
www.allitebooks.com

http://www.allitebooks.org

Flash Programming

Behavioral Sciences
for the Social&

www.allitebooks.com

http://www.allitebooks.org

A Simple Guide to Sophisticated

Flash Programming

Online Surveys and Experiments

Behavioral Sciences
for the Social&

Yana Weinstein
Washington University in St. Louis

With contributions by K. Andrew DeSoto

www.allitebooks.com

http://www.allitebooks.org

A Simple Guide to Sophisticated

Flash Programming

Online Surveys and Experiments

Behavioral Sciences
for the Social&

Yana Weinstein
Washington University in St. Louis

With contributions by K. Andrew DeSoto

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2013 by SAGE Publications, Inc.

All rights reserved. No part of this book may be
reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying,
recording, or by any information storage and retrieval
system, without permission in writing from the
publisher.

Printed in the United States of America

Library of Congress Cataloging-in-Publication Data

Weinstein, Yana.

Flash programming for the social & behavioral sciences:
a simple guide to sophisticated online surveys and
experiments / Yana Weinstein ; with contributions from
K. Andrew DeSoto.

p. cm.
Includes bibliographical references and index.

ISBN 978-1-4129-9635-8 (pbk.)

1. Flash (Computer file) 2. Web sites--Authoring pro-
grams. 3. Internet surveys—Software. I. DeSoto, K.
Andrew. II. Title.

TR897.7.W4495 2013
006.6’960243—dc23 2012002533

This book is printed on acid-free paper.

12 13 14 15 16 10 9 8 7 6 5 4 3 2 1

FOR INFORMATION:

SAGE Publications, Inc.

2455 Teller Road

Thousand Oaks, California 91320

E-mail: order@sagepub.com

SAGE Publications Ltd.

1 Oliver’s Yard

55 City Road

London EC1Y 1SP

United Kingdom

SAGE Publications India Pvt. Ltd.

B 1/I 1 Mohan Cooperative Industrial Area

Mathura Road, New Delhi 110 044

India

SAGE Publications Asia-Pacific Pte. Ltd.

3 Church Street

#10-04 Samsung Hub

Singapore 049483

Acquisitions Editor: Vicki Knight

Associate Editor: Lauren Habib

Editorial Assistant: Kalie Koscielak

Production Editor: Laura Stewart

Copy Editor: Tina Hardy

Typesetter: C&M Digitals, Ltd.

Proofreader: Jennifer Thompson

Indexer: Judy Hunt

Cover Designer: Anupama Krishan

Marketing Manager: Helen Salmon

Permissions Editor: Adele Hutchinson

www.allitebooks.com

http://www.allitebooks.org

For Asya and Leva Tcherniak

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

Table of ConTenTs

About the Author xi

Preface xii

Acknowledgments xiii

Why Flash? xiv

How to Use This Book xvi

1. Teaching a Class Based on the Book xvi
2. Using the Book for Self-Study xvii
Resources xviii

Chapter 1: The Flash Interface 1

1. Creating a New File 1
2. Managing Your Workspace 2
3. Getting to Know Your Workspace 7
4. Adding Elements to Your Stage 10
Resources 13

Chapter 2: ActionScript Basics 15

 1. Entering Code: Actions Panel 16
 2. Terminology 17
 3. Coding Conventions 17
 4. Order of Execution 19
 5. Variables 20
 6. Simple Mathematical Operations 21
 7. Compiling the Program 22
 8. Sending Information to the Output Tab 23
 9. Functions 24
10. Conditional Statements 25
11. Loops 31
Resources 35

www.allitebooks.com

http://www.allitebooks.org

viii Table of ConTenTs

Chapter 3: Navigation 37

1. Inserting New Frames 38
2. Naming Frames 39
3. Responding to a Button Press 40
4. Code for Frame Navigation 42
5. Reusing Functions 44
6. Removing Event Listeners 47
Resources 48

Chapter 4: Working With Text and Keystrokes 50

1. Text Field Creation 51
2. Types of Text Fields 53
3. Setting Text Field Properties 54
4. Other Ways of Working With Text in Flash 62
5. Key Recognition 63

Example: Responding to a Keystroke 64
Example: Looking up keyCodes and charCodes 65
Example: Responding to Specific Keys 66
Example: Capturing Input Text 67

Resources 69

Chapter 5: Presenting and Storing Information in Arrays 71

1. What Is an Array and When Would You Need to Use It? 71
2. Defining and Populating Arrays 72
3. Properties and Methods of Arrays 74

Example: Cycling Through an Array From Start to Finish 75
Example: Dynamically Manipulating Arrays:

Storing Responses 77
Example: Looking up Information in an Array 80

4. Common Array Malfunctions 81
Resources 82

Chapter 6: Questionnaire Tools 83

1. List Component 84
Example: Using a List to Present Response Options 87
Example: Making a Button Visible When the User

Selects a Response From the List 89
Example: Activating a Visible Button When the User

Selects a Response From the List 92
Example: Presenting a Warning Message if the User

Tries to Continue Without Selecting a Response 93
Example: Storing the User’s Selection From a List 94

www.allitebooks.com

http://www.allitebooks.org

Table of ConTenTs ix

2. The RadioButton Component 95
Example: Storing RadioButton Responses 96
Example: Resetting the RadioButton Selection 98

3. CheckBox Component 99
Example: Storing Multiple Responses From

the CheckBox Component in an Array 101
4. Slider Component 102

Example: Updating a Text Field as the User Drags a Slider 103
Resources 105

Chapter 7: Condition Assignment and Randomization 106

1. Manual Condition Assignment Versus Randomization 106
2. Condition Selection With Experimenter Input 107

Example: Experimenter Presses a Different Button
for Each Condition 107

Example: Experimenter Types in the Condition Number 109
3. Randomization: Picking a Condition Without Experimenter Input 111

Example: Selecting a Condition Based on a Randomly
Generated Number 111

4. Using Random Number Generation to Randomize Stimuli 114
Example: Sampling Randomly From an Array

With Replacement 114
Example: Sampling Randomly From an

Array Without Replacement 115
Example: Randomizing an Entire Array 116

Resources 119

Chapter 8: Using Timers and Recording Reaction Time 120

1. Date and Time Stamps 120
Example: Accessing Individual Properties of a Date

and Time Stamp 121
2. Experimenter Controlled Timings Using the setTimeout Method 122

Example: Setting Timings With the setTimeout Method 122
Example: Using setTimeout to Set Off a Series of Events 124
Example: Overriding a setTimeout Call With User Input 126

3. Experimenter Controlled Timings Using the Timer 127
Example: Setting Timings With a Timer 128

4. Countdown Timers 129
Example: Counting Down the Seconds Using a Timer 129

5. Recording Reaction Times 131
6. Accuracy of Timings in Flash 132
Resources 134

www.allitebooks.com

http://www.allitebooks.org

x Table of ConTenTs

Chapter 9: Saving Data 135

1. Data Output 135
Example: Using a String Variable to Store Output 136

2. Creating an Excel Template for Data Output 139
3. Testing the Output 143
Resources 144

Chapter 10: Putting Your Program Online 145

1. Idiot-Proofing Your Program 146
2. Sending Output out of Flash 146
3. Publishing Your Program 147
4. Uploading Your Program 148
5. Testing the Program and Troubleshooting 149
6. Wrapping Up 150
Resources 151

Resources Index 152

Subject Index 158

xi

abouT The auThor

Dr. Yana Weinstein is a psychology researcher and data
analyst at Washington University in St. Louis, Missouri.
She received her PhD in cognitive psychology from
University College London. She divides her time
among human memory research, data analysis for
academic and commercial projects, and encouraging
psychologists to use the latest technology for their
research.

xii

PrefaCe

W hen I secured my place in graduate school, I went to meet my
future adviser to find out what topics I should read up on over
the summer. I was expecting a lengthy reading list, but instead I

got one simple instruction: Learn to program. Most experimental psychology
labs have a preferred programming language for their experiments and all
new lab members are expected to learn it and become proficient program-
mers. Somewhat surprisingly, however, programming is seldom explicitly
taught, and resources for self-instruction are scarce or not specifically
tailored to psychologists. That summer, I hunted unsuccessfully for the ideal
textbook—one that would teach me the basics of the language, bypass all the
functionality I wouldn’t need, and cut straight through to the techniques
required for programming psychology experiments. Of course there was no
such textbook, so I muddled through with endless online searches and adapt-
ing code from more advanced students while acquiring all their bad habits. In
writing this book, I compiled all the information I was unable to find, ranging
from specifics such as “How do I present stimuli in a random order?” to big-
ger questions such as “How do I collect data online?” in a format that is most
intuitive to social and behavioral scientists—one in which each new tech-
nique is introduced in the context of a common aspect of survey or experi-
ment design.

xiii

aCknowledgmenTs

M y greatest thanks for making this book happen go to Decision
Technology Ltd. (Dectech), Kathleen McDermott and Roddy
Roediger, Vicki Knight, and Andy DeSoto. I would never have

thought of learning Flash had I not seen it put to work by the staff at Dectech,
who run huge online surveys and experiments and collect data in a fraction
of the time it used to take me in the lab. As a casual data analyst on various
projects with Dectech, I was not involved in programming the experiments
in Flash (they have dedicated programmers for this), but I was very curious
to learn, and I ended up doing so in my spare time.

When Kathleen McDermott and Roddy Roediger (my postdoctoral advis-
ers at the time) became aware of the possibilities of rapid online data collec-
tion, they allowed me to try out a few of our studies with this method. One
thing led to another, and soon I was teaching Flash programming to psychol-
ogy graduate students in the department—but Kathleen took it one step
further and encouraged me to put all the information from the class (and
more) into a textbook format. Kathleen took the time to chat with Vicki
Knight on my behalf, and a great collaboration was born. This book would
never have been published without Kathleen’s initiative and support. Vicki
was extremely enthusiastic about the project from the start, and she has been
a great pleasure to work with (it was especially lovely to have a British expat
connection). I would also like to thank the reviewers: Nathan D. Martin,
Michelle C. Bligh, Melissa Birkett, and Jennifer L. Callahan for their insightful
comments on an earlier draft of this book, which undoubtedly made it a
much better finished product.

Finally, Andy DeSoto participated in the creation of the book every step
of the way: He read every single word, corrected awkward sentences and
mislabeled concepts, rewrote whole paragraphs, and verified all the code
samples. Andy is a PhD student and human memory researcher at Washington
University in St. Louis, and he got involved in the project after taking my
Flash class. You can visit his personal website at http://me.andydesoto.com/
or follow him on Twitter at @kadesoto.

xiv

why flash?

A dobe Flash is currently one of the most popular languages for ani-
mated web content, and almost all modern computers are capable
of playing Flash content. Psychologists have recently started to take

advantage of this to collect experimental data online. Flash is used not only
for questionnaire-based studies but also for sophisticated experiments
involving stimuli such as pictures, dynamic shapes, and animation. This lan-
guage arguably offers the most flexibility to social and behavioral scientists: It
allows absolute control over design and visual aspects and only requires
simple online implementation. Accurate reaction time measurement is also
possible, although note that some recorded timings may be overestimates
when the program is run online, and extremely short presentation rates are
not advisable (see Chapter 8 for more details).

If you are wondering whether Flash is right for your research, here are
some suggestions for the types of content that can be programmed in Flash:
memory experiments, perceptual tasks, simulated games, and any kind of
survey to collect information and/or opinions. To help you decide whether to
invest time in learning Flash, we’ve uploaded a sample memory experiment
program to http://www.sagepub.com/weinstein to give you an idea of the
kind of program you will learn to create. If you work through this book, you
will have all the tools at your disposal to create a program like this for your
own research.

The following infographic illustrates why Flash is currently the best
option for programming online experiments and surveys that will be
presented on multiple platforms, as compared with its closest competitor,
HTML5. For more information on the software and various purchasing
options, please visit http://www.sagepub.com/weinstein.

Why flash? xv

Source: Image Copyright Periscopic, Inc., 2011. http://www.periscopic.com.

Note: This information is correct as of June 2011.

Comparison of Flash and HTML5.

xvi

how To use This book

T his book has two main uses: It can be used either as a basis for teach-
ing a class, or it can be used as a comprehensive self-study guide. This
book neither requires nor assumes any previous knowledge of pro-

gramming whatsoever, although general computer literacy is necessary. Each
chapter introduces a new set of concepts and techniques that are crucial to
programming a survey or experiment in Flash. We would go so far as to say
that no survey or experiment can be programmed in Flash without some
grasp of concepts from each of the chapters. With this in mind, we have
designed each chapter to be a hands-on experience to encourage readers to
learn and practice all the concepts. Every chapter includes how-to
instructions and/or code samples that can be implemented by typing
the code out in a program; each student should do this in order to get a feel
for code structure. The code samples are reproduced as they will appear in
the Flash interface. In some cases, especially later on, a little setup is needed
before the code can be implemented. In these cases, the steps required for
setup are listed at the start of the example. All the steps in those setup
instructions should already be familiar to the reader as they will have been
covered in detail in previous chapters. Most chapters also include an exercise
for users to try out on their own. Solutions to these exercises, along with
programs associated with each example in the book, are available on the
accompanying website.

 1. Teaching a Class Based on the Book

The book itself is based very closely on a semester-long course I taught to
psychology graduate students who wanted to learn how to program an
experiment for online data collection. Each of the chapters in this book more
or less corresponds to one class I taught during the course. Classes were
around 3 hours long, and it was a very hands-on course. Each student sat in
front of a computer, and I presented short chunks of code on a projector so

hoW To Use This book xvii

that students had to type it in to their own program and make it work. If you
have a programming background but aren’t familiar with Flash, as long as you
take a pass through this book on your own first (discussed later), you could
run a beginners’ programming course on the basis of this book. Simply help
the students through each of the examples in a chapter during the class, and
set the exercise at the end of the chapter as homework. I found that a ratio
of one instructor per four to six students was about right, because students
will require a lot of assistance during the learning process. It is amazing how
many little things can go wrong in a very simple program! Once students are
comfortable with the basics covered in the book, I would set them a larger
and more applied task: Program an experiment or survey that they could
actually use for their own data collection purposes. This gets students
thinking about the design flow of their program and what techniques they
really need to master to make their program behave correctly.

2. Using the Book for Self-Study

You can also use this book to teach yourself how to program behavioral
experiments and surveys on your own. If this is what you would like to do,
we encourage you to use this book as a manual or textbook and not a
reference. Studies in cognitive and educational psychology have shown that
some of the best learning happens when people take the time to work
through problems and experience examples. As such, our recommendation
is that you open up a new Flash project and go through this book chapter by
chapter, following the instructions laid out for you in each section. Also, if
you are new to computer programming, do not expect to learn Flash in one
day. The knowledge will stick better if you make the effort to learn
ActionScript over a period of several weeks, for instance. If you have the time
to set aside, a weekly session of 2 to 3 hours plus some extra time to work on
the exercises at the end of each chapter would allow you to cover all the
content in the book in 10 weeks.

A special note to Mac users: Most of this book was written based on
the Microsoft Windows operating system. As such, you may find several
places in this book that do not correspond entirely to what you might be
seeing on the screen. However, Flash was developed with both Windows and
Macintosh operating systems in mind and you should find these discrepan-
cies to be minimal, if you find them at all. Beginning Mac users should con-
sult their computer manual if they are confused by any instructions within
this text. To foreshadow potential issues, windows in OSX can be closed or
minimized by clicking the red “X” or yellow “-”, respectively, on the top left

xviii flash Programming for The soCial and behavioral sCienCes

corner of the window (or press Command-W or Command-M). If your mouse
does not support right-clicking, click your mouse while pressing the Control
button on your keyboard to mimic a right-click. Certain Mac peripherals may
also support right-clicking even if the device doesn’t seem to. Again, consult
your manual when these issues arise.

 3. Resources

Once you have mastered the basics detailed in the book, you will probably
want to move on to more complicated programming. There are many tips,
tricks, and advanced techniques that we could not fit into this book, so with
this in mind we have compiled a list of resources for each chapter. The links
in these resource sections take you to reference tools, tutorials, and pertinent
forum discussions that can broaden your horizons and help you become an
expert programmer. These links either add extra breadth to a topic covered
in the chapter, or they explore a topic that is beyond the scope of this book
but could be useful for programming a survey or experiment. The links are
mostly to specific articles and tutorials within blogs and websites that post a
lot of relevant content, so feel free to explore other content on those blogs
and websites, as they may prove to be useful. Each chapter has its own
resources section, and there is a web index in the back where the links are
listed in alphabetical order. The links are hot-linked for your convenience at
http://www.sagepub.com/weinstein.

1

Chapter 1

the Flash InterFaCe

IN THIS CHAPTER, YOU WILL LEARN

•• How to choose the right type of file for your project

•• How to create and save your own ideal workspace

•• What all the different tools on your workspace are for

•• How to add images and buttons to your project

•• That each component in your project needs to have its own unique Instance Name

In this chapter, you will become acquainted with the basics of the Flash inter-
face. Flash is a very versatile and powerful program, so a huge number of
tools are available, but we will focus only on those that are essential for pro-
gramming an experiment or survey. This chapter takes you step by step
through choosing the right file type, creating and saving a workspace tailored
to your needs, learning about the various panels in this workspace, and add-
ing elements such as buttons and images to your program.

1. Creating a New File

When you open Flash, you have various options for different files you can
create (see Figure 1.1 for a screenshot of the menu that pops up when you
open Flash).

www.allitebooks.com

http://www.allitebooks.org

2 Flash Programming For the social and Behavioral sciences

The ActionScript 3.0 file type is the only one we use throughout the
book, so you can ignore all the other options. In every chapter we will work
on a new Flash program together. To keep things organized and easily match
your programs to the sample programs that you can access on the website,
save each program with the chapter number in the file name.

 2. Managing Your Workspace

As Flash can be used to do all sorts of things (commonly, creating compli-
cated movie clips), there are a lot of tools that Flash provides that you prob-
ably won’t ever need. In order to set up the most efficient working

Figure 1.1. Options for creating a new file in Flash. Adobe product
screenshot(s) reprinted with permission from Adobe
Systems Incorporated.

Select the top option in the middle column to create a new ActionScript 3.0 file.

Chapter 1 the Flash interFace 3

environment, we will create a workspace that includes only the tools we will
use regularly. Various workspaces are already available in Flash, but we will
create our own tailored workspace.

To access the different workspaces available within Flash, click on the drop-
down menu toward the top right of the screen. This menu should currently say
Essentials (see Figure 1.2).

Figure 1.2. List of available workspaces. Adobe product screenshot(s)
reprinted with permission from Adobe Systems
Incorporated.

You will see a list of seven workspaces, including Essentials, which is
the default. To get an idea of the different workspaces available, try select-
ing one of the alternatives. We will use a much simpler workspace. Flash
allows you to create your own ideal workspace and save it so that you can
use it every time.

4 Flash Programming For the social and Behavioral sciences

We will build our workspace from the Small Screen template. You will
see a few different panels, some of which we need and some that we will
get rid of. The workspace has three docks: the left dock, the right dock, and
the bottom dock. You can place any panels in any of these docks. Figure 1.3
is a screenshot of what you should see with the “Small Screen” workspace
selected; the three docks have been labeled on the screenshot.

Figure 1.3. “Small Screen” workspace with the three docks labeled.
Adobe product screenshot(s) reprinted with permission
from Adobe Systems Incorporated.

If you do not see any panels after selecting the Small Screen work-
space, go to Windows à Show Panels (F4).

Currently in the left dock is the Tools panel. Panels are described in more
detail later, but for now just know that you can keep the Tools panel in the
left dock as it will come in handy.

Currently in the bottom dock are the Timeline and Motion Editor (click
on their tabs to see them). The Timeline can remain where it is, but we do
not need the Motion Editor.

To remove the Motion Editor, right-click on its tab and select “Close.”

Chapter 1 the Flash interFace 5

We also need to add two more panels to the bottom dock: Output and
Compiler Errors. When you add these panels, they should appear automati-
cally as new tabs in your bottom dock.

To add Output and Compiler Errors to your bottom dock, go to Windows and
select each one in turn.

Currently in the right dock, you will find icons for Properties, the Library,
and a shortcut to Actions. Those can also remain. In addition, there are a few
more toolbars that we should remove, as they are unnecessary.

To remove the toolbars, drag them away from the dock by clicking on the dot-
ted lines at the top of the toolbar and releasing the icon once it is out of the
dock (see Figure 1.4). Then click on the X in the top right corner of the icon to
remove it. Repeat for all the groups of icons in the right dock other than
Properties, Library, and Actions.

Figure 1.4. Dragging and removing an icon. Adobe product
screenshots for Figures 1.4 and 1.5 reprinted with
permission from Adobe Systems Incorporated.

6 Flash Programming For the social and Behavioral sciences

Finally, we need to add the Components and Component Inspector
icons to the right dock.

To add the Components icon, go to Windows à Components (Ctrl+F7). To
add the Component Inspector icon, go to Windows à Component Inspector
(Shift+F7). These panels will appear in the middle of your workspace when you
make them visible. To minimize a panel to an icon and dock it in the right dock,
drag the panel up underneath the lowermost icon in the dock until its border
turns blue (see Figure 1.5). If you release the mouse at this point, the panel will
turn into an icon in the dock.

Note that because of the default size of your right dock, you may not be
able to see the whole label on each of the icons in the dock. Resize the dock
by dragging its left border toward the center. Now that we have our ideal
workspace, we need to save it.

To save your workspace, click on the drop-down workspace menu, and select
New Workspace. Name your workspace “My Workspace.”

Now, every time you load Flash, make sure you select “My Workspace”
from the drop-down menu. Note that if you change anything on the work-
space during a session, the workspace will automatically save these changes.

Figure 1.5. Docking a panel.

Chapter 1 the Flash interFace 7

If you make any unwanted changes, you can choose Reset ‘My Workspace’
from the drop-down menu to revert to the workspace you had at the start of
the session.

3. Getting to Know Your Workspace

In this section, we cover all the tools and panels on your workspace.
Figure 1.6 is a screenshot of what your workspace should look like after the
modifications described earlier, with each of the items labeled to match the
descriptions below.

Figure 1.6. An ideal workspace for programming surveys and
experiments. Each numbered area is described as follows.
Adobe product screenshot(s) reprinted with permission
from Adobe Systems Incorporated.

1) Center of Screen: The Stage.

This is the large white square in the middle of your screen. Think of this
square as a blank canvas. This is where you place components such as text,
pictures, buttons, and so forth; what is on this screen represents what
people see when they run the program.

2) Right Dock: Properties Panel.

8 Flash Programming For the social and Behavioral sciences

You use the Properties panel to change the attributes of any objects
you use, such as text fields, pictures, buttons, and so forth. Mainly you use
this panel to name your components (this will become important when
you want to reference them in the code) and change their size. In order to
view and edit the properties of any object, select it and click the Properties
icon. You can also change the properties of your whole Flash document by
clicking on the Properties icon with no object selected. You might want to
play with the size of the Stage, as the default size is small. A width by
height size of 800 × 600 is a good one as it should fit most browsers, but
you could even try 1024 × 768. You could also change the default color of
the Stage.

To change the size of the Stage, click on the Properties icon with nothing
selected. Under the Properties subheading, change the size to 800 × 600 pixels.

3) Right Dock: The Library.

When you use a component such as a radio button (see “Chapter 6:
Questionnaire Tools”), or import an image into the program, these will
appear in your Library. There is nothing there right now. You can also use
libraries from other open Flash projects, which is why there is a drop-down
menu for selecting which file’s library you are using.

4) Right Dock: Actions—Frame.

The Actions icon is a shortcut to the window in which you will write your
code. You will learn all about that in the next chapter.

5) Right Dock: Components.

Components form the basic building blocks of your program, and they
include buttons, check boxes, and lists. Although these various components
are described in detail in Chapter 6 on Questionnaire Tools, we use the But-
ton component right away in this chapter.

6) Right Dock: Component Inspector.

The Component Inspector is like a special properties panel specifically
for components. Each component has its own set of properties that can be
changed in the Component Inspector, and you will learn about these in
Chapter 6 (Questionnaire Tools). Note that this panel is only required for

Chapter 1 the Flash interFace 9

Adobe Flash 5 or earlier. In Flash 5.5, the properties for components are set
with the Properties panel.

7) Bottom Dock: Timeline.

At the moment, the Timeline consists of small rectangles, each of which
is a Frame. However, we want to make these bigger so that we can actually
see what is on them.

To enlarge the Frame icons in the Timeline, go to the drop-down menu in the
top right corner of the Timeline tab and select Preview.

Note that unfortunately, this modification will not save to your work-
space, so you will have to do this every time you load Flash.

The Timeline allows you to navigate to any Frame in your project.
Frames are typically used in movie clips, but for our purposes, just think of
each separate Frame as a different screen in your survey or experiment. For
instance, instructions would appear on one Frame, and then the study
phase would appear on another. The Frames do not actually have to appear
in order on the Timeline, as we are not going to be playing through the
Frames like a movie clip. Instead, there will be code associated with each
Frame telling the program which Frame to go to next. For more informa-
tion on Frames, see Chapter 3.

Have a close look at the Timeline. At the moment, only one of the
squares that represents the Frames in your project is surrounded by a
black border. This means that the other Frames are not there—the blank
squares without borders are just placeholders that can have Frames
inserted into them. The red rectangle above the first Frame is the play-
head, which indicates the Frame that you are on (and hence, the one
displayed on the Stage). You will learn how to add new Frames in the next
chapter.

On the left-hand side of the Timeline, you will notice the words “Layer 1.”
Layers are useful for complicated visual layouts, but for our purposes, one
layer in the main program will suffice. You can also ignore the tools next to
the Layer name, which allow you to lock layers/make them invisible. If you
notice that your Timeline has more than one Layer, you may have accidentally
double-clicked a component on your Stage and gone into Edit mode. To
return to the normal mode, click on “Scene 1” at the top left of your Stage
(circled in Figure 1.6).

10 Flash Programming For the social and Behavioral sciences

 8) Bottom Dock: Output.

The Output window is where the program displays any information you
tell it to output in the code. For instance, you can tell it to display the con-
tents of any variable. We will learn how to do this in the next chapter.

 9) Bottom Dock: Compiler Errors.

If there are any problems with your code when you compile it, they
appear here with Frame number and line reference, as well as an error code
so that you can look up your error. This is what we use for simple debugging.
For instance, if you misspell a variable name, or put in an extra character
somewhere in the program, it is flagged here. There is also a more advanced
Debugger, but it is beyond the scope of this book. Compiler errors are usually
enough to help you figure out what is wrong in a relatively simple program.

10) Left Dock: Tools Panel.

If you have used any Adobe products, you will recognize some of these
tools. For now, we use two of the tools: the Selection Tool (black arrow)
and the Text Tool (the T).

 4. Adding Elements to Your Stage

You will now learn how to insert images and buttons into your program. This
will set you up for learning how to make things happen when buttons are
pressed, in the next chapter.

Inserting images is almost as simple as pasting an image into a
PowerPoint slide. There is just one extra step—saving the image in the
Library for your project.

To insert an image into your program, paste it onto the Stage. Now click on the
Library icon; you will find your image there, named “Bitmap 1.” Change its
name to something more specific.

If you ever need to use this image again, you can just drag it onto the
Stage from your Library. You can now resize the image by clicking on
Properties with the image selected. Note that any changes you make to the
dimensions of the image when it sits on your Stage will not transfer to the
version in the Library.

Chapter 1 the Flash interFace 11

You can also change the location of the image by editing the X and Y
coordinates in the Properties panel, although obviously it is easier to just
drag the image by clicking on the selection tool. However, coordi-
nates can be useful for lining things up on different Frames or if you want
to change the position of the image from within the code while the pro-
gram is running.

Inserting a button is also a simple process. A standard button template is
available in the Components panel.

To insert a standard button into your program, first open the Components
panel by clicking on the icon. Then look under the User Interface folder,
where you will find the Button component at the top of the list. Drag this
onto the Stage.

Dragging the Button component onto the Stage creates what is called
an “instance” of this component. You can think of the actual component
as a template. The first thing you need to do with this new instance of the
Button component is give it an Instance Name. An Instance Name is a
unique name that does not belong to any other object on your Stage and
is used to reference the button from the code in order to manipulate it
(e.g., make it appear/disappear) or change its appearance. This is crucial
for the code you write in Chapter 3 to make something happen when the
button is clicked. To make it easier to remember the names of your
objects and identify them in the code, try to use Instance Names that are
informative and always start with the same abbreviation for each different
component. In this book, the prefix “btn” is used for all button Instance
Names.

To give your button an Instance Name, click on Properties with the button
selected. Replace <Instance Name> in the top field with “btnEnter.”

The instance of the Button component now on your Stage can be resized
and given its own label that will be visible to the user (by clicking on
Properties with the button selected), but these changes will not affect the
Button component.

If you do not like the look of the standard button, there are other
options available to you. Figure 1.7 shows a small selection of the available
options.

www.allitebooks.com

http://www.allitebooks.org

12 Flash Programming For the social and Behavioral sciences

For a larger variety of buttons, go to Windows à Common Libraries à
Buttons. You will see a drop-down menu of button categories. Click on a cat-
egory to see what buttons are available. Note that some of the items in the list
are not buttons but elements that make up the buttons. To preview a button,
click on its name and you will see it appear above the list. Drag a button over
to your Stage to add it to your program.

Figure 1.7. Standard button (top) and a selection of other button
templates available in the Library. Adobe product
screenshot(s) reprinted with permission from Adobe
Systems Incorporated.

Chapter 1 the Flash interFace 13

Here you find a large number of arguably visually appealing buttons
that can be dragged onto your Stage. They are then copied to your
Library so that they can be located easily when you need them again.
Remember to give each button on your Stage an Instance Name, and
don’t forget that no two components on the same Frame can have the
same Instance Name.

The only caveat is that editing the label on these buttons is more diffi-
cult than with the standard component. To edit the button’s label, you need
to edit the visual properties of your button, but this is beyond the scope of
this book.

Finally, you can also make any image into a button. Please consult
the tutorials in the Resources section for how to change the visual prop-
erties of buttons and how to create buttons from an image on your
Stage.

In this chapter, you learned that we will only use one type of file (the
ActionScript 3.0 file type). You also learned that Flash allows you to create
and save your own ideal workspace, and you were provided with suggestions
for what to include in this workspace. The chapter gave an overview of the
various tools you will use most often in your projects. Finally, you took your
first step in designing a Flash project by inserting images and buttons to a
blank project. Importantly, you learned that every component in your project
is given its own unique Instance Name that you can use later to refer to that
component in the code. You are now ready to start learning the code that will
make your project come to life.

Resources

The following links are hot-linked for your convenience at http://www.sagepub
.com/weinstein.

http://tv.adobe.com/channel/how-to/
Adobe TV, which contains a series of useful how–to videos.

http://www.adobe.com/devnet/flash/articles/flash_cs5_createfla.html
Another introduction to the Flash workspace.

http://www.video2brain.com/en/videos-699.htm
A video introducing the Flash interface.

14 Flash Programming For the social and Behavioral sciences

http://www.flashvalley.com/fv_articles/Naming_conventions_in_actionscript/
Some thoughts about naming conventions in Flash.

http://www.webwasp.co.uk/tutorials/005/MX02/index.php
A tutorial about Buttons.

http://www.utexas.edu/learn/flash/buttons.html
Another tutorial about Buttons.

http://www.macloo.com/examples/flash/button_states/
An illustration of the various Button states.

http://www.toxiclab.org/tutorial.asp?ID=69
A tutorial for creating complex Buttons.

15

Chapter 2

aCtionSCript BaSiCS

IN THIS CHAPTER, YOU WILL LEARN

•• How to use the Actions panel to enter code

•• Some very basic Flash terminology and four important coding conventions

•• The order in which Flash executes code

•• The differences between variable types and how to define a new variable

•• How to perform mathematical operations on a Number variable

•• How to compile your program and look out for compiler errors

•• How to send information to the Output tab

•• How to define and call functions and conditional statements

•• How to use three different loops to perform repeated actions

In this chapter, we will cover some of the basic terminology, code syntax, and
conventions that are all necessary for programming even the most basic
experiments. Some of this information might seem a bit abstract right now,
but it really does pay to understand these basic concepts from the start. You
should work through this chapter first to get the hang of the basics and then
use it as a reference when you advance to further chapters, which build upon
the concepts introduced here. All you need in order to follow along with this
chapter is a new blank ActionScript 3.0 file.

16 Flash Programming For the social and Behavioral sciences

 1. Entering Code: Actions Panel

The first thing you need to know to start playing with ActionScript code is
where to type it in. The Flash interface does not make this very intuitive.

To get to the Actions window where you enter code, select a Frame in the
Timeline and click on the Actions shortcut button in your right dock.
Alternatively, right-click on a Frame in the Timeline and click on Actions (at the
bottom of the list).

The Actions panel (see Figure 2.1) is divided into three subpanels: the
main subpanel on the right where you enter the code, a subpanel that lists
all the possible methods you can use in your code, and a subpanel listing all
the Frames that have any code attached to them. Every bit of code you write
is attached to a particular Frame. To the bottom left of the main subpanel,
you will see a tab that indicates which Frame you are currently writing code
for and on which Layer the code is being saved (e.g., “Layer 1 : 1” means that
you are writing code on Layer 1 for Frame 1). Line numbers appear in the
blue column on the left to help you keep track of the code.

Figure 2.1. Actions panel with key features. Adobe product screenshot(s) reprinted with
permission from Adobe Systems Incorporated.

Chapter 2 actionscriPt Basics 17

2. Terminology

Knowledge of Flash programming terminology is fundamental because it
allows you to communicate accurately and concisely with fellow program-
mers. Being familiar with commonly used terms in Flash will help immensely
if you ever find yourself stuck and need to look either within or outside of
this guide for a solution. Here we have compiled the most crucial terms for
describing your code:

Functions package up a set of instructions for the program to carry
out. You give those packages unique names. Then you can call the functions
whenever you need them, instead of writing out the same code over and over
again in the program.

Methods are like functions that have already been defined by ActionScript
(instead of by you). Different components have different methods associated
with them, which you can look up in the ActionScript Language Reference.

Properties can be thought of as adjectives that describe your compo-
nents. Properties are accessed or changed by writing code that references the
property by name (e.g., size).

Variables are containers that can store a piece of information. There
are different types of variables, which differ according to what sort of infor-
mation they can store (discussed later).

3. Coding Conventions

It is important to know some basic coding practices at the outset so that you
get into good programming habits. Here are some simple tips and conven-
tions to keep in mind:

1) Insert comments throughout your code to explain what each set of
actions is for.

These explanatory comments are indispensable for sharing the program
with others and helping you understand what a certain piece of code does
when you go back to it long after you wrote it. Comments appear grayed out
and the program skips over them when executing the code.

To insert a comment into the code, start the line with “//”. You will notice
that the font immediately turns gray, indicating that this line is ignored by the
program. The next line will once again appear in black font and will be read
by the program.

18 Flash Programming For the social and Behavioral sciences

//This is a comment that explains the code.

For longer comments, start the line with “/*”. You can then continue the
comment on the next line and end it with “*/” whenever you wish. This is also
a useful way to disable chunks of code if you are trying to test your program
and do not want it to execute some of the code. Remember, everything on a
line after “//” or on any lines between “/*” and “*/” is not executed by the
program.

/*This is a comment

that extends over multiple lines.*/

2) Start every Frame’s code with a statement that tells the program to
stop on that particular Frame:

stop();

Unless you do this, if you have multiple Frames in your program Flash
will cycle endlessly through the Frames as if they were part of a film strip. If
you try typing “stop” into your code, you will notice that the word changes
color. This happens to all words that are part of ActionScript 3.0 and are
already associated with a component or method in Flash (note that there
are various colors that words can take, but the distinction is not important).
It would thus be unwise to use any such words to name any of your own
variables or functions (more on functions in a minute); if you do, Flash will
get confused and think you are asking it to execute the actions associated
with that word. When writing code, pay attention to which words change
color. If a word that should be a known Flash method does not change color,
you may have spelled it wrong; if a word you chose as a name for your vari-
able or function changes color, you should pick a different name.

The empty parentheses after stop are where you would put parameters
associated with the method—more on that later. The stop method does not
need to have any parameters associated with it in order for it to work (i.e.,
no other information is necessary for the statement to execute), so the
parentheses remain empty whenever you use this method.

3) Always end each statement with a semicolon, as in the previous
example.

Chapter 2 actionscriPt Basics 19

For now, you may be confused about what constitutes a statement and
what does not, but this will soon become clear. Although semicolons will not
change the way your program is executed, it is a good programming conven-
tion to include them because it clearly circumscribes each statement. Using
semicolons could also be a lifesaver if your code ever loses its line breaks
(e.g., if you copy and paste it into a text file).

4) Always use the correct capitalization in your methods and when
calling variables and functions.

ActionScript is case-sensitive: “Stop” with a capital “S” will not do the
same thing as “stop” with a lowercase “s” (in fact, it won’t do anything). If you
have typed what you believe to be a known ActionScript method and it
does not change color, check your capitalizations. Misspellings are also the
most common cause of errors when the program tries to compile. If you
have misspelled a variable or function name, the program will think you are
referring to an object that does not exist.

A convention used in this book and in most online code samples is
related to capitalization—names of functions, methods, properties, and vari-
ables all begin with a lowercase letter. If the name includes more than one
word or abbreviation, the first letter of the second word is usually capitalized
(and do note that spaces cannot be used). Thus, you should try to write
names such as “score,” “subjectScore,” and “subjectScoreA,” but never names
like “Score,” “subjectscore,” or “subject score.”

4. Order of Execution

When you enter a Frame, Flash reads the code from left to right, top to
bottom. All code that is not contained within a function will execute imme-
diately in the order that it is written. Functions themselves will not execute
unless they are explicitly called from within the code or when an event that
triggers the function occurs. Events can include user input such as mouse
clicks or key presses and those that occur within the program such as a
timer expiring.

The order of execution also applies to code within a function. A mis-
take in the order of written statements within the code is often responsi-
ble for unexpected behavior from your program. For instance, imagine you
have a function that saves user input from a text field and clears the text
field so that the user can answer the next question. If you write the

20 Flash Programming For the social and Behavioral sciences

statement that clears the text field before the statement that saves the user
input, you will be unable to save the input because the field has already
been cleared.

 5. Variables

Table 2.1 summarizes the main variable types that we use throughout
this book.

Data type Example Description

Number 4.5 Any number, including floating point
values (decimals)

int −5 Any integer or whole number
String “hello” Text or a string of characters
Boolean true True or False
Array [2, 9, 17] More than one value in a single variable

Table 2.1. Data types and examples.

When you define a new variable, you need to give it a name that is
unique to the variable. You will then use that name to reference the variable
later on.

/*This is how you define three different
variables*/

var myNumber:Number = new Number;

var myInteger:int = new int;

var myString:String = new String;

/*After you have defined them, assign values to
your variables like this:*/

myNumber = 2.345;

myInteger = 10;

myString = “I am learning Flash!”;

Chapter 2 actionscriPt Basics 21

You can also assign a value to the variable in the same line as you
define it (note that you can only use this code OR the code which sepa-
rates the definition and value assignment into two lines; if you use both,
Flash will throw up an error because you are defining the same variable
twice in one project):

var myNumber:Number = 2.345;

var myInteger:int = 10;

var myString:String = “I am learning Flash!”;

The “=” sign used here is not an “equals” sign as you might intuit—
instead, it is commonly called “gets” (i.e., “myNumber gets 2.345”). What this
means is that, in this example, the variable name myNumber now refers to
the value that has been assigned to it; in a sense, myNumber becomes 2.345.
In subsequent code, you can now use myNumber whenever you want to use
the value stored in this variable. (You will learn later on that to check for
equality, you will use the double equals operator, or “==.”)

6. Simple Mathematical Operations

The easiest way to become acquainted with ActionScript is to get the pro-
gram to do some simple math. We start by creating a Number variable and
then we manipulate this variable with some basic operations. To follow along
with this example, delete the code you entered in the previous example or
start with a new blank ActionScript 3.0 file, but remember to put stop();
at the top of the Frame.

/*Create a Number variable and give it an
initial value of 0*/

var myNumber:Number = 0;

Performing mathematical operations in Flash is easy. Just remember that
a mathematical statement with an equals sign will assign the value on the
right of the equation to the variable identified on the left of the equation. See
the Resources for a link to a list of acceptable mathematical operations.

www.allitebooks.com

http://www.allitebooks.org

22 Flash Programming For the social and Behavioral sciences

/*Here are a few mathematical operations to try*/

myNumber = myNumber + 5;

myNumber = myNumber – 10;

myNumber = myNumber * 3;

myNumber = myNumber / 2;

 7. Compiling the Program

You are now ready to compile the program. At the moment, nothing interest-
ing is going to happen when the program is compiled, but you can check to
see if you have any errors in your code.

To compile the program, press Ctrl+ENTER in Windows or +ENTER on a Mac.

You should now see a pop-up screen with the contents of your Stage; for
now it is blank. Compiling the program creates a .swf file in the same folder
as your .fla file. This is a movie version of your program, which you can run
but not edit.

If you have made any errors in your code (e.g., a misspelled variable
name), they will appear in the Compiler Errors tab. The error message will
include a reference to the Frame and line in which the error occurs. For
instance, if you misspell the name of a variable, Flash will not recognize what
you are asking it to do. Imagine you type the following code:

var myNumber:Number = new Number;

mynumber = 1;

Because Flash is case sensitive, the variable “mynumber” will not be rec-
ognized, and you will get the error message shown in Figure 2.2.

Chapter 2 actionscriPt Basics 23

For a list of the most common errors people make in their programs, see
the link in the Resources section. If you receive an error that is not listed
there, try googling the phrase to see what other programmers have done to
eliminate the error.

8. Sending Information to the Output Tab

It would now be useful to actually see the result of your mathematical opera-
tions. Right now, if you compile the program, the operations will be carried
out, but you will not be shown the result. To get the program to produce
visible information, we use the trace method, which sends information to
the Output tab for you to view while the program is running. In order to see
the contents of a variable at any given time, simply type “trace” followed by
the variable name in parentheses.

/*Add this line of code whenever you want to
trace the contents of your Number variable.*/

trace(myNumber);

Note that you need to include this line of code after every mathematical
operation in the previous example if you want to output the result of each
calculation. To make the most use out of the trace method, you can also

Figure 2.2. Compiler error resulting from misspelling the variable
name “myNumber” as “mynumber.” Adobe product
screenshot(s) reprinted with permission from Adobe
Systems Incorporated.

24 Flash Programming For the social and Behavioral sciences

include any text you like with the output, kind of like a comment. Enclose the
text in quotation marks, and notice that it goes green. In this book, quoted
text is shown in light blue, but in your code it should be green.

myNumber = myNumber/2;

trace(“the result of dividing my number by 2 is”,
myNumber);

 9. Functions

Functions are just packages of instructions for the program to carry out.
Functions are named in the same way variables are—you simply give your
new function a unique name, and use that name to call the function later.

/*Here’s how you define a function (but do not
type this into your program yet, as the bolded
words are just placeholders)*/

function functionName(<input>):<output>

{

 //This is where your actions will go;

}

The <input> and <output> placeholders are parameters of the func-
tion, and the grayed out comment is where the events that take place when
the function is executed will go. The input parameter is used when the func-
tion is called by an action from the user. For instance, if you are going to get
the function to execute when the user clicks a mouse button (see Chapter 3)
or presses a key (see Chapter 4), you need to include that information in the
input. The output parameter is used to pass information out of the function.
We do not need to worry about that until a later chapter (“Chapter 5: Present-
ing and Storing Information in Arrays”). If you are going to be calling the
function from the code instead of in response to a user’s actions, you do not

Chapter 2 actionscriPt Basics 25

need an input or an output. In this case, you would leave the parentheses
empty and put “void” where there would be output:

/*This function will perform a mathematical
operation*/

function functionName():void

{

 myNumber = myNumber/2;

 trace(“The function was executed and myNumber
is equal to”, myNumber);

}

If you enclose the mathematical operations you were trying out earlier in
the chapter within a function, you will notice that the operation does not
occur if you compile your program. This is because the function needs to be
called first. Calling a function from the code is very easy. You simply type the
name of the function with empty parentheses to indicate that you are not
passing any input to the function:

functionName();

Whenever you type the name of your function like this in the code, it will
immediately execute. Another way to execute a function is in response to an
event, such as the user pressing a button. This is covered in the next chapter.

10. Conditional Statements

Understanding conditional statements is also a prerequisite for Flash pro-
gramming. These logical arguments allow you to make different things hap-
pen depending on whether certain conditions are met. For instance, you
might have different versions of the program with different sets of questions,
or the user’s response to one question may determine whether the user is
asked another. With a conditional statement, you tell the program to check
whether a certain condition is met. If this condition is met, a set of actions is
executed. This is the basis of a simple if/then statement.

26 Flash Programming For the social and Behavioral sciences

/*Syntax for a basic if/then statement (bolded
phrase will be replaced with a statement)*/

if (<first condition to be satisfied>)

{

//This is where your actions will go;

}

Note that even though the statement implies “if . . . then . . .,” you do not
have to type the word “then.” Instead, the action to be carried out is con-
tained within curly brackets after the word if or else if or else.

To describe the condition that needs to be satisfied in order for an action
to be performed, use two equals signs “==” to mean “is” (see one of the
links in the Resources section for other useful conditional operators). Be
careful not to use a single equals sign, which will simply change your variable
to be equal to that value (as in the previous mathematical operations).

You can add the following code to the program you have been working
on, where you perform various mathematical operations on the variable
“myNumber.”

/*This code checks the result of your math
operation and traces a message if the result is
10*/

if (myNumber == 10)

{

 trace(“Perfect Ten!”);

}

Try out this code with various values and mathematical operations on
myNumber; you should get the “Perfect Ten!” message traced in the Output
when the result of the mathematical operation is 10. If this is not happening,
make sure that the conditional statement checking the result of your opera-
tion comes after the operation in the code.

Chapter 2 actionscriPt Basics 27

You can build on your if statement by adding additional conditions
using else if.

if(myNumber == 10)

{

 trace(“Perfect Ten!”);

}

else if(myNumber < 10)

{

 trace(“under ten”);

}

else if(myNumber > 10)

{

 trace(“over 10”);

}

Initially, the program will determine whether the first condition is satis-
fied (in this example, whether “myNumber” is equal to 10). If the first condi-
tion is satisfied, the actions in the first curly brackets will be carried out and
the remaining code in the else if statements will be skipped. If the first
condition is not satisfied (here, if myNumber is not equal to 10), the program
moves on to the second condition—the one listed under else if—and
repeats the same process. You can have as many else if statements as you
like, and the program will work through them sequentially from top to bot-
tom until a condition is satisfied.

You can also include a catch-all else condition. If no conditions are
satisfied, the actions under else will be performed.

if(myNumber == 10)

{

Box (Continued)

28 Flash Programming For the social and Behavioral sciences

 trace(“Perfect Ten!”);

}

else

{

 trace(“Try again!”);

}

Note that you are not obliged to include the else statement. If you have
no else statement, the program will not carry out any actions unless one of
the conditions is satisfied.

When writing conditional statements, do not get confused between a
string of if statements and a statement with multiple conditions. For instance,
consider the following two sets of statements:

/*This set of conditional statements will
output “Perfect Ten!” if myNumber is equal to 10,
and “Not Bad!” if myNumber is not equal to 10 but
is larger than 5.*/

if(myNumber == 10)

{

 trace(“Perfect Ten!”)

}

else if(myNumber > 5)

{

 trace(“Not Bad!”)

}

/*This set of conditional statements, on the
other hand, will output “Perfect Ten!” if myNumber

Box (Continued)

Chapter 2 actionscriPt Basics 29

Box (Continued)

is equal to 10, and it will also output “Not Bad!”
if myNumber is larger than 5 (even if it is equal
to 10).*/

if(myNumber == 10)

{

 trace(“Perfect Ten!”)

}

if(myNumber > 5)

{

 trace(“Not Bad!”)

}

Here is another worked out example that demonstrates the use of con-
ditionals in more depth. Say that you are a professor who wants to write a
program to determine if a student needs extra tutoring. You assess that stu-
dent’s knowledge (on a 0-100 scale) on four domains named domain1,
domain2, domain3, and domain4. You decide that a student needs tutoring if
any of those domains receive a failing grade (less than a 60, for our purposes)
or if the overall average score of those domains is less than a 75. Here is how
you would use conditionals to make this judgment:

if(domain1 < 60 || domain2 < 60 || domain3 < 60
|| domain4 < 60)

{

trace(“You need tutoring for failing a
domain.”);

}

else if ((domain1 + domain2 + domain3 + domain4)
/ 4 < 75)

{

30 Flash Programming For the social and Behavioral sciences

trace(“You need tutoring for getting a low
average.”);

}

else

{

trace(“You do not need tutoring!”)

}

Note that the first line of code makes use of the “pipes” (i.e., “||”).
This symbol represents an inclusive OR. Thus, the if statement is triggered
if any of the four substatements are true; namely, if any of the four domains
score less than 60. You can also use “&&” to represent AND. If you
swapped && out for || every time it appeared on line one, the “You need
tutoring for failing a domain” message would only display if EVERY domain
scored less than 60.

Here is another example. Say you want to write an algorithm to deter-
mine if an individual is eligible to become president of the United States. The
U.S. Constitution requires one to meet three requirements to be president:
(1) the individual must be a natural-born citizen, (2) he or she must be at
least 35 years of age, and (3) this person must have been a permanent resi-
dent for at least 14 years.

We happen to have this information saved already—the person’s age as
an int, his or her citizenship as a Boolean (true—a citizen—or false—
not), and his or her time spent as a citizen as another int.

This is easy to do. We could write this:

if (age >= 35)

{

 if (citizen == true)

 {

Box (Continued)

Chapter 2 actionscriPt Basics 31

 if (timeSpent >= 14)

 {

 trace(“This person can become
president.”);

 }

 }

}

11. Loops

Loops allow you to execute a piece of code repeatedly. You use loops if you
want to do the same thing to a set of items, for instance, to every element in
an Array (see Chapter 5). The following different types of loops each have
their own advantages:

For loops define a counter to keep track of the number of times the
code in the loop has executed, and exit the loop when the counter
reaches the specified value.

While loops define a condition, and the loop keeps executing until the
condition is no longer true.

Do while loops are the same as while loops, but the actions are exe-
cuted once regardless of whether the condition is true, and then the
loop keeps executing until the condition is no longer true.

To follow along with this example, make sure you have defined the
myNumber variable in your current project. To make the for loop work, you
need to give it four pieces of information:

1) The initial value of the counter

2) The value at which the counter should stop iterating

3) The increment to the counter on each loop

4) What actions to execute on each loop

www.allitebooks.com

http://www.allitebooks.org

32 Flash Programming For the social and Behavioral sciences

/*Here is a for loop that multiplies myNumber
by itself each time the loop executes*/

//This for loop will execute five times;

var i:int = 0;

for(i = 0; i < 5; i++)

{

 myNumber = myNumber * myNumber;

trace(“loop number: “, i, “myNumber = “,
myNumber)

}

Looking at the definition of the for loop (right after the word for), the
first statement (i = 0) indicates that the initial value of the counter (i) is set
at 0. The next statement (i < 5) indicates that the value at which the coun-
ter should stop iterating is set at 5. That is, the loop will execute when the
counter is at 0, 1, 2, 3, and 4, but not once the counter reaches 5. The third
statement (i++) indicates that each time the loop executes, 1 is added to
the counter.

Looking now at the actions in the for loop, each time the loop executes,
the first line multiples myNumber by itself. The next line outputs the loop
number and the result of the mathematical operation.

To make a while loop work, all you need to define is a condition that will
stop the loop when it is no longer satisfied (make sure you still have a vari-
able called myNumber defined in your project to try out this code):

/*The following while loop executes the same
actions as the previous for loop, but it stops when
myNumber exceeds 100:*/

myNumber = 5;

while (myNumber < 100)

{

Chapter 2 actionscriPt Basics 33

 myNumber=myNumber * myNumber;

 trace(“the while loop executed and myNumber
= ” myNumber);

}

This loop continues to execute until “myNumber” is no longer smaller
than 100. If this loop does not seem to be executing, check to see if the
original value of “myNumber” is larger than 100. Although while loops might
seem more straightforward than for loops, the danger with while loops is that
you might accidentally write an “infinite” loop, one that never exits because
the condition you set is never met. Have a look at the following example (but
don’t try this code out, or the program will crash—we have put the code in
a comment just in case):

/*An example of an infinite while loop:

myNumber = 5;

while(myNumber > 1)

{

 myNumber=myNumber * myNumber;

 trace(myNumber);

}*/

Because “myNumber” is always going to be greater than 1, this while
loop will execute infinitely and the program will not be able to continue on
to the next actions.

The do while loop is exactly the same as a while loop except that the
actions in the loop will execute once even if the condition for exiting the loop
has already been met.

//The following do while loop will execute once:

myNumber = 5;
Box (Continued)

34 Flash Programming For the social and Behavioral sciences

do

{

 myNumber = myNumber * myNumber;

 trace(myNumber);

}

while (myNumber < 5)

Exercise: This function is supposed to guess the height (in feet) of a
child, depending on his or her age (in years).

if (age <= 1)

{

height = 1.5;

}

if (age <= 5)

{

height = 4.5;

}

else

{

height = 5;

}

Without typing this code into your program to test it, answer the follow-
ing question: What height will the conditional statement output for the fol-
lowing ages: 1, 4, and 8 years? Now rewrite the conditional statements so that
they produce different estimates for different ages.

Box (Continued)

Chapter 2 actionscriPt Basics 35

In this chapter, you learned that code is entered in the Actions
panel and each chunk of code you enter is linked to a specific Frame. You
then learned four important definitions: functions, methods, prop-
erties, and variables. Next, you learned about four important
coding conventions: 1) using comments throughout the code as expla-
nations, 2) starting every Frame’s code with the statement stop(), 3)
ending each statement with a semicolon, and 4) using correct capitaliza-
tion throughout your code. You then discovered the order in which Flash
reads your code (everything in the current Frame is read from top to
bottom, except for code contained in functions, which is only read when
that function is called).

Next you learned about variable types, each of which stores a different
type of information. Focusing on one of these variables types (Number), you
learned how to perform basic mathematical operations. Once your first pro-
gram was ready, you learned that you can compile it by pressing Crtl+ENTER
or +ENTER. You then discovered two important windows: Compile Errors,
where you are informed about any bugs in your program, and Output, where
you can send information from your program.

You also learned a lot of coding basics in this chapter: how to define
and call functions, how to write conditional statements so that actions are
executed only when certain conditions are met, and how to define loops
so that actions can be repeated multiple times. This chapter is full of use-
ful basic information that you might forget later on, so do use it as a
reference point.

12. Resources

The following links are hot-linked for your convenience at http://www.sage-
pub.com/weinstein.

http://help.adobe.com/en_US/flash/cs/using/WS3e7c64e37a1d85e1e229
110db38dec34-7feba.html
Discusses the “code hinting” feature in Flash.

http://www.sunilb.com/programming/12-common-programming-mistakes-
to-avoid
Common programming mistakes.

http://www.foundation-flash.com/tutorials/debugging/
Common errors people make in Flash and how to fix them.

36 Flash Programming For the social and Behavioral sciences

http://home.earthlink.net/~craie/121/notes/vocabulary.html
Programming language vocabulary basics.

http://www.adobe.com/livedocs/flash/9.0/main/wwhelp/wwhimpl/common/
html/wwhelp.htm?context=LiveDocs_Parts&file=00000047.html
Flash data type reference.

http://flash-creations.com/notes/actionscript_operators.php
Common mathematical operators in Flash.

http://www.actionscript.org/forums/showthread.php3?t=177515
A forum discussion of what precisely “void” means in functions.

http://www.actionscript.org/resources/articles/5/1/The-power-of-nested-
loops/Page1.html
Using “nested for loops” in Flash.

37

Chapter 3

NavigatioN

IN THIS CHAPTER, YOU WILL LEARN

•• To use a flowchart to plan your program

•• How to insert and name new Frames

•• How to make Flash respond to an event

•• How to write a function that jumps from Frame to Frame

•• How to use Frame numbers and names for navigation

•• How to reuse a function

•• How to remove Event Listeners to maintain clean code

Many programmers will conceptualize their programs in terms of a flowchart:
A certain answer to a prompt will determine what happens next. In this chap-
ter, we discuss how to move from one element of the flowchart to another.
The experimenter needs to be able to do this in order to direct where the
user will go next. That is, clicking a button might let the user proceed from
the instructions to the experiment itself, or proceed to the next question, or
perhaps to go back to a previous question in order to change an answer. To
make this happen, the programmer must write code that tells the program
what to show the user at each step in the flowchart.

The following flowchart (see Figure 3.1) may be humorous, but the mes-
sage is true: Always start with a flowchart. In this chapter, we build a program
that takes the user through the steps in this flowchart.

38 Flash Programming For the social and Behavioral sciences

 1. Inserting New Frames

You will probably use a new Frame each time you significantly change what
you are presenting to the user in terms of layout and formatting. For instance,
you might have one Frame for instructions, although multiple screens of
instructions could be presented by refreshing the text without changing to a
new Frame (see Chapter 4). Another example would be a multitrial experi-
ment where you are presenting participants with lists of words. It would be
inefficient to use a separate Frame for each word in the list but sensible to
change Frames for the recognition test following the study phase, as this
would need to have a different layout. In essence, you can think of each
Frame as a template.

For the program in this chapter, we treat each of the steps in the flow-
chart as a separate Frame, so we need three Frames (one for the question
and one for each of the two outcomes). If you go to your Timeline in a new
project, you will see that there is only one Frame in your project. You have
two main options for inserting a new Frame.

To insert a new blank Frame, right-click on an empty placeholder and select
Insert Blank Keyframe.

Figure 3.1. Example of a simple flowchart.

Source: Kevin Gilmour/flickr

Chapter 3 navigation 39

To insert a new Frame that is a copy of the previous frame, right-click on an
empty placeholder and select Insert Keyframe.

You will also see the option Insert Frame in the menu. Do not select
this option because it will create a Frame that cannot have any code attached
to it. These types of frames are used in animations. Since we are using Flash
for a completely different purpose, we want each Frame to accept code, so
we always use Keyframes.

2. Naming Frames

There are two main ways you can navigate between Frames. One way is by using
the Frame numbers automatically assigned to each Frame you add in the Time-
line. The first Frame that is already in the Timeline when you create a new pro-
gram is numbered Frame 1, and subsequent Frames are numbered consecutively.

Another way is by naming each Frame and referring to that name in the
code when you want to jump to it. The Frame numbers method is easier
because you do not have to worry about naming Frames. However, if you
change the order of the Frames in the Timeline, you will have to change the
code to reference the correct Frames. It may also become difficult to remem-
ber which Frame contains which step of your program if you use many
Frames. We therefore recommend giving each of your Frames a descriptive
name and using these names for navigation.

To name a Frame, click on it in the Timeline and then click on Properties.
Name the Frame under LABEL à Name.

Be sure to use different names for each of your Frames. The program will
still compile if you have named more than one Frame the same thing, but it
will issue a warning indicating where you have the duplicate (see Figure 3.2).

Figure 3.2. Duplicate label warning. Adobe product screenshot(s)
reprinted with permission from Adobe Systems Incorporated.

40 Flash Programming For the social and Behavioral sciences

To follow along with the example in this chapter, you need to create
three Frames and name them as follows:

1) “flowchart”

2) “wellDone”

3) “getAFlowchart”

You will learn much more about manipulating text in Chapter 4, but for
now just click on the Text tool (the T) and add the following text to each
Frame:

1) “Do you have a flowchart?”

2) “Well done. Carry on.”

3) “Get a flowchart.”

Finally, you need to add two buttons to Frame 1: one that says “Yes” and
another that says “No.” Give these buttons the Instance Names “btnYes” and
“btnNo,” respectively. Refer to “Chapter 1: The Flash Interface” for instruc-
tions on how to add and name buttons.

 3. Responding to a Button Press

We are going to write code that makes the program jump to a new Frame
when the user hits a button. To understand the code, you need to under-
stand the logic ActionScript uses to execute statements.

The code that we need to write in order to respond to a button press
consists of two components: one part that tells the program to expect the
button press and the other part that tells the program what to do when
the button is pressed. The first part is called the event listener, because it tells
the program to listen out for an event (in this case, a button press, but event
listeners can listen out for many different events such as key strokes or a
certain amount of time passing). The second part of the code is a function,
which contains instructions for what the program should do when this func-
tion is called. The event listener code responds to the button press by calling
and executing the function. Following is a template for code that listens for a
button press and triggers a function. We will write the function itself later. Do
not type this code into your program yet, because we still need to replace the
bolded placeholders with the appropriate information.

Chapter 3 navigation 41

<target>.addEventListener(<EventType.EVENT_
NAME>, <functionName>);

Before we can replace the placeholders with specified information, we
need to understand the code, so let us examine each part of the code in turn.

<target> refers to whatever object you would like the user to be able
to interact with. In this case, it is a button. It could also be a text field or the
whole Stage itself. The event listener will only listen out for an event that
happens to the target referenced here. For instance, if you reference a but-
ton, it will only respond to that button and not any other button on the Stage.
This placeholder should be replaced with the Instance Name of the relevant
component on your Stage (refer to Chapter 1 for instructions on how to
place an instance of a button on your Stage and give it a unique Instance
Name). In this case, we would need two event listeners, one with the target
“btnNo” and the other with the target “btnYes.”

addEventListener is a known Flash method that tells the program
to listen out for an event; you do not need to replace this term.

<EventType> determines what sort of event is to be listened out for.
There are far too many different types of events (and specific events within
these types) to summarize here (see the Resources for a link to the complete
list). For now, we want the button to respond to a mouse click, so the type of
event we need to reference here is MouseEvent.

<EVENT_NAME> is the specific event within the specified event type that
we want the program to listen out for and respond to. Here, we want the
program to listen out for a mouse click on the button, so we replace the
placeholder with CLICK. Note that the event name is always in all caps.
Again, check the Resources for a link to the complete list of events the pro-
gram can respond to.

<eventResponse> is a placeholder for the name of the function that
is called when the relevant event occurs. Since the functions in our example
are going to execute when No or Yes buttons are pressed, let us call our two
functions “functionNo” and “functionYes.” Function names can be whatever
you want, but try to think of function names that are descriptive so that you
can keep track of all the functions in your program.

//Adding an EventListener to the button “btnNo”;

btnNo.addEventListener(MouseEvent.CLICK,
functionNo);

www.allitebooks.com

http://www.allitebooks.org

42 Flash Programming For the social and Behavioral sciences

All the words should now be blue other than the name of your button
and the name of your function. If they are not, check your spelling and capi-
talization. Note that the line of the code that adds an event listener is a state-
ment, so it needs to end with a semicolon.

//Adding an EventListener to the button “btnYes”;

btnYes.addEventListener(MouseEvent.CLICK,
functionYes);

 4. Code for Frame Navigation

The previous code is not a stand-alone code. In fact, if you tried to execute
this code by compiling the program, you would receive the error messages
shown in Figure 3.3.

Figure 3.3. Error due to referencing a function that has not been
defined. Adobe product screenshot(s) reprinted with
permission from Adobe Systems Incorporated.

This is because the event listener is triggering a function that you have
not yet defined. Remember from Chapter 2 that functions in general are built
on the following framework:

function <functionName>(<input>):<output>

{

 //Actions to be executed;

}

Chapter 3 navigation 43

<functionName> should match the name of the function you refer-
enced in the event listener. In this case, you will have two functions, one
called “functionYes” and the other “functionNo.”

<input> will be the event that is triggering the function. In this case,
the function is triggered by a mouse click, so the appropriate input is
MouseEvent (for a link to lists of possible events, consult the Resources
section). It is important to include the right input, otherwise the function will
not execute. There is no output associated with this function, so we replace
that field with the word void.

As we have already discussed, you should normally put a semicolon after
each line of code. However, the line that defines your function and its param-
eters is one exception to this rule; you should NOT put a semicolon after the
end of this line. If you do, the system will not process the subsequent lines
of code correctly. (You can think of an entire function as existing in one line
of code, spread out over several to make reading and editing it easier.) Do,
however, put a semicolon after each statement within your function.

/*The following code defines the function but
does not yet include the actions that take place
when the function is executed.*/

function functionYes(evt:MouseEvent):void

{

 //Actions to be executed;

}

The curly brackets encompass the body of the function. This is where you
place any code that you want to be executed when the function is called. Here we
use the gotoAndStop() method, which makes the program jump to which-
ever Frame we reference in parentheses. The Frame can be referenced either by
its number in the Timeline or the name assigned to it in the Properties Inspector.

//You can call a Frame by its number;

gotoAndStop(2);

//You can also call a Frame by its name;

gotoAndStop(“wellDone”);

44 Flash Programming For the social and Behavioral sciences

Note that if you are using a Frame name, this must be encompassed in
quotation marks. Otherwise, the program will think you are referencing a
variable.

Here is all the code we need to listen out for the button press and pro-
ceed to the next Frame when the user clicks the button (if you are trying out
this code, make sure that you have inserted and appropriately named
Frame 2 in your Timeline; see section 2 of this chapter):

stop();

btnYes.addEventListener(MouseEvent.CLICK,
functionYes);

function functionYes(evt:MouseEvent):void

{

 gotoAndStop(“wellDone”);

}

Exercise 1: Now that you know how to write a function that sends the
user to a different Frame, try adding the function that responds to the “No”
button. When that works, try using Frame numbers instead of Frame names
to navigate through your program.

 5. Reusing Functions

One important thing to consider when you are writing code is that you
should not have to write a new function every time you want something
to happen. In the previous example, we only wanted the user to be able
to skip from one Frame to two others, so having separate functions for
each of the buttons was OK. However, imagine your program consisted
of 10 Frames, and you wanted the user to go from Frame 1 to Frame 2,
and then from Frame 2 to Frame 3, and so on. One way to solve this
problem is to have a new button with a unique Instance Name, a new
event listener on each Frame that will send you to the appropriate next
Frame. Instead of this lengthy solution, you could achieve the same
behavior by reusing the same button, the same event listener, and the
same function.

Chapter 3 navigation 45

To follow along with this example, you need to do the following:

1) Start a new project.

2) Add at least five Blank Keyframes to your Timeline (there is no need
to name your Frames for this example).

3) Add a button to each Frame.

4) Give all the buttons the Instance Name “btnNavigate.” (Hint: If you
copy and paste the button onto each subsequent Frame, the
Instance Name will copy over too.)

5) Define a new function called “changeFrame,” but leave the actions
blank for now.

6) Add an event listener that responds to the button “btnNavigate” and
calls the function “changeFrame”.

Note that the advice to name the buttons on each screen with the same
Instance Name may seem counter to what you learned about Instance
Names. You are allowed to name the buttons the same thing in this case
because they will be on different Frames. The same button is essentially
appearing on each Frame.

To create a reusable function for navigating through your program, you
need to perform the following steps:

1) Create a variable to store the number of the Frame you want to
jump to.

2) Create a function that uses the gotoAndStop method to change
frames.

3) Reference the variable that holds the number of the Frame you want
to jump to in the gotoAndStop method.

4) Change the contents of the variable whenever you want to change
where the program will jump to on the next button click.

As you will remember from the previous chapter, there are a few different
variable types (if you do not remember, please reread the relevant section
of the chapter). To navigate by Frame number, we use the int (short for
integer) variable type, which stores whole numbers (i.e., no decimals or
fractions).

46 Flash Programming For the social and Behavioral sciences

/*Define a new int variable to store the Frame
number you want to navigate to next.*/

var nextFrameNumber = new int;

Now you need to write a statement in your function that uses the
gotoAndStop method to direct the program to the relevant Frame:

/*The following code should be inside your
“changeFrame” function*/

gotoAndStop(nextFrameNumber);

Note that unlike Frame names, variable names should not be enclosed in
quotation marks. If you put the variable name in quotations, Flash will read
the variable name as a text string and will look for a Frame called “nextFrame-
Number” instead of looking for the relevant variable.

The last step is to define the contents of the “nextFrameNumber” vari-
able on each Frame. Since we want the program to jump from Frame 1 to
Frame 2 and then from Frame 2 to Frame 3, the variable should be assigned
the integer 2 on Frame 1 and the integer 3 on Frame 2 (i.e., the number of
the next Frame we want to jump to).

/*For example, you would put the following code
in Frame 1*/

nextFrameNumber = 2;

To sum up, you now have an event listener and a function defined on
Frame 1. You then change the contents of the variable “nextFrameNumber”
on each subsequent Frame to determine where the program jumps to when
the button is clicked.

var nextFrameNumber:int = new int;

btnNavigate.addEventListener(MouseEvent.CLICK,
changeFrame);

nextFrameNumber = 2;

Chapter 3 navigation 47

function changeFrame (evt:MouseEvent):void

{

 gotoAndStop(nextFrameNumber);

}

To advance from Frame 2 to Frame 3, all you need to do is put the code
nextFrameNumber = 3 in the Actions for that Frame. Remember that the
code in the Frame is read by that program as soon as that Frame is loaded,
so the next time you click on the button it will take you to Frame 3.

6. Removing Event Listeners

Just as we can add event listeners, we can also remove them. When and why
would we want to do this? There are times when you might want to change
what happens when a button is clicked. In that case, you would remove the
event listener that triggers one function and add an event listener that trig-
gers another. If you did not remove the first event listener, both functions
would be triggered when the button was pressed. Another example of when
you might want to remove an event listener is if you want to deactivate a but-
ton. To remove an event listener, use the removeEventListener method
(instead of addEventListener). The rest of the code stays exactly the
same as when you added the event listener:

btnNavigate.removeEventListener(MouseEvent.
CLICK, changeFrame);

Another good reason to always remove event listeners when they
become redundant is to prevent Flash from overloading its resources. It’s
also good practice in general to make sure that all the processes taking place
while your program is running are currently necessary, and removing event
listeners is one way to make sure this is the case.

Exercise 2: Write a function or functions that allow(s) you to navigate
forward and backward through three Frames. On Frame 1 you can only go
forward, on Frame 2 you can go forward to Frame 3 or back to Frame 1, and
on Frame 3 you can only go back to Frame 1. See the flowchart in Figure 3.4.

48 Flash Programming For the social and Behavioral sciences

In this chapter, you learned that flowcharts are a very important tool
for planning your programs. We used a silly but effective flowchart to build a
simple program that takes the user through a series of Frames with different
content. To do this, you learned how to insert new Frames and that you can
use the Frame number or a unique name to refer to each Frame. You also
learned that if you want to make the program respond to an event, you need
to write what is called an “event listener.” This is somewhat counterintuitive,
but it is very important to understand. The event you made Flash respond to
in this chapter was a mouse click, but other events will come up in later chap-
ters. You learned not only how to add event listeners but also how to remove
them when they are no longer useful, to reduce clutter in your program.

In this chapter, you wrote a function that caused the screen to jump from
Frame to Frame and display different content to the user. You used both
Frame numbers and names to achieve this content change. Finally, you
learned that you do not have to write a new function every time you want
something to happen.

The techniques covered in this chapter are directly applicable to presenting
users with instructions before and during a survey or experiment. For instance,
you might want to show individuals a welcome screen, followed by several
screens (Frames) of instructions. You might provide “Forward” and “Back” but-
tons in case people want to go back and reread some text they may have missed.

 Resources

The following links are hot-linked for your convenience at http://www.sagepub
.com/weinstein.

http://help.adobe.com/en_US/flash/cs/using/WSd60f23110762d6b883b18f10c
b1fe1af6-7f84a.html
A more detailed introduction to manipulating the Flash timeline.

Figure 3.4. Flowchart for Frame navigation Exercise 2.

Frame 1 Frame 2 Frame 3

Chapter 3 navigation 49

http://www.republicofcode.com/tutorials/flash/as3events/
Additional information on event handling.

http://edutechwiki.unige.ch/en/ActionScript_3_event_handling_tutorial#List_
of_events
List of the most common Flash events.

http://blog.reyco1.com/method-of-removing-all-event-listeners/
A potential method of removing all event listeners.

http://www.gavilan.edu/csis/languages/comments.html
An interesting history of the use of comments in programming languages.

50

Chapter 4

Working With text
and keystrokes

IN THIS CHAPTER, YOU WILL LEARN

•• About three different text field types and when to use each one

•• How to set properties for text fields in the Property Inspector and from within the code

•• How to change the text itself dynamically from the code

•• How to format text from the code using HTML

•• How to restrict text input to certain characters

•• How to embed fonts for consistency across systems

•• About three different systems Flash uses for processing keystrokes

•• How to get the program to respond when a particular key is pressed

•• How to output information about which key was pressed

•• How to capture and save text entered into a text field and clear the text field

No matter what your reason for using this book (programming a complex
psychological experiment, a quick questionnaire, or a lengthy survey), you will
undoubtedly need to know how to present and manipulate text and how to
respond to keystrokes. This seems like such an obvious requirement that it

Chapter 4 Working With text and keystrokes 51

should be straightforward, so you might be surprised by the inclusion of a
whole separate chapter on working with text. You will soon see, though, that
there are quite a few different ways to work with text in Flash and a few factors
to take into consideration when choosing from the various options available.
This chapter will guide you all the way from presenting text that doesn’t
change (say, a set of instructions), to presenting text that you can change from
within the program (say, for presenting feedback on the user’s responses), to
allowing users to type in their own text that is then processed by the program.

Note that in Flash CS5 or later you have the option to choose between
two types of text editing packages: Text Layout Framework (TLF) and Classic
Text. This chapter only describes how to use Classic Text. Classic Text is rela-
tively simple to use, whereas TLF may have more flexible and extensive capa-
bilities. Later we discuss situations in which you might want to try out TLF,
but we recommend that you use the more established Classic Text as much
as possible.

1. Text Field Creation

The first thing you need to do if you want to display text to the user is insert
a text field into your Stage. There are two ways to insert a text field: one way
creates an expandable text field, and the other creates a fixed-width text field.

To insert an expandable text field, open the Tools Panel and click on the Text
Tool (the icon that looks like a T). Then click anywhere on the Stage.

This creates a tiny text field just big enough to display the cursor. You can
then start typing, and the text field will expand width-wise to accommodate
any length of text, but text may spill off the Stage, as in the screenshot in
Figure 4.1.

Figure 4.1. Expandable text field wider than the Stage. Adobe
product screenshot(s) reprinted with permission from
Adobe Systems Incorporated.

www.allitebooks.com

http://www.allitebooks.org

52 Flash Programming For the social and Behavioral sciences

To insert a fixed-width text field, click anywhere on the Stage and drag while
holding down the mouse until a box of the required size appears.

This text field expands vertically instead of horizontally, as in the screen-
shot in Figure 4.2.

Figure 4.2. Fixed-width text field. Adobe product screenshot(s) reprinted
with permission from Adobe Systems Incorporated.

Figure 4.3. Fixed-width and expandable text fields with their respective
identifiers. Adobe product screenshot(s) reprinted with
permission from Adobe Systems Incorporated.

To identify what type of text field you have, click inside it and notice the
symbol in the top right-hand corner: A circle indicates an expandable text
field, and a square indicates a fixed-width text field, as shown in the screen-
shot in Figure 4.3.

Chapter 4 Working With text and keystrokes 53

To change an expandable text field into a fixed-width text field, drag to change
the width. To change a fixed-width text field into an expandable text field,
double click on the square in the top right-hand corner.

2. Types of Text Fields

The first thing you need to do is make sure that Flash is set to use Classic
Text. Once you have done that, the most important thing to know about text
fields is that they come in three different types: Static Text, Dynamic Text, and
Input Text.

To switch from TLF to Classic Text, insert any text field and click on the
Properties panel with the text field selected. Then choose “Classic Text” in the
first drop-down menu. You will then be able to choose between Static Text,
Dynamic Text, and Input Text in the next drop-down menu.

1) Static Text

The default setting is Static Text. This is used for text that will not (and
cannot) be changed dynamically from within the code. So, whatever text you
enter into a Static Text field will remain unchanged for the duration of the
program and will be visible to the user as long as the particular Frame it is on
is displayed.

2) Dynamic Text

You need to set the text field type to Dynamic Text if you want to change
the text from within the code as the program executes. Following are exam-
ples of when you would use Dynamic Text: if you want to provide feedback
that will be dependent on user input, if you want text to appear and disap-
pear, or if you want to set different formatting throughout one text field, for
instance to emphasize certain words.

To change the text type of your text field to Dynamic Text, click on the
Properties Inspector with the text field selected, and select “Dynamic Text” from
the drop-down menu at the top of the panel.

54 Flash Programming For the social and Behavioral sciences

You will notice that a new input field appears above the text type drop-
down field, labeled “Instance Name.” Recall that the Instance Name is a
unique name that does not belong to any other object in your Frame. Do not
forget to use Instance Names that are informative and always start with the
same abbreviation for each different component type. For instance, we could
call our text field txtDynamicExample. In this book, all further text fields will
also start with the prefix “txt.”

To give your Dynamic Text field an Instance Name, replace the placeholder text,
<Instance Name>, with an appropriate name.

The advantage of Dynamic Text over Static Text is that you can use the
.text method in the code to change the comments of a Dynamic Text field.
To follow along with this example, make sure you have a Dynamic Text field
with the Instance Name “txtDynamicExample” in your Frame. To change the
contents of a Dynamic Text field, use the .text method and encompass the
text you want to appear in the text field in quotation marks:

txtDynamicExample.text = “This text will appear
in your text field.”;

3) Input Text

The third text field type is Input Text. Selecting the Input Text type cre-
ates a box that the user can type into. Input Text is used when you need to
allow the user to input information. Any information entered in an Input Text
field can either be stored by the program for later output or used directly in
the code (e.g., to provide feedback).

Input Text requires an Instance Name, just as Dynamic Text. This can be
used to reference the text field in order to make it appear/disappear, save the
entered text, or clear the field. This is useful for multiple trials in an experi-
ment, where you want the user to type into the same text field on every trial.

 3. Setting Text Field Properties

Clicking on Properties with a text field selected reveals all the options for
customizing text fields. Table 4.1 indicates which properties can be set for
each text field type (Static, Dynamic, and Input).

Chapter 4 Working With text and keystrokes 55

Table 4.1. Characteristics and relevant properties for the three text field types (Static,
Dynamic, and Input Text).

Option Static Text Dynamic Text Input Text

Basic Characteristics

Text can be changed dynamically in the code O
User can type into the field O O
Requires Instance Name O

Position and Size Properties

X
Y
W
H O
Lock Aspect Ratio (magnet symbol)

Character Properties

Family
Style
Size
Letter spacing
Color
Auto kern
Anti-alias
Selectable Always selectable

Render text as HTML O

Show border around text (icon with border) O
Toggle the superscript/subscript Only nonselectable O O

Paragraph Properties

Format
Spacing
Margins
Behavior: Single line, Multiline, Multiline
 no wrap

O

Behavior: Password O O
Orientation O O

Max chars (under Options) O O

We will work from the top to the bottom of the Properties panel explain-
ing each property in turn. Note that the Table (and the details that follow)
does not include the Filters section; you can safely ignore it as it does not

56 Flash Programming For the social and Behavioral sciences

have a function that is useful for creating surveys and experiments. For prop-
erties that are not unique to text fields (e.g., position and size), we refer back
to the previous chapter. The screenshot in Figure 4.4 shows you what the
Properties panel looks like for a Dynamic Text field.

In addition to changing the properties of your text fields in the Proper-
ties panel, you can also write code to change properties while the program

Figure 4.4. Properties for Dynamic Text fields. Adobe product
screenshot(s) reprinted with permission from Adobe
Systems Incorporated.

Chapter 4 Working With text and keystrokes 57

is running. For each property, we first discuss the options available in the
Properties panel. Whenever it is also possible and useful to change that prop-
erty from within the code, we then discuss how to do so.

1) Position and Size

The first set of properties is Position and Size, which are the same as for
Buttons. The position and size properties change automatically as you drag
and resize the box on the Stage, or you can input the dimensions manually
here; this is useful if you want to ensure that multiple objects are aligned and/
or proportionally sized. The magnet tool to the left of the Width allows you
to indicate whether the height and width ratio (aspect ratio) should be kept
constant when the text field is resized.

A note on resizing text fields: This differs depending on whether the text
type is Static or Dynamic/Input. Static Text fields can only be resized horizon-
tally, whereas Dynamic and Input Text fields can also be resized vertically.
Note that no matter how you insert your text field (fixed-width or expand-
able), you should make the Dynamic or Input Text field big enough to hold
all the text it will ever contain, or tell it to resize automatically in the code
(there is no option in the Properties panel associated with this feature). To
create a Dynamic/Input Text field that resizes automatically as a function of
the amount of text it needs to hold, use the .autoSize property. You have
the option to center, left-justify, or right-justify the text (replace the word
“CENTER” with “LEFT” or “RIGHT”).

txtDynamicExample.autoSize = TextFieldAutoSize.
CENTER

2) Character

Under the Character heading are the settings that determine the look of
your text. Family, Style, Size, and Color are self-explanatory. Note that these
settings apply to the whole text field and cannot be applied to individual
words or letters within a text field. Also, certain properties such as font and
font size cannot be changed with a simple line of code, although color can
be changed by calling the .textColor property. This is where Classic Text
has some downfalls. If you want to present text with complex formatting that
varies within a text field (for instance, to emphasize specific words), the
easiest option is to render the text as HTML and use simple HTML tags within
the code to set formatting (discussed later; note that this will not work for
Static Text, which has to be formatted entirely from the Properties panel).

58 Flash Programming For the social and Behavioral sciences

To the right of the Style drop-down field is a button that says
Embed... . This allows you to “embed” fonts in your .swf file so that they can
be used every time the program runs, instead of trying to pull fonts from the
user’s system. This ensures presentation consistency, but you trade off on file
size as embedding fonts significantly increases the size of the final .swf file. If
you choose not to embed fonts, you need to select Use device fonts in the
Anti-alias drop-down field (discussed later). In this case, the font that you
have chosen will only render correctly if that font is installed on the user’s
system. If the font is not installed on the system, a different font will be cho-
sen in its place. This could create various problems: text not fitting into the
field, line breaks in the wrong place, and having no way of making sure that
each user sees the same thing (crucial if you are using a text field to present
word stimuli in a psychology experiment or a set of questions in a survey).
We thus strongly recommend that you choose to embed fonts.

To bring up the font embedding window (see Figure 4.5), click on the Properties
panel with a text field selected and click on Character à Embed. . . . Then
choose the font and font style you want to embed, and give your font a unique
name. Select all the character ranges you want to be able to present, and add
any additional special characters in the box below. To embed another font, click
on the + icon above the font list on the left panel of the dialog box.

Figure 4.5. Font embedding menu. Adobe product screenshot(s)
reprinted with permission from Adobe Systems
Incorporated.

Chapter 4 Working With text and keystrokes 59

Embedding only the necessary characters will greatly cut down on the
size of your file. However, make sure that every single character you want to
display is embedded, because any character that is not embedded will not
appear on the screen when the program is loaded by the user. Notice that in
the Character Ranges menu, the category “All” consists of a thousand or more
glyphs (this will vary depending on which font you are embedding), whereas
you probably only need capital letters, lowercase letters, numerals, and punc-
tuation (a little over 100 glyphs). There is also a box below the menu where
you can enter any additional characters to be embedded (Also include
these characters). Another important point is that if you want to use the
same font in a different style (italics, bold), that style needs to be embedded
as a different font.

Under Letter spacing you can change the distance between characters,
to make them closer (negative value) or further apart (positive value). The
default is 0, and the range is -60 (letters are right on top of each other) to
+60 (letters look like they have approximately 10 spaces between them).

Auto-kern determines the way spaces between certain character combi-
nations are handled. Leaving it on means that some character combinations
will have adjusted spacing, whereas turning it off will lead to uniform spacing
between all character combinations. This is an aesthetic choice for you to
make (see Resources for an article about kerning).

The Anti-alias options also determine how your text is displayed (anti-
alias is a type of smoothing that makes characters appear rounder and easier
to read). You can read up on the different Anti-alias options elsewhere (see
Resources), but since you will mostly be using text fields to display normal
text (as opposed to animation), we suggest you stick with Anti-alias for
readability. The T1 and T1 icons turn selected text into superscript and
subscript, respectively.

The three icons below the Anti-alias options (see Figure 4.4) allow you
to set whether text is selectable, whether it is displayed as HTML, and
whether there is a border around the text field. Using the icon lets you
determine whether the text field is selectable, in which case the user can
highlight the text on the screen (for instance, so that the user can copy and
paste it into another program). Note that Input Text is always by definition
selectable, since the user can click on the field and type.

//Turn selectability of a text field on and off;

txtDynamicExample.selectable = true;

txtDynamicExample.selectable = false;

60 Flash Programming For the social and Behavioral sciences

For Dynamic and Input Text only, the icon with angle brackets allows
you to render text as HTML. This is useful if you want to vary formatting
within the text field. You can include HTML tags when you set the text to
appear in the text field from within the code. There are some limitations to
the HTML tags you can use, so stick to the basics and check the Resources
for a link to a longer list of tags and general information on HTML. Generally,
though, you can use HTML tags to change the font, font size, color, and style,
as well as indicate line and paragraph breaks. We do not cover HTML tags in
detail here, but following are a few of the most common tags and an example
showing how to add them to your text. To use HTML tags in your Dynamic
Text field, first click on the angled brackets symbol in the Properties panel to
enable HTML text for a text field. Then use the .htmlText method instead
of the standard .text method to set text from the code. HTML tags are
included within the text you want to display.

txtDynamicExample.htmlText = ‘Bold text </
b><u>Underlined text </u>’;

txtDynamicExample.htmlText += ‘
Red text ’;

txtDynamicExample.htmlText += ‘
Huge text ’;

Note that the “+=” operator appends additional text to whatever is
already in the text field. The “=” operator would clear any previous text and
replace it with the new text. The screenshot in Figure 4.6 shows how the
HTML text will render when you run your program.

Figure 4.6. Various HTML formatting styles. Adobe product
screenshot(s) reprinted with permission from Adobe
Systems Incorporated.

Chapter 4 Working With text and keystrokes 61

Another property you can only set for Dynamic and Input Text fields is
to show a border around the text by clicking on the border icon . The
border can also be turned on and off from the code.

//Turning a text field border on and off;

txtDynamicExample.border = true;

txtDynamicExample.border = false;

Finally, on the far right you can toggle superscript and subscript
fonts, which can only be applied to individual characters in a nonselectable
Static Text field.

3) Paragraph

The properties in the Paragraph section should all be self-explanatory if
you are familiar with standard word processing conventions. Classic Text also
gives you the freedom to create vertical text fields (under the Orientation
property), break text apart into individual characters that can be moved
around the Stage, and convert characters into shapes, but we will stick to the
basics of standard, horizontal text. If you want to find out about more creative
text uses, consult the Resources section for help on how to do this using
Classic Text, or play with the TLF.

For Dynamic and Input Text only, under the Paragraph subsection of the
Properties panel, the Behavior drop-down field is now activated, and you can
choose whether the text in your Dynamic Text field displays on one line
(Single line), on multiple lines with automatic word wrap fitted to the width
of your text field (Multiline), or on multiple lines but without automatic word
wrap (i.e., you will have to indicate line breaks in the code; Multiline no wrap).
Probably the most commonly used behavior for our purposes is Multiline.

For Input Text only, if you would like users to be able to input informa-
tion confidentially, you can use the Password Behavior for Input Text. This
makes all characters appear as asterisks on the screen when typed. The actual
typed characters can be saved and used in the code, however. An Input Text
field can acquire Password Behavior from the code too.

txtInputExample.displayAsPassword = true;

txtInputExample.displayAsPassword = false;

62 Flash Programming For the social and Behavioral sciences

You can also restrict the number of characters that can be typed into the
text field by the user, by changing the “Max chars” property under Options
(.maxChars; the default option is 0, which means no limit). From within
the code, you can also restrict the type of characters the user can input into
a text field. You can also prevent certain characters from being entered by
using the ^ symbol.

//To restrict the number of characters;

txtDynamicExample.maxChars = 12;

//To restrict input to lowercase letters;

txtDynamicExample.restrict = “a-z”;

//To restrict input to a range of digits;

txtDynamicExample.restrict = “1-9”;

/*To restrict input to specific letters or
numbers*/

txtDynamicExample.restrict = “abc123”;

/* The following code does not allow lowercase
characters to be input*/

txtDynamicExample.restrict = “^a-z”;

When you use an Input Text field, you may naturally want the program
to save any text entered by the user. We do not cover this here, but instead
see “Chapter 7: Condition Assignment and Randomization” for how to save
Input Text.

 4. Other Ways of Working With Text in Flash

Earlier we briefly covered three main approaches to editing text in Flash:

•• Using the Property Inspector to set overall characteristics for the text field
•• Using commands in the code to change properties of dynamic/input

text fields
•• Using HTML text to format text from within the code

Chapter 4 Working With text and keystrokes 63

These are only a few options, and they should be sufficient to fulfill your
requirements, but if you want to try something more advanced, here are
some more options:

1) Creating a TextFormat object in the code and applying it to your text
field (to set properties that are not direct properties of the text field
itself, such as font). The advantage of this method over HTML text is
that there are no messy tags to include in the text, so in your code
you can see the text as it will be displayed to the user.

2) Creating new text fields from within the code rather than by drawing
it on the Stage.

3) Using Cascading Style Sheets (CSS) instead of HTML tags. This is
more advanced and probably only useful if you are collaborating
with website designers or other web professionals.

4) Using TLF instead of Classic Text. This opens up a whole new world
of formatting opportunities, but it is only recommended if you are
working with complicated layouts (think newspaper-style columns
or busy website designs) and need complete control over every
aspect of text in your project.

5. Key Recognition

This section deals with everything you need to know about responding to user
input. You already know how to make Flash respond to a button press, but here
you also learn how to make the program respond when the user presses differ-
ent keys and how to save text input by the user into a text field. The first thing
you need to know is how ActionScript processes and interprets keystrokes.
There are three systems by which ActionScript categories and recognizes keys:
key codes (keyCode), character codes (charCode), and constant values.

1) The keyCode is a numerical value that refers to the physical key on
the keyboard, regardless of which character the user intended to
generate; for instance, regardless of whether you type a 5 or a %
symbol, the same keyCode is activated.

2) The charCode is also a numerical value, but it relates to the actual
character, which can be typed by different keys (for instance, num-
bers can be typed either from the row above the letters or from the
number keypad on the right of some keyboards).

64 Flash Programming For the social and Behavioral sciences

3) Some of the more important keys (e.g., ENTER, SPACE) also have
“constant values” that can be used instead of the keyCode. This is
important because keyCode mappings may differ from computer to
computer, whereas the constant values will always refer to the rele-
vant key. So, wherever possible, you should use the constant values.
Check the Resources for a link to the full list of keys that have con-
stants, but here is a short list of the most common keys:

Keyboard.BACKSPACE

Keyboard.DELETE

Keyboard.ENTER

Keyboard.ESCAPE

Keyboard.SPACE

You can look up the keyCodes and charCodes for any keys you want
to use in the program by checking the links in the Resources, but see the
“Looking up keyCodes and charCodes” section that follows for instructions
on how to use code in your program to look up these values.

Example: Responding to a Keystroke

In order to try out a program that responds to keystrokes within the Flash
interface, after you compile it you must disable keyboard shortcuts, other-
wise keystrokes will not register. This only applies to testing the program
from within Flash—the keystrokes would register if you ran the program in a
Flash player.

To disable keyboard shortcuts, compile the program and go to Control à
Disable Keyboard Shortcuts in the window of the compiled program.

The first thing we need to do to make our program respond to a key-
stroke is add an event listener, just as we did when we wanted the program
to respond to a button press. This time, the event listener is listening out for
a different category of events, so we use a different class of events:
KeyboardEvent. We can add the event listener directly to the Stage or to
specific components. To follow along with this example, add an Input Text
field to your Stage and give it the Instance Name “txtInput.”

Chapter 4 Working With text and keystrokes 65

/*The following event listener calls the function
“processResponse” when a key is pressed in “txtInput”*/

txtInput.addEventListener(KeyboardEvent.KEY_
DOWN, processResponse);

You have two options in terms of when the function associated with
the event listener will execute: either as soon as the key is pressed or
when the key is released, in which case you need to use the .KEY_UP
event instead of .KEY_DOWN. The distinction between KEY_UP and
KEY_DOWN is unimportant unless you are particularly interested in mea-
suring reaction times, but it is crucial if you are (see Chapter 8 on timers
for more information).

To test that your program is registering keystrokes, add the following
function, which traces a message to indicate that a key was pressed.

/*This function traces a message to indicate
that the keypress event was registered.*/

function processResponse(evt:KeyboardEvent):void

{

 trace(“a key was pressed”);

}

Example: Looking up keyCodes and charCodes

Aside from looking up keyCode and charCode values in tables, the easiest
way to figure them out is to write code that will bring up that information for
any key you strike. The following code will trace the keyCode, charCode,
and the actual character in response to a keystroke. Use the program from
the previous example, and put the following code within the function that
executes when a keystroke is registered (“processResponse”).

/*Output the keyCode associated with the key
pressed*/

trace(“keyCode:”, evt.keyCode)

Box (Continued)

66 Flash Programming For the social and Behavioral sciences

/*Output the charCode associated with the key
pressed*/

trace(“charCode:”, evt.charCode)

/*Output the actual character associated with
the key pressed*/

trace(“Actual character:”, String.fromCharCode
(evt.charCode))

The first two lines should be self-explanatory; in the third line, we trans-
late the charCode to a String that contains the actual character it refers to,
using the .fromCharCode method. If you save this program, you can use
it as a handy tool whenever you need to know a charCode or keyCode.

Example: Responding to Specific Keys

Next, you need to know how to specify different behaviors for different keys.
That is, you might only want the contents of the function to execute if a par-
ticular key is pressed. For instance, you might have a task that requires par-
ticipants to press one of two keys to indicate their responses (e.g., Y to
indicate yes and N to indicate no). Alternatively, you might tell participants to
hit SPACE to proceed to the next screen. To make your function respond only
to certain keys, you will need to know the keyCode, charCode or constant
value related to the key you want the program to respond to, and then you
will need to write a conditional statement that specifies which keys should
elicit which response.

In the following example, the function we used for our previous example
is extended to output a special message when either Y, N, or SPACE is
pressed. To follow along with this example, use the project from the previous
example and add the following code to the function that responds to your
keystroke (“processResponse”).

//if y or Y is pressed output “yes”;

if(evt.keyCode == 89){trace (“yes”)}

//if n or N is pressed output “no”;

Box (Continued)

Chapter 4 Working With text and keystrokes 67

else if(evt.keyCode == 78){trace (“no”)}

//if SPACE is pressed output “SPACE”;

else if(evt.keyCode == Keyboard.SPACE){trace
(“SPACE”)}

Example: Capturing Input Text

Another thing you will need to know how to do is capture and save text input
by a user into a text field. In the next example, we write a function that saves
the contents of a text field to a variable and clears the text field when the user
presses ENTER. To follow along with this example, you need to start a new
project and take the following steps:

1) Add an Input Text field to your Stage and give it the Instance Name
“txtInput.”

2) Define a String variable called “savedText.”

3) Write an event listener that listens for a KEY_DOWN keyboard event
on the txtInput field and calls a function called “processInputText.”

As we want to save the contents of the text field only when the user
presses ENTER, we need to enclose the statements in our function within a
conditional statement.

function processInputText(evt:KeyboardEvent):void

{

 //Check whether the key pressed was ENTER;

 if (evt.keyCode == Keyboard.ENTER)

 {

 /*Pass the text currently in the text field
to the variable*/

 savedText = txtInput.text;

 //Clear the contents of the text field;
Box (Continued)

68 Flash Programming For the social and Behavioral sciences

 txtInput.text=“”;

 //Send the contents of the variable to output;

 trace(savedText);

 }

}

Exercise: Look at Figure 4.7 and try to recreate the way the text is for-
matted using any combination of HTML text, code, and options from the
Properties panel.

Box (Continued)

Figure 4.7. Screenshot of a compiled program showing formatted
text. Adobe product screenshot(s) reprinted with
permission from Adobe Systems Incorporated.

In this chapter, you learned that Static Text is used to present text
that does not change, Dynamic Text is used to present text that needs to be
changed dynamically from the code, and Input Text is used when you want
to allow users to enter their own text. You learned to set properties for the
text fields both in the Property Inspector and from within the code by calling
the relevant properties. You also learned how to change the contents of a text

Chapter 4 Working With text and keystrokes 69

field presented to the user directly from the code. In order to change the
way the text appears, you used HTML formatting code. To ensure that your
text appeared the same across all computer systems, you learned to embed
fonts in your program. You also learned to restrict Input Text fields to specific
characters. This is useful if you want to ask the user questions such as “How
many times per week do you work on your Flash exercises?” and you want a
numeric response.

Moving on to keystrokes, you learned that Flash classifies keystrokes
in terms of keyCodes, charCodes, and constant values. You used these
codes to get the program to react to the press of a specific key. Of course, in
order to get Flash to respond to a keystroke in the first place, you used an
event listener—either one that listened for the key to be pressed or one that
listened for the key to be released. You also learned to output information
about which key was pressed, based on keyCodes or charCodes. Finally, you
learned how to save text from an Input Text field and clear it, ready for the
next response.

At this juncture, we hope that the necessity of knowing how to work
with text is evident: Displaying and styling text on the screen is the founda-
tion of instructions, surveys, and certain experimental stimuli (e.g., words
and sentences). Likewise, collecting data entered by keyboard is fundamen-
tal, too. In just the last two chapters, you have learned all the tools neces-
sary to, for example, program an entire questionnaire consisting of short
answer questions.

Resources

The following links are hot-linked for your convenience at http://www
.sagepub.com/weinstein.

http://gskinner.com/blog/archives/2010/07/some_thoughts_o.html
Some thoughts on TLF.

http://help.adobe.com/en_US/flash/cs/using/WSd60f23110762d6b883b18f10c
b1fe1af6-7d29a.html#WSd60f23110762d6b883b18f10cb1fe1af6-7d22a
Setting Classic Text properties (including anti-aliasing options).

http://help.adobe.com/en_US/incopy/cs/using/WSa285fff53dea4f8617383751
001ea8cb3f-6e14a.html
An article about kerning.

70 Flash Programming For the social and Behavioral sciences

http://www.w3.org/TR/html/
General information on HTML.

http://www.designscripting.com/2010/08/html-tags-supported-by-flash/
List of HTML tags supported by Flash.

http://html-color-codes.com/
HTML color codes.

http://www.signar.se/blog/as-3-charcodes/
charCode and keyCode reference.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/
ui/Keyboard.html#constantSummary
Definitive list of constant keyCodes.

http://coding.smashingmagazine.com/2011/01/11/keeping-web-users-safe-by-
sanitizing-input-data/
The importance of sanitizing database input.

http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a
9b90204-7d01.html
Additional information on capturing keyboard input.

71

Chapter 5

presenting and storing
information in arrays

IN THIS CHAPTER, YOU WILL LEARN

•• When you might need to use an array and when to use it instead of other variable types

•• How to create an array and define its contents

•• How to cycle through an array from start to finish

•• How to add elements to an array from user input

•• How to find out if something is an element in your array, and if so, then at which index it
is located

1. What Is an Array and When
 Would You Need to Use It?

In Chapter 2 on ActionScript basics, you learned that there are different types
of variables that you can use to store and present information. Each type of
variable you have encountered so far (e.g., int, Number, String,
Boolean) can store one piece of information at a time. In many situations,
it is helpful to use a variable that stores multiple pieces of information at a
time. For instance, imagine you want to present the user with a list of words.

72 Flash Programming For the social and Behavioral sciences

You could assign each word to a different variable (e.g., String variables
named “word1,” “word2,” “word3,” etc.), but this would involve creating as
many variables as the number of words you wanted to present. Instead of
wasting time on such an inefficient procedure, you can use a different type
of variable, an Array, which can store multiple items at once.

Arrays are like numbered lists that allow you to access any item in the list
by its index. Examples of when you might want to use an array include the
following: presenting a set of consecutive questions, presenting a list of
words, and presenting a series of pictures. The rule of thumb is that in all
cases where you want to store information as a list, you should use arrays
instead of any other type of variable. Arrays become particularly essential
when you want to present items in different orders in different versions of
the program. You can also use arrays if you need to set up a list of usernames
and associated passwords for different users to be able to log on to a program
you write. An array of usernames and an analogous array of passwords would
permit you to match the two in order to check whether the information
entered is correct (see Figure 5.1).

Figure 5.1. Diagram of username and password arrays.

 2. Defining and Populating Arrays

To start using an Array variable, you need to define it and populate it with
“elements” (i.e., the items on your list). There are various ways to write this
in the code.

/*Define a new Array just like you define any
new variable*/

var listOfItems:Array = new Array;

Chapter 5 Presenting and storing inFormation in arrays 73

/*If the elements in your Array are short, you
can add them all to the Array in one line.*/

listOfItems = [“one”, “two”, “three”, “four”,
“five”];

/*If the elements in your Array are longer, you
can define each element on a separate line.*/

listOfItems[0] = “This is the first element of
your array, but it has an index of 0”;

listOfItems[1] = “This is the second element
of your array, but it has an index of 1”;

listOfItems[2] = “This is the third element of
your array, but it has an index of 2”;

listOfItems[3] = “This is the fourth element
of your array, but it has an index of 3”;

listOfItems[4] = “This is the fifth element of
your array, but it has an index of 4”;

An important thing to note about the Array variable in Flash is that the
first index of the Array is not 1, but 0. Although this may be nonintuitive
(since you are probably used to starting your lists from 1), it is best to get into
the habit of using index 0 for the first item of your array, as skipping it could
cause problems when you try to manipulate the array later on.

Note that unlike other variables, the Array does not have a prespecified
data type (e.g., numerical/text). The data type of each element is determined
on an item-by-item basis depending on the formatting you use. That is, you
can enter two or more different data types into an Array. If you want to add
a text element (i.e., when you would normally use a String variable if you
only had one piece of information) into your array, make sure you use quote
marks, otherwise Flash will think you are trying to call a variable and you will
receive an error message. If you want to add a numerical value to your array
(i.e., when you would normally use an int or Number variable type), make
sure the value is not in quote marks if you want Flash to treat it as a number
instead of as text.

74 Flash Programming For the social and Behavioral sciences

 3. Properties and Methods of Arrays

The Array variable only has one property: length. To find out the length of
your array at any time, simply trace the name of your array followed by
.length.

/*This line traces the length of the Array
called “listOfItems”*/

trace(listOfItems.length);

Note that the length of the array is determined automatically by referenc-
ing the highest index of the items in your array. That is, if you define a new
array and add just one item in the fifth index (e.g., listOfItems[5] =
“item 6”), the .length property will be set to 6 (recall that the Array starts
from 0). Figure 5.2 shows the contents of your array once you have added an
item to the fifth index.

0 1 2 3

length = 6 elements

4 5

item5

index

element

Figure 5.2. Contents and length of an array after adding one item at
index 5.

The length property is very useful when manipulating arrays. If you
want to cycle through all the elements in your array, for instance to present
a list of words, you would need a way of knowing that you have reached
the end of the array. The .length property will tell you that (see the fol-
lowing example). Arrays can also be manipulated by various methods.
Here are the two most useful methods, which we put into practice in the
following examples:

Chapter 5 Presenting and storing inFormation in arrays 75

.push appends any content specified to a new element in the next
empty index. The syntax for this method is as follows:

ArrayName.push(“information to be pushed into a
new element”);

For instance, if you have an array of 11 elements [indices 0-10] and you
use the .push method, a new element will be created with an index of 11.
We use this method for storing responses entered by the user (see the
example: Cycling Through an Array From Start to Finish).

.indexOf searches for any information you specify within your array
and returns the index of the element that contains your search query. The
syntax for this method is as follows:

ArrayName.indexOf(“search query”);

You will need to use this method for the following exercise, where your
task is to create arrays of logins and matched passwords.

Example: Cycling Through an Array From Start to Finish

Once you define an Array variable, it is easy to write code to cycle through
the array sequentially. This is conceptually similar to the function you used to
navigate from Frame to Frame in Chapter 3.

To follow along with this example, you need to take the following pre-
liminary steps, all of which should be familiar to you by now. Following is a
discussion of the function that cycles through each item in the array.

1) Add a Dynamic Text field to your Stage and give it the Instance Name
“txtQuestion.”

2) Add a Button to your Stage and give it the Instance Name
“btnNextQuestion.”

3) Add an to your code that listens out for a mouse click on “btnNext-
Question” and calls the function “presentNextQuestion.”

4) Define an array called “listOfQuestions” with a different question in
each of indices 0 through 5.

5) Define an integer variable (int) called “i” for use as a counter.

6) Assign “i” the initial value of 0.

76 Flash Programming For the social and Behavioral sciences

The “presentNextItem” function does the following:

1) It checks to see if there are any elements left to present by using the
.length property of the Array variable and stops cycling through
the array if it has been exhausted.

2) If there are no elements left in the array, it presents a message to
indicate the end of the list.

3) If there are elements left in the array, it loads the next element in the
“listOfQuestions” array into “txtQuestion” by using the counter
variable “i” as an index.

4) It adds 1 to the counter variable “i.”

/*This function is executed when the user clicks
“btnNextQuestion.”*/

function presentNextQuestion(evt:MouseEvent):void

{

/*Check to see if there are any elements left
in the array. If there are no elements left in the
array, the counter “i” is equal to the length of
the array.*/

if(i == listOfQuestions.length)

 {

 /*If there are no elements left, present
a message*/

 txtQuestion.text = “End of list”;

 }

 else

 {

 /*If there are elements left, present
the element stored in index “i.”*/

 txtQuestion.text = listOfQuestions[i];

Chapter 5 Presenting and storing inFormation in arrays 77

 //Add 1 to the counter;

 i++;

 }

}

What does this function do? The first part of the function checks whether
the end of the array has been reached. That is, the if statement checks
whether the counter “i” that is keeping track of where we are in the array is
equal to the length of the array. If the counter has reached the length of the
array, this means that there are no elements left to present. If this condition
is met, “txtQuestion” shows the message “End of list.”

Otherwise (else), the Text Field “txtQuestion” is populated with the
element stored in the index that is equal to the current value of the counter
variable “i.” Finally, after the element is loaded into the text field, 1 is added
to the counter variable “i” so that it updates and the next item from the array
is presented when the function is next executed.

Of course, you will not always want to cycle through an array from begin-
ning to end in the same order. Often, you might prefer to cycle through an
array in a different random order for each user. Instructions for how to do
this appear in Chapter 7 where we cover randomization.

Example: Dynamically Manipulating
Arrays: Storing Responses

Arrays are a useful tool for storing inputs from participants that are gathered
during an experiment or survey. You can easily add to and remove from arrays
while the program is running. It makes more sense to use an Array variable
rather than other variable types that can only hold one piece of information
at a time to store participant responses, because usually you have multiple
responses to save from each phase of your survey or experiment.

Imagine you are presenting participants with a list of questions and ask-
ing them to make a response to each question. You would like to store these
responses in an array and be able to match up the responses to the ques-
tions. An easy way to do this is to have a counter that tracks what index
number you are on in your array of questions, and use this same counter to
index the responses. After each question is answered, you can capture the
contents of an Input Text field and add it as a new element to an array. The
index of the new element of each trial is defined by the counter.

78 Flash Programming For the social and Behavioral sciences

To make this work, we have to add another function to the previous
example. The new function is executed only once: when the user clicks on
the Button for the first time to view the first question. This is because we
want something different to occur on subsequent questions: We want to
store the response to the question that had just been presented. To follow
along with this example, use the project from the previous example and take
the following steps:

1) Add an Input Text field to your Stage and give it the Instance Name
“txtAnswer.”

2) Define a new array called “listOfAnswers.”

3) Delete the EventListener associated with “btnNextQuestion” and the
function “presentNextQuestion.”

4) Add an EventListener to the Button “btnNextQuestion” that calls the
function “presentFirstQuestion.”

We will now write two functions—one called “presentFirstQuestion” for
loading the first question and the other called “presentNextQuestion”
for storing the response and presenting the next question.

/*This function is executed only the first time
the user clicks “btnNextQuestion.”*/

function presentFirstQuestion(evt:MouseEvent):
void

{

 txtQuestion.text = listOfQuestions[i];

 btnNextQuestion.removeEventListener(Mouse
Event.CLICK, presentFirstQuestion);

 btnNextQuestion.addEventListener(Mouse
Event.CLICK, presentNextQuestion);

}

/*This function is executed when the user
clicks “btnNextQuestion” after the first time.*/

function presentNextQuestion(evt:MouseEvent):void

Chapter 5 Presenting and storing inFormation in arrays 79

{

 //Store the response currently in “txtAnswer”;

 listOfAnswers[i] = txtAnswer.text;

 //Clear “txtAnswer”;

 txtAnswer.text = “”;

 //Add 1 to the counter;

 i++;

 //Present the element stored in index “i”;

if(i == listOfQuestions.length)

 {

 txtQuestion.text = “End of list”;

 //Output all the questions and answers;

for (i = 0; i <listOfQuestions.length; i++)

{

 trace(i, listOfQuestions[i], listOfAnswers[i]);

}

 }

/*If there are more elements left, present the
element stored in index “i.”*/

 else{txtQuestion.text = listOfQuestions[i];}

}

You might be wondering what the for loop that executes at the end of
the list does. Starting at zero and stopping when it gets to the end of the
“listOfQuestions” array, for each index it traces the index and then the
question and response stored in that index of the “listOfQuestions” and
“listOfAnswers” arrays, respectively.

80 Flash Programming For the social and Behavioral sciences

Example: Looking up Information in an Array

Another useful thing you can do with arrays is look up the position of any
element in the array or determine whether a given element exists in an array.
For instance, let us say you ask the user to list his or her top five favorite cit-
ies in order from 1 to 5, and you store the responses in an array. Now you
would like to know whether London is in the user’s top five, and if so, where
it is located on the list. Instead of checking each of the five elements of the
response array sequentially to see if they contain the String “London,” you
can use the .indexOf method to determine whether the element “London”
exists in that array.

To follow along with this example, you can use your previous project.
Once all five questions have been answered, we will search the responses
to see if one of them is “London.” Simply add the following code to the
part of the function that executes once the end of the list has been
reached.

/*Return the index of the element in which the
exact string “London” resides.*/

trace(listOfAnswers.indexOf(“London”));

If the String you are looking for is an element in the referenced array,
the trace statement will return the relevant index. If the String is not an
element in the array, the trace statement will return the value -1. There are
two important things to note here: First, this method uses the “strict
equality” rule and will only return an index if the search term is identical
to the element in the array, including the data type. For instance, if you
have the Number 132 in your array but search for the String “132,” the
.indexOf method will return -1. Do not forget that ActionScript is case
sensitive, so searching for “Cassidy” will not find a match in “cassidy.”
Second, the array is searched forward from the beginning (starting from
the 0 index), and the search stops when a matching element is located, so
if you have multiple elements that match your search term, you will get the
lowest index.

There are various other methods you might find useful when manipulat-
ing arrays, such as pushing and splicing if you want to insert elements at
different indices in your array or sort the array according to various criteria
(e.g., alphabetically). You can find more information about these methods by
following the links in the Resources section.

Chapter 5 Presenting and storing inFormation in arrays 81

4. Common Array Malfunctions

The array is one of the most powerful tools in Flash, but it can also be one of
the trickiest to master. Arrays, especially when used in conjunction with
logical loops, are prone to bugs, despite a programmer’s best intentions. One
of the most common errors when using arrays is trying to access an index
that does not exist. This can be triggered by a static line of code, but it can
also stem from an incorrectly constructed loop. Being “off by one” can also
cause array errors. This issue arises when the code iterates through an array,
for example, incorrectly starting at the second array element or attempting
to end one element past the length of the array (array.length + 1).
Additional problems are sometimes caused when the programmer thinks the
array contains one type of element (say, an integer) when in reality it contains
another (a String).

As such, it is recommended that you occasionally trace the contents of
your arrays to the screen, especially when you are using more complicated
code structures (e.g., nested loops). A pen or pencil can sometimes be a use-
ful “analog” way of tracking contents of an array as well. Whenever your
program does not seem to be working even when you think it should, arrays
in loops are the first place to check. Make sure all the logical operators (e.g.,
> or &&) are in the right place, you are calling the array elements you intend,
and the array actually contains the elements you believe it does. If you are
careful when constructing and manipulating arrays, many of these potential
problems will be minimized.

Exercise: Write a program that allows users to log on with a unique login
and password and outputs “success” or “failure,” depending on whether the
login and password match. To do this, make up a list of login and password
combinations. Create a Frame with two Input Text fields, one for the login
and the other for the password. Add a Button that executes a function to test
whether the entered login and password match.

Hint: Create two separate arrays, one for the logins and one for the
passwords. Use matching indices to pair the logins with the appropriate pass-
words (this is called “parallel arrays”). Use the .indexOf method to locate
the login and check whether the element in the same index in the password
array matches the entered password.

In this chapter, you learned that the array is a basic data type of Flash
and a building block of the programming language. You also learned about
its direct conceptual applications to experiments or surveys you may want to

82 Flash Programming For the social and Behavioral sciences

program. Arrays are used to store lists of information, and anything that can
be thought of as a list—participant numbers, stimuli to present, alphabetized
responses, or final data, to name a few—will need to be stored in an array.
You learned how to define an array and populate it with elements, how to
cycle through these elements, and how to change which elements form part
of the array. You also learned how to query your array in order to locate a
particular element or find the element at a particular index. This technique
is useful if you want to compare the contents of an element with some other
information, for instance, when checking a password or the accuracy of a
response. We return briefly to arrays in Chapter 7, where we learn how to
randomize them.

 Resources

The following links are hot-linked for your convenience at http://www
.sagepub.com/weinstein.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/Array
.html
The API entry for the Array object.

http://www.republicofcode.com/tutorials/flash/as3arrays/
A simple introduction to Arrays.

http://www.onebyonedesign.com/tutorials/array_methods/
A list of advanced Array methods.

http://www.smartwebby.com/Flash/external_data.asp
Loading data from external text files into Flash. Pair with Arrays to save

lots of time!

83

Chapter 6

Questionnaire tools

IN THIS CHAPTER, YOU WILL LEARN

•• How to present questions and response options in the form of a drop-down list, radio buttons, or
check boxes

•• How to allow the user to continue only once a question has been answered

•• How to store the selected response option(s)

•• How to use a slider to allow responses on a continuous scale

In this chapter, we learn about the tools Flash offers for creating attractive
questionnaires. We learn how to allow the user to select answers by choosing
from a drop-down list, clicking radio buttons, and ticking check boxes. To
help you choose which of the three presentation formats fits the type of
question you want to present, use the flowchart in Figure 6.1.

Lists, RadioButtons, and CheckBoxes are components in Flash, and they can be
found in the Components panel. To access this window if it is not already on
your workspace, go to Window à Components, or select Ctrl+F7.

84 Flash Programming For the social and Behavioral sciences

 1. List Component

A List component is commonly referred to as a “drop-down menu” and is
familiar to anyone who uses a computer on a regular basis. When a user
clicks on a List, the complete set of possible responses is displayed on-
screen. The user selects a given response from the List to indicate his or her
choice.

To add a List to a Frame, drag a List component from the Components window
to your Stage.

Dragging the List component onto your Stage creates a square. This will
look quite different once you actually compile the program, but unfortu-
nately, on your Stage it will always appear just as an outline with a circle in
the middle. Editing the visual properties of components is extremely compli-
cated, because each feature of the component (for a List, e.g., the scroll bar)

just one multiple

CheckBox

only a fewmany

List RadioButton

How many responses
are allowed

per question?

How many
different response
options are there?

Figure 6.1. Choosing the appropriate component for questionnaire
design.

Chapter 6 Questionnaire tools 85

is edited separately and has multiple layers. We advise you not to alter these
properties for now. If you accidentally find yourself in Component Editing
mode (double-clicking the square on your Stage will do that), click on
“Scene 1” just above your Stage to return to normal view. The first thing you
need to do with a new List is, of course, give it an Instance Name. For a List,
we can use the prefix “lst” in our Instance Name. Next, we can set some
parameters for this component.

To set the parameters, click on the Properties panel while the box on your Stage
is selected. The parameters we will be dealing with are listed under Component
Parameters. Note: for Flash CS5 or earlier, parameters are listed in the
Component Inspector, a separate panel.

You will see the following parameters:

allowMultipleSelection determines whether the user can select
multiple responses to one question. Sometimes it is useful to be able to
select multiple entries in a List, if more than one answer applies to a ques-
tion. However, the CheckBox component is generally more useful in such
situations (see the flowchart in Figure 6.1), so we will work with single selec-
tions only. Leave the box next to this parameter unchecked.

dataProvider can be used to define the elements in your List if you
do not want to change them from the code. See the following section on
adding elements to a List component for instructions on how to do this.

enabled determines whether the List component can be accessed by
the user. This box should be checked, otherwise the List will appear
grayed out when the Frame loads. This parameter is useful if you want to
prevent the user from being able to access a component until an event has
occurred. Figure 6.2 shows the appearance of two Lists, one of which has
not been enabled.

horizontalLineScrollSize determines the amount of content in
pixels that is scrolled, horizontally (left/right), when a scroll arrow is clicked.
Horizontal scrolling is only useful if you have elements in a List that do not
fit in the component—this is inadvisable. Set this parameter higher if your
List items are very long.

horizontalPageScrollSize determines the amount of content
in pixels that is scrolled, horizontally, when you click inside the scroll bar.

86 Flash Programming For the social and Behavioral sciences

Leaving it at 0 means it will automatically set the scroll rate to match the
width of your List.

verticalLineScrollSize determines the amount of content that
is scrolled, in pixels, vertically (up/down), when a scroll arrow is clicked. If
you have many elements in your List, they will not fit in your component. Set
this parameter higher if your List has many elements.

verticalPageScrollSize determines the amount of content that
is scrolled, in pixels, vertically, when you click inside the scroll bar.

horizontalScrollPolicy/verticalScrollPolicy determines
whether there is a scroll bar available (on/off/auto). Leaving this parameter
set to “auto” means that there will only be a scroll bar if there is content that
does not fit into the dimensions of the component.

visible determines whether the component appears when the Frame
loads. Unchecking this box will render the component invisible when the
Frame loads.

/*Change parameters from within the code by
calling the appropriate parameter after the Instance
Name of the List.*/

lstResponses.visible = true;

lstResponses.horizontalScrollPolicy = “off”;

Figure 6.2. Appearance of enabled and disabled List components in an
uncompiled program. Adobe product screenshot(s) reprinted
with permission from Adobe Systems Incorporated.

Chapter 6 Questionnaire tools 87

Once you have created your List component, you need to define the
elements that will appear in the List. Each element in a List component has
two parameters: label and data. The label parameter defines what shows up
on the screen, and the data parameter is used to give each response a code.
For instance, the actual response options shown to the user could be long
sentences, whereas the data would be just a keyword for each response
option or a numerical index that represents each response. This can be use-
ful if you want to use a shorthand in your output instead of outputting long
items or if you want to code one particular response as the correct response.
That is, you could give all responses except the correct response a data
parameter of 0.

Example: Using a List to Present Response Options

To follow along with the example, do the following:

1) Drag an instance of the List component to your Stage.

2) Resize it to 300 x 100 pixels.

3) Give your List the Instance Name “lstResponses.”

There are two ways of adding elements to a List: through the
dataProvider property or in the code. In some cases, you may want to
reuse your List component to display different sets of response options on
the same Frame, in which case you would need to define the elements in
the code. If you are creating a List that you do not need to edit later, how-
ever, you can add elements to the List using a simple dialog box in the
dataProvider parameter.

To add elements to a List through the dataProvider parameter, double-click to
the right of the dataProvider heading in the Properties panel. A dialog box will
open (see Figure 6.3), where you can add elements. Click on the + symbol to
add an element.

When you click the + symbol, a new element is created. The first element is
named “label0” until you change the label. To do so, click on “label0” in the
Value column and type in the text you would like the user to see for the first
response option. You then change the data associated with this element by typ-
ing in the cell below. Then click the “+” symbol again to add the next element.

88 Flash Programming For the social and Behavioral sciences

To continue with this example, add the following two elements to your
List through the dataProvider parameter dialog box:

1) data = option1, label = This is the text of the first option

2) data = option2, label = This is the text of the second option

Figure 6.3. Dialog box that opens when you click on dataProvider,
where you can add elements to a List. Adobe product
screenshot(s) reprinted with permission from Adobe
Systems Incorporated.

Chapter 6 Questionnaire tools 89

List elements can also be added in the code. This method is more versa-
tile and you will need to use it if you ever want to add or replace elements
while the program is active.

/*To add an element to your List, reference the
List by its Instance Name, then use the addItem
method to define the label and data.*/

lstResponses.addItem({label: “This is the text of
the third option”, data: “option3”});

Note that both parentheses AND curly brackets need to be used. The
curly brackets contain the definition of one element. The code shown earlier
will add an element that will appear to the user as “This is the text of the third
option” when the List is viewed, but it will store the value “option3” if you
output the data parameter.

Sometimes it is also useful to remove or replace List items. Let us imag-
ine we want to present a set of questions with different response options
using the same Frame and List component. The questions can be presented
one by one in a text field, and the answers will need to be loaded into the List
component afresh for each question. To do this, we need to remove all of the
current List elements after each question is answered, before adding a new
set of elements.

/*To remove all elements from a list, use the
removeAll method.*/

lstResponses.removeAll();

After removing all the elements, you can add new elements with the
addItem method. To see how the List scrolls, try adding more elements
than would fit in your List.

Example: Making a Button Visible When the User Selects
a Response From the List

In this example, we will make a previously invisible Button visible when the user
selects an option from the List. To follow along with this example, you should

90 Flash Programming For the social and Behavioral sciences

already have a List called “lstResponses” on your Stage from the previous exam-
ple, with a few possible response options. You will also need to do the following:

1) Add a Dynamic Text field to your Stage and give it the Instance Name
“txtQuestion.”

2) Type an appropriate question in “txtQuestion.”

3) Add a Button to your Stage.

4) Give your Button the Instance Name “btnContinue” and the label
“Continue.”

5) Make the Button “btnContinue” invisible by clicking on Properties
and unchecking the box next to visible.

6) Write an event listener that listens for a mouse click on the Button
“btnContinue” and triggers a function called “continueClicked” (see
Chapter 3: Navigation).

If you present the user with a question that requires a response, you do
not want the user to be able to continue without first picking an element
from the List. To achieve this, you can create a Button that does not become
active until a List element is selected. In order to make a button active only
once a List element is selected, you need to create an event that occurs upon
selection of an element, and this event in turn will trigger the activation of
the Button (see Figure 6.4).

First you need to add an event listener to the List that listens for an ele-
ment in the List to be selected. Recall that previously we used an event lis-
tener to listen for a MouseEvent. In this case, we will be listening for an
Event. In particular, Flash defines the selection of a List element as a
CHANGE. When the event listener detects the selection of an element in the
List, a function is executed to make a Button visible. Once this function has
executed, the user will see the Button and can click it to continue. In the

User selects
List element

Event
listener
detects

selection

Button
becomes

visible

Figure 6.4. Series of events that results in activation of a Button
following selection of a response.

Chapter 6 Questionnaire tools 91

following example, the Button will make the question and response options
disappear. If you store your questions in an Array variable (see Chapter 5),
you could use the Button to load the next question.

/*Add an EventListener for your List, listening
for an event called Event.CHANGE.*/

lstResponses.addEventListener(Event.CHANGE,
responseSelected);

/*The change triggers a function called
“responseSelected,” which makes the Button
“continueButton” visible.*/

function responseSelected(evt:Event):void

{

btnContinue.visible = true;

}

/*This function makes the questions and response
options disappear when the Button is clicked.*/

function continueClicked(evt:MouseEvent):void

{

 txtQuestion.visible = false;

 lstReponses.visible = false;

}

If your code is not working, double-check that you correctly named all
your components and added the event listener to “btnContinue” as specified
in the preliminary instructions. Just in case, what follows is all the code that
should be in your Frame:

stop();

//Add an EventListener to a Button called
“btnContinue”;

Box (Continued)

92 Flash Programming For the social and Behavioral sciences

btnContinue.addEventListener(MouseEvent.CLICK,
continueClicked);

//Add an EventListener to the List;

lstResponses.addEventListener(Event.CHANGE,
responseSelected);

/*This function makes the Button visible when
a List element is selected.*/

function responseSelected(evt:Event):void

{

 btnContinue.visible = true;

}

//This function makes the question and answers
invisible;

function continueClicked(evt:MouseEvent):void

{

 txtQuestion.visible = false;

 lstResponses.visible = false;

}

Example: Activating a Visible Button When the User
Selects a Response From the List

Instead of starting with an invisible Button and making it visible when the user
selects a response from the list, you could start with an inactive Button. That is,
the Button would not have an associated event listener, and you would add the
event listener when a response from the List is selected. To make the following
example work, use the program from the previous example and take these steps:

1) Set the Button “btnContinue” to visible.

2) Delete the event listener currently associated with “btnContinue.”

3) Replace the function “responseSelected” with the following function:

Box (Continued)

Chapter 6 Questionnaire tools 93

/*This function activates the Button when a
List element is selected.*/

function responseSelected(evt:Event):void

{

/*Add an EventListener to a Button called
“btnContinue.”*/

btnContinue.addEventListener(MouseEvent.CLICK,
continueClicked);

}

Example: Presenting a Warning Message if the
User Tries to Continue Without Selecting a Response

Another option is to start with a Button that is already visible and enabled, but
code different responses to the Button depending on whether a List element
has been selected. For instance, you could add a warning if the Button is
clicked without a List element being selected. To follow along with this exam-
ple, use the project from the previous example and take the following steps:

1) Add a blank Dynamic Text field to your Stage and give it the Instance
Name “txtWarning.”

2) Clear all the code in your Frame except for the code for the function
called “continueClicked” and the event listener that listens for the
selection of a List element.

3) Add the following code to your Frame:

/*Add an EventListener to the Button that will
trigger a warning.*/

btnContinue.addEventListener(MouseEvent.CLICK,
clickWarning);

/*This function makes a warning appear when the
Button is clicked.*/

Box (Continued)

94 Flash Programming For the social and Behavioral sciences

function clickWarning(evt:MouseEvent):void

{

 txtWarning.text = “Please select a response”;
}

/*When a response from the List is selected,
this function removes the warning and changes the
function triggered by the Button click.*/

function responseSelected(evt:Event):void

{

txtWarning.visible = false;

btnContinue.removeEventListener(MouseEvent.
CLICK, clickWarning);

btnContinue.addEventListener(MouseEvent.CLICK,
continueClicked);

}

What have we done in this example? First, we put an event listener for
the Button onto the Stage. This event listener calls a function that presents
the warning message instead of allowing the user to continue. This is the
default function attached to the Button. Now, when the user makes a selec-
tion, this event listener can be removed and replaced with an event listener
that calls a different function.

Example: Storing the User’s Selection From a List

Once the user selects a response, you will probably want to store it. You can
store the data and/or label parameters of the selected List element in a vari-
able. To do this, define a new String variable, just in case your data and/or
label parameters contain nonnumerical symbols. Then pass to this variable
the label or data parameter corresponding to the selected option once the
user has made his or her selection. To be sure that the user has made his or
her final selection when you pass those data to the variables, the code that
passes the data should be within the function that is executed once the user

Box (Continued)

Chapter 6 Questionnaire tools 95

submits his or her final response (i.e., in the “continueClicked” function in all
of the previous examples). To follow along with this example, use any of the
previous examples and delete your “continueClicked” function.

/*Define variables to store the label and data
parameters of the chosen response.*/

var responseLabel:String = new String;

var responseData:String = new String;

/*This function passes the label and data
parameters of the chosen response to the appropriate
variables.*/

function continueClicked(evt:MouseEvent):void

{

responseLabel = lstResponses.selectedItem.label;

responseData = lstResponses.selectedItem.data;

/*Check whether the parameters have been passed
to the variables.*/

trace(responseLabel);

trace(responseData);

}

2. The RadioButton Component

As demonstrated in the flowchart (Figure 6.1), the RadioButton component
is most useful when there are a limited number of options for the user to
choose from. The advantage of the RadioButton component over the List
component is that all the options are visible on the Stage without the user
having to scroll through a list. Instances of the RadioButton component can
also be positioned in any kind of arrangement on the Frame, for example, in
a horizontal row, so they are useful when you want the user to select a
response on a scale. In this example, we use the RadioButton component to
create a response scale consisting of five options.

96 Flash Programming For the social and Behavioral sciences

To add RadioButtons to a Frame, drag the RadioButton component onto the
Stage from the Components panel. This creates one RadioButton. To create a
scale with five options, drag five instances of the RadioButton component onto
your Stage. To arrange the RadioButtons neatly on the Frame, you can use the
tools in the Align panel (Window à Align or Ctrl+K).

Each instance of the RadioButton component that you place on your
Stage needs to be given its own Instance Name. If you want to group multiple
RadioButton instances into a group of response options, you can give them
the same name with a different number suffix, that is, “rdb1,” “rdb2,” and so
forth. In addition, you need to tell Flash to group the buttons together so
that only one button in the group can be selected at any one time. To do this,
you need to access the Component Parameters in the Properties panel. The
following parameters can be edited:

enabled determines whether the RadioButton component can be
accessed by the user (see notes for the List component).

groupName is used to group a set of response options for one question.
Make sure the groupName is the same for all the buttons that form one set
of response options.

label is what appears on the screen next to the RadioButton. Instead
of setting this parameter, you can add text fields to your Stage to use as labels.
This allows more flexibility in the positioning of your labels.

labelPlacement determines where you want the label to appear with
respect to the RadioButton—the options are left, right, top, and bottom—
but separate text fields still give you more flexibility.

selected determines whether that particular RadioButton is selected
when it first appears on the screen. This parameter should be set to “false”
for all the RadioButtons in your group so that none of the RadioButtons are
selected when they first appear.

value is the data you can store if the user selects this RadioButton. This
can be the same as or different than the label.

visible determines whether the RadioButton appears visible to the
user when the Frame loads, and it is the same as for the List component.

Example: Storing RadioButton Responses

To follow along with this example, start a new project and do the following:

1) Drag five instances of the RadioButton component onto your Stage.

2) Give the five RadioButtons the Instance Names “rdb1” through “rdb5.”

Chapter 6 Questionnaire tools 97

3) Give the five RadioButtons the values 1 through 5.

4) Add a Button to your Stage and give it the Instance Name
“btnContinue.”

As for the List component, you may only want to allow the user to con-
tinue once he or she has selected a RadioButton. Again, as for the List com-
ponent, you could activate a Button when one of the RadioButtons is
selected. Even though the RadioButtons are grouped, each RadioButton
needs its own event listener. For the RadioButton component, the event that
is being listened for is a MouseEvent, because Flash is listening out for the
RadioButton to be clicked.

/*Each RadioButton needs its own EventListener,
but they can all call the same function.*/

rdb1.addEventListener(MouseEvent.CLICK,
responseSelected);

rdb2.addEventListener(MouseEvent.CLICK,
responseSelected);

rdb3.addEventListener(MouseEvent.CLICK,
responseSelected);

rdb4.addEventListener(MouseEvent.CLICK,
responseSelected);

rdb5.addEventListener(MouseEvent.CLICK,
responseSelected);

/*Since the Event registered by the RadioButtons
is a MouseClick, the associated function must have
a MouseEvent input.*/

function responseSelected(evt:MouseEvent):void

{

/*Add an EventListener to a Button called
“btnContinue.”*/

btnContinue.addEventListener(MouseEvent.CLICK,
continueClicked);

}

98 Flash Programming For the social and Behavioral sciences

Once the response is selected and the Button is activated, allowing the
user to continue, you need to store the user’s response. To do this, you can
pass the value parameter of the selected RadioButton to a String variable.

/*Create a variable to store the value of the
selected RadioButton.*/

var selectedRadioButton:String = new String;

function continueClicked(evt:MouseEvent):void

{

/*Reference any RadioButton in a group to
obtain data from the selected RadioButton.*/

selectedRadioButton =

String(rb1.group.selectedData);

trace(selectedRadioButton);

}

The statement in the “continueClicked” function essentially says this:
Take the value of the selected RadioButton from the group that the rb1
RadioButton belongs to, turn it into a String, and pass it to the variable
“selectedRadioButton.” Here is an explanation of each of the parameters and
methods in the statement:

String() translates the value in parentheses into a String. This
ensures that you do not have any variable type incompatibilities when you
pass data from the selected RadioButton to the variable you created to store
that information.

“rb1” is the Instance Name of a RadioButton in your group.
.group references the group that the RadioButton “rb1” belongs to.
.selectedData references the value parameter of the selected

RadioButton.

Example: Resetting the RadioButton Selection

If you would like to reuse the same Frame and RadioButton setup for mul-
tiple questions, you need to reset the selection so that none of the
RadioButtons appear selected when the next question is loaded. You
would think that this would be as simple as using the .selected parameter

Chapter 6 Questionnaire tools 99

(i.e., rb1.selected = false, etc.), but unfortunately, once a
RadioButton in a group has been selected, Flash requires that one RadioBut-
ton in the group (not necessarily the same one) remain selected. This is a
glitch in Flash that many people have complained about.

In order to make the RadioButtons appear deselected, we can use a
workaround, which involves adding another invisible RadioButton to the
group and selecting this RadioButton after a response is made. To do this,
use the program from the previous example and follow these steps:

1) Drag another instance of the RadioButton component onto your
Stage and place it far away from the other, visible, RadioButtons
(e.g., in a corner of the Frame).

2) Give this RadioButton the Instance Name “rdbInvisible.”

3) In the Component Inspector, give this RadioButton the same
groupName parameter as all the visible RadioButtons (“rdbGroup”).

4) Uncheck the box by the visible parameter.

5) Add the following code to the function “continueClicked,” after the
response from the selected RadioButton has been stored:

/*This selects the invisible RadioButton thus
clearing the selection from the visible RadioButtons.*/

invisibleButton.selected = true;

Now, every time a response is made and the next question is loaded, the
invisible RadioButton will be selected so that all the visible RadioButtons
appear deselected and the user has to make a new response to continue. Do
not add an event listener to this invisible RadioButton, otherwise the user
will be able to continue without actually selecting a response.

3. CheckBox Component

Sometimes, you might want to ask the user a question that can have multiple
answers. How could you do this using the components you are already famil-
iar with? You could use the RadioButton component, but without grouping
the RadioButtons, so that more than one can be selected at the same time.
However, then you run into the problem that once a RadioButton has been

100 Flash Programming For the social and Behavioral sciences

selected, there is no way for the user to deselect it, because deselection of
one RadioButton requires selection of another in the same group. So, the
RadioButton component will not work when you want to allow multiple
answers to one question.

How about the List component? This component has the property
allowMultipleSelection, which if set to “true” allows more than one
response to be selected by holding down CTRL. This works but can be quite
cumbersome and nonintuitive for the user, although it may be a good option
if you have a really long set of responses which would not all fit on one screen
at the same time.

If your set of responses is not too long, though, the most convenient way
to set up a question with multiple response functionality is to use the Check-
Box component. With this component, users can check and uncheck as many
answers as necessary and change their minds multiple times before submit-
ting their final selection.

To add check boxes to your Frame, drag an instance of the CheckBox component
from the Components panel onto the Stage. This creates one CheckBox with an
associated label, very similar to a RadioButton. To distinguish between Radio-
Button and CheckBox components on your Stage, note that they are represented
with a circle and square, respectively, as in the screenshot in Figure 6.5.

As with RadioButtons, each CheckBox will need to be given its own
Instance Name. Unlike RadioButtons, however, CheckBoxes are not grouped
together. For the CheckBox component, the following parameters can be set:
enabled, label, labelPlacement, selected, and visible. These
properties have been covered in the description of the List and/or RadioBut-
ton components.

If you want to make an event happen when a CheckBox is selected, you
will follow the same procedure as for the RadioButton component. To make

Figure 6.5. RadioButton and CheckBox components as they appear
on the Stage in an uncompiled program. Adobe product
screenshot(s) reprinted with permission from Adobe
Systems Incorporated.

Chapter 6 Questionnaire tools 101

a function execute as soon as any one CheckBox is selected, each CheckBox
will need its own event listener that listens for a MouseEvent (as for the
RadioButton component).

To store responses associated with the selected CheckBoxes, you need
to use an Array, because there can be more than one response. In order to
store each response, you need to write separate conditional statements to
determine whether each CheckBox has been selected.

Example: Storing Multiple Responses
From the CheckBox Component in an Array

To follow along with this example, you need to create a new project and take
the following steps:

1) Add three instances of the CheckBox component to your Stage.

2) Give them the Instance Names “chb1” through “chb3.”

3) Give each CheckBox a unique label.

4) Add a Button to your Stage and give it the Instance Name
“btnContinue.”

5) Put an event listener in the code that listens for a mouse click on this
Button and calls a function called “continueClicked.”

6) Define a new Array called “selectedResponses.”

/*The following code determines whether each of
the CheckBoxes is selected and adds the relevant
CheckBox’s label to the selectedResponses Array if a
CheckBox is selected.*/

function continueClicked(evt:MouseEvent):void

{

/*For each CheckBox, determine whether it has
been selected;

If the CheckBox has been selected, add its
label to the Array of selected responses.*/

Box (Continued)

102 Flash Programming For the social and Behavioral sciences

if(Response1.selected) selectedResponses.push
(Response1.label);

if(Response2.selected) selectedResponses.push
(Response2.label);

if(Response3.selected) selectedResponses.push
(Response3.label);

trace(selectedResponses);

//Clear the selection;

chb1.selected = false;

chb2.selected = false;

chb3.selected = false;

}

Note that each of the conditionals is a separate if statement, rather
than statements connected with else if. This is because you want each
subsequent statement to be executed regardless of whether the previous
condition was satisfied.

 4. Slider Component

The Slider component is a useful tool for when you want to allow the user to
make ratings on a continuous scale, for instance to indicate confidence. To
add a Slider to your Frame, drag an instance of the Slider component from
the Components panel onto the Stage.

You can set the following properties for the Slider:
direction can be set to horizontal or vertical and determines whether

the Slider can be dragged up and down or left to right.
enabled and visible have the same settings as for previous

components.
liveDragging determines whether Flash constantly registers an event

while the user is dragging the Slider or only once the user lets go.
minimum and maximum determine the values at each end of the scale

on the Slider.

Box (Continued)

Chapter 6 Questionnaire tools 103

snapInterval determines the interval to which the Slider snaps when
it is moved. For instance, if you set this to 5 on a Slider with a 0–100 range,
the user has to indicate his or her response rounded to the nearest multiple
of 5. Set this to 0 to enable continuous ratings.

tickInterval determines the interval at which the ticks are placed
next to the Slider as a reference point to the user.

value indicates the initial value that the Slider is set at when the
Frame loads.

Example: Updating a Text Field as the User Drags a Slider

In this example, we create a Slider with a live update, allowing users to see
what value they are currently selecting as they drag the Slider. To follow along
with this example, start a new project and take the following steps:

1) Drag an instance of the Slider component to your Stage and give it
the Instance Name “sldExample.”

2) Enable the liveDragging property.

3) Add a Dynamic Text field to your Stage and give it the Instance Name
“txtSliderValue.”

4) Define a new String variable called “sliderValue.”

5) Add the following code to your Frame:

/*Add an EventListener to the Slider to register
a change.*/

sldExample.addEventListener(SliderEvent.
CHANGE, updateSliderValue);

/*This function is executed when there is a change
in the Slider.*/

function updateSliderValue(evt:SliderEvent):void

{

 /*Pass the current value of the Slider to
a String variable.*/

Box (Continued)

104 Flash Programming For the social and Behavioral sciences

 sliderValue = String(sldExample.value);

 /*Assign the contents of the String variable
to the text field.*/

 txtSliderValue.text = sliderValue;

}

When you compile the program and drag the Slider, the value of the
Slider should update dynamically in the text field.

Exercise: Try to write the following program using first the List compo-
nent, then the RadioButton component, and last the CheckBox component
for response selection:

Create a multiple-choice quiz with at least 10 questions and at least 4
options per question. Each question should have different answer options.
Questions and answer options should be loaded from arrays. Response(s) to
each question should also be stored in an array. After each response is made,
ask the user to indicate his or her confidence on a Slider.

In this chapter, you learned that there are three components you
might use to present questions along with response options for the user to
pick from: the List component, the RadioButton component, and the Check-
Box component. You learned that the RadioButton component is best used
when there are few response options to pick from and only one response is
allowed per question. If there are many response options to pick from but
still only one response allowed, the List component is a better choice. Finally,
if many responses per question can be picked at once, the CheckBox is the
best choice. You learned how to set the properties for these components and
populate them with questions and answers, both from menus and directly
from the code.

Next, you learned how to determine which response was picked and store
this information in a variable. The procedure differs somewhat from compo-
nent to component. For the CheckBox component, you learned that the best
way to store multiple responses to one question is in an Array variable.

You also learned that there are various ways to prevent the user from
continuing without selecting a response: either you can make the continue
button invisible unless a response is chosen, or you can leave it visible but
deactivate it until a response is chosen, or you can present the user with a

Box (Continued)

Chapter 6 Questionnaire tools 105

warning message if he or she tries to continue without first selecting a
response. Finally, you learned about another component: the Slider. This
component is useful for allowing participants to respond on a continuous
scale, for instance to indicate their confidence in a response.

This chapter contained everything you need to know about program-
ming questionnaires and surveys in Flash. With the tools included herein,
there is no reason to use paper and pencil surveys in order to collect data
from individuals. Rather, use CheckBoxes, RadioButtons, and Sliders to col-
lect all that information. There is survey software available on the Internet
which purports to do these things hassle free; in our experience, however,
these tools often come with their own disadvantages. The programming
basics that you have learned so far give you total control over the presenta-
tion and user experience of your surveys and experiments.

Resources

The following links are hot-linked for your convenience at http://www
.sagepub.com/weinstein.

http://www.useit.com/alertbox/20040927.html
A thorough discussion on when to use CheckBoxes versus RadioButtons.

http://www.actionscript.org/forums/showthread.php3?t=191468
A discussion thread about deselecting RadioButtons.

http://www.adobe.com/devnet/flash/components.html
An exhaustive list of the component reference pages provided by Adobe.

http://www.flashcomponents.net/component/slider_component.html
Two implementations of the Slider component.

106

Chapter 7

Condition assignment
and randomization

IN THIS CHAPTER, YOU WILL LEARN

•• How to assign conditions by experimenter input or random selection

•• How to generate a random number in a specified range

•• How to use random numbers to randomize stimuli

•• How to sample randomly from an array, with or without replacement

•• How to randomize an entire array using a for loop

 1. Manual Condition Assignment
Versus Randomization

In psychology experiments, and in most surveys, participants are often
assigned to different conditions. You can either set up the program so that
the experimenter can pick which condition to run for each user, or you can
write code that will assign conditions automatically but randomly. In the first
case, the experimenter will manually select the required condition for each
participant. This technique is most useful when the experimenter wants

Chapter 7 Condition Assignment And RAndomizAtion 107

maximum control over condition assignment, for instance, in order to ensure
that the same number of participants are assigned to each condition. Ran-
domization, on the other hand, can be useful if you are running an experi-
ment or survey online. In this case, you might need to randomize condition
assignment within the program, so that roughly the same number of people
are randomly chosen to complete each condition. The advantage of this tech-
nique is that the program will automatically choose a condition without any
user input. The disadvantage is that there is no way to determine the exact
number of times each condition will be picked.

Condition assignment with experimenter input is very simple and only
requires you to know how to recognize text input and write conditional state-
ments. Although you already know both of these techniques, we put them
together here to demonstrate how to allow condition selection.

Randomization is a little less straightforward, but it is easy enough to
achieve once you learn how to generate random numbers that can then be
used to determine which one of a set of actions is carried out. In this chapter,
you will learn how to generate a random number in a given range and per-
form a different action for each different random number that can be gener-
ated. Loading the program will automatically execute the code for randomly
picking a number. Depending on which random number is picked, a differ-
ent action will be carried out.

2. Condition Selection With Experimenter Input

There are a few different ways you could implement counterbalancing with
experimenter input. The simplest way, if there are only a few conditions,
might be to add separate Buttons representing each condition to the first
Frame of your Stage and have each Button call a different function that sets
up the details of each condition. The Frame would look like the screenshot
in Figure 7.1.

Example: Experimenter Presses
a Different Button for Each Condition

To follow along with this example, create a Frame that looks like the
screenshot in Figure 7.1, and give the three Buttons the Instance Names
“btnCondition1” through “btnCondition3.” You now need to write separate
event listeners for each Button so that a different function is triggered when
each of the conditions is selected.

108 FlAsh PRogRAmming FoR the soCiAl And BehAvioRAl sCienCes

/*A click on each of the three Buttons triggers
a different function.*/

btnCondition1.addEventListener(MouseEvent.
CLICK, setUpCondition1);

btnCondition2.addEventListener(MouseEvent.
CLICK, setUpCondition2);

btnCondition3.addEventListener(MouseEvent.
CLICK, setUpCondition3);

You also need to write separate functions for each condition to set up the
details of that condition. It would also be a good idea to save the condition
number in a variable.

var conditionNumber:int = new int;

function setUpCondition1(evt:MouseEvent):void

{

Figure 7.1. A simple way to allow the experimenter to select different
versions of the program. Adobe product screenshot(s)
reprinted with permission from Adobe Systems
Incorporated.

Chapter 7 Condition Assignment And RAndomizAtion 109

 conditionNumber = 1;

 /*Here you would put all the actions asso-
ciated with this condition. For instance, you might
want to present a certain set of stimuli.*/

}

function setUpCondition2(evt:MouseEvent):void

{

 conditionNumber = 2;

}

function setUpCondition3(evt:MouseEvent):void

{

 conditionNumber = 3;

}

Although the code described earlier is the easiest to grasp conceptually,
it is also very inelegant. A more elegant code would combine all the condi-
tions into one function and use conditional statements to determine the
appropriate action based on which condition was selected.

Example: Experimenter Types
in the Condition Number

One way to implement a conditional statement is to allow the user to type in
the condition number and transfer this input to the “conditionNumber”
variable. Then the conditional statement will check the value of “condition-
Number” and proceed accordingly.

To follow along with this example, start a new project and do the following:

1) Add an Input Text field to your Stage and call it “txtCondition.”

2) Add a Button to your Stage and call it “btnEnter.”

3) Define a new int variable and call it “conditionNumber.”

4) Add an event listener to your Stage that listens for a mouse click on
“btnEnter” and calls the function “conditionSelected.”

110 FlAsh PRogRAmming FoR the soCiAl And BehAvioRAl sCienCes

5) Set the maxChars property of “txtCondition” to 1.

6) Add a line of code that restricts input in “txtCondition” to the numer-
ical characters 1, 2, and 3 only (see Chapter 4 for details on how to
do that).

The “conditionSelected” function captures the user input from a text
field and performs a different set of actions depending on which number the
user typed. The following code assumes that only conditions 1–3 are valid.

function conditionSelected(evt:MouseEvent):void

{

conditionNumber = String(txtCondition.text);

trace(“the condition picked is #”, condition
Number);

if(conditionNumber == “1”){/*Here you would put
all the actions associated with condition 1.*/}

else if(conditionNumber == “2”){}

else if(conditionNumber == “3”){}

else{trace(conditionNumber, “is not a valid
condition number”)}

}

You can also use similar logic to allow the experimenter to select the
condition with radio buttons, which were covered earlier in the book (see
Chapter 6).

Another useful way to select a condition is by assigning different condi-
tions to different subject numbers. For instance, if you have two conditions,
odd numbers are automatically assigned to condition A, and even numbers
are automatically assigned to condition B. The experimenter inputs the sub-
ject number, and the code runs through a conditional statement to assign the
appropriate condition based on this number. For this type of conditional
statement where there are multiple conditions (i.e., if the number is 1, or 3,
or 5, or 7 versus 2, or 4, or 6, or 8, etc.), you are better off using the switch
method rather than if statements. You can learn more about this by check-
ing out the websites listed in the Resources section.

Chapter 7 Condition Assignment And RAndomizAtion 111

3. Randomization: Picking a
 Condition Without Experimenter Input

The easiest way to pick a random condition is to have Flash generate a ran-
dom number and use this number to determine which condition is selected.
Unfortunately, though, there is no method in Flash for generating a random
integer, so we need to complete a few additional steps. What Flash can do is
generate a random number between 0 and 1; we can then transform this into
a random integer.

Example: Selecting a Condition
Based on a Randomly Generated Number

For this example, simply start a new blank project. All the work is in the code.
First, we need to create a variable that can handle decimal places to store the
random number Flash generates. The int variable will not work here
because it only stores whole numbers, so we use the Number variable (see
Chapter 2 for details on the different data types). Next, we need to get Flash
to generate a random number. We do this by using the Math.random
method, which produces a random number between 0 and 1.

var randomNumber:Number = new Number;

/*To generate a random number, call the Math.
random method.*/

randomNumber = Math.random();

Remember, a statement such as this one changes the contents of the
variable on the left-hand side of the equation to the value on the right-
hand side of the equation. The method Math.random ends with an
empty set of parentheses because you are not telling this command to
perform an action on any piece of information. If you put the code in the
Frame (rather than within any specific function), the program will gener-
ate a new random number every time it is compiled. Remember to trace
the contents of “randomNumber” to check that the random number
generation is working.

Now let us imagine that you want to pick one of three conditions
(numbered 1, 2, and 3). In order for the random number generated by Flash

112 FlAsh PRogRAmming FoR the soCiAl And BehAvioRAl sCienCes

to be of any use to us, we need some way of converting it into one of these
integers. One way to do so is to place the random number produced into
one of three bins:

Bin #1: 0 < randomNumber < 0.33

Bin #2: 0.33 < randomNumber < 0.66

Bin #3: 0.66 < randomNumber < 1

This will result in, on average, an equal number of assignments to
each of the three bins. Each of these three bins could represent a condi-
tion. One way of telling the program to assign the random numbers to
bins would be to write a conditional statement to create these bins (i.e.,
if the number is smaller than 0.33, then the condition is equal to 1, etc.),
but there is actually an easier way. We simply need to multiply the ran-
domly generated number by the number of conditions (in this case, 3)
and round up the resulting number. This will give us an equal chance of
getting each of the numbers in the specified range. If this does not seem
intuitive, try the calculation out on the following numbers: 0.2324,
0.5867, 0.9234. Using the operations described, you should end up with
1, 2, and 3, respectively.

//Multiply the random number by 3;

randomNumber = randomNumber*3;

As you can see if you trace the variable “randomNumber” after the
calculation, at the moment, your random number is not rounded. To turn
your number into a 1, a 2, or a 3, you need to round up the random number
after multiplying it by 3. To round up numbers, you can use one of the fol-
lowing three methods. In each case, put the value you want to round in
parentheses after calling your method of choice. The value in parentheses
could be an actual number or a variable name.

1) Math.ceil to round up—when the smallest value you want to
pick is 1

2) Math.floor to round down—when the smallest value you want to
pick is 0

3) Math.round to round to the nearest integer (up or down)

Chapter 7 Condition Assignment And RAndomizAtion 113

In this case, we use Math.ceil because the smallest number we want
to be able to pick is 1.

//Round up the random number;

randomNumber = Math.ceil(randomNumber);

Using this code, the program should now successfully pick a random
number from 1 to 3. Every time you compile the program, a new integer will
be picked randomly from 1, 2, or 3. You can summarize the three steps (ran-
dom number generation, multiplication by 3, and rounding up) into one
equation to produce a succinct single line of code:

/*Generate a random number, multiply it by 3, and
round it up.*/

randomNumber = Math.ceil(Math.random()*3);

You can use this equation to generate a random integer from any range of
integers. To change the number of different conditions (integers) you are picking
from, simply multiply the random number you generate by the number of differ-
ent conditions you would like the program to pick from (in our example, we
use 3). To offset the numbers (i.e., if you want to pick from 3–5 instead of 1–3),
add the number by which you want to offset (relative to 1) to the rounded num-
ber. Here is the general formula for any number of conditions and any offset:

/*randomNumber = <offset number> + Math.ceil(Math.
random() * <number of conditions>)

Example: Formula for picking a condition from
11 through 15*/

randomNumber = 10 + Math.ceil(Math.random()*5);

As with the experimenter-selected condition assignment in the first sec-
tion, we want the program to execute different actions depending on which
condition is picked. As in that example, we can use a conditional statement
to carry out a different action for each condition number.

114 FlAsh PRogRAmming FoR the soCiAl And BehAvioRAl sCienCes

 4. Using Random Number
Generation to Randomize Stimuli

Now let us imagine that you want to present elements that are stored in an
array in a random order. There are a few different ways you could achieve
this. One way is to generate a random number on each trial with the total
number of trials as the upper bound. The random number generated on each
trial is then used to determine which elements from the array are displayed
by selecting the element whose index matches the random number.

Example: Sampling Randomly From
an Array With Replacement

To follow along with this example, you will need to start a new project and
do the following:

1) Define an int variable called “randomNumber.”

2) Create an Array called “originalArray” and populate it with a few
elements.

3) Add a Button to your Stage and give it the Instance Name
“btnRandomElement.”

4) Add an event listener that listens for a mouse click on “btnRan-
domElement” and calls the function “newRandomElement.”

/*The following function will trace a random
element from the array “originalArray” each time it
executes.*/

function newRandomElement(evt:MouseEvent):void

 {

 /*Select a random number no higher than the
length of the array.*/

 randomNumber = Math.floor(Math.random()
*originalArray.length);

 trace(originalArray[randomNumber]);

 }

Chapter 7 Condition Assignment And RAndomizAtion 115

Note that we used Math.floor here instead of Math.ceil because
our array has an element in index 0. If you follow these directions, you will
be sampling from the array with replacement—that is, some items may be
selected more than once. If you only want to select each item once, you will
have to include another step in your code to make sure that no item is picked
more than once.

Example: Sampling Randomly
From an Array Without Replacement

One way of sampling without replacement is to substitute the element at
each sampled index with blank text (null). You then tell the program to
keep picking a new random number until it finds the index of an element that
has not been used (i.e., the contents of which are not blank text). Another
thing you have to do if you want to sample without replacement is include a
counter so that you can stop the function from executing when all the items
in the array have been exhausted.

To follow along with this example, use your project from the previ-
ous example and define an int variable called “i” to be your counter.
Delete your “newRandomElement” function and replace it with the one
that follows.

function newRandomElement(evt:MouseEvent):void

 {

/*Stop picking new elements when the counter
exceeds the length of the array.*/

 if(i == originalArray.length)

 {

 trace(“end of array reached”);

 }

 else

 {

 //Pick the first random number;

Box (Continued)

116 FlAsh PRogRAmming FoR the soCiAl And BehAvioRAl sCienCes

randomNumber =

Math.floor(Math.random()*originalArray
.length);

/*Keep picking a random number until an unused
element is found.*/

while (originalArray[randomNumber] == null)

{

randomNumber =

Math.floor(Math.random()*original
Array.length);

}

trace(originalArray[randomNumber]);

//Remove the element from the original array;

originalArray[randomNumber] = null;

//Update the counter;

 i++;

 }

 }

This function first checks whether all the elements in the array have been
exhausted. If not, it finds a random element from the array “originalArray”
that has not been selected by checking whether the element at the randomly
generated index has any content. If the element at that index is blank, a new
random number is generated. At the end of the function, the element that
has just been traced is replaced with blank text and the counter is updated.

Example: Randomizing an Entire Array

Another, perhaps easier way of presenting items from an array in a random
order is to randomize the whole array and then work through the newly
randomized array sequentially. You essentially do the same thing described
earlier (picking a new random number and selecting the element associated
with its index in the array) over and over until you have a new array full of
the items in your original array but arranged in random order. The benefit of

Box (Continued)

Chapter 7 Condition Assignment And RAndomizAtion 117

this technique is that you get the randomization out of the way in one go.
You can either type this code straight into your Frame so that it executes
when the Frame loads or in a function that is only called when you enter the
Frame for the first time. This is important if you are going to return to that
Frame later but want to maintain the same order.

To follow along with this example, you can use your project from the
previous example, but you also need to create a new array called “random-
izedArray.” Leave this array blank for now—it will store the elements in your
original array in a random order. Put the following code anywhere in your
Frame so that it runs when the Frame loads.

/*Start this loop at 0; end it when the end of the
array is reached; add 1 to the counter on each loop.*/

for (i = 0; i < originalArray.length; i++)

{

//Pick a random number;

randomNumber = Math.floor(Math.random()*original
Array.length);

/*Keep picking a random number until an unused
element is found*/

while (originalArray[randomNumber] == null)

 {

 randomNumber =

Math.floor(Math.random()*originalArray.
length);

 }

 //Add the selected element to the new array;

 randomizedArray.push(originalArray[random
Number]);

 //Remove the element from the original array;

 originalArray[randomNumber] = null;

}

118 FlAsh PRogRAmming FoR the soCiAl And BehAvioRAl sCienCes

The for loop will be executed the number of times that is equivalent to
the number of elements in your original array. Each time the loop executes,
a new random element is selected from “originalArray” and pushed into “ran-
domizedArray” so that the elements in that array are now in a random order.
Note that after execution of this for loop, “originalArray” is now entirely
composed of blank elements (see Figure 7.2).

Exercise: Write a program that will select a random participant number
from 1–50 and randomly assign each new participant to one of two different
order conditions. Participants in condition 1 will see a list of words in the
order they appear in an array. Participants in condition 2 will see the same list
of words but in a random order.

In this chapter, you learned how to assign the user to a different
condition, either by allowing the experimenter to choose the condition or
letting the program choose a condition at random. When allowing the exper-
imenter to choose the condition, you could either set it up so that the
experimenter has to click on a different button to select each condition, or
you could let the experimenter enter a condition number. In order to make
the program select a condition at random, you learned how to generate a
random number and translate it into an integer in a specified range.

Delving deeper into randomization, you learned how to use randomly
generated numbers to randomize presentation order of stimuli, questions,
or sections in your program. You learned how to sample from an array with
replacement (an item could be shown more than once) or without

Figure 7.2. Array contents before and after randomization.

Chapter 7 Condition Assignment And RAndomizAtion 119

replacement (each item would only be shown once). Randomization is
fundamental to good experimental design. This chapter taught you the
skills you need to both (1) randomly sample and (2) randomly assign to
experimental conditions—things that may be essential for even the most
basic surveys and experiments.

Resources

The following links are hot-linked for your convenience at http://www
.sagepub.com/weinstein.

http://actionsnippet.com/?p=1640
A trick for making your randomly generated numbers more variable.

http://digitalmedia.oreilly.com/helpcenter/actionscript30cookbook/chapter1
.html?page=6
Sample chapter from the ActionScript 3.0 Cookbook, explaining the

switch statement.

http://as3-blog.net/?p=578
An advanced look at shuffling around the contents of an array.

http://snipplr.com/view/11307/as3-randomize-array/
Another method of randomizing the contents of an array.

120

Chapter 8

Using timers and
reCording reaCtion time

IN THIS CHAPTER, YOU WILL LEARN

•• How to create a date/time stamp

•• Two methods of controlling time—an easy method and a better method

•• How to create a countdown timer

•• How to record timings (e.g., reaction times in an experiment or the time it took the user to answer
a question in your survey)

•• About the accuracy and limitations of Flash for timings

Flash is capable of controlling and recording time, which is important for
surveys and experiments. In this chapter, we will show you how to output the
date and time when users access your survey or experiment, make events last
for specific durations (e.g., present a word for 3 seconds), create countdown
timers, and record the time it takes the user to make responses.

 1. Date and Time Stamps

Date and/or time stamps are very useful and especially helpful if you are run-
ning your survey or experiment online. With a date and time stamp when the
program first loads and another when the user responds to the last question,

Chapter 8 Using Timers and recording reacTion Time 121

you can figure out how quickly you are getting respondents and how long
they are taking to complete your program. To return the current time stamp,
define a new Date variable without passing any parameters to it.

//Return the current full date, time, and time zone;

var datePlayed = new Date();

The output you would get if you subsequently traced the “datePlayed”
variable would look something like this:

Fri Mar 19 10:13:49 GMT-0500 2010

If you want to return more than one date/time stamp in your program,
simply define a new Date variable each time.

Example: Accessing Individual
Properties of a Date and Time Stamp

You can also use individual values in the date stamp separately by calling the
relevant property. In all of the following trace statements, the comment indi-
cates what value would be sent to output if the date was Friday 03/19/2010.

//This would return “2010”;

trace(datePlayed.fullYear);

/*Month is in a numeric format with 0 for
January up to 11 for December. The following trace
statement would return “2”:*/

trace(datePlayed.month) ;

/*Date is the day of the month (1 to 31). The
following trace statement would return “19”:*/

trace(datePlayed.date);

/*This is the day of the week as a number (0-7)
where 0 = Sunday. The following trace statement
would return a “5”:*/

trace(datePlayed.day);

122 Flash Programming For The social and Behavioral sciences

The other properties you can reference are hours, minutes, seconds,
and milliseconds.

 2. Experimenter Controlled
Timings Using the setTimeout Method

Another important purpose of Flash’s timing system is to enable you to set
timings in your program. Let us say we want to present a list of 10 words, one
at a time, for 3 seconds each. That is, we want each subsequent word to
appear not because the user does something, but because the program is
alerted that 3 seconds have passed. You already know that you need an array
to store your stimuli. However, you cannot control the presentation of the
words using what you have learned so far, because all of our functions were
either called from the code when the Frame loaded or by a user-initiated
event (such as a MouseEvent). There are many different ways to trig-
ger functions based on elapsed time. Here we consider two methods:
setTimeout and Timer. The former is easier to implement, but the latter
is considered to be the best practice in ActionScript 3.0.

Example: Setting Timings
With the setTimeout Method

The setTimeout method calls a function after a specified amount of time
has elapsed. This method is useful if you want to use basic timings, such as
forcing the user to stay on a Frame for a minimum amount of time before
moving on.

To follow along with this example, take the following steps:

1) Define an array called “wordList” and populate it with 10 elements.

2) Define a counter called “i” and give it the initial value of 0.

3) Add a Dynamic Text field to your Stage and give it the Instance Name
“txtWord.”

When you call the setTimeout method, you need to pass it through
two properties:

1) The function or method to execute when the time has elapsed

2) The amount of time in milliseconds that you want the program to
wait before executing the function or method

Chapter 8 Using Timers and recording reacTion Time 123

/*Call the function “nextTrial” after 3 seconds
(3000 milliseconds) have elapsed.*/

setTimeout(nextTrial, 3000);

Next, you have to figure out where to put this code. If you want to present a
new word every 3 seconds, you could put the code within the function that loads
the next trial so that it triggers itself after 3 seconds have passed. However, you
also need to call this function once from within the code to start the first trial.

//Start the first trial;

nextTrial();

function nextTrial():void

{

 //Present the next word;

txtWord.text = wordlist[i]

/*If the end of the array has been reached,
call the “endList” function.*/

 if(i == (wordList.length-1)){setTimeout
(endList, 3000)};

else

{

//Execute the next trial in 3 seconds;

setTimeout(nextTrial, 3000);

//Update the counter;

i++;

}

}

function endList():void

{

 txtWord.text = “end of list”;

}

124 Flash Programming For The social and Behavioral sciences

The function “nextTrial” first traces the next element in the array by ref-
erencing the element at the index of the counter. Then, if the counter is one
less than the length of the array (one less because of the element in index 0),
the setTimeout method is called to execute the function again after 3 sec-
onds. Once the counter has reached 9 (i.e., all 10 words have been shown),
the setTimeout method calls a different function to end the presentation.

As an aside, the function is a variant of what programmers call recursion,
because the body of the function contains a call to the function itself. This
technique, although occasionally complicated to implement, is sometimes
necessary to construct optimal, elegant code.

Example: Using setTimeout to Set Off a Series of Events

You can also combine multiple calls to the setTimeout method to create a
series of events; for instance, imagine you want to insert a 1-second pause
between each of the words. You will be creating two functions—one that
presents each word and another that adds a pause between words. The flow-
chart in Figure 8.1 summarizes the process.

3000 ms
timer

1000 ms
timer

present Word present Pause

end List

Figure 8.1. Flowchart showing that the presentWord function
triggers the presentPause function in 3 seconds, which in
turn triggers the presentWord function in 1 second, until
the end of the list is reached.

Chapter 8 Using Timers and recording reacTion Time 125

To follow along with this example, you can use the program from the pre-
vious example, but comment out the initial call to the “nextWord” function.

//Start the first trial;

presentWord();

function presentWord():void

{

 txtWord.text = wordList[i];

 if(i == (wordList.length-1)){setTimeout
(endList, 3000)};

else

{

//Present the word for 3 seconds;

setTimeout(presentPause, 3000);

i++;

}

}

function presentPause():void

{

 //Clear the text;

 txtWord.text = “”;

 //Present the next word in 1 second;

 setTimeout(presentWord, 1000);

}

In some cases, you might need to cancel a setTimeout method. For
instance, imagine you want to present each word for 3 seconds or until the
user makes a response (whichever is the shorter duration). In this case, you

126 Flash Programming For The social and Behavioral sciences

interrupt or cancel the setTimeout call, so that you can move on to the
next trial immediately rather than waiting for the full 3 seconds. If you do not
cancel the setTimeout call, a new trial is triggered after 3 seconds even if
the program has already initiated the next trial as a result of a user event. To
be able to cancel a setTimeout method, you need to assign it to a variable
when you define it.

Example: Overriding a setTimeout Call With User Input

To follow along with this example, use the setup from the first example in this
chapter. Delete the “nextTrial” function you used for that example, and
replace it with the one below. Remember to initially call the “nextTrial” func-
tion from the code.

1) This “nextTrial” function is essentially the same as that of the first
example except for the following changes: An event listener has
been added so that the end of a trial can be triggered by a keystroke.

2) The setTimeout method was assigned to a named variable
“wordDuration” and this name was used to cancel the setTimeout call.

3) A new function “endTrial” was defined to clear the setTimeout call
when the user hit a key.

/*Define an integer variable that will later be
assigned the setTimeout method.*/

var wordDuration = new int;

//Add an EventListener to respond to a keystroke;

stage.addEventListener(KeyboardEvent.KEY_DOWN,
endTrial);

function nextTrial():void

{

txtWord.text = wordList[i];

 if(i == (wordList.length-1)){setTimeout
(endList, 3000)}

else

Chapter 8 Using Timers and recording reacTion Time 127

{

/*Assign the setTimeout call to the variable
“wordDuration.”*/

wordDuration = setTimeout(nextTrial, 3000);

i++;

}

}

/*This function is triggered by the user
pressing a key*/

function endTrial(KeyboardEvent):void

{

/*Clear the setTimeout call associated with the
variable “wordDuration.”*/

clearTimeout(wordDuration);

trace(“trial terminated by user”);

//Start the next trial;

nextTrial();

}

3. Experimenter Controlled Timings Using the Timer

The Timer is a little trickier than setTimeout but is recommended as a
replacement for setTimeout, which may be phased out in later versions of
ActionScript. The Timer allows you to trigger events when a specified delay
has elapsed, and it also allows you to do this multiple times. To define a
Timer, you need to give it three pieces of information:

1) A name

2) The amount of time in milliseconds that you want to pass before the
Timer runs out

3) The number of times you would like the Timer to execute

128 Flash Programming For The social and Behavioral sciences

/*Basic syntax to declare and define a new
Timer (The bolded words will be replaced with the
relevant parameters.)*/

var trialTimer:Timer= new Timer(<trialTimerDelay>,
 <trialTimerRepeatCount>);

<trialTimerDelay> will be replaced with the length of time in mil-
liseconds before you want the Timer to go off.

<trialTimerRepeatCount> will be replaced with the number of
times you want the Timer to loop.

The delay of the Timer is once again set in milliseconds. You also need
to define the number of times you want the Timer to loop, which here could
be the number of trials in your block plus one for the final screen. Note that
if you use a Timer to present stimuli, the first word (and subsequent words)
will be presented after the duration specified on the Timer has elapsed,
rather than presenting the words for a specified amount of time.

Example: Setting Timings With a Timer

To follow along with this example, you can use any program from the previ-
ous examples but delete the initial call to your “nextTrial” function. We will
write a different function, “nextTimerTrial,” to present words.

/*Define a new Timer variable with the delay
and count parameters.*/

var trialTimer:Timer = new Timer(3000, 11);

/*Add an EventListener that listens for the
Timer to run out.*/

trialTimer.addEventListener(TimerEvent.TIMER,
nextTimerTrial);

//Start the Timer;

trialTimer.start();

//This function is triggered by the Timer;

Chapter 8 Using Timers and recording reacTion Time 129

function nextTimerTrial(TimerEvent):void

{

 if(i == 10){endList()};

 else{txtWord.text = wordList[i], i++}

}

First, the Timer is defined and given a duration of 3 seconds and a count
of 11. Next, an event listener is added so that every time the Timer goes off,
the “nextTimerTrial” function is executed. The Timer is started from within
the code. When 3 seconds have elapsed, “nextTimerTrial” executes. This
function first checks to see if the end of the list has been reached and triggers
the “endList” function if this is the case; otherwise, a new word is presented
and the counter is updated, as in all the previous examples.

Instead of setting a finite number of counts, you can also use 0, which
means that the Timer keeps running indefinitely, unless you tell it to stop, or
1, which means that the Timer will run only once, unless you tell it to start
again. You can also stop the Timer by calling trialTimer.stop(), which
is useful if you want to interrupt a trial due to user input. Finally, you can
reset the Timer by calling trialTimer.reset(), which resets the count
index (not the count limit) back to 0. This is useful if you want to present
multiple blocks of stimuli using the same Timer. See the Resources section
for links with more information on how to use these methods.

4. Countdown Timers

Now let’s say you want to create a Timer which counts down until the end of
a predetermined time period. You want to show a text field, which displays
the countdown and then tells you that time is up.

Example: Counting Down the Seconds Using a Timer

To follow along with this example, create a new blank project and add a
Dynamic Text field to your Stage; give it the Instance Name “txtCountdown.”

To count down the seconds, you need to define a Timer with a delay
of 1,000 milliseconds, and the number of counts will be the number of
seconds you want in your countdown. You then need to create two event

130 Flash Programming For The social and Behavioral sciences

listeners: one for each time the Timer reaches the delay, as in the previous
examples (TimerEvent.TIMER), and one for when the Timer completes
(TimerEvent.TIMER_COMPLETE).

Every time the Timer reaches the specified delay, the program will dis-
play the number of seconds remaining before the Timer completes in a text
field. To determine how many times the Timer has gone off, you can use the
.currentCount property. You can then calculate the number of seconds
remaining on the Timer by subtracting the number of times the Timer has
gone off from the total number of counts you have set for the Timer.

/*Define a Timer variable with a delay of 1
second that will fire 60 times.*/

var countdownTimer:Timer = new Timer(1000, 60)

/*You need to call this function from the code
initially so that the time remaining displays
before the first second has elapsed.*/

nextTick(null);

//Start the Timer;

countdownTimer.start();

/*Add an EventListener that responds to the
Timer*/

countdownTimer.addEventListener(TimerEvent.
TIMER, nextTick)

function nextTick(TimerEvent):void

{

//Display the number of seconds remaining;

txtCountdown.text = String(60 – countdownTimer.
currentCount)

}

/*Add an EventListener that responds to completion
of the Timer.*/

Chapter 8 Using Timers and recording reacTion Time 131

countdownTimer.addEventListener(TimerEvent.
TIMER_COMPLETE, countdownFinished);

function countdownFinished(TimerEvent):void

{

txtCountdown.text =“The countdown has finished.”

}

5. Recording Reaction Times

To record how long it takes the user to do something (commonly known as
reaction time), you can use the getTime method. This method returns the
number of milliseconds that have elapsed since midnight January 1, 1970, but
what this effectively means is that you obtain a number in milliseconds that
you can compare to another number once the time you want to measure has
passed. The syntax is very simple: You use the getTime method when you
want to start recording time and again when you stop; you then get the dif-
ference in time between those two points. So, to record reaction times, follow
these steps:

2) Define a variable that will store the reaction time.

2) Start recording time by assigning the current time to this variable.

3) Stop recording time by subtracting the current time from the start
time recorded in the variable.

/*Define a variable that will store the reaction
time*/

var elapsedTime:Number = new Number;

/*Put this line whenever you want to start
recording time*/

Box (Continued)

132 Flash Programming For The social and Behavioral sciences

elapsedTime = getTimer();

/*Put this line whenever you want to stop
recording time*/

elapsedTime = (getTimer() - elapsedTime);

/*The variable “elapsedTime” now contains the
reaction time*/

trace(elapsedTime);

 6. Accuracy of Timings in Flash

A common concern with regard to running surveys and experiments
online is that timings will not be as accurate as those collected in the lab
using specialist software. This issue has been addressed thoroughly in a
paper by Reimers and Stewart (Reimers, S., & Stewart, N. [2007]. Adobe
Flash as a medium for online experimentation: A test of RT measurement
capabilities. Behavior Research Methods, 39, 365–370), who have been
using Flash to collect data on decision-making behavior. The gist of the
paper is that the timings Flash reports when the program is run online are
overestimates of those reported by more precise software developed spe-
cifically for recording reaction times. To be precise, the timings reported
by Flash are roughly 30 milliseconds (or .03 of a second) longer than
those reported by E-Prime and the like. However, this affects all timings
equally and does not create any additional variability in the timings data.
This means it is fine to use Flash for timings, but there is one important
exception, detailed here.

The only thing Flash should not be used for is to present stimuli for
extremely short durations (anything less than about 64 milliseconds). Here is
why it is best not to use Flash to present stimuli for extremely short dura-
tions. (You can skip this section if you do not plan to use it in this manner.)
When manipulating the visual display, you are limited by the framerate set
within Flash and the refresh rate of your browser and/or monitor. The framer-
ate, measured in frames per second (fps), determines how often the visual

Box (Continued)

Chapter 8 Using Timers and recording reacTion Time 133

display can update with new content. The default framerate is 24 fps, which
means that the screen should update every 41.666 milliseconds. This
also interacts with the screen refresh rate of your monitor, which is typically
60 Hz (that is, it updates every 16.666 milliseconds). If you have a stimulus
presented for “25 milliseconds” with a 24 fps framerate, in reality there will
be a margin of error of up to 41.666 + 16.666 milliseconds (depending on
when the code executes). Because this error is random noise, it does not
matter if you are presenting stimuli for seconds at a time—this word of
caution only relates to extremely precise timings.

Exercise 1: Create a game that requires the user to complete 10 math
problems correctly to win. The user has 120 seconds total, and a new prob-
lem appears every 10 seconds. If a user’s response to a problem is faster than
10 seconds, the next problem appears. A countdown Timer tells the user how
many seconds are left in the game.

Exercise 2: Take the program you created in the exercise from “Chap-
ter 6: Questionnaire Tools” and add a measure of response time for each
question.

In this chapter, you learned how to use the tools Flash provides for
manipulating and recording timings. The first thing you learned was how to
create a date and time stamp to put in your data output. You learned that this
is useful for figuring out whether the user spent a reasonable amount of time
completing your experiment or survey and to determine how many
responses you are getting per hour/day/week. You then learned about con-
trolling timings in your program. You have a choice between the somewhat
more intuitive “setTimeout” method and the more complex but also more
flexible “Timer.” Finally, you learned how to record the time it takes the user
to do something by recording two points in time and finding the difference
between the two. All of this information came with a caveat about the accu-
racy of timings in Flash—the take-home message is that accuracy is pretty
good, unless you are interested in presenting things on the screen for less
than about 100 milliseconds at a time.

The skills discussed in this chapter can be readily applied to many practi-
cal problems: limiting the amount of time an individual has to make a
response, recording how long it takes for the user to make decisions, or
keeping track of how long it takes someone to complete an experiment.

134 Flash Programming For The social and Behavioral sciences

 Resources

The following links are hot-linked for your convenience at http://www
.sagepub.com/weinstein.

http://actionsnippet.com/?p=385
How to use the date stamp to automatically generate a unique ID for

each user.

http://www.adobe.com/designcenter/flash/articles/flacs3it_astimeline_print
.html
A basic overview of how to use the Timer class.

http://layersmagazine.com/build-a-simple-countdown-timer-in-flash.html
Creating a countdown timer in Flash. Includes more advanced design

techniques as well as code samples.

http://www.ucl.ac.uk/~ucjtsre/B210.pdf
Academic journal article measuring the accuracy of reaction time

measurement in Flash.

http://www.flashandmath.com/howtos/eztimer/index.html
An advanced look at Timer performance, with a demonstration of the

error margin.

135

Chapter 9

Saving Data

IN THIS CHAPTER, YOU WILL LEARN

•• That there are two main alternatives for how you can output your data

•• How to store multiple pieces of data in one String

•• How to create a template for your data output

•• How to test your output to make sure it fits the template

1. Data Output

So far, we have written programs that have been functional from the user’s
perspective but somewhat useless to us because they do not actually record
any data that we can look at later. Whenever you have been sending informa-
tion to the Output window using the trace method, this information is only
available to be viewed via the Flash interface and is not accessible if you run
the program outside of Flash (i.e., in a Flash player or on the Web). We need
to use a different method to save data for output. We then need to send the
data out of Flash and into a usable format that can later be accessed and used
for analysis.

The most efficient way to output data is to create one String variable
that will contain all of the data for one user. This is the most efficient method
because if you are running the survey or experiment online, multiple users

136 Flash Programming For the social and Behavioral sciences

may be accessing your program at the same time. If all of one user’s data is
output on one line, this makes it easy to determine how many users have
completed and ensures that you can easily determine where one user’s infor-
mation ends and another’s begins. The String variable containing all of one
user’s data is then sent to a text file, where every row of data corresponds to
one user.

Another alternative is to output data through String variables for each
“observation” rather than for each user, for instance, sending information
about each answered question as soon as it has been input, instead of all at
one time, once the end of the program has been reached. This method has
several advantages: (1) Some data will have still been collected and output
even if the user quits the program early or the program malfunctions (as
unlikely as that will be after reading this book!), (2) the resulting data layout
may be easier for some sorts of analyses (e.g., item-by-item analyses), and
(3) you can track where a subject is in the experiment by observing incom-
ing observations on the server. However, this method does carry with it
several disadvantages: (1) If several users are accessing the program at the
same time, the data will not be organized by users; (2) if the program con-
tains multiple phases or types of questions, the output might be harder to
untangle; and (3) you may have to output data from different sections to
different text files and create multiple templates (discussed later) for inter-
preting your data.

After obtaining a little bit of experience programming in Flash, you will
have an improved sense of the best output method for your particular needs.
This chapter discusses the first method of outputting data (i.e., outputting all
of the information for one user once he or she reaches the end), but the
principles can be applied easily to the second method (outputting informa-
tion by question or section).

Example: Using a String Variable to Store Output

To create your output variable, first define a new String variable called
“output.” Then, whenever you get to any part of the program that produces
data you want to save, you can add this data to the variable “output.” First,
though, you need to turn the data into a string, to ensure that there are
no data type incompatibilities. After that, you append the latest piece of data
to the variable “output” (this is also called concatenating). Each time you do
this, the new data is added to whatever is already saved in the variable. For
instance, imagine your program randomly picks a condition for each partici-
pant (numbered 1, 2, or 3) and stores it in a variable called “conditionNumber.”
You would like to output the chosen condition to your data file.

Chapter 9 saving data 137

/*Append the contents of the variable
“conditionNumber” to the variable “output.”*/

output += String(conditionNumber);

Now, imagine you appended multiple pieces of data to this variable. You
would get a nonsense string of numbers and letters, and it would be impos-
sible to know where one data point ended and another began. To separate
the data points in the variable from each other, you can insert a special char-
acter after each variable. Then, when you open up the text file that contains
your data in a program such as Excel, you can use that special character to
delimit (i.e., separate) the fields so that each data point is read into a different
column. Asterisks are a good choice because they are very rarely (if ever)
input by the typical user, so they are unlikely to interfere with your output.
As a safety precaution, you could also exclude the asterisk from any Input
Text field using the restrict method (see “Chapter 4: Working With Text
and Keystrokes”).

/*Append an asterisk to the output variable to
delineate one piece of information from the next.*/

output += “*”;

In addition to sending the contents of individual variables to output
(e.g., variables that store individual pieces of information such as age,
gender, etc.), you may want to send the contents of an entire array to
your output variable. This would be useful if, for instance, you used an
array to save a set of responses to a series of questions. To send the con-
tents of an array to your output variable in a readable format, you need to
append an asterisk after each element in the array. If you add the whole
array to your output variable without doing this, you would end up with
one long string, without any delimitation between the elements in your
array (see Figure 9.1).

To intersperse asterisks between each element in an array, you can
send the array to a function that cycles through the array and adds each
element followed by an asterisk to a new string. By setting up this func-
tion, you can then send as many arrays as you like to it and return strings
of data points separated by asterisks that you can then append to your
output variable.

138 Flash Programming For the social and Behavioral sciences

To follow along with this example, take the following steps:

1) Define a String variable called “output.” (You should already have
this from the previous example.)

2) Define a new Array variable called “responseArray” and populate it
with a few elements.

The following function takes an array and temporarily labels it as
“inputArray.” A new temporary String variable called “outputString” is then
created. This String variable holds the contents of the Array variable that
is passed to the function, and each element is separated from the next with
an asterisk. The for loop cycles through “inputArray” until the length of that
array is reached. For each index in the array (i.e., for each value of “i”), the
corresponding element is added to the String variable “outputString,”
followed by an asterisk. That string is then sent out of the function.

function addAsterisksToArray(inputArray:Array)
:String

{

 var outputString:String = new String;

 for (i = 0; i < inputArray.length; i++)

 {

 outputString += String(inputArray[i]);

Figure 9.1. The contents of an array, output without delineation
between elements, and output with asterisks between
each element.

Chapter 9 saving data 139

outputString += “*”;

 }

 return outputString;

}

In addition to defining this function, we also need to actually send our array
to the function so that it can be turned into a string delimited with asterisks. The
following code runs the array “responseArray” through the function “addAster-
isksToArray” and appends the resulting string to your output variable:

/*Send the array “responseArray” to the function
“addAsterisksToArray” and add the returned string
to the variable “output.”*/

output += addAsterisksToArray(responseArray);

To sum up, here are the steps you need to take to create usable output:

1) Create a new String variable that will store all your output in one
long string.

2) At each point where you want to send something to output, append
the contents of the relevant variable to your output variable using +=.

3) To make sure that there are no variable type incompatibilities, turn
everything you add to the variable into a string first, for example,
String(condition).

4) After each piece of information you add to the output string, also
add an asterisk using += “*” to delineate the information.

5) To output entire arrays, first send them to a function that will add
asterisks between each element.

2. Creating an Excel Template for Data Output

Now that you have set up your output variable, you also need to create a
template that will help you make sense of this output. The template consists
of column headings that refer to each piece of information you have output

140 Flash Programming For the social and Behavioral sciences

in your data file. For instance, the first column might be labeled “subject,” if
you are outputting the subject number first. Your output template can be
created in Excel; then, when you import your output into Excel, the data will
fit the template. Here is what the beginning of your template might look like
in Excel (Figure 9.2):

Figure 9.2. Part of an Excel data output template.

For variables that hold only a single piece of information (e.g., condition,
gender, age, etc.), making a spot for them in the template is easy. The only
thing you have to verify is that the order of the variables listed on the template
is identical to the order in which information is added to your output variable.

When it comes to arrays, however, you have a few options as to the way
you can output such information. Imagine you have a program where the
user is presented with 10 questions in a random order, and for each question,
the user provides an answer and a confidence rating. (Does this sound famil-
iar? It should, because this was the exercise for “Chapter 6: Questionnaire
Tools.”) You need to output the following information for each question:
the question itself or at least an index (so that you can identify the question),
the response, and the confidence rating. Here is a matrix of the information
for one user that you would like to send to your output (Table 9.1):

Chapter 9 saving data 141

Here are two ways in which you could output this information in one string:

1) For each question, output the trial number, question index, response,
and confidence rating sequentially; repeat for all remaining ques-
tions. Your output would look like this:

 *1*7*a*100*2*3*d*92*3*4*e*50*4*8*c*42*5*5*b*35*6*2*d*68*7
*9*c*43. . . etc.

And here is how it would look in your template (Figure 9.3):

Table 9.1. Sample data for 10 questions.

Trial Question Index Response Confidence

 1 7 a 100
 2 3 d 92
 3 4 e 50
 4 8 c 42
 5 5 b 35
 6 2 d 68
 7 9 c 43
 8 1 e 78
 9 10 a 38
10 6 b 60

Figure 9.3. Excel template with one line of output, showing data
output by trial number.

2) You can output all the question indices in the order they appeared,
followed by all the responses in the same order, and followed finally
by all the confidence ratings in the same order. The advantage of this

142 Flash Programming For the social and Behavioral sciences

method is that the responses and confidence ratings for each item
in your study are in the same column for all participants. Your output
would look like this:

 *7*3*4*8*5*2*9*1*10*6*a*d*e*c*b*d*c*e*a*b*100*92*50*42
*35*68*43*78*38*60*

And here is how it would look in your template (Figure 9.4):

Figure 9.4. Excel template with one line of output, showing data
output by variable.

The two methods described here are equally valid, and there are also
many other ways you could output the data. You should play around with the
options until you figure out which method is most intuitive and fits your
purposes.

Note that in order to make the template work correctly, you need to
make sure that all of the information is always added to the output variable
in the same order, regardless of experimental condition or user input. If the
data output is liable to differ by condition, you can adjust for this by insert-
ing blanks where there is no information for a particular condition. Imagine
the following scenario as an example of this: You have a survey that consists
of 20 questions, but people in Condition A answer questions 1–15 and
people in Condition B answer questions 5–20. If you append the answers to
each of the 15 questions one by one to your output variable, you will have a
string of 15 responses, but the first response for someone in Condition A
will be to a different question than that of someone in Condition B. To cor-
rect for this, you could add five blanks to the beginning of the output for
Condition B and five blanks to the end of the output for condition A. This
will ensure that across both conditions, responses will line up in your tem-
plate by question number. To add a blank to your output, simply append an
asterisk without appending any data.

Chapter 9 saving data 143

3. Testing the Output

In the next chapter, we cover how to put the program online and send your
output variable to a text file that is also stored online. For now, even though
you are not sending output to a text file, you can still test whether your out-
put fits your template. Here is what you need to do:

1) After you have appended all the necessary information to your
output variable, add a line of code that traces the output variable:
trace(output).

2) When you test your program and get to the trace method you added
as instructed earlier, the whole output string should appear in your
Output window within Flash. Copy the output string and paste it
into a new text document.

3) Open this text document in Excel. To locate the file, select All files
(*.*) in the drop-down menu next to the File Name text field.

4) The Text Import Wizard will open up. Follow the instructions here
for getting your data in the right format.

In Step 1 of 3, for Choose the file type that best describes your data, select
Delimited and click Next. In Step 2 of 3, you are required to indicate which
symbols delimit your data. Under Delimiters, check Other and type an asterisk
into the text field. At this point, you can click Finish and bypass Step 3 of the
Text Import Wizard.

5) Now open up your template and paste your data underneath the
headers. Check to see if all the data line up and make the relevant
changes in your code and/or the template.

Exercise: For this exercise, you can use the program you created in the
exercise at the end of “Chapter 6: Questionnaire Tools” and then edited in
the exercise at the end of “Chapter 8: Using Timers and Recording Reaction
Time.” Now change the response format so that participants can type their
response into an Input Text field. Create an output variable to store question
index, answer, confidence, and reaction time for each question, and a tem-
plate for this information. Try both methods, described earlier, for outputting
array information.

144 Flash Programming For the social and Behavioral sciences

In this chapter, you learned that there are two main alternatives for
outputting your data: either after each trial, question, or section; or just once
at the end of the program for each user. We focused on the second of these
two options, but the principles you learned can be easily applied to the first.
You learned that the most efficient way to gather all your information for
output is to add each data point to a String variable. You learned how to
delimit each separate data point in this string by interspersing asterisks after
each one. You then learned how to make a template in Excel in order to be
able to interpret the data output in this manner, and we warned you to make
sure all your data line up with this template regardless of different conditions
and different user behavior. Although you didn’t learn how to actually send
output to a text file (that comes in the next, and final, chapter), you used a
workaround to copy the output from Flash and to view it in Excel to make
sure it lines up with your template. These are all important things to do
before you put your program online and allow other people to access it.

 Resources

The following links are hot-linked for your convenience at http://www
.sagepub.com/weinstein.

http://help.adobe.com/en_US/AS2LCR/Flash_10.0/help.html?content=
00000335.html
A basic introduction to concatenating (adding together) Strings.

http://office.microsoft.com/en-us/excel-help/text-import-wizard-HP0101
02244.aspx
Introduction to the Text Import Wizard in Microsoft Office Excel.

145

Chapter 10

putting Your
program online

IN THIS CHAPTER, YOU WILL LEARN

•• How to make sure your program is resistant to malfunctions and user mistakes

•• Code for sending the output variable you created in the previous chapter to a text file

•• That you need to upload four different files to your server in order for your program to be fully
functional online

•• About various things that can go wrong when you try to upload your program online

When you have finished writing your program and are ready to put it online,
you will have to go through the following steps: (1) Make sure the program
is airtight and there is no way an incompliant user can crash it by pushing
keys at the wrong time, (2) add some code to your program to send out the
output variable you created in the previous chapter to a text file, (3) “publish”
the program to create an HTML page and Flash movie (.swf), and (4) upload
a set of four files to your server.

To follow along with this chapter, you need to use a program you have
created that includes an output variable (as specified in the previous chapter).
Here you will learn how to get that program ready for the Web and how to
send the data output variable you have created to a text file. This chapter

146 Flash Programming For the social and Behavioral sciences

assumes that you have your own web domain and hosting and know how to
upload files to it. If you are not familiar with this, check the Resources section
for some useful links.

 1. Idiot-Proofing Your Program

The first thing you need to do before you put your program online is make
sure that it is idiot-proof. To do this, imagine you are a very incompliant user,
who does not follow instructions or press the right keys at the right time. Run
through your program multiple times and try to press keys or click on the
screen at times when you are not supposed to be interacting with the pro-
gram. If you are not careful with your event listeners, unwanted events may
be triggered. For instance, if you have a phase in your program where the
user is passively watching the screen (e.g., in the study phase of an experi-
ment), try pressing different keys to see if this affects the visual display. If any
unwanted events are triggered, go back to your code and make sure all event
listeners are removed when they are not needed.

You also want to ensure that users cannot inadvertently render your out-
put unusable by typing certain characters or strings. For instance, double-
check that the asterisk character (*) is restricted from input within your
program if you intend to use this character as a delimiter between different
responses in your output variable. Also, you may want to restrict the use of
other characters or strings in order to minimize the chances that a nefarious
user may manipulate your files. Programmers especially concerned with the
security of their data may want to further investigate these issues.

 2. Sending Output out of Flash

Now you need to figure out a way to send the output variable you created in the
previous chapter to a text file. Unfortunately, Flash itself is not capable of doing
this, so you need to write a script in another programming language (PHP) and
some code in Flash telling it to run this script. The script will connect between
Flash and the text file and transfer the contents of the output variable from one
to the other. The PHP script itself is provided for you as a template (http://www.
sagepub.com/weinstein), so you do not need to worry about writing that.

The code you need to add to your Flash program is in two parts. The first
chunk of code sets up the method that will communicate with the PHP script.
Here you indicate the exact location of your PHP script on the server. (We will
upload the actual PHP script later and use the exact location of that script on

Chapter 10 Putting Your Program online 147

your server in the code that follows.) You can add this code anywhere in the
first Frame so that it is read when the program starts up.

var varLoader:URLLoader = new URLLoader;

var varURL:URLRequest = new URLRequest(“SERVER
ADDRESS OF YOUR PHP SCRIPT”);

var submittedData:URLVariables = new URLVariables();

varURL.data = submittedData;

varURL.method = URLRequestMethod.POST;

The explanation for how this code works is too advanced for this book,
so all you need to know is that the text in quotation marks on the second
line must be replaced with the location of your PHP script on your server
and that the .POST method in the last line indicates that you will be sending
information to the PHP script.

The second bit of code needs to be added to the program at the point
where the output is ready to be transmitted. A good place to put this code
would be right after the last piece of information is added to your output
variable or when the user presses the last button—but make sure this is a
button the user will definitely press, otherwise you will have no data output!

submittedData.inputData = output;

varLoader.load(varURL);

Recall that the variable that contains all our data (see the previous chapter)
was called “output.” Here we are sending this variable to the PHP script,
which in turn will send it to the text file.

3. Publishing Your Program

Next you need to create the Flash movie and the HTML webpage that will
hold the movie. The HTML webpage and Flash movie are created from within
Adobe Flash by going to File à Publish (Shift+F12). This creates a
template webpage (.html) file that you can edit to match the formatting of
your website, and this template webpage will include all the code you need
to display your Flash movie.

148 Flash Programming For the social and Behavioral sciences

Various settings with regard to the size and quality of the webpage and
the movie itself can be accessed under File à Publish Settings
(Ctrl+Shift+F12). You can leave all the settings on default, except for dis-
abling the movie menu. To do this, go to the HTML Settings tab and uncheck
the box by Display Menu under Playback. This makes it impossible for the
user who is accessing your program online to accidentally skip through to
different Frames, which would cause difficulties with the program. If you
leave the Display Menu box checked, the user can do this by right-clicking on
the webpage and selecting Forward.

Once you have chosen your settings, simply select File à Publish
(Shift+F12). The .html and .swf files will be created in the same directory as
your .fla.

 4. Uploading Your Program

To make your program fully functional online, you need to upload four dif-
ferent files: the HTML page, the Flash movie, a blank text file to store your
output, and a PHP script file that will communicate between the Flash movie
and the text file. Figure 10.1 illustrates the relationship among the files that
will be on your server.

Figure 10.1. Diagram of the relationship among the files you need to
upload. The Flash movie (.swf) is embedded in a
webpage (.html). Once the program has come to the
point where data needs to be output, a line in the code
communicates with a PHP script. The PHP script in turn
sends the data output to a text file.

Chapter 10 Putting Your Program online 149

These are the four files you need to upload:

1) A basic webpage with your Flash “movie” (extension: .html)
embedded—created when you published your program.

2) The Flash “movie” (extension: .swf)—created when you published
your program.

3) A script that communicates between Flash and the text file to
which you will output your data (extension: .php)—use the tem-
plate provided.

4) A text file that will store your data (extension: .txt)—a new blank text
file you create.

The first two files were created when you published your program in the
previous step. Next you need the PHP document, which is a simple script.
This script communicates with the Flash movie and receives the output vari-
able, which is then sent to a text file. Rather than taking up a whole chapter
with information about PHP, we have created a template for you to use. Go
to http://www.sagepub.com/weinstein to download this document. If you
use the exact code provided in Section 2 of this chapter and name the text
file as specified here, all you need to do is upload this document to the same
folder on your server as the other files required for running the program. If
you decide to change the name of your text file, you need to edit the PHP
script to match the name you are using. To edit a PHP script, open it in any
text processing software and edit the relevant text, but make sure you save
it with the extension .php.

Finally, you need a blank text file that will be referenced by the PHP
script. This is where the output is sent. Create a new file in any text process-
ing software (e.g., Notepad, Wordpad, or TextEdit), and save it with the name
“myTextFile.” Make sure the file you are saving has the extension “.txt” and
the file name is exactly correct, otherwise the PHP script will not be able to
send it the output.

5. Testing the Program and Troubleshooting

Now that your program is online, all that remains is to test it! Go to the HTML
page in your browser. You should see your program, embedded in a web-
page. Run through your program until the end, where it sends out the data.
Now check your text file—you can either type in the location of the text file

150 Flash Programming For the social and Behavioral sciences

in your browser or download your text file from the server. A line of text
should appear, beginning with “received from flash = 1” and followed by
your data output.

Various things may go wrong with this process. Table 10.1 provides a
quick troubleshooting guide:

Table 10.1. Troubleshooting guide for online surveys and experiments.

Problem Solution

The website does not load. •• Check to make sure you have the correct URL, and
don’t forget the “.html” extension.

The website loads but the
movie is not embedded.

•• Make sure you have Flash player installed on the
computer you are using to access the website.
Check to make sure that you uploaded the .swf
document as well as the webpage.

There is no data output in
the text file.

•• Navigate to the URL of the PHP—the page that
loads should be blank. If an error comes up on the
page, there is a problem with the PHP template.

•• Make sure the text file is named to match the
reference to it in the PHP script and that all four
files are uploaded to the same directory on your
server. Some servers do not allow PHP scripts.
Contact the administrator of your server to
verify this.

 6. Wrapping Up

If you have reached this page, you’ve learned a lot of things about Flash!
Hopefully, you are now ready to move on from the examples in the book to
programming in Flash for your own research projects. But first take a minute
to glance at the example program mentioned very early in the book (see
“Why Flash?”). Go to http://www.sagepub.com/weinstein and click on the
sample program. When you first looked at it, you probably had no idea how
you would go about programming it yourself in Flash. Now you know all the
techniques required to make this program, and more!

In this chapter, you learned that you really need to make sure your
program is impossible to “break” by pressing the wrong key before you put
the program online. You learned that Flash is not capable of sending output
to a text file but can communicate with a PHP script to do so. You were given
some code to add to your program for communicating with the PHP script

Chapter 10 Putting Your Program online 151

and a template PHP script that does not need to be edited. You learned that
there are four components to your online program: the HTML website; the
swf, which contains your Flash movie; the php script; and a blank text file for
collecting data. You learned about how to put these components together to
make a fully functioning program that runs online and how to correct com-
mon errors. Good luck running your online surveys and experiments!

Resources

The following links are hot-linked for your convenience at http://www
.sagepub.com/weinstein.

http://lifehacker.com/5683682/five-best-domain-name-registrars
A list of the five best domain registrars, as voted by a techy community.

http://filezilla-project.org/
The most popular free program for uploading files to a server.

http://www.lauraruel.com/j187/PDFs/flash_online.pdf
A journalist’s guide to putting Flash programs online, which applies to

experiments too.

http://adding-flash.blogspot.com/
How to put Flash content on a weblog or other website.

http://www.propublica.org/article/propublicas-guide-to-mechanical-turk
Overview of Amazon Mechanical Turk for those who want to have

anonymous users complete their experiments.

http://net.tutsplus.com/tutorials/tools-and-tips/introduction-to-adobe-air/
An introduction to Adobe AIR, which provides another method of

packaging an experiment.

152

The following links are hot-linked for your convenience at http://www
.sagepub.com/weinstein.

http://actionsnippet.com/?p=1640
A trick for making your randomly generated numbers more variable.

(“Chapter 7: Condition Assignment and Randomization”)

http://actionsnippet.com/?p=385
How to use the date stamp to automatically generate a unique Id for

each user. (“Chapter 8: Using Timers and Recording Reaction Time”)

http://adding-flash.blogspot.com/
How to put Flash content on a weblog or other website. (“Chapter 10:

Putting Your Program Online”)

http://as3-blog.net/?p=578
An advanced look at shuffling around the contents of an array. (“Chapter 7:

Condition Assignment and Randomization”)

http://blog.reyco1.com/method-of-removing-all-event-listeners/
A potential method of removing all event listeners. (“Chapter 3:

Navigation”)

http://coding.smashingmagazine.com/2011/01/11/keeping-web-users-safe-by-
sanitizing-input-data/
The importance of sanitizing database input. (“Chapter 4: Working With

Text and Keystrokes”)

http://digitalmedia.oreilly.com/helpcenter/actionscript30cookbook/chapter1
.html?page=6
Sample chapter from the ActionScript 3.0 Cookbook, explaining the

switch statement. (“Chapter 7: Condition Assignment and Randomization”)

ResouRces Index

ResouRces Index 153

http://edutechwiki.unige.ch/en/ActionScript_3_event_handling_tutorial
#List_of_events
List of the most common Flash events. (“Chapter 3: Navigation”)

http://filezilla-project.org/
The most popular free program for uploading files to a server. (“Chapter 10:

Putting Your Program Online”)

http://flash-creations.com/notes/actionscript_operators.php
Common mathematical operators in Flash. (“Chapter 2: ActionScript Basics”)

http://gskinner.com/blog/archives/2010/07/some_thoughts_o.html
Some thoughts on TLF. (“Chapter 4: Working With Text and Keystrokes”)

http://help.adobe.com/en_US/AS2LCR/Flash_10.0/help.html?content=000
00335.html
A basic introduction to concatenating (adding together) Strings.

(“Chapter 9: Saving Data”)

http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b9
0204-7d01.html
Additional information on capturing keyboard input. (“Chapter 4:

Working With Text and Keystrokes”)

http://help.adobe.com/en_US/flash/cs/using/WS3e7c64e37a1d85e1e229110
db38dec34-7feba.html
Discusses the “code hinting” feature in Flash. (“Chapter 2: ActionScript

Basics”)

http://help.adobe.com/en_US/flash/cs/using/WSd60f23110762d6b883b18f10c
b1fe1af6-7d29a.html#WSd60f23110762d6b883b18f10cb1fe1af6-7d22a
Setting Classic Text properties (including anti-aliasing options). (“Chapter 4:

Working With Text and Keystrokes”)

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/
ui/Keyboard.html#constantSummary
Definitive list of constant keyCodes. (“Chapter 4: Working With Text and

Keystrokes”)

http://help.adobe.com/en_US/incopy/cs/using/WSa285fff53dea4f8617383751
001ea8cb3f-6e14a.html
An article about kerning. (“Chapter 4: Working With Text and Keystrokes”)

154 Flash PRogRammIng FoR the socIal and BehavIoRal scIences

http://home.earthlink.net/~craie/121/notes/vocabulary.html
Programming language vocabulary basics. (“Chapter 2: ActionScript Basics”)

http://html-color-codes.com/
HTML color codes. (“Chapter 4: Working With Text and Keystrokes”)

http://layersmagazine.com/build-a-simple-countdown-timer-in-flash.html
Creating a countdown timer in Flash. Includes more advanced design

techniques as well as code samples. (“Chapter 8: Using Timers and Recording
Reaction Time”)

http://lifehacker.com/5683682/five-best-domain-name-registrars
A list of the five best domain registrars, as voted by a techy community.

(“Chapter 10: Putting Your Program Online”)

http://net.tutsplus.com/tutorials/tools-and-tips/introduction-to-adobe-air/
An introduction to Adobe AIR, which provides another method of

packaging an experiment. (“Chapter 10: Putting Your Program Online”)

http://office.microsoft.com/en-us/excel-help/text-import-wizard-HP01010
2244.aspx
Introduction to the Text Import Wizard in Microsoft Office Excel.

(“Chapter 9: Saving Data”)

http://snipplr.com/view/11307/as3-randomize-array/
Another method of randomizing the contents of an array. (“Chapter 7:

Condition Assignment and Randomization”)

http://tv.adobe.com/channel/how-to/
Adobe TV, which contains a series of useful how–to videos. (“Chapter 1:

The Flash Interface”)

http://www.actionscript.org/forums/showthread.php3?t=177515
A forum discussion of what precisely “void” means in functions.

(“Chapter 2: ActionScript Basics”)

http://www.actionscript.org/forums/showthread.php3?t=191468
A discussion thread about deselecting RadioButtons. (“Chapter 6:

Questionnaire Tools”)

http://www.actionscript.org/resources/articles/5/1/The-power-of-nested-
loops/Page1.html
Using “nested for loops” in Flash. (“Chapter 2: ActionScript Basics”)

ResouRces Index 155

http://www.adobe.com/designcenter/flash/articles/flacs3it_astimeline_print
.html
A basic overview of how to use the Timer class. (“Chapter 8: Using Timers

and Recording Reaction Time”)

http://www.adobe.com/devnet/flash/articles/flash_cs5_createfla.html
Another introduction to the Flash workspace. (“Chapter 1: The Flash

Interface”)

http://www.adobe.com/devnet/flash/components.html
An exhaustive list of the component reference pages provided by Adobe.

(“Chapter 6: Questionnaire Tools”)

http://www.adobe.com/livedocs/flash/9.0/main/wwhelp/wwhimpl/common/
html/wwhelp.htm?context=LiveDocs_Parts&file=00000047.html
Flash data type reference. (“Chapter 2: ActionScript Basics”)

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/Array
.html
The API entry for the Array object. (“Chapter 5: Presenting and Storing

Information in Arrays”)

http://help.adobe.com/en_US/flash/cs/using/WSd60f23110762d6b883b18f10c
b1fe1af6-7f84a.html
A more detailed introduction to manipulating the Flash timeline.

(“Chapter 3: Navigation”)

http://www.designscripting.com/2010/08/html-tags-supported-by-flash/
List of HTML tags supported by Flash. (“Chapter 4: Working With Text

and Keystrokes”)

http://www.flashandmath.com/howtos/eztimer/index.html
An advanced look at Timer performance, with a demonstration of the

error margin. (“Chapter 8: Using Timers and Recording Reaction Time”)

http://www.flashcomponents.net/component/slider_component.html
Two implementations of the Slider component. (“Chapter 6: Questionnaire

Tools”)

http://www.flashvalley.com/fv_articles/Naming_conventions_in_actionscript/
Some thoughts about naming conventions in Flash. (“Chapter 1: The

Flash Interface”)

156 Flash PRogRammIng FoR the socIal and BehavIoRal scIences

http://www.foundation-flash.com/tutorials/debugging/
Common errors people make in Flash and how to fix them. (“Chapter 2:

ActionScript Basics”)

http://www.gavilan.edu/csis/languages/comments.html
An interesting history of the use of comments in programming languages.

(“Chapter 3: Navigation”)

http://www.lauraruel.com/j187/PDFs/flash_online.pdf
A journalist’s guide to putting Flash programs online, which applies to

experiments too. (“Chapter 10: Putting Your Program Online”)

http://www.macloo.com/examples/flash/button_states/
An illustration of the various Button states. (“Chapter 1: The Flash

Interface”)

http://www.onebyonedesign.com/tutorials/array_methods/
A list of advanced Array methods. (“Chapter 5: Presenting and Storing

Information in Arrays”)

http://www.propublica.org/article/propublicas-guide-to-mechanical-turk
Overview of Amazon Mechanical Turk for those who want to have

anonymous users complete their experiments. (“Chapter 10: Putting Your
Program Online”)

http://www.republicofcode.com/tutorials/flash/as3arrays/
A simple introduction to Arrays. (“Chapter 5: Presenting and Storing

Information in Arrays”)

http://www.republicofcode.com/tutorials/flash/as3events/
Additional information on event handling. (“Chapter 3: Navigation”)

http://www.signar.se/blog/as-3-charcodes/
charCode and keyCode reference. (“Chapter 4: Working With Text and

Keystrokes”)

http://www.smartwebby.com/Flash/external_data.asp
Loading data from external text files into Flash. Pair with Arrays to save

lots of time. (“Chapter 5: Presenting and Storing Information in Arrays”)

http://www.sunilb.com/programming/12-common-programming-mistakes-
to-avoid
Common programming mistakes. (“Chapter 2: ActionScript Basics”)

ResouRces Index 157

http://www.toxiclab.org/tutorial.asp?ID=69
A tutorial for creating complex Buttons. (“Chapter 1: The Flash Interface”)

http://www.ucl.ac.uk/~ucjtsre/B210.pdf
Academic journal article measuring the accuracy of reaction time

measurement in Flash. (“Chapter 8: Using Timers and Recording Reaction
Time”)

http://www.useit.com/alertbox/20040927.html
A thorough discussion on when to use CheckBoxes versus RadioButtons.

(“Chapter 6: Questionnaire Tools”)

http://www.utexas.edu/learn/flash/buttons.html
A tutorial about Buttons. (“Chapter 1: The Flash Interface”)

http://www.video2brain.com/en/videos-699.htm
A video introducing the Flash interface. (“Chapter 1: The Flash Interface”)

http://www.w3.org/TR/html/
General information on HTML. (“Chapter 4: Working With Text and

Keystrokes”)

http://www.webwasp.co.uk/tutorials/005/MX02/index.php
A tutorial about Buttons. (“Chapter 1: The Flash Interface”)

158

A
ActionScript

ActionScript 3.0 file types, 2
coding conventions, 17–19
terminology, 17
variables, 17, 19, 20–21

Actions panel, 5, 8, 16
Arrays

Adding elements, 72-72
cycling through, 75-77
definition, 20, 71–73
methods, 74-77
malfunctions, 81
properties, 74–77
randomizing, 116-118
sampling without

replacement, 115-116
sampling with replacement,

114-115
searching, 80
storing responses, 77–79

B
Buttons

activating, 92-93
button press responses,

40–42, 90–94
inserting, 10–13
naming, 11
removing functions from, 47
templates, 12visibility, 89–93

C
Cascading Style Sheets (CSS),

63
Character codes (charCode),

63, 64, 65–66, 69

CheckBox component, 99–102,
104

Classic Text, 51
Coding conventions, 17–19
Commenting the code, 17–18
Compiler Errors panel, 5, 10,

22–23
Compiling the program, 22-23
Component Inspector, 6, 8–9
Component properties/

parameters
allowMultipleSelection (List,

CheckBox), 85, 100
dataProvider (List), 85, 87-88
direction (Slider), 102
enabled (all), 85, 86, 93, 96,

100, 102
group (RadioButton), 96, 97,

98, 99
groupName (RadioButton),

96, 99
horizontalLineScrollSize

(List), 85
horizontalPageScrollSize

(List), 85
horizontalScrollPolicy

(List), 86
label (all), 11, 13, 39, 87-89,

94-95, 96, 100, 101-102
labelPlacement (RadioButton),

96, 100
liveDragging (Slider), 102,

103
minimum/maximum

(Slider), 102
selected (RadioButton), 98-99
selectedData (RadioButton), 98

snapInterval (Slider), 103
tickInterval (Slider), 103
value (radioButton), 96, 98
verticalScrollPolicy (List), 86
visible (all), 86, 89-92, 96, 99,

100, 102
Components panel, 6, 8,

83–84
Concatenation, 136
Conditional statements, 25–31
Condition assignment

manual, 107–110
random, 111–113

Countdown timers, 129–131

D
Data output

concatenating output in a
String variable, 136

sending output to a text file,
146-147

templates, 139–142
testing output, 143

Data parameter, 87
dataProvider, 85, 87–89
Date and time functions,

120–134
Date stamps, 120–122
Do while loops, 31, 33–34
Dynamic Text, 53–54, 55–62, 68

E
Else statements, 26–30
Embedded fonts, 58–59
Enabling a component, 85, 96,

102
Errors

Subject Index

Subject Index 159

accessing an Array index that
does not exist, 81

Access of undefined property
error message, 23, 42

Array malfunctions, xx
duplicate labels, 39
troubleshooting online

programs, 149-150
see also Warning messages

Events
CHANGE, 90-92, 103
CLICK, 41-42, 44, 46, 47, 76,

78, 90-94, 97-98, 101, 108-110,
114-115, 122

Event, 90-94
KeyboardEvent, 64-65, 67,

126-127
KEY_DOWN, 65, 67, 126
KEY_UP, 65
MouseEvent, 40-44, 46, 47, 76,

78, 90-94, 97-98, 101, 108-110,
114-115, 122

SliderEvent, 103
TIMER, 128, 130
TIMER_COMPLETE, 130-131
TimerEvent, 128-131

Event listeners, 40–48, 90–94, 97
Expandable text field, 51–53
Experimenter controlled

timings, 127–128

F
Fixed-width text field, 52–53
Flash movie (.swf), 147–149
Flowcharts, 37–49
Font settings, 57–61
For loops, 31, 32, 79, 118
Frame navigation codes, 42–44
Frames

appearance, 9–10
naming, 39-40
navigation, 37–49
referencing, 46-47

Functions
coding conventions, 24–25
definition, 17
reusing, 44–47
triggering, 40-43, 47

G
Gilmour, K., 38

H
horizontalLineScrollSize, 85
horizontalPageScrollSize, 85–86
horizontalScrollPolicy/

verticalScrollPolicy, 86
HTML5, xiv
HTML tags, 60
HTML webpage (.html),

147–149

I
Icon removal from workspace, 5
Idiot-proofing the program, 146
If/then statements, 25–31
Images, inserting, 10–13
<
Input Text, 54, 55–62, 67–68
Inserting images and buttons,

10–13
Inserting new frames, 38–39
Instance names, 11, 41, 44-45,

54, 85, 95-99

K
KeyboardEvent, 64–68
Key codes (keyCode), 63, 64,

65–66, 69
Keystroke recognition, 63–68,

69

L
Label component, 96
Layers, 9
Letter spacing, 59
Library panel, 5, 8
List component, 84–95, 104
Loops, 31–34

M
Mac users, xvii–xviii
Manual condition assignment,

106–107
Mathematical operations, 21–22
Methods, 17

addEventListener, 41-42

addItem, 89
displayAsPassword, 61
fromCharCode, 66
getTime, 131–132
gotoAndStop, 43, 45–46
htmlText, 60
indexOf, 75, 80
Math.ceil, 112-113, 115
Math, floor, 112, 114-117
Math.random, 111–117
Math.round, 112
POST, 147
Push, 75
removeAll, 89
removeEventListener, 47
restrict, 62, 137
setTimeout, 122–127
stop, 18–19
switch, 110
String, 98
text, 54
Timer, 127-129
trace, 23–24, 111–112,

135–139
MouseEvent, 41–43, 90, 97, 101

N
Naming frames, 39–40
Navigation, 37–49
Number variable, 21–22, 111

O
Order of execution, 19–20
Output panel/tab, 5, 10, 23-24
Output testing, 143

P
Panels

appearance, 10
docking procedures, 4–6
icon removal, 5
setup, 4–5

PHP script, 146–149
Properties panel, 5, 7–8
Property settings

(see component properties
and text properties)

Publishing the program, 147–148

160 Subject Index

Q
Questionnaire tools

CheckBox component,
99–102, 104

List component, 84–95, 104
RadioButton component,

95–99, 104
Slider component, 102–104,

105

R
RadioButton component,

95–99, 104
Randomization

Array randomization,
116-118

condition assignment,
111–113

definition, 106–107
stimulus randomization,

114–118
Random number generation,

111–118
Reaction time measurement,

131–132
Reimers, S., 132
Resizing text fields, 57
Responding to a keystroke,

63-67
Response storage

CheckBox component,
101–102

Arrays, 77-79
String variables, 67, 135-142
List component, 94–95
RadioButton component,

96–98

Slider component, 104
Text field, 67

Reusing functions, 44–47

S
Saving a workspace, 6
Slider component, 102–104, 105
Small Screen workspace

template, 4
Stage, 7, 10-13
Statements, 19
Static Text, 53, 55–62, 68
Stewart, N., 132
Stimulus randomization,

114–118
String variables, 72, 135–139

T
Terminology, 17
Testing the program, 149–150
Text fields

advanced options, 63
borders, 61
creation, 51–53
Dynamic, 53–54, 55–62, 68
Input, 54, 55–62, 67–68
keystroke recognition, 63–68,

69
property settings, 54–62, 69
resizing, 57
Static, 53, 55–62, 68
types, 53–54

Text Layout Framework (TLF),
51

Text properties
Anti-alias, 59
Auto-kern, 59

autosize, 57
character, 57–61
maxChars, 62, 110
paragraph, 61–62
position and size, 57
selectability, 55, 59, 61
textColor, 57

Timeline, 4, 9, 39
Time stamps, 120–122
Timing accuracy, 132–133
Timings, 122-128
Tools panel, 4, 10, 51
Troubleshooting online

programs, 149–150

U
Unwanted events, 145
Uploading the program, 148–149

V
value component, 96, 103
Variables, 17, 20–21

Array, 71-81
int, 46, 109, 111, 114-115
Number, 21–22, 111
String, 72, 135–139
Boolean, 30, 71
see also Arrays

verticalLineScrollSize, 86
verticalPageScrollSize, 86
Visibility property, 86, 96, 102

W
Warning messages, 93–94
While loops, 31, 32–33
Workspace appearance and

management, 2–10

	Cover

	Table of Contents
	About the Author
	Preface
	Acknowledgments
	Why Flash?
	How to Use This Book
	Chapter 1: The Flash Interface
	Chapter 2: ActionScript Basics
	Chapter 3: Navigation
	Chapter 4: Working With Text and Keystrokes
	Chapter 5: Presenting and Storing Information in Arrays
	Chapter 6: Questionnaire Tools
	Chapter 7: Condition Assignment and Randomization
	Chapter 8: Using Timers and Recording Reaction Time
	Chapter 9: Saving Data
	Chapter 10: Putting Your Program Online
	Resources Index
	Subject Index

