents of a directory. This can be done using the
following code:

class { 'redis':
 config_dir_source => [
 "puppet:///modules/site/redis/conf--${::fqdn}/",
 "puppet:///modules/site/redis/conf-${::role}/",
 'puppet:///modules/site/redis/conf/'],
 config_dir_purge => true,
}

Consider that the source files placed in the site module in this example, according
to a naming hierarchy that allows overrides per node or role name, can only be static
and not templates.

If we want to provide parameters that allow direct management of alternative extra
files, we can add parameters as shown in the following stdmod compliant code:

class postgresql (
 $hba_file_path = $postgresql::params::hba_file_path,
 $hba_file_template = undef,
 $hba_file_content = undef,
 $hba_file_options_hash = { } ,
) { […] }

Using and Writing Reusable Modules

[134]

Finally, we can place a general-purpose define in our module. This define allows
users to provide the content for any file in the configuration directory. An example
is given at https://github.com/example42/puppet-pacemaker/blob/master/
manifests/conf.pp.

The usage of such a define is as easy as follows:

pacemaker::conf { 'authkey':
 source => 'site/pacemaker/authkey',
}

Managing users and dependencies
Sometimes, a module has to create a system user or have some prerequisite packages
installed in order to have its application running correctly.

These are the kind of extra resources that can create conflicts among modules, as we
may have them already defined somewhere else in the catalog via other modules.

For example, we may want to manage users in our own way and don't want them to
be created by an application module, or we may already have classes that manage
the module's prerequisite.

There's not a universally defined way to cope with these cases in Puppet.
The principle of a single point of responsibility might conflict with the need to
have a full working module when it requires external prerequisite resources
(packages, Yum repos, Apt sources, and so on).

My personal approach, which I've not seen used around actually, is to let the users
define the name of alternative classes, if any, where such resources can be managed.

On the code side, the implementation is quite easy, as shown in the following example:

class elasticsearch (
 $user_class = 'elasticsearch::user',
) { [...]
 if $elasticsearch::user_class {
 require $elasticsearch::user_class
 }

Of course, in elasticsearch/manifests/user.pp, we define the module's default
elasticsearch::user class.

https://github.com/example42/puppet-pacemaker/blob/master/manifests/conf.pp
https://github.com/example42/puppet-pacemaker/blob/master/manifests/conf.pp

Chapter 5

[135]

The module's users can provide custom classes with the following code:

class { 'elasticsearch':
 user_class => 'site::users::elasticsearch',
}

Otherwise, the modules' users can decide to manage system users in other ways and
unset any class name with the following code:

class { 'elasticsearch':
 user_class => '',
}

Something similar can be done for a dependency class or an other module's classes.

In an outburst of reusability spree in some cases, I added parameters to let users
define alternative classes for the typical module classes using the following code:

class postgresql (
 $install_class = 'postgresql::install',
 $config_class = 'postgresql::config',
 $setup_class = 'postgresql::setup',
 $service_class = 'postgresql::service',
 […]) { […] }

Maybe this is really too much, but, for example, allowing the users the option to define
the install class to use and have it integrated in the module's own relationships logic
may be useful for cases where we want to manage the installation in a custom way.

Managing the installation options
Generally, it is recommended that we always install applications via packages, which
are eventually to be created onsite when we can't find fitting public repositories.

Still, sometimes, we might need, have to, or want to install an application in other
ways, for example, just downloading its archive, extracting it, and eventually
compiling it.

It may not be a best practice, but still, it can be done and people do it.

Another reusability feature that a module may provide is alternate methods to
manage the installation of an application. Its implementation may be as easy as
shown in the following code:

class elasticsearch (
 $install_class = 'elasticsearch::install',

Using and Writing Reusable Modules

[136]

 $install = 'package',
 $install_base_url = $elasticsearch::params::install_base_url,
 $install_destination = '/opt',
) {

These options expose the installation methods to use the name of the installation
class (so that it can be overridden), and when the installation is done via an archive,
they expose the URL from where to retrieve it and the destination directory where to
install it.

In init.pp, we can include the install class using the parameter that sets its name
as follows:

include $install_class

In the default install class file (here, install.pp), we can manage the install
parameter with a case switch as follows:

class elasticsearch::install {
 case $elasticsearch::install {
 package: {
 package { $elasticsearch::package:
 ensure => $elasticsearch::managed_package_ensure,
 provider => $elasticsearch::package_provider,
 }
 }
 upstream: {
 puppi::netinstall { 'netinstall_elasticsearch':
 url => $elasticsearch::base_url,
 destination_dir => $elasticsearch::install_destination,
 owner => $elasticsearch::user,
 group => $elasticsearch::user,
 }
 }
 default: { fail('No valid install method defined') }
 }
}

The puppi::netinstall define in the previous code comes from a
module of mine, available at https://github.com/example42/
puppi, and it's used to download, extract, and eventually execute custom
commands on any kind of archive.

Users can, therefore, define which installation method to use with the install
parameter, and they can even provide another class to manage the installation of the
application in a custom way.

https://github.com/example42/puppi
https://github.com/example42/puppi

Chapter 5

[137]

Managing extra resources
Many times, we have some customizations in our environment that cannot be
managed just by setting different parameters or names. Sometimes, we have to
create extra resources that no public module may provide, as they are too custom
and specific.

While we can place these extra resources in any class we may include in our nodes,
it may be useful to link this extra class directly to our module, providing a parameter
that lets us specify the name of an extra custom class, which, if present, is included
(and contained) by the module. To do this, use the following code:

class elasticsearch (
 $my_class = undef,
) { [...]
 if $elasticsearch::my_class {
 include $elasticsearch::my_class
 Class[$elasticsearch::my_class] ->
 Anchor['elasticsearch::end']
 }
}

Another method to let users create extra resources by passing a parameter to a class
is based on the create_resources function. We have already seen it; it creates all
the resources of a given type from a nested hash where their names and arguments
can be defined. An example, which can be found at https://github.com/
example42/puppet-network, is as follows:

class network (
 $interfaces_hash = undef,
 […]) { […]
 if $interfaces_hash {
 create_resources('network::interface', $interfaces_hash)
 }
}

In this case, the type used is network::interface (provided by the same
module), and it can be fed with a hash. On Hiera, with the YAML backend, it
could look as follows:

 network::interfaces_hash:
 eth0:
 method: manual
 bond_master: 'bond3'

https://github.com/example42/puppet-network
https://github.com/example42/puppet-network

Using and Writing Reusable Modules

[138]

 allow_hotplug: 'bond3 eth0 eth1 eth2 eth3'
 eth1:
 method: manual
 bond_master: 'bond3'
 bond3:
 ipaddress: '10.10.10.3'
 netmask: '255.255.255.0'
 gateway: '10.10.10.1'
 dns_nameservers: '8.8.8.8 8.8.4.4'
 bond_mode: 'balance-alb'
 bond_miimon: '100'
 bond_slaves: 'none'

As we can imagine, the usage patterns that such a function allows are quite wide and
interesting. The possibility of providing all the information (as pure data) that we
need to create a resource has big implications. It embraces an "infrastructure as data"
approach and may definitively shift most of the logic and the implementation that is
done inside Puppet manifests and code, on the data backend.

Summary
In this chapter, we have reviewed Puppet modules by exploring various aspects.

We have seen the evolution and layout of modules: how the evolution of Puppet
language has influenced the design of modules, in particular, how parameters are
exposed and managed, from class parameterization to data in modules. We have
also seen common approaches such as the params and anchor patterns.

We have faced the parameters' dilemma; we have analyzed the different kinds
of parameters a module can expose and where they can be placed. We have also
covered the stdmod naming convention initiative.

Finally, we have reviewed the most important reusability patterns. We have studied
some of the reusability options we can add to modules to manage configuration files,
extra resources, custom classes, and installation options.

Now, it's time to take a further step and examine how we can organize modules
at a higher abstraction layer and how people are trying to manage full stacks of
applications; this is a relatively unexplored field where different approaches are
still trying to find a common consensus and adoption.

Higher Abstraction Modules
Most of the modules we find on the Puppet Forge have one thing in common: they
typically manage a single application (Apache, JBoss, ElasticSearch, MySQL, and so
on) or a system's feature (such as networking, users, limits, or sysctl).

A good thing is that a rigorous approach to a single responsibility principle is
important in order to have modules that can better interoperate, do just what they
are expected to do, and behave like libraries that offer well-identified and atomic
services to their users.

Still, our infrastructures are more complex; they require different applications to
be configured to work together, where configurations may change according to the
number and topology of the other components and some kind of cross-application
dependencies have to be followed to fulfill a complete setup.

This is generally managed by Puppet users when they group and organize classes
according to their needs. Most of the time, this is done in local site modules. This is
where many traps hide and make Puppet users' lives more difficult.

The roles and profiles pattern described in Chapter 4, Designing Puppet Architectures,
is a first attempt to formalize an approach to organization of classes that is based
on higher abstraction layers. It lets users coordinate the configurations of different
modules and makes them composable so that the same elements can adapt to
different topologies, application stacks, and infrastructures.

Still, there is much to explore in this field, and I think much is yet to be done about it.
In this chapter, we will review the following topics:

•	 Why we need higher abstraction modules
•	 The OpenStack example
•	 A very personal approach to reusable stacks

Higher Abstraction Modules

[140]

Understanding the need for higher
abstractions
It took some years in Puppet evolution to achieve the remarkable goal of having
good and reusable modules that can be used to install applications quickly and easily
and configure them as needed in different contexts.

The Puppet Forge offers quality and variety, and even if I think that many
standardization efforts are still needed, both beginners and advanced users can now
easily manage most of the applications they need to administer with Puppet.

Still, when it comes to organizing modules and configurations for our infrastructures,
documentation, public code, and samples are sparse, given the notable exception of
the pattern of roles and profiles.

The main reason is quite obvious. Here is where customizations begin and things
get 'local'; here is where we use site modules, ENCs, and/or a bunch of Hiera data to
configure our army of servers according to our needs with Puppet.

The concept of application stack is obviously not new; we always have to cope with
stacks of applications, from simple ones such as the well-known Apache, PHP, and
MySQL (the OS is irrelevant here), plus the PHP application to deploy on top of it,
to more complex ones where different components of the stack are interconnected in
various ways.

In modern times, such stacks are supposed to be composable and elastic; we can
have a (L)AMP stack where the web servers can scale horizontally, where eventually,
we may have a software load balancer that has to account for the newly added web
frontends. We may also have a backend database which we might have to scale as
well, for example, by adding new slaves.

We need to manage this on Puppet, and here the complexity begins. It's not difficult
to puppetize an existing stack of applications, group the classes as expected for our
nodes, and configure the relevant software; this is what we have always done after all.

This is what is done in role classes, for example, where profiles or module
applications are included as needed, typically managing the dependencies in the
installation order if they refer to resources applied to the same node.

It is more difficult to puppetize a dynamic and composable stack, where cross-
node dependencies are automatically managed, and we can change the topology
of our architecture easily, add new servers seamlessly, and do this without having
to manually review and adapt configuration files. This is because our classes are so
smart that they expose parameters to manage different scenarios.

Chapter 6

[141]

It's more difficult, but definitively more powerful. Once we achieve the ability to
define our components and topology, we can start working on a higher level, where
users don't have to mess with Puppet code but can manage infrastructures with data.

When we have to deal only with data, things may become more interesting, as
we can provide data in different ways, for example, via an external GUI. This can
restrain and validate users' input and expose only high-level settings.

The OpenStack example
The Puppet OpenStack modules (search puppet in the repository list of http://
github.com/stackforge) are probably the largest and most remarkable example
of how Puppet is used to manage a complex set of applications that have to be
interconnected and configured accordingly.

Component (application) modules
There are different modules for each OpenStack component (Nova, Glance, Horizon,
Cinder, Ceilometer, Keystone, Swift, Quantum/Neutron, and so on); they can be
retrieved from https://github.com/stackforge/puppet-<component>; so, for
example, Nova's module is https://github.com/stackforge/puppet-nova.

These modules manage all the different configurations via a settings-based approach,
with native types that set the single lines of each configuration file (there may be
more than one for each component) and with different subclasses that expose all the
parameters needed to manage different services or features of each component.

For example, in the Nova module, we have native types such as nova_config or
nova_paste_api_ini that are used to manage single lines in the /etc/nova/nova.
conf and /etc/nova/api-paste.ini configuration files, respectively.

These types are used in classes such as nova::compute and nova::vncproxy (and
many others) to set specific configuration settings according to the parameters
provided by users.

There is also a nova::generic_service define that manages the installation and
specific Nova services.

Finally, subclasses such as nova::rabbitmq or nova::db::mysql manage
the integration with third-party modules to create, for example, database users
and credentials.

http://github.com/stackforge
http://github.com/stackforge
https://github.com/stackforge/puppet-nova

Higher Abstraction Modules

[142]

A similar structure is replicated on the modules of the other OpenStack components
with the added benefit of having a coherent and predictable structure and usage
pattern, which makes users' life definitively more comfortable.

Therefore, the general approach followed for OpenStack's component modules
is to have multiple entry points for data, basically one for each subclass, with
configuration files managed with a settings-based approach.

These single component modules can be composed in different ways; we will review
a few of them. They are as follows:

•	 The official and original StackForge's openstack module
•	 A Puppet Labs module based on roles and profiles
•	 A completely data-driven approach based on the scenario node terminus

Raising abstraction – the official openstack
module
The official and general openstack module (https://github.com/stackforge/
puppet-openstack) can manage specific roles in an OpenStack infrastructure
(compute, controller, and so on) and allow users to quickly and easily define specific
(rather limited, I'd say) topologies.

For example, the openstack::all class manages an all-in-one installation of all
the components on a single node, openstack::controller installs the OpenStack
Controller components on a node, and openstack::computer installs the OpenStack
Compute ones.

All these classes expose parameters that allow users to set public and private
addresses, users' credentials, network settings, and whatever is needed to
configure the whole OpenStack environment at a high level. In many cases, the
parameters and part of the code are duplicated. For example, the openstack::all
and openstack::controller classes have many parts in common, and for each
parameter added to the main OpenStack classes, there's a need to replicate it on the
declared component classes.

This openstack module can definitively be considered a module that operates at a
higher abstraction layer and uses the classes and defines of application modules but
has some severe limitations on flexibility and maintainability.

https://github.com/stackforge/puppet-openstack
https://github.com/stackforge/puppet-openstack

Chapter 6

[143]

Raising abstraction – the Puppet Labs
OpenStack module
Puppet Labs has published another higher abstraction module to manage OpenStack
(probably the one used for their internal infrastructure). This is an alternative
to StackForge's puppet-openstack module, but it uses the same mainstream
component modules.

We can find it at https://github.com/puppetlabs/puppetlabs-havana
(there's also a version for Grizzly, an earlier OpenStack release), and it's definitively
worth a look, as it's also a good real-life example of the application of the pattern of
roles and profiles.

On your nodes, we include the relevant role classes as follows:

node /^controller/ {
 include ::havana::role::controller
}
node /^network/ {
 include ::havana::role::network
}
node /^compute/ {
 include ::havana::role::compute
}

The profile classes are included in the role classes and a high-level dependency
order is managed. For example, in havana::role::controller, which is the most
complex role class, we have the following classes:

class havana::role::controller inherits ::havana::role {
 class { '::havana::profile::firewall': }
 class { '::havana::profile::rabbitmq': } ->
 class { '::havana::profile::memcache': } ->
 class { '::havana::profile::mysql': } ->
 class { '::havana::profile::mongodb': } ->
 class { '::havana::profile::keystone': } ->
 class { '::havana::profile::ceilometer::api': } ->
 class { '::havana::profile::glance::auth': } ->
 class { '::havana::profile::cinder::api': } ->
 class { '::havana::profile::nova::api': } ->
 class { '::havana::profile::neutron::server': } ->
 class { '::havana::profile::heat::api': } ->
 class { '::havana::profile::horizon': }
 class { '::havana::profile::auth_file': }
}

https://github.com/puppetlabs/puppetlabs-havana

Higher Abstraction Modules

[144]

The needed resources are finally declared in the profile classes using both the official
OpenStack components' modules and classes and defines from other modules, such
as the Puppet Labs' firewall module to manage firewalling or the MongoDB, MySQL,
RabbitMQ, and Memcache modules, which are not part of the OpenStack modules
set but are needed for the setup. Here, we can also find spot resources' declarations
such as SELinux settings or the usage of create_resources() to manage
OpenStack's users.

These profiles classes don't expose parameters but access configuration data
through explicit hiera() function calls. Hiera's namespacing is quite clear and
well organized, and users can configure the whole setup with YAML files with the
following contents:

havana::region: 'openstack'
######## Network
havana::network::api: '192.168.11.0/24'
havana::network::api::device: 'eth1'
havana::network::external: '192.168.22.0/24'
havana::network::external::device: 'eth2'
havana::network::management: '172.16.33.0/24'
havana::network::management::device: 'eth3'
havana::network::data: '172.16.44.0/24'
havana::network::data::device: 'eth4'

######## Fixed IPs (controller)
havana::controller::address::api: '192.168.11.4'
havana::controller::address::management: '172.16.33.4'
havana::storage::address::api: '192.168.11.5'
havana::storage::address::management: '172.16.33.5'

######## Database
havana::mysql::root_password: 'spam-gak'
havana::mysql::allowed_hosts: ['localhost', '127.0.0.1',
 '172.16.33.%']

######## RabbitMQ
havana::rabbitmq::user: 'openstack'
havana::rabbitmq::password: 'pose-vix'

The module supports only RedHat-based distributions, and compared to
StackForge's official OpenStack module, it looks more organized, with less code
duplication and some added flexibility.

Chapter 6

[145]

Raising abstraction – the scenario-based
approach
Both the previous approaches have the remarkable benefit of making the installation
of a very complex setup such as an OpenStack infrastructure relatively easy, but
they both lack flexibility, the possibility to easily compose components in custom
ways, and support for high availability. If we need to manage custom topologies,
we have to sweat a lot, and we need to study the module's internal details and their
options carefully.

Dan Bode, one of the most active developers of the OpenStack modules, has worked
on an alternative approach to manage them at a higher abstraction layer. He has
written a Puppet node terminus called scenario (https://github.com/bodepd/
scenario_node_terminus) upon which he has developed a completely data-driven
approach (given at https://github.com/stackforge/puppet_openstack_
builder) to the setup of the OpenStack infrastructure. This system allows to set with
data both the OpenStack's configurations (as done in previous alternatives) and the
composition of the classes and resources.

Among the interesting features of this project, which might be considered a
StackForge official alternative to the puppet-openstack module, there is the
possibility of composing the classes for use in different class groups (called scenarios
here) entirely defined by YAML files.

When it comes to fully data-driven infrastructures, this is definitively a cutting edge
approach. But beware; this is also somehow creepy.

We have a whole bunch of data; part of it is used to generate other data and all the
logic is managed by Hiera's huge hierarchies, where exceptions and classifying needs
have to be managed by an extra layer in Hiera configuration.

To manage parameters, we have a hiera.yaml file as follows:

:backends:
 - data_mapper
:hierarchy:
 - "hostname/%{hostname}"
 - "client/%{clientcert}"
 - user
 - jenkins
 - user.%{scenario}
 - user.common

https://github.com/bodepd/scenario_node_terminus
https://github.com/bodepd/scenario_node_terminus
https://github.com/stackforge/puppet_openstack_builder
https://github.com/stackforge/puppet_openstack_builder

Higher Abstraction Modules

[146]

 - "osfamily/%{osfamily}"
 - "enable_ha/%{enable_ha}"
 - "install_tempest/%{install_tempest}"
 - "cinder_backend/%{cinder_backend}"
 - "glance_backend/%{glance_backend}"
 - "rpc_type/%{rpc_type}"
 - "db_type/%{db_type}"
 - "tenant_network_type/%{tenant_network_type}"
 - "network_type/%{network_type}"
 - "network_plugin/%{network_plugin}"
 - "password_management/%{password_management}"
 - "scenario/%{scenario}"
 - grizzly_hack
 - common
:yaml:
 :datadir: /etc/puppet/data/hiera_data
:data_mapper:
 :datadir: /etc/puppet/data/data_mappings

The previous code is definitively not a champion of simplicity. It is a perfect example
of what can happen when we move not only the configuration data, but also
grouping and compositing logic into Hiera: we need extra layers in our hierarchy to
accommodate different cases.

The scenario node terminus, which is an alternative to the classic Puppet nodes'
classification options, can be also used for other projects or cases. I suppose only time
will tell us if it's an approach that will be embraced by Puppet users.

Taking an alternate approach
Let me tell you a small personal story about Puppet, OpenStack, and choices. I
had been asked by a customer to puppetize a multiregion, fully High Availabilty
OpenStack infrastructure.

The customer's internal crew had great OpenStack skills and no Puppet experience;
they manually configured an internal testing setup, and they wanted to be able to
quickly reproduce it on different data centers.

At that time, I had no experience on OpenStack and started to study both OpenStack
and its existing Puppet modules.

After some time, I realized that it would have been quite a pain to reproduce the
configuration files that already exist with the settings-based OpenStack's official
modules. I also realized that it would have been quite hard for the crew to manage
their configurations with a pure data-driven approach.

Chapter 6

[147]

The situation, therefore, was as follows:

•	 I didn't know much of OpenStack nor of its Puppet modules
•	 The customer's team used to work and think on a file-based logic
•	 The OpenStack architecture of the single regions was always the same (given

the variable data) and was definitely more complex than the samples in the
existing modules

•	 Internal Puppet skills had to be built on a training-on-the-job basis
•	 Budget and time were limited

I opted for what can be definitively considered a "bad idea": to write my own
OpenStack modules, well aware that I was trying to do it alone in a few days without
even knowing the product, part of what many skilled and knowledgeable people
had done in months of collaborative work.

Modules are published on GitHub and are based on the reusability and duplicability
patterns I've refined over the years; they all have a standard structure that can be
quickly cloned to create a new module with a limited effort.

For example, the Nova module (https://github.com/example42/puppet-nova)
has standard stdmod compliant parameters in the Nova class that allow users to
freely manage packages, services, and configuration files. OpenStack components
such as Nova may have anyway different services to manage, so I copied the idea of
a general purpose nova::generic_service define to manage them and added an
always-useful define called nova::conf to manage any configuration file.

Once the basic structure was defined, all the other modules were cloned and adapted
to manage the other OpenStack components (most of the time, it was just a matter of
few retouches on the module's params.pp manifest).

Configurations are delivered via ERB templates; a single site module (not released,
as it's tailored around that specific infrastructure) defines all the grouping logic and
uses classes and defines of all the classes in a single site module. Data is stored on
Hiera, and it is mostly limited to endpoints' addresses, credentials, networking, and
other parameters that may change per region or role.

Most of the complexity of an OpenStack configuration is managed as static or
dynamic data in templates. The structure is, therefore, not particularly flexible but
reproduces the designed and requested layout.

Adaptation to different topologies is not supposed to be frequent and is a matter of
changing templates and logic in the site class.

https://github.com/example42/puppet-nova

Higher Abstraction Modules

[148]

The tuning of configurations, which might be more frequent, is a matter of
changing the ERB templates, so it results in an easier way for the local crew to
manage them directly.

Frankly, I'd hardly recommend the usage of these modules of mine to set up an
OpenStack infrastructure, but they can be useful to replicate an existing one or to
manage it in a file-driven way.

The general lesson we can take from this is the usual golden one, especially true in
the Puppet world: there's never the best way to do things, but the most fitting one for
a specific project.

An approach to reusable stack modules
What we have seen until now are more or less standard and mainstream Puppet
documentation and usage patterns, and I have surely forgotten valuable alternatives.
I may have left traces of personal opinions on some solutions, but they are all
common and existing ones; nothing has been invented.

In this section, I'm going to discuss something that is not mainstream, has not been
validated in the field, and is definitively a personal idea on a possible approach to
higher abstraction modules.

It's not completely new or revolutionary: I'd rather call it evolutionary in the line of
established patterns such as parameterized classes, the growing usage of PuppetDB,
and roles and profiles, with a particular focus on reusability.

Here, I call 'stack' a module that has classes with parameters, files, and templates,
which allows the configuration of a complete application stack, either on a single all-
in-one node or on separate nodes.

It is supposed to be used by all the nodes that concur to define our application stack,
each one activating the single components we want to be installed locally.

The components are managed by normal application modules, whose classes and
defines are declared inside the stack module according to a somehow opinionated
logic that reflects the stack's target.

In my opinion, there's an important difference between application (or component)
modules and stack (higher abstraction) modules.

Chapter 6

[149]

Application modules are supposed to be like reusable libraries: they shouldn't
force a specific configuration, unless it is strictly necessary, for the module to work.
They should not be opinionated and should expose alternative reusability options
(for example, different ways to manage configuration files without forcing only a
settings- or file-based approach).

Stack modules have to provide a working setup: they need templates and resources
to make the whole stuff work together. They are inherently opinionated as they
provide a specific solution, but they can present customization options that allow
reusability in similar setups.

The stack's classes expose parameters that allow the following:

•	 A high-level setting of the stacks main parameters
•	 Triggers to enable or disable the single components of the stack
•	 Possibility to provide custom templates as an alternative to the default ones
•	 Credentials, settings, and parameters for the relevant components

Let's see a sample stack::logstash class that manages a logging infrastructure
based on LogStash (a log collector and parsing tool), ElasticSearch (a search engine),
and Kibana (a web frontend for ElasticSearch). This is obviously an opinionated
setup even if it is quite common for LogStash.

The class can have the following parameters:

class stack::logstash (
 $syslog_install = false,
 $syslog_config_template = 'stack/logstash/syslog.conf.erb',
 $syslog_config_hash = { },
 $syslog_server = false,
 $syslog_files = '*.*',
 $syslog_server_port = '5544',

 $elasticsearch_install = false,
 $elasticsearch_config_template =
 'stack/logstash/elasticsearch.yml.erb',
 $elasticsearch_config_hash = { },
 $elasticsearch_protocol = 'http',
 $elasticsearch_server = '',
 $elasticsearch_server_port = '9200',
 $elasticsearch_cluster_name = 'logs',
 $elasticsearch_java_heap_size = '1024',
 $elasticsearch_version = '1.0.1',

Higher Abstraction Modules

[150]

 $logstash_install = false,
 $logstash_config_template = 'stack/logstash/logstash.conf.erb',
 $logstash_config_hash = { },

 $kibana_install = false,
 $kibana_config_template = undef,
 $kibana_config_hash = { },

) {

We can see some of the reusability-oriented parameters we have discussed in Chapter
5, Using and Writing Reusable Modules; the class' users can provide the following:

•	 High-level parameters that define hostnames or IP addresses of the
infrastructure components (if not explicitly provided, the module tries
to calculate them automatically via PuppetDB) such as syslog_server,
elasticsearch_server, and so on

•	 Custom ERB templates such as syslog_config_template and logstash_
config_template for each managed application that overrides the default
ones

•	 Custom hash of configuration settings such as logstash_config_hash if
they want a fully data-driven setup (they need to provide templates that use
these hashes)

For each of the managed components, there's a Boolean parameter that defines if
such component has to be installed (elasticsearch_install, logstash_install,
and so on).

The implementation of the managed components is quite straightforward: if these
variables are true, the relevant classes are declared with parameters computed in the
stack class:

 if $elasticsearch_install {
 class { 'elasticsearch':
 version => $elasticsearch_version,
 java_opts => $elasticsearch_java_opts,
 template => $elasticsearch_config_template,
 }
 }
 if $syslog_server and $syslog_install {
 if $syslog_config_template {
 rsyslog::config { 'logstash_stack':
 content => template($syslog_config_template),
 }

Chapter 6

[151]

 }
 class { '::rsyslog':
 syslog_server => $syslog_server,
 }
 }

The resources used for each component can be different and have different
parameters that are defined according to the stack class' logic and the modules used.

The choice of which vendors to use for the application modules and how many
features, reusability options, and flexibility to expose to the stack's users as class
parameters is up to the stack's author.

The stack class(es) are supposed to be the only entry point for user parameters, and
they are the place where resources, classes, and defines are declared.

A stack's variables, which are then used to configure the application modules, can be
set via parameters or calculated and derived according to the needed logic.

This is a relevant point to underline: the stack works at a higher abstraction layer and
can manipulate and manage how interconnected resources are configured.

At the stack level, we can define, for example, how many ElasticSearch servers are
available, what the Logstash indexers are, and how to configure them in a coherent
way.

We can also query PuppetDB in order to set variables based on our dynamic
infrastructure data.

In the following example, the query_nodes function from the puppetdbquery
module (we have seen it in Chapter 3, PuppetDB) is used to fetch hostnames and IP
addresses of the nodes where the stack class has installed ElasticSearch. The value
retrieved from PuppetDB is used if there's not an explicit $elasticsearch_server
parameter set by users:

 $real_elasticsearch_server = $elasticsearch_server ? {
 '' => query_nodes('Class[elasticsearch]',ipaddress),
 default => $elasticsearch_server,
 }

In this case, the stack manages configurations via a file-based approach, so it uses
templates to configure applications.

Higher Abstraction Modules

[152]

The stack class has to provide default templates that should be possible to override,
where the stack's variables are used. For example, stack/logstash/syslog.conf.
erb can be something like the following:

<%= scope.lookupvar('stack::logstash::syslog_files') %> @@<%=
 scope.lookupvar('stack::logstash::syslog_server') %>:<%=
 scope.lookupvar('stack::logstash::syslog_server_port') %>

Here the scope.lookupvar() function is used to get variables by their fully
qualified name so that they can be consistently used in our classes and templates.

Note that such a model requires all the used application modules to
expose parameters that allow (in this case, the stack's developer) the
possibility to provide custom templates to its users.

When using Hiera, the general stack's parameters can be set in common.yaml
as follows:

 stack::logstash::syslog_server: '10.42.42.15'
 stack::logstash::elasticsearch_server: '10.42.42.151'
 stack::logstash::syslog_install: true

Specific settings or install Booleans can be specified in role-related files such as
el.yaml as follows:

 stack::logstash::elasticsearch_install: true
 stack::logstash::elasticsearch_java_opts: '-Xmx1g -Xms512m'

Compared to profiles, as commonly described, such stacks have the following
differences:

•	 They expose parameters, so user's data directly refers to the stack's classes
•	 The stack class is included by all the nodes that concur to the stack, with

different components enabled via parameters
•	 Cross-dependencies, order of executions, and shared variables used for

different applications are better managed at the stack level, thanks to there
being a unique class that declares all the others

•	 The stack allows to decouple user data and code from the application
modules, allowing to change the application module implementations
without touching the exposed parameters and interface to users

Chapter 6

[153]

A possible limitation of such an approach is when the same node includes
different stack classes and has overlapping components (for example, an
apache class). In this case, the user should manage the exception.

Summary
Puppet modules are getting better and better: they are more reusable, they better fit
just what they are supposed to do, and they offer stable and reliant interfaces to the
management of different applications.

They are, therefore, getting nearer to the status where they can be considered as
shared libraries that can be used by different users to compose the configurations
needed in their environments.

Here is where many people are struggling in order to achieve a sane organization
of resources, good patterns to group them, and better approaches to a dynamic,
reproducible, structured, and maybe, reusable management of complete stacks
of applications.

Using these higher abstraction layer modules, people are experimenting with
different practices; some have become common, such as the roles and profiles
pattern, but still, few are engineered with the vision to be reusable and eventually
allow single components to be composed freely to fit different topologies.

In this chapter, we have focused on reviewing why we need higher abstraction
modules and why it would be great to have them reusable and flexible.

We have examined the OpenStack example, which involves many different
applications that have to work together in a coherent and integrated way.

Finally, we have explored a personal approach to higher abstraction modules: stacks.

There's still much to do on this topic, and I think much will be done in the
future years.

In the next chapter, we move to completely new topics: we are going to explore the
practical challenges we face when we have to introduce Puppet, either on a new or
existing infrastructure.

Deploying and
Migrating Puppet

We're probably already working with Puppet, or we are planning to use it in
the near future. In any case, we have to face the daunting task of automating the
configuration and reproducing the state of a variable number of different servers.

Using Puppet for a server infrastructure involves analysis, planning, and decisions.

In this chapter, we will review the different aspects to be considered in our journey
towards infrastructure automation:

•	 The possible scenarios we might face can involve new setups, migrations,
and updates of the existing systems

•	 How we can manage Puppet migrations with a step–by-step approach
divided in reiterated phases such as information gathering, priorities
definition, an evaluation on how to proceed, coding, testing, applying the
changes, and verifying their reports

•	 The cultural and procedural changes that configuration management involves

Examining the potential scenarios
and approaches
Puppet is a tool that offers a world of order, control, and automation; we have learned
it, we know at least the basics of how it works, and we want to install it on our servers.

We might have just a few dozens or several thousands of systems to manage. They
might be similar to or very different from one another and have very few things to
be configured, or a large number of resources to deal with.

Deploying and Migrating Puppet

[156]

We might manage them manually or maybe already have some automation scripts
or tools, Puppet itself included, that help us in installing and maintaining them. We
might need to optimize, refactor, and fix solutions that operate in a suboptimal way.

We might have a brand new project to build, and this time, we want to do the right
thing and automate it from the beginning.

The number of variables here are many. Every snowflake is unique, but there's a
basic and crucial distinction to make; it defines where our work will be done:

•	 On a brand new server's infrastructure
•	 On existing systems, either managed manually or already semiautomated
•	 On an infrastructure already managed by Puppet, to be heavily refactored

This distinction is quite important and can heavily affect how quickly and safely we
can work with Puppet.

New infrastructures
If we work on a startup or a new project, we have the opportunity to create our
infrastructure from scratch. This is often a preferred, easier, more comfortable, and
safer option for the following reasons:

•	 More freedom on architectural choices: Starting from scratch, we are not
bound to existing solutions; we can concentrate on the tools and languages
that better fit our current and future needs without caring about backward
compatibility and existing legacies. This freedom does not strictly relate to
just our Puppet activities, and it allows us to evaluate technologies also based
on how easily they can be automated.

•	 Brand new operating system and application stacks, possibly
homogeneous: We can choose a recent version of our preferred OS, and even
better, we can start from a standardized setup where all the servers have the
same OS and version. This definitively makes our life with Puppet easier and
our infrastructure more coherent and easier to manage.

•	 Clean setups: We don't have to care, reproduce, reverse engineer, and
maintain the existing systems, so we exactly know the configurations needed
on them. We will always face the risk of messing with them in the future, but
introducing a configuration management system at the beginning definitively
helps in keeping things tidy and homogeneous for a long time.

Chapter 7

[157]

•	 Sound design: This can be defined from the foundations. We can set up our
servers using all our expertise on how to do things in a good way. We can
benefit from the fact that the newer versions of applications generally make
their setup easier, for example, it's more and more common, with recent
software, to have simplified configuration and installation procedures.

•	 No mess with the current production: Being a new project, we don't have
to cope with the existing running systems, and we don't face the risk of
introducing disrupting changes while applying or testing our Puppet
configurations.

•	 Faster and smoother deployment times: These are the natural consequences
of being free from working on the existing setups in production. We
don't have to care about maintenance windows, safe runs, double checks,
remediation times, and all the burdens that can greatly reduce the pace of
our work.

Existing manually managed infrastructures
When we need to automate existing systems, things are quite different, as we have to
cope with years of stratifications of many people's work with different skills under
variant conditions. They may be the result of a more or less frantic and inorganic
growth and evolution of an IT infrastructure, whose design patterns may have
changed or evolved with time. This might not be the case for everybody, but it is
quite common on infrastructures where a configuration management tool has not
been steadily introduced.

We will probably have to manage the following:

•	 A heterogeneous mess of different operating systems and versions,
deployed over multiple years. It is indeed very difficult to have OS
homogeneity on a mature infrastructure. If we are lucky, we have different
versions of the same OS. This is because they were installed in different
times, but more likely, we have to manage a forest of variegated systems,
from Windows to Unix to almost any conceivable Linux distribution,
installed according to the project software needs, commercial choices, or
personal preferences of the sys admins in charge at the times.

•	 Heterogeneous hardware from multiple vendors and of different ages is
likely to be present in our infrastructure. We have probably already made
great progress in the last years, introducing virtualization, and maybe, a
large effort of consolidation of the previous hardware mess has already been
done. Still, if we haven't moved everything on the cloud, it's very likely that
our hardware is based on different models possibly by different vendors.

Deploying and Migrating Puppet

[158]

•	 Incoherent setups, with systems configured by different people who may
have used different logic, settings, and approaches also for the same kind of
functionality. System admins might be complex and arcane people who like
to make great things in many unexpected ways. Order and coherency will
not always find a place on their crazy keyboards.

•	 Uncertain setup procedures, whose documentation may be incomplete,
obsolete, or just not existing. Sometimes, we have to reverse engineer them;
sometimes, the offered functionality is easy to understand and replicate, and
at other times, we may have an arcane black box, configured at the dawn of
times by people who don't work anymore in the company. Nobody wants to
touch this black box because it's too critical, fragile, or simply indecipherable.

•	 Production systems, where it is always delicate and difficult to operate. We
might be able to work only on limited maintenance windows, with extra care
of the changes introduced by Puppet and their evaluation on operations. We
have to make choices and decisions for each change, as the homogeneity that
Puppet introduces will probably change and leverage some configurations.

•	 Longer Puppet rollout times are the obvious side effects when we work
on existing systems. This has to be accounted with attention, as it might
influence our strategy on how to introduce Puppet.

We have two possible approaches to follow when dealing with existing systems; they
are not alternative. We can adopt both of them in parallel, evaluating which one is
the most fitting for each node:

•	 Node migration: We make new servers managed by Puppet that replace the
existing ones

•	 Node update: We install Puppet on the existing machines and start
managing them with Puppet

Node migration
A migration approach involves the installation and configuration, via Puppet, of
new servers as replacements of the existing ones. We build a system from scratch,
we configure it so that it reproduces the current functionalities, and when ready, we
promote it to production and decommission the old machine.

The main advantages of such an approach compared to a local update are the
following:

•	 We can operate on new systems that are not (yet) in production, so we can
work faster and with lesser risks. There's no need to care about breaking the
existing configurations or introducing downtimes to production.

Chapter 7

[159]

•	 The setup procedure is done from scratch, so we're validating whether
it's fully working and if we have full Puppet coverage of the needed
configurations. Once a system has been successfully migrated and fully
automated, we can be confident that we can consistently repeat its setup
any time.

•	 We can test our systems before decommissioning the old ones, and a rollback
is generally possible if something goes wrong when we make the switch.

•	 We can use such an occasion to rejuvenate our servers, install newer and
patched operating systems, and generally, have a more recent application
stack (if our migrated applications can run on it).

There is a critical moment to consider when we follow this approach, that is, when
we shift from the old systems to the new ones.

Generally, this can be done with a change of IP on the involved systems (with
relevant ARP cache cleanups on peer devices on the same network), a change of
DNS entries, or a change in the configurations of load balancers or firewalls; all these
approaches are reversible, being mostly done at the network level, and rollback
procedures can be automated for a quick recovery in case of problems.

Whatever the approach used, we'll have the new systems doing what was previously
done by old and different ones, so we might have untested and unexpected side
effects. We may see these side effects with the features of an application that are not
commonly used or with scheduled jobs, either local or triggered on remote systems,
which might manifest themselves at later and unexpected times.

So, it makes sense to keep the migrated systems under observation for some days
and double check if, besides the correct behavior of the main services they provide,
other functionalities and interactions with external systems are preserved.

Generally, the shift is easier if no data is involved; much more attention is
definitively needed when migrating systems that persist data, such as, databases.

Here, the scenarios might be quite different, and the strategy to follow for data
migration depends on the software used, the kind and size of data, if it's stored locally
or via network, and other factors that definitively are out of the scope of this book.

Node update
When we prefer or have to install Puppet on existing, running systems, the scenario
changes drastically, different variables come into play, and the approaches to follow
are definitively alternative.

Deploying and Migrating Puppet

[160]

In these cases, we will have:

•	 Probably different operating systems to manage; some of them might be
rather ancient. Here, we might have problems in installing a recent version
of Puppet, so it makes sense to verify whether the version of the client is
compatible with the one of the Puppet Master.

•	 Undetermined setup and configuration procedures that we might have to
gradually cover with Puppet with the hope to have managed whatever is
needed.

•	 Puppet deployments on running production systems, so we have to manage
the risk of configuration changes delivered by Puppet; this makes your life
harder and more dangerous, especially if we don't follow some precautions
(more on this later).

•	 Manual configurations accumulated over time will probably determine
systems that are not configured in the same way, and we'll realize this when
Puppet will be deployed. What's likely to happen is that many unexpected
configurations will be discovered and probably, wrong or suboptimal
settings will be fixed.

Existing automated infrastructures
What has been described in the previous paragraphs might have been a common
situation some years ago; now, times have definitively changed, and people have
been using configuration management tools and cloud computing for years.

Actually, it is likely that we might already have a Puppet setup, and we are looking
for ways to reorganize and refactor it.

This is becoming a quite common situation. We learn Puppet while we work on it,
and during the years of usage, patterns evolve, the product offers new and better
ways to do things, and we understand better what has worked and what hasn't.

So, we might end up in scenarios where our Puppet architecture and code are in
different shapes:

•	 We have some old code that needs fixing and refactoring in a somehow
limited and noninvasive way: no revolutions, just evolutions

•	 Our setup works well but is based on older Puppet versions, and the
migration needs a more or less wide refactoring (a typical case here is the
upgrade from Version 2.x to 3.x)

Chapter 7

[161]

•	 Our setup does its job more or less, but we want to introduce new
technologies (for example Hiera) or reorganize our code radically (for
example, introducing well-separated and reusable application modules and/
or the roles and profiles pattern)

•	 Our Puppet code is a complete mess; it produces more problems than the
ones it solves, and we definitely need a complete rewrite

Upgrading the Puppet Master
Different cases may need different solutions; they can follow some of the patterns we
describe for the setup of new infrastructures or the migration or update of existing
ones. However, here, the work is mostly done on the Puppet Master rather than the
clients, so we might follow different approaches.

One of them implies the refactoring of the code and tools, keeping the same
Puppet Master. If there are a few things to be changed, this can be based on simple
evolutionary fixes on the existing code base; if the changes are more radical, we can
use Puppet's environments to manage the old and new codebase in parallel and have
clients switching to the new environment in a gradual and controlled way.

Alternatively, we can consider the creation of a new Puppet Master when the
changes are more radical, either for the versions and tools used or for a complete
overhaul of the codebase. In these cases, we might prefer keeping the same certificate
authority and Puppet Master's certificate or create a new one with the extra effort
of having to re-sign our clients' certificates. Such an approach actually may involve
the creation of new systems that point directly to the new Puppet Master or the
reconfiguration of the existing ones. In both cases, we can follow the same gradual
approach described for other scenarios.

When we need to upgrade the Puppet Master, a few rules have to be considered.

The Puppet Master's version should always be newer than the version on the clients.
Client-server compatibility between single major releases is generally guaranteed. 2.7
servers are backward compatible with 2.6 clients, and 3.x servers are compatible with
2.7 clients. In most cases, backward compatibility extends for more versions, but this
is not guaranteed.

Deploying and Migrating Puppet

[162]

It's recommended that you upgrade from one major version to the next one, avoiding
wider jumps. Starting from Version 3, a semantic versioning scheme (earlier
major versions can be considered as 2.7, 2.6, 0.25, and 0.24) has been introduced,
and a major version change, now expressed by the first digit, can have backward
incompatibilities regarding the language syntax and other components that are not
related to the client-server communication. Puppet Labs, however, has the good
habit of logging deprecation notices for features that are going to be removed or
managed in different ways, so we can look at the Puppet Master's logs for any
similar notice and fix our code before making the next upgrade step.

Patterns for extending Puppet coverage
Let's analyze in detail what to do when we have to introduce Puppet on an existing
infrastructure.

Some of these activities are needed also when working on a brand new project or
when we want to refactor our existing Puppet configurations; consider them as a
reference that you can adapt to your own needs and scenario.

The obvious assumption is that Puppet deployment on something that is already
working and serving services has to be gradual. We have to understand the current
situation, the expected goals, what is quick or easy to do, where and what to manage
with Puppet, and our operational priorities.

Raising the bar, step by step
A gradual approach involves a step-by-step process that needs informed decisions,
reiterations, and verification of what is done, evaluating each case according to its
uniqueness.

We can extend our Puppet coverage using the following two axes:

•	 Vertically: Working on all the existing nodes managed by Puppet and
adding, step by step, more and more resources under its control. At the end
of the process, we can have full coverage both on the common baselines and
the role's specific features. In this case, it is better to make a single change at a
time and propagate it to the whole infrastructure.

•	 Horizontally: Adding new nodes under Puppet management, either with a
migration or with an update approach. Here, the operations are done node
by node; they are placed under Puppet control, and the baseline of common
resources (plus eventually, what is specific for the node's role) is all applied
in a single run.

Chapter 7

[163]

The delivery process should be iterative and can be divided in the following five
phases:

•	 Collect info: We need to know the territory where we operate
•	 Set priorities: We need to define what is more important and urgent
•	 Make choices: We need to evaluate and decide how to proceed
•	 Code: We need to write the needed Puppet manifests and modules
•	 Apply changes: We need to run Puppet and check for reports

The first iterations will probably concentrate on developing the common baseline of
resources to apply to all the nodes. These can be propagated both horizontally and
vertically, looping on the phases mentioned earlier with emphasis on some of them
according to the specific step we are making; they might last for days or a few minutes.

Let's explore more deeply what happens during the phases of each reiteration.

Knowing the territory
Before running Puppet on an existing server's infrastructure, we need to know the
territory. It sounds obvious; it is obvious. So obvious that sometimes we forget to do
it properly.

We have to know what we want to automate and gather as much info as
possible about:

•	 How many servers are involved
•	 What are their operating systems and their major versions
•	 What are the common configuration files and resources to be managed on a

basic system (our general baseline)
•	 How many different kind of servers we have (our Puppet roles)
•	 What are the main applications' stacks used
•	 What are the most critical systems
•	 Which servers are going to be decommissioned soon

•	 What kind of servers we need to deploy in the future

We may have this information from an existing Inventory System or internal
documentation, so it should not be hard to gather it and have a general idea of the
numbers involved.

Deploying and Migrating Puppet

[164]

For each application or system resource that we plan to manage with Puppet, we
also need to know further details, such as the following:

•	 How configurations change on different servers according to the
infrastructural factors such as the role of the server, operational environment,
datacenter, or zone. We will use variables based on these factors to identify
nodes and differentiate the configurations according to them.

•	 How differently the same configuration is managed on our operating
systems. We will need to manage these OS differences in our modules and
Puppet code.

•	 If there are unique or special cases, where the configuration is done
differently, we will manage these exceptions on a per-node basis.

It's definitively not necessary to gather all this information from the
beginning; some details are useful just when we need to automate the
relevant components. What's important at the beginning is the general
overview about the systems involved, their operating systems, roles, and
life expectancy.

Defining priorities
We said that the automation of an existing infrastructure is a gradual process, where
we start from 0 percent of systems and configuration coverage, and we move them
step by step in a state where they are managed by Puppet. We might not reach a full
100 percent coverage, and for each step, we might consider what's worth managing
with Puppet and what is not.

Ideally, every server of our infrastructure should be fully managed by Puppet;
we should be able to provision a system from scratch and have it up and running
after a Puppet run. The setup procedure is expected to be fully automated,
controlled, replicable, and scalable.

There are cases anyway where this rule is not necessarily recommended. When the
setup procedure of an application requires the execution of a few specific commands,
with varying arguments that might not be easily predictable or which need users'
interactivity, the automation becomes difficult and expensive in terms of the
implementation time.

If such setups have to de done only once on a system (during the installation time)
and are supposed to be done on very few systems that have a medium-to-long life,
we may question whether it makes sense to try to do them with Puppet, spending
several hours on what can be quickly done manually in a few minutes.

Chapter 7

[165]

This becomes even more evident when we have to manage with Puppet an existing
system where such a setup is already done, or when the version of our application
may change in the future and the setup procedure may be different, rendering all our
efforts to fully manage it with Puppet useless.

So, when we face the big task of automating an infrastructure, we definitively have
to set priorities and make choices, decide what makes sense to automate first, and
what can be postponed or simply ignored.

We have to consider different tasks that cover different needs.

Automate servers deployment
Automating servers deployment is one of the most important things to do, and
there are big chances that we're already managing it in some way. The installation
of an operating system should be as quick and automated as possible. This actually
is not strictly related to configuration management, as it's a step that occurs before
we install and run our configuration agent. There are countless ways to automate
installations on bare metal, virtual machines, or cloud instances. Whatever we
choose, the general rule is that OS provisioning should be quick and essential.
We can manage all the specific settings and packages of a given server type via
our configuration management tool, which is invoked in a second step and is
independent of the method we've used to install our system.

There's at least one exception for this general rule: if we need to
provision new systems very quickly, for example, in an AWS
autoscaling infrastructure, we might prefer to use AMIs that have
already installed and partially configured the needed applications. This
makes the spin up of a cloud instance definitely faster.

Automate common configurations
Here, we enter into the realm of Puppet. We may have many different servers
fulfilling different tasks, but it is very likely that we'll need a common baseline of
shared configurations for each of them. The specific settings may change according
to different conditions, but the configurations to be managed are always the
same. They typically involve the configuration of the DNS resolver and network
configuration, user authentication, NTP and timezone settings, monitoring agents,
log management, routine system tasks, backup setup, configuration of OpenSSH,
the same Puppet client setup, and whatever other configuration we may want to
manage on all our systems. Our first priority should be to cover these settings; once
completed, the benefits are real, as it allows us to quickly rollout changes that, if
done manually, would probably involve a lot of wasted time.

Deploying and Migrating Puppet

[166]

Automate the most important roles
The next big step is to automate the most important roles; once we've managed
the common ground, it is time to raise the bar and start covering the roles we have
in our infrastructure. Here, things may become more difficult as we start directly
manipulating the software that delivers the services of our systems. It makes sense
to start from the most used ones, also evaluating how quickly and easily they can be
managed. An important element to consider is indeed the kind of servers we need to
set up in the near future. It's probably better to work first on the automation of roles
that we need to deploy from scratch before taking care of the roles that are already
in production.

Refine and automate application deployments
We don't need to and actually should not manage the deployment of applications via
Puppet, but we can configure with Puppet the environment of our deployment tool,
be that Capistrano, Run Deck, Puppi (disclaimer: I wrote it), the native OS package
system, or any other. We might manage deployments with custom scripts or maybe
manually, executing a sequence of documented commands, and in such a case, this
is definitively a thing to fix. Puppet can help, but it is only a part of the solution; we
should concentrate on how to manage the delivery of our deployment via the simple
execution of a single command, even executed manually from the shell.

Once we achieve this, we can manage this execution with whatever orchestration,
remote execution, or continuous integration tool we have in-house or we want to
introduce, but this can be considered as a subsequent evolutionary step. The very first
prerequisite is that we should be able to deliver the deployment of our applications
with a single command (it may be a script that runs a sequence of other commands,
of course) that doesn't involve human interaction. Puppet here can help set up and
configure things, but, I stress it again, it should not be used to actually trigger the
execution of such a command; this is not its tasks and function. Puppet sets and
maintains the systems' state, and it is not made to trigger one-shot commands.

Chapter 7

[167]

Integrate what already works well
Our infrastructure is the result of years of work and efforts and the sweat and blood
of many sysadmins. It might be a total chaos or stay in good shape; but probably,
there's something (or much) good there. We should consider Puppet as a tool that
automates with a formal language what we are already doing, either with other kind
of automation procedures or manually. We have to review what is working well in
our setup procedures and what is not, what doesn't cause any problems, and what
drains a lot of time or fails often. We can start working on what wastes our time
and works in a suboptimal way, and keep and integrate what does its job well. For
example, if we have custom scripts that install and configure a complex application
stack, we might consider using them directly in our manifests (with a plain exec
resource) instead of recreating all the configurations and resources that the scripts
deliver and build, under Puppet. We can always fix this later when other priorities
have been tackled and there's time for wider refactoring.

Automate monitoring
Monitoring is a beast of its own in a complex infrastructure. There are different
things to monitor (servers, services, applications, network equipment, hardware and
software components, and so on), different kinds of tasks (checking, alerting, and
trends graphing), different approaches (on premise, SaaS, via local agents or remote
sensors), and definitively different tools that do the job. We probably use different
solutions according to what and how we need to monitor, and we are probably
managing them in different ways. Maintenance of the checks and the metrics to be
monitored can be a time-wasting effort in some cases, and here is where it makes
sense to use Puppet to automate long and painful manual operations.

Management and automation of a monitoring infrastructure can be rather
complex if the used tool doesn't provide mechanisms of self-discovery. Nagios,
for example, probably the most loved, hated, and used monitoring tool, might be
a real pain to maintain manually, but at the same time, it is not too easy to manage
with Puppet, as it requires external resources and expects us to define all the
desired checks with Puppet code. Given its complexity, the automation of
monitoring activities might not be at the top of our to-do list. As it's often a quite
time-consuming task, we have to face it, sooner or later, especially if we are planning
the installation of many new servers for which we want to automate not only their
setup, but also their monitoring.

Deploying and Migrating Puppet

[168]

Evaluating solutions
When we know our territory and have set priorities about what to do, we have more
elements to make decisions. There are many choices to ponder about, but we don't
need to make them all together. Let's start from the priorities we've set and define
how to behave case-per-case.

Among the decisions to make, we have to evaluate the following:

•	 If Puppet can or should be installed on old or arcane systems: Here, it's
important to understand what is the newest version of Puppet that can
be installed (its compatibility with the native Ruby version is important
here; refer to http://docs.puppetlabs.com/guides/platforms.
html#ruby-versions for details), how this can affect the version of Puppet
on the Puppet Master according to what we have seen about client-server
compatibility.

•	 Where it makes sense to install Puppet: Old servers, which require low
maintenance and provide services that are planned to be decommissioned
soon and do not have a long expected life, might not deserve our attention
and might be skipped or managed with low priority.

•	 The strategy to follow for each node—migration or update: There are no
strict rules on this. Both the alternatives are possible and can be evaluated
for each host, case by case. Old but needed systems on obsolete hardware
based on an OS that is not widely spread in our infrastructure and whose
configurations might be easy to automate are good candidates for migration.
The alternative update path might be preferred on our most common existing
operating systems so that the time spent in implementing configurations
with Puppet can be reused multiple times.

•	 How easily and quickly configurations can be done: Activities that
we know to be rather quick to implement and present low risks in their
deployment can be delivered with precedence, both to reduce our backlog
of things to do and to give us the feeling that something is moving. While
deploying them, we can also gather confidence on the procedures and know
our systems better.

Chapter 7

[169]

•	 Impact and risks have always to be accounted for: Puppet is going to
change the configurations; in some cases, it might just add or remove some
new lines or comments, and in other cases, it will actually change the content
of configurations. By doing this, it will probably restart the relevant services
and in any case have an impact on our systems. Is it safe? Can it be done at
any time? What happens if something goes wrong? What kind of side effects
can we expect from a change? All of these questions need a more or less
comprehensive answer, and this has to be done for each step. Incidentally,
this is the reason why each step should be limited and introduce only a
single change. It will be easier to control its application and diagnose
eventual problems.

•	 Current maintenance efforts and the system's stability: This should be
considered when defining how to proceed and what to do first. If we are
losing a lot of time doing repetitive tasks that can be automated via Puppet
or we keep on firefighting recurring failures on some troublesome systems,
we should definitively concentrate on them. In this case, the rule of doing
what is easier to do first has to be coupled with another common sense rule:
automate and fix first what results in a lot of wasted time.

Coding
We have gathered information about our systems, set priorities, and evaluated
solutions; now, it's finally time to write some code. The previous steps may have
involved a varying amount of time, from very few minutes to days. If we have spent
too much time on them, we have probably done something wrong, or we might have
done too much upfront planning too early instead of a step-by-step approach, where
the single phases reiterate relatively quickly.

In any case, our first coding task should be to develop the common baseline for all our
systems. This is probably the first and most useful thing to do. We can start covering
the most important and used operating systems in our infrastructure; we don't need to
manage the general baseline of all our servers from the beginning. The common classes
and resources can be placed in a grouping class (something like ::site::general).
This is likely to include other classes that might be both from shared modules
(::openssh, ::ntp) and custom ones (::site::users, ::site::hardening). It also
makes sense to include in ::site::general a class that includes a subset of common
resources, something we can call ::site::minimal. This can be useful to let us
install Puppet with minimal configurations (eventually, just what's needed to manage
the same Puppet client and nothing more) on as many servers as possible and then,
gradually extend coverage of new systems' configurations just by moving the resources
and classes from ::site::general to ::site::minimal. These are just samples on
how practically a common baseline might be introduced; the mileages may vary.

Deploying and Migrating Puppet

[170]

Once the common baseline is configured, we can concentrate on developing full
roles, starting with the most useful, easy-to-manage, and common ones. This might
take a varying about of time, but the general idea is that each new node should be
fully managed. It doesn't make sense to introduce technical debts also on the brand
new nodes we have to deploy that are managed by Puppet. So, if we had to choose
between automating the existing or new servers, we should give precedence to the
latter ones.

Besides the macro activities that involve a high level of planning, we will face some
micro decisions on how to manage the configurations for a given application on
our servers, at every step. There are some common-sense rules to consider, and
they replicate the phases we have described that involve information gathering and
decisions on the approaches to follow.

We must know how the configuration file(s) of an application change on our systems.
This is generally affected by two factors: operating system and infrastructure logic.

The differences in operating systems are influenced by the version of the installed
application (which might support different configuration options), how it has been
packaged, and where the files are placed. Even a configuration file as common as
/etc/ssh/sshd_config can change in a relevant way on different operating systems.

Infrastructure logic may affect the content of a file in various ways. We may have
single parameters whose values change according to the various factors strictly
related to our infrastructure (for example, we may have different name servers or
domains in /etc/resolv.conf according to the region or data center where our
server is located). We can also have whole portions of configurations that might be
totally different according to factors such as the role of a system (for example, the
same Puppet configuration file, puppet.conf, is quite different on clients and the
Puppet Master).

According to how the configuration files of an application change on our servers, we
can use the following different approaches for managing them with Puppet:

•	 All the configuration files are the same. Simply put, we can provide the same
file either via the source argument or with content based on a ERB template
that doesn't have variables interpolation.

Chapter 7

[171]

•	 Configuration files are mostly the same; they change only for a few
parameters. This is a typical case where we can use ERB templates that
interpolate variables that might be set via parameters in the class that
provides the template. An important thing to consider here is how these
parameters change in our nodes, according to what logic (server's role, zone/
data center/country, or operational environment), and if this logic may be
expressed by what we defined as node-identifying variables in Chapter 4,
Designing Puppet Architectures. This is important because it gives us glimpses
of how correct we have been in setting them.

•	 Configuration files are quite different, and one or a few parameters are not
enough to express all the differences that occur on our nodes. Here, things
get trickier; we can use completely different ERB templates (or static files) for
each major configuration layout, or we might be tempted to manage these
differences with an if statement inside a unique template.

The latter is a solution I'm not particularly fond of, because, as a general
rule, I would avoid placing logic inside files (in this case, ERB templates).
However, it might make sense in cases where we want to avoid excessive
duplication of files, which differ just for some portions. In some cases, we
might prefer a settings-based approach. Instead of managing the whole
configuration file, we can just set the single lines that we need.
I find this useful in two main cases: when different operating systems
have quite different configuration files and we just need to enable a
specific configuration setting or when we manage configuration files of
web applications that might not be provided by native packages (that
generally don't overwrite existing configuration files and are inherently
conservative on applications' versions). A typical example here can be the
database connection settings of, for example, a PHP application.

Applying changes
So, we are finally ready to run our Puppet code and apply it to our servers.

Some of the precautions to be taken here can be applied whenever we work with
Puppet; some are more specific to the cases where Puppet is introduced on the
existing systems, and it changes the running configurations.

The procedure to follow when we have to apply new Puppet code can definitively
vary according to the amount of the managed node, their importance for our
business, and the maintenance rules we follow in our company.

Deploying and Migrating Puppet

[172]

Still, a few common points can definitively be recommended:

•	 Communicate: This is a primary rule that should be applied every time. We
are going to change the way some configurations are managed on systems;
whoever might have the permissions and tasks to modify them should be
aware that what was managed earlier in a manual or some other way is now
managed by Puppet. At least, in the operations teams, the whole Puppet
rollout process should be shared.

•	 Test with noop: There's a wonderfully useful option of the Puppet
command: --noop. It allows us to execute a Puppet run and see its effects
without actually making any change to the system. This is extremely useful
to see how configuration files would change and spot potential problems
before they occur. If we have Puppet running continuously on our servers at
regular intervals (being triggered via cron or running as an agent), we should
test our code in a dedicated environment before pushing it in the production
one. We will review how to manage the code workflow in Chapter 8, Code
Workflow Management .

•	 Test on different systems: If our configuration changes according to the
OS of a system, its role or any other factor, we should verify how it behaves
for each different case before propagating the change to all the servers. Also,
in this case, we can use Puppet environments to test our code before pushing
it to production, and even if it is generally not recommended, if we feel
confident, we don't have to test each possible case. A very interesting project
that allows us to assess the impact of Puppet changes on our infrastructure
is Gonzo by Simon Croome, and it can be found at https://github.com/
croomes/gonzo.

•	 Propagate the change: Once we have tested with --noop, if it doesn't harm
the system, and once we've applied it to different kind of servers and we
had the expected results, we can be more confident that our change won't
disrupt our operations and we can deploy it to production. Propagation of
the change may depend on different factors such as the way a Puppet run is
triggered, its interval, the topology of our infrastructure, and the possibility
to rollout changes in a segmented way.

•	 Watch reports: During the deployment of our change, it's quite important
to keep an eye on Puppet reports and spot errors or unexpected changes.
Puppet has a multitude of different report options and web frontends such
as The Foreman, Puppet Dashboard, or Puppet Enterprise that provide easy-
to-access and useful reporting features that we can check to verify how our
rollout is proceeding.

https://github.com/croomes/gonzo
https://github.com/croomes/gonzo

Chapter 7

[173]

•	 Don't be surprised of the skeletons in the closet: When we apply a
configuration on many servers that have been managed manually for
many years, we are making a major cleanup and standardization activity.
We can easily spot old and forgotten parameters that could be incorrect
or suboptimal, which might refer to old systems no longer in production
or obsolete settings. This is normal and is a beneficial side effect of the
introduction of Puppet.

•	 Review and patch uncovered configurations: It may happen that the
configuration provided via Puppet doesn't honor some special case that we
hadn't considered. No need to panic; we can fix things in a pragmatic and
methodic way, giving priority to the urgent cases (eventually rolling back
manually the configuration changed by Puppet and disabling its execution
run on the involved servers until we fix it). Often in such cases, the exception
can be managed on a per-node basis; also, for this reason, it's useful to have
the possibility of having configurations to manage special cases per specific
nodes, on Hiera hierarchies or anywhere in our code.

Things change
Once we introduce a tool like Puppet in our infrastructure, everything changes and
we should be well aware of this.

Infrastructure as code
There's a wonderful term that describes what tools like Puppet or Chef have
introduced in IT operations: infrastructure as code. We define our IT infrastructure
with formal code, the configurations of our servers, the procedures to set them up,
and whatever is needed to turn a piece of bare metal or a blank VM to a system that
provides services for our purposes.

When we can use a programming language to configure our systems, a lot of
powerful collateral effects take place. These are inherently related to the fact that we
are dealing with code.

Deploying and Migrating Puppet

[174]

Versioning
Code can be versioned with an SCM. The history of our commits reflects the history
of our infrastructure. We can know who did a change and when and why they did
it. There's a huge intrinsic value in this: the power of contextual documentation and
communication. Puppet code is inherently the documentation of the infrastructure,
and the commits log reflects how this code has been deployed and evolved. It
quickly communicates in a single place the rationale and reasons behind some
changes that are much better than sparse e-mail, a wiki, phone calls, or direct voice
requests. Also, for this reason, it is quite important to be disciplined and exhaustive
when doing our commits. Each commit on the Puppet code base should reflect a
single change and explain as much as possible about it, possibly referring to relevant
ticket numbers.

Reproducibility and predictability
Code can be run as many times as we want. We have already underlined this concept
in Chapter 1, Puppet Essentials, but it's worth further attention. Once we express how
to set up our systems with code, we can be confident that what works once works
always. The setup procedure can be repeated and it always delivers the same result
(given that we have correctly managed the dependencies of resources). There's a
wonderful feeling we gain once we have Puppet on our systems. We are confident
that their setup is coherent and done how we expected it. A new server is installed,
and all the configurations we expect from it are delivered in a quick and automated
way. There is no real need to double check whether some settings are correct and
whether all the common configurations are applied as expected in a mature and
well-tested Puppet infrastructure they are.

There's more, though, a lot more. Ideally, we just need our Puppet codebase and a
backup of our application data to rebuild our whole infrastructure from scratch in
a reasonable amount of time. In a perfect world, we can create a disaster recovery
site from scratch in few minutes or hours, given that we have quick and automated
deployment procedures (in the cloud, this is not difficult), 100 percent Puppet
coverage of all the needed configurations, and automated or semiautomated
application deployments and restore facilities of our data. A completely automated
disaster recovery site setup from scratch is probably not even needed (it's much
more probable that during a crisis, we have all our sysadmin working actively on an
existing DR site), but whatever can be automated can save time and human errors
during the most critical hours.

Chapter 7

[175]

Testing
In the next chapter, we will review the testing methodologies we have at our
disposal when writing the Puppet code. However, here it is important to stress that
the possibility of testing our code allows us to preventively verify how our changes
may affect the systems where we want to apply them and make them much more
controlled and predictable. This is crucial for tools such as Puppet that directly affect
how systems operate and can introduce changes (and failures) at scale. Proper testing
can help us in being more confident on how to deliver our code to production.

Maintenance
Code can be refactored and refined. The more we develop Puppet code, the
more we understand Puppet and how to make it fit better to our infrastructure.
This is a learning process that inevitably has to be done on our own and on our
infrastructure. We will definitively consider what we wrote a year or just few
months ago inaccurate and inappropriate for new technical requirements that have
emerged or just badly written. The good news is that as any type of code, this can be
refactored and made better. How and what to fix in our code base should depend
on how it affects our work. Badly formatted code that works and does its duties has
less refactoring priority than code that creates problems, is difficult to maintain, or
doesn't fit new requirements.

Evolution of the system administrator
It should be clear by now that such a radical change of how systems are managed
also involves a change on how the system administrator works.

The primary and most important point is that the sysadmin has more and more to
cope with code. This involves that somehow he has to adopt a developer's approach
to his work. He can do this using an SCM and testing and refactoring code, which
might be activities that are not familiar to a sysadmin but have to be tackled and
embraced because they are simply needed.

The second radical change involves how systems are managed. Ideally, in a Puppet
managed infrastructure, we don't even need to SSH to a system and issue commands
from the shell; any manual change on the system should be definitively avoided.

This might be frustrating and irritating, as we can quickly do things that require a lot
more time on Puppet, manually (write the code, commit, test, apply; for a 5-second
trivial change done by hand, we might may take several minutes with a complete
Puppet workflow).

Deploying and Migrating Puppet

[176]

The point is that what is done on Puppet remains; it can be applied when the system
is reinstalled and is inherently documented. A quick manual fix is easily and quickly
forgotten and may make us lose a lot of time when there's the need to replicate it,
and there's no trace of how, where, and why it was done.

Many of the most annoying and dangerous issues people have when Puppet is
introduced are actually due to the lack of real embracement of the mindset and
techniques that the tool requires. People make manual changes and don't implement
them in manifests. Then, at the first Puppet run, they are reverted, and if any kind
of problem takes place, Puppet gets the blame. In other cases, there's the temptation
to simply disable it and leave the system modified manually. This may make sense
in exceptional emergency cases, but after the manual fix, the change has to be
integrated and Puppet should be re-enabled.

If this doesn't happen, we will soon fill our infrastructure with servers where
Puppet is disabled and the drift for the configured baselines gets wider and wider,
making the process of re-enabling the service more and more difficult, risky, and
time consuming.

Designing a Puppet-friendly infrastructure
We should have realized by now that there are things that Puppet does well
and things that are not properly in its chords. Puppet is great for managing files,
packages, and services and is less effective in executing plain commands, especially
if they have an occasional nature.

Once we start introducing Puppet in our infrastructures, we should begin, where
possible, to make things in a way that favors its implementation.

Some time ago, in a conference open space, I remember a discussion with a
developer on how to make a Java application better manageable with Puppet.
From his point of view, a good API could be a solid approach to make it better
configurable. All the sysadmins, and Puppet users replied that actually this was far
from being a nice thing to have. Plain configuration files were definitively a preferred
approach to manage the application's configuration.

If we can express it with a file, we can easily manage it with Puppet. Whatever
requires the execution of commands, even if it is doable, is always considered with
skepticism.

Chapter 7

[177]

The installation of software should definitively be done via the OS-native packages.
Even if most of us have done their defines that fetch a tarball, unpack it and compile,
nobody really likes such an approach. It involves a procedural and nondeclarative
way of performing activities that it makes idempotence more difficult and is
definitively worse to express with Puppet DSL.

Services should be managed following the OS-native approach, be that init,
systemd, upstart, or whatever. Managing them with the execution of a command in
a custom startup script is definitively not Puppet friendly.

Configuration files from common stacks of applications should be leveraged. For
example, when we have to manage the Java settings on an application server, it
makes sense to manage them always on the same place; standardizing them is a
matter of overall coherence and easier management.

Once we gain affinity and expertise with Puppet, we quickly understand the things
that can be done quickly and safely and the ones that make our life harder, requiring
more resources or quick and dirty patches.

It is our responsibility to discuss this with the developers and the stakeholders of an
application to find a shared approach to its setup that makes it easier to be managed
with Puppet while preserving the requested implementation needs.

Summary
The introduction of Puppet on an infrastructure is a long and intriguing voyage
without return. It requires planning, patience, method, experience, and skills,
but it brings great results.

There's definitively no unique way to face it. In this chapter, we have exposed the
general scenarios we might face, the possible alternative approaches, and have
suggested a step-by-step procedure articulated on different phases: information
gathering, priority setting, decision making, code development, testing, and rollout
to production.

These phases should be reiterated at each step with emphasis on what matters to
make things done.

We have also faced the changes that such a process involves; how we need a new
mindset and new processes to sustain a Puppet setup.

Complementary to this is an effective management of our code: how it's versioned,
reviewed, tested, and maintained. These are some of the topics we are going to see
in the next chapter.

Code Workflow Management
All the Puppet manifests, public shared modules, site modules, and (Hiera) data are
the code and data we create and use. We need tools and workflows to manage them.

In this chapter, we will review the existing tools and techniques to manage Puppet's
code workflow from when it is written to when it is deployed to production.

Most people in the Puppet world use Git to version their code, so we will refer
mostly to it. However, similar processes can be followed if we manage our code with
Subversion, Mercurial, or any other source code-management tool.

In this chapter, we give an overview of the tools that can help us with our Puppet
code. We will cover the following topics:

•	 Writing with Geppetto and Vim
•	 Managing with Git
•	 Reviewing with Gerrit
•	 Testing modules with rspec-puppet
•	 Testing Puppet runs with rspec-system-puppet and Beaker, using Vagrant
•	 Deploying with librarian-puppet or r10k
•	 Automating with Travis or Jenkins

Writing the Puppet code
Each one of us has a favorite tool for code writing. It may change according to the
language we use, our familiarity with the software, or the preference of the moment.

Whatever the tool we use, it should make our experience as smooth, productive, and
enjoyable as possible.

Code Workflow Management

[180]

I am a Vim guy, without being a Guru. Having a sys admin background, I feel
comfortable using the same tool "wherever" I am, whether on the local terminal or on
the remote ssh session. We can, more or less, expect to find Vim on any system under
our keyboard.

A developer, I guess, feels more comfortable with a tool that runs on his computer
and can greatly enhance the writing experience with syntax checks, cross references,
and the power of an IDE.

For this, there is Geppetto, a full-featured IDE based on Eclipse and dedicated to
the Puppet code. Other popular editors, such as TextMate and Sublime Text, have
Puppet plugins that can be quite useful.

The good news is that all of them can make our lives easier and more productive
when we write the Puppet code.

Geppetto
Geppetto (http://puppetlabs.github.io/geppetto/) is the tool of reference for
writing the Puppet code. It is an open source software by Puppet Labs and is a result
of its acquisition of the startup Cloudsmith that developed it.

We can install Geppetto as a standalone application or as an Eclipse plugin. It has
very useful features, which are as follows:

•	 Code syntax and style checking
•	 Contextual documentation
•	 Integration with the Puppet Forge
•	 Integration with PuppetDB
•	 All the features inherited from Eclipse

When we launch the tool, we are prompted for a directory where to create our
Geppetto workplace. In a workplace, we can create projects that, most times, are
modules we can directly import from the Forge or an SCM repository.

Geppetto may be memory-hungry with large projects; if we bump into
an Internal Error: Java heap space error, we probably have to
enlarge the memory pools for the JVM Geppetto to run in. In geppetto.
ini (or eclipse.ini, if we use Geppetto as plugin), we can set
something as follows:

-XX:MaxPermSize=256m
-vmargs
-Xms384m
-Xmx512m

http://puppetlabs.github.io/geppetto/

Chapter 8

[181]

Vim
If we have to think of an evergreen tool that has accompanied many sys admins'
keyboards for many years now, I think Vi(m) is one of the first names that comes to
mind.

Its power and flexibility are well expressed in how it can be made effective to manage
the Puppet code. There are two Vim bundles that are particularly useful for us:

•	 vim-puppet (https://github.com/rodjek/vim-puppet): This is a syntax
highlighter and formatting tool written by Tim Sharpe, who is well known in
the Puppet community for being the author of hugely popular tools such as
librarian-puppet, puppet-lint, and rspec-puppet (all of which are going
to be discussed in this chapter).

•	 Syntastic: This is a syntax-checking tool that works for many popular
languages and has the ability to check the style and syntax of our manifests
when we save them.

To install them easily, we first need to install Pathogen (a Vim extension that
allows easy management of plugins) by copying the file pathogen.vim in ~/.vim/
autoload/ from https://raw.github.com/tpope/vim-pathogen/master/
autoload/pathogen.vim.

Then, be sure to have the following code in the ~/.vimrc of our home directory:

call pathogen#infect()
syntax on
filetype indent plugin on

Once we have Pathogen loaded, we can easily add bundles in the ~/.vim/bundle
directory, as follows:

git clone git://github.com/rodjek/vim-puppet.git ~/.vim/bundle/puppet

git clone git://github.com/scrooloose/syntastic.git ~/.vim/bundle/
 syntastic

Now, we can use Vim with these powerful plugins that definitely make coding with
Puppet DSL more comfortable.

If, after these changes, we have problems when pasting multiple lines of
text from the clipboard (each new line has one more indent level and #
signs at the beginning), try to issue the Vim command :set paste.

https://github.com/rodjek/vim-puppet
https://raw.github.com/tpope/vim-pathogen/master/autoload/pathogen.vim
https://raw.github.com/tpope/vim-pathogen/master/autoload/pathogen.vim

Code Workflow Management

[182]

Git workflows
If we want to work and prosper with Git, we have to grasp its principles. There are
theories and some alternatives on how we can manage our Puppet code with Git in a
safe and comfortable way.

In this section, we will review:

•	 Git's basic principles and commands
•	 Some useful Git hooks
•	 Two different workflows for Puppet code management with Git

Git's basic principles and commands
Git is generally available as a native package in every modern OS. Once we have
installed it, we can configure our name and e-mail (that will appear in all our
commits) with the following:

git config --global user.name "Alessandro Franceschi"

git config --global user.email al@lab42.it

These commands simply create the relevant entries in the ~/.gitconfig file. We
can add more configurations by either editing this file directly or with the git
config command.

To create a Git repository, we just have to move to the directory that we want to
track and simply type git init. This command initializes a repository and creates a
local .git directory where all Git data is stored.

Now, we can type git status to see the status of the files in our repository. If we
have files in this directory, we will see them as untracked. This means that they are
not managed under Git, and before being able to commit changes on our files, we
have to stage them. This is done by the git add command, which adds all the files
from the current working directory to Git's index (we can add only specific and
selected files or changes). If we type git status again, we will notice that the files
we added are ready to be committed. We can use git commit to create a commit
with all the changes in the files we've previously staged. Our default editor is open,
and we can type the title (first line) and the description of our commit.

For readability and better management later, it is important to make single and
atomic commits that involve only the changes for a specific fix, feature, or ticket.

Now, we can type git log to see the history of our commits on this repository.

Chapter 8

[183]

Git is a distributed SCM; we can work locally on a repository that is a clone of a
remote one. To clone an existing repository, we can use the git clone command
(we have seen some usage samples earlier with Vim bundles).

Once we have cloned a repository, we can use git push to update it with our local
commits and git pull to retrieve all the changes (commits) made there since we
cloned it (or made our latest pull).

We may want to work on separated branches where we can manage different
versions of our code. To create a new branch, we use git branch <branchname>; to
work inside a branch, we type git checkout <branchname>. When we are inside
a branch, all the changes we make and commit are limited and confined in that
branch; if we switch branches, we will see our changes to the local files magically
disappearing. To incorporate the commits done in one branch to another branch, we
can use the git merge or git rebase commands.

These are just the basics of Git; they just highlighted the kind of commands we may
end up using when working with it. If we want to learn more, there are some great
resources online, such as:

•	 http://try.github.io: This is a site with interactive tutorials to learn Git's
basics

•	 http://gitready.com: This is a site full of hints and documentation

Git hooks
Git hooks are scripts that are executed when specific Git actions are performed. We
can add a hook just by placing an executable file under our local .git/hooks directory.
The name of the file reflects the phase when the hook is executed.

When we deal with Puppet, we generally have three different hooks that we can use.
They are:

•	 .git/hooks/pre-commit: This is executed before finalizing the commit.
Here, it makes sense to place syntax and lint checks that prevent us from
committing code with errors.

•	 .git/hooks/pre-receive: This is executed before accepting a git push
command; it may be placed on our central Git repository and can be quite
similar to the pre-commit one. The difference here is that the checks are
done on the central repository when changes already committed on remote
working repositories are pushed.

http://try.github.io
http://gitready.com

Code Workflow Management

[184]

•	 .git/hooks/post-receive: This is executed on the central repository server
after a push. It can be used to distribute our committed code to a testing (or
production) Puppet environment automatically.

Usage possibilities for hooks are endless; we can find some useful ones at
https://github.com/drwahl/puppet-Git-hooks.

Environments and branches
When we want to manage our Puppet code with Git, we can follow different
approaches. Our main objectives are:

•	 Be able to version our code
•	 Be able to distribute it
•	 Be able to test our code before pushing it into production

The first two points are implicit with Git usage; the third point can be achieved using
Puppet's environments. Since we can set different paths on the Puppet Master for the
modulepath directory and the manifest file, which are mapped to different Puppet
environments, we can couple different Git branches or working repositories to them.

Here, we outline two possible approaches:

•	 The first is the officially recommended one, which is based on automatic
environments and a well-established Git workflow, where a new branch is
created for each new feature or bug fix. Here, we have to branch, merge, pull,
and push from different branches.

•	 The second is a simplified approach, possibly easier to manage for Git
beginners, where we always pull and push from the same branch.

Branch-based automatic environments
In the first approach, since we may have an unpredictable number of branches
that are created and destroyed regularly, we use the possibility to create automatic
environments with Puppet, which involves a configuration on puppet.conf as:

[main]
 server = puppet.example.com
 environment = production
 confdir = /etc/puppet
[master]
 environment = production
 manifest = $confdir/environments/$environment/manifests/site.pp
 modulepath = $confdir/environments/$environment/modules

https://github.com/drwahl/puppet-Git-hooks

Chapter 8

[185]

This is coupled with the presence of a post-receive Git hook that automatically
creates the relevant environment directories. Check http://puppetlabs.com/blog/
git-workflow-and-puppet-environments for more detail.

Whoever writes Puppet code can work on any change in a separate Git branch,
which can be tested on any client by specifying the namesake environment.

Passage to production is generally done by merging the separated branches in the
master branch.

Simplified developer workdir environments
If our team has limited affinity with Git, we may find it easier to manage changes in
a different, simpler way; people always work on the master branch and they have a
local working copy of the Puppet code where they work, test, and commit. Code can
be promoted to review for production with a simple git push command.

Also, in this case, it is possible to map the Puppet Master environments to the local
working directories of the developers in puppet.conf so that they can test their code
on real servers before pushing it to production.

We may evaluate variations on the described alternatives, which can adapt to our
business requirements, team's skills, and preferred workflows. In any case, it is
important to test the Puppet code before committing it, and a good way to do this is
to use Puppet environments that map to the directories where this code is written.

Code review
When there's a team of people who work collaboratively on Puppet, it is important
to have good communication among its members, a common vision on how the code
is organized, where logic and data are placed, and what the principles behind some
design decisions are.

Many mistakes made while working on Puppet are due to incomplete knowledge of
the area of effect of code changes, and this is generally due to bad communication.

For this reason, any tool that can boost communication, peer review, and discussion
about code can definitely help in having a saner development environment.

http://puppetlabs.com/blog/git-workflow-and-puppet-environments
http://puppetlabs.com/blog/git-workflow-and-puppet-environments

Code Workflow Management

[186]

Gerrit
When we work with Git, the natural companion to manage peer review and
workflow authorization schemes is Gerrit. This is a web interface made by Google for
the development of Android. It integrates perfectly with Git and allows commenting
on any commit, vote for them, and have users that may authorize their acceptance.

Different user roles with different permission schemes and authorization workflows
can be defined. Once new repositories are added, they can be cloned via git, as
shown:

git clone ssh://al@gerrit.example.com:29418/puppet-modules

When we work on repositories managed under Gerrit, we have to configure our Git
to push to the special for ref, instead of the default heads. This is the key step that
allows us to push our commits to a special intermediary place where they can be
accepted or rejected.

git config remote.origin.push refs/heads/*:refs/for/*

We also need a pre-commit hook that automatically places the required Change-Id
in our commits.

gitdir=$(git rev-parse --git-dir) ; scp -p -P 29418 \
 al@gerrit.example.com:hooks/commit-msg ${gitdir}/hooks/

Once we have made our setup, we can normally work on our local repo with Git.
When we push our changes, they are submitted to Gerrit to the special refs/for for
code peer review. When a commit is accepted, Gerrit moves it to refs/heads from
where it can be pulled and distributed.

Gerrit can be introduced any time in our workflow to manage the acceptance of
commits in a centrally managed way and, besides the client's configurations that we
have seen, it doesn't require further changes in our architecture.

A great tutorial on Gerrit can be seen at http://www.vogella.
com/tutorials/Gerrit/article.html.

http://www.vogella.com/tutorials/Gerrit/article.html
http://www.vogella.com/tutorials/Gerrit/article.html

Chapter 8

[187]

Online resources for peer review
There are various online services that can be used for peer review and be alternatives
to an on-premise solution based on Gerrit. Some of them are:

•	 GitEnterprise (https://gitent-scm.com): This offers a Gerrit and code
repository online service.

•	 Codifferous (https://codifferous.com/) presents an alternative approach
based on single lines of code, instead of commits, for online collaborative
code review.

•	 RBCommons (https://rbcommons.com): This is the SaaS version of
the Review Board (http://www.reviewboard.org/) open source code
review software.

•	 Repository management sites such as GitHub (https://github.com) and
BitBucket (https://bitbucket.com): These offer an easy way to fork a
repository via the web interface, make local changes, and push them back to
the upstream repository with pull requests (PR) that can be discussed and
approved by the upstream repository owner.

Testing the Puppet code
It has been clear for years that there is a strong need to be able to test how changes to
our Puppet code can affect our infrastructure.

The topic is quite large and, to be honest, not completely solved, but there are tools and
methods than can help us to work safely with Puppet in a production environment.

We can test our code with the following tools:

•	 The command puppet parser validate to check the syntax of our
manifests

•	 The command puppet-lint to check the style of our code
•	 The tool rspec-puppet to test the catalog and the logic of our modules
•	 The tool rspec-system-puppet and Beaker to test what happens when our

catalog is applied to a real system

We can also follow some procedures and techniques, such as:

•	 Use the --noop option to verify what the changes before applying them
would be

•	 Use Puppet environments to try our code on test systems before pushing it
into production

https://gitent-scm.com
https://codifferous.com/
https://rbcommons.com
http://www.reviewboard.org/
https://github.com
https://bitbucket.com

Code Workflow Management

[188]

•	 Have canary nodes where Puppet is run and changes are verified
•	 Have a gradual and clustered deployment rollout procedure

Using rspec-puppet
The rspec-puppet tool (http://rspec-puppet.com) makes it possible to test Puppet
manifests using rspec, a widely used Ruby behavior-driven development framework.

It can be installed as a gem:

gem install rspec-puppet

Once installed, we can move to the directory of a module and execute the following:

rspec-puppet-init

This command creates a basic rspec environment composed of the following:

•	 The Rakefile in our module's main directory, where the tasks we can run
with the tool rake are defined and which can trigger the execution of our
tests.

•	 The spec/ directory that contains all the files needed to define our tests:
spec/spec_helper.rb is a small Ruby script that helps in setting up
Puppet's running environment during the tests' execution, and spec/
classes, spec/defines, and spec/functions are subdirectories where the
tests for classes, defines, and functions should be placed.

•	 The spec/fixtures directory is temporarily used to copy the Puppet code
we need to fulfill our tests with during testing. It's eventually possible to
define other dependency modules to fetch and use during the tests in a
.fixtures.yml file.

Test files have names that reflect what they are testing. For example, if our module
is called apache, the tests for the apache class are placed in spec/classes/apache_
spec.rb, and the tests of a define called apache::vhost are in spec/defines/
apache_vhost_spec.rb.

We have normal Ruby spec code in these files, where the test condition and the
expected result are defined in terms of Puppet resources and their properties.

The following is a sample test file for an apache class (taken from Puppet Labs'
apache module). The first line requires the spec_helper.rb file previously
described, as shown:

require 'spec_helper'

http://rspec-puppet.com

Chapter 8

[189]

Then, a 'Debian' context for which the relevant facts are provided is defined as follows:

describe 'apache', :type => :class do
 context "on a Debian OS" do
 let :facts do
 {
 :osfamily => 'Debian',
 :operatingsystemrelease => '6',
 :concat_basedir => '/dne',
 }
 end

Under this context (defined according to the specified facts or parameters) are
listed the resources that we expect in a catalog; note that it is possible to use the
contain_* matcher for any Puppet resource type, and each argument of that
resource can be tested.

 it { should contain_package("httpd").with(
 'notify' => 'Class[Apache::Service]',
 'ensure' => 'installed'
)
 }
 it { should contain_user("www-data") }
 }

We can also set specific parameters and test the behavior we expect when they are
provided, as shown in the following code snippet:

 describe "Don't create user resource" do
 context "when parameter manage_user is false" do
 let :params do
 { :manage_user => false }
 end

 it { should_not contain_user('www-data') }
 it { should
contain_file("/etc/apache2/apache2.conf").with_content %r{^User
www-data\n} }
 end
 end

Note that the with_content matcher permits to verify the same contents of a file.

Code Workflow Management

[190]

The intended usage of rspec-puppet is to verify if the logic of our module is
correctly applied under different conditions, for example, testing its behavior
when different parameters are provided or when different OSes are simulated.
It is useful to prevent regressions during code refactoring and quickly validate PRs
from contributors. It is not intended to validate the effect of our code when applied
on a system.

A key point to understand is that rspec-puppet works on the catalog and checks
whether Puppet resources are correctly provided; it does not test what happens
when those resources are actually applied for real. In software testing terms,
rspec-puppet is a unit-testing tool for modules.

rspec-system-puppet and Beaker
The rspec-system-puppet tools was written by Puppet Labs' Ken Barber to automate
the testing of the effects of Puppet on a real system under Vagrant using rspec-style
statements.

It was written to solve one of the limitations of catalog-based test tools such as
rspec-puppet, automating the tests of the effects of a complete Puppet run on a
system. We can consider it as an acceptance testing tool for modules.

Now, the project is deprecated in favor of Beaker (https://github.com/
puppetlabs/beaker), which has been developed internally at Puppet Labs to
manage acceptance tests for their products. So, we will refer to it, even if they share
similar principles, which are:

•	 Tests are done on virtual machines that are created and destroyed on the fly
•	 Tests are described with rspec-style syntax
•	 In tests, the expected results are defined on a system where the tested code is

applied

Beaker tests are executed on one or more System Under Test (SUT), which may be
run under VMWare, Vagrant, Solaris Zones, or Amazon EC2 instances.

Tests are configured in the spec/acceptance directory of a module, using one or
more hosts that may have different roles and OSes. Their configuration is defined in
YAML files generally placed in the spec/acceptance/nodesets directory.

Vagrant
Vagrant (http://www.vagrantup.com) is a very popular tool to quickly create
Virtual Machines (VM), mostly for testing and development purposes.

https://github.com/puppetlabs/beaker
https://github.com/puppetlabs/beaker
http://www.vagrantup.com

Chapter 8

[191]

One of Vagrant's strong points is the ability to run provisioning scripts when a VM is
created and, among others, the possibility to directly run Puppet with either the apply
command pointing to a local manifest, or with agent pointing to Puppet Master.

This makes Vagrant a perfect tool to automate the testing of Puppet code and
replicate development and test setups that can be aligned to the production setups in
a local environment.

Once we have Vagrant and VirtualBox installed (its virtualization technology of
reference, even if plugins are available to manage other VM backends), we just need
to create a Vagrantfile where its configurations are defined.

This book's material is actually distributed as a repository that contains a
Vagrantfile that allows easy usage of the sample Puppet code.

We can download it from Packt's site or from GitHub at https://github.com/
example42/puppet-architectures. Be sure to have Vagrant, VirtualBox, and the
cachier plugin installed (useful to cache frequently downloaded packages):

vagrant plugin install vagrant-cachier

If we have problems in provisioning a VM correctly, we may also need the vbguest
plugin that automatically updates the VirtualBox additions on the VM with the
VirtualBox version we are using (they are needed to support functionalities such as
shared folders that are needed for Vagrant provisioning):

vagrant plugin install vagrant-vbguest

Vagrant works with base boxes, which are a sort of golden image of an OS
downloaded from the Internet (once) and then used to create the virtual machines.

A good online reference for available public boxes is available at http://www.
vagrantbox.es. It is maintained by Gareth Rushgrove, the author of the DevOps
Weekly newsletter and well known in the Puppet community for having developed
good modules.

Let's review a sample Vagrantfile, which is a bit more complex than a standard
one, since it provides the following:

•	 A multi-VM environment
•	 The possibility to choose the OS for use from a selection of public base boxes
•	 The possibility to configure memory and CPU for any node
•	 Puppet provisioning with Hiera support

https://github.com/example42/puppet-architectures
https://github.com/example42/puppet-architectures
http://www.vagrantbox.es
http://www.vagrantbox.es

Code Workflow Management

[192]

Our Vagrantfile begins with some variables that define how the boxes are created:

Select the OS you want to use (see boxes list below)
default_os = 'Ubuntu1204_64'
Define our domain
domain = 'example42.com'
Default ram (can be overriden per node)
default_ram = '256'
Default number of cpu (can be overriden per node)
default_cpu = '1'

Then, there is the list of nodes that the multi-VM environment provides, as follows:

nodes = [
 { :hostname => 'puppet', :ip => '10.42.42.10', cpu: '2'},
 { :hostname => 'lb01', :ip => '10.42.42.91'},
 { :hostname => 'web01', :ip => '10.42.42.101'},
 { :hostname => 'web02', :ip => '10.42.42.102'},
 { :hostname => 'db01', :ip => '10.42.42.141', ram: '512'},
 { :hostname => 'el01', :ip => '10.42.42.151'},
 { :hostname => 'log', :ip => '10.42.42.15'},
 { :hostname => 'mon', :ip => '10.42.42.16'},
]

After this comes the list of public base boxes than can be used. Change the value of
the default_os variable, which was previously assigned to the box name, to the one
that we want to use for our VMs, using the following code snippet:

boxes = {
 :Centos64_64 => { :box => 'centos-64-x64-vbox4210',
:box_url => 'http://puppet-vagrant-boxes.puppetlabs.com/centos-64-x64-
vbox4210.box', :breed => 'redhat' },
 […]
}

Here comes Vagrant's actual configuration: it uses the cachier plugin to speed
up the downloading of packages; parameters such as memory, networking, and
hostnames are taken from the nodes' list:

Vagrant.configure("2") do |config|
 config.cache.auto_detect = true

 nodes.each do |node|
 config.vm.define node[:hostname] do |node_config|

Chapter 8

[193]

 node_config.vm.box = boxes[default_os.to_sym][:box]
 node_config.vm.box_url = boxes[default_os.to_sym][:box_url]
 node_config.vm.host_name = node[:hostname] + '.' + domain
 node_config.vm.network :private_network, ip: node[:ip] if
 node[:ip]
 if node[:forwards]
 node[:forwards].each do |from,to|
 node_config.vm.forward_port from, to
 end
 end
 memory = node[:ram] ? node[:ram] : default_ram ;
 cpu = node[:cpu] ? node[:cpu] : default_cpu ;
 node_config.vm.provider "virtualbox" do |v|
 v.customize ['modifyvm', :id, '--name', node[:hostname],
 '--memory', memory.to_s]
 v.customize ['modifyvm', :id, '--cpus', cpu.to_s]
 v.customize ['setextradata', :id,
 'VBoxInternal2/SharedFoldersEnableSymlinksCreate/v-
 root', '1']
 end
 end
 end

Here, the provisioners are configured. First, a shell script is executed to install the
latest version of Puppet on the VM, and then some other necessary plugins are used.
The shell script is, according to the OS, in bin/setup-debian or bin/setup-redhat:

 config.vm.provision "shell", path: 'bin/setup-' +
 boxes[default_os.to_sym][:breed] + '.sh'

Here comes the Puppet provisioner, where there are defined paths for modules,
manifests, and Hiera data:

 config.vm.provision :puppet do |puppet|
 puppet.hiera_config_path = 'hiera-vagrant.yaml'
 puppet.working_directory = '/vagrant'
 puppet.manifests_path = 'manifests'
 puppet.manifest_file = 'site.pp'
 puppet.module_path = ['modules' , 'site']

In the following code are defined the options used when Puppet is executed:

 puppet.options = [
 '--verbose',
 '--report',

Code Workflow Management

[194]

 '--show_diff',
 '--pluginsync',
'--debug', # Uncomment to enable debugging
'--parser future', # Uncomment to enable future parse
]
 end
end

We can run Vagrant without arguments to see the list of available actions. The most
common ones are:

•	 vagrant status: This shows the current VM's status.
•	 vagrant up [machine]: This turns on all the existing VMs or the specified

one. The VM is generated from a base box. If the box is not locally stored,
then it's downloaded and saved in ~/.vagrant.d/boxes/.

•	 vagrant provision [machine]: This runs the provisioning scripts on one
or all VMs.

•	 vagrant halt [machine]: This stops one specific or all VMs.
•	 vagrant destroy [machine]: This destroys one specific or all VMs (their

content will be erased; they can then be recreated with vagrant up).
•	 vagrant ssh [machine]: This makes an SSH connection to a running VM.

Once logged in, we should be able to run sudo -s to gain root privileges
without entering a password.

In our Vagrant environment, we can place Puppet modules in the modules and site
directories. The first manifest file applied to nodes is manifests/site.pp; the Hiera
configuration file is hiera-vagrant.yaml, and its data is in hieradata.

The repository also provides a simple parc script that allows the selection of
alternative sample Puppet architectures.

The ability to quickly and easily create virtual machines where to run Puppet on
makes Vagrant the perfect tool to test the effects of our changes on Puppet manifests
on a real system in automated or manual ways.

Deploying the Puppet code
Deployment of the Puppet code is, most times, a matter of updating modules,
manifests, and Hiera data on the relevant directories of the Puppet Master.

Chapter 8

[195]

We deal with two logically different kinds of code that involve different management
patterns, which are:

•	 Our modules, manifests, and data
•	 The public modules we are using

We can manage them in various ways. Some of them are:

•	 Eventually using Git submodules for each Puppet module in Git
•	 Using the puppet module command for the public modules published

on the Forge
•	 Using tools such as librarian-puppet and r10k
•	 Using other tools or custom procedures that we may write specifically

for our needs

Using librarian-puppet for deployments
The librarian-puppet tool (http://librarian-puppet.com) was developed
to manage the installation of a set of modules from the Puppet Forge or any Git
repository. It is based on Puppetfile, where the modules and the versions to install
are defined:

forge "http://forge.puppetlabs.com"

Install a module from the Forge
mod 'puppetlabs/concat'

Install a specific version of a module from the Forge
mod 'puppetlabs/stdlib', '2.5.1'

Install a module from a Git repository
mod 'mysql',
 :git => 'git://github.com/example42/puppet-mysql.git',

Install a specific tag of a module from a Git repository
mod 'mysql',
 :git => 'git://github.com/example42/puppet-mysql.git',
 :ref => 'v2.0.2'

Install a module from a Git repository at a defined branch
mod 'mysql',

http://librarian-puppet.com

Code Workflow Management

[196]

 :git => 'git://github.com/example42/puppet-mysql.git',
 :ref => 'origin/develop'

We can install all the modules referenced in the local Puppetfile in our modulepath
directory with the following:

librarian-puppet install

Deploying code with r10k
The r10k tool was written by Adrien Thebo, who works in Puppet Labs, to manage
deployment of Puppet code from Git repositories or the Forge. It fully supports the
format of librarian-puppet for Puppetfile, but it is also an alternative tool that
empowers a workflow based on Puppet's dynamic environments.

It can be installed as gem:

gem install r10k

In the configuration file /etc/r10k.yaml, we define one or more source Git
repositories to deploy in the defined basedir directory:

:cachedir: '/var/cache/r10k'
:sources:
 :site:
 remote: 'https://github.com/example/puppet-site'
 basedir: '/etc/puppet/environments'

The interesting thing is that we find a separate directory inside the defined basedir
for each branch of our Git source, which can be dynamically mapped to Puppet
environments.

To run a deploy from the repository where we have a Puppetfile, we can run the
following:

r10k deploy environments -p

This creates a directory for each branch of our repository under /etc/puppet/
environments. We find all the modules defined in Puppetfile under the modules/
directory inside these directories.

Chapter 8

[197]

Propagating Puppet changes
Deployment of the Puppet code on production is a matter of updating the files on the
directories served by Puppet Master (or, in a Masterless setup, distributing these files
on each node), but contrary to other typical application deployments, the process
doesn't end here: we need to run Puppet on our nodes in order to apply the changes.

How this is done largely depends on the policy we follow to manage Puppet
execution. We can manage Puppet runs in different ways, and this affects how our
changes can be propagated:

•	 Running Puppet as a service: In this case, any change on the Puppet
production environment (or what is configured as default) is propagated to
the whole infrastructure in the runinterval timeframe.

•	 Running Puppet via a cron job has a similar behavior: Whatever is pushed to
production is automatically propagated in the cron interval we defined. Also,
in this case, if we want to make controlled executions of Puppet on selected
servers, the only approach involves the usage of dedicated environments
before the code is promoted to the production environment.

•	 Manage Puppet runs in a central way: MCollective (check http://www.
slideshare.net/PuppetLabs/presentation-16281121 for a good
presentation on how to do it) is an option that can be used for managing
Puppet centrally. Once our code has been pushed to production, we still have
the possibility to manually run it on single machines before propagating it to
the whole infrastructure. The complete rollout can then be controlled further
by either using canary nodes, where changes are applied and monitored first,
or by having different clusters of nodes in a large installation, where changes
can be propagated in a controlled way.

Whatever pattern is used, it's very important and useful to keep an eye on the
Puppet reports and spot quickly early signs of failures caused by Puppet's runs.

Puppet Continuous Integration tools
We reviewed the tools than can accompany our code from creation to
production. Whatever happens after we commit and eventually approve
our code can be automated.

It is basically a matter of executing commands on local or remote systems that
use tools like the ones we have seen in this chapter for the various stages of a
deployment workflow.

http://www.slideshare.net/PuppetLabs/presentation-16281121
http://www.slideshare.net/PuppetLabs/presentation-16281121

Code Workflow Management

[198]

Once we have these single bricks that fulfill a specific function, we can automate the
whole workflow with a Continuous Integration (CI) tool that can run each step in an
unattended way, and proceed to the following if there are no errors.

There are various CI tools and services available; we will concentrate on a pair of
them that are particularly popular in the Puppet community:

•	 Travis: This is an online Continuous Integration as a service project
•	 Jenkins: This is a well-known and widely used Hudson fork

Travis
Travis (https://travis-ci.org) is an online continuous integration service that
perfectly integrates with Github.

It can be used to run tests of any kind; in the Puppet world, it is generally used
to validate modules code with rspec-puppet. Refer to the online documentation
(http://docs.travis-ci.com/user/getting-started/) on how to enable the
Travis hooks on GitHub; on our repo, we configure it with a .travis.yml file like
the following:

language: ruby
rvm:
 - 1.8.7
 - 1.9.3
script:
 - "rake spec SPEC_OPTS='--format documentation'"
env:
 - PUPPET_VERSION="~> 2.6.0"
 - PUPPET_VERSION="~> 2.7.0"
 - PUPPET_VERSION="~> 3.1.0"
matrix:
 exclude:
 - rvm: 1.9.3
 env: PUPPET_VERSION="~> 2.6.0"
 gemfile: .gemfile.travis

gemfile: .gemfile.travis
notifications:
 email:
 - al@lab42.it

https://travis-ci.org
http://docs.travis-ci.com/user/getting-started/

Chapter 8

[199]

As we can see from the previous lines, it is possible to test our code on different
Ruby versions managed by Ruby Version Manager (RVM), available at https://
rvm.io, and different Puppet versions.

It's also possible to exclude some entries from the full matrix of the various
combinations (for instance, the previous example executes the rake spec command
to run the puppet-rspec tests in five different environments: 2 Ruby versions, 3
Puppet versions and - 1 matrix exclusion).

If we publish our shared Puppet modules on GitHub, Travis is particularly useful
to automatically test the contributions we receive, as it is directly integrated on
the GitHub pull requests workflow, which is commonly used to submit fixes or
enhancements on the code to a repository author (check https://help.github.
com/categories/63/articles for details).

Jenkins
Jenkins is by far the most popular open source CI tool. We are not going to describe
how to install and use it; we will just point out useful plugins for our purposes.

A Puppet-related code workflow can follow common patterns; when a change
is committed and accepted, Jenkins can trigger the execution of tests of different
kinds and if they pass, can automatically (or after human confirmation) manage the
deployment of the Puppet code on production (typically by updating the directories
on Puppet Master, which are used by the production environment).

Among the multitude of Jenkins plugins (https://wiki.jenkins-ci.org/
display/JENKINS/Plugins), the ones that are most useful for our purposes are:

•	 ssh: This allows execution of a command on a remote server. It can be used
to manage deployments with librarian-puppet or r10k, or it can execute
specific tests.

•	 RVM/rbenv: This integrates with RVM or rbenv to manage execution of
tests in a controlled Ruby environment. It can be used for rspec-puppet
and puppet-lint checks.

•	 GitHub/Gerrit: This integrates with GitHub and Gerrit to manage
code workflow.

•	 Vagrant: This integrates with Vagrant for tests based on real
running machines.

https://rvm.io
https://rvm.io
https://help.github.com/categories/63/articles
https://help.github.com/categories/63/articles
https://wiki.jenkins-ci.org/display/JENKINS/Plugins
https://wiki.jenkins-ci.org/display/JENKINS/Plugins

Code Workflow Management

[200]

Testing can be done locally on the Jenkins server (using the RVM/rbenv plugins) or
on any remote host (via the ssh plugin or similar tool); deployment of the code can
be done in different ways, which will probably result in the execution of a remote
command on Puppet Master.

Summary
In this chapter, we reviewed the tools that can help us to write our Puppet code, and
manage, test, and deploy it.

We have seen how to enhance our writing experience on Geppetto, Puppet Labs
official Puppet IDE, and Vim, a sysadmin's evergreen tool. We also learned how to
version and manage code with Git, and how to introduce, eventually, a peer review
and approval system such as Gerrit.

We have then seen the different tools and methodologies available to test our
code: simple syntax checks that should be automated in Git hooks, style checks
with puppet-lint, unit testing on modules with puppet-rspec, real-life (and
ephemeral) acceptance tests on running virtual machines managed with Vagrant,
and tools such as Beaker.

We have finally faced how the Puppet code can be delivered to production with tools
such as librarian-puppet and r10k.

The execution of these individual tools can be automated with CI tools either to
automatically trigger tests when a pull request is made on a GitHub repository
such as Travis or to manage the whole workflow from code commit to production
deployment with Jenkins.

The next chapter is about scaling, and focuses on how to make our Puppet setup
grow with our infrastructure.

Scaling Puppet
Infrastructures

There is one thing that I particularly like about Puppet: its usage patterns can grow
with the user's involvement. We can start using it to explore and modify our system
with puppet resource, we can use it with local manifests to configure our machine
with puppet apply, and we can have a central server where a puppet master service
provides configurations for all our nodes where we run the puppet agent command.

Then our nodes' number may grow and we may find ourselves with an
overwhelmed Puppet Master that needs to scale accordingly.

In this chapter, we will review how to make our Master grow with our infrastructure
and how to measure and optimize Puppet performances. We will learn the following:

•	 Optimizing the Puppet Master with Passenger
•	 Scaling the Puppet Masters horizontally
•	 Load balancing alternatives
•	 Masterless setups
•	 Store configs with PuppetDB
•	 Profiling Puppet performances
•	 Code optimization

Scaling Puppet
Generally, we don't have to care about the Puppet Master's performance when we
have a few nodes to manage.

Scaling Puppet Infrastructures

[202]

Few is definitely a relative word; I would say any number lower than one hundred
of nodes, which varies according to various factors such as the following:

•	 System resources: The bare performances of the system, physical or
virtual, where our Puppet Master is running are obviously a decisive point.
Particularly needed is the CPU, which is devoured by the puppet master
process when it compiles the catalogs for its clients and when it makes MD5
checksums of the files served via the fileserver. Memory can be a limit too
while disk I/O should generally not be a bottleneck.

•	 Average number of resources for node: The more resources we manage in a
node, the bigger becomes the catalog and the time required to compile it on
the Puppet Master, deliver it via network, and finally receive and process the
clients' reports.

•	 Number of managed nodes: The more nodes we have in our infrastructure,
the more work is expected from the Puppet Master. More precisely, what
really matters for the Master is how many catalogs it has to compile per unit
of time. So the number of nodes is just a factor of a multiplication, which also
involves the next point.

•	 Frequency of Puppet runs for each node: The default 30 minutes, when
Puppet runs as a service, may be changed, and this has a big impact on the
work submitted to the Master.

•	 Exported resources: If we use exported resources, we may have a huge
impact on the performances, especially if we don't use PuppetDB as the
backend for storeconfigs.

As simple as puppet apply
The simplest way we have to use Puppet is via the apply command. It is simple but
powerful, because using it, we can apply exactly the same catalog that would be
retrieved from the Puppet Master on the local node.

The manifest file we may apply locally can be similar to our site.pp file on the
Puppet Master; we just have to specify the modulepath directory and eventually the
hiera_config parameters to be able to reproduce the same result we would have
with a client-server setup:

puppet apply --modulepath=/etc/puppet/modules:/etc/puppet/site \
 --hiera_config=/etc/puppet/hiera.yaml \
 /etc/puppet/manifests/site.pp

Chapter 9

[203]

We can mimic an External Node Classifier by placing all the top scope variables and
classes that would be provided by it on our manifest file. This usage pattern with
Puppet is the most simple and direct and, curiously, is also a popular choice in some
large installations. We will see later how a Masterless approach based on puppet
apply can be an alternative for scaling.

Default Puppet Master
A basic Puppet Master installation is rather straightforward: we just have to install
the server package and we have what is needed to start to work with Puppet. The
following are the requirements:

•	 A puppet master service, which can start without any further configuration
•	 Automatic creation of the CA and the Master certificates
•	 Default configurations that involve the following settings:

°° First manifest file processed by the Master in /etc/puppet/
manifests/site.pp

°° Modules searched in /etc/puppet/modules and /usr/share/
puppet/modules

Now we just have to run Puppet on clients with puppet agent -t --server
<pupptmaster fqdn> and sign their certificates on the master (puppet cert sign
<client certname>) to have a working client-server environment.

We can work with such a setup if we have no more than a few dozens of nodes
to manage.

We have already seen the elements that affect the Puppet Master's resources, but
there is another key factor that should interest us: what are our acceptable catalog
compilation and application times?

Compilation occurs on the Puppet Master, unless we operate in Masterless mode,
and can last from a few seconds to minutes; it is heavily affected by the number
of resources and relationships to manage, but also, obviously, by the load on the
Puppet Master, which is directly related to how frequently it has to compile catalogs.

Scaling Puppet Infrastructures

[204]

If the compilation time is too long for us, we will need to verify the following
conditions:

•	 Compilation time is always long even with a single catalog processed at a
time. In this case, we will have to work on two factors: code optimization and
CPU power. Our manifests may have plenty of resources and we have to work
on how to optimize our code (we will see later how). We can also provide
more CPU power to our Puppet Master as that is needed during compilation.
Of course, we should verify its overall sanity: it should not regularly swap
memory pages to disk and should not have faulty hardware that might affect
performance. If we use stored configs, we should definitely use PuppetDB as
the backend, either on the same server or on a dedicated one.

•	 Compilation time becomes long because many concurrent catalogs are
processed at the same time. Our default Puppet Master setup can't handle the
quantity of nodes that interrogate it. Many options are available in this case.
We will list them by their ease of implementation as follows:

°° Reduce the frequency of each Puppet run (the default 30 minutes
interval may be definitely longer, especially if we have a way to
trigger Puppet runs in a centrally managed way, for example, via
MCollective, so that we can easily force urgent runs).

°° Use Apache Passenger instead of the default web server.
°° Have a multi-Master setup with load-balanced servers. Of

course, in this case also, we can work on code optimization and
system's resources.

Puppet Master with Passenger
Passenger, also known as mod_rails or mod_passenger, is a fast application server
that can work as a module with Apache or Nginx to serve Ruby, Python, Node.js, or
Meteor web applications. Puppet is a Ruby application that uses HTTPS for client-
server communication and it can gain great benefits by using Passenger, instead of
the default and embedded Webrick as a web server.

The first element to consider when there is the need to scale the Puppet Master is
definitely the introduction of Passenger. It brings a pair of major benefits that are
listed as follows:

•	 General better performances in serving HTTP requests (either via Apache or
Nginx, which are definitely more efficient than Webrick).

Chapter 9

[205]

•	 Multi-CPU support. On a standalone Puppet Master, there is just one process
that handles all the connections and that process uses only one CPU. With
Passenger, you can have more concurrent processes that better use all the
available CPUs.

On modern systems, where multiprocessors are the rule and not the exception, this
leads to huge benefits.

Installing and configuring Passenger
Let's quickly see how to install and configure Passenger, using plain Puppet
resources.

For the sake of brevity, here we simulate an installation on a RedHat 6 derivative.
For other breeds, there are different methods to set up the source repo for packages
and possibly different names and paths for resources.

The following Puppet code can be placed on a file such as setup.pp and run with
puppet apply setup.pp.

First of all, we need to set up the following EPEL repo, which contains extra
packages for RedHat Linux that we need:

yumrepo { 'epel':
 mirrorlist =>
 'http://mirrors.fedoraproject.org/mirrorlist?repo=epel-
 6&arch=$basearch',
 gpgcheck => 1,
 enabled => 1,
 gpgkey => 'https://fedoraproject.org/static/0608B895.txt',
}

Then we set up the Passenger's upstream yum repo of Stealthy Monkeys as follows:

yumrepo { 'passenger':
 baseurl =>
 'http://passenger.stealthymonkeys.com/rhel/$releasever/$basearch',
 mirrorlist =>
 'http://passenger.stealthymonkeys.com/rhel/mirrors',
 enabled => 1,
 gpgkey => 'http://passenger.stealthymonkeys.com/RPM-GPG-KEY-
 stealthymonkeys.asc',
}

Scaling Puppet Infrastructures

[206]

We will then install all the required packages with the following code:

package { ['mod_passenger' , 'httpd' , 'mod_ssl' , 'rubygems']:
 ensure => present,
}

Since there is not a native RPM package, we install rack, a needed dependency, as a
Ruby gem:

package { 'rack':
 ensure => present,
 provider => gem,
}

We also need to configure an Apache virtual host file:

file { '/etc/httpd/conf.d/passenger.conf':
 ensure => present,
 content => template('puppet/apache/passenger.conf.erb')
}

In our template ($modulepath/puppet/templates/apache/passenger.conf.erb
would be its path for the previous sample), we need different parameters
configured. The basic Passenger settings that can eventually be placed in a
dedicated file are as follows:

PassengerHighPerformance on
PassengerMaxPoolSize 12 # Lower this if you have memory issues
PassengerPoolIdleTime 1500
PassengerStatThrottleRate 120
RackAutoDetect On
RailsAutoDetect Off

Then, we configure Apache to listen to the Puppet Master's port 8140 and create a
virtual host on it:

Listen 8140
<VirtualHost *:8140>

On the virtual host, we terminate the SSL connection. Apache must behave as a
Puppet Master when clients connect to it, so we have to configure the paths of the
Puppet Master's SSL certificates as follows:

 SSLEngine on
 SSLProtocol -ALL +SSLv3 +TLSv1
 SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:-LOW:-SSLv2:-EXP
 SSLCertificateFile /var/lib/puppet/ssl/certs/<%= @fqdn %>.pem

Chapter 9

[207]

 SSLCertificateKeyFile /var/lib/puppet/ssl/private_keys/<% @fqdn
 %>.pem
 SSLCertificateChainFile /var/lib/puppet/ssl/certs/ca.pem
 SSLCACertificateFile /var/lib/puppet/ssl/certs/ca.pem
 SSLCARevocationFile /var/lib/puppet/ssl/certs/ca_crl.prm
 SSLVerifyClient optional
 SSLVerifyDepth 1
 SSLOptions +StdEnvVars

We also need to add some extra HTTP headers to the connection that is made to the
Puppet Master in order to let it identify the original client (details on this later) as
follows:

RequestHeader set X-SSL-Subject %{SSL_CLIENT_S_DN}e
RequestHeader set X-Client-DN %{SSL_CLIENT_S_DN}e
RequestHeader set X-Client-Verify %{SSL_CLIENT_VERIFY}e

Then we enable Passenger and define a document root where we will create the Rack
environment to run Puppet as follows:

 PassengerEnabled On
 DocumentRoot /etc/puppet/rack/public/
 RackBaseURI /
 <Directory /etc/puppet/rack/public/>
 Options None
 AllowOverride None
 Order allow,deny
 allow from all
 </Directory>

Finally, we will add the normal logging directives as follows:

 ErrorLog /var/log/httpd/passenger-error.log
 CustomLog /var/log/httpd/passenger-access.log combined
</VirtualHost>

Then we need to create the Rack environment working directories and configuration
as follows:

file { ['/etc/puppet/rack',
 '/etc/puppet/rack/public',
 '/etc/puppet/rack/tmp']:
 ensure => directory,
 owner => 'puppet',
 group => 'puppet',
}

Scaling Puppet Infrastructures

[208]

file { '/etc/puppet/rack/config.ru':
 ensure => present,
 content => template('puppet/apache/config.ru.erb')
 owner => 'puppet',
 group => 'puppet',
}

In our config.ru file, we need to instruct Rack on how to run Puppet as follows:

if puppet is not in your RUBYLIB:
$LOAD_PATH.unshift('/opt/puppet/lib')
$0 = "master"
ARGV << "--debug" # Uncomment to debug
ARGV << "--rack"
ARGV << "--confdir" << "/etc/puppet"
ARGV << "--vardir" << "/var/lib/puppet"
require 'puppet/util/command_line'
run Puppet::Util::CommandLine.new.execute

Once these settings are configured, we can start our Apache. However, before doing
this, we need to disable the standalone Puppet Master service as it listens to the same
8140 port and it would overlap with our Apache service:

service { 'puppetmaster':
 ensure => stopped,
 enable => false,
}

Then we can finally start our Apache with Passenger. Remember that whenever we
make changes to Puppet's configuration, the service to restart to apply these changes
is Apache. The Puppet Master standalone process should remain stopped.

service { 'httpd':
 ensure => running,
 enable => true,
 require => Service['puppetmaster'], # We start apache after
 having managed the puppetmaster service shutdown
}

All this code, with the ERB templates it uses, should be placed in a module that
allows autoloading of classes and files.

Chapter 9

[209]

Multi-Master scaling
A Puppet Master running under Passenger on a decently sized server (with at least
four CPUs and 4 GB of memory) should be able to cope with hundreds of nodes.

When this number starts to enter in the range of thousands, a single server begins to
have problems in handling all the traffic and we need to scale horizontally, adding
more Puppet Masters to manage clients' requests in a balanced way.

There are some issues to manage in such a scenario; the most important ones are:

•	 How to manage the CA and the server certificates
•	 How to manage SSL termination
•	 How to manage Puppet code and data

Managing certificates
Puppet's certificates are issued by a Certificate Authority, which is automatically
created on the Master when we start it the first time. We usually don't care much
about it, we just sign certificate requests with puppet cert and have everything we
need to work with clients.

On a multi-Master setup, an accurate management of the Puppet Certification
Authority and Puppet Masters' certificates becomes essential.

The main element to consider is that the first time puppet master is executed, it
automatically creates two different certificates, which are as follows:

•	 The CA certificate used to sign all the other certificates:
°° Public key is stored in /var/lib/puppet/ssl/ca/ca_pub.pem
°° Private key is in /var/lib/puppet/ssl/ca/ca_key.pem
°° Certificate file is in /var/lib/puppet/ssl/ca/ca_crt.pem

•	 The Puppet Master's own host certificate that is used to communicate
with clients:

°° Public key is stored in /var/lib/puppet/ssl/public_keys/<fqdn>
°° Private key is stored in /var/lib/puppet/ssl/private_

keys/<fqdn>; the same paths are used on clients for their
own certificates

Scaling Puppet Infrastructures

[210]

On the Puppet Master, all the clients' public keys that still need to be signed by the
CA are placed in /var/lib/puppet/ssl/ca/requests. The ones that have been
signed are in /var/lib/puppet/ssl/ca/signed.

The CA, which is managed via the puppet ca command, performs the
following functions:

•	 Signs Certificate Signing Requests (CSR) from clients and transforms them
in x509v3 certificates (when we issue puppet cert sign <certname>)

•	 Manages the Certificate Revocation List (CRL) of certificates we revoke with
the puppet cert revoke <certname> command

•	 Authenticates Puppet clients and Masters making them establish a
trustworthy relationship and communicate over SSL

There is a pair of important parameters that are related to certificates, which should
be considered in puppet.conf before launching the Puppet Master for the first time:

•	 dns_alt_names: This allows us to define a comma-separated list of names
with which a node can be referred to when using its certificate. This is useful
for the Puppet Master when planning a multi-Master load-balanced setup,
where we will have different masters with different hostnames. By default,
Puppet creates a certificate that automatically adds to the host's fqdn the
names puppet and puppet.$domain. We should be sure to have in this list of
names both the local server hostname and the name the clients use to refer to
the Puppet Master (probably associated with the IP of a load balancer).

•	 ca_ttl: This sets the duration, in seconds, of the certificates signed by the
CA. The default value is 157,680,000, which means that after five years we
have started for the first time our Puppet Master, its certificate expires and
has to be reissued. This is an experience that many of us have already faced
and involves the re-creation and signing of all their certificates.

Note that the whole /var/lib/puppet/ssl directory (which is the
default value of the ssldir configuration parameter) and the certificates
it contains are recreated from scratch if they don't exist when Puppet
runs. Therefore, if we want to recreate our Puppet Master's certificates
with corrected settings, we have to move that directory to a backup place
(just as a precaution in case we change idea, we won't need it anymore
otherwise), configure puppet.conf as needed, and restart the Puppet
Master service.
This is an activity that we can do lightheartedly, on the Master, only
when it has just been installed and there are no or few signed clients.
This is because when we recreate the ssldir with new certificates on the
Master, all the previously signed clients certificates are no longer valid
and have to be recreated.

Chapter 9

[211]

CA management in a multi-Master setup can be done in the following different ways:

•	 Configure one of the load-balanced Puppet Masters as a CA server, and have
all the other ones using it for CA activities. In this case, all the servers act as
Puppet Masters and one of them also does the CA.

•	 Configure an external, eventually in High Availability, Puppet Master that
provides only the CA service and is not used to compile clients' catalogs.

In puppet.conf, the configuration is quite straightforward when the CA server is (or
might be) different from the Puppet Master:

•	 On all the clients, explicitly set the ca_server hostname (by default, it is the
same Puppet Master):
[agent]
 ca_server = puppetca.example42.com

•	 On the CA server, basically, no particular configuration is needed:
[master]
 certname = puppetca.example42.com
 ca = true

•	 On the other Puppet Masters, we just have to define that the local server is
not a CA and to look, as done for all the clients, for another ca_server:

[agent]
 ca_server = puppetca.example42.com
[master]
 certname = puppet01.example42.com
 ca = false

Managing SSL termination
When we deal with Puppet's client server traffic, we can apply all the logics that are
valid for HTTPS connections. We can, therefore, have different scenarios as follows:

•	 Clients' proxy (clients can use a proxy to reach remote or not directly
accessible Puppet Masters)

•	 Master's reverse proxy (all clients communicate with frontend servers that
proxy their requests to the backend workers)

•	 Load-balanced Masters at the network level (clients communicate directly
with a load-balanced server)

•	 Load-balanced Master at the application level (clients communicate with an
intermediate host that balances and reverse proxies the master)

Scaling Puppet Infrastructures

[212]

While configuring the involved elements, we have to take care of the
following elements:

•	 The SSL certificates used where the SSL connection is terminated must
always be the ones of the Puppet Master and of the CA. If they are on
different servers, we need to copy them.

•	 We have to communicate the client's name to the Puppet Master. This is
done by setting, where SSL is terminated, the HTTP headers X-SSL-Subject,
X-Client-DN, and X-Client-Verify, the latter indicates to the Master if the
certificate is authenticated.

In our puppet.conf file, there are always the following default settings, which
define the name of the HTTP header (with an HTTP_ prefix and underscores instead
of dashes).

They contain the clients' SSL Distinguished Name (DN) and the name of the HTTP
header that contains the status message of the client verification (the expected value
for a trusted, not revoked, client certificate is SUCCESS):

ssl_client_header = HTTP_X_CLIENT_DN
ssl_client_verify_header = HTTP_X_CLIENT_VERIFY

On the web server(s) where SSL is terminated (it might be Passenger in a single
server setup or an Apache, which balances and reverse proxies backend Puppet
Masters), we need to set these HTTP headers extracting information from SSL
environment variables as follows:

RequestHeader set X-SSL-Subject %{SSL_CLIENT_S_DN}e
RequestHeader set X-Client-DN %{SSL_CLIENT_S_DN}e
RequestHeader set X-Client-Verify %{SSL_CLIENT_VERIFY}e

These servers are the ones that communicate directly with clients and terminate
the SSL connection; we can define them as frontend servers. They act as a proxy
and generate a new connection to the backend Puppet Masters that do the real
work and compile catalogs.

Since SSL has been terminated on the frontends, traffic from them to the backend
servers is in clear text (they are supposed to be in the same LAN) and on the backend
Apache we need to state where to get the client's certificates DN, using the previous
extra headers:

SetEnvIf X-Client-Verify "(.*)" SSL_CLIENT_VERIFY=$1
SetEnvIf X-SSL-Client-DN "(.*)" SSL_CLIENT_S_DN=$1

Chapter 9

[213]

Also, on a backend server, we do not need to configure all the other SSL settings; we
just need a VirtualHost with Rack configurations.

Given this information, we can compose our topology of web servers that handle
Puppet traffic in a very flexible way, with one or more frontend servers that proxy
requests to the backend Puppet Masters and terminate SSL, and with backend
Puppet Masters that run Puppet via Passenger.

Managing code and data
Deployment of Puppet code and data is another factor to consider. We probably want
the same code deployed on all our Puppet Masters. We can do this in various ways:
all of them basically require the remote execution of some commands (if we want to
avoid the need to log in to each server every time a change on Puppet is done) or a
way to keep files synced across different servers.

How a deployment script or command may work is definitely tied to how we
manage our code: we might execute r10k or librarian-puppet, or make a Git pull
on our local directories to fetch changes from a central repo.

Alternatively, we might decide to have our Puppet code and data on a shared
filesystem or keep them synced with tools such as rsync.

In any case, we have to copy/sync or share all the directories where our code and
data are placed: the modules, manifest, and Hiera directories, if used.

Load balancing alternatives
When we have to balance a pool of Puppet Masters, we have different options which
are as follows:

•	 HTTP load balancing with SSL termination done on the load balancer,
which then proxies clients' requests to the Puppet Masters.

•	 TCP load balancing with SSL termination done on the Puppet Masters that
directly communicate with clients. In this case, the load balancer listens to
the virtual IP associated to the Master hostname configured on the clients.
It then redirects all the TCP connections to the Puppet Masters (they need
to have the name of the Puppet Master host configured on clients in their
dns_alt_names configuration).

Scaling Puppet Infrastructures

[214]

•	 DNS round robin can be considered the poor man alternative to TCP load
balancing. Clients are configured to use a single hostname for the Puppet
Master, which is resolved, via DNS, to the multiple masters' addresses. Also
in this case, SSL connections are terminated directly on the masters and they
must have in their dns_alt_names the name used by clients. This solution
is quite easy to implement, as it does not require additional systems to
manage load balancing, but has the (major) drawback of not being able to
detect failures and remove nonresponding Puppet Masters from the pool of
balanced servers.

•	 DNS SRV records can also be used to define the IP addresses of the Puppet
Masters via DNS, allowing the possibility to set priorities and failovers. This
feature is available only on Puppet 3 and later.

Masterless Puppet
An alternative approach to the Puppet Master scaling methods we have seen up to
now is not to use it at all. Masterless setups involve the direct execution of puppet
apply on each node, where all the needed Puppet code and data has to be stored.

In this case, we have to find a way to distribute our modules, manifests, and
eventually Hiera data to all the clients. We still can use external components such as:

•	 ENC: The external_nodes script can work as it works on the Puppet
Master: it can interrogate any external source of knowledge on how to
classify nodes. A concern here is whether it makes sense to introduce a
central point of authority when we want a distributed decentralized setup.

•	 Report: Also, the reporting function can work exactly as it works on
the Puppet Master. Also here, as for the ENC, the basic difference is
that whatever the tool used, it must allow access from any node in our
infrastructure, and not just the Master.

•	 Exported Resources: These can be used too, with some caveats. If we use the
active records backend, we need to access the database from all the nodes. If
we use PuppetDB, we need to establish a trust between the certificates of the
PuppetDB server and the ones of each client.

We also need a way to run Puppet on the clients in an automated or centrally
managed way; it may be via a cron job or a remote command execution.

Distribution of Puppet code and data may be done in different ways as follows:

•	 Executing git pull to fetch updates from a central repository
•	 Updating native packages (rpm, deb, and so on) from a custom repo

Chapter 9

[215]

•	 Running a command such as rsync or rdiff
•	 Mounting from NFS or another network or shared filesystem
•	 Using Bit Torrent with tools such as Murder (https://github.com/lg/

murder)

Configurations and infrastructure
optimizations
Whatever is the layout of our Puppet infrastructure, we may consider some other
options to optimize its performance.

Traffic compression
A first quick attempt may be done by activating the compression of HTTPS traffic
between the clients and the master. The following option has to be set on the
puppet.conf on both ends:

http_compression = true

The case where it makes sense to enable it is mostly where we have clients that reach
the server via a WAN link, generally via a VPN, where throughput is definitely not
the one we have on LAN communications. If we have large catalogs and reports, their
compression during transfer, since it involves mostly text files, can be quite effective.

Caching
Another area where we might operate is catalog caching. This is a delicate topic,
as it is not easy to determine what has changed on the clients' side (some facts such
as uptime always change by definition, others are supposed to be more stable) and
on the server's side (changes on the Puppet code and data may or may not affect a
specific node). The challenge, therefore, is to always provide the correct and updated
catalog when a caching mechanism is in place.

Puppet provides some configuration options to manage caching. By default, Puppet
doesn't recompile the catalog if it has a local version cached with an updated
timestamp and facts that have not changed. When we want to be sure to obtain a
new catalog, we have to enable the ignorecache option:

ignorecache = false # Default: false

Note that this is automatically done when we run the command puppet agent -t,
which ensures that we always have a freshly compiled catalog.

https://github.com/lg/murder
https://github.com/lg/murder

Scaling Puppet Infrastructures

[216]

We can also tell the client to always use a local cached copy of the catalog, instead of
asking the Puppet Master:

use_cached_catalog = true # Default: false

This might be useful in cases where we want to temporarily "freeze" the
configurations applied to a client without having to disable the Puppet service and
without caring about eventual changes on the Puppet Master.

Distributing Puppet execution times
If we run Puppet via cron or other time-based mechanisms, we definitely need to
avoid the problem of having all our clients hitting the Master and requesting their
catalog at the same time. There are various options to distribute Puppet runs in order
to avoid peaks of too many concurrent requests.

We can introduce a random sleep delay in the command we execute via cron, for
example, with cron entries based on ERB templates such as:

0,30 * * * * root sleep <%= @sleep &> ; puppet agent --onetime

In the previous code, the $sleep variable with the number of seconds to wait may
be randomly defined in Puppet manifests with the fqdn_rand() function, which
returns a random value based on the node's full hostname (so it's random, not in a
cryptographically usable way, but doesn't change at every catalog compilation):

$sleep = rqdn_rand('1800') # Returns a number from 0 to 1800

Alternatively, we can use the splay configuration option in puppet.conf that
introduces a random (but consistent) delay at every Puppet run, which can be as
long as defined by splaylimit (whose sane default is Puppet's run interval):

splay = true # Default: false
splaylimit = 1h # Default: $runinterval

Checking the interval for changes in files
On the Puppet Master, there is an option, filetimeout, which sets the minimum
time to wait between checking for updates in configuration files (manifests,
templates, and so on). This determines how quickly the Master checks whether a
file has changed on the disk. The default value is 15 seconds, and can be changed in
puppet.conf.

Chapter 9

[217]

This setting has very limited effects on the performances (unless, I suppose, we
lower it too much), but it's important to know that it exists, because this is the reason
why, sometimes, nothing new happens on the client when we launch a Puppet run
immediately after a change on some file of the Puppet Master.

This may lead to some confusion. We make a change on some manifests, we run
Puppet, and nothing happens. Then we run Puppet again and the change is finally
received and we wonder what is happening. Therefore, beware that there is such
an option and, more importantly, this behavior on the Master, which "scans" the
directories where our Puppet code and files are placed at regular intervals, might not
immediately process the very latest changes made on these files.

Scaling stored configs
We have seen that the usage of exported resources allows resources declared on
a node to be applied on another node. In order to achieve this, Puppet needs the
storeconfigs option enabled and this involves the usage of an external database
where all the information about the exported resources is stored.

The usage of store configs has been historically a big performance killer for
Puppet. The amount of database transactions involved for each run makes it
quite a resource-intensive activity.

There are various options in puppet.conf that permit us to tune our configurations.
The default settings are as follows:

storeconfigs = false
storeconfigs_backend = active_record
dbadapter = sqlite3
thin_storeconfigs = false

If we enable them with storeconfigs = true, the default configuration involves
the usage of the active_record backend and a SQLite database.

This is a solution that performs quite badly and, therefore, should be used only in
test or small environments. It has the unique benefit that we don't need any other
activity; we just have to install the SQLite Ruby bindings package on our system.
With such a setup, we will quickly have access problems to the SQL backend with
multiple concurrent Puppet runs.

Scaling Puppet Infrastructures

[218]

The next step is to use a more performant backend for data persistence. Before the
introduction of PuppetDB, MySQL was the only alternative. In order to enable it, we
have to set the following options in puppet.conf:

dbadapter = mysql
dbname = puppet # Default value
dbserver = localhost # Default value
dbuser = puppet # Default value
dbpassword = puppet # Default value

Such a setup involves a local MySQL server where we have created a puppet
database with the relevant grants. Thus, from our MySQL console, we should write
something like the following code:

create database puppet;
GRANT ALL ON puppet.* to 'puppet'@'localhost' IDENTIFIED by 'puppet';
flush privileges;

This is enough to have a Puppet Master storing its data on a local MySQL backend.
If the load on our systems grows, we can move the MySQL service to another
dedicated server and can tune our MySQL server.

Brice Figureau, who heavily contributed to the original store configs code, made an
interesting presentation at the first Puppet Camp on the topic, which is available at
http://www.slideshare.net/masterzen/all-about-storeconfigs-2123814,
where useful hints to configure MySQL are provided to scale for the inserts:

innodb_buffer_pool_size = 70% of physical RAM
innodb_log_file_size = up to 5% of physical RAM
innodb_flush_method = O_DIRECT
innodb_flush_log_at_trx_commit = 2

Also, to optimize the most common queries on Puppet's Wiki, it is suggested to
create this index from the MySQL console as follows:

use database puppet;
create index exported_restype_title on resources (exported,
 restype, title(50));

We can limit the amount of information stored by setting thin_storeconfigs =
true. This makes Puppet store just facts and exported resources on the database and
not the whole catalog and its related data. This option is useful with the active_
record backend (with PuppetDB this is not necessary).

http://www.slideshare.net/masterzen/all-about-storeconfigs-2123814

Chapter 9

[219]

Finally, there is the possibility to set an option that processes stored configs in an
asynchronous way; in this way, the Puppet Master can compile the catalog without
being locked to database operations:

async_storeconfigs = true
queue_source = stomp://localhost:61613
queue_type = stomp

This requires the usage of the puppet queue command and the setup of a queue
service. It is a rarely used option, which is now obsolete.

What we have written up to now about store configs using the active records
backend made a lot of sense some years ago, and we referenced it here to have a
view on how to scale with store configs. The truth is that the best and recommended
way to use store configs is via the PuppetDB backend; this is done by placing the
following settings in puppet.conf:

storeconfigs = true
storeconfigs_backend = puppetdb

We have dedicated the whole of Chapter 3, PuppetDB, to PuppetDB because it is
definitely a major player in the Puppet ecosystem. The performance improvements it
brings are huge so there is really no reason not to use it.

The components of PuppetDB can be distributed to scale better as follows:

•	 PuppetDB can be horizontally scaled. It's a stateless service entirely based on
a REST-like interface. Different PuppetDB servers can be load balanced either
at TCP or HTTP level.

•	 PostgreSQL server may be moved to a dedicated host and then scaled or
configured in high-availability mode following PostgreSQL's best practices.

Measuring performance
When we start to have a remarkable number of resources on a node (in the order
of several hundreds or thousands), the compilation and application time of a node
catalog grows to uncomfortable levels.

If the number of the nodes to manage is big, even small tunings and optimizations of
our code can bring interesting results.

For this reason, it is useful to have at disposal tools and techniques that permit us to
measure Puppet's performance metrics.

Scaling Puppet Infrastructures

[220]

Puppet metrics
Puppet itself provides some options that help us in understanding where time is
spent during its execution.

At the end of each Puppet run, it is possible to see a detailed report on the time spent
on each kind of activity. In puppet.conf, we can enable reports with the following
option:

report = true # Enable client's reporting

We can have a summary of the run times with the following option:

summarize = true # Print a summary of the Puppet transaction

At the end of a Puppet run, we can have metrics that let us understand how much
time the Master spent in compiling and delivering the catalog (Config retrieval
time) and how much has been spent to manage each of the most common types of
resources: package installation, files management, commands executions, and so on.

Of these metrics, the one related to configuration retrieval time is probably the most
interesting as it is directly related to the work that the Puppet Master has to do.

This key metric can be retrieved directly on the Puppet Master with a quick glance
at the logs, where for each generated catalog the compilation time is reported. On
RedHat-based systems, we can get this with the following command:

grep 'Compiled catalog' /var/log/messages

On other distros or OSes, just look for the log file where syslog stores messages with
the daemon facility (or what's configured by the option, syslogfacility).

If we want to see how much time Puppet takes to evaluate each resource of the
catalog, we can enable the option as follows:

evaltrace = true

This, actually more than for performance reasons (evaluation times should always
be in the order of 0.0x seconds), might be useful when we want to see Puppet's exact
order in evaluating and applying resources.

Since Puppet 3.4.0, we also have a very useful option for profiling at our disposal,
which is as follows:

profile = true

This gives a lot of useful information for troubleshooting performance issues.

Chapter 9

[221]

If we want to load test our Puppet code and setup, we have two useful tools at our
disposal, which are as follows:

•	 The puppet-load.rb script is distributed with Puppet code in the ext
directory and can be used to simulate multiple Puppet runs via the
command line.

•	 There is also a Jenkins plugin that can be used to load test Puppet
with the stress tool Gatling (http://gatling-tool.org/). For more
information, visit http://puppetlabs.com/blog/puppet-gatling-and-
jenkins-together.

Optimizing code
Every Puppet user complains about catalog compilation times. That's a fact. Sooner
or later, seldom or always, depending on our patience and time, we have our
moment of frustration for how much time it takes to churn out the catalogs of our
nodes. There is something we can do for this.

The first basic rule is that the more resources we manage, the longer is the Puppet
run: for each resource, there's something to parse and compile on the Master, write in
the catalog, send to clients, apply locally, report back to the master, and handle to the
report backend.

This is hardly an issue for few resources, but when we have nodes with several
hundred, or sometimes thousands of them, things definitely change.

The overall number of resources managed in our nodes can grow with the
following factors:

•	 The extension of Puppet coverage on more services and managed resources.
This is quite obvious: more the number of components of a system we have
to manage with Puppet, more will be the relevant resources we will have
to declare in our manifests.

•	 A single defined type used many, too many, times. For example, we manage
local system users via Puppet and we have many of them or we have a
server with hundreds or thousands of Apache Virtual Hosts managed by
a specific define.

•	 Excessive usage of a setting-based approach for configuration files
(for example, with Augeas or other in-file line-management defines).
In these cases, the number of resources of our nodes can explode easily
(one resource for each line of each configuration file of each node: the
result of these multiplying factors can easily get out of control).

http://gatling-tool.org/
http://puppetlabs.com/blog/puppet-gatling-and-jenkins-together
http://puppetlabs.com/blog/puppet-gatling-and-jenkins-together

Scaling Puppet Infrastructures

[222]

•	 An excessive use of classes and subclasses that fragment our code. For
example, in my very personal opinion, the pattern that suggests the division
of a module in three major subclasses (for example, openssh::package,
openssh::service, and openssh::config) makes little sense when we have
only one resource for each subclass. A small module that manages a typical
package-service-config application can have its overall number of resources
raise from four (the main class and the package, service, and file resources)
to seven (all the previous plus the three containing subclasses).

When we have the same resource type used many times on the same catalog, we
may study alternatives that deliver great benefits for our performances:

•	 When they are used to manage setting-based configuration files (Augeas
or file_line—from stdlib module—or others), we may question if it
makes sense to manage those files in this way or use a simple ERB template,
eventually using their parameters such as config_file_hash that allow us
to manage any custom configuration entry in a file via a hash.

•	 When a single define is used to create fragments of configuration files, such
as hypothetical apache::vhost, we might evaluate the usage of a function
that returns the whole content of a single huge file based on a datasource
with the information about all the virtual hosts. The result would be a single
resource instead of many.

Besides optimizations on the number of resources, we can consider a few other
general recommendations as follows:

•	 Do not use the file type to deliver too large files or binaries. For each file,
Puppet has to make a checksum to verify if it has changed.

•	 Whenever the source => argument is used to provide a file, a new connection
is made to the PuppetMaster during catalog application time, with content
=> instead, the whole content of the file is placed in the catalog.

•	 Avoid too many elements in a source array for file retrieval as follows:

source => ["site/openssh/sshd.conf---$::hostname" ,
 "site/openssh/sshd.conf--$::env-$::role",
 "site/openssh/sshd.conf-$::role" ,
 "site/openssh/sshd.conf"],

This checks three files (and eventually gets three 404 errors from the server)
before getting the default one.

Chapter 9

[223]

When we have many files provided by the Puppet Master's fileserver
(whenever we use the source argument in a file type), we might evaluate
the opportunity of moving the fileserver functionality to a separate
dedicated node. Here we can set up a normal Puppet Master, which just
serves static files and is not used to compile catalogs. We can then refer to
it in our code as follows:

file { '/tmp/sample':

 source => "puppet://$fileserver_name/path/to/file",

}

Testing different Puppet versions
In the ext/ directory of the Puppet code repository, there is envpuppet, a smart bash
script written by Jeff McCune that makes it easy to test different Puppet versions.

The usage is easy. We create a directory and clone the official Puppet repos from
GitHub using the following commands:

cd /usr/src

git clone git://github.com/puppetlabs/puppet.git

git clone git://github.com/puppetlabs/facter.git

git clone git://github.com/puppetlabs/hiera.git

Then we can switch to the version we want to test using the following command:

cd /usr/src/puppet && git checkout tags/3.0.2

cd /usr/src/facter && git checkout tags/1.6.17

We then set an environment variable that defines the basedir directory for
envpuppet using the following command:

export ENVPUPPET_BASEDIR=/usr/src

Now we can test Puppet prepending the envpuppet to any Puppet, Facter,
or Hiera command as follows:

envpuppet puppet --version

envpuppet facter --version

Alternatively, it can be possible to use the code configuration parameter to
use envpuppet as a default executable for Puppet.

Scaling Puppet Infrastructures

[224]

Summary
In this chapter, we have seen how Puppet can scale while our infrastructure grows.
We have to consider all the components involved.

For test or small environments, we may have an all-in-one server, but it makes sense
to separate these components from the beginning on dedicated nodes:

•	 A Puppet Master under Passenger
•	 PuppetDB and its backend database (we might decide to move the

PostgreSQL service to a dedicated server too)
•	 Eventually an ENC such as Foreman and its backend database (which might

be moved to a dedicated node too)

When we need to scale further, or want high availability on these components, we
can start to scale out horizontally and load balance the Puppet Master, Foreman,
and PuppetDB systems (they all provide stateless HTTP(s) services) and cluster our
database services (following the available solutions for PostgreSQL and MySQL).

When the bottleneck of a centralized Puppet Master service becomes an issue or
simply not a preferred solution, we might decide to go Masterless. This might be
more complex to set up and may add some security concerns (Puppet data about
all nodes are stored on all the other nodes). However, it has the benefit of having
all our clients compiling and running their own manifests independently, without
the bottleneck of a central server. Besides changes at the infrastructure level, we can
scale better if our code performs well.

We have seen how to measure Puppet times and where code and configuration
tuning may improve performances. In particular, we have reviewed the first, most
obvious, and most basic element that affects Puppet times: the number of managed
resources for a node. We also reviewed how we can deal with edge cases where
some of them are used multiple times.

In the next chapter, we are going to dive more deeply into Puppet's internal details
and discover how we can extend its functionalities.

Writing Puppet Plugins
Puppet is impressively extendable. Almost every key component of the software can
be extended and replaced by the code provided by users.

Most of the time, we can use modules to distribute our code to clients. However,
Puppet goes a step further; surprising things are possible, for example, with the
indirector and its termini (somehow strange words that are going to be clearer in the
following pages).

This chapter is about understanding and extending Puppet code. We are going to
review the following topics:

•	 Anatomy of a Puppet run; what happens under the hood
•	 What are Puppet extension alternatives
•	 How to develop custom functions
•	 How to develop custom facts
•	 How to develop custom types and providers
•	 How to develop custom report handlers
•	 How to develop custom faces

The subject is large; we are going to have an overview and show examples that let
us dive in some details. For more information about how Puppet works and its inner
beauties, check these great sources in crescent detail:

•	 The Puppet Extension Points and Puppet Internals series of blog posts
by Brice Figureau are by far the most intriguing, fascinating, and better-
explained sources of documentation about Puppet's inner workings; they can
be found at http://www.masterzen.fr.

http://www.masterzen.fr

Writing Puppet Plugins

[226]

•	 Puppet on the edge, the blog of Puppet Labs' Henrik Lindberg
(http://puppet-on-the-edge.blogspot.it/), focuses on the new
features of Puppet, which we will see in Chapter 12, Future Puppet.

•	 The puppet-dev discussion group, where ideas are discussed and
questions are answered, can be found at https://groups.google.com/
forum/#!forum/puppet-dev.

•	 The official developer reference at https://docs.puppetlabs.com/
references/latest/developer/.

•	 The official ticketing system (https://tickets.puppetlabs.com), where
we can see how the actual discussion and work on the code is delivered.

Anatomy of a Puppet run, under the hood
We have seen the output of a Puppet run in Chapter 1, Puppet Essentials. Now, let's
explore what happens behind these messages.

We can identify the following stages that turn our Puppet code into a catalog that is
applied on clients:

•	 Parsing and compiling: In this phase, the Puppet manifests are fed to the
Puppet::Parser class, which does basic syntax checks and produces an
Abstract Syntax Tree (AST) object. This represents the same objects we have
defined in our manifests in a machine-friendly format. Both the facts received
from the client and the AST are passed to the compiler. The facts and manifests
are interpreted, and the result is converted into a tree of transportable objects,
that is, the resource catalog (commonly called catalog). This phase happens on
the server, unless we use the puppet apply command.

•	 Transport: In this phase, the Master serializes the catalog in the PSON format
(a Puppet version of JSON) and sends it over HTTPS to the client. Here, it
is deserialized and stored locally. The transport phase doesn't occur in a
Masterless setup.

•	 Instantiation: Here, the objects present in the resource catalog (instances of
Puppet::Resource) are converted to instances of the Puppet::Type class,
and a RAL catalog is generated. Note that the resource catalog and RAL
catalog are two different things.

•	 Configuration: This is where the real action happens inside a Puppet
transaction. The RAL catalog is passed to a new Puppet::Transaction
instance; relationships and resources are evaluated and applied to the system.

•	 Report: A report of the transaction is generated on the client and eventually
sent back to the Master.

http://puppet-on-the-edge.blogspot.it/
https://groups.google.com/forum/#!forum/puppet-dev
https://groups.google.com/forum/#!forum/puppet-dev
https://docs.puppetlabs.com/references/latest/developer/
https://docs.puppetlabs.com/references/latest/developer/
https://tickets.puppetlabs.com

Chapter 10

[227]

The involved nodes (client/master), components, actions, and classes are
summarized in the following table (these steps generally refer to Puppet 3; they may
change according to different versions):

Node Component Action Class#method
Client Configurer Plugins are downloaded

and loaded
Puppet::Configurer::PluginHan
dler#download_plugins

Client Configurer Local facts are collected
and sent to the Master

Puppet::Configurer#prepare_
and_retrieve_catalog

Master Compiler Compilation is started
by the indirection of the
REST call

Puppet::Resource::Catalog::C
ompiler

Master Parser Manifests are parsed
and an AST is generated

Puppet::Parser::Parser#parse

Master Compiler A graph of Puppet
resources is elaborated
from this AST

Puppet::Parser::Compiler#com
pile

Master Compiler The output of this
operation is the resource
catalog

Puppet::Resource::Catalog

Master Network The catalog is serialized
as a PSON object and
sent over the network

Puppet::Network::HTTP::API::V
1#do_find

Client Configurer The catalog is received,
deserialized, and cached
locally

Puppet::Configurer#prepare_
and_retrieve_catalog

Client Configurer The catalog is
transformed to a RAL
catalog

Puppet::Type

Client Transaction Each instance of
Puppet::Type in the
catalog is applied

Puppet::Transaction#evaluate

Agent Configurer The transaction report is
saved to the configured
report termini

Puppet::Configure#send_report

Anatomy of a Puppet run

Extendibility has always been a widely pursued concept in Puppet; we can
practically provide custom code to extend any activity or component of the software.

Writing Puppet Plugins

[228]

We can customize and extend Puppet's functionalities in many different ways
operating at different levels as follows:

•	 Key activities such as nodes' classification via an ENC or variable
definition and management via Hiera can be customized to adapt to
most of the users' needs.

•	 Our code can be distributed via modules using the pluginsync functionality.
This is typically used to provide our facts, types, providers, and functions,
but it may basically apply to any piece of Puppet code.

•	 We can configure indirections for the main Puppet subsystems and use
different backends (called termini) to manage the locations from where we
can retrieve their data.

ENC and Hiera extendibility
We have already seen in the earlier chapters of this book how it is possible to manage
some key aspects of our Puppet infrastructure in many different ways:

•	 We can manage the location where our nodes and the classes are defined and
which variables and environment they use. This can be done via an ENC that
may be any kind of system that feeds us this data in YAML format via the
execution of a custom script, which may interrogate whatever backend we
may have.

•	 We can manage the location where our Hiera data is stored, having the
possibility to choose from many different backends for data persistence.

We are not going to talk again about these extension possibilities; we just have to
remember how powerful they are and how much freedom they give us in managing
two key aspects of our Puppet infrastructure.

Modules' pluginsync
When we set pluginsync=true (this is default from Puppet 3; it had to be
explicitly set on the earlier versions) in our puppet.conf, we activate the automatic
synchronization of plugins. When Puppet is invoked and before doing any other
operation, the clients retrieve the content of the lib directories from all the modules
in the Master's modulepath and copy them in their own libdir (/var/lib/puppet/
lib by default), keeping the same directory tree.

Chapter 10

[229]

In this way, all the extra plugins provided by modules can be used on the client
exactly as the core code. The structure of the lib directory of a module is as follows:

{modulepath}
└── {module}
 └── lib
 ├── augeas
 │ └── lenses
 ├── hiera
 │ └── backend
 ├── puppetdb
 ├── facter
 └── puppet
 ├── parser
 │ └── functions
 ├── provider
 │ └── $type
 ├── type
 ├── face
 └── application

The previous layout suggests that we can use modules to distribute custom facts,
Augeas lenses, faces, types, and providers to clients. We can also distribute custom
functions and Hiera backends, but this is not useful for the clients, as they are used
during the catalog compilation phase, which usually occurs on the Master (a notable
exception is in Masterless setups when pluginsync is not necessary).

A small intriguing note is that the plugin synchronization done at the beginning of
a Puppet run is actually performed using a normal file type, which looks like the
following code:

file { $libdir:
 ensure => directory,
 recurse => true,
 source => 'puppet:///plugins',
 force => true,
 purge => true,
 backup => false,
 noop => false,
 owner => puppet, # (The Puppet process uid)
 group => puppet, # (The Puppet process gid)
}

Writing Puppet Plugins

[230]

Similarly, all the files and directories configured in puppet.conf are managed using
normal Puppet resources, which are included in a small settings catalog that is
applied on the client as the very first step.

Some notes about the file resource mentioned earlier are as follows:

•	 The purge and recurse arguments ensure that the plugins that are removed
from the Master are also removed from the client, and new ones are added
recursively.

•	 The noop => false parameter ensures that a regular pluginsync is done
even when we want to test a Puppet run with the --noop argument passed at
the command line.

•	 The source => puppet:///plugins source is based on an automatic
fileserver mount point that maps to the lib directory of every module. This
can be modified via the pluginsource configuration entry.

•	 $libdir can be configured via the homonymous configuration entry.

In this chapter, we are going to review how to write the most common custom
plugins, which can be distributed via user modules, that is, functions, facts, types,
providers, report handlers, and faces.

Puppet indirector and its termini
Puppet has different subsystems to manage objects such as catalogs, nodes, facts, and
certificates. Each subsystem is able to retrieve and manipulate the managed object
data with REST verbs such as find, search, head, and destroy.

Each subsystem has an indirector that allows the usage of different backends, called
termini, which define the location from where data is retrieved.

Each time we deal with objects such as nodes, certificates, and so on, we can see (in
the following table) that we work on an instance of a model class for the object that is
indirected to a specific terminus.

A terminus is a backend that allows the retrieval and manipulation of simple key
values related to the indirected class.

This allows the Puppet programmer to deal with model instances without caring
about the details of where the data is coming from.

Here is a complete list of the available indirections, the class they indirect, and
the relevant termini. For more details, refer to http://docs.puppetlabs.com/
references/latest/indirection.html.

http://docs.puppetlabs.com/references/latest/indirection.html
http://docs.puppetlabs.com/references/latest/indirection.html

Chapter 10

[231]

Indirection Indirected class Available termini
catalog Puppet::Resource::Catalog active_record,

compiler, json,
queue, rest, static_
compiler, store_
configs, yaml

certificate Puppet::SSL::Certificate ca, disabled_ca, file,
rest

certificate_
request

Puppet::SSL::
CertificateRequest

ca, disabled_ca, file,
memory, rest.

certificate_
revocation_list

Puppet::SSL::
CertificateRevocationList

ca, disabled_ca, file,
rest

certificate_
status

Puppet::SSL::Host file, rest

data_binding Puppet::DataBinding hiera, none
facts Puppet::Node::Facts active_record, couch,

facter, inventory_
active_record,
inventory_service,
memory, network_
device, rest, store_
configs, yaml

file_bucket_file Puppet::FileBucket::
File

file, rest, selector

file_content Puppet::FileServing::
Content

file, file_server,
rest, selector

file_metadata Puppet::FileServing::
Metadata

file, file_server,
rest, selector

instrumentation_
data

Puppet::Util::
Instrumentation::Data

local, rest

instrumentation_
listener

Puppet::Util::
Instrumentation::Listener

local, rest

instrumentation_
probe

Puppet::Util::
Instrumentation::
IndirectionProbe

local, rest

key Puppet::SSL::Key ca, disabled_ca,
file, memory

node Puppet::Node active_record, exec,
ldap, memory, plain,
rest, store_configs,
yaml, write_only_yaml

Writing Puppet Plugins

[232]

Indirection Indirected class Available termini
report Puppet::Transaction::

Report
processor, rest, yaml

resource Puppet::Resource active_record, ral,
rest, store_configs

resource_type Puppet::Resource::Type parser, rest
status Puppet::Status local, rest

Puppet uses the indirectors mentioned earlier and some of their termini every
time we run it. For example, in a scenario with a Puppet Master, an ENC, and a
PuppetDB, the following are the indirectors, REST verbs, and termini involved:

1.	 On the agent, Puppet collects local facts via Facter:
facts find from terminus facter

2.	 On the agent, a catalog is requested from the Master:
catalog find from terminus rest

3.	 On the Master, the client's facts are stored in PuppetDB:
facts save to terminus puppetdb

4.	 On the Master, node classification is requested from an ENC:
node find from terminus exec

5.	 On the Master, a catalog is compiled:
catalog find from terminus compiler

6.	 On the master, the catalog is stored in PuppetDB:
catalog save to terminus puppetdb

7.	 On the agent, the received catalog is applied and a report is sent:
report save to terminus rest

8.	 On the master, the report is managed with the configured handler:
report save to terminus processor

We can configure the termini to use for each indirector either with specific entries
in puppet.conf or via the /etc/puppet/routes.yaml file that overrides any
configuration setting.

On puppet.conf, we have the following settings by default:

catalog_cache_terminus =
catalog_terminus = compiler
data_binding_terminus = hiera
default_file_terminus = rest
facts_terminus = facter
inventory_terminus = facter
node_cache_terminus =
node_terminus = plain

Chapter 10

[233]

Just by having a look at these values, we can deduce the following interesting things:

•	 The ENC functionality is enabled specifying node_terminus = exec,
which is an alternative terminus to fetch the resources and parameters to
assign to a node.

•	 The catalog is retrieved using the Puppet compiler by default, but we might
use other termini, such as json, yaml, or rest to retrieve catalogs from local
files or remote REST services. This is exactly what happens, with the rest
terminus, when an agent requests a catalog to the Master server.

•	 Hiera lookups for every class parameter (the data binding functionality
introduced on Puppet 3) can be replaced with a custom terminus with other
lookup alternatives.

•	 The *_cache_terminus settings are used, for some cases, to define secondary
termini in case of failures of the default primary ones. The data retrieved
from the default terminus is always written to the correspondent cache
terminus in order to keep it updated.

We have seen in Chapter 3, PuppetDB, how a modification to the routes.yaml file
is necessary to set up PuppetDB as a backend for the facts terminus; let's use it as
an example:

master:
 facts:
 terminus: puppetdb
 cache: yaml

Note that we refer to the puppet mode (master), the indirection (facts), and the
terminus to use and its eventual cache. Other termini that do not have a dedicated
configuration entry in puppet.conf may be set here as needed.

We can deal with indirectors and their termini when we use the Puppet command;
many of its subcommands refer directly to the indirectors reported in the previous
table and let us specify, with the --terminus option, which terminus to use.

We will come back to this later in the chapter when we will talk about Puppet faces.

Custom functions
Functions are an important area where we can extend Puppet. They are used when
Puppet parses our manifests and can greatly enhance our ability to fetch data from
custom sources and filter, elaborate, and manipulate it.

Writing Puppet Plugins

[234]

We can distribute a function just by placing a file in lib/puppet/
parser/<function_name>.rb in a module of ours.

Even if they are automatically distributed to all our clients via the modules'
pluginsync mechanism, it's important to remember that they are needed only on the
Puppet Master, since they are used only during catalog compilation.

Note that as they are loaded in memory when Puppet starts, if we change
a function on the Master, we have to restart its service in order to load the
latest version.

There are two kinds of functions; they are as follows:

•	 The :rvalue functions return a value; they are typically assigned to a
variable or resource argument. Sample core rvalue functions are template,
hiera, regsubst, versioncmp, and inline_template.

•	 The :statement functions perform an action without returning any
value. Samples from the Puppet core are include, fail, hiera_include,
and realize.

Let's see a real case, starting from a function called options_lookup that returns the
value of a key from a hash.

Such a function is quite useful in ERB templates where we want to use arbitrary data
provided by users using a class parameter whose expected content is a hash.

We can place it inside any of our modules in a file called lib/puppet/parser/
options_lookup.rb.

The first line invokes the newfunction method of the Puppet::Parser::Functions
class. Here, we define the name of the function and its type (if it's an rvalue, we
have to specify it; by default, a function's type is statement):

module Puppet::Parser::Functions newfunction(:options_lookup, :type =>
:rvalue, :doc => <<-EOF

A description of what the function does and how it can be used is passed with the
doc argument; here, the whole description is inside a Heredoc block ended by the
EOF marker:

This function takes two arguments (option, and default value) and
looks for the given
option key in the calling modules options hash, and returns the value.
[...]
EOF
) do |args|

Chapter 10

[235]

After the parameters are passed to the newfunction method, we have the function
body; here, we catch all the arguments passed to our function in the args variable.

We can raise an error if their number is not what we expected (2 or 3):

 raise ArgumentError, ("options_lookup(): wrong number of arguments
(#{args.length}; must be 2 or 3)") if (args.length != 2 and args.
length != 3)

Then, we assign local variables to each argument. Note that as args is managed
as an array, the first argument passed to our function is referred by args[0]. We
also assign the value of Puppet's parent_module_name internal variable to our
mod_name variable:

 value = ''
 option_name = args[0]
 default_val = args[1]
 hash_name = args[2]
 mod_name = parent_module_name

We set the default name (options) of the class parameter that contains the hash to be
used. Note that we have had to cope with different Puppet versions where a missing
variable is referenced in different ways (with the :undefined symbol, an empty
string, or nil):

 hash_name = "options" if (hash_name == :undefined || hash_name ==
'' || hash_name == nil)

Then, we set the value to return using the lookupvar Puppet function, the fully
qualified name of the hash variable, and its key:

 value = lookupvar("#{mod_name}::#{hash_name}")["#{option_name}"]
if (lookupvar("#{mod_name}::#{hash_name}").size > 0)

If no value is returned, then the default value expected from the second argument
passed to the function is used:

 value = "#{default_val}" if (value == :undefined || value == '' ||
value == nil)

The output of the function is, finally, the calculated value:

 return value
 end
end

Writing Puppet Plugins

[236]

We can use this function in ERB templates in a similar way:

Listen <%= scope.function_options_lookup(['Listen','127.0.0.1'])%>

Let's see also a statement function like Puppet's core fail function.

The structure is very similar; we don't have to specify the type of function and each
argument that is provided is collected on a variable called vals:

Puppet::Parser::Functions::newfunction(:fail, :arity => -1, :doc =>
"Fail with a parse error.") do |vals|

If the argument is an array, its members are converted to a space-separated string:

 vals = vals.collect { |s| s.to_s }.join(" ") if vals.is_a? Array

Then, an exception with a message containing a string with the arguments provided
to the function (this is a function that enforces a failure, after all) is simply raised:

 raise Puppet::ParseError, vals.to_s
end

We can use functions for a wide variety of needs:

•	 Many functions in Puppet Labs' stdlib module such as chomp, chop,
downcase, flatten, join, strip, and so on, reproduce common Ruby
functions that manipulate data and make them directly available in the
Puppet language

•	 Others are used to validate data types (validate_array, validate_hash,
validate_re)

•	 We can also use functions to get data from any source (the output of a
command, a YAML file, a database, or a REST interface) and make it directly
available in our manifests

The possibilities are endless; whatever is possible in Ruby can be made available
within our manifests with a custom function.

Custom facts
Facts are the most comfortable kind of variables to work with:

•	 They are at top scope; therefore, they are easily accessible in every part
of our code

•	 They provide direct and trusted information, being executed on the client

Chapter 10

[237]

•	 They are computed; their values are set automatically, and we don't have to
manage them manually

Out of the box, depending on the Facter version and the underlying OS, they give us:

•	 Hardware information (architecture bios_* board* memory*
processor virtual)

•	 Operating system details (kernel* osfamily operatingsystem* lsb*
sp_* selinux ssh* timezone uptime*)

•	 Network configuration (hostname domain fqdn interfaces ipaddress_*
macaddress_* network*)

•	 Disks and filesystems (blockdevice_* filesystems swap*)
•	 Puppet-related software versions (facterversion puppetversion ruby*)

We already use some of these facts to manage the right resources to apply for
our operating systems in modules, and we already classify nodes according to
their hostnames.

There is a lot more that we can do with them; we can create custom facts useful to:

•	 Classify our nodes according to their functions and locations (using custom
facts that might be named dc, env, region, role, or node_number)

•	 Determine the version and status of a program (php_version, mysql_
cluster, glassfish_registered)

•	 Return local metrics of any kind (apache_error_rate, network_
connections)

Just think about any possible command we can run on our servers and how its output
might be useful in our manifests to model the resources we provide to our servers.

We can write custom facts in the following two ways:

•	 As Ruby code in our modules distributed to clients via pluginsync
•	 Using the /etc/facter/facts.d directory where we can place plain text,

JSON, YAML files, or executable scripts

Ruby facts distributed via pluginsync
We can create a custom fact by placing files called lib/facter/<fact_name>.rb in
one of our modules. For example, a fact named role should be placed in a file called
lib/facter/role.rb and may have the following content:

require 'facter'

Writing Puppet Plugins

[238]

We require the facter class, and then, we use the add method for our custom fact
called role:

Facter.add("role") do

We can restrict the execution of this fact only to specific hosts according to any other
fact value. This is done using the confine statement, which is based on the kernel
fact here:

 confine :kernel => ['Linux' , 'SunOS' , 'FreeBSD' , 'Darwin']

We can also set the maximum number of seconds to wait for its execution:

 timeout = 10

We can even have different facts with the same name and give a weight to each of
them; facts with a higher weight value are executed first, and facts with a lower
weight value are executed only if no value is already returned:

 has_weight = 40

We use the setcode method of the Facter class to define what our fact does. What is
returned from the block of code contained here (between do and end) is the value of
our fact:

 setcode do

We can have access to other fact values with Facter.value. In our case, the role
value is a simple extrapolation of the hostname (basically, the hostname without
numbers). If we have different naming schemes for our nodes and we can deduce
their roles from their names, we can easily use other Ruby string functions to
extrapolate the value we need:

 host = Facter.value(:hostname)
 host.gsub(/\d|\W/,"")
 end
end

Often, the output of a fact is simply the execution of a command. In this case, there
is a specific wrapper method called Facter::Util::Resolution.exec that expects
the command to execute as a parameter.

The following fact, called last_run, simply contains the output of the date command:

require 'facter'
Facter.add("last_run") do
 confine :kernel => ['Linux' , 'SunOS' , 'FreeBSD' , 'Darwin']
 setcode do

Chapter 10

[239]

 Facter::Util::Resolution.exec('date')
 end
end

We can have different facts with different names on the same Ruby file, and we can
also provide dynamic facts. For example, the following code creates several different
facts, returning the installed version for each package. Here, the confinement
according to osfamily is done outside the fact's definition:

if Facter.osfamily == 'RedHat'
 IO.popen('yum list installed').readlines.collect do |line|
 array = line.split
 Facter.add("#{array[0]}_version") do
 setcode do
 "#{array[1]}"
 end
 end
 end
end
if Facter.osfamily == 'Debian'
 IO.popen('dpkg -l').readlines.collect do |line|
 array = line.split
 Facter.add("#{array[1]}_version") do
 setcode do
 "#{array[2]}"
 end
 end
 end
end

Remember that to have access from the shell to the facts that we distribute via
pluginsync, we need to use the --puppet(-p) argument:

facter -p

Alternatively, we need to set the FACTERLIB environment variable pointing to the
lib directory of the module that provides it, for example:

export FACTERLIB=/etc/puppet/modules/site/lib

External facts in the facts.d directory
Puppet Labs's stdlib module provides a very powerful addendum to custom facts:
a feature called external facts, which has proven to be so useful that it has been
included directly into the core Facter since Version 1.7.

Writing Puppet Plugins

[240]

We can define new facts without having to write Ruby code; we can just place
files in the /etc/facter/facts.d directory (/etc/puppetlabs/facter/facts.d
with Puppet Enterprise and C:\ProgramData\PuppetLabs\facter\facts.d\ on
Windows).

These files can be simple .txt files such as /etc/facter/facts.d/node.txt with
facts declared with the following syntax:

role=webserver
env=prod

YAML files such as /etc/facter/facts.d/node.yaml with the same sample facts
would appear as:

 role: webserver
 env: prod

Also, JSON files such as /etc/facter/facts.d/node.json would look as:

{
 'role': 'webserver',
 'env': 'prod'
}

We can also place plain commands in any language. On Unix, any executable file
present in /etc/facter/facts.d/ is run and expected to return facts' values with
an output like:

role=webserver
env=prod

On Windows, we can place files with the .com, .exe, .bat, .cmd, or .ps1 extension.

Since Puppet 3.4.0, external facts can be automatically propagated to clients with
pluginsync. In this case, the directory synced is <modulename>/facts.d (note that
this is at the same level as the lib directory).

Alternatively, we can use other methods to place our external facts, for example, in
the postinstallation scripts during the initial provisioning of a server, using Puppet's
file resources directly, or having them generated by custom scripts or cron jobs.

Chapter 10

[241]

Custom types and providers
If we had to name a single feature that defines Puppet, it would probably be its
approach to the management of the system's resources.

The abstraction layer that types and providers provide saves us from caring about
implementations of the resources we want on different operating systems.

This is a strong and powerful competitive edge of Puppet, and the thing that makes
it even more interesting is the possibility to easily create custom types and provides
and seamlessly distribute them to clients.

Types and providers are the components of Puppet's resource abstraction layer; even
if they are strongly coupled, they do different things:

•	 Types abstract a physical resource and specify the interface to its
management, exposing parameters and properties that allow users to model
the resource as desired.

•	 Providers implement the types' specifications on the system, adapting to
different operating systems. They need to be able to query the current status
of a resource and configure it to reflect the expected state.

For each type, there must be at least one provider, and each provider may be tied to
one and only one type.

Custom types can be placed inside a module; in files such as lib/puppet/
type/<type_name>.rb, providers are placed in lib/puppet/provider/<type_
name>/<provider_name>.rb.

Before analyzing a sample piece of code, we will recapitulate what types are all about:

•	 They abstract the resources of a system.
•	 They expose parameters to shape resources in the desired state.
•	 They have a title that must be unique across the catalog.
•	 One of their parameters is the namevar. If not set explicitly, its value is taken

from the title.

Let's see a sample custom native type; what follows manages the execution of psql
commands and is from Puppet Labs' Postgresql module (https://github.com/
puppetlabs/puppetlabs-postgresql). We can find it in lib/puppet/type/
postgresql_psql.rb:

Puppet::Type.newtype(:postgresql_psql) do

https://github.com/puppetlabs/puppetlabs-postgresql
https://github.com/puppetlabs/puppetlabs-postgresql

Writing Puppet Plugins

[242]

A type is created by calling the newtype method of the Puppet::Type class. We pass
the type name as a symbol and a block of code with the type's content.

Here, we just have to define the parameters and properties of the type, exactly the
ones our users will deal with.

Parameters are set with the newparam method; here, the name parameter is defined
with a brief description and is marked as namevar with the isnamevar method:

 newparam(:name) do
 desc "An arbitrary tag for your own reference; the name of the
message."
 isnamevar
 end

An alternative and currently preferred method to set a namevar
parameter is:
newparam(:name, :namevar => true) do

Types may have parameters, which are instances of the Puppet::Parameter
class and properties, which are instances of Puppet::Property that inherit
Puppet::Parameter and all its methods.

The main difference between a property and parameter is that a property models
a part of the state of the managed resource (it defines a characteristic), whereas a
parameter gives information that the provider will use to manage the properties of
the resource.

We should be able to discover the status of a resource's property and modify it.

In the type, we define them. In the providers, we query their status and change them.

For example, the built-in service type has different arguments: ensure and enable
are properties; all the others are parameters.

The file type has the content, ctime, group, mode, mtime, owner, seluser,
selrole, seltype, selrange, target, and type properties; they represent the
characteristics of the file resource on the system.

On the other side, its parameters are path, backup, recurse, recurselimit,
replace, force, ignore, links, purge, sourceselect, show_diff, source, source_
permissions, checksum, and selinux_ignore_defaults. They allow us to manage
the file in various ways but are not a direct expression of the characteristics of the file
on the system.

Chapter 10

[243]

A property is set with the newproperty method. Here is how the postgresql_psql
type sets the command property, which is the SQL query we have to execute:

 newproperty(:command) do
 desc 'The SQL command to execute via psql.'

A default value can be defined here. In this case, it is the resource name:

 defaultto { @resource[:name] }

In this specific case, the sync method of Puppet::Property is redefined to manage
this particular case:

 def sync(refreshing = false)
 if (!@resource.refreshonly? || refreshing)
 super()
 else
 nil
 end
 end
 end

Other parameters have the same structure:

 newparam(:db) do
 desc "The name of the database to execute the SQL command
against."
 end

 newparam(:search_path) do
 desc "The schema search path to use when executing the SQL
command"
 end

 newparam(:psql_user) do
 desc "The system user account under which the psql command should
be executed."
 defaultto("postgres")
 end
[…]
end

The postgresql_psql type continues with the definition of other parameters, their
description, and wherever possible, the default values.

Writing Puppet Plugins

[244]

If a parameter or property is required, we set this with the isrequired method; we
can also validate the input values if we need to force specific data types or values
and normalize them with the munge method.

A type can also be made ensurable, that is, have an ensure property that can be
set to present or absent. The property is automatically added just by calling the
ensurable method.

We can also set automatic dependencies for a type; for example, the exec native
type has an automatic dependency for a user resource that creates the user who is
supposed to run the command as if this is set by its name and not its uid; here is how
this is done in lib/puppet/type/exec.rb:

 autorequire(:user) do
 # Autorequire users if they are specified by name
 if user = self[:user] and user !~ /^\d+$/
 user
 end
 end

We can use such a type in our manifests; here is, for example, how it's used in the
postgresql::server::grant define of Puppet Labs' postgresql module:

$grant_cmd = "GRANT ${_privilege} ON ${_object_type} \"${objectname}\"
TO \"${role}\""
 postgresql_psql { $grant_cmd:
 db => $on_db,
 port => $port,
 psql_user => $psql_user,
 psql_group => $group,
 psql_path => $psql_path,
 unless => "SELECT 1 WHERE ${unless_function}('${role}',
'${object_name}', '${unless_privilege}')",
 require => Class['postgresql::server']
 }

For each type, there must be at least one provider. When the implementation of the
resource defined by the type is different according to factors such as the operating
system, we may have different providers for a given type.

A provider must be able to query the current state of a resource and eventually
configure it according to the desired state, as defined by the parameters we've
provided to the type.

We define a provider by calling the provide method of Puppet::Type.type(); the
block passed to it is the content of our provider.

Chapter 10

[245]

We can restrict a provider to a specific platform with the confine method and, in
case of alternatives, use the defaultfor method to make it the default one.

For example, the portage provider of the package type has something like:

Puppet::Type.type(:package).provide :portage, :parent =>
Puppet::Provider::Package do
 desc "Provides packaging support for Gentoo's portage system."
 has_feature :versionable
 confine :operatingsystem => :gentoo
 defaultfor :operatingsystem => :gentoo
[…]

In the preceding example, confine has matched a fact value, but it can also be used
to check for a file's existence, a system's feature, or any piece of code:

confine :exists => '/usr/sbin/portage'
confine :feature => :selinux
confine :true => begin
 [Any block of code that enables the provider if returns true]
end

Also note the desc method used to set a description of the provider and the has_
feature method used to define the supported features of the relevant type.

The provider has to execute commands on the system. These are defined via the
command or optional_command methods; the latter defines a command that might
not exist on the system and is not required by the provider.

For example, the useradd provider of the user type has the following
commands defined:

Puppet::Type.type(:user).provide :useradd, :parent => Puppet::Provider
::NameService::ObjectAdd do
 commands :add => "useradd", :delete => "userdel", :modify =>
"usermod", :password => "chage"
 optional_commands :localadd => "luseradd"

When we define a command, a new method is created; we can use it wherever it is
needed, passing eventual arguments via an array. The defined command is searched
in the path, unless specified with an absolute path.

All the types' property and parameter values are accessible via the [] method of the
resource object: resource[:uid], resource[:groups].

When a type is ensurable, its providers must support the create, exists?, and
destroy methods, which are used, respectively, to create the resource type, check if
it exists, and remove it.

Writing Puppet Plugins

[246]

The exists? method in particular is at the basis of Puppet's idempotence, as it
verifies whether the resource is in the desired state or needs to be synced.

For example, the zfs provider of the zfs zone implements the methods that run the
(defined earlier) zfs command:

 def create
 zfs *([:create] + add_properties + [@resource[:name]])
 end

 def destroy
 zfs(:destroy, @resource[:name])
 end

 def exists?
 if zfs(:list).split("\n").detect { |line| line.split("\s")[0]
 == @resource[:name] }
 true
 else
 false
 end
 end

For every property of a type, the provider must have methods to read (getter) and
modify (setter) its status. These methods have exactly the same name as the property,
with the setter method having an ending equal symbol (=).

For example, the ruby provider of the postgresql_psql type we have seen earlier
has these methods to manage the command to execute (here, we have removed the
implementation code):

Puppet::Type.type(:postgresql_psql).provide(:ruby) do

 def command()
 [Code to check if sql command has to be executed]
 end

 def command=(val)
 [Code that executes the sql command]
 end

If a property is out of sync, the setter method is invoked to configure the
system as desired.

Chapter 10

[247]

Custom report handlers
Puppet can generate data about what happens during a run, and we can gather this
data in reports. They contain the output of what is executed on the client, details on
every action taken during the execution, and performance metrics.

Needless to say that we can also extend Puppet reports and deliver them to a variety
of destinations: logging systems, database backends, e-mail, chat roots, notification
and alerting systems, trouble ticketing software, and web dashboards.

Reports may contain the whole output of a Puppet run, a part of it (for example, just
the list of resources that failed), or just the metrics (as it happens with the rrd report
that graphs key metrics such as Puppet compilation and run times).

We can distribute our custom report handlers via the pluginsync functionality too.
We just need to place them in the lib/puppet/reports/<report_name>.rb path so
that the file name matches the handler name.

James Turnbull, the author of the most popular Puppet books, has
written many custom reports for Puppet; check his blog for detailed
posts about report handlers at http://kartar.net/category/
puppet/.

Here, we analyze the structure of one of James Turnbull's report handlers that sends
notifications of failed reports to the PagerDuty online service (https://github.
com/jamtur01/puppet-pagerduty); it should be placed in a module with the lib/
puppet/reports/pagerduty.rb path.

First, we need to include some required classes. The Puppet class is always required;
the other ones may be required depending on the kind of report.

require 'puppet'
require 'json'
require 'yaml'

begin
 require 'redphone/pagerduty'
rescue LoadError => e
 Puppet.info "You need the `redphone` gem to use the PagerDuty
 report"
end

http://kartar.net/category/puppet/
http://kartar.net/category/puppet/
https://github.com/jamtur01/puppet-pagerduty
https://github.com/jamtur01/puppet-pagerduty

Writing Puppet Plugins

[248]

Then, we call the register_report method of the Puppet::Reports class, passing
the handler name to it as a symbol and its code in a block.

Puppet::Reports.register_report(:pagerduty) do

Here, the report handler uses an external configuration file, /etc/puppet/
pagerduty.yaml (note how we can access Puppet configuration entries with
Puppet.settings[]), where users can place specific settings (in this case, the
PagerDuty API key):

 config_file = File.join(File.dirname(Puppet.settings[:config]),
 "pagerduty.yaml")
 raise(Puppet::ParseError, "PagerDuty report config file
 #{config_file} not readable") unless File.exist?(config_file)
 config = YAML.load_file(config_file)
 PAGERDUTY_API = config[:pagerduty_api]

We can use the familiar desc method to place a description of the report:

 desc <<-DESC
 Send notification of failed reports to a PagerDuty service. You
 will need to create a receiving service
 in PagerDuty that uses the Generic API and add the API key to
 configuration file.
 DESC

All the reporting logic is defined in the process method. Here, we can have access to
a variety of information about the report, available as variables of the self object; for
example, self.status contains the status of the Puppet run, self.logs contains all
the output text, and self.host contains the host where Puppet has been executed.
In this case, the trigger_incident method of the Redphone::Pagerduty class is
called and information about a Puppet run is sent if the report status is failed:

 def process
 if self.status == "failed"
 Puppet.debug "Sending status for #{self.host} to PagerDuty."
 details = Array.new
 self.logs.each do |log|
 details << log
 end
 response = Redphone::Pagerduty.trigger_incident(
 :service_key => PAGERDUTY_API,
 :incident_key => "puppet/#{self.host}",
 :description => "Puppet run for #{self.host}
 #{self.status} at #{Time.now.asctime}",

Chapter 10

[249]

 :details => details
)
 case response['status']
 when "success"
 Puppet.debug "Created PagerDuty incident:
 puppet/#{self.host}"
 else
 Puppet.debug "Failed to create PagerDuty incident:
 puppet/#{self.host}"
 end
 end
 end
end

Custom faces
With the release of Puppet 2.6, a brand new concept was introduced: Puppet Faces.

Faces is an API that allows the easy creation of new Puppet (sub) commands.
Whenever we execute Puppet, we specify at least one command that provides access
to the functionalities of its subsystems.

The most common commands are agent, apply, master, and cert, and have existed
for a long time. However, there are a lot more (we can see their full list with puppet
help), and most of them are defined via the Faces API.

As you can guess, we can easily add new faces and, therefore, new subcommands to
the puppet executable just by placing some files in a module of ours.

The typical synopsis of the Puppet command is as follows:

puppet [FACE] [ACTION] [ARGUMENTS] [OPTIONS]

Here, [FACE] is the Puppet subcommand to be executed, [ACTION] is the face's
action we want to invoke, [ARGUMENTS] are its arguments, and [OPTIONS] are
general Puppet options.

To create a face, we have to work on two files: lib/puppet/application/<face_
name>.rb and lib/puppet/face/<face_name>.rb. The code in the
application directory simply adds the subcommand to Puppet, extending the
Puppet::Application::FaceBase class; the code in the face directory manages all
its logic and what to do for each action.

An interesting point to consider when writing and using faces is that we have access
to the whole Puppet environment, and its indirectors and termini, and we can
interact with its subsystems via the other faces.

Writing Puppet Plugins

[250]

The secret_agent face is a good example of how to use other faces inside a face.
It reproduces, using the faces API, the activity of the agent command, which is
currently not implemented via the faces API. A quick look at the code in lib/
puppet/face/secret_agent.rb, amended of documentation and marginal code,
reveals the basic structure of a face and how other faces can be used:

require 'puppet/face'
Puppet::Face.define(:secret_agent, '0.0.1') do
 action(:synchronize) do
 default
 summary "Run secret_agent once."
[...]
 when_invoked do |options|
 Puppet::Face[:plugin, '0.0.1'].download
 Puppet::Face[:facts, '0.0.1'].upload
 Puppet::Face[:catalog, '0.0.1'].download
 report = Puppet::Face[:catalog, '0.0.1'].apply
 Puppet::Face[:report, '0.0.1'].submit(report)
 return report
 end
 end
end

The Puppet::Face class exposes various methods. Some of them are used to provide
documentation both for the command line and the help pages: summary, arguments,
license, copyright, author, notes, and examples.

For example, the module face uses these methods to describe what it does in Puppet
core's lib/puppet/face/module.rb file:

require 'puppet/face'
require 'puppet/module_tool'
require 'puppet/util/colors'

Puppet::Face.define(:module, '1.0.0') do
 extend Puppet::Util::Colors

 copyright "Puppet Labs", 2012
 license "Apache 2 license; see COPYING"

 summary "Creates, installs and searches for modules on the
 Puppet Forge."
 description <<-EOT

Chapter 10

[251]

 This subcommand can find, install, and manage modules from the
 Puppet Forge,
 a repository of user-contributed Puppet code. It can also
 generate empty
 modules, and prepare locally developed modules for release on
 the Forge.
 EOT

 display_global_options "environment", "modulepath"
end

The action method is invoked for each action of a face. Here, we pass the action
name as a symbol and a block of code that implements our action using various
other methods:

•	 Methods used for documentation and inline help: description, summary,
and returns

•	 Methods used to manage the parameters used in the command line: option
and arguments

•	 Methods used to implement specific actions: when_invoked (its return value
is the output of the command) and when_rendering

Let's see the implementation of the install action of the module face. The following
code is in the lib/puppet/face/module/install.rb file. It's possible to add the
code for each action in separate files, like in this case, or on the main face file.

We are dealing with a Ruby class that may require other classes:

require 'puppet/forge'
require 'puppet/module_tool/install_directory'
require 'pathname'

This is followed by the face definition and the code applied for the install action:

Puppet::Face.define(:module, '1.0.0') do
 action(:install) do

Then, some description methods are called:

 summary "Install a module from the Puppet Forge or a release
 archive."

 description <<-EOT
 […]
 EOT

Writing Puppet Plugins

[252]

 returns "Pathname object representing the path to the
 installed module."

 examples <<-'EOT'
 […]
 EOT

Then, the expected arguments and the available options (here, only the block relative
to the --target-dir option is copied; various others are present in the original file
and are defined in a similar way) are defined:

 arguments "<name>"

 option "--target-dir DIR", "-i DIR" do
 summary "The directory into which modules are installed."
 description <<-EOT
 […]
 EOT
 end

Then, when the install action is called, the when_invoked block is executed. Here
is where the real work is done; in this case, methods from the Puppet::ModuleTool
class and related classes are called:

 when_invoked do |name, options|
 Puppet::ModuleTool.set_option_defaults options
 Puppet.notice "Preparing to install into
 #{options[:target_dir]} ..."

 forge = Puppet::Forge.new("PMT", self.version)
 install_dir = Puppet::ModuleTool::InstallDirectory.
 new(Pathname.new(options[:target_dir]))
 installer = Puppet::ModuleTool::Applications::Installer.
new(name, forge, install_dir, options)

 installer.run
 end

This action also invokes the when_rendering block to format the console output:

 when_rendering :console do |return_value, name, options|
 if return_value[:result] == :failure
 Puppet.err(return_value[:error][:multiline])
 exit 1

Chapter 10

[253]

 else tree = Puppet::ModuleTool.build_tree(return_
value[:installed_modules], return_value[:install_dir])
 return_value[:install_dir] + "\n" +
 Puppet::ModuleTool.format_tree(tree)
 end
 end
 end
end

As it happens for many faces, most of the code is in the face directory; the other
component of the face placed in lib/puppet/application/module.rb is just an
extension of the Puppet::Application::FaceBase class:

require 'puppet/application/face_base'

class Puppet::Application::Module < Puppet::Application::FaceBase
end

Summary
This chapter has been entirely dedicated to how we can extend Puppet
functionalities using Ruby code. We have reviewed the different areas where Puppet
can be customized, from the indirector and its termini to the plugins we can deliver
via modules.

We have reviewed the most common plugins, facts, functions, types and providers,
reports, and faces, trying to outline the needed code components without indulging
much in specific implementation details.

The best place to look for samples is the Puppet code itself; under the lib/puppet
directory, we can find the actual implementation of the core components.

How often we find ourselves working on custom plugins written in Ruby will
depend on our needs and skills; we might never need to write any of them, but it is
useful to know what they are and the principles behind them.

The scope of this chapter was to provide an overall view in order to be able to find
where plugins are placed in a module, know how they integrate into Puppet, and
have a high-level view of how they can be implemented.

The next chapter enters brand new territories. We are going to explore how we can
extend Puppet usage to devices different from the usual operating systems: network
equipment, storage devices, and cloud instances.

Believe it or not, we can manage them with Puppet as well.

Beyond the System
Puppet was designed as a configuration management tool for Unix-like systems. It
runs on Linux, Solaris, FreeBSD, OpenBSD, AIX, Mac OS, and since Version 2.7.6,
also on Windows.

Over the years, however, it became clear that automation in a data center must also
involve other families of devices such as network equipments, storage devices, and
virtualization solutions.

The same interest of companies such as Cisco and VMware, who are investors and
technological partners of Puppet Labs, could only facilitate Puppet's steps into these
territories. We are already seeing the results of these partnerships, and the vision of a
software-defined data center is also taking shape under a Puppet-driven perspective.

In this chapter, we will review the current status of the projects that allow us to use
Puppet in the following categories of devices and technologies:

•	 Network equipments such as switches, routers, and load balancers from
Cisco, Juniper, and F5

•	 Cloud and virtualization with VMware, Amazon, Google, Eucalyptus, and
OpenStack

•	 Storage equipment from NetApp

Puppet on a network equipment
The automation of network equipments' configuration is a common need. When we
provision a new system, besides its own settings, we often need to manage switching
ports to assign it to the correct VLAN, firewalls to open the relevant ports, and load
balancers to add the server to a balanced pool.

Beyond the System

[256]

It is obvious that the possibility of automating the configuration of the whole
infrastructure, network included, is a powerful and welcomed point.

There are two main challenges in front of Puppet when it has to deal with network
devices. They are as follows:

•	 Technical: This is simply due to the impossibility of having the puppet
executable running on the device to be managed

•	 Cultural: This is because at many places, network administrators don't know
or use Puppet

For the technical challenge, there is good news. Alternative approaches have
been taken to manage Puppet network equipments of various natures and from
different vendors:

•	 Proxy mode: In our manifests, we declare network-related resource types
and apply them to normal nodes, running Linux or another Puppet-
supported OS. On these servers, the relevant providers execute local
commands that interact with remote network devices and configure them as
needed. Generally, how this can be done depends on the following available
configuration methods:

°° Telnet or SSH: Connections (Telnet or SSH) are made to the device,
and from there, local commands are executed to check the status of a
resource (interface, VLAN, pool member, and so on) and eventually,
to modify it using the local CLI syntax.

°° Web API: Some devices expose a web interface to their configuration
and allow remote management. On the Puppet proxy node, providers
make remote connections to these web APIs to check and sync the
status of resources.

°° SNMP: Most of the network devices have an SNMP interface, and
this can be used for their remote management. Even if I am not aware
of any module using this approach, this is theoretically possible.

•	 Native mode: Some network devices can run Puppet natively. They may be
based on Linux or FreeBSD and, therefore, can potentially host the needed
Puppet stack. Puppet Labs' partnerships with other vendors are providing
good results: Cisco Nexus 9000 switches with Cisco NX-OS can run Puppet
natively in a dedicated Linux container, and Juniper provides a native
Puppet package for its Junos OS.

Besides the technical challenges for which there are some solutions (but there is still
much to do), there are also cultural and operational issues to deal with.

Chapter 11

[257]

At many places, network and system administrators are of different breeds; they
operate in different groups and are responsible for their infrastructures, using their
own instrumentation.

Puppet's programmatic approach to configuration is likely to be pushed by sysadmins.
This approach might not be well accepted by network people, who are probably less
obsessed by automation and more used to dealing with static configurations.

Here is where the DevOps culture can make a difference. There are great tools
that can automate our processes. There are also common sense practices such as
collaboration, sharing of responsibilities, and good communication across teams. If
we put together these elements, we can achieve great results.

Puppet users need just the basic management of network devices, not their whole
configurations. Most of the time, it is a matter of setting parameters and VLANs on
switch interfaces.

Many products provide authorization profiles that can limit the users' permissions,
so a sane compromise can be to allow automatic management only for simple port
settings and prevent changes to the more global and risky core configurations.

A Proxy mode with the puppet device
application
Many Puppet features originate from community contribution. One of the most
versatile and long-standing contributors is definitively Brice Figureau (the fact that
he is a personal friend and technical reviewer of this book is really irrelevant here).
When there was still nothing around on the topic, he proposed an approach to the
management of network devices. This approach has been the foundation for the
proxy mode we mentioned earlier.

In his blog post at http://puppetlabs.com/blog/puppet-network-device-
management, he introduced the puppet device application in Puppet 2.7 to manage
external devices where Puppet cannot run natively.

This command uses, by default, /etc/puppet/device.conf as a configuration file,
and the hostnames of the equipment to be managed, their types, and the method to
connect to them can be placed here. A sample entry may look like the following code:

[switch01.example42.lan]
 type cisco
 url ssh://puppet:my_password@switch01.example42.lan/

http://puppetlabs.com/blog/puppet-network-device-management
http://puppetlabs.com/blog/puppet-network-device-management

Beyond the System

[258]

[router01.example42.lan]
 type cisco
 url telnet://puppet:my_pass@router01.example42.lan/
?enable=enablepassword

With such a file in place, we can use the puppet device command on the host we
want to act as proxy for the configuration of remote devices.

The first time this command is executed, it creates certificates for all the devices we
have defined in device.conf. These certificates have to be signed by the Puppet
Master as a normal node's certificates.

The implementation provides two core native types, interface and vlan, with a
provider to manage Cisco IOS-based devices. We can execute puppet describe
interface and puppet describe vlan for details on their attributes.

To manage switch interfaces (speed and duplex, VLAN, port mode (access/trunk),
description, and so on), we can write resources as follows:

interface { 'FastEthernet 0/1':
 description => "Server ${server_name}",
 mode => access,
 native_vlan => 1000,
 duplex => auto,
 speed => auto,
}

To manage routers interfaces, we can use the following code:

 interface { 'Vlan12':
 ipaddress => ["192.168.14.14/24", "2001:2674:8C23::1/64"]
 }

To manage VLANS (their ID, which is 105 in the following example is the title of the
vlan resource), the following code is enough:

vlan { '105':
 description => 'DMZ',
}

Chapter 11

[259]

These resources can be declared in nodes' definitions that match the device
names specified in device.conf. When puppet device is executed, it behaves like
puppet apply, but it operates on a remote device. This means that it retrieves facts
from the network device, retrieves a catalog from the Puppet Master for the locally
configured devices, and runs it by providing a normal transaction report. A notable
difference between puppet device and a normal Puppet run is that the providers
that implement the types mentioned earlier perform configurations on remote
network devices.

On the Puppet core source, there is currently just the provider for Cisco devices, and
the supported transport methods are just telnet and ssh. However, we can find
modules that use the same approach and implement it on different devices.

For example, Puppet Labs' F5 module, which is available at https://github.com/
puppetlabs/puppetlabs-f5, introduces several F5-specific resource types but is
based on the network device application and has similar usage patterns. A sample
entry in device.conf might be like the following code:

[f5.example42.lan]
 type f5
 url https://username:password@f5.example42.lan/

Note that in this case, the network device type is f5 and the access is created
via https.

A further demonstration of Puppet's expandability is a module such as the one
available at https://github.com/uniak/puppet-networkdevice, which is
written by two community members, Markus Burger and David Schmitt. It provides
wider support for Cisco devices and implements, in addition to the Puppet device
application, a new device type (cisco_ios). A sample entry in device.conf looks
like the following:

[switch01.example42.lan]
 type cisco_ios
 url sshios://user:password@switch01.example42.lan:22/?$flags

The module features a more complete set of resource types to manage different
elements of a Cisco IOS configuration (access lists, SNMP configuration, interfaces,
VLANS, users, and so on).

A thing to consider is that the Puppet agent that normally runs as a service on a
node does not implement any device activity. To manage the configured devices
on a regular basis, we need to place a cron job that executes puppet device on the
proxy host.

https://github.com/puppetlabs/puppetlabs-f5
https://github.com/puppetlabs/puppetlabs-f5
https://github.com/uniak/puppet-networkdevice

Beyond the System

[260]

Native Puppet on the network equipment
A proxy-based approach based on puppet device has the benefit of letting us
manage virtually any device that in some way allows programmatic remote
configuration. However, it has some cons related to scale, authentication
management, and the fact that it behaves differently as compared to any other
Puppet command.

A step further can be taken when Puppet runs natively on the device to be managed
and can apply configurations directly. This is an emerging field where we are
already seeing some implementations, and this field will probably grow with the
same concept of the software-defined data center.

Cisco onePK
In 2013, Cisco released onePK, a software development toolkit that consists of a set
of API libraries that allow monitoring and management of different families of Cisco
devices and operating systems (IOS/XE, NXOS, and IOS XR), exposing an abstracted
interface that may be used by libraries in different languages.

The Nexus 9000 enterprise switches execute a native Puppet agent in a Linux VM
container running inside the NXOS. This agent allows the usage of dedicated
resource types such as cisco_device, cisco_interface and cisco_vlan in a
normal Agent/Master setup. We can place the following code in a device node:

node 'switch01.example42.lan' {
 # Definition of the Device, needed for each device
 cisco_device { 'switch01.example42.lan':
 ensure => present,
 }

 # Configuration of a VLAN on an access interface
 cisco_interface { 'Ethernet1/5':
 switchport => access,
 access_vlan => 1000,
 }

 # Configuration of a VLAN
 cisco_vlan { '1000':
 ensure => present,
 vlan_name => 'DMZ',
 state => active,
 }
}

Chapter 11

[261]

Directly from the device's CLI, we can issue commands such as onep application
puppet v0.8 puppet_agent to run Puppet from the local device, which has its
normal certificate and communicates with the Puppet Master as any other node.

The previous resources, when applied on the Linux container where Puppet runs,
actually don't operate directly on the switch's configuration; they rather use the onePK
presentation API to interface with onePK API infrastructure running on the device.

For more information about Cisco onePK and Puppet, refer to the
presentation at http://puppetlabs.com/presentations/
managing-cisco-devices-using-puppet.

Juniper and netdev_stdlib
Juniper Network offers a deeper approach to Puppet integration. It provides native
jpuppet packages for its Junos OS supported on all releases after 12.3R2. On Juniper
devices, these packages install Ruby, the required gems, and Puppet, which runs
locally and behaves absolutely like any other client, with its certificates and node
definition.

Juniper has also developed two modules:

•	 The netdev_stdlib module is a general, open source, and abstracted
interface to network configurations (now, it is under Puppet Lab's control
and can be found at https://github.com/puppetlabs/puppet-netdev-
stdlib), which contains the netdev_* types

•	 A vendor-specific one (https://github.com/Juniper/puppet-netdev-
stdlib-junos) where just the relevant provider for Junos devices is present

The Puppet code for a switch node looks like the following code:

node 'switch02.example42.lan' {

 # A single netdev_device resource must be present
 netdev_device { $hostname: }

 # Sample configuration of an interface
 netdev_interface { 'ge-0/0/0':
 admin => down,
 mtu => 2000,
 }

http://puppetlabs.com/presentations/managing-cisco-devices-using-puppet
http://puppetlabs.com/presentations/managing-cisco-devices-using-puppet
https://github.com/puppetlabs/puppet-netdev-stdlib
https://github.com/puppetlabs/puppet-netdev-stdlib
https://github.com/Juniper/puppet-netdev-stdlib-junos
https://github.com/Juniper/puppet-netdev-stdlib-junos

Beyond the System

[262]

 # Sample configuration of a VLAN
 netdev_vlan { 'vlan102':
 vlan_id => '102',
 description => 'Public network',
 }

 # Configuration of an access port without VLAN tag
 netdev_l2_interface { 'ge-0/0/0':
 untagged_vlan => Red
 }

 # Configuration of a trunk port with multiple VLAN tags
 # And untagged packets go to 'native VLAN'
 netdev_l2_interface { 'xe-0/0/2':
 tagged_vlans => [Red, Green, Blue],
 untagged_vlan => Yellow
 }

 # Configuration of Link Aggregation ports (bonding)
 netdev_lag { 'ae0':
 links => ['ge-0/0/0', 'ge-1/0/0', 'ge-0/0/2', 'ge-1/0/2'],
 lacp => active,
 minimum_links => 2
 }
}

The idea of the authors is that netdev_stdlib might become a standard interface
for network devices configurations with different modules providing support for
different vendors.

This approach looks definitively more vendor-neutral than Cisco's approach,
which is based on onePK and has already implementations from Arista Networks
(https://github.com/aristanetworks/puppet-eos) and Mellanox (https://
github.com/Mellanox/mellanox-netdev-stdlib-mlnxos).

This means that the same code mentioned earlier with the netdev_* resource
types can be used on network devices from different vendors. This is a good
example of the power of Puppet's resource abstraction model and the great work
of a wonderful community.

https://github.com/aristanetworks/puppet-eos
https://github.com/Mellanox/mellanox-netdev-stdlib-mlnxos
https://github.com/Mellanox/mellanox-netdev-stdlib-mlnxos

Chapter 11

[263]

Puppet for cloud and virtualization
Puppet is a child of our times; the boom of virtualization and cloud computing have
boosted the need and diffusion of software-management tools that can accelerate the
deployment and scaling of new systems.

Puppet can be used to manage the following aspects related to cloud computing and
virtualization:

•	 Configure virtualization and cloud solutions such as VMware, OpenStack,
and Eucalyptus. This is done with different modules for different operating
systems.

•	 Provide commands to provision instances on different clouds such as
Amazon AWS, Google Compute Engine, and VMware. This is done with the
cloud provisioner module.

Let's review the most relevant projects in these fields.

VMware
VMware is a major investor in Puppet Labs, and technological collaborations have
been done at various levels. Let's see the most interesting projects.

VM provisioning on vCenter and vSphere
Puppet Enterprise provides support to manage virtual machine instances using
vSphere and vCenter. This is done via a new face that provides the node_vmware
Puppet subcommand. Once the local environment is configured (for details
you read the documentation on http://docs.puppetlabs.com/pe/latest/
cloudprovisioner_vmware.html), we can create a new VM based on an existing
template with the following command:

puppet node_vmware create --name=myserver --
 template="/Datacenters/Solutions/vm/master_template"

We can start and stop an existing VM with these commands:

puppet node_vmware start /Datacenters/Solutions/vm/myserver

puppet node_vmware stop /Datacenters/Solutions/vm/myserver

http://docs.puppetlabs.com/pe/latest/cloudprovisioner_vmware.html
http://docs.puppetlabs.com/pe/latest/cloudprovisioner_vmware.html

Beyond the System

[264]

The integration of vCloud Automation Center
Integration with Puppet is possible directly from within the VMware vCloud
Automation Center, which incorporates the features of a product that was previously
named vFabric Application Director.

It is a component of the vCloud suite that allows deployment of full application
stacks on a dynamically composable number of nodes. The Automation Center uses
blueprints to manage application stacks; the end user can provide parameters to
manage their configurations.

Deep integration is possible via a specific module given at http://forge.
puppetlabs.com/puppetlabs/appdirector, which provides commands and scripts
that allow any kind of Puppet module to be used and parameterized in blueprints.

In this scenario, users operate on the Automation Center console, and the operations
they perform with the blueprints are basically based on bash scripts that install
Puppet and run puppet apply on properly parameterized manifests.

The configuration of vCenter
Puppet Labs and VMware products interoperate also on the setup and configuration
of vCenter, the VMware application that allows the management of the virtual
infrastructure. The module available at https://github.com/puppetlabs/
puppetlabs-vcenter can be used to install (on Windows) and configure vCenter.

It provides native resource types to manage objects such as folders (vc_folder), data
centers (vc_datacenter), clusters (vc_cluster), and hosts (vc_host).

The Puppet code to manage the installation of vCenter on Windows and the
configuration of some basic elements may look as follows:

class vcenter {
 media => 'e:\\',
 jvm_memory_option => 'M',
}

vc_folder { '/prod':
 ensure => present,
}

vc_datacenter { ['/prod/uk', '/prod/it']:
 ensure => present,
}

http://forge.puppetlabs.com/puppetlabs/appdirector
http://forge.puppetlabs.com/puppetlabs/appdirector
https://github.com/puppetlabs/puppetlabs-vcenter
https://github.com/puppetlabs/puppetlabs-vcenter

Chapter 11

[265]

vc_cluster { ['/prod/uk/fe', '/prod/it/fe']:
 ensure => present,
}

vc_host { '10.42.20.11':
 ensure => 'present',
 username => 'root',
 password => 'password',
 tag => 'fe',
}

vc_host { '10.42.20.12':
 ensure => 'present',
 username => 'root',
 password => 'password',
 tag => 'fe',
}

Amazon Web Services
Puppet-based solutions to manage Amazon Web Services (AWS) have been around
for some time. There are contributions both from Puppet Labs and the community,
and they relate to different Amazon services.

Cloud provisioning on AWS
Puppet Labs has released a Cloud Provisioner module that provides faces to manage
instances on AWS and Google Compute Engine. We can install it with:

puppet module install puppetlabs-cloud_provisioner

A new node_aws face is provided, and it allows operations on AWS instances. They
are performed via Fog, a Ruby cloud services library, and need some prerequisites.
We can install them with:

gem install fog

gem install guid

On Puppet Enterprise, all the cloud provisioner tools and their
dependencies can be easily installed on the Puppet Master or any
other node directly during Puppet installation.

Beyond the System

[266]

In order to be able to interface to AWS services, we have to generate access
credentials from the AWS Management Console. If we use the now-recommended
AWS Identity and Access Management (IAM) interface, remember to set at least
a power user policy to the user for which access keys are created. For more details,
visit https://aws.amazon.com/iam/. We can place the access key ID and secret
access key in ~/.fog, which is the configuration file of Fog:

:default:
 aws_access_key_id: AKIAILAJ3HL2DQC37HZA
 aws_secret_access_key: /vweKQmA5jTzCem1NeQnLaZMdGlOnk10jsZ2

Once done, we can interact with AWS. To see the SSH key pair names we have on
AWS, we run:

puppet node_aws list_keynames

To create a new instance, we can execute:

puppet node_aws create --type t1.micro --image ami-2f726546 --keyname
 my_key

We have specified the instance type, the Amazon Machine Image (AMI) to use, and
the SSH key we want to use to connect to it.

The output of the command reports the hostname of the newly created instance so
that we can log in to it with a command such as the following one (if you have issues
with connecting via SSH, review your instance's security group on the AWS console
and verify that inbound SSH traffic is permitted):

ssh -i .ssh/aws_id_rsa root@ec2-54-81-87-78.compute-1.amazonaws.com

To list all our instances (both stopped and running), we use:

puppet node_aws list

To destroy a running instance (it is going to be wiped off forever), we use:

puppet node_aws terminate ec2-54-81-87-78.compute-1.amazonaws.com

We can specify the AWS region where instances are created with the --region
option (the default value is us-east-1).

https://aws.amazon.com/iam/

Chapter 11

[267]

AWS provisioning and configuration with
resource types
Puppet Labs' Cloud Provisioner is not the only solution we have to create AWS
instances with Puppet. There are at least a couple of community modules that
tackle the same challenge from another point of view: instead of adding a Puppet
subcommand, they provide extra resource types that allow us to declare the instances
we want to create or various AWS configuration objects in our Puppet manifests.

Dave McCormick's module, which is given at https://github.com/
practicalclouds/pclouds-aws, provides the ec2instance native type, which can
be used to manage AWS instances.

Setup of the module pclouds-aws is quite easy. We need the Fog gem installed and
the module from GitHub or the Forge:

puppet module install pclouds-aws

We configure the AWS credentials with:

awsaccess { 'default':,
 ensure => 'present',
 aws_access_key_id => 'AKIAILAJ3HL2DQC37HZA',
 aws_secret_access_key => '/vweKQmA5jTzCem1NeQnLaZMdGlOnk10jsZ2',
 regions => ['eu-west-1', 'us-east-1']
}

We can manage instances with something as easy as:

ec2instance { 'test1':
 ensure => 'present',
 region => 'eu-west-1',
 image_id => 'ami-90dbd0e4',
}

A very neat thing is that as ec2instance is a normal type, we can see many details
(and configurable arguments) of all our instances on the regions for which we
configured awsaccess with the following command:

puppet resource ec2instance

This approach, in my very personal opinion, really gives a meaning to Puppet
integration, and it allows us do to the same things we can do with Cloud Provisioner
(the management of instances via the command line), plus much more (such as the
management of instances on Puppet manifests).

https://github.com/practicalclouds/pclouds-aws
https://github.com/practicalclouds/pclouds-aws

Beyond the System

[268]

For example, to terminate the previously created instance, we can execute the
following command:

puppet resource ec2instance test1 ensure=absent

The same author has written other AWS-related modules such as pclouds-ebsvol
to manage EBS volumes.

Another interesting module is https://github.com/bobtfish/puppet-aws_api
by Tomas Doran; it does not strictly manage AWS instances, but it allows us to
configure many AWS resources in manifests, in particular the configurations related
to VPC (the AWS service that allows the creation of instances on a virtual private
cloud). It provides native types such as aws_vpc, aws_subnet, aws_cgw, aws_dopts,
aws_igw, aws_routetable, aws_vgw, aws_vpn, aws_iam_user, and aws_iam_group.

The ability to express such configuration settings in Puppet language makes the
setup of a AWS-based infrastructure much more reliable and reproducible and
becomes particularly valuable, for example, when we need to reproduce our
configurations on different regions or availability zones.

Managing CloudFormation
We have seen how Puppet functionalities can be extended with modules, either
by providing resource types that enrich the language or additional faces that add
actions to the application.

One of these extra faces is provided by Puppet Labs' CloudFormation module
(https://github.com/puppetlabs/puppetlabs-cloudformation). It adds the
puppet cloudformation subcommand, which can be used to deploy a whole
Puppet Enterprise stack via Amazon's CloudFormation service.

The module, besides installing a Master based on Puppet Enterprise, configures
various AWS resources (security groups, IAM users, and ec2 instances) and Puppet-
specific components (modules, dashboard groups, and agents).

Cloud provisioning on Google Compute
Engine
The Puppet Labs' cloud provisioner module, which we mentioned earlier, can be used
to create AWS instances and can work with Google Compute Engine (GCE) as well.

A new face, node_gce, is provided. This enables various actions to manage GCE
instances; for the official documentation check http://docs.puppetlabs.com/pe/
latest/cloudprovisioner_gce.html.

https://github.com/bobtfish/puppet-aws_api
https://github.com/puppetlabs/puppetlabs-cloudformation
http://docs.puppetlabs.com/pe/latest/cloudprovisioner_gce.html
http://docs.puppetlabs.com/pe/latest/cloudprovisioner_gce.html

Chapter 11

[269]

Its usage patterns are similar to the ones of the node_aws face; a new subcommand
is added to Puppet to interactively manage instances on GCE, but no new dedicated
resource types are provided.

Puppet on storage devices
Puppet management on storage devices is still in the early stages; there are not many
implementations around, but something is moving, for example, Gavin Williams'
module to manage NetApp filers available at https://forge.puppetlabs.com/
fatmcgav/netapp.

In addition, this module is based on puppet device; the configuration is something
like the following lines of code:

[netapp.example42.lan]
 type netapp
 url https://root:password@netapp.example42.lan

The module provides native types to manage volumes (netapp_volume), NFS shares
(netapp_export), users (netapp_user), snap mirrors (netapp_snapmirror), and
other configuration items. It also provides a defined resource (netapp::vqe) for the
easy creation and exportation of a volume.

Summary
In this chapter, we have explored new territories for Puppet. We have gone beyond
server operating systems and have seen how it is possible to also manage network
and storage equipments and how Puppet can help us work with the cloud.

We have seen that there are two general approaches to the management of devices:
the proxy one, which is mostly implemented by the puppet device application and
has a specific operational approach, and the native one, where Puppet runs directly
on the managed devices and behaves like it does in a normal node.

We have also reviewed the modules available to manage virtualization and cloud-
related setups. Some of them configure normal resources on a system; others expand
Puppet applications to allow the creation of and interaction with cloud instances.

Puppet is well placed for the future challenges that a software-defined data center
involves, but its evolution is an ongoing process in many fields.

In the next chapter, we are going to explore how Puppet is evolving and what we can
expect from Puppet Version 4.

https://forge.puppetlabs.com/fatmcgav/netapp
https://forge.puppetlabs.com/fatmcgav/netapp

Future Puppet
Time is relative.

My future is your present.

When you read this, Puppet 4 has probably been released, largely based on the
experimental features presented in Puppet 3.x releases, which we are going to review
in this chapter.

Puppet 4 is a real (r)evolution.

New versatile and powerful features are going to stimulate smart implementations
and very new approaches to the management of Puppet logic and data.

The grounds are being placed for future evolutions based on what we are seeing here.

Still, the familiar Puppet elements are all there; all the ones we have seen in the
previous chapters: variables, resource types, nodes, modules, code and data to
manage, plugins, integration with different devices, and so on. They are going to stay
and evolve.

Most of the changes introduced as an experiment in the 3.x tree and enabled by
default in Puppet 4 can be activated with the configuration option parser =
future, so that they can be tested on Puppet 3 before trying a version switch.

Experimental features are not officially supported and don't follow semantic
versioning rules as they may change any time. So, it's not advisable to enable them
on production systems, without proper testing of each new version.

Puppet developers refined many parts and completely redesigned some key areas
of the code. Among the many great authors, we have to name a single person
responsible for the most profound changes: Henrik Lindberg.

Future Puppet

[272]

Check out his blog (http://puppet-on-the-edge.blogspot.it/) for up-to-date
and thoughtful insights on the development of many new features in Puppet 4.

In this chapter, we are going to explore the following topics:

•	 The Future Parser: The code that interprets our manifests has been rewritten
from scratch and now allows a much richer and more powerful DSL

•	 The Type System: This allows the definition of different data types in
Puppet, and also involves easier and powerful validation of the data
we manage

•	 The EPP templates: This is where we can directly use Puppet DSL instead of
Ruby as we do in ERB templates

•	 Various other features like heredoc support, msgpack serialization, an
improved error system, the contain function, and directory environments

•	 Data in modules: This is a long-standing and desired feature, which allows
smarter management of a module's internal data and defaults

•	 Facter 2: With support for structured facts and other features
•	 The Trapperkeeper framework: This is possibly the base of the future

Puppet's ecosystem

Introducing the future parser
The parser is the part of the Puppet code that interprets our manifests.

It has been rewritten from scratch and its new incarnation, nicknamed future parser,
introduces many new features, which greatly enhance the power of the Puppet DSL.

The most relevant additions are:

•	 Lambdas which are blocks of code that have parameters and can be passed
directly to the new iteration functions

•	 Powerful filtering and concatenation functions for data collection like hashes
and arrays, also thanks to the new type system

The overall impression is that the whole set of innovations expected with Puppet
4 will allow better and more versatile management of data, which should ease the
adoption of paradigms such as infrastructure as data, and maybe, radically change
the way we write and compose our Puppet code.

For example, in future modules, we might face a wider and more dynamic usage of
functions like create_resources or resource declarations based on iterations over
data and see less repetitions of normal resource type declarations.

http://puppet-on-the-edge.blogspot.it/

Chapter 12

[273]

Lambdas and Iterations
Lambdas are parameterized blocks of code. Think of them as anonymous
functions which can be defined, used, and thrown away without naming them.
They are typically used as arguments to other functions, and this brings great
power and flexibility.

Lambdas' code is enclosed in braces ({ }). Inside them, we can place any Puppet
code except node statements, and class and defines definitions. Lambdas can have
parameters declared within pipes (|). The basic syntax of a lambda is therefore:

| <parameters> | { <expressions> }

An example may definitively help in understanding possible usage cases. In the
following code, an array of sites is passed to a lambda to create their apache virtual
hosts and FTP users:

$sites = ['example42.com','lab42.it','google.com']
each($sites) |$my_site| {
 apache::virtualhost { $my_site: }
 ftp::user { $my_site: }
}

In the preceding example, we used the new each function. Each element of the
$sites array is used as a parameter, here called $my_site, for a lambda that
declares an apache::virtualhost and a ftp::user define (there can be any other
piece of Puppet code here).

The parameters inside the pipe can be separated by commas and may have
default values:

| $user , $group = 'admins' |

Various new functions have been introduced to work with lambdas; they allow
iteration and manipulation of collections (arrays or hashes), as shown in the
following list:

•	 each: This iterates over collections. It takes two arguments; the first is an
array or a hash, the second is the lambda.

•	 map: This transforms an array or a hash (the first argument) into a new array
(the result of the lambda invocation).

•	 filter: This filters an array or a hash (first argument) and produces an array
based on the evaluation done in the lambda (second argument).

Future Puppet

[274]

•	 reduce: This returns a single value from an array or a hash (first argument)
as computed by a lambda (second argument).

•	 slice: This slices an array or hash (first argument) according to defined
elements (second argument), which are optionally iterated over a lambda
(third argument).

These functions can be invoked using different syntaxes; all the following examples
are valid and do the same thing:

each($x) |$value| { … }
$x.each |$value| { … }
$x.each() |$value| { … }

The slice function, which takes an additional argument, can be used in these ways:

slice($x, 2) |$value| { … }
$x.slice(2) |$value| { … }

When used with these preceding functions, lambdas can have one or two parameters
whose value depends on the type of data they are dealing with.

When the lambda is used with an array, if it has one parameter, that parameter is the
array value. If it has two parameters, the first one is the array index and the second
one the value:

$my_array = ['al' , 'joe']
$my_array.each |$x| { notice "${x} is the array value" }
$my_array.each |$index, $value| {
 notice "${index} is the array index (Starts from 0)"
 notice "${value} is the array value"
}

When we use a hash with a lambda, we can express it with a single parameter that
represents a complete key-value pair, or, if there are two parameters, the first is the
key and the second is the value:

$my_hash = { name => 'al' , group => 'admins' }
$my_hash.each |$x| {
 notice "${x[0]} is the hash key"
 notice "${x[1]} is the hash value"
}
$my_hash.each |$key, $value| {
 notice "${key} is the hash key"
 notice "${value} is the hash value"
}

Chapter 12

[275]

The lambda parameters can be used as variables only inside its body (they belong to
a local scope, which is not accessible outside the lambda code block).

Inside the code block, we can, however, use any variable available in the containing
scopes (top, node, and class).

For example, the following code works, but we cannot use the variable $user outside
the lambda body:

$names = ['fred','al']
$names.each |$user| { notice "User ${user} available on ${::fqdn}"}

Manipulating and validating hashes and arrays
The future parser, thanks to the new type system we will see later, allows easier
manipulation of arrays and hashes, and permits operations directly in the Puppet
DSL that were possible only via custom functions before.

Arrays and hashes can be concatenated with the + sign:

[1,2,3] + [4,5,6] # produces [1,2,3,4,5,6]
{a => 1} + {b => 2} # produces {a=>1, b=>2}

The stdlib equivalents are:

concat ([1,2,3] , [4,5,6])
merge ({a => 1} , {b => 2})

We can append values to arrays with <<:

[1,2,3] << 2, # produces [1,2,3,2,]
[1,2,3] << [2,4] # produces [1,2,3,[2,4]]

The type of a variable can be verified and evaluated with the =~ operator.

To test, for example, whether a variable is an array:

 if $users =~ Array { .. }

This applies to any recognized data type. The following output shows the stdlib
equivalent functions of the =~ operator:

StdLib # Puppet 4 Type System
is_array($x) $x =~ Array
is_bool($x) $x =~ Boolean
is_float($x) $x =~ Float
is_hash($x) $x =~ Hash

Future Puppet

[276]

is_integer($x) $x =~ Integer
is_numeric($x) $x =~ Numeric
is_string($x) $x =~ String
not available $x =~ Regexp

Similarly, the new assert_type function allows validation of data types. It's
equivalent to the various validate_* stdlib functions:

StdLib # Puppet 4 Type System
validate_array($x) assert_type(Array, $x)
validate_bool($x) assert_type(Boolean, $x)
validate_hash($x) assert_type(Hash, $x)
validate_re($x) assert_type(Regexp, $x)
validate_string($x) assert_type(String, $x)

The assert_type function can check only one argument, so if we want to validate
multiple values, we have to place them in an array and then check the parameterized
array properly:

StdLib # Puppet 4 Type System
validate_array($x, $y) assert_type(Array[Array], [$x, y])
validate_bool($x, $y) assert_type(Array[Boolean], [$x, $y])
validate_hash($x, $y) assert_type(Array[Hash], [$x, $y])
validate_re($x, $y) assert_type(Array[Regexp], [$x, $y])
validate_string($x, $y) assert_type(Array[String], [$x, $y])

A very interesting feature is the possibility to validate the length of types when we
refer to them. This is done by specifying minimum and maximum values inside
square brackets:

$x =~ String[min, max]
[$x, $y] =~ Array[String[min, max]]
assert_type(String[min,max], $x)
assert_type(Array[String[min,max]], [$x, $y])

To execute some code only if a string is not empty, we can write:

if $package_name=~String[1] { … }

This might not impress us, as it was possible to check for a string existence before
as well, but these checks can be more elaborated, for example, to declare some
resources only if the string length is between two and four characters:

if $package_name=~String[2,4] { … }

Chapter 12

[277]

Similar checks can also be done for the single values of an array. To execute code for
an array whose values can have only two characters, we can write:

if $country =~(Array[String[2,2]) { … }

We can also emulate the functionality of the values_at stdlib function with the []
operator. This allows us to select only the specified values from a given array (we
indicate the range, starting from 0):

notice [one,two,three,four,five][1,3]
=> two three four

Other features
Various other smaller features and language constructs are now possible, as shown
in the following points:

•	 We can interpolate the value of a function (into a double-quoted string)
without the need to previously assign it to a variable:
"Random value is ${fqdn_rand()}"

•	 Hashes and arrays can be used directly in function arguments:
notice ['one','two']

•	 We can use a semicolon to separate expressions on the same line:
$package_name = 'httpd' ; $service_name = 'httpd'

•	 We can also chain variable assignments:
$package_name = $service_name = 'httpd'

•	 The unless statement now has an else clause:

unless [condition] { code } else { code }

Restrictions and backward incompatibilities
The introduction of a more structured type of system and the rewriting of the Parser
has been an occasion to clean up some idiosyncrasies in the language and deprecate
some constructs that were previously possible.

Future Puppet

[278]

These are the cases where the earlier code won't be compatible with Puppet 4; they
are not so common, but are worth mentioning:

•	 Variable and parameters names can't be only numbers or contain capital
letters. In order to avoid bad surprises, use only names with lowercase
letters, numbers (but not alone), and underscores. These are all illegal
statements:
$42 = 'the answer'
$Answer = '42'

•	 When assigning numerical values to variables, they are validated according
to their type if they are not quoted. The following code will throw an error:

$a = 0x0EZ # Not a valid HEX number
$b = 0778 # Not a valid octal number

Directory environments
The usual approach to environments management using settings such as manifest,
modulepath, or config_version inside an [environment] stanza of the Master's
puppet.conf is going to be deprecated and we see notices about this from Puppet
3.6. Starting with Puppet 4, environments are managed by default with a directory-
based approach.

The configuration setting environmentpath defines the directory that contains our
environments. Its default value is /etc/puppet/environments, where we can have
a different environment in each subdirectory. They are immediately available to the
clients, we can call them, as often done, production, testing, and devel, but also
use very volatile names which may map to temporary Git branch names, such as
0ed1434e or pupp_376, where we can test specific fixes or features.

In each environment directory, we can place a modules directory specific to that
environment, a manifests directory, and an environment.conf file, where we can
place environment-specific settings that override the general default ones.

We can define, with the basemodulepath parameter, a global directory where we can
place modules shared by all the environments. The actual modulepath used to load
our modules is $environmentpath/$environment/modules:$basemodulepath
so that the modules directory inside an environment has higher priority than the
general base one.

Chapter 12

[279]

Heredoc support
Heredoc support is introduced in Puppet 3.5 and is done in a cool way.

We can now write text anywhere in the code where a string is expected without
caring about managing quotes and escaping it with backslashes.

The basic syntax is @(WORD) to open the heredoc block and WORD to end it, where
WORD is any sequence of characters of your choice (of course, we should not have it in
our heredoc content). For example, we can assign content with newlines, quotes, and
any character to a string:

$my_content = @(HERE)
This is a sample heredoc test.
With "double quotes" and 'single quotes' happily coexisting.
New lines are present:
 - and indentations
HERE

We can use the $my_content variable wherever we want (for example, in the content
argument of a file resource).

There is more. We can use variables in our text (referenced with $ or ${}) by quoting
our starting word with ". The normal dollar sign ($) is escaped with \$:

$my_content = @("HERE")
File Managed by Puppet. Great \$\$\$ value for money.
search ${::domain}
nameserver $dns_server
HERE

We can manage the indentation of the text, aligning it to the | char in the ending tag
(this is very useful to help our code look good without keeping the indentation used
for code alignment in our resulting heredoc text):

if $::osfamily == 'RedHat' {
 $my_content = @(DOC)
 # This is present on RedHat systems
 | DOC
}

Future Puppet

[280]

The new type system
The new type system is another major pillar of Puppet 4. We have already seen the
beneficial side effects of its existence when exploring the future parser.

All the data we manage with Puppet is now expressed by a rich type system.

Everything inside our DSL has its type: the resources we declare, the parameters of
our defines, our Hiera data, facts, and all the variables used in our code.

The type system is hierarchical, and besides common Scalars (Numeric, String,
Boolean, Regexp) and Collections (Array, Hash), it can represent catalog entries
(Resource, Node, Class, Stage) or more esoteric data types, such as Ruby class
names and undefined values.

Following is the full, hierarchical list of the available data types. It's quite useful to
understand how they are organized and the different data types we can deal with:

 Object
 |- Scalar
 | |- Numeric
 | | |- Integer[from, to]
 | | | |- (Integer with range inside another Integer)
 | | |
 | | |- Float[from, to]
 | | | |- (Float with range inside another Float)
 | |
 | |- String
 | | |- Enum[*strings]
 | | |- Pattern[*patterns]
 | | |- Regexp[regexp]
 | |
 | |- Boolean
 | |- Regexp
 |
 |- Collection[size_from, size_to]
 | |- Array[element_type, size_from, size_to]
 | [|- (type compatible array with size within range)
 | |
 | |- Hash[key_type, value_type, size_from, size_to]
 | |- (type compatible hash with size within range)
 |

Chapter 12

[281]

 |- Data
 | |- Scalar
 | |- Array[Data]
 | |- Hash[Scalar, Data]
 |
 |- CatalogEntry
 | |- Resource[resource_type_name, title]
 | |- Class[class_name]
 | |- Node[node_name]
 | |- Stage[stage_name]
 |
 |- Variant[*types]
 |- Optional[type]
 |- Undef
 |
 |- Type[T]
 |
 |- Ruby[class_name]

Other new features
Besides the functionalities strictly related to the new parser and type system, many
other new features have been introduced.

EPP Templates
We are used to managing the contents of configuration files using ERB templates,
where it is possible to embed the Ruby code and variables interpolation inside the
text to be used in the files deployed to our nodes.

Puppet 3.5 introduces Embedded Puppet (EPP) Templates, where we can directly
use Puppet code inside our templates. They are supposed to be placed in the same
template's directory of our nodes; they are expected to have a .epp extension and
are invoked via the epp and inline_epp functions, which are equivalent to the
template and inline_template ones.

The tags to be used to insert Puppet code inside files' text are the same ones used for
ERB templates:

•	 <%: Switches to the code mode. From here, normal Puppet DSL can be used.
•	 <%=: Switches to the expression mode. Variables can be directly referenced

(using $ instead of @).

Future Puppet

[282]

•	 <%-: Switches to the code mode, and any whitespaces preceding the tag are
not included in the output.

•	 <%#: Comment, not included in the output (up to the next %>).
•	 %>: Ends the puppet mode.
•	 -%>: Ends the puppet mode and trims any generated trailing whitespaces.

Inside the code block, the normal Puppet DSL can be used. At the beginning of the
template, we can declare the parameters the template uses and, eventually, their
default values:

<%-($dns_servers , $options, $timeout => 2)-%>

In EPP templates, variables scoping works differently compared to what we used
with ERB templates:

•	 Top scope and node scope variables (also defined as global scope variables)
are always available

•	 If parameters are declared at the beginning of the template with the syntax
we have just seen, only those variables are available

•	 If no parameters are explicitly declared in the template, then local scope
variables (the ones coming from the class or the define that uses the template)
are available

The contain function
We have seen in Chapter 5, Using and Writing Reusable Modules, that we need to use
the anchor pattern when we manage relationships with classes that contain other
classes.

Puppet 3.4 introduced a new function, called contain, which is used as the include
function but adds a strict containment to the included classes. All the classes that are
declared inside the class we contain are applied together, avoiding the risk to have
some of these classes applied in other uncontrolled parts of the catalog.

Usage of contain does not involve parameterized-class-style declaration and accepts
more than one class name (either comma separated or in an array). An example for
this is as follows:

contain apache
contain apache, php, myql
contain ['apache' , 'php' , 'mysql']

Chapter 12

[283]

So, for example, when we have a wordpress class that just installs the WordPress
application and we want to apply it after the other classes are applied, we can safely
use a syntax shown as follows:

contain wordpress
Class['apache'] -> Class['mysql'] -> Class['wordpress']

Serialization with MessagePack
Puppet Master and clients exchange a remarkable amount of data: facts, catalogs,
and reports. All this data has to be serialized, that is, converted into a format that can
be stored to a file, managed in a memory buffer, and sent on a network connection.

There are different serialization formats. Puppet, during its years of existence, has
used XML-RPC, YAML, and PSON (a custom variation of JSON, which allows
inclusion of binary objects), the latter being the currently preferred choice.

A new and very promising protocol called MessagePack has entered the
programming scene and is gaining consensus. It's a binary format more compact
and efficient (some tests suggest that it can be 50 percent more compact than JSON).
So, it reduces the quantity of data to transmit over the wire and the computational
resources needed to manage it.

A simple test shows what an array such as ['one', 'two', 'three']
can look like in different formats. Expressed in the YAML format, this
becomes (24 bytes, newlines included):

- one
- two
- three

In the JSON format, this becomes (21 bytes):
["one","two","three"]

In MessagePack, this becomes (15 bytes (a string like \x93 represents a
single byte in hexadecimal notation)):

\x93\xA3one\xA3two\xA5three

If we consider that Puppet is constantly making serialization and
deserialization of data, it's clear that the introduction of such a format
may deliver great performance benefits.

Future Puppet

[284]

To enable the MessagePack serialization, we need to install the msgpack gem on
both the client and Master (it might become an automatic dependency in future
Puppet packages):

gem install msgpack

Set in the [main] section of their puppet.conf:

preferred_serialization_format = msgpack

Clients where msgpack is not supported can keep the default PSON format and
continue to operate normally.

Improved error system
Various enhancements have also been made to how Puppet reports errors.

Now, in most of the error messages, besides the filename and the line where
the error is caught, the position inside the line is also indicated (the format is
filename:line:position).

The same error messages have been improved to ease readability and
troubleshooting.

It's also possible to configure the parameters max_errors, max_warnings, and max_
deprecations (by default, 10 for each of them) in puppet.conf to set the maximum
lines to print for each of these error categories. If the limit is reached, the last line
with the total count of the found errors is printed.

Data in modules
We have already mentioned the data in the modules feature and its long and difficult
path inside Puppet in Chapter 5, Using and Writing Reusable Modules.

At the moment of writing, the feature is still not released on the core Puppet;
however, it's expected for Puppet 4.

The implementation details are still not defined, but for modules' authors, the usage
patterns should be similar to the ones suggested by R.I.Pienaar in his experimental
module-based proposal, which can be found at https://github.com/ripienaar/
puppet-module-data.

https://github.com/ripienaar/puppet-module-data
https://github.com/ripienaar/puppet-module-data

Chapter 12

[285]

The basic idea is that all the internal variables of a module and, where needed, the
default values of parameters should be based on a Hiera YAML backend directly
placed inside the module, with a module-specific hierarchy that does not interfere
with users' local hierarchies.

Basically, we can define the hierarchy to manage the module data in our module's
data/hiera.yaml file:

 :hierarchy:
 - "osfamily/%{::osfamily}"
 - common

Such a (simple) configuration would look for Hiera data in YAML files such as data/
osfamily/RedHat.yaml, data/osfamily/Debian.yaml, and data/common.yaml.

Here, we can place the correct values for the module's internal variables and
parameters. A RedHat.yaml file in a postgresql module could look like:

postgresql::version: '8.4'
postgresql::package_name: 'postgresql-server'
postgresql::service_name: 'postgresql'
postgresql::config_path: '/var/lib/pgsql/data/postgresql.conf'
postgresql::config_dir_path: '/var/lib/pgsql/data'
postgresql::hba_file_path: '/var/lib/pgsql/data/pg_hba.conf'

This will allow us to completely remove the Puppet code, usually placed in the
manifests/params.pp file, that computes internal variables according to the
underlying operating systems.

One of the reasons why I personally find this feature particularly useful, besides the
obvious benefits of having all the data nicely managed in a hierarchical way, is the
possibility to insert the same parameters of the module's classes in the hierarchy.

For example, if we want to provide the option to install PostgreSQL in custom ways
(for example, using upstream repositories, or downloading and eventually compiling
the software) in our postgresql module, we can add a specific parameter that
defines the name of the installation class. Consider a possible hierarchy such as:

 :hierarchy:
 - "install_class/%{install_class}"
 - "osfamily/%{::osfamily}"
 - common

Future Puppet

[286]

If we have a class named postgresql::install::postgresql_org_redhat, we can
place the specific module data for the packages provided by this installation method
in a file named data/install_class/postgresql::install::postgresql_org_
redhat.yaml, shown as follows:

postgresql::version: '9.3'
postgresql::package_name: "postgresql-%{::postgresql::version}"
postgresql::service_name: "postgresql-%{::postgresql::version}"
postgresql::configpath:
 "/etc/postgresql/%{::postgresql::version}/main/postgresql.conf"
postgresql::config_dir_path:
 "/etc/postgresql/%{::postgresql::version}/main"
postgresql::hba_file_path:
 "/etc/postgresql/%{::postgresql::version}/main/pg_hba.conf"

I can assure you that to manage such a scenario in a normal module requires a lot of
boilerplate code, and can't be done via a params class since some of the values that
are expected to be defined there depend not only on facts, but also on parameters
passed by users.

Be warned. This implementation is based on R.I.Pienaar's proposal, and at the
time of writing, it is not sure if its usage patterns will be exactly like the ones of
these examples.

Also, it's probable that the final implementation will allow different methods to
provide the module's data in a similar fashion of the data binding feature for each
class parameter, which currently has only Hiera as an available backend, but which
might be open to other implementations.

Facter 2
Strictly speaking, Facter is an autonomous software project and does not follow
Puppet's versioning and release schedule. It is not a surprise, therefore, that Facter 2
was released more or less when Puppet 3.5 was already out.

The first official version of Facter 2 is 2.0.1.
Version 2.0.0 was skipped because previously some 2.0.0.rcX
release candidate versions, based on older and deprecated code,
were released, and the guys at Puppet Labs preferred to avoid
confusion, since the code in 2.0.1 is totally new and unrelated to
the one in 2.0.0.rcX.

Chapter 12

[287]

The main features of Facter 2 (http://docs.puppetlabs.com/facter/2.0/) are:

•	 New return types: In Facter 1, all facts were simple strings. Now, facts values
can be expressed in different data types, such as Integer, Float, TrueClass,
FalseClass, NilClass, String, Array, and Hash.

•	 Structured facts: Facts can have complex structures and represent data with
arrays or hashes. This greatly enhances their power and expressiveness.

•	 Aggregate resolutions: The content of a fact can be built merging different
chunks of code allowing more elaborate results.

•	 Pluginsync for external facts: From Puppet 3.4 and Facter 2.0.1, it is possible
to provide external facts directly via modules, using the pluginsync
functionality and copying the content of the MODULE/facts.d directory to
clients' /etc/facter/facts.d automatically.

Let's analyze a sample fact, yumplugins, written by Dean Wilson, a proficient
community member and author of the website http://www.puppetcookbook.com.

This example gives us a great idea of the usefulness and power of structured facts.

Fact declaration and structure is completely the same as Facter 1:

Facter.add("yumplugins") do
 confine :osfamily => "RedHat"
 setcode do
 plugin_directory = '/etc/yum/pluginconf.d'

Here, we begin with the interesting things; a hash called plugins, which will be the
result of the fact, is defined with three different keys that expect an array of values:

 plugins = {}
 plugins['plugin'] = []
 plugins['enabled'] = []
 plugins['disabled'] = []

The fact analyzes all the .conf files in the plugins directory, and for each of them,
the plugin name is added to the plugins['plugin'] key:

 Dir[plugin_directory + '/*.conf'].each do | file |
 plugin_name = File.basename(file, '.conf')
 plugins['plugin'] << plugin_name

http://docs.puppetlabs.com/facter/2.0/
http://www.puppetcookbook.com

Future Puppet

[288]

If the plugin is enabled (the enabled string is searched), an entry is added to the
plugins['enabled'] array, otherwise it is added to the plugins['disabled'] one:

 enabled = File.open(file).read.grep(/^(\s*enabled\s*=\s*[01])/).
to_s.split('=')[1]
 if enabled.to_i.zero?
 plugins['disabled'] << plugin_name
 else
 plugins['enabled'] << plugin_name
 end
 end

At the end, the plugins hash is returned after a sort of its keys to preserve
consistency on different executions:

 plugins.keys.each do |key|
 plugins[key].sort!
 end
 plugins
 end
end

The resulting fact, expressed in the YAML format, might be something like:

yumplugins:
 plugin:
 - blacklist
 - presto
 - refresh-packagekit
 enabled:
 - presto
 - refresh-packagekit
 disabled:
 - blacklist

Another important addition is the possibility to compute the content of a fact
aggregating different parts of the code.

Let's see the official example of a fact (networking) with an aggregate resolution. It's
declared as any other fact but specifies that its type is aggregate:

Facter.add(:networking, :type => :aggregate) do
 confine :kernel => "Linux"

Chapter 12

[289]

The internal code, instead of being defined with the setcode statement, is
separated into different chunks of code. The next one gathers the MAC addresses
of the interfaces:

 chunk(:macaddrs) do
 interfaces = {}
 Sysfs.net_devs.each do |dev|
 interfaces[dev.name] = {
 'macaddr' => dev.macaddr,
 'macbrd' => dev.macbrd,
 }
 end
 interfaces
 end

A second one defines the IPv4 addresses:

 chunk(:ipv4) do
 interfaces = {}
 Facter::Util::IP.get_interfaces.each do |interface|
 interfaces[interface] = {
 'ipaddress' => Facter::Util::IP.get_ipaddress_
value(interface),
 'netmask' => Facter::Util::IP.get_netmask_value(interface),
 }
 end
 interfaces
 end
end

The values of the two chunks are merged and returned in a single hash. Optionally,
we can find an aggregate block in facts with aggregate resolutions, which can
summarize and merge the values from the existing chunks with a particular logic.

Trapperkeeper
A few days before these lines were written, Puppet Labs released a new open
source project called TrapperKeeper, which can be found at https://github.com/
puppetlabs/trapperkeeper:

"TrapperKeeper is a clojure framework for hosting long-running applications and
services."

https://github.com/puppetlabs/trapperkeeper
https://github.com/puppetlabs/trapperkeeper

Future Puppet

[290]

It has been presented in a blog post by Chris Price at http://puppetlabs.com/
blog/new-era-application-services-puppet-labs, and currently there is really
not much to say on how this product will affect the Puppet's ecosystem.

From what can be read and heard around, the impression is that TrapperKeeper
will earn a lot of attention from Puppet Labs in the future. They talk about a new
era after all.

My easy guess is that all the current and future projects written in Clojure by Puppet
Labs will be based on this framework, starting from the same PuppetDB.

Given the terrific work they have done with PuppetDB, we can have great
expectations on many different services that gravitate around Puppet.

I wouldn't be surprised to see external Puppet data backends, alternative or
complementary to Hiera, or Node Classifiers, or even orchestration and data
correlation services in the future.

I wouldn't be surprised, also, to see more and more components of Puppet being
developed in Clojure instead of Ruby, probably with remarkable performance benefits.

Here, we are really into pure speculation, so take these as personal fantasies.

Maybe we will have to start playing with Clojure, which can't be a bad thing in itself,
or just use beautifully engineered applications by Puppet Labs, but I have a strong
feeling that we will have to deal frequently with TrapperKeeper.

Summary
In this chapter, we have given a peek to what is the future of Puppet. We have
explored the new Parser and most of its language enhancements, such as the
Lambdas and the iteration functions.

We have seen how the new type system allows a much more structured approach to
data validation and management and how this can enrich our possibilities to use and
manipulate data.

We have mentioned some other features, such as support for heredoc, the contain
function, the EPP templates, data in modules, and directory environments.

We have also reviewed Facter 2, with support for structured facts and aggregations,
and finally took a quick look at TrapperKeeper, which will be the basis of the future
Puppet Labs applications written in Clojure.

The number of changes introduced in Puppet 4 is quite relevant, and they will
definitely make complex operations on data easier.

http://puppetlabs.com/blog/new-era-application-services-puppet-labs
http://puppetlabs.com/blog/new-era-application-services-puppet-labs

Chapter 12

[291]

Maybe we will partly lose the unique feeling of the Puppet declarative DSL, where a
system administrator can easily understand what's configured on a system by taking
a look at the declared resource types in his manifests.

We will probably move more and more towards an infrastructure as data approach,
where the Puppet code will probably look more complex but will deal, in powerful
ways, with our data, whether it is placed in Hiera or other parts.

The jump from Puppet 3 to Puppet 4 is probably going to have more impact than in
any major version change, and the new possibilities of the language will probably be
used and abused by the community in the most unexpected and imaginative ways.

Some of them will probably become best practices, others will be considered bad
patterns, but none of them, strictly speaking, will be required. We can continue
writing the Puppet code similar to how we used to write in Puppet 0.24.

Best practices are relative; they depend on time, conditions, and also personal
taste. Our best practice is what works best for us, and this is the only thing that
really matters.

So close this book and open your laptop. It's time to play the Puppet Master!

Index
Symbols
$caller_module_name variable 27
$class::$argument 56
$clientcert variable 27
$clientversion variable 27
$config_file_content variable 129
$config_file_template 129
$::environment variable 48
$environment variable 27
$managed_config_file_content variable 129
$module_name variable 27
$modulepath configuration 36
$my_content variable 279
$my_dns_servers variable 54
$name function 19
$serverip variable 27
$servername variable 27
$serverversion variable 27
$settings::<setting_name>variable 27
$template 56
/aggregated-event-counts endpoint 87
/catalogs endpoint 85
-%> ending tag 39
/event-counts endpoint 87
/events endpoint 86
/facts endpoint 83
/facts-names endpoint 85
.git/hooks directory

.git/hooks/post-receive 184

.git/hooks/pre-commit 183

.git/hooks/pre-receive 183
.git/hooks/post-receive 184
.git/hooks/pre-commit 183

.git/hooks/pre-receive 183
/metrics endpoint 85
/nodes endpoint 84
<% opening tag 39
/reports endpoint 86
/resources endpoint 83
/server-time endpoint 87
<%= tag 39
/version endpoint 87

A
Abstract Syntax Tree (AST) object 226
action method 251
ActiveRecord libraries

using 69
agent command 250
alternate approach, OpenStack

modules 146, 147
Amazon Machine Image (AMI) 266
Amazon Web Services. See AWS
anchor pattern, modules 123
assert_type function 276
automated infrastructures

about 160, 161
Puppet Master, upgrading 161, 162

automatic parameter lookup 56
AWS

about 265
Cloud provisioning 265
configuring, with resource types 267

AWS Identity and Access Management
(IAM) interface 266

AWS provisioning 267

[294]

B
backend-specific settings, Hiera

:datadir 46
:datasource 46

Beaker 190
BitBucket

URL 187
blog post, Craig Dunn

URL 103
built-in variables

variables, set by client 27
variables, set by parser 27
variables, set by server 27

C
CA certificate

about 209
managing, via puppet ca command 210

Certificate Revocation List (CRL) 210
Certificate Signing Requests (CSR) 210
Cisco onePK 260
class

declaring 20
defining 19
parameterized class 20

classes key 65
class inheritance

about 22
using 22

class scope 28
class variables 28
cloud computing and virtualization

aspects 263
projects 263

CloudFormation
managing 268

Cloud Provisioner module 265
Cloud provisioning

on AWS 265
on Google Compute Engine 268

code review
about 185
Gerrit 186
peer review 187

code workflow management
about 179
Geppetto 180
Puppet code, writing 179, 180
Vim 181

Codifferous
URL 187

command line
working with, on Hiera YAML

backend 48-53
command method 245
Command/Query Responsibility Separation

(CQRS) pattern 79
comparison operators

about 33
equal == 33
expressions combinations 34
greater than > 33
greater than or equal to >= 33
in operator 34
less than < 33
less than or equal to <= 33
not equal != 33
regex match =~ 33

conditionals
case statements 32
else statements 32
elsif statements 32
if statements 32
managing 32

config_file_options_hash parameter 131
configuration directory 132
configuration files

defining, custom fileserver mounts
used 101

defining, Hiera used 100
defining, public modules used 100
defining, site modules used 100

configuration hash patterns, modules
managing 130-132

configuration management
benefits 9, 10

configuration management tools
Ansible 9
CFEngine 9
Chef 9

[295]

Puppet 9
Rudder 9
Salt 9

configuration settings, PuppetDB
managing 70-75
node-purge-ttl 72
node-ttl 72

configurations, Puppet Master
/etc/puppet/puppet.conf 75
/etc/puppet/puppetdb.conf 76
/etc/puppet/routes.yaml 76

contain function 282
Continuous Integration (CI) tool 198
create method 245
create_resources function 52, 137, 144
custom $::env variable 48
custom $::role variable 47
custom $::zone variable 47
custom faces

about 249-253
creating 249
module face 250
secret_agent face 250

custom facts
about 236, 237
external facts, in facts.d directory 239, 240
Ruby facts, distributing via

pluginsync 237-239
custom functions

:rvalue functions 234
:statement functions 234
about 233-236

custom providers
about 244
portage provider 245
ruby provider 246
useradd provider 245
zfs provider 246

custom report handlers
about 247
analyzing 247, 248
distributing 247

custom resources and classes
defining, Hiera used 101
defining, shared modules used 101
defining, site modules used 101

custom types
about 241
file type 242
postgresql_psql type 243
service type 242

D
dashboards, PuppetDB

performance dashboard 77
Puppetboard 78

data
about 104
advantages 105
drawbacks 105

data bindings 56
data, in modules 121, 284, 286
deactivate node command 82
defaultfor method 245
default Puppet Master installation,

Puppet scaling
requisites 203

delivery process, Puppet coverage
apply changes 163
code 163
collect info 163
make choices 163
set priorities 163

desc method
about 245
using 248

Domain Specific Language (DSL) 10

E
each function 273
ENC

about 19, 94, 214
Hiera, using as 65

ENC extendibility 228
ensurable method 244
ensure property 244
EPP templates

about 272, 281
tags 281

equal == operator 33
ERB template 39

[296]

error system enhancement
about 284
max_deprecations parameter 284
max_errors parameter 284
max_warnings parameter 284

exists? method 246
exported resources

about 34, 214
virtual resources 36

External Node Classifier. See ENC
external_nodes parameter 95
extlookup function 44, 121
extra files 132
extra resources, modules

managing 137, 138

F
Faces 249
Facter 9, 24
Facter 2

about 286
aggregate resolutions 287
declaration and structure 287, 288
features 287
pluginsync for external facts 287
return types 287
structured facts 287

facter class 238
facts 24
filebucket

files, restoring from 40
files, managing in modules

configuration hash patterns,
managing 130-132

extra resources, managing 137, 138
installation options, managing 135, 136
multiple configuration files,

managing 132, 133
users and dependencies, managing 134, 135

file type
about 242
parameters 242
properties 242

filter function 273

foreman-cli command 102
foreman() function 102
frontend servers 212
future parser

about 272
arrays and hashes, manipulating 275, 276
directory environments 278
each function 273
features 277
filter function 273
incompatibilities 277
iterations 273
lambdas 273, 274
language constructs 277
map function 273
reduce function 274
slice function 274

G
general-purpose define 132
Geppetto

about 9, 180
features 180
URL 180

Gerrit 186
Git 179
Git commands

git add 182
git branch 183
git checkout 183
git clone 183
git commit 182
git config 182
git init 182
git log 182
git merge 183
git pull 183
git push 183
git rebase 183
git status 182

GitEnterprise
URL 187

Git hooks 183

[297]

GitHub
URL 187

Git submodules 195
Git workflows

about 182
basic principles 182, 183
branch-based automatic

environments 184, 185
commands 182
Git repository, creating 182, 183
hooks 183
simplified developer workdir

environments 185
global settings, Hiera

:backends 45
:hierarchy 45
:logger 45
:merge_behavior 45

Google Compute Engine (GCE)
Cloud provisioning 268

greater than > operator 33
greater than or equal to >= operator 33

H
has_feature method 245
heredoc support 279
Hiera

about 8, 44, 95
backend-specific settings 46
configuring 45
features 44
global settings 45
hiera.yaml examples 46
installing 44
using, as ENC 65

hiera_array() 54
Hiera backends

hiera-eyaml backend 62
hiera-file backend 58
hiera-gpg backend 59-61
hiera-http backend 64
hiera-mysql backend 64

Hiera extendibility 228
hiera-eyaml backend 62, 63

hiera-file backend
about 58, 59
installing 58
URL 58

hiera() function 54
hiera-gpg backend

about 59-61
URL 59

hiera_hash() 54
hiera-http backend

about 64
URL 64

hiera-mysql backend
about 64
URL 64

Hiera, using in Puppet
about 54
hashes, dealing in Puppet code 55
Puppet 3 automatic parameter lookup 56
usage patterns, evolving for class

parameters 56, 57
hiera.yaml examples 46, 47
higher abstractions modules

about 140
benefits 140
Puppet OpenStack modules 141

HTTP load balancing 213

I
idempotence 11
indirections 230
indirector. See Puppet indirector
infrastructures

automated infrastructures 160
benefits 156, 157
creating, from scratch 156
manually managed infrastructures 157
modifications 173

init script configuration 70
in operator 34
isnamevar method 242
isrequired method 244

[298]

J
Jenkins 199
Jenkins plugins

GitHub/Gerrit 199
RVM/rbenv 199
ssh 199
URL 199
Vagrant 199

Juniper
about 261
netdev_stdlib module 261
vendor-specific one 261

K
Kermit 9
key parameters

env 98
role 97

L
LDAP 95
less than < operator 33
less than or equal to <= operator 33
librarian-puppet tool

about 195
URL 195

load balancing, Puppet Masters
HTTP load balancing 213
TCP load balancing 213

log-slow-statements parameter 73
logstash_config_template 150
lookupvar Puppet function 235

M
manifests 10
manually managed infrastructures

about 157
heterogeneous hardware 157
heterogeneous OS 157
incoherent setups 158
Longer Puppet rollout times 158
node migration approach 158, 159
node update approach 159

production systems 158
uncertain setup procedures 158

map function 273
Masterless Puppet

about 214
external components, using 214

MCollective
about 8
URL 197

MessagePack serialization. See msgpack
serialization

meta parameters
about 29
purposes 29

metrics, PuppetDB performance dashboard
catalog duplication 78
command processing 78
command queue 78
discarded 78
JVM Heap memory usage 78
nodes 78
processed 78
rejected 78
resources 78
retried 78

modifications, infrastructures
infrastructure as code 173
Puppet-friendly infrastructure,

designing 176, 177
system administrator 175, 176

mod_passenger 204
mod_rails 204
module face 250
modules

about 36, 117
autoloading 37, 38
path 37

modules' interoperability 127
modules layout

anchor pattern 123
class names 122
class parameters 118, 119
data in modules 121
evolution 118
file names 122
params pattern 119, 120

[299]

modules' pluginsync 228-230
modules reusability

about 128
characteristics 127
files, managing 128-130

modules' reusability 127
msgpack serialization

about 283
enabling 284
formats 283
PSON format 283
YAML format 283

multi-Master scaling
certificates, managing 209-211
code and data, managing 213
performing 209
SSL termination, managing 211-213

multiple configuration files, modules
managing 132-134

munge method 244

N
naming conventions, modules

about 126
benefits 127

native Puppet, on network equipment
about 260
Cisco onePK 260
Juniper 261

netdev_stdlib module, Juniper
about 261, 262
URL 261

network::interface 137
newfunction method 234
newparam method 242
newtype method 242
node 11
node classification

performing 96, 97
node migration, manually managed

infrastructures
about 158
advantages 158

node scope 28

node scope variables 28
nodes, Puppet 18
node update, manually managed

infrastructures 159
noop => false parameter 230
not equal != operator 33
nova::compute 141
nova_config 141
nova::db::mysql 141
nova::generic_service 141
Nova module

about 141
URL 131

nova_paste_api_ini 141
nova::rabbitmq 141
nova::vncproxy 141

O
openssh::template 57
openstack::all class 142
openstack::computer 142
openstack::controller class 142
OpenStack modules

URL 131
optional_command method 245
options_lookup 234
order

managing 29, 30
order of dependencies

managing 31

P
parameters, modules

about 124
file-based configuration 125
naming standards 126
setting-based configuration 125
tasks, performing 124

params pattern, modules 119
Passenger

about 204
configuring 205-207
installing 205

[300]

Pathogen
installing 181

peer review, Puppet code
online resources 187

performance measuring
code, optimizing 221, 222
performing 219
Puppet metrics 220
Puppet versions, testing 223

portage provider 245
postgresql_psql type

about 243
properties 243

priorities, Puppet coverage
application deployments, automating 166
application deployments, refining 166
common configurations, automating 165
defining 164, 165
important roles, automating 166
integrating, what works well 167
monitoring, automating 167
servers deployment, automating 165

profiles 103, 104
projects, cloud computing and virtualization

AWS 265
VMware 263

provide method 244
public modules 95
Puppet

about 8
allowed characters 31
anatomy 226
class 19
class inheritance 22
comparison operators 33
conditionals, managing 32
configuring 12, 13
custom faces 249
custom facts 236
custom functions 233
custom providers 241
custom report handlers 247
custom types 241
custom types and providers 241
defines 21

Domain Specific Language (DSL) 10
ERB template 39
executing 14, 15
exported resources 34, 35
facts 24
files, restoring from filebucket 40, 41
infrastructures 156
installing 11
meta parameters 29
modules 36
native types 17
node classification 96, 97
nodes 18
order, managing 29
phases 14, 15
potential scenarios and approaches,

examining 155, 156
RAL 17
reserved names 31
resource defaults 23
resource references 23
resources 15
run stages 31
scaling 201
scopes 24
server components, installing 12
used, for cloud computing and

virtualization 263
variables 24

Puppet 4
about 271
contain function 272, 282
data in modules 272, 284
EPP templates 272, 281
error system enhancement 284
Facter 2 272, 286
future parser 272
heredoc support 272, 279
improved error system 272
msgpack serialization 272, 283
Trapperkeeper 272, 289
type system 272, 280

Puppet architecture
components 94

[301]

Puppet blog
URL 272

Puppetboard
about 9, 78
URL 78

puppet ca command 210
Puppet Camps 8
Puppet changes

propagating 197
Puppet code

about 10
deployment 194
future modification 90, 91
review 185
testing 187
writing 179, 180

Puppet code, converting to catalog
compiling 226
configuration phase 226
instantiation phase 226
parsing 226
report phase 226
transport phase 226

Puppet code deployment
librarian-puppet, using 195
performing 195
r10k tool, using 196

Puppet code, testing
Beaker 190
performing 187
rspec-puppet tool, using 188, 189
rspec-system-puppet tool, using 190
Vagrant, using 190

Puppet components
about 10, 11
ENC 94
Hiera 95
LDAP 95
public modules 95
site modules 95
site.pp 94

puppet.conf
ca_ttl parameter 210
dns_alt_names parameter 210

PuppetConf 8

Puppet Continuous Integration tools
about 197
Jenkins 199
Travis 198

Puppet coverage, extending
changes, applying 171
coding 169, 170
delivery process 163
horizontally 162
patterns 162
priorities, defining 164, 165
solutions, evaluating 168
step by step process 162
territory, knowing 163, 164
vertically 162

Puppet Dashboard 9
PuppetDB

about 9
configuring 69
dashboards 76
installing 68, 69

PuppetDB API
about 79
PuppetDB commands (write) 81, 82
PuppetDB (read), querying 79-81

PuppetDB commands (write)
deactivate node 82
replace catalog 81
replace facts 81
store report 82

PuppetDB configurations
init script configuration 70
logging configuration 75
settings 70-75

PuppetDB Hiera backend
about 89
configuring 90

PuppetDB performance dashboard
about 77
accessing, via HTTP 77
metrics 78

PuppetDB, querying
/aggregated-event-counts endpoint 87
/catalogs endpoint 85
/event-counts endpoint 87

[302]

/events endpoint 86
/facts endpoint 83
/facts-names endpoint 85
/metrics endpoint 85
/nodes endpoint 84
/reports endpoint 86
/resources endpoint 83
/server-time endpoint 87
/version endpoint 87
about 82

puppetdbquery module
about 88
PuppetDB Hiera backend 89, 90
query format 88
query, from command line 88
query, from Puppet manifests 89

PuppetDB (read)
querying 79-81

Puppet declarative model 11
Puppet ecosystem 8
Puppet Enterprise 9
Puppet extension alternatives 227
Puppet::Face class 250
Puppet Faces 249
Puppet Forge 117
Puppet-friendly infrastructure

designing 176, 177
Puppet indirector

about 230-233
termini 230

Puppet infrastructure performance
optimization

caching 215
interval, checking for file changes 216
performing 215
Puppet execution times, distributing 216
traffic compression 215

Puppet Labs OpenStack module 143, 144
Puppet Labs products

Facter 9
Geppetto 9
Hiera 8
MCollective 8
Puppet Dashboard 9
PuppetDB 9
Puppet Enterprise 9

Puppet Master
configuring 75, 76

Puppet Master, with Passenger 204
Puppet::ModuleTool class 252
Puppet network equipments

managing 256
Puppet, on network equipment

about 255
cultural challenge 256
native mode 256, 257
native Puppet 260
proxy-based approach 257-259
Proxy mode 256
technical challenge 256

Puppet, on storage devices
managing 269

Puppet OpenStack modules
about 141
alternate approach 146, 147
component (application) modules 141, 142
official OpenStack module 142
Puppet Labs OpenStack module 143, 144
scenario-based approach 145, 146

Puppet::Parameter class 242
Puppet::Parser class 226
Puppet::Reports class 248
puppet resource subcommand 18
Puppet tasks

classes, defining to include node 96
configuration files, defining 100
custom resources and classes, defining 101
parameters, defining to use node 97-99

Puppet::Transaction class 226
Puppet::Type class 226, 242
puppi::netinstall 136
purge argument 230

Q
query_facts 89
query_nodes 89

R
r10k tool

about 196
using 196

[303]

rake spec command 199
RAL 17
RBCommons

URL 187
recommended changes, Puppet coverage

change, propagating 172
communicating 172
different systems, testing on 172
noop, testing with 172
reports, watching 172
uncovered configurations, patching 173
uncovered configurations, reviewing 173

recurse argument 230
Redphone::Pagerduty class 248
reduce function 274
regex match =~ operator 33
register_report method

calling 248
replace catalog command 81
replace facts command 81
report 214
Resource Abstraction Layer. See RAL
resource defaults

about 23
defining 23

resource references 23
resources, Puppet

about 15, 16
common native resources examples 16
title 15
type 15

reusability patterns, modules 127
reusable stack modules

about 148-152
parameters 149

roles 103
rspec-puppet tool

about 188
installing 188
URL 188
using 188, 189

rspec-system-puppet tool 190
ruby provider 246
Ruby Version Manager (RVM) 199
run stages 31

S
sample architectures

about 106
default approach 106-108
ENC, logic in site module, Hiera backend

approach 109
fact-driven approach 113
Foreman and Hiera 110
Foreman smart variables 112
Hiera-based setup 111
Hiera-only setup 112
node inheritance 115, 116
nodeless site.pp 114, 115

scaling, Puppet
apply command, used 202
average number of resources for node 202
default Puppet Master 203
exported resources 202
frequency of Puppet runs for each node 202
infrastructure performance

optimizations 215
load balancing alternatives 213
masterless setups 214
number of managed nodes 202
performing 201
Puppet Master, with Passenger 204
system resources 202

scenario 145
scenario-based approach, OpenStack

modules 145, 146
scope.lookupvar method 39
scopes

about 28
class scope 28
node scope 28
sub class scope 28
top scope 28
types 28

second argument 54
secret_agent face 250
self.host 248
self.logs 248
self.status 248

[304]

service type
about 242
properties 242

setcode method 238
site modules 95
slice function 274
Software Change Management (SCM)

tool 9
SSL Distinguished Name (DN) 212
stack::logstash class 149
stdmod compliant code 133
stdmod compliant module 127
stored configs

scaling 217-219
store report command 82
sub class scope 28
sync method 243
syntastic, Vim 181
syslog_config_template 150
System Under Test (SUT) 190

T
tags, EPP templates

-%> 282
%> 282
<% 281
<%- 282
<%# 282
<%= 281

TCP load balancing 213
terminus 230
The Foreman

about 9, 101
features 102

third argument 54
top scope 28
top scope variables 28
Trapperkeeper 289
Travis

about 198
URL 198
using 198, 199

trigger_incident method 248
types and providers 241
type system 272, 280

U
useradd provider 245
users and dependencies, modules

managing 134, 135

V
Vagrant

about 190-194
configuration 192
features 191
public boxes 191
URL 190
Vagrantfile, reviewing 191, 192
working 191

Vagrant actions
vagrant destroy [machine] 194
vagrant halt [machine] 194
vagrant provision [machine] 194
vagrant ssh [machine] 194
vagrant status 194
vagrant up [machine] 194

validate 244
validate_* stdlib functions 276
values_at stdlib function 277
variables

about 24
built-in variables 27
scopes 28
user variables, in ENC 26
user variables, in Hiera 26, 27
user variables, in Puppet DSL 25, 26

variables, set by client
$clientcert 27
$clientversion 27

variables, set by parser
$caller_module_name 27
$module_name 27

variables, set by server
$environment 27
$serverip 27
$servername 27
$serverversion 27
$settings::<setting_name> 27

[305]

Vim
about 181
syntastic 181
vim-puppet 181

vim-puppet 181
virtual resources 36
VMware

about 263
vCenter configuration 264
vCloud Automation Center integrating,

with Puppet 264
VM provisioning, on vCenter and

vSphere 263

W
Webrick 204

X
X-Client-DN 212
X-Client-Verify 212
X-SSL-Subject 212

Y
YAML backend, Hiera

command line, working with 48-53
yumplugins 287

Z
zfs provider 246

Thank you for buying
Extending Puppet

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Puppet 2.7 Cookbook
ISBN: 978-1-84951-538-2 Paperback: 300 pages

Build reliable, scalable, secure, high-performance
systems to fully utilize the power of cloud computing

1.	 Shows you how to use 100 powerful advanced
features of Puppet, with detailed step-by-step
instructions.

2.	 Covers all the popular tools and frameworks
used with Puppet: Dashboard, Foreman,
MCollective, and more.

3.	 Includes the latest features and updates in
Puppet 2.7.

Puppet 3 Beginner's Guide
ISBN: 978-1-78216-124-0 Paperback: 204 pages

Start from scratch with the Puppet configuration
management system, and learn how to fully utilize
Puppet through simple, practical examples

1.	 Shows you step-by-step how to install Puppet
and start managing your systems with simple
examples.

2.	 Every aspect of Puppet is explained in detail so
that you really understand what you're doing.

3.	 Gets you up and running immediately, from
installation to using Puppet for practical tasks
in a matter of minutes.

Please check www.PacktPub.com for information on our titles

Puppet 3 Cookbook
ISBN: 978-1-78216-976-5 Paperback: 274 pages

Build reliable, scalable, secure, and high-performance
systems to fully utilize the power of cloud computing

1.	 Use Puppet 3 to take control of your servers
and desktops, with detailed step-by-step
instructions.

2.	 Covers all the popular tools and frameworks
used with Puppet: Dashboard, Foreman, and
more.

3.	 Teaches you how to extend Puppet with
custom functions, types, and providers.

Instant Puppet 3 Starter
ISBN: 978-1-78216-174-5 Paperback: 50 pages

Gain complete consistency from your systems with
minimal effort using Instant Puppet 3 Starter

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2.	 Learn how deterministic results can vastly
reduce your workload.

3.	 Deploy Puppet Server as a Ruby-on-Rails
application to handle thousands of clients.

4.	 Design your own module for complex
configurations.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Puppet Essentials
	The Puppet ecosystem
	Why configuration management matters

	Puppet components
	Installation and configuration
	Puppet in action
	Resources
	The resource abstraction layer

	Nodes
	Classes and defines
	Class inheritance

	Resource defaults
	Resource references
	Variables, facts, and scopes
	System's facts
	User variables in Puppet DSL
	User variables in an ENC
	User variables in Hiera
	Puppet's built-in variables
	A variable's scope

	Meta parameters
	Managing order and dependencies
	Run stages

	Reserved names and allowed characters
	Conditionals
	Comparison operators
	The In operator
	Expressions combinations

	Exported resources
	Virtual resources

	Modules
	The paths of a module and autoloading
	ERB templates

	Summary

	Chapter 2: Hiera
	Installing and configuring Hiera
	Global settings
	Backend-specific settings
	The hiera.yaml examples

	Working with the command line on a YAML backend
	Using Hiera in Puppet
	Dealing with hashes in the Puppet code
	Puppet 3 automatic parameter lookup
	Evolving usage patterns for class parameters

	Additional Hiera backends
	The hiera-file backend
	The hiera-gpg backend
	The hiera-eyaml backend
	The hiera-http and hiera-mysql backends

	Using Hiera as an ENC
	Summary

	Chapter 3: PuppetDB
	Installation and configuration
	PuppetDB configurations
	The init script configuration
	Configuration settings
	Logging configuration

	Configurations on the Puppet Master

	Dashboards
	PuppetDB performance dashboard
	Puppetboard – query PuppetDB from the web

	The PuppetDB API
	Querying PuppetDB (Read)
	The PuppetDB commands (Write)

	Querying PuppetDB for fun and profit
	The /facts endpoint
	The /resources endpoint
	The /nodes endpoint
	The /catalogs endpoint
	The /facts-names endpoint
	The /metrics endpoint
	The /reports endpoint
	The /events endpoint
	The /event-counts endpoint
	The /aggregated-event-counts endpoint
	The /server-time endpoint
	The /version endpoint

	The puppetdbquery module
	Query format
	Query from the command line
	Query from Puppet manifests
	The PuppetDB Hiera backend

	How Puppet code may change in
the future
	Summary

	Chapter 4: Designing Puppet Architectures
	The components of Puppet architecture
	Definition of the classes to include in
each node
	Definition of the parameters to use for
each node
	Definition of the configuration files provided to the nodes
	Definition of custom resources and classes

	The Foreman
	Roles and profiles
	The data and the code
	Sample architectures
	The default approach
	Basic ENC, logic in the site module, Hiera backend
	The Foreman and Hiera
	The Hiera-based setup
	The Hiera-only setup
	Foreman smart variables
	Fact-driven truths
	Nodeless site.pp
	Node inheritance done right

	Summary

	Chapter 5: Using and Writing
Reusable Modules
	The evolution of modules' layouts
	Class parameters – from zero to data bindings
	The params pattern
	Data in modules
	Files and class names
	The anchor pattern

	The parameters dilemma
	Naming standards

	Reusability patterns
	Managing files
	Managing configuration hash patterns
	Managing multiple configuration files
	Managing users and dependencies
	Managing the installation options
	Managing extra resources

	Summary

	Chapter 6: Higher Abstraction Modules
	Understanding the need for higher abstractions
	The OpenStack example
	Component (application) modules
	Raising abstraction – the official openstack module
	Raising abstraction – the Puppet Labs OpenStack module
	Raising abstraction – the scenario-based approach
	Taking an alternate approach

	An approach to reusable stack modules
	Summary

	Chapter 7: Deploying and
Migrating Puppet
	Examining the potential scenarios
and approaches
	New infrastructures
	Existing manually managed infrastructures
	Node migration
	Node update

	Existing automated infrastructures
	Upgrading the Puppet Master

	Patterns for extending Puppet coverage
	Raising the bar, step by step
	Knowing the territory
	Defining priorities
	Automate servers deployment
	Automate common configurations
	Automate the most important roles
	Refine and automate application deployments
	Integrate what already works well
	Automate monitoring

	Evaluating solutions
	Coding
	Applying changes

	Things change
	Infrastructure as code
	Versioning
	Reproducibility and predictability
	Testing
	Maintenance

	Evolution of the system administrator
	Designing a Puppet-friendly infrastructure

	Summary

	Chapter 8: Code Workflow Management
	Writing the Puppet code
	Geppetto
	Vim

	Git workflows
	Git's basic principles and commands
	Git hooks
	Environments and branches
	Branch-based automatic environments
	Simplified developer workdir environments

	Code review
	Gerrit
	Online resources for peer review

	Testing the Puppet code
	Using rspec-puppet
	rspec-system-puppet and Beaker
	Vagrant

	Deploying the Puppet code
	Using librarian-puppet for deployments
	Deploying code with r10k

	Propagating Puppet changes
	Puppet Continuous Integration tools
	Travis
	Jenkins

	Summary

	Chapter 9: Scaling Puppet Infrastructures
	Scaling Puppet
	As simple as puppet apply
	Default Puppet Master
	Puppet Master with Passenger
	Installing and configuring Passenger

	Multi-Master scaling
	Managing certificates
	Managing SSL termination
	Managing code and data

	Load balancing alternatives
	Masterless Puppet
	Configurations and infrastructure optimizations
	Traffic compression
	Caching
	Distributing Puppet execution times
	Checking the interval for changes in files

	Scaling stored configs
	Measuring performance
	Puppet metrics
	Optimizing code
	Testing different Puppet versions

	Summary

	Chapter 10: Extending Puppet
	Anatomy of a Puppet run, under the hood
	ENC and Hiera extendibility
	Modules' pluginsync
	Puppet indirector and its termini

	Custom functions
	Custom facts
	Ruby facts distributed via pluginsync
	External facts in the facts.d directory

	Custom types and providers
	Custom report handlers
	Custom faces
	Summary

	Chapter 11: Beyond the System
	Puppet on a network equipment
	Proxy mode with the puppet device application
	Native Puppet on network equipment
	Cisco onePK
	Juniper and netdev_stdlib

	Puppet for cloud and virtualization
	VMware
	VM provisioning on vCenter and vSphere
	The integration of vCloud Automation Center
	The configuration of vCenter

	Amazon Web Services
	Cloud provisioning on AWS

	AWS provisioning and configuration with resource types
	Managing CloudFormation

	Cloud provisioning on Google Compute Engine

	Puppet on storage devices
	Summary

	Chapter 12: Future Puppet
	Introducing the future parser
	Lambdas and Iterations
	Manipulating and validating hashes and arrays
	Other features

	Restrictions and backward incompatibilities
	Directory environments
	Heredoc support
	The new type system

	Other new features
	EPP Templates
	The contain function
	Serialization with MessagePack

	Improved error system
	Data in modules
	Facter 2
	Trapperkeeper
	Summary

	Index

