
[1]

www.allitebooks.com

http://www.allitebooks.org

Extending Unity with Editor
Scripting

Put Unity to use for your video games by creating your
own custom tools with editor scripting

Angelo Tadres

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Extending Unity with Editor Scripting

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1150915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-185-3

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Angelo Tadres

Reviewers
J. Alberto Gandullo Avila

Jeremy Jones

Noah Johnson

Fernando Matarrubia

Hugo Ruivo

Eric Spevacek

Commissioning Editor
Veena Pagare

Acquisition Editor
Sonali Vernekar

Content Development Editor
Riddhi Tuljapurkar

Technical Editor
Vivek Pala

Copy Editor
Pranjali Chury

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Graphics
Jason Monteiro

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

While perhaps not as glamorous a job as being a gameplay programmer, a tools
programmer can make your game development experience much more enjoyable. They
truly are the unsung heroes of game development. In fact, AAA studios heavily rely on
using tools to make aspects of game development easier to use for designers and artists.
Tools also help to reduce tediousness in the creation of content for game projects.

While these tools were often created as separate programs to be run in conjunction
with the game engine in the past, one of the things I love about working with the
Unity game engine is the fact that with some fairly trivial scripting, you can extend
the editor. This allows users to tailor the editor to suit their project's needs and
requirements. Additionally, just as Unity was originally created for a game project
but grew into a lot more, the custom tools readers will go on to create applications
that have the possibility to be extraordinarily successful on Unity's Asset Store, much
like NGUI, Playmaker, ProBuilder, and UFPS.

Since I started working with Unity in 2007, I have worked with a lot of tools and
have done a fair bit of tools programming personally. While creating my own tools,
I often needed to do extensive external research and come up with a lot of things on
my own because most of the necessary information was not documented well. I am
exuberant that someone has compiled the majority of this information into one place.

Over the course of this book, you will see how you can create your own custom tools
starting with simple ones such as gizmos, then moving on to customize the Inspector
for the different components you add, and learning how to create your very own
Windows with their own custom GUI. Angelo has broken down the concepts and
has made it quite easy to see when you would want to use these tools. Throughout
this book, he shows practical examples of when you would want to use these
particular features from their inception to getting published on the Asset Store. He
has also included additional tips and tricks along the way, such as how to set up Git,
easily make multiple builds of your projects, as well as get your project up on mobile
devices in a flash.

www.allitebooks.com

http://www.allitebooks.org

Reading Angelo's work, I am not surprised by the range of content covered in
this book. His work as a lead engineer for DeNA as well as his strong technical
background, no doubt, gave him the knowledge needed to get this book out to
the world. The breadth of content included in this book will give you a strong
foundation on which you can build your own tools.

Gifted tools programmers can make all the difference in the world of game projects.
This book provides a roadmap on how you can get there.

John P. Doran
Technical Game Designer
Author of Unity Game Development Blueprints and Mastering UDK Game
Development

www.allitebooks.com

http://www.allitebooks.org

About the Author

Angelo Tadres is a Chilean software engineer, living the dream of working in the
mobile video game industry.

Hailing from Santiago, Chile, he began his career doing research and development
for video games and applications that are designed to assist the blind and visually
impaired with their orientation and mobility skills. After passing quickly through
the telecommunications industry—working with value-added services and mobile
applications—he got the opportunity to join the Santiago studio of DeNA, one of the
world's largest mobile video game companies.

In 2013, Angelo was asked to move to Vancouver, Canada, to become a lead software
engineer, where he helped build the fledgling Canadian studio and, in particular,
championed Unity 3D, paving the way for other teams' adoption and use.

He's known for getting things done by shooting first and asking questions later.
When he is not coding and pushing content to GitHub, you'll find him playing table
tennis with his friends or running along the sea wall. To know more about him, visit
his website at http://angelotadres.com/.

This book is dedicated to my daughter, Antonia Tadres, and my
wife, María Jose Arcos, the person whom I love and who has always
supported me in all my crazy projects, including the time when I
said "You know what? I want to write a book!"

Thanks to my mom; dad; my whole family; and my friends Jorge
Bravo and Vartan Ishanoglu for always being there to push me
whenever I doubted myself.

I would also like to say thanks to all the people who work at DeNA
Studios Canada for making the past 2 years the most amazing ones
of my life.

Finally, I would like to thank the Packt Publishing staff for their
assistance through the process and the technical reviewers for their
feedback, especially Riddhi Tuljapurkar and Fernando Matarrubia.

www.allitebooks.com

http://angelotadres.com/
http://www.allitebooks.org

About the Reviewers

J. Alberto Gandullo Avila graduated from the University of Seville after a
5-year course in computer science (BA/MA). After this, he worked in Seville as
a software developer in the field of enterprise management tools for more than 3
years. However, he always liked other fields such as computer graphics and mobile
software more, so he began to self-train in the development of mobile apps and
mobile games, specifically in the new technology of augmented reality; this was his
first contact with the Unity game engine. Thanks to his proficiency in this field, in
2013, he was hired in London (UK) by a small start-up dedicated to the development
of educational video games for mobile devices based on augmented reality. At this
stage, he became an expert in developing games using technologies such as C#
and Unity. After one and a half years in London, Alberto was hired in Bangkok
(Thailand) by a company dedicated to developing F2P games for mobile devices.

Jeremy Jones is a game developer who graduated from Neumont University and
has a passion for making robust systems within games. He has created many games
and several tools in his own game engine and Unity. In his free time, he likes to go
hiking, work out, and draw road designs.

I would like to thank my friends at Neumont University for their
support and my family on the East Coast for always believing in me.

Noah Johnson is a technical artist currently working at InContext Solutions. He
specializes in pipeline tools and extensions between Unity, Maya, and standalone
Python apps. He teaches game engine scripting courses as an adjunct professor at
Columbia College Chicago and is currently working on an independent Unreal 4
horror game project. His background in game system scripting and 3D asset creation
has dovetailed into a skill set that focuses on tools that make content creation simpler
and easier to iterate.

www.allitebooks.com

http://www.allitebooks.org

Fernando Matarrubia is a passionate traveler and game maker. He completed
his bachelor's degree in computer engineering, for which he was required to
travel between three cities and two countries. After that, he got a master's degree
in video game development from the Complutense University of Madrid. He
has been working with Unity for almost 6 years and loves to create fun pieces of
entertainment. He has participated in several titles for platforms such as PS3, PC,
Mac, and mobile devices.

Fernando is currently living with his wife and working as a software engineer in
the San Francisco Bay Area.

Hugo Ruivo is a self-taught game programmer, who is currently making games for
both the mobile and desktop platforms. Alongside games, he also creates tools that
help him and his team in the making of their products. He even launched one
of his own tools for Unity 3D on the marketplace, Achievement Service Manager.

Ever since he found out how games were made, he couldn't stop learning about the
many disciplines of game development, trying to make his own engine, learning new
frameworks and technologies, and specializing in some of the best game engines in
the industry, such as Unity 3D and UE4.

I would like to thank to my brother and my best friends, who have
always given me the inspiration and strength to keep moving forward.
I would also like to thank Packt Publishing and Angelo Tadres for the
opportunity to contribute to this book and, at some point, to be able to
help others learn the same way as I have been learning.

Eric Spevacek, once an independent developer in Chicago, is now an industry
technical artist based out of Southern California. His holistic approach to game
development and independent experience have helped guide and shape his work
in tool development. At work, he is responsible for the creation and maintenance of
content creation tools with an emphasis on user experience and streamlined modern
workflows. The current trends of accessible commercial game engines and their
long-term impact on the industry excite him.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 vii
Chapter 1: Getting Started with Editor Scripting	 1

Overview	 2
Editor scripting basics	 3

What is an editor script?	 3
The Editor folder	 5

Introducing Run & Jump	 7
Playing the video game	 8
Creating a new level	 9

The Level Creator tool	 14
Defining the chapter goals	 15
Preparing the environment	 16
Performing automation	 17

Summary	 20
Chapter 2: Using Gizmos in the Scene View	 21

Overview	 22
Defining the chapter goals	 23

Creating gizmos through code	 24
The OnDrawGizmos and OnDrawGizmosSelected methods	 24
Adding gizmos using the DrawGizmo attribute	 27
The Gizmos class	 30

DrawCube	 30
DrawWireCube	 31
DrawSphere	 32
DrawWireSphere	 32
DrawRay	 33
DrawLine	 34
DrawIcon	 34
DrawGUITexture	 35
DrawFrustrum	 36

Table of Contents

[ii]

Adding a structure to our levels	 37
Implementing the gizmo grid	 38
Implementing the snap to grid behaviour	 44

Summary	 47
Chapter 3: Creating Custom Inspectors	 49

Overview	 50
Defining the chapter goals	 51

Upgrading the Level class	 52
Understanding how an inspector works	 53
Creating a custom inspector	 55

Using the CustomEditor attribute	 55
Playing with the inspector message methods and target variable	 56
Adding the GUI elements	 58
Implementing the resize feature	 61
Using buttons to trigger actions	 62

Working with layouts	 66
Creating complex layouts	 67

Improving the inspector without custom inspectors	 70
What is a Property Drawer?	 70
Built-in Property Drawers	 71

Range	 71
Multiline	 72
TextArea	 73
ContextMenu	 73
ContextMenuItem	 74

Built-in Decorator Drawers	 75
Header	 75
Space	 76
Tooltip	 76

Creating you own Property Drawers	 77
Using drawers inside a custom inspector	 81

Using SerializedObject and SerializedProperty	 82
Summary	 84

Chapter 4: Creating Editor Windows	 85
Overview	 86

Defining the chapter goals	 87
Creating the base for an editor window	 87

Using the EditorWindow class	 88
Playing with the EditorWindow message methods	 89
Using Hotkeys to trigger menu items	 91

Table of Contents

[iii]

Implementing the Palette	 92
Creating a category system	 93
Finding assets using the AssetDatabase class	 95

Implementing the GUI for the Palette	 97
Creating tabs	 97
Creating a scrollable area	 99

Integrating the Palette with the Level Creator tool	 105
Creating an event	 105
Subscribing to an event	 106

Summary	 111
Chapter 5: Customizing the Scene View	 113

Overview	 114
Defining the chapter goals	 114

Defining the Editor modes	 116
Customizing the Scene View	 117

Using the OnSeceneGUI message method	 117
Playing with the Scene View tools	 119
Controlling the focus over our game objects	 121

Detecting Scene View events	 122
Getting the mouse position	 123
Capturing mouse events	 126

Implementing the Level Creator modes	 128
The View mode	 128
The Paint mode	 129
The Erase mode	 131
The Edit mode	 132

Using the Handles class	 136
Adding the final details to Level Creator	 140

Using hiding flags	 140
Summary	 143

Chapter 6: Changing the Look and Feel of the Editor
with GUI Styles and GUI Skins	 145

Overview	 146
Defining the chapter goals	 146

Changing the look and feel of the Level Creator tool	 147
Using GUIStyles in our GUI components	 147
Working with the GUIStyleState instances	 152

Table of Contents

[iv]

Changing the look and feel using a simpler approach	 156
Creating a GUISkin asset	 156
Integrating and using a GUISkin	 159

Summary	 162
Chapter 7: Saving Data in a Persistent Way with
Scriptable Objects	 163

Overview	 163
Defining the chapter goals	 164

Preparing the environment	 164
Updatable gravity in levels	 164
Playing with gravity	 165

Implementing a Scriptable Object	 166
Creating the data class	 166
Generating an asset to contain the data class	 167

Integrating the Scriptable Object with the level	 171
Updating the Level and the LevelInspector class	 171
Tweaking the level settings in the play mode	 174

Summary	 175
Chapter 8: Controlling the Import Pipeline Using
AssetPostprocessor Scripts	 177

Overview	 178
Defining the chapter goals	 178
Using the AssetPostprocessor class	 178

Improving the import pipeline	 181
Overwriting the background and level piece assets settings	 181

Using a DLL file for the AssetPostprocessors	 184
Creating and setting up a DLL project	 185
Integrating the DLL file to the main project	 189

Summary	 192
Chapter 9: Improving the Build Pipeline	 193

Overview	 193
Defining the chapter goals	 194
Preparing the environment	 194

Automating the BuildPipeline class	 194
Adjusting the player settings	 195
Using the BuildPipeline class	 196
Creating an editor window and learning about EditorPrefs
to persist data	 199

Adding version control to your project	 204

Table of Contents

[v]

Interacting with external scripts	 206
Displaying the build information in the video game	 206
Using the bash script in our pipeline	 208

Distributing your video game using AppBlade	 211
Creating an AppBlade account	 212
Uploading the build	 213

Summary	 216
Chapter 10: Distributing Your Tools	 217

Overview	 217
Defining the chapter goals	 218

Preparing the environment	 218
Sharing code using a Unity Package	 219

Creating a package	 219
Importing a package	 221

Sharing code using Git submodules	 222
Creating a submodule	 222
Using a submodule	 223

Publishing in the Asset Store	 225
Installing the Asset Store Tools	 225
Becoming a publisher	 227
Uploading the package	 229
Using the Mass Labeler	 232
Uploading and submitting the project	 234

Summary	 236
Index	 239

[vii]

Preface
Unity is a development platform for creating multiplatform 3D and 2D video games,
which is adopted by several studios and indie developers who are looking for
something simple, flexible, and powerful. One of its most interesting features is the
extensible editor, allowing you to make Unity work for your video game using
editor scripting.

If you are looking for a book that will show you how to deal with tasks that are
beyond the implementation of Gameplay and are more related to automating
and simplifying the creation of content, such as the assets that require a special
configuration to make them usable in your levels, and how to enable pipelines to
consume and create artifacts used by your video game, then this book is for you.

While improving the workflow of Run & Jump, a 2D platformer videogame, you will
learn all the basics of editor scripting, creating an ad hoc tool that works as a level
editor, customizing the way Unity imports assets, and getting control over the build
creation process. As a bonus, you will also learn how to share the tools created inside
your team or sell them at the Asset Store.

By the end of this book, you will be able to extend all the concepts that you learned
to build your own tools and customize the Unity editor in future video game projects
with confidence.

You can consider this as an entry point to make your development workflow easier.

Enjoy!

Preface

[viii]

What this book covers
Chapter 1, Getting Started with Editor Scripting, introduces you to Unity editor
scripting and explains why this is useful to improve the development workflow.
In this chapter, the video game, Run & Jump, which is used as a base for this book
is presented.

Chapter 2, Using Gizmos in the Scene View, explains how to use gizmos to display
debug information in the Scene View. Here, we implement a grid with gizmos
to be used as guides in the level editor.

Chapter 3, Creating Custom Inspectors, discusses how to improve the way the Unity
components and scripts are presented in the inspector window, creating custom
inspectors and using property and decorator drawers. In addition to the this, you
will learn how to start adding and using the editor GUI components. Here we go
through the process of making a custom inspector for the class responsible for the
level logic in Run & Jump.

Chapter 4, Creating Editor Windows, covers how to create an editor window to present
information and interact with features in a custom tool. Using some of the editor GUI
skills developed in the last chapter, we create a Palette window, which is a quick and
visual way to access the prefabs used as building pieces for the video game levels,
grouping them by categories.

Chapter 5, Customizing the Scene View, dives into how to add the editor GUI
components directly to the Scene View and capture specific events to expand their
capabilities. Step by step, we add GUI components to enable and disable different
modes we are going to implement on the level editor, like View, Paint, Edit and
Erase, changing the way how the user interacts with the tool.

Chapter 6, Changing the Look and Feel of the Editor with GUI Styles and GUI Skins,
explains how to change the look and feel of the Unity editor custom tools. Here we
finish the level editor investing our time modifying the appearance of it.

Chapter 7, Saving Data in a Persistent Way with Scriptable Objects, describes how to save
data in Unity and manipulate it as a reusable asset using scriptable objects. We walk
through the process of reallocate certain properties from the class responsible for the
level logic to a scriptable object class, making them reusable across levels.

Preface

[ix]

Chapter 8, Controlling the Import Pipeline Using Asset Postprocessor Scripts,
demonstrates how to improve and control the importing pipeline using Asset
Postprocessor scripts. We work in automating the process of changing the import
settings of the assets imported to the project to make them usable by the video game
in an easy way.

Chapter 9, Improving the Build Pipeline, discusses how to automate and improve the
build creation pipeline modifying the Unity player settings through code and calling
scripts outside Unity. Here, we create a basic build pipeline for Run & Jump that
publishes the mobile version of it in a distribution platform called AppBlade.

Chapter 10, Distributing Your Tools, concludes this book by showing how to use Unity
packages and Git submodules for custom tools distribution, suitable for sharing
inside a team, and how to sell content on the Asset Store.

What you need for this book
To follow this book, you will need to download a copy of Unity available at
https://unity3d.com/get-unity.

You can use any version of Unity from version 5.0, but we recommend the latest
5.x version, which at the time of writing this is version 5.1.2 (all screenshots have
been updated to this version). Don't worry about the kind of license you have,
the examples will work with the Personal and Professional Edition.

While working with this book, we will use as base project the video game
Run & Jump, available at https://github.com/angelotadres/RunAndJump.

You must have the Run & Jump project in order to test the code in this book.

Who this book is for
This book is for anyone who has basic knowledge of Unity programming using
C# and wants to learn how to extend and create custom tools using Unity Editor
Scripting to improve the development workflow and make video game development
easier.

www.allitebooks.com

https://unity3d.com/get-unity
https://github.com/angelotadres/RunAndJump
http://www.allitebooks.org

Preface

[x]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Create a script called LevelInspector.cs inside the folder Editor"

A block of code is set as follows:

public override void OnInspectorGUI() {
 DrawLevelDataGUI();
 DrawLevelSizeGUI();
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public override void OnInspectorGUI() {
 DrawLevelDataGUI();
 DrawLevelSizeGUI();
}

Any command-line input or output is written as follows:

$ git submodule update

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Select the
category Misc and then click on the Sign piece"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xi]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Getting Started with
Editor Scripting

Unity is a powerful engine that enables creative people like you to build video
games in different platforms.

After developing a few projects on it, you will realize that each of these could have
been a better experience if you'd had a tool at that time to help you in the creation
of content for your video game or in the automation of all those manual repetitive
tasks that always end up generating a problem at the worst moment just because of
Murphy's Law.

To create tools based on your video game requirements, Unity provides an
editor scripting API to do it in a quick and fully integrated way. However, the
documentation available for building such tools by yourself is not the best.

The main aim of this book is to give you a tour of some of the most important
topics about editor scripting . We are going to explore its API when at the same time
we implement custom tools to improve the development workflow in Run & Jump,
a 2D platformer video game.

In this chapter, we will cover the following topics:

•	 Basics of editor scripting
•	 Run & Jump presentation and definition of the scope of the custom tools

Getting Started with Editor Scripting

[2]

Overview
Probably, at this point, you are familiar with the basic concepts of Unity and we can
safely assume that you know how to create a small video game from scratch without
too many complications. You know, for projects of this size, almost everything is
always under control and nothing takes too much time to be done. Basically, it is like
a little paradise in the video game developer's land.

However, when the project starts increasing in size in terms of complexity, you will
notice that certain tasks are repetitive or subject to error, generating a considerable
amount of effort and waste of time. For example, the mechanics of your video game
are quite unique and it is hard for the level designers to create content on time and
without errors. This is because Unity, or the available third-party tool you use,
doesn't satisfy all the required functionalities.

Sometimes, because you have more people working on the project, the lack of
a mechanism to encourage people to follow standards makes your video game
crash constantly.

In the same scenario, imagine that your project also requires a lot of art assets,
so artists constantly add these to Unity. The problem appears later when one
of the developers needs to constantly check whether the settings of these assets
are configured properly to make these look right in the final build, consuming
development time.

Finally, your project will be available on several platforms. However, owing to the
specific characteristics of your video game, every time you make a production build,
you must check whether all the settings are okay. You also need to check whether
you removed all the cheat menus used by your testers and that the correct assets are
loaded into each because you are preparing a trial version. Managing this becomes
a huge task!

To solve all these issues, Unity provides an editor scripting API. Using this we can
do the following tasks:

•	 Modify how the Unity editor behaves, triggering our code with specific events
•	 Improve the workflow assistance with a custom GUI that seamlessly

integrates with the Unity editor GUI
•	 Automate repetitive tasks by accessing the Unity editor's main functionalities

Chapter 1

[3]

Understating how to use the editor scripting API to create editor scripts in your
project will allow you to make Unity work for your video game and boost the
productivity of the video game development.

Editor scripting basics
It's time to go hands on in the creation of editor scripts so in this section we are going
to explore how to start them off.

What is an editor script?
An editor script is any piece of code that uses methods from the UnityEditor
namespace, and its principal objective is to create or modify functionalities in the
Unity editor.

To see this working, let's start with a basic example. Create a new project in Unity
and then a new script called HelloWorld.cs. Don't worry about where to place the
script, we'll talk about that in a bit. Copy the following code:

using UnityEngine;
using UnityEditor;

public class HelloWorld {

 [MenuItem ("GameObject/Create HelloWorld")]
 private static void CreateHelloWorldGameObject () {
 if(EditorUtility.DisplayDialog(
 "Hello World",
 "Do you really want to do this?",
 "Create",
 "Cancel")) {
 new GameObject("HelloWorld");
 }
 }
}

Getting Started with Editor Scripting

[4]

Wait for the compiler to finish and then go to the Unity editor menu and click
on GameObject. At the end of the menu, you will see an item called Create
HelloWorld, as shown in the following screenshot:

Click on this item, then a dialog window asks whether you really want to create this
game object:

After clicking on Create, a new game object with the name HelloWorld is added to
the current scene. You can check this in the Hierarchy window:

Chapter 1

[5]

You created your first editor script using two things:

•	 A MenuItem attribute to add menu items to the Unity editor menu.
•	 A DisplayDialog method, part of the EditorUtility class, to show a

custom model popup.

Don't worry, we will discuss these in depth later in this book. For now, we are going
to move forward and discuss something very important in the creation of editor
scripts: the Editor folder.

The Editor folder
The Editor folder is one of the special folders Unity has, just like the Resources or
Plugins folders.

Like the Unity documentation says, all scripts inside a folder with the name Editor
will be treated as editor scripts rather than runtime scripts related to your video game.
Also, you can have more than one Editor folder in your project at once if you want.

To learn more about other special folders in Unity, visit http://
docs.unity3d.com/Manual/SpecialFolders.html.

http://docs.unity3d.com/Manual/SpecialFolders.html
http://docs.unity3d.com/Manual/SpecialFolders.html

Getting Started with Editor Scripting

[6]

If you have at least one Editor folder with a script inside, you will see something
like the following in MonoDevelop (in other IDEs, such as Visual Studio or Xamarin,
you may see something slightly different, but the concept is the same):

Two different assemblies will be created: the first assembly, Assembly-CSharp, is
for your video game scripts and the second assembly, Assembly-CSharp-Editor, is
for your editor scripts. This means that the editor scripts will not be included in your
final video game build.

So, what is the problem with HelloWorld.cs? Well, right now it' s not inside an
Editor folder, so if you try to build a video game with that script included, the
build process will fail because Unity won't be able to find the namespace named
UnityEditor:

Most of the editor scripts that we will discuss in this book, like custom inspectors in
Chapter 3, Creating Custom Inspectors, or editor windows in Chapter 4, Creating Editor
Windows require being saved inside an Editor folder in order to work. However, in
some situations, it is possible to achieve this without using the Editor folder.

Let's fix the original HelloWorld.cs file to work outside an Editor folder. In this
case, we must tell the compiler to not include the editor-related code if we are
making a video game build.

Chapter 1

[7]

To achieve this, we will use the preprocessor directives #if and #endif with the
conditional compilation symbol UNITY_EDITOR. Using both together, we can tell the
compiler to exclude a block of code when we create a video game build.

Update HelloWorld.cs as follows:

using UnityEngine;
#if UNITY_EDITOR
using UnityEditor;
#endif
public class HelloWorld {

 #if UNITY_EDITOR
 [MenuItem ("GameObject/Create HelloWorld")]
 private static void CreateHelloWorldGameObject () {
 if(EditorUtility.DisplayDialog(
 "Hello World",
 "Do you really want to do this?",
 "Create",
 "Cancel")) {
 new GameObject("HelloWorld");
 }
 }
 #endif

 // Add your video game code here
}

If you feel a little overwhelmed, just keep in mind that the last script example is an
exception, and as a guideline, all the editor scripts must be inside an Editor folder.
to keep everything organized and working

Introducing Run & Jump
Run & Jump is a 2D platformer video game created for this book to serve as a base for
our editor scripting experiments. In this section, we will talk about the video game
and what kind of things we want to achieve.

Keep in mind that it is not important to understand in detail how Run & Jump is
implemented. It's enough just to understand the workflows associated with the
content creation of this video game.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Editor Scripting

[8]

Playing the video game
In this video game, the player takes control of Timmy, a guy who likes to collect
coins and invests his time searching for hidden treasures. On his journey, he needs
to avoid obstacles and enemies to reach the finale of each level and win. You can see
how the video game looks in the following screenshots:

To play the video game, you will have to clone or download the project from
https://github.com/angelotadres/RunAndJump in GitHub.
When you are ready, open the project in Unity. You will see the following folder
structure in the Project browser:

https://github.com/angelotadres/RunAndJump

Chapter 1

[9]

To test the game, open the scene Title inside the Scenes folder and then press the
Play button in the Unity toolbar:

To control Timmy, use the left and right arrows on your keyboard. Pressing the space
bar makes him jump, and pressing it again while he is in the air makes him perform
a double jump.

Currently, there are three levels implemented for this video game to test its
functionality. In the next section, you will learn how to add more levels.

Creating a new level
In this video game, each level is a Unity scene inside the folder Levels. When you
start playing Run & Jump and then select a specific level, the video game call the
LevelHandler scene and this starts the script LevelHandlerScene.cs.

This scene has all the GUI necessary for the level, and the script is responsible for
the game's status detection (playing, paused, and so on), when the player wins
or loses, and loading of the specific level scene using the method Application.
LoadLevelAdditive.

Unlike LoadLevel, LoadLevelAdditive does not destroy objects
in the current scene. Objects from the new scene are added over the
current one.

Each level scene is composed of several prefabs. We will refer to these in the rest of
the book as level pieces prefabs.

Getting Started with Editor Scripting

[10]

Navigate to Prefabs | LevelPieces to check the available level piece prefabs.
The following table contains a description of each one:

Level Piece Description
Timmy (Player.prefab):
You control this character in the game. Timmy's abilities are run,
jump and double jump. There's nothing to envy about the Italian
plumber.

Angry Blob (EnemyAngryBlob.prefab):
This character moves over platforms from one side to the other
with an angry face. You don't like him and he doesn't like you so
don't touch him or you will lose a life!

Coins (InteractiveCoin.prefab):
It is not a real platform video game without something to collect.
Coins are one of the collectibles, and when you pick one, your
score increases by 100 points.

Treasure (InteractiveTreasure.prefab):
Usually, this collectable is well hidden in order to motivate
the player to explore the level. When you pick one, your score
increases by 1,000 points.

Sign (InteractiveSign.prefab):
This will display a message on the screen when the player is
around the sign board. The sign is used to give the player hints
or miscellaneous information about the current level.

Chapter 1

[11]

Spikes (HazardSpike.prefab):
These sharp spikes are placed in locations that make it harder to
reach your objective. Don't touch them or you will lose a life!

Dirt (SolidDirt.prefab):
This is used as a building block for the level.

Grass (SolidGrass.prefab):
Like Dirt, this too is used as a building block for the level. The
only difference is this it's green on the top.

Goal flag (InteractiveGoalFlag.prefab):
The main objective of the video game is to reach the Goal flag
at the end of each level. A well-designed level will have a lot of
hazards and enemies between you and the goal flag.

Getting Started with Editor Scripting

[12]

To get a better understating of what is involved in creating levels, let's create a new
one. The goal is to copy the following level (or at least try to do so):

For this, you need to perform the following steps:

1.	 Create a new scene and remove the default camera.
2.	 Add a new Game Object to the scene and attach the level.cs script located

in Scripts | Level. This script contains the base to make our level work.
3.	 Navigate to Prefabs | LevelPieces and clone the prefabs in the scene until

you complete creating the level. All the prefabs must be nested inside the
game object you created earlier.

4.	 When you are done, click again on the root game object. If you check the
Inspector window, you will see the following:

Chapter 1

[13]

Here, you will be able to adjust the properties of the level, such as the
maximum time taken to beat the level and get the score bonus, Gravity, Bgm
(background music), and Background. You can play with these values: for
the Bgm, you can grab an audio clip from the folder Audio/Bgm; and for the
background, you can grab a sprite from Art/Bg.

5.	 As soon you finish, save the scene inside the folder Levels with the name
MyLevel_level.

To align the prefabs among themselves, select the Transform tool and
press and hold the V key to activate the Vertex-Snapping mode.

Run & Jump comes with a custom tool that allows you to set up the order and the
name of the levels and also add these to the Scenes in Build list automatically.
We must use this in order of make our level usable by the video game (one of the
requirements is to include the suffix _level in the name of the scene).

In the Unity editor menu, navigate to Tools | Level Packager | Show Levels
Package:

Getting Started with Editor Scripting

[14]

This will display the following in the Inspector window:

Currently, there are only three levels listed, so click on the + icon to create a new
item in the list. Now, add the scene you created in right column and add the string
My Level in the left column. This will add your level as the fourth one.

Save the changes by clicking on the Commit Levels button.

To check the scene you created, open the scene Title inside the Scenes folder, and
then click on the Play button to run the video game:

Now you know the necessary amount of effort it takes to create a level for this game;
so let's make this level creation process the first thing to improve.

The Level Creator tool
Imagine a scenario where you are responsible for generating several levels for Run
& Jump. You know this task is time consuming, and copying and pasting prefabs to
place them in the right position is not the most efficient way to achieve this.

Chapter 1

[15]

Basically, most of the 2D level editors use a Canvas/Brush metaphor to design the
user interaction. This means the level scene is your canvas and using the mouse
cursor as a brush, you paint over it level prefab instances.

Taking this in to consideration, the first thing we will create is a tool called Level
Creator to make this process easier using the Canvas/Brush metaphor, and of
course, in the process, we will cover several editor scripting topics.

The features of the Level Creator are as follows:

•	 Automates the creation of a scene capable of being used as a level. This
means that you can generate a scene with a game object, and the level script
attached to it, with just a simple click.

•	 Displays a grid on the Scene View option to be used as a reference. All the
level piece prefabs will snap to this grid by default.

•	 Controls and validates how the properties of the level script are changed.
•	 Improves the visibility of the available level pieces prefabs by creating

a Palette window to show a preview. This classifies the prefabs by
their category.

•	 Implements the Canvas/Brush metaphor allowing fourt modes: view, paint,
edit, and erase level pieces prefabs.

•	 Customizes the look and feel of the tool to improve its own appearance.

For now, let's focus on automating the creation of a scene capable to be used as a level.

As you notice, Run & Jump is fully playable at it is but we are going
to make a few improvements in its implementation to achieve a
seamless integration with the Level Creator tool. Is because of that,
all the current levels aren't be editable by the tool.

All the design decisions in this book were taken in order to make
easy to understand the code related to editor scripting.

Defining the chapter goals
In the rest of this chapter, we will work on the first scripts of the Level Creator tool
in order to automate the creation of a scene capable to be used as a level.

Getting Started with Editor Scripting

[16]

The goals here are:

•	 Create a new Unity scene by code
•	 Add a game object with the level script attached to it to the scene by code
•	 Create a menu item to trigger the creation of a scene capable to be used as

a level in the Unity editor menu

Preparing the environment
We need to create a few folders to keep our development organized. Remember, for
this entire book, we are working on the Run & Jump project.

You will find a folder called Tools in the root of the project. Right now this folder has
one inside with the scripts of the tool we used to add our levels to the game.

Inside the Tools folder, create a new folder called LevelCreator and then match the
folder structure, as shown in the following screenshot:

This folder structure is just a suggestion, but you must always consider creating a
root folder for your custom tools.

Chapter 1

[17]

Performing automation
As we were saying, we want to create a scene capable to be used as a level, but
instead doing this manually in Unity, we are going to achieve the same using code.

We are going to implement a few methods to do this. Inside the folder Tools/
LevelCreator/Editor, create a new script called EditorUtils.cs and add the
following code:

using UnityEngine;
using UnityEditor;
using System.Collections.Generic;

namespace RunAndJump.LevelCreator {
 public static class EditorUtils {

 // Creates a new scene
 public static void NewScene () {
 EditorApplication.SaveCurrentSceneIfUserWantsTo ();
 EditorApplication.NewScene ();
 }

 // Remove all the elements of the scene
 public static void CleanScene () {
 GameObject[] allObjects = Object.FindObjectsOfType<GameObject>
();
 foreach (GameObject go in allObjects) {
 GameObject.DestroyImmediate (go);
 }
 }

 // Creates a new scene capable to be used as a level
 public static void NewLevel () {
 NewScene ();
 CleanScene ();
 GameObject levelGO = new GameObject ("Level");
 levelGO.transform.position = Vector3.zero;
 levelGO.AddComponent<Level> ();
 }
 }
}

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Editor Scripting

[18]

The NewLevel method is the one that executes all the work using the help of the
following two methods:

•	 NewScene: This creates a new scene, but before doing that, asks whether
we want to save the scene that is currently open. All this is done using
EditorApplication, a static class with several methods to know the state of
the editor (playing, paused, compiling, and so on) and create, save, or load
scenes and projects.

•	 CleanScene: This removes all the elements of the scene. Remember the
camera created by default with each scene in Unity? Well, this method
is going to take care of that using the DestroyImmediate method. This
is similar to the common Destroy method but this works in an Editor
context.

To learn more about the EditorApplication class, visit http://
docs.unity3d.com/ScriptReference/EditorApplication.
html.

In order to avoid class name conflicts, it's always a good idea to use
namespaces. In this project, all the video game classes are in the
RunAndJump namespace and the Level Creator classes are in the
LevelCreator.RunAndJump namespace.

Similar to the HelloWorld example we created at the beginning of this chapter, we
need to make the NewLevel method accessible through the Unity editor menu using
the MenuItem attribute.

Inside the folder Tools/LevelCreator/Editor, create a new script called
MenuItems.cs. We will use this to add all the future menu items that the tool
requires; for now, add the following code:

using UnityEngine;
using UnityEditor;

namespace RunAndJump.LevelCreator {
 public static class MenuItems {

 [MenuItem ("Tools/Level Creator/New Level Scene")]
 private static void NewLevel () {
 EditorUtils.NewLevel ();
 }
 }
}

 http://docs.unity3d.com/ScriptReference/EditorApplication.html
 http://docs.unity3d.com/ScriptReference/EditorApplication.html
 http://docs.unity3d.com/ScriptReference/EditorApplication.html

Chapter 1

[19]

Now, the NewLevel method will be available when you navigate to Tools | Level
Creator | New Level Scene. Save all the scripts changes and for Unity to compile,
then click on New Level Scene:

A dialog window will ask you whether you want to save the current changes of the
scene (if this one has modifications):

After this, a new scene will be created with the game object containing the level
script:

Congratulations! We have the starting point for the Level Creator tool creating a
level scene with just one click!

Getting Started with Editor Scripting

[20]

Summary
In this chapter, we introduced you to the editor scripting API and also the project
that we will use in this book.

With editor scripts, we were able to customize how Unity works and customize the
workflow based on our specific requirements.

When you work with editor scripts, remember to use the UnityEditor namespace
and save the scripts inside a folder with the name Editor.

If for some reason you must use the editor scripting API outside an Editor folder,
remember to use the directives #if and #endif with the UNITY_EDITOR conditional
compilation symbol to exclude that part of the code in the video game build.

If you plan to create a custom tool in your project, always consider these two things:

•	 When you design a tool, always consider the user for whom you are building
the tool and involve them in the design and creation process. If your tool
requires a custom GUI, creating mockups is always a good alternative to get
an idea of the final result. Remember, there is nothing worse than a tool that
is not easy to use and doesn't solve the specific problem.

•	 Always evaluate the cost of creating the tool and the time you want to invest
in that. Ensure that the time and resources you spend creating the tool itself
to save more time and resources later during development.

In the next chapter, we will continue working on the Level Creator, integrating the
use of gizmos to display a grid meant to be used as guides in our tool.

[21]

Using Gizmos in the
Scene View

When you are working on a video game and you need to debug features, it's very
helpful to have a visual representation of certain structures you are using in the code.
For example, imagine that you have a set of waypoints to model the movement of
a Non Playable Character (NPC) in your video game. If it is possible for you to see
the waypoints, it will be easier for you to make tweaks and readjust the movement
paths.

Thankfully, in Unity there's a class called Gizmos that allow us to add visual aids to
the Scene View in an easy way.

Here, you will learn about the Gizmos class and how to use this to create a visual
grid that will help level designers position the level piece prefabs with more control
in the level.

In this chapter we will cover the following topics:

•	 The OnDrawGizmos and OnDrawGizmosSelected methods
•	 The DrawGizmo attribute
•	 The Gizmos class API

Using Gizmos in the Scene View

[22]

Overview
In Unity, a gizmo is a visual aid rendered in Unity's Scene View to help us in the
development process. Several components in Unity use gizmos to tell the developers
where in the 3D world these are located.

Take a look at the following screenshot. The two icons, the movie camera and the
light bulb, are gizmos that indicate the game object position of the camera and the
point light components, respectively.

You can do the same with a specific game object if you click on the cube icon in their
inspector pane:

Chapter 2

[23]

Here you have three options to choose:

•	 Use a label
•	 Use a built-in icon
•	 Use a custom icon made with any image located inside your project

You will see the following three results, respectively, in the Scene View:

Any of these gizmos will be attached to the game object and will persist in the scene
and in any prefab containing this game object.

All these examples use the Unity editor to do the required setup, but there is an
additional way in which gizmos can be created, allowing greater flexibility due to the
use of parameters related to our game logic. This is achieved through code using the
Gizmos class.

Defining the chapter goals
In this chapter, we will start exploring the many alternatives we have for adding
gizmos to Unity and then finish with the implementation of a visual grid for
positioning the level piece prefabs, setting the boundaries for our level in this way.

The goals here are:

•	 Exploring how to add gizmos through code
•	 Defining the size of the level in terms of columns and rows
•	 Rendering a grid using gizmos based on the size of the level
•	 Implementing a snap to grid feature using the level piece prefabs

Using Gizmos in the Scene View

[24]

The final result that we will achieve looks like this:

Creating gizmos through code
We explored how to add simple gizmos through the Unity editor. This section will
cover how to properly implement the OnDrawGizmos and OnDrawGizmosSelected
methods to achieve a similar but more flexible solution.

All the scripts in this section are examples, and are not meant to
be used in the Level Creator tool.

The OnDrawGizmos and
OnDrawGizmosSelected methods
To get started, in a new project, create a script called GizmoExample.cs. We will use
this as a guinea pig for our first gizmos experiments (don't worry, the script is not
going to suffer too much!)

Write the following code in GizmoExample.cs:

using UnityEngine;
public class GizmoExample : MonoBehaviour {
 private void OnDrawGizmos() {
 }
}

When you implement the OnDrawGizmos method, you can add gizmos that always
drawn in the Scene View and also allows the possibility to be selected with a click.

Chapter 2

[25]

In this case, the method is empty. However, if you come back to Unity and wait for
the compiler to end, you'll find that the class GizmoExample is listed in the Gizmos
dropdown on the Scene View:

The Gizmos dropdown allows you to change the way gizmos are displayed in the
Scene View. At the top of the dropdown, you can change the scale size that gizmos
are drawn at; next to that, you will see a list of the available gizmos. To turn gizmos
on or off, simply click on the checkbox to hide or show the gizmo itself.

If you select the column icon associated with GizmoExample, you will get the same
kind of results we saw when we clicked on the cube icon in the inspector. Here,
again, you can choose between using a label, a built-in icon, or a custom icon. For
now, just choose a label.

Changing the icon in the Gizmos dropdown will also change the icon
used to represent the script in the Project browser and the inspector.

As soon you add the GizmoExample.cs script to a new game object in the scene, a
gizmo label with the name of the game object will be displayed in the Scene View.

The OnDrawGizmos method is not called if the component collapses
in the inspector window.

Using Gizmos in the Scene View

[26]

We explored a simple way to make our script visible to Unity, but there are more
powerful things to explore. Remove the icon from the Gizmos dropdown and
update the GizmoExample.cs script as follows:

using UnityEngine;

public class GizmoExample : MonoBehaviour {

 private void OnDrawGizmos () {
 Gizmos.color = Color.white;
 Gizmos.DrawCube (
 transform.position, Vector3.one);
 }

 private void OnDrawGizmosSelected () {
 Gizmos.color = Color.red;
 Gizmos.DrawWireCube (
 transform.position, Vector3.one);
 }
}

We added a new method, OnDrawGizmosSelected. Implement this to draw gizmos
only if the object is selected. Here, gizmos aren't pickable.

Inside the OnDrawGizmos and OnDrawGizmosSelected methods, we made use of the
Gizmos class to draw gizmos. Now, you should see a solid cube in the position of the
game object with the GizmoExample.cs script attached, and then a solid cube with a
color outline when this game object is selected:

Chapter 2

[27]

At this point, you may have noticed that the Gizmos class is part of the UnityEngine
namespace instead of the UnityEditor namespace. This means you can use it
in your MonoBehaviour class directly if you have the method OnDrawGizmos or
OnDrawGizmosSelected implemented.

Take into consideration that these methods are called in an Editor
context and will not be available in your final video game.

Adding gizmos using the DrawGizmo attribute
The DrawGizmo attribute allows you to display gizmos using a separated class
from the original MonoBehaviour class and without using the OnDrawGizmos or
OnDrawGizmosSelected method explicitly.

Here, we will need two scripts. The first one, called TargetExample.cs, is the
MonoBehaviour class we want to add the gizmo; and the second one, called
DrawGizmoExample.cs is a script that implements the gizmo.

Let's start creating the script TargetExample.cs in a new project:

using UnityEngine;

public class TargetExample : MonoBehaviour {

}

As we can see, no gizmo logic was added here. Because the DrawGizmo attribute is
part of the UnityEditor namespace, we will create the DrawGizmoExample.cs script
inside an Editor folder. For this, add the following code:

using UnityEngine;
using UnityEditor;

public class DrawGizmoExample {

 // This emulates OnDrawGizmos
 [DrawGizmo(GizmoType.NotInSelectionHierarchy |
 GizmoType.InSelectionHierarchy |
 GizmoType.Selected |
 GizmoType.Active |
 GizmoType.Pickable)]
 private static void MyCustomOnDrawGizmos(

www.allitebooks.com

http://www.allitebooks.org

Using Gizmos in the Scene View

[28]

 TargetExample targetExample, GizmoType gizmoType) {
 Gizmos.color = Color.white;
 Gizmos.DrawCube(
 targetExample.transform.position, Vector3.one);
 }
}

Save everything you've done so far, and in a new scene, add a game object with
TargetExample.cs attached. You will see this:

The TargetExample class is rendering a gizmos cube similar to the past example, but
now the DrawGizmoExample.cs , and external editor script, is responsible of that.

Any method meant to be used for render gizmos, in this case, MyCustomOnDrawGizmos,
must be static and take two parameters: the object for which the gizmo is being drawn,
and a GizmoType parameter, which indicates the context in which the gizmo is being
drawn. Inside this method, you can use the Gizmos class again to add all the gizmos
you want.

Then, to make this work, we used the DrawGizmo attribute on the method
MyCustomOnDrawGizmos and passed as parameters the GizmoType we want to use.
These are flags that specify scenarios in which the gizmos will be rendered and their
behavior.

The GizmoType method offers five properties you can use:

•	 InSelectionHierarchy: This draws the gizmo if it is selected or it is a child
of the selected

Chapter 2

[29]

•	 NotInSelectionHierarchy: This draws the gizmo if it is not selected and
also no parent is selected

•	 Selected: This draws the gizmo if it is selected
•	 Active: This draws the gizmo if it is active (shown in the inspector)
•	 Pickable: The gizmo to be drawn can be picked from the editor

In the case of MyCustomOnDrawGizmos, to emulate the behavior of the OnDrawGizmos
method, we used all the gizmo types available. You can use different combinations
to achieve different results, for example, let's try to emulate the behavior of
OnDrawGizmosSelected creating a method called MyCustomOnDrawGizmosSelected
inside the DrawGizmoExample class:

[DrawGizmo(GizmoType.InSelectionHierarchy |
 GizmoType.Active)]
 private static void MyCustomOnDrawGizmosSelected(
 TargetExample targetExample, GizmoType gizmoType) {
 Gizmos.color = Color.red;
 Gizmos.DrawWireCube(
 targetExample.transform.position, Vector3.one);
 }

Save the changes and wait for Unity to compile the scripts, and then you will see
the functionality of the original OnDrawGizmosSelected method achieved by the
MyCustomOnDrawGizmosSelected method:

Using Gizmos in the Scene View

[30]

Here, we presented an alternative to rendering gizmos in Unity, but in most cases,
using the OnDrawGizmos or OnDrawGizmosSelected method is enough to create
visual aids in the Scene View.

In which scenarios do you want to use this approach? Well, one instance is if you
really want to separate what is related to your video game and what is related to
the editor stuff. However, most of the times, this approach would be helpful when
you don't have access to the implementation of the specific MonoBehaviour class, so
using the method OnDrawGizmos or OnDrawGizmosSelected is not possible.

The Gizmos class
The Gizmos class has all the methods to draw gizmos in the Scene View and we will
explore these methods in this section. If you want to reproduce the examples that we
will work on here, just add the code snippets inside a MonoBehaviour class.

This section is an extended version of the official documentation
about the Gizmos class. If you want to check the original version
visit: http://docs.unity3d.com/ScriptReference/
Gizmos.html.

DrawCube
This draws a solid box with center and size.

Example:

// Method signature public static void DrawCube(Vector3 center,
Vector3 size);
public Vector3 center = Vector3.zero;
public Vector3 size = Vector3.one;

private void OnDrawGizmos() {
 Gizmos.DrawCube(center, size);
} Result:

http://docs.unity3d.com/ScriptReference/Gizmos.html
http://docs.unity3d.com/ScriptReference/Gizmos.html

Chapter 2

[31]

DrawWireCube
This draws a wireframe box with center and size.

Example:

// Method signature public static void DrawWireCube(Vector3 center,
Vector3 size);
public Vector3 center = Vector3.zero;
public Vector3 size = Vector3.one;

private void OnDrawGizmos() {
 Gizmos.DrawWireCube(center, size);
} Result:

Using Gizmos in the Scene View

[32]

DrawSphere
This draw a solid sphere with center and radius.

Example:

// Method signature public static void DrawSphere(Vector3 center,
float radius);
public Vector3 center = Vector3.zero;
public float radius = 1f;

private void OnDrawGizmos() {
 Gizmos.DrawSphere(center, radius);
} Result:

DrawWireSphere
This draws a wireframe sphere with center and radius.

Example:

// Method signature public static void DrawWireSphere(Vector3 center,
float radius);
public Vector3 center = Vector3.zero;
public float radius = 1f;

private void OnDrawGizmos() {
 Gizmos.DrawWireSphere(center, radius);
} Result:

Chapter 2

[33]

DrawRay
This draws a ray , a line starting at some position and going in some direction. This is
a good way to visualize ray casting algorithms when you are unsure what the length
or direction of a ray is.

Example:

// Method signatures public static void DrawRay(Ray r);
// public static void DrawRay(Vector3 from, Vector3 direction);
public Vector3 from = Vector3.zero;
public Vector3 direction = Vector3.up;

private void OnDrawGizmos() {
 Gizmos.DrawRay(from, direction);
} Result:

Using Gizmos in the Scene View

[34]

DrawLine
This draws a line.

Example:

// Method signature public static void DrawLine(Vector3 from, Vector3
to);
public Vector3 from = new Vector3(1, 0, 0);
public Vector3 to = new Vector3(0, 0, 1);

private void OnDrawGizmos() {
 Gizmos.DrawLine(from, to);
} Result:

DrawIcon
This draws an icon at the world space Vector3, in Center at the specified position.
The icon should be a regular image file, such as a PNG or JPG image, which is to
be placed in the Assets/Gizmos folder. Whether or not the icon will be scaled and
displayed or hidden is determined in the Gizmos dropdown. Using this method
instead of the approach we saw at the beginning of this chapter gives you more
control over the icons. For example, you can simulate toggle icons to visually
represent boolean values in your code.

Chapter 2

[35]

To make this code work, we previously created a copy of the asset Game/Art/UI/
UI_LivesAvatar.png inside a folder called Gizmos. Note that the icon always faces
the Scene View camera.

Example:

// Method signature public static void DrawIcon(Vector3 center, string
name, bool allowScaling = true);
private void OnDrawGizmos() {
 Gizmos.DrawIcon(
 transform.position, "icon.png");
} Result:

DrawGUITexture
This draws the Texture inside the ScreenRect method on the Scene View using
the XY plane (where the Z coordinate is zero). The values of the texture rectangle are
given in scene units.

The optional border values specify an inset from each edge within the rectangle in
scene units; the texture is drawn inside the inset rectangle and the edge pixels are
repeated outward.

Using Gizmos in the Scene View

[36]

In this example, we pass the reference of the texture as a parameter. You will see that
the texture is inverted; this is because the origin of the coordinate system is in the
top-left corner.

Example:

// Method signature public static void DrawGUITexture(Rect screenRect,
Texture texture, Material mat = null);
// public static void DrawGUITexture(Rect screenRect, Texture texture,
int leftBorder, int rightBorder, int topBorder, int bottomBorder,
Material mat = null);
public Rect screenRect = new Rect(0, 0, 100, 100);
public Texture theTexture;

private void OnDrawGizmos() {
 if(theTexture != null) {
 Gizmos.DrawGUITexture(screenRect, theTexture);
 }
} Result:

DrawFrustrum
The DrawFrustrum draws a camera frustum using the currently set Gizmos.matrix
for its location and rotation (don't worry about the meaning of the Gizmos.matrix
variable, we will talk about that soon).

Example:

// Method signature public static void DrawFrustum(Vector3 center,
float fov, float maxRange, float minRange, float aspect);
public Vector3 center = Vector3.zero;
public float fov = 60;

Chapter 2

[37]

public float maxRange = 1;
public float minRange = 3;
public float aspect = 1.3f;

private void OnDrawGizmos() {
 Gizmos.DrawFrustum(
 center, fov, maxRange, minRange, aspect);
}

Now, you have all the necessary knowledge to work with gizmos, so apply what you
learned to move forward with the development of the Level Creator tool.

Adding a structure to our levels
Open the Run & Jump project and look for the folder Scripts/Level. Inside this
folder, you will find all the related to the video game. The Level class is responsible
for making our levels work.

As you may have noticed, in Chapter 1, Getting Started with Editor Scripting, all the
level piece prefabs are added to the scene and used by the level without a problem,
but we don't have control over the size of the level or any way to guarantee that the
level piece prefabs are going to be in the right position. Most important, the Level
class is not aware about the level piece prefabs present on the level.

We are going to fix this situation making changes to the Level class, adding an array
to save references to the level piece prefabs and define it size based in the total
columns and rows supported by that array.

Visually, you are going to see the size of the level with the help of a grid made
with gizmos.

www.allitebooks.com

http://www.allitebooks.org

Using Gizmos in the Scene View

[38]

As this chapter requires changes on the Level class, there a couple of things you
must know:

•	 The Level class is a partial class, this means that its content is divided in
several files: the Level.cs and Level.Logic.cs scripts. This is just to make
its manipulation easier in the book. All the changes will take place in Level.
cs.

•	 The Level class follows a Singleton design pattern, this means that the
instantiation of the class is restricted to just one object and you can have
access to this from any other class using the Level.Instance method.

•	 To learn more about Partial classes visit: https://
msdn.microsoft.com/en-us/library/
wa80x488(v=vs.140).aspx

•	 To learn more about the Singleton design pattern visit the:
https://en.wikipedia.org/wiki/Singleton_
pattern

Implementing the gizmo grid
When you open the script Level.cs. You will see the following code:

using UnityEngine;

namespace RunAndJump {
 public partial class Level : MonoBehaviour {

 [SerializeField]
 public int _totalTime = 60;
 [SerializeField]
 private float gravity = -30;
 [SerializeField]
 private AudioClip bgm;
 [SerializeField]
 private Sprite background;

 public int TotalTime {
 get { return _totalTime; }
 set { _totalTime = value; }
 }

https://msdn.microsoft.com/en-us/library/wa80x488(v=vs.140).aspx
https://msdn.microsoft.com/en-us/library/wa80x488(v=vs.140).aspx
https://msdn.microsoft.com/en-us/library/wa80x488(v=vs.140).aspx
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern

Chapter 2

[39]

 public float Gravity {
 get { return gravity; }
 set { gravity = value; }
 }

 public AudioClip Bgm {
 get { return bgm; }
 set { bgm = value; }
 }

 public Sprite Background {
 get { return background; }
 set { background = value; }
 }
 }
}

This script holds the variables that you saw in the inspector and the properties to
access and change these values.

As you may have noticed, making your variables public is not the
only way to expose them in the inspector; an alternative is using the
SerializeField attribute. We will talk more about this in Chapter 3,
Creating Custom Inspectors.

Let's make the first change by updating the script to look like this:

using UnityEngine;
namespace RunAndJump {
 public partial class Level : MonoBehaviour {

 [SerializeField]
 public int _totalTime = 60;
 [SerializeField]
 private float _gravity = -30;
 [SerializeField]
 private AudioClip _bgm;
 [SerializeField]
 private Sprite _background;
 [SerializeField]
 private int _totalColumns = 25;
 [SerializeField]
 private int _totalRows = 10;

Using Gizmos in the Scene View

[40]

 public const float GridSize = 1.28f;

 private readonly Color _normalColor = Color.grey;
 private readonly Color _selectedColor = Color.yellow;

 public int TotalTime {
 get { return _totalTime; }
 set { _totalTime = value; }
 }

 public float Gravity {
 get { return _gravity; }
 set { _gravity = value; }
 }

 public AudioClip Bgm {
 get { return _bgm; }
 set { _bgm = value; }
 }

 public Sprite Background {
 get { return _background; }
 set { _background = value; }
 }

 public int TotalColumns {
 get { return _totalColumns; }
 set { _totalColumns = value; }
 }

 public int TotalRows {
 get { return _totalRows; }
 set { _totalRows = value; }
 }
 }
}

The variables _totalColumns and _totalRows are going to indicate the total
number of level piece prefabs supported in the x and y axis.

The constant GridSize specifies the size of each cell in the grid. The value 1.28f is
based on the current size of the level piece prefabs of the video game.

Chapter 2

[41]

We also added two read-only variables, _normalColor and _selectedColor, to
define the color of the grid depending on its state.

Continuing on Level.cs, we will add the following auxiliary methods,
GridFrameGizmo and GridGizmo, to help us in the creation of the gizmo grid:

 private void GridFrameGizmo(int cols, int rows) {
 Gizmos.DrawLine(new Vector3(0, 0, 0), new Vector3(0, rows *
GridSize, 0));
 Gizmos.DrawLine(new Vector3(0, 0, 0), new Vector3(cols *
GridSize, 0, 0));
 Gizmos.DrawLine(new Vector3(cols * GridSize, 0, 0), new
Vector3(cols * GridSize, rows * GridSize, 0));
 Gizmos.DrawLine(new Vector3(0, rows * GridSize, 0), new
Vector3(cols * GridSize, rows * GridSize, 0));
 } private void GridGizmo(int cols, int rows) {
 for (int i = 1 ; i < cols ; i++) {
 Gizmos.DrawLine(new Vector3(i * GridSize, 0, 0), new Vector3(i
* GridSize, rows * GridSize, 0));
 }
 for (int j = 1 ; j < rows ; j++) {
 Gizmos.DrawLine(new Vector3(0, j * GridSize, 0), new
Vector3(cols * GridSize, j * GridSize, 0));
 }
 }

The method GridFrameGizmo creates a rectangle with a width equals to cols times
GridSize and a height equals to rows times GridSize.

The GridGizmo, using two for loops, creates the vertical and horizontal lines for the
grid. To do this, we used the Gizmos.DrawLine method.

To see the gizmos working, let's add an OnDrawGizmos method and call the methods
we created inside it:

private void OnDrawGizmos() {
 Color oldColor = Gizmos.color;

 Gizmos.color = _normalColor;
 GridGizmo(_totalColumns, _totalRows);
 GridFrameGizmo(_totalColumns, _totalRows);

 Gizmos.color = oldColor;
}

Using Gizmos in the Scene View

[42]

Here, we will use the Gizmos.color variable to define the color used to render the
gizmos in the Scene View. This is a static variable part of the Gizmos class so, as good
practice, always save the original color and restore it when you're done using it.

Save the script and wait for Unity to compile it. Then, in the Unity editor menu,
navigate to Tools | Level Creator | New Level Scene to create a new level, as
shown in the following screenshot:

Now, you will see the following in the Scene View:

You can adjust the column/row size of the grid by changing the values of Total
Columns and Total Rows in the inspector. The size of the grid is automatically
updated.

To add a visual feedback when the Level game object is selected, we will use the
OnDrawGizmosSelected method, changing the color of the grid frame when that
happens. Let's add the following:

private void OnDrawGizmosSelected() {
 Color oldColor = Gizmos.color;

 Gizmos.color = _selectedColor;
 GridFrameGizmo(_totalColumns, _totalRows);

 Gizmos.color = oldColor;
}

Chapter 2

[43]

As always, wait for the compiler to finish and then select the Level game object. You
will see the frame on the grid highlighted:

If you select the Level game object and change its position, you will notice that the
grid remains in the same place. This is because the points passed to the Gizmo's class
methods are actually transformed using the Gizmo's matrix before the grid is painted
on the Scene View, but now the identity matrix is used by default.

For our purposes, this current behavior is okay, but if you want to make the gizmo
transform with the game object, the only thing you need to do is change the value of
the Gizmos.matrix variable. This is a static variable part of the Gizmos class, so as
good practice, always save the original matrix and restore it when you're done using it.

For example, the update required by the OnDrawGizmos method is as follows:

private void OnDrawGizmos() {
 Color oldColor = Gizmos.color;
 Matrix4x4 oldMatrix = Gizmos.matrix;
 Gizmos.matrix = transform.localToWorldMatrix;

 Gizmos.color = _normalColor;
 GridGizmo(_totalColumns, _totalRows);
 GridFrameGizmo(_totalColumns, _totalRows);

 Gizmos.color = oldColor;
 Gizmos.matrix = oldMatrix;
}

Using Gizmos in the Scene View

[44]

Implementing the snap to grid behaviour
To create our first level in Chapter 1, Getting Started with Editor Scripting, we used a
hot key to snap the level piece prefabs between them. Here, we will do the same,
but instead of using the hot key, the level piece prefabs are going to snap to the grid
automatically.

Here, we will assume that the Level game object position and rotation is always
(0,0,0) and the scale is (1,1,1). Also, the 2D mode is selected by default.

Later, we will work on how keep this configuration by default. Based on the grid we
created, we need to implement a few things to achieve our goal:

•	 A way to convert 3D coordinates to grid coordinates and vice versa
•	 A way to know when these coordinates are outside the boundaries of the

grid

Inside the Level class, add the following methods in the Level.cs script:

public Vector3 WorldToGridCoordinates(Vector3 point) {
 Vector3 gridPoint = new Vector3(
 (int)((point.x - transform.position.x) / GridSize) ,
 (int)((point.y - transform.position.y) / GridSize), 0.0f);
 return gridPoint;
}

public Vector3 GridToWorldCoordinates(int col, int row) {
 Vector3 worldPoint = new Vector3(
 transform.position.x + (col * GridSize + GridSize / 2.0f),
 transform.position.y + (row * GridSize + GridSize / 2.0f),
 0.0f);
 return worldPoint;
}
public bool IsInsideGridBounds(Vector3 point) {
 float minX = transform.position.x;
 float maxX = minX + _totalColumns * GridSize;
 float minY = transform.position.y;
 float maxY = minY + _totalRows * GridSize;
 return (point.x >= minX && point.x <= maxX && point.y >= minY &&
point.y <= maxY);
}

Chapter 2

[45]

public bool IsInsideGridBounds(int col, int row) {
 return (col >= 0 && col < _totalColumns && row >= 0 && row < _
totalRows);
}

The WorldToGridCoordinates method receives a Vector3 point and returns a
Vector3 where x and y correspond to the col and row coordinates in the grid (a
Vector3 was used in order to avoid the creation of a new struct).

The GridToWorldCoordinates method receives a col and row position of the grid
and returns a Vector3 corresponding to the world coordinates (assuming z = 0). The
IsInsideGridBounds method has two different signatures. One receives a

Vector3 point and returns true if the coordinates col and row are inside the grid.
The other one does the same but instead of a vector, receives a grid coordinate
(col, row).

We will start using these methods intensively soon, but for now, just to verify these
work properly, let's create a script called SnapToGridTest.cs with the following
code (you can discard this script at the end of this chapter):

using UnityEngine;
using RunAndJump;

[ExecuteInEditMode]
public class SnapToGridTest: MonoBehaviour {

 private void Update () {
 Vector3 gridCoord = Level.Instance.WorldToGridCoordinates
(transform.position);
 transform.position = Level.Instance.
GridToWorldCoordinates((int)gridCoord.x, (int) gridCoord.y);
 }

 private void OnDrawGizmos () {
 Color oldColor = Gizmos.color;
 Gizmos.color = (Level.Instance.IsInsideGridBounds (transform.
position)) ? Color.green : Color.red;
 Gizmos.DrawCube (transform.position, Vector3.one * Level.
GridSize);
 Gizmos.color = oldColor;
 }
}

Using Gizmos in the Scene View

[46]

The SnapToGridTest.cs file renders a gizmo cube on the Scene View; this will
change the color based on its position. With a reference to the level script, the
SnapToGridTest method will be green if its position is contained by the grid,
and red if the opposite happens.

In the Update function, we adjusted the position of the game object so it remains
snapped to the grid cells. We added a special attribute before the class declaration
called ExecuteInEditMode. This attribute allows the Update function to be called,
even when the editor is not in play mode.

By default, script components are only executed in play mode. By
adding the attribute ExecuteInEditMode, each script component will
also have its callback functions executed while the Editor is not in Play
mode. Be careful: the expected behavior have differences compared to
the same script running in Play mode, for example, the Update function
is only called when something in the scene is changed. To get more
information about this, visit the following link:
http://docs.unity3d.com/ScriptReference/
ExecuteInEditMode.html

Wait for Unity to compile the script and then, with the Level game object in the
scene, add a few game objects with the SnapToGridTest.cs script attached inside
the Level game object.

Start moving the SnapToGridTest game objects inside and outside the grid with the
mouse, you will notice that the boundary detection works and changes the color of
the gizmo cube while always snapping to the grid:

Well done! We've finished our gizmo grid feature.

http://docs.unity3d.com/ScriptReference/ExecuteInEditMode.html
http://docs.unity3d.com/ScriptReference/ExecuteInEditMode.html

Chapter 2

[47]

Summary
In this chapter, you learned about how to use gizmos and continued working with
the features of the Level Creator tool by implementing a gizmo grid with an snap to
grid feature.

The Gizmos class is part of the UnityEngine namespace and allows you to create
visual aids in the Scene View to work with our scripts.

To render gizmos, we must implement the OnDrawGizmos and
OnDrawGizmosSelected methods in our MonoBehaviour classes, and call methods of
the Gizmos class to draw the visuals. When it is not possible to access the code of the
MonoBehaviour class to implement these methods directly, an alternative way is to
use the DrawGizmo attribute, allowing you to implement the gizmo logic in a second
class.

When you work with gizmos, you can change they color and the matrix used to be
rendered. To achieve this, you need to overwrite the variables Gizmos.color and
Gizmos.matrix, respectively. Because these variables are static, it's recommended to
always save the current value of the variables and restore it when you're done.

Gizmos can help visually expose implementation details of code to artists and
designers, and help them debug problems on the fly. Think about gizmos as a way
to expose part of the code to team members who are not programmers. If an image
is worth a thousand words, a good gizmo is worth more than a thousand lines of
debugging code.

In the next chapter, we will continue working with the Level Creator tool by creating
our own custom inspectors.

www.allitebooks.com

http://www.allitebooks.org

[49]

Creating Custom Inspectors
When you've worked on a Unity project for a long time, you know that the bigger
your scripts get, the more unwieldy they become; all your public variables take up
space in the Inspector window, and as they accumulate, they begin to convert into
one giant and scary monster.

Sometimes, organization is the trick, like separating these variables in logic groups
in your MonoBehaviour class, but the approach is not always enough to make
inspectors user friendly.

To solve this problem, Unity allows us to create custom inspectors for our scripts,
so we can define how our exposed variables and their properties should look in the
Inspector window.

Here, you will learn how to have a custom inspector up and running by creating
one for the Level class in Run & Jump.

In this chapter, we will cover the following topics:

•	 The CustomEditor attribute
•	 Inspector messages
•	 Creating a GUI
•	 Using layouts
•	 Property Drawers and Decorator Drawers
•	 The SerializedObject and SerializedProperty classes

Creating Custom Inspectors

[50]

Overview
The Inspector window displays detailed information about all the attached
components and scripts of the currently selected game object. The following is
an example of how the Inspector window looks. In this case, we are using the
HazzardSpikes level piece prefab from Run & Jump.

You can use the inspectors to change properties and exposed variables from a
component or script; at runtime, you can use them to find the right combination of
values for your video game.

Chapter 3

[51]

In a script, if you define a public variable of an object type (such as GameObject or
Transform), you can drag and drop a game object or prefab into the inspector to
make the assignment.

In this chapter, you will learn how to create custom inspector by following our own
specifications and not the Unity default ones. In this case, we will work over the
Level class inspector to make it part of the Level Creator tool workflow.

Defining the chapter goals
In this chapter, we will improve the Level class and use it to save the references
of the level piece prefabs used on a level. Here, we will try to have control over
the level size constraints. In this process, we will improve how we deal with these
constraints and other variables of the level by creating a custom inspector.

The goals here are:

•	 Saving references of all the level piece prefabs on the level in the Level class
•	 Creating a custom inspector to expose the variables of the Level class,

taking care to have a user-friendly way to resize the level in terms
of columns and rows

•	 Improving the general look of the custom inspector by changing the way
the properties are displayed using complex layouts

•	 Improving how certain properties are displayed using property drawers

The final result will look like this:

Creating Custom Inspectors

[52]

Upgrading the Level class
In this video game, a level is just a Unity scene with several level piece prefabs aligned
with each other. When we started this project, we took a look at how the level scenes
were implemented and found that there was no relation between these prefabs and the
Level class through code.

In the last chapter, we added gizmos to display a grid and the necessary methods to
make game objects snap to this grid. Now, the focus is to make the Level class capable
of knowing what is on the level scene.

To the Level class, we will add an array to handle a 2D matrix of LevelPieces,
the base class of the level piece prefabs in Run & Jump. Its size will be determined
explicitly by two variables, that is, the total number of columns and rows in the grid.

Go to the Scripts/Level folder and open the Level.cs script. Add the following
code to the class:

[SerializeField]
private LevelPiece[] _pieces;

public LevelPiece[] Pieces {
get { return _pieces; }
 set {_pieces = value; }
}

Save the script and wait for Unity to compile it. Then, in the Unity editor menu,
navigate to Tools | Level Creator | New Level Scene to create a new level:

Chapter 3

[53]

Select the level game object. If everything is OK, you will see something like this:

Now we are ready to go!

Understanding how an inspector works
Every time you attach a MonoBehaviour script to a game object, all the public
variables in that script are automatically exposed in the inspector. This means you
can change the values directly from there and also these values are serialized.

Serialization is the process of converting an object into a stream of bytes
in order to store the object or transmit it to memory, a database, or a file.
Its main purpose is to save the state of an object to be able to recreate it
when needed.

Creating Custom Inspectors

[54]

Making your variables public is not the only way to expose them in the Inspector. An
alternative is using the SerializeField attribute, like in the Level class variables,
so independent of the access modifier of the property (public, private, protected, or
internal), this will be exposed and serialized without exception.

In specific scenarios, you might want to have a public property to be serialized
without exposing it in the inspector. For this, you must use the HideInInspector
attribute.

In the following example, you will see a script using the SerializeField attribute
and HideInInspector attribute, part of the UnityEngine namespace, and the
respective inspector rendered, as follows:

using UnityEngine;

public class InspectorExample : MonoBehaviour {
 public int variableA = 100;
 [SerializeField]
 private int variableB = 200;
 // This variable won't be exposed in the inspector
 [HideInInspector]
 public int variableC = 300;
}

You will see the following output:

There is a direct relationship with the types Unity is able to serialize and the ones
exposed in the inspector. The supported types are as follows:

•	 All classes inheriting from UnityEngine.Object, for example GameObject,
Component, MonoBehaviour, Texture2D, and AnimationClip

Chapter 3

[55]

•	 All basic data types, such as int, string, float, and bool
•	 Some built-in types, such as Vector2, Vector3, Vector4, Quaternion,

Matrix4x4, Color, Rect, and LayerMaski
•	 Arrays of a serializable type
•	 List of a serializable type
•	 Enums
•	 Structs

Now, talking about the inspector, if the default behavior is not enough to satisfy the
necessities of your project, because the resulting interface is not user friendly, you
need a special kind of validation/interaction or if your data structure wasn't in the
previous list, you will need to create your custom one.

Creating a custom inspector
In this section, we will create the base structure to start using custom inspectors in
our project.

Using the CustomEditor attribute
The CustomEditor attribute is part of the UnityEditor namespace and is the way
Unity binds an editor script with a specific type of the MonoBehaviour class to
modify the way the default inspector works.

To use the CustomEditor attribute, you must place your script inside
an Editor folder, or in a folder nested inside an Editor folder.

Create a script called LevelInspector.cs inside the folder Tools\LevelCreator\
Editor, and then add the following code:

using UnityEngine;
using UnityEditor;

namespace RunAndJump.LevelCreator {
 [CustomEditor(typeof(Level))]
 public class LevelInspector : Editor {

 }
}

Creating Custom Inspectors

[56]

The attribute CustomEditor expects a type. In this case, we passed the type Level.
Doing this, you will overwrite the inspector of all the Level class instances in Unity.

Your must extend from the Editor class and in this way you will have access to all
the methods and properties to create custom inspectors.

When you create a custom inspector for a type of class, if you try to
select several instances in the editor to make changes at the same time,
Unity will not allow you to do so. To support multi-object editing, you
must use the CanEditMultipleObjects attribute. Add this before the
class declaration. In this case, we will have just one Level class instance
at a time, so this is not necessary.

Save and wait for Unity to compile the script. Once it finishes, you will not see any
visual difference.

Don't worry, breathe deeply and relax; this was expected. We did the base setup but
we aren't doing anything to overwrite the normal behavior of the inspector. In the
next section, we will explore the methods to get a working custom inspector.

Playing with the inspector message methods
and target variable
Like the Awake, Update, and OnDestroy methods in the MonoBehaviour classes,
known as the message methods, inspectors have their own ones to handle similar
kind of actions inherited from the Editor class.

Let's implement these in our LevelInspector class:

using UnityEngine;
using UnityEditor;

namespace RunAndJump.LevelCreator {
 [CustomEditor(typeof(Level))]
 public class LevelInspector : Editor {

 private Level _myTarget;

 private void OnEnable () {
 Debug.Log ("OnEnable was called...");
 _myTarget = (Level)target;
 }

Chapter 3

[57]

 private void OnDisable () {
 Debug.Log ("OnDisable was called...");
 }

 private void OnDestroy () {
 Debug.Log ("OnDestroy was called...");
 }

 public override void OnInspectorGUI () {
 EditorGUILayout.LabelField ("The GUI of this inspector was
modified.");
 EditorGUILayout.LabelField ("The current level time is: "
+ _myTarget.TotalTime);
 }
 }
}

The OnEnable method is called every time the inspected object is selected. This is a
good place for all the initialization code.

The OnDisable method is called when the inspected object goes out of scope. This is
also called when the object is destroyed and can be used for any cleanup code.

The OnDestroy method is called when the inspected object will be destroyed.

When scripts are reloaded after the compilation has finished,
OnDisable is called, followed by OnEnable after the script has been
loaded.

The Editor class has a variable called target. This variable has a reference to
the object inspected and it is used to access the properties of that object and to
manipulate them in the custom inspector.

If your script supports multi-object editing, you must use targets
instead of target. This will return a Unity object array with all the
objects being inspected.

Because target returns a Unity object, we must cast this to a Level type to access the
public methods and variables of the inspected object. We will save this reference in
the variable _myTarget and do the initialization inside the OnEnable method.

The last method we need to implement is OnInspectorGUI. In this method, you can
add methods to render the inspector GUI. This one must to be overridden in order to
work and you need to keep the access modifier as public.

Creating Custom Inspectors

[58]

As an example, we added two labels to the inspector, and in the second one,
we used the _myTarget variable to access the TotalTime property of the inspected
Level class.

This is how our inspector looks now:

Good work! In the next section, we will continue working in the GUI for this
custom inspector.

If you want to check more about the Editor class, visit:
http://docs.unity3d.com/ScriptReference/Editor.html.

Adding the GUI elements
Before we start working in the new GUI, let's see how to make this custom inspector
render the default GUI. Let's update the OnInspectorGUI method:

public override void OnInspectorGUI () {
 DrawDefaultInspector();
}

Save and wait for Unity to compile the script. The DrawDefaultInspector method
will display the default GUI on the inspector.

You can use this method to help you debug your custom inspector for
troubleshooting.

http://docs.unity3d.com/ScriptReference/Editor.html

Chapter 3

[59]

We want to split the task of creating this custom inspector in two parts:

•	 Data: This part exposes the total time, gravity, BGM, and background
variables.

•	 The Resize feature: This part has the necessary GUI to allow a game
designer to resize the level.

Let's start with the first part. In the LevelInspector class, we will modify the
OnInspectorGUI method again and use a new method created by us called
DrawLevelDataGUI:

public override void OnInspectorGUI () {
 // DrawDefaultInspector();
 DrawLevelDataGUI ();
}

private void DrawLevelDataGUI () {
 EditorGUILayout.LabelField ("Data", EditorStyles.boldLabel);
 _myTarget.TotalTime = EditorGUILayout.IntField ("Total Time", Mathf.
 Max (0, _myTarget.TotalTime));
 _myTarget.Gravity = EditorGUILayout.FloatField ("Gravity",
 _myTarget.Gravity);
 _myTarget.Bgm = (AudioClip)EditorGUILayout.ObjectField ("Bgm",
 _myTarget.Bgm, typeof(AudioClip), false);
 _myTarget.Background = (Sprite)EditorGUILayout.ObjectField
 ("Background", _myTarget.Background, typeof(Sprite), false);
}

The EditorGUILayout class has several methods to draw an editor GUI. All
the methods in this class adapt automatically to the inspector following layout
restrictions. You will find similar methods in the EditorGUI class, but the difference
is that, on this class, you must specify the rectangle that will contain the GUI element
for each one of its methods.

The EditorGUILayout and EditorGUI classes are too big to be
covered thoroughly in this book, so check the following URLs to get an
idea about the options these classes gives us:

•	 http://docs.unity3d.com/ScriptReference/
EditorGUILayout.html

•	 http://docs.unity3d.com/ScriptReference/
EditorGUI.html

http://docs.unity3d.com/ScriptReference/EditorGUILayout.html
http://docs.unity3d.com/ScriptReference/EditorGUILayout.html
http://docs.unity3d.com/ScriptReference/EditorGUI.html
http://docs.unity3d.com/ScriptReference/EditorGUI.html

Creating Custom Inspectors

[60]

We used the EditorGUILayout class to create several fields. Let's review these:

LabelField was used to display a label with the text data. As a second parameter,
we passed a variable from the class EditorStyles to change the style of the font
used by the label - bold style (in Chapter 6, Changing the Look and Feel of the Editor with
GUI Styles and GUI Skins we will talk more about how to change the look and feel of
our tools).

The IntField and FloatField methods work in the same way: both show an
editable text field that allows only integers and floats.

The first parameter is the label for the field and the second one is a reference to
the variable used to extract the value displayed in the field. The methods return
an integer and a float, respectively; so, you can use these values to overwrite the
variables inspected.

ObjectField method is used for objects and requires the type of the object and a
Boolean used as a flag to specify whether objects on the scene can be added to this
field or not. In our case, we don't require that. The returning value must to be casted.

Save the changes and go back to Unity. Create a new level scene and you should see
the following:

If you try to change the Total Time field to a negative value, the inspector is not
going to allow you because we used the method Max from the class Mathf to always
guarantee that TotalTime will be equal to or greater than 0. This means, with a
custom inspector, we can improve the validation of all the parameters our game
object or component is going to use.

Chapter 3

[61]

Implementing the resize feature
To start, add the following two variables to the LevelInspector class:

private int _newTotalColumns;
private int _newTotalRows;

These variables are going to be used to save the new Level size values to previsualize
the changes. As soon we decide to proceed with the change, we will update the
values TotalColumns and TotalRows and do the changes to the Pieces array.

The LevelInspector class will be responsible for the initialization of the Pieces
array because we want to make this happen in an editor context.

In the LevelInspector class, create two methods called InitLevel and
ResetResizeValues. These are going to be called inside the OnEnable method:

private void OnEnable () {
 // Debug.Log ("OnEnable was called...");
 _myTarget = (Level)target;
 InitLevel ();
 ResetResizeValues ();
}

private void InitLevel () {
 if (_myTarget.Pieces == null || _myTarget.Pieces.Length == 0) {
 Debug.Log("Initializing the Pieces array...");
 _myTarget.Pieces = new LevelPiece[_myTarget.TotalColumns *
_myTarget.TotalRows];
 }
}

private void ResetResizeValues () {
 _newTotalColumns = _myTarget.TotalColumns;
 _newTotalRows = _myTarget.TotalRows;
}

Creating Custom Inspectors

[62]

Now, to do the resize, we need to change the length of the Pieces array and remove
all the LevelPiece instances out of level bounds, destroying the prefab associated
to the instances. We will add this in the LevelInspector class using the name
ResizeLevel:

private void ResizeLevel () {
 LevelPiece[] newPieces = new LevelPiece[_newTotalColumns * _
newTotalRows];
 for (int col = 0; col < _myTarget.TotalColumns; ++col) {
 for (int row = 0; row < _myTarget.TotalRows; ++row) {
 if (col < _newTotalColumns && row < _newTotalRows) {
 newPieces [col + row * _newTotalColumns] =
 _myTarget.Pieces [col + row * _myTarget.
TotalColumns];
 } else {
 LevelPiece piece = _myTarget.Pieces [col + row * _
myTarget.TotalColumns];
 if (piece != null) {
 // we must to use DestroyImmediate in a Editor
context
 Object.DestroyImmediate (piece.gameobject);
 }
 }
 }
 }
 _myTarget.Pieces = newPieces;
 _myTarget.TotalColumns = _newTotalColumns;
 _myTarget.TotalRows = _newTotalRows;
}

With the logic done, in the next section, we will implement the GUI we are missing,
which is necessary to make the resize.

Using buttons to trigger actions
In the LevelInspector class, we will modify the OnInspectorGUI method, adding a
new method created by us, called DrawLevelSizeGUI:

public override void OnInspectorGUI () {
 // DrawDefaultInspector();
 DrawLevelDataGUI ();
 DrawLevelSizeGUI ();
 }
private void DrawLevelSizeGUI () {
 EditorGUILayout.LabelField ("Size", EditorStyles.boldLabel);

Chapter 3

[63]

 _newTotalColumns = EditorGUILayout.IntField ("Columns", Mathf.Max
(1, _newTotalColumns));
 _newTotalRows = EditorGUILayout.IntField ("Rows", Mathf.Max (1, _
newTotalRows));
 // with this variable we can enable or disable GUI
 bool oldEnabled = GUI.enabled;
 GUI.enabled = (_newTotalColumns != _myTarget.TotalColumns || _
newTotalRows != _myTarget.TotalRows);
 bool buttonResize = GUILayout.Button ("Resize", GUILayout.Height (2
* EditorGUIUtility.singleLineHeight));
 if (buttonResize) {
 if (EditorUtility.DisplayDialog (
 "Level Creator",
 "Are you sure you want to resize the level?\nThis action cannot
be undone.",
 "Yes",
 "No")) {
 ResizeLevel ();
 }
 }
 bool buttonReset = GUILayout.Button ("Reset");
 if (buttonReset) {
 ResetResizeValues ();
 }
 GUI.enabled = oldEnabled;
}

The beginning of the code is pretty similar to the DrawLevelDataGUI method; the
only difference is the usage of the method Button from the class GUILayout.

Button is a method that renders a Button. To check whether the user is clicking on
the button, we need to evaluate this method, returning true when clicked, false in
other cases.

Here, two buttons were created, the first one with the name Resize, which will
display a popup dialog if clicked on, thanks to the method DisplayDialog from the
class EditorUtility. If the level designer clicks on Yes, the method ResizeLevel
will be called.

The second button called Reset restores the variables _newTotalColumns and _
newTotalRows to match the TotalColumns and TotalRows values, respectively.

As it makes no sense to press the Resize or Reset buttons if the values for the
columns or the rows don't differ, we will disable the buttons using the variable
enabled from the class GUI.

Creating Custom Inspectors

[64]

If GUI.enabled is false, all the interactive GUI components, such as buttons, will be
disabled; the opposite happens when it is true. Remember to always save the original
value and then restore it when you are done.

As you may have noticed, you have more classes to get GUI stuff related
than EditorGUI and EditorGUILayout; you will be able to use GUI
and GUILayout too. To learn more about these two classes, visit the
following two websites:

•	 http://docs.unity3d.com/ScriptReference/GUI.html
•	 http://docs.unity3d.com/ScriptReference/

GUILayout.html

At this point, the aspect of the inspector will be as follows:

http://docs.unity3d.com/ScriptReference/GUI.html
http://docs.unity3d.com/ScriptReference/GUILayout.html
http://docs.unity3d.com/ScriptReference/GUILayout.html

Chapter 3

[65]

The buttons are disabled by default until you change the values of the Column or
Row fields:

If you click on Resize, the following popup will appear:

If you click on Yes, the array of pieces will be updated, but unless you move the
mouse cursor over the Scene View, you will still see the level grid without any size
change.

This happens because, when you pass the mouse over the Scene View, you force the
redrawing of the visible elements. We need to force this in order to make the resize
functionality look correct.

To do this, we will use the flag changed for the class GUI. This will be true if there is
any change to the Inspector GUI. Let's update the OnInspectorGUI function again:

public override void OnInspectorGUI () {
 // DrawDefaultInspector();
 DrawLevelDataGUI ();
 DrawLevelSizeGUI ();

 if(GUI.changed) {
 EditorUtility.SetDirty(_myTarget);
 }
}

Creating Custom Inspectors

[66]

The SetDirty object, part of the EditorUtility class, marks the target object as
dirty. Unity internally uses the dirty flag to find out when assets have changed
and need to be saved to disk; and also, because of this, forces the Level class to be
redrawn.

We have implemented all the functionality we required. In the rest of this chapter,
we will continue working on the GUI.

Working with layouts
We have explained the EditorGUILayout and GUILayout class, which have
several GUI elements that adapt automatically to the inspector following the layout
restrictions. By default, all these elements stack in a vertical way, so the first element
you call in your code is on the top of the inspector and the last one at the bottom.

You can manipulate how these elements are displayed using a few methods from the
EditorGUILayout class. We will explore the ones that place elements in horizontal
and vertical ways.

To place your GUI elements in a horizontal way, you need to use a couple of
methods from the EditorGUILayout class, as follows:

EditorGUILayout.BeginHorizontal();
// GUI element 1
// GUI element 2
// GUI element 3
EditorGUILayout.EndHorizontal();

You will get something like this:

To place your GUI elements in a vertical way, you need to use a couple of methods
from the EditorGUILayout class, as follows:

EditorGUILayout.BeginVertical();
// GUI element 1
// GUI element 2

Chapter 3

[67]

// GUI element 3
EditorGUILayout.EndVertical();

You will get something like this:

You can always nest different layout arrangements to create more complex layouts. To
demonstrate this, we will improve how the GUI from DrawLevelSizeGUI is displayed.

Creating complex layouts
Using the current code from the DrawLevelSizeGUI method, we will change how
the different GUI elements are placed using layouts. To have a better idea about how
to mix the horizontal and vertical layouts, let's look at the following diagram:

Creating Custom Inspectors

[68]

Based on this diagram, we will place the layout methods as follows:

private void DrawLevelSizeGUI () {
 EditorGUILayout.LabelField ("Size", EditorStyles.boldLabel);
 EditorGUILayout.BeginHorizontal ("box");
 EditorGUILayout.BeginVertical ();
 _newTotalColumns = EditorGUILayout.IntField ("Columns", Mathf.Max
(1, _newTotalColumns));
 _newTotalRows = EditorGUILayout.IntField ("Rows", Mathf.Max (1, _
newTotalRows));

 EditorGUILayout.EndVertical ();
 EditorGUILayout.BeginVertical ();

 // with this variable we can enable or disable GUI
 bool oldEnabled = GUI.enabled;
 GUI.enabled = (_newTotalColumns != _myTarget.TotalColumns || _
newTotalRows != _myTarget.TotalRows);
 bool buttonResize = GUILayout.Button ("Resize", GUILayout.Height (2
* EditorGUIUtility.singleLineHeight));
 if (buttonResize) {
 if (EditorUtility.DisplayDialog (
 "Level Creator",
 "Are you sure you want to resize the level?\nThis action cannot
be undone.",
 "Yes",
 "No")) {
 ResizeLevel ();
 }
 }
 bool buttonReset = GUILayout.Button ("Reset");
 if (buttonReset) {
 ResetResizeValues ();
 }
 GUI.enabled = oldEnabled;

 EditorGUILayout.EndVertical ();
 EditorGUILayout.EndHorizontal ();
}

Chapter 3

[69]

If you check the level custom inspector, you will see something like this:

To the first EditorGUILayout.BeginHorizontal method, we passed a parameter,
which is a string with the value box; this is a way to use GUIStyles in our components.
Again, this will be covered soon in Chapter 6, Changing the Look and Feel of the Editor
with GUI Styles and GUI Skins, but for now, gives a nice touch to our inspector.

Let's do the same to the top part of the inspector by updating the method
DrawLevelDataGUI:

private void DrawLevelDataGUI () {
 EditorGUILayout.LabelField ("Data", EditorStyles.boldLabel);
 EditorGUILayout.BeginVertical ("box");
 _myTarget.TotalTime = EditorGUILayout.IntField ("Total Time",
Mathf.Max (0, _myTarget.TotalTime));
 _myTarget.Gravity = EditorGUILayout.FloatField ("Gravity", _
myTarget.Gravity);
 _myTarget.Bgm = (AudioClip)EditorGUILayout.ObjectField ("Bgm",
_myTarget.Bgm, typeof(AudioClip), false);
 _myTarget.Background = (Sprite)EditorGUILayout.ObjectField
("Background", _myTarget.Background, typeof(Sprite), false);
 EditorGUILayout.EndVertical ();
 }

Creating Custom Inspectors

[70]

At this point, your inspector should look like this:

We are getting closer to the final result, but before we continue, let's look at another
way to add custom GUIs to our inspectors.

Improving the inspector without custom
inspectors
In this section, we will explore a way to create custom GUI for our properties using
Property Drawers.

What is a Property Drawer?
A Property Drawer allows you to control how the GUI of a Serializable class or
property is displayed in the Inspector window. This approach significantly reduces
the amount of work you have to do for the GUI customization because you don't
need to write an entire custom inspector. Instead, you can just apply appropriate
attributes to variables in your scripts to tell the editor how you want those properties
to be drawn.

Unity has several built-in Property Drawers. In the following example, we will use
the Range attribute:

Chapter 3

[71]

using UnityEngine;

public class DrawerExample : MonoBehaviour {
 [Range (0, 100)]
 public int intValue = 50;
}

This is the result of the preceding code:

Using the Range attribute, we rendered a slider that moves between 0 and 100
instead of the common int field without creating a custom inspector.

In the next section, we will check the rest of the available Property Drawers in Unity.

Built-in Property Drawers
The Unity documentation has information about the built-in Property Drawers, but
there is no place where you can check all the available ones listed. In this section, we
want to resolve this.

Range
The range attribute is used to constrain a float or int variable in a script to a specific
range. When this attribute is used, the float or int will be shown as a slider in the
inspector instead of the default int or float field:

// Method signatures
// public RangeAttribute(float min, float max);
// public RangeAttribute(int min, int max);
[Range (0, 1)]
public float floatRange = 0.5f;
[Range (0, 100)]
public int intRange = 50;

Creating Custom Inspectors

[72]

You will get the following output:

Multiline
The multiline attribute is used to make a string value to be shown in a Multiline
text area. You can set up how many lines of text to make room for. The default is
three and the text doesn't wrap on this GUI component:

// Method signatures
// public MultilineAttribute();
// public MultilineAttribute(int lines);
[Multiline (2)]
public string stringMultiline = "This text is using a multiline
property drawer";

You will get the following output:

Chapter 3

[73]

TextArea
The TextArea attribute makes a string editable within a height-flexible and scrollable
text area. You can specify the minimum and maximum values and a scrollbar will
appear if the text is bigger than the area available:

// Method signatures
// public TextAreaAttribute();
// public TextAreaAttribute(int minLines, int maxLines);
[TextArea (2, 4)]
public string stringTextArea = "This text \nis using \na text area \
nproperty \ndrawer";

You will get the following output:

ContextMenu
This Attribute makes a method accessible in the context menu of a component or
script. When the user selects this context menu item, the method will be executed. In
this example, we will expose the method DoSomething:

// Method signature
// public ContextMenuAttribute(string name);
 [ContextMenu ("Do Something")]
 public void DoSomething() {
 Debug.Log ("DoSomething was called...");
 }

Creating Custom Inspectors

[74]

You will get the following output:

ContextMenuItem
This Attribute makes a method accessible as a context menu item of a property (the
method must be nonstatic). In this example, we call a method to reset the value of the
IntReset variable to 0:

// Method signature
// public ContextMenuItemAttribute(string name, string function);
[ContextMenuItem("Reset this value", "Reset")]
public int intReset = 100;

public void Reset() {
 intReset = 0;
}

Chapter 3

[75]

Built-in Decorator Drawers
There are another kind of drawers called Decorator Drawers. They are similar in
composition to the Property Drawers, but the main difference is that Decorator
Drawers are designed to draw decoration in the inspector and are unassociated with
a specific field.

While you can only declare one property drawer per variable, you can stack multiple
decorator drawers.

Header
This is the attribute that adds a header to some fields in the inspector:

// Method signature
// public HeaderAttribute(string header);
[Header("This is a group of variables")]
public int varA = 10;
public int varB = 20;

Creating Custom Inspectors

[76]

Space
This attribute adds some spacing in the inspector:

// Method signature
// public SpaceAttribute(float height);
public int varC = 10;
[Space(40)]
public int varD = 20;

Tooltip
The attribute adds a tooltip to a property on the inspector:

// Method signature
// public TooltipAttribute(string tooltip);
[Tooltip("This is a tooltip")]
public int varE = 30;

Chapter 3

[77]

Creating you own Property Drawers
If you have a serializable parameter or structure that repeats constantly in your video
game and you would like to improve how this renders in the inspector, you can try
to write your own property drawers.

We are going to create a property drawer for an integer meant to be a variable to
save time in seconds. This Property Drawer will draw a normal int field but also a
label with the number of seconds converted to the m:s or h:m:s time format.

This is going to convert something like this:

To this following output:

For sure, this is much easier to read compared to the previous version.

Creating Custom Inspectors

[78]

To implement a Property Drawer you must create two scripts:

•	 The attribute, the one you will be using over the properties in your
MonoBehaviour scripts.

•	 The drawer, responsible for rendering the GUI and handling the input of the
user. This last one is an editor script.

Let's start with the first one. Inside the folder Tools\LevelCreator\Scripts, create
a script called TimeAttribute.cs with the following code:

using UnityEngine;

namespace RunAndJump.LevelCreator {
 public class TimeAttribute : PropertyAttribute {
 public readonly bool DisplayHours;

 public TimeAttribute (bool displayHours = false) {
 DisplayHours = displayHours;
 }
 }
}

Here, we defined the name of the attribute and its parameters. You must create your
attribute class extending from the PropertyAttribute class, and if you want to start
creating your own, you must have these kind of scripts outside any Editor folder.
This is very important to make them work!

By convention, the name of the attribute class ends with the word
attribute. While not required, this is recommended for readability.
When the attribute is used, the word attribute is optional.

The TimeAttribute has an optional parameter called DisplayHours. By default,
the Time attribute will display a label under the int field with the time in m:s format;
if DisplayHours is true, this will be displayed in the h:m:s format.

Now, we want to implement the drawer. This script must be in an Editor folder.
So, inside Tools\LevelCreator\Editor, create a new script called TimeDrawer.cs
with the following code:

using UnityEngine;
using UnityEditor;

Chapter 3

[79]

namespace RunAndJump.LevelCreator {
 [CustomPropertyDrawer (typeof(TimeAttribute))]
 public class TimeDrawer : PropertyDrawer {
 public override float GetPropertyHeight (SerializedProperty
property, GUIContent label) {
 return EditorGUI.GetPropertyHeight (property) * 2;
 }

 public override void OnGUI (Rect position, SerializedProperty
property, GUIContent label) {
 if (property.propertyType == SerializedPropertyType.Integer) {
 property.intValue = EditorGUI.IntField (new Rect (position.x,
position.y, position.width, position.height / 2), label, Mathf.Max (0,
property.intValue));
 EditorGUI.LabelField (new Rect (position.x, position.y +
position.height / 2, position.width, position.height / 2), " ",
TimeFormat (property.intValue));

 } else {
 EditorGUI.HelpBox (position, "To use the Time attribute \"" +
label.text + "\" must be an int!", MessageType.Error);
 }
 }

 private string TimeFormat (int totalSeconds) {
 TimeAttribute time = attribute as TimeAttribute;
 // Here we are using string.Format to add the variables in the
string.
 if (time.DisplayHours) {
 int hours = totalSeconds / (60 * 60);
 int minutes = ((totalSeconds % (60 * 60)) / 60);
 int seconds = (totalSeconds % 60);
 return string.Format ("{0}:{1}:{2} (h:m:s)", hours, minutes.
ToString ().PadLeft (2, '0'), seconds.ToString ().PadLeft (2, '0'));
 } else {
 int minutes = (totalSeconds / 60);
 int seconds = (totalSeconds % 60);
 return string.Format ("{0}:{1} (m:s)", minutes.ToString (),
seconds.ToString ().PadLeft (2, '0'));
 }
 }
 }
}

Creating Custom Inspectors

[80]

A property drawer doesn't support layouts to create a GUI. For this
reason, the only classes usable here are EditorGUI and GUI (instead of
EditorGUILayout and GUILayout). This class requires a little extra
effort to be used; you must define a Rect that will contain the GUI
element each time you want to use one.

The CustomPropertyDrawer attribute is part of the UnityEditor namespace and
is the way Unity has to bind a drawer with a Property attribute. In this case, we
passed the type TimeAttribute.

You must extend from the PropertyDrawer class, and in this way, you will have
access to the core methods to create property drawers:

•	 GetPropertyHeight: The responsibility of this method is to handle the
height of the drawer. You need to overwrite this method in order to use it.

•	 OnGUI: This is where you place all the code related to render the GUI in a
similar way that we did for the inspectors. The only difference here is that
you must use the class EditorGUI because layouts are not allowed.

You can create Decorator Drawers too by following the steps we
did to create a Property Drawer, but instead of extending your
drawer from PropertyDrawer, you will need to extend it from
DecoratorDrawer.

To test our code, create a new script called TimeDrawerDemo.cs and add the
following (you can discard this script later):

using UnityEngine;
using RunAndJump.LevelCreator;

public class TimeExample : MonoBehaviour {

 [Time]
 public int TimeMinutes = 3600;
 [Time(true)]
 public int TimeHours = 3600;
 [Time]
 public float TimeError = 3600;
}

Chapter 3

[81]

We added the line using the RunAndJump.LevelCreator namespace because the
time attribute is part of that namespace. After compiling, if you attach this script to a
game object, you will see something like this on the inspector:

Now with our own custom property drawer working, you will learn how to combine
this with the custom inspector we created.

Using drawers inside a custom inspector
We use the variable target to access the public methods, properties, and variables
of the Level class. This is not the only way to do this, and in fact, the alternative way
will give us more information related to the properties of the object inspected.

To do this, we will use the classes SerializedObject and SerializedProperty.

Creating Custom Inspectors

[82]

Using SerializedObject and SerializedProperty
Let's declare a few variables in the LevelInspector class:

private SerializedObject _mySerializedObject;
private SerializedProperty _serializedTotalTime;

Now, let's declare the initialization of these variables in the InitLevel method:

private void InitLevel () {
 _mySerializedObject = new SerializedObject (_myTarget);
 _serializedTotalTime = _mySerializedObject.FindProperty ("_
totalTime");
 if (_myTarget.Pieces == null || _myTarget.Pieces.Length == 0) {
 Debug.Log("Initializing the Pieces array...");
 _myTarget.Pieces = new LevelPiece[_myTarget.TotalColumns * _
myTarget.TotalRows];
 }
}

The SerializedObject and SerializedProperty are classes for editing properties
of objects in a completely generic way. SerializedObject requires a reference of the
variable target to work; and, to get access to each property, we need to write the name
in an explicit way using the FindProperty method from the SerializedObject class.

It's true that this approach requires extra effort to access each property, but in this
way, we get a few benefits, such as handling the undo of the properties by default
and accessing information about the property that can be used, for example, to
render the property using PropertyAttibutes.

To see this last thing in action, in the Level class, add the Time attribute to the
variable TotalTime, as follows:

[LevelCreator.Time]
public int TotalTime = 60;

Chapter 3

[83]

Then, we will update the DrawLevelDataGUI method from the same class by
replacing the IntField for the PropertyField method from the EditorGUILayout
class. This method takes a SerializedProperty reference to render the default GUI
from that kind of property.

private void DrawLevelDataGUI () {
 EditorGUILayout.LabelField ("Data", EditorStyles.boldLabel);
 EditorGUILayout.BeginVertical ("box");
 //_myTarget.TotalTime = EditorGUILayout.IntField ("Total Time",
Mathf.Max (0, _myTarget.TotalTime));
 EditorGUILayout.PropertyField (_serializedTotalTime);
 _myTarget.Gravity = EditorGUILayout.FloatField ("Gravity", _
myTarget.Gravity);
 _myTarget.Bgm = (AudioClip)EditorGUILayout.ObjectField ("Bgm", _
myTarget.Bgm, typeof(AudioClip), false);
 _myTarget.Background = (Sprite)EditorGUILayout.ObjectField
("Background", _myTarget.Background, typeof(Sprite), false);
 EditorGUILayout.EndVertical ();
}

Save the changes. Now, the Level class has a custom inspector and one of its
properties is using a property drawer to render the GUI. With this, we are done for
this chapter:

Creating Custom Inspectors

[84]

Summary
In this chapter, we learned how to create custom inspectors.

The CustomEditor class is part of the UnityEditor namespace and it's necessary to
make a class a custom inspector. This class must inherit from the Editor class and
must be nested in an Editor folder in order to work.

An inspector, such as a MonoBehaviour class, has its own message method. These
events are OnEnable, OnDisable, and OnDestroy. To make changes to the GUI, you
must override the method OnInspectorGUI.

There are several classes to add the GUI in the inspector: the EditorGUILayout
and EditorGUI classes are similar, with the only difference being that the first one
auto adapts the GUI elements based in a layout, and the second one requires the
specification of a rectangle to be used as a container of the element.

There is a class called GUILayout, with generic GUI elements that can be used in a
video game or editor context. The Button method is part of this class.

It's important to review the API reference of these classes because there are several
useful methods to create GUI elements and knowing them makes it easy to make
design decisions. Also, exploring the different signatures that each method on the
API has will help you to customize how these GUI elements are rendered.

Without having to write a custom inspector, it is possible to create a GUI for the class
properties using property drawers and decorator drawer. These require less effort
than the inspectors and are applied using attributes.

In the next chapter, we will continue working on the Level Creator using editor
windows to create a Piece Palette.

[85]

Creating Editor Windows
Most of the interactions you have with Unity when you use the Scene View, Game
View, or Project browser will be across editor windows. When you need to have
some kind of interaction that is not directly related to one specific object instance, the
usage of a editor window feels more natural compared to a custom inspector.

Unity allows you to create editor windows using the EditorWindow class, giving you
an alternative way to create user interfaces for your tools.

Here, you will learn how to create an editor window and customize it to build a
Palette to display the level piece prefabs available in Run & Jump in order to be used
by the Level Creator.

In this chapter, we will cover the following topics:

•	 The EditorWindow class
•	 The AssetDatabase class
•	 C# events

Creating Editor Windows

[86]

Overview
An editor window is used as a base to display the GUI and support all the user
interactions for a specific functionality. In Unity, most of the graphical elements you
see are rendered over an editor window, and these can float freely or can be docked
as a tab; these can be simple or complex depending of what they need to achieve. See
the editor window in the following screenshot:

All the editor windows extend from the EditorWindow class, which is to be used in
order to create our own custom editor windows.

In this chapter, you will learn how to create a custom editor window implementing
a Palette, a window that will display the level piece prefabs of the video game.

Chapter 4

[87]

Defining the chapter goals
In this chapter, we will improve the way a level designer searches for a level piece
prefab to use it on a level in the Level Creator tool. Instead of using the Project
browser, we will create a Palette using the EditorWindow class.

The goals here are:

•	 Implementing a category system
•	 Getting a reference to all the level piece prefabs of the project and

categorize them
•	 Creating a tab system to display categories
•	 Creating a GUI element to represent the level piece prefab in the Palette
•	 Creating a scrollable area to display the level piece prefabs
•	 Integrating the Palette with the Level Creator tool

The final result that we will achieve looks like this:

Creating the base for an editor window
In this section, we will create the base code to get an editor window up and running
in Unity.

Creating Editor Windows

[88]

Using the EditorWindow class
The EditorWindow class is part of the UnityEditor namespace and must be
extended to any class used to create editor windows.

To use the EditorWindow class, you must place your script inside an
Editor folder, or in a folder nested inside an Editor folder.

Create a script called PaletteWindow.cs inside the folder Tools/LevelCreator/
Editor, and then add the following code:

using UnityEngine;
using UnityEditor;

namespace RunAndJump.LevelCreator {
 public class PaletteWindow : EditorWindow {

 public static PaletteWindow instance;

 public static void ShowPalette () {
 instance = (PaletteWindow) EditorWindow.GetWindow
(typeof(PaletteWindow));
 instance.titleContent = new GUIContent("Palette");
 }
}

The GetWindow method, which is part of the EditorWindow class, is responsible for
getting an instance of the specified type of window, in this case, the PaletteWindow
type. So, each time you call this method, the current live window instance will be
returned.

Here, we created a static method called ShowPalette, which encapsulates the
GetWindow call, and a static variable called instance to save the reference to the
PalleteWindow instance. This follows a singleton pattern.

Finally, we need to call the ShowPalette method to display the Palette in the editor.
We will use a menu item attribute for this. Go to the MenuItems.cs script we created
in a preceding chapter and add the following lines of code inside the MenuItems
class:

[MenuItem ("Tools/Level Creator/Show Palette")]
private static void ShowPalette () {
 PaletteWindow.ShowPalette ();
}

Chapter 4

[89]

Save and wait for Unity to compile the scripts. Then, in the Unity editor menu,
navigate to Tools | Level Creator. Here, you will see a new item called Show
Palette:

After you click on it, the Palette window instance will appear over the Unity editor:

You will notice that the behavior of this is the same as that of the build-in editor
windows of Unity, and you can move it around, dock, minimize, maximize, and
close it without problems.

Playing with the EditorWindow message
methods
In the EditorWindow class, you will find the same message methods that we saw
when we implemented the custom inspectors in the previous chapter.

Let's update the PaletteWindow.cs script:

using UnityEngine;
using UnityEditor;

namespace RunAndJump.LevelCreator {
 public class PaletteWindow : EditorWindow {

Creating Editor Windows

[90]

 public static PaletteWindow instance;

 public static void ShowPalette () {
 instance = (PaletteWindow) EditorWindow.GetWindow
(typeof(PaletteWindow));
 instance.titleContent = new GUIContent("Palette");
 }

 private void OnEnable() {
 Debug.Log("OnEnable called...");
 }

 private void OnDisable() {
 Debug.Log("OnDisable called...");
 }

 private void OnDestroy() {
 Debug.Log("OnDestroy called...");
 }

 private void OnGUI() {
 EditorGUILayout.LabelField("The GUI of this window was
modified.");
 }
private void Update () {
 // Debug.Log("OnGUI called...");
 }
}

The OnEnable, OnDisable, and OnDestroy methods have the same behavior as
explained in Chapter 3, Creating Custom Inspectors.

Inside the OnGUI method, you can add your methods to render the GUI. To see how
it works, we added a label field. This works similar to the OnInspectorGUI method
used for custom inspectors.

There is also a method called Update. This is called 100 times per second in all the
visible windows. We will use this later for a method that requires working in an
asynchronous way.

Chapter 4

[91]

After saving and waiting for Unity to compile, go to the Level Creator menu and
click on Show Palette. The Palette window now will show the GUI element that we
added in the OnGUI method:

We limited the methods shown here to the ones we need in the
PaletteWindow method, but there are a lot of other functionalities
to explore. You can check out more about the EditorWindow
class at http://docs.unity3d.com/ScriptReference/
EditorWindow.html.

Using Hotkeys to trigger menu items
When you need to add an entry point to allow people to use your tools, it is a good
alternative to create a new menu item in the Unity editor menu so that you can
trigger the necessary method to initialize and show your tools with just a click.

The MenuItem attribute allows you to do this. All you need to do is to ensure that
you are using the UnityEditor namespace and ensure that the target method is
static.

In order to save the users' time, you can assign Hotkeys to menu items. The
following table shows the strings that you need to add to the path parameter;
use the following specific keys (these can also be combined together):

String Key
% Ctrl on Windows / Command on OSX
Shift
& Alt

http://docs.unity3d.com/ScriptReference/EditorWindow.html
http://docs.unity3d.com/ScriptReference/EditorWindow.html

Creating Editor Windows

[92]

String Key
LEFT/RIGHT/UP/DOWN Arrow keys
F1…F2 F keys
HOME, END, PGUP, PGDN Home, End, Page Up, Page Down

Character keys, which are not part of a key sequence, are added by prefixing them
with an underscore (for example, _g for the shortcut key G). The Hotkey character
combinations are added to the end of the menu item path, preceded by a space.

We will update the Show Palette menu item to make it work with the Hotkey P
as well. Go to the script MenuItems.cs and update the method ShowPalette, as
follows:

[MenuItem ("Tools/Level Creator/Show Palette _p")]
private static void ShowPalette () {
 PaletteWindow.ShowPalette ();
}

Now, if you check the Show Palette menu item, you will see the letter P at the end.
This means that you can press P on the keyboard and open the Palette window:

Implementing the Palette
In this section, we will get hands on with the implementation of the Palette. Just to
maintain a certain level of abstraction, in some cases, we will talk about Palette items
instead level piece prefabs.

For us, a Palette item is what is displayed in the Palette, and this can be anything; in
this case, a level piece prefab.

Chapter 4

[93]

Creating a category system
We need some data to make the Palette window functional. The first step is to
categorize the available level piece prefabs in the game. In Run & Jump, all the level
piece prefabs are located in Prefabs/LevelPieces:

We will create a script with a mission to save information about the level piece
prefabs, which includes the category. Inside the Tools/LevelCreator/Scripts
folder, create a script called PaletteItem.cs with the following code:

using UnityEngine;

namespace RunAndJump.LevelCreator {
 public class PaletteItem: MonoBehaviour {
 #if UNITY_EDITOR
 public enum Category {
 Misc,
 Colectables,
 Enemies,
 Blocks,
 }

 public Category category = Category.Misc;
 public string itemName = "" ;
 public Object inspectedScript;
 #endif
 }
}

Creating Editor Windows

[94]

Save the script, and then attach this script to each level piece prefab. By doing this,
each prefab will have the following properties:

•	 category: This is a value from the enum category that defines in which one
the level piece prefab will be displayed. The default category is Misc.

•	 itemName: This is the name associated to the level piece prefab.
•	 inspectedScript: This is a reference to the script that gives the main

behavior to the piece. This will be used to access the specific properties of the
level piece prefab later.

As these properties are only necessary in the Editor context, a preprocessor directive
using the symbol UNITY_EDITOR was added.

The final step here is to fill the fields of the properties in the inspector. As a reference,
use the following table:

Prefab Category Name Reference
EnemyYellowFace Enemies Angry

Blob
EnemyYellowFaceController.cs

HazardSpikes Blocks Spikes HazardSpikesController.cs

InteractiveCoin Colectables Coin InteractiveCoinController.cs

InteractiveGoalFlag Misc Goal Flag InteractiveGoalFlag.cs

InteractiveSign Misc Sign InteractiveSignController.cs

InteractiveTreasure Colectables Treasure InteractiveTreasureController.cs

Player Misc Timmy PlayerController.cs

SolidDirt Blocks Dirt BlockController.cs

SolidGrass Blocks Grass BlockController.cs

At the end, you will have something like this for each level piece prefab:

Chapter 4

[95]

Don't forget to attach the main script to the Inspected Script property!

Finding assets using the AssetDatabase class
To be able to get a reference to all the level pieces in the project, we will create a
utility method called GetAssetsWithScripts inside the EditorUtils class:

public static List<T> GetAssetsWithScript<T> (string path) where T :
MonoBehaviour {
 T tmp;
 string assetPath;
 GameObject asset;

Creating Editor Windows

[96]

 List<T> assetList = new List<T> ();
 string[] guids = AssetDatabase.FindAssets ("t:Prefab", new
string[] {path});
 for (int i = 0; i < guids.Length; i++) {
 assetPath = AssetDatabase.GUIDToAssetPath (guids [i]);
 asset = AssetDatabase.LoadAssetAtPath (assetPath,
typeof(GameObject)) as GameObject;
 tmp = asset.GetComponent<T> ();
 if (tmp != null) {
 assetList.Add (tmp);
 }
 }
 return assetList;
 }

Here, we use generics to maximize code reuse. Because of this, you must
add using System.Collections.Generic; to your EditorUtils
class. To know more about generics, visit https://msdn.microsoft.
com/en-us/library/512aeb7t.aspx.

This method receives a generic type and a path, and will search all the prefabs
relative to the path that has a script corresponding to the generic type attached.
The result is a list with all the script instances.

To achieve this, GetAssetsWithScript uses the AssetDatabase class, part from
the UnityEditor namespace. This class is used as an interface for accessing assets
and performing operations on assets.

The FindAssets method searches the asset database using a search filter string and
returns a list of GUID. Here, we look for all the assets with the type prefab, and as a
second parameter, we focus the search to one specific path (this method accepts an
array of paths if you need).

GUID is an acronym for global unique identifier. This is a number that
represents a unique identity for an entity.

With the GUIDs, we use two other methods to get a game object instance of each
prefab: GUIDToAssetPath and LoadAssetAtPath.

Finally, we check whether the game object has the script attached. If the answer is
yes, this will be added to the list and returned by the method.

https://msdn.microsoft.com/en-us/library/512aeb7t.aspx
https://msdn.microsoft.com/en-us/library/512aeb7t.aspx

Chapter 4

[97]

The AssetDatabase class is very useful class to deal with the asset
management in our project through code. To get more information, visit
http://docs.unity3d.com/ScriptReference/AssetDatabase.
html.

Implementing the GUI for the Palette
In this section, we will add our custom GUI and functionalities to the Palette
window.

Creating tabs
We want to use the category names as labels for a set of tabs in the Palette window.
When we select one of these tabs, only the level piece prefabs of the selected category
will be displayed.

We will create a method called GetListFromEnum. This will help us to easily list
enums for further use. Let's add this method inside the EditorUtils class:

public static List<T> GetListFromEnum<T> () {
 List<T> enumList = new List<T> ();
 System.Array enums = System.Enum.GetValues (typeof(T));
 foreach (T e in enums) {
 enumList.Add (e);
 }
 return enumList;
}

The method receives an enum type as a generic type and returns a list with all the
enum values in it.

Now, to create the GUI for the tabs, we need to make a few updates in the
PaletteWindow.cs script, as follows:

using UnityEngine;
using UnityEditor;
using System.Collections.Generic;

namespace RunAndJump.LevelCreator {
 public class PaletteWindow : EditorWindow {
 private List<PaletteItem.Category> _categories;
 private List<string> _categoryLabels;

http://docs.unity3d.com/ScriptReference/AssetDatabase.html
http://docs.unity3d.com/ScriptReference/AssetDatabase.html

Creating Editor Windows

[98]

 private PaletteItem.Category _categorySelected;

// Rest of the code…
}
}

Now, we initialize these variables in the OnEnable method:

 private void OnEnable() {
 if (_categories == null) {
 InitCategories ();
 }
}

private void InitCategories () {
 Debug.Log ("InitCategories called...");
 _categories = EditorUtils.GetListFromEnum<PaletteItem.Category> ();
 _categoryLabels = new List<string> ();
 foreach (PaletteItem.Category category in _categories) {
 _categoryLabels.Add (category.ToString ());
 }
}

Here, we get and save the categories using a string array; this will be used to set up
the labels of the tabs.

Create a new method called DrawTabs and add the following:

private void DrawTabs () {
 int index = (int)_categorySelected;
 index = GUILayout.Toolbar (index, _categoryLabels.ToArray ());
 _categorySelected = _categories [index];
 }

Here, we use the class GUI to render a toolbar. This GUI component is an array of
buttons; depending on the button you press, the number representing that button is
returned.

Now, let's add a reference of this method inside the OnGUI method:

private void OnGUI() {
 DrawTabs();
}

Chapter 4

[99]

Now, save and wait for Unity to compile. If the Palette window is open, close it.
Then, go to the Level Creator menu and click on Show Palette.

You will see the following:

You will see the tabs working, and each time you press a tab, the category is saved in
the variable _categorySelected.

Creating a scrollable area
In the space we are not using for the tabs, we will present all the available level piece
prefabs of the selected category. As the number of prefabs can be huge, we will
model this as a scrollable area.

Before we create the scrollable area, we need to define a few variables inside the
PaletteWindow class:

private string _path = "Assets/Prefabs/LevelPieces";
private List<PaletteItem> _items;
private Dictionary<PaletteItem.Category, List<PaletteItem>> _
categorizedItems;
private Dictionary<PaletteItem, Texture2D> _previews;
private Vector2 _scrollPosition;
private const float ButtonWidth = 80;
private const float ButtonHeight = 90;

The _path variable defines where the Palette window will search the level piece
prefabs. In this case, we will in Assets/Prefabs/LevelPieces.

Creating Editor Windows

[100]

We also created two dictionaries, which are as follows:

•	 _categorizedItems: This is where the keys are the category and the values
are lists of the PaletteItem class instances

•	 _previews: This is where the keys are the PaletteItem class and the value is
a Texture2D that represents the preview of the item

Again, all the initialization will occur inside the OnEnable method:

private void OnEnable () {
 // Debug.Log("OnEnable called...");
 if (_categories == null) {
 InitCategories ();
 }
 if (_categorizedItems == null) {
 InitContent ();
 }
}
private void InitContent () {
 Debug.Log ("InitContent called...");
 // Set the ScrollList
 _items = EditorUtils.GetAssetsWithScript<PaletteItem> (_path);
 _categorizedItems = new Dictionary<PaletteItem.Category,
List<PaletteItem>> ();
 _previews = new Dictionary<PaletteItem, Texture2D> ();
 // Init the Dictionary
 foreach (PaletteItem.Category category in _categories) {
 _categorizedItems.Add (category, new List<PaletteItem> ());
 }
 // Assign items to each category
 foreach (PaletteItem item in _items) {
 _categorizedItems [item.category].Add (item);
 }
}

To explain how to implement the scrollable area, we will use a top-down approach.
So, let's start by defining the method responsible for drawing this. Create a method
called DrawScroll and add the following code:

private void DrawScroll () {
 if (_categorizedItems [_categorySelected].Count == 0) {
 EditorGUILayout.HelpBox ("This category is empty!",
MessageType.Info);

Chapter 4

[101]

 return;
 }
 int rowCapacity =
 Mathf.FloorToInt (position.width / (ButtonWidth));
 _scrollPosition =
 GUILayout.BeginScrollView (_scrollPosition);
 int selectionGridIndex = -1;
 selectionGridIndex = GUILayout.SelectionGrid (
 selectionGridIndex,
 GetGUIContentsFromItems (),
 rowCapacity,
 GetGUIStyle ());
 GetSelectedItem (selectionGridIndex);
 GUILayout.EndScrollView ();
}

In this method, we first check whether the current category has level piece prefabs, if
isn't, a text This category is empty is displayed.

To render a grid of elements inside a scrollable area, we use the following methods:

•	 BeginScrollView and EndScrollView: These methods are used to define
the scrollable area

•	 SelectionGrid: This method is used to generate a grid of buttons

By default, the SelectionGrid method creates a group of buttons that behaves like
toggle buttons and the index (from 0 to n-1, where n is the total of elements) of the
button selected is returned. To avoid the toggle behavior, we always clean the index
returned. So, we save the result in the selectionGridIndex variable, but we always
set this to -1 before passing it again to the method.

We are going to use the class AssetPreview, part of the UnityEditor namespace, to
automatically create the previews of the level piece prefabs.

The GetAssetPreview method returns a Texture2D representing the preview of a
game object. This means that if the game object changes, its representation in the
Palette will change too.

Add a new method called GeneratePreviews with the following code:

private void GeneratePreviews () {
 foreach (PaletteItem item in _items) {
 if (!_previews.ContainsKey (item)) {
 Texture2D preview = AssetPreview.GetAssetPreview (item.
gameObject);

Creating Editor Windows

[102]

 if (preview != null) {
 _previews.Add (item, preview);
 }
 }
 }
}

This preceding code could be called in the OnEnable method; the problem appears
when you restart Unity. In this process, all the previews are generated in the Unity
editor and there is a huge probability that the previews won't be available when you
call the OnEnable method.

It's because of this that we will place the GeneratePreviews method inside the
Update method, checking constantly until we get the previews. The following is the
Update method:

private void Update () {
 if (_previews.Count != _items.Count) {
 GeneratePreviews ();
 }
 }

To get more information about the AssetPreview class, visit http://
docs.unity3d.com/ScriptReference/AssetPreview.html.

To define the elements of the SelectionGrid GUI, we created two auxiliary methods
in the PaletteWindow class. The first method is GetGUIContentsFromItems, as
shown in the following code:

private GUIContent[] GetGUIContentsFromItems () {
 List<GUIContent> guiContents = new List<GUIContent> ();
 if(_previews.Count == _items.Count) {
 int totalItems = _categorizedItems [_categorySelected].Count;
 for (int i = 0; i < totalItems; i ++) {
 GUIContent guiContent = new GUIContent ();
 guiContent.text = _categorizedItems [_categorySelected]
[i].itemName;
 guiContent.image = _previews [_categorizedItems [_
categorySelected] [i]];
 guiContents.Add (guiContent);
 }
 }
 return guiContents.ToArray ();
}

http://docs.unity3d.com/ScriptReference/AssetPreview.html
http://docs.unity3d.com/ScriptReference/AssetPreview.html

Chapter 4

[103]

We use a GUIContent object to create a button that have with the label and an image.
The data for the label comes from the PaletteItem class and the image from the
dictionary that we created in the OnEnable method.

This method takes care of including in the array only the GUIContent instances
related to the level pieces prefabs available in the current category.

The second auxiliary method is GetGUIStyle, as shown in the following code:

private GUIStyle GetGUIStyle () {
 GUIStyle guiStyle = new GUIStyle (GUI.skin.button);
 guiStyle.alignment = TextAnchor.LowerCenter;
 guiStyle.imagePosition = ImagePosition.ImageAbove;
 guiStyle.fixedWidth = ButtonWidth;
 guiStyle.fixedHeight = ButtonHeight;
 return guiStyle;
 }

We use an instance of the class GUIStyle parameter to change how the button looks
(we will talk more about this in Chapter 6, Changing the Look and Feel of the Editor with
GUI Styles and GUI Skins).

By default, a button will place the label and image, respectively, in a horizontal way.
Here, we change this to place the image over the label and also to centrally align the
text of that label.

Finally, in order to know which piece was selected in the Palette, we created
a method called GetSelectedItem that converts the index returned by the
SelectionGrid GUI component to a level piece:

private void GetSelectedItem (int index) {
 if (index != -1) {
 PaletteItem selectedItem =
 _categorizedItems [_categorySelected] [index];
 Debug.Log ("Selected Item is: " +
 selectedItem.itemName);
}

Now, the last thing to do is to add DrawScroll to the OnGUI method:

private void OnGUI() {
 DrawTabs();
 DrawScroll();
}

Creating Editor Windows

[104]

After saving and waiting for Unity to compile, go to the Level Creator menu and
click on Show Palette (if the Palette is open, close it and open it again):

Now, all the level pieces inside the path Assets/Prefabs/LevelPieces appear in
the Palette. You don't need to navigate across the project hierarchy to find them. If
you click on a tab, only the pieces of that category are displayed.

If you select a category without level pieces, you will see something like this:

Chapter 4

[105]

A text indicates that the category is empty. Now, if we change the category of all the
level pieces to Misc, we will see a crowd category, but the scroll area handles the
overflow adding a scrollbar to navigate:

We have the Palette window up and running. Now, we need to integrate this to
the rest of the Level Creator tool. In the final part of this chapter, we will work on
the integration of this editor window with the custom inspector we created in the
previous chapter.

Integrating the Palette with the Level
Creator tool
In this section, we will create an event that will be triggered every time you select a
piece in the Palette and captured by the Level inspector. This feature will be used in
the next chapter.

Creating an event
An event in C# is a way for a class to provide notifications when something happens
to an object.

In this case, we will add an event when the user selects one of the pieces from
the Palette. To achieve this, we we will add the following lines of code to the
PalleteWindow.cs script:

public delegate void itemSelectedDelegate (PaletteItem item,Texture2D
preview);
public static event itemSelectedDelegate ItemSelectedEvent;

Creating Editor Windows

[106]

The delegate type defines the signature for the method that handles the event. In
this case, itemSelectedDelegate receives a PaletteItem and a Texture2D with the
preview.

As a good practice, it is always recommended to check if the
even is, or is not, null.

Now, it is time to invoke the event. We will do this inside the GetSelectedItem
method:

private void GetSelectedItem (int index) {
 if (index != -1) {
 PaletteItem selectedItem =
 _categorizedItems [_categorySelected] [index];
 Debug.Log ("Selected Item is: " +
 selectedItem.itemName);

 if (ItemSelectedEvent != null) {
 ItemSelectedEvent (selectedItem, _previews [selectedItem]);
 }
 }
}

We are done here. Now, we need to subscribe to this event in the Level inspector
class.

Subscribing to an event
Now, we will subscribe to the event we created. This is done with the += and -=
operators, which are used to subscribe and unsubscribe respectively.

Before adding the events, we will create the variables and methods that we need to
make this work. The plan is to display the selected piece in the inspector. We will
add a variable to save the selected piece instance in the LevelInspector.cs script:

using UnityEngine;
using UnityEditor;

namespace RunAndJump.LevelCreator {
 [CustomEditor(typeof(Level))]

Chapter 4

[107]

 public class LevelInspector : Editor {

 private PaletteItem _itemSelected;
 private Texture2D _itemPreview;
 private LevelPiece _pieceSelected;

 // Rest of the code...
 }
}

We will create the method that we want to subscribe to the event called
UpdateCurrentPieceInstance:

private void UpdateCurrentPieceInstance(PaletteItem item, Texture2D
preview) {
 _itemSelected = item;
 _itemPreview = preview;
 _pieceSelected = (LevelPiece) item.GetComponent<LevelPiece>();
 Repaint();
}

When the event is triggered, the piece selected will be passed as a parameter and
saved in _pieceSelected. As we want to see a few changes in the inspector when
this happens, we also use the method Repaint to force the inspector to repaint.

To subscribe and unsubscribe from this event, we will use the OnEnable and
OnDisable methods respectively:

private void OnEnable () {
 _myTarget = (Level)target;
 InitLevel ();
 ResetResizeValues ();
 SubscribeEvents();
}

private void OnDisable () {
 UnsubscribeEvents();
}
private void SubscribeEvents() {
 PaletteWindow.ItemSelectedEvent += new PaletteWindow.itemSelectedD
elegate(UpdateCurrentPieceInstance);
}

private void UnsubscribeEvents() {

Creating Editor Windows

[108]

 PaletteWindow.ItemSelectedEvent -= new PaletteWindow.
itemSelectedDelegate(UpdateCurrentPieceInstance);
}

With this, we have all the necessary logic implemented. The last thing to
conclude is to see something in the inspector. For this, create a new method called
DrawPieceSelectedGUI:

private void DrawPieceSelectedGUI() {
 EditorGUILayout.LabelField("Piece Selected", EditorStyles.
boldLabel);
 if(_pieceSelected == null) {
 EditorGUILayout.HelpBox("No piece selected!", MessageType.
Info);
 } else {
 EditorGUILayout.BeginVertical("box");
 EditorGUILayout.LabelField(new GUIContent(_itemPreview),
GUILayout.Height(40));
 EditorGUILayout.LabelField(_itemSelected.itemName);
 EditorGUILayout.EndVertical();
 }
}

Now, add DrawPieceSelectedGUI to the OnInspectorGUI method:

public override void OnInspectorGUI () {
 // DrawDefaultInspector();
 DrawLevelDataGUI ();
 DrawLevelSizeGUI ();
 DrawPieceSelectedGUI();

 if (GUI.changed) {
 EditorUtility.SetDirty (_myTarget);
 }
 }

We are ready to do the final test. After saving and waiting for Unity to compile,
create a new level and display the Palette window using the Level Creator menu:

Now, you will see something like this:

Chapter 4

[109]

If you pay attention to the inspector, there is a new label that says No piece selected!,
as you can see in the following screenshot:

Creating Editor Windows

[110]

Select the category Misc, and then click on the Sign piece; the Inspector will be
listened the event, and now Piece Selected section shows the piece selected:

With this working, we are ready to implement, in the next chapter, the functionality
of adding pieces to the scene to start creating levels for Run & Jump. Good work!

Chapter 4

[111]

Summary
In this chapter, you learned about how to implement editor windows to create a new
way to interact with our tools.

The EditorWindow class is part of the UnityEditor namespace and it is necessary
to extend from that to create your own editor window. You must save your editor
window class inside an Editor folder to make it work.

A big challenge in the creation of the editor window is to define the approach to
create a GUI. You can use layouts if you use methods from EditorGUILayout and
GUILayout, or take care of the position of each component using a Rect approach,
which means using methods from EditorGUI and GUI. The best advice you can get
here is to not be afraid of jumping around all the different classes to create your GUI.

Using an editor window or an inspector will depend of your design. Remember, the
inspector was designed to expose parameters from a specific element. A window is
more generic and doesn't require an inspected element to work.

In the next chapter, we will continue working in the Level Creator tool, focusing on
the customization the Scene View. We will finally implement functionalities to start
adding content to the level.

[113]

Customizing the Scene View
Unity's component system and also the ability it offers to see the scene you are
building in real time makes it very easy to work with. The Scene View in Unity
provides the tools to interact with all the objects of the scene, and also offers the
ability to navigate between them just to check whether everything is place.

There are a few Editor classes that allow you to interact with the Scene View
through code, offering the ability to make customizations. Understanding how
to achieve these kinds of things is very important when you start creating more
interactive and complex tools for your video game projects.

Here we are going to learn how to customize the Scene View to make it suitable for
our Level Creator tool requirements, such as creating, editing, and deleting level
piece prefabs from the level scene.

In this chapter, we will cover the following topics:

•	 The OnSceneGUI message method
•	 Adding a GUI
•	 Events
•	 Handles
•	 Hiding flags

Customizing the Scene View

[114]

Overview
The Scene View is an editor window that allows you to look around your game scene
and manipulate its contents. The following screenshot illustrates the Scene View:

At this point you know that almost everything in Unity is customizable, and the
Scene View is no exception.

In this chapter, we will cover how to add GUI to the Scene View and change the
common behavior it has to make it work specifically for our Level Creator tool.

Defining the chapter goals
In this chapter we want to customize the Scene View to follow the workflow of the
Level Creator tool, this means the user is capable of viewing the level and adding,
deleting, and editing level piece prefabs.

The goals here are:

•	 Defining the Level Creator interaction modes
•	 Adding the necessary GUI to support the mode selection
•	 Capturing mouse events
•	 Implementing the functionality of each mode

Chapter 5

[115]

The final result that we will achieve looks like this:

As we mentioned in Chapter 2, Using Gizmos in the Scene View, we will
assume that the Level game object position and rotation are (0,0,0) and
the scale is (1,1,1) always. Also, 2D mode is selected by default. In this
chapter we are going to implement ways to keep these restrictions by
code, but until that happens, be sure you respect these in order to test
the rest of the code.
If you have problems with the code, remember always to create a
new level scene before testing the changes. This is because errors can
sometimes corrupt data at the stage we are currently at.

Customizing the Scene View

[116]

Defining the Editor modes
The Level Creator tool is going to have four different modes:

•	 View: You can move, orbit, or zoom around the level grid. This is just the
default behavior Unity has when you select the hand tool.

•	 Paint: By clicking or dragging the mouse on the level grid, you can add level
piece prefabs to it. The piece you will be "painting" in the level grid is the one
you selected on the Palette window.

•	 Edit: By clicking on a piece from the level grid you can access its properties
in the Level Inspector and make tweaks to it if necessary.

•	 Erase: By clicking or dragging the mouse on the level grid over existing
pieces, you can remove them.

In the LevelInspector class, we are going to add an enum to list these modes and
a variable to save the one that is currently active:

using UnityEngine;
using UnityEditor;

using System.Collections.Generic;

namespace RunAndJump.LevelCreator {
 [CustomEditor(typeof(Level))]
 public class LevelInspector : Editor {

 public enum Mode {
 View,
 Paint,
 Edit,
 Erase,
 }

 private Mode _selectedMode;
 private Mode _currentMode;

 // rest of the code
 }
}

By default, the selected mode will be the View mode.

Chapter 5

[117]

Later on in this chapter, we will take care of the implementation of these. For now
let's focus on how to switch between modes.

We added the line using System.Collections.Generic; to the
class because we are going to make use of generic collection types,
such as lists, later.

Customizing the Scene View
In this section we are going to take a look how to create a custom GUI in the Scene
View and change its default behavior.

Using the OnSeceneGUI message method
To start rendering a GUI in Scene View, we are going to make use of a message
method part of the Editor class, OnSeceneGUI.

In terms of GUI creation, we can make use of all the techniques we learned in the
previous chapters working with custom inspectors and editor windows. In this case,
we are going to use a toolbar component like the one used in the Palette window to
simulate the tabs.

To see how this works, we are going to create a toolbar attached to the left top corner
of the scene view. Each item of this toolbar will be one of the possible modes.

Let's add this method with the following code inside the LevelInspector class:

private void DrawModeGUI() {
 List<Mode> modes = EditorUtils.GetListFromEnum<Mode>();
 List<string> modeLabels = new List<string>();
 foreach(Mode mode in modes) {
 modeLabels.Add(mode.ToString());
 }

 Handles.BeginGUI();

 GUILayout.BeginArea(new Rect(10f, 10f, 360, 40f));
 _selectedMode = (Mode) GUILayout.Toolbar(
 (int) _currentMode,
 modeLabels.ToArray(),
 GUILayout.ExpandHeight(true));
 GUILayout.EndArea();

 Handles.EndGUI();

}

Customizing the Scene View

[118]

Then, let's add the OnSceneGUI method and call EditorModeGUI method from there:

private void OnSceneGUI() {
 DrawModeGUI();
}

OnSceneGUI is a method that handles the events from the Scene View. Here you can
add your custom GUI with the help of the class Handles. You must place your GUI
code between the methods BeginGUI and EndGUI (the ones highlighted) to see it
rendered in the Scene View.

We used the methods BeginArea and EndArea just to set the boundaries of the place
for the layout methods we are going to be using. If you don't do this, all the GUI
elements will be adjusted based on the Scene View size.

Save the changes and wait for Unity to compile. Now create a new level by going to
Tools | Level Creator | New Level Scene:

Select the Level game object and you will see the toolbar GUI in the top-left corner
of the Scene View:

Chapter 5

[119]

Something you may have noticed is that we aren't saving the value
returned by GUILayout.Toolbar in _currentMode; instead, we are
using a second variable called _selectedMode. We are going to use
these two variables to detect when the current mode changes.
For now, this makes it impossible to change the current selection of the
toolbar.

Playing with the Scene View tools
In the top part of the editor, you will find the Unity Toolbar, a set of controls related
to different parts of the Unity editor:

On the left are the Transform tools, which define how the interaction with the
different game objects inside the Scene View will be. They are shown in the
following screenshot:

Here you can choose, from left to right, whether you want to view, move, rotate, or
scale game objects or deal with 2D Rects.

For our purposes, we want to choose when the Transform Tools are or are not
activated based on the current Level Creator mode. For example, we don't want to
rotate a piece by accident when we are painting pieces on the level grid.

To do this, we are going to use the class Tool, part of the UnityEditor namespace,
to manipulate the activated tool in the Scene View.

Customizing the Scene View

[120]

Let's add this method with the following code inside the LevelInspector class:

private void ModeHandler () {
 switch (_selectedMode) {
 case Mode.Paint:
 case Mode.Edit:
 case Mode.Erase:
 Tools.current = Tool.None;
 break;
 case Mode.View:
 default:
 Tools.current = Tool.View;
 break;
 }
 // Detect Mode change
 if(_selectedMode != _currentMode) {
 _currentMode = _selectedMode;
 }
 // Force 2D Mode!
 SceneView.currentDrawingSceneView.in2DMode = true;
}

The variable current from the class Tools has the information about the current tool
selected in the editor. It is possible to overwrite its value using one of the available
options in the Tool enum. The possible values are:

•	 Move

•	 Rotate

•	 Scale

•	 Rect

•	 None

In the ModeHandler method we set Tool.View for when the Level Creator View
mode is selected; otherwise, Tool.None is defined.

Here we compare the variables _currentMode and _selectedMode to check for a
mode change; if this happens, we save the value in _currentMode . Later, we are
going to add a few other lines to complete the Level Creator tool.

At the end, we also force the view mode of the scene to 2D. You are going to notice
the 2D button is always pressed.

Chapter 5

[121]

Finally, call the EditorModeHandler function from inside the OnSceneGUI method:

private void OnSceneGUI() {
 DrawModeGUI();
 ModeHandler();
}

Save the changes and wait for Unity to compile. Now create a level, select the game
object, and then check Level Creator; the View mode is selected:

Independent of the Transform Tool selected on Unity, when the Level Creator View
mode is selected, the Transform Tool changes to the Unity View tool. In fact, if you
try to change the current Transform Tool manually, the code we created overwrites
your choice. If you try the same with the Paint, Edit or Erase Level Creator modes,
no Transform Tool is selected.

Controlling the focus over our game objects
By default, each time you click on a game object in the Scene View, this one will get
focused; if you click on the Scene View directly, the current game object will lose
focus.

In Level Creator, if you select a mode different from View, let's say Paint, clicking
in any part of the Scene View makes you lose focus of the level game object and the
GUI disappears (remember that the code for the Scene View GUI is on the custom
inspector script):

Customizing the Scene View

[122]

This happens because, when you use a Transform Tool different from Tool.View
(and this includes Tool.None), a click on the Scene View changes the focus of the
current game object selected. For the Paint, Edit and Erase Level Creator modes, we
need to use the mouse to do the interaction, and this means a lot of clicks here and
there. We need to find a way to keep the focus over the Level game object artificially.

Let's add this method with the following code inside the LevelInspector class:

private void EventHandler() {
 HandleUtility.AddDefaultControl(
 GUIUtility.GetControlID(FocusType.Passive));
}

Here we are using the class HandleUtility, part of the UnityEditor namespace.
With FocusType.Passive, we are setting the Scene View to a passive mode. This
means we need to take care of all the interactivity by our selfs instead of delegating
this to Unity.

Then call the EventHandler function from inside the OnSceneGUI method:

private void OnSceneGUI() {
 DrawModeGUI();
 ModeHandler();
 EventHandler();
}

Save the changes and wait for Unity to compile. If you repeat the same experiment,
you will notice you can't change the focus of the objects by making mouse clicks any
more.

Detecting Scene View events
Most of the interaction with Level Creator is going to be performed through the
mouse. In this section, will learn how to capture events in the Scene View.

Chapter 5

[123]

Getting the mouse position
The Event class, part of the UnityEngine namespace, allows you to handle user
inputs such as key presses or mouse actions.

Let's update the method EventHandler inside the LevelInspector class:

private void EventHandler() {
 HandleUtility.AddDefaultControl(
 GUIUtility.GetControlID(FocusType.Passive));

 Vector3 mousePosition = Event.current.mousePosition;
 Debug.LogFormat("MousePos: {0}", mousePosition);
}

The variable Event.current has the information about the current event that's being
processed in the Scene View.

From current, we are accessing the variable mousePosition to determine in which
X and Y positions, relative to the Scene View coordinate system, the cursor of the
mouse is found.

Save the changes and wait for Unity to compile. Now create a new level scene, select
the game object, and then move the mouse over the Scene View. In the console, you
will see the logs with the mouse position:

Customizing the Scene View

[124]

We need to associate the current mouse position with a cell in the grid; this means
we transform the mouse position to world coordinates and then to grid coordinates.
To achieve this, we will use the method WorldToGridCoordinates from the Level
class we implemented in Chapter 2, Using Gizmos in the Scene View. Let's update the
method EventHandler again:

private void EventHandler() {
 HandleUtility.AddDefaultControl(
 GUIUtility.GetControlID(FocusType.Passive));

 Camera camera =
 SceneView.currentDrawingSceneView.camera;

 Vector3 mousePosition = Event.current.mousePosition;

 //Debug.LogFormat("MousePos: {0}", mousePosition);
 Vector3 worldPos =
 camera.ScreenToWorldPoint(mousePosition);
 Vector3 gridPos =
 _myTarget.WorldToGridCoordinates(worldPos);
 int col = (int) gridPos.x;
 int row = (int) gridPos.y;

 Debug.LogFormat("GridPos {0},{1}", col, row);
}

The SceneView class is the one that defines the behavior of a Scene View window in
Unity. From this class, we used the property currentDrawingSceneView to access
the current Scene View instance and then to the camera that is rendering the scene
(this is not the same camera you use to render in the video game).

With the camera reference, we can use the methods ScreenToWorldPoint and
WorldToGridCoordinates to get column and row grid coordinates. Save the
changes and wait for Unity to compile. Now create a level, select the game object,
and then move the mouse over the bottom right cell in the grid:

Chapter 5

[125]

The coordinates of the bottom-left cell are different from the expected (0,0), this
happens because the method ScreenToWorldPoint assumes the bottom-left of the
screen is (0,0) but the Scene View has the origin in the top-left corner.

To solve this, we need to invert the Y-axis of the mouse position. Let's fix the method
EventHandler making an adjust in the variable mousePosition, after the line:

Vector3 mousePosition = Event.current.mousePosition;

Add the following line:

mousePosition = new Vector2(mousePosition.x, camera.pixelHeight -
mousePosition.y);

Try again; the grid coordinates work perfectly and now we are ready to deal with
mouse events.

Customizing the Scene View

[126]

Capturing mouse events
The next step is to capture the mouse events and trigger actions based on the current
Level Creator mode selected. Let's take a look at the following:

•	 The View mode is already resolved and Unity takes care of that behavior
(remember that this is the equivalent to selecting the View Transform Tool)

•	 The Paint and Erase modes will behave similarly to dragging a pen or an
eraser over a canvas respectively, so in this case we want to capture the
OnClick() and OnDrag() events

•	 The Edit mode requires selecting a piece to work, so in this case we want to
capture just the OnClick() event

First we will create three methods to handle the modes inside the LevelInspector
class:

private void Paint(int col, int row) {
 Debug.LogFormat("Painting {0},{1}", col, row);
}
private void Erase(int col, int row) {
 Debug.LogFormat("Erasing {0},{1}", col, row);
}
private void Edit(int col, int row) {
 Debug.LogFormat("Editing {0},{1}", col, row);
}

For each mode we will require the grid coordinates as a parameter, and for now,
we are going to print a log when any of them is used. Then we will update the
EventHandler class to support the mouse events each mode requires, adding the
following block of code at the end of this method:

 switch(_currentMode) {
 case Mode.Paint:
 if(Event.current.type == EventType.MouseDown ||
 Event.current.type == EventType.MouseDrag) {
 Paint(col, row);
 }
 break;
 case Mode.Edit:
 if(Event.current.type == EventType.MouseDown) {
 Edit(col, row);
 }

Chapter 5

[127]

 break;
 case Mode.Erase:
 if(Event.current.type == EventType.MouseDown ||
 Event.current.type == EventType.MouseDrag) {
 Erase(col, row);
 }
 break;
 case Mode.View:
 default:
 break;
 }

From Event.current, we are using the property type to find which kind of event
was triggered in the Scene View.

For each mode, we are comparing the variable current with the MouseDown or
MouseDrag event types. For more types of events, you can check the EventType
enum.

Save the changes and wait for Unity to compile. Now create a level, select the game
object, and then with the Paint mode selected, click and drag the mouse over the
Scene View. Let's take a look at the following screenshot:

You will see the log of the Paint method any time you click or drag the mouse.
The same happens with the Erase mode, and in the case of the Edit mode, this just
happens when you click.

Customizing the Scene View

[128]

At this point, we have most of the interactions ready. It's time to work in the features
that will make Level Creator capable of creating content. In the next section, we will
implement the Level Creator modes.

Implementing the Level Creator modes
Until this point, we have specified the four modes the Level Creator tool would
support and a way to switch between modes, thanks to the custom GUI we added in
the top-left corner of the Scene View.

In this section, we discuss how to implement each of them.

The View mode
When you select View on Level Creator, you can move or zoom around the level
grid.

In the method ModeHandler we defined, this mode will behave like the Unity View
Transform tool. Let's take a look at following screenshot:

By default, you will see the hand icon on this mode; by clicking and dragging, you
can move all the content in the Scene View.

Chapter 5

[129]

The Paint mode
We started implementing part of the workflow related to this mode in the
previous chapters. When this mode is selected, the user must select a piece from
the Palette window, and a reference to this selection will be saved in the variable
_pieceSelected in the LevelInspector class.

When the user starts clicking and dragging the mouse over the grid, a copy of the
level piece prefab will be added to the level. This will be the responsibility of the
Paint method.

Let's update that:

private void Paint(int col, int row) {
 // Check out of bounds and if we have a piece selected
 if(!_myTarget.IsInsideGridBounds(col,row) || _pieceSelected ==
 null) {
 return;
 }
 // Check if I need to destroy a previous piece
 if(_myTarget.Pieces[col + row * _myTarget.TotalColumns] != null)
 {
 DestroyImmediate(_myTarget.Pieces[col + row *
 _myTarget.TotalColumns].gameObject);
 }
 // Do paint !
 GameObject obj = PrefabUtility.InstantiatePrefab(
 _pieceSelected.gameObject) as GameObject;
 obj.transform.parent = _myTarget.transform;
 obj.name = string.Format("[{0},{1}][{2}]", col, row, obj.name);
 obj.transform.position = _myTarget.GridToWorldCoordinates(col,
 row);
 _myTarget.Pieces[col + row * _myTarget.TotalColumns] =
 obj.GetComponent<LevelPiece>();
}

In this method, we first check whether the coordinates for the column and row are
inside the grid and whether we have a level piece prefab selected from the Palette
window. Then, if the current cell on the grid has something, we destroy that piece
using the method DestroyImmediate.

Customizing the Scene View

[130]

Finally, we proceed to create a copy of the piece in the column and row grid
coordinates. To achieve this, we use the PrefabUtility class, part of the
UnityEditor namespace, and the method InstantiatePrefab. We are using this
class because we want to keep the prefab reference, so if in the future you update the
level piece prefabs, with an art change for example, this will be replicated in all the
levels.

It's time to test. Save the changes and wait for unity to compile. Create a new level,
and also in the Level Creator menu item, select Show Palette as shown in the
following screenshot:

In the Palette window, select the category Blocks and then select Grass. You will
have something like this:

Now, select the Paint mode and start clicking and dragging the mouse over the grid.
You are finally creating content with Level Creator!

Chapter 5

[131]

The Erase mode
We are human beings, so we need to accept that we are not perfect and it's because
of this that the Erase mode is necessary in the Level Creator tool. This will be the
responsibility of the Erase method inside the LevelInspector class.

 private void Erase(int col, int row) {
 // Check out of bounds
 if(!_myTarget.IsInsideGridBounds(col,row)) {
 return;
 }
 // Do Erase
 if(_myTarget.Pieces[col + row * _myTarget.TotalColumns] !=
 null) {
 DestroyImmediate(_myTarget.Pieces[col + row *
 _myTarget.TotalColumns].gameObject);
 }
 }

This method is very simple. We check whether the coordinates for the column and
row are inside the grid, and if the cell contains a piece, we remove that using the
DestroyImmediate method.

To test this, save the changes and wait for Unity to compile; then repeat the process
for testing the Paint method (but this time fill the whole grid with different pieces).

Customizing the Scene View

[132]

Now, select the Erase mode and start clicking and dragging the mouse over the grid.
You will start erasing pieces from the grid.

The Edit mode
In Run & Jump, there are a few pieces that receive parameters using the inspector. A
good example of this is the InteractiveSign piece shown here:

Chapter 5

[133]

The InteractiveSignController script, responsible for the logic for the Sign level
piece prefab, has a field called Message, a string that is displayed in the video game
as follows:

Right now, the way to customize these prefabs is by expanding the level game object
in the hierarchy window and finding the specific sign piece game object.

To make this process simpler, we will use the Edit mode. In this mode, when you
select one of the pieces of the level, the inspector of that level piece prefab is going
to be rendered inside the Level Inspector. This is another example of the flexibility
Unity offers to customize the editor to our needs.

Let's update the Edit method inside the LevelInspector class:

private PaletteItem _itemInspected;

 private void Edit(int col, int row) {
 // Check out of bounds
 if(!_myTarget.IsInsideGridBounds(col,row) ||
 _myTarget.Pieces[col + row * _myTarget.TotalColumns] ==
 null) {
 _itemInspected = null;
 } else {
 _itemInspected = _myTarget.Pieces[col + row *
 _myTarget.TotalColumns].GetComponent<PaletteItem>() as
 PaletteItem;
 }
 Repaint();
 }

Customizing the Scene View

[134]

We created a variable called _itemInspected to save a reference to the piece selected
in Edit mode. Then the Edit method took care of checking whether the column
and row are inside the grid and if the cell contains a piece. If this is true, the piece is
assigned to _itemInspected.

At the end, we added the method Repaint in order to force the Level Inspector
to repaint every time we use this method. So if we select a level piece prefab, the
inspector will be rendered automatically. We need to create a method responsible
for rendering this, so we create a new method called DrawInspectedItemGUI:

private void DrawInspectedItemGUI() {
 // Only show this GUI if we are in edit mode.
 if(_currentMode != Mode.Edit) {
 return;
 }

 //EditorGUILayout.LabelField ("Piece Edited", _titleStyle);
 EditorGUILayout.LabelField ("Piece Edited",
 EditorStyles.boldLabel);

 if(_itemInspected != null) {
 EditorGUILayout.BeginVertical("box");
 EditorGUILayout.LabelField("Name: " + _itemInspected.name);
 Editor.CreateEditor(
 _itemInspected.inspectedScript).OnInspectorGUI();
 EditorGUILayout.EndVertical();
 } else {
 EditorGUILayout.HelpBox("No piece to edit!",
 MessageType.Info);
 }
}

In the previous chapter, we associated a PaletteItem.cs script with each level
piece on the project. One of the fields of this script is called inspectedScript; it is
basically the reference to the main script of each level piece prefab. For example, in
the case of InteractiveSign, this is the InteractiveSignController script.

The most important thing here is the usage of the method CreateEditor from
the class Editor. This creates a custom editor for the target object you pass as a
parameter. Then we access to the method OnInspectorGUI of that target object.
This opens the possibility of rendering an inspector in any part of Unity.

Chapter 5

[135]

Now we need to call the DrawInspectedItemGUI function from the method
OnInspectorGUI of the LevelInspector class:

public override void OnInspectorGUI () {
 // DrawDefaultInspector();
 DrawLevelDataGUI ();
 DrawLevelSizeGUI ();
 DrawPieceSelectedGUI ();
 DrawInspectedItemGUI ();
 if (GUI.changed) {
 EditorUtility.SetDirty (_myTarget);
 }
}

Finally, update the ModeHandler method in order to repaint the inspector every time
we change the mode in the Level Creator tool:

private void ModeHandler () {
 switch (_selectedMode) {
 case Mode.Paint:
 case Mode.Edit:
 case Mode.Erase:
 Tools.current = Tool.None;
 break;
 case Mode.View:
 default:
 Tools.current = Tool.View;
 break;
 }

 if(_selectedMode != _currentMode) {
 _currentMode = _selectedMode;
 _itemInspected = null;
 Repaint();
 }
 // Force 2D Mode!
 SceneView.currentDrawingSceneView.in2DMode = true;
}

To test this, save the changes and wait for Unity to compile, then repeat the process
you did for testing the Paint method but now add at least one Sign.

Customizing the Scene View

[136]

Now, select the Edit mode and click on the Sign level piece prefab. You will see this
on the bottom of the Level Inspector:

The sign piece inspector is being rendered inside the Level Inspector; now, with one
click you have access to the custom options for the piece.

Using the Handles class
In this section, we are going to extend the capabilities to the Edit mode, allowing the
user to also reallocate the position of the pieces in the grid. To achieve this, we will
use the class Handles.

In Unity, a handle is a 3D control you use to manipulate items in the Scene View.
The Handles class allows you to use several built-in handle GUIs, such as the tools to
position, scale, and rotate an object via the Transform component. Let's take a look at
the following screenshot:

Chapter 5

[137]

The Handles class is also used to add the GUI to the Scene View. We did that at
the beginning of the chapter using the methods BeginGUI and EndGUI.

Let's make the necessary changes to make this work. Let's add this code snippet
defining two variables to the LevelInspector class to save the original position
of the piece:

private int _originalPosX;
private int _originalPosY;

Then we will create a new method called Move:

private void Move() {
 Vector3 gridPoint =
 _myTarget.WorldToGridCoordinates
 (_itemInspected.transform.position);
 int col = (int) gridPoint.x;
 int row = (int) gridPoint.y;

 if(col == _originalPosX && row == _originalPosY) {
 return;
 }

 if(!_myTarget.IsInsideGridBounds(col,row) ||
 _myTarget.Pieces[col + row * _myTarget.TotalColumns] != null) {
 _itemInspected.transform.position =
 _myTarget.GridToWorldCoordinates(_originalPosX,
 _originalPosY);
 } else {
 _myTarget.Pieces[_originalPosX + _originalPosY *
 _myTarget.TotalColumns] = null;
 _myTarget.Pieces[col + row * _myTarget.TotalColumns] =
 _itemInspected.GetComponent<LevelPiece>();
 _myTarget.Pieces[col + row *
 _myTarget.TotalColumns].transform.position =
 _myTarget.GridToWorldCoordinates(col,row);
 }
}

This method will check whether the final position of the piece is different from
the original one, and if it is, it will check whether the new position is empty.
If the movement is not possible, the piece is returned to the original position.

Customizing the Scene View

[138]

It's time to add a handle. We are going to update the method EventHandler. Inside
the switch statement, replace the content of the Edit case with this:

case Mode.Edit:
 if(Event.current.type == EventType.MouseDown) {
 Edit(col , row);
 _originalPosX = col;
 _originalPosY = row;
 }
 if(Event.current.type == EventType.MouseUp ||
 Event.current.type == EventType.Ignore) {
 if(_itemInspected != null) {
 Move ();
 }
 }

 if(_itemInspected != null) {
 _itemInspected.transform.position =
 Handles.FreeMoveHandle(
 _itemInspected.transform.position,
 _itemInspected.transform.rotation,
 Level.GridSize / 2 ,
 Level.GridSize / 2 * Vector3.one,
 Handles.RectangleCap);
 }
 break;

Now when Edit mode is activated, if the user makes a click we will proceed as usual
but will also save the position of that click (the original position of a piece if there is a
piece there).

If the user releases the mouse button during the movement, the method Move will
perform the logic to reallocate the piece in the level. We added the event Ignore to
capture the situation of the mouse outside the Scene View.

Chapter 5

[139]

To perform the movement, all the work is delegated to the handle. We used the
method FreeMoveHandle to do this. This method receives as parameters the position,
rotation, size of the handle (in this case, the grid size), a vector with the size to snap,
and a method to use for drawing the handle. The result will be a square around the
piece and the new position.

Save the changes and wait for Unity to compile, create a new level, and paint several
pieces on it; then, click on Edit and start moving these pieces. Let's take a look at the
following screenshot:

The Handle class is a very useful class for manipulating content in the
Scene View. To learn more about it, visit http://docs.unity3d.
com/ScriptReference/Handles.html.

http://docs.unity3d.com/ScriptReference/Handles.html
http://docs.unity3d.com/ScriptReference/Handles.html

Customizing the Scene View

[140]

Adding the final details to Level Creator
The Level Creator is almost ready, but before finishing this chapter, let's make a few
improvements to make this tool better.

Using hiding flags
Currently, each time we paint pieces on the level, they are created and nested in
the level game object. We are still able to access the objects directly; this means it is
possible to move a piece by error outside the grid. Let's take a look at the following
screenshot:

To control the visibility of the level pieces in the hierarchy, we are going to use
HidingFlags, bit masks that control object destruction, saving, and visibility in
inspectors. Here is a list of available flags that could be applied to Unity objects:

•	 None: A normal and visible object. This is the default.
•	 HideInHierarchy: It does not appear in the hierarchy.

Chapter 5

[141]

•	 HideInInspector: It is not visible in the inspector.
•	 DontSaveInEditor: It is not saved to the scene in the editor.
•	 NotEditable: It is not editable in the inspector.
•	 DontUnloadUnusedAsset: It is not unloaded by Resources.

UnloadUnusedAssets.
•	 DontSaveInBuild: It is not saved when a player is built.
•	 DontSave: It is not saved to the scene. It will not be destroyed when a new

scene is loaded. It is a shortcut for HideFlags.DontSaveInBuild | HideFlags.
DontSaveInEditor | HideFlags.DontUnloadUnusedAsset.

•	 HideAndDontSave: It is a combination of not shown in the hierarchy, not
saved to scenes, and not unloaded by the object; it will not be unloaded by
Resources.UnloadUnusedAssets.

In our case, the flag we want to use is HideInHierarchy. To use it, we will update
the Paint method as follows:

private void Paint(int col, int row) {
 // Check out of bounds and if we have a piece selected
 if(!_myTarget.IsInsideGridBounds(col,row) || _pieceSelected ==
 null) {
 return;
 }
 // Check if I need to destroy a previous piece
 if(_myTarget.Pieces[col + row * _myTarget.TotalColumns] != null)
 {
 DestroyImmediate(_myTarget.Pieces[col + row *
 _myTarget.TotalColumns].gameObject);
 }
 // Do paint !
 GameObject obj = PrefabUtility.InstantiatePrefab(
 _pieceSelected.gameObject) as GameObject;
 obj.transform.parent = _myTarget.transform;
 obj.name = string.Format("[{0},{1}][{2}]", col, row, obj.name);
 obj.transform.position = _myTarget.GridToWorldCoordinates(col,
 row);
 obj.hideFlags = HideFlags.HideInHierarchy;
 _myTarget.Pieces[col + row * _myTarget.TotalColumns] =
 obj.GetComponent<LevelPiece>();
}

Each time we generate a new prefab instance of a level piece, we will set up the
HidingFlags to HideInHierarchy.

Customizing the Scene View

[142]

Save the changes and wait for Unity to compile; then, create a new level and start
painting pieces on the grid. Take a look at the hierarchy; it doesn't matter how many
pieces we added to the level. These are not accessible unless we use the Level Creator
modes to interact with them. Take a look at the following screenshot:

With this improvement, we are making users follow the workflow of the Level
Creator tool and avoiding possible corruption of the level.

Finally, one of the important restrictions to make Level Creator work is to avoid
making changes in its transform property.

It's hard to assume the users of the Level Creator tool are going to keep this without
making changes. So, instead of giving them this responsibility, we are going to
implement this restriction through code using a hiding Flag.

Add the following line of code inside the InitLevel method:

_myTarget.transform.hideFlags = HideFlags.NotEditable;

Chapter 5

[143]

Save and check the inspector of the Level:

Summary
In this chapter, we learned about how to add a GUI to the Scene View and change its
common behavior.

The Scene View is an editor window that allows you to preview and interact with
your scene. You can add a custom GUI using the methods BeginGUI and EndGUI
from the Handles class.

The Handles class is also useful to help us to manipulate game objects in the scene,
creating specific GUI that allows modification of the transform of these objects.

We also learned to use the HidingFlags, allowing us to manipulate the visibility
of our game objects in the Editor and also to control whether they are going to be
saved to disk or not. This becomes handy when you need extra control to make your
custom tools.

You can capture events in the Scene View using the Event class, and can use that
input to trigger your custom methods.

We now have all the GUI and workflow implemented for our Level Creator. In the
next chapter, we will pay attention to the look and feel of our tool.

[145]

Changing the Look and Feel
of the Editor with GUI Styles

and GUI Skins
When we talk about the look and feel of a GUI, we refer to how colors, shapes,
layout, and typefaces are used in an application, which is the "look", and how
buttons, menus, and other components behave in the application, which is the "feel".

Defining a good look and feel will help an application to have its own character,
make a good first impression, and in some cases improve its usability.

In Unity we can modify how our editor GUI components look, and in certain cases
we can even modify how they behave using the classes GUIStyle and GUISkin in
our custom tools.

Here, you will learn how to modify the look of the editor GUI and how to apply this
in the Level Creator tool.

In this chapter, we will cover the following topics:

•	 Creating and using instances of the class GUIStyle
•	 Creating and using instances of the class GUISkin
•	 Understanding the difference between GUIStyle and GUISkin

Changing the Look and Feel of the Editor with GUI Styles and GUI Skins

[146]

Overview
The GUIStyle and GUISkin classes allow us to modify the look and feel of our GUI
components.

These classes were originally used to customize the GUI of a video game developed
in previous versions of Unity. After 4.6, and with the inclusion of a better UI system,
their use refocused to helping with the customization of the Editor GUI. These two
classes give the developers enough flexibility to make their tools look "professional"
and have their own identity.

Defining the chapter goals
In this chapter, we will use the GUIStyle and GUISkin classes to modify the look and
feel of the Level Creator tool.

The goals here are:

•	 Modifying the look and feel of the Level custom inspector to make clear the
different sections it has

•	 Modifying the look and feel of the Palette window to make the top buttons
(toolbar) look more like tabs

The final result will look like this:

Chapter 6

[147]

Changing the look and feel of the Level
Creator tool
In this section, we will modify the current look and feel of our tool.

Using GUIStyles in our GUI components
The GUIStyle class is part of the UnityEditor namespace, and is used to define
the style of a single GUI control, such as a button, a label, or a text area. Most of
the methods used to create these GUI components accept an optional GUIStyle
parameter to override their default style.

Let's check the current look of the level inspector:

Changing the Look and Feel of the Editor with GUI Styles and GUI Skins

[148]

We divided the inspector into four sections, and each one has a title. In the previous
chapters, we used something like this to make the text of these labels look different:

EditorGUILayout.LabelField("MyTitle", EditorStyles.boldLabel);

We made all the title texts look bold using the class EditorStyles.

The class EditorStyles contain these GUIStyle instances commonly used by Unity
to style their GUI components. Here, we have a huge number of styles available that
respect the native Unity look and feel.

If you want to check more about the EditorStyles class, visit:
http://docs.unity3d.com/ScriptReference/EditorStyles.
html.

The titles are OK but we want to make something better, so we will create our own
custom GUIStyle instance.

Let's add a new member variable inside the LevelInspector class:

private GUIStyle _titleStyle;

Then, let's create a new method called InitStyles and copy the following code:

private void InitStyles() {
 _titleStyle = new GUIStyle();
 _titleStyle.alignment = TextAnchor.MiddleCenter;
 _titleStyle.fontSize = 16;
}

Here, we created a new GUIStyle instance called _titleStyle and defined its
alignment and font size. With that done, the only thing we need to do is call the
InitStyles method inside the method OnEnable, like this:

private void OnEnable () {
 //Debug.Log ("OnEnable was called...");
 _myTarget = (Level)target;
 InitLevel ();
 ResetResizeValues ();
 SubscribeEvents();
 InitStyles();
}

Now, replace all the EditorStyles.boldLabel instances with the _titleStyle
variable. For example, in the method DrawLevelDataGUI, you will find something
like this:

EditorGUILayout.LabelField ("Data", EditorStyles.boldLabel);

http://docs.unity3d.com/ScriptReference/EditorStyles.html
http://docs.unity3d.com/ScriptReference/EditorStyles.html

Chapter 6

[149]

The idea is to update the line to something like this:

EditorGUILayout.LabelField ("Data", _titleStyle);

If you check the Level custom inspector, you will notice the change in the title's look
and feel:

When you work with the GUIStyle instances, you will also use resources such as
textures and fonts to improve the look and feel of your GUI components. To learn how
to do this, grab the Color_Bg.png and Oswald-Regular.ttf files from the book content
and add them to a folder called Resources inside Tools/LevelCreator/Editor:

Changing the Look and Feel of the Editor with GUI Styles and GUI Skins

[150]

Remember, every time you want to use a texture in an editor GUI context, you must
change the attribute Texture Type to Editor GUI and Legacy GUI on the inspector
associated to it:

Let's update the method InitStyles:

private void InitStyles() {
 _titleStyle = new GUIStyle();
 _titleStyle.alignment = TextAnchor.MiddleCenter;
 _titleStyle.fontSize = 16;

Texture2D titleBg = (Texture2D)
 Resources.Load("Color_Bg");
 Font titleFont = (Font)
 Resources.Load("Oswald-Regular");
 _titleStyle.normal.background = titleBg;
 _titleStyle.normal.textColor = Color.white;
 _titleStyle.font = titleFont;

}

Because the texture and the font are inside a folder called Resources, we can just use
the Resources.Load method to get their reference.

We assign the texture as a background for the label; to have access to this property,
we write _titleStyle.normal.background = titleBg.

Chapter 6

[151]

In this case, normal is a GUIStyleState, a class that has specialized values for a
given state. These values are the background and text color.

There are several GUIStyleState class types, but we will talk more about these later.
Because the GUI component for which we are trying to modify the look and feel is a
label, the only valid one is normal.

Save and check the changes. Now, the different sections in this inspector are clearly
defined:

Now, you have the idea about how to work with the GUIStyle class. In the next
section, we will continue modifying the look and feel of the Level Creator tool
focusing on the Palette window.

Changing the Look and Feel of the Editor with GUI Styles and GUI Skins

[152]

Working with the GUIStyleState instances
Before coding, let's take a look at how the Palette window looks:

The current GUI is ok, but there is a room for improvement. The original idea for
the Palette window was to map categories to tabs. When the user selects a tab, the
content associated to that category is displayed.

Here we will make the top buttons, created using the GUILayout.Toolbar method,
look like tabs.

For each tab, we will have three different states. The first state is normal, where the
tab is not selected. The next state is hover, where the cursor is over the tab. The last
state is selected, where the tab is selected; this means the category associated to this
tab is displayed in the scrollable area.

For each state, we will need a texture. So, grab from the book contents the
Tab_Normal.png and Tab_Selected.png files and copy them inside of the
Tools\LevelCreator\Editor\Resources folder.

The following image shows the different textures:

Chapter 6

[153]

Now, we will repeat the process we did for the labels in the level inspector class, but
for the Palette window. In the PaletteWindow class, add a new member variable:

private GUIStyle _tabStyle;

Then create a new method called InitStyles and copy the following code:

private void InitStyles() {

 _tabStyle = new GUIStyle();
 _tabStyle.alignment = TextAnchor.MiddleCenter;
 _tabStyle.fontSize = 16;

}

Add this method at the end of the OnEnable method. Until this point it is similar to
what we did with the Level custom inspector.

To work with the different states that the buttons on the toolbar can have, we will
make use of the GUIStyleState instances inside the GUIStyle. The following list
contains the available ones:

•	 normal: This renders settings for when the component is displayed normally
•	 hover: This renders settings for when the mouse hovers over the control
•	 active: This renders settings for when the control is pressed down
•	 onNormal: This renders settings for when the control is turned on
•	 onHover: This renders settings for when the control is turned on and the

mouse hovers over it
•	 onActive: This renders settings for when the element is turned on and

pressed down
•	 focused: This renders settings for when the element has a keyboard focus
•	 onFocused: This renders settings for when the element has a keyboard focus

and is turned on

In this case, the normal state of a tab will be represented by the normal
GUIStyleState, and the selected state will be represented by a combination of
onNormal and onFocused GUIStyleState instances.

Changing the Look and Feel of the Editor with GUI Styles and GUI Skins

[154]

Let's update the InitStyles method:

private void InitStyles() {

 _tabStyle = new GUIStyle();
 _tabStyle.alignment = TextAnchor.MiddleCenter;
 _tabStyle.fontSize = 16;

 Texture2D tabNormal = (Texture2D)
 Resources.Load("Tab_Normal");
 Texture2D tabSelected = (Texture2D)
 Resources.Load("Tab_Selected");
 Font tabFont = (Font) Resources.Load("Oswald-Regular");
 _tabStyle.font = tabFont;
 _tabStyle.fixedHeight = 40;
 _tabStyle.normal.background = tabNormal;
 _tabStyle.normal.textColor = Color.grey;

 _tabStyle.onNormal.background = tabSelected;
 _tabStyle.onNormal.textColor = Color.black;

 _tabStyle.onFocused.background = tabSelected;
 _tabStyle.onFocused.textColor = Color.black;
 }

Now it is time to update the method in charge of rendering the toolbar in order to
use the new GUIStyle method we created. Update the method DrawTabs to look like
this:

private void DrawTabs () {
 int index = (int)_categorySelected;
 EditorGUILayout.Space();
 index = GUILayout.Toolbar (index, _categoryLabels.ToArray
 (), _tabStyle);
 _categorySelected = _categories [index];
 }

Save and wait for Unity to compile the changes. Then, open the Palette window; you
will see something like this:

Chapter 6

[155]

Now the buttons look more like tabs, however, the texture of the tabs is not
displayed properly because it is stretched. This is because Unity stretches the texture
to fill the area occupied by the GUI component by default. To solve this problem, we
need to add an extra line of code at the end of the InitStyles method:

_tabStyle.border = new RectOffset(18, 18, 20, 4);

With this, we defined a border for the textures that we are using for the tabs, this
means all the content that corresponds to the margins (left, right, top, and bottom,
respectively) won't be stretched, only the center will be.

Now, if you take a look again to the Palette window, you will see that the textures
used for the tabs look good:

Changing the Look and Feel of the Editor with GUI Styles and GUI Skins

[156]

Changing the look and feel using a
simpler approach
In this section, we will cover a new approach to customizing the look and feel of our
custom tools using the GUISkin asset.

Creating a GUISkin asset
The way we modified the look and feel of the Level Creator tool wasn't complicated,
but it requires time and a considerable effort in terms of making modifications in the
code and seeing the results we expect. The good news is that there is an alternative
approach to achieving the same result using the GUISkin assets.

In Unity, a GUISkin asset is a collection of the GUIStyle instances that can be used
in our custom GUI, and it is intended to allow you to apply style to an entire GUI
instead of a single component by itself.

The GUISkin class is part of the UnityEngine namespace and extends from the
ScriptableObject class. We are going to talk more about Scriptable Objects in
Chapter 7, Saving Data in a Persistent Way with Scriptable Objects.

Because of the nature of the GUISkin, which required to be created as an asset, you
can create a specific kind of look and feel and reuse it across several projects. If you
had experience working with web development, you can imagine a GUISkin asset
to be like a css file.

Let's create a new GUISkin. Go to the project browser and navigate to Tools |
LevelCreator | Editor | Resources, then navigate to Create | GUI Skin, as shown
in the following screenshot:

Chapter 6

[157]

This creates a GUISkin asset in the folder Resources. Change the name of this asset to
LevelCreatorSkin.

Changing the Look and Feel of the Editor with GUI Styles and GUI Skins

[158]

If you select the LevelCreatorSkin asset, you will notice that it generates its own
inspector. This means that it is easier to modify the values of the GUISkin asset
because you don't need to deal with different attributes using code, as shown in the
following screenshot:

In the preceding image, you can see that there is a GUIStyle property for all the GUI
components we used. For example, if you expand the property with the name Label,
you will see most of the properties that we modified at the beginning of the chapter
to customize the titles of the level inspector:

Chapter 6

[159]

To give a shoot to this approach, we will refactor the code we created in the
LevelInspector class.

Integrating and using a GUISkin
Go to the class LevelInspector and update the method InitStyles to match the
following:

private void InitStyles() {
 GUISkin skin = (GUISkin) Resources.
Load("LevelCreatorSkin");
 _titleStyle = skin.label;
 }

Changing the Look and Feel of the Editor with GUI Styles and GUI Skins

[160]

Remember to check whether you have your GUISkin asset in a
Resources folder!

Here, we load the LevelCreatorSkin asset and then assign the GUIStyle label to the
_titleStyle variable.

If you check the custom inspector of the level class, you will notice that all the
changes we made at the beginning have disappeared (well, we removed almost all
the code, what did you expect?).

Don't worry; we will fix everything in less than a minute. Select the
LevelCreatorSkin asset and expand the property Label. Then, assign the font
Oswald-Regular and set the size to 16 and the alignment to Middle Center:

Chapter 6

[161]

Finally, go to the property Normal and assign the texture Color_Bg to Background
and a white color to Text Color:

Now, save and that's it! You just achieved the same result that we did at the
beginning in the inspector using less code and less time. As an exercise, try to do the
same with the Palette window:

The good thing about this approach is that because the GUISkin asset exposes
all the properties, it is easier to discover and test new configurations in terms
of look and feel.

Changing the Look and Feel of the Editor with GUI Styles and GUI Skins

[162]

Summary
In this chapter, you learned how to customize the look and feel of our custom tools
using GUIStyle and GUISkin instances.

For a specific item, it is good to use a GUIStyle instance to modify how a GUI
component is rendered, but if you want something more scalable and less tight
to your code, a GUISkin will be a better option.

With this chapter, we have finished our Level Creator Tool and now we are ready
to move to other challenges related to improving the development workflow of
Run & Jump.

In the next chapter, we are going to explore the use of Scriptable Objects.

[163]

Saving Data in a Persistent
Way with Scriptable Objects

When you are in the final stage of the implementation of features for your video
game, the next step is usually polishing and tweaking, investing most of the time to
finding those special values that make your video game awesome and unique.

It is annoying when you find those values in your video game and suddenly you
realize you were in Play mode. At this point, you have two options; you can either
write down all these values, sometimes they are a lot, or start over.

In Unity, there is a special type of class called Scriptable Object, which is mainly
used as a data container. One of its characteristics, if is used correctly, is the ability
to save the changes you make to the scene during the Play mode.

You will learn how to create and use Scriptable Objects in Unity and use them to
contain gameplay parameters from a level in Run & Jump.

The main topics that will be covered in this chapter are:

•	 Creating the Scriptable Object
•	 Saving and consuming data from a Scriptable Object

Overview
A Scriptable Object is a Unity special object type that doesn't need to be attached to
a game object on a scene to exist, because it can be saved as an asset in the project.
This class is used as a base for most of the special editor classes that we saw in
the previous chapters, such as the Editor and EditorWindow class. However, the
principal use for that in this chapter is to going to be saving data in a persistent way.

Saving Data in a Persistent Way with Scriptable Objects

[164]

In some scenarios, this has benefits over using XML, JSON, or plain text files because
Unity will handle all the serializing and parsing for you without the necessity of a
custom parser or third-party tool.

When you create tools for game designers, you may want to allow them to
experiment with values that affect how the video game behaves.

In this chapter, you will learn how to use Scriptable Objects to store data and make it
persist in the Play mode.

Defining the chapter goals
In this chapter, we will use Scriptable Objects to allow game designers to tweak level
settings in real time. In this case, we will focus on the gravity of the level but the
bgm and background of the level will also be included to make this implementation
complete.

The goal here are:

•	 Implementing a level settings class using Scriptable Objects
•	 Creating an asset based on the level settings class
•	 Integrating the Scriptable Object to the Level class

Preparing the environment
Before we start playing with Scriptable Objects, we are going to play with the gravity
of a custom level an see what happens.

Updatable gravity in levels
Right now, if you want to adjust the gravity of a level you must to make the changes
before pressing the Play button in order to see results.

The Level class has a method called SetGravity, which is responsible for taking the
value of the gravity property and applying it to the Physics 2D settings in Unity. You
don't need to take care about how this is implemented. The only thing we must to
do is to integrate this in the custom inspector we created for the Level class, so each
time the gravity value changes, the SetGravity method will take care of the rest.

Chapter 7

[165]

Let's update the LevelInspector class to achieve this. At the end of the
DrawLevelDataGUI method, add the following line of code:

_myTarget.SetGravity();

This method checks the value of the gravity and updates this if necessary. Pretty simple!

Playing with gravity
Using the Level Creator tool, we will try to replicate the following level:

We will use this level for testing purposes in this chapter, so save the scene inside the
Levels folder with the name Test_level.

Press the Play button and start playing the level. If you decrease the gravity value,
Timmy, the player character, will be able to jump higher. If you increase the gravity
value, the opposite will happen.

Saving Data in a Persistent Way with Scriptable Objects

[166]

Adjust the gravity until you can jump the central platform with a single jump, and
then exit the play mode:

After exiting the play mode, the gravity returns to the original value. In video games
where a lot of variables need to be tweaked and tested, the ability of keeping the
changes of play mode allows the game designers to go across this task quickly.

Implementing a Scriptable Object
In this section, we will create a ScriptableObject class and then reallocate the
gravity, bgm, and background variables there.

Creating the data class
The ScriptableObject class is part of the UnityEngine namespace. You derive
from this class if you want to create objects that don't need to be attached to a game
object, but more often, if you are looking for objects meant to save data.

Let's create a script called LevelSettings.cs inside the folder Scripts/Levels and
add the following code:

using UnityEngine;
using System;

namespace RunAndJump {

 [Serializable]
 public class LevelSettings : ScriptableObject {

 public float gravity = -30;

Chapter 7

[167]

 public AudioClip bgm;
 public Sprite background;
 }
}

The first step was to make the class extend from the ScriptableObject class. Then,
we added the public variables to represent each variable we want to save in this
class.

We added the namespace System to use the attribute Serializable. Using this
attribute, we tell Unity to serialize all the public properties of the class. This is very
important in order to make them persist!

If you want to know more about the scriptable objects, visit: http://
docs.unity3d.com/ScriptReference/ScriptableObject.html.

Generating an asset to contain the data class
All the instance of a scriptable object are saved in Unity as assets; this means you can
reference this asset in any script you want, in the same way you use materials, for
example.

To generate these instances, we will create a method in the EditorUtils class called
CreateAsset:

public static T CreateAsset<T>(string path)
 where T : ScriptableObject {
 T dataClass = (T) ScriptableObject.CreateInstance<T>();
 AssetDatabase.CreateAsset(dataClass, path);
 AssetDatabase.Refresh();
 AssetDatabase.SaveAssets();
 return dataClass;
}

This method receives a generic type, which must to be a Scriptable Object, and a
path. With those values, the method will create an asset in the specified path using
the T class.

The CreateAsset method uses the AssetDatabase class apart from the
UnityEditor namespace. The method CreateAsset does the main part, then
the Refresh method makes the new asset visible in the project, and finally, the
SaveAssets method saves the new created asset in the project.

http://docs.unity3d.com/ScriptReference/ScriptableObject.html
http://docs.unity3d.com/ScriptReference/ScriptableObject.html

Saving Data in a Persistent Way with Scriptable Objects

[168]

Now, it is time to make this method available in Unity, so let's create a new menu
item by adding a new method in the class MenuItems:

[MenuItem ("Tools/Level Creator/New Level Settings")]
 private static void NewLevelSettings () {
 string path = EditorUtility.SaveFilePanelInProject(
 "New Level Settings",
 "LevelSettings",
 "asset",
 "Define the name for the LevelSettings asset");
 if(path != "") {
 EditorUtils.CreateAsset<LevelSettings>(path);
 }
 }

Before using the method we created in the EditorUtils class, we call the
SaveFilePanelInProject method from the EditorUtility class. This will show a
window asking for the name and location for the asset we want to create.

Using the path returned by the SaveFilePanelInProject method, we proceed to
create the asset.

We add an If statement to check whether the path is different from an empty
string; this happens if the user clicks on Cancel on the window created by the
SaveFilePanelInProject method.

Save and wait for Unity to compile. Then, go to the Unity menu and navigate to
Tools | Level Creator | New Level Settings:

Now, you will see the Save File dialog. Create a new folder called LevelSettings in
the root of the project. Inside this, create a new asset called Normal.asset, as shown
in the following screenshot:

Chapter 7

[169]

Repeat the process and create an extra asset called Moon.asset. Your project browser
will look as follows:

Saving Data in a Persistent Way with Scriptable Objects

[170]

The two assets inside the LevelSettings folder represent instances of the
LevelSetting class we created.

Each asset is like a configuration file that will be referenced by a MonoBehaviour
class. In this case, the gravity, bgm, and background will be used and referenced by
the Level class.

As this is a reference, if we modify the asset, all the levels using the specific one will
be affected. This didn't happen at the beginning because these properties were inside
the Level class. At this point, you may think that these assets are a perfect way
to create themes for the levels, for example, all the easy levels will have the same
gravity, bgm, and backgrounds.

If you click on the Moon asset, this will appear in the inspector window:

Here, you can directly change the values of the asset, and like the usual inspectors
for our MonoBehaviour class, you can use property drawers or decorator drawers, or
create a custom inspector for your scriptable object.

In the rest of the chapter, we will integrate this to the levels in Run & Jump.

If you remember the chapter about custom inspectors and editor
windows, we talked about the OnEnable, OnDisable and OnDestroy
message methods.
These methods are part of the ScriptableObject class. The Editor and
EditorWindow classes extend from the ScriptableObject class and that is
why you have access to them.

Chapter 7

[171]

Integrating the Scriptable Object with the
level
In this section, we will integrate the LevelSetting class with our levels and then test
how Scriptable Objects allow us to modify values in the play mode.

Updating the Level and the LevelInspector
class
The first change to be made is to update the Level class. So, instead of using the
current variables for the gravity, bgm, and background, start using a LevelSetting
class as a reference.

Let's make a small update in Level.cs file. Add the following lines to it:

[SerializeField]
 private LevelSettings _settings;

 public LevelSettings Settings {
 get { return _settings; }
 set { _settings = value; }
 }

We need to take care of the render of this new property.

We will update the DrawLevelDataGUI method in the LevelInspector class:

private void DrawLevelDataGUI () {
 EditorGUILayout.LabelField ("Data", _titleStyle);
 EditorGUILayout.BeginVertical ("box");
 EditorGUILayout.PropertyField (_serializedTotalTime);
 _myTarget.Settings = (LevelSettings) EditorGUILayout.
 ObjectField("Level Settings", _myTarget.Settings,
 typeof(LevelSettings), false);
 if(_myTarget.Settings != null) {
 Editor.CreateEditor(_myTarget.Settings).OnInspectorGUI();
 } else {
 EditorGUILayout.HelpBox("You must attach a LevelSettings
 asset!", MessageType.Warning);
 }
 EditorGUILayout.EndVertical ();
 _myTarget.SetGravity();
 }

Saving Data in a Persistent Way with Scriptable Objects

[172]

We removed all the lines related to rendering the GUI for the gravity, bgm, and
background fields and used the same approach that we used in Chapter 5, Customizing
the Scene View, to render the inspector of the LevelSettings Scriptable Object.

Now, back in the Level class, we will modify the C# properties of the gravity, bgm,
and background variables in order to use the LevelSettings instance:

public float Gravity {
 get { return ((_settings != null) ? _settings.gravity : 0); }
 set {
 if(_settings != null) {
 _settings.gravity = value;
 }
 }
 }

 public AudioClip Bgm {
 get { return (_settings != null) ? _settings.bgm : null; }
 set {
 if(_settings != null) {
 _settings.bgm = value;
 }
 }
 }

 public Sprite Background {
 get { return (_settings != null) ? _settings.background : null;
}
 set {
 if(_settings != null) {
 _settings.background = value;
 }
 }
 }

Finally, comment the following lines of code (we don't need these anymore):

 // [SerializeField]
 // private float _gravity = -30;
 // [SerializeField]
 // private AudioClip _bgm;
 // [SerializeField]
 // private Sprite _background;

These updates will keep the change we did transparent for the rest of the Run & Jump
implementation.

Chapter 7

[173]

Save and wait for Unity to compile. Then, select a level scene; you will see a new
field in the level custom inspector:

Now, drag Moon.asset to the Settings field. As soon this is done, you will see the
Gravity field appear in the custom inspector with the Bgm and Background fields:

Perfect! Now that we have successfully integrated the scriptable object in our level, it
is time to start tweaking the gravity!

Saving Data in a Persistent Way with Scriptable Objects

[174]

Tweaking the level settings in the play mode
Open the level we created at the beginning, Test_level, and attach the Moon asset to
the Settings field. Now, click on the Play button.

If you select the View tab, you can start playing the game. Press the spacebar to jump
and use the arrows to move Timmy around the level:

This level has seven platforms. Adjust the gravity to make Timmy reach the first four
platforms from left to right using a single jump.

This is a simplified scenario of what tweak gameplay variables can be, but you
should get the idea and also extend this to other possible situations.

As soon as you reach the right value, stop the game. You will see that the new
gravity value remains.

Now, based on the level settings you use, your level can be easy, hard, or impossible
to beat, and by that I mean you will not be able to finish the level. The good thing is,
you have the basic tools to make the necessary tweaks to avoid impossible levels.

Chapter 7

[175]

Summary
Scriptable Objects are not the most used feature of Unity but are useful it is good to
keep them in the solution sets approaches for our video game.

They are used as assets, which are only meant to store data, but can also be used
to help serialize objects and can be instantiated in our scenes. In some scenarios,
they are also an alternative to XML, JSON, or plain text files to define configuration
parameters.

Based on what we did in this chapter, with a Scriptable Object approach, it is now
possible to keep changes you make to settings values while your game is running in
play mode, easily swap between different sets of settings values, and allowing the
separation of logic and data.

In the next chapter, we are going to work improving the asset import pipeline.

[177]

Controlling the
Import Pipeline Using

AssetPostprocessor Scripts
If you have a growing video game project and your artists or other team members
constantly drop assets in Unity, there is no doubt you have experienced the problem
of having to manage the import settings on all of those assets.

Most of the time, importing assets is subject to errors, as somebody in the team
often forgets to set the right parameters for them. Due to these kind of situations,
automating the import pipeline of our video game project is important.

Fortunately, Unity has a feature called AssetPostprocessor, which allows us to hook
actions prior to or after importing an asset.

You will learn how to get your own AssetPostprocessor classes up and running to
customize and integrate assets directly into the Run & Jump video game project.

In this chapter, we will cover the following topics:

•	 Using the AssetPostprocessor API
•	 DLL creation

Controlling the Import Pipeline Using AssetPostprocessor Scripts

[178]

Overview
The AssetPostprocessor is a class meant to help us to automate the process of
applying specific configurations to the assets imported.

Is up to you how you define the criteria for applying or not a specific configuration,
for example you can use a system based on the location of the imported asset or
detecting keywords in the asset name to do several things such as adding scripts to
objects, adding colliders to objects, or changing settings to textures.

In order to guarantee the availability of the AssetPostprocessor scripts you are
going to implement, it is good practice to use a DLL to group them and use the
DLL inside the Editor folder in your target video game project. If you don't use a
DLL and something in the project fails to compile, your assets are not going to be
configured as you was planned.

Defining the chapter goals
In this chapter, we will create a DLL using the AssetPostprocessor class to control
the import pipeline of the background and level pieces images in Run & Jump.

The goals here are:

•	 Implementing the AssetPostprocessor class to format images
•	 Creating a new DLL with the AssetPostprocessor classes inside it and

integrating the DLL with Run & Jump.

Using the AssetPostprocessor class
The AssetPostprocessor class is part of the UnityEditor namespace, and must be
extended for any class intended to control the asset import pipeline. This class has
several message methods to react when an asset is imported.

To start with, we will create a folder in the Run & Jump project called
ImportPipeline. Place this folder inside the Tools folder.

Chapter 8

[179]

Inside the ImportPipeline folder add an Editor folder and then create a script
called TexturePipeline.cs. Add the following code:

using UnityEngine;
using UnityEditor;
namespace RunAndJump.ImportPipeline {
 public class TexturePipeline : AssetPostprocessor {

 private void OnPreprocessTexture () {
 Debug.LogFormat("OnPreprocessTexture, The path is {0}",
 assetPath);
 }

 private void OnPostprocessTexture (Texture2D texture) {
 Debug.LogFormat("OnPostprocessTexture, The path is {0}",
 assetPath);
 }
 }
}

Controlling the Import Pipeline Using AssetPostprocessor Scripts

[180]

Since the TexturePipeline class needs to know when an asset is added to the
project, we will extend from the AssetPostprocessor, a class that will trigger
several events when an asset is imported to the project depending on whether
the asset is a 3D model, an audio, or a texture. In this example, our focus is to
detect when a texture is imported, so we will add two methods. The first one is
OnPreprocessTexture, which triggers before the importing process initiates. This is
the perfect place to add the code related to configuring the settings of the imported
asset. The second one is called the OnPostprocessTexture method. This method
is similar to OnPreprocessTexture, except this one isn't called until the asset is
imported. The final asset is passed as a parameter on this method, and this is a
good place to do something with it such as generating a new prefab using this asset,
reallocating the asset in a specific folder, and so on.

As you can see in the code, we are just printing logs using the assetPath variable.
This contains the pathname of the asset being imported.

To test this, pick from the book contents an image, Bg_OrangeSky.png for example,
and drop that into the root of the project. You will see a couple of logs in the console,
as follows:

Our class works and captures the changes when a texture is added to the project.
Using this as a base, we can make something more interesting to improve our import
pipeline.

To become familiar with all the available methods from the
AssetPostprocessor class, visit http://docs.unity3d.com/
ScriptReference/AssetPostprocessor.html.

http://docs.unity3d.com/ScriptReference/AssetPostprocessor.html
http://docs.unity3d.com/ScriptReference/AssetPostprocessor.html

Chapter 8

[181]

Improving the import pipeline
It is possible to change the default settings Unity applies for all the assets added
to the project and also, depending on your creativity and the pipeline you want to
build, you can use different import settings for the asset based on filename, location,
and so on.

Overwriting the background and level piece
assets settings
Do you remember the asset we dropped into the project to test the script we created
in the last section? Let's check its properties in the inspector:

When you create a new project and select the option 2D or 3D, it tells
Unity how to deal with the assets imported, in this case, for example,
the project uses 2D so all the images are imported as Sprites instead of
textures.

Controlling the Import Pipeline Using AssetPostprocessor Scripts

[182]

One thing that all projects should have is a file naming and folder structure
convention; it makes things more organized and is really important if you have other
people working with you. If a texture is dropped in Assets/Art/Bg, we are going to
assume the texture is a background for the video game.

To satisfy our requirements, we will set up three things:

•	 Texture Type: This must be a Sprite, and should be independent if the
project is configured as a 2D or 3D project.

•	 Generate Mip Maps: These are not necessary. Disabling them will reduce the
file size of the texture or sprite.

•	 Pivot: This is required to have the pivot on the bottom-left corner.

Open the TexturePipeline class and create a new method called PreprocessBg
with the following code:

private void PreprocessBg () {
 TextureImporter importer = assetImporter as TextureImporter;
 importer.textureType = TextureImporterType.Sprite;
 TextureImporterSettings texSettings = new
 TextureImporterSettings();
 importer.ReadTextureSettings(texSettings);
 texSettings.spriteAlignment = (int) SpriteAlignment.BottomLeft;
 texSettings.mipmapEnabled = false;
 importer.SetTextureSettings(texSettings);
}

The assetImporter variable is part of the AssetPostprocessor class and gives
us access to the properties of the asset we are importing. As we are dealing with
textures, we must cast the assetImporter variable to a TextureImporter (in other
scenarios, you may like to use the AudioImporter or ModelImporter parameter for
audio or 3D models respectively).

Using an instance of the TextureImporterSettings class, we can access the settings
of this asset and make the modifications we want.

The most important thing to always keep in mind is to start with the method
ReadTextureSettings and finish with the method SetTextureSettings in order to
avoid unexpected results. Basically, with this we take the current configuration of the
asset and make the changes over it.

Chapter 8

[183]

Now, let's call this method inside the OnPreprocessTexture method by adding a
rule based on the path of the asset:

private void OnPreprocessTexture () {
Debug.LogFormat("OnPreprocessTexture, The path is {0}",
assetPath);
 if (assetPath.StartsWith ("Assets/Art/Bg")) {
 PreprocessBg ();
 }
}

Remove the Bg_OrangeSky.png asset we originally added and add it again to the
project, but this time, ensure that you drop the asset inside the Assets/Art/Bg folder
and check the properties.

Controlling the Import Pipeline Using AssetPostprocessor Scripts

[184]

We changed the default settings based on our video game project requirements.
Now, we will repeat the same procedure, but for the art used by the level piece
prefabs:

private void PreprocessLevelPieces() {
 TextureImporter importer = assetImporter as TextureImporter;
 importer.textureType = TextureImporterType.Sprite;
 TextureImporterSettings texSettings = new TextureImporterSettings();
 importer.ReadTextureSettings(texSettings);
 texSettings.spriteAlignment = (int) SpriteAlignment.Center;
 texSettings.mipmapEnabled = false;
 importer.SetTextureSettings(texSettings);
}

This is pretty similar to the settings we used for the backgrounds. The only difference
is that we keep the pivot of the image in the center.

Now, add the PreprocessLevelPieces method inside the OnPreprocessTexture
method as follows:

private void OnPreprocessTexture () {
Debug.LogFormat("OnPreprocessTexture, The path is {0}",
assetPath);
if(assetPath.StartsWith("Assets/Art/Bg")) {
 PreprocessBg();
 } else if(
 assetPath.StartsWith("Assets/Art/Platformer")) {
 PreprocessLevelPieces();
 }
}

With this approach, we don't need to worry about the settings of the art assets
anymore.

Using a DLL file for the
AssetPostprocessors
If you have your video game in a production pipeline, you must consider placing all
your AssetPostprocessors in a prebuilt DLL file in the project instead of in scripts.
This is because when you have a compile error in one of the project scripts, it will
lead to assets being imported differently.

The DLL approach helps us to ensure that they can always be executed even if the
scripts of our project have compile errors.

Chapter 8

[185]

In this section, you will learn how to create a DLL file in MonoDevelop using the
scripts we created in the previous sections.

Creating and setting up a DLL project
DLLs are Dynamic Link Libraries; this means that they're linked to your program at
runtime instead of compile time.

Usually we create new scripts from Unity, but in this case we will interact directly
with MonoDevelop. Run the application, and create a new solution by navigating to
File | New | Solution from the menu bar. This opens the following window:

Here, select C# in the left column and then the Library option from the center
column. Name this project ImportPipeline and then click on the OK button. A new
script called MyClass.cs is created. For our purposes just remove that file.

To access the Unity API from the DLL, we must import the UnityEngine and
UnityEditor assemblies into the project references. These assemblies, or DLLs, are
inside the Unity application folder.

In MonoDevelop, go to the menu bar and navigate to Project | Edit References.
This will open a new window with several tabs. Select .Net Assembly to access a file
explorer interface.

Controlling the Import Pipeline Using AssetPostprocessor Scripts

[186]

Depending on the operating system you are using, the DLLs we are looking for will
be located in Applications/Unity/Unity.app/Content/Framework/Managed, if
you are using OSX or in Program Files\Unity\Editor\Data\Managed if you are
using Windows.

Take into consideration that your project will use specific DLLs based
on the version of Unity you have. This is important if you want to reuse
your DLLs in other video game projects.

Let's take a look at the following screenshot:

Click on the UnityEditor.dll and UnityEngine.dll assemblies to add the references,
and then click on the OK button.

You are almost ready. The last thing to do is to verify the current Target Framework
of this solution. Go to the menu bar and navigate to Project | ImportPipeline
options (this changes depending on the name of the project):

Chapter 8

[187]

In the Project Options window, on the right-hand side, navigate to Build | General
and then check whether Target Framework is set to Mono / .NET 4.0.

Finally, click on the OK button.

Controlling the Import Pipeline Using AssetPostprocessor Scripts

[188]

From the MonoDevelop menu bar, navigate to View | Visual Design. This will open
a side bar with the solution structure in the main window. Now, a right-click on the
ImportPipeline project and navigate to Add | Add Files…, as follows:

Look for the script TexturePipeline.cs, the one we created in Run & Jump. You
will now see the following dialog:

Chapter 8

[189]

Select Move the file to the directory and then click on OK. The script will appear in
your DLL project now:

Integrating the DLL file to the main project
Now, to build the DLL file, check whether the Release option is selected in the
top-left corner of MonoDevelop.

By default, there are two types of configurations: Debug and
Release. The first type includes debug information in the compiled
files (allowing easy debugging) while the second type usually has
optimizations enabled.

Then, go to the MonoDevelop menu bar and navigate to Build | Build
ImportPipeline (this changes depending on the name of the project).

Controlling the Import Pipeline Using AssetPostprocessor Scripts

[190]

Once the solution is built, navigate to ImportPipeline/bin/Release, where the
ImportPipeline.dll file was created:

This DLL is the file that we need to add to our Unity video game project. Open the
Run & Jump project and copy and paste the ImportPipeline.dll file inside the
Tools/ImportPipeline/Editor.

Chapter 8

[191]

Adding the DLL file inside the Editor folder will make it available only for the
editor context. You can check this by looking at the Inspector window when you
select the DLL file, as shown in the following screenshot:

Now our import pipeline is ready!

Controlling the Import Pipeline Using AssetPostprocessor Scripts

[192]

Summary
In this chapter, you learned how to use the AssetPostprocessor in your projects,
allowing you to control what is happening every time you drop an asset into your
project.

The main idea behind using these classes is to deal with asset settings, which are
very important to keep your project up and running without problems.

We did a very basic example in this chapter but the main idea remains, and it is up to
you to make simple or complex things using the AssetPostprocessor to satisfy the
requirements of your team and your project.

In the next chapter we are going to continue automating things now in the build
pipeline.

[193]

Improving the Build Pipeline
Creating builds of your video game in Unity is easy, you just have to select the
platform you want to target and then press a button. However, if you want to add
some ad hoc features to your project necessities, you can customize this process.

We will experiment with upgrades to the build pipeline covering the basics, so you
can use this as a starting point for your own projects later.

In this chapter, we will cover the following topics:

•	 Using Git
•	 The BuildPipeline class
•	 EditorPrefs
•	 Executing external scripts
•	 Using AppBlade

Overview
Nowadays, the life cycle of a video game project requires constants updates. In the
past, as soon the video game was released, there was no scope for improvising or
fixing bugs, but now developers have the opportunity to improve the game play or
fix bugs by making new releases.

Before having a release candidate, it is important to create and share builds of the
video game as it allows team members and testers to give you feedback on different
topics that will affect the quality of the final result.

You may notice that the build creation process is something that repeats over and
over, so it is natural to think of ways to automate this.

Improving the Build Pipeline

[194]

Defining the chapter goals
In this chapter, we will cover a few possible improvements for a build pipeline,
enabling the reader to extrapolate and adapt all that they have learned to their
own project.

The goals here are as follows:

•	 Allowing direct creation of builds
•	 Using external scripts to enhance the pipeline capabilities
•	 Integrating AppBlade for the distribution of mobile platform builds

Preparing the environment
We need to create a few folders to keep our development organized. Inside the
Tools folder, create a new folder called AppBuilder, and then match the folder
structure, as shown in the following screenshot:

Automating the BuildPipeline class
The Build Pipeline varies depending on the project, but the core remains the same.
You execute a few tasks before you create a build (or several ones), and then you do
something with them.

Chapter 9

[195]

We will start with the basics, generating a build using editor scripting and then
creating several ones for different platforms with just one click.

Adjusting the player settings
Usually, before creating a build in Unity, you navigate to File | Build Settings… and
click on Player Settings in the window that appears:

This will display all the properties that you can set for your build in the Inspector
window, such as Company name, Application name, version, and so on:

Improving the Build Pipeline

[196]

We can access and set all these parameters using the PlayerSettings class, which is
part of the UnityEditor namespace.

Create a new script called BuildSettings.cs inside Tools/AppBuilder/Editor
and copy the following code into the script:

using UnityEditor;

namespace AppBuilder {
 public class BuildSettings {

 public static void UpdateSettings () {
 // General
 PlayerSettings.companyName = "Packtpub";
 PlayerSettings.productName = "Run And Jump";
 PlayerSettings.bundleVersion = "1.0";

 // Android
 PlayerSettings.bundleIdentifier = "com.
 packtpub.runandjump";
 }
 }
}

Here, we just modified a few properties, but you get the idea.

Using the BuildPipeline class
The BuildPipeline class is part of the UnityEditor namespace and lets you
programmatically make video games builds or Asset Bundles.

For the goal we want to achieve, we will use the method called BuildPlayer. Using
this method is equivalent to pressing the button Build in the Build Settings window:

Chapter 9

[197]

This method receives the following parameters:

•	 levels: This is an array of scenes to be included in the build
•	 locationPathName: This is the path where the application will be built
•	 target: This is the platform for the build we want to create
•	 options: These are additional build options, such as whether to run the built

player

Regarding the target parameter, there are so many platforms you can deploy with
Unity and their number grows every time with each new version available.

The following table shows the platforms supported in Unity 5.x:

Mobile Desktop Console Web
iOS
Android
Windows Phone
8
BlackBerry 10
Tizen

Windows
Windows Store
Apps
Mac
Linux/Steam
OS

PS3
PS4
PSVita
Xbox 360
Xbox One
Wii U

Web Player
Web GL

With all these alternatives, it is tempting to launch our game across multiple
platforms to increase our number of users. Having access to the BuildPlayer
method allows us to automate the creation of all these builds. Let's start coding!

Create a script called Builder.cs inside the folder Tools/AppBuilder/Editor and
add the following code:

using UnityEngine;
using UnityEditor;
using System.Collections.Generic;

namespace AppBuilder {
 public class Builder {

 private static string[] GetEnabledScenes () {
 List<string> scenes = new List<string>();
 foreach (EditorBuildSettingsScene s in
 EditorBuildSettings.scenes) {
 if (s.enabled) {
 scenes.Add(s.path);
 }

Improving the Build Pipeline

[198]

 }
 return scenes.ToArray();
 }
 }
}

The first thing to solve is what Unity scenes are going to be in the build. For
this, we write the method GetEnabledScenes, which looks for all the enabled
scenes that appear in the Build Settings window using the UnityEditor class
EditorBuildSettings. This returns an array with strings, where each string is the
path of a scene.

Then, in order to keep everything organized, we will create a folder to save all the
builds we make.

Add the following code inside the Builder class:

private static string buildFolderPath = Application.dataPath +
"/../Build";

public static void CreateBuildFolder () {
 if (System.IO.Directory.Exists (buildFolderPath)) {
 System.IO.Directory.Delete (buildFolderPath, true);
 }
 System.IO.Directory.CreateDirectory (buildFolderPath);
}

Here, we defined a variable and a new method. The class Application, which is part
of the UnityEngine namespace, contains static methods for looking up information
about our application, that is, our video game project. The method dataPath
contains the absolute path of the Assets folder of the Unity project. So, in this case, a
folder with the name Build that is located at the same level as the Assets folder will
be the container of the builds.

The method CreateBuildFolder does exactly this, creates a new folder based in the
variable buildFolderPath. Every time we make a build, this folder will be deleted
and created again.

If you want to use this code as a base for your own projects, you can
make improvements such as deleting only the builds you want to
rebuild instead of deleting all of them. However, for now, let's keep
that behavior.

Chapter 9

[199]

Time to use the BuildPipeline class. Add the following block of code inside the
Builder class:

public static void Build(BuildTarget target, string buildName) {
 BuildSettings.UpdateSettings();
 string[] scenes = GetEnabledScenes();
 string buildFullPath;

 buildFullPath = buildFolderPath + "/" + target + "/" +
 buildName;
 BuildPipeline.BuildPlayer (scenes, buildFullPath, target,
 BuildOptions.None);
}

Here we have a method called Build that receives an array of the BuildTarget, an
enum that defines which platform we need, and the name of the build. Inside this
method, we make use of the BuildPlayer parameter.

The core is ready. So, we will now call this method from an editor window.

Creating an editor window and learning about
EditorPrefs to persist data
Basically, here we are creating a tool that helps control the BuildPipeline class.
For interacting with this tool, we will use an editor window. We will render a list of
checkboxes, each representing a target platform.

Inside Tools/AppBuilder/Editor, create a new script called SettingsWindow.cs,
and copy the following code:

using UnityEngine;
using UnityEditor;
using System.Collections.Generic;

namespace AppBuilder {
 public class SettingsWindow : EditorWindow {

 private Dictionary<BuildTarget, string> _targets;
 private const string Prefix = "AppBuilder_";

 public static SettingsWindow instance;

 public static void ShowSettings () {
 instance = (SettingsWindow)EditorWindow.GetWindow
 (typeof(SettingsWindow));

Improving the Build Pipeline

[200]

 instance.titleContent = new GUIContent ("AppBuilder");
 }

 private void OnEnable() {
 InitTargets();
 }

 private void InitTargets() {
 _targets = new Dictionary<BuildTarget, string>();
 _targets.Add(BuildTarget.StandaloneWindows, "Windows");
 _targets.Add(BuildTarget.StandaloneLinux, "Linux");
 _targets.Add(BuildTarget.StandaloneOSXIntel, "MacOS");
 _targets.Add(BuildTarget.Android, "Android");
 }
 }
}

We added a method called ShowSettings to display the editor window and also an
OnEnable event. This last one calls a method that creates a dictionary with all the
BuildTarget enums we want to use for the AppBuilder paired with a string with a
"friendly" name for the platform.

To deal with the checkboxes, that is toggle, we will use the following two methods:

private void DrawPlatformToggle(BuildTarget target, string label)
{
// We try to make a unique key for this EditorPref variable
 string key = Prefix + target.ToString();
// We define false the default value of the EditorPref if this is
not defined
 bool currentValue = EditorPrefs.GetBool(key, false);
 EditorPrefs.SetBool(key, GUILayout.Toggle(currentValue, label));
}

private bool GetPlatformToggleValue(BuildTarget target) {
 string key = Prefix + target.ToString();
 return EditorPrefs.GetBool(key, false);
}

The DrawPlatformToggle() method wraps the method Toggle from the GUILayout
class to render checkboxes, but there are a few more interesting things there.

Chapter 9

[201]

When you create an editor window, you can make changes to the exposed variables
using GUI components, such as a FoatField variable or, in this case, a Toggle.
These changes will remain until you close the editor window. So, in order to make
them persist, you have two options:

•	 Scriptable Object: This is created in case you want to make changes to a part
of the project

•	 EditorPrefs: This is used in case you want to make changes to the
environment of each developer

On MacOS, the EditorPrefs values are stored in ~/Library/
Preferences/com.unity3d.UnityEditor.plist. On Windows,
the EditorPrefs values are stored in the registry under the HKCU\
Software\Unity Technologies\UnityEditor key.

An EditorPref value requires the creation of a key (just a unique string name to
identify the variable we want to set or get) and then you can use that key to set or
save the following types:

•	 Int
•	 Float
•	 Bool
•	 Strings

In our case, we use this with a Bool to represent the state of the toggle, using the
methods GetBool() and SetBool() (you can expect the same kind of naming
convention for the rest of the types).

Finally, the method GetPlatformToggleValue() will help us to get that value back
and use it in the final part of this editor window — the button that generates all the
builds we checked.

Let's add the rest of the code to the class SettingsWindow:

private void OnGUI () {
 DrawPlatformsGUI();
 DrawButtonsGUI();
}

private void DrawPlatformsGUI() {
 EditorGUILayout.LabelField("Platforms", EditorStyles.boldLabel);
 EditorGUILayout.BeginVertical("box");

Improving the Build Pipeline

[202]

 foreach(KeyValuePair<BuildTarget, string> entry in _targets) {
 DrawPlatformToggle(entry.Key, entry.Value);
 }
 EditorGUILayout.EndVertical();
}

private void DrawButtonsGUI() {
 if(GUILayout.Button("Build",GUILayout.Height(40))) {
 StartBuildProcess();
 }
}

private void StartBuildProcess() {
 Builder.CreateBuildFolder();
// We iterate over the toggle values to check what to build
 foreach(KeyValuePair<BuildTarget, string> entry in _targets) {
 if(GetPlatformToggleValue(entry.Key)) {
 Builder.Build(entry.Key, "build");
 }
 }
 EditorUtility.DisplayDialog ("AppBuilder", "Build process has
 finished!", "Ok");
}

This part must be familiar to you based on what we did in Chapter 4, Creating Editor
Windows. Here, we added the GUI to the editor window and called the methods from
the Builder class to make the builds.

The last thing to do is to make a menu item display in this window. Create a script
called MenuItems.cs inside the folder Tools/AppBuilder/Editor and add the
following code:

using UnityEditor;

namespace AppBuilder {
 public class MenuItems {

 [MenuItem ("Tools/AppBuilder/Show Settings")]
 private static void ShowSettings () {
 SettingsWindow.ShowSettings();
 }
 }
}

Chapter 9

[203]

Save and wait for Unity to compile. Then, in the Unity menu, navigate to Tools
| AppBuilder | Show Settings:

This will display the editor window we created:

For now, select the platforms Windows, Linux, and MacOS. Then, click on the
Build button. Unity will start the process of creating the builds for all the platform
in sequence. When the process is done, you will see a dialog window like this:

Improving the Build Pipeline

[204]

If you go to the Build folder located in the root of your project folder, you will see
the following three builds there:

You have to admit, this is much faster than creating the builds using the Build
Settings window and building it through code allows you to hook more actions in
the process.

Adding version control to your project
The version control software allows you to have versions of your project that show
the changes that were made by you or your team to the code over time, and allows
you to backtrack if necessary and undo those changes.

Here, we will cover only the generation of the repository. To learn
how to work with Git, visit https://git-scm.com/.

If you don't have Git installed on your computer, go to https://git-scm.com/
downloads and follow the installation instructions there.

If you aren't using Git in the project, open a terminal (in Windows, you can use Git
Bash) and then go to the root of the project Run & Jump:

https://git-scm.com/
https://git-scm.com/downloads
https://git-scm.com/downloads

Chapter 9

[205]

Now, execute the following to begin using Git in your project:

$ git init

Here you create a Git repository. Before we continue, create a file called .gitignore
in the root of your project and add the following content to it:

[Ll]ibrary/
[Tt]emp/
[Oo]bj/
[Bb]uild/

Autogenerated VS/MD solution and project files
*.csproj
*.unityproj
*.sln
*.suo
*.tmp
*.user
*.userprefs
*.pidb
*.booproj

Unity3D generated meta files
*.pidb.meta

Unity3D Generated File On Crash Reports
sysinfo.txt

MacOS Files
*.DS_Store

This will help us to avoid version controlling unnecessary files. This .gitignore file
is specifically for Unity video game projects.

Then, in the terminal, execute this:

$ git add –A

$ git commit –a –m 'First Commit'

Improving the Build Pipeline

[206]

Here you added all the files to version controlling and then generated a commit with
the name "First Commit". The commit is a snapshot of your project, so each time
you make changes, you can create a new commit.

Execute the following:

$ git log -1

You will get the following output:

Each commit has a unique hash, so we will use this to identify our builds. This
means that if somebody finds an error on the build, it's easy to go to the specific
commit to check what's going on.

Interacting with external scripts
In this section, you will learn how to call bash scripts from Unity and how to
integrate this to our pipeline.

The examples here are using bash scripts (OS X). You can extend these
to be used on Windows by your own

Displaying the build information in the video
game
We will add a tiny text in the title screen containing two things:

•	 Hash: This corresponds to the commit used to create the build
•	 Date: This corresponds to the date on which the build is created

This information, which we will call the build info, will be updated every time you
create a new build.

Chapter 9

[207]

If you start the game in the Title scene, you will see a little text Build Info in the top-
left corner

Let's replace this text. First, create a new script called BuildInfo.Autogenerated.
cs inside Tools/AppBuilder/Scripts and add the following code:

namespace AppBuilder {	
 public class BuildInfo {
 public const string Hash = "";
 public const string Date = "";
 }
}

Now, open the TitleScene.cs script and overwrite the method SetBuildInfo as
follows:

private void SetBuildInfo() {
 string info = "";
 info += "Hash: " + AppBuilder.BuildInfo.Hash +"\n";
 info += "Date: " + AppBuilder.BuildInfo.Date;
 BuildInfoText.text = info;

}

Improving the Build Pipeline

[208]

If you run the video game, you will see the labels for the Hash and the Date.

Obtaining the date is easy, but for the Git hash, we will use an external script.

Using the bash script in our pipeline
Unity doesn't allow us to create text files that are not meant to be used as C# or
JavaScript scripts, so access the folder Assets/Tools/Bash from outside and create a
new text file called mac_githash.sh and add the following code to the file:

#! /usr/bin/env sh

SHORT_HASH="$(git log --pretty=format:'%h' -n 1)"

echo $SHORT_HASH

This script grabs the current commit hash and returns a short version of it. So,
instead of 40 characters, this will return something like 4cd9c3a.

You must give execution permission to this script in order to make
it work.

To use and call these kinds of scripts from Unity, we will create a utility method that
receives the path from the script and parameters, if necessary.

Chapter 9

[209]

Inside the Builder class, add the following method:

private static string ExecuteCommand (
 string command, string arguments = "") {
 System.Diagnostics.Process pProcess = new
 System.Diagnostics.Process ();
 pProcess.StartInfo.FileName = command;
 pProcess.StartInfo.Arguments = arguments;
 pProcess.StartInfo.UseShellExecute = false;
 pProcess.StartInfo.RedirectStandardOutput = true;
 pProcess.Start ();
 string strOutput = pProcess.StandardOutput.ReadToEnd ();
 pProcess.WaitForExit ();
 return strOutput;
 }
)

In this method we use the Process class, which is part of the .Net API. This provides
access to local and remote processes and enables you to start and stop local system
processes.

Basically, we are creating a Process instance here, setting its properties, and finally
executing it. If there is any kind of output, that will be returned by the method as a
string.

For each bash script we want to use, we must use this method to integrate it with our
editor scripting code.

Still in the Builder class, we now create a new method to wrap the scripts we
created in the folder Bash:

private static string batchPath = Application.dataPath +
"/Tools/AppBuilder/Bash";

private static string GitHash () {
 string command = batchPath + "/mac-githash.sh";
 string output = ExecuteCommand (command);
 // We trim the output to remove new lines at the end.
 return output.Trim();
}

Now, getting the Git hash is transparent for the rest of the tool because all the
interactions with script are encapsulated.

Improving the Build Pipeline

[210]

Remember the BuildInfo.Autogenerated.cs script we created at the beginning?
The main idea for that class is to be overwritten in the pipeline process with the
following method:

private static void GenerateBuildInfo () {
 string content = "";
 string hash = GitHash();
 string date = System.DateTime.Now.ToString();;
 content += "namespace AppBuilder {\n";
 content += "\tpublic class BuildInfo {\n";
 content += string.Format("\t\tpublic const string Hash =
 \"{0}\";\n", hash);
 content += string.Format("\t\tpublic const string Date =
 \"{0}\";\n", date);
 content += "\t}";
 content += "}";

 string buildInfoPath = Application.dataPath +
 "/Tools/AppBuilder/Scripts/BuildInfo.Autogenerated.cs";
 System.IO.File.WriteAllText (buildInfoPath, content);
}

As we have two assemblies, one for the Editor and another for the video game, we
can make modifications of this kind in the code of the video game using an Editor
script without problem. The class modification will happen before compiling the
video game.

Update the Build method:

public static void Build(BuildTarget target, string buildName) {
 BuildSettings.UpdateSettings();
 GenerateBuildInfo ();
 string[] scenes = GetEnabledScenes();
 string buildFullPath;

 buildFullPath = buildFolderPath + "/" + target + "/" +
 buildName;
 BuildPipeline.BuildPlayer (scenes, buildFullPath, target,
 BuildOptions.None);
}

Now, repeat the process to generate a new build and run it. You will see the build
info on the video game title scene:

Chapter 9

[211]

In the next section, we will continue using a part of the tools we created here.
However, we will now focus on adding distribution to the build pipeline.

Distributing your video game using
AppBlade
In this section, you will learn how to integrate with AppBlade to our pipeline to
distribute Android builds.

AppBlade is a platform for mobile application distribution, simplifying how you
share your mobile applications or video games with your team and testers. Using
the application available on Google Play and the AppStore, you can install and
run your builds directly in your phone.

Improving the Build Pipeline

[212]

Creating an AppBlade account
The first thing to do is to create a new account on the AppBlade website. Open
your favorite browser and go to http://appblade.com. There are several pricing
alternatives, but the one we will use is Indie, which allows us to have 25 devices
registered for free before we start paying $1 per additional device:

Click on the Sign up link and follow the steps to create an account. Appblade will
ask you to confirm your e-mail before you continue, as soon as you are ready, you
will see the main page. Click on the New Project button:

Here you need to complete information related to your new project, this includes the
name and description. In this case, we use the name Run And Jump.

When you have finished, click on the Create Project button. Your project will appear
in the main page of the project you created:

http://appblade.com

Chapter 9

[213]

Uploading the build
Using the API of AppBlade, we will upload our builds directly to this platform. But
before we do that, we need to generate a CI Token. This is a key that allows us to
integrate AppBlade with other services.

In the main page of your project, go to the bottom and click on the link Generate
your first CI token:

Improving the Build Pipeline

[214]

You will be redirected to a new page with a form asking for two things: a name to
identify this new token and an e-mail address to send you an alert if there is an error
uploading a build using this token. For this example, we used the name Run-and-
Jump-builds. When you are ready, click on the Create Continuous Integration
Token button.

After asking for you account password, you will see the following:

With this token, we are ready to perform the integration in Unity, so now is the time
to code. We will use a Bash script that requires cURL to work and a library that lets
you make HTTP requests. If you don't have cURL installed, visit http://curl.
haxx.se/download.html.

Create a new script called mac-appblade.sh and add the following code:

#! /usr/bin/env sh

CI_TOKEN="$1"
BUNDLE_PATH="$2"

http://curl.haxx.se/download.html
http://curl.haxx.se/download.html

Chapter 9

[215]

Uploading to AppBlade...
curl -#
-H "Authorization: Bearer $CI_TOKEN"
-F "version[bundle]=@$BUNDLE_PATH" \
https://appblade.com/api/3/versions

This script receives the CI Token and the path to the build in order to upload. Using
cURL we call the API of AppBlade to take care of the rest, pretty simple.

In the script Builder.cs we will create the wrapper for this, similar to the Git Hash:

private static string appBladeKey =
"7d90cf1850ff68bf127baca0780f3381";

private static string PublishOnAppblade (string build) {
 string command = batchPath + "/mac-appblade.sh";
 string arguments = string.Format("{0} {1}", appBladeKey, build);
 string output = ExecuteCommand (command, arguments);
 return output.Trim();
}

Inside the PublishOnAppblade() method, we execute the script passing two
parameters, the CI Token and the path to the build.

Let's include this in the Build method:

public static void Build(BuildTarget target, string buildName) {
 BuildSettings.UpdateSettings();
 GenerateBuildInfo ();
 string[] scenes = GetEnabledScenes();
 string buildFullPath;

 buildFullPath = buildFolderPath + "/" + target + "/" +
 buildName;
 BuildPipeline.BuildPlayer (scenes, buildFullPath, target,
 BuildOptions.None);

 // Distribution
 if(target == BuildTarget.Android) {
 PublishOnAppblade (buildFullPath);
 }
}

Improving the Build Pipeline

[216]

Now, when trying to create a new Android Build, if you go to the AppBlade website
at the end of the process you will see your build available to be downloaded. Take
into consideration that the process will take longer depending on the size of the build
and your internet connection:

Summary
In this chapter, we worked on customizing the build pipeline for Run & Jump.
We are now able to create builds for specific platforms, trigger several builds in
sequence, and add information to the builds to make it easier to match with a
commit in Git.

The example covered here was small but it is possible to extrapolate in order to have
something better that matches with the reality of your own project.

Using external scripts in Unity allows you to have the flexibility to interact with
other tools, at least the ones that allow you to use command lines to do stuff.

In the next chapter, we will talk about how to distribute your custom tools.

[217]

Distributing Your Tools
In the earlier chapters, we reviewed the basics of editor scripting and now you know
the basics to create your own tools in Unity.

As soon you develop a tool, you will realize that this can be reused in one of your
other projects or used by somebody else. For this reason, we will explore three
different approaches to distributing your tools, including the process of publishing
content in the Unity Asset store.

In this chapter, we will cover the following topics:

•	 Unity packages
•	 Git submodules
•	 Publishing and selling content in the Asset store

Overview
How you share or distribute tools across projects or teams is an important part of
your development workflow. If you have invested time and resources solving a
particular problem in a project using a custom tool, it makes sense to use it again in
other projects too.

The challenge appears when you try to find the best way to do this distribution and
also keep the tool updated. On the other hand, you need to know what happens if
you decide to focus on the development of tools instead of video games and you
want to distribute your tools, making money in the process.

In this chapter, you will learn how to use packages and Git submodules for custom
tools distribution that are more suitable for sharing inside a team, and how to sell
content in the Asset Store.

Distributing Your Tools

[218]

Defining the chapter goals
In this chapter, we will focus on tool distribution using the AppBuilder tool we
created in the previous chapter as an example.

The goals here are:

•	 Creating and using a Unity Package
•	 Creating and using a Git submodule
•	 Using the Admin panel of the Asset Store to create a publisher's account and

defining the information of the package to be submitted
•	 Using the Asset Store Tools to prepare the package
•	 Submitting the package to the Asset Store

Preparing the environment
In a normal development situation, if the custom tools that we will create are meant
to be something reusable, the best decision is to deal with them as independent
projects. Let's do this with the AppBuilder tool.

First, create a new Unity project with the name AppBuilder and then move the files
related to this tool from the Run & Jump project here.

Your project must look like this:

We used this folder structure here just to match it to the structure we have in Run &
Jump. However, as a good practice, always use a root folder with the name of the tool
you want to share, if possible.

Chapter 10

[219]

Here, we are assuming that you have the Run & Jump project integrated
with Git. It is necessary that you go through the Sharing code using Git
submodules section. After reallocating the AppBuilder files from the Run
& Jump project, commit the change in Run & Jump.

Sharing code using a Unity Package
A Unity Package allows us to export and import collections of source code and
project assets in a simple way.

For instance, if we have a Unity tool with several scripts, textures, and materials,
it could be converted to a package. Then, when others use this tool in their project,
importing the package replicates the original structure of assets and source files and
helps to track file additions and duplications.

In this section, you will learn how to create and use a Unity Package.

Creating a package
The package creation process is very simple. In the AppBuilder project, select the
root folder, the one with the name Tools, and then navigate to Assets | Export
Package… in the Unity menu:

Distributing Your Tools

[220]

This will open a new window called Exporting package, where you can select which
scripts or assets will go inside the package. In this case, everything must be selected.

When you are ready, press the Export… button. This opens a save file dialog, where
you need to choose the location and the name of the package:

Name this AppBuilder.unitypackage and save it wherever you want. Hopefully,
this will create a neat package containing all the necessary items to use the
AppBuilder tool in any project.

Chapter 10

[221]

Importing a package
To test the package we created, open the Run & Jump project. Here, you have two
options to import the package:

1.	 Double-click on the package using the file explorer of your operating system.
2.	 In Unity, navigate to Assets | Import Package | Custom Package… in the

Unity editor menu:

Under the Custom Package… option, you will find a list of Unity packages
distributed with Unity.

3.	 After this, a new window will appear displaying all the content of the package:

Distributing Your Tools

[222]

4.	 Select all the files and folders from this package and then click on the Import
button. This will copy all the content in your project.

If you reimport the package, only the new and modified files (or folder)
will appear in the list.

Now, you are ready to start using the AppBuilder in this project, or any project you
want.

Sharing code using Git submodules
Using packages to share code across different projects has a few problems. These are
hard to maintain because any change means a new package must be generated and
distributed manually across the team.

Collaboration is not easy because fixes to bugs in the implementation are not
necessarily shared across the team, unless you invest time to manually share the
packages with updates. This is not good, as it requires extra management.

The good news is that we can address this situation using Git submodules as we
started using Git in the previous chapter.

With submodules, you can maintain a Git repository as a subdirectory of another
Git repository. This lets you clone another repository with a specific tool into your
project and keep your commits separate.

In this section, we will make the AppBuilder tool a submodule used by Run & Jump.

Creating a submodule
We need to create a Git repository inside the AppBuilder project that only contains
the files and folders we want to add in the submodule. This means that all the extra
files and folders Unity creates won't be included here, for example, the project
settings.

In this case, we need to open a terminal (in Windows, use Git bash or something
similar) and remain in the root of the AppBuilder project:

Chapter 10

[223]

Now execute the following commands:

$ cd Assets/Tools/AppBuilder

$ git init

Finally, make the first commit:

$ git add .

$ git commit -m 'First commit'

The last thing to do is to make this repository available using a repository hosting
service such as GitHub.

GitHub offers both paid plans for private repositories and free
accounts. To learn how to publish your repository, visit https://
help.github.com/articles/adding-an-existing-
project-to-github-using-the-command-line/.

For this example, we hosted the AppBuilder tool in https://github.com/
angelotadres/AppBuilder.

Now, we are ready to start using our submodule in the Run & Jump project.

Using a submodule
Right now, this is the current status of the Run & Jump project:

 https://help.github.com/articles/adding-an-existing-project-to-github-using-the-command-line/
 https://help.github.com/articles/adding-an-existing-project-to-github-using-the-command-line/
 https://help.github.com/articles/adding-an-existing-project-to-github-using-the-command-line/
https://github.com/angelotadres/AppBuilder
https://github.com/angelotadres/AppBuilder

Distributing Your Tools

[224]

The AppBuilder folder will no longer be a part of the project because we will add
this using a Git submodule.

In the terminal, go to the folder in which you have the Run & Jump project (this
assumes that you already have this project under version control using Git).

Now, execute the following (replacing the last part with your submodule repository
if you have it):

$ cd Assets/Tools

$ git submodule add git@github.com:angelotadres/AppBuilder.git

By default, the command submodule will add the subproject to a directory named
the same as the repository, in this case, AppBuilder.

Finally, go back again to the root of the Run & Jump project and commit the changes.

Basically, the changes we made are the addition of a new folder and a new file called
.gitmodules located in the root of the project. This file contains all the information
about the submodules in your project.

Now, every time you have a change in your game, you can commit these changes
normally. If you need to make a fix or change in the submodule, you need to go to
that folder and deal with it as a normal repository. The good thing is that all the
users of these tools are able to make improvements to them now.

After this, if you cloned or forked the main project or if you want to get the latest
version of all the submodules, the only thing you need to do is execute these two
commands in the root of your main project:

$ git submodule init

$ git submodule update

The first line initializes your local configuration file, that is, the .gitmodules file, and
the second one fetches all the data from the project and checks out the appropriate
commits listed in our main project.

Chapter 10

[225]

To understand in depth how a submodule works, visit https://git-
scm.com/book/en/v2/Git-Tools-Submodules.

Publishing in the Asset Store
Something that makes it easy to create new video games in Unity is the huge
community it has and, of course, the Asset Store—a virtual store where you can find
and buy prebuilt assets that can be imported directly into your video game project. If
you are making a video game, you can look in the Asset Store and save time buying
tools that help you with your development or assets that complement your gameplay
requirements.

Additionally, this creates a new business line where instead of developing your own
videogames, you can create tools of contents to help people to make video games
and earn money from the sales in the process.

In this section, you will learn how to publish our stuff in the Asset Store, as an
example, we will continue using the AppBuilder tool.

Installing the Asset Store Tools
To start, open the AppBuilder project, and then in the Unity menu navigate to
Window | Asset Store. This will open the Asset Store window. In the top-right
corner of this window, you have two options: Login and Create Account. If you
have a Unity account proceed to log in, if not, just create a new one (don't worry,
it's free!).

https://git-scm.com/book/en/v2/Git-Tools-Submodules
https://git-scm.com/book/en/v2/Git-Tools-Submodules

Distributing Your Tools

[226]

After this, scroll to the bottom of the main Asset Store page and click on the Publish
your stuff! link (as an alternative, you can also search using the keyword Asset
Store Tools):

Asset Store Tools is a package that adds the necessary scripts and editor tools to
allow you to connect to the store's online publishing system. Click on the Download
button and then import the package into your project, as shown in the following
screenshot:

Chapter 10

[227]

At the end of this process, if everything goes well, your project should have an extra
folder called AssetStoreTools, which will look like this:

Also, the Asset Store Tools menu should appear in the Unity menu:

Save the project, and now you are ready to move on to the next step.

Becoming a publisher
It's time to be a publisher in the Asset Store platform, so go to the Unity menu and
navigate to Asset Store Tools | Publisher Administration. This will open our
default browser and send us to the Unity Asset Store Publisher Administration.

Distributing Your Tools

[228]

After logging in using your Unity account, you will be asked to create a Publisher
account; proceed with it and you will see something like this:

On this page, you will need to fill out the details related to your Publisher account
such as your name, your website address, a brief description of yourself or your
company, and contact information.

Additionally, you must provide two Key Images to complete your Publisher profile.
The first one is a small image with 200 x 258 pixels, and the second one is a large
image with 860 x 389 pixels. These images can be your company logo or something
that makes it easier for your buyers to recognize you as a publisher.

Save the changes and now you are a publisher - well at least you have the account;
however, to be a real publisher, you must publish content, so let's focus on that.

Chapter 10

[229]

Uploading the package
In this section, we will prepare and upload the package we want to distribute in the
Asset Store.

In the Publisher Admin, select the Packages tab, as shown here:

On this page, you will see a list of all your packages and their statuses. Click on the
Create New Package button. This will send you to a new page where you will need
to provide the following information about your package:

•	 Version: This is the version of your package, such as "1.0"
•	 Version Changes: This has all the changes to the current version
•	 Category: You must select one of the several categories the store has to

categorize your package, such as Scripting/Network, Editor extensions, and
so on.

•	 Price USD: You will have to specify the price in dollars or mark this as free.

Distributing Your Tools

[230]

Remember, the Unity Asset Store takes 30 percent of the revenue from
the sales. So, take this into consideration when you define the price. Also,
it is recommended that you check the Asset Store for similar solutions to
have an idea about what is the best price for your package.

On the same page, there is a section called Metadata & Artwork, where you need to
provide the following information:

•	 Metadata: This includes the name of your package and a brief description
of it.

•	 Key Images: These are three images; a big image with 860 x 389 pixels, a
small image with 200 x pixels, and an icon with 128 x 128 pixels. All these
images are used to promote your package in the Asset Store.

•	 Audio/Video: Here you can add a video or audio from different sources such
as YouTube, Vimeo, SoundCloud, MixCloud, and Scketchfab.

•	 Screenshots: Here you can add all the screenshots you need to sell your
package.

For the creation of the Key Images, visit the following URL and download
a Zip file with placeholder templates for Photoshop and Gimp:
http://unity3d.com/files/asset-store/asset-store-key-
image-templates.zip

Related to these values, you can have several entries in different languages. By
default, everything must to be in English, but additionally you can add information
in Japanese, Korean, and Chinese too.

As soon you complete filling all the information required here, go back to the
Packages section. Now, you will see our Package listed:

http://unity3d.com/files/asset-store/asset-store-key-image-templates.zip
http://unity3d.com/files/asset-store/asset-store-key-image-templates.zip

Chapter 10

[231]

Our package is currently in draft status, or at least the data related to our package is.
We are ready to submit our package to the platform!

Now that we have the entire package form filled out, we need to preview it to
ensure that all the information is correct and the images look awesome. Click on the
Preview button at the bottom of the form - the one that has a little arrow inside a
circle, as shown here:

Distributing Your Tools

[232]

The Asset Store panel should appear with a test page showing your package
information (the images used here are the placeholder templates).

Now, it is time to go back to Unity and start uploading and submitting the package.

Using the Mass Labeler
In order to make it easier for other people to find your tool in the Asset Store, we will
use the Mass Labeler, a way to add labels used as keywords in the Asset Store.

Back in the project, navigate to Asset Store Tools | Mass Labeler:

Chapter 10

[233]

This will open the Mass Labeler editor window, where you must add all the labels
(key words) that describe your tool. In this case, using the New Label field, we
added the labels Build and Automation, as shown here:

Once you have added all the labels you need, click on each of them in the Mass
Labeler editor window so they show as selected:

After this, select the main folder of your tool in the project browser, in this case, it is
the folder AppBuilder, and click on the button Apply to Selection. That's it!

Distributing Your Tools

[234]

If you check the inspector of that folder, you will see the labels attached:

Uploading and submitting the project
Navigate to Asset Store Tools | Package Upload. This will open a new window
where a list of all the package entries created in the Publisher Administration appears.

In this case, the only project listed is AppBuilder. So, the first step it to select that
project and then select the root folder that has the contents of the package. Then,
click on the Upload button.

You need to wait a moment while the package is uploaded. As soon the process
finishes correctly, the following popup will appear:

Chapter 10

[235]

Click on the Ok button and go to the publisher administration web page. In the
Packages tab, select your package and then go to the bottom of the web page: you
will see a checkbox with the label I own the rights to sell these assets:

Select the checkbox and then click on the Submit packages for approval button. If
everything is OK, your package will change its state from Draft to Pending Review:

Distributing Your Tools

[236]

Now, all you have to do is grab a snack and sit back and wait for the review to be
completed by the Unity staff.

Normally, this process will take around 5 business days, but in some cases it can
take a bit longer. If you are submitting a package that provides a service, like an Ads
service, you should expect it to take around two weeks to be reviewed as there are
many things to consider such as the legal aspects involved.

If at this point you happen to discover that you have spelling mistakes or the
screenshots of Key Images are wrong, don't worry, these things can all be modified
in-place as long as you don't change the version number. You can then resubmit, but
your package will go to the back of the queue for revision.

Take in consideration that if the mistake is related to the package, like a bug or
something that needs to be tweaked, you must release a package under a new
version number.

In order to increase the probabilities of having your package accepted,
take some time to read the submission guidelines available at http://
unity3d.com/asset-store/sell-assets/submission-
guidelines.

Summary
In this chapter, we concluded learning about how to share our tools.

Unity Packages are a good way to share tools. It is a feature supported natively by
Unity and is flexible in terms of choosing which scripts or assets we want to use for
that package.

However, if you are within a context where shared tools are a critical part of your
development workflow, like a video game studio that tries to create standards
and avoid reinventing the wheel on each project, using Git submodules is a better
option, keeping the tools on each project updated and allowing collaboration for bug
solving. If you are using another version control solution, there is a high probability
that it will have something similar to this feature.

http://unity3d.com/asset-store/sell-assets/submission-guidelines
http://unity3d.com/asset-store/sell-assets/submission-guidelines
http://unity3d.com/asset-store/sell-assets/submission-guidelines

Chapter 10

[237]

The last option reviewed was sharing using the Unity Asset Store. This creates new
possibilities for anybody who has an idea for improving video game development in
Unity, allowing developers to help other developers and earn money in the process.

This concludes this book. At this point, you have all the basics to start thinking of
ways to improve your development workflow by creating custom tools. We have
covered a lot of things but if you start investigating the Unity editor API, you will
find more useful features that you can include in your tools. Most of them aren't
well documented but you can always find support in the Unity community.

To finish, only one thing: don't be afraid to put Unity to use for your video games!

[239]

Index
A
AppBlade

about 211
for distributing video game 211
URL 212

AppBuilder tool
environment, preparing 218
tool distribution 218

AssetDatabase class
about 96
URL 97

AssetPostprocessor class
about 178
goals, defining 178
reference 180
using 178-180

AssetPreview class
URL 102

Asset Store
installing 225-227
Mass Labeler, using 232, 233
package, uploading 229-232
project, submitting 234-236
project, uploading 234-236
publisher, creating 227, 228
publishing in 225

B
build pipeline

environment, preparing 194
improvements 194
overview 193

BuildPipeline class
automating 194
editor window, creating 199-204
player settings, adjusting 195, 196
using 196-198

BuildPlayer method
levels parameter 197
locationPathName parameter 197
options parameter 197
target parameter 197

built-in Decorator Drawers
about 75
header attribute 75
space attribute 76
tooltip attribute 76

built-in Property Drawers
about 71
ContextMenu attribute 73
ContextMenuItem attribute 74
multiline attribute 72
range attribute 71
TextArea attribute 73

C
CI Token 213
cURL

URL 214
custom inspectors

about 50, 51
buttons, used for trigger actions 62-65
creating 55
CustomEditor attribute, using 55, 56
drawers, using 81

[240]

GUI elements, adding 58-60
inspector message methods, playing

with 56-58
Level class, upgrading 52, 53
resize feature, implementing 62
SerializedObject, using 82
SerializedProperty, using 82
working 53-55

D
Debug configuration 189
Decorator Drawers 75
DLL file

about 184
DLL project, creating 185
DLL project, setting up 185-188
integrating, to main project 189-191

drawers
using, inside custom inspector 81

Dynamic Link Libraries (DLL) 185

E
Edit mode

implementing 132-136
EditorGUI class

about 59
URL 59

EditorGUILayout class
about 59
URL 59

Editor modes
defining 116

EditorPrefs 201
editor scripting

basics 3
Editor folder 5, 6
editor script 3, 4
overview 2

EditorStyles class
URL 148

editor window
base, creating 87
EditorWindow class, using 88, 89
EditorWindow message methods,

using 89-91

goals, defining 87
Hotkeys, assigning to menu items 91, 92
overview 86

Erase mode
implementing 131

ExecuteInEditMode class
about 46
URL 46

externals scripts
bash script, using in pipeline 208-211
build information, displaying in video

game 206-208
interacting with 206

G
Git submodules

creating 222
for sharing code 222
reference 225
using 223, 224

gizmos
about 21
adding, DrawGizmo attribute used 27-30
creating 24
goals, defining 23
OnDrawGizmos method 24-27
OnDrawGizmosSelected method 24-27
overview 22, 23

Gizmos class
about 30
DrawCube method 30
DrawFrustrum method 36
DrawGUITexture method 35
DrawIcon method 34
DrawLine method 34
DrawRay method 33
DrawSphere method 32
DrawWireCube method 31
DrawWireSphere method 32
URL 30

GUI class
about 64
URL 64

GUILayout class
about 64
URL 64

[241]

GUI, Level Creator tool
goals, defining 146
GUISkin asset, creating 156-159
GUISkin asset, integrating 159-161
GUISkin asset, using 156-161
GUIStyleState instances, using 152-155
GUIStyles, using 147-151
modifying 146, 147

H
Handles class

URL 139
using 136-139

hiding flags
using 140-142

Hotkeys
used, for triggering menu items 91, 92

I
import pipeline

background settings, overwriting 181-184
improving 181
level piece assets settings,

overwriting 181-184
inspector

improving, without custom inspectors 70

K
Key Images

about 230
reference link 230

L
layouts

about 66, 67
complex layouts, creating 67-70

Level class
upgrading 52, 53

Level Creator tool
about 14
automation, performing 18, 19
Edit mode 116, 132-136

environment, preparing 16
Erase mode 116, 131
features 15
goals, defining 15, 16
GUI, modifying 146
hiding flags, using 140-142
improvements 140
modes, implementing 128
Paint mode 116, 129, 130
Palette, integrating with 105
View mode 116, 128

levels, Run & Jump
Level class, updating 171-173
LevelInspector class, updating 171-173
level settings, tweaking in play mode 174
play mode, adjusting 166
Scriptable Object, integrating 171
updatable gravity, creating 164, 165

N
Non Playable Character (NPC) 21

P
Paint mode

implementing 129, 130
Palette

assets, searching with AssetDatabase
class 95-97

category system, creating 93, 94
event, creating 105, 106
event, subscribing 106-110
GUI, implementing 97
implementing 92
integrating, with Level Creator tool 105
scrollable area, creating 99-105
tabs, creating 97-99

Property Drawer
about 70
built-in Property Drawers 71
creating 77-81

R
Release configuration 189

[242]

Run & Jump
about 7
gizmo grid, implementing 38-43
levels, setting 164
levels, structuring 37, 38
new level, creating 9-14
Scriptable Object, implementing 166
snap, implementing to grid

behaviour 44-46
URL 8
video game, playing 8, 9

S
Scene View

customizing 117
events, detecting 122
game objects, controlling 121, 122
goals, defining 114, 115
Handles class, using 136-139
mouse events, capturing 126, 127
mouse position, obtaining 123-125
OnSeceneGUI message method,

using 117-119
overview 114
tools, using 119, 120

Scriptable Object
about 163, 201
asset, generating for data class 167-170
data class, creating 166, 167
goals, defining 164
implementing 166
integrating, with level 171
overview 163, 164
URL 167

serialization 53
Singleton design pattern

about 38
URL 38

U
UnityEditor 3, 185
UnityEngine 185
Unity Package

about 219
for sharing code 219
importing 221, 222
package creation process 219, 220

V
version control

adding, to project 204, 205
Vertex-Snapping mode 13
video game, distributing using AppBlade

about 211
AppBlade account, creating 212
build, uploading 213-216

View mode
implementing 128

Thank you for buying
Extending Unity with Editor
Scripting

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Unity 3D UI Essentials
ISBN: 978-1-78355-361-7 Paperback: 280 pages

 Leverage the power of the new and improved UI
system for Unity to enhance your games and apps

1.	 Discover how to build efficient UI layouts
coping with multiple resolutions and screen
sizes.

2.	 In-depth overview of all the new UI features
that give you creative freedom to drive your
game development to new heights.

3.	 Walk through many different examples of UI
layout from simple 2D overlays to in-game 3D
implementations.

Mastering Unity 4 Scripting
[Video]
ISBN: 978-1-84969-614-2 Duration: 01:39 hours

Master Unity 4 gameplay scripting with this dynamic
video course

1.	 Master Unity scripting using C# through
step-by-step demonstrations.

2.	 Create enemy AI systems.

3.	 Script character animations.

4.	 Program directional and conditional sound
effects as well as background music.

Please check www.PacktPub.com for information on our titles

Learning Unity 2D Game
Development by Example
ISBN: 978-1-78355-904-6 Paperback: 266 pages

Create your own line of successful 2D games with
Unity!

1.	 Dive into 2D game development with no
previous experience.

2.	 Learn how to use the new Unity 2D toolset.

3.	 Create and deploy your very own 2D game
with confidence.

Unity 4.x Cookbook
ISBN: 978-1-84969-042-3 Paperback: 386 pages

Over 100 recipes to spice up your Unity skills

1.	 A wide range of topics are covered, ranging in
complexity, offering something for every Unity
4 game developer.

2.	 Every recipe provides step-by-step instructions,
followed by an explanation of how it all works,
and alternative approaches or refinements.

3.	 Book developed with the latest version of
Unity (4.x).

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with
Editor Scripting
	Overview
	Editor scripting basics
	What is an editor script?
	The Editor folder

	Introducing Run & Jump
	Playing the video game
	Creating a new level

	The Level Creator tool
	Defining the chapter goals
	Preparing the environment
	Performing automation

	Summary

	Chapter 2: Using Gizmos in the
Scene View
	Overview
	Defining the chapter goals

	Creating gizmos through code
	The OnDrawGizmos and OnDrawGizmosSelected methods
	Adding gizmos by using the DrawGizmo attribute
	The Gizmos class
	DrawCube
	DrawWireCube
	DrawSphere
	DrawWireSphere
	DrawRay
	DrawLine
	DrawIcon
	DrawGUITexture
	DrawFrustrum

	Adding a structure to our levels
	Implementing the gizmo grid
	Implementing the snap to grid behaviour

	Summary

	Chapter 3: Creating Custom Inspectors
	Overview
	Defining the chapter's goals

	Upgrading the Level class
	Understanding how an inspector works
	Creating a Custom Inspector
	Using the CustomEditor attribute
	Playing with the inspector message methods and the target variable
	Adding the GUI elements
	Implementing the resize feature
	Using buttons to trigger actions

	Working with layouts
	Creating complex layouts

	Improving the inspector without Custom Inspectors
	What is a Property Drawer?
	Built-in Property Drawers
	Range
	Multiline
	TextArea
	ContextMenu
	ContextMenuItem

	Built-in Decorator Drawers
	Header
	Space
	Tooltip

	Creating you own Property Drawers

	Using drawers inside a Custom Inspector
	Using SerializedObject and SerializedProperty

	Summary

	Chapter 4: Creating Editor Windows
	Overview
	Defining the chapter's goals

	Creating the base for an editor window
	Using the EditorWindow class
	Playing with the EditorWindow message methods
	Using Hotkeys to trigger menu items

	Implementing the Palette
	Creating a category system
	Finding assets using the AssetDatabase class

	Implementing the GUI for the Palette
	Creating tabs
	Creating a scrollable area

	Integrating the Palette with the Level Creator tool
	Creating an event
	Subscribing to an event

	Summary

	Chapter 5: Customizing the Scene View
	Overview
	Defining the chapter's goals

	Defining the Editor modes
	Customizing the Scene View
	Using the OnSeceneGUI message method
	Playing with the Scene View tools
	Controlling the focus over our game objects

	Detecting Scene View events
	Getting the mouse position
	Capturing mouse events

	Implementing the Level Creator modes
	The View mode
	The Paint mode
	The Erase mode
	The Edit mode

	Using the Handles class
	Adding the final details to Level Creator
	Using hiding flags

	Summary

	Chapter 6: Changing the Look and Feel of the Editor with GUI Styles and GUI Skins
	Overview
	Defining the chapter's goals

	Changing the look and feel of the Level Creator tool
	Using GUIStyles in our GUI components
	Working with the GUIStyleState instances

	Changing the look and feel using a simpler approach
	Creating a GUISkin asset
	Integrating and using a GUISkin

	Summary

	Chapter 7: Saving Data in a Persistent Way with Scriptable Objects
	Overview
	Defining the chapter's goals

	Preparing the environment
	Updatable gravity in levels
	Playing with gravity

	Implementing a Scriptable Object
	Creating the data class
	Generating an asset to contain the data class

	Integrating the Scriptable Object with the level
	Updating the Level and the LevelInspector class
	Tweaking the level settings in the play mode

	Summary

	Chapter 8: Controlling the Import Pipeline Using AssetPostprocessor Scripts
	Overview
	Defining the chapter's goals
	Using the AssetPostprocessor class

	Improving the import pipeline
	Overwriting the background and level piece assets settings

	Using a DLL file for the AssetPostprocessors
	Creating and setting up a DLL project
	Integrating the DLL file to the main project

	Summary

	Chapter 9: Improving the Build Pipeline
	Overview
	Defining the chapter's goals
	Preparing the environment

	Automating the BuildPipeline class
	Adjusting the player settings
	Using the BuildPipeline class
	Creating an editor window and learning about EditorPrefs to persist data

	Adding version control to your project
	Interacting with external scripts
	Displaying the build information in the video game
	Using the bash script in our pipeline

	Distributing your video game using AppBlade
	Creating an AppBlade account
	Uploading the build

	Summary

	Chapter 10: Distributing Your Tools
	Overview
	Defining the chapter's goals

	Preparing the environment
	Sharing code using a Unity Package
	Creating a package
	Importing a package

	Sharing code using Git submodules
	Creating a submodule
	Using a submodule

	Publishing in the Asset Store
	Installing the Asset Store Tools
	Becoming a publisher
	Uploading the package
	Using the Mass Labeler
	Uploading and submitting the project

	Summary

	Index

