
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

FUNDAMENTALS OF
CONVOLUTIONAL CODING

www.allitebooks.com

http://www.allitebooks.org

IEEE Press
445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board
Tariq Samad, Editor in Chief

George W. Arnold Vladimir Lumelsky Linda Shafer
Dmitry Goldgof Pui-In Mak Zidong Wang
Ekram Hossain Jeffrey Nanzer MengChu Zhou
Mary Lanzerotti Ray Perez George Zobrist

Kenneth Moore, Director of IEEE Book and Information Services (BIS)

Technical Reviewer
John Proakis

Northeastern University

www.allitebooks.com

http://www.allitebooks.org

FUNDAMENTALS OF
CONVOLUTIONAL CODING
Second Edition

ROLF JOHANNESSON
KAMIL Sh. ZIGANGIROV

IEEE Press

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2015 by The Institute of Electrical and Electronics Engineers, Inc.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to
the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services or for technical support, please
contact our Customer Care Department within the United States at (800) 762-2974, outside the
United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic format. For information about Wiley products, visit our
web site at www.wiley.com.

Library of Congress Cataloging-in-Publication is available.

ISBN 978-0-470-27683-9

Printed in the United States of America.

www.allitebooks.com

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com
http://www.allitebooks.org

v

To Jim Massey, 1934 - 2013
our friend and mentor

To our clans1

Hugo Simon Liv

Katrin

Oliver Oskar

Peter

Stella Emma

Hanna

Regina

Natalia

Dima

Alex Mischa

Valja

Ira

1See Figure 8.2.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

Preface xi

Acknowledgement xiv

1 Introduction 1

1.1 Why error control? 1
1.2 Block codes—a primer 8
1.3 Codes on graphs 21
1.4 A first encounter with convolutional codes 28
1.5 Block codes versus convolutional codes 35
1.6 Capacity limits and potential coding gain revisited 36
1.7 Comments 39

Problems 41

2 Convolutional encoders—Structural properties 49

2.1 Convolutional codes and their encoders 49

vii

www.allitebooks.com

http://www.allitebooks.org

viii CONTENTS

2.2 The Smith form of polynomial convolutional generator matrices 58
2.3 Encoder inverses 67
2.4 Encoder and code equivalences 76
2.5 Basic encoding matrices 79
2.6 Minimal-basic encoding matrices 82
2.7 Minimal encoding matrices and minimal encoders 90
2.8 Canonical encoding matrices* 109
2.9 Minimality via the invariant-factor theorem* 127
2.10 Syndrome formers and dual encoders 131
2.11 Systematic convolutional encoders 139
2.12 Some properties of generator matrices—an overview 150
2.13 Comments 150

Problems 152

3 Distance properties of convolutional codes 161

3.1 Distance measures—a first encounter 161
3.2 Active distances 171
3.3 Properties of convolutional codes via the active distances 179
3.4 Lower bound on the distance profile 181
3.5 Upper bounds on the free distance 186
3.6 Time-varying convolutional codes 191
3.7 Lower bound on the free distance 195
3.8 Lower bounds on the active distances* 200
3.9 Distances of cascaded concatenated codes* 207
3.10 Path enumerators 213
3.11 Comments 220

Problems 221

4 Decoding of convolutional codes 225

4.1 The Viterbi algorithm revisited 226
4.2 Error bounds for time-invariant convolutional codes 235
4.3 Tighter error bounds for time-invariant convolutional codes 250
4.4 Exact bit error probability for Viterbi decoding 255
4.5 The BCJR algorithm for APP decoding 271
4.6 The one-way algorithm for APP decoding 283
4.7 A simple upper bound on the bit error probability for extremely

noisy channels 288
4.8 Tailbiting trellises 293

www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix

4.9 Decoding of tailbiting codes 302
4.10 BEAST decoding of tailbiting codes 308
4.11 Comments 323

Problems 324

5 Random ensemble bounds for decoding error probability 333

5.1 Upper bounds on the output error burst lengths 333
5.2 Bounds for periodically time-varying convolutional codes 345
5.3 Lower error probability bounds for convolutional codes 355
5.4 General bounds for time-varying convolutional codes 363
5.5 Bounds for finite back-search limits 375
5.6 Quantization of channel outputs 379
5.7 Comments 384

Problems 384

6 List decoding 387

6.1 List decoding algorithms 388
6.2 List decoding—performance 391
6.3 The list minimum weight 397
6.4 Upper bounds on the probability of correct path loss 407
6.5 Lower bound on the probability of correct path loss 416
6.6 Correct path loss for time-invariant convolutional codes 418
6.7 Comments 422

Problems 423

7 Sequential decoding 425

7.1 The Fano metric 426
7.2 The stack algorithm 431
7.3 The Fano algorithm 433
7.4 The Creeper algorithm* 436
7.5 Simulations 448
7.6 Computational analysis of the stack algorithm 450
7.7 Error probability analysis of the stack algorithm 460
7.8 Analysis of the Fano algorithm 471
7.9 Analysis of Creeper* 477
7.10 Comments 480

Problems 481

x CONTENTS

8 Low-density parity-check codes 485

8.1 LDPC block codes 486
8.2 LDPC convolutional codes 496
8.3 Block and convolutional permutors 508
8.4 Lower bounds on distances of LDPC codes 517
8.5 Iterative decoding of LDPC codes 529
8.6 Iterative limits and thresholds 538
8.7 Braided block codes* 553
8.8 Comments 562

Problems 562

9 Turbo coding 567

9.1 Parallel concatenation of two convolutional codes 567
9.2 Distance bounds of turbo codes 570
9.3 Parallel concatenation of three and more convolution codes 573
9.4 Iterative decoding of turbo codes 582
9.5 Braided convolutional codes* 586
9.6 Comments 591

Problems 591

10 Convolutional codes with good distance properties 593

10.1 Computing the Viterbi spectrum using FAST 594
10.2 The magnificient BEAST 598
10.3 Some classes of rate R = 1/2 convolutional codes 604
10.4 Low rate convolutional codes 608
10.5 High rate convolutional codes 621
10.6 Tailbiting trellis encoders 622
10.7 Comments 622

Appendix A: Minimal encoders 627

Appendix B: Wald’s identity 635

References 647

Index 659

PREFACE

Our goal with this book is to present a comprehensive treatment of convolutional
codes, their construction, their properties, and their performance. The purpose is that
the book could serve as a graduate-level textbook, be a resource for researchers in
academia, and be of interest to industry researchers and designers.

This book project started in 1989 and the first edition was published in 1999. The
work on the second edition began in 2009. By now the material presented here has
been maturing in our minds for more than 40 years, which is close to our entire aca-
demic lives. We believed that the appearance of some of David Forney’s important
structural results on convolutional encoders in a textbook was long overdue. For
us, that and similar thoughts on other areas generated new research problems. Such
interplays between research and teaching were delightful experiences. This second
edition is the final result of those experiences.

Chapter 1 provides an overview of the essentials of coding theory. Capacity limits
and potential coding gains, classical block codes, convolutional codes, Viterbi decod-
ing, and codes on graphs are introduced. In Chapter 2, we give formal definitions of
convolutional codes and convolutional encoders. Various concepts of minimality are
discussed in-depth using illuminative examples. Chapter 3 is devoted to a flurry of
distances of convolutional codes. Time-varying convolutional codes are introduced

xi

xii

and upper and lower distance bounds are derived. An in-depth treatment of Viterbi
decoding is given in Chapter 4, including both error bounds and tighter error bounds
for time-invariant convolutional codes as well as a closed-form expression for the
exact bit error probability. Both the BCJR (Bahl-Cocke-Jelinek-Raviv) and the one-
way algorithms for a posteriori probability decoding are discussed. A simple upper
bound on the bit error probability for extremely noisy channels explains why it is
important that the constituent convolutional encoders are systematic when iterative
decoding is considered. The chapter is concluded by a treatment of tailbiting codes,
including their BEAST (Bidirectional Efficient Algorithm for Searching Trees) de-
coding. In Chapter 5, we derive various random ensemble bounds for the decoding
error probability. As an application we consider quantization of channel outputs.
Chapter 6 is devoted to list decoding of convolutional codes, which is thoroughly
analyzed. Once again we make the important conclusion that there are situations
when it is important that a convolutional encoder is systematic. In Chapter 7, we
discuss a subject that is close to our hearts, namely sequential decoding. Both our
theses were on that subject. We describe and analyze the stack algorithm, the Fano
algorithm, and Creeper. James Massey regarded the Fano algorithm as being the
most clever algorithm among all algorithms! Chapters 8 and 9 rectify the lack of a
proper treatment of low-density parity-check (LDPC) codes and turbo codes in the
first edition, where these important areas got a too modest section. These codes
revolutionized the world of coding theory at the end of the previous millennium.
In Chapter 8, the LDPC block codes, which were invented by Robert Gallager and
appeared in his thesis, are discussed. Then they are generalized to LDPC convo-
lutional codes, which were invented by the second author and his graduate student
Alberto Jiménez-Feltström. They are discussed in-depth together with bounds on
their distances. Iterative decoding is introduced and iterative limits and thresholds
are derived. The chapter is concluded by the introduction of the related braided
block codes. Turbo codes are treated in Chapter 9 together with bounds on their
distances and iterative decoding. Moreover, the braided block codes are generalized
to their convolutional counterpart. In Chapter 10, we introduce two efficient algo-
rithms, FAST (Fast Algorithm for Searching Trees) and BEAST, for determining
code distances. FAST was designed to determine the Viterbi spectrum for convolu-
tional encoders while using BEAST we can determine the spectral components for
block codes as well. Extensive lists are given of the best known code generators
with respect to free distance, numbers of nearest neighbors and of information bit
errors, Viterbi spectrum, distance profile, and minimum distance. These lists contain
both nonsystematic and systematic generators. In Appendix A we demonstrate how
to minimize two examples of convolutional encoders and in Appendix B we present
Wald’s identity and related results that are necessary for our analyses in Chapters 3–7.

For simplicity’s sake, we restricted ourselves to binary convolutional codes. In
most of our derivations of the various bounds we only considered the binary sym-
metric channel (BSC). Although inferior from a practical communications point of
view, we believe that its pedagogical advantages outweigh that disadvantage.

xiii

Each chapter ends with some comments, mainly historical in nature, and sets of
problems that are highly recommended. Many of those were used by us as exam
questions. Note that sections marked with asterisk (∗) can be skipped at the first
reading without loss of continuity.

There are various ways to organize the material into an introductory course on
convolutional coding. Chapter 1 should always be read first. Then one possibility
is to cover the following sections, skipping most of the proofs found there: 2.1–2.7,
2.10, 2.13, 3.1, 3.5, 3.10, 3.11, 4.1–4.2, 4.5, 4.7–4.11, 5.6, 6.1–6.2, 7.1–7.3, 7.5, 7.10,
8.1–8.6, 8.8, 9.1–9.4, 9.6, and perhaps also 10.1, 10.2, and 10.7. With our younger
students (seniors), we emphasize explanations, and discussions of algorithms and as-
sign a good deal of the problems found at the end of the chapters. With the graduate
students we stress proving theorems, because a good understanding of the proofs is
an asset in advanced engineering work.

Finally, we do hope that some of our passion for convolutional coding has worked
its way into these pages.

Rolf Johannesson

Kamil Sh. Zigangirov

ACKNOWLEDGEMENT

Rolf is particularly grateful to Göran Einarsson, who more than 40 years ago not only
suggested convolutional codes as Rolf’s thesis topic but also recommended that he
spend a year of his graduate studies with James Massey at the University of Notre
Dame. This year was the beginning of a lifelong devotion to convolutional codes
and a lifelong genuine friendship which lasted until Jim passed away in 2013. The
influence of Jim cannot be overestimated. Rolf would also like to acknowledge David
Forney’s outstanding contributions to the field of convolutional codes; without his
work convolutional codes would have been much less exciting.

Kamil would like to thank his colleagues at the Institute for Problems of Informa-
tion Transmission in Moscow. In particular, he would like to mention the “daytime”
seminars organized by the late Roland Dobrushin and the late Mark Pinsker and the
“evening” seminars organized by Leonid Bassalygo. During these seminars, Kamil
had the opportunity to use the participants as guinea pigs when he wanted to test
many of the fundamental ideas presented in this book. Special thanks go to Mark
Pinsker and Victor Zyablov. Mark introduced Kamil to convolutional codes, and he
inspired Kamil for more than 30 years. Over the years, Kamil has also benefited from
numerous discussions with Victor.

xiv

xv

In our research we have benefited considerably from our cooperation—sometimes
long lasting, sometimes a single joint paper—with colleagues John Anderson, Irina
Bocharova, Daniel Costello, David Forney, Boris Kudryashov, James Massey, Zhe-
Xian Wan, and Victor Zyablov.

Needless to say, we would not have reached our view of convolutional codes with-
out our work with former graduate students: Gunilla Bratt, Mats Cedervall, Karin
Engdahl, Marc Handlery, Florian Hug, Stefan Höst, Alberto Jiménez-Feltström,
Michael Lentmaier, Per Ljungberg, Maja Lončar, Johan Nyström, Harro Osthoff,
Victor Pavlushkov, Joakim Persson, Ben Smeets, Per Ståhl, Dmitry Trukhachev,
Kristian Wahlgren, Ola Winzell, and Emma Wittenmark, who have all contributed in
many ways. They inspired us, produced research results, did simulations, provided
us with various figures, suggested improvements, saved us from many blunders, and
much more. We are grateful to Florian Hug, Alberto Jiménez-Feltström, Michael
Lentmaier, Maja Lončar, Johan Nyström, Harro Osthoff, and Dmitry Trukhachev for
permitting us to use pieces of LaTeX source code taken from their theses. We are
greatly indebted to Lena Månsson, who with great enthusiasm and outstanding skill
typed the first edition and partly the second edition and above all to LaTeX-wizard
Florian Hug who volunteered to finalize the second edition. Without Florian’s edit-
ing and composition expertise this edition would not have been completed. Thanks
Florian!

Special thanks go to Mary Hatcher, Danielle LaCourciere, and Brady Chin at
Wiley for their support. We are grateful to Beatrice Ruberto who did an outstanding
job and saved us from making embarrassing blunders. In particular, we appreciate
that Mary turned out to have the patience of an angel when Rolf numerous times
failed to meet deadlines.

CHAPTER 1

INTRODUCTION

1.1 WHY ERROR CONTROL?

The fundamental idea of information theory is that all communication is essentially
digital—it is equivalent to generating, transmitting, and receiving randomly chosen
bi nary digits, bits. When these bits are transmitted over a communication channel—
or stored in a memory—it is likely that some of them will be corrupted by noise. In his
1948 landmark paper “A Mathematical Theory of Communication” [Sha48] Claude
E. Shannon recognized that randomly chosen binary digits could (and should) be used
for measuring the generation, transmission, and reception of information. Moreover,
he showed that the problem of communicating information from a source over a
channel to a destination can always be separated—without sacrificing optimality—
into the following two subproblems: representing the source output efficiently as a
sequence of binary digits (source coding) and transmitting binary, random, indepen-
dent digits over the channel (channel coding). In Fig. 1.1 we show a general digital
communication system. We use Shannon’s separation principle and split the encoder
and decoder into two parts each as shown in Fig. 1.2. The channel coding parts can
be designed independently of the source coding parts, which simplifies the use of the
same communication channel for different sources.

Fundamentals of Convolutional Coding, 2. Edition. By Rolf Johannesson, Kamil Sh. Zigangirov
Copyright c© 2015 John Wiley & Sons, Inc.

1

2 INTRODUCTION

To a computer specialist, “bit” and “binary digit” are entirely synonymous. In
information theory, however, “bit” is Shannon’s unit of information [Sha48, Mas82].
For Shannon, information is what we receive when uncertainty is reduced. We get
exactly 1 bit of information from a binary digit when it is drawn in an experiment in
which successive outcomes are independent of each other and both possible values,
0 and 1, are equiprobable; otherwise, the information is less than 1. In the sequel,
the intended meaning of “bit” should be clear from the context.

Source Encoder Digital
channel Decoder Destination

Noise

Figure 1.1 Overview of a digital communication system.

Source Source
encoder

Binary
digits

Channel
encoder

Digital
channel

Channel
decoder

Binary
digits

Source
decoderDestination

Noise

Figure 1.2 A digital communication system with separate source and channel coding.

Shannon’s celebrated channel coding theorem states that every communication
channel is characterized by a single parameter Ct, the channel capacity, such that
Rt randomly chosen bits per second can be transmitted arbitrarily reliably over the
channel if and only if Rt ≤ Ct. We call Rt the data transmission rate. Both Ct
and Rt are measured in bits per second. Shannon showed that the specific value of
the signal-to-noise ratio is not significant as long as it is large enough, that is, so
large that Rt ≤ Ct holds; what matters is how the information bits are encoded.
The information should not be transmitted one information bit at a time, but long
information sequences should be encoded such that each information bit has some
influence on many of the bits transmitted over the channel. This radically new idea
gave birth to the subject of coding theory.

Error control coding should protect digital data against errors that occur during
transmission over a noisy communication channel or during storage in an unreliable
memory. The last decades have been characterized not only by an exceptional increase
in data transmission and storage but also by a rapid development in micro-electronics,

www.allitebooks.com

http://www.allitebooks.org

WHY ERROR CONTROL? 3

providing us with both a need for and the possibility of implementing sophisticated
algorithms for error control.

Before we study the advantages of coding, we shall consider the digital com-
munication channel in more detail. At a fundamental level, a channel is often an
analog channel that transfers waveforms (Fig. 1.3). Digital data u0u1u2 . . ., where
ui ∈ {0, 1}, must be modulated into waveforms to be sent over the channel.

Modulator
Waveform

channel
Demodulator

Noise

Analog
waveform

Analog
waveform

Figure 1.3 A decomposition of a digital communication channel.

In communication systems where carrier phase tracking is possible (coherent
demodulation), phase-shift keying (PSK) is often used. Although many other mod-
ulation systems are in use, PSK systems are very common and we will use one of
them to illustrate how modulations generally behave. In binary PSK (BPSK), the
modulator generates the waveform

s1(t) =

{√
2Es
T cosωt, 0 ≤ t < T

0, otherwise
(1.1)

for the input 1 and s0(t) = −s1(t) for the input 0. This is an example of antipodal
signaling. Each symbol has duration T seconds and energy Es = ST , where S is
the power and ω = 2π

T . The transmitted waveform is

v(t) =
∞∑
i=0

sui(t− iT) (1.2)

Assume that we have a waveform channel such that additive white Gaussian noise
(AWGN) n(t) with zero mean and two-sided power spectral density N0/2 is added
to the transmitted waveform v(t), that is, the received waveform r(t) is given by

r(t) = v(t) + n(t) (1.3)

where
E[n(t)] = 0 (1.4)

4 INTRODUCTION

and
E[n(t+ τ)n(t)] =

N0

2
δ(τ) (1.5)

where E[·] and δ(·) denote the mathematical expectation and the delta function,
respectively.

Based on the received waveform during a signaling interval, the demodulator
produces an estimate of the transmitted symbol. The optimum receiver is a matched
filter with impulse response

h(t) =

{√
2/T cosωt, 0 ≤ t < T

0, else
(1.6)

which is sampled each T seconds (Fig. 1.4). The matched filter output Zi at the
sample time iT ,

Zi =

∫ iT

(i−1)T

r(τ)h(iT − τ)dτ (1.7)

is a Gaussian random variable N(µ, σ2) with mean

µ = ±
∫ T

0

(√
2Es

T
cosωτ

)(√
2

T
cosω(T − τ)

)
dτ = ±

√
Es (1.8)

where the sign is + or − according to whether the modulator input was 1 or 0,
respectively, and variance

σ2 =
N0

2

∫ T

0

(√
2

T
cosωτ

)2

dτ =
N0

2
(1.9)

√
2
T cosωt

iT, i = 1, 2, . . .
r(t) Zi

Figure 1.4 Matched filter receiver.

After the sampler we can make a hard decision, that is, a binary quantization
with threshold zero, of the random variable Zi. Then we obtain the simplest and
most important binary-input and binary-output channel model, the binary symmetric
channel (BSC) with crossover probability ε (Fig. 1.5). The crossover probability is
of course closely related to the signal-to-noise ratioEs/N0. Since the channel output
for a given signaling interval depends only on the transmitted waveform and noise
during that interval and not on other intervals, the channel is said to be memoryless.

Because of symmetry, we can without loss of generality assume that a 0, that is,
−
√

2Es/T cosωt, is transmitted over the channel. Then we have a channel “error”

WHY ERROR CONTROL? 5

0 0

1 1

1− ε

ε

ε

1− ε

Figure 1.5 Binary symmetric channel.

if and only if the matched filter output at the sample time iT is positive. Thus, the
probability that Zi > 0 given that a 0 is transmitted is

ε = P (Zi > 0 | 0 sent) (1.10)

where Zi is a Gaussian random variable, Zi ∈ N(−
√
Es,
√
N0/2), and Es is the

energy per symbol. Since the probability density function of Zi is

fZi(z) =
1√

2πσ2
e−

(z−µ)2

2σ2 (1.11)

we have

ε =
1√
πN0

∫ ∞
0

e−
(z+
√
Es)

2

N0 dz

=
1√
2π

∫ ∞
√

2Es/N0

e−y
2/2dy = Q

(√
2Es/N0

)
(1.12)

where

Q(x) =
1√
2π

∫ ∞
x

e−y
2/2dy (1.13)

is the complementary error function of Gaussian statistics (often called the Q-
function).

When coding is used, we prefer measuring the energy per information bit, Eb,
rather than per symbol. For uncoded BPSK, we have Eb = Es. Letting Pb denote
the bit error probability (or bit error rate), that is, the probability that an information
bit is erroneously delivered to the destination, we have for uncoded BPSK

Pb = ε = Q
(√

2Eb/N0

)
(1.14)

How much better can we do with coding?
It is clear that when we use coding, it is a waste of information to make hard

decisions. Since the influence of each information bit will be spread over several
channel symbols, the decoder can benefit from using the value of Zi (hard decisions
use only the sign of Zi) as an indication of how reliable the received symbol is.
The demodulator can give the analog value of Zi as its output, but it is often more

6 INTRODUCTION

1

0

7

6

5

4

3

2

1

0

Figure 1.6 Binary input, 8-ary output, DMC.

practical to use, for example, a three-bit quantization—a soft decision. By introducing
seven thresholds, the values of Zi are divided into eight intervals and we obtain an
eight-level soft-quantized discrete memoryless channel (DMC) as shown in Fig. 1.6.

Shannon [Sha48] showed that the capacity of the bandlimited AWGN channel
with bandwidth W is2

CWt = W log

(
1 +

S

N0W

)
bits/s (1.15)

where N0/2 and S denote the two-sided noise spectral density and the signaling
power, respectively. If the bandwidth W goes to infinity, we have

C∞t
def
= lim

W→∞
W log

(
1 +

S

N0W

)
=

S

N0 ln 2
bits/s (1.16)

If we transmit K information bits during τ seconds, where τ is a multiple of bit
duration T , we have

Eb =
Sτ
K

(1.17)

Since the data transmission rate isRt = K/τ bits/s, the energy per bit can be written

Eb =
S

Rt
(1.18)

Combining (1.16) and (1.18) gives

C∞t
Rt

=
Eb

N0 ln 2
(1.19)

2Here and hereafter we write log for log2.

WHY ERROR CONTROL? 7

−2 0 2 4 6 8 10 12
10−6

10−5

10−4

10−3

10−2

10−1

11.2 dB

2 dB

Uncoded BPSK

9.6 dB

Shannon limit
soft decisions
(−1.6 dB)

Hard decisions
(0.4 dB)

Eb/N0 [dB]

Pb

Figure 1.7 Capacity limits and regions of potential coding gain.

From Shannon’s celebrated channel coding theorem [Sha48] it follows that for
reliable communication we must have Rt ≤ C∞t . Hence, from this inequality and
(1.19) we have

Eb

N0
≥ ln 2 = 0.69 = −1.6 dB (1.20)

which is the fundamental Shannon limit.
In any system that provides reliable communication in the presence of additive

white Gaussian noise the signal-to-noise ratioEb/N0 cannot be less than the Shannon
limit, −1.6 dB!

On the other hand, as long as Eb/N0 exceeds the Shannon limit, −1.6 dB,
Shannon’s channel coding theorem guarantees the existence of a system—perhaps
very complex—for reliable communication over the channel.

In Fig. 1.7, we have plotted the fundamental limit of (1.20) together with the bit
error rate for uncoded BPSK, that is, equation (1.14). At a bit error rate of 10−5, the
infinite-bandwidth additive white Gaussian noise channel requires an Eb/N0 of at
least 9.6 dB. Thus, at this bit error rate we have a potential coding gain of 11.2 dB!

8 INTRODUCTION

For the bandlimited AWGN channel with BPSK and hard decisions, that is, a BSC
with crossover probability ε (Fig. 1.5) Shannon [Sha48] showed that the capacity is

CBSC
t = 2W (1− h(ε)) bits/s (1.21)

where
h(ε) = −ε log ε− (1− ε) log(1− ε) (1.22)

is the binary entropy function. If we restrict ourself to hard decisions, we can use
(1.21) and show (Problem 1.2) that for reliable communication we must have

Eb

N0
≥ π

2
ln 2 = 1.09 = 0.4 dB (1.23)

In terms of capacity, soft decisions are about 2 dB more efficient than hard decisions.
Although it is practically impossible to obtain the entire theoretically promised

11.2 dB coding gain, communication systems that pick up 2–8 dB are routinely in use.
During the last decade iterative decoding has been used to design communication
systems that operate only tenths of a dB from the Shannon limit.

We conclude this section, which should have provided some motivation for the
use of coding, with an adage from R. E. Blahut [Bla92]: “To build a communication
channel as good as we can is a waste of money”—use coding instead!

1.2 BLOCK CODES—A PRIMER

For simplicity, we will deal only with binary block codes. We consider the entire
sequence of information bits to be divided into blocks of K bits each. These blocks
are called messages and denoted u = u0 u1 . . . uK−1. In block coding, we let
u denote a message rather than the entire information sequence as is the case in
convolutional coding to be considered later.

A binary (N,K) block codeB is a set ofM = 2K binaryN -tuples (or row vectors
of lengthN) v = v0 v1 . . . vN−1 called codewords. N is called the block length and
the ratio

R =
logM

N
=
K

N
(1.24)

is called the code rate and is measured in bits per (channel) use. The data transmission
rate in bits/s is obtained by multiplying the code rate (1.24) by the number of
transmitted channel symbols per second:

Rt = R/T (1.25)

If we measure the channel capacity for the BSC in bits/channel use (bits/c.u.),
then the capacity of the BSC equals

C = 1− h(ε) (bits/c.u.) (1.26)

According to Shannon’s channel coding theorem, for reliable communication, we
must have R ≤ C and the block length N should be chosen sufficiently large.

BLOCK CODES—A PRIMER 9

(Channel)
Encoder BSC

(Channel)
Decoder

Message Codeword Received
sequence

Estimated
message

u v r û or v̂

Figure 1.8 A binary symmetric channel (BSC) with (channel) encoder and decoder.

EXAMPLE 1.1

The set B = {000, 011, 101, 110} is a (3, 2) code with four codewords and rate
R = 2/3.

An encoder for an (N,K) block code B is a one-to-one mapping from the set of
M = 2K binary messages to the set of codewords B.

EXAMPLE 1.2

u0 u1 v0 v1 v2

00 000
01 011
10 101
11 110

and

u0 u1 v0 v1 v2

00 101
01 011
10 110
11 000

are two different encoders for the code B given in the previous example.

The rate R = K/N is the fraction of the digits in the codeword that are necessary
to represent the information; the remaining fraction, 1−R = (N−K)/N , represents
the redundancy that can be used to detect or correct errors.

Suppose that a codeword v corresponding to message u is sent over a BSC (see
Fig. 1.8). The channel output r = r0 r1 . . . rN−1 is called the received sequence.
The decoder transforms the receivedN -tuple r, which is possibly corrupted by noise,
into theK-tuple û, called the estimated message u. Ideally, ûwill be a replica of the
messageu, but the noise may cause some decoding errors. Since there is a one-to-one
correspondence between the message u and the codeword v, we can, equivalently,
consider the corresponding N -tuple v̂ as the decoder output. If the codeword v was
transmitted, a decoding error occurs if and only if v̂ 6= v.

Let PE denote the block (or word) error probability, that is, the probability that
the decision v̂ for the codeword differs from the transmitted codeword v. Then we
have

PE =
∑
r

P (v̂ 6= v | r)P (r) (1.27)

where the probability that we receive r, P (r), is independent of the decoding rule
and P (v̂ 6= v | r) is the conditional probability of decoding error given the received
sequence r. Hence, in order to minimize PE, we should specify the decoder such

10 INTRODUCTION

that P (v̂ 6= v | r) is minimized for a given r or, equivalently, such that P (v | r)
def
=

P (v̂ = v | r) is maximized for a given r. Thus the block error probability PE is
minimized by the decoder, which as its output chooses û such that the corresponding
v̂ = v maximizes P (v | r). That is, v is chosen as the most likely codeword given
that r is received. This decoder is called a maximum a posteriori probability (MAP)
decoder.

Using Bayes’ rule we can write

P (v | r) =
P (r | v)P (v)

P (r)
(1.28)

The code carries the most information possible with a given number of codewords
when the codewords are equally likely. It is reasonable to assume that a decoder that
is designed for this case also works satisfactorily—although not optimally—when
the codewords are not equally likely, that is, when less information is transmitted.
When the codewords are equally likely, maximizing P (v | r) is equivalent to maxi-
mizing P (r | v). The decoder that makes its decision v̂ = v such that P (r | v) is
maximized is called a maximum-likelihood (ML) decoder.

Notice that in an erroneous decision for the codeword some of the information
digits may nevertheless be correct. The bit error probability, which we introduced in
the previous section, is a better measure of quality in most applications. However, it
is in general more difficult to calculate. The bit error probability depends not only on
the code and on the channel, like the block error probability, but also on the encoder
and on the information symbols!

The use of block error probability as a measure of quality is justified by the
inequality

Pb ≤ PE (1.29)

When PE can be made very small, inequality (1.29) implies that Pb can also be made
very small.

The Hamming distance between the two N -tuples r and v, denoted dH(r,v), is
the number of positions in which their components differ.

EXAMPLE 1.3

Consider the 5-tuples 10011 and 11000. The Hamming distance between them is
3.

The Hamming distance, which is an important concept in coding theory, is a
metric; that is,

(i) dH(x,y) ≥ 0, with equality if and only if x = y (positive definiteness)

(ii) dH(x,y) = dH(y,x) (symmetry)

(iii) dH(x,y) ≤ dH(x, z) + dH(z,y), all z (triangle inequality)

The Hamming weight of an N -tuple x = x0x1 . . . xN−1, denoted wH(x), is
defined as the number of nonzero components in x.

BLOCK CODES—A PRIMER 11

For the BSC, a transmitted symbol is erroneously received with probability ε
where ε is the channel crossover probability. Thus, assuming ML decoding, we must
make our decision v̂ for the codeword v to maximize P (r | v); that is,

v̂ = arg max
v
{P (r | v)} (1.30)

where

P (r | v) = εdH(r,v)(1− ε)N−dH(r,v) = (1− ε)N
(

ε

1− ε

)dH(r,v)

(1.31)

Since 0 < ε < 1/2 for the BSC, we have

0 <
ε

1− ε
< 1 (1.32)

and, hence, maximizing P (r | v) is equivalent to minimizing dH(r,v). Clearly,
ML decoding is equivalent to minimum (Hamming) distance (MD) decoding, that is,
choosing as the decoder output the message û whose corresponding codeword v̂ is
(one of) the closest codeword(s) to the received sequence r.

In general, the decoder must compare the received sequence r with allM = 2K =
2RN codewords. The complexity of ML or MD decoding grows exponentially with
the block length N . Thus it is infeasible to decode block codes with large block
lengths. But to obtain low decoding error probability we have to use codes with
relatively large block lengths. One solution of this problem is to use codes with
algebraic properties that can be exploited by the decoder. Other solutions are to use
codes on graphs (see Section 1.3) or convolutional codes (see Section 1.4).

In order to develop the theory further, we must introduce an algebraic structure.
A field is an algebraic system in which we can perform addition, subtraction,

multiplication, and division (by nonzero numbers) according to the same associative,
commutative, and distributive laws as we use with real numbers. Furthermore, a field
is called finite if the set of numbers is finite. Here we will limit the discussion to
block codes whose codewords have components in the simplest, but from a practical
point of view also the most important, finite field, the binary field, F2, for which the
rules for addition and multiplication are those of modulo-two arithmetic, namely

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

We notice that addition and subtraction coincide in F2!
The set of binary N -tuples are the vectors in an N -dimensional vector space,

denoted FN2 , over the field F2. Vector addition is component-by-component addi-
tion in F2. The scalars are the elements in F2. Scalar multiplication of scalar
a ∈ F2 and vector x0x1 . . . xN−1 ∈ FN2 is carried out according to the rule

a(x0x1 . . . xN−1) = ax0ax1 . . . axN−1 (1.33)

Since a is either 0 or 1, scalar multiplication is trivial in FN2 .

12 INTRODUCTION

Hamming weight and distance are clearly related:

dH(x,y) = wH(x− y) = wH(x+ y) (1.34)

where the arithmetic is in the vector space FN2 and where the last equality follows
from the fact that subtraction and addition coincide in F2.

The minimum distance, dmin, of a code B is defined as the minimum value of
dH(v,v′) over all v and v′ in B such that v 6= v′.

EXAMPLE 1.4

The code B in Example 1.1 has dmin = 2. It is a single-error-detecting code (see
Problem 1.3).

Let v be the actual codeword and r the possibly erroneously received version of
it. The error pattern e = e0 e1 . . . eN−1 is the N -tuple that satisfies

r = v + e (1.35)

The number of errors is
wH(e) = dH(r,v) (1.36)

Let Et denote the set of all error patterns with t or fewer errors, that is,

Et = {e | wH(e) ≤ t} (1.37)

We will say that a code B corrects the error pattern e if for all v the decoder maps
r = v+e into v̂ = v. IfB corrects all error patterns in Et and there is at least one error
pattern in Et+1 which the code cannot correct, then t is called the error-correcting
capability of B.

Theorem 1.1 The code B has error-correcting capability t if and only if dmin > 2t.

Proof : Suppose that dmin > 2t. Consider the decoder which chooses v̂ as (one of)
the codeword(s) closest to r in Hamming distance (MD decoding). If r = v + e
and e ∈ Et, then dH(r,v) ≤ t. The decoder output v̂ must also satisfy dH(r, v̂) ≤ t
since v̂ must be at least as close to r as v is. Thus,

dH(v, v̂) ≤ dH(v, r) + dH(r, v̂) ≤ 2t < dmin (1.38)

which implies that v̂ = v and thus the decoding is correct.
Conversely, suppose that dmin ≤ 2t. Let v and v′ be two codewords such that

dH(v,v′) = dmin, and let the components of r be specified as

ri =

vi = v′i, all i such that vi = v′i
v′i, the first t positions with vi 6= v′i (if t ≤ dmin) or

all positions with vi 6= v′i (otherwise)
vi, the remaining dmin − t positions (if any)

(1.39)

www.allitebooks.com

http://www.allitebooks.org

BLOCK CODES—A PRIMER 13

Thus, dH(v, r) = t and dH(v′, r) = dmin − t ≤ t (if t ≤ dmin) and dH(v, r) =
dmin and dH(v′, r) = 0 (otherwise). Next we observe that both error patterns e and
e′ satisfying

r = v + e = v′ + e′ (1.40)

are in Et, but the decoder cannot make the correct decision for both situations, and
the proof is complete.

To make codes easier to analyze and to simplify the implementation of their
encoders and decoders, we impose a linear structure on the codes.

A binary, linear block code B of rate R = K/N is a K-dimensional subspace of
the vector space FN2 ; that is, each codeword can be written as a linear combination
of linearly independent vectors g1, g2, . . . , gK , where gi ∈ FN2 , called the basis for
the linear code B. Then we call the K × N matrix G having g1, g2, . . . , gK as
rows a generator matrix for B. Clearly, since the vectors g1, g2, . . . , gK are linearly
independent, the matrix G has full rank. The row space of G is B itself.

EXAMPLE 1.5

For the code in Example 1.1, which is linear, the codewords 011 and 101 form a
basis. This basis determines the generator matrix

G =

(
0 1 1
1 0 1

)
(1.41)

The generator matrix offers a linear encoding rule for the code B:

v = uG (1.42)

where

G =

g11 g12 . . . g1N

g21 g22 . . . g2N

. .
gK1 gK2 . . . gKN

 (1.43)

and the information symbols u = u0 u1 . . . uK−1 are encoded into the codeword
v = v0 v1 . . . vN−1.

A generator matrix is often called an encoding matrix and is any matrix whose
rows are a basis for B. It is called systematic whenever the information digits appear
unchanged in the first K components of the codeword; that is, G is systematic if and
only if it can be written as

G = (IK P) (1.44)

where IK is the K ×K identity matrix.

14 INTRODUCTION

EXAMPLE 1.6

The generator matrix

G =

(
1 0 1
0 1 1

)
(1.45)

is a systematic encoding matrix for the code in Example 1.1.

Two codes B and B′ are said to be equivalent if the order of the digits in the
codewords v ∈ B are simply a rearrangement of that in the codewords v′ ∈ B′.

Theorem 1.2 Either a linear code B has a systematic encoding matrix or there exists
an equivalent linear code B′ which has a systematic encoding matrix.

Proof : See Problem 1.5.

Let G be an encoding matrix of the (N,K) code B. Then G is a K ×N matrix
of rank K. By the theory of linear equations, the solutions of the system of linear
homogeneous equations

GxT = 0 (1.46)

where x = x1 x2 . . . xN , form an (N −K)-dimensional subspace of FN2 . Therefore,
there exists an (N −K)×N matrix H of rank N −K such that

GHT = 0 (1.47)

We are now ready to prove a fundamental result.

Theorem 1.3 AnN -tuple v is a codeword in the linear code B with encoding matrix
G if and only if

vHT = 0 (1.48)

where H is an (N −K)×N matrix of full rank which satisfies

GHT = 0 (1.49)

Proof : Assume that the N -tuple v ∈ B, then v = uG for some u ∈ FK2 . Thus,

vHT = uGHT = 0 (1.50)

Conversely, suppose that vHT = 0. Since GHT = 0 and both H and G have full
rank, the rows of G form a basis of the solution space of xHT = 0. Therefore,
v = uG for some u ∈ FK2 , that is, v ∈ B.

From (1.49) it follows that each row vector ofH is orthogonal to every codeword;
the rows of H are parity checks on the codewords and we call H a parity-check

BLOCK CODES—A PRIMER 15

matrix3 of the linear code B. Equation (1.48) simply says that certain coordinates in
each codeword must sum to zero.

It is easily verified that an (N,K) binary linear code with systematic encoding
matrix G = (IK P) has

H =
(
P T IN−K

)
(1.51)

as a parity-check matrix.

EXAMPLE 1.7

The code in Example 1.1 with an encoding matrix given in Example 1.6 has

H =
(

1 1 1
)

(1.52)

as a parity-check matrix.

Next, we will consider a member of a much celebrated class of single-error-
correcting codes due to Hamming [Ham50].

EXAMPLE 1.8

The binary (7, 4) Hamming code with encoding matrix

G =

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 (1.53)

has

H =

 0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 (1.54)

as a parity-check matrix.
Note that vHT = 0 can be written as

v1 + v2 + v3 + v4 = 0
v0 + v2 + v3 + v5 = 0
v0 + v1 + v3 + v6 = 0

(1.55)

so that each row in H determines one of the three parity-check symbols v4, v5,
and v6. The remaining four code symbols, v0, v1, v2, and v3, are the information
symbols.

3When we consider LDPC codes in Section 1.3 and Chapter 8, we omit the full-rank requirement in the
definition of parity-check matrices.

16 INTRODUCTION

We notice that if we start with the 7-tuple 1011000, take all cyclic shifts, and form
all linear combinations, we obtain a (7, 4) Hamming code with a parity-check matrix

H =

 1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

 (1.56)

which is equivalent to the one given in Example 1.8, that is, the two codes differ
only by the ordering of the components in their codewords (permute columns 1–4).
The (7, 4) Hamming codes are members of a large class of important linear code
families called cyclic codes—every cyclic shift of a codeword is a codeword. The
class of cyclic codes includes, besides the Hamming codes, such famous codes as the
Bose-Chaudhuri-Hocquenhem (BCH) and Reed-Solomon (RS) codes.

The cyclic behavior of these codes makes it possible to exploit a much richer
algebraic structure that has resulted in the development of very efficient decoding
algorithms suitable for hardware implementations.

Since the N −K rows of the parity-check matrix H are linearly independent, we
can use H as an encoding matrix of an (N,N −K) linear code B⊥, which we call
the dual or orthogonal code of B.

Let v⊥ ∈ B⊥ and assume that v⊥ = u⊥H , where u⊥ ∈ FN−K2 . Then from
(1.49) it follows that

v⊥GT = u⊥HGT = u⊥
(
GHT)T

= 0 (1.57)

Conversely, assume that v⊥GT = 0 for v⊥ ∈ FN2 . Since HGT = 0 and both H and
G have full rank, v⊥ is a linear combination of the rows of H , that is, v⊥ ∈ B⊥.
Hence, G is a K ×N parity-check matrix of the dual code B⊥ and we have proved
the following

Theorem 1.4 An (N − K) × N parity-check matrix for the linear code B is an
(N −K)×N encoding matrix for the dual code B⊥, and conversely.

From (1.48) and (1.57) it follows that every codeword of B is orthogonal to that
of B⊥ and conversely.

EXAMPLE 1.9

The code B in Example 1.1 has the dual code B⊥ = {000, 111}.

If B = B⊥, we call B self-dual.

EXAMPLE 1.10

The (2, 1) repetition code {00, 11} is self-dual.

The minimum weight, wmin, of a linear code B is the smallest Hamming weight
of its nonzero codewords.

BLOCK CODES—A PRIMER 17

Theorem 1.5 For a linear code,

dmin = wmin (1.58)

Proof : The theorem follows from (1.34) and the facts that for a linear code the sum
of two codewords is a codeword.

For the class of linear codes, the study of distance properties reduces to the
study of weight properties that concern only single codewords! A most convenient
consequence of this is the following.

Theorem 1.6 IfH is any parity-check matrix for a linear code B, then dmin = wmin

equals the smallest number of columns of H that form a linearly dependent set.

Proof : Follows immediately from vHT = 0 for v ∈ B.

EXAMPLE 1.11

Consider the (7,4) Hamming code with parity-check matrix (1.54),

H =

 0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 (1.59)

All pairs of columns are linearly independent. Many sets of three columns are
linearly dependent, for example, columns 1, 6, and 7. It follows from the previous
theorem that dmin = 3. All single errors (that is, all error patterns of weight
1) can be corrected. This is a single-error-correcting code. This code can also
detect double errors but not simultaneously with correcting single errors (see
Problem 1.4).

The following theorem establishes an upper bound for the minimum distance.

Theorem 1.7 (Singleton bound) If B is an (N,K) linear code with minimum dis-
tance dmin, then the number of parity-check digits is lower-bounded by

N −K ≥ dmin − 1 (1.60)

Proof : A codeword with only one nonzero information digit has weight at most
1 +N −K. Then, from Theorem 1.5 follows

wmin = dmin ≤ N −K + 1 (1.61)

An (N,K) linear code that meets the Singleton bound with equality is called a
maximum-distance-separable (MDS) code.

The only binary MDS codes are the trivial ones: the (N,N) code B = FN2 , the
(N, 1) repetition code B = {00 . . . 0, 11 . . . 1}, and the (N,N − 1) code consisting
of all even-weight N -tuples. (For a nontrivial code, 2 ≤ K ≤ N − 1.)

18 INTRODUCTION

The most celebrated examples of nonbinary MDS codes are the Reed-Solomon
codes.

To find (nontrivial) lower bounds on the minimum distance is a much harder
problem. It has been proved [Gil52, Var57] that there exists a sequence of binary
(N,K) linear block codes with increasing block lengthN having minimum distances
lower-bounded by the inequality

dmin > ρGVN (1.62)

where ρGV is the so-called Gilbert-Varshamov parameter. For a given rateR = K/N ,
ρGV is equal to the smallest root ρ < 1/2 of the equation

R = 1− h(ρ) (1.63)

where h(·) is the binary entropy function (1.22).
Let B be an (N,K) linear code. For any binary N -tuple a, the set

a+ B def
= {a+ v | v ∈ B} (1.64)

is called a coset of B. Every b ∈ FN2 is in some coset; for example, b + B contains
b. Two binary N -tuples a and b are in the same coset if and only if their difference
(sum in FN2) is a codeword, or, equivalently, (a+ b) ∈ B. Every coset of B contains
the same number of elements, 2K , as B does.

Theorem 1.8 Any two cosets are either disjoint or identical.

Proof : Suppose that c belongs to both a+B and b+B. Then c = a+v = b+v′,
where v,v′ ∈ B. Thus, a = b+ v + v′ ∈ b+ B, and so a+ B ⊆ b+ B. Similarly
b+ B ⊆ a+ B. Hence, a+ B = b+ B.

From Theorem 1.8 two corollaries follow immediately:

Corollary 1.9 FN2 is the union of all the cosets of B.

Corollary 1.10 A binary (N,K) code B has 2N−K cosets.

Suppose that the binary N -tuple r is received over the BSC. Then

r = v + e (1.65)

where v ∈ B is a codeword and e is an error pattern. Clearly r is in the coset
r+B. From (1.65) it follows that the coset r+B contains exactly the possible error
patterns! The N -tuple of smallest weight in a coset is called a coset leader. (If there
is more than one N -tuple with smallest weight, any one of them can be chosen as
coset leader.)

An MD decoder will select as its output the error pattern, ê say, which is a coset
leader of the coset containing r, subtract (or, equivalently in FN2 , add) ê from (to) r,
and, finally, obtain its maximum-likelihood decision v̂.

BLOCK CODES—A PRIMER 19

We illustrate what the decoder does by showing the standard array. The first row
consists of the code B with the allzero codeword on the left. The following rows are
the cosets ei + B arranged in the same order with the coset leader on the left:

0 v1 . . . v2K−1

e1 v1 + e1 . . . v2K−1 + e1

...
...

...
e2N−K−1 v1 + e2N−K−1 . . . v2K−1 + e2N−K−1

The MD decoder decodes r to the codeword v̂ at the top of the column that
contains r.

EXAMPLE 1.12

The (4, 2) code B with encoding matrix

G =

(
1 0 1 1
0 1 1 0

)
(1.66)

has the following standard array:

0000 1011 0110 1101

1000 0011 1110 0101
0100 1111 0010 1001
0001 1010 0111 1100

Suppose that r = 1001 is received. An MD decoder outputs v̂ = 1101.

Theorem 1.11 An (N,K) binary linear code B can correct all error patterns in a set
E if and only if these error patterns all lie in different cosets of FN2 relative to B.

Proof : Suppose that e and e′ are distinct error patterns in the same coset. Then
there is a v ∈ B such that v + e = e′. No decoder can correct both e and e′.

Conversely, suppose that all error patterns in E lie in different cosets. If v is the
actual transmitted codeword and e the actual error pattern, then r = v + e lies in
e + B. Thus, all error patterns in E can be corrected by a decoder that maps r into
the error pattern ê ∈ E (if any) that lies in the same coset e+ B as r does.

The syndrome of the received N -tuple r, relative to the parity-check matrix H , is
defined as

s
def
= rHT (1.67)

Assume that the transmitted codeword is v and that r = v + e, where e is the error
pattern. Both r and H are known to the receiver, which exploits (1.48) and forms

s = rHT = (v + e)HT

= vHT + eHT = 0 + eHT (1.68)

20 INTRODUCTION

so that
s = eHT (1.69)

The syndrome depends only on the error pattern and not on the codeword!
In medical terminology, a syndrome is a pattern of symptoms. Here the disease is

the error pattern, and a symptom is a parity-check failure.
Equation (1.69) givesN−K linearly independent equations for theN components

of the error pattern e. Hence, there are exactly 2K error patterns satisfying (1.69).
These are precisely all the error patterns that are differences between the received
N -tuple r and all 2K different codewords v. For a given syndrome, these 2K error
patterns belong to the same coset. Furthermore, if two error patterns lie in the same
coset, then their difference is a codeword and it follows from (1.68) that they have
the same syndrome. Hence, we have the following theorem:

Theorem 1.12 Two error patterns lie in the same coset if and only if they have the
same syndrome.

From the two previous theorems a corollary follows:

Corollary 1.13 An (N,K) binary linear code B can correct all error patterns in a
set E if and only if the syndromes of these error patterns are all different.

No information about the error pattern is lost by calculating the syndrome!
In Fig. 1.9 we show the structure of a general syndrome decoder. The syndrome

former, HT, is linear, but the error pattern estimator is always nonlinear in a useful
decoder. Clearly, a syndrome decoder is an MD or, equivalently, an ML decoder.

HT
Error

pattern

estimator

r v̂

ê
s

Figure 1.9 Syndrome decoder for a linear block code.

EXAMPLE 1.13

Consider the (7, 4) Hamming code whose parity-check matrix is given in Exam-
ple 1.11. Let r = 0010001 be the received 7-tuple. The syndrome is

s = (0010001)

0 1 1
1 0 1
1 1 0
1 1 1
1 0 0
0 1 0
0 0 1

= 111 (1.70)

CODES ON GRAPHS 21

Sinces 6= 0, r contains at least one erroneous component. For the Hamming codes
there is a one-to-one correspondence between the single errors and the nonzero
syndromes. Among all 2K = 16 possible error patterns, the MD decoder chooses
the one with least Hamming weight, that is, the single error pattern corresponding
to the given syndrome s = 111. Since the fourth row in HT is the triple 111, the
MD decoder gives as its output ê = 0001000 (a single 1 in the fourth position). It
immediately follows that

v̂ = r + ê

= 0010001 + 0001000

= 0011001 (1.71)

If v = 0011001 was sent, we have corrected the transmission error. However,
if v = 0000000 was sent and e = 0010001, the Hamming code is not able to
correct the error pattern. The syndrome decoder will in this case give as its output
v̂ = 0011001!

Suppose that the (7, 4) Hamming code is used to communicate over a BSC with
channel error probability ε. The ML decoder can correctly identify the transmitted
codeword if and only if the channel causes at most one error. The block (or word)
error probability PE, that is, the probability that the decision for the codeword differs
from the actual codeword, is

PE =
7∑
i=2

(
7

i

)
εi(1− ε)7−i

= 21ε2 − 70ε3 + · · · (1.72)

For the (7, 4) Hamming code, it can be shown (Problem 1.21) that for all digits

Pb = 9ε2(1− ε)5 + 19ε3(1− ε)4 + 16ε4(1− ε)3

+12ε5(1− ε)2 + 7ε6(1− ε) + ε7

= 9ε2 − 26ε3 + · · · (1.73)

Maximum-likelihood (ML) decoding that we discussed in this section is an im-
portant decoding method in the sense that (assuming equiprobable messages) it
minimizes the block error probability. In Chapter 5 we shall show that if we use ML
decoding there exist codes for which the block and bit error probabilities decrease
exponentially with block length N .

A drawback with ML decoding is that its decoding complexity increases very
fast—exponentially fast—with increasing block length. There is a need for low-
complexity suboptimum decoding algorithms.

1.3 CODES ON GRAPHS

In this section, we introduce an important class of block codes, codes on graphs,
which are very powerful in combination with iterative decoding. A well-known class

22 INTRODUCTION

of such codes is the low-density parity-check (LDPC) codes invented by Gallager
[Gal62, Gal63]. When these codes are decoded iteratively, they have better bit error
probability/decoding complexity tradeoff than general block codes.

Tanner [Tan81] used bipartite graphs to describe the structure of linear block
codes. These so-called Tanner graphs consist of two sets of nodes, the set of symbol
(or variable) nodes which correspond to the symbols of the codewords and the set of
constraint (or factor) nodes which correspond to the parity-check equations defining
the code. In a Tanner graph, each symbol node vn is connected by edges only with
constraint nodes cl and, similarly, each constraint node is connected only with symbol
nodes. The number of edges connected to a node is called the degree of that node.

Each column in the parity-check matrix corresponds to a symbol node and each
row corresponds to a constraint node. A 1 in the (l, n)th position of the parity-check
matrix H corresponds to an edge between the symbol node vn and the constraint
node cl.

EXAMPLE 1.14

Consider the following parity-check matrix (1.56) of a (7, 4) Hamming code,

H =

 1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

 (1.74)

This code has seven code symbols interrelated by three parity-check equations
(constraints),

v0 + v1 + v2 + v4 = 0
v1 + v2 + v3 + v5 = 0
v0 + v1 + v3 + v6 = 0

(1.75)

The Tanner graph of the Hamming (7, 4) code (Fig. 1.10) has seven symbol nodes
and three constraint nodes. All constraint nodes have degree 4, but the degrees of
symbol nodes varies from 1 to 3.

v0 v1 v2 v3 v4 v5 v6

c0 c1 c2

Figure 1.10 Tanner graph of a Hamming (7, 4) code defined by parity-check matrix (1.74).

www.allitebooks.com

http://www.allitebooks.org

CODES ON GRAPHS 23

Note that the set of four symbols included in each of the linear equations (1.75)
forms a (4, 3) single-error-detecting code. Totally we have three such constituent
codes.

An LDPC code can be defined either by a parity-check matrix or by a Tanner
graph. In the first case it is determined by an L × N sparse parity-check matrix
H , “containing mostly 0s and relatively few 1s” as it was formulated by Gallager
[Gal62, Gal63]. A regular (N, J,K) LDPC code of block length N has a parity-
check matrix with a fixed numberK 1s in each row4 and a fixed number J 1s in each
column, where K/J = N/L.

The Tanner graph of a regular (N, J,K) LDPC code has symbol node degree
equal to J and constraint node degree equal to K. The rows of the parity-check
matrix H of a regular (N, J,K) LDPC code can be linearly dependent, then the
design rate Rd = 1− J/K can be less than the actual code rate R.

Remark: In the sequel we will for simplicity often use short block codes as illustra-
tions and call them LDPC codes even if the requrement “containing mostly 0s and
relatively few 1s” is not fulfilled.

EXAMPLE 1.15

Consider the following parity-check matrix of the rate R = 6/15 = 2/5 regular
(N, J,K) = (15, 3, 5) LDPC block code:

H =

1 1 1 0 1 0 1 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 1 0 0 0 0 0 0 0
1 0 1 1 0 1 0 0 1 0 0 0 0 0 0
0 1 1 1 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1 1 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1 1 1 0 0 1
0 0 0 0 0 0 0 0 1 1 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

(1.76)

This code was found by computer search and has relatively good minimum
distance, dmin = 6, for an LDPC code of this size. Its Tanner graph is shown in
Fig. 1.11.

An irregular LDPC code has in general a Tanner graph whose symbol node degrees
as well as constraint node degrees are different.

For an LDPC code, the rows of the L×N parity-check matrix H can in general
be linearly dependent and, equivalently, this matrix has not full rank. If we delete
linearly dependent rows such that the remaining rows are linearly independent, then
we obtain a parity-check matrix for a rate R > Rd = 1− L/N LDPC code.

4With a slight abuse of notations we useK to denote both the number of 1s in each row of and the number
of information symbols in an (N,K) block code.

24 INTRODUCTION

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14

c0 c1 c2 c3 c4 c5 c6 c7 c8

Figure 1.11 Tanner graph of the code defined by parity-check matrix (1.76).

Gallager introduced a special class of regular (N, J,K) LDPC codes. The L×N
parity-check matrices H of these codes, where N = KM , L = JM , and M > 0 is
an integer, can be represented as a composition of J submatricesHj , j = 1, 2, . . . , J ,

H =

H1

H2

...
HJ

 (1.77)

Here the M ×N submatrices Hj have one 1 in each column and K 1s in each row.
The other entries of the submatrices are 0s. If J ≥ 2, then the rank of the matrix
(1.77) is always strictly less than L (see Problem 1.24).

Using the ensemble of regular (N, J,K) LDPC codes with random parity-check
matrices given by (1.77) Gallager5 proved that, if N → ∞, then the minimum dis-
tance dmin of almost all codes from this ensemble is lower-bounded by the inequality

dmin > ρJ,KN (1.78)

where the parameter ρJ,K is a positive constant (if J > 2). In other words, the
minimum distance of typical (N, J,K) codes from this ensemble, as well as of
typical randomly chosen block codes, is growing linearly with N .

In Table 1.1 we show the numerical values of ρJ,K for some J and K. For
comparison also the value of the Gilbert-Varshamov parameter ρGV is given for the
corresponding design ratesRd = 1−J/K. In Chapter 8 we will prove the interesting
fact that if J = 2 then dmin grows only logarithmically with N .

The main advantage of LDPC codes is that these codes can be decoded iteratively
and that the complexity of iterative decoding grows slower than exponentially with
the block length N . We shall conclude this introductory section by describing a
simple iterative decoding algorithm for LDPC codes.

5Gallager used the slightly different ensemble with the first matrix H(1) fixed. This has, however, no
effect on the technique of his proof.

CODES ON GRAPHS 25

Table 1.1 Gallager’s parameter ρJ,K compared with the Gilbert-Varshamov
parameter ρGV.

J K Rc ρJ,K ρGV ρGV/ρJ,K
3 4 0.25 0.112 0.215 1.920

5 0.4 0.045 0.146 3.244
6 0.5 0.023 0.11 4.783

4 5 0.2 0.211 0.243 1.152
6 0.333 0.129 0.174 1.349

5 6 0.167 0.255 0.264 1.035

Gallager introduced a simple hard-decision iterative decoding algorithm for LDPC
codes called the bit-flipping (BF) algorithm [Gal62, Gal63]. It was later modified by
Zyablov and Pinsker [ZyP75]. We will describe a version of Gallager’s algorithm for
regular (N, J,K) LDPC codes which uses an adaptive threshold.

Suppose that the binary N -tuple (codeword) v is sent over a BSC and that the
binary N -tuple r is received. On the receiver side, a bit-flipping decoder calculates
the tentative syndrome

s′ = (s′0 s
′
1 . . . s

′
L−1) = r′HT (1.79)

for the tentative sequence r′ = r′0 r
′
1 . . . r

′
N−1 which initially is equal to the received

sequence r.
Since the code is regular, each tentative symbol r′n, n = 0, 1, . . . , N − 1, is

included in J parity-check equations. Let δn, n = 0, 1, . . . , N−1, denote the number
of unsatisfied parity-check equations for the tentative symbol r′n. We introduce a
threshold T which is initially set to J . The decoder searches for any r′n such that
δn = T . If such an r′n does not exist, we decrease the threshold by 1, that is,
T ← T − 1, and repeat the “search/decrease threshold” procedure until we have one
of the following three situations:

(i) We find a tentative symbol r′n with δn = T > bJ/2c.

(ii) All δn = 0, n = 0, 1, . . . , N − 1, that is, s′ = 0.

(iii) s′ 6= 0 and for all symbols r′n we have δn ≤ bJ/2c.

If we find a tentative symbol r′n such that δn = T > bJ/2c, then we flip (change)
r′n and obtain a new tentative sequence r′ which yields a new tentative syndrome s′

with reduced Hamming weight. Whenever such a reduction of this Hamming weight
occurs, we reset the threshold to T = J . (This is necessary since the flipping of
r′n could result in a δn′ for n′ 6= n being as large as J .) Then we repeat the search
procedure.

If the tentative syndrome s′ = 0, then the corresponding tentative sequence r′ is
a codeword and v̂ = r′ is the decision for v. The decoding is considered successful.

If s′ 6= 0 and δn ≤ bJ/2c for n = 0, 1, . . . , N − 1, then the decoding is declared
as a failure. The corresponding tentative sequence r′ is called a trapping set.

26 INTRODUCTION

Gallager’s bit-flipping algorithm is characterized by its error-correcting capability
and its decoding complexity. Its error-correcting capability t(BF) is the largest integer
such that all error patterns of Hamming weight t(BF) or less are correctly decoded by
the algorithm. For Gallager’s bit-flipping algorithm, we can show that asymptotically,
that is, when N → ∞, the error-correcting capability is lower-bounded by a linear
function ofN . For maximum-likelihood decoding we have, as shown in the previous
section, the error-correcting capability t(ML) = bdmin−1

2 c, where dmin is the minimum
distance of the code.

Since the bit-flipping algorithm is essentially less powerful than an ML algorithm,
we have in general t(BF) ≤ t(ML).

What can we say about the decoding complexity of the bit-flipping algorithm? We
will show that the total number of operations for Gallager’s bit-flipping algorithm is
upper-bounded by6 O(N2). During each iteration the decoder checks the symbols
r′n, n = 0, 1, . . . , N − 1, of the tentative sequence r′ up to the moment when it finds
a symbol which is included in δ unsatisfied parity-check equations. Then it flips
this symbol which decreases the tentative syndrome weight by at least one. Since
the initial syndrome weight does not exceed N , the total number of iterations is
upper-bounded by O(N). In each iteration, the decoder checks at most N symbols.
Assuming that checking one symbol requires one computational operation, the total
number of operations for one iteration is upper-bounded byO(N). Then the decoding
complexity of Gallager’s bit-flipping algorithm is upper-bounded by O(N2).

We can also describe the bit-flipping algorithm using the Tanner graph. In this
case the decoder checks how many constraint nodes connected to a given tentative
symbol node correspond to unsatisfied parity-check equations. If this number equals
the threshold T , then the decoder flips the corresponding tentative symbol and goes
to the next phase of the decoding.

Remark: We gave one possible description of Gallager’s bit-flipping algorithm, with
an adaptive threshold. In principle, the decoder can flip a tentative symbol whenever
the number of unsatisfied parity-check equations for this symbol δ > bJ/2c. We
can say in this case that the decoder uses the lowest possible threshold bJ/2c + 1.
The error-correcting capability when N →∞ of the algorithm with lowest possible
threshold is still O(N), but for finite N it is less than that for the algorithm with an
adaptive threshold. In Problem 1.25 we study an example when the algorithm with
an adaptive threshold has error-correcting capability t(BF) = 1 but the algorithm with
lowest possible threshold has zero error-correcting capability.

EXAMPLE 1.16

Consider the regular (15, 3, 5) LDPC code given in Example 1.15. Suppose that
we use the bit-flipping algorithm with an adaptive threshold for decoding. We will

6Here and hereafter we write f(x) = O(g(x)) if |f(x)| ≤ Ag(x) for x sufficiently near a given limit,
A is a positive constant independent of x and g(x) > 0. We have, e.g., f(x) = log x, x > 0, can be
written as f(x) = O(x) when x→∞.

CODES ON GRAPHS 27

show that this algorithm corrects all single errors and that there are double errors
which the algorithm does not correct.

Let the transmitted sequence be the allzero code sequence v = 0 = 00 . . . 0
sent over the BSC and assume that all symbols of the received sequence r except
r7 are correctly received, that is, r = 000000010000000. The decoder calculates
the syndrome (cf. Fig. 1.11)

s = rHT = 010010100 (1.80)

It has Hamming weight 3. The initial value of the threshold is T = J = 3. Note
that flipping, for example, the symbol r4 decreases the syndrome weight by 1,
but the only symbol included in δ = 3 unsatisfied parity-check equations is the
symbol r7. Flipping this symbol decreases the syndrome weight by 3 and results
in successful decoding.

It is easily shown that the decoder corrects all single errors. It does not, however,
correct all double errors. Suppose that all symbols of the received sequence r
except r4 and r7 are correctly received, that is, r = 000010010000000. The
syndrome

s = rHT = 100000100 (1.81)

has Hamming weight 2 and there are no symbols such that flipping causes a
decrease of the syndrome weight. The decoding has failed and the sequence
r = 000010010000000 is a trapping set.

Next we consider another pattern of double errors, namely, all symbols of
the received sequence r except r0 and r14 are correctly received, that is, r =
100000000000001. The syndrome

s = rHT = 111000111 (1.82)

has Hamming weight 6. Flipping the symbol r0 yields the tentative syndrome

s′ = r′HT = 000000111 (1.83)

with Hamming weight 3. Then, flipping r14 yields the tentative syndrome s′ = 0
and results in successful decoding of this particular double-error pattern.

Since the minimum distance dmin = 6, we would correct all double errors if
we were using a maximum-likelihood decoder.

We have described a variant of Gallager’s original bit-flipping algorithm. The
Zyablov-Pinsker iterative decoding algorithm finds in each step all bits of the received
sequence which are included in more than bJ/2c unsatisfied parity-check equations
and then flips simultaneously all these bits. A theoretical analysis of the Zyablov-
Pinsker algorithm [ZPZ08] gives the following asymptotical lower bound for the
error-correcting capability when N →∞:

t(ZP) > ρ(ZP)
J,KN (1.84)

28 INTRODUCTION

where the coefficient ρ(ZP)
J,K is much smaller than both the corresponding Gilbert-

Varshamov parameter ρGV and the Gallager parameter ρJ,K . For example, for J = 9

and K = 10 we have ρ(ZP)
J,K = 1.29× 10−3.

It can be shown that the decoding complexity of the Zyablov-Pinsker algorithm is
upper-bounded by O(N logN).

In Chapter 8 we will consider a more powerful iterative decoding algorithm for
LDPC codes called the belief propagation (BP) algorithm. This algorithm was also
invented by Gallager [Gal62, Gal63] and provides, at the cost of higher decoding
complexity, better error correction than the bit-flipping algorithm.

1.4 A FIRST ENCOUNTER WITH CONVOLUTIONAL
CODES

Convolutional codes are often thought of as nonblock linear codes over a finite field,
but it can be an advantage to treat them as block codes over certain infinite fields. We
will postpone the precise definitions until Chapter 2 and instead begin by studying a
simple example of a binary convolutional encoder (Fig. 1.12).

u0u1 . . .

v
(1)
0 v

(1)
1 . . .

v
(2)
0 v

(2)
1 . . .

v
(1)
0 v

(2)
0 v

(1)
1 v

(2)
1 . . .

S
e
r
i
a
l
i
z
e
r

Figure 1.12 An encoder for a binary rate R = 1/2 convolutional code.

The information digits u = u0u1 . . . are not as in the previous section separated
into blocks. Instead they form an infinite sequence that is shifted into a register,
in our example, of length or memory m = 2. The encoder has two linear output
functions. The two output sequences v(1) = v

(1)
0 v

(1)
1 . . . and v(2) = v

(2)
0 v

(2)
1 . . . are

interleaved by a serializer to form a single-output sequence v(1)
0 v

(2)
0 v

(1)
1 v

(2)
1 . . . that

is transmitted over the channel. For each information digit that enters the encoder,
two channel digits are emitted. Thus, the code rate of this encoder is R = 1/2
bits/channel use.

Assuming that the content of the register is zero at time t = 0, we notice that
the two output sequences can be viewed as a convolution of the input sequence u
and the two sequences 11100 . . . and 10100 . . ., respectively. These latter sequences
specify the linear output functions; that is, they specify the encoder. The fact that
the output sequences can be described by convolutions is why such codes are called
convolutional codes.

A FIRST ENCOUNTER WITH CONVOLUTIONAL CODES 29

In a general rate R = b/c, where b ≤ c, binary convolutional encoder (without
feedback) the causal, that is, zero for time t < 0, information sequence

u = u0u1 . . . = u
(1)
0 u

(2)
0 . . . u

(b)
0 u

(1)
1 u

(2)
1 . . . u

(b)
1 . . . (1.85)

is encoded as the causal code sequence

v = v0v1 . . . = v
(1)
0 v

(2)
0 . . . v

(c)
0 v

(1)
1 v

(2)
1 . . . v

(c)
1 . . . (1.86)

where
vt = f ((ut,ut−1, . . . ,ut−m) (1.87)

The parameter m is called the encoder memory. The function f is required to be a
linear function from F(m+1)b

2 to Fc2. It is often convenient to write such a function in
matrix form:

vt = utG0 + ut−1G1 + · · ·+ ut−mGm (1.88)

where Gi, 0 ≤ i ≤ m, is a binary b× c matrix.
Using (1.88), we can rewrite the expression for the code sequence as

v0v1 . . . = (u0u1 . . .)G (1.89)

or, in shorter notation, as
v = uG (1.90)

where

G =

 G0 G1 . . . Gm
G0 G1 . . . Gm

.

 (1.91)

and where here and hereafter the parts of matrices left blank are assumed to be filled
in with zeros. We call G the generator matrix and Gi, 0 ≤ i ≤ m, the generator
submatrices.

In Fig. 1.13, we illustrate a general convolutional encoder (without feedack).

· · ·

G0 G1 Gm

ut

vt

· · ·ut−1 ut−2 ut−m

Figure 1.13 A general convolutional encoder (without feedback).

30 INTRODUCTION

EXAMPLE 1.17

The rate R = 1/2 convolutional encoder shown in Fig. 1.12 has the following
generator submatrices:

G0 = (11) (1.92)
G1 = (10) (1.93)
G2 = (11) (1.94)

The generator matrix is

G =

 11 10 11
11 10 11

.

 (1.95)

EXAMPLE 1.18

The rateR = 2/3 convolutional encoder shown in Fig. 1.14 has generator subma-
trices

G0 =

(
1 0 1
0 1 1

)
G1 =

(
1 1 0
0 0 1

)
(1.96)

G2 =

(
0 0 0
1 0 1

)
The generator matrix is

G =

101 110 000
011 001 101

101 110 000
011 001 101

.

 (1.97)

It is often convenient to represent the codewords of a convolutional code as paths
through a code tree. A convolutional code is sometimes called a (linear) tree code.
The code tree for the convolutional code generated by the encoder in Fig. 1.12 is
shown in Fig. 1.15. The leftmost node is called the root. Since the encoder has
one binary input, there are, starting at the root, two branches stemming from each
node. The upper branch leaving each node corresponds to the input digit 0, and the
lower branch corresponds to the input digit 1. On each branch we have two binary
code digits, the two outputs from the encoder. The information sequence 1011 . . . is
clearly seen from the tree to be encoded as the code sequence 11 10 00 01

A FIRST ENCOUNTER WITH CONVOLUTIONAL CODES 31

u(1)

v(3)

v(2)

v(1)

u(2)

Figure 1.14 A rate R = 2/3 convolutional encoder.

The state of a system is a description of its past history which, together with a
specification of the present and future inputs, suffices to determine the present and
future outputs. For the encoder in Fig. 1.12, we can choose the encoder state σ to be
the contents of its memory elements; that is, at time t we have

σt = ut−1ut−2 (1.98)

Thus, our encoder has only four different encoder states, and two consecutive input
digits are enough to drive the encoder to any specified encoder state.

For convolutional encoders, it is sometimes useful to draw the state-transition
diagram. If we ignore the labeling, the state-transition diagram is a de Bruijn graph
[Gol67]. In Fig. 1.16, we show the state-transition diagram for our convolutional
encoder.

Let us return to the tree code in Fig. 1.15. As an example, the two input sequences
010 (node A) and 110 (node B) both drive the encoder to the same encoder state,
σ = 01. Thus, the two subtrees stemming from these two nodes are identical! Why
treat them separately? We can replace them with one node corresponding to state 01
at time 3. For each time or depth in the tree, we can similarly replace all equivalent
nodes with only one—we obtain the trellis-like structure shown in Fig. 1.17, where
the upper and lower branches leaving the encoder states correspond to information
symbols 0 and 1, respectively.

The information sequence 1011 . . . corresponds in the trellis to the same code
sequence as in the tree, 11 10 00 01 The trellis is just a more convenient repre-
sentation of the same set of encoded sequences as is specified by the tree, and it is
easily constructed from the state-transition diagram. A convolutional code is often
called a (linear) trellis code.

32 INTRODUCTION

00

11

0

1

00

11

10

01

00

11

10

01

11

00

01

10

00

11

10

01

11

00

01

10

00

11

10

01

11

00

01

10

Transmitted

sequence

B

A

Figure 1.15 A binary rate R = 1/2 tree code.

We will often consider sequences of finite length; therefore, it is convenient to
introduce the notations

x[0,n) = x0x1 . . .xn−1 (1.99)

and
x[0,n] = x0x1 . . .xn (1.100)

Suppose that our trellis code in Fig. 1.17 is used to communicate over a BSC
with crossover probability ε, where 0 < ε < 1/2. We start the encoder in encoder
state σ = 00, and feed it with the finite information sequence u[0,n) followed by
m = 2 dummy zeros in order to drive the encoder back to encoder state σ = 00.
The convolutional code is terminated and, thus, converted into a block code. The
corresponding encoded sequence is the codeword v[0,n+m). The received sequence
is denoted r[0,n+m).

To simplify the notations in the following discussion, we simply write u, v, and
r instead of u[0,n), v[0,n+m), and r[0,n+m).

www.allitebooks.com

http://www.allitebooks.org

A FIRST ENCOUNTER WITH CONVOLUTIONAL CODES 33

v(1)

v(2)

u

10 01

00

11

1/10

0/00

1/01

1/11

0/01

0/11

0/10

1/00

Figure 1.16 A rate R = 1/2 convolutional encoder and its state-transition diagram.

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00 00 00 00

11 11 11 11

11 11

00 00

10 10 10

01 01 01

01 01
10 10

. . .

. . .

. . .

. . .

Figure 1.17 A binary rate R = 1/2 trellis code.

We shall now, by an example, show how the structure of the trellis can be exploited
to perform maximum-likelihood (ML) decoding in a very efficient way. The memory
m = 2 encoder in Fig. 1.12 is used to encode three information digits together with
m = 2 dummy zeros; the trellis is terminated and our convolutional code has become
a block code. A codeword consisting of 10 code digits is transmitted over a BSC.
Suppose that r = 11 00 11 00 10 is received. The corresponding trellis is shown in
Fig. 1.18. (In practice, typically a few thousand information bits are encoded before
the encoder is forced back to the allzero state by encoding m dummy zeros.)

As shown by the discussion following (1.31), the ML decoder (and the MD
decoder) chooses as its decision v̂ for the codeword v that minimizes the Hamming
distance dH(r,v) between r and v. That is, it minimizes the number of positions in
which the codeword and the received sequence differ. In order to find the codeword
that is closest to the received sequence, we move through the trellis from left to

34 INTRODUCTION

r = 11 00 11 00 10

00 00

10

00

01

10

11

00

01

10

11

00

01

00
00 00 00 00 00

11 11 11

11 11 11

00

10 10 10

01 01

01 01
10

2 2 1 1 2

1 2 3

0 4 2

1 2

Figure 1.18 An example of Viterbi decoding for the received sequence r = 11 00 11 00 10.

right, discarding all subpaths that could not turn out to be the prefix of the best path
through the trellis. When we reach depth m = 2, we have four subpaths—one for
each encoder state. At the next depth, however, there are eight subpaths—two per
encoder state. For each encoder state at this depth, we keep only one subpath—the
one that is closest to the corresponding prefix of the received sequence. We simply
discard the poorer subpath into each encoder state since this poorer subpath could not
possibly be the prefix of the best path through the trellis. We proceed in this manner
until we reach encoder state 00 at depth 5. Because only one path through the trellis
has survived, we have then found the best path through the trellis. In Fig. 1.18, the
Hamming distance between the prefix of the received sequence and the best subpath
leading to each encoder state is shown above the encoder state. The discarded poorer
subpath is marked with the symbol × on the branch that enters the encoder state.

Two subpaths leading to an encoder state may both have the same Hamming
distance to the prefix of the received sequence. In fact, this happened at state 01,
depth 4. Both subpaths have distance 3 to the prefix of the received sequence! Both
are equally likely to be the prefix of the best path—we can discard either subpath
without eliminating all “best paths” through the trellis, in case there are more than
one best path. We arbitrarily chose to discard the upper of the two subpaths entering
encoder state 01 at depth 4.

The best codeword through the trellis was found to be v̂ = 11 10 11 00 00, which
corresponds to the information sequence û = 100. If the decision v̂ = 11 10 11 00 00
happened to be the transmitted codeword, we have corrected two transmission errors.

How many errors can we correct?
The most likely error event is that the transmitted codeword is changed by the

BSC so that it is decoded as its closest (in Hamming distance) neighbor. It is
readily seen from Fig. 1.18 that the smallest Hamming distance between any two
different codewords is 5, for example, dH (00 00 00 00 00, 11 10 11 00 00) = 5. This
minimum distance is called the free distance of the convolutional code and is denoted
dfree. It is the single most important parameter for determining the error-correcting

BLOCK CODES VERSUS CONVOLUTIONAL CODES 35

capability of the code. (The free distance and several other distance measures will
be discussed in detail in Chapter 3.) Since dfree = 5, we can correct all patterns of
two errors.

The ML decoding algorithm described above is usually called the Viterbi algorithm
in honor of its inventor [Vit67]. It is as simple as it is ingenious, and it is easily
implementable. Viterbi decoders for memory m = 6 (64 states) and longer are often
used in practice.

In Chapter 4, we will study Viterbi decoding in more detail and obtain tight upper
bounds on the decoded bit error probability.

1.5 BLOCK CODES VERSUS CONVOLUTIONAL CODES

The system designer’s choice between block and convolutional codes should depend
on the application. The diehard block code supporters always advocate in favor
of block codes, while their counterparts on the other side claim that in almost all
situations convolutional codes outperform block codes. As always, the “truth” is not
only somewhere in between, but it also depends on the application.

The theory of block codes is much richer than the theory of convolutional codes.
Many sophisticated finite field concepts have been used to design block codes with
a beautiful mathematical structure that has simplified the development of efficient
error-correcting decoding algorithms. From a practical point of view, the Reed-
Solomon (RS) codes constitute the most important family of block codes. They are
extremely well suited for digital implementation. Berlekamp’s bit-serial RS encoders
[Ber82] have been adopted as a NASA standard for deep-space communication. The
RS codes are particularly powerful when the channel errors occur in clusters—burst
errors—which is the case in secondary memories such as magnetic tapes and disks.
All compact disc players use RS codes with table-look-up decoding.

Assuming that a decoded bit error rate of 10−5 is satisfactory, which is the case,
for example, for digitized voice, convolutional codes in combination with Viterbi
decoding appear to be an extremely good combination for communication when the
noise is white and Gaussian. For example, Qualcomm Inc. has on a single chip
implemented a memory m = 6 Viterbi decoder for rates R = 1/3, 1/2, 3/4, 7/8.
The rate R = 1/2 coding gain is 5.2 dB at Pb = 10−5. This very powerful error-
correcting system operates either with hard decisions or with eight-level quantized
soft decisions.

The major drawback of RS codes is the difficulty of making full use of soft-
decision information. As we will see in Chapter 4, the Viterbi algorithm can easily
exploit the full soft-decision information provided at the decoder input and thus easily
pick up the 2 dB gain over hard-decision. Furthermore, code synchronization is in
general much simpler for convolutional codes than for block codes.

If a combination of a high level of data integrity, Pb = 10−10 say, and a larger
coding gain than a Viterbi decoder can provide is required, then we could use either
an RS code or a large memory, m = 25 say, convolutional encoder. The complexity
of the Viterbi decoder, which is essentially 2m, will be prohibitively large in the latter

36 INTRODUCTION

case. Instead we could use sequential decoding (Chapter 7) of the convolutional code
whose complexity is essentially independent of the memory of the encoder.

In many applications where the noise is predominantly Gaussian, the best solution
is obtained when block and convolutional codes join forces and are used in series.
In Fig. 1.19 we show a concatenated coding system, where we use a convolutional
code as the inner code to clean up the channel. The Viterbi decoder will correct
most channel errors but will occasionally output a burst of errors. This output then
becomes the input to the outer decoder. Since an RS code is very well suited to cope
with bursts of errors, we use an RS code as the outer code. Such a concatenated
coding system combines a very high level of data integrity with large coding gain and
low complexity. Often a permutor is used between the outer and inner encoders and
a corresponding inverse permutor between the inner and outer decoders. Then the
output error burst from the inner decoder will be smeared out by the inverse permutor
before the outer decoder has to cope with it.

An alternative method of decreasing the decoding complexity without decreasing
the code reliability is using low-density parity-check (LDPC) codes, a class of codes
on graphs, or so-called turbo codes. In Chapter 8 we discuss LDPC convolutional
codes and in Chapter 9 we introduce turbo codes.

Outer
RS encoder

Inner
Conv. encoder

Channel

Inner
Viterbi decoder

Outer
RS decoder

Output

Input

Noise

Figure 1.19 Concatenated coding system.

1.6 CAPACITY LIMITS AND POTENTIAL CODING GAIN REVISITED

We will now return to the problem of determining the regions of potential coding
gain which we first encountered in Section 1.1.

Consider Shannon’s formula for the capacity of the bandlimited Gaussian channel
(1.15),

CWt = W log

(
1 +

S

N0W

)
bits/s

where W as before denotes the bandwidth. Assume that we are transmitting at the
so-called Nyquist rate, (that is, at a rate of 2W samples per second) and that we use

CAPACITY LIMITS AND POTENTIAL CODING GAIN REVISITED 37

a rate R = K/N block code. If we transmit K information bits during T seconds,
we have

N = 2WT samples per codeword (1.101)

Hence,
Rt = K/T = 2WK/N = 2WR bits/s (1.102)

(Assuming a constant transmission rate Rt, the required bandwidth W is inversely
proportional to the code rate R.)

By combining (1.18) and (1.102), we obtain

S

WN0
=

2REb

N0
(1.103)

For reliable communication, we must have Rt ≤ CWt , that is,

Rt = 2WR ≤W log

(
1 +

2REb

N0

)
(1.104)

or, equivalently,
Eb

N0
≥ 22R − 1

2R
(1.105)

Letting R → 0, we obtain (1.20). Since the right hand side of inequality (1.105)
is increasing with R, we notice that in order to communicate close to the Shannon
limit, −1.6 dB, we have to use both an information rate Rt and a code rate R close
to zero. Furthermore, if we use a rate R = 1/2 code, it follows from (1.105) that the
required signal-to-noise ratio is

Eb/N0 ≥ 1 = 0 dB (1.106)

In Fig. 1.20 we show the coding limits according to (1.105) and the regions of
potential coding gain for various rates R.

When we derived the coding limits determined by inequality (1.105), we assumed
a required error probability Pb arbitrarily close to zero. If we are willing to tolerate
a certain given value of the error probability Pb, we can of course obtain a larger
coding gain. It follows from Shannon’s rate distortion theory [McE77] that if we
are transmitting the output of a binary symmetric source and can tolerate an average
distortion of KPb for a block of K information symbols, then we can represent Rt
bits of information per second with only Rt(1− h(Pb)) bits per second, where h(·)
is the binary entropy function (1.22).

These Rt(1− h(Pb)) bits per second should now be transmitted over the channel
with an error probability arbitrarily close to zero. Hence, instead of (1.104) we have
now the inequality

Rt(1− h(Pb)) = 2WR(1− h(Pb)) ≤W log

(
1 +

2REb

N0

)
(1.107)

38 INTRODUCTION

−2 0 2 4 6 8 10 12
10−6

10−5

10−4

10−3

10−2

10−1

8.7 dB

9.6 dB

11.2 dB

Uncoded BPSK

9.6 dB

R = 1/2
(0 dB)

R = 3/4
(0.86 dB)

R = 0
(−1.6 dB)

Eb/N0 [dB]

Pb

Figure 1.20 Coding limits and regions of potential coding gains for various rates R.

or, equivalently,

Eb

N0
≥ 22R(1−h(Pb)) − 1

2R
(1.108)

In Fig. 1.21 we show the coding limits according to (1.108) and the regions of potential
coding gains for various rates R when we can tolerate the bit error probability Pb.
We also show a comparison between these coding limits and Qualcomm’s Viterbi
decoder performance and that of a rate R = 3/4 (256, 192) RS decoder.

In order to achieve the rate distortion bound we need a nonlinear source encoder.
Hence, we have not shown that the coding limit (1.108) can be reached with linear
codes.

Remark: In order to achieve the capacity CWt promised by (1.15), we have to
use nonquantized inputs to the channel. If we restrict ourselves to the binary input
Gaussian channel, then the formula for CWt , (1.15), must be replaced by a more
complicated expression and the coding limits shown in Fig. 1.21 should be shifted to
the right by a small fraction of a dB [BMc74].

COMMENTS 39

−2 0 2 4 6 8 10 12
10−6

10−5

10−4

10−3

10−2

10−1

Uncoded BPSK

RS (256, 192)
R = 3/4

Viterbi
R = 3/4
m = 6

Viterbi
R = 1/2
m = 6

R = 1/2
(≈ 0 dB)

R = 3/4
(≈ 0.86 dB)

R = 0
(≈ −1.6 dB)

Eb/N0 [dB]

Pb

Figure 1.21 Regions of potential coding gains for various rates R when we can tolerate bit
error probability Pb and a comparison with the performance of two convolutional codes and a
block code.

1.7 COMMENTS

Back in 1947 when Hamming had access to a computer only on weekends, he was
very frustrated over its behavior: “Damn it, if the machine can detect an error, why
can’t it locate the position of the error and correct it?” [Tho83]. That question
inspired the development of error-correcting codes. Hamming’s famous single-error-
correcting (7, 4) block code is mentioned by Shannon in “A Mathematical Theory of
Communication” [Sha48], but Hamming’s paper was not published until two years
later [Ham50]. The first paper published in coding theory was that of Golay [Gol49],
which in less than one page gave the generalization of Hamming codes to nonbinary
fields, gave the only two multi-error-correcting perfect codes aside from the trivial
binary repetition codes of odd length, and introduced the parity-check matrix (see
also Problem 1.19).

Elias introduced convolutional codes in 1955 [Eli55]. The first decoding method
for these codes was sequential decoding suggested by Wozencraft in 1957 [Woz57]

40 INTRODUCTION

and further developed by Fano, who in 1963 presented a most ingenious decoding
algorithm [Fan63]. The conceptually simplest algorithm for sequential decoding is
the stack algorithm introduced by Zigangirov in 1966 [Zig66] and Jelinek in 1969
[Jel69]. In the meantime, Massey had suggested threshold decoding of convolutional
codes [Mas63]. In Viterbi’s famous paper from 1967 [Vit67], the Viterbi algorithm
was invented as a proof technique and presented as “a new probabilistic nonsequential
decoding algorithm”. Forney [For67] was the first to draw a trellis and it was he
who coined the name “trellis,” which made understanding of the Viterbi algorithm
easy and its maximum-likelihood nature obvious. Forney realized that the Viterbi
algorithm was optimum, but it was Heller who realized that it was practical [For94].
Later, Omura [Omu69] observed that the Viterbi algorithm can be viewed as the
application of dynamic programming to the problem of decoding a convolutional
code.

The most important contributions promoting the use of convolutional codes were
made by Jacobs and Viterbi when they founded Linkabit Corporation in 1968 and
Qualcomm Inc. in 1985, completing the path “from a proof to a product” [Vit90].

LDPC block codes were invented by Gallager [Gal62, Gal63] in the early 1960s.
Unfortunately, Gallager’s remarkable discovery was to a large extent ignored by the
coding community during almost 20 years. Two important papers by Zyablov and
Pinsker [ZyP74, ZyP75] published in the middle of the 1970s were overlooked by
many coding theoretists. In the beginning of the 1980s Tanner [Tan81] and Margulis
[Mar82] published two important papers concerning LDPC codes. Tanner’s work
provided a new interpretation of LDPC codes from a graph theoretical point of
view. Margulis gave explicit graph constructions of the codes. These works were
also essentially ignored by the coding specialists for more than 10 years, until the
beginning 1990s when Berrou, Glavieux, and Thitimajshima [BGT93] introduced
the so-called turbo codes which inspired many coding researchers to investigate
codes on graphs and iterative decoding. It has been shown that long LDPC codes
with iterative decoding based on belief propagation almost achieve the Shannon limit.
This rediscovery makes the LDPC codes strong competitors with other codes for error
control in many communication and digital storage systems when high reliability is
required.

PROBLEMS 41

PROBLEMS

1.1 The channel capacity for the ideal bandlimited AWGN channel of bandwidth
W with two-sided noise power spectral density N0/2 is given by (1.15). The signal
power can be written S = EbRt.

Define the spectral bit rate r by

r = Rt/W (bits/s)/Hz

and show that
Eb

N0
≥ 2r − 1

r

for rates Rt less than capacity. Sketch r as a function of Eb/N0 expressed in dB.

1.2 Consider an ideal bandlimited AWGN channel with BPSK and with hard
decisions. Based on transmitting Rt = 2WR bits/s, where R is the code rate, the
capacity is

Ct = 2W (1 + ε log ε+ (1− ε) log(1− ε)) bits/s

where ε = Q
(√

rEb/N0

)
and r is the spectral bit rate r = Rt/W .

Show that
Eb

N0
≥ π

2
ln 2

for reliable communication.
Hint: The Taylor series expansion of Ct is

Ct = 2W

(
22

1 · 2
(1

2 − ε)
2 +

24

3 · 4
(1

2 − ε)
4 +

26

5 · 6
(1

2 − ε)
6 + · · ·

)
log e

and
ε = Q

(√
rEb/N0

)
≥ 1

2
− 1√

2π

√
rEb/N0

1.3 Show that a block code B can detect all patterns of s or fewer errors if and only
if dmin > s.

1.4 Show that a block code B can correct all patterns of t or fewer errors and
simultaneously detect all patterns of t + 1, t + 2, . . . , t + s errors if and only if
dmin > 2t+ s.

1.5 Prove Theorem 1.2.

1.6 Consider a block code B with encoding matrix

G =

(
1 1 0 0 1
0 1 1 1 0

)
a) List all codewords.
b) Find a systematic encoding matrix and its parity-check matrix.

42 INTRODUCTION

c) Determine dmin.

1.7 Consider the following two block codes.
B1 = {110011 , 101010, 010101, 011001, 100110, 111111, 001100, 000000}
B2 = {010101 , 101010, 001100, 110110, 111111, 011001, 110011, 100110}

a) Are the two codes linear?
b) Determine wmin for each of the codes.
c) Determine dmin for each of the codes.
d) Determine the rate R = K/N .

1.8 Consider the block code B = {000000, 110110, 011011, 101101}.
a) Is B linear?
b) Find the rate R = K/N .
c) Find, if it exists, a linear encoder.
d) Find, if it exists, a nonlinear encoder.
e) Determine dmin.

1.9 Show that if B is a linear code and a 6∈ B, then B ∪ (a + B) is also a linear
code.

1.10 Consider the binary (6,K) even-weight code. (All codewords have even
weight.)

a) Find K.
b) Give the encoding and parity-check matrices.

1.11 Consider the binary (4,3) even-weight code.
a) Construct a standard array.
b) For each coset give its syndrome.
c) How many errors can it correct?
d) Determine dmin.

1.12 Show that a binary code can correct all single errors if and only if any parity-
check matrix has distinct nonzero columns.

1.13 Consider a binary code with encoding matrix

G =

 1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

a) Find a parity-check matrix.
b) Construct a standard array.
c) List all codewords.
d) Determine from the standard array how many errors it can correct.
e) Determine dmin.
f) For each coset give its syndrome.
g) Suppose that r = 110000 is received over a BSC with 0 < ε < 1/2. Find

the maximum-likelihood decision û for the information sequence.

www.allitebooks.com

http://www.allitebooks.org

PROBLEMS 43

1.14 Consider a block code B with encoding matrix

G =

(
1 1 0 0 1 1
1 1 1 1 0 0

)
a) Find a parity-check matrix.
b) List all codewords.
c) Determine dmin.
d) Suppose that r = 000111 is received over a BSC with 0 < ε < 1/2. Find

the maximum-likelihood decision û for the information sequence.

1.15 Consider a binary (N,K) code B with parity-check matrix H and minimum
distance d. Assume that some of its codewords have odd weight. Form a code B̂ by
concatenating a 0 at the end of every codeword of even weight and a 1 at the end of
every codeword of odd weight. This technique is called extending a code.

a) Determine dmin for B̂.
b) Give a parity-check matrix for the extended code B̂.

1.16 Consider the (8,4) extended Hamming code.
a) Give a parity-check matrix.
b) Determine dmin.
c) Find an encoding matrix.
d) Show how a decoder can detect that an odd number of errors has occurred.

1.17 The Hamming sphere of radius t with center at the N -tuple x is the set of all
y in FN2 such that dH(x,y) ≤ t. Thus, this Hamming sphere contains exactly

Vt =
t∑
i=0

(
N

i

)
distinct N -tuples. Prove the Hamming bound for binary codes, that is,

V⌊ dmin−1

2

⌋ ≤ 2N(1−R)

which is an implicit upper bound on dmin in terms of the block length N and rate R.

1.18 The systematic parity-check matrices for the binary Hamming codes can be
written recursively as

H2 =

(
1 1 0
1 0 1

)
and

Hm =

(
Hm−1 Hm−1 0
1 . . . 1 0 . . . 0 1

)
, m ≥ 3

Find the parameters N,K, and dmin for the mth Hamming code.

1.19 A code for which the Hamming bound (see Problem 1.17) holds with equality
is called a perfect code.

44 INTRODUCTION

a) Show that the repetition code, that is, the rate R = 1/N binary linear code
with generator matrix G = (1 1 . . . 1), is a perfect code if and only if N is
odd.

b) Show that the Hamming codes of Problem 1.18 are perfect codes.
c) Show that the Hamming bound admits the possibility that an N = 23

perfect binary code with ddim = 7 might exist. What must K be?

Remark: The perfect code suggested in Problem 1.19(c) was found by Golay in
1949 [Gol49]. There exist no perfect binary codes other than those mentioned in this
problem.

1.20 Suppose that the block code B with parity-check matrix

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

is used for communication over a BSC with 0 < ε < 1/2.

a) Find dmin.
b) How many errors can the code correct?
c) How many errors can the code detect?
d) For each syndrome give the error pattern ê that corresponds to the error-

correcting capability of the code.
e) For r = 0111011 find v̂, the maximum-likelihood decision.
f) For r = 0110111 find v̂, the maximum-likelihood decision.

1.21 Verify formula (1.73).
Hint: The (7, 4) Hamming code has one codeword of weight 0, seven codewords of
weight 3, seven codewords of weight 4, and one codeword of weight 7. The error
probability is the same for all bits.

1.22 Given a Hamming code B with parity-check matrix H .
a) Construct an extended code Bext with parity-check matrix

Hext =

0
... H
0
1 1 · · · 1

b) Determine dmin for Bext.
c) Construct an expurgated code Bexp with parity-check matrix

Hexp =

 H

1 · · · 1

d) Determine dmin for Bexp.

PROBLEMS 45

e) What is characteristic for the weights of the codewords of Bexp?

1.23 Draw the Tanner graph for the extended (8, 4) Hamming code defined by the
parity-check matrix

H =

0 0 1 1 1 1 0 0
0 1 0 1 1 0 1 0
0 1 1 0 1 0 0 1
1 1 1 1 1 1 1 1

1.24 Show that the parity-check matrix (1.77) has rank less than L.

1.25 Consider the code given in Example 1.15. Show that the bit-flipping algorithm
with lowest possible threshold does not correct all single errors.

1.26 Consider the extended (8, 4) Hamming code defined in Problem 1.23 and
suppose that it is used to communicate over the BSC. Show that the bit-flipping
algorithm with adaptive threshold corrects all single errors and that there exists a
double error which the algorithm does not correct.

1.27 Consider the binary input, ternary output binary erasure channel (BEC) given
in Fig. 1.22, where ∆ denotes an erasure and δ is the probability of an erasure. Assume
that we use this channel for communication together with maximum-likelihood (ML)
decoding. Show that the ML decoding algorithm corrects all erasure patterns whose
Hamming weights are less than the minimum distance dmin.

0 0

1 1

∆

1− δ

δ

δ

1− δ

Figure 1.22 BEC used in Problem 1.27.

1.28 Consider the trellis given in Fig. 1.18.
a) List all codewords.
b) Find the ML estimate of the information sequence for the received sequence
r = 01 10 01 10 11 on a BSC with 0 < ε < 1/2.

1.29 Consider the convolutional encoder shown in Fig. 1.23.
a) Draw the trellis corresponding to four information digits and m = 1

dummy zero.
b) Find the number of codewords M represented by the trellis in Prob-

lem 1.29(a).
c) Use the Viterbi algorithm to decode when the sequence r = 11 01 10 10 01

is received over a BSC with 0 < ε < 1/2.

46 INTRODUCTION

u

v(2)

v(1)

Figure 1.23 Convolutional encoder used in Problem 1.29.

1.30 Consider the convolutional encoder with generator matrix

G =

 11 10 01 11
11 10 01 11

.

a) Find the rate and the memory.
b) Draw the encoder.
c) Find the codeword v that corresponds to the information sequence u =

1100100

1.31 Consider the code C with the encoding rule

v = uG+ (11 01 11 10 11 . . .)

where

G =

 11 10 01 11
11 10 01 11

.

a) Is the code C linear?
b) Is the encoding rule linear?

1.32 Consider the rate R = 2/3, memory m = 2 convolutional encoder illustrated
in Fig. 1.14.

a) Draw the trellis diagram.
b) Find the encoder matrixG.
c) Let u = 10 11 01 10 00 00 . . . be the information sequence. Find the corre-

sponding codeword v.

1.33 Plot in Fig. 1.21 the bit error probability for the (7, 4) Hamming code when
used to communicate over the Gaussian channel with hard decisions.
Hint: From formula (1.12), that is, ε = Q

(√
2Es/N0

)
, whereEs = REb, we obtain

the following table:

PROBLEMS 47

Es/N0 [dB] ε

0 0.79 · 10−1

2 0.38 · 10−1

4 0.12 · 10−1

6 0.24 · 10−2

8 0.19 · 10−3

10 0.39 · 10−5

12 0.90 · 10−8

CHAPTER 2

CONVOLUTIONAL ENCODERS—
STRUCTURAL PROPERTIES

After defining convolutional codes and convolutional encoders, we show that a given
convolutional code can be encoded by many different encoders. We carefully dis-
tinguish code properties from encoder properties. The Smith form of a polynomial
matrix is used to obtain important structural results for convolutional encoders. We
give several equivalent conditions for an encoding matrix to be minimal— that is, to
be realizable by as few memory elements as any encoder for the code, though not
necessarily in controller or observer canonical forms. We also show that a systematic
encoding matrix is always minimal.

2.1 CONVOLUTIONAL CODES AND THEIR ENCODERS

In general, the rate R = b/c, b ≤ c, convolutional encoder input (information)
sequenceu = . . .u−1u0u1u2 . . ., whereui = (u

(1)
i u

(2)
i . . . u

(b)
i), and output (code)

sequence v = . . .v−1v0v1v2 . . ., where vj = (v
(1)
j v

(2)
j . . . v

(c)
j), must start at some

finite time (positive or negative) and may or may not end. It is often convenient to
express them in terms of the delay operator D (D-transforms):

u(D) = · · ·+ u−1D
−1 + u0 + u1D + u2D

2 + · · · (2.1)
v(D) = · · ·+ v−1D

−1 + v0 + v1D + v2D
2 + · · · (2.2)

Fundamentals of Convolutional Coding, 2. Edition. By Rolf Johannesson, Kamil Sh. Zigangirov
Copyright c© 2015 John Wiley & Sons, Inc.

49

50 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

In the sequel, we will not distinguish between a sequence and its D-transform.
Let F2((D)) denote the field of binary Laurent series. The element x(D) =∑∞
i=r xiD

i ∈ F2((D)), r ∈ Z, contains at most finitely many negative powers of
D. The delay of a Laurent series is the “time index” at which the Laurent series
starts. For example,

x(D) = D−2 + 1 +D3 +D7 +D12 + · · · (2.3)

is a Laurent series with delay

delx(D) = −2 (2.4)

LetF2[[D]] denote the ring of formal power series. The elementf(D) =
∑∞
i=0 fiD

i ∈
F2[[D]] is a Laurent series without negative powers of D. Thus, F2[[D]] is a subset
of F2((D)). The element f(D) =

∑∞
i=0 fiD

i with f0 = 1 has delay del f(D) = 0
and is called delayfree.

A polynomial p(D) =
∑∞
i=0 piD

i contains no negative and only finitely many
positive powers of D. If p0 = 1, we have a delayfree polynomial, for example,

p(D) = 1 +D2 +D3 +D5 (2.5)

is a binary delayfree polynomial of degree 5.
The set of binary polynomials F2[D] is a subset of F2[[D]] and, hence, a subset of

F2((D)). Multiplication of two polynomials is ordinary polynomial multiplication
with coefficient operations performed modulo 2. Since 1 is the only polynomial with
a polynomial as its multiplicative inverse, that is, 1 itself, F2[D] cannot be a field. It
is a ring—the ring of binary polynomials.

Given any pair of polynomials x(D), y(D) ∈ F2[D], with y(D) 6= 0, we can
obtain the element x(D)/y(D) ∈ F2((D)) by long division. Since sequences must
start at some finite time, we must identify, for instance, (1 + D)/D2(1 + D + D2)
with the series D−2 + 1 + D + D3 + · · · instead of the alternative series D−3 +
D−5 +D−6 + · · · that can also be obtained by long division but that is not a Laurent
series. Obviously, all nonzero ratios x(D)/y(D) are invertible, so they form the field
of binary rational functions F2(D), which is a subfield of the field of Laurent series
F2((D)).

As an element in F2((D)), a rational function either has finitely many terms or is
ultimately periodic, but a Laurent series can be aperiodic! Finite rational functions
are also called Laurent polynomials. The degree of a Laurent polynomial is the “time
index” at which the Laurent polynomial ends. For example,

x(D) = D−2 + 1 +D3 +D7 (2.6)

is a Laurent polynomial with degree

deg x(D) = 7 (2.7)

We can consider n-tuples of elements from F2[D],F2[[D]],F2(D), or F2((D)).
For example, an n-tuple x(D) = (x(1)(D)x(2)(D) . . . x(n)(D)), where x(1)(D),

CONVOLUTIONAL CODES AND THEIR ENCODERS 51

wj−1 wj−2 wj−muj · · ·

f0 f1 fm−1 fm

· · · vj

qmq2q1

· · ·

Figure 2.1 The controller canonical form of a rational transfer function.

x(2)(D), . . . , x(n)(D) ∈ F2((D)), can be expressed as x(D) =
∑∞
i=r(x

(1)
i x

(2)
i

. . . x
(n)
i)Di, r ∈ Z, if x(j)(D) =

∑∞
i=r x

(j)
i Di, 1 ≤ j ≤ n. So we denote the

set of n-tuples of elements from F2((D)) by Fn2 ((D)), which is the n-dimensional
vector space over the field of binary Laurent series F2((D)). Relative to Fn2 ((D))
the elements in the field F2((D)) are usually called scalars. Similarly, we have
Fn2 [D],Fn2 [[D]], and Fn2 (D).

If x(D) ∈ Fn2 [D], we say that x(D) is polynomial in D. The degree of
the element x(D) =

∑m
i=0(x

(1)
i x

(2)
i . . . x

(n)
i)Di is defined to be m, provided

(x
(1)
m x

(2)
m . . . x

(n)
m) 6= (0 0 . . . 0). For simplicity we call the elements in Fn2 [[D]]

a formal power series also when n > 1.
For our rate R = b/c encoder, we have the input sequences u(D) ∈ Fb2((D)) and

the output sequences v(D) ∈ Fc2((D)).
We next consider the realization of linear systems. Consider for simplicity the

controller canonical form of a single-input, single-output linear system as shown in
Fig. 2.1. The delay elements form a shift register, the output is a linear function of
the input and the shift register contents, and the input to the shift register is a linear
function of the input and the shift register contents.

The output at time j,

vj =
m∑
i=0

fiwj−i (2.8)

has the D-transform

v(D) =
∞∑

j=−∞
vjD

j =
∞∑

j=−∞

m∑
i=0

fiwj−iD
j

=
∞∑

k=−∞

(
m∑
i=0

fiD
i

)
wkD

k = f(D)w(D) (2.9)

where we have replaced j − i by k and where

f(D) = f0 + f1D + · · ·+ fmD
m (2.10)

52 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

and

w(D) =
∞∑

k=−∞

wkD
k (2.11)

From Fig. 2.1 it follows that

wj = uj +
m∑
i=1

qiwj−i (2.12)

Upon defining q0 = 1, (2.12) can be rewritten as

uj =
m∑
i=0

qiwj−i (2.13)

or, by repeating the steps in (2.9), as

u(D) = q(D)w(D) (2.14)

where

u(D) =
∞∑

j=−∞
ujD

j (2.15)

and
q(D) = 1 + q1D + · · ·+ qmD

m (2.16)

Combining (2.9) and (2.14) we have

v(D) = u(D)
f(D)

q(D)
= u(D)

f0 + f1D + · · ·+ fmD
m

1 + q1D + · · ·+ qmDm
(2.17)

Let g(D) = f(D)/q(D), then v(D) = u(D)g(D), and we say that g(D) is a
rational transfer function that transfers the input u(D) into the output v(D). From
(2.17), it follows that every rational function with a constant term 1 in the denominator
polynomial q(D) (or, equivalently, with q(0) = 1 or, again equivalently, with q(D)
delayfree) is a rational transfer function that can be realized in the canonical form
shown in Fig. 2.1. Every rational function g(D) = f(D)/q(D), where q(D) is
delayfree, is called a realizable function.

In general, a matrix G(D) whose entries are rational functions is called a rational
transfer function matrix. A rational transfer function matrixG(D) for a linear system
with many inputs or many outputs whose entries are realizable functions is called
realizable.

In practice, given a rational transfer function matrix we have to realize it by linear
sequential circuits. It can be realized in many different ways. For instance, the
realizable function

g(D) =
f0 + f1D + · · ·+ fmD

m

1 + q1D + · · ·+ qmDm
(2.18)

www.allitebooks.com

http://www.allitebooks.org

CONVOLUTIONAL CODES AND THEIR ENCODERS 53

· · · v

fm fm−1 fm−2 f0

u · · ·

· · ·

qm qm−1 q1

Figure 2.2 The observer canonical form of a rational transfer function.

has the controller canonical form illustrated in Fig. 2.1. On the other hand, since the
circuit in Fig. 2.2 is linear, we have

v(D) = u(D)(f0 + f1D + · · ·+ fmD
m)

+v(D)(q1D + · · ·+ qmD
m) (2.19)

which is the same as (2.17). Thus, Fig. 2.2 is also a realization of (2.18). In this
realization, the delay elements do not in general form a shift register as these delay
elements are separated by adders. This is the so-called observer canonical form of the
rational function (2.18). The controller and observer canonical forms in Figs. 2.1 and
2.2, respectively, are two different realizations of the same rational transfer function.

We are now prepared to give a formal definition of a convolutional transducer.

Definition A rateR = b/c (binary) convolutional transducer over the field of rational
functions F2(D) is a linear mapping

τ : Fb2((D))→ Fc2((D))

u(D) 7→ v(D)

which can be represented as

v(D) = u(D)G(D) (2.20)

where G(D) is a b × c transfer function matrix of rank b with entries in F2(D) and
v(D) is called a code sequence arising from the information sequence u(D).

Obviously, we must be able to reconstruct the information sequence u(D) from
the code sequence v(D) when there is no noise on the channel. Otherwise the
convolutional transducer would be useless. Therefore, we require that the transducer
map is injective; that is, the transfer function matrix G(D) has rank b over the field
F2(D).

We are now well prepared for the following:

54 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

Definition A rate R = b/c convolutional code C over F2 is the image set of a rate
R = b/c convolutional transducer with G(D) of rank b over F2(D) as its transfer
function matrix.

It follows immediately from the definition that a rate R = b/c convolutional code
C over F2 with the b × c matrix G(D) of rank b over F2(D) as a transfer function
matrix can be regarded as the F2((D)) row space of G(D). Hence, it can also be
regarded as the rate R = b/c block code over the infinite field of Laurent series
encoded by G(D).

In the sequel we will only consider realizable transfer function matrices and,
hence, we have the following:

Definition A transfer function matrix (of a convolutional code) is called a generator
matrix if it (has full rank and) is realizable.

Definition A rate R = b/c convolutional encoder of a convolutional code with
generator matrix G(D) over F2(D) is a realization by a linear sequential circuit of
a rate R = b/c convolutional transducer whose transfer function matrix G(D) (has
full rank and) is realizable.

We call a realizable transfer function matrix G(D) delayfree if at least one of its
entries f(D)/q(D) has f(0) 6= 0. If G(D) is not delayfree, it can be written as

G(D) = DiGd(D) (2.21)

where i ≥ 1 and Gd(D) is delayfree.

Theorem 2.1 Every convolutional code C has a generator matrix that is delayfree.

Proof : Let G(D) be any generator matrix for C. The nonzero entries of G(D) can
be written

gij(D) = Dsijfij(D)/qij(D) (2.22)

where sij is an integer such that fij(0) = qij(0) = 1, 1 ≤ i ≤ b, 1 ≤ j ≤ c. The
number sij is the delay of the sequence

gij (D) = Dsijfij(D)/qij(D) = Dsij + gsij+1D
sij+1 + · · · (2.23)

Let s = mini,j {sij}. Clearly,

G′(D) = D−sG(D) (2.24)

is both delayfree and realizable. Since D−s is a scalar in F2((D)), both G(D)
and G′(D) generate the same convolutional code. Therefore, G′(D) is a delayfree
generator matrix for the convolutional code C.

A given convolutional code can be encoded by many essentially different encoders.

CONVOLUTIONAL CODES AND THEIR ENCODERS 55

v(1)

v(2)

u

Figure 2.3 A rate R = 1/2 convolutional encoder with generator matrix G0(D).

EXAMPLE 2.1

Consider the rate R = 1/2, binary convolutional code with the basis vector
v0(D) = (1 + D + D2 1 + D2). The simplest encoder for this code has the
generator matrix

G0(D) = (1 +D +D2 1 +D2) (2.25)

Its controller canonical form is shown in Fig. 2.3.

Theorem 2.2 Every convolutional code C has a polynomial delayfree generator ma-
trix.

Proof : Let G(D) be any (realizable and) delayfree generator matrix for C, and let
q(D) be the least common multiple of all the denominators in (2.22). Since q(D) is
a delayfree polynomial,

G′(D) = q(D)G(D) (2.26)

is a polynomial delayfree generator matrix for C.

An encoder which realizes a polynomial generator matrix is called a polynomial
encoder.

EXAMPLE 2.1 (Cont’d)

If we choose the basis to be v1(D) = a1(D)v0(D), where the scalar a1(D) is
the rational function a1(D) = 1/(1 +D +D2), we obtain the generator matrix

G1(D) =

(
1

1 +D2

1 +D +D2

)
(2.27)

for the same code. The output sequence v(D) = (v(1)(D) v(2)(D)) of the
encoder with generator matrix G1(D) shown in Fig. 2.4 can be written as

v(1)(D) = u(D)

v(2)(D) = u(D)
1 +D2

1 +D +D2

(2.28)

The input sequence appears unchanged among the two output sequences.

56 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

v(1)

v(2)

u

Figure 2.4 A rate R = 1/2 systematic convolutional encoder with feedback and generator
matrix G1(D).

Definition A rate R = b/c convolutional encoder whose b information sequences
appear unchanged among the c code sequences is called a systematic encoder, and
its generator matrix is called a systematic generator matrix.

If a convolutional code C is encoded by a systematic generator matrix, we can
always permute its columns and obtain a generator matrix for an equivalent convo-
lutional code C′ such that the b information sequences appear unchanged first among
the code sequences. Thus, without loss of generality, a systematic generator matrix
can be written as

G(D) = (Ib R(D)) (2.29)

where Ib is a b× b identity matrix and R(D) a b× (c− b) matrix whose entries are
rational functions of D.

Being systematic is a generator matrix property, not a code property. Every
convolutional code has both systematic and nonsystematic generator matrices! (Re-
member that the code is the set of code sequences arising from the set of information
sequences; the code does not depend on the mapping.)

EXAMPLE 2.1 (Cont’d)

If we further change the basis to v2(D) = a2(D)v0(D), where a2(D) ∈ F2(D)
is chosen as a2(D) = 1 + D, we obtain a third generator matrix for the same
code, viz.,

G2(D) = (1 +D3 1 +D +D2 +D3) (2.30)

Definition A generator matrix for a convolutional code is catastrophic if there exists
an information sequenceu(D) with infinitely many nonzero digits,wH(u(D)) =∞,
that results in a codeword v(D) with only finitely many nonzero digits, that is,
wH(v(D)) <∞.

EXAMPLE 2.2

The third generator matrix for the convolutional code given above, viz.,

G2(D) = (1 +D3 1 +D +D2 +D3) (2.31)

CONVOLUTIONAL CODES AND THEIR ENCODERS 57

v(1)

v(2)

Figure 2.5 A rate R = 1/2 catastrophic convolutional encoder with generator matrix
G2(D).

is catastrophic sinceu(D) = 1/(1+D) = 1+D+D2 +· · · haswH(u(D)) =∞
but v(D) = u(D)G2(D) = (1 +D+D2 1 +D2) = (1 1) + (1 0)D+ (1 1)D2

has wH(v(D)) = 5 <∞. In Fig. 2.5 we show its controller canonical form.

When a catastrophic generator matrix is used for encoding, finitely many errors (five
in the previous example) in the estimate v̂(D) of the transmitted codeword v(D)
can lead to infinitely many errors in the estimate û(D) of the information sequence
u(D)—a “catastrophic” situation that must be avoided!

Being catastrophic is a generator matrix property, not a code property. Every
convolutional code has both catastrophic and noncatastrophic generator matrices.

Clearly, the choice of the generator matrix is of great importance.

EXAMPLE 2.3

The rate R = 2/3 generator matrix

G(D) =

1

1 +D +D2

D

1 +D3

1

1 +D3

D2

1 +D3

1

1 +D3

1

1 +D

 (2.32)

has the controller and observer canonical forms shown in Figs. 2.6 and 2.7,
respectively.

In Chapter 3 we will show that generator matrices G(D) with G(0) of full rank are
of particular interest. Hence, we introduce the next definition.

Definition A generator matrix G(D) is called an encoding matrix if G(0) has full
rank.

We have immediately the following:

Theorem 2.3 An encoding matrix is (realizable and) delayfree.

The polynomial generator matrices G0(D) (2.25), G1(D) (2.27), and G2(D)
(2.31) as well as the rational generatorG(D) in Example 2.3 are all encoding matrices.

58 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

u(2)

u(1)

v(1)

v(2)

v(3)

Figure 2.6 The controller canonical form of the generator matrix G(D) in (2.32).

But the polynomial generator matrix

G(D) =

(
1 +D D 1

1 D +D2 1 +D

)
(2.33)

is not an encoding matrix since G(0) has rank 1.
In the sequel we will see that all generator matrices that are interesting in practice

are in fact encoding matrices!

Remark: The generator matrix for the convolutional encoder shown in Fig. 1.13
can be written G(D) = (gij(D))1≤i≤b, 1≤j≤c, where gij(D) =

∑m
k=0 g

(k)
ij D

k and

where g(k)
ij are the entries of the b× c matrix Gk, 0 ≤ k ≤ m, in (1.91).

2.2 THE SMITH FORM OF POLYNOMIAL CONVOLUTIONAL
GENERATOR MATRICES

We now present a useful decomposition of polynomial convolutional generator ma-
trices. This decomposition is based on the following fundamental algebraic result
[Jac85]:

Theorem 2.4 (Smith form) Let G(D) be a b × c, b ≤ c, binary polynomial matrix
(i.e., G(D) = (gij(D)), where gij(D) ∈ F2[D], 1 ≤ i ≤ b, 1 ≤ j ≤ c) of rank r.

THE SMITH FORM OF POLYNOMIAL CONVOLUTIONAL GENERATOR MATRICES 59

v(3)

v(2)

v(1)

u(2)

u(1)

Figure 2.7 The observer canonical form of the generator matrix G(D) in (2.32).

Then G(D) can be written in the following manner:

G(D) = A(D)Γ(D)B(D) (2.34)

where A(D) and B(D) are b× b and c× c, respectively, binary polynomial matrices
with unit determinants and where Γ(D) is the b× c matrix

Γ(D) =

γ1(D)
γ2(D)

. . .
γr(D)

0
. . .

0 . . . 0

(2.35)

which is called the Smith form ofG(D), and whose nonzero elements γi(D) ∈ F2[D],
1 ≤ i ≤ r, called the invariant factors of G(D), are unique polynomials that satisfy

γi(D) | γi+1(D), i = 1, 2, . . . , r − 1 (2.36)

60 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

Moreover, if we let ∆i(D) ∈ F2[D] be the determinantal divisor of G(D), that is,
the greatest common divisor (gcd) of the i × i subdeterminants (minors) of G(D),
then

γi(D) =
∆i(D)

∆i−1(D)
(2.37)

where ∆0(D) = 1 by convention and i = 1, 2, . . . , r.

γ1(D)

γ2(D)

γb(D)

...

...

...
...

u(b)

u(2)

u(1)

v(c)

v(2)

v(1)

0

0

0

A(D)

b× b

scrambler

B(D)

c× c

scambler

Figure 2.8 Smith form decomposition of a rateR = b/c polynomial convolutional encoder.

By definition a generator matrix has full rank. Its Smith form decomposition is
illustrated in Fig. 2.8. We call the matrices A(D) and B(D) scamblers. The input
sequences are scrambled in the b×b scramblerA(D). The b outputs of this scrambler
are multiplied by the b invariant factors. These b products plus c − b dummy zeros
are then scrambled in the c×c scramblerB(D) to give the output sequences. Since a
scrambler is invertible, it follows that its output sequences, when the input sequences
range over all possible sequences, are a reordering of all possible sequences.

Before we give a proof of Theorem 2.4, we introduce two types of elementary
operations.

Type I The interchange of two rows (or two columns).

The following nonsingular matrix performs the interchange of rows
(or columns) i and j depending on whether it is used as a pre- (or
post-) multiplier:

Pij =

1
. . .

1
0 1

1
. . .

1
1 0

1
. . .

1

row i

row j

It is immediate that P−1
ij = Pij . Moreover, det(Pij) = −1 = 1

since we are working in F2.

THE SMITH FORM OF POLYNOMIAL CONVOLUTIONAL GENERATOR MATRICES 61

Type II The addition to all elements in one row (or column) of the corre-
sponding elements in another row (or column) multiplied by a fixed
polynomial in D.

The following nonsingular matrix performs the addition to the el-
ements in row (or column) i of the elements in row (or column) j
multiplied by the polynomial p(D) ∈ F2[D] when used as a pre-
(or post-) multiplier.

Pij =

1
. . .

1 p(D)

. . .

1
. . .

1

row i

row j

It is easy to check directly that R−1
ij (p(D)) = Rij(−p(D)) =

Rij(p(D)). One sees trivially that det(Rij(p(D))) = 1.

Premultiplication by any of these elementary matrices results in the associated
transformation being performed on the rows whereas postmultiplication does the
same for columns.

Proof (Theorem 2.4): IfG(D) = 0, there is nothing to prove. Therefore, we assume
that G(D) 6= 0.

First, we show that starting with G(D) we can obtain, by elementary operations
only, a matrix whose entry in the upper-left corner is nonzero and has minimal degree
of all nonzero entries in all matrices that can be obtained from G(D) by elementary
operations. We can bring the polynomial of lowest degree in G(D) to the upper-left
corner by elementary operations. Assume now that it is there. Let αij(D), 1 ≤ i ≤
b, 1 ≤ j ≤ c, be the elements in this new matrix. Divide an element in the first row,
α1j(D), j > 1, by α11(D). Then we have α1j(D) = α11(D)βj(D) + β1j(D),
where deg(β1j(D)) < deg(α11(D)). Now add the first column multiplied by βj(D)
to the jth column. This elementary operation replaces α1j(D) by β1j(D). Thus,
if β1j(D) 6= 0, we obtain a matrix for which the lowest degree of a nonzero entry
has been reduced. Repeat this procedure for the new matrix. Similarly, we can
obtain a matrix for which the lowest degree of the nonzero entries in the first column
has been reduced. Since the degree is reduced at each step, the procedure is finite.
Thus, repeating this process yields a matrix G′(D) = (βij(D)) in which β11(D)
has minimal degree and β11(D) divides both β1j(D) and βi1(D) for all i and j.
Except for the upper-left corner, we next clear the first row and first column to zero

62 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

by elementary operations. This gives a matrix of the form
β11(D) 0 . . . 0

0
... G′′(D)
0

where we let β11(D) = γ1(D).

Next we will prove that γ1(D) divides every element in G′′(D) = (δij(D)). If
γ1(D) |/δij(D), then we add the jth column to the first column and obtain a new
first column. Repeating the procedure described above then yields an element in
the upper-left corner with a degree less than deg(β11(D)), which is a contradiction.
Hence, our matrix can be written as

γ1(D) 0 . . . 0

0
... γ1(D)G∗(D)
0

Repeating the procedure for G∗(D) (induction) proves the first part of the theorem.

Now we will prove that

∆i(D)
def
= the gcd of all i× i minors of G(D) (2.38)

is unaffected by elementary row and column operations on G(D). Let A(D) =
(aij(D)) be a b× b permutor with entries in F2[D]. The (i, j) entry ofA(D)G(D) is∑
k aik(D)gkj(D). This shows that the rows ofA(D)G(D) are linear combinations

of the rows ofG(D). Hence, the i× iminors ofA(D)G(D) are linear combinations
of the i×iminors ofG(D). Thus, the gcd of all i×iminors ofG(D) is a divisor of the
gcd of all i× i minors of A(D)G(D). Since A(D) has a unit determinant, A−1(D)
is also a b × b polynomial matrix. By repeating the argument above for the matrix
A−1(D)(A(D)G(D)) we can show that the gcd of all i × i minors of A(D)G(D)
is a divisor of the gcd of all i× i minors of A−1(D)(A(D)G(D)) = G(D). Hence,
the gcds of all minors of G(D) and A(D)G(D) are the same. Since A(D) can be
any product of elementary row operations, we have shown that ∆i(D) is unaffected
by elementary row operations. Similarly, we can show that ∆i(D) is unaffected by
elementary column operations.

We have now proved that we can also identify

∆i(D) = the gcd of all i× i minors of Γ(D) (2.39)

The form of Γ(D) then shows that

∆1(D) = γ1(D),

∆2(D) = γ1(D)γ2(D),

...

∆r(D) = γ1(D)γ2(D) . . . γr(D)

(2.40)

THE SMITH FORM OF POLYNOMIAL CONVOLUTIONAL GENERATOR MATRICES 63

u(1)

v(3)

v(2)

v(1)

u(2)

Figure 2.9 A rate R = 2/3 convolutional encoder.

or (with ∆0(D) = 1)

γi(D) =
∆i(D)

∆i−1(D)
, i = 1, 2, . . . , r (2.41)

Moreover, the uniqueness of ∆i(D), i = 1, 2, . . . , r, implies that of γi(D), i =
1, 2, . . . , r, which completes the proof.

EXAMPLE 2.4

To obtain the Smith form of the polynomial encoder illustrated in Fig. 2.9 we start
with its encoding matrix

G(D) =

(
1 +D D 1
D2 1 1 +D +D2

)
(2.42)

and interchange columns 1 and 3:

(
1 +D D 1
D2 1 1 +D +D2

) 0 0 1
0 1 0
1 0 0

=

(
1 D 1 +D

1 +D +D2 1 D2

)
(2.43)

64 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

Now the element in the upper-left corner has minimum degree. To clear the
rest of the first row, we can proceed with two type II operations simultaneously:(

1 D 1 +D
1 +D +D2 1 D2

) 1 D 1 +D
0 1 0
0 0 1

=

(
1 0 0

1 +D +D2 1 +D +D2 +D3 1 +D2 +D3

)
(2.44)

Next, we clear the rest of the first column:(
1 0

1 +D +D2 1

)(
1 0 0

1 +D +D2 1 +D +D2 +D3 1 +D2 +D3

)
=

(
1 0 0
0 1 +D +D2 +D3 1 +D2 +D3

)
(2.45)

Following the technique in the proof, we divide 1+D2 +D3 by 1+D+D2 +D3:

1 +D2 +D3 = (1 +D +D2 +D3)1 +D (2.46)

Thus, we add column 2 to column 3 and obtain(
1 0 0
0 1 +D +D2 +D3 1 +D2 +D3

) 1 0 0
0 1 1
0 0 1

=

(
1 0 0
0 1 +D +D2 +D3 D

)
(2.47)

Now we interchange columns 2 and 3:(
1 0 0
0 1 +D +D2 +D3 D

) 1 0 0
0 0 1
0 1 0

=

(
1 0 0
0 D 1 +D +D2 +D3

)
(2.48)

Repeating the previous step gives

1 +D +D2 +D3 = D(1 +D +D2) + 1 (2.49)

and, hence, we multiply column 2 by 1 +D +D2, add the product to column 3,
and obtain(

1 0 0
0 D 1 +D +D2 +D3

) 1 0 0
0 1 1 +D +D2

0 0 1

=

(
1 0 0
0 D 1

)
(2.50)

THE SMITH FORM OF POLYNOMIAL CONVOLUTIONAL GENERATOR MATRICES 65

Again we should interchange columns 2 and 3:(
1 0 0
0 D 1

) 1 0 0
0 0 1
0 1 0

 =

(
1 0 0
0 1 D

)
(2.51)

and, finally, by adding D times column 2 to column 3 we obtain the Smith form:(
1 0 0
0 1 D

) 1 0 0
0 1 D
0 0 1

 =

(
1 0 0
0 1 0

)
= Γ(D) (2.52)

All invariant factors for this encoding matrix are equal to 1.
By tracing these steps backward and multiplying Γ(D) with the inverses of the

elementary matrices (which are the matrices themselves), we obtain the matrix

G(D) = A(D)Γ(D)B(D)

=

(
1 0

1 +D +D2 1

)
Γ(D)

 1 0 0
0 1 D
0 0 1

 1 0 0
0 0 1
0 1 0

 1 0 0
0 1 1 +D +D2

0 0 1

×

 1 0 0
0 0 1
0 1 0

 1 0 0
0 1 1
0 0 1

 1 D 1 +D
0 1 0
0 0 1

 0 0 1
0 1 0
1 0 0

 (2.53)

and we conclude that

A(D) =

(
1 0

1 +D +D2 1

)
(2.54)

and

B(D) =

 1 +D D 1
1 +D2 +D3 1 +D +D2 +D3 0
D +D2 1 +D +D2 0

 (2.55)

Thus, we have the following decomposition of the encoding matrix G(D):

G(D) =

(
1 0

1 +D +D2 1

)(
1 0 0
0 1 0

)

×

 1 +D D 1
1 +D2 +D3 1 +D +D2 +D3 0
D +D2 1 +D +D2 0

 (2.56)

The extension of the Smith form to matrices whose entries are rational functions
is immediate. Let G(D) be a b× c rational function matrix and let q(D) ∈ F2[D] be
the least common multiple (lcm) of all denominators in G(D). Then q(D)G(D) is
a polynomial matrix with Smith form decomposition

q(D)G(D) = A(D)Γq(D)B(D) (2.57)

66 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

Dividing through by q(D), we obtain the so-called invariant-factor decomposition
of the rational matrix G(D) [KFA69, HaH70]:

G(D) = A(D)Γ(D)B(D) (2.58)

where

Γ(D) = Γq(D)/q(D) (2.59)

with entries in F2(D). Thus

Γ(D) =

γ1(D)

q(D)
γ2(D)

q(D)
. . .

γr(D)

q(D)
0

. . .
0 . . . 0

(2.60)

where γ1(D)
q(D) ,

γ2(D)
q(D) , . . . ,

γr(D)
q(D) are called the invariant factors of G(D).

Let
γi(D)

q(D)
=
αi(D)

βi(D)
, i = 1, 2, . . . , r (2.61)

where the polynomialsαi(D) andβi(D) are relatively prime. Sinceγi(D) | γi+1(D),
i = 1, 2, . . . , r − 1, that is,

q(D)
αi(D)

βi(D)

∣∣∣∣∣ q(D)
αi+1(D)

βi+1(D)
(2.62)

we have

αi(D)βi+1(D) | αi+1(D)βi(D) (2.63)

From (2.63) and the fact that gcd(αi(D), βi(D)) = 1, i = 1, 2, . . . , r, it follows that

αi(D) | αi+1(D) (2.64)

and

βi+1(D) | βi(D) (2.65)

for i = 1, 2, . . . , r − 1.

ENCODER INVERSES 67

EXAMPLE 2.5

The rate R = 2/3 rational encoding matrix (2.32) in Example 2.3,

G(D) =

1

1 +D +D2

D

1 +D3

1

1 +D3

D2

1 +D3

1

1 +D3

1

1 +D

 (2.66)

has

q(D) = lcm
(
1 +D +D2, 1 +D3, 1 +D

)
= 1 +D3 (2.67)

where lcm is the least common multiple. Thus we have

q(D)G(D) =

(
1 +D D 1
D2 1 1 +D +D2

)
(2.68)

which is equal to the encoding matrix in Example 2.4. Hence, from (2.56), (2.59),
and (2.67) it follows that

G(D) =

(
1 0

1 +D +D2 1

) 1

1 +D3
0 0

0
1

1 +D3
2

×

 1 +D D 1
1 +D2 +D3 1 +D +D2 +D3 0
D +D2 1 +D +D2 0

 (2.69)

2.3 ENCODER INVERSES

Let us consider a convolutional encoder in a communication system as shown in
Fig. 2.10. From the information sequence u(D) the encoder generates a codeword
v(D), which is transmitted over a noisy channel. The decoder operates on the
received data to produce an estimate û(D) of the information sequence u(D). As
the case was with block codes in Chapter 1, we can split the decoder conceptually
into two parts: a codeword estimator that from the received data r(D) produces
a codeword estimate v̂(D), followed by an encoder inverse τ−1 that assigns to the
codeword estimate the appropriate information sequence û(D). This communication
system is illustrated in Fig. 2.11.

A practical decoder is seldom realized in two parts, although the decoder can do
no better estimating the information sequence directly from the received data than
by first estimating the codeword and then obtaining the decoded sequence via the
inverse map τ−1.

68 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

Encoder Channel Decoder

Information
sequence

Codeword Received
data

Decoded
sequence

u v r û

Figure 2.10 A convolutional encoder in a communication situation.

Encoder Channel Codeword
estimator

Encoder
inverse

Information
sequence

Codeword Received
data

Codeword
estimate

Decoded
sequence

u v r v̂ û

Figure 2.11 A conceptual split of decoder into two parts.

The inverse map τ−1 is represented by a c × b right inverse matrix G−1(D) of
G(D), that is,

G(D)G−1(D) = Ib (2.70)

where Ib is the b× b identity matrix.
In general, a right inverse G−1(D) of a generator matrix is not realizable.

Theorem 2.5 A convolutional generator matrix G(D) that has a realizable right
inverse is an encoding matrix.

Proof : Let G−1(D) be a realizable right inverse of G(D), that is,

G(D)G−1(D) = Ib (2.71)

Substituting 0 for D in (2.71), we obtain

G(0)G−1(0) = Ib (2.72)

Hence, G(0) has full rank.

Theorem 2.6 A rational convolutional generator matrix has a realizable and de-
layfree inverse if and only if αb(D) is delayfree.

Proof : For any rational generator matrixG(D) a right inverse can be obtained from
the invariant-factor decomposition G(D) = A(D)Γ(D)B(D):

G−1(D) = B−1(D)Γ−1(D)A−1(D) (2.73)

ENCODER INVERSES 69

where

Γ−1(D) = q(D)Γ−1
q (D) =

q(D)

γ1(D)
q(D)

γ2(D)
. . .

q(D)

γb(D)

0
...
0

(2.74)

is a right inverse of the b × c polynomial matrix Γ(D). The matrix Γq(D) is the
Smith form of the polynomial matrix q(D)G(D), where q(D) is the least common
multiple of the denominators in G(D) and γi, 1 ≤ i ≤ b, are the invariant factors of
q(D)G(D). We have

Γ(D)Γ−1(D) = Ib (2.75)

From (2.61) it follows that Γ−1(D) can be written

Γ−1(D) =

β1(D)

α1(D)
β2(D)

α2(D)
. . .

βb(D)

αb(D)

0
...
0

(2.76)

Suppose that αb(D) is delayfree. From (2.64) we deduce that all αi(D), 1 ≤ i ≤ b,
are delayfree. Then the right inverse matrix Γ−1(D) (2.76) is realizable. Hence,
all the entries in G−1(D) = B−1(D)Γ−1(D)A−1(D) (2.73) are realizable. From
(2.72) it follows that G−1(0) has full rank. Hence, G−1(D) is delayfree.

Conversely, suppose that the rational generator matrixG(D) has a realizable right
inverse G−1(D). Since both G−1(D) and B−1(D)Γ−1(D)A−1(D) are (possibly
different) right inverses of G(D), it follows that

G(D)(G−1(D) +B−1(D)Γ−1(D)A−1(D)) = 0 (2.77)

Substituting the invariant-factor decomposition G(D) = A(D)Γ(D)B(D) into
(2.77), we have

A(D)Γ(D)B(D)(G−1(D) +B−1(D)Γ−1(D)A−1(D)) = 0 (2.78)

70 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

or, equivalently,

Γ(D)(B(D)G−1(D) + Γ−1(D)A−1(D)) = 0 (2.79)

From (2.79) we conclude that

B(D)G−1(D) + Γ−1(D)A−1(D) =

(
0

L1(D)

)
(2.80)

where L1(D) is a (c− b)× b matrix with entries in F2(D). Thus, we have

B(D)G−1(D) =

(
0

L1(D)

)
+ Γ−1(D)A−1(D)

=

(
0

L1(D)

)
+

(
L2(D)

0

)
(2.81)

whereL2(D) is a b×cmatrix with entries inF2(D). SinceG−1(D) is realizable, so is
B(D)G−1(D) and, hence, L2(D). Thus, Γ−1(D)A−1(D) is realizable. Therefore,
αb(D) is delayfree, and the proof is complete.

Corollary 2.7 A polynomial convolutional generator matrix has a realizable and
delayfree inverse if and only if γb(D) is delayfree.

Proof : It follows immediately from (2.61) that αb(D) = γb(D) for a polynomial
matrix.

EXAMPLE 2.6

Since the encoding matrixG(D) for the encoder in Fig. 2.9 satisfies the condition
of Corollary 2.7, it has a realizable and delayfree inverse. A right inverse matrix
G−1(D) for G(D) is

G−1(D)=B−1(D)Γ−1(D)A−1(D)

=

 0 1 +D +D2 1 +D +D2 +D3

0 D +D2 1 +D2 +D3

1 1 +D2 1 +D +D3

 1 0
0 1
0 0

(1 0
1 +D +D2 1

)

=

 1 +D2 +D4 1 +D +D2

D +D4 D +D2

D +D3 +D4 1 +D2

 (2.82)

which happens to be polynomial. In Fig. 2.12 we show the controller canonical
form of G−1(D).

ENCODER INVERSES 71

v(3)

v(2)

v(1)

u(2)

u(1)

Figure 2.12 The controller canonical form of the encoding right inverse matrix G−1(D) in
Example 2.6.

EXAMPLE 2.7

The rate R = 1/2 convolutional encoder in Fig. 2.3 has encoding matrix

G(D) = (1 +D +D2 1 +D2) (2.83)

Following the technique in the proof of Theorem 2.4, we divide g12(D) by g11(D):

1 +D2 = (1 +D +D2)1 +D (2.84)

Thus, we add 1 +D +D2 to 1 +D2 and obtain the sum D:

(1 +D +D2 1 +D2)

(
1 1
0 1

)
= (1 +D +D2 D) (2.85)

We interchange the columns by an elementary operation:

(1 +D +D2 D)

(
0 1
1 0

)
= (D 1 +D +D2) (2.86)

Repeating the first step yields

1 +D +D2 = D(1 +D) + 1 (2.87)

and we add 1 +D times the first column to the second column:

(D 1 +D +D2)

(
1 1 +D
0 1

)
= (D 1) (2.88)

72 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

v(1)

u

v(2)

Figure 2.13 The observer canonical form of the encoding right inverse matrix G−1(D) in
Example 2.7.

Again we interchange columns:

(D 1)

(
0 1
1 0

)
= (1 D) (2.89)

Finally, adding D times the first column to the second column yields

(1 D)

(
1 D
0 1

)
= (1 0) = Γ(D) (2.90)

Since we did not perform any elementary operations from the left, the permutor
A(D) = (1). Since the inverses of the elementary matrices are the matrices
themselves, the permutor B(D) is obtained as

B(D) =

(
1 D
0 1

)(
0 1
1 0

)(
1 1 +D
0 1

)(
0 1
1 0

)(
1 1
0 1

)
=

(
1 +D +D2 1 +D2

1 +D D

)
(2.91)

Hence, we have the right inverse matrix

G−1(D) = B−1(D)Γ−1(D)A−1(D)

=

(
D 1 +D2

1 +D 1 +D +D2

)(
1
0

)(
1
)

=

(
D

1 +D

)
(2.92)

Its observer canonical form is shown in Fig. 2.13.

EXAMPLE 2.8

Consider the rate R = 2/3 convolutional generator matrix

G(D) =

(
1 1 +D 1 +D +D2

1 +D +D3 1 +D2 +D3 1 +D +D4

)
(2.93)

Since all entries in G(D) are relatively prime, it follows that ∆1(D) = 1 and,
hence, γ1(D) = 1.

ENCODER INVERSES 73

The determinantal divisor ∆2(D) is the gcd of all 2 × 2 subdeterminants of
G(D); that is,

∆2(D) = gcd (D4, D +D5, D +D2 +D4) = D (2.94)

Thus, we have

γ2(D) =
∆2(D)

∆1(D)
= D (2.95)

which is not delayfree. By Theorem 2.6 none of the right inverses of the generator
matrix G(D) is realizable!

Theorem 2.8 A rational convolutional generator matrix has a (delayfree) polynomial
right inverse if and only if αb(D) = 1.

Proof : Suppose that αb(D) = 1. From (2.64) it follows that α1(D) = α2(D) =
· · · = αb(D) = 1. Then

G−1(D) = B−1(D)

β1(D)
β2(D)

. . .
βb(D)

0
...
0

A−1(D) (2.96)

is a polynomial right inverse of G(D). Since G(D) is realizable, it follows that
G−1(D) is delayfree.

Conversely, suppose that G(D) has a polynomial right inverse G−1(D). Since
A(D) has unit determinant, there exists a polynomial vector (x1(D)x2(D) . . . xb(D))
such that

(x1(D)x2(D) . . . xb(D))A(D) = (0 0 . . . 0 βb(D)) (2.97)

Then (
x1(D)x2(D) . . . xb(D)

)
=
(
x1(D)x2(D) . . . xb(D)

)
G(D)G−1(D)

=
(
x1(D)x2(D) . . . xb(D)

)
A(D)Γ(D)B(D)G−1(D)

=
(
0 0 . . . 0 βb(D)

)
Γ(D)B(D)G−1(D)

=
(
0 0 . . . 0 αb(D) 0 . . . 0

)
B(D)G−1(D)

=
(
αb(D)y1(D)αb(D)y2(D) . . . αb(D)yb(D)

)
(2.98)

where (y1(D) y2(D) . . . yb(D)) is the bth row ofB(D)G−1(D). From (2.97) we de-
duce thatβb(D) is the greatest common divisor of the polynomialsx1(D), x2(D), . . .,
xb(D). Then it follows from (2.98) that βb(D) is the greatest common divisor of

74 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

αb(D)y1(D), αb(D)y2(D), . . . , αb(D)yb(D). Clearly, αb(D) is a common divisor
ofαb(D)y1(D), αb(D)y2(D), . . . , αb(D)yb(D), which implies thatαb(D) | βb(D).
Since gcd(αb(D), βb(D)) = 1, we conclude that αb(D) = 1 and the proof is com-
plete.

From Theorem 2.8 the next corollary follows.

Corollary 2.9 A polynomial convolutional generator matrix has a (delayfree) poly-
nomial right inverse if and only if γb(D) = 1.

EXAMPLE 2.9

Since the encoding matrixG(D) for the encoder in Fig. 2.9 satisfies the condition
of Corollary 2.9, it has a polynomial right inverse. See Example 2.6

The catastrophic error situation when finitely many errors in the estimated code-
word sequence could cause infinitely many errors in the estimated information
sequence is closely related to the existence of a polynomial right inverse matrix
G−1(D): if v(D) contains finitely many nonzero digits, thenu(D) = v(D)G−1(D)
also contains finitely many nonzero digits since G−1(D) is polynomial. No catas-
trophic error propagation can occur! This result is included in the following:

Theorem 2.10 A rational convolutional generator matrix G(D) is noncatastrophic
if and only if αb(D) = Ds for some integer s ≥ 0.

Proof : Suppose that αb(D) = Ds. Then from (2.64) it follows that αi(D) divides
Ds for 1 ≤ i ≤ b. Thus, the matrix

DsG−1(D) = DsB−1(D)

β1(D)

α1(D)
β2(D)

α2(D)
. . .

βb(D)

αb(D)

0
...
0

A−1(D)

(2.99)
is polynomial and, hence, G(D) is noncatastrophic.

Conversely, suppose that αb(D) is not a power ofD. Then αb(D) has a delayfree
factor, and it follows that wH(βb(D)/αb(D)) =∞. The input sequence

u(D) = (0 0 . . . 0 βb(D)/αb(D))A−1(D) (2.100)

ENCODER INVERSES 75

then also has wH(u(D)) =∞. But now we see that

v(D) = u(D)G(D)

= (0 0 . . . 0 βb(D)/αb(D))A−1(D)A(D)Γ(D)B(D)

= (0 0 . . . 0 1)B(D) (2.101)

which is polynomial andwH(v(D)) <∞ follows; that is, the generator matrixG(D)
is catastrophic. The proof is complete.

For the special case when G(D) is polynomial we have the following:

Corollary 2.11 A polynomial convolutional generator matrix is noncatastrophic if
and only if γb(D) = Ds for some integer s ≥ 0.

From Corollary 2.11, (2.36), and (2.40) the next corollary follows immediately
[MaS68].

Corollary 2.12 A polynomial convolutional generator matrix is noncatastrophic if
and only if ∆b(D) = Ds for some integer s ≥ 0.

Any c× b matrix G̃−1(D) over F2(D) is called a right pseudoinverse of the b× c
matrix G(D) if

G(D)G̃−1(D) = DsIb (2.102)

for some s ≥ 0.

Corollary 2.13 A rational convolutional generator matrix G(D) is noncatastrophic
if and only if it has a polynomial right pseudoinverse G̃−1(D).

Proof : Follows from the proof of Theorem 2.10.

EXAMPLE 2.10

The rate R = 1/2 polynomial convolutional encoding matrix G2(D) = (1 +
D3 1 + D + D2 + D3), whose realization is shown in Fig. 2.5, has the Smith
form decomposition (Problem 2.5)

G2(D) = (1)(1 +D 0)

(
1 +D +D2 1 +D2

1 +D D

)
(2.103)

Since γb(D) = 1 + D 6= Ds, the polynomial encoding matrix G2(D) is catas-
trophic.

76 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

EXAMPLE 2.11

From the Smith form of the rate R = 2/3 polynomial convolutional encoding
matrix in Example 2.4 follows

Γ(D) =

(
1 0 0
0 1 0

)
(2.104)

Hence, the encoding matrix in Example 2.4 is noncatastrophic.

EXAMPLE 2.12

The rate R = 2/3 rational convolutional encoding matrix

G(D) =

1

1 +D2

D

1 +D2

1

1 +D

D

1 +D2

1

1 +D2
1

 (2.105)

has the invariant-factor decomposition (Problem 2.6)

G(D) =
1

1 +D2

(
1 0
D 1

)

×
(

1 0 0
0 1 +D 0

) 1 D 1 +D
0 1 +D 1
0 1 0

 (2.106)

The encoding matrix G(D) is noncatastrophic since γ2(D) = 1 + D divides
q(D) = 1 +D2 and, hence, α2(D) = 1.

EXAMPLE 2.13

The Smith form of the rate R = 2/3 polynomial convolutional encoding matrix
G(D) given in Example 2.8 is

Γ(D) =

(
1 0 0
0 D 0

)
(2.107)

The encoding matrix G(D) is noncatastrophic since γ2(D) = D, but the right
inverse G−1(D) is not realizable (γ2(D) 6= 1).

2.4 ENCODER AND CODE EQUIVALENCES

In a communication context, it is natural to say that two encoders are equivalent if
they generate the same code C. It is therefore important to look for encoders with
the lowest complexity within the class of equivalent encoders. We will study this
problem in depth in the following sections.

ENCODER AND CODE EQUIVALENCES 77

Definition Two convolutional generator (encoding) matrices G(D) and G′(D) are
equivalent if they encode the same code. Two convolutional encoders are equivalent
if their generator matrices are equivalent.

Theorem 2.14 Two rateR = b/c convolutional generator (encoding) matricesG(D)
andG′(D) are equivalent if and only if there is a b× b nonsingular matrix T (D) over
F2(D) such that

G(D) = T (D)G′(D) (2.108)

Proof : If (2.108) holds, then G(D) and G′(D) are equivalent.
Conversely, suppose that G(D) and G′(D) are equivalent. Let gi(D) ∈ Fc2(D)

be the ith row of G(D). Then there exists a ui(D) ∈ Fb2((D)) such that

gi(D) = ui(D)G′(D) (2.109)

Let

T (D) =

u1(D)
u2(D)

...
ub(D)

 (2.110)

Then
G(D) = T (D)G′(D) (2.111)

where T (D) is a b × b matrix over F2((D)). Let S′(D) be a b × b nonsingular
submatrix of G′(D) and S(D) be the corresponding b× b submatrix of G(D). Then
S(D) = T (D)S′(D). Thus, T (D) = S(D)S′(D)−1 and, hence, T (D) is over
F2(D). Since G(D), being a generator matrix, has rank b, it follows that T (D) also
has rank b and, hence, is nonsingular.

EXAMPLE 2.14

Consider the encoding matrix

G′(D) =

(
1 1 1
D 1 0

)
(2.112)

If we multiply G′(D) with

T (D) =

(
1 1
D 1

)
(2.113)

we obtain the equivalent encoding matrix

G(D) = T (D)G′(D) =

(
1 +D 1 1
D 1 0

)
(2.114)

Next we will carry the equivalence concept further and consider equivalent con-
volutional codes.

78 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

Definition Two convolutional codes C and C′ are equivalent if the codewords v ∈ C
are permutations of the codewords v′ ∈ C′.

If a rate R = b/c convolutional code C is encoded by a rational generator matrix
G(D), we can always permute the columns of the generator matrix and obtain a
generator matrix G′(D). Encoding with G′(D) yields a reordering of the code
symbols within the c-tuples and, thus, we obtain an equivalent convolutional code C′.

Consider the following two rate R = 1/2 convolutional encoding matrices:

G(D) = (1 1 +D) (2.115)

G′(D) = (D 1 +D) (2.116)

According to Theorem 2.14 they are not equivalent; that is, they encode different
convolutional codes. Moreover, G(D) cannot be obtained from G′(D) by a column
permutation. However, if we consider the corresponding semi-infinite generator
matrices

G =

11 01

11 01
11 01

11 01
.

 (2.117)

and

G′ =

01 11

01 11
01 11

01 11
.

 (2.118)

we notice that, if we inG′ delete the allzero column and permute the other columns,
we can obtainG. The two convolutional codes C and C′ are equivalent and, thus, the
encoding matrices G(D) and G′(D) given by (2.115) and (2.116) encode equivalent
convolutional codes. This suggests a need for the following notation of equivalence.

Definition Two generator (encoding) matrices G(D) and G′(D) are weakly equiva-
lent (WE) if they encode equivalent convolutional codes.

In a permutation matrix P we have exactly one 1 in each row and in each column.
Next we consider a permutation matrix P and replace all 1s with monomials Di,
where i can be different integers for different matrix entries. Then we obtain a
generalized permutation matrix P (D). If we multiply from the right the codeword
v(D) ∈ Fc2((D)) by the c × c generalized permutation matrix P (D), we obtain the
codeword

v′(D) = v(D)P (D) (2.119)

which is a particular kind of permutation of v(D) = (v1(D)v2(D) . . .vc(D)) such
that

v′l(D) = vk(D)Dikl (2.120)

BASIC ENCODING MATRICES 79

where Dikl is the (k, l)th entry of P (D). If we would like to obtain a general
permutation of the codeword v we have to multiply its semi-infinite generator matrix
G by a semi-infinite permutation matrix.

From Theorem 2.14 we conclude that all generator matrices

G′(D) = T (D)G(D)P (D) (2.121)

where T (D) is a nonsingular rational b × b matrix and P (D) is c × c generalized
permutation matrix, are weakly equivalent to G(D). From (2.121) follows the
important observation that if we factor out Di, i > 0, from a column of G(D), we
obtain a WE generator matrix. For example, if we factor outD from the first column
ofG′(D) given in (2.116), we obtain the WE encoding matrixG(D) given in (2.115).

EXAMPLE 2.15

The two rate R = 3/5 encoding matrices

G(D) =

 1 1 1 1 0
0 1 +D 1 +D 0 1
0 D 1 1 +D D

 (2.122)

and

G′(D) =

 1 +D 1 +D 0 1 1
D 1 1 +D D 0
D D D 0 1

 (2.123)

are WE since
G′(D) = T (D)G(D)P (D) (2.124)

where

T (D) =

 0 D−1 0
0 0 D−1

1 0 0

 (2.125)

and

P (D) =

0 0 0 0 1
D 0 0 0 0
0 D 0 0 0
0 0 D 0 0
0 0 0 D 0

 (2.126)

2.5 BASIC ENCODING MATRICES

In this section we will study a class of encoding matrices that were introduced by
Forney [For70]. They will play an important role when we discuss minimality of
convolutional generator matrices.

80 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

Definition A convolutional generator (encoding) matrix is called basic if it is poly-
nomial and it has a polynomial right inverse. A convolutional encoder is called basic
if its generator matrix is basic.

From Theorem 2.5 the next theorem follows immediately.

Theorem 2.15 A basic generator matrix is a basic encoding matrix.

Next we have an important theorem.

Theorem 2.16 Every rational generator matrix is equivalent to a basic encoding
matrix.

Proof : By Theorem 2.2 every rational generator matrix has an equivalent polyno-
mial delayfree generator matrix. Let the latter be G(D) with the invariant-factor
decomposition G(D) = A(D)Γ(D)B(D), where A(D) and B(D) are b × b and
c× c polynomial matrices, respectively, of determinant 1, and

Γ(D) =

γ1(D)

γ2(D)
. . .

γb(D) 0 . . . 0

 (2.127)

Let G′(D) be a generator matrix consisting of the first b rows of B(D). Then

G(D) = A(D)

γ1(D)

γ2(D)
. . .

γb(D)

G′(D) (2.128)

Since both A(D) and
γ1(D)

γ2(D)
. . .

γb(D)

are nonsingular matrices over F2(D), it follows from Theorem 2.14 that G(D) and
G′(D) are equivalent. But G′(D) is polynomial, and since B(D) has a polynomial
inverse, it follows that G′(D) has a polynomial right inverse (consisting of the first
b columns of B−1(D)). Therefore, G′(D) is a basic generator matrix. Then from
Theorem 2.15 follows that G′(D) is a basic encoding matrix.

From Corollary 2.9 the next theorem follows immediately.

Theorem 2.17 A generator matrix is basic if and only if it is polynomial and
γb(D) = 1.

BASIC ENCODING MATRICES 81

Corollary 2.18 A basic encoding matrix G(D) has a Smith form decomposition

G(D) = A(D)Γ(D)B(D) (2.129)

where A(D) is a b × b polynomial matrix with a unit determinant, B(D) is a c × c
polynomial matrix with a unit determinant, and Γ(D) is the b× c matrix

Γ(D) =

1

1
. . .

1 0 . . . 0

 (2.130)

Corollary 2.19 A basic encoding matrix is noncatastrophic.

Proof : Follows from Corollary 2.11 and Theorem 2.17.

In the sequel, unless explicitly stated otherwise, we shall consider only basic
encoders. As long as we do not require that the encoder should be systematic, we
have nothing to gain from feedback!

Now we have the following:

Theorem 2.20 Two basic encoding matrices G(D) and G′(D) are equivalent if
and only if G′(D) = T (D)G(D), where T (D) is a b × b polynomial matrix with
determinant 1.

Proof : Let G′(D) = T (D)G(D), where T (D) is a polynomial matrix with deter-
minant 1. By Theorem 2.14, G(D) and G′(D) are equivalent.

Conversely, suppose thatG′(D) andG(D) are equivalent. By Theorem 2.14 there
is a nonsingular b × b matrix T (D) over F2(D) such that G′(D) = T (D)G(D).
Since G(D) is basic, it has a polynomial right inverse G−1(D). Then T (D) =
G′(D)G−1(D) is polynomial. We can repeat the argument with G(D) and G′(D)
reversed to obtain G(D) = S(D)G′(D) for some polynomial matrix S(D). Thus,
G(D) = S(D)T (D)G(D). SinceG(D) has full rank, we conclude thatS(D)T (D) =
Ib. Finally, since both T (D) and S(D) are polynomial, T (D) must have determinant
1 and the proof is complete.

Corollary 2.21 LetG(D) = A(D)Γ(D)B(D) be the Smith form decomposition of
a basic encoding matrix G(D), and let G′(D) be the b × c polynomial matrix that
consists of the first b rows of the matrixB(D). ThenG(D) andG′(D) are equivalent
basic encoding matrices.

Proof : SinceG(D) is basic, it follows from Corollary 2.18 thatG(D) = A(D)G′(D),
where A(D) is a b× b unimodular (determinant 1) matrix. Applying Theorem 2.20
completes the proof.

82 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

EXAMPLE 2.16

The encoding matrix for the rate R = 2/3 convolutional encoder shown in
Fig. 2.14,

G′(D) =

(
1 +D D 1

1 +D2 +D3 1 +D +D2 +D3 0

)
(2.131)

is simply the first two rows of B(D) in the Smith form decomposition of the
encoding matrix (2.56) for the encoder in Fig. 2.9, viz.,

G(D) =

(
1 +D D 1
D2 1 1 +D +D2

)
(2.132)

Thus, G(D) and G′(D) are equivalent, and the encoders in Figs. 2.9 and 2.14
encode the same code.

u(2)

u(1)

v(1)

v(2)

v(3)

Figure 2.14 The controller canonical form of the encoding matrix G′(D) in Example 2.16.

2.6 MINIMAL-BASIC ENCODING MATRICES

We begin by defining the constraint length for the ith input of a polynomial convo-
lutional generator matrix as

νi = max
1≤j≤c

{deg gij(D)} (2.133)

the memory m of the polynomial generator matrix as the maximum of the constraint
lengths, that is,

m = max
1≤i≤b

{νi} (2.134)

MINIMAL-BASIC ENCODING MATRICES 83

and the overall constraint length as the sum of the constraint lengths

ν =
b∑
i=1

νi (2.135)

The polynomial generator matrix can be realized in controller canonical form by
a linear sequential circuit consisting of b shift registers, the ith of length νi, with
the outputs formed as modulo 2 sums of the appropriate shift register contents. For
example, in Fig. 2.9 we have shown the controllable canonical form of the polynomial
encoder given by the encoding matrix

G(D) =

(
1 +D D 1
D2 1 1 +D +D2

)
(2.136)

whose constraint lengths of the first and second inputs are 1 and 2, respectively, and
whose overall constraint length is 3.

The number of memory elements required for the controller canonical form is
equal to the overall constraint length.

In Fig. 2.14 we show the controller canonical form of a rate R = 2/3 encoder
whose constraint lengths of the first and second inputs are 1 and 3, respectively, and
the overall constraint length is 4.

We will now proceed and characterize the basic encoding matrix whose controller
canonical form requires the least number of memory elements over all equivalent
basic encoding matrices.

Definition A minimal-basic encoding matrix is a basic encoding matrix whose overall
constraint length ν is minimal over all equivalent basic encoding matrices.

In the next section we shall show that a minimal-basic encoding matrix is also
minimal in a more general sense.

Let G(D) be a basic encoding matrix. The positions for the row-wise highest
order coefficients in G(D) will play a significant role in the sequel. Hence, we let
[G(D)]h be a (0, 1)-matrix with 1 in the position (i, j) where deg gij(D) = νi and
0 otherwise.

Theorem 2.22 Let G(D) be a b × c basic encoding matrix with overall constraint
length ν. Then the following statements are equivalent:

(i) G(D) is a minimal-basic encoding matrix.

(ii) The maximum degree µ among the b× b subdeterminants of G(D) is equal to
the overall constraint length ν.

(iii) [G(D)]h has full rank.

Proof : Let us write
G(D) = G0(D) +G1(D) (2.137)

84 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

where

G1(D) =

Dν1

Dν2

. . .
Dνb

 [G(D)]h (2.138)

Then all entries in the ith row of G0(D) are of degree < νi. The maximum degree
µ among the b× b subdeterminants of G(D) is ≤ ν.

It follows immediately from (2.138) that (ii) and (iii) are equivalent. Thus we
need only prove that (i) and (ii) are equivalent.

(i⇒ ii). Assume that G(D) is minimal-basic.
Suppose that µ < ν, that is, rank [G(D)]h < b. Denote the rows of G(D) by

r1, r2, . . . , rb and the rows of [G(D)]h by [r1], [r2], . . . , [rb]. Then there is a linear
relation

[ri1] + [ri2] + · · ·+ [rid] = 0 (2.139)

The ith row of G1(D) is Dνi [ri]. Without loss of generality we can assume that
νid ≥ νij , j = 1, 2, . . . , d− 1. Adding

Dνid−νi1Dνi1 [ri1] +Dνid−νi2Dνi2 [ri2] + · · ·+Dνid−νid−1Dνid−1 [rid−1
]

= Dνid ([ri1] + [ri2] + · · ·+ [rid−1
]) (2.140)

to the idth row of G1(D) reduces it to an allzero row. Similarly, adding

Dνid−νi1r1 +Dνid−νi2r2 + · · ·+Dνid−νid−1rid−1
(2.141)

to the idth row of G(D) will reduce the highest degree of the idth row of G(D)
but leave the other rows of G(D) unchanged. Thus, we obtain a basic encoding
matrix equivalent to G(D) with an overall constraint length that is less than that of
G(D). This is a contradiction to the assumption thatG(D) is minimal-basic, and we
conclude that µ = ν.

(ii⇒ i). Assume that µ = ν.
Let G′(D) be a basic encoding matrix equivalent to G(D). From Theorem 2.20

it follows that G′(D) = T (D)G(D), where T (D) is a b × b polynomial matrix
with determinant 1. Since detT (D) = 1, the maximum degree among the b × b
subdeterminants of G′(D) is equal to that of G(D). Hence, µ is invariant over
all equivalent basic encoding matrices. Since µ is less than or equal to the overall
constraint length for all equivalent basic encoding matrices, it follows that G(D) is
a minimal-basic encoding matrix.

EXAMPLE 2.17

The basic encoding matrix for the encoder in Fig. 2.9,

G(D) =

(
1 +D D 1
D2 1 1 +D +D2

)
(2.142)

MINIMAL-BASIC ENCODING MATRICES 85

has

[G(D)]h =

(
1 1 0
1 0 1

)
(2.143)

with full rank and, hence, is a minimal-basic encoding matrix.

Corollary 2.23 Let G(D) be a b × c basic encoding matrix with maximum degree
µ among its b × b subdeterminants. Then G(D) has an equivalent minimal-basic
encoding matrix whose overall constraint length ν = µ.

Proof : Follows from the proof of Theorem 2.22 and the fact that µ is invariant over
all equivalent basic encoding matrices.

EXAMPLE 2.18

Consider the encoding matrix for the encoder in Fig. 2.14, viz.,

G′(D) =

(
1 +D D 1

1 +D2 +D3 1 +D +D2 +D3 0

)
(2.144)

The rank of

[G′(D)]h =

(
1 1 0
1 1 0

)
(2.145)

is 1. Hence, G′(D) cannot be a minimal-basic encoding matrix.
On the other hand, G′(D) has the following three b× b subdeterminants:

1 +D +D3, 1 +D2 +D3, 1 +D +D2 +D3

and, thus, µ = 3. Hence, any minimal-basic matrix equivalent to G′(D) has
overall constraint length ν = 3.

The equivalent basic encoding matrix for the encoder in Fig. 2.9 has [G(D)]h
of full rank (see Example 2.17) and, hence, is such a minimal-basic encoding
matrix.

We can use the technique in the proof of Theorem 2.22 to obtain a minimal-basic
encoding matrix equivalent to the basic encoding matrix G′(D) in Example 2.18.
We simply multiply the first row ofG′(D) byDν2−ν1 = D2 and add it to the second
row: (

1 0
D2 1

)(
1 +D D 1

1 +D2 +D3 1 +D +D2 +D3 0

)
=

(
1 +D D 1

1 1 +D +D2 D2

)
(2.146)

It is easily shown that the two minimal-basic encoding matrices (2.142) and (2.146)
are equivalent. Thus, a minimal-basic encoding matrix equivalent to a given basic
encoding matrix is not necessarily unique.

In general, we have [For70] the following simple algorithm to construct a minimal-
basic encoding matrix equivalent to a given basic encoding matrix:

86 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

Algorithm MB (Minimal-basic encoding matrix)
MB1. If [G(D)]h has full rank, then G(D) is a minimal-basic encoding matrix

and we STOP; otherwise go to the next step.

MB2. Let [ri1], [ri2], . . . , [rid] denote a set of rows of [G(D)]h such that νid ≥
νij , 1 ≤ j < d, and

[ri1] + [ri2] + · · ·+ [rid] = 0

Let ri1 , ri2 , . . . , rid denote the corresponding set of rows of G(D). Add

Dνid−νi1ri1 +Dνid−νi2ri2 + · · ·+Dνid−νid−1rid−1

to the idth row of G(D).

Call the new matrix G(D) and go to MB1.

By combining Theorem 2.16 and Corollary 2.23, we have the next corollary.

Corollary 2.24 Every rational generator matrix is equivalent to a minimal-basic
encoding matrix.

Before we prove that the constraint lengths are invariants of equivalent minimal-
basic encoding matrices, we need the following:

Lemma 2.25 Let V be a k-dimensional vector space over a field F , and let {α1,
α2, . . . ,αk} be a basis of V . Let {β1,β2, . . . ,β`} be a set of `, ` < k, linearly
independent vectors of V . Then there exist k − ` vectors αi`+1

,αi`+2
, . . . ,αik ,

1 ≤ i`+1 < i`+2 < · · · < ik ≤ k, such that {β1,β2, . . . ,β`,αi`+1
,αi`+2

, . . . ,αik}
is also a basis of V .

Proof : Consider the vectors in the sequence β1,β2, . . . ,β`,α1,α2, . . . ,αk one
by one successively from left to right. If the vector under consideration is a linear
combination of vectors to the left of it, then delete it; otherwise keep it. Finally,
we obtain a basis β1,β2, . . . ,β`,αi`+1

,αi`+2
, . . . ,αik , 1 ≤ i`+1 < · · · < ik ≤ k,

of V .

Theorem 2.26 The constraint lengths of two equivalent minimal-basic encoding
matrices are equal one by one up to a rearrangement.

Proof : Let G(D) and G′(D) be two equivalent minimal-basic encoding matrices
with constraint lengths ν1, ν2, . . . , νb and ν′1, ν

′
2, . . . , ν

′
b, respectively. Without loss

of generality, we assume that ν1 ≤ ν2 ≤ · · · ≤ νb and ν′1 ≤ ν′2 ≤ · · · ≤ ν′b.
Now suppose that νi and ν′i are not equal for all i, 1 ≤ i ≤ b. Let j be the

smallest index such that νj 6= ν′j . Then without loss of generality we assume that
νj < ν′j . From the sequence g1(D), g2(D), . . . , gj(D), g′1(D), g′2(D), . . . , g′b(D)
according to Lemma 2.25 we can obtain a basis g1(D), g2(D), . . . ,gj(D), g′ij+1

(D),

MINIMAL-BASIC ENCODING MATRICES 87

g′ij+2
(D), . . . , g′ib(D) of C. These b row vectors form an encoding matrix G′′(D)

which is equivalent to G′(D). Let{
g′1(D), g′2(D), . . . , g′b(D)

}
\
{
g′ij+1

(D), g′ij+2
(D), . . . , g′ib(D)

}
=
{
g′i1(D), g′i2(D), . . . , g′ij (D)

}
(2.147)

From our assumptions it follows that

j∑
`=1

νi <

j∑
`=1

ν′i ≤
j∑
`=1

ν′i` (2.148)

Then we have

ν′′ =

j∑
`=1

νi +
b∑

`=j+1

ν′i` <

j∑
`=1

ν′i` +
b∑

`=j+1

ν′i` = ν′ (2.149)

where ν′ and ν′′ are the overall constraint lengths of the encoding matrices G′(D)
and G′′(D), respectively. From Theorem 2.14 it follows that there exists a b × b
nonsingular matrix T (D) over F2(D) such that

G′′(D) = T (D)G′(D) (2.150)

Since G′(D) is basic, it has a polynomial right inverse G′−1(D), and it follows that

T (D) = G′′(D)G′−1(D) (2.151)

is polynomial. Denote by µ′ and µ′′ the highest degrees of the b× bminors ofG′(D)
and G′′(D), respectively. It follows from (2.150) that

µ′′ = deg | T (D) | +µ′ (2.152)

Clearly, ν′′ ≥ µ′′ and, since G′(D) is minimal-basic, ν′ = µ′ by Theorem 2.22.
Thus,

ν′′ ≥ deg | T (D) | +ν′ ≥ ν′ (2.153)

which contradicts (2.149) and the proof is complete.

Corollary 2.27 Two equivalent minimal-basic encoding matrices have the same
memory.

Next, we will consider the predictable degree property for polynomial generator
matrices, which is a useful analytic tool when we study the structural properties of
convolutional generator matrices.

Let G(D) be a rate R = b/c binary polynomial generator matrix with νi as
the constraint length of its ith row gi(D). For any polynomial input u(D) =

88 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

(u1(D) u2(D) . . . ub(D)), the output v(D) = u(D)G(D) is also polynomial. We
have

deg v(D) = degu(D)G(D) = deg
b∑
i=1

ui(D)gi(D)

≤ max
1≤i≤b

{deg ui(D) + νi} (2.154)

where the degree of a polynomial vector is defined to be the maximum of the degrees
of its components.

Definition A polynomial generator matrixG(D) is said to have the predictable degree
property (PDP) if for all polynomial inputs u(D) we have equality in (2.154).

The predictable degree property guarantees that short codewords will be associated
with short information sequences. We have the following:

Theorem 2.28 Let G(D) be a polynomial generator matrix. Then G(D) has the
predictable degree property if and only if [G(D)]h has full rank.

Proof : Without loss of generality, we assume that

ν1 ≥ ν2 ≥ · · · ≥ νb (2.155)

Let us write
G(D) = G0(D) +G1(D) (2.156)

where

G1(D) =

Dν1

Dν2

. . .
Dνb

 [G(D)]h (2.157)

Then, all entries in the ith row of G0(D) are of degree < νi.
Assume that [G(D)]h has full rank. For any input polynomial vector u(D) we

have

v(D) = u(D)G(D) = u(D)(G0(D) +G1(D))

=
b∑
i=1

ui(D)(g0i(D) +Dνi [G(D)]hi) (2.158)

where g0i(D) and [G(D)]hi are the ith rows of G0(D) and [G(D)]h, respectively.
Since [G(D)]h has full rank, we have

[G(D)]hi 6= 0, i = 1, 2, . . . , b (2.159)

Thus,

deg(ui(D)g0i(D) + ui(D)Dνi [G(D)]hi)

= deg(ui(D)Dνi [G(D)]hi) = deg ui(D) + νi (2.160)

MINIMAL-BASIC ENCODING MATRICES 89

It follows from (2.158) and (2.160) that

deg v(D) = max
1≤i≤b

{deg ui(D) + νi} (2.161)

Now assume that [G(D)]h does not have full rank. Then, there exists a nonzero
constant binary vector u(0) = (u

(0)
1 u

(0)
2 . . . u

(0)
b) such that

u(0)[G(D)]h = 0 (2.162)

Let u(0)(D) = (u
(0)
1 u

(0)
2 Dν1−ν2 . . . u

(0)
b Dν1−νb) be a polynomial input vector.

Then,

v(0)(D) = u(0)(D)G(D) = u(0)(D)(G0(D) +G1(D))

= u(0)(D)G0(D)

=
b∑
i=1

u
(0)
i Dν1−νig0i(D) (2.163)

Since deg g0i(D) < νi, it follows that

deg u
(0)
i Dν1−νig0i(D) < ν1, i = 1, 2, . . . , b (2.164)

and, hence, that
deg v(0)(D) < ν1 (2.165)

But
max
1≤i≤b

{deg u
(0)
i Dν1−νi + νi} = ν1 (2.166)

Therefore, the G(D) does not have the predictable degree property.

Since a basic encoding matrix is minimal-basic if and only if [G(D)]h has full
rank (Theorem 2.22), we immediately have the following theorem [For73]:

Theorem 2.29 LetG(D) be a basic encoding matrix. ThenG(D) has the predictable
degree property if and only if it is minimal-basic.

EXAMPLE 2.19

The catastrophic (and, hence, not basic) encoding matrix

G(D) = (1 +D3 1 +D +D2 +D3) (2.167)

has the predictable degree property since

[G(D)]h =
(

1 1
)

(2.168)

has full rank.

90 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

EXAMPLE 2.20

The basic encoding matrix (cf. Example 2.18)

G(D) =

(
1 +D D 1

1 +D2 +D3 1 +D +D2 +D3 0

)
(2.169)

has

[G(D)]h =

(
1 1 0
1 1 0

)
(2.170)

of rank 1 and, hence, does not have the predictable degree property.

2.7 MINIMAL ENCODING MATRICES AND MINIMAL ENCODERS

We will now proceed to show that a minimal-basic encoding matrix is also minimal
in a more general sense, but first we need the following definitions:

Definition The encoder state σ of a realization of a rational generator matrix G(D)
is the contents of its memory elements. The set of encoder states is called the encoder
state space.

If G(D) is polynomial, then the dimension of the encoder state space of its
controller canonical form is equal to the overall constraint length ν.

Definition Let G(D) be a rational generator matrix. The abstract state s(D) asso-
ciated with an input sequence u(D) is the sequence of outputs at time 0 and later,
which are due to that part of u(D) that occurs up to time−1 and to the allzero inputs
thereafter. The set of abstract states is called the abstract state space.

The abstract state depends only on the generator matrix and not on its realization.
Distinct abstract states must spring from distinct encoder states at time 0. The number
of encoder states is greater than or equal to the number of abstract states.

Let P be the projection operator that truncates sequences to end at time −1, and
let Q = 1− P be the projection operator that truncates sequences to start at time 0.
That is, if

u(D) = udD
d + ud+1D

d+1 + · · · (2.171)

then

u(D)P =

{
udD

d + ud+1D
d+1 + · · ·+ u−1D

−1, d < 0

0, d ≥ 0
(2.172)

and
u(D)Q = u0 + u1D + u2D

2 + · · · (2.173)

Clearly,
P +Q = 1 (2.174)

MINIMAL ENCODING MATRICES AND MINIMAL ENCODERS 91

Thus, the abstract state s(D) associated with u(D) can be written concisely as

s(D) = u(D)PG(D)Q (2.175)

The encoder in Fig. 2.14 has 16 encoder states and 8 abstract states. The correspon-
dence between them is tabulated in Table 2.1.

Table 2.1 Correspondence between encoder and abstract states of encoder G′(D)
illustrated in Fig. 2.14.

Encoder states (at time 0) Abstract state(
0
000

)
,
(

1
001

)
(0 0 0)(

0
001

)
,
(

1
000

)
(1 1 0)(

0
010

)
,
(

1
011

)
(1 +D 1 +D 0)(

0
011

)
,
(

1
010

)
(D D 0)(

0
100

)
,
(

1
101

)
(D +D2 1 +D +D2 0)(

0
101

)
,
(

1
100

)
(1 +D +D2 D +D2 0)(

0
110

)
,
(

1
111

)
(1 +D2 D2 0)(

0
111

)
,
(

1
110

)
(D2 1 +D2 0)

For example, the input sequence

u(D) = · · ·+ (0 1)D−3 + (0 1)D−2 + (0 0)D−1 + · · · (2.176)

will give the encoder state (
0
011

)

92 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

at time 0. The corresponding abstract state is

s(D) = u(D)PG(D)Q

=
(

(D−3 +D−2)(1 +D2 +D3)

(D−3 +D−2)(1 +D +D2 +D3) 0
)
Q

= (D D 0) (2.177)

In Fig. 2.15 we give the observer canonical form for the encoding matrix G′(D)
in Example 2.16. Note that in the observer canonical form of a polynomial generator
matrix the abstract states are in one-to-one correspondence with the encoder states
since the contents of the memory elements are simply shifted out in the absence of
nonzero inputs.

v(3)

v(2)

v(1)

u(2)

u(1)

Figure 2.15 The observer canonical form of encoding matrix G′(D) in Example 2.16.

Since the abstract state does not depend on the realization, we have the same
abstract states in the observer canonical form as in the controller canonical form.

At a first glance it might be surprising that we have only 8 abstract states but as
many as 64 encoder states in the observer canonical form in Fig. 2.15. We have
some (in this case 56) encoder states that cannot be reached from the zero state—this
realization is not controllable.

The encoder state space of the controller canonical form of a generator matrix
of overall constraint length ν contains 2ν states. This type of realization plays an
important role in connection with minimal-basic encoding matrices, as we shall see
in the sequel, but first we prove a technical lemma.

MINIMAL ENCODING MATRICES AND MINIMAL ENCODERS 93

Lemma 2.30 Let G(D) be a minimal-basic encoding matrix, and let

u(D) =
∑
i

(u
(1)
i u

(2)
i . . . u

(b)
i)Di (2.178)

be of finite weight. If u(D)G(D)Q = 0, then u(j)
i = 0 for each j = 1, 2, . . . , b and

each i such that i ≥ −νj .

Proof : If u(D) = 0, then the claim is obvious. Let therefore u(D) 6= 0. Denote

v(D) = u(D)G(D) (2.179)

and let k denote the time in which the controller canonical form encoder of G(D)
will contain the last nonzero elements of u(D). Then

k = max
j

{
degu(j)(D) + νj

}
(2.180)

It follows from (2.180) that

νk =
b∑
j=1

u
(j)
k−νj [rj] (2.181)

where [rj] is the jth row of [G(D)]h.
Since G(D) is minimal-basic, the rows [rj] are linearly independent. Since

u
(j)
k−νj 6= 0 for all j for which the maximum in the definition of k is achieved, we

obtain νk 6= 0. From ν(D)Q = 0, we have k < 0 and, hence, degu(j) < −νj for
all j as claimed.

Remark: The authors are grateful to Stepan Holub, who found an error in Lemma 2.30
in the first edition. This formulation of the lemma is due to Holub. The proof is a
slightly shortened version of his proof.

The following theorem shows that the controller canonical form is a minimal
realization (minimal number of memory elements) of a given minimal-basic encoding
matrix.

Theorem 2.31 Let G(D) be a minimal-basic encoding matrix whose overall con-
straint length is ν. Then7

{abstract states} = 2ν (2.182)

Proof : Consider the controller canonical form of the minimal-basic encoding matrix
G(D). Input sequences of the form

u(D) =

(
ν1∑
i=1

u
(1)
−iD

−i
ν2∑
i=1

u
(2)
−iD

−i . . .

νb∑
i=1

u
(b)
−iD

−i

)
(2.183)

7# { } denotes the cardinality of the set { }.

94 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

will carry us to all encoder states at time 0. Then we have the abstract states

s(D) = u(D)G(D)Q (2.184)

where u(D) is of the form given in (2.183). Every abstract state can be obtained in
this way, and we have

{abstract states} ≤ 2ν (2.185)

To prove that the equality sign holds in (2.185), it is enough to show that u(D) = 0
is the only input that produces the abstract state s(D) = 0. This follows from
Lemma 2.30.

EXAMPLE 2.21

The encoder illustrated in Fig. 2.9 has the following eight abstract states:

(0 0 0), (1 0 1), (D 0 D), (1 +D 0 D), (1 1 0),

(0 1 1), (1 +D 1 1 +D), (D 1 D)

Definition A convolutional generator matrix is minimal if its number of abstract
states is minimal over all equivalent generator matrices.

Before we can show that every minimal-basic encoding matrix is also a (basic)
minimal encoding matrix, we have to prove the following lemmas:

Lemma 2.32 Only the zero abstract state of a minimal-basic encoding matrixG(D)
can be a codeword.

Proof : We can assume that the abstract state s(D) arises from an input u(D),
which is polynomial in D−1 and of degree ≤ m and without a constant term, that is,
u(0) = 0. Thus,

s(D) = u(D)G(D)Q (2.186)

Then it follows that
u(D)G(D) = w(D) + s(D) (2.187)

where w(D) is polynomial in D−1 without a constant term. Assume that s(D) is a
codeword, that is, there is an input u′(D) ∈ F2((D)) such that

s(D) = u′(D)G(D) (2.188)

Since s(D) is polynomial andG(D) has a polynomial inverse, it follows thatu′(D) ∈
F2[D]. Combining (2.187) and (2.188), we have

(u(D) + u′(D))G(D) = w(D) (2.189)

Consequently
(u(D) + u′(D))G(D)Q = 0 (2.190)

MINIMAL ENCODING MATRICES AND MINIMAL ENCODERS 95

By Lemma 2.30,
u(D) + u′(D) = 0 (2.191)

and, since u(D) is polynomial in D−1 without a constant term and u′(D) is poly-
nomial, we conclude that u′(D) = 0. It follows from (2.188) that s(D) = 0.

Lemma 2.33 Let G(D) and G′(D) be equivalent generator matrices. Then, every
abstract state of G(D) can be expressed as a sum of an abstract state of G′(D) and a
codeword. Furthermore, if G′(D) is minimal-basic, then the expression is unique.

Proof : Assume that G(D) = T (D)G′(D), where T (D) is a b × b nonsingular
matrix over F2(D). Any abstract state of G(D), sG(D), can be written in the form
u(D)G(D)Q, where u(D) is polynomial inD−1 without a constant term. Thus, we
have

sG(D) = u(D)G(D)Q = u(D)T (D)G′(D)Q

= u(D)T (D)(P +Q)G′(D)Q

= u(D)T (D)PG′(D)Q+ u(D)T (D)QG′(D)Q (2.192)

Since u(D)T (D)P is polynomial in D−1 without a constant term, it follows from
(2.175) that

sG′(D) = u(D)T (D)PG′(D)Q (2.193)

is an abstract state of G′(D). Furthermore, u(D)T (D)Q is a formal power series,
and so is u(D)T (D)QG′(D). Hence,

v(D)
def
= u(D)T (D)QG′(D)Q

= u(D)T (D)QG′(D) (2.194)

is a codeword encoded by G′(D). Combining (2.192), (2.193), and (2.194), we
obtain

sG(D) = sG′(D) + v(D) (2.195)

and we have proved that every abstract state of G(D) can be written as a sum of an
abstract state of G′(D) and a codeword.

Assume now that G′(D) = Gmb(D) is minimal-basic. To prove uniqueness we
assume that

sG(D) = smb(D) + v(D) = s′mb(D) + v′(D) (2.196)

where smb(D), s′mb(D) are abstract states of Gmb(D) and v(D), v′(D) are code-
words. Since the sum of two abstract states is an abstract state and the sum of two
codewords is a codeword, it follows from (2.196) that

s′′mb(D) = smb(D) + s′mb(D) = v(D) + v′(D) = v′′(D) (2.197)

is both an abstract state of Gmb(D) and a codeword. From Lemma 2.32 we deduce
that

s′′mb(D) = 0 (2.198)

96 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

and, hence, that

smb(D) = s′mb(D) (2.199)

and

v(D) = v′(D) (2.200)

which completes the proof.

Theorem 2.34 Let G(D) be any generator matrix equivalent to a minimal-basic
encoding matrix Gmb(D). Then

{abstract states of G(D)} ≥ # {abstract states of Gmb(D)} (2.201)

Proof : Consider the following map:

φ : {abstract states of G(D)} → {abstract states of Gmb(D)}
sG(D) 7→ smb(D)

where

sG(D) = smb(D) + v(D) (2.202)

in which v(D) is a codeword. From Lemma 2.33 it follows that φ is well-defined.
By the first statement of Lemma 2.33 we can prove that every abstract state smb(D)

can be written as a sum of an abstract state of G(D) and a codeword. Hence, we
conclude that φ is surjective, which completes the proof.

Remark: The map φ in Theorem 2.34 is linear. Moreover, if G(D) is a minimal
encoding matrix, then φ is necessarily an isomorphism of the abstract state space of
G(D) and that of Gmb(D).

From Theorem 2.34 the corollary below follows immediately.

Corollary 2.35 Every minimal-basic encoding matrix is a (basic) minimal encoding
matrix.

Next we will prove the following little lemma:

Lemma 2.36 Let G(D) be a b × c matrix of rank b whose entries are rational
functions of D. Then a necessary and sufficient condition for G(D) to have a
polynomial inverse is: for each u(D) ∈ Fb2(D) satisfying u(D)G(D) ∈ Fc2[D] we
must have u(D) ∈ Fb2[D].

Proof : Since the necessity of the condition is obvious, we shall prove only the
sufficiency. Let us assume that G(D) does not have a polynomial inverse. Then,

MINIMAL ENCODING MATRICES AND MINIMAL ENCODERS 97

from Theorem 2.8 it follows that

G(D) = A(D)

α1(D)

β1(D)
α2(D)

β2(D)
. . .

αb(D)

βb(D)
0 . . . 0

B(D)

(2.203)
where αb(D) 6= 1. Clearly,

u(D) =

(
0 . . . 0

βb(D)

αb(D)

)
A−1(D) 6∈ Fb2[D] (2.204)

but

u(D)G(D) =

(
0 . . . 0

βb(D)

αb(D)

)
A−1(D)G(D)

= (0 . . . 0 1 0 . . . 0)B(D) ∈ Fc2[D] (2.205)

Hence, we have proved our lemma.

Define the span of a Laurent series f(D) in D as the interval from the index of
the first nonzero component of f(D) to the index of the last nonzero component, if
there is one, or to infinity otherwise. In other words, if f(D) is a Laurent series, then

span f(D) =

{
[del f(D),deg f(D)] , if deg f(D) <∞
[del f(D),∞) , otherwise

(2.206)

We are now well prepared to prove the following beautiful theorem on minimal
generator matrices:

Theorem 2.37 Let G(D) be a generator matrix and Gmb(D) be an equivalent
minimal-basic encoding matrix. Then the following statements are equivalent:

(i) G(D) is a minimal generator matrix.

(ii) # {abstract states of G(D) } = # { abstract states of Gmb(D) } .

(iii) Only the zero abstract state of G(D) can be a codeword.

(iv) G(D) has a polynomial right inverse in D and a polynomial right inverse in
D−1.

(v) spanu(D) ⊆ spanu(D)G(D) for all rational input sequences u(D).

Proof : It follows immediately from Theorem 2.34 that (i) and (ii) are equivalent.

98 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

Next, we prove that (ii) and (iii) are equivalent. In the proof of Theorem 2.34 we
have defined a surjective (linear) map

φ : {abstract states of G(D)} → {abstract states of Gmb(D)}
sG(D) 7→ smb(D)

where
sG(D) = smb(D) + v(D) (2.207)

in which v(D) is a codeword. Clearly, φ is injective if and only if (ii) holds and if
and only if (iii) holds. Hence, (ii) and (iii) are equivalent.

Then we prove that (iii) and (iv) are equivalent.
(iii⇒ iv). Suppose that (iii) holds. First we shall prove thatG(D) has a polynomial

right inverse in D−1. Let u(D) ∈ Fb2(D) and assume that v(D) = u(D)G(D) is
polynomial in D−1. Then D−1v(D) is polynomial in D−1 without a constant term,
that is,

D−1v(D)Q = 0 (2.208)

But

D−1v(D)Q = D−1u(D)(P +Q)G(D)Q

= D−1u(D)PG(D)Q+D−1u(D)QG(D)Q = 0 (2.209)

where
D−1u(D)QG(D)Q = D−1u(D)QG(D) (2.210)

is a codeword. Hence, from (2.209) and (2.210) it follows that the abstract state
D−1u(D)PG(D)Q is a codeword and, then, since (iii) holds, it is the zero codeword.
Thus,

D−1u(D)QG(D) = 0 (2.211)

and, since G(D) has full rank,

D−1u(D)Q = 0 (2.212)

or, in other words, u(D) is polynomial in D−1. Since every rational function in D
can be written as a rational function in D−1, G(D) can be written as a matrix whose
entries are rational functions in D−1, we can apply Lemma 2.36 and conclude that
G(D) has a polynomial right inverse in D−1.

Now we prove thatG(D) has a polynomial right pseudoinverse inD. LetG−1
−1(D)

be a polynomial right inverse in D−1 of G(D). Then there exists an integer s ≥ 0
such that DsG−1

−1(D) is a polynomial matrix in D and

G(D)DsG−1
−1(D) = DsIb (2.213)

That is, DsG−1
−1(D) is a polynomial right pseudoinverse in D of G(D).

Next, we prove that G(D) also has a polynomial right inverse in D. Let u(D) ∈
Fb2(D) and assume that v(D) = u(D)G(D) is polynomial in D. Then,

v(D) = u(D)PG(D) + u(D)QG(D) (2.214)

MINIMAL ENCODING MATRICES AND MINIMAL ENCODERS 99

where u(D)Q is a formal power series. Thus, u(D)QG(D) is also a formal power
series and, since v(D) is polynomial in D, it follows that u(D)PG(D) is a formal
power series. Then

u(D)PG(D) = u(D)PG(D)Q (2.215)

is an abstract state. From (2.214) it follows that it is also a codeword, and, since (iii)
holds, we conclude that

u(D)PG(D) = 0 (2.216)

Since G(D) has full rank,
u(D)P = 0 (2.217)

or, in other words, u(D) is a formal power series. Since v(D) is polynomial and
DsG−1

−1(D) is a polynomial matrix in D, it follows that

v(D)DsG−1
−1(D) = u(D)G(D)DsG−1

−1(D) = u(D)Ds (2.218)

is polynomial; that is, u(D) has finitely many terms. But u(D) is a formal power
series. Hence, we conclude that it is polynomial in D. By Lemma 2.36, G(D) has a
polynomial right inverse in D.

(iv⇒ iii). Assume that the abstract state sG(D) of G(D) is a codeword; that is,

sG(D) = u(D)G(D)Q

= u′(D)G(D) (2.219)

whereu(D) is polynomial inD−1 but without a constant term andu′(D) ∈ Fb2((D)).
Since sG(D) is a formal power series and G(D) has a polynomial right inverse, it
follows that u′(D) is also a formal power series. Let us use the fact that

Q = 1 + P (2.220)

and rewrite (2.219) as

sG(D) = u(D)G(D) + u(D)G(D)P = u′(D)G(D) (2.221)

LetG−1
−1(D) be a right inverse ofG(D) whose entries are polynomials inD−1. Then

u(D)G(D)G−1
−1(D) + u(D)G(D)PG−1

−1(D) = u′(D)G(D)G−1
−1(D) (2.222)

which can be simplified to

u(D) + u(D)G(D)PG−1
−1(D) = u′(D) (2.223)

Since u(D)G(D)P is polynomial in D−1 without a constant term, it follows that
u(D)G(D)PG−1

−1(D) is polynomial in D−1 without a constant term. Furthermore,
u(D) is polynomial in D−1 without a constant term and u′(D) is a formal power
series. Thus, we conclude that u′(D) = 0 and, hence, that sG(D) = 0.

It remains to prove that (iv) and (v) are equivalent.

100 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

(iv⇒ v). Assume that G(D) has a polynomial right inverse in D, G−1(D), and
let v(D) = u(D)G(D) be any sequence in C. Then u(D) = v(D)G−1(D), so

(i) degu(D) <∞ if deg v(D) <∞

(ii) delu(D) ≥ delv(D)

Similarly, if G(D) has a polynomial right inverse in D−1, then

(iii) degu(D) ≤ deg v(D)

Conditions (i)–(iii) imply that spanu(D) ⊆ spanv(D).
(v⇒ iv). It follows from (v) that for eachu(D) ∈ Fb2(D) satisfyingu(D)G(D) ∈

Fc2[D] we must have u(D) ∈ Fb2[D]. By Lemma 2.36, G(D) has a polynomial
right inverse in D. Similarly, (v) implies that for each u(D) ∈ Fb2(D) satisfying
u(D)G(D) ∈ Fc2[D−1] we must have u(D) ∈ Fb2[D−1]. Again, by Lemma 2.36,
G(D) has a polynomial right inverse in D−1.

Corollary 2.38 A minimal generator matrix is a minimal encoding matrix.

Proof : Follows immediately from Theorems 2.5 and 2.37 (iv).

Corollary 2.39 A minimal encoding matrix is noncatastrophic.

Proof : Follows immediately from Corollary 2.13 and Theorem 2.37 (iv).

Theorem 2.37 (v) is closely related to the following (non)minimality criteria
[LFM94]:

Theorem 2.40 A generator matrix can be nonminimal in only three ways:

(i) If there is an infinite nontrivial sequence of (encoder) states (not the zero state
sequence) that produces an allzero output sequence.

(ii) If there is a nontrivial transition from the zero state (not to the zero state) that
produces a zero output.

(iii) If there is a nontrivial transition to the zero state (not from the zero state) that
produces a zero output.

Proof : Condition (i) corresponds to a case in which there is an infinite input
u(D) that produces a finite output u(D)G(D) (the “catastrophic” case); condition
(ii) corresponds to a case in which there is an input u(D) that produces an output
u(D)G(D) with delu(D)G(D) > delu(D); and condition (iii) corresponds to a
case in which there is a finite input u(D) that produces a finite output u(D)G(D)
with degu(D)G(D) < degu(D). It is easy to see that spanu(D)G(D) does not
cover spanu(D) if and only if one of these three conditions is satisfied.

The following simple example shows that not all basic encoding matrices are
minimal.

MINIMAL ENCODING MATRICES AND MINIMAL ENCODERS 101

EXAMPLE 2.22

Consider the basic encoding matrix

G(D) =

(
1 +D D
D 1 +D

)
(2.224)

which has µ = 0 but ν = 2. Clearly, it is not minimal-basic.
The equivalent minimal-basic encoding matrix,

Gmb(D) =

(
1 0
1 1

)
(2.225)

has only one abstract state, viz., smb = (0, 0), and can be realized without any
memory element.

Since G(D) has two abstract states, viz., s0 = (0, 0) and s1 = (1, 1), it is not
minimal!

Before we state a theorem on when a basic encoding matrix is minimal, we shall
prove two lemmas:

Lemma 2.41 Let f1(D), f2(D), . . . , f`(D) ∈ F2[D] with

gcd(f1(D), f2(D), . . . , f`(D)) = 1 (2.226)

and let
n = max {deg f1(D),deg f2(D), . . . ,deg f`(D)} (2.227)

Then, for m ≥ n, D−mf1(D), D−mf2(D), . . . , D−mf`(D) ∈ F2[D−1] and

gcd(D−mf1(D), D−mf2(D), . . . , D−mf`(D)) = D−(m−n) (2.228)

Proof : Let
fi(D) = Dsigi(D), i = 1, 2, . . . , ` (2.229)

where si is the start of fi(D) and gi(D) ∈ F2[D] is delayfree. From (2.226) follows

min {s1, s2, . . . , s`} = 0 (2.230)

and
gcd(g1(D), g2(D), . . . , g`(D)) = 1 (2.231)

For m ≥ n

D−mfi(D) = D−mDsigi(D)

= D−(m−si−deg gi(D))
(
D− deg gi(D)gi(D)

)
= D−(m−deg fi(D))

(
D− deg gi(D)gi(D)

)
, i = 1, 2, . . . , ` (2.232)

102 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

where the last equality follows from the fact that

deg fi(D) = si + deg gi(D), i = 1, 2, . . . , ` (2.233)

Since D− deg gi(D)gi(D), i = 1, 2, . . . , `, are delayfree polynomials in F2[D−1], it
follows from (2.232) that

gcd
(
D−mf1(D), D−mf2(D), . . . , D−mf`(D)

)
= D−(m−n)

× gcd
(
D− deg g1(D)g1(D), D− deg g2(D)g2(D), . . . , D− deg g`(D)g`(D)

)
(2.234)

Clearly,

gcd
(
D− deg g1(D)g1(D), D− deg g2(D)g2(D), . . . , D− deg g`(D)g`(D)

)
= 1 (2.235)

and the proof is complete.

Lemma 2.42 LetG(D) be a basic encoding matrix, and let r and s be the maximum
degree of its b × b minors and (b − 1) × (b − 1) minors, respectively. Then the bth
invariant factor of G(D) regarded as a matrix over F2(D−1) is 1/D−(r−s).

Proof : Let G(D) = (gij(D)), 1 ≤ i ≤ b, 1 ≤ j ≤ c, and let

n = max
i,j
{deg gij(D)}

Write G(D) as a matrix over F2(D−1) as

G(D) =

(
D−ngij(D)

D−n

)
i,j

=
1

D−n
G−1(D) (2.236)

where
G−1(D) =

(
D−ngij(D)

)
i,j

(2.237)

is a matrix of polynomials in D−1.
SinceG(D) is basic, it follows, by definition, that it has a polynomial right inverse.

Hence, it follows from Theorem 2.8 and (2.64) that

α1(D) = α2(D) = · · · = αb(D) = 1 (2.238)

Let ∆i(G(D)) be the greatest common divisor of the i × i minors of G(D). Since
from (2.40)

∆i(G(D)) = α1(D)α2(D) . . . αi(D) (2.239)

we have in particular

∆b(G(D)) = ∆b−1(G(D)) = 1 (2.240)

An i× i minor of G−1(D) is equal to the corresponding minor of G(D) multiplied
by D−ni. Hence, by Lemma 2.41, we have

∆b(G−1(D)) = D−(nb−r) (2.241)

MINIMAL ENCODING MATRICES AND MINIMAL ENCODERS 103

and
∆b−1(G−1(D)) = D−(n(b−1)−s) (2.242)

Thus, the bth invariant factor of G−1(D) is (2.41),

γb(G−1(D)) =
∆b(G−1(D))

∆b−1(G−1(D))
=

D−n

D−(r−s) (2.243)

From (2.236) and (2.243) it follows that the bth invariant factor of G(D), regarded
as a matrix over F2[D−1], is

1

D−n
· D−n

D−(r−s) =
1

D−(r−s) (2.244)

We are now ready to prove the following theorem:

Theorem 2.43 A basic encoding matrixG(D) is minimal if and only if the maximum
degree of its b× bminors is not less than the maximum degree of its (b−1)× (b−1)
minors.

Proof : From Theorem 2.37 it follows that a basic encoding matrixG(D) is minimal
if and only if it has a polynomial right inverse in D−1. By the invariant factor
decomposition, G(D), regarded as a matrix over F2[D−1], has a polynomial right
inverse in D−1 if and only if the inverse of its bth invariant factor is a polynomial in
D−1. By applying Lemma 2.42 the theorem follows.

We will now briefly describe a “greedy” construction of a minimal-basic encoding
matrix for a convolutional code C [Roo79]. The construction goes as follows.

Choose the generator g1(D) as a nonzero polynomial code sequence of least
degree. Choose g2(D) as a nonzero polynomial code sequence of least degree not in
the rateR = 1/c code C1 encoded by g1(D); choose g3(D) as a nonzero polynomial
code sequence of least degree not in the rate R = 2/c code C2 encoded by g1(D)
and g2(D), and so forth, until a set G(D) = {gi(D), 1 ≤ i ≤ b} of b generators
that encodes C has been chosen.

It is easy to see that the degrees deg gi(D) are uniquely defined by C; in fact,
they are the constraint lengths νi. The sum

∑
i νi is minimal over all equivalent

polynomial generator matrices; it follows from Corollary 2.35 that it is minimal and,
thus, from Theorem 2.37 (iv) that it is also basic. Hence, G(D) is minimal-basic.

EXAMPLE 2.23

Let C be the rate R = 2/3 convolutional code encoded by the encoding matrix in
Example 2.16,

G′(D) =

(
g′1(D)
g′2(D)

)
=

(
1 +D D 1

1 +D2 +D3 1 +D +D2 +D3 0

)
(2.245)

104 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

The shortest nonzero polynomial code sequence is g′1(D), so ν1 = 1. The next
shortest code sequence not dependent on g′1(D) has degree 2; for example,

g2(D) = D2g′1(D) + g′2(D)

=
(

1 1 +D +D2 D2
)

(2.246)

so ν2 = 2. A minimal-basic encoding matrix for C is

G(D) =

(
1 +D D 1

1 1 +D +D2 D2

)
(2.247)

We return to our favorite basic encoding matrix given in Example 2.16, viz.,

G′(D) =

(
1 +D D 1

1 +D2 +D3 1 +D +D2 +D3 0

)
(2.248)

In Example 2.18 we showed that G′(D) is not minimal-basic, that is, µ < ν.
Its controller canonical form (Fig. 2.14) requires four memory elements but the
controller canonical form of an equivalent encoding matrix (Fig. 2.9) requires only
three memory elements. However, G′(D) is a basic encoding matrix, and, hence,
it has a polynomial right inverse. Furthermore, it has a polynomial right inverse in
D−1, viz.,

G−1
−1(D) =

 1 +D−1 +D−2 +D−3 D−1

1 +D−1 +D−3 D−1

D−2 +D−3 D−1

 (2.249)

Thus, from Theorem 2.37 we conclude that G′(D) is indeed a minimal encoding
matrix. Its eight abstract states are given in Table 2.1.

We will conclude this section by considering realizations of minimal encoding
matrices.

Definition A minimal encoder is a realization of a minimal encoding matrix G(D)
with a minimal number of memory elements over all realizations of G(D).

Theorem 2.44 The controller canonical form of a minimal-basic encoding matrix is
a minimal encoder.

Proof : Follows immediately from Corollaries 2.23 and 2.35.

EXAMPLE 2.24

The realization shown in Fig. 2.16 of the minimal encoding matrix G′(D) given
in (2.248) is a minimal encoder. (The realization is obtained by minimizing
G′(D) using a standard sequential circuit minimization method, see, for example,
[Lee78]. See also Appendix A.)

MINIMAL ENCODING MATRICES AND MINIMAL ENCODERS 105

u(2)

u(1)

v(1)

v(3)

v(2)

Figure 2.16 A minimal encoder for the basic encoding matrix G′(D) given in (2.248).

Notice that the minimal realization shown in Fig. 2.16 is neither in controller
canonical form nor in observer canonical form. This particular minimal encoding
matrix does not have a minimal controller canonical form, but it has an equiva-
lent minimal-basic encoding matrix whose controller canonical form (Fig. 2.9) is a
minimal encoder for the same convolutional code.

Next we consider a rate R = b/c convolutional code C with generator matrix
G(D). Let Gk(D) be the rate R = k/c generator matrix that consists of the k
last rows of G(D). The generator matrices G1(D), G2(D), . . . , Gb(D) = G(D)
are called nested generator matrices and the corresponding convolutional codes
C1, C2, . . . , Cb = C are called nested convolutional codes. The following theorem
and its two corollaries deal with the minimality of nested convolutional generator
matrices [JJB04].

Theorem 2.45 Given a rate R = b/c minimal-basic encoding matrix Gmb(D) and a
b× b rational matrix T (D) that has a polynomial right inverse T−1(D), then

G(D) = T (D)Gmb(D) (2.250)

is minimal if and only if

ν
(T−1)
i ≤ ν(Gmb)

i , i = 1, 2, . . . , b (2.251)

where ν(T−1)
i and ν(Gmb)

i denote the ith constraint lengths of T−1(D) and Gmb(D),
respectively.

106 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

Proof : Assume that ν(T−1)
i ≤ ν

(Gmb)
i is satisfied for all i. Since G−1(D) =

G−1
mb(D)T−1(D) is polynomial, it follows that

degu(D) = deg v(D)G−1(D) <∞ (2.252)

if deg v(D) < ∞. Hence, we need to consider only polynomial information se-
quences. Since Gmb(D) is minimal, it follows from Theorem 2.37(v) that the span
property,

spanu(D) ⊆ spanu(D)Gmb(D) (2.253)

holds for all rational input sequences u(D). Hence, we conclude that

delx(D) = delx(D)Gmb(D) = delu(D)Gmb(D) (2.254)

where x(D) = u(D)T (D). Since T−1(0) has full rank, we have

delx(D) = delx(D)T−1(D) = delu(D) (2.255)

and, by combining (2.254) and (2.255), we conclude that

delu(D) = delu(D)G(D) (2.256)

Since Gmb(D) is minimal-basic, it follows that the predictable degree property
holds, that is, for any polynomial input x(D) we have

degu(D)G(D) = degx(D)Gmb(D) (2.257)

= max
i

{
deg xi(D) + ν

(Gmb)
i

}
Moreover, since T−1(D) is polynomial, we have

degu(D) = degx(D)T−1(D) (2.258)

≤ max
i

{
degxi(D) + ν

(Gmb)
i

}
and, by combining (2.257) and (2.258) with the assumption that ν(T−1)

i ≤ ν
(Gmb)
i , it

follows that
degu(D) ≤ degu(D)G(D) (2.259)

Combining (2.256) and (2.259) shows that, if the assumption ν(T−1)
i ≤ ν(Gmb)

i holds,
the span property also holds and, hence, from Theorem 2.37(i) it follows that G(D)
is minimal, which completes the first part of the proof.

Now we assume that ν(T−1)
i > ν

(Gmb)
i for some i. Let u′(D) = x′(D)T−1(D),

where x′(D) = (00 . . . 010 . . . 0); then

degu′(D) = ν
(T−1)
i (2.260)

Since deg xi(D) = 0, we conclude from (2.258) that

degu′(D)G(D) = ν
(Gmb)
i (2.261)

MINIMAL ENCODING MATRICES AND MINIMAL ENCODERS 107

Combining (2.260) and (2.261) with the assumption that ν(T−1)
i > ν

(Gmb)
i for some i

yields that the span property does not hold and, hence, by Theorem 2.37 we conclude
that G(D) is not minimal. This completes the proof.

We show two important corollaries of this theorem.

Corollary 2.46 Given a rate R = b/c convolutional code C with a minimal-basic
encoding matrix Gmb(D). Then any minimal (rational) encoding matrix Gmin(D)
of C can be written Gmin(D) = T (D)Gmb(D), where T (D) ∈ TGmb and

TGmb =
{
T (D)|T−1(D) is polynomial

and ν
(T−1)
i ≤ ν(Gmb)

i , i = 1, 2, . . . , b
} (2.262)

Moreover, there exists a one-to-one mapping between TGmb and the set of minimal
encoding matrices in C.

Proof : From Theorem 2.14 and Corollary 2.24 it follows that any minimal encod-
ing matrix of C is equivalent to a minimal-basic encoding matrix Gmb(D), that is,
Gmin(D) = T (D)Gmb(D), where T (D) is nonsingular over F2(D). By combining
Theorems 2.14 and 2.45 it follows that Gmin(D) = T (D)Gmb(D), if and only if
T (D) has a polynomial right inverseT−1(D) with constraint lengths ν(T−1)

i ≤ ν(Gmb)
i

for all i. Since TGmb is the set of all such matrices T (D), we conclude that there
exists a matrix T (D) ∈ TGmb such that Gmin(D) = T (D)Gmb(D).

Given two matrices T1(D), T2(D) ∈ TGmb , such that

Gmin(D) = T1(D)Gmb(D) = T2(D)Gmb(D) (2.263)

it follows that T1(D) = T2(D). Hence, the mapping between TGmb and the set of all
minimal encoding matrices in C is one-to-one.

Corollary 2.47 Given any minimal encoding matrix Gmin(D) of a rate R = b/c
convolutional code C. Let Gmb(D) be an equivalent minimal-basic encoding matrix
and let T (D) ∈ TGmb be given by Gmin(D) = T (D)Gmb(D). Consider all nested
generator matrices Gk(D), k = 1, 2, . . . , b, where

Gk(D) = Tk(D)Gmb(D), k = 1, 2, . . . , b (2.264)

and where Tk(D) is given by the last k rows of the b × b matrix T (D) = Tb(D).
Then all the nested generator matrices Gk(D), k = 1, 2, . . . , b, are minimal.

Proof : Consider the nested generator matricesGk(D) = Tk(D)Gmb(D). The right
inverse T−1

k (D) is given the last k columns of T−1(D) = T−1
b (D). Hence,

ν
(T−1
k)

i ≤ ν(T−1)
i , i = 1, 2, . . . , b (2.265)

for all k = 1, 2, . . . , b. From Theorem 2.45 it follows that the generator matrix

Gk(D) is minimal if ν(T−1
k)

i ≤ ν
(Gmb)
i for all i. Hence, we conclude from (2.265)

that all Gk(D), k = 1, 2, . . . , b, are minimal.

108 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

EXAMPLE 2.25

Consider the rate R = 2/3 minimal-basic encoding matrix [Jor02]

Gmb(D) =

(
1 +D +D3 1 +D +D3 D +D2

D2 +D3 D +D2 1 +D +D3

)
(2.266)

with overall constraint length ν(Gmb) = µ = 6. Let T (D) be given by its
polynomial inverse

T−1(D) =

(
1 +D +D3 1
D +D3 1

)
(2.267)

that is,

T (D) =

(
1 1

D +D3 1 +D +D3

)
(2.268)

The constraint lengths of T−1(D) and Gmb(D) satisfy the inequalities (2.251)
from Theorem 2.45. Hence, we conclude that

G(D) = T (D)Gmb(D)

=

(
1 +D +D2 1 +D2 +D3 1 +D2 +D3

D +D3 +D4 +D5 D2 +D4 +D5 +D6 1 +D3 +D4 +D5 +D6

)

is minimal. It can be realized by ν = 9 memory elements in controller cannonical
form. It is basic, but since

[G(D)]h =

(
0 1 1
0 1 1

)
(2.269)

does not have full rank, it is not minimal-basic. However, it can be realized by
µ = 6 memory elements but neither in controller canonical form nor in observer
canonical form.

According to Corollary 2.47 all nested generator matrices are minimal and,
hence, we have

G1(D)

= (D +D2 +D4 +D5 D2 +D4 +D5 +D6 1 +D3 +D4 +D5 +D6)

Since G1(D) is minimal-basic, it can be realized in controller canonical form by
ν1 = µ1 = 6 memory elements.

MINIMAL ENCODING MATRICES AND MINIMAL ENCODERS 109

2.8 CANONICAL ENCODING MATRICES*

In this section we will revisit rational generator matrices and study them in depth.
For simplicity we consider first a rate R = 1/c rational generator matrix g(D) =

(g1(D) g2(D) . . . gc(D)), where g1(D), g2(D), . . . , gc(D) are rational realizable
functions. We may write

gi(D) = fi(D)/q(D), i = 1, 2, . . . , c (2.270)

where f1(D), f2(D), . . . , fc(D), q(D) ∈ F2[D] and

gcd(f1(D), f2(D), . . . , fc(D), q(D)) = 1 (2.271)

We define the constraint length of the rational 1× c matrix

g(D) = (g1(D) g2(D) . . . gc(D)) (2.272)

as
ν

def
= max {deg f1(D),deg f2(D), . . . ,deg fc(D),deg q(D)} (2.273)

Clearly, g(D) can be realized with ν delay elements in controller canonical form.
Next, we consider a rate R = b/c rational generator matrix G(D) and define its

ith constraint length νi as the constraint length of the ith row of G(D), its memory
m as

m
def
= max

1≤i≤b
{νi} (2.274)

and its overall constraint length ν as

ν
def
=

b∑
i=1

νi (2.275)

For a polynomial generator matrix, these definitions coincide with original definitions
of the ith constraint length, memory, and overall constraint length given by (2.133),
(2.134), and (2.135), respectively.

A rational generator matrix with overall constraint length ν can be realized with
ν memory elements in controller canonical form. This leads to the next definition.

Definition A canonical generator matrix is a rational generator matrix whose overall
constraint length ν is minimal over all equivalent rational generator matrices.

We have immediately the following two theorems.

Theorem 2.48 A minimal-basic encoding matrix is canonical.

∗Note: Sections marked with an asterisk (*) can be skipped at the first reading without loss of continuity.

110 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

Proof : Let Gmb(D) be a minimal-basic encoding matrix with overall constraint
length νmb and let Gc(D) be an equivalent canonical generator matrix with overall
constraint length νc. Then νc ≤ νmb. Since Gmb(D) is minimal, its number of
abstract states, 2νmb , is minimal over all equivalent encoding matrices. Thus, 2νmb ≤
#{abstract states of Gc(D)} ≤ 2νc . Therefore, νmb ≤ νc. Hence, νmb = νc and
Gmb(D) is canonical.

Theorem 2.49 A canonical generator matrix is minimal.

Proof : From the proof of Theorem 2.48 it follows that the number of abstract states
of Gc(D), 2νc = 2νmb , is minimal over all equivalent generator matrices. Hence,
Gc(D) is minimal.

Since a canonical generator matrix G(D) is minimal, the following theorem
follows immediately from Corollary 2.38.

Theorem 2.50 A canonical generator matrix is a canonical encoding matrix.

In Theorem 2.26 we proved the invariance of the constraint lengths of minimal-
basic encoding matrices. By a straightforward generalization of that proof we show
the following:

Theorem 2.51 The constraint lengths of two equivalent canonical encoding matrices
are equal one by one up to a rearrangement.

Proof : Let C be the code encoded by two equivalent canonical encoding ma-
trices G(D) and G′(D) with constraint lengths ν1, ν2, . . . , νb and ν′1, ν

′
2, . . . , ν

′
b,

respectively. Without loss of generality we assume that ν1 ≤ ν2 ≤ · · · ≤ νb and
ν′1 ≤ ν′2 ≤ · · · ≤ ν′b.

Now suppose that νi and ν′i are not equal for all i, 1 ≤ i ≤ b. Let j be the smallest
index such that νj 6= ν′j . Then without loss of generality we can assume that νj < ν′j .
From the sequence g1(D), g2(D), . . . , gj(D), g′1(D), g′2(D) . . . , g′b(D) we can ob-
tain by Lemma 2.25 a basisg1(D), g2(D), . . . , gj(D), g′ij+1

(D), g′ij+2
(D) . . . , g′ib(D)

of C. These b row vectors form an encoding matrix G′′(D) which is equivalent to
G′(D). Let{

g′1(D), g′2(D), . . . , g′b(D)
}
\
{
g′ij+1

(D), g′ij+2
(D), . . . , g′ib(D)

}
=
{
g′i1(D), g′i2(D), . . . , g′ij (D)

}
(2.276)

From our assumptions it follows that

ν′′ =

j∑
`=1

νi +
b∑

`=j+1

ν′i` <

j∑
`=1

ν′i +
b∑

`=j+1

ν′i` ≤
j∑
`=1

ν′i` +
b∑

`=j+1

ν′i` = ν′ (2.277)

where ν′ and ν′′ are the overall constraint lengths of the encoding matrices G′(D)
and G′′(D), respectively. The inequality (2.277) contradicts the assumption that
G′(D) is canonical. This completes the proof.

MINIMAL ENCODING MATRICES AND MINIMAL ENCODERS 111

By virtue of Theorem 2.51, we may define the constraint lengths of a convolutional
code to be the constraint lengths of any canonical encoding matrix that encodes the
code. By Theorem 2.28, a minimal-basic encoding matrix is canonical. Thus, we
have the next theorem.

Theorem 2.52 The constraint lengths of a convolutional code are equal to the con-
straint lengths of any minimal-basic encoding matrix that encodes the code one by
one up to a rearrangement.

The following lemma will be useful in the sequel when we prove our main results
for canonical encoding matrices.

Lemma 2.53 Let g(D) = (g1(D) g2(D) . . . gc(D)) be a 1 × c rational generator
matrix, where g1(D), g2(D), . . . , gc(D) ∈ F2(D). Write

gi(D) = fi(D)/q(D), i = 1, 2, . . . , c (2.278)

and assume that

gcd(f1(D), f2(D), . . . , fc(D), q(D)) = 1 (2.279)

Then g(D) is canonical if and only if both (i) and (ii) hold:

(i) deg q(D) ≤ max {deg f1(D),deg f2(D), . . . ,deg fc(D)}.

(ii) gcd(f1(D), f2(D), . . . , fc(D)) = 1.

Proof : Letf(D) = (f1(D) f2(D) . . . fc(D)) = gcd(f1(D), f2(D), . . . , fc(D))`(D).
It is clear that g(D), f(D), and `(D) are equivalent generator matrices.

Suppose that g(D) is canonical. Then by the definitions of νg and νf

νg = max {deg f1(D),deg f2(D), . . . ,deg fc(D), deg q(D)}
≤ max {deg f1(D),deg f2(D), . . . ,deg fc(D)} = νf (2.280)

from which (i) and νg = νf follow.
Moreover,

νg = νf = deg gcd(f1(D), f2(D), . . . , fc(D)) + ν` (2.281)

where ν` is the constraint length of `(D). From (2.281), the equivalence of the
generator matrices g(D) and `(D), and the assumption that g(D) is canonical, it
follows that

deg gcd(f1(D), f2(D), . . . , fc(D)) = 0 (2.282)

which is equivalent to (ii).
Conversely, suppose that (i) does not hold; that is, that

deg q(D) > max {deg f1(D),deg f2(D), . . . ,deg fc(D)} (2.283)

112 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

From (2.283) follows that
νg = deg q(D) > νf (2.284)

and, hence, since g(D) and f(D) are equivalent, that g(D) is not canonical.
Finally, suppose that (i) holds and that (ii) does not hold. Then from (2.281)

follows that νg > ν` and, since g(D) and `(D) are equivalent, that g(D) is not
canonical.

Next we will introduce a few concepts from valuation theory [Jac89]:
Let P be the set of irreducible polynomials in F2[D]. For simplicity we write p

for the irreducible polynomial p(D) ∈ P . For any nonzero g(D) ∈ F2(D) we can
express g(D) as

g(D) = pep(g(D)) h(D)/d(D) (2.285)

where ep(g(D)) ∈ Z, h(D) and d(D) ∈ F2[D], gcd(h(D), d(D)) = 1, and
p |/h(D)d(D). The exponents ep(g(D)), p ∈ P , that occur in this unique factor-
ization are called the valuations of the rational function g(D) at the primes p, or the
p-valuations of g(D). By convention we define ep(0) =∞. The map

ep : F2(D)→ Z ∪ {∞}
g(D) 7→ ep(g(D))

is called an exponential valuation of F2(D). Moreover, for any nonzero g(D) ∈
F2(D) we can express g(D) as

g(D) = f(D)/q(D) (2.286)

where f(D), q(D) ∈ F2[D]. We define

eD−1(g(D)) = deg q(D)− deg f(D) (2.287)

and eD−1(0) =∞. Then eD−1 is also called an exponential valuation of F2(D).
For notational convenience we introduce

P∗ = P ∪
{
D−1

}
(2.288)

It is easily verified that the p-valuation ep(g(D)) for each p ∈ P∗ satisfies the
properties:

(i) (uniqueness of 0) ep(g(D)) =∞ if and only if g(D) = 0

(ii) (additivity) ep(g(D)h(D)) = ep(g(D)) + ep(h(D))

(iii) (strong triangle inequality) ep(g(D) + h(D)) ≥ min {ep(g(D)), ep(h(D))}

From (2.285) and (2.287) we have the important product formula, as it is called
in valuation theory, written here in additive form since we are using exponential
valuations: ∑

p∈P∗
ep(g(D)) deg p = 0 (2.289)

for all nonzero g(D) ∈ F2(D), where the degree of D−1 is defined as 1.

MINIMAL ENCODING MATRICES AND MINIMAL ENCODERS 113

EXAMPLE 2.26

Let g(D) = (D3 +D5)/(1 +D +D2). Then we have e1+D+D2(g(D)) = −1,
e1+D(g(D)) = 2, eD(g(D)) = 3, eD−1(g(D)) = −3, and

ep(g(D)) = 0 if p ∈ P∗ and p 6= 1 +D +D2, 1 +D,D,D−1 (2.290)

It is easy to verify that ∑
p∈P∗

ep(g(D)) deg p = 0 (2.291)

The delay of a rational function g(D) can be expressed in terms of the exponential
valuation eD as

del g(D) = eD(g(D)) (2.292)

Similarly, the degree of a rational function g(D) may be expressed as

deg g(D) = −eD−1(g(D)) (2.293)

A rational function g(D) is:

(i) causal, if del g(D) ≥ 0, i.e., if eD(g(D)) ≥ 0

(ii) polynomial, if ep(g(D)) ≥ 0 for all p ∈ P

(iii) finite, if ep(g(D)) ≥ 0 for all p ∈ P except possibly D

Remark: Causal rational functions are also sometimes called proper (particularly
when z-transforms are used rather than D-transforms).

We mentioned in Section 2.1 that a rational function g(D) may be expanded
by long division into a Laurent series in powers of D and thus identified with a
semi-infinite sequence over F2 that begins with allzeros; for example,

1/(1 +D) = 1 +D +D2 + · · · (2.294)

In this way, the set of rational functions F2(D) may be identified with a subset of the
set F2((D)) of Laurent series in D over F2, which we shall call the rational Laurent
series. These are precisely the Laurent series that eventually become periodic. The
first nonzero term of a Laurent series expansion of g(D) in powers of D is the term
involving DeD(g(D)) = Ddel g(D), that is, the Laurent series in D “starts” at a “time
index” equal to the delay eD(g(D)) of g(D).

Remark: Alternatively, a rational function may be expanded similarly into a Laurent
series in D−1; for example,

1/(1 +D) = D−1 +D−2 + · · · (2.295)

In this way, F2(D) may alternatively be identified with a subset of F2((D−1)). If
elements of F2((D−1)) are identified with semi-infinite sequences over F2 that finish

114 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

with allzeros, then g(D) “ends” at a time equal to the degree−eD−1(g(D)) of g(D).
This hints at why we use the notation p = D−1 for this valuation.

We should emphasize that this second, alternative expansion is a purely mathemat-
ical construct. When we wish to identify a rational function in g(D) with a physical
sequence of elements of F2, we shall always use the first Laurent series expansion in
powers of D.

A rational function g(D) may be expanded as a Laurent series in powers of pwith
coefficients in the residue class field F2[D]p = F2[D]/pF2[D] for any p in P∗, as
follows. Let g(D) = f(D)/q(D), where f(D) and q(D) 6= 0 are polynomial. If
f(D) = 0, then the Laurent series in powers of p of g(D) is simply f(D) = 0. If
f(D) 6= 0, then we may write

f(D) = [f(D)]pp
ep(f(D)) + f (1)(D) (2.296)

where [f(D)]p is the residue of f(D)p−ep(f(D)) modulo p, which is an element
in the residue class field F2[D]p = F2[D]/pF2[D] and f (1)(D) is a polynomial
(possibly 0) whose p-valuation is greater than ep(f(D)). Iterating this process,
possibly indefinitely, we obtain a Laurent series in powers of p, which is an element
in F2[D]p((p)) and whose first nonzero term is [f(D)]p p

ep(f(D)). Similarly, we
may expand the denominator q(D) into a Laurent series in powers of p whose first
nonzero term is [q(D)]p p

ep(q(D)). Then by long division we obtain a Laurent series
expansion of g(D) in powers of p whose first term is [g(D)]pp

ep(g(D)), where

ep(g(D)) = ep(f(D))− ep(q(D)) (2.297)
and

[g(D)]p = [f(D)]p / [q(D)]p (2.298)

This division is well-defined because [f(D)]p and [q(D)]p are nonzero residues of
polynomials in F2[D] modulo p.

If g(D) = 0, then in addition to ep(0) =∞, we define [0]p = 0 for all p in P∗.
Note that this general expansion method works perfectly well for p = D−1, if

we take [f(D)]D−1 and [q(D)]D−1 to be the coefficients of the highest-order terms
of f(D) and q(D), respectively, that is, the coefficients of Ddeg f(D) and Ddeg q(D),
respectively. Again, this explains our use of the notation p = D−1 for this valuation.

EXAMPLE 2.27

For f(D) = D + D2 + D3 (or indeed for any nonzero polynomial in D), the
Laurent series in the polynomial D is simply f(D). We have eD(f(D)) = 1,
[f(D)]D = 1, and the first nonzero term of the series is [f(D)]DD

eD(f(D)) = D.
Similarly, for p = D−1, we have eD−1(f(D)) = −3, [f(D)]D−1 = 1, and the
Laurent series in D−1 is

f(D) = (D−1)−3 + (D−1)−2 + (D−1)−1 (2.299)

whose first nonzero term is [f(D)]D−1(D−1)eD−1 (f(D)) = (D−1)−3. For p =
1 + D, we have e1+D(f(D)) = 0, [f(D)]1+D = 1, and the Laurent series in

MINIMAL ENCODING MATRICES AND MINIMAL ENCODERS 115

1 +D is
f(D) = (1 +D)0 + (1 +D)3 (2.300)

whose first nonzero term is [f(D)]1+D(1 + D)e1+D(f(D)) = (1 + D)0. For
p = 1 + D + D2, we have e1+D+D2(f(D)) = 1, [f(D)]1+D+D2 = D, and the
Laurent series in 1 +D +D2 is simply

f(D) = D(1 +D +D2)1 (2.301)

whose first and only nonzero term is [f(D)]1+D+D2(1+D+D2)e1+D+D2 (f(D)) =
D(1 +D +D2)1.

EXAMPLE 2.28

Let g(D) = (D3 + D5)/(1 + D + D2). Then eD(g(D)) = 3 = del g(D),
eD−1(g(D)) = −3 = −deg g(D), e1+D(g(D)) = 2, e1+D+D2(g(D)) = −1,
and all other p-valuations are zero. It is easy to verify that the product formula
holds. Also, [g(D)]D = [g(D)]D−1 = [g(D)]1+D = 1 and [g(D)]1+D+D2 = D.

Next we extend the valuations to vectors (or sets) of rational functions.
Letg(D) = (g1(D) g2(D) . . . gc(D)), where g1(D), g2(D), . . . , gc(D) ∈ F2(D).

For any p ∈ P∗ we define

ep(g(D)) = min {ep(g1(D)), ep(g2(D)), . . . , ep(gc(D))} . (2.302)

Remark: Equality (2.302) generalizes the notion of the “greatest common divisor.”
Indeed, if g(D) is a set of polynomials, then the greatest common divisor of the set
g(D) is

gcd g(D) =
∏
p∈P

pep(g(D)) (2.303)

Now we can write Lemma 2.53 in a more symmetric form:

Lemma 2.54 Let g(D) = (g1(D) g2(D) . . . gc(D)) be a 1×c generator matrix over
F2(D). Then g(D) is canonical if and only if

ep(g(D)) ≤ 0, all p ∈ P∗ (2.304)

Proof : We will prove that (2.304) is equivalent to (i) and (ii) of Lemma 2.53. From
(2.278), (2.279), and (2.302) it follows that

eD−1(g(D)) = deg q(D)−max {deg f1(D),deg f2(D), . . . ,deg fc(D)} (2.305)

Hence,

eD−1(g(D)) ≤ 0

⇔ deg q(D) ≤ max {deg f1(D),deg f2(D), . . . ,deg fc(D)} (2.306)

116 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

For the second half of the proof, let p be any irreducible polynomial of F2[D]. First,
we assume that p | q(D). Since (2.279) holds, p |/fi(D) for some i. Then we have
both

ep(g(D)) = min {ep(f1(D)/q(D)), ep(f2(D)/q(D)), . . . , ep(fc(D)/q(D))}
= ep(fi(D)/q(D)) = −ep(q(D)) < 0 (2.307)

and
p |/ gcd(f1(D), f2(D), . . . , fc(D))

Now we assume that p |/q(D). Then

ep(g(D)) = min {ep(f1(D)), ep(f2(D)), . . . , ep(fc(D))} ≥ 0 (2.308)

Thus,

ep(g(D)) ≤ 0⇔ p |/fi(D) for some i
⇔ p |/ gcd(f1(D), f2(D), . . . , fc(D)) (2.309)

Therefore,

ep(g(D)) ≤ 0 for all irreducible polynomial p
⇔ gcd(f1(D), f2(D), . . . , fc(D)) = 1 (2.310)

which completes the proof.

In the following we will give necessary and sufficient conditions for a b×c rational
generator matrix to be canonical but first some prerequisites.

Properties (i)–(iii) given below (2.288), appropriately generalized, continue to
hold:

(i) ep(g(D)) =∞ if and only if g(D) = 0

(ii) ep(k(D)g(D)) = ep(k(D)) + ep(g(D)) for all k(D) ∈ F2(D)

(iii) ep(g(D) + h(D)) ≥ min {ep(g(D)), ep(h(D))}

However, the product formula becomes an inequality, since for any i∑
p∈P∗

ep(g(D)) deg p ≤
∑
p∈P∗

ep(gi(D)) deg p = 0 (2.311)

We therefore define the defect of a 1 × c nonzero vector g(D) = (g1(D) g2(D) . . .
gc(D)) over F2(D) to be [For75]

def g(D)
def
= −

∑
p∈P∗

ep(g(D)) deg p (2.312)

MINIMAL ENCODING MATRICES AND MINIMAL ENCODERS 117

We may generalize the definition of delay and degree to a vector g(D) as

del g(D) = eD(g(D)) = min
i
{del gi(D)} (2.313)

deg g(D) = −eD−1(g(D)) = max
i
{deg gi(D)} (2.314)

Then (2.312) can also be written as

def g(D) = deg g(D)−
∑
p∈P

ep(g(D)) deg p

= deg g(D)− deg(gcd g(D)) (2.315)

In view of property (ii) and the product formula, we have for all nonzero k(D) ∈
F2(D)

def k(D)g(D) = def g(D) (2.316)

Thus, every nonzero vector in a one-dimensional rational vector space has the same
defect.

When c = 1, that is, when g(D) reduces to a nonzero g(D) ∈ F2(D), we have

def g(D) = −
∑
p∈P∗

ep(g(D)) deg p (2.317)

From the product formula it follows that for any nonzero g(D) ∈ F2(D), def g(D) =
0.

The following lemma shows the significance of defg(D).

Lemma 2.55 Let g(D) = (g1(D) g2(D) . . . gc(D)) be a 1 × c nonzero generator
matrix over F2(D). Write

gi(D) = fi(D)/q(D), i = 1, 2, . . . , c (2.318)

where fi(D), q(D) ∈ F2[D], i = 1, 2, . . . , c, and

gcd (f1(D), f2(D), . . . , fc(D), q(D)) = 1 (2.319)

and assume that g(D) is canonical. Then,

def g(D) = max {deg f1(D),deg f2(D), . . . ,deg fc(D)} (2.320)

and def g(D) is the constraint length of g(D).

Proof : We have

def g(D) = −
∑
p∈P∗

ep(g(D)) deg p

= −
(
eD−1(g(D)) +

∑
p|q(D)

ep(g(D)) deg p+
∑

p |/q(D)

ep(g(D)) deg p
)

= −
((

deg q(D)−max
{

deg f1(D),deg f2(D), . . . ,deg fc(D)
})

−
∑
p|q(D)

ep(q(D)) deg p+ 0
)

(2.321)

118 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

where in the last equality the first term follows from (2.305), the second term from
(2.307), and the last term from (2.308) and Lemma 2.54. The observation that

deg q(D) =
∑
p|q(D)

ep(q(D)) deg p (2.322)

and application of Lemma 2.53 complete the proof.

EXAMPLE 2.29

Let

g(D) =

(
D

1 +D

1 +D

1 +D +D2
D2

)
(2.323)

By definition,
e1+D+D2(g(D)) = min {0,−1, 0} = −1 (2.324)

Similarly, e1+D(g(D)) = −1, eD(g(D)) = 0, eD−1(g(D)) = −2, and ep(g(D)) =
0 if p ∈ P∗ and p 6= 1 +D+D2, 1 +D, D, D−1. It follows from Lemma 2.54
that g(D) is canonical.

We can express g(D) as

g(D) =

(
D +D2 +D3

1 +D3

1 +D2

1 +D3

D2 +D5

1 +D3

)
(2.325)

which can be implemented by five delay elements in controller canonical form.

Let G(D) = {gi(D), 1 ≤ i ≤ b} be a set of vectors gi(D) ∈ Fc2(D). In view of
properties (ii) and (iii), for any vector v(D) =

∑
i ui(D)gi(D) and any p ∈ P∗, we

have

ep(v(D)) ≥ min
i
{ep(ui(D)gi(D))} (iii)

= min
i
{ep(ui(D)) + ep(gi(D))} (ii) (2.326)

Monna [Mon70] defines the set G(D) to be p-orthogonal if equality holds (2.326)
for all rational b-tuples u(D); that is, if for all u(D) in Fb2(D) we have

ep(v(D)) = min
i
{ep(ui(D)) + ep(gi(D))} (2.327)

If G(D) is p-orthogonal for all p in P∗, then the set G(D) is called globally orthog-
onal.

A b × c polynomial matrix G(D) = {gi(D) ∈ Fc2[D], 1 ≤ i ≤ b} was said
in Section 2.5 to have the predictable degree property (PDP) if for all v(D) =
u(D)G(D), where u(D) and v(D) are polynomial vectors,

deg v(D) = max
i
{deg ui(D) + deg gi(D)} (2.328)

MINIMAL ENCODING MATRICES AND MINIMAL ENCODERS 119

Equivalently, in the terminology we are using here, G(D) has the PDP if for all
v(D) = u(D)G(D)

eD−1(v(D)) = min
i
{eD−1(ui(D)) + eD−1(gi(D))} (2.329)

that is, if G(D) is D−1-orthogonal. Hence, the PDP is naturally generalized as
follows:

Definition A rational matrix G(D) has the predictable degree property (PDP) if it is
D−1-orthogonal.

Definition For any p ∈ P∗, a rational matrix G(D) has the predictable p-valuation
property (PVPp) if it is p-orthogonal.

Definition A rational matrix G(D) has the global predictable valuation property
(GPVP) if it is globally orthogonal.

We will see below that the GPVP is an essential property of canonical encoding
matrices of convolutional codes.

Letg(D) ∈ Fc2(D). We define the residue vector [g(D)]p as the vector whose com-
ponents are residues of the corresponding components of the vector g(D)p−ep(g(D))

modulo p in the ring of formal power series F2[D]p[[p]]. Thus, if ep(gi(D)) >
ep(g(D)), then [gi(D)]p = 0, even if gi(D) 6= 0. If g(D) is expanded as a vector of
Laurent series in powers of p with coefficients in Fc2[D]p, then [g(D)]pp

ep(g(D)) is
the first nonzero term in the expansion.

In Section 2.5 for a polynomial generator matrix G(D) the matrix [G(D)]h was
defined as consisting of the high-order coefficient vectors [gi(D)]h which we would
call here the residue vectors [gi(D)]D−1 . It was shown that for the PDP to hold
for G(D) it is necessary and sufficient that [G(D)]h have full rank. We have the
following natural generalization [For75]:

Definition Given a rational matrixG(D), its p-residue matrix [G(D)]p is the F2[D]p-
matrix whose ith row is the residue vector [gi(D)]p, 1 ≤ i ≤ b.

The following theorem then gives a basic test for p-orthogonality:

Theorem 2.56 For any p ∈ P∗, a rational matrix G(D) has the PVPp (is p-
orthogonal) if and only if its p-residue matrix [G(D)]p has full rank over F2[D]p.

Proof : In general, if v(D) = u(D)G(D), where u(D) = (u1(D)u2(D) . . .
ub(D)) and ui(D) ∈ F2(D), 1 ≤ i ≤ b, then

ep(v(D)) ≥ d (2.330)

where
d = min

i
{ep(ui(D)) + ep(gi(D))} (2.331)

120 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

Let I be the set of indices such that the minimum is achieved, that is,

I = {i | ep(ui(D)) + ep(gi(D)) = d} (2.332)

Then, if v(D) 6= 0, the Laurent series expansion of v(D) in powers of p with
coefficients in Fc2[D]p may be written as

v(D) = vdp
d + vd+1p

d+1 + · · · (2.333)

G(D) is p-orthogonal if and only if for allu(D) 6= 0, ep(v(D)) = d, that is, vd 6= 0.
We may write the Laurent series expansions of the nonzero ui(D) and of the gi(D)
as

ui(D) = [ui(D)]pp
ep(ui(D)) + u

(1)
i (D), 1 ≤ i ≤ b (2.334)

gi(D) = [gi(D)]pp
ep(gi(D)) + g

(1)
i (D), 1 ≤ i ≤ b (2.335)

where for all i [ui(D)]p 6= 0, ep(u
(1)
i (D)) > ep(ui(D)), [gi(D)]p 6= 0, and

ep(g
(1)
i (D)) > ep(gi(D)). Then the lowest-order coefficient of v(D) is given

by
vd =

∑
i∈I

[ui(D)]p[gi(D)]p (2.336)

If vd = 0, then the p-residue vectors [gi(D)]p are linearly dependent over F2[D]p
and [G(D)]p does not have full rank. Conversely, if [G(D)]p does not have full rank
over F2[D]p, then there exists some nontrivial linear combination of rows that equals
zero: ∑

i

ui(D)[gi(D)]p = 0 (2.337)

where ui(D) ∈ F2[D]p. Therefore with the input sequence

(u1(D)p−ep(g1(D)) u2(D)p−ep(g2(D)) . . . ub(D)p−ep(gb(D)))

we have d = 0 and vd = 0, so

ep(v(D)) > 0 = min
i

{
ep(ui(D)pep(gi(D))) + ep(gi(D))

}
(2.338)

which implies that G(D) is not p-orthogonal. This completes the proof.

This test involves only the determination of the rank of a b × c matrix [G(D)]p
over the field F2[D]p and is thus easy to carry out for any polynomial p of moderate
degree.

From Theorem 2.56 the next corollary follows immediately

Corollary 2.57 A rational matrix G(D) has the GPVP (is globally orthogonal) if
and only if its p-residue matrix [G(D)]p has full rank over F2[D]p for all p ∈ P∗.

MINIMAL ENCODING MATRICES AND MINIMAL ENCODERS 121

EXAMPLE 2.30

Consider the rational encoding matrix

G(D) =

(
g1(D)
g2(D)

)
=

1

D

1 +D

1

1 +D

D2

1 +D +D2

1

1 +D +D2
1

 (2.339)

Let p = D. Then we have eD(1) = eD(1
1+D) = eD(1

1+D+D2) = 0, eD(D
1+D) =

1, and eD(D2

1+D+D2) = 2. Hence, we have eD(g1(D)) = eD(g2(D)) = 0, and

[g1(D)]D =

(
1

D

1 +D

1

1 +D

)
D0

=
(

1 0 1
)

(mod D) (2.340)

[g2(D)]D =

(
D2

1 +D +D2

1

1 +D +D2
1

)
D0

=
(

0 1 1
)

(mod D) (2.341)

Thus, we have

[G(D)]D =

(
1 0 1
0 1 1

)
(2.342)

which has full rank over F2[D]D = F2.
For p = 1 +D we have e1+D(1) = e1+D(D2

1+D+D2) = e1+D(1
1+D+D2) = 0

and e1+D(D
1+D) = e1+D(1

1+D) = −1.
Hence, e1+D(g1(D)) = −1, e1+D(g2(D)) = 0, and

[g1(D)]1+D =

(
1

D

1 +D

1

1 +D

)
(1 +D)−(−1)

=
(

0 1 1
)

(mod (1 +D)) (2.343)

[g2(D)]1+D =

(
D2

1 +D +D2

1

1 +D +D2
1

)
(1 +D)0

=
(

1 1 1
)

(mod (1 +D)) (2.344)

Thus, we have

[G(D)]1+D =

(
0 1 1
1 1 1

)
(2.345)

which has full rank over F2[D]1+D.
Next, we let p = 1 + D + D2 and obtain e1+D+D2(1) = e1+D+D2(D

1+D) =

e1+D+D2(1
1+D) = 0 and e1+D+D2(D2

1+D+D2) = e1+D+D2(1
1+D+D2) = −1.

Hence, e1+D+D2(g1(D)) = 0, e1+D+D2(g2(D)) = −1.
A simple way to calculate D/(1 +D) (mod (1 +D +D2)) is as follows:

122 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

First, we need the inverse of the denominator, that is, (1 +D)−1 (mod (1 +
D +D2)). From Euclid’s algorithm it follows that

1 = D(1 +D) + (1 +D +D2) (2.346)

and, hence,
(1 +D)−1 = D (mod (1 +D +D2)) (2.347)

Then we have

D

1 +D
= D(1 +D)−1 = D2 = 1 +D (mod (1 +D +D2)) (2.348)

Similarly, we have

1

1 +D
= D (mod (1 +D +D2)) (2.349)

Thus,

[g1(D)]1+D+D2 =

(
1

D

1 +D

1

1 +D

)
(1 +D +D2)0

=
(

1 1 +D D
)

(mod (1 +D +D2)) (2.350)

[g2(D)]1+D+D2 =

(
D2

1 +D +D2

1

1 +D +D2
1

)
(1 +D +D2)−(−1)

=
(

1 +D 1 0
)

(mod (1 +D +D2)) (2.351)

Thus,

[G(D)]1+D+D2 =

(
1 1 +D D

1 +D 1 0

)
(2.352)

which has full rank over F2[D]1+D+D2 . Finally, let p = D−1. Then we
have eD−1(1) = eD−1(D

1+D) = eD−1(D2

1+D+D2) = 0, eD−1(1
1+D) = 1, and

eD−1(1
1+D+D2) = 2. Hence, eD−1(g1(D)) =

eD−1(g2(D)) = 0, and

[g1(D)]D−1 =

(
1

D

1 +D

1

1 +D

)
(D−1)0

=
(

1 1 0
)

(mod D−1) (2.353)

[g2(D)]D−1 =

(
D2

1 +D +D2

1

1 +D +D2
1

)
(D−1)0

=
(

1 0 1
)

(mod D−1) (2.354)

Thus, we have

[G(D)]D−1 =

(
1 1 0
1 0 1

)
(2.355)

which has full rank over F2[D]D−1 = F2.

MINIMAL ENCODING MATRICES AND MINIMAL ENCODERS 123

For p 6= D, 1 +D, 1 +D+D2, D−1 we have ep(gi(D)) = 0, i = 1, 2. Thus,

[G(D)]p =

1

D

1 +D

1

1 +D

D2

1 +D +D2

1

1 +D +D2
1

 (mod p) (2.356)

which has full rank over F2[D]p.
Since [G(D)]p has full rank over F2[D]p for all p ∈ P∗, we conclude that

G(D) has the GPVP.

EXAMPLE 2.31

Consider the rational encoding matrix

G(D) =

 1 0
1 +D2

1 +D +D2

D2

1 +D +D2

0 1
D2

1 +D +D2

1

1 +D +D2

 . (2.357)

By repeating the steps in the previous example we can show that the p-residue
matrix [G(D)]p has full rank over F2[D]p for p = D, 1 +D, and D−1.

For p = 1 + D + D2 we have e1+D+D2(1) = 0, e1+D+D2(0) = ∞,
and e1+D+D2(1+D2

1+D+D2) = e1+D+D2(D2

1+D+D2) = e1+D+D2(1
1+D+D2) = −1.

Hence, we have e1+D+D2(g1(D)) = e1+D+D2(g2(D)) = −1, and

[g1(D)]1+D+D2 =

(
1 0

1 +D2

1 +D +D2

D2

1 +D +D2

)
(1 +D +D2)−(−1)

=
(

0 0 D 1 +D
)

(mod (1 +D +D2)) (2.358)

[g2(D)]1+D+D2 =

(
0 1

D2

1 +D +D2

1

1 +D +D2

)
(1 +D +D2)−(−1)

=
(

0 0 1 +D 1
)

(mod (1 +D +D2)) (2.359)

Thus, we have

[G(D)]1+D+D2 =

(
0 0 D 1 +D
0 0 1 +D 1

)
(2.360)

whose rows are linearly dependent over F2[D]1+D+D2 and it follows that G(D)
does not have the GPVP.

Let G(D) be a b× c generator matrix over F2(D) and letMb denote the set of all
b× b submatrices of G(D). For all p ∈ P∗ we define [For75]

ep(G(D))
def
= min

Mb(D)∈Mb

{ep(|Mb(D)|)} (2.361)

124 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

and then correspondingly define the internal defect of G(D) to be [For91]

intdefG(D)
def
= −

∑
p∈P∗

ep(G(D)) deg p (2.362)

Then we can prove the following important result:

Theorem 2.58 The internal defect intdef G(D) is an invariant of the convolutional
code C that is encoded by G(D).

Proof : Let T (D) be a b× b nonsingular matrix over F2(D). Then

ep(|T (D)Mb(D)|) = ep(|T (D)|) + ep(|Mb(D)|) (2.363)

Hence,
ep(T (D)G(D)) = ep(|T (D)|) + ep(G(D)) (2.364)

It follows from (2.317), (2.362), and (2.364) that

intdef (T (D)G(D)) = def|T (D)|+ intdef G(D) (2.365)

But |T (D)| ∈ F2(D) and |T (D)| 6= 0. By the product formula (2.289) and (2.317),
def|T (D)| = 0. Hence,

intdef (T (D)G(D)) = intdef G(D) (2.366)

Theorem 2.58 motivates us to introduce the defect of the code C encoded by the
generator matrix G(D) to be [For91]

def C def
= intdef G(D) (2.367)

We define the external defect of G(D) as the sum of the generator defects:

extdef G(D)
def
=

b∑
i=1

def gi(D) (2.368)

Before we give five equivalent conditions for a generator matrix to be canonical
we shall prove a lemma. Let

G(D) = (gij(D))1≤i≤b, 1≤j≤c (2.369)

be a generator matrix, where gij(D) ∈ F2(D). Write

gi(D) = (gi1(D) gi2(D) . . . gic(D)), i = 1, 2 . . . , b (2.370)
gij(D) = fij(D)/qi(D), i = 1, 2, . . . , b; j = 1, 2, . . . , c (2.371)

MINIMAL ENCODING MATRICES AND MINIMAL ENCODERS 125

where fij(D), qi(D) ∈ F2[D], i = 1, 2, . . . , b, j = 1, 2, . . . , c, and assume that

gcd(fi1(D), fi2(D), . . . , fic(D), qi(D)) = 1, i = 1, 2, . . . , b (2.372)

Then define G1(D, p) by

G1(D, p) =

pep(g1(D))

pep(g2(D))

. . .
pep(gb(D))

 [G(D)]p (2.373)

and G0(D, p) by
G(D) = G0(D, p) +G1(D, p) (2.374)

From (2.374) and (2.373) we have the following:

Lemma 2.59 Let G(D) be a b× c rational generator matrix and let p ∈ P∗. Then

(i) ep([G(D)]p) = 0 if and only if ep(G(D)) =
∑b
i=1 ep(gi(D))

(ii) ep([G(D)]p) 6= 0 if and only if ep(G(D)) >
∑b
i=1 ep(gi(D))

We are now well prepared to prove the following:

Theorem 2.60 LetG(D) be a b×c rational generator matrix with rowsg1(D), g2(D),
. . . , gb(D). Then the following statements are equivalent:

(i) G(D) is a canonical encoding matrix.

(ii) For all p ∈ P∗: ep(gi(D)) ≤ 0, 1 ≤ i ≤ b, and ep([G(D)]p) = 0.

(iii) For allp ∈ P∗: ep(gi(D)) ≤ 0, 1 ≤ i ≤ b, and ep(G(D)) =
∑b
i=1 ep(gi(D)).

(iv) For all p ∈ P∗: ep(gi(D)) ≤ 0, 1 ≤ i ≤ b, and intdef G(D) = extdef G(D).

(v) For all p ∈ P∗: ep(gi(D)) ≤ 0, 1 ≤ i ≤ b, and G(D) has the GPVP.

Proof : (i ⇒ ii). Assume that G(D) is canonical. Suppose that ep(gi(D)) ≤ 0
does not hold for some p ∈ P∗ and some i. Then, by Lemma 2.54, gi(D) is not
canonical, and, hence, G(D) is not canonical.

Suppose that ep([G(D)]p) = 0 does not hold for some p ∈ P∗. Then, by
Lemma 2.59, for any p ∈ P∗ such that ep([G(D)]p) = 0 does not hold, we have

ep(G(D)) >
b∑
i=1

ep(gi(D)) (2.375)

and for any p ∈ P∗ such that ep([G(D)]p) = 0 holds, we have

ep(G(D)) =
b∑
i=1

ep(gi(D)) (2.376)

126 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

Thus, by combining (2.375) and (2.376) we obtain

intdef G(D) = −
∑
p∈P∗

ep(G(D)) deg p < −
∑
p∈P∗

b∑
i=1

ep(gi(D)) deg p

=
b∑
i=1

− ∑
p∈P∗

ep(gi(D)) deg p

=

b∑
i=1

def gi(D) = extdef G(D) (2.377)

Hence, G(D) is not canonical.
(ii⇒ iii). Follows from Lemma 2.59.
(iii⇒ iv). Follows from (2.312) and (2.362).
(iv⇒ i). By Lemma 2.55, the hypothesis means that intdef G(D) is the overall

constraint length of G(D). Let Gc(D) be a canonical encoding matrix equivalent to
G(D). Then, from Theorem 2.58 it follows that intdef Gc(D) = intdef G(D). By (i
⇒ iv), intdef Gc(D) is the overall constraint length of Gc(D). Thus, intdef Gc(D)
is minimum over all equivalent generator matrices, and so is intdef G(D). Hence,
G(D) is canonical.

(ii ⇔ v). ep([G(D)]p) = 0 means that there exists at least one b × b minor of
[G(D)]p not divisible by p, which together with Corollary 2.57 completes the proof.

EXAMPLE 2.32

In Example 2.30 we showed that the rational encoding matrix

G(D) =

1

D

1 +D

1

1 +D

D2

1 +D +D2

1

1 +D +D2
1

 (2.378)

has the GPVP. Clearly, for all p ∈ P∗, ep(gi(D)) ≤ 0, i = 1, 2. Therefore
condition (v) in Theorem 2.60 is satisfied, and we conclude thatG(D) is canonical
and, hence, minimal.

EXAMPLE 2.33

The rational encoding matrix

G(D) =

1 0

1 +D2

1 +D +D2

D2

1 +D +D2

0 1
D2

1 +D +D2

1

1 +D +D2

 (2.379)

MINIMALITY VIA THE INVARIANT-FACTOR THEOREM* 127

has a (trivial) right inverse,
1 0
0 1
0 0
0 0

which is polynomial in bothD andD−1. Hence, from Theorem 2.37 (iv) it follows
that G(D) is minimal.

In Example 2.31 we showed that G(D) does not have the GPVP. Hence, from
Theorem 2.60 we conclude that G(D) is not canonical although it is minimal.

Corollary 2.61 Let C be a convolutional code. Then any canonical encoding matrix
of C has def C as its overall constraint length. Moreover, the number of memory
elements in any encoder of C is ≥ def C.

Proof : Let G(D) be a canonical encoding matrix of C. By Theorem 2.60 (iv),
intdef G(D) = extdef G(D). By (2.367) and (2.368) def C =

∑b
i=1 def gi(D) and

from Lemma 2.55 it follows that
∑b
i=1 def gi(D) is the overall constraint length of

G(D).

Among the rational generator matrices that encode a convolutional code, we have
singled out the class of canonical encoding matrices, which can be realized by the
least number of delay elements in controller canonical form among all equivalent
generator matrices. Thus the position of canonical encoding matrices within the
class of rational generator matrices corresponds to that of minimal-basic encoding
matrices within the class of polynomial generator matrices. The set of canonical
encoding matrices is a proper subset of the set of minimal rational encoding matrices.
This is a generalization of the previous result that the set of minimal-basic encoding
matrices is a proper subset of the set of minimal polynomial encoding matrices.

2.9 MINIMALITY VIA THE INVARIANT-FACTOR THEOREM*

In this section we will use the invariant-factor theorem with respect to both F2[D]
and F2[D−1] to derive a result on minimality of generator matrices. First, we state
the invariant-factor decomposition of a rational matrix introduced in Section 2.2 in
the following form, where for simplicity we assume that the rational matrix has full
rank.

Theorem 2.62 (Invariant-Factor Theorem) Let G(D) be a full-rank b× c rational
matrix, where b ≤ c. Then G(D) may be written as

G(D) = A(D)Γ(D)B(D) (2.380)

where A(D) and B(D) are, respectively, b× b and c× c matrices with unit determi-
nants and where Γ(D) is a diagonal matrix with diagonal elements γi(D), 1 ≤ i ≤ b,

128 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

called the invariant factors of G(D) relative to the ring F2[D]. The invariant factors
are uniquely determined by G(D) as

γi(D) = ∆i(D)/∆i−1(D) (2.381)

where ∆0(D) = 1 by convention and

∆i(D) =
∏
p∈P

pmin{ep(detMi(D))|Mi(D)∈Mi} (2.382)

whereMi is the set of i× i submatrices of G(D), 1 ≤ i ≤ b. Consequently,

b∏
i=1

γi(D) = ∆b(D) (2.383)

b∑
i=1

ep(γi(D)) = ep(∆b(D)), p ∈ P (2.384)

For all p in P , the invariant factors satisfy the divisibility property

ep(γi(D)) ≤ ep(γi+1(D)), 1 ≤ i < b (2.385)

It is easy to show that if G(D) is regarded as a matrix over F2(D−1), then
the invariant factors γ̃i(D−1) of G(D) with respect to F2[D−1] have the same p-
valuations as the invariant factors γi(D) for all p in P except for D. Therefore, it
makes sense to define the p-valuations of the invariant factors of G(D) for all p in
P∗ and all i by

γD,i = eD(γi(D)) if p = D (2.386)
γD−1,i = eD−1(γ̃i(D

−1)) if p = D−1 (2.387)
γp,i = ep(γi(D)) = ep(γ̃i(D

−1)) otherwise (2.388)

If we define ∆̃0(D−1) = 1 and

∆̃i(D
−1) =

∏
p∈P∗\{D}

pmin{ep(detMi(D
−1))|Mi(D

−1)∈Mi} (2.389)

then
γ̃i(D

−1) = ∆̃i(D
−1)/∆̃i−1(D−1) (2.390)

To simplify the computation of these p-valuations for small generator matrices we
define δp,0 = 0 for all p in P∗ and

δp,i = ep(∆i(D)), p ∈ P (2.391)

δD−1,i = eD−1(∆̃i(D
−1)) (2.392)

and then we have for all p in P∗ and 1 ≤ i ≤ b

γp,i = δp,i − δp,i−1 (2.393)

MINIMALITY VIA THE INVARIANT-FACTOR THEOREM* 129

which implies

δp,b =
b∑
i=1

γp,i (2.394)

Remark: We can now recognize that for p ∈ P

ep(G(D)) = min {ep(detMb(D)) |Mb(D) ∈Mb}
= ep(∆b(D)) = δp,b (2.395)

and

eD−1(G(D)) = min
{
eD−1(detMb(D

−1)) |Mb(D
−1) ∈Mb

}
= eD−1(∆̃b(D

−1)) = δD−1,b (2.396)

Thus, the internal defect can be computed directly from the p-valuations of the
invariant factors of G(D) by

intdef G(D) = −
∑
p∈P∗

δp,b deg p = −
∑
p∈P∗

(
b∑
i=1

γp,i

)
deg p (2.397)

Now we have the following theorem:

Theorem 2.63 LetG(D) be a b×c rational generator matrix. ThenG(D) is minimal
if and only if γp,b ≤ 0 for all p in P∗.

Proof : If G(D) is minimal, then Theorem 2.37 (v) implies that a polynomial
output sequence u(D)G(D) must be generated by a polynomial input sequence
u(D), and an output sequence u(D−1)G(D−1) that is polynomial in D−1 must be
generated by an input sequence u(D−1) that is polynomial in D−1. Let G(D) =
A(D)Γ(D)B(D) be an invariant-factor decomposition of G(D); then G−1(D) =
B−1(D)Γ−1(D)A−1(D) is a right inverse of G(D), where A−1(D) and B−1(D)
are polynomial sinceA(D) andB(D) have unit determinants. Suppose that γp,b > 0
for some p in P . Then u(D) = (0 0 . . . 1/p)A−1(D) is nonpolynomial (since
u(D)A(D) is nonpolynomial), but u(D)G(D) is polynomial and we have a contra-
diction. Using the invariant-factor theorem with respect to F2[D−1], we can show a
similar contradiction if γD−1,b > 0.

Conversely, assume that γp,b ≤ 0 for p in P . Then γp,i ≤ 0 since, by the
invariant-factor theorem, γp,i ≤ γp,b for i ≤ b. Hence, if γp,b ≤ 0 for all p in P ,
Γ−1(D) is polynomial, and thenG−1(D) = B−1(D)Γ−1(D)A−1(D) is the desired
polynomial right inverse of G(D). Similarly, if also γD−1,b ≤ 0, then Γ−1(D−1) is
polynomial in D−1, and the invariant-factor theorem with respect to F2[D−1] yields
an F2[D−1]-inverse of G(D). The minimality of G(D) follows immediately from
Theorem 2.37.

130 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

Remark: The condition that γp,b ≤ 0 for p = D is equivalent to the condition that
no nontrivial zero-output (encoder) state transition starting from the zero state occurs
in the minimal state realization of G(D) when it is used as a state realization of C.
Similarly, the condition γp,b ≤ 0 for p = D−1 is equivalent to the condition that
there is no nontrivial zero-output state transition ending in the zero state. Finally, the
condition γp,b ≤ 0 for all other p ∈ P∗ is equivalent to the condition that there is no
nontrivial infinite zero-output state path (the “noncatastrophic” condition).

EXAMPLE 2.34

Let

G(D) =

(
1 0
D 1

)
(2.398)

be an encoding matrix over F2. Then the 1× 1 minors of G(D) are {1, 0, D, 1},
and the 2 × 2 minor is the determinant detG(D) = 1. The greatest common
polynomial divisor of the 1× 1 minors is 1, so δp,1 = 0 for all p ∈ P . However,
the maximum degree of the 1 × 1 minors is 1, so it follows that δD−1,1 = −1.
Since detG(D) = 1, we have δp,2 = 0 for all p ∈ P∗. Therefore,

γp,2 = δp,2 − δp,1 =

{
0, p ∈ P
1, p = D−1

(2.399)

so G(D) is not minimal.
Indeed, G(D) does have an F2[D]-inverse, namely, its unique inverse

G−1(D) =

(
1 0
D 1

)
(2.400)

but G−1(D) is not an F2[D−1]-matrix, so G(D) has no F2[D−1]-inverse.

EXAMPLE 2.35

Let

G(D) =

1

D

1 +D

1

1 +D

D2

1 +D +D2

1

1 +D +D2
1

 (2.401)

be an encoding matrix over F2. The greatest common divisor of the 1×1 minors of
G(D) is ∆1(D) = 1/(1+D3) and that of the 2×2 minors is ∆2(D) = 1/(1+D3).
Therefore, γ2(D) = ∆2(D)/∆1(D) = 1.
G(D) can also be written as a rational matrix in D−1, viz.,

G(D) =

1

1

1 +D−1

D−1

1 +D−1

1

1 +D−1 +D−2

D−2

1 +D−1 +D−2
1

 (2.402)

SYNDROME FORMERS AND DUAL ENCODERS 131

We have, similarly, ∆̃1(D−1) = 1/(1 + D−3) and ∆̃2(D−1) = 1/(1 + D−3).
Therefore, we also have γ2(D−1) = 1. Thus, γp,2 = 0 for all p ∈ P∗. By
Theorem 2.63, G(D) is minimal.

Corollary 2.64 Let G(D) be a minimal b × c rational generator matrix with rows
g1(D), g2(D), . . . , gb(D). Then

ep(gi(D)) ≤ 0, 1 ≤ i ≤ b, all p ∈ P∗ (2.403)

Proof : Suppose that ep(gj(D)) > 0 for some j with 1 ≤ j ≤ b and p in
P . Then u(D) = (0 . . . 0 1/p 0 . . . 0), where 1/p is in the jth position, is non-
polynomial, but u(D)G(D) is polynomial. Similarly, if eD−1(gj(D)) > 0, then
u(D−1) = (0 . . . 0 1/D−1 0 . . . 0) is nonpolynomial inD−1, but u(D−1)G(D−1)
is polynomial in D−1. Hence, Theorem 2.37 (v) implies that G(D) is nonminimal,
which is a contradiction.

It is easily seen that the converse of Corollary 2.64 does not hold; for example,
the basic encoding matrix (cf. Example 2.22)

G(D) =

(
1 +D D
D 1 +D

)
(2.404)

is not minimal, although its rows satisfy (2.403).
By combining Theorems 2.48 and 2.60 (v) and Corollary 2.64, we have the

following:

Corollary 2.65 Let G(D) be a b × c rational generator matrix with rows g1(D),
g2(D), . . . , gb(D). Then G(D) is canonical if and only if it is minimal and has the
GPVP.

The encoding matrix given in Example 2.33 is minimal but does not have the
GPVP. Hence, it is not canonical. But the encoding matrix given in Example 2.35 is
both minimal and has the GPVP (cf. Example 2.30) and, hence, canonical.

We have shown that canonicality is the intersection of two independent properties:
minimality and the global predictable valuation property. A minimal encoding matrix
need not have the GPVP, and a matrix with the GPVP need not be minimal.

2.10 SYNDROME FORMERS AND DUAL ENCODERS

We will now use the invariant-factor decomposition of a rational convolutional gen-
erator matrix to construct generator matrices for a dual code.

Let G(D) = A(D)Γ(D)B(D). In Section 2.4 we have shown that the first b
rows of the c × c polynomial matrix B(D) can be taken as a basic encoding matrix
G′(D) equivalent toG(D). A polynomial right inverseG′−1(D) consists of the first
b columns of B−1(D). Let HT(D), where T denotes transpose, be the last c − b

132 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

columns ofB−1(D). Then the last c−b rows ofB(D), which is a (c−b)×cmatrix,
is a left inverse of HT(D). Thus, the transpose of the matrix formed by the last c− b
rows of B(D) is a right inverse of H(D) and can be denoted H−1(D). Hence, the
last c− b rows of B(D) can be denoted (H−1(D))T. Summarizing, we have

B(D) =

(
G′(D)

(H−1(D))T

)
(2.405)

and
B−1(D) = (G′−1(D)HT(D)) (2.406)

The matrix HT(D) has full rank and is both realizable and delayfree.
Let g′(D) be a row among the first b in B(D). Since HT(D) consists of the last

c− b columns in B−1(D), it follows that

g′(D)HT(D) = 0 (2.407)

Then for each codeword v(D) = u(D)G′(D) we have

v(D)HT(D) = u(D)G′(D)HT(D) = 0 (2.408)

Conversely, suppose that v(D)HT(D) = 0. Since rank HT(D) = c − b, it follows
from (2.407) that v(D) is a linear combination of the first b rows of B(D) with
Laurent series as coefficients, say v(D) = u(D)G′(D). Thus, v(D) is a codeword.
It follows that the output of the c-input, (c−b)-output linear sequential circuit, whose
transfer function is the polynomial matrixHT(D), is the allzero sequence if and only
if the input sequence is a codeword of the code C encoded by G(D). Thus, C could
equally well be defined as the sequences v(D) such that

v(D)HT(D) = 0 (2.409)

or the null space of HT(D).
We call the matrix H(D) the parity-check matrix and the matrix HT(D) the

syndrome former corresponding to G(D) = A(D)Γ(D)B(D). In general, any
c× (c−b) realizable, delayfree transfer function matrix ST(D) of rank c−b is called
a syndrome former of C if

G(D)ST(D) = 0 (2.410)

The syndrome former HT(D) can be expanded as

HT(D) = HT
0 +HT

1D + · · ·+HT
ms
Dms (2.411)

whereHT
i , 0 ≤ i ≤ ms, is a c× (c−b) matrix andms is the memory of the syndrome

former. In general, the memory of a syndrome former is not equal to the memory of
the generator matrix G(D).

Using (2.411), we can write equation (2.409) as

vtH
T
0 + vt−1H

T
1 + · · ·+ vt−msH

T
ms

= 0, t ∈ Z (2.412)

SYNDROME FORMERS AND DUAL ENCODERS 133

For causal codewords v = v0 v1 v2 . . . we have equivalently

vHT = 0 (2.413)

where

HT =

 HT
0 HT

1 . . . HT
ms

HT
0 HT

1 . . . HT
ms

.

 (2.414)

is a semi-infinite syndrome former matrix corresponding to the semi-infinite generator
matrixG given in (1.91). Clearly, we have

GHT = 0 (2.415)

EXAMPLE 2.36

For the basic encoding matrix G(D) whose encoder is illustrated in Fig. 2.9 we
have (Example 2.4)

B−1(D) =

 0 1 +D +D2 1 +D +D2 +D3

0 D +D2 1 +D2 +D3

1 1 +D2 1 +D +D3

 (2.416)

Hence, we have the syndrome former

HT(D) =

 1 +D +D2 +D3

1 +D2 +D3

1 +D +D3

 (2.417)

whose controller canonical form is illustrated in Fig. 2.17. Its observer canonical
form is much simpler (Fig. 2.18).

v(3)

v(2)

v(1)

z

Figure 2.17 The controller canonical form of the syndrome former in Example 2.36.

134 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

z

v(3)

v(2)

v(1)

Figure 2.18 The observer canonical form of the syndrome former in Example 2.36.

The corresponding semi-infinite syndrome former matrix is

HT =

1 1 1 1
1 0 1 1
1 1 0 1

1 1 1 1
1 0 1 1
1 1 0 1

.

(2.418)

We notice that in the previous example the observer canonical form of the syn-
drome former requires exactly the same number of memory elements as the controller
canonical form of the corresponding minimal-basic encoding matrix G(D). Before
we prove that this holds in general, we shall consider H(D) as a generator matrix.

Definition The dual code C⊥ to a convolutional code C is the set of all c-tuples of
sequences v⊥ such that the inner product

(v,v⊥)
def
= v(v⊥)T (2.419)

is zero, that is, v and v⊥ are orthogonal, for all finite v in C.

The dual code C⊥ to a rate R = b/c convolutional code is a rate R = (c − b)/c
convolutional code.

Theorem 2.66 Let the rate R = b/c convolutional code C be generated by the semi-
infinite generator matrix G and the rate R = (c − b)/c dual code C⊥ be generated
by the semi-infinite generator matrixG⊥, whereG is given in (1.91) and

G⊥ =

 G⊥0 G⊥1 . . . G⊥m⊥
G⊥0 G⊥1 . . . G⊥m⊥

.

 (2.420)

Then
G(G⊥)T = 0 (2.421)

SYNDROME FORMERS AND DUAL ENCODERS 135

Proof : Let v = uG and v⊥ = u⊥G⊥, where v and v⊥ are orthogonal. Then we
have

v(v⊥)T = uG(u⊥G⊥)T = uG(G⊥)T(u⊥)T = 0 (2.422)

and (2.421) follows.

The concept of a dual convolutional code is a straightforward generalization of the
corresponding concept for block codes (see Section 1.2). For convolutional codes,
we also have a closely related concept:

Definition The convolutional dual code C⊥ to a convolutional code C, which is
encoded by the rate R = b/c generator matrix G(D), is the set of all codewords
encoded by any rate R = (c− b)/c generator matrix G⊥(D) such that

G(D)GT
⊥(D) = 0 (2.423)

Consider a rate R = b/c convolutional code C encoded by the polynomial gener-
ator matrix

G(D) = G0 +G1D + · · ·+GmD
m (2.424)

Let G̃⊥(D) denote the rate R = (c− b)/c polynomial generator matrix

G̃⊥(D) = G⊥m⊥ +G⊥m⊥−1D + · · ·+G0D
m⊥ (2.425)

which is the reciprocal of the generator matrix

G⊥(D) = G⊥0 +G⊥1 D + · · ·+G⊥m⊥D
m⊥ (2.426)

for the dual code C⊥. Then we have

G(D)(G̃⊥(D))T = G0(G⊥m⊥)T + (G0(G⊥m⊥−1)T +G1(G⊥m⊥)T)D

+ · · ·+Gm(G⊥0)TDm+m⊥

=

 m⊥∑
j=−m

(
m∑
i=0

Gi(G
⊥
i+j)

T

)Dm+j = 0 (2.427)

where the last equality follows from (2.421).
Let C̃⊥ be the reversal of the dual code C⊥, that is, the rate R = (c − b)/c

convolutional code encoded by G̃⊥(D). Then, we have the following theorem:

Theorem 2.67 The convolutional dual to the code encoded by the generator matrix
G(D) is the reversal of the convolutional code dual to the code encoded by G(D),
that is, if C is encoded by G(D), then

C⊥ = C̃⊥ (2.428)

Remark: Often the convolutional dual code C⊥ is simply called the dual of C, which
could cause confusion since it is in general not equal to C⊥.

136 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

It follows from (2.408) and (2.423) that the transpose of the syndrome former for
the code C can be used as a generator matrix for the convolutional dual code C⊥; that
is, we may take

G⊥(D) = H(D) (2.429)

and, equivalently, the transpose of the reciprocal of the syndrome former for the code
C can be used as a generator matrix for the dual code C⊥; that is, we may take

G⊥(D) = H̃(D) (2.430)

EXAMPLE 2.37

Let the rate R = 2/3 encoding matrix G(D) in Example 2.4 encode the code
C. Two realizations of its syndrome former HT(D) are shown in the previous
example. The convolutional dual code is encoded by the rate R = 1/3 encoding
matrix

H(D) = (1 +D +D2 +D3 1 +D2 +D3 1 +D +D3) (2.431)

whose controller canonical form is illustrated in Fig. 2.19.

u

v(3)

v(2)

v(1)

Figure 2.19 The controller canonical form of the encoding matrix for the convolutional dual
code in Example 2.37.

The following lemma leads to an important theorem relating a code to its convo-
lutional dual code.

Lemma 2.68 Let i1, i2, . . . , ic be a permutation of 1, 2, . . . , c. Then the b × b
subdeterminant of the basic encoding matrix G′(D) formed by the i1, i2, . . . , ib
columns is equal to the (c − b) × (c − b) subdeterminant of the syndrome former
HT(D) formed by the ib+1, ib+2, . . . , ic rows.

Proof : It is sufficient to consider the case that i1 = 1, i2 = 2, . . . , ic = c. Recall
that G′(D) is the first b rows of B(D) and that HT(D) is the last (c− b) columns of
B−1(D). Write

B(D) =

(
B11(D) B12(D)
B21(D) B22(D)

)
(2.432)

SYNDROME FORMERS AND DUAL ENCODERS 137

and

B−1(D) =

(
B′11(D) B′12(D)
B′21(D) B′22(D)

)
(2.433)

where
G′(D) = (B11(D) B12(D)) (2.434)

and

HT(D) =

(
B′12(D)
B′22(D)

)
(2.435)

where B11(D) is a b× b matrix and B22(D) is a (c− b)× (c− b) matrix. Consider
the matrix product(

B11(D) B12(D)
0 Ic−b

)(
B′11(D) B′12(D)
B′21(D) B′22(D)

)
=

(
Ib 0

B′21(D) B′22(D)

)
(2.436)

Taking the determinants, we have

det(B11(D)) det(B−1(D)) = det(B′22(D)) (2.437)

Since det(B−1(D)) = 1, we have now shown that the leftmost subdeterminant of
G′(D) is equal to the lower subdeterminant of HT(D).

Theorem 2.69 IfG(D) is a minimal-basic encoding matrix with maximum degree µ
among its b×b subdeterminants, then the convolutional dual code has a minimal-basic
encoding matrix H(D) with overall constraint length µ.

Proof : Follows directly from Theorems 2.20 and 2.22, the Corollary 2.23, and
Lemma 2.68.

Since µ = ν for a minimal-basic encoding matrix we have the next corollary.

Corollary 2.70 IfG(D) is a minimal-basic encoding matrix for a convolutional code
C and H(D) is a minimal-basic encoding matrix for the convolutional dual code C⊥,
then

{abstract states of G(D) } = # {abstract states of H(D) } (2.438)

If we connect the encoder outputs directly to the syndrome former input, then the
output of the syndrome former will be the allzero sequence. From this it follows that
a close connection exists between the abstract states of a generator matrix and the
abstract states of its syndrome former:

Theorem 2.71 Let the output of the encoder with generator matrix G(D) drive its
syndrome former HT(D). Then, whenever the abstract state of G(D) is s(D), the
abstract state of HT(D) will be ss(D) = s(D)HT(D).

138 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

Proof : Let u(D) be the input of G(D) associated with the abstract state s(D), that
is, s(D) = u(D)PG(D)Q, and let v(D) be the output when we truncate the input
at time zero, that is, v(D) = u(D)PG(D). Then it follows that s(D) = v(D)Q.
Since v(D) is a codeword, we have (2.409) v(D)HT(D) = 0. Using P + Q = 1
we get

0 = v(D)HT(D) = v(D)HT(D)Q = v(D)(P +Q)HT(D)Q

= v(D)PHT(D)Q+ v(D)QHT(D)Q

= v(D)PHT(D)Q+ s(D)HT(D)Q

= ss(D) + s(D)HT(D) (2.439)

where ss(D) = v(D)PHT(D)Q is the abstract state of the syndrome former corre-
sponding to the input v(D).

Corollary 2.72 Assume that both the encoding matrix G(D) of a convolutional
code and the encoding matrix H(D) of its convolutional dual code are minimal-
basic. Then the abstract state spaces of the encoding matrix G(D) and its syndrome
former HT(D) are isomorphic under the map

s(D) 7→ ss(D) = s(D)HT(D) (2.440)

Proof : Following the notation of Theorem 2.71, it is clear that

s(D) 7→ ss(D) = s(D)HT(D) (2.441)

is a well-defined linear map from the abstract state space of G(D) to that of HT(D).
By Lemma 2.32, the map is injective. Furthermore, we have

{abstract states of G(D)} = # {abstract states of H(D)}
= # {encoder states of the controller canonical form of H(D)}
= # {states of the observer canonical form of HT(D)}
= # {abstract states of HT(D)} (2.442)

Therefore, the map is also surjective. Hence, we have an isomorphism.

Suppose that the codeword v(D), where v(D) = u(D)G(D), is transmitted over
a noisy additive, memoryless channel. Let r(D) be the received sequence. Then

r(D) = v(D) + e(D) (2.443)

where e(D) is the error sequence. If we pass the received sequence through the
syndrome former HT(D), we obtain the syndrome

z(D) = r(D)HT(D) = (v(D) + e(D))HT(D) = e(D)HT(D) (2.444)

We notice that the syndrome is 0 if and only if the error sequence is a codeword.
Furthermore, the syndrome is independent of the transmitted codeword—it depends
only on the error sequence. If we use a syndrome former, then the decoding rule can
be simply a map from the syndromes to the apparent errors ê(D).

SYSTEMATIC CONVOLUTIONAL ENCODERS 139

2.11 SYSTEMATIC CONVOLUTIONAL ENCODERS

Systematic convolutional generator matrices are in general simpler to implement
than general generator matrices. They have trivial right inverses, but unless we use
rational generator matrices (i.e., allow feedback in the encoder), they are in general
less powerful when used together with maximum-likelihood decoding.

Since a systematic generator matrix has a submatrix that is a b× b identity matrix,
we immediately have the following:

Theorem 2.73 A systematic generator matrix is a systematic encoding matrix.

EXAMPLE 2.38

Consider the rate R = 2/3 systematic convolutional encoder with the basic
encoding matrix

G(D) =

(
1 0 1 +D2

0 1 1 +D +D2

)
(2.445)

In Figs. 2.20 and 2.21, we show the controller canonical form and the observer
canonical form, respectively.

u(2)

u(1)

v(3)

v(1)

v(2)

Figure 2.20 The controller canonical form of the systematic encoder in Example 2.38.

From Theorem 2.17 and equation (2.40) it follows that every basic encoding matrix
has the greatest common divisor of all b × b minors equal to 1. Thus, it must have
some b× b submatrix whose determinant is a delayfree polynomial, since otherwise
all subdeterminants would be divisible by D. Premultiplication by the inverse of
such a submatrix yields an equivalent systematic encoding matrix, possibly rational.
Thus, we have the following:

140 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

u(1) v(1)

u(2) v(2)

v(3)

Figure 2.21 The observer canonical form of the systematic encoder in Example 2.38.

Theorem 2.74 Every convolutional generator matrix is equivalent to a systematic
rational encoding matrix.

Remark: If the determinant of the leftmost b × b submatrix of G(D) is not a
delayfree polynomial, then we can always, by permuting the columns of G(D), find
a weakly equivalent generator matrix G′(D) whose leftmost b × b submatrix has a
determinant which is a delayfree polynomial, where G′(D) encodes an equivalent
code. Hence, without loss of generality we can write a systematic encoding matrix
G(D) = (IbR(D)).

EXAMPLE 2.39

Consider the rate R = 2/3 nonsystematic convolutional encoder illustrated in
Fig. 2.9. It has the minimal-basic encoding matrix

G(D) =

(
1 +D D 1
D2 1 1 +D +D2

)
(2.446)

with µ = ν = 3. Let T (D) be the matrix consisting of the first two columns of
G(D):

T (D) =

(
1 +D D
D2 1

)
(2.447)

We have det(T (D)) = 1 +D +D3, and

T−1(D) =
1

1 +D +D3

(
1 D
D2 1 +D

)
(2.448)

MultiplyingG(D) byT−1(D) yields a systematic encoding matrixGsys(D) equiv-
alent to G(D):

Gsys(D) = T−1(D)G(D)

=
1

1 +D +D3

(
1 D
D2 1 +D

)(
1 +D D 1
D2 1 1 +D +D2

)

=

1 0

1 +D +D2 +D3

1 +D +D3

0 1
1 +D2 +D3

1 +D +D3

 (2.449)

SYSTEMATIC CONVOLUTIONAL ENCODERS 141

Its realization requires a linear sequential circuit with feedback and µ = 3 memory
elements as shown in Fig. 2.22.

The systematic encoding matrix in the previous example was realized with the same
number of memory elements as the equivalent minimal-basic encoding matrix (Ex-
ample 2.17). Hence, it is a minimal encoding matrix.

u(1) v(1)

u(2) v(2)

v(3)

Figure 2.22 The observer canonical form of the systematic encoding matrix in Example 2.39.

Every systematic encoding matrix (2.29),

G(D) = (IbR(D)) (2.450)

where Ib is a b × b identity matrix and R(D) is a b × (c − b) matrix whose entries
are rational functions of D, has a trivial right inverse, viz., the c× b matrix

G−1(D) =

(
Ib
0

)
(2.451)

which is polynomial in both D and D−1. Hence, it follows from Theorem 2.37 that
this minimality holds in general:

Theorem 2.75 Every systematic encoding matrix is minimal.

EXAMPLE 2.40

Consider the rate R = 2/4 minimal-basic encoding matrix

G(D) =

(
1 +D D 1 D
D 1 D 1 +D

)
(2.452)

with µ = ν = 2. Let

T (D) =

(
1 +D D
D 1

)
(2.453)

Then, we have

T−1(D) =
1

1 +D +D2

(
1 D
D 1 +D

)
(2.454)

142 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

and

Gsys(D) = T−1(D)G(D)

=
1

1 +D +D2

(
1 D
D 1 +D

)(
1 +D D 1 D
D 1 D 1 +D

)

=

1 0

1 +D2

1 +D +D2

D2

1 +D +D2

0 1
D2

1 +D +D2

1

1 +D +D2

 (2.455)

Gsys(D) has neither a minimal controller canonical form nor a minimal observer
canonical form, but by a standard minimization method for sequential circuits
[Lee78] we obtain the minimal realization shown in Fig. 2.23. (This minimization
is described in Appendix A.)

u(1) v(1)

u(2) v(2)

v(3)

v(4)

Figure 2.23 A minimal realization of the systematic encoding matrix in Example 2.40.

Consider the c× 1 polynomial syndrome former

HT(D) =

hT

1(D)
hT

2(D)
...

hT
c (D)

 (2.456)

with
gcd(hT

1(D), hT
2(D), . . . , hT

c (D)) = 1 (2.457)

for a rate R = (c − 1)/c convolutional code C. From (2.457) it follows that at
least one of the polynomials hT

i (D) is delayfree. We can without loss of essential
generality assume that hT

c (D) is delayfree. Then we can rewrite (2.409) as

(v(1)(D) v(2)(D) . . . v(c)(D))

hT

1(D)
hT

2(D)
...

hT
c (D)

 = 0 (2.458)

SYSTEMATIC CONVOLUTIONAL ENCODERS 143

which can be used to construct a systematic encoder as follows.
Assume that the first c − 1 output sequences are identical to the c − 1 input

sequences; that is,

v(i)(D) = u(i)(D), i = 1, 2, . . . , c− 1 (2.459)

Inserting (2.459) in (2.458) gives the following expression for determining the last
output sequence

v(c)(D) =
(
hT
c (D))−1(u(1)(D)hT

1(D) + · · ·+ u(c−1)(D)hT
c−1(D)

)
(2.460)

Hence, we have
v(D) = u(D)Gsys(D) (2.461)

where

Gsys(D) =

1 hT

1(D)/hT
c (D)

1 hT
2(D)/hT

c (D)
. . .

...
1 hT

c−1(D)/hT
c (D)

 (2.462)

is a (c− 1)× c systematic rational encoding matrix for the code C obtained directly
from the syndrome former HT(D). Gsys(D) is realizable since hT

c (D) is assumed to
be delayfree.

EXAMPLE 2.36 (Cont’d)

The syndrome former corresponding to the generator matrixG(D) given in (2.446)
was determined in Example 2.36:

HT(D) =

hT

1(D)
hT

2(D)
...

hT
c (D)

 =

 1 +D +D2 +D3

1 +D2 +D3

1 +D +D3

 (2.463)

By inserting (2.463) in (2.462) we again obtain the systematic encoding matrix
given in (2.449).

Only a slight modification of the syndrome former in Fig. 2.18 is required to
obtain the observer canonical form of the systematic encoding matrix in Fig. 2.22.

Next we consider the c× (c− b) polynomial syndrome former

HT(D) =

hT

11(D) hT
12(D) . . . hT

1(c−b)(D)

hT
21(D) hT

22(D) . . . hT
2(c−b)(D)

. .
hT
c1(D) hT

c2(D) . . . hT
c(c−b)(D)

 (2.464)

144 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

for a rate R = b/c convolutional code C. Assume that H(D) is an encoding matrix
for the convolutional dual code C⊥; then H(0) has full rank and there exists a
(c − b) × (c − b) submatrix of H(0) whose determinant is 1. It follows that the
determinant of the same submatrix of H(D) is a delayfree polynomial and, thus, has
a realizable inverse. Assume without loss of essential generality that this submatrix
consists of the last (c− b) rows in HT(D).

We can now construct a systematic rational encoding matrix for C from (2.409) as
follows.

Assume that the first b output sequences are identical to the b input sequences;
that is,

v(i)(D) = u(i)(D), i = 1, 2, . . . , b (2.465)

Inserting (2.465) into (2.409) where HT(D) is given by (2.464) gives

(u(1)(D)u(2)(D) . . . u(b)(D) v(b+1)(D) v(b+2)(D) . . . v(c)(D))

×

hT

11(D) hT
12(D) . . . hT

1(c−b)(D)

hT
21(D) hT

22(D) . . . hT
2(c−b)(D)

. .
hT
c1(D) hT

c2(D) . . . hT
c(c−b)(D)

 = 0 (2.466)

or, equivalently,

(v(b+1)(D) v(b+2)(D) . . . v(c)(D))

×

hT

(b+1)1(D) hT
(b+1)2(D) . . . hT

(b+1)(c−b)(D)

hT
(b+2)1(D) hT

(b+2)2(D) . . . hT
(b+2)(c−b)(D)

. .
hT
c1(D) hT

c2(D) . . . hT
c(c−b)(D)

=
(
u(1)(D)u(2)(D) . . . u(b)(D)

)

×

hT

11(D) hT
12(D) . . . hT

1(c−b)(D)

hT
21(D) hT

22(D) . . . hT
2(c−b)(D)

. .
hT
b1(D) hT

b2(D) . . . hT
b(c−b)(D)

 (2.467)

Then we have

(
v(b+1)(D) v(b+2)(D) . . . v(c)(D)

)
=
(
u(1)(D)u(2)(D) . . . u(b)(D)

)
H ′(D) (2.468)

SYSTEMATIC CONVOLUTIONAL ENCODERS 145

where

H ′(D) =

hT

11(D) hT
12(D) . . . hT

1(c−b)(D)

hT
21(D) hT

22(D) . . . hT
2(c−b)(D)

. .
hT
b1(D) hT

b2(D) . . . hT
b(c−b)(D)

×

hT

(b+1)1(D) hT
(b+1)2(D) . . . hT

(b+1)(c−b)(D)

hT
(b+2)1(D) hT

(b+2)2(D) . . . hT
(b+2)(c−b)(D)

. .
hT
c1(D) hT

c2(D) . . . hT
c(c−b)(D)

−1

(2.469)

is a b × (c − b) realizable rational matrix. Thus, we have a rational systematic
encoding matrix for the convolutional code C,

Gsys(D) = (Ib H ′(D)) (2.470)

where H ′(D) is given in equation (2.469).

EXAMPLE 2.41

The rate R = 2/4 minimal-basic encoding matrix (2.452) in Example 2.40 has
the Smith form decomposition

G(D) = A(D)Γ(D)B(D)

=

(
1 0
D 1

)(
1 0 0 0
0 1 0 0

)

×

1 +D D 1 D
D2 1 +D2 0 1 +D +D2

1 1 0 0
0 0 0 1

 (2.471)

and, hence,

B−1(D) =

0 1 1 +D2 1 +D +D2

0 1 D2 1 +D +D2

1 1 1 +D +D2 1 +D2

0 0 0 1

 (2.472)

Since the syndrome former is the last c− b columns of B−1(D) (2.406), we have

HT(D) =

1 +D2 1 +D +D2

D2 1 +D +D2

1 +D +D2 1 +D2

0 1

 (2.473)

The encoding matrix for the convolutional dual code C⊥, viz.,

H(D) =

(
1 +D2 D2 1 +D +D2 0

1 +D +D2 1 +D +D2 1 +D2 1

)
(2.474)

146 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

is not minimal-basic; [H(D)]h does not have full rank. Since H(D) is obtained
from the unimodular matrix B(D), it is basic and, hence, we can apply our
minimization algorithm (Algorithm MB, given in Section 2.5) and obtain an
equivalent minimal-basic encoding matrix for the convolutional dual code C⊥,

Hmb(D) =

(
1 D 1 +D D
D 1 +D D 1

)
(2.475)

The (c − b) × (c − b) matrix formed by last two rows of HT
mb(0) has full rank,

which implies that the determinant of the same submatrix ofHT
mb(D) is a delayfree

polynomial and, thus, has a realizable inverse. Hence, we have from (2.468) that(
v(3)(D) v(4)(D)

)
=
(
u(1)(D)u(2)(D)

)(1 D
D 1 +D

)(
1 +D D
D 1

)−1

=
(
u(1)(D)u(2)(D)

)
1 +D2

1 +D +D2

D2

1 +D +D2

D2

1 +D +D2

1

1 +D +D2

 (2.476)

Finally, we have the following systematic rational encoding matrix obtained via
the syndrome former:

Gsys(D) =

1 0

1 +D2

1 +D +D2

D2

1 +D +D2

0 1
D2

1 +D +D2

1

1 +D +D2

 (2.477)

which is identical to (2.455).

Next we consider the following construction of a systematic encoder for a convo-
lutional code. Let the last c − b rows of HT

0 in (2.412) form the (c − b) × (c − b)
identity matrix. Then the code symbols v = v

(1)
t v

(2)
t . . . v

(c)
t at time t determined by

v
(j)
t = u

(j)
t , j = 1, 2, . . . , b

v
(j)
t =

b∑
k=1

v
(k)
t h

T(k,j−b)
0

+

ms∑
i=1

c∑
k=1

v
(k)
t−ih

T(k,j−b)
i , j = b+ 1, b+ 2, . . . , c

(2.478)

satisfy (2.412). The encoder for this convolutional code can be implemented by c
shift registers of lengthms with tap weights corresponding to the entries hT(k,j−b)

i of
the matrix HT

i . It is a syndrome (former) realization of a convolutional encoder. The
overall constraint length of the encoder, that is, the number of binary symbols which
the encoder keeps in its memory, is at most cms.

SYSTEMATIC CONVOLUTIONAL ENCODERS 147

EXAMPLE 2.41 (Cont’d)

The syndrome encoder based on the minimal-basic parity-check matrix Hmb(D)
given by (2.475) has memory ms = 1 and can be derived from the syndrome
former

HT
mb(D) =

1 D
D 1 +D

1 +D D
D 1

 =

1 0
0 1
1 0
0 1

︸ ︷︷ ︸

HT
0

+

0 1
1 1
1 1
1 0

︸ ︷︷ ︸

HT
1

D (2.479)

According to (2.478) its code tuples vt = v
(1)
t v

(2)
t v

(3)
t v

(4)
t satisfy

v
(1)
t = u

(1)
t

v
(2)
t = u

(2)
t

v
(3)
t = v

(1)
t h

T(1,1)
0 + v

(2)
t h

T(2,1)
0

+v
(1)
t−1h

T(1,1)
1 + v

(2)
t−1h

T(2,1)
1 + v

(3)
t−1h

T(3,1)
1 + v

(4)
t−1h

T(4,1)
1

v
(4)
t = v

(1)
t h

T(1,2)
0 + v

(2)
t h

T(2,2)
0

+v
(1)
t−1h

T(1,2)
1 + v

(2)
t−1h

T(2,2)
1 + v

(3)
t−1h

T(3,2)
1 + v

(4)
t−1h

T(4,2)
1

(2.480)

A shift register realization of the systematic rate R = 2/4 encoder for the con-
volutional code based on the syndrome former (2.479) with memory ms = 1, is
shown in Fig. 2.24.

We have described a particular syndrome realization of the encoder. Such a realiza-
tion is far from being minimal. Another, less complex, realization of a convolutional
encoder is the partial syndrome realization [PJS08].

A partial syndrome encoder keeps at time t in its memory the partial syndrome

pt =
(
pt1 pt2 . . . ptms

)
(2.481)

where pti = (p
(1)
ti p

(2)
ti . . . p

(c−b)
ti), i = 1, 2, . . . ,ms; that is, only (c − b)ms bits

instead of cms bits are stored. We consider pt to be the state of the partial syndrome
encoder at time t.

148 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

u
(1)
t

u
(2)
t

v
(1)
t

v
(2)
t

v
(3)
t

v
(4)
t

Figure 2.24 Realization of a systematic syndrome encoder for the convolutional code
specified by (2.445).

To obtain a recursion for the partial syndrome we truncate the infinite syndrome
former HT (2.414) after the row that starts with HT

0 at time t, that is, we obtain

time: t− 1 t t+ 1 . . . t+ms

HT
tr =

. . . HT
ms

. . .
... HT

ms

. . .
... . . . HT

ms

. . . HT
1 HT

2 . . .
. . .

. . . HT
0 HT

1 HT
2 . . . HT

ms

HT
0 HT

1 HT
ms

(2.482)

Consider the triangle in (2.482). At time t we define the partial syndrome pt =
(pt1 pt2 . . . ptms

) as

pt1 = vt−1H
T
1 + vt−2H

T
2 + · · ·+ vt−ms+1H

T
ms−1 + vt−msH

T
ms

pt2 = vt−1H
T
2 + vt−2H

T
3 + · · ·+ vt−ms+1H

T
ms

...
ptms

= vt−1H
T
ms

(2.483)

SYSTEMATIC CONVOLUTIONAL ENCODERS 149

If we slide the triangle one step backwards along the 45◦ slope to time t − 1, its
bottom row will start with HT

1 . Then we obtain its second component of the partial
syndrome pt−1 as

p(t−1)2 = vt−2H
T
2 + vt−3H

T
3 + · · ·+ vt−msH

T
ms

(2.484)

Comparing (2.483) and (2.484) yields

pt1 = vt−1H
T
1 + p(t−1)2 (2.485)

We conclude that, in general, we have the recursion

pti =

{
vt−1H

T
i + p(t−1)(i+1), t ∈ Z+, 1 ≤ i < ms

vt−1H
T
ms
, t ∈ Z+, i = ms

(2.486)

If we begin the encoding at time t = 0, say, then p0 is set equal to the allzero
(c− b)ms-tuple.

Assume that a systematic realization of the partial syndrome encoder is in statept at
time t. Then the first b symbols of the c-tuplesvt = v

(1)
t v

(2)
t . . . v

(b)
t v

(b+1)
t v

(b+2)
t . . . v

(c)
t

are the information symbols and the last c− b symbols are the parity-check symbols.
It follows from (2.412) and (2.483) that we can obtain the c− b parity-check symbols
from the equation

vtH
T
0 = pt1 (2.487)

Since the last c − b rows of HT
0 form the (c − b) × (c − b) identity matrix, the

code symbols at time t can be determined as

v
(j)
t = u

(j)
t , j = 1, 2, . . . , b

v
(j)
t =

b∑
k=1

v
(k)
t h

T(k,j−b)
0 + p

(j−b)
t1 , j = b+ 1, b+ 2, . . . , c

(2.488)

A partial syndrome encoder can be implemented using (c− b)ms delay elements.

EXAMPLE 2.41 (Cont’d)

Since the memory of the syndrome former isms = 1, we can construct a systematic
partial syndrome encoder for the rate R = 2/4 convolutional code given in
Example 2.40 with only (c− b)ms = (4− 2)1 = 2 delay elements. From (2.488)
we conclude that the code tuples vt = v

(1)
t v

(2)
t v

(3)
t v

(4)
t must satisfy

v
(1)
t = u

(1)
t

v
(2)
t = u

(2)
t

v
(3)
t = v

(1)
t h

T(1,1)
0 + v

(2)
t h

T(2,1)
0 + p

(1)
t1

v
(4)
t = v

(1)
t h

T(1,2)
0 + v

(2)
t h

T(2,2)
0 + p

(2)
t1

(2.489)

150 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

v
(1)
t

v
(2)
t

u
(1)
t

u
(2)
t

p
(1)
t1

v
(3)
t

p
(2)
t1

v
(4)
t

Figure 2.25 A realization of a systematic R = 2/4 partial syndrome encoder for the
convolutional code specified in Example 2.40.

Since ms = 1 we conclude from (2.486) that

pt1 = vt−1H
T
1 (2.490)

or, equivalently, that

p
(1)
t1 = v

(2)
t−1 + v

(3)
t−1 + v

(4)
t−1

p
(2)
t1 = v

(1)
t−1 + v

(2)
t−1 + v

(3)
t−1

(2.491)

Hence, a realization of the systematic partial syndrome encoder based on (2.489) is
shown in Fig. 2.25. This realization is a minimal encoder. An equivalent minimal
encoder for the same convolutional code is shown in Fig. 2.23.

2.12 SOME PROPERTIES OF GENERATOR MATRICES—AN
OVERVIEW

In Fig. 2.26 we show a Venn diagram that illustrates the relations between various
properties of convolutional generator matrices.

2.13 COMMENTS

Massey made early contributions of the greatest importance to the structural theory of
convolutional encoders. Together with Sain [MaS67], he defined two convolutional
generator matrices to be equivalent if they encode the same code. They also proved
that every convolutional code can be encoded by a polynomial generator matrix.
Later, they studied conditions for a convolutional generator matrix to have a poly-
nomial right inverse [MaS68, SaM69]. Massey’s work in this area was continued

COMMENTS 151

basic

minimal-basic

systematic

canonical

minimal

encoding

noncatastrophic

polynomial rational

Figure 2.26 Relations between properties of generator matrices. (Courtesy of Maja Lončar.)

by his students Costello [Cos69] and Olson [Ols70]. Costello was apparently the
first to notice that every convolutional generator matrix is equivalent to a systematic
encoding matrix, in general nonpolynomial.

By exploiting the invariant-factor theorem and the realization theory of linear
systems, Forney generalized, deepened, and extended these results in a series of
landmark papers [For70, For73, For75].

Among the pre-Forney structural contributions we also have an early paper by
Bussgang [Bus65].

In the late 1980s and early 1990s, there was a renewed interest in the structural
analysis of convolutional codes. In 1988 Piret published his monograph [Pir88],
which contains an algebraic approach to convolutional codes. In a semitutorial
paper, Johannesson and Wan [JoW93] rederived many of Forney’s important results
and derived some new ones using only linear algebra—an approach that permeates
this chapter. In [For91] Forney extended and deepened his results in [For75]. This
inspired Johannesson and Wan to write [JoW94], which together with [FJW96]
constitute the basis for Sections 2.7 and 2.8.

Other important developments are reported in [FoT93, LoM96].
Finally, we would like to mention Massey’s classic introduction to convolutional

codes [Mas75] and McEliece’s 1998 “spin” on Forney’s papers mentioned above
[McE98].

152 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

v(1)

v(2)

u

Figure 2.27 Encoder used in Problem 2.1.

PROBLEMS

2.1 Consider the rate R = 1/2 convolutional encoder illustrated in Fig. 2.27.
a) Find the generator matrix G(D).
b) Let G(D) = A(D)Γ(D)B(D). Find A(D),Γ(D), and B(D).
c) Find G′(D), where G′(D) is the first b rows in B(D).
d) Is G′(D) minimal? If not, find a minimal encoding matrix Gmin(D)

equivalent to G′(D).
e) Find A−1(D), B−1(D), and G−1(D).
f) Find H(D) and verify that G(D)HT(D) = 0.

2.2 Repeat Problem 2.1 for the encoding matrix
11 10 01 11

11 10 01 11
11 10 01 11

.

2.3 Draw the encoder block diagram for the controller canonical form of the
encoding matrix

G(D) =

(
1 +D D 1 +D

1 1 D

)
and repeat Problem 2.1.

2.4 Consider the encoder shown in Fig. 2.28.
a) Find the generator matrix G(D).
b) Find the Smith form.
c) Is the generator matrix catastrophic or noncatastrophic?
d) Find G−1(D).

2.5 Consider the rate R = 1/2 convolutional encoding matrix

G(D) = (1 +D3 1 +D +D2 +D3)

a) Find the Smith form decomposition.
b) Find G−1(D).

PROBLEMS 153

v(1)

v(2)

u

Figure 2.28 Encoder used in Problem 2.4.

2.6 Consider the rate R = 2/3 rational convolutional encoding matrix

G(D) =

1

1 +D2

D

1 +D2

1

1 +D

D

1 +D2

1

1 +D2
1

a) Find the invariant-factor decomposition.
b) Find G−1(D).

2.7 The behavior of a linear sequential circuit can be described by the matrix
equations

σt+1 = Aσt +But

vt = Cσt +Hut

where u,v, and σt are the input, output, and encoder state, respectively, at time t.
a) Show that applying the D-transforms to each term in the matrices yields

D−1(σ(D) + σ0) = σ(D)A+ u(D)B

v(D) = σ(D)C + u(D)H

where σ0 is the initial value of σt.
b) Show that the transfer function matrix is

G(D) = H +B(I +AD)−1CD

c) Show that the abstract state s(D) corresponding to the encoder state σ can
be expressed as

s(D) = σ(I +AD)−1C

2.8 Consider the encoding matrix in Problem 2.3. Find the correspondence between
the encoder and abstract states.

2.9 Consider the two minimal-basic encoding matrices

G1(D) =

(
1 +D D 1
D2 1 1 +D +D2

)

154 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

and

G2(D) =

(
1 +D D 1

1 1 +D +D2 D2

)
a) Show that G1(D) and G2(D) are equivalent.
b) Find an isomorphism between the state spaces of G1(D) and G2(D).

Hint: Study the proof of Lemma 2.33.

2.10 Consider the rate R = 1/2 convolutional encoding matrix

G(D) = (1 +D +D2 1 +D2)

a) Find the syndrome former HT(D) and draw its controller and observer
canonical forms.

b) Find a systematic encoding matrix Gsys(D) equivalent to G(D) and draw
its controller and observer canonical forms.

c) Find an encoding matrix for the convolutional dual code and draw its
observer canonical form.

2.11 Consider the rate R = 2/3 convolutional encoding matrix

G(D) =

(
1 +D D 1 +D

1 1 D

)
a) Find the syndrome formerHT(D) and draw both its controller and observer

canonical forms.
b) Find a systematic encoding matrix Gsys(D) equivalent to G(D) and draw

its controller and observer canonical forms.
c) Find an encoding matrix for the convolutional dual code and draw its

controller canonical form.
d) Find a right inverse to the encoding matrix in Problem 2.11(b) and draw its

observer canonical form.

2.12 Consider the rate R = 2/3 convolutional encoding matrix

G(D) =

(
1 D2 1 +D +D2

1 1 +D D

)
and repeat Problem 2.11.

2.13 Consider the rate R = 1/2 nonsystematic encoding matrix

G(D) = (1 +D +D2 1 +D2)

Find two systematic polynomial encoding matrices that are equivalent over a memory
length.

PROBLEMS 155

2.14 Consider the rate R = 2/3 convolutional encoding matrix

G(D) =

(
1 +D D 1

1 +D2 +D3 1 +D +D2 +D3 0

)
a) Find without permuting the columns an equivalent systematic rational en-

coding matrix and draw both its controller and observer canonical forms.
b) Find a systematic polynomial encoding matrix that is equivalent to G(D)

over a memory length.
c) Compare the result with the systematic encoding matrix in Example 2.39.

2.15 Consider the rate R = 2/3 convolutional encoding matrix

G(D) =

(
1 D2 1 +D +D2

1 1 +D D

)
a) Is G(D) basic?
b) Is G(D) minimal?
c) LetG′(D) be the b first rows in the unimodular matrixB in the Smith form

decomposition of G(D). Is G′(D) minimal?

2.16 Consider the rate R = 2/3 convolutional encoding matrix

G(D) =

(
1 1 0
1 1 +D 1

)
a) Find G−1(D).
b) Is G(D) basic?
c) Is G(D) minimal? If not, find a minimal encoding matrixGmin(D) equiv-

alent to G(D).

2.17 Consider the rate R = 2/3 convolutional encoding matrix

G =

1

1 +D3

1

1 +D +D2

D

1 +D3

D2

1 +D3

D

1 +D3

1 +D +D2 +D3

1 +D3

a) Find G−1(D).
b) Is G−1(D) realizable?
c) Is G(D) catastrophic?

2.18 Consider the rate R = 2/3 convolutional encoding matrix

G(D) =

(
1 1 D +D3 D2 +D3

D2 1 +D3 1 +D2 +D3 +D4 D +D2 +D3 +D4

)

156 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

a) Is G(D) basic?
b) Is G(D) minimal?

2.19 Consider the rate R = 4/5 convolutional generator matrix

G(D) =

1 +D +D4 D4 1 +D2 1 +D4 D2 +D4

1 +D D +D3 1 +D3 D2 +D3 1 +D2 +D3

1 +D 1 D 0 1
1 +D2 D +D2 1 +D D2 1 +D +D2

a) Is G(D) an encoding matrix?
b) Is G(D) basic?
c) Is G(D) minimal? If not, find a minimal encoding matrixGmin(D) equiv-

alent to G(D).

2.20 Consider the rate R = 2/3 convolutional encoder illustrated in Fig. 2.29.
a) Find the generator matrix G(D).
b) Is G(D) minimal-basic? If not, find a minimal-basic encoding matrix

Gmb(D) equivalent to G(D).
c) Is G(D) minimal?
d) Is the encoder in Fig. 2.29 minimal?

u(2)

v(3)

u(1)

v(1)

v(2)

Figure 2.29 Encoder used in Problem 2.20.

2.21 Consider the rate R = 2/3 convolutional encoder illustrated in Fig. 2.30.
a) Find the generator matrix G(D).

PROBLEMS 157

u(1) v(1)

u(2) v(2)

v(3)

Figure 2.30 Encoder used in Problems 2.21 and 2.26.

b) Is G(D) minimal-basic? If not, find a minimal-basic encoding matrix
Gmb(D) equivalent to G(D).

2.22 Consider the rate R = 2/3 convolutional encoding matrix

G(D) =

(
D D 1
1 D2 1 +D +D2

)
a) Is G(D) minimal?
b) Find a systematic encoding matrix Gsys(D) equivalent to G(D).

2.23 Consider the rate R = 2/3 convolutional encoding matrix

G(D) =

1

1 +D +D2

D

1 +D3

1

1 +D3

D2

1 +D3

1

1 +D3

1

1 +D

a) Is G(D) minimal?
b) Find a systematic encoding matrix equivalent to G(D).
c) Find G−1(D).

2.24 Consider the two rate R = 2/3 convolutional encoding matrices

G1(D) =

1

(1 +D)3

1 +D +D3
0

0
1 +D2 +D3

1 +D +D3
1

and

G2(D) =

(
1 +D 1 D
D2 1 +D +D2 1

)
a) Are G1(D) and G2(D) equivalent?
b) Is G1(D) minimal?
c) Is G2(D) minimal?

158 CONVOLUTIONAL ENCODERS—STRUCTURAL PROPERTIES

2.25 Consider the rate R = 1/3 convolutional code with encoding matrix

G(D) =

(
1 +D +D2

1 +D4

1 +D2 +D4

1 +D4

1 +D +D2

1 +D2

)
a) Is 111 010 011 000 000 000 . . . a codeword?
b) Find a minimal encoder whose encoding matrix is equivalent to G(D).

2.26 Consider the rate R = 2/3 convolutional encoder illustrated in Fig. 2.30.
a) Is the encoder in Fig. 2.30 minimal?
b) Find a systematic encoder that is equivalent to the encoder in Fig. 2.30.

2.27 Consider the rate R = 2/4 convolutional encoder illustrated in Fig. 2.31. Is
the encoder in Fig. 2.31 minimal?

u(1) v(1)

u(2) v(2)

v(3)

v(4)

Figure 2.31 Encoder used in Problem 2.27.

2.28 Consider the cascade of a rate Ro = bo/co outer convolutional encoder with
generator matrix Go(D) and a rate Ri = bi/ci inner convolutional encoder with
generator matrix Gi(D), where bi = co (Fig. 2.32). Show that if Go(D) and
Gi(D) are both minimal, then the cascaded generator matrix defined by their product
Gc(D) = Go(D)Gi(D) is also minimal [HJS98].

bo
co = bi

ci

Outer
convolutional

encoder

Inner
convolutional

encoder

Figure 2.32 A cascade of two consecutive convolutional encoders used in Problem 2.28.

2.29 Let Gmb(D) be a minimal-basic encoding matrix with memory mmb. Show
that mmb is minimal over all equivalent polynomial generator matrices.
Hint: Use the predictable degree property.

PROBLEMS 159

2.30 Let Gc(D) be a canonical encoding matrix with memory mc. Show that mc
is minimal over all equivalent rational generator matrices.
Hint: Use the GPVP.

CHAPTER 3

DISTANCE PROPERTIES OF
CONVOLUTIONAL CODES

Several important distance measures for convolutional codes and encoders are de-
fined. We also derive upper and lower bounds for most of these distances. Some
of the bounds might be useful guidelines when we construct new encoders, others
when we analyze and design coding systems. The Viterbi (distance) spectrum for a
convolutional encoder is obtained via the path enumerators that are determined from
the state-transition diagram for the encoder in controller canonical form.

3.1 DISTANCE MEASURES—A FIRST ENCOUNTER

In this section we discuss the most common distance measures for convolutional
codes.

Consider a binary, rate R = b/c convolutional code with a rational generator
matrix G(D) of memory m. The causal information sequence

u(D) = u0 + u1D + u2D
2 + · · · (3.1)

is encoded as the causal codeword

v(D) = v0 + v1D + v2D
2 + · · · (3.2)

Fundamentals of Convolutional Coding, 2. Edition. By Rolf Johannesson, Kamil Sh. Zigangirov
Copyright c© 2015 John Wiley & Sons, Inc.

161

162 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

where
v(D) = u(D)G(D) (3.3)

For simplicity we sometimes write u = u0 u1 . . . and v = v0 v1 . . . instead of
u(D) and v(D), respectively.

First we consider the most fundamental distance measure, which is the column
distance [Cos69].

Definition Let C be a convolutional code encoded by a rational generator matrix
G(D). The jth order column distance dc

j of the generator matrix G(D) is the
minimum Hamming distance between two encoded sequences v[0,j] resulting from
causal information sequences u[0,j] with differing u0.

From the linearity of the code it follows that dc
j is also the minimum of the

Hamming weights of the paths v[0,j] resulting from causal information sequences
with u0 6= 0. Thus,

dc
j = min

u0 6=0

{
wH(v[0,j])

}
(3.4)

where wH() denotes the Hamming weight of a sequence.
Let

G(D) = G0 +G1D + · · ·+GmD
m (3.5)

be a polynomial generator matrix of memory m and let the corresponding semi-
infinite matrixG be (1.91)

G =

 G0 G1 . . . Gm
G0 G1 . . . Gm

.

 (3.6)

where Gi, 0 ≤ i ≤ m, are binary b× c matrices.
Denote byGc

j the truncation ofG after j + 1 columns, that is,

Gc
j =

G0 G1 G2 . . . Gj

G0 G1 Gj−1

G0 Gj−2

. . .
...
G0

 (3.7)

where Gi = 0 when i > m.
Making use of (1.89), we can rewrite (3.4) as

dc
j = min

u0 6=0

{
wH
(
u[0,j]G

c
j

)}
(3.8)

From (3.7) and (3.8) it follows that to obtain the jth order column distance dc
j of the

polynomial generator matrix (3.5), we truncate the matrixG after j + 1 columns.

DISTANCE MEASURES—A FIRST ENCOUNTER 163

EXAMPLE 3.1

Consider the convolutional code C encoded by the encoding matrix

G(D) =

(
0 1 1
1 D 0

)
(3.9)

where

G(0) = G0 =

(
011
100

)
(3.10)

has full rank. The encoding matrix G(D) has the column distances

dc
0 = min

u0 6=0
{wH(u0G0)} = wH

(
(01)

(
011
100

))
= 1 (3.11)

and

dc
1 = min

u0 6=0

{
wH

(
(u0u1)

(
G0 G1

G0

))}

= wH

(01 00)

011 000
100 010

011
100

 = 2 (3.12)

The equivalent generator matrix

G′(D) =

(
1 +D 1

1 1

)(
0 1 1
1 D 0

)
=

(
1 1 1 +D
1 1 +D 1

)
(3.13)

has

G′0 =

(
111
111

)
(3.14)

of rank G′0 = 1. By choosing u0 = 11 we obtain

dc′
0 = wH(u0G

′
0) = 0 (3.15)

Hence, there is a nontrivial transition from the zero state (not to the zero state)
that produces a zero output. The two equivalent generator matrices for the code C
have different column distances.

From Example 3.1 it follows that the column distance is an encoder property, not
a code property.

In Chapter 2 we defined an encoding matrix as a generator matrix with G(0) of
full rank. The main reason for this restriction on G(0) is given in the following:

164 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

Theorem 3.1 The column distance is invariant over the class of equivalent encoding
matrices.

Proof : Let Ccd be the set of causal and delayfree codewords,

Ccd
def
= {v ∈ C | vi = 0, i < 0, and v0 6= 0} (3.16)

The set Ccd is a subset of C, Ccd ⊂ C, but it is not a subcode since it is not closed
under addition. The set of causal and delayfree codewords Ccd depends only on C
and is independent of the chosen generator matrix. Then the theorem follows from
the observation that for encoding matrices the minimization over u0 6= 0 in (3.4) is
a minimization over {v[0,j] | v ∈ Ccd}.

Theorem 3.1 leads to the following:

Definition Let C be a convolutional code. The jth order column distance of C is the
jth order column distance of any encoding matrix of C.

The mth order column distance dc
m of a rational generator matrix of memory m,

where the memory of a rational generator matrix is defined by (2.274), is sometimes
called the minimum distance (of the generator matrix) and denoteddmin. It determines
the error-correcting capability of a decoder that estimates the information symbol u0

based on the received symbols over the first memory length only, that is, over the first
nm = (m+ 1)c received symbols.

A good computational performance for sequential decoding (to be discussed in
Chapter 7) requires a rapid initial growth of the column distances [MaC71]. This led
to the introduction of the distance profile [Joh75]:

Definition LetG(D) be a rational generator matrix of memorym. The (m+1)-tuple

dp = (dc
0, d

c
1, . . . , d

c
m) (3.17)

where dc
j , 0 ≤ j ≤ m, is the jth order column distance, is called the distance profile

of the generator matrix G(D).

The distance profile of the generator matrix is an encoder property. However,
since the jth order column distance is the same for equivalent encoding matrices
and the memory is the same for all equivalent minimal-basic (canonical) encoding
matrices, we can also define the distance profile of a code:

Definition Let C be a convolutional code encoded by a minimal-basic encoding
matrix Gmb(D) of memory m. The (m+ 1)-tuple

dp = (dc
0, d

c
1, . . . , d

c
m) (3.18)

where dc
j , 0 ≤ j ≤ m, is the jth order column distance of Gmb(D), is called the

distance profile of the code C.

A generator matrix of memory m is said to have a distance profile dp superior to
a distance profile dp′ of another generator matrix of the same rate R and memory m

DISTANCE MEASURES—A FIRST ENCOUNTER 165

if there is some ` such that

dc
j

{
= dc′

j , j = 0, 1, . . . , `− 1

> dc′
j , j = `

(3.19)

Moreover, a convolutional code C is said to have an optimum distance profile (is an
ODP code) if there exists no generator matrix of the same rate and memory as C with
a better distance profile.

A generator matrix G(D) with optimum dc
0 must have G(0) of full rank. Hence,

a generator matrix of an ODP code is an ODP encoding matrix.
An ODP encoding matrix yields the fastest possible initial growth of the minimal

separation between the encoded paths diverging at the root in a code tree.

Remark: We notice that only in the range 0 ≤ j ≤ m is each branch on a code
sequence v[0,j] affected by a new portion of the generator matrix as one penetrates
into the trellis. The great dependence of the branches thereafter militates against the
choice

dp
∞ = (dc

0, d
c
1, . . . , d

c
∞) (3.20)

as does the fact that dc
∞ is probably a description of the remainder of the column

distances, which is quite adequate for all practical purposes.
LetG′(D) be a rational encoding matrix of memorym′. We denote byG′(D) |m,

where m ≤ m′, the truncation of all numerator and denominator polynomials in
G′(D) to degree m. Then it follows that the encoding matrix G(D) of memory m
and the encoding matrixG′′(D) = T (D)G(D) |m, whereT (D) is a b×b nonsingular
rational matrix, are equivalent over the first memory length m. Hence, they have
the same distance profile. Let, for example, G(D) be a systematic encoding matrix.
Then we can use this property to generate a set of nonsystematic encoding matrices
with the same distance profile.

EXAMPLE 3.2

The systematic encoding matrix

Gsys(D) = (1 1 +D +D2) (3.21)

has the optimum distance profile dp = (2, 3, 3).
The nonsystematic encoding matrix

G(D) = (1 +D +D2)(1 1 +D +D2) |2
= (1 +D +D2 1 +D2) (3.22)

is equivalent to Gsys(D) over the first memory length and, hence, has the same
distance profile.

Theorem 3.2 The column distances of a generator matrix satisfy the following con-
ditions:

166 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

(i)
dc
j ≤ dc

j+1, j = 0, 1, 2, . . . (3.23)

(ii) The sequence dc
0, d

c
1, d

c
2, . . . is bounded from above.

(iii) dc
j becomes stationary as j increases.

Proof : (i) Assume that
dc
j+1 = wH(v[0,j+1]) (3.24)

where v0 6= 0. Then,
dc
j+1 ≥ wH(v[0,j]) ≥ dc

j (3.25)

(ii) It follows from the controller canonical form of a generator matrix G(D) that
for any j there exists an input sequence u[0,j] such that the Hamming weight of the
output sequence v[0,j] is less than or equal to the number of nonzero coefficients in
the numerator polynomials of the equivalent generator matrix whose denominator
polynomials are the lcm of the denominator polynomials of G(D). This number is
finite.

(iii) Follows immediately from (i) and (ii).

Thus, the column distance dc
j is a nondecreasing function of j. It is sometimes

called the column distance function [ChC76]. Moreover, the limit

dc
∞ = lim

j→∞
dc
j (3.26)

exists, and we have the relations

dc
0 ≤ dc

1 ≤ · · · ≤ dc
∞ (3.27)

Definition Let C be a convolutional code. The minimum Hamming distance between
any two differing codewords,

dfree = min
v 6=v′

{dH(v,v′)} (3.28)

is called the free distance of the code.

From the linearity of a convolutional code it follows immediately that dfree is also
the minimum Hamming weight over the nonzero codewords.

The free distance is a code property!
In Fig. 3.1 we illustrate an example of two codewords, v and v′, in a trellis.

Assume that v = 0. Then the free distance of a code C is the smallest Hamming
weight of a codeword v′ that makes a detour from the allzero codeword.

The free distance is the principal determiner for the error-correcting capability of
a code when we are communicating over a channel with small error probability and
use maximum-likelihood (or nearly so) decoding.

Let Et be the set of all error patterns with t or fewer errors. As a counterpart to
Theorem 1.1 for block codes we have:

DISTANCE MEASURES—A FIRST ENCOUNTER 167

. . .

. . .

v′

v = 0

Figure 3.1 Two codewords in a trellis.

Theorem 3.3 A convolutional code C can correct all error patterns in Et if and only
if dfree > 2t.

Proof : See the proof of Theorem 1.1.

Theorem 3.4 For every convolutional code C,

dfree = dc
∞ (3.29)

Proof : From Theorem 3.2 (iii), it follows that there is an integer k such that

dc
k = dc

k+1 = · · · = dc
∞ (3.30)

Clearly, there exists a codeword of weight dc
k. Let G(D) be a minimal polynomial

encoding matrix of C. By definition of dc
k an encoded sequence v[0,k] results from a

causal information sequence u[0,k] with u0 6= 0 such that wH(v[0,k]) = dc
k. Since

G(D) is minimal, it follows from Theorem 2.40 that (3.30) can only be satisfied if
v[k+1,∞) follows the path of zero states. Then,

(u[0,k]uk+1uk+2 . . .)G = (v[0,k]0 0 . . .) ∈ C (3.31)

whereG is the matrix (3.6), and we conclude that

wH(v[0,k]0 0 . . .) = wH(v[0,k]) = dc
k (3.32)

Hence,
dfree ≤ dc

k = dc
∞ (3.33)

If G(D) is nonminimal, (3.33) follows from the (non)minimality criteria given in
Theorem 2.40. We can assume that C has a codeword v = v0 v1 . . . of weight dfree
with v0 6= 0. For all j we have

dc
j ≤ wH(v0 v1 . . . vj) ≤ dfree (3.34)

Let j ≥ k and the proof is complete.

Often we need more detailed knowledge of the distance structure of a convolutional
code. Let ndfree+i denote the number of weight dfree + i paths which depart from

168 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

the allzero path at the root in the code trellis and do not reach the zero state until
their termini. We call ndfree+i the (i+ 1)th Viterbi spectral component [Vit71]. The
sequence

ndfree+i, i = 0, 1, 2, . . . (3.35)

is called the Viterbi weight spectrum of the convolution encoder. The generating
function for the weight spectrum,

T (W) =
∞∑
i=0

ndfree+iW
dfree+i (3.36)

is called the path weight enumerator and will be studied in depth in Section 3.10.
The zero state driving information sequence for a rational generator matrix with

a given encoder realized in controller canonical form is the sequence of information
tuples that causes the memory elements to be successively filled with zeros. The
length of this sequence is at most m, where m is the length of the longest shift
register. Denote the zero state driving information sequence starting at time t+ 1 by
uzs

(t,t+m]. In general, it depends on the encoder state at time t and it can happen that
the encoder is driven to the zero state in fewer than m steps. To simplify notations
we also use uzs

(t,t+m] as the zero driving information sequence also in these cases.
For a polynomial generator matrix of memory m we have uzs

(t,t+m] = 0.
As a counterpart to the column distance we have the row distance [Cos69].

Definition The jth order row distance dr
j of a rational generator matrix of memory

m realized in controller canonical form is the minimum of the Hamming weights of
the paths v[0,j+m] resulting from information sequences u[0,j+m] = u[0,j]u

zs
(j,j+m],

where u[0,j] 6= 0, and remerging with the allzero path at depth at most j +m+ 1.

LetG(D) be a polynomial generator matrix and let the corresponding semi-infinite
matrix G be (3.6). Denote by Gr

j the matrix formed by truncating the semi-infinite
matrixG after its first j + 1 rows, that is,

Gr
j =

G0 G1 . . . Gm

G0 G1 . . . Gm
G0 G1 . . . Gm

.
G0 G1 . . . Gm

 (3.37)

Suppose that G(D) is realized in controller canonical form. Then we have

dr
j = min

u[0,j] 6=0

{
wH
(
u[0,j]G

r
j

)}
(3.38)

Theorem 3.5 The row distances of a rational generator matrix realized in controller
canonical form satisfy the following conditions:

(i)
dr
j+1 ≤ dr

j , j = 0, 1, 2, . . . (3.39)

DISTANCE MEASURES—A FIRST ENCOUNTER 169

(ii)
dr
j > 0, j = 0, 1, 2, . . . (3.40)

(iii) dr
j becomes stationary as j increases.

Proof : (i) Assume that
dr
j = wH(v[0,j+m]) (3.41)

where v[0,j+m] results from an information sequenceu[0,j+m] = u[0,j]u
zs
(j,j+m] with

u[0,j] 6= 0 and such that the path remerges with the allzero path at depth at most
j +m+ 1. Then there exists an information tuple u′j+1 such that

dr
j = wH(v[0,j+m]0)

≥ min
u′j+1

{
wH(v′[0,j+1+m])

}
≥ dr

j+1 (3.42)

where v′[0,j+1+m] results from an information sequence u′[0,j+1+m] with u′[0,j+1] =

u[0,j]u
′
j+1 and such that the path remerges with the allzero path at depth at most

j +m+ 2.
(ii) Assume that dr

j = 0 for some j. Then there is an input sequence u[0,j+m] =
u[0,j]u

zs
(j,j+m] with u[0,j] 6= 0 which produces the output sequence v[0,j+m] =

0[0,j+m] and the zero state. This contradicts G(D) having full rank.
(iii) Follows immediately from (i) and (ii).

We define
dr
∞

def
= lim

j→∞
dr
j (3.43)

and have the relations

0 < dr
∞ ≤ · · · ≤ dr

2 ≤ dr
1 ≤ dr

0 (3.44)

If we think of the row distances in terms of a state-transition diagram for the encoder,
it follows that dr

0 is the minimum weight of the paths resulting from only one freely
chosen nonzero information tuple followed by k zero state driving information tuples,
where νmin ≤ k ≤ m and νmin = mini{νi}. These paths diverge from the zero
state at some time instant and return to the zero state at k + 1 time instants later.
Higher order row distances are obtained by allowing successively more freedom in
finding the minimum-weight path diverging from and returning to the zero state.
The jth order row distance dr

j is the minimum weight of paths of length at most
j + m + 1 branches diverging from and returning to the zero state. Eventually, dr

∞
is the minimum weight of paths diverging from and returning to the zero state.

Since the column distance dc
i is the minimum weight of a path of length i + 1

branches and with a first branch diverging from the zero state, it is obvious that

dc
i ≤ dr

j , all i and j (3.45)

and, thus, that

dc
0 ≤ dc

1 ≤ · · · ≤ dc
i ≤ · · · ≤ dc

∞ ≤ dr
∞ ≤ · · · ≤ dr

j ≤ · · · ≤ dr
1 ≤ dr

0 (3.46)

170 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

Furthermore, if there are no closed circuits of zero weight in the state diagram except
the trivial zero-weight self-loop at the zero state, it follows that

dc
∞ = dr

∞ (3.47)

We will give a formal proof of the important equality (3.47) below.
First, we remark that the existence of a zero-weight nontrivial circuit in the state-

transition diagram determined by a nonzero subsequence of information digits is
equivalent to the existence of an information sequence with infinite weight that is
encoded as a finite-weight sequence—a catastrophic encoder.

Theorem 3.6 Let G(D) be a noncatastrophic generator matrix. Then,

dc
∞ = dr

∞ (3.48)

Proof : If G(D) is noncatastrophic, then there exists a codeword v resulting from
an information sequence of the form u = u[0,i]u

zs
(i,i+m]0, where u[0,i] 6= 0, such

that

dc
∞ = wH(v)

= wH(v[0,i+m]) ≥ dr
i (3.49)

Let k be the least positive integer such that

dr
k = dr

k+1 = · · · = dr
∞ (3.50)

Then dr
i > dr

k for i < k. By combining (3.46), (3.49), and (3.50) we obtain

dr
i ≤ dc

∞ ≤ dr
k (3.51)

It follows that i ≥ k and dr
i = dr

k. Hence,

dc
∞ = dr

k = dr
∞ (3.52)

The row distance could probably blame equality (3.48) for not getting much
attention in the literature. However, its significance should not be underestimated. It
is easy to calculate and serves as an excellent rejection rule when generator matrices
are tested in search for convolutional codes with large free distance.

EXAMPLE 3.3

The state-transition diagram for the rateR = 1/2, binary, convolutional encoder of
memorym = 3 and encoding matrixG(D) = (1+D+D2 +D3 1+D2 +D3)
shown in Fig. 3.2 is given in Fig. 3.3.

The row distance dr
0 is obtained from the circuit 000→ 100→ 010→ 001→

000, and dr
1, d

r
2, . . . , d

r
∞ are obtained from the circuit 000 → 100 → 110 →

ACTIVE DISTANCES 171

v(1)

v(2)

u

Figure 3.2 A rate R = 1/2 ODP convolutional encoder.

000

100 001

010

101

110 011

111

1/01

0/00

1/11

1/01

1/10 0/10

0/00

0/11

0/01

1/10 1/11

0/01 1/00

0/10 0/11

1/00

dr
0 = 7

dr
1 = dr

2 = · · · = dr
∞ = 6

dc
0 = 2
dc

1 = dc
2 = 3

dc
3 = dc

4 = 4
dc

5 = dc
6 = 5

dc
7 = dc

8 = · · · = dc
∞ = 6

Figure 3.3 The state-transition diagram for the encoder in Fig. 3.2.

011 → 001 → 000. The column distance dc
0 is obtained from 000 → 100, dc

1

from, for example, 000 → 100 → 110, dc
2 from 000 → 100 → 010 → 101,

and so on. The row and column distances are shown in Fig. 3.4. We have the
free distance dfree = dc

∞ = dr
∞ = 6 and the distance profile dp = (2, 3, 3, 4).

This ODP code has an optimum free distance (OFD), which will be shown in
Section 3.5.

3.2 ACTIVE DISTANCES

The column distance introduced in the previous section will not increase any more
when the lowest weight path has merged with the allzero path. In this section we
shall introduce a family of distances that stay “active” in the sense that we consider
only those codewords that do not pass two consecutive zero states [HJZ99]. As we

172 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

0 2 4 6 8
0

2

4

6

8

dr
j

dc
j

j

dc
j , d

r
j

· · · dfree

Figure 3.4 Row and column distances for the encoder in Fig. 3.2.

shall see in Section 3.9 these distances are of particular importance when we consider
concatenated encoders.

Let the binary m-dimensional vector of b-tuples σt be the encoder state at depth
t of a realization in controller canonical form of the generator matrix and let σ(i)

t be
the b-tuple representing the contents of position i of the shift registers (counted from
the input connections). (When the jth constraint length νj < m for some j, then we
set the jth component ofσ(i)

t to be 0.) Then we haveσt = σ
(1)
t σ

(2)
t . . .σ

(m)
t . To the

information sequence u = u0u1 . . . corresponds the state sequence σ = σ0σ1
Let Sσ1,σ2

[t1,t2] denote the set of state sequences σ[t1,t2] that start in state σ1 and
terminate in state σ2 and do not have two consecutive zero states with zero input in
between, i.e.,

Sσ1,σ2

[t1,t2]

def
= {σ[t1,t2] | σt1 = σ1,σt2 = σ2 and

σi,σi+1 not both = 0 for ui = 0, t1 ≤ i < t2} (3.53)

The most important distance parameter for a convolutional generator matrix is the
active row distance; it determines the error-correcting capability of the code.

Definition Let C be a convolutional code encoded by a rational generator matrix
G(D) of memory m which is realized in controller canonical form. The jth order
active row distance is

ar
j

def
= min
S0,σ

[0,j+1]
,σ

(1,i)
j+1+i=0, 1≤i≤m

{
wH(v[0,j+m])

}
(3.54)

whereσ denotes any value of the stateσj+1 such thatσ(1)
j+1 6= 0, andσ(1,i)

j+1+i denotes
the i first positions of the shift registers (counted from the input connections), i.e.,
σ

(1,i)
j+1+i = σ

(1)
j+1+i σ

(2)
j+1+i . . .σ

(i)
j+1+i.

ACTIVE DISTANCES 173

Let νmin be the minimum of the constraint lengths νi, i = 1, 2, . . . , b, of the
generator matrix G(D) of memory m, i.e., νmin = min i{νi} and m = max i{νi}.
Then the active row distance of order j is the minimum weight of paths that diverge
from the zero state at depth 0 (or stay at the zero state with a nonzero input), for zero
inputs possibly “touches” the allzero path only in nonconsecutive zero states at depth
k, where 1 + νmin ≤ k ≤ j, and, finally, remerges with the allzero path at depth `,
where j + 1 + νmin ≤ ` ≤ j + 1 +m.

For a polynomial generator matrix realized in controller canonical form we have
the following equivalent formulation:

ar
j = min

uj 6=0, S0,σ
[0,j+1]

{
wH
(
u[0,j]G

r
j

)}
(3.55)

where σ denotes any value of the state σj+1 with σ(1)
j+1 = uj and

Gr
j =

G0 G1 . . . Gm

G0 G1 . . . Gm
.

G0 G1 . . . Gm

 (3.56)

is a (j + 1)× (j + 1 +m) truncated version of the semi-infinite matrix G given in
(3.6).

Notice that the active row distance sometimes can decrease. As we shall show in
Section 3.8, however, in the ensemble of convolutional codes encoded by periodically
time-varying generator matrices there exists a convolutional code encoded by a
generator matrix such that its active row distance can be lower-bounded by a linearly
increasing function.

From the definition the next theorem follows immediately.

Theorem 3.7 (Triangle inequality) Let G(D) be a rational generator matrix with
νmin = m. Then its active row distance satisfies the triangle inequality

ar
j ≤ ar

i + ar
j−i−1−m (3.57)

where j > i+m and the sum of the lengths of the paths to the right of the inequality
is

i+m+ 1 + (j − i−m− 1) +m+ 1 = j +m+ 1 (3.58)

that is, equal to the length of the path to the left of the inequality.

Furthermore, we have immediately the following important theorem:

Theorem 3.8 Let C be a convolutional code encoded by a minimal encoder. Then

min
j
{ar
j} = dfree (3.59)

The following simple example shows that the triangle inequality in Theorem 3.7
will not hold if we do not include state sequences that contain isolated inner zero
states in the definition of Sσ1,σ2

[t1,t2] .

174 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

EXAMPLE 3.4

Consider the memory m = 1 encoding matrix

G(D) = (1 D) (3.60)

The code sequences corresponding to the state sequences (0, 1, 0, 1, 0) and (0, 1,
1, 1, 0) are (10, 01, 10, 01) and (10, 11, 11, 01), respectively. It is easily verified
that ar

0 = 2, ar
1 = 4, and ar

2 = 4, which satisfy the triangle inequality

ar
2 ≤ ar

0 + ar
0 (3.61)

If we consider only state sequences without isolated inner zero states, the lowest
weight sequence of length 4 would pick up distance 6 and exceed the sum of the
weight for two length 2 sequences, which would still be four, violating the triangle
inequality.

Remark: If we consider the ensemble of periodically time-varying generator matri-
ces G (or G(D)) to be introduced in Section 3.6 and require that the corresponding
code sequences consist of only randomly chosen code symbols (i.e., we do not al-
low transitions from the zero state to itself), then for a given length the set of state
sequences defined by Sσ1,σ2

[t1,t2] is as large as possible.
Next, we will consider an “active” counterpart to the column distance:

Definition Let C be a convolutional code encoded by a rational generator matrix
G(D) of memory m realized in controller canonical form. The jth order active
column distance is

ac
j

def
= min
S0,σ

[0,j+1]

{
wH(v[0,j])

}
(3.62)

where σ denotes any encoder state.

For a polynomial generator matrix we have the following equivalent formulation:

ac
j = min

S0,σ
[0,j+1]

{
wH
(
u[0,j]G

c
j

)}
(3.63)

where σ denotes any encoder state and

Gc
j =

G0 G1 . . . Gm
G0 G1 . . . Gm

.
G0 G1 . . . Gm

G0 Gm−1

. . .
...
G0

(3.64)

is a (j + 1)× (j + 1) truncated version of the semi-infinite matrixG given in (3.6).

ACTIVE DISTANCES 175

It follows from the definitions that

ac
j ≤ ar

j−k (3.65)

where k ≤ min{j, νmin} and, in particular, if νmin = m ≤ j, then we have

ac
j ≤ ar

j−m (3.66)

From (3.65) it follows that when j ≥ νmin the active column distance of order j is
upper-bounded by the active row distance of order j − νmin, that is, by the minimum
weight of paths of length j + 1 starting at a zero state and terminating at a zero state
without passing consecutive zero states in between.

The active column distance ac
j is a nondecreasing function of j. As we will

show in Section 3.8, however, in the ensemble of convolutional codes encoded
by periodically time-varying generator matrices there exists a convolutional code
encoded by a generator matrix such that its active column distance can be lower-
bounded by a linearly increasing function.

Definition Let C be a convolutional code encoded by a rational generator matrix
G(D) of memory m. The jth order active reverse column distance is

arc
j

def
= min
Sσ,0

[m,m+j+1]

{
wH(v[m,j+m])

}
(3.67)

where σ denotes any encoder state.

For a polynomial generator matrix we have the following equivalent formulation
to (3.67):

arc
j = min

Sσ,0
[m,m+j+1]

{
wH
(
u[0,j+m]G

rc
j

)}
(3.68)

where σ denotes any encoder state and

Grc
j =

Gm
Gm−1 Gm

... Gm−1
. . .

G0

... Gm
G0 Gm−1

. . .
...
G0

(3.69)

is a (j +m+ 1)× (j + 1) truncated version of the semi-infinite matrix G given in
(3.6).

The active reverse column distance arc
j is a nondecreasing function of j. As we

will show in Section 3.8, however, in the ensemble of convolutional codes encoded
by periodically time-varying generator matrices there exists a convolutional code

176 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

.
t = t0 t = t0 + i+ 1 t = t0 + j + 1

as
j

as
i

as
j−i−1

Figure 3.5 An illustration for Theorem 3.9.

encoded by a generator matrix such that its active reverse column distance can be
lower-bounded by a linearly increasing function.

Furthermore, the active reverse column distance of a polynomial generator matrix
G(D) is equal to the active column distance of the reciprocal generator matrix

diag(Dν1Dν2 . . . Dνb)G(D−1)

Definition Let C be a convolutional code encoded by a rational generator matrix
G(D) of memory m. The jth order active segment distance is

as
j

def
= min
Sσ1,σ2

[m,m+j+1]

{
wH(v[m,j+m])

}
(3.70)

where σ1 and σ2 denote any encoder states.

For a polynomial generator matrix we have the following equivalent formulation:

as
j = min

Sσ1,σ2
[m,m+j+1]

{
wH
(
u[0,j+m]G

s
j

)}
(3.71)

where σ1 and σ2 denote any encoder states andGs
j = Grc

j .
If we consider the segment distances for two sets of consecutive paths of lengths

i + 1 and (j − i − 1) + 1, respectively, then the terminating state of the first path
is not necessarily identical to the starting state of the second path (see Fig. 3.5).
Hence, the active segment distance for the set of paths of the total length j + 1 does
not necessarily satisfy the triangle inequality. However, we have immediately the
following:

ACTIVE DISTANCES 177

Theorem 3.9 LetG(D) be a generator matrix of memorym. Then its active segment
distance satisfies the inequality

as
j ≥ as

i + as
j−i−1 (3.72)

where j > i and the sum of the lengths of the paths to the right of the inequality is

i+ 1 + j − i− 1 + 1 = j + 1 (3.73)

that is, equal to the length of the path to the left of the inequality.

The active segment distance as
j is a nondecreasing function of j. As we will

show in Section 3.8, however, in the ensemble of convolutional codes encoded
by periodically time-varying generator matrices there exists a convolutional code
encoded by a generator matrix such that its active segment distance can be lower-
bounded by a linearly increasing function.

The start of the active segment distance is the largest j for which as
j = 0 and is

denoted js.
The jth order active row distance is characterized by a fixed number of almost

freely chosen information tuples, j + 1, followed by a varying number, between
νmin and m, of zero state driving information tuples (“almost” since we have to
avoid consecutive zero states σiσi+1 for 0 ≤ i < j + 1 and ensure that σ(1)

j+1 6= 0).
Sometimes we find it useful to consider a corresponding distance between two paths
of fixed total length, j + 1, but with a varying number of almost freely chosen
information tuples. Hence, we introduce the following (final) active distance:

Definition Let C be a convolutional code encoded by a rational generator matrix
G(D) of memory m. The jth order active burst distance is

ab
j

def
= min
S0,0

[0,j+1]

{
wH(v[0,j])

}
(3.74)

where j ≥ jb and jb+1 is the length of the shortest detour from the allzero sequence.

For a polynomial generator matrix we have the following equivalent formulation:

ab
j

def
= min
S0,0

[0,j+1]

{
wH(u[0,j]G

c
j)
}

(3.75)

whereGc
j is given in (3.64).

The active row and burst distances are related via the following inequalities:

ab
j ≥ min

i
{ar
j−νi}

ar
j ≥ min

i
{ab
j+νi}

(3.76)

When νmin = m, we have

ab
j =

{
undefined, 0 ≤ j < m

ar
j−m, j ≥ m

(3.77)

178 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

0 20 40 60 80 100
0

10

20

30

js

dfree

dr
0

j

aj

ar
j = ab

j+m

ac
j

arc
j

as
j

Figure 3.6 The active row distance for the encoding matrix in Example 3.5.

For a convolutional code encoded by a minimal encoder

min
j

{
ab
j

}
= dfree (3.78)

From the definition it follows that the active burst distance satisfies the triangle
inequality.

EXAMPLE 3.5

In Fig. 3.6 we show the active distances for the encoding matrix G(D) = (1 +
D+D2 +D3 +D7 +D8 +D9 +D11 1 +D2 +D3 +D7 +D8 +D9 +D11).
Notice that the active row distance of the 0th order, ar

0, is identical to the row
distance of the 0th order, dr

0 = 15, which upper-bounds dfree = 12, and the start
js = 9.

From the definitions it follows that the active distances are encoder properties, not
code properties. However, it also follows that the active distances are invariants over
the set of minimal-basic (or canonical if rational) encoding matrices for a code C.
Hence, in the sequel when we consider active distances for convolutional codes, it
is understood that these distances are evaluated for the corresponding minimal-basic
(canonical) encoding matrices.

PROPERTIES OF CONVOLUTIONAL CODES VIA THE ACTIVE DISTANCES 179

3.3 PROPERTIES OF CONVOLUTIONAL CODES VIA THE
ACTIVE DISTANCES

We define the correct path through a trellis to be the path determined by the encoded
information sequence and we call the (encoder) states along the correct path correct
states. Then we define an incorrect segment to be a segment starting in a correct state
σt1 and terminating in a correct stateσt2 , t1 < t2, such that it differs from the correct
path at some but not necessarily all states within this interval. Let e[k,`) denote the
number of errors in the error pattern e[k,`), where e[k,`) = ekek+1 . . . e`−1.

For a convolutional code C with a generator matrix of memory m, consider any
incorrect segment between two arbitrary correct states, σt1 and σt2 . A minimum
distance (MD) decoder can output an incorrect segment between σt1 and σt2 only if
there exists a segment of length j + 1 c-tuples, νmin ≤ j < t2 − t1, between these
two states such that the number of channel errors e[t1,t2) within this interval is at least
ab
j/2. Thus, we have the following:

Theorem 3.10 A convolutional code C encoded by a rational generator matrix of
memorym can correct all error patterns e[t1,t2) that correspond to incorrect segments
between any two correct states, σt1 and σt2 , and satisfy

e[t1+k,t1+1+i) < ab
i−k/2 (3.79)

for 0 ≤ k ≤ t2 − t1 − νmin − 1, k + νmin ≤ i ≤ t2 − t1 − 1.

We have immediately the following:

Corollary 3.11 A convolutional code C encoded by a rational generator matrix of
memory m and smallest constraint length νmin = m can correct all error patterns
e[t1,t2) that correspond to incorrect segments between any two correct states, σt1 and
σt2 , and satisfy

e[t1+k,t1+1+i) < ar
i−k−m/2 (3.80)

for 0 ≤ k ≤ t2 − t1 −m− 1, k +m ≤ i ≤ t2 − t1 − 1.

Both the active column distance and the active reverse column distance are im-
portant parameters when we study the error-correcting capability of a convolutional
code. As a counterpart to Theorem 3.10 we have the following:

Theorem 3.12 Let C be a convolutional code encoded by a rational generator matrix
of memory m and let e[t1,t2) be an error sequence between the two correct states
σt1 and σt2 . A minimum distance decoder will output a correct state σt at depth t,
t1 < t < t2, if

e[i,t) < ac
t−i−1/2, t1 ≤ i < t

e[t,j) < arc
j−t−1/2, t < j ≤ t2

(3.81)

Proof : Assume without loss of generality that the correct path is the allzero path.
The weight of any path of length t − i diverging from the correct path at depth i,

180 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

.i t j

ac
t−i−1

arc
j−t−1

ab
j−i−1

Figure 3.7 An illustration used in the proof of Theorem 3.12.

i < t, and not having two consecutive zero states is lower-bounded by ac
t−i−1 (see

Fig. 3.7). Similarly, the weight of any path of length j− t, j > t, remerging with the
correct path at depth j and not having two consecutive zero states is lower-bounded
by arc

j−t−1. Hence, if e[i,t) < ac
t−i−1/2 and e[t,j) < arc

j−t−1/2, then σt must be
correct.

We also have the following inequality:

ac
t−i−1 + arc

j−t−1 ≤ ab
j−i−1 (3.82)

(see Fig. 3.7).

EXAMPLE 3.6

Assume that the binary, rate R = 1/2, memory m = 2 convolutional encoding
matrix G(D) = (1 + D + D2 1 + D2) is used to communicate over a binary
symmetric channel (BSC) and that we have the error pattern

e[0,20) = 1000010000000001000000001000000000100001 (3.83)

or, equivalently,

e[0,20)(D) = (10)+(01)D2 +(01)D7 +(10)D12 +(10)D17 +(01)D19 (3.84)

The active distances for the encoding matrix are given in Fig. 3.8. From The-
orem 3.10 it is easily seen that if we assume that σ0 is a correct state and that
there exists a t′ ≥ 20 such that σt′ is a correct state, then, despite the fact that
the number of channel errors e[0,20) = 6 > dfree = 5, the error pattern (3.83) is
corrected by a minimum distance decoder.

LOWER BOUND ON THE DISTANCE PROFILE 181

0 10 20 30
0

10

20

dfree

j

aj

ar
j = ab

j+m

ac
j

as
j

Figure 3.8 The active distances for the encoding matrix in Example 3.6.

The error pattern

e′[0,20) = 1010010000000000000000000000000000101001 (3.85)

or, equivalently,

e′[0,20)(D) = (10) + (10)D+ (01)D2 + (10)D17 + (10)D18 + (01)D19 (3.86)

also contains six channel errors but with a different distribution; we have three
channel errors in both the prefix and suffix 101001. Since νmin = m = 2 and the
active row distance ar

0 = 5, the active burst distance ab
2 = 5. Hence, Theorem 3.10

does not imply that the error pattern (3.85) is corrected by a minimum distance
decoder; the statesσ1,σ2,σ18, andσ19 will in fact be erroneous states. However,
from Theorem 3.12 it follows that ifσ0 is a correct state and if there exists a t′ ≥ 20
such that σt′ is a correct state, then at least σ10 is also a correct state.

3.4 LOWER BOUND ON THE DISTANCE PROFILE

In this section we shall derive a lower bound on the distance profile for the ensemble
of convolutional codes. First we give the following:

Definition The ensemble E(b, c,m) of binary, rate R = b/c convolutional codes of
memory m is the set of convolutional codes encoded by generator matrices G in

182 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

which each digit in each of the matrices Gi, 0 ≤ i ≤ m, is chosen independently
with probability 1/2 and whereG is given in (3.6).

Lemma 3.13 Let E(b, c,m) be the ensemble of binary, rate R = b/c convolutional
codes with memory m. The first (m + 1)c code symbols on a path diverging from
the allzero path are independent and equally likely to be 0 and 1.

Proof : Assume without loss of generality that a path diverges from the allzero path
at the root, that is, u0 6= 0. Then we have

vj = ujG0 + uj−1G1 + · · ·+ u0Gj (3.87)

where 0 ≤ j ≤ m. Since vj is a vector determined byG0, G1, . . . , Gj−1 plus u0Gj ,
whereu0 6= 0 andGj is equally likely to be any b×c binary matrix, vj assumes each
of its 2c possible values with the same probability. Furthermore, it is independent
of the previous code symbols v0,v1, . . . ,vj−1 for 1 ≤ j ≤ m and the proof is
complete.

We will now prove the following:

Theorem 3.14 There exists a binary, rate R = b/c convolutional code with a gener-
ator matrix of memory m whose column distances satisfy

dc
j > ρc(j + 1) (3.88)

for 0 ≤ j ≤ m and where ρ, 0 ≤ ρ < 1/2, is the Gilbert-Varshamov parameter, that
is, the solution of

h(ρ) = 1−R (3.89)

where h(ρ) is the binary entropy function (1.22) (cf. p. 8).

Before proving this theorem we show the optimum distance profile together with
the lower bound (3.88) for a rate R = 1/2 (ρ = 0.11), binary convolutional code in
Fig. 3.9.

Proof : Let d0,`, 0 < ` ≤ 2b, denote the weights of the branches with u0 6= 0
stemming from the root. From Lemma 3.13 it follows that for the ensemble E(b, c,m)
we have

P (d0,` = k) =

(
c

k

)(
1

2

)c
(3.90)

for 0 ≤ k ≤ c and 0 < ` ≤ 2b. Consider all paths stemming from the `th initial
branch with u0 6= 0 for 0 < ` ≤ 2b. That is, these paths begin at depth 1 and not at
the root!

Now let us introduce the random walk S0 = 0, S1, S2, . . ., where

Sj =

j∑
i=1

Zi, j = 1, 2, . . . (3.91)

LOWER BOUND ON THE DISTANCE PROFILE 183

0 20 40 60 80 100
0

10

20

30

ODP

0.22m

m

dc
j , ρc(j + 1)

Figure 3.9 ODP and its lower bound for rate R = 1/2 and 0 ≤ m ≤ 96.

where

Zi =
c∑
`=1

Yi` (3.92)

with Yi` = α if the `th symbol on the (i+ 1)th branch is 1 and Yi` = β if it is 0 and
an absorbing barrier which will be specified later. According to Lemma 3.13,

P (Yil = α) = P (Yil = β) = 1/2, 0 ≤ i ≤ m, 1 ≤ l ≤ c (3.93)

(see Example B.2). The random walk begins at depth 1 with S0 = 0. Let wj be the
weight of the corresponding path of length j + 1 branches starting at the root. Then
equation (3.91) can be rewritten as

Sj = (wj − k)α+ (jc− wj + k)β, j = 0, 1, . . . (3.94)

Furthermore, we notice that if we choose α = 1 and β = 0, then k + Sj should stay
above the straight line in Fig. 3.9, that is,

k + Sj = wj > ρc(j + 1) (3.95)

for 0 ≤ j ≤ m for all paths in order to guarantee the existence of a code with a
generator matrix of memory m satisfying our bound. Since it is more convenient to
analyze a situation with an absorbing barrier parallel to the j-axis, we choose

α= 1− ρ
β = −ρ

(3.96)

184 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

By inserting (3.96) into (3.94), we obtain

k + Sj = wj(1− ρ)− (jc− wj)ρ
= wj − ρcj, j = 0, 1, . . . (3.97)

Thus, from (3.97) it follows that the random walk Sj stays above an absorbing barrier
at cρ− k, that is,

Sj > cρ− k (3.98)

or, equivalently,
k + Sj > cρ (3.99)

if and only if
wj > ρc(j + 1) (3.100)

for all paths with u0 6= 0.
In the sequel we consider only k > k0 = bcρc. If k ≤ k0, then we say that the

random walk was absorbed already at the beginning. The probability of this event,
P0, is upper-bounded by

P0 ≤ (2b − 1)

k0∑
k=0

(
c

k

)(
1

2

)c
(3.101)

To estimate the probability that the random walk is absorbed, we introduce a random
variable (indicator function) ξji such that ξji = 1 if the random walk for a path
leading to the ith node at depth j + 1 will cross the barrier for the first time at depth
j + 1 and ξji = 0 otherwise.

The average of the random variable ξji is equal to the probability that the random
walk Sj hits or drops below the barrier cρ− k for the first time at depth j+ 1, that is,

E[ξji] = P (Sn > cρ− k, 0 ≤ n < j, and Sj = v, v ≤ cρ− k) (3.102)

Let P (k) denote the probability that the random walk is absorbed by the barrier at
cρ− k. Then, summing (3.102) over 1 ≤ j ≤ m and 1 ≤ i ≤ 2bj , we get

P (k) =
m∑
j=1

2bj∑
i=1

E[ξji] <
∞∑
j=1

E[ξji]2
bj (3.103)

Using the notation from Appendix B (B.55) we have

E[ξji] =
∑

v≤cρ−k

f0,j(cρ− k, v) (3.104)

where f0,j(cρ−k, v) denotes the probability that the random walk is not absorbed at
depth i ≤ j by the barrier at (cρ− k) and Sj = v. Hence, the right side of inequality
(3.103) can be rewritten as

∞∑
j=1

∑
v≤cρ−k

f0,j(cρ− k, v)2bj

LOWER BOUND ON THE DISTANCE PROFILE 185

In Appendix B we prove (cf. Corollary B.7) that for any λ0 < 0 such that the
moment-generating function of the random variable Zi given by (3.92) equals

g(λ0) = E[2λ0Zi] = 2−b (3.105)

and such that g′(λ0) ≤ 0 we have

∞∑
j=1

∑
v≤cρ−k

f0,j(cρ− k, v)2bj ≤ 2−λ0(cρ−k) (3.106)

Choose
λ0 = log

ρ

1− ρ
(3.107)

Then we have (see also Example B.2)

g(λ0) =

(
1

2
2λ0α +

1

2
2λ0β

)c
=

(
1

2
2(1−ρ) log ρ

1−ρ +
1

2
2−ρ log ρ

1−ρ

)c
=

(
1

2

((
ρ

1− ρ

)1−ρ

+

(
ρ

1− ρ

)−ρ))c
=

(
1

2
ρ−ρ(1− ρ)1−ρ

)c
= 2(−1+h(ρ))c = 2−Rc = 2−b (3.108)

and

g′(λ) |λ=λ0
= c

(
1

2
2λ0α +

1

2
2λ0β

)c−1(
α

2
2λ0α +

β

2
2λ0β

)
ln 2

= c

(
1

2
2λ0α +

1

2
2λ0β

)c−1(
1− ρ

2
2(1−ρ) log ρ

1−ρ − ρ

2
2−ρ log ρ

1−ρ

)
ln 2

= c

(
1

2
2λ0α +

1

2
2λ0β

)c−1(
ρ

1− ρ

)−ρ (ρ
2
− ρ

2

)
ln 2 = 0 (3.109)

Combining (3.106) and (3.108) we get (cf. (B.81))

P (k) ≤ 2−λ0(cρ−k), k > k0 (3.110)

where we have used the facts that λ0 < 0 and g′(λ0) = 0. Since

2−λ0(cρ−k) ≥ 1 (3.111)

for k ≤ k0 = bcρc, we can further upper-bound P0 by

P0 ≤ (2b − 1)

k0∑
k=0

(
c

k

)(
1

2

)c
2−λ0(cρ−k) (3.112)

186 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

Finally, using (3.112) and summing over all nodes at depth 1 with u0 6= 0, we
upper-bound the probability of absorption by

P0 + (2b − 1)
c∑

k=k0+1

(
c

k

)(
1

2

)c
P (k) ≤ (2b − 1)

c∑
k=0

(
c

k

)(
1

2

)c
2−λ0(cρ−k)

= (2b−c − 2−c)2cρ log 1−ρ
ρ

c∑
k=0

(
c

k

)
2−k log 1−ρ

ρ

= (2(R−1)c − 2−c)2cρ log 1−ρ
ρ

(
1 + 2− log 1−ρ

ρ

)c
= (2−h(ρ)c − 2−c)

(
(1− ρ)−(1−ρ)ρ−ρ

)c
= (2−h(ρ)c − 2−c)2ch(ρ)

= 1− 2−c(1−h(ρ)) = 1− 2−b < 1 (3.113)

for 0 < ρ < 1/2.
Since the probability of absorption is strictly less than 1, there exists a convolu-

tional code with a generator matrix of memory m whose distance profile satisfies the
bound and, hence, the proof is complete.

We have immediately the following:

Corollary 3.15 There exists a binary, rate R = b/c convolutional code with a
generator matrix of memory m whose minimum distance satisfies

dmin > ρc(m+ 1) (3.114)

where ρ is the Gilbert-Varshamov parameter.

3.5 UPPER BOUNDS ON THE FREE DISTANCE

We will now prove an upper bound on the free distance based on Plotkin’s bound for
block codes.

For the sake of completeness we start by proving Plotkin’s upper bound on the
minimum distance for block codes.

Lemma 3.16 (Plotkin) The minimum distance for any binary block code of M
codewords and block length N satisfies

dmin ≤
⌊

NM

2(M − 1)

⌋
(3.115)

Proof : Consider an arbitrary column in the list of M codewords. Suppose that the
symbol 0 occurs n0 times in this column. The contribution of this column to the
sum of the distances between all ordered pairs of codewords is 2n0(M −n0), whose
maximum valueM2/2 is achieved if and only if n0 = M/2. Summing the distances

UPPER BOUNDS ON THE FREE DISTANCE 187

over all N columns, we have at most NM2/2. Since dmin is the minimum distance
between a pair of codewords and since there are M(M − 1) ordered pairs, we have

M(M − 1)dmin ≤
NM2

2
(3.116)

and the proof is complete.

Heller [Hel68, LaM70] used Plotkin’s bound for block codes to obtain a surpris-
ingly tight bound on the free distance for convolutional codes. We regard Heller’s
bound as an immediate consequence of the following:

Theorem 3.17 The free distance for any binary, rate R = b/c convolutional code
encoded by a minimal-basic encoding matrix of memory m and overall constraint
length ν satisfies

dfree ≤ min
i≥1

{⌊
(m+ i)c

2(1− 2ν−b(m+i))

⌋}
(3.117)

Proof : Any rateR = b/c convolutional code can be encoded by a minimal-basic en-
coding matrix whose realization in controller canonical form has 2ν encoder states.
Consider 2b(m+i), i = 1, 2, . . ., information sequences. There exist 2b(m+i)/2ν

information sequences starting in the zero state leading to the zero state. The corre-
sponding code sequences constitute a block code with M = 2b(m+i)−ν codewords
and block lengthN = (m+ i)c for i = 1, 2, Apply Lemma 3.16 for i = 1, 2, . . .
and the proof is complete.

Since ν ≤ bm we have the next corollary.

Corollary 3.18 (Heller) The free distance for any binary, rateR = b/c convolutional
code encoded by a minimal-basic encoding matrix of memory m satisfies

dfree ≤ min
i≥1

{⌊
(m+ i)c

2(1− 2−bi)

⌋}
(3.118)

From Heller’s bound the next corollary follows immediately.

Corollary 3.19 (Heller asymptotic bound) The free distance for any binary, rate
R = b/c convolutional code encoded by a minimal generator matrix of memory m
satisfies

lim
m→∞

dfree

mc
≤ 1

2
(3.119)

In fact, Heller’s bound is valid not only for convolutional codes but also for a larger
class of codes, viz., the so-called class of nonlinear, time-varying trellis codes. For
convolutional codes (i.e, linear, time-constant trellis codes), we can use Griesmer’s
bound for block codes to obtain slight improvements for some memories [Gri60].

188 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

Lemma 3.20 (Griesmer bound for linear block codes) For a binary, linear, rate
R = K/N block code with minimum distance dmin we have

K−1∑
i=0

⌈
dmin

2i

⌉
≤ N (3.120)

Proof : Without loss of generality, we assume that the first row of the generator
matrix G is (111 . . . 10 . . . 0) with dmin ones. Every other row has at least ddmin/2e
ones or ddmin/2e zeros in the first dmin positions. Hence, in either case they have
at least ddmin/2e ones in the remaining N − dmin positions. Therefore, the residual
code with respect to the first row is a rate R = (K − 1)/(N − dmin) code with
minimum distance ≥ ddmin/2e. Using induction on K completes the proof.

Consider the binary, linear block code in the proof of Theorem 3.17 with M =
2b(m+i)−ν codewords and block length N = (m+ i)c, i = 1, 2, The number of
information symbols

K = logM ≥ b(m+ i)− ν ≥ bi, i = 1, 2, . . . (3.121)

The minimum distances for these block codes, i = 1, 2, . . ., must satisfy the Griesmer
bound. Hence, we have the following:

Theorem 3.21 (Griesmer bound for convolutional codes) The free distance for any
binary, rateR = b/c convolutional code encoded by a minimal-basic encoding matrix
of memory m satisfies

bi−1∑
j=0

⌈
dfree

2j

⌉
≤ (m+ i)c (3.122)

for i = 1, 2,

EXAMPLE 3.7

(i) Let R = 1/2 and m = 16. Since mini≥1{b(16 + i)/(1 − 2−i)c} = 21, it
follows from the Heller bound that any binary, rate R = 1/2 convolutional
code with a generator matrix with memory m = 16 must have dfree ≤ 21.
Since

∑3
j=0d21/2je = 41 6≤ (16 + 4)2 = 40, any binary, rate R = 1/2

convolutional code with a generator matrix with memorym = 16 must have
dfree < 21. The Griesmer bound gives an improvement by one. Such a code
exists with dfree = 20.

(ii) Let R = 1/2 and m = 18. Since mini≥1{b(18 + i)/(1 − 2−i)c} = 23, it
follows from the Heller bound that any binary, rate R = 1/2 convolutional
code with a generator matrix with memory m = 18 must have dfree ≤ 23.
Since

∑i−1
j=0d23/2je ≤ (18 + i)2 for all i ≥ 1, the Griesmer bound for

convolutional codes does not give any improvement over the Heller bound
for convolutional codes in this case. The largest free distance for any binary,

UPPER BOUNDS ON THE FREE DISTANCE 189

0 10 20 30
0

10

20

30

OFD

Upper bounds
Heller and Griesmer

m

dmin

Figure 3.10 Heller and Griesmer upper bounds on the free distance and the free distance
for rate R = 1/2 OFD codes.

rate R = 1/2 convolutional code with a generator matrix with memory
m = 18 has been determined by exhaustive search to be dfree = 22. Thus,
the Griesmer bound is not tight.

For rate R = 1/2, binary convolutional codes we have calculated Heller’s upper
bound for memories 1 ≤ m ≤ 39. Using Griesmer’s bound, we obtained an improved
bound for some values of m by one or two (the bold values):

m 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

Heller 2 4 5 6 8 9 10 11 12 13 14 16 17 . . .
Griesmer 2 4 5 6 8 8 10 11 12 13 14 16 16 . . .

. . . 13 14 15 16 17 18 19 20 21 22 23 24 25 . . .

. . . 18 19 20 21 22 23 24 25 26 27 28 29 30 . . .

. . . 17 18 20 20 22 23 24 24 26 27 28 29 30 . . .

. . . 26 27 28 29 30 31 32 33 34 35 36 37 38 39

. . . 32 33 34 35 36 37 38 39 40 41 42 43 44 45

. . . 32 32 32 34 35 36 37 38 40 40 41 42 44 44

These results are shown in Fig. 3.10 and compared with the free distance for opti-
mum free distance (OFD) fixed convolutional codes. The upper bound is surprisingly
tight.

We notice, for example, that for memory m = 4 there is a gap. The Griesmer
bound implies that dfree ≤ 8, but the best rateR = 1/2 convolutional code of memory
m = 4 has dfree = 7. However, there exists a rate R = 2/4 convolutional code of

190 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

the same complexity, that is, memory m = 2, with dfree = 8. Its encoding matrix is
[JoW98]

G(D) =

(
D +D2 1 +D D2 1 +D +D2

1 D +D2 1 +D 1 +D +D2

)
(3.123)

and the first few Viterbi spectral components are 12, 0, 52, 0, 260. The optimum free
distance rate R = 1/2 convolutional code has encoding matrix

G(D) = (1 +D +D4 1 +D2 +D3 +D4) (3.124)

and the first few Viterbi spectral components 2, 3, 4, 16, 37.
Next we will consider convolutional codes encoded by polynomial, systematic

encoding matrices and derive counterparts to Heller’s and Griesmer’s bounds for
convolutional codes encoded by general generator matrices.

Theorem 3.22 (Heller) The free distance for any binary, rateR = b/c convolutional
code encoded by a polynomial, systematic encoding matrix of memory m satisfies

dfree ≤ min
i≥1

{⌊
(m(1−R) + i)c

2(1− 2−bi)

⌋}
(3.125)

Proof : Consider a convolutional code encoded by a polynomial(!), systematic
encoding matrix realized in controller canonical form. The code sequences of length
(m + i)c starting at the zero state and remerging at the zero state constitute a block
code ofM = 2b(m+i)−ν codewords, where ν is the overall constraint length. Append
to the shift registers m − νi, 1 ≤ i ≤ b, memory elements without connecting
them to the output. The corresponding block code encoded by this new encoder is an
expurgated block code whose minimum distance is at least as large as the minimum
distance of the original block code. In order to obtain the merger at the zero, we
now have to feed the encoder with m allzero b-tuples. Hence, the expurgated block
code has only Mexp = 2bi codewords, and each of them has b zeros as the first code
symbols on each of the m last branches before merging with the allzero state. The
“effective” block length is reduced to

N = (m+ i)c−mb = (m(1−R) + i)c (3.126)

Applying Lemma 3.16 completes the proof.

From Theorem 3.22 follows immediately the systematic counterpart to Corol-
lary 3.19:

Corollary 3.23 (Heller asymptotic bound) The free distance for any binary, rate
R = b/c convolutional code encoded by a polynomial, systematic encoding matrix
of memory m satisfies

lim
m→∞

dfree

mc
≤ 1−R

2
(3.127)

TIME-VARYING CONVOLUTIONAL CODES 191

Finally, by using (3.126) in the proof of Theorem 3.21, we obtain the following:

Theorem 3.24 (Griesmer bound for convolutional codes) The free distance for any
rate R = b/c convolutional code encoded by a polynomial, systematic encoding ma-
trix of memory m satisfies

bi−1∑
j=0

⌈
dfree

2j

⌉
≤ (m(1−R) + i)c (3.128)

for i = 1, 2,

3.6 TIME-VARYING CONVOLUTIONAL CODES

So far we have considered only time-invariant or fixed convolutional codes, that is,
convolutional codes encoded by time-invariant generator matrices. When it is too
difficult to analyze the performance of a communication system using time-invariant
convolutional codes, we can often obtain powerful results if we study time-varying
convolutional codes instead.

Assuming polynomial generator matrices, we have

vt = utG0 + ut−1G1 + · · ·+ ut−mGm (3.129)

where Gi, 0 ≤ i ≤ m, is a binary b× c time-invariant matrix.
In general, a rate R = b/c, binary convolutional code can be time-varying. Then

(3.129) becomes

vt = utG0(t) + ut−1G1(t) + · · ·+ ut−mGm(t) (3.130)

where Gi(t), i = 0, 1, . . . ,m, is a binary b× c time-varying matrix. In Fig. 3.11 we
illustrate a general time-varying polynomial convolutional encoder. As a counterpart
to the semi-infinite matrix G given in (3.6), we have

Gt =

G0(t) G1(t+ 1) . . . Gm(t+m)
G0(t+ 1) G1(t+ 2) . . . Gm(t+ 1 +m)

.

 (3.131)

Remark: With a slight abuse of terminology we call for simplicity a time-varying
polynomial transfer function matrix a generator matrix, although it might not have
full rank.

We have the general ensemble of binary, rateR = b/c, time-varying convolutional
codes with generator matrices of memorym in which each digit in each of the matrices
Gi(t) for 0 ≤ i ≤ m and t = 0, 1, 2, . . . is chosen independently and is equally likely
to be 0 and 1.

192 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

· · ·

G0(t) G1(t) Gm(t)

ut

vt

· · ·ut−1 ut−2 ut−m

Figure 3.11 A general time-varying polynomial convolutional encoder.

As a special case of the ensemble of time-varying convolutional codes, we have
the ensemble of binary, rate R = b/c, periodically time-varying convolutional codes
encoded by a polynomial generator matrix Gt (3.131) of memory m and period T
in which each digit in each of the matrices Gi(t) = Gi(t + T) for 0 ≤ i ≤ m and
t = 0, 1, . . . , T − 1 is chosen independently and is equally likely to be 0 and 1. We
denote this ensemble E(b, c,m, T).

The ensemble E(b, c,m) of (time-invariant) convolutional codes that we encoun-
tered in Section 3.4 can be considered as the special case E(b, c,m, 1), and the
ensemble of general time-varying convolutional codes defined above will be denoted
E(b, c,m,∞).

Before we define the active distances for periodically time-varying convolutional
codes encoded by time-varying polynomial generator matrices, we introduce the
following sets of information sequences, where we always assume that t1 ≤ t2.

Let U r
[t1−m,t2+m] denote the set of information sequences ut1−mut1−m+1 . . .

ut2+m such that the first m and the last m subblocks are zero and such that they do
not contain m+ 1 consecutive zero subblocks, that is,

U r
[t1−m,t2+m]

def
= {u[t1−m,t2+m] | u[t1−m,t1−1] = 0,

u[t2+1,t2+m] = 0, and u[i,i+m] 6= 0, t1 −m ≤ i ≤ t2} (3.132)

Let U c
[t1−m,t2] denote the set of information sequences ut1−mut1−m+1 . . .ut2 such

that the firstm subblocks are zero and such that they do not containm+1 consecutive
zero subblocks, that is,

U c
[t1−m,t2]

def
= {u[t1−m,t2] | u[t1−m,t1−1] = 0,

and u[i,i+m] 6= 0, t1 −m ≤ i ≤ t2 −m} (3.133)

LetU rc
[t1−m,t2+m] denote the set of information sequencesut1−mut1−m+1 . . .ut2+m

such that the last m subblocks are zero and such that they do not contain m + 1
consecutive zero subblocks, that is,

U rc
[t1−m,t2+m]

def
= {u[t1−m,t2+m] | u[t2+1,t2+m] = 0,

and u[i,i+m] 6= 0, t1 −m < i ≤ t2} (3.134)

TIME-VARYING CONVOLUTIONAL CODES 193

Let U s
[t1−m,t2] denote the set of information sequences ut1−mut1−m+1 . . .ut2 such

that they do not contain m+ 1 consecutive zero subblocks, that is,

U s
[t1−m,t2]

def
= {u[t1−m,t2] | u[i,i+m] 6= 0, t1 −m < i < t2 −m} (3.135)

Next, we introduce the (j + m + 1) × (j + 1) truncated, periodically time-varying
generator matrix of memory m and period T :

G[t,t+j] =

Gm(t)
Gm−1(t) Gm(t+ 1)

... Gm−1(t+ 1)
. . .

G0(t)
...

. . . Gm(t+ j)
G0(t+ 1) Gm−1(t+ j)

. . .
...

G0(t+ j)

(3.136)

where Gi(t) = Gi(t+ T) for 0 ≤ i ≤ m.
We are now well-prepared to generalize the definitions of the active distances

for convolutional codes encoded by polynomial generator matrices to time-varying
convolutional codes encoded by polynomial time-varying generator matrices:

Definition Let C be a periodically time-varying convolutional code encoded by a
periodically time-varying polynomial generator matrix of memory m and period T .

The jth order active row distance is

ar
j

def
= min

t
min

U r
[t−m,t+j+m]

{wH(u[t−m,t+j+m]G[t,t+j+m])} (3.137)

The jth order active column distance is

ac
j

def
= min

t
min

U c
[t−m,t+j]

{wH(u[t−m,t+j]G[t,t+j])} (3.138)

The jth order active reverse column distance is

arc
j

def
= min

t
min

U rc
[t−m,t+j]

{wH(u[t−m,t+j]G[t,t+j])} (3.139)

The jth order active segment distance is

as
j

def
= min

t
min

U s
[t−m,t+j]

{wH(u[t−m,t+j]G[t,t+j])} (3.140)

For a periodically time-varying convolutional code encoded by a periodically
time-varying, noncatastrophic, polynomial generator matrix with active row distance
ar
j we define its free distance by a generalization of (3.59)

dfree
def
= min

j
{ar
j} (3.141)

194 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

In the following two sections we will derive lower bounds on the free distance and
on the active distances. There we need the following:

Theorem 3.25 Consider a periodically time-varying, rate R = b/c, polynomial
generator matrix of memory m and period T represented by Gt, where Gt is given
in (3.131).

(i) Let the information sequences be restricted to the set U r
[t−m,t+j+m]. Then

the code symbols in the segment v[t,t+j+m] are mutually independent and
equiprobable over the ensemble E(b, c,m, T) for all j, 0 ≤ j < T .

(ii) Let the information sequences be restricted to the setU c
[t−m,t+j]. Then the code

symbols in the segment v[t,t+j] are mutually independent and equiprobable
over the ensemble E(b, c,m, T) for all j, 0 ≤ j < max{m+ 1, T}.

(iii) Let the information sequences be restricted to the setU rc
[t−m,t+j]. Then the code

symbols in the segment v[t,t+j] are mutually independent and equiprobable
over the ensemble E(b, c,m, T) for all j, 0 ≤ j < max{m+ 1, T}.

(iv) Let the information sequences be restricted to the setU s
[t−m,t+j]. Then the code

symbols in the segment v[t,t+j] are mutually independent and equiprobable
over the ensemble E(b, c,m, T) for all j, 0 ≤ j < T .

Proof : It follows immediately that for 0 ≤ j < T the code tuples vi, i =
t, t + 1, . . . , t + j, are mutually independent and equiprobable in all four cases.
Hence, the proof of (iv) is complete. In cases (ii) and (iii) it remains to show that the
statements also hold for T ≤ j ≤ m when m ≥ T .

(ii) Consider the information sequences in the set U c
[t−m,t+j], where 0 ≤ j ≤ m.

Let t ≤ i ≤ t+ j. Then, in the expression

vi = uiG0(i) + ui−1G1(i) + · · ·+ ui−mGm(i) (3.142)

there exists a k, 0 ≤ k ≤ m, such that at least one of the b-tuples ui−k is nonzero
and all the previous b-tuples ui−k′ , k < k′ ≤ m, are zero. Hence, vi and vi′ ,
t ≤ i < i′ ≤ t+ j, are mutually independent and equiprobable. This completes the
proof of (ii).

(iii) Consider the information sequences in the set U rc
[t−m,t+j], where 0 ≤ j ≤ m.

Let t ≤ i ≤ t + j; then, in (3.142) at least one of the b-tuples ui−k, 0 ≤ k ≤ m, is
nonzero, and all the following b-tuples ui−k′ , 0 ≤ k′ < k, are zero. Hence, vi and
vi′ , t ≤ i < i′ ≤ t+ j, are mutually independent and equiprobable.

(i) For the information sequences in U r
[t−m,t+j+m] it remains to show that vi and

vi′ are mutually independent and equiprobable also for T ≤ i′ − i < T +m. From
the definition of U r

[t−m,t+j+m] it follows that u[t−m,t−1] = 0, ut 6= 0, ut+j 6= 0,
and u[t+j+1,t+j+m] = 0. For j = T , we can choose, for example, u[t−m,t+m] =
u[t+T−m,t+T+m] ∈ U r

[t−m,t+T+m] which implies that v[t,t+m] = v[t+T,t+T+m].
However, for T −m ≤ j < T , vi, t ≤ i < t+m, and vi′ , t+ j < i′ ≤ t+ j +m,
are mutually independent and equiprobable.

LOWER BOUND ON THE FREE DISTANCE 195

From Theorem 3.25 the next corollary follows immediately.

Corollary 3.26 Consider a rateR = b/c polynomial generator matrix of memorym
represented byG, whereG is given in (3.6).

(i) Let the information sequences be restricted to the setU c
[t−m,t+j]. Then the code

symbols in the segment v[t,t+j] are mutually independent and equiprobable
over the ensemble E(b, c,m, 1) for all j, 0 ≤ j ≤ m.

(ii) Let the information sequences be restricted to the set U rc
[t−m,t+j+m]. Then the

code symbols in the segment v[t,t+j] are mutually independent and equiprob-
able over the ensemble E(b, c,m, 1) for all j, 0 ≤ j ≤ m.

3.7 LOWER BOUND ON THE FREE DISTANCE

In this section we will derive a lower bound on the free distance for the ensemble
of periodically time-varying convolutional codes. This bound is due to Costello
[Cos74], but our proof is slightly different. Our goal is to find a nontrivial upper
bound on the probability that dfree < d, that is, to prove that for the ensemble of
periodically time-varying convolutional codes P (dfree < d) < 1, since then we know
that at least one code exists within our ensemble that has dfree ≥ d.

First, we combine the definition of the free distance (3.141) with the definition of
the jth order active row distance (3.137) and obtain

dfree = min
t

min
j

min
U r

[t−m,t+j+m]

{wH(u[t−m,t+j+m]G[t,t+j+m])} (3.143)

Then we consider the ensemble of periodically time-varying convolutional codes
encoded by polynomial generator matrices with the information sequences restricted
to U r

[t1−m,t2+m]. The probability that the free distance for a randomly chosen
code in this ensemble is less than d is equal to the probability that for at least one
u[t−m,t+j+m] ∈ U r

[t−m,t+j+m], t = 0, 1, . . . , T − 1 and j = 0, 1, 2, . . ., we have

wH(u[t−m,t+j+m]G[t,t+j+m]) < d (3.144)

196 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

Thus, we have

P (dfree < d)

< P

(
min

0≤t<T
min

0≤j<∞
min

U r
[t−m,t+j+m]

{wH(u[t−m,t+j+m]G[t,t+j+m])} < d

)

< P

(
min

0≤t<T
min

0≤j<T
min

U r
[t−m,t+j+m]

{wH(u[t−m,t+j+m]G[t,t+j+m])} < d

)

+P

(
min

0≤t<T
min
j≥T

min
U r

[t−m,t+j+m]

{wH(u[t−m,t+j+m]G[t,t+j+m])} < d

)

< TP

(
min

0≤j<T
min

U r
[t−m,t+j+m]

{wH(u[t−m,t+j+m]G[t,t+j+m])} < d

)

+TP

(
min
j≥T

min
U r

[t−m,t+j+m]

{wH(u[t−m,t+j+m]G[t,t+j+m])} < d

)
(3.145)

where the second and third inequalities follow from the union bound.
In the sequel we will call code sequences

v[t,t+j+m] = u[t−m,t+j+m]G[t,t+j+m] (3.146)

where u[t−m,t+j+m] ∈ U r
[t−m,t+j+m] for incorrect sequences. Then it follows from

Theorem 3.25 that for 0 ≤ j < T the incorrect sequences are sequences of mutually
independent, equiprobable, binary symbols.

For any fixed t, the set U r
[t−m,t+j+m] contains 2b − 1 sequences for j = 0 and at

most 2(j−1)b(2b − 1)2 sequences for j ≥ 1. We use 2(j+1)b as an upper bound on
the cardinality of U r

[t−m,t+j+m].
First, we consider only incorrect sequences v[t,t+j+m] whose lengths are at most

T + m. The probability for each of these sequences is 2−(j+m+1)c and there are(
(j+m+1)c

i

)
ways of choosing exactly i ones among the (j +m+ 1)c code symbols.

Hence, we have

P

(
min

U r
[t−m,t+j+m]

{wH(u[t−m,t+j+m]G[t,t+j+m])} < d

)

< 2(j+1)b
d−1∑
i=0

(
(j +m+ 1)c

i

)
2−(j+m+1)c (3.147)

for 0 ≤ j < T and t = 0, 1, 2,
Using the union bound we can obtain an upper bound on

P

(
min
j<T

min
U r

[t−m,t+j+m]

{wH(u[t−m,t+j+m]G[t,t+j])} < d

)

LOWER BOUND ON THE FREE DISTANCE 197

by summing the probabilities for all incorrect sequences of lengthsm+j+1 ≤ T+m
with weights less than d. Thus, we have

P

(
min

0≤j<T
min

U r
[t−m,t+j+m]

{wH(u[t−m,t+j+m]G[t,t+j])} < d

)

<
T−1∑
j=0

d−1∑
i=0

2(j+1)b

(
(j +m+ 1)c

i

)
2−(j+m+1)c

<
∞∑
j=0

d−1∑
i=0

2(j+1)b

(
(j +m+ 1)c

i

)
2−(j+m+1)c (3.148)

We use the substitution
k = (j +m+ 1)c (3.149)

and upper-bound (3.148) by summing over k = 0, 1, 2, . . .,

P

(
min

0≤j<T
min

U r
[t−m,t+j+m]

{wH(u[t−m,t+j+m]G[t,t+j])} < d

)

< 2−mb
d−1∑
i=0

∞∑
k=0

(
k

i

)
2k(R−1) (3.150)

Let
x = 2R−1,

1

2
< x < 1 (3.151)

and rearrange (3.150) as

P

(
min

0≤j<T
min

U r
[t−m,t+j+m]

{wH(u[t−m,t+j+m]G[t,t+j])} < d

)

< 2−mb
d−1∑
i=0

xi

i!

∞∑
k=0

k(k − 1) . . . (k − i+ 1)xk−i

= 2−mb
d−1∑
i=0

xi

i!

(∞∑
k=0

xk

)(i)

= 2−mb
d−1∑
i=0

xi

i!

(
1

1− x

)(i)

= 2−mb
1

1− x

d−1∑
i=0

(
x

1− x

)i
= 2−mb

1

1− x
(x

1−x)d − 1
x

1−x − 1

<
2−mb

(2x− 1)(x−1 − 1)d
(3.152)

Using (3.151) we obtain

P

(
min

0≤j<T
min

U r
[t−m,t+j+m]

{wH(u[t−m,t+j+m]G[t,t+j])} < d

)

<
2−mb

(2R − 1)(21−R − 1)d
(3.153)

198 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

Next, we will consider sequences of lengths greater than T + m, that is, sequences
for which j ≥ T . Then we have

P

(
min
j≥T

min
U r

[t−m,t+j+m]

{wH(u[t−m,t+j+m]G[t,t+j+m])} < d

)

< P

(
min

U c
[t−m,t+T−1]

{wH(u[t−m,t+T−1]G[t,t+T−1])} < d

)

< 2Tb
d−1∑
i=0

(
Tc

i

)
2−Tc (3.154)

where the first inequality follows from the fact that the weight of a sequence is a
nondecreasing function of the length of the sequence. To obtain the second inequality,
we use 2Tb as an upper bound on the cardinality of U c

[t−m,t+T−1].
We will now interrupt our derivation and prove the following useful lemma:

Lemma 3.27 For 0 < γ < 1/2,

bγnc∑
i=0

(
n

i

)
< 2h(γ)n (3.155)

where h(γ) is the binary entropy function (1.22).

Proof : Since 0 < γ < 1/2, we have

bγnc∑
i=0

(
n

i

)
<

n∑
i=0

(
n

i

)(
1− γ
γ

)γn−i
=

(
1− γ
γ

)γn n∑
i=0

(
n

i

)(
γ

1− γ

)i
= (1− γ)

γn
γ−γn

(
1 +

γ

1− γ

)n
= (1− γ)γn−nγ−γn =

(
γ−γ(1− γ)−(1−γ)

)n
= 2h(γ)n (3.156)

From Lemma 3.27 it follows that

d−1∑
i=0

(
Tc

i

)
< 2h(d−1

Tc)Tc < 2h(d
Tc)Tc (3.157)

Hence, we obtain

P

(
min
j≥T

min
U r

[t−m,t+j+m]

{wH(u[t−m,t+j+m]G[t,t+j+m])} < d

)
< 2(h(d

Tc)+R−1)Tc (3.158)

LOWER BOUND ON THE FREE DISTANCE 199

By combining (3.145), (3.153), and (3.158) we obtain

P (dfree < d) < T

(
2−mb

(2R − 1)(21−R − 1)d
+ 2(h(d

Tc)+R−1)Tc

)
(3.159)

Let us now choose the period T � m, T = m2, say, and choose d = d̂ < cm, where
d̂ satisfies

m2

(
2−mb

(2R − 1)(21−R − 1)d̂
+ 2(h(d̂

m2c
)+R−1)m2c

)

< m2

(
2−mb

(2R − 1)(21−R − 1)d̂
+ 2(h(1

m)+R−1)m2c

)
< 1 (3.160)

For large memories m such a d̂ always exists. From (3.160) it follows that

d̂ >
−mb

log(21−R − 1)
− log(2R − 1) + log(m−2 − 2(h(1

m)+R−1)m2c)

log(21−R − 1)

=
−mb

log(21−R − 1)
−O(logm) (3.161)

and, finally, we have proved the following:

Theorem 3.28 (Costello bound) There exists a binary, periodically time-varying,
rate R = b/c convolutional code with a polynomial generator matrix of memory m
that has a free distance satisfying the inequality

dfree

mc
≥ R

− log(21−R − 1)
+O

(
logm

m

)
(3.162)

Since the overall constraint length

ν ≤ mb (3.163)

we have the next corollary.

Corollary 3.29 There exists a binary, periodically time-varying, rate R = b/c con-
volutional code with a polynomial generator matrix of overall constraint length ν that
has a free distance satisfying the inequality

dfree

νR−1
≥ R

− log(21−R − 1)
+O

(
log ν

ν

)
(3.164)

As a counterpart to Theorem 3.28 we can prove (see Problem 3.17) the following:

200 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

Theorem 3.30 There exists a binary, periodically time-varying, rate R = b/c con-
volutional code with a polynomial, systematic generator matrix of memory m that
has a free distance satisfying the inequality

dfree

mc
≥ R(1−R)

− log(21−R − 1)
+O

(
logm

m

)
(3.165)

Remark: The Costello bound is also valid for time-invariant convolutional codes
with “sufficiently long” branches, that is, for large b [Zig86]. In [ZiC91, CSZ92] it
was shown that the free distance for rateR = 2/c, c ≥ 4, time-invariant convolutional
codes asymptotically meets the Costello bound.

3.8 LOWER BOUNDS ON THE ACTIVE DISTANCES*

In this section we will derive lower bounds on the active distances for the ensemble
of periodically time-varying convolutional codes. First, we consider the active row
distance and begin by proving the following:

Lemma 3.31 Consider the ensemble E(b, c,m, T) of binary, rate R = b/c, period-
ically time-varying convolutional codes encoded by polynomial generator matrices
of memory m. The fraction of convolutional codes in this ensemble whose jth order
active row distance ar

j , 0 ≤ j < T , satisfies

ar
j ≤ âr

j < (j +m+ 1)c/2 (3.166)

does not exceed

T2

(
j+1

j+m+1R+h

(
âr
j

(j+m+1)c

)
−1

)
(j+m+1)c

where h() is the binary entropy function (1.22).

Proof : Let
v[t,t+j+m] = u[t−m,t+j+m]G[t,t+j+m] (3.167)

where u[t−m,t+j+m] ∈ U r
[t−m,t+j+m] and assume that

âr
j < (j +m+ 1)c/2 (3.168)

Then, it follows from Theorem 3.25 that

P (wH(v[t,t+j+m]) ≤ âr
j) =

âr
j∑

i=0

(
(j +m+ 1)c

i

)
2−(j+m+1)c

×2

(
h

(
âr
j

(j+m+1)c

)
−1

)
(j+m+1)c

, 0 ≤ j < T −m (3.169)

where the last inequality follows from Lemma 3.27.

LOWER BOUNDS ON THE ACTIVE DISTANCES* 201

(Notice that we need the denominator “2” in the right inequality in (3.166) in order
to be able to apply inequality (3.155).) Using

2(j+1)b = 2(j+1)Rc (3.170)

as an upper bound on the cardinality of U r
[t−m,t+j+m], we have

P

(
min

U r
[t−m,t+j+m]

{wH(v[t,t+j+m])} ≤ âr
j

)
< 2(j+1)Rc2

(
h

(
âr
j

(j+m+1)c

)
−1

)
(j+m+1)c

= 2

(
j+1

j+m+1R+h

(
âr
j

(j+m+1)c

)
−1

)
(j+m+1)c

(3.171)

for each t, 0 ≤ t < T . Using the union bound completes the proof.

For a given f , 0 ≤ f < 1, let j0 be the smallest integer j satisfying the inequality(
1− j + 1

j +m+ 1
R

)
(j +m+ 1)c ≥ log

T 2

1− f
(3.172)

For large memories m such a value always exists. Let âr
j ,

0 < âr
j < (j +m+ 1)c/2 (3.173)

denote the largest integer that for given f , 0 ≤ f < 1, and j, j ≥ j0, satisfies the
inequality (

j + 1

j +m+ 1
R+ h

(
âr
j

(j +m+ 1)c

)
− 1

)
(j +m+ 1)c

≤ − log
T 2

1− f
(3.174)

Then, from Lemma 3.31 it follows that for each j, j0 ≤ j < T , the fraction of
convolutional codes with jth order active row distance satisfying (3.166) is upper-
bounded by

T2− log T2

1−f =
1− f
T

(3.175)

Hence, we use the union bound and conclude that the fraction of convolutional codes
with active row distance ar

j ≤ âr
j for at least one j, j0 ≤ j < T , is upper-bounded by

T−m−1∑
j=j0

1− f
T

< 1− f (3.176)

Thus, we have proved the following:

Lemma 3.32 In the ensemble E(b, c,m, T) of periodically time-varying convolu-
tional codes, the fraction of codes with active row distance

ar
j > âr

j , j0 ≤ j < T (3.177)

202 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

is larger than f , where for a given f, 0 ≤ f < 1, j0 is the smallest integer satisfying
(3.172) and âr

j the largest integer satisfying (3.174).

By taking f = 0, we immediately have the next corollary.

Corollary 3.33 There exists a binary, periodically time-varying, rate R = b/c, con-
volutional code encoded by a polynomial generator matrix of period T and memory
m such that its jth order active row distance for j0 ≤ j < T is lower-bounded by âr

j ,
where âr

j is the largest integer satisfying(
j + 1

j +m+ 1
R+ h

(
âr
j

(j +m+ 1)c

)
− 1

)
(j +m+ 1)c

≤ −2 log T (3.178)

and j0 is the smallest integer satisfying(
1− j + 1

j +m+ 1
R

)
(j +m+ 1)c ≥ 2 log T (3.179)

In order to get a better understanding for the significance of the previous lemma, we
shall study the asymptotical behavior of the parameters j0 and âr

j for large memories.
Let the period T grow as a power of m greater than 1; choose T = m2, say.

Then, since j0 is an integer, for large values of m we have j0 = 0. Furthermore, the
inequality (3.178) can be rewritten as

h

(
âr
j

(j +m+ 1)c

)
≤ 1− j + 1

j +m+ 1
R+O

(
logm

m

)
(3.180)

or, equivalently, as8

âr
j ≤ h−1

(
1− j + 1

j +m+ 1
R

)
(j +m+ 1)c+O(logm) (3.181)

Finally, we have proved the following:

Theorem 3.34 There exists a binary, periodically time-varying, rate R = b/c, con-
volutional code encoded by a polynomial generator matrix of memory m that has a
jth order active row distance satisfying the inequality

ar
j > h−1

(
1− j + 1

j +m+ 1
R

)
(j +m+ 1)c+O(logm) (3.182)

for j ≥ 0.

The main term in (3.182) can also be obtained from the Gilbert-Varshamov bound
for block codes using a geometrical construction that is similar to Forney’s inverse
concatenated construction [For74].

8Here and hereafter we write h−1(y) for the smallest x such that y = h(x).

LOWER BOUNDS ON THE ACTIVE DISTANCES* 203

0.0 0.5 1.0
0.0

0.5

1.0

r

h−1(1−r)

δ̂r(j)

R

h−1(1−R)

0 25 50
0.0

0.5

1.0

j
j

δ̂r(j)

Figure 3.12 Geometrical construction of the relationship between the lower bound on the
active row distance for convolutional codes and the Gilbert-Varshamov lower bound on the
minimum distance for block codes.

Consider Gilbert-Varshamov’s lower bound on the (normalized) minimum dis-
tance for block codes [MaS77], viz.,

dmin

N
≥ h−1(1−R) (3.183)

where N denotes the block length. Let

δ̂r(j) =
h−1

(
1− j+1

j+1+mR
)

(j + 1 +m)c

mc
(3.184)

denote the main term of the right-hand side of (3.182) normalized by mc.
The construction is illustrated in Fig. 3.12 forR = 1/2. The straight line between

the points (0, δ̂r(j)) and (R, 0) intersects h−1(1 − R) in the point (r, h−1(1 − r)).
The rate r is chosen to be

r =
j + 1

j + 1 +m
R (3.185)

that is, it divides the line between (0, 0) and (R, 0) in the proportion (j + 1) : m.
Then we have

δ̂r(j)

h−1(1− r)
=
j + 1 +m

m
(3.186)

which is equivalent to (3.184). The relationship between r and j in Fig. 3.12 is given
by (3.185).

We will now derive a corresponding lower bound on the active column distance.
Let

v[t,t+j] = u[t−m,t+j]G[t,t+j] (3.187)

where u[t−m,t+j] ∈ U c
[t−m,t+j] and let âc

j be an integer satisfying the inequality

âc
j < (j + 1)c/2 (3.188)

204 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

Then, as a counterpart to (3.169) we have

P (wH(v[t,t+j]) ≤ âc
j) =

âc
j∑

i=0

(
(j + 1)c

i

)
2−(j+1)c

< 2

(
h

(
âc
j

(j+1)c

)
−1

)
(j+1)c

, 0 ≤ j < T (3.189)

We use (3.170) as an upper bound on the cardinality of U c
[t−m,t+j] and obtain

P

(
min

U c
[t−m,t+j]

{wH(v[t,t+j])} ≤ âc
j

)
< 2(j+1)Rc2

(
h

(
âc
j

(j+1)c

)
−1

)
(j+1)c

= 2

(
R+h

(
âc
j

(j+1)c

)
−1

)
(j+1)c

(3.190)

for each t, 0 ≤ t < T . Using the union bound completes the proof of the following:

Lemma 3.35 Consider the ensemble E(b, c,m, T) of binary, rate R = b/c, period-
ically time-varying convolutional codes encoded by polynomial generator matrices
of memory m. The fraction of convolutional codes in this ensemble whose jth order
active column distance ac

j , 0 ≤ j < T , satisfies

ac
j ≤ âc

j < (j + 1)c/2 (3.191)

does not exceed

T2

(
R+h

(
âc
j

(j+1)c

)
−1

)
(j+1)c

Next, we choose j0 to be the smallest integer j satisfying the inequality

(1−R)(j + 1)c ≥ log T 2 (3.192)

Let âc
j ,

0 < âc
j < (j + 1)c/2 (3.193)

denote the largest integer that for given j, j ≥ j0, satisfies the inequality(
R+ h

(
âc
j

(j + 1)c

)
− 1

)
(j + 1)c ≤ − log T 2 (3.194)

Then, from Lemma 3.35 it follows that for each j, j0 ≤ j < T , the fraction of
convolutional codes with a jth order active column distance satisfying (3.191) is
upper-bounded by

T2− log T 2

=
1

T
(3.195)

Hence, we use the union bound and conclude that the fraction of convolutional codes
with active column distance ac

j ≤ âc
j for at least one j, j0 ≤ j < T , is upper-bounded

by
T−1∑
j=j0

1

T
< 1 (3.196)

LOWER BOUNDS ON THE ACTIVE DISTANCES* 205

Thus, we have proved the following:

Lemma 3.36 There exists a periodically time-varying, rate R = b/c, convolutional
code encoded by a polynomial generator matrix of period T and memorym such that
its jth order active column distance for j0 ≤ j < T is lower-bounded by âc

j , where
âc
j is the largest integer satisfying(

R+ h

(
âc
j

(j + 1)c

)
− 1

)
(j + 1)c ≤ −2 log T (3.197)

and j0 is the smallest integer satisfying

(1−R)(j + 1)c ≥ 2 log T (3.198)

If we as before choose T = m2, then j0 = O(logm), and the inequality (3.197)
can be rewritten as

h

(
âc
j

(j + 1)c

)
≤ 1−R− 4 logm

(j + 1)c
(3.199)

for j = O(m) or, equivalently, as

âc
j ≤ h−1(1−R)(j + 1)c+O(logm) (3.200)

Thus, we have proved the following:

Theorem 3.37 There exists a binary, periodically time-varying, rate R = b/c, con-
volutional code encoded by a polynomial generator matrix of memory m that has a
jth order active column distance satisfying the inequality

ac
j > ρ(j + 1)c+O(logm) (3.201)

for j = O(m) > j0 = O(logm) and ρ is the Gilbert-Varshamov parameter (3.89).

Analogously we can prove the next theorem.

Theorem 3.38 There exists a binary, periodically time-varying, rate R = b/c, con-
volutional code encoded by a polynomial generator matrix of memory m that has a
jth order active reverse column distance arc

j which is lower-bounded by the right-hand
side of the inequality (3.201) for all j = O(m) > j0 = O(logm).

For the active segment distance we have the following:

Theorem 3.39 There exists a binary, periodically time-varying, rate R = b/c, con-
volutional code encoded by a polynomial generator matrix of memory m that has a
jth order active segment distance satisfying the inequality

as
j > h−1

(
1− j +m+ 1

j + 1
R

)
(j + 1)c+O(logm) (3.202)

206 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

for j = O(m) > js, where

js <
R

1−R
m+O(logm) (3.203)

Proof : Consider the ensemble E(b, c,m, T). First, we notice that the cardinality of
U s

[t,t+j] is upper-bounded by

2mb2(j+1)b = 2(j+m+1)Rc (3.204)

Using (3.204) instead of (3.170) and repeating the steps in the derivation of the lower
bound on the active column distance will give

h

(
âs
j

(j + 1)c

)
≤ 1− j +m+ 1

j + 1
R− 4 logm

(j + 1)c
(3.205)

for all j = O(m) > js, or, equivalently,

âs
j ≤ h−1

(
1− j +m+ 1

j + 1
R

)
(j + 1)c+O(logm) (3.206)

where
0 < âs

j < (j + 1)c/2 (3.207)

instead of (3.199), (3.200), and (3.193), respectively, and the proof is complete.

The parameter js is the start of the active segment distance which was introduced
in Section 3.2 (cf. Fig. 3.6).

For R ≤ 1/2 there exist binary, time-invariant convolutional codes with (see
Problem 3.18)

js <
R

1−R
(m+ 1) (3.208)

Next we consider our lower bounds on the active distances, viz., (3.182), (3.201),
and (3.202), and introduce the substitution

` = (j + 1)/m (3.209)

Then we obtain asymptotically—for large memoriesm—the following lower bounds
on the normalized active distances:

Theorem 3.40 (i) There exists a binary, periodically time-varying, rateR = b/c,
convolutional code encoded by a polynomial generator matrix of memory m
whose normalized active row distance asymptotically satisfies

δr
`

def
=

ar
j

mc
≥ h−1

(
1− `

`+ 1
R

)
(`+ 1) +O

(
logm

m

)
(3.210)

for ` ≥ 0.

DISTANCES OF CASCADED CONCATENATED CODES* 207

(ii) There exists a binary, periodically time-varying, rate R = b/c, convolutional
code encoded by a polynomial generator matrix of memory m whose normal-
ized active column distance (active reverse column distance) asymptotically
satisfies

δc
`

def
=

ac
j

mc

δrc
`

def
=

arc
j

mc

 ≥ h−1(1−R)`+O

(
logm

m

)
(3.211)

for ` ≥ `0 = O
(

logm
m

)
.

(iii) There exists a binary, periodically time-varying, rate R = b/c, convolutional
code encoded by a polynomial generator matrix of memory m whose normal-
ized active segment distance asymptotically satisfies

δs
`

def
=

as
j

mc
≥ h−1

(
1− `+ 1

`
R

)
`+O

(
logm

m

)
(3.212)

for ` ≥ `s = R
1−R +O

(
logm
m

)
.

The typical behavior of the bounds in Theorem 3.40 is shown in Fig. 3.13. Notice
that by minimizing the lower bound on the normalized active row distance (3.210),
we obtain nothing but the main term in Costello’s lower bound on the free distance
(3.162), viz.,

R

− log(21−R − 1)

3.9 DISTANCES OF CASCADED CONCATENATED CODES*

Consider the simplest concatenated scheme with two convolutional encoders, viz.,
a cascade of a rate Ro = bo/co outer encoder of memory mo and a rate Ri = bi/ci
inner encoder of memory mi, where bi = co. The cascaded concatenated code Cc
is encoded by the rate Rc = RoRi = bo/ci

def
= b/c convolutional encoder whose

memory (2.134) in general could be less than the sum of the memories of the
constituent encoders, that is, mc ≤ mo +mi (Fig. 3.14).

Consider the ensemble EC(b, c,mc, T) of periodically time-varying, cascaded
convolutional codes constructed in the following way:

Choose as outer convolutional code a binary, periodically time-varying with period
T , rate Ro = bo/co convolutional code encoded by a minimal-basic encoding matrix
of memory mo = mink{νo,k}, where νo,k is the constraint length of the kth input
and whose active segment distance has the start

jo
s =

Ro

1−Ro
mo +O(logmo) (3.213)

208 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

0 1 2 3 4 5
0

0.25

0.5

0.75

R

− log(21−R − 1)

`

δ`

δr
`

δc
`, δ

rc
`

δs
`

Figure 3.13 Typical behavior of the lower bounds on the normalized active distances of
Theorem 3.40.

bo
co = bi ciOuter

encoder
Inner

encoder

Figure 3.14 A cascade of two consecutive encoders.

The existence of such a convolutional code follows from Theorem 3.39. For Ro ≤
1/2, the outer convolutional code can be chosen to be time invariant (cf. (3.208)).

The ensemble of inner convolutional codes is the ensemble of binary, periodically
time-varying with period T , rate Ri = bi/ci convolutional codes encoded by time-
varying polynomial generator matrices of memory mi ≥ jo

s . Then we have the
ensemble EC(b, c,mc, T) of periodically time-varying with period T , rate Rc = b/c,
cascaded convolutional codes encoded by convolutional encoders of memory mc.

As a counterpart to Theorem 3.25 we have the following:

Theorem 3.41 Consider a periodically time-varying, rate Rc = b/c, cascaded con-
volutional code encoded by a convolutional encoder of memory mc.

(i) Let the information sequences be restricted to the set U r
[t−mc,t+j+mc]

. Then
the code symbols in the segment v[t,t+j+mc] are mutually independent and
equiprobable over the ensemble EC(b, c,mc, T) for all j, 0 ≤ j < T .

DISTANCES OF CASCADED CONCATENATED CODES* 209

(ii) Let the information sequences be restricted to the setU c
[t−mc,t+j]

. Then the code
symbols in the segment v[t,t+j] are mutually independent and equiprobable
over the ensemble EC(b, c,mc, T) for all j, 0 ≤ j < T .

(iii) Let the information sequences be restricted to the setU rc
[t−mc,t+j]

. Then the code
symbols in the segment v[t,t+j] are mutually independent and equiprobable
over the ensemble EC(b, c,mc, T) for all j, 0 ≤ j < T .

(iv) Let the information sequences be restricted to the setU s
[t−mc,t+j]

. Then the code
symbols in the segment v[t,t+j] are mutually independent and equiprobable
over the ensemble EC(b, c,mc, T) for all j, 0 ≤ j < T .

Proof : Analogously to the proof of Theorem 3.25.

If we let
` = (j + 1)/mc (3.214)

then for cascaded convolutional codes we have the following counterpart to Theo-
rem 3.40:

Theorem 3.42 (i) There exists a cascaded convolutional code in the ensemble
EC(b, c, mc, T) whose normalized active row distance asymptotically satisfies

δr
`

def
=

ar
j

mcc
≥ h−1

(
1− `

`+ 1
Rc

)
(`+ 1) +O

(
logmc

mc

)
(3.215)

for ` ≥ 0.

(ii) There exists a cascaded convolutional code in the ensemble EC(b, c, mc, T)
whose normalized active column distance asymptotically satisfies

δc
`

def
=

ac
j

mcc
≥ h−1(1−Rc)`+O

(
logmc

mc

)
(3.216)

for ` ≥ `0 = O
(

logmc
mc

)
.

(iii) There exists a cascaded convolutional code in the ensemble EC(b, c, mc, T)
whose normalized active segment distance asymptotically satisfies

δs
`

def
=

as
j

mcc
≥ h−1

(
1− `+ 1

`
Rc

)
`+O

(
logmc

mc

)
(3.217)

for ` ≥ `o
s = Ro

1−Ro
+O

(
logmo
mo

)
.

Proof : Analogously to the proof of Theorem 3.40.

The behavior of the bounds in Theorem 3.42 is the same as that for the bounds in
Theorem 3.40 (see Fig. 3.13).

210 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

The free distance for a convolutional code is obtained as the minimum weight of
the nonzero codewords. The only restriction on the input sequence is that it should
be nonzero. Now, let us consider the cascade in Fig. 3.14. The free distance for the
cascaded convolutional code, dc

free, is obtained as the minimum weight of the nonzero
codewords; again the minimum is evaluated over all nonzero inputs. Since the inputs
to the inner encoder are restricted to be codewords of the outer encoder, we will not
obtain a useful estimate of dc

free from the free distance of the inner code, di
free.

It is somewhat surprising that, given only a restriction on the memory of the inner
code, there exists a convolutional code obtained as a simple cascade with a free
distance satisfying the Costello bound:

Theorem 3.43 (Costello bound) Consider a cascade Cc of an outer binary, period-
ically time-varying convolutional code Co of rate Ro = bo/co and encoder memory
mo and an inner binary, time-varying convolutional code Ci of rate Ri = bi/ci and
encoder memory mi, where bi = co. If

mi ≥
Ro

1−Ro
mo +O(logmo) (3.218)

then there exists a pair of codes, Co and Ci, such that the code Cc of rate Rc = RoRi
and encoder memory mc = mo +mi has a free distance satisfying the inequalities

dc
free ≥

mcciRc

− log(21−R − 1)
+O

(
logmc

mc

)
≥ mocoRo

− log(21−Ro − 1)
+

miciRi

− log(21−Ri − 1)

+O

(
logmo

mo

)
+O

(
logmi

mi

)
(3.219)

Proof : Choose an inner code Ci such that

mi =

⌈
Ro

1−Ro
mo

⌉
(3.220)

Then, by minimizing (3.215) over `, we obtain

dc
free ≥

mcbo

− log(21−Rc − 1)
+O

(
logmc

mc

)
=

mcciRc

− log(21−Rc − 1)
+O

(
logmc

mc

)
=

mobo

− log(21−Rc − 1)
+

miciRc

− log(21−Rc − 1)
+O

(
logmc

mc

)
≥ mocoRo

− log(21−Ro − 1)
+

miciRi

− log(21−Ri − 1)
+O

(
logmc

mc

)
(3.221)

where we in the last inequality have used the fact that

− log(21−R − 1)

DISTANCES OF CASCADED CONCATENATED CODES* 211

is an increasing and
R

− log(21−R − 1)

is a decreasing functions of R.

Theorem 3.43 shows that, given the restriction (3.220) on the ratio mi/mo, from
the Costello lower bound point of view, we lose nothing in free distance by splitting
a given amount of convolutional encoder memory into two cascaded convolutional
encoders.

Remark: Assume that for the cascaded encoder in Theorem 3.43 we have νmin,o =
mo and νmin,i = mi and that mi = Ro

1−Ro
mo holds. Then the total number of states

in the outer and inner encoders are

2mibi + 2mobo = 2mobo(2mibi−mobo + 1)

= 2(mo+mi)bo(1 + 2−mibo) (3.222)

which is essentially equal to the total number of states of a generator matrix Gc(D)
with νmin,c = mc. The second equality follows from the equality mi = Ro

1−Ro
mo.

We have shown that the performances for all active distances for the ensemble of
time-varying cascaded convolutional codes are the same as for the ensemble of time-
varying convolutional codes, although the former ensemble is essentially smaller.

Consider again the concatenated scheme given in Fig. 3.14. Since the inputs to the
inner encoder are restricted to the codewords of the outer encoder, we will not obtain
a useful estimate of dc

free from the free distance of the inner code, di
free. Consider the

situation when the shortest constraint length for the inner encoder exceeds the length
of the allzero sequence considered when we determine the active segment distance
for the outer encoder, that is, when mink{νi,k} ≥ jo

s , where νi,k is the constraint
length for the kth input of the inner encoder. Then a nontrivial lower bound on the
free distance for the binary concatenated code, dc

free,can be obtained as follows:
Assume a nonzero input sequence to the outer encoder. The length of its output

sequence is at least mink{νo,k} + 1, where νo,k is the constraint length for the kth
input of the outer encoder. Since this output sequence serves as input to the inner
encoder and since the weight of the output sequence of the inner encoder is lower-
bounded by the active row distance of the inner encoder, ar,i

j , at the length of its input
sequence, it follows that

dc
free ≥ min

j≥
⌈
`o
min
bi

⌉
−1

{ar,i
j } (3.223)

where `o
min is the length of the shortest burst of code symbols, which is lower-bounded

by
`o
min ≥ max{(min

k
{νo,k} − 1)co + 2, do

free} (3.224)

From (3.223) we conclude that, in order to obtain a large free distance for this
cascaded concatenated code, the inner encoder should have a rapidly increasing
active row distance and the outer encoder should have long nonzero sequences as
outputs.

212 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

...
...

...

Encoder Omi

Encoder O2

Encoder O1

Encoder O0

Encoder I

B

u

f

f

e

r

Figure 3.15 A cascade with a set of mi parallel outer encoders, each of memory mo and
rate Ro = bo/co, followed by a buffer of size (mi + 1)× co, and an inner encoder of memory
mi and rate Ri = 1/ci.

Finally, we consider a cascade of a binary rate Ri = 1/ci convolutional inner
encoder of memory mi and a set of mi + 1 parallel, binary, rateRo = bo/co convolu-
tional outer encoders each of memory mo. The mi + 1 outputs of the outer encoders
are via a buffer of size (mi + 1) × co connected to the single input of the inner
encoder (Fig. 3.15). The overall concatenated code Cpc is a rate Rpc = RoRi = bo/ci
convolutional code with an encoder consisting of mpc = (mo + co)(mi + 1) + mi
memory elements.

Theorem 3.44 There exists a binary, periodically time-varying, rate Rpc = RoRi
cascaded concatenated convolutional code Cpc encoded by the scheme described
above that has a free distance satisfying the inequality9

dpc
free ≥ ρici(mi + 1)

mocoRo

− log(21−Ro − 1)
+ o(mo) (3.225)

where ρi is the Gilbert-Varshamov parameter, that is, the solution of (3.89) for the
inner convolutional code.

Proof : Choose outer convolutional codes satisfying the Costello bound and an inner
convolutional code satisfying the active column distance bound. We have at least
do

free ones in the output from any outer encoder. They will be at leastmi + 1 positions
apart at the input of the inner encoder. Since each one at the input of the inner encoder
will contribute at least ρici(mi + 1) to the weight of the output sequence, it follows

9Here and hereafter we write f(x) = o(g(x)) if limx→a
f(x)
g(x)

= 0, where a is any real number or∞.

We have, e.g., f(x) = x2 can be regarded as f(x) = o(x) when x→ 0 and f(x) =
√
x can be regarded

as f(x) = o(x) when x→∞. We also have f(x) = x can be regarded as f(x) = o(1) when x→ 0.

PATH ENUMERATORS 213

v(1)

v(2)

u

10 01

00

11

1/10

0/00

1/01

1/11

0/01

0/11

0/10

1/00

Figure 3.16 A rate R = 1/2 convolutional encoder and its state-transition diagram.

that its weight will be at least the product of the two lower bounds, and the proof is
complete.

The lower bound in Theorem 3.44 can be interpreted as the product of a Gilbert-
Varshamov-type lower bound on the minimum distance (Corollary 3.15) for the inner
convolutional code and the Costello bound on the free distance (Theorem 3.28) for
the outer convolutional code.

3.10 PATH ENUMERATORS

For a convolutional encoder the paths through the state-transition diagram beginning
and ending in the (encoder) zero state when the self-loop at this state is removed
determines the Viterbi distance spectrum. We shall now obtain a closed-form expres-
sion whose expansion yields the enumeration of all such paths. The method, which
is due to Viterbi [Vit71], is best explained by an example.

Consider the rate R = 1/2 convolutional encoder and its state-transition diagram
given in Fig. 1.16. For reference the figure is repeated as Fig. 3.16. The self-loop
at the zero state in the state-transition diagram is removed, and the zero state is split
in two—a source state and a sink state. Then the branches are labeled W 0 = 1, W ,
W 2, where the exponent corresponds to the weight of the particular branch. The
result is the so-called signal flowchart shown in Fig. 3.17.

Let the input to the source (left zero state) be 1, and letT (W) denote the generating
function for the path weight W . We call T (W) the path weight enumerator. In
connection with signal flowcharts, it is often called transmission gain and can be
found by the standard signal flowchart technique [MaZ60]. For some applications,
this method is an efficient way of formulating and solving a system of linear equations.
Here we prefer the straightforward method used by Viterbi.

214 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

00 10 01 00

11

W

W W

W

1

W 2 W 2

ξ1 ξ3

ξ2

Figure 3.17 Signal flowchart for the encoder illustrated in Fig. 3.16.

Let ξ1, ξ2, and ξ3 be dummy variables representing the weights of all paths from
the left zero state to the intermediate states. Then from Fig. 3.17 we obtain the system
of linear equations

ξ1 = ξ3 +W 2

ξ2 = Wξ1 +Wξ2
ξ3 = Wξ1 +Wξ2

(3.226)

and
T (W) = W 2ξ3 (3.227)

Equation (3.226) can be rewritten as 1 0 −1
−W 1−W 0
−W −W 1

 ξ1
ξ2
ξ3

 =

 W 2

0
0

 (3.228)

Using Cramer’s rule, we obtain

ξ3 =

det

 1 0 −1
−W 1−W 0
−W −W 1

−1

det

 1 0 W 2

−W 1−W 0
−W −W 0

= W 3/(1− 2W) (3.229)

Combining (3.227) and (3.229), we find

T (W) = W 5/(1− 2W)

= W 5 + 2W 6 + 4W 7 + · · ·+ 2kW k+5 + · · · (3.230)

Hence, we havedfree = 5, and the Viterbi spectral componentsndfree+i, i = 0, 1, 2, . . .,
are 1, 2, 4,

PATH ENUMERATORS 215

u(2)

u(1)

v(2)

v(3)

v(1)

Figure 3.18 Controller canonical form of the encoding matrix in Example 3.8.

EXAMPLE 3.8

Consider the rate R = 2/3, memory m = 1, overall constraint length ν = 2,
convolutional encoding matrix

G(D) =

(
1 +D D 1 +D

1 1 D

)
(3.231)

Its controller canonical form is shown in Fig. 3.18.
FromG(D) or from the encoder block diagram (Fig. 3.18) we can easily obtain

the state-transition diagram which is shown in Fig. 3.19.
A modification of the state-transition diagram yields the signal flowchart given

in Fig. 3.20. From the signal flowchart we obtain the system of linear equations 1−W −W 2 −W
−W 1−W 2 −W
−W −1 1−W 3

 ξ1
ξ2
ξ3

 =

 W 2

W 2

W 2

 (3.232)

and
T (W) = W 3ξ1 +W 2ξ2 +Wξ3 (3.233)

Solving these equations yields

T (W) = 2W 3 + 5W 4 + 15W 5 + 43W 6 + 118W 7 + 329W 8 + · · · (3.234)

Thus, the Viterbi spectrum has two codewords of weightdfree = 3, which can easily
be verified by tracing paths in the signal flowchart or state-transition diagram.

216 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

0

0

0

1

1

0

1

1

01/001

10/100

01/11000/111

11/01010/011

11/011 00/110

10/101 00/001

11/100 01/000

11/101

00/000

10/010 01/111

Figure 3.19 State-transition diagram for the encoder in Fig. 3.18.

Viterbi also used the signal flowchart to obtain an extended path enumerator,
which counts the paths not only according to their weights but also according to their
lengths L and to the number of 1’s I in the corresponding information sequence.

We return to our encoder in Fig. 3.16 and label the branches not only by Ww,
where w is the branch weight, but also by LIi, where i is the number of 1’s among
the information symbols corresponding to the particular branch. Thus, we have the
extended signal flowchart shown in Fig. 3.21.

From this extended signal flowchart we obtain the linear equations 1 0 −LI
−WLI 1−WLI 0
−WL −WL 1

 ξ1
ξ2
ξ3

 =

 W 2LI
0
0

 (3.235)

and

T (W,L, I) = W 2Lξ3 (3.236)

PATH ENUMERATORS 217

0

0

0

1

1

0

0

0

1

1

W 2 W

W

W

W

W 2 1
W

W 2 W 2

W 2 W 3

ξ2

ξ1 ξ3

W 2

W W 3

Figure 3.20 Signal flowchart for the encoder in Fig. 3.18.

Solving (3.235) and inserting the solution into (3.236) yield

T (W,L, I) =
W 5L3I

1−WL(1 + L)I

= W 5L3I +W 6L4(1 + L)I2 +W 7L5(1 + L)2I3

+ · · ·+W 5+kL3+k(1 + L)kI1+k + · · · (3.237)

Both the path weight enumerator and the extended path enumerator are encoder
properties [BHJ10]. For example, consider the systematic encoding matrix

G(D) =

(
1 0 1 +D
0 1 D

)
(3.238)

which is minimal (we showed in Chapter 2 that all systematic encoding matrices are
minimal) but not minimal-basic. So it cannot be realized by a minimal encoder in
controller canonical form (ccf). However, it can be realized in observer canonical
form (ocf) with only one memory element. Its path weight enumerator is

Tocf(W) =
W 2 + 3W 3 −W 5

1−W −W 2

= W 2 + 4W 3 + 5W 4 + 8W 5 + 13W 6 + · · · (3.239)

218 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

00 10 01 00

11

WLI

WLI WL

WL

LI

W 2LI W 2L

ξ1 ξ3

ξ2

Figure 3.21 Extended signal flowchart for the encoder illustrated in Fig. 3.16.

The realization in controller canonical form requires two memory elements and
has the path weight enumerator

Tccf(W) =
W 2 + 3W 3 −W 5

1−W −W 2 − 2W 3 +W 5

= W 2 + 4W 3 + 5W 4 + 10W 5 + 23W 6 + · · · (3.240)

In the state-transition diagram for a nonminimal encoder we might have an allzero
branch between a nonzero state and the allzero state. Thus, a path passing such a
nonzero state can reach its termini (the allzero state) either via the allzero branch or
by passing other states. In the latter case it will pick up an additional weight of at
least dfree. We conclude that equivalent generator matrices have the same path weight
enumerators up to path weight 2dfree − 1, but for higher path weights nonminimal
realizations might have more paths than minimal ones.

In the next chapter we use these path enumerators to obtain error bounds for
maximum-likelihood decoding.

Finally, using an example we will show how to determine the active burst distance
by using a simple modification of the signal flowchart.

Consider the rate R = 1/2 convolutional encoder in Fig. 3.16 and its signal
flowchart in Fig. 3.17. In order to determine the active burst distance, we add another
zero state such that when we reach this zero state we will leave it in the next step
corresponding to the “bounces” in the zero state. We also label all branches except
the first one with J in order to count the order of the active burst distance. Hence,
we obtain a modified signal flowchart as illustrated in Fig. 3.22.

As before, we use the dummy variables ξ1, ξ2, ξ3, and ξ4 to represent the weights
and depths from the left zero state to the intermediate states. Thus, we obtain the set

PATH ENUMERATORS 219

00 10 01 00

11

00

WJ

WJ

W 2J

WJ

W 2J

WJ

J

W 2 W 2J

ξ1 ξ3

ξ2

ξ4

Figure 3.22 Modified signal flowchart for the encoder illustrated in Fig. 3.16.

of linear equations
ξ1 = Jξ3 +W 2Jξ4 +W 2

ξ2 = WJξ1 +WJξ2
ξ3 = WJξ1 +WJξ2
ξ4 = W 2Jξ3

(3.241)

and
T (W,J) = W 2Jξ3 (3.242)

Equation (3.241) can be rewritten as
1 0 −J −W 2J

−WJ 1−WJ 0 0
−WJ −WJ 1 0

0 0 −W 2J 1

ξ1
ξ2
ξ3
ξ4

 =

W 2

0
0
0

 (3.243)

Using Cramer’s rule we obtain

ξ3 =

det

1 0 −J −W 2J

−WJ 1−WJ 0 0
−WJ −WJ 1 0

0 0 −W 2J 1

−1

×det

1 0 W 2 −W 2J

−WJ 1−WJ 0 0
−WJ −WJ 0 0

0 0 0 1

=

W 3J

1−WJ −WJ2 −W 5J3
(3.244)

220 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

and, hence,

T (W,J) = W 2Jξ3 =
W 5J2

1−WJ −WJ2 −W 5J3

= W 5J2(1 +WJ + (W +W 2)J2 + (2W 2 +W 3 +W 5)J3

+(W 2 + 3W 3 +W 4 + 2W 6)J4 + · · ·)
= W 5J2 +W 6J3 + (W 6 +W 7)J4 + (2W 7 +W 8 +W 10)J5

+(W 7 + 3W 8 +W 9 + 2W 11)J6 + . . . (3.245)

From the expansion of T (W,J) given in (3.245) we have the active burst distances
ab

2 = 5, ab
3 = 6, ab

4 = 6, ab
5 = 7, ab

6 = 7, . . . or since νmin = m = 2, equivalently,
the active row distances ar

0 = 5, ar
1 = 6, ar

2 = 6, ar
3 = 7, ar

4 = 7, . . ., in agreement
with the initial part of the curve in Fig. 3.8.

3.11 COMMENTS

Most distance measures for convolutional codes were born at the University of Notre
Dame: column distance, row distance, free distance [Cos69], and distance profile
[Joh75].

In 1974 Costello published important bounds on the free distance [Cos74]. The
lower bound on the distance profile was obtained by Johannesson and Zigangirov
[JoZ89].

A family of extended distances was introduced for the class of unit memory (UM),
that is, m = 1, convolutional codes by Thommesen and Justesen [ThJ83]; see also
[JTZ88]. They were generalized tom > 1 convolutional codes by Höst, Johannesson,
Zigangirov, and Zyablov and presented together with the corresponding bounds in
1995 [HJZ95, JZZ95]; they are closely related to the active distances [HJZ99].

PROBLEMS 221

PROBLEMS

3.1 Consider the convolutional encoding matrix (cf. Problem 1.30)

G =

 11 10 01 11
11 10 01 11

.

a) Draw the state-transition diagram.
b) Find the path u = 11001 in the state-transition diagram.
c) Find the lowest weight path that leaves the zero state and returns to the zero

state.

3.2 Consider the rate R = 2/3, memory m = 2, overall constraint length ν = 3,
convolutional encoder illustrated in Fig. 1.14 (cf. Problem 1.32).

a) Draw the state-transition diagram.
b) Find the path u = 10 11 01 10 in the state-transition diagram.

3.3 Consider the rate R = 1/2 convolutional code with encoding matrix G(D) =
(1 +D +D2 1 +D2).

a) Find the column distances dc
0, d

c
1, . . . , d

c
∞.

b) Find the distance profile dp.
c) Find the row distances dr

0, d
r
1, . . . , d

r
∞.

3.4 Consider the rate R = 1/2 convolutional code with encoding matrix G(D) =
(1 +D +D2 +D3 1 +D2 +D3) and repeat Problem 3.3.

3.5 Consider the rate R = 1/3 convolutional code with encoding matrix G(D) =
(1 +D +D2 1 +D +D2 1 +D2) and repeat Problem 3.3.

3.6 Consider the rate R = 2/3 convolutional encoding matrix

G(D) =

(
1 +D D 1 +D

1 1 D

)
and repeat Problem 3.3.

3.7 Consider the rate R = 1/2 convolutional code with encoding matrix G(D) =
(1 +D +D2 1 +D3) (cf. Problem 2.4).

a) Draw the state-transition diagram.
b) Find an infinite-weight information sequence that generates a codeword of

finite weight.
c) Find dc

∞ and dr
∞.

3.8 Find the distance profile and the free distance for the rate R = 2/3 convolu-
tional code with encoding matrix

a)

G1(D) =

(
1 +D D 1
D2 1 1 +D +D2

)

222 DISTANCE PROPERTIES OF CONVOLUTIONAL CODES

b)

G2(D) =

(
1 +D D 1

1 +D2 +D3 1 +D +D2 +D3 0

)
c) Show that G1(D) and G2(D) encode the same code.

3.9 Consider the rateR = 1/2 systematic convolutional encoding matrix G(D) =
(1 1 +D +D2) realized in controller canonical form.

a) Draw its controller canonical form.
b) Draw the state-transition diagram.
c) Draw the signal flowchart.
d) Find the extended path enumerator T (W,L, I).

3.10 Consider the rateR = 1/2 convolutional encoding matrixG(D) = (1 +D+
D2 +D3 1 +D2 +D3) realized in controller canonical form.

a) Draw the state-transition diagram.
b) Draw the signal flowchart.
c) Find the path weight enumerator T (W).

3.11 Consider the rate R = 2/3 convolutional encoding matrix

G(D) =

(
1 +D D 1 +D

1 1 D

)
realized in controller canonical form. Find the extended path enumerator T (W,L, I).

3.12 Consider a rateR = 1/2 convolutional code with a memorym = 4 encoding
matrix.

a) Calculate the Heller bound.
b) Calculate the Griesmer bound.

Remark: The optimum time-invariant code with an encoding matrix of memory
m = 4 has dc

∞ = dfree = 7, but there exists a catastrophic time-invariant encoding
matrix with dr

∞ = 8.
3.13 Repeat Problem 3.12 for rate R = 1/2 and memory m = 5.

3.14 Repeat Problem 3.12 for rate R = 1/2 and memory m = 28.

3.15 Consider the rate R = 2/3 convolutional encoding matrix

G(D) =

(
1 1 0
D 1 +D 1

)
realized in controller canonical form.

a) Find the column distances dc
0, d

c
1, . . . , d

c
∞.

b) Find the extended path enumerator T (W,L, I).

3.16 Consider the rateR = 1/3 convolutional code with encoding matrixG(D) =
(1 1 +D +D2 1 +D2) realized in controller canonical form.

PROBLEMS 223

Find the spectral component n16.

3.17 Prove the Costello bound for periodically time-varying, rate R = b/c convo-
lutional codes with polynomial, systematic generator matrices (Theorem 3.30).
Hint: Modify the proof of Theorem 3.28 by using the idea from the proof of Theo-
rem 3.22.

3.18 Prove that for R ≤ 1/2 there exist binary, time-invariant convolutional codes
whose start of the active segment distance is

js <
R

1−R
(m+ 1)

3.19 Prove the Costello bound for periodically time-varying, rate R = b/c convo-
lutional codes with period

T =

⌈
Rm/ρ

− log(21−R − 1)

⌉
where ρ is the Gilbert-Varshamov parameter.
Hint: Use inequalities (3.145) and (3.154).

CHAPTER 4

DECODING OF CONVOLUTIONAL
CODES

In this chapter, we give general descriptions and analyses of important decoding
algorithms for convolutional codes. First we study the Viterbi algorithm, which
we encountered in Chapter 1 [Vit67]. It outputs the codeword that maximizes the
probability of the received sequence conditioned on the information sequence, that
is, it outputs the maximum-likelihood decision for the codeword. It is a maximum-
likelihood (ML) sequence decision algorithm. If the information sequences are
equally likely, then the Viterbi algorithm outputs the most probable codeword, that
is, it minimizes the codeword error probability.

In the beginning of this chapter, we show that the Viterbi algorithm is an efficient
decoding method, particularly when the advantage of soft decisions is fully exploited.
The path weight enumerators and the extended path enumerators obtained from the
state-transition diagram of the convolutional encoder are used to derive tight upper
bounds on the decoding error probabilities for both hard and soft decisions. From
these bounds we can estimate the coding gain without the need for experiments or
simulations. Then we describe a Markovian technique for an exact calculation of the
bit error probability for the Viterbi algorithm.

We consider also an a posteriori probability (APP) decoding algorithm that is
often called the BCJR algorithm after its inventors Bahl, Cocke, Jelinek, and Raviv
[BCJ74]. It is a symbol decoding algorithm and outputs the a posteriori probability

Fundamentals of Convolutional Coding, 2. Edition. By Rolf Johannesson, Kamil Sh. Zigangirov
Copyright c© 2015 John Wiley & Sons, Inc.

225

226 DECODING OF CONVOLUTIONAL CODES

for each of the transmitted information symbols. In other words, for each information
symbol it calculates the probability conditioned on the entire received sequence. If
we combine the APP decoder with a decision rule which decides in favor of the most
likely information symbols given the received sequence, we have a decoder whose
outputs are the sequence of the most probable information symbols. In general,
the corresponding sequence of code symbols is not the same as the most probable
codeword.

After having described APP decoding of convolutional codes, we turn to an
efficient and interesting way to terminate convolutional codes into block codes,
namely tailbiting. These so-called tailbiting (block) codes are discussed in depth.
For decoding of tailbiting codes we describe both a maximum-likelihood codeword
decoding algorithm called BEAST (Bidirectional Efficient Algorithm for Searching
Trees) [BHJ04][Lon07] and an a posteriori probability algorithm for information
symbol decoding.

4.1 THE VITERBI ALGORITHM REVISITED

First, we return to the Viterbi algorithm, which we introduced in Chapter 1. Suppose
that the controller canonical form of the rateR = 1/2, memorym = 2 convolutional
encoding matrix G(D) = (1 + D + D2 1 + D2) is used to communicate over the
BSC with crossover probability ε, 0 < ε < 1/2; that is, the decoder operates on hard
decisions. For simplicity we encode only four information symbols followed bym =
2 dummy zeros in order to terminate the convolutional code into a block code. This
kind of termination is called the zero-tail (ZT) method. Let r = 10 01 10 01 01 00 be
the received sequence.

We recall that when comparing the subpaths leading to each state, the Viterbi
algorithm discards all subpaths except the one closest (in Hamming distance) to the
received sequence, since those discarded subpaths cannot possibly be the initial part
of the path v̂ that minimizes dH(r,v), that is,

v̂ = arg min
v
{dH(r,v)} (4.1)

This is the principle of nonoptimality. If we are true to the principle of nonoptimality
when we discard subpaths, the path remaining at the end must be the optimal one.
In case of a tie, we will assume that a coin-flip tie-breaking rule is used. It means
that, if several subpaths leading to a trellis state have the same metric, one of them is
randomly selected.

The Hamming distances and discarded subpaths at each state determined by the
Viterbi algorithm are shown in Fig. 4.1. The decision for the information sequence is
û = 1110. The successive development of the surviving subpaths through the trellis
is illustrated in Fig. 4.2. The decoding delay is as long as the codeword since an
optimum decision cannot be made until the surviving paths to all states at a certain
depth share a common initial subpath. In principle, this may not happen before the
decision is made at the final node and only one path through the trellis remains.
However, in practice, for rate R = 1/2 a fixed decoding delay of four to five times

THE VITERBI ALGORITHM REVISITED 227

r = 10 01 10 01 01 00

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

00
00 00 00 00 00 00

11 11 11 11

11 11 11 11

00 00

10 10 10 10

01 01 01

01 01 01
10 10

1

1 2

3

2

1

3

2

3

1

3

1

3

3

2

3

2

Figure 4.1 An example of Viterbi decoding—hard decisions.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.2 Development of subpaths through the trellis.

the encoder memory m causes negligible degradation. In our simple example the
maximum decoding delay is four (see Fig. 4.2).

From this example it is clear that the Viterbi algorithm is a general method to do
minimum distance decoding efficiently when the overall constraint length is small
enough, ν < 10 say.

The ML decoder selects as its decision v̂ that encoded sequence v which max-
imizes P (r | v), or, equivalently, since we consider only memoryless channels
(DMC),

ΠkP (rk | vk) = ΠkΠ`P
(
r

(`)
k

∣∣∣ v(`)
k

)
Taking the logarithm, subtracting a sum that depends only on the received sequence,
and multiplying by an arbitrary positive constant A, we find that the maximum-
likelihood rule reduces to choosing that encoded sequence v̂ which maximizes the

228 DECODING OF CONVOLUTIONAL CODES

Viterbi metric

µV(r,v) =
∑
k

µV(rk,vk) =
∑
k

∑
`

µV

(
r

(`)
k , v

(`)
k

)
(4.2)

where [Mas84]

µV

(
r

(`)
k , v

(`)
k

)
= A

(
logP

(
r

(`)
k

∣∣∣ v(`)
k

)
− f (`)

k

(
r

(`)
k

))
(4.3)

We call the quantity µV(rk,vk) the Viterbi branch metric, and µV

(
r

(`)
k , v

(`)
k

)
is the

Viterbi symbol metric. It is convenient to choose the function f (`)
k

(
r

(`)
k

)
as

f
(`)
k

(
r

(`)
k

)
= min

v
(`)
k

{
logP

(
r

(`)
k

∣∣∣ v(`)
k

)}
(4.4)

if the minimum exists, since then the minimum value of the symbol metric for each
received digit r(`)

k is zero. Furthermore, we choose the constant A so that the Viterbi

symbol metric µV

(
r

(`)
k , v

(`)
k

)
can be well approximated by integers.

Suppose that the information sequence u[0,n) followed by mb dummy zeros
are encoded by a convolutional encoder of memory m and that the corresponding
codeword is transmitted over the BSC with crossover probability ε. Let r[0,n+m)

denote the received sequence. The ML decoder chooses as its decision v̂[0,n+m) for
the transmitted codeword that codeword v[0,n+m) which maximizes the probability

P
(
r[0,n+m)

∣∣ v[0,n+m)

)
= (1− ε)(n+m)c−dH(r[0,n+m),v[0,n+m))

×εdH(r[0,n+m),v[0,n+m))

= (1− ε)(n+m)c

(
ε

1− ε

)dH(r[0,n+m),v[0,n+m))

=

(n+m)c−1∏
t=0

(1− ε)
(

ε

1− ε

)dH(rt,vt)

(4.5)

where the maximization is done over all codewords v[0,n+m).
Hence, the symbol metric

µV(rt, vt) = A

(
log

(
(1− ε)

(
ε

1− ε

)dH(rt,vt)
)
− ft(rt)

)

=

(
A log

ε

1− ε

)
dH(rt, vt) +A log(1− ε)−Aft(rt) (4.6)

By choosing

A = −
(

log
ε

1− ε

)−1

(4.7)

and
ft(rt) = log ε (4.8)

THE VITERBI ALGORITHM REVISITED 229

we get
µV(rt, vt) = 1− dH(rt, vt) (4.9)

or

µV(rt, vt) =

{
1 if rt = vt

0 otherwise
(4.10)

From (4.10) it is readily seen that, when communicating over the BSC, maximizing
the Viterbi metric is equivalent to minimum (Hamming) distance (MD) decoding.

Before stating the Viterbi algorithm, we remark that finding the shortest route
through a directed graph is an old problem in operations research. The following
algorithm, first discovered by Viterbi in this context [Vit67], appears in many variants
in the shortest-route literature and as dynamic programming in the control literature:

Algorithm V (Viterbi)
V1. Assuming that the convolutional encoder is at the zero state initially, assign

the Viterbi metric zero to the initial node; set t = 0.

V2. For each node at depth t + 1, find for each of the predecessors at depth
t the sum of the Viterbi metric of the predecessor and the branch metric
of the connecting branch (ADD). Determine the maximum of these sums
(COMPARE) and assign it to this node; label the node with the shortest path
to it (SELECT).

V3. If we have reached the end of the trellis, then stop and choose as the decoded
codeword a path to the terminating node with largest Viterbi metric; otherwise
increment t by 1 and go to V2.

EXAMPLE 4.1

Consider the rate R = 2/3, memory m = 1, overall constraint length ν = 2
encoding matrix

G(D) =

(
1 +D 1 0
D 1 +D 1 +D

)
(4.11)

The free distance of the convolutional code is dfree = 3. Its convolutional encoder
is shown in Fig. 4.3. Suppose that two information two-bit symbols followed by
a two-bit dummy 0 are encoded and that r = 010 111 000 is received over a BSC
with 0 < ε < 1/2.

The Hamming distances and discarded subpaths at each state determined by
the Viterbi algorithm are shown in Fig. 4.4. The decided information sequence is
û = 01 00.

Puncturing a given convolutional code is a method of constructing new convo-
lutional codes with rates that are higher than the rate of the original code. The

230 DECODING OF CONVOLUTIONAL CODES

u(2)

u(1)

v(3)

v(2)

v(1)

Figure 4.3 The rate R = 2/3 encoder used in Example 4.1.

r = 010 111 000

0
0

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

0
0

000 000 000

011 111
011 110

110 001
100
001

101 000
101 111100 110

111
010

001

011 101

101

110

1 1 1

1 1

1 1

0 2

Figure 4.4 An example of Viterbi decoding—rate R = 2/3.

punctured codes are in general less powerful than nonpunctured codes of the same
rate and memory, but they have two advantages:

From a given original low-rate convolutional code we can obtain a series of
convolutional codes with successively higher rates. They can be decoded by the
Viterbi algorithm with essentially the same structure as that for the original code
[CCG79].

THE VITERBI ALGORITHM REVISITED 231

r = 0− 10 1− 11 0− 00

00 00

10

00

01

10

11

00

01

10

11

00

01

10

11

00

01

00
0− 00 0− 00 0− 00

1− 11 1− 11

1− 11 1− 11

0− 00

10 1− 10 1−

01 0− 01

0− 01 0−
1− 10

1

0 1

1

1

3

1

1

1

2

1

2

1

2

1

2

1

Figure 4.5 Viterbi decoding of a punctured convolutional code.

A puncturing sequence is a binary sequence; 0 and 1 means that the corresponding
code symbol is not transmitted and transmitted, respectively. This is illustrated in the
following little example:

11 10 00 10 original code symbols
10 11 10 11 puncturing sequence
1 10 0 10 punctured code symbols

We have used the periodic sequence [1011]∞ with period T = 4 as puncturing
sequence, where []∞ denotes a semi-infinite sequence that starts at time 0 and
that consists of an infinite repetition of the subsequence between the square brackets.

Suppose that this puncturing sequence is used together with the encoding matrix
G(D) = (1 + D + D2 1 + D2) to communicate over a BSC with crossover
probability ε.

Since the original convolutional code has rate R = 1/2, the puncturing sequence
has period T = 4, and we puncture only one code symbol within the period, the
punctured code has three code symbols per two information symbols; that is, the rate
of the punctured convolutional code is in our example R = 2/3.

Next we use the punctured convolutional code to communicate over a BSC and
assume that we receive the same 9 bits, as in Example 4.1; that is, r = 010111000. In
Fig. 4.5 we show the puctured trellis. The decided information sequence is û = 0100,
that is, the same as in Example 4.1. Is this a coincidence?

In order to answer that question we consider the semi-infinite generator matrix for
the original convolutional code (see (1.95)),

G =

11 10 11

11 10 11

11 10 11

11 10 11

.

 (4.12)

232 DECODING OF CONVOLUTIONAL CODES

Then we puncture this generator matrix according to our puncturing sequence, that
is,

G =

11 10 11

11 10 11

11 10 11

11 10 11

.

 (4.13)

Gathering the columns of (4.13) by three and three yields

Gpunct =

110 100
011 111

110 100
011 111

.

 (4.14)

or, equivalently,

Gpunct(D) =

(
1 +D 1 0
D 1 +D 1 +D

)
(4.15)

that is, via puncturing we have obtained the rate R = 2/3 convolutional code used
in Example 4.1.

We will now consider how to do Viterbi decoding in a soft decisions situation.
This gives us an “extra” 2–3 dB coding gain for “free” (cf. p. 250).

EXAMPLE 4.2

Consider the binary-input, 8-ary output DMC shown in Fig. 4.6 with transition
probabilities P (r | v) given by the following table:

r
04 03 02 01 11 12 13 14

v
0 0.434 0.197 0.167 0.111 0.058 0.023 0.008 0.002
1 0.002 0.008 0.023 0.058 0.111 0.167 0.197 0.434

Taking the logarithms, we have
r

04 03 02 01 11 12 13 14

v
0 −0.83 −1.62 −1.79 −2.20 −2.85 −3.77 −4.83 −6.21
1 −6.21 −4.83 −3.77 −2.85 −2.20 −1.79 −1.62 −0.83

For each r we subtract minv logP (r | v) and obtain
r

04 03 02 01 11 12 13 14

v
0 5.38 3.21 1.98 0.65 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.65 1.98 3.21 5.38

THE VITERBI ALGORITHM REVISITED 233

1

0

14

13

12

11

01

02

03

04

Figure 4.6 Binary-input, 8-ary output, DMC.

Finally, after scaling (A = 1.5) and rounding we have the following table:
r

04 03 02 01 11 12 13 14

v
0 8 5 3 1 0 0 0 0
1 0 0 0 0 1 3 5 8

These Viterbi symbol metrics will be used by the Viterbi algorithm when
decoding a sequence received over the channel shown in Fig. 4.6.

Suppose that the same encoder as in the hard decisions example, viz., the
controller canonical form of G(D) = (1 + D + D2 1 + D2), is used and that
again four information symbols followed by two dummy zeros are encoded. Let
r = 1104 0112 1101 0111 0113 0403 be the received sequence. The Viterbi
metrics LV are calculated for all subpaths leading to each state. Only the subpath
with the largest metric is kept—all other subpaths are discarded. The trellis with
Viterbi metrics and discarded subpaths is shown in Fig. 4.7. The decision for the
information sequence is û = 0110. The successive development of the surviving
subpaths through the trellis is shown in Fig. 4.8.

Notice that the received sequence in our hard decision example is exactly the re-
ceived sequence, which we obtain if we merge the soft decision outputs 01, 02, 03, 04

and 11, 12, 13, 14 in Example 4.2 into the hard decision outputs 0 and 1, respectively.
The decisions for the information sequences based on hard and soft decisions, re-
spectively, differ in the first digit. Thus, here we have a specific example showing the
importance of exploiting the full information provided by the soft output demodulator.

From this example it is clear that the Viterbi algorithm is an efficient maximum-
likelihood decoding procedure that can easily exploit soft decisions.

234 DECODING OF CONVOLUTIONAL CODES

r = 1104 0112 1101 0111 0113 0403

00 00 00 00 00 00 00

01 01 01 01

10 10 10 10

11 11 11

00 00 00 00 00 00

11 11 11 11

11 11 11 11

00 00

10 10 10 10

01 01 01

01 01 01

10 10

8 9 10 14 18 31

1 13 13 18

1 11 10 14

5 11 12

Figure 4.7 An example of Viterbi decoding—soft decisions.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.8 Development of subpaths through the trellis.

We conclude this section by observing that when comparing the subpaths leading
to each state, we discard all subpaths except the one with the largest Viterbi metric,
since those discarded subpaths cannot possibly be the initial part of the path v̂
that maximizes the conditional probability of the received sequence r given the
transmitted sequence v, that is, P (r | v). In case of a tie, we choose one of the
maximizing paths as the survivor by using the coin-flip tie-breaking rule, that is, in
each trellis state where the path splits into two possible directions, one of them is
selected at random. The path remaining at the end must be a maximum-likelihood
decision. We summarize the discussion in this section as the following important
theorem [For67, For94].

Theorem 4.1 The Viterbi algorithm is a maximum-likelihood decoding algorithm.

ERROR BOUNDS FOR TIME-INVARIANT CONVOLUTIONAL CODES 235

4.2 ERROR BOUNDS FOR TIME-INVARIANT CONVOLUTIONAL
CODES

In practice, the Viterbi algorithm is often used for a rate R = b/c convolutional code
to decode long sequences of received symbols, typically a few thousand bits, before
the decoder is forced back to the zero state by a tail of mb dummy zeros that are fed
into the encoder in order to terminate the frame (the ZT method). An erroneously
decoded path will in general remerge with the correct path long before it reaches the
end of the trellis. Thus, a typical error event consists of a burst of erroneously decoded
information digits. Such a burst always starts and ends with an error. Furthermore, if
we have mb or more consecutively correct information digits among the erroneously
decoded information digits, then the erroneous path has remerged with the correct
path before it diverges again—a multiple-error event, which consists of separate error
bursts.

The block error probability is not the appropriate quality measure for Viterbi
decoding. If we use very long frames the block error probability will be close to
1 even if the system provides adequate protection of the information digits. In this
case we shall use the bit error probability, Pb, considered in the previous section as
our quality measure. Again we would like to stress that the bit error probability is
not only a code property but also an encoding matrix property. It depends on the
map between the information sequences and the codewords. We shall also introduce
the burst error probability, PB, which is the probability that an error burst starts at a
given node. The burst error probability is a code property and is sometimes called
first-event error probability or node error probability. Since it is easier to obtain
good bounds on the burst error probability than on the bit error probability, we shall
study the burst error probability first.

The burst error probability for a convolutional code consisting of finite-length
codewords is always upper-bounded by the burst error probability for infinite-length
codewords if they are encoded by the same encoder. This is readily seen from the
fact that we cannot do better by adding more adversary paths.

The burst error probability is not the same for all nodes along the correct path.
This is readily seen from the following argument. Suppose that the first burst starts at
depth i, i > 0. Typically, this burst has not been caused by an error event containing
many channel errors in the beginning of it since such an error event would have
caused a burst starting at an earlier depth. Hence, the burst error probability at depth
i, i > 0, is not greater than that at the root. However, our upper-bounding of the burst
error probability is valid for any node.

Suppose that the convolutional code whose trellis diagram is shown in Fig. 4.9 is
used for communication over a BSC with crossover probability ε, 0 < ε < 1/2.

What is the probability that the Viterbi decoder selects the codeword 11 10 11 00
00 . . . in favor of the transmitted allzero codeword? This particular decoding error
will occur when there are three or more errors among the five digits in which the
codewords differ, that is, in positions 1, 2, 3, 5, and 6. The probability for this event

236 DECODING OF CONVOLUTIONAL CODES

00 00

10

00

01

10

11

00

01

10

11
10

00 00 00

11 11 11

11 11

00

10 10 10

01 01

01 01

. . .

. . .

. . .

. . .

Figure 4.9 Trellis diagram for a convolutional encoder.

is

p5 = P (3 or more 1’s in 5 positions)

=
5∑
e=3

(
5

e

)
εe(1− ε)5−e (4.16)

If the distance d between the correct path and its adversary is even, which, for
example, is the case if we consider the codeword 11 01 01 11 00 . . . instead, we do
not necessarily make a decoding error when there are d/2 errors among the d digits
in the positions in which the codewords differ. In this case there is a tie between the
two paths, and we will discard the correct one only with probability 1/2. For d = 6
we have

p6 =
1

2

(
6

3

)
ε3(1− ε)3 +

6∑
e=4

(
6

e

)
εe(1− ε)6−e (4.17)

In general, we have

pd =

d∑
e=(d+1)/2

(
d

e

)
εe(1− ε)d−e, d odd

1

2

(
d

d/2

)
εd/2(1− ε)d/2 +

d∑
e=d/2+1

(
d

e

)
εe(1− ε)d−e, d even

(4.18)

Since εe(1− ε)d−e is increasing with decreasing e, we notice that for d odd

pd =
d∑

e=(d+1)/2

(
d

e

)
εe(1− ε)d−e <

d∑
e=(d+1)/2

(
d

e

)
εd/2(1− ε)d/2

= εd/2(1− ε)d/2
d∑

e=(d+1)/2

(
d

e

)
< εd/2(1− ε)d/2

d∑
e=0

(
d

e

)
=
(

2
√
ε(1− ε)

)d
(4.19)

ERROR BOUNDS FOR TIME-INVARIANT CONVOLUTIONAL CODES 237

It can be shown (Problem 4.17) that
(

2
√
ε(1− ε)

)d
is an upper bound on pd also

when d is even. Hence, we have the Bhattacharyya bound [Bha43]

pd <
(

2
√
ε(1− ε)

)d def
= zd, all d (4.20)

where z is called the Bhattacharyya parameter for the BSC.

EXAMPLE 4.3

Consider the BSC with ε = 0.01. For this channel

2
√
ε(1− ε) ≈ 0.2 (4.21)

and
p5 < 0.25 ≈ 3.2 · 10−4 (4.22)

which is much less than the channel crossover probability ε = 0.01.

Assuming Viterbi decoding, a necessary, but not sufficient, condition for a burst
error to occur at the root is that the received sequence given an incorrect path diverging
from the correct path at the root is more likely than the received sequence given the
correct path. This condition is not sufficient since, even if it is fulfilled, the ultimately
chosen path might begin with a correct branch.

Although the burst error probability is a code property, we will upper-bound it by
considering paths diverging from the correct path at the root of the trellis and not
returning to the allzero state until their termini. Such paths are encoder properties.

Let E(k) be the event that a burst error at the root is caused by path k. Then we
have

PB ≤ P (∪E(k)) ≤
∑

P (E(k)) (4.23)

where the second inequality follows from the union bound, and the union and the
sum are over all incorrect paths diverging from the correct path at the root.

Since a convolutional code is linear, we can without loss of generality assume that
the correct path is the allzero sequence. Then, if the Hamming weight of the kth
incorrect path is d, we have

P (E(k)) = pd (4.24)

where pd is given in (4.18). Combining (4.23) and (4.24), we obtain

PB ≤
∞∑

d=dfree

ndpd (4.25)

where nd is the number of weight d paths, that is, the Viterbi weight spectrum of the
convolutional encoder (cf. (3.35)). In order to obtain the best Viterbi weight spectrum
for the convolutional code we use a minimal realization of a minimal encoding metric.

238 DECODING OF CONVOLUTIONAL CODES

The number of weight d paths for d = dfree, dfree + 1, . . . for a minimal realization
of a minimal encoding matrix is given by the path weight enumeratorT (W) discussed
in Section 3.10:

T (W) =
∞∑

d=dfree

ndW
d (4.26)

Thus, combining (4.20), (4.25), and (4.26), we get the following [Vit71]:

Theorem 4.2 (Viterbi) When using a convolutional code for communication over
the BSC with crossover probability ε and maximum-likelihood decoding, the burst
error probability is upper-bounded by

PB <
∞∑

d=dfree

nd

(
2
√
ε(1− ε)

)d
= T (W)

∣∣∣
W=2
√
ε(1−ε) (4.27)

where the path weight enumerator T (W) is obtained for a minimal realization of a
minimal encoding matrix.

EXAMPLE 4.4

Consider the BSC with ε = 0.01 and the rateR = 1/2 convolutional code with the
encoding matrix G(D) = (1 +D +D2 1 +D2). The path weight enumerator
for a minimal realization of this minimal encoding matrix is (3.230)

T (W) =
W 5

1− 2W
(4.28)

Viterbi’s upper bound on the burst error probability is

PB < T
(

2
√
ε(1− ε)

)
≈ T (0.2)

=
0.25

1− 2 · 0.2
≈ 5 · 10−4 (4.29)

Van de Meeberg [Mee74] noticed that (see Problem 4.18)

p2i−1 = p2i, i ≥ 1 (4.30)

That is, for each path the decoding error probability when d is odd is the same as that
for the case when d is increased by 1! Thus, when d is odd, the Bhattacharyya bound
(4.20) can be replaced by

pd <
(

2
√
ε(1− ε)

)d+1

, d odd (4.31)

Then from ∑
d even

ndW
d +

∑
d odd

ndW
d+1

=
1

2
(T (W) + T (−W)) +

W

2
(T (W)− T (−W)) (4.32)

ERROR BOUNDS FOR TIME-INVARIANT CONVOLUTIONAL CODES 239

we have the next theorem.

Theorem 4.3 (Van de Meeberg) When using a convolutional code for communica-
tion over the BSC with crossover probability ε and maximum-likelihood decoding,
the burst error probability is upper-bounded by

PB <

(
1

2
(T (W) + T (−W)) +

W

2
(T (W)− T (−W))

) ∣∣∣
W=2
√
ε(1−ε)

=

(
1 +W

2
T (W) +

1−W
2

T (−W)

) ∣∣∣
W=2
√
ε(1−ε) (4.33)

where the path weight enumerator T (W) is obtained for a minimal realization of a
minimal encoding matrix.

Remark: Actually, van de Meeberg [Mee74] derived a slightly tighter bound (Prob-
lem 4.19).

EXAMPLE 4.5

Consider the same channel and encoding matrix as in Example 4.4. Van de
Meeberg’s upper bound on the burst error probability is

PB <
1 + 2

√
ε(1− ε)
2

T
(

2
√
ε(1− ε)

)
+

1− 2
√
ε(1− ε)
2

T
(
−2
√
ε(1− ε)

)
≈ 1 + 0.2

2
T (0.2) +

1− 0.2

2
T (−0.2) ≈ 2 · 10−4 (4.34)

which is an improvement by a factor 2.5 compared to Viterbi’s bound.

In Fig. 4.10, simulations of the burst error probability for Viterbi decoding are
compared with Viterbi’s and van de Meeberg’s upper bounds when the rateR = 1/2,
memorym = 2 minimal encoder with encoding matrixG(D) = (1 +D+D2 1 +
D2) is used for communication over the BSC. Notice the close agreement between
van de Meeberg’s bound and the measurements, in particular for small ε. The perhaps
somewhat surprisingly large difference between the two bounds is explained by the
fact that this code has an odd free distance, viz., dfree = 5. In Fig. 4.11 we show the
corresponding curves for Qualcomm’s rate R = 1/2, memory m = 6 encoder with
encoding matrix G(D) = (1 + D + D2 + D3 + D6 1 + D2 + D3 + D5 + D6)
and dfree = 10.

We will now use the extended path enumerator and derive an upper bound on the
bit error probability.

Suppose that the received sequence r = r0r1 . . . rK−1 of lengthK c-tuples is de-
coded as v̂ = v̂0v̂1 . . . v̂K−1 and that the corresponding decision of the information
sequence û = û0û1 . . . ûK−1 contains I(K) errors.

Let I denote the number of erroneously decided information symbols in a burst
of length L b-tuples and let N denote the number of b-tuples between two bursts.
In particular, burst j, j = 0, 1, 2, . . ., contains Ij erroneously decided information

240 DECODING OF CONVOLUTIONAL CODES

10−310−210−1100
10−6

10−5

10−4

10−3

10−2

10−1

100

ε

Pb

Simulations
van de Meeberg
Viterbi

Figure 4.10 Viterbi’s and van de Meeberg’s upper bounds on the burst error probability for
the minimal encoding matrixG(D) = (1+D+D2 1+D2) realized in controller canonical
form and the BSC with crossover probability ε.

symbols, is of length Lj b-tuples, and is separated by Nj b-tuples from the previous
burst, where

Nj > m, j = 0, 1, 2, . . . (4.35)

Erroneously decided information symbols separated by m or fewer b-tuples belong
by definition to the same error burst.

We define the bit error probability Pb to be the ratio between the number of erro-
neously decoded information symbols and the total number of information symbols.

According to the law of large numbers, we have

lim
K→∞

P

(∣∣∣∣Pb −
I(K)

Kb

∣∣∣∣ > ε

)
= 0 (4.36)

for any ε > 0 or, equivalently,

Pb = lim
K→∞

I(K)

Kb
with probability 1 (4.37)

ERROR BOUNDS FOR TIME-INVARIANT CONVOLUTIONAL CODES 241

10−310−210−1100
10−6

10−5

10−4

10−3

10−2

10−1

100

ε

Pb

Simulations
van de Meeberg
Viterbi

Figure 4.11 Viterbi’s and van de Meeberg’s upper bounds on the burst error probability for
Qualcomm’s R = 1/2, m = 6 minimal encoding matrix realization in controller canonical
form and the BSC with crossover probability ε.

Assume that the I(K) errors are distributed over J bursts with I0, I1, . . . , IJ−1

errors, of lengths L0, L1, . . . , LJ−1, and separated by error-free intervals of lengths
N0, N1, . . . , NJ−1. From (4.37) it follows that

Pb = lim
J→∞

∑J−1
j=0 Ij

b
∑J−1
j=0 (Nj + Lj)

≤ lim
J→∞

∑J−1
j=0 Ij

b
∑J−1
j=0 Nj

with probability 1 (4.38)

and that

Pb ≤
limJ→∞

1
J

∑J−1
j=0 Ij

b limJ→∞
1
J

∑J−1
j=0 Nj

with probability 1 (4.39)

242 DECODING OF CONVOLUTIONAL CODES

According to the law of large numbers the limit in the numerator is equal to the
expected value of the number I of bit errors in a burst, that is,

E [I | burst] = lim
J→∞

1

J

J−1∑
j=0

Ij with probability 1 (4.40)

and the limit in the denominator is equal to the expected value of the length (in
branches) of the error-free interval, that is,

E[N] = lim
J→∞

1

J

J−1∑
j=0

Nj with probability 1 (4.41)

By combining (4.39), (4.40), and (4.41), we obtain

Pb ≤
E [I | burst]
bE[N]

(4.42)

The probability, PB, that an error burst starts at a given node can be defined as the
limit when J → ∞ of the number of bursts J divided by the number of instances
where a burst could have started. This latter number is less than

∑J−1
j=0 Nj . (In fact,

it is less than or equal to
∑J−1
j=0 (Nj −m).) Hence, we have

PB ≥ lim
J→∞

J∑J−1
j=0 Nj

=
1

limJ→∞
1
J

∑J−1
j=0 Nj

=
1

E[N]
with probability 1 (4.43)

From the law of large numbers and from inequalities (4.42) and (4.43), we deduce
that

Pb ≤
1

b
E [I | burst]PB (4.44)

Let p(i) be the probability of a burst introducing i errors in the decided information
sequence. Then we have

PB =
∞∑
i=1

p(i) (4.45)

or, equivalently,
∞∑
i=1

p (i | burst) = 1 (4.46)

where

p (i | burst) =
p(i)

PB
(4.47)

and

E [I | burst] =
∞∑
i=1

ip (i | burst) =

∑∞
i=1 ip(i)

PB
(4.48)

ERROR BOUNDS FOR TIME-INVARIANT CONVOLUTIONAL CODES 243

From (4.44) and (4.48) we conclude that

Pb ≤
1

b

∞∑
i=1

ip(i) (4.49)

Let n(w, `, i) be the number of weight w paths of length ` introducing i errors in
the decided information sequence. From the Bhattacharyya bound (4.20) it follows
that the probability that a path of weight w causes a decoding error is upper-bounded
by (

2
√
ε(1− ε)

)w
where ε is the crossover probability of the BSC. Then, by applying the union bound,
we obtain

p(i) <
∞∑

w=dfree

∞∑
`=νmin+1

n(w, `, i)
(

2
√
ε(1− ε)

)w
(4.50)

where νmin = mini{νi}. The numbers n(w, `, i) are given by the extended path
enumerator T (W,L, I) discussed in Section 3.10:

T (W,L, I) =
∑
w

∑
`

∑
i

n(w, `, i)WwL`Ii (4.51)

Combining (4.49), (4.50), and (4.51), we obtain the next theorem [Vit71].

Theorem 4.4 (Viterbi) When using a convolutional code with generator matrix
G(D) for communication over the BSC with crossover probability ε and maximum-
likelihood decoding, the bit error probability is upper-bounded by

Pb <
1

b

∞∑
w=dfree

∞∑
`=νmin+1

∞∑
i=1

in(w, `, i)
(

2
√
ε(1− ε)

)w

=
1

b

∂T (W,L, I)

∂I

∣∣∣∣∣∣∣∣∣ W=2
√
ε(1− ε)

L =1
I =1

(4.52)

where the extended path enumerator T (W,L, I) is obtained for a minimal encoder.

EXAMPLE 4.6

Consider the BSC with ε = 0.01 and the rateR = 1/2 convolutional code with the
encoding matrix G(D) = (1 +D+D2 1 +D2). Its extended path enumerator
when realized in controller canonical form is (3.237)

T (W,L, I) =
W 5L3I

1−WL(1 + L)I
(4.53)

244 DECODING OF CONVOLUTIONAL CODES

Since
∂T (W,L, I)

∂I
=

W 5L3

(1−WL(1 + L)I)2
(4.54)

Viterbi’s upper bound on the bit error probability is

Pb <

(
2
√
ε(1− ε)

)5

(
1− 2

(
2
√
ε(1− ε)

))2 ≈
0.25

(1− 2 · 0.2)2
≈ 0.9 · 10−3 (4.55)

which shows that even by using this simple coding we can achieve an improvement
of at least a factor of 10 over the raw error probability of the channel.

As a counterpart to van de Meeberg’s tightening of Viterbi’s bound on the burst
error probability, we have the following (Problem 4.22):

Theorem 4.5 (Van de Meeberg) When using a convolutional code with generator
matrix G(D) for communication over the BSC with crossover probability ε and
maximum-likelihood decoding, the bit error probability is upper-bounded by

Pb <
1

b

(
1 +W

2

∂T (W,L, I)

∂I
+

1−W
2

∂T (−W,L, I)

∂I

) ∣∣∣∣∣∣∣∣∣ W=2
√
ε(1− ε)

L =1
I =1

(4.56)

where the extended path enumerator T (W,L, I) is obtained for a minimal encoder.

From (4.56) it follows that the bit error probability Pb for the convolutional
code with encoding matrix G(D) = (1 + D + D2 1 + D2) realized in controller
canonical form is upper-bounded by 320ε3 + O(ε4). In Section 4.4 we shall show
that Pb = 44ε3 +O(ε4).

In Figs. 4.12 and 4.13 we compare Viterbi’s and van de Meeberg’s upper bounds
on the bit error probability with simulations for the encoding matrix G(D) = (1 +
D + D2 1 + D2) and Qualcomm’s R = 1/2, m = 6 encoder, respectively, both
realized in controller canonical form.

Now suppose that a rate R convolutional code is used to communicate over the
additive white Gaussian noise (AWGN) channel with BPSK modulation at the signal-
to-noise ratio (SNR) Es/N0, where the energy per symbol Es is related to the energy
per information bit through the rate R:

Es = REb (4.57)

We assume that the allzero codeword 0 is transmitted and that there is a codeword
v with wH(v) = d. To simplify notations, we assume without essential loss of
generality that the first d symbols of the codeword v are nonzero.

What is the probability, pd, that the Viterbi decoder selects v in favor of the
transmitted allzero codeword?

ERROR BOUNDS FOR TIME-INVARIANT CONVOLUTIONAL CODES 245

10−310−210−1100
10−6

10−5

10−4

10−3

10−2

10−1

100

ε

Pb

Simulations
van de Meeberg
Viterbi

Figure 4.12 Viterbi’s and van de Meeberg’s upper bounds on the bit error probability for the
minimal encoding matrix G(D) = (1 + D + D2 1 + D2) realized in controller canonical
form and the BSC with crossover probability ε.

The probability for this event equals the probability that the ratio of the conditional
density functions is greater than 1, that is,

pd = P

(
p (r | v)

p (r | 0)
> 1

)
= P

(∏
t

p (rt | vt)
p (rt | 0)

> 1

)
(4.58)

where

p (rt | 0) =
1√
πN0

e−
(rt+
√
Es)

2

N0 (4.59)

and

p (rt | 1) =
1√
πN0

e−
(rt−

√
Es)

2

N0 (4.60)

246 DECODING OF CONVOLUTIONAL CODES

10−310−210−1100
10−6

10−5

10−4

10−3

10−2

10−1

100

ε

Pb

Simulations
van de Meeberg
Viterbi

Figure 4.13 Viterbi’s and van de Meeberg’s upper bounds on the bit error probability for
Qualcomm’sR = 1/2, m = 6 minimal encoding matrix realized in controller canonical form
and the BSC with crossover probability ε.

From (4.58) it follows that

pd = P

 d∏
j=1

e−
(rj−

√
Es)

2

N0

e−
(rj+

√
Es)

2

N0

> 1

= P

 1

N0

d∑
j=1

(
−
(
rj −

√
Es

)2

+
(
rj +

√
Es

)2
)
> 0

= P

 d∑
j=1

rj > 0

 (4.61)

Since the channel noise values at different sample times are uncorrelated, it follows
that

∑d
j=1 rj is the sum of d independent Gaussian random variables and, hence, that

ERROR BOUNDS FOR TIME-INVARIANT CONVOLUTIONAL CODES 247

∑d
j=1 rj ∈ N(−d

√
Es, dN0/2). Thus, we have

pd =
1√
πdN0

∫ ∞
0

e−
(r+d

√
Es)

2

dN0 dr

=
1√
2π

∫ ∞
√

2dEs/No

e−y
2/2dy = Q

(√
2dEs/N0

)
= Q

(√
2dREb/N0

)
(4.62)

where Q() is the complementary error function (1.13).
From (4.25) it follows that the burst error probability when communicating over

the AWGN channel and exploiting soft decisions is upper-bounded by

PB ≤
∞∑

d=dfree

ndpd (4.63)

where nd is the number of weight d paths and pd is given by (4.62).

Lemma 4.6 For x > 0,

Q(x) =
1√
2π

∫ ∞
x

e−y
2/2dy < e−x

2/2 (4.64)

Proof : For any λ > 0, we have

Q(x) <
1√
2π

∫ ∞
x

e−
y2

2 +λ(y−x)dy

< e−λx+λ2

2
1√
2π

∫ ∞
−∞

e−
(y−λ)2

2 dy = e−λx+λ2

2 (4.65)

Choosing λ = x completes the proof.

By combining (4.62) and Lemma 4.6, we obtain the following:

Theorem 4.7 (Viterbi) When using a rate R convolutional code with generator ma-
trix G(D) for communication over the AWGN channel with BPSK modulation at
signal-to-noise ratioEb/N0 and maximum-likelihood decoding, the burst error prob-
ability is upper-bounded by

PB <
∞∑

d=dfree

nde
−dREb/N0 = T (W) |W=e−REb/N0 (4.66)

where the path weight enumerator T (W) is obtained for a minimal encoder.

Viterbi’s bound (4.66) can be tightened [ViO79] by using the following inequality:

Lemma 4.8 For x > 0, z ≥ 0,

Q
(√
x+ z

)
≤ Q

(√
x
)
e−z/2 (4.67)

248 DECODING OF CONVOLUTIONAL CODES

with equality if and only if z = 0.

Proof :

Q
(√
x+ z

)
−Q

(√
x
)
e−z/2

=
1√
2π

∫ ∞
√
x+z

e−y
2/2dy − e−z/2 1√

2π

∫ ∞
√
x

e−y
2/2dy

=
1√
2π

∫ ∞
0

(
e−(y+

√
x+z)

2
/2 − e−z/2e−(y+

√
x)

2
/2
)
dy

=
1√
2π

∫ ∞
0

e−
y2

2 −
x+z

2

(
e−y
√
x+z − e−y

√
x
)
dy ≤ 0 (4.68)

where the inequality follows from the fact that

e−y
√
x+z ≤ e−y

√
x (4.69)

We have equality in (4.68) and (4.69) if and only if z = 0 and the proof is complete.

Theorem 4.9 When using a rate R convolutional code with generator matrix G(D)
for communication over the AWGN channel with BPSK modulation at signal-to-
noise ratio Eb/N0 and maximum-likelihood decoding, the burst error probability is
upper-bounded by

PB < Q
(√

2dfreeREb/N0

)
edfreeREb/N0

∞∑
d=dfree

nde
−dREb/N0

= Q
(√

2dfreeREb/N0

)
edfreeREb/N0T (W) |W=e−REb/N0 (4.70)

where the path weight enumerator T (W) is obtained for a minimal encoder.

Proof : Let x = dfree and z = d − dfree. Then by combining (4.62) and (4.67) we
obtain

pd < Q
(√

2dfreeREb/N0

)
e−(d−dfree)REb/N0 (4.71)

Inserting (4.71) into (4.63) completes the proof.

In order to upper-bound the bit error probability, we combine the union bound
(4.62) and Lemma 4.6. Thus, we have

p(i) <
∞∑

w=dfree

∞∑
`=νmin+1

n(w, `, i)
(
e−REb/N0

)w
(4.72)

From (4.49) and (4.72) the next theorem follows.

Theorem 4.10 (Viterbi) When using a rate R convolutional code with generator
matrix G(D) for communication over the AWGN channel with BPSK modulation at

ERROR BOUNDS FOR TIME-INVARIANT CONVOLUTIONAL CODES 249

signal-to-noise ratio Eb/N0 and maximum-likelihood decoding, the bit error proba-
bility is upper-bounded by

Pb <
1

b

∞∑
w=dfree

∞∑
`=νmin+1

∞∑
i=1

in(w, `, i)e−wREb/N0

=
1

b

∂T (W,L, I)

∂I

∣∣∣∣∣∣∣∣ W=e
−REb/N0

L =1
I =1

(4.73)

where the extended path enumerator T (W,L, I) is obtained for a minimal encoder.

As a counterpart to Theorem 4.9 we have the following [ViO79]:

Theorem 4.11 When using a rateR convolutional code with generator matrixG(D)
for communication over the AWGN channel with BPSK modulation at signal-to-
noise ratio Eb/N0 and maximum-likelihood decoding, the bit error probability is
upper-bounded by

Pb <
1

b
Q
(√

2dfreeREb/N0

)
edfreeREb/N0

×

 ∞∑
w=dfree

∞∑
`=νmin+1

∞∑
i=1

in(w, `, i)e−wREb/N0

=
1

b
Q
(√

2dfreeREb/N0

)
edfreeREb/N0

∂T (W,L, I)

∂I

∣∣∣∣∣∣∣∣ W=e
−REb/N0

L =1
I =1

(4.74)

where the extended path enumerator T (W,L, I) is obtained for a minimal encoder.

Proof : Follows immediately from (4.49), (4.67), and (4.72).

It is interesting to compare the bit error probability bounds for hard decisions
(BSC) and soft decisions (AWGN channel). For high signal-to-noise ratios, the
terms at distance dfree dominate the bounds. Thus, the dominating term in (4.52) is

1

b

(
2
√
ε(1− ε)

)dfree

≈ 1

b
2dfreeεdfree/2 (4.75)

From (1.12) and (4.57) it follows that

ε = Q
(√

2REb/N0

)
(4.76)

Hence, we have

1

b
2dfreeεdfree/2 =

1

b
2dfree

(
Q
(√

2REb/N0

))dfree/2

≤ 1

b
2dfreee−

1
2dfreeREb/N0 (4.77)

250 DECODING OF CONVOLUTIONAL CODES

where the inequality follows from Lemma 4.6. Thus, for the BSC we have asymp-
totically

Pb .
1

b
2dfreee−

1
2dfreeREb/N0

(∞∑
`=νmin+1

∞∑
i=1

in(dfree, `, i)

)
(4.78)

For the AWGN channel we have asymptotically

Pb .
1

b
Q
(√

2dfreeREb/N0

)(∞∑
`=νmin+1

∞∑
i=1

in(dfree, `, i)

)

≤ 1

b
e−dfreeREb/N0

(∞∑
`=νmin+1

∞∑
i=1

in(dfree, `, i)

)
(4.79)

By comparing (4.78) with (4.79) we see that the exponent of (4.79) is larger by a
factor of 2. Thus, we have a 3 dB energy advantage for the AWGN channel over the
BSC.

In the Viterbi bounds we pick up asymptotically (high signal-to-noise ratios) a 3
dB gain by using soft decisions instead of hard decisions. In Chapter 1 (Fig. 1.7) we
used Shannon’s channel capacity theorem (low signal-to-noise ratios) to show that
soft decisions are about 2 dB more efficient than hard decisions.

For high signal-to-noise ratios the bit error probability is determined by the expo-
nent dfreeREb/N0 in (4.79). In the uncoded case we have dfree = R = 1. Hence, we
define the asymptotical coding gain to be

γ = 10 log10(dfreeR) dB (4.80)

The asymptotical coding gain is a rough estimate of the performance of a coded
system representing the potential increase due to coding.

For a rate R = 1/2, memory m = 2 convolutional code with dfree = 5, we have
γ = 10 log10(5 · 1

2) = 4 dB. The true coding gain at Pb = 10−5 is approximately
3.5 dB [Wil96]. The difference at this bit error probability level is due to the
nonneglible contribution of the other terms in the extended path enumerator.

Less powerful codes approach their asymptotic coding gain much faster than more
powerful codes. For example, the rate R = 1/2, memory m = 6 convolutional code
with dfree = 10 has an asymptotic coding gain γ = 10 log10(10 · 1

2) = 7 dB, but at
Pb = 10−5 the coding gain is only 5 dB [Wil96].

4.3 TIGHTER ERROR BOUNDS FOR TIME-INVARIANT
CONVOLUTIONAL CODES

Most of the bounds we derived in the previous section are quite tight when few
channel symbols are in error, that is, for high signal-to-noise ratios. However, they
become trivial (> 1) when we have many errors among the channel symbols (that is,
for low signal-to-noise ratios). In this section, we will derive an essentially tighter
bound for the burst error probability for the BSC [CJZ84a]. Since the bound will not

TIGHTER ERROR BOUNDS FOR TIME-INVARIANT CONVOLUTIONAL CODES 251

depend on the starting point for the error burst, we will without loss of generality
consider bursts starting at the root.

Let us separate the error event into two disjoint events corresponding to “few” (F)
and “many” (M) errors, respectively. If we let E denote the burst error event (that
is, the event that the first information symbol is erroneously decoded by maximum-
likelihood decoding on the BSC), we have

PB = P (E) = P (E | F)P (F) + P (E | M)P (M)

≤ P (E | F)P (F) + P (M)

= P (E ,F) + P (M) (4.81)

To obtain an upper bound on the probability that we have many channel errors,P (M),
we use a random-walk argument that is similar to what we used in Section 3.4 when
we derived a lower bound on the distance profile.

Let us accrue a metric α when the channel symbol is correctly received and a
metric β when we have a channel error. Then the cumulative metric along the correct
path is a random walk 0, S0, S1, S2, . . ., where

St =
t∑
i=0

Zi (4.82)

for t ≥ 0. The branch metrics Zi, i = 0, 1, 2, . . ., are independent, identically
distributed random variables and can be written

Zi =
c∑
`=1

Yi` (4.83)

where the Yi`’s are independent, identically distributed random variables,

Yi` =

{
α > 0 with probability 1− ε
β < 0 with probability ε

(4.84)

where ε is the crossover probability of the BSC. Clearly (cf. Example B.1),

P (Zi = kα+ (c− k)β) =

(
c

k

)
(1− ε)kεc−k (4.85)

Let us choose the metrics
α = log

1− ε
1− a

(4.86)

and
β = log

ε

a
(4.87)

where ε < a < 1 is a parameter to be chosen later.
Suppose we have wt errors among the first (t+ 1)c channel symbols. Then,

St = wtβ + ((t+ 1)c− wt)α (4.88)

252 DECODING OF CONVOLUTIONAL CODES

−u+ cα

α− β

t

ωt

“Few” errors

rt
“Many” errors

Figure 4.14 Barrier at rt which separates paths with many and few errors.

Now we can more precisely state what we mean by “few” and “many” errors. Those
error patterns for which St stays above the barrier at u < 0 contain few errors, and
those error patterns for which the cumulative metric hits or crosses the barrier contain
many errors. Few errors, that is,

Smin = min
t
{St} > u (4.89)

is equivalent to
wtβ + ((t+ 1)c− wt)α > u, t ≥ 0 (4.90)

or
wt <

−u
α− β

+ (t+ 1)c
α

α− β
def
= rt, t ≥ 0 (4.91)

In Fig. 4.14 we illustrate inequality (4.91).
From Wald’s identity (Corollary B.6) we have

P (M) = P (Smin ≤ u) ≤ 2−λ0u (4.92)

where u is a parameter to be chosen later and λ0 < 0 is the root of the following
equation (see Example B.1):

g(λ)
def
=
(
(1− ε)2λα + ε2λβ

)c
= 1 (4.93)

that is,
λ0 = −1 (4.94)

To upper-bound the probability that a burst starts at the root and that we have few
channel symbol errors, P (E ,F), we use the union bound and obtain

P (E ,F) ≤
∑
k

P (E(k),F) (4.95)

TIGHTER ERROR BOUNDS FOR TIME-INVARIANT CONVOLUTIONAL CODES 253

where E(k) is the event that a burst error starting at the root is caused by path k.
A path has few channel errors only if it stays below the barrier in Fig. 4.14 for all

t ≥ 0. If we take all paths of length t+ 1 with wt < rt channel errors we will get all
paths with few channel errors together with the paths with many channel errors that
take one or more detours above the barrier. Hence, for path k of length j+ 1 we have

P (E(k),F) ≤ P (E(k), wj < rj) (4.96)

where

P (E(k), wj < rj) =
∑
wj<rj

(
(j + 1)c

wj

)
(1− ε)(j+1)c−wj εwjP

(
E(k)

∣∣∣ wj) (4.97)

If we multiply the terms in (4.97) by η−(rj−wj), 0 < η ≤ 1, we obtain the inequality

P (E(k), wj < rj)

≤ η−rj
∑
wj<rj

(
(j + 1)c

wj

)
(ηε)wj (1− ε)(j+1)c−wjP

(
E(k)

∣∣∣ wj) (4.98)

Let us introduce
ε0

def
=

ηε

ηε+ 1− ε
≤ ε (4.99)

and
1− ε0

def
=

1− ε
ηε+ 1− ε

≥ 1− ε (4.100)

Substituting (4.99) and (4.100) into (4.98) and rearranging (4.98), we get

P (E(k), wj < rj) ≤
(
ε(1− ε0)

ε0(1− ε)

)rj (1− ε
1− ε0

)(j+1)c

×
∑
wj<rj

(
(j + 1)c

wj

)
ε
wj
0 (1− ε0)(j+1)c−wjP

(
E(k)

∣∣∣ wj) (4.101)

Overbounding by summing over all 0 ≤ wj ≤ (j + 1)c, we have

P (E(k), wj < rj) ≤
(
ε(1− ε0)

ε0(1− ε)

)rj (1− ε
1− ε0

)(j+1)c

P (E(k))d,j+1,ε0 (4.102)

where P (E(k))d,j+1,ε0 is the probability that a decoding error is caused by the kth
path of weight d and length j+ 1 on an improved BSC with crossover probability ε0.

Using the Bhattacharyya bound (4.20), we obtain from (4.102)

P (E(k), wj < rj) <

(
ε(1− ε0)

ε0(1− ε)

)rj (1− ε
1− ε0

)(j+1)c (
2
√
ε0(1− ε0)

)d
(4.103)

Using the definition of rj given in (4.91) and rearranging (4.103), we obtain

P (E(k), wj < rj) <

(
ε(1− ε0)

ε0(1− ε)

) −u
α−β

W dLj+1 (4.104)

254 DECODING OF CONVOLUTIONAL CODES

where
W = 2

√
ε0(1− ε0) (4.105)

and

L =

((
1− ε
1− ε0

)(
ε(1− ε0)

ε0(1− ε)

) α
α−β

)c
(4.106)

Finally, we combine (4.95) and (4.96) with (4.104) and obtain the following upper
bound on the probability of having few channel symbol errors and making an error
when decoding the first information symbol:

P (E ,F) <

(
ε(1− ε0)

ε0(1− ε)

) −u
α−β ∑

d

∑
j

n(d, j + 1)W dLj+1

=

(
ε(1− ε0)

ε0(1− ε)

) −u
α−β

T (W,L) (4.107)

where n(d, j+1) is the number of paths of weight d and length j+1 stemming from
the root and

T (W,L)
def
= T (W,L, I)|I=1 (4.108)

where T (W,L, I) is the extended path enumerator.
We now combine the bounds (4.81), (4.92), and (4.107) to obtain the following

upper bound on the burst error probability:

PB = P (E) <

(
ε(1− ε0)

ε0(1− ε)

) −u
α−β

T (W,L) + 2u (4.109)

This bound is valid for all u. By taking the derivative of the right side of (4.109), we
find that its minimum is obtained for

u0 = −
(α− β)

(
log(α− β)− log T (W,L)− log log ε(1−ε0)

ε0(1−ε)

)
log ε(1−ε0)

ε0(1−ε) + α− β
(4.110)

Inserting (4.110) and rearranging (4.109) give the upper bound

P (E) ≤ 2h(γ)T (W,L)γ (4.111)

where h(·) is the binary entropy function (1.22) and

γ−1 = 1 +
log ε(1−ε0)

ε0(1−ε)

α− β
(4.112)

Finally, we use (4.86) and (4.87) and obtain a Viterbi-type bound:

Theorem 4.12 When using a convolutional code for communication over the BSC
with crossover probability ε and maximum-likelihood decoding, the burst error prob-
ability is upper-bounded by

PB ≤ inf
0<ε0≤ε

inf
ε<a<1

{
2h(γ)T (W,L)γ

}
(4.113)

EXACT BIT ERROR PROBABILITY FOR VITERBI DECODING 255

where

γ−1 = 1 +
log ε(1−ε0)

ε0(1−ε)

log (1−ε)a
ε(1−a)

(4.114)

the extended path enumerator T (W) is obtained for a minimal encoder, and W and
L are given by (4.105) and (4.106), respectively.

The bound (4.113) is significantly better than Viterbi’s bound (4.27) for low signal-
to-noise ratios. The latter bound can be obtained by choosing ε0 = ε rather than
minimizing over ε0 in (4.113).

Van de Meeberg’s strengthening of Viterbi’s bound (4.33) is also valid here, and
we obtain the following:

Theorem 4.13 When using a convolutional code for communication over the BSC
with crossover probability ε and maximum-likelihood, the burst error probability is
upper-bounded by

PB < inf
0<ε0<ε

inf
ε<a<1

{
2h(γ)

×
(

1 +W

2
T (W,L) +

1−W
2

T (−W,L)

)γ}
(4.115)

where the extended path enumerator T (W,L) is obtained for a minimal encoder and
γ,W , and L are given by (4.114), (4.105), and (4.106), respectively.

In Fig. 4.15 we compare our tightened van de Meeberg-type bound (4.115) with
van de Meeberg’s bound (4.33) and simulations for Qualcomm’s R = 1/2,m = 6
encoder.

Remark: In the next chapter we introduce a parameter for the BSC called the
computational cutoff rateR0 = 1− log(1 + 2

√
ε(1− ε)). For a BSC with crossover

probability ε = 0.045, we have R0 = 1/2. We notice that in Fig. 4.15 van de
Meeberg’s upper bound is nontrivial only for rates 0 ≤ R < R0 while our tightened
bound is nontrivial for rates 0 ≤ R < C, where the channel capacity for the BSC is
C = 1− h(ε), that is, ε = 0.11 corresponds to C = 1/2.

4.4 EXACT BIT ERROR PROBABILITY FOR VITERBI DECODING

In this section, we shall calculate the exact bit error probability for Viterbi decoding
of minimal convolutional encoders when used to communicate over the BSC. For
simplicity we consider only the rate R = 1/2 minimal feed-forward encoder with
memory m = 1 and encoding matrix G(D) = (1 1 + D) in detail. The general-
izations to other memories and rates as well as realizations with feedback and the
quantized AWGN channel shall be discussed briefly.

Assume that the allzero sequence is transmitted over the BSC. Let Wt(σ) denote
the weight of the information sequence corresponding to the code sequence decided

256 DECODING OF CONVOLUTIONAL CODES

10−310−210−1100
10−6

10−5

10−4

10−3

10−2

10−1

100

ε

Pb

Simulations
Tightened van

de Meeberg
van de Meeberg

Figure 4.15 Tightened van de Meeberg-type bound compared with van de Meeberg’s bound
on the burst error probability for Qualcomm’sR = 1/2,m = 6 minimal encoder and the BSC
with crossover probability ε.

by the Viterbi decoder at state σ at time t. If the initial valuesW0(σ) are known, then
the random process Wt(σ) is a function of the random process of the received tuples
ri, i = 0, 1, . . . , t − 1. Thus, the ensemble {ri, i = 0, 1, . . . , t − 1} determines the
ensemble {Wi(σ), i = 1, 2, . . . , t}.

Our aim is to determine the average of the random variable Wt(σ) over this
ensemble, since for minimal rate R = b/c convolutional encoders the bit error
probability can be computed as the limit

Pb = lim
t→∞

E[Wt(σ = 0)]

tb
(4.116)

assuming that this limit exists.
When we consider realizations in controller canonical form, the states can be

represented by the m-tuples of the inputs of the b shift registers, that is, σt =
ut−1 ut−2 . . .ut−m. In the sequel we usually denote these encoder states σ, σ ∈{

0, 1, . . . , 2bm − 1
}

. During the decoding step at time t + 1 the Viterbi decoder

EXACT BIT ERROR PROBABILITY FOR VITERBI DECODING 257

computes the cumulative Viterbi branch metric tuple

µt+1 = (µt+1(0) µt+1(1) . . . µt+1(2bm − 1)) (4.117)

at time t+1 using the tupleµt at time t and the received c-tuple rt. In order to simplify
our analysis we normalize the metrics such that the cumulative metrics at every zero
state will be zero, that is, we subtract the valueµt(0) fromµt(1), µt(2), . . . , µt(2

bm−
1) and obtain the cumulative normalized branch metric tuple

φt =
(
µt(1)− µt(0)µt(2)− µt(0) . . . µt(2

bm − 1)− µt(0)
)

=
(
φt(1)φt(2) . . . φt(2

bm − 1)
)

(4.118)

For rate R = 1/2, memory m = 1 (2-state) encoders the cumulative normalized
branch metric will be a scalar

φt = φt(1) = µt(1)− µt(0) (4.119)

First we consider the rate R = 1/2, memory m = 1, minimal (2-state) encoder
with generator matrix G(D) = (1 1 + D) and dfree = 3. In Fig. 4.16 we show
the 20 different trellis sections corresponding to the M = 5 different normalized
cumulative metrics φt = −2,−1, 0, 1, 2 and the four different received tuples
rt = 00, 01, 10, 11. In order to find the M = 5 different metrics φt we start with
φt = 0. Then we obtain (the third row in Fig. 4.16) that φt+1 is −1, −1, 1, 1 for
the four different received tuples, respectively. Letting φt be −1 and 1, we obtain
additionally that φt+1 can be −2 and 2. Letting φt be −2 and 2, it is easily verified
that we already found allM = 5 values of the cumulative normalized branch metrics.

The bold branches in Fig. 4.16 correspond to the branches decided by the Viterbi
decoder at time t+ 1. When we have two branches entering the same state with the
same metric, we have a tie that we, in our analysis, resolve by coin flipping.

The sequence of cumulative normalized metrics φt forms a 5-state Markov chain
with transition probability matrix Φ = (φjk), where

φjk = P (φt+1 = φ(k)|φt = φ(j)) (4.120)

From the trellis sections in Fig. 4.16 we obtain the following transition probability
matrix:

Φ =

-2 -1 0 1 2 φ(k)

-2 (1− ε)2 0 2ε(1− ε) 0 ε2

-1 (1− ε)2 0 2ε(1− ε) 0 ε2

0 0 1− ε 0 ε 0
1 ε(1− ε) 0 ε2 + (1− ε)2 0 ε(1− ε)
2 ε(1− ε) 0 ε2 + (1− ε)2 0 ε(1− ε)
φ(j)

 (4.121)

The state transition diagram for the Markov chain is shown in Fig. 4.17.

258 DECODING OF CONVOLUTIONAL CODES

00 2

11

001

−1

10 −1

0

1

0

1

µt

0

−2

µt+1

2

0

rt = 00

φt+1 = −2φt = −2

00 1

11

101

0

10 −2

0

1

0

1

µt

0

−2

µt+1

1

1

rt = 01

φt+1 = 0φt = −2

00 1

11

101

−2

10 0

0

1

0

1

µt

0

−2

µt+1

1

1

rt = 10

φt+1 = 0φt = −2

00 0

11

201

−1

10 −1

0

1

0

1

µt

0

−2

µt+1

0

2

rt = 11

φt+1 = 2φt = −2

00 2

11

001

0

10 0

0

1

0

1

µt

0

−1

µt+1

2

0

rt = 00

φt+1 = −2φt = −1

00 1

11

101

1

10 −1

0

1

0

1

µt

0

−1

µt+1

1

1

rt = 01

φt+1 = 0φt = −1

00 1

11

101

−1

10 1

0

1

0

1

µt

0

−1

µt+1

1

1

rt = 10

φt+1 = 0φt = −1

00 0

11

201

0

10 0

0

1

0

1

µt

0

−1

µt+1

0

2

rt = 11

φt+1 = 2φt = −1

00 2

11

001

1

10 1

0

1

0

1

µt

0

0

µt+1

2

1

rt = 00

φt+1 = −1φt = 0

00 1

11

101

2

10 0

0

1

0

1

µt

0

0

µt+1

2

1

rt = 01

φt+1 = −1φt = 0

00 1

11

101

0

10 2

0

1

0

1

µt

0

0

µt+1

1

2

rt = 10

φt+1 = 1φt = 0

00 0

11

201

1

10 1

0

1

0

1

µt

0

0

µt+1

1

2

rt = 11

φt+1 = 1φt = 0

00 2

11

001

2

10 2

0

1

0

1

µt

0

1

µt+1

2

2

rt = 00

φt+1 = 0φt = 1

00 1

11

101

3

10 1

0

1

0

1

µt

0

1

µt+1

3

1

rt = 01

φt+1 = −2φt = 1

00 1

11

101

1

10 3

0

1

0

1

µt

0

1

µt+1

1

3

rt = 10

φt+1 = 2φt = 1

00 0

11

201

2

10 2

0

1

0

1

µt

0

1

µt+1

2

2

rt = 11

φt+1 = 0φt = 1

00 2

11

001

3

10 3

0

1

0

1

µt

0

2

µt+1

3

3

rt = 00

φt+1 = 0φt = 2

00 1

11

101

4

10 2

0

1

0

1

µt

0

2

µt+1

4

2

rt = 01

φt+1 = −2φt = 2

00 1

11

101

2

10 4

0

1

0

1

µt

0

2

µt+1

2

4

rt = 10

φt+1 = 2φt = 2

00 0

11

201

3

10 3

0

1

0

1

µt

0

2

µt+1

3

3

rt = 11

φt+1 = 0φt = 2

Figure 4.16 All 20 different trellis sections for the G(D) = (1 1 +D) generator matrix.

Let p∞ = (p
(1)
∞ p

(2)
∞ . . . p

(5)
∞) denote the stationary distribution of the cumulative

normalized metrics φt. It is determined as the solution of, for example, the first
M − 1 = 4 equations of

p∞Φ = p∞ (4.122)

and
M∑
i=1

p(i)
∞ = 1 (4.123)

EXACT BIT ERROR PROBABILITY FOR VITERBI DECODING 259

ε(1− ε) ε2

ε(1− ε)

(1− ε)2

(1− ε)2 ε2

ε(1− ε) ε(1− ε)

ε(1− ε)

ε2

ε2

(1− ε)2

ε(1− ε)

ε(1− ε)

ε(1− ε)

(1− ε)2

(1− ε)2

ε2

ε(1− ε)

ε(1− ε)

01 -1

2

-2

Figure 4.17 Illustration of the 5-state Markov chain formed by the sequences of cumulative
normalized metrics φt.

For our memory m = 1 encoder we obtain

pT
∞ =

1

1 + 3ε2 − 2ε3

1− 4ε+ 8ε2 − 7ε3 + 2ε4

2ε− 5ε2 + 5ε3 − 2ε4

2ε− 3ε2 + 3ε3

2ε2 − 3ε3 + 2ε4

ε2 + ε3 − 2ε4

 (4.124)

Now we return to the information weight Wt(σ). From the trellis sections in
Fig. 4.16 it is easily seen how the information weights are transformed during one
step of the Viterbi decoding. Transitions from state 0 or state 1 to state 0 decided by
the Viterbi decoder without tie breaking do not cause an increment of the information
weights; we simply copy the information weight from the state at the root of the
branch to the state at the termini of the branch since such a transmission corresponds
to ût = 0. Having a transition from state 0 to state 1 decided by the Viterbi decoder
without tie breaking, we obtain the information weight at state 1 and time t + 1 by
incrementing the information weight at state 0 and time t since such a transition
corresponds to ût = 1. Similarly, coming from state 1 we obtain the information

260 DECODING OF CONVOLUTIONAL CODES

weight at state 1 and time t + 1 by incrementing the information weight at state 1
and time t. If we have tie breaking, we use the arithmetic average of the information
weights at the two states 0 and 1 at time t in our updating procedure.

Letwt be the tuple of the information weights at time t split both on the two states
σt and the five metric values φt, that is, we can write wt as a vector of 10 entries:

wt =
(
wt(φ

(1), σ = 0) . . . wt(φ
(5), σ = 0)

wt(φ
(1), σ = 1) . . . wt(φ

(5), σ = 1)
)

(4.125)

The tuplewt describes the dynamics of the information weights when we proceed
along the trellis.

In general, for rate R = b/c, memory m convolutional encoders realized in
controller canonical form,wt has M2bm entries and satisfies the recurrent equation

wt+1 = wtA+ btB

bt+1 = btΠ
(4.126)

whereA andB areM2bm×M2bm nonnegative matrices and Π is anM2bm×M2bm

stochastic matrix. The matrix A is the linear part of the affine transformation of the
information weights and it can be determined from the M2bm trellis sections as
illustrated in Fig. 4.16. The matrix B describes the increments of the information
weights. The M2bm-tuple bt is the concatenation of 2bm stochastic M -tuples pi.
Hence, the matrix Π is given by

Π =

Φ 0 . . . 0
0 Φ . . . 0
...

...
. . .

...
0 0 . . . Φ

 (4.127)

For simplicity, we choose the initial values

w0 = 0

b0 = b∞ = (p∞ p∞ . . . p∞)
(4.128)

where p∞ is the stationary probability distribution of the normalized cumulative
metrics φt.

From (4.122) it follows that
b∞ = b∞Π (4.129)

Thus, (4.126) and (4.128) can be simplified to

wt+1 = wtA+ b∞B

w0 = 0
(4.130)

Next we shall return to our 2-state encoder and illustrate how the matrix A can be
obtained from the trellis sections in Fig. 4.16.

EXACT BIT ERROR PROBABILITY FOR VITERBI DECODING 261

Consider first a situation without tie breaking; for example, the trellis section in the
upper left corner, where we have φt = −2, φt+1 = −2, and rt = 00. Following the
bold branches, we first copy with probability Pr(rt = 00) = (1−ε)2 the information
weight from state σt = 0 to state σt+1 = 0, and then obtain the information weight
at σt+1 = 1 as the information weight at σt = 0 plus 1 (since ût = 1 for this branch).
We have now determined four of the entries in A, namely, the two entries for σt = 0,
φt = −2, and φt+1 = −2, which both are (1 − ε)2, and the two entries for σt = 1,
φt = −2, and φt+1 = −2, which both are 0. Notice that, when we determine the
entry for φt+1 = 0, we have to add the probabilities for the two trellis sections with
φt+1 = 0.

Next we include tie breaking and choose as an example the trellis section with
φt = −1, φt+1 = −2, and rt = 00. Here we have to resolve ties at σt+1 = 1. By
following the bold branch from σt = 0 to σt+1 = 0 we conclude that the information
weight at state σt+1 = 0 is a copy of the information weight at state σt = 0. Then
we follow the two bold branches to state σt+1 = 1 where the information weight is
the arithmetic average of the information weights at states σt = 0 and σt = 1 plus
1. We have now determined another four entries of A, namely, the entry for σt = 0,
φt = −1, φt+1 = −2, and σt+1 = 0, which is (1− ε)2; the two entries for φt = −1,
φt+1 = −2, and σt+1 = 1, which are both (1 − ε)2/2 (the tie is resolved by coin
flipping); and, finally, the entry for σt = 1, φt = −2, φt+1 = −2, and σt+1 = 0,
which is 0 since there is no bold branch between σt = 1 and σt+1 = 0 in this trellis
section.

Proceeding in this manner yields the matrix A for the memory m = 1 (2-state)
convolutional encoder with generator matrix G(D) = (1 1 +D):

σt+1 = 0 σt+1 = 1

A =
σt = 0 A00 A01

σt = 1 A10 A11

()

-2 -1 0 1 2 -2 -1 0 1 2

-2 (1−ε)2 0 2ε(1−ε) 0 ε2 (1−ε)2 0 2ε(1−ε) 0 ε2

-1 (1−ε)2 0 3
2 ε(1−ε) 0 1

2 ε
2 1

2 (1−ε)2 0 3
2 ε(1−ε) 0 ε2

0 0 (1−ε)2 0 ε(1−ε) 0 0 ε(1−ε) 0 ε2 0

1 0 0 1
2 (1−ε)2 0 1

2 (1−ε)ε 1
2 ε(1−ε) 0 1

2 ε
2 0 0

=
2 0 0 0 0 0 0 0 0 0 0

-2 0 0 0 0 0 0 0 0 0 0

-1 0 0 1
2 ε(1−ε) 0 1

2 ε
2 1

2 (1−ε)2 0 1
2 ε(1−ε) 0 0

0 0 ε(1−ε) 0 ε2 0 0 (1−ε)2 0 ε(1−ε) 0

1 ε(1−ε) 0 1
2 (1−ε)2 + ε2 0 1

2 ε(1−ε)
1
2 ε(1−ε) 0 (1−ε)2 + 1

2 ε
2 0 ε(1−ε)

2 ε(1−ε) 0 (1−ε)2 + ε2 0 ε(1−ε) ε(1−ε) 0 (1−ε)2 + ε2 0 ε(1−ε)

(4.131)

For rate R = 1/c convolutional feed-forward encoders realized in controller
canonical form we only have increments when entering the states σt+1, when written

262 DECODING OF CONVOLUTIONAL CODES

as an m-tuple, have a 1 as the first digit. For example, for our 2-state encoder we
have

B =

(
05,5 A01

05,5 A11

)
(4.132)

Since every encoder state is reachable with probability 1, we have

2bm−1∑
i=0

Aij = Φ, j = 0, 1, . . . , 2bm − 1 (4.133)

In order to solve the recurrent matrix equation (4.130) we iterate it using the initial
condition. Then we obtain

wt+1 = b∞BA
t + b∞BA

t−1 + · · ·+ b∞B (4.134)

From (4.134) it follows that

lim
t→∞

wt

t
= lim
t→∞

wt+1

t
= lim
t→∞

1

t

t∑
j=0

b∞BA
t−j

= b∞BA
∞ (4.135)

where A∞ denotes the limit of the sequence At when t tends to infinity and we used
that, if a sequence is convergent to a finite limit, then it is Cesàro-summable to the
same limit.

From (4.133) it follows that

eL = (p∞ p∞ . . .p∞) (4.136)

satisfies

eLA = eL (4.137)

and, hence, eL is a left eigenvector of A with eigenvalue λ = 1.
From the nonnegativity of A it follows (Corollary 8.1.30 [HoJ90]) that λ = 1 is

a maximal eigenvalue of A. Let eR be the right eigenvector corresponding to the
eigenvalue λ = 1 and let eR be normalized such that eLeR = 1. Since eL is unique
(up to normalization) it follows (Lemma 8.2.7, statement (i) [HoJ90]) that

A∞ = eReL (4.138)

Combining (4.135), (4.136), and (4.138) yields

lim
t→∞

wt

t
= b∞BeR(p∞ p∞ . . .p∞) (4.139)

From (4.116) it follows that the expression for the exact bit error probability can
be written as

Pb = lim
t→∞

E[Wt(σ = 0)]

tb
= lim
t→∞

∑M
i=1wt(φ

(i), σ = 0)

tb

= lim
t→∞

wt(σ = 0)1T
1,M

tb
(4.140)

EXACT BIT ERROR PROBABILITY FOR VITERBI DECODING 263

where 11,M is the all-one row vector of length M . In other words, to get the expres-
sion for Pb we sum up the first M components of the vector on the right-hand side of
(4.139), or, equivalently, we multiply this vector by the vector (11,M 01,M . . .01,M)T.
Then we obtain the following closed-form expression for the exact bit error proba-
bility:

Pb = b∞BeR/b (4.141)

In summary, for rate R = b/c minimal convolutional encoders we can determine
the exact bit error probability Pb for Viterbi decoding, when communicating over the
BSC, as follows:

• Construct the set of metric states and find the stationary probability distribution
p∞.

• Construct the matrices A and B analogously to the memory m = 1 encoder
given above and compute the right eigenvector eR normalized according to
(p∞ p∞ . . .p∞)eR = 1.

• Compute Pb using (4.141).

EXAMPLE 4.7

The rate R = 1/2, memory m = 1 (2-state) convolutional encoder with gen-
erator matrix G(D) = (1 1 + D) and dfree = 3 has the set of metric states
{−2,−1, 0, 1, 2} and the stationary probability distributionp∞ is given by (4.124).

From the trellis sections in Fig. 4.16 we obtain the matrix A (4.131) with
normalized right eigenvector

eR =

0

0

0

0

0

0
ε(1− ε)

2

4ε(1− ε)
2− ε+ 4ε2 − 4ε3

(2 + 7ε− 12ε2 + 13ε3 − 12ε4 + 4ε5)

2(2− ε+ 4ε2 − 4ε3)

1

(4.142)

264 DECODING OF CONVOLUTIONAL CODES

00 2

11

0

11

0

00

2

01

1

10

1
10

1

01 1

00

01

10

11

00

01

10

11

µt

0

0

0

0

µt+1

2

1

2

1

rt = 00

φt+1 = (−1 0−1)φt = (0 0 0)

00 1

11

1

11

1

00

1

01

2

10

0
10

0

01 2

00

01

10

11

00

01

10

11

µt

0

0

0

0

µt+1

1

2

1

2

rt = 01

φt+1 = (1 0 1)φt = (0 0 0)

00 1

11

1

11

1

00

1

01

0

10

2
10

2

01 0

00

01

10

11

00

01

10

11

µt

0

0

0

0

µt+1

1

2

1

2

rt = 10

φt+1 = (1 0 1)φt = (0 0 0)

00 0

11

2

11

2

00

0

01

1

10

1
10

1

01 1

00

01

10

11

00

01

10

11

µt

0

0

0

0

µt+1

2

1

2

1

rt = 11

φt+1 = (−1 0−1)φt = (0 0 0)

Figure 4.18 Four of in total 124 different trellis sections for the G(D) = (1 + D2 1 +
D +D2) encoding matrix.

Finally, inserting (4.124), (4.132), and (4.142) into (4.141) yields the exact bit
error probability

Pb =
14ε2 − 23ε3 + 16ε4 + 2ε5 − 16ε6 + 8ε7

(1 + 3ε2 − 2ε3)(2− ε+ 4ε2 − 4ε3)

= 7ε2 − 8ε3 − 31ε4 + 64ε5 + 86ε6

−635

2
ε7 − 511

4
ε8 +

10165

8
ε9 − 4963

16
ε10 − · · · (4.143)

which coincides with the bit error probability formula in [BBL95].

EXAMPLE 4.8

Consider the rate R = 1/2, memory m = 2 (4-state) convolutional minimal
feed-forward encoder with encoding matrix G(D) = (1 + D2 1 + D + D2)
and dfree = 5 realized in controller canonical form. In Fig. 4.18 we show the four
trellis sections for the normalized cumulative states φt = (0 0 0). It follows
from this figure that at time t + 1 we have two different normalized cumulative
metric states, namely, φt+1 = (−1 0 −1) and φt+1 = (1 0 1).

If we consider all different trellis sections we find that there exist M = 31
different normalized cumulative metric states. Hence, we have 2mM = 4× 31 =
124 different trellis sections. The matrix A consists of eight different nontrivial
blocks corresponding to the eight branches in each trellis section. We obtain the
124× 124 matrix

A =

A00 031,31 A02 031,31

A10 031,31 A12 031,31

031,31 A21 031,31 A23

031,31 A31 031,31 A33

 (4.144)

EXACT BIT ERROR PROBABILITY FOR VITERBI DECODING 265

1
2 10−1 10−2

10−5

10−4

10−3

10−2

10−1

1
2

BSC crossover probability ε

Pb

R = 1/2, memory m = 1, dfree = 3

R = 1/2, memory m = 2, dfree = 5

R = 1/2, memory m = 3, dfree = 6

R = 1/2, memory m = 4, dfree = 7

Figure 4.19 Exact bit error probability for the rate R = 1/2, memory m = 1, 2, 3, 4
encoding matrices.

Analogously to (4.132) we have

B =

031,31 031,31 A02 031,31

031,31 031,31 A12 031,31

031,31 031,31 031,31 A23

031,31 031,31 031,31 A33

 (4.145)

and from (4.128) if follows that

b∞ = (p∞ p∞ p∞ p∞) (4.146)

Solving for eR and inserting it together with B and b∞ into (4.141) yields the
following expression for the exact bit error probability:

Pb = 44ε3 +
3519

8
ε4 − 14351

32
ε5 − 1267079

64
ε6

−31646405

512
ε7 +

978265739

2048
ε8

+
3931764263

1024
ε9 − 48978857681

32768
ε10 + · · · (4.147)

which coincides with the bit error probability formula in [LTZ04].

In Fig. 4.19 we show the exact bit error probability for rateR = 1/2 convolutional
minimal feed-forward encoders with memorym = 1, 2, 3, 4. For the memorym = 3
(8-state) convolutional encoder with encoding matrix G(D) = (1 +D2 +D3 1 +
D+D2+D3) we haveM = 433 normalized cumulative metric states and theA andB

266 DECODING OF CONVOLUTIONAL CODES

u(2)

u(1)

v(3)

v(2)

v(1)

Figure 4.20 Realization of a rate R = 2/3, overall constraint length ν = 2 convolutional
encoder.

matrices are of size 433·23×433·23. For the memorym = 4 (16-state) convolutional
encoder with encoding matrixG(D) = (1 +D2 +D3 +D4 1 +D+D4) we have
as many as M = 188687 normalized cumulative metric states.

It is not feasible to calculate the number of metric states for the rate R = 1/2,
memory m = 5 (32-state) convolutional encoder with generator matrix G(D) =
(1 +D+D2 +D3 +D4 +D5 1 +D3 +D5) and dfree = 8; the number of metric
states exceeds 4130000.

Next we shall illustrate how to extend the calculations of the exact bit error
probability to high-rate minimal feed-forward convolutional encoders realized in
controller canonical form.

EXAMPLE 4.9

Consider the rate R = 2/3, memory m = 1, overall constraint length ν = 2,
4-state convolutional encoding matrix

G(D) =

(
D 1 +D 1 +D
1 D 1 +D

)
(4.148)

In Fig. 4.20 we show its realization in controller canonical form. Since the
number of normalized metric states is M = 19, we have 2cM = 8 · 19 = 512
trellis sections. One of these is shown in Fig. 4.21. Considering all trellis sections

EXACT BIT ERROR PROBABILITY FOR VITERBI DECODING 267

000 3

101 1

011 0

110
2

011 1
110 1

000 2

101
2

111 1

010
3

100
2

001
0

100 1

001
3

111
2

010
0

0

0

0

0

3

2

3

2

rt = 000µt

φt = (0 0 0) φt+1 = (−1 0 −1)

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

Figure 4.21 One typical trellis section of a rate R = 2/3, overall constraint length ν = 2
convolutional encoder.

we obtain the M2bm ×M2bm = 19 · 4× 19 · 4 = 76× 76 matrices

A =

A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33

 (4.149)

B =

0 A01 A02 2A03

0 A11 A12 2A13

0 A21 A22 2A23

0 A31 A32 2A33

 (4.150)

and the row vector

b∞ =
(
p∞ p∞ p∞ p∞) (4.151)

The four states at time t+1 correspond to information weight increments of 0, 1, 1,
and 2, respectively, as shown in matrix B.

Then we compute the normalized eigenvector eR and use (4.151) to calculate
the exact bit error probability for this rate R = 2/3, overall constraint length
ν = 2 convolutional encoder. The result is shown in Fig. 4.22 together with the
corresponding curves for the rate R = 2/3, overall constraint lengths ν = 3 and
ν = 4 convolutional encoders with encoding matrices

G(D) =

(
1 +D D 1
D2 1 1 +D +D2

)
(4.152)

268 DECODING OF CONVOLUTIONAL CODES

1
2 10−1 10−2 10−3

10−7

10−6

10−5

10−4

10−3

10−2

10−1

1
2

BSC crossover probability ε

Pb

R = 2/3, 2-state, dfree = 2

R = 2/3, 4-state, dfree = 3

R = 2/3, 8-state, dfree = 4

R = 2/3, 16-state, dfree = 5

Figure 4.22 Exact bit error probability for the rate R = 2/3, overall constraint length
ν = 2, 3, and 4 (4-state, 8-state, and 16-state, respectively) encoding matrices in Example 4.9
and the rate R = 2/3 2-state encoding matrix in Example 4.10.

with 8 encoder states and M = 347 metric states and

G(D) =

(
D +D2 1 1 +D2

1 D +D2 1 +D +D2

)
(4.153)

with 16 encoder states and M = 15867 metric states, respectively.

The extension to high-rate convolutional encoders is more subtle when the minimal
realizations require realizations that are not in controller canonical form. We illustrate
this by the following example.

EXAMPLE 4.10

Consider the following rate R = 2/3, overall constraint length ν = 2 encoding
matrix:

G(D) =

(
1 0 1 +D
0 1 1 +D

)
(4.154)

It has a 2-state minimal realization in observer canonical form as shown in
Fig. 4.23.
Since our encoder is 2-state we have four blocks in the matrices A and B, that is,

A =

(
A00 A01

A10 A11

)
(4.155)

and

B =

(
B00 B01

B10 B11

)
(4.156)

EXACT BIT ERROR PROBABILITY FOR VITERBI DECODING 269

u(1) v(1)

u(2) v(2)

v(3)

Figure 4.23 A minimal encoder for the encoding matrix given in (4.154).

By drawing all trellis sections we obtain the M = 5 normalized cumulative
metrics: −2, −1, 0, 1, 2. In Fig. 4.24 we show four of the M2c = 5 · 23 = 40
different trellis sections.

Consider the trellis section for φt = 0 and the triple rt = 011. Assuming
that the allzero sequence is transmitted, this trellis section occurs with probability
(1 − ε)ε2. At state σt+1 = 0 we use coin flipping to resolve the tie between the
two bold branches stemming from state σt = 1. Here we notice that the upper
branch with the code triple vt = 001 corresponds to the information tuple ut =
00, that is, no increment of the corresponding information weight entry at state
σt+1 = 0. However, the lower branch with the code triple vt = 111 corresponds
to the information tuple ut = 11; thus, if this branch is decided by the Viterbi
decoder, we have to add 2 to the corresponding information weight entry at state
σt+1 = 0.

The contributions from this trellis section to the entries of the matrices A and
B determined by (σt = 0, φt = 0) and (σt+1 = 0, φt+1 = 1) are 0 for both
matrices since the transition σt = 0 to σt+1 = 1 is not decided by the Viterbi
decoder for these normalized cumulative metrics. The same holds for rt = 101.
But for both rt = 010 and rt = 100 we get for these normalized cumulative
matrices a tie for the transitions between σt = 0 and σt+1 = 0. Hence, the
corresponding entry in submatrix A00 is 2ε2(1 − ε). For the submatrix B00 this
entry is also 2ε2(1− ε); there we get a contribution only for the lower branch but
this transition corresponds to 2 information bits. Next we consider the transitions
from (σt = 0, φt = 0) to (σt+1 = 1, φt+1 = 1). Then for rt = 010 and rt = 100
there are no branches decided by the Viterbi decoder and, hence, no contributions
toA01 andB01. For rt = 011 and rt = 101 we obtain the contributions ε2(1− ε)
for both received triples and, hence, 2ε2(1− ε) in total toA01. For matrixB01 we
have one erroneous information bit for both received triples and, hence, we get
the same value as for A01.

270 DECODING OF CONVOLUTIONAL CODES

000 2
110 2

101 1

011
1

010 3

100 1

111 2

001
0

0

0

2

3

rt = 010

µt

φt = 0 φt+1 = 1

0

1

0

1

(a)

000 1
110 1

101 2

011
2

010 2

100 0

111 3

001
1

0

0

2

3

rt = 011

µt

φt = 0 φt+1 = 1

0

1

0

1

(b)

000 2
110 2

101 1

011
1

010 1

100 3

111 0

001
2

0

0

2

3

rt = 100

µt

φt = 0 φt+1 = 1

0

1

0

1

(c)

000 1
110 1

101 2

011
2

010 0

100 2

111 1

001
3

0

0

2

3

rt = 101

µt

φt = 0 φt+1 = 1

0

1

0

1

(d)

Figure 4.24 Four trellis sections for the rate R = 2/3, 2-state encoder in Fig. 4.23.

Exploiting all 40 trellis sections in a similar way yields

A00 =

-2 -1 0 1 2

-2 (1−ε)3+ε2(1−ε) 0 ε3+3ε(1−ε)2 0 2ε2(1−ε)

-1 (1−ε)3+ε2(1−ε) 0 1
2 ε

3+ 5
2 ε(1−ε)

2 0 ε2(1−ε)

0 0 (1−ε)3+ε2(1−ε) 0 2ε(1−ε)2 0

1 0 0 1
2 (1−ε)3+ 1

2 ε
2(1−ε) 0 ε(1−ε)2

2 0 0 0 0 0

and

B00 =

-2 -1 0 1 2

-2 2ε2(1−ε) 0 2ε3+2ε(1−ε)2 0 2ε2(1−ε)

-1 2ε2(1−ε) 0 ε3+2ε(1−ε)2 0 ε2(1−ε)

0 0 2ε2(1−ε) 0 2ε(1−ε)2 0

1 0 0 ε2(1−ε) 0 ε(1−ε)2

2 0 0 0 0 0

Determining the remaining blocks is left as an exercise (cf. Problem 4.20 and

Problem 4.21).
After having determined the right eigenvector of A, that is, eR, we exploit

the 40 trellis sections and obtain the normalized cumulative metric transition
matrix Φ, which yields the steady state probability vector p∞ and hence we have
determined b∞.

THE BCJR ALGORITHM FOR APP DECODING 271

Finally, we insert b∞, B, eR, and b = 2 into (4.141) and obtain the following
expression for the exact bit error probability for our R = 2/3, 2-state minimal
convolutional encoder realized in observer canonical form, illustrated in Fig. 4.22,

Pb =
(
−4ε+2ε2−67ε3+320ε4−818ε5+936ε6+884ε7−5592ε8+11232ε9

−13680ε10+11008ε11−5760ε12+1792ε13+6ε14
)
/
(
−2+5ε−41ε2+128ε3

−360ε4+892ε5−1600ε6+1904ε7−1440ε8+640ε9−128ε10
)

= 2ε+ 4ε2 +
5

2
ε3 − 431

4
ε4 − 125

8
ε5 +

32541

16
ε6 − 70373

32
ε7

−1675587

64
ε8 +

7590667

128
ε9 +

67672493

256
ε10 − . . . (4.157)

In this example, the increments depend not only on the states σt+1 but also on the
received triple rt and the resolving of ties.

Determining the exact bit error probability for encoders with feedback follows the
steps outlined in Example 4.10.

If we replace the BSC with a quantized AWGN channel, the calculations follow
the methods described in the previous examples, but the computational complex-
ity increases drastically as illustrated by the following example. The quantization
levels are determined by optimizing the computational cutoff rate as described in
Section 5.6.

EXAMPLE 4.11

For the encoding matrix G(D) = (1 + D2 1 + D + D2) realized in controller
canonical form we haveM = 31 normalized cumulative metric states for the BSC,
but as many asM = 16639 for the AWGN channel with eight quantization levels.
Moreover, for the AWGN channel we have to repeat all calculations for each value
of the SNR. In Fig. 4.25 we show the exact bit error probability for this encoder and
the AWGN channel. For comparison we also give the exact bit error probabilities
for the same encoder and its equivalentsG(D) =

(
1 (1 +D2)/(1 +D +D2)

)
,

M = 31, G(D) =
(
1 (1 +D +D2)/(1 +D2)

)
, M = 31, when used to

communicate over the BSC channel.

4.5 THE BCJR ALGORITHM FOR APP DECODING

The BCJR (two-way) algorithm is the most celebrated algorithm for APP decoding
of terminated convolutional codes.

Suppose that a binary, rate R = b/c, convolutional code of memory m is used to
communicate over the binary-input, q-ary output DMC (introduced in Section 1.1).
As before, let v denote the code sequence, r the received sequence, and P (r | v) the
channel-transition probabilities, and use the zero-tail (ZT) method to terminate the

272 DECODING OF CONVOLUTIONAL CODES

0 0.5 1 1.5 2 2.5 3 3.5

10−2

10−1

1
2

SNR Eb/N0 dB

Pb

G(D) = (1 +D2 1 +D +D2), BSC

G(D) = (1 1+D+D2

1+D2), BSC

G(D) = (1 1+D2

1+D+D2), BSC

G(D) = (1 +D2 1 +D +D2), 8-quant., AWGN

Figure 4.25 Exact bit error probability for the rate R = 1/2, memory m = 2 encoding
matrix G(D) = (1 +D2 1 +D +D2) for BSC and quantized AWGN channel.

convolutional code into a block code of block length N = (n+m)c code symbols.
Furthermore, let

u[0,n+m) = u0 u1 . . .un+m−1

= u
(1)
0 u

(2)
0 . . . u

(b)
0 u

(1)
1 u

(2)
1 . . . u

(b)
1 . . . u

(1)
n+m−1u

(2)
n+m−1 . . . u

(b)
n+m−1 (4.158)

denote the sequence of bn information symbols followed by a tail of bm dummy sym-
bols which terminates the convolutional code into a block code. We let P (u

(k)
i = 0)

denote the a priori probability that information symbol u(k)
i = 0, i = 0, 1, . . . , n−1,

k = 1, 2, . . . , b. In general, P (u
(k)
i = 0) 6= 1/2. Let P

(
u

(k)
i = 0

∣∣∣ r[0,n+m)

)
de-

note the a posteriori probability that u(k)
i = 0 given the received sequence r[0,n+m),

where

r[0,n+m) = r0 r1 . . . rn+m−1

= r
(1)
0 r

(2)
0 . . . r

(c)
0 r

(1)
1 r

(2)
1 . . . r

(c)
1 . . . r

(1)
n+m−1r

(2)
n+m−1 . . . r

(c)
n+m−1 (4.159)

Let U[0,n) denote the set of all information sequences u0u1 . . .un−1, and let U (k)
[0,n)i

denote the set of information sequences u0u1 . . .un−1 such that u(k)
i = 0. Then we

have the following expression for the a posteriori probability that u(k)
i = 0 given the

THE BCJR ALGORITHM FOR APP DECODING 273

received sequence r[0,n+m):

P
(
u
(k)
i = 0

∣∣∣ r[0,n+m)

)
=
P (r[0,n+m), u

(k)
i = 0)

P (r[0,n+m))

=

∑
u[0,n)∈U

(k)
[0,n)i

P
(
r[0,n+m)

∣∣ u[0,n)

)
P (u[0,n))∑

u[0,n)∈U[0,n)
P
(
r[0,n+m)

∣∣ u[0,n))P (u[0,n)

) (4.160)

where P
(
r[0,n+m)

∣∣ u[0,n)

)
is the probability that r[0,n+m) is received given that

the code sequence corresponding to the information sequence u[0,n) followed by a
tail of m dummy zeros is transmitted and P (u[0,n)) is the a priori probability of the
information sequence u[0,n). Our goal is to compute the sequence of a posteriori
probabilities

P
(
u
(1)
0 = 0

∣∣∣ r[0,n+m)

)
, P
(
u
(2)
0 = 0

∣∣∣ r[0,n+m)

)
, . . . , P

(
u
(b)
0 = 0

∣∣∣ r[0,n+m)

)
,

P
(
u
(1)
1 = 0

∣∣∣ r[0,n+m)

)
, P
(
u
(2)
1 = 0

∣∣∣ r[0,n+m)

)
, . . . , P

(
u
(b)
1 = 0

∣∣∣ r[0,n+m)

)
, . . . ,

P
(
u
(1)
n−1 = 0

∣∣∣ r[0,n+m)

)
, P
(
u
(2)
n−1 = 0

∣∣∣ r[0,n+m)

)
, . . . , P

(
u
(b)
n−1 = 0

∣∣∣ r[0,n+m)

)

For an encoding matrix of overall constraint length ν, we denote for simplicity
the encoder state at depth t by σt, where σt = σ, σ = 0, 1, . . . , 2ν − 1. We denote
by S[0,n+m] the set of state sequences σ[0,n+m] such that σ0 = σn+m = 0, that is,

S[0,n+m]
def
=
{
σ[0,n+m] = σ0σ1 . . . σn+m

∣∣ σ0 = σn+m = 0
}

(4.161)

and by S(k)
[0,n+m]i the set of state sequences σ[0,n+m] such that σ0 = σn+m = 0 and

that the transition from state σi at depth i to state σi+1 at depth i + 1 implies that
u

(k)
i = 0, that is,

S(k)
[0,n+m]i

def
=
{
σ[0,n+m] = σ0σ1 . . . σn+m

∣∣ σ0 = σn+m = 0

and σi → σi+1 ⇒ u
(k)
i = 0

}
(4.162)

We always start and end the encoding in the zero state, and we have a one-to-one
correspondence between the information sequenceu[0,n) and the sequence of encoder
states σ[0,n+m] = σ0σ1 . . . σn+m, where σ0 = σn+m = 0. Hence, we can rewrite
(4.160) as

P
(
u

(k)
i = 0

∣∣∣ r[0,n+m)

)
=

∑
σ[0,n+m]∈S

(k)

[0,n+m]i

P
(
r[0,n+m)

∣∣ σ[0,n+m]

)
P
(
σ[0,n+m]

)
∑
σ[0,n+m]∈S[0,n+m]

P
(
r[0,n+m)

∣∣ σ[0,n+m]

)
P
(
σ[0,n+m]

) (4.163)

where P
(
r[0,n+m)

∣∣ σ[0,n+m]

)
is the probability that r[0,n+m) is received given that

the code sequence corresponding to the state sequence σ[0,n+m] is transmitted and
P (σ[0,n+m]) is the a priori probability of the state sequence σ[0,n+m].

274 DECODING OF CONVOLUTIONAL CODES

Let P (rt, σt+1 = σ′ | σt = σ), where σ, σ′ ∈ {0, 1, . . . , 2ν − 1}, be the condi-
tional probability that at depth t we receive the c-tuple rt and that the encoder makes
the state transition to σt+1 = σ′ at depth t + 1, given that it is at σt = σ at depth t,
and let P (σt+1 = σ′ | σt = σ) be the probability of the same state transition. Next,
we introduce the 2ν × 2ν state-transition matrix

Pt = (pt(σ, σ
′))σ,σ′ , 0 ≤ σ < 2ν , 0 ≤ σ′ < 2ν (4.164)

where

pt(σ, σ
′) = P (rt, σt+1 = σ′ | σt = σ)

= P (rt | σt+1 = σ′, σt = σ)P (σt+1 = σ′ | σt = σ) (4.165)

and σ, σ′ ∈ {0, 1, . . . , 2ν − 1}. The matrix Pt is a sparse matrix; in each row and
each column, only 2b elements are nonzero.

Let
ei = (0 . . . 0 1

i
0 . . . 0), 0 ≤ i < 2ν (4.166)

Consider the product

e0P0P1 . . . Pn+m−1 = (γ 0 . . . 0) (4.167)

where the equalities to 0 in the last 2ν − 1 entries follow from the fact that the tail of
m 0-state driving b-tuples causes the state transitions σn → σn+1 → · · · → σn+m

to terminate in σn+m = 0. The value γ obtained by (4.167) is the conditional
probability that we receive r[0,n+m) given that a code sequence is transmitted, that
is,

γ =
∑

σ[0,n+m]∈S[0,n+m]

P
(
r[0,n+m)

∣∣ σ[0,n+m]

)
P
(
σ[0,n+m]

)
(4.168)

which is the denominator of (4.163).
In order to calculate the numerator of (4.163), we introduce, as a counterpart to

Pt, the state-transition matrix

P
(k)
t =

(
p

(k)
t (σ, σ′)

)
σ,σ′

, 0 ≤ σ < 2ν , 0 ≤ σ′ < 2ν (4.169)

where

p
(k)
t (σ, σ′) = P

(
rt, σt+1 = σ′, u

(k)
t = 0

∣∣∣ σt = σ
)

= P
(
rt

∣∣∣ σt+1 = σ′, σt = σ, u
(k)
t = 0

)
×P

(
σt+1 = σ′

∣∣∣ σt = σ, u
(k)
t = 0

)
P
(
u

(k)
t = 0

)
(4.170)

and σ, σ′ ∈ {0, 1, . . . , 2ν − 1}. The matrix element p(k)
t (σ, σ′) is the conditional

probability that at depth t we receive the c-tuple rt, that the encoder makes the state
transition to σt+1 = σ′ at time t+ 1, and that the kth information symbol at depth t
is u(k)

t = 0, given that it is at σt = σ at depth t.

THE BCJR ALGORITHM FOR APP DECODING 275

As a counterpart to (4.167), we have

e0P0P1 . . . Pi−1P
(k)
i Pi+1 . . . Pn+m−1 =

(
γ

(k)
i 0 . . . 0

)
(4.171)

where γ(k)
i is the conditional probability that we receive r[0,n+m), given that a code

sequence corresponding to u(k)
i = 0 is transmitted, that is,

γ
(k)
i =

∑
σ[n+m]∈S

(k)

[0,n+m]i

P
(
r[0,n+m)

∣∣ σ[0,n+m]

)
P
(
σ[0,n+m]

)
(4.172)

which is the numerator of (4.163). Hence, we can rewrite (4.163) as

P
(
u

(k)
i = 0

∣∣∣ r[0,n+m)

)
= γ

(k)
i /γ (4.173)

where γ and γ(k)
i are given by (4.167) and (4.171), respectively.

The most crucial part of the BCJR algorithm is the calculation of γ(k)
i for i =

0, 1, . . . , n − 1 and k = 1, 2, . . . , b. First, we start at the root and go forward and
calculate

αi = (αi(0)αi(1) . . . αi(2
ν − 1))

def
= e0P0P1 . . . Pi−1, 1 ≤ i ≤ n+m (4.174)

By convention, we haveα0 = e0. For each depth i, i = 1, . . . , n+m, the components
of αi are stored at the corresponding states. Then we start at the terminal node at
depth n+m, go backward, and calculate

β
(k)
i =

(
β

(k)
i (0)β

(k)
i (1) . . . β

(k)
i (2ν − 1)

)
def
= e0P

T
n+m−1P

T
n+m−2 . . . P

T
i+1

(
P

(k)
i

)T
, 0 ≤ i < n, 1 ≤ k ≤ b (4.175)

By combining (4.172) with the definitions of αi and β(k)
i we obtain

γ
(k)
i =

2ν−1∑
σ=0

αi(σ)β
(k)
i (σ), 0 ≤ i < n (4.176)

From (4.168) and the definition of αi(σ) it follows that

γ = αn+m (0) (4.177)

Hence, combining (4.173), (4.176), and (4.177) yields

P
(
u

(k)
i = 0

∣∣∣ r[n+m)

)
=

∑2ν−1
σ=0 αi(σ)β

(k)
i (σ)

αn+m(0)
, 0 ≤ i < n, 1 ≤ k ≤ b

(4.178)
Since the matrix Pt is sparse, it is efficient to compute γ(k)

i by trellis searches. For
each state we will calculate both forward and backward multiplicative metrics.

276 DECODING OF CONVOLUTIONAL CODES

In the forward direction, we start at depth t = 0 with the metric

µ0(σ) =

{
1, σ = 0

0, otherwise
(4.179)

Then for t = 1, 2, . . . , n+m we calculate the forward metric µt(σ) as

µt(σ
′) =

2ν−1∑
σ=0

µt−1(σ)pt−1(σ, σ′), 0 ≤ σ′ < 2ν (4.180)

where pt−1(σ, σ′) is given by (4.165). The sum has only 2b nonzero terms. The
forward metrics µt(σ′) are stored at the corresponding states. It is easily verified that

µi(σ) = αi(σ), 0 ≤ i ≤ n+m, 0 ≤ σ < 2ν (4.181)

where αi(σ) is given by (4.174).
In the backward direction, we start at depth n+m with the metric

µ̃n+m(σ′) =

{
1, σ′ = 0

0, otherwise
(4.182)

Then for t = n+m− 1, n+m− 2, . . . , 1 we calculate the backward metric

µ̃t(σ) =
2ν−1∑
σ′=0

µ̃t+1(σ′)pt(σ, σ
′), 0 ≤ σ < 2ν (4.183)

where pt(σ, σ′) is given by (4.165). It is easily shown that

2ν−1∑
σ′=0

p
(k)
i (σ, σ′)µ̃i+1(σ′) = β

(k)
i (σ), 0 ≤ i < n, 1 ≤ k ≤ b, 0 ≤ σ < 2ν

(4.184)
where p(k)

i (σ, σ′) and β(k)
i (σ) are given by (4.170) and (4.175), respectively.

Finally, we obtain

γ
(k)
i =

2ν−1∑
σ=0

2ν−1∑
σ′=0

µi(σ)p
(k)
i (σ, σ′)µ̃i+1(σ′) (4.185)

The BCJR algorithm can be summarized as follows:

Algorithm BCJR (The BCJR algorithm for APP decoding)
BCJR1. Initialize µ0(0) = µ̃n+m(0) = 1, µ0(σ) = µ̃n+m(σ) = 0 for all

nonzero states (σ 6= 0).

BCJR2. For t = 1, 2, . . . , n+m calculate the forward metric

µt(σ
′) =

2ν−1∑
σ=0

µt−1(σ)pt−1(σ, σ′), 0 ≤ σ′ < 2ν

THE BCJR ALGORITHM FOR APP DECODING 277

BCJR3. For t = n+m− 1, n+m− 2, . . . , 1 calculate the backward metric

µ̃t(σ) =
2ν−1∑
σ′=0

µ̃t+1(σ′)pt(σ, σ
′), 0 ≤ σ < 2ν

BCJR4. For i = 0, 1, . . . , n− 1 and k = 1, 2, . . . , b calculate

γ
(k)
i =

2ν−1∑
σ=0

2ν−1∑
σ′=0

µi(σ)p
(k)
i (σ, σ′)µ̃i+1(σ′)

and output

P
(
u

(k)
i = 0

∣∣∣ r[0,n+m)

)
= γ

(k)
i /µn+m(0)

In iterative decoding, for example, we use the a posteriori probabilities that are
calculated by the BCJR algorithm as a priori probabilities in the following step of
the iteration. In maximum a posteriori probability (MAP) decoding the a posteriori
probabilities are used to obtain decisions about the information symbols; we simply
use the rule

û
(k)
i =

{
0 if P

(
u

(k)
i = 0

∣∣∣ r[n+m)

)
≥ 1/2

1 otherwise
(4.186)

EXAMPLE 4.12

Consider the binary-input, 8-ary output DMC shown in Fig. 4.6 with transition
probabilities P (r | v) given by the following table:

r
04 03 02 01 11 12 13 14

v
0 0.434 0.197 0.167 0.111 0.058 0.023 0.008 0.002
1 0.002 0.008 0.023 0.058 0.111 0.167 0.197 0.434

Suppose that the same encoding matrix G(D) = (1 +D+D2 1 +D2) as in
Example 4.2 is used and that four information symbols followed by two dummy
zeros are encoded. Assume that the a priori probabilities for the information
symbols are P (ut = 0) = 2/3, t = 0, 1, 2, 3. For the dummy zeros we have
P (ut = 0) = 1, t = 4, 5. Let r = 1104 0112 1101 0111 0113 0403 be the
received sequence. The trellis is shown in Fig. 4.26.

Next we will use the BCJR algorithm to obtain the a posteriori probabilities
P
(
ut = 0

∣∣ r[0,6)

)
, t = 0, 1, 2, 3. First, we calculate the probabilities pt(σ, σ′)

and p(1)
t (σ, σ′). Then we calculate the forward metricsµt(σ′) according to (4.179)

and (4.180) and write the values next to the corresponding states in Fig. 4.27
(BCJR2).

278 DECODING OF CONVOLUTIONAL CODES

r = 1104 0112 1101 0111 0113 0403

00 00 00 00 00 00 00

01 01 01 01

10 10 10 10

11 11 11

00 00 00 00 00 00

11 11 11 11

11 11 11 11

00 00

10 10 10 10

01 01 01

01 01 01

10 10

Figure 4.26 The trellis used in Example 4.7.

00 00 00 00 00 00 00

01 01 01 01

10 10 10 10

11 11 11

1.0000 0.1678·10−1 0.2856·10−4 0.1229·10−6 0.2442·10−8 0.9621·10−11 0.8227·10−12

0.6581·10−7 0.4461·10−6 0.6522·10−9 0.7620·10−11

0.7400·10−4 0.5418·10−4 0.6143·10−7 0.1221·10−8

0.4572·10−6 0.6263·10−7 0.3225·10−9

Figure 4.27 The forward metrics µt(σ′) are written next to the corresponding states.

The backward metrics µ̃t(σ) are calculated according to (4.182) and (4.183)
and their values are written next to the corresponding states in Fig. 4.28 (BCJR3).

We have now reached step BCJR4 and calculate γ(1)
i according to (4.185).

Then we obtain

γ
(1)
0 = 0.8069 · 10−12

γ
(1)
1 = 0.1747 · 10−12

γ
(1)
2 = 0.1854 · 10−12

γ
(1)
3 = 0.8226 · 10−12

THE BCJR ALGORITHM FOR APP DECODING 279

00 00 00 00 00 00 00

01 01 01 01

10 10 10 10

11 11 11

0.8227·10−12 0.4808·10−10 0.6103·10−8 0.3259·10−6 0.7592·10−4 0.8550·10−1 1.0000

0.6103·10−8 0.3259·10−6 0.9769·10−3 0.1600·10−4

0.2136·10−9 0.1168·10−7 0.2192·10−5 0.7424·10−8

0.3369·10−7 0.8025·10−5 0.3499·15−6

Figure 4.28 The backward metrics µ̃t(σ) are written next to the corresponding states.

corresponding to the four information symbols and (to check our calculations)

γ
(1)
4 = 0.8227 · 10−12

γ
(1)
5 = 0.8227 · 10−12

corresponding to the two dummy zeros in the tail. Since µ6(0) = 0.8227 · 10−12

(see Fig. 4.27), we have the a posteriori probabilities

P
(
u

(1)
0 = 0

∣∣∣ r[0,6)

)
= 0.9808

P
(
u

(1)
1 = 0

∣∣∣ r[0,6)

)
= 0.2124

P
(
u

(1)
2 = 0

∣∣∣ r[0,6)

)
= 0.2254

P
(
u

(1)
3 = 0

∣∣∣ r[0,6)

)
= 0.9999

and for the two dummy zeros, as expected,

P
(
u

(1)
4 = 0

∣∣∣ r[0,6)

)
= 1.0000

P
(
u

(1)
5 = 0

∣∣∣ r[0,6)

)
= 1.0000

Using (4.186), we obtain the decision for information symbols û(1)
[0,4) =

û
(1)
0 û

(1)
1 û

(1)
2 û

(1)
3 = 0110. It is interesting to notice that the maximum-likelihood

decision for the information sequence obtained by the Viterbi algorithm in Exam-
ple 4.2 is the same.

In Fig. 4.29, we show the bit error probabilities when the BCJR algorithm is
used to communicate over the AWGN channel. Simulation results are shown for

280 DECODING OF CONVOLUTIONAL CODES

−1 1 3 5 7
10−6

10−4

10−2

100

Eb/N0 [dB]

Pb

Figure 4.29 Bit error probabilities for G1(D) = (1 + D + D2 1 + D2) and G2(D) =
(1+D+D2 +D3 +D6 1+D2 +D3 +D5 +D6) for the BCJR algorithm and the AWGN
channel. The curves from left to right are G2(D) with L = 100 information symbols, G2(D)
with L = 30 information symbols, G1(D) with L = 100 information symbols, and G1(D)
with L = 30 information symbols.

the two rate R = 1/2 encoding matrices G1(D) = (1 + D + D2 1 + D2) and
G2(D) = (1 +D +D2 +D3 +D6 1 +D2 +D3 +D5 +D6) for both L = 30
and L = 100 information symbols, followed by a tail of m dummy zeros.

Next we assume that the encoder is systematic, that is,

v
(k)
i = u

(k)
i , 1 ≤ k ≤ b (4.187)

From (4.173) we obtain

P
(
u

(k)
i = 1

∣∣∣ r[0,n+m)

)
= 1− γ

(k)
i

γ
=
γ − γ(k)

i

γ
(4.188)

THE BCJR ALGORITHM FOR APP DECODING 281

Let z(k)
i denote the log-likelihood ratio of the a posteriori probabilities for the kth

information symbol in the ith b-tuple, that is,

z
(k)
i

def
= log

P
(
u

(k)
i = 0

∣∣∣ r[0,n+m)

)
P
(
u

(k)
i = 1

∣∣∣ r[0,n+m)

) (4.189)

Combining (4.173) and (4.188) yields

z
(k)
i = log

γ
(k)
i

γ − γ(k)
i

(4.190)

Now we shall split z(k)
i into summands representing the intrinsic information about

the information symbol u(k)
i , the log-likelihood ratio of a priori probabilities of u(k)

i ,
and the extrinsic log-likelihood ratio.

Let r(6k)
t denote the tth received c-tuple except its kth symbol r(k)

t , that is,

r
(6k)
t = r

(1)
t r

(2)
t . . . r

(k−1)
t r

(k+1)
t . . . r

(b)
t (4.191)

Since the channel is memoryless we can rewrite (4.170) as follows:

p
(k)
i (σ, σ′) = P

(
ri

∣∣∣ σi+1 = σ′, σi = σ, u
(k)
i = 0

)
×P

(
σi+1 = σ′

∣∣∣ σi = σ, u
(k)
i = 0

)
P (u

(k)
i = 0)

= P
(
r

(k)
i

∣∣∣ σi+1 = σ′, σi = σ, u
(k)
i = 0

)
×P

(
r

(6k)
i

∣∣∣ σi+1 = σ′, σi = σ, u
(k)
i = 0

)
×P

(
σi+1 = σ′

∣∣∣ σi = σ, u
(k)
i = 0

)
P
(
u

(k)
i = 0

)
= P

(
r

(k)
i

∣∣∣ u(k)
i = 0

)
P
(
u

(k)
i = 0

)
×P

(
r

(6k)
i

∣∣∣ σi+1 = σ′, σi = σ, u
(k)
i = 0

)
×P

(
σi+1 = σ′

∣∣∣ σi = σ, u
(k)
i = 0

)
(4.192)

where the last equality follows from the systematicity of the encoder (r(k)
i depends

only on u(k)
i and not on the state transition).

Let us introduce

p
(6k)
i (σ, σ′)

def
= P

(
r

(6k)
i , σi+1 = σ′

∣∣∣ σi = σ, u
(k)
i = 0

)
= P

(
r

(6k)
i

∣∣∣ σi+1 = σ′, σi = σ, u
(k)
i = 0

)
×P

(
σi+1 = σ′

∣∣∣ σi = σ, u
(k)
i = 0

)
(4.193)

282 DECODING OF CONVOLUTIONAL CODES

Then, combining (4.192) and (4.193) yields

p
(k)
i (σ, σ′) = P

(
r

(k)
i

∣∣∣ u(k)
i = 0

)
P
(
u

(k)
i = 0

)
p

(6k)
i (σ, σ′) (4.194)

or, equivalently, in matrix form

P
(k)
i = P

(
r

(k)
i

∣∣∣ u(k)
i = 0

)
P
(
u

(k)
i = 0

)
P

(6k)
i (4.195)

where
P

(6k)
i =

(
p

(6k)
i (σ, σ′)

)
σ,σ′

(4.196)

Analogously to (4.192) we have

pi(σ, σ
′)− p(k)

i (σ, σ′) = P
(
r

(k)
i

∣∣∣ u(k)
i = 1

)
P
(
u

(k)
i = 1

)
×P

(
r

(6k)
i

∣∣∣ σi+1 = σ′, σi = σ, u
(k)
i = 1

)
×P

(
σi+1 = σ′

∣∣∣ σi = σ, u
(k)
i = 1

)
(4.197)

or, equivalently, in matrix form

Pi − P (k)
i = P

(
r

(k)
i

∣∣∣ u(k)
i = 1

)
P
(
u

(k)
i = 1

)
P
c(6k)
i (4.198)

where the “complementary” matrix (corresponding to u(k)
i = 1)

P
c(6k)
i =

(
p
c(6k)
i (σ, σ′)

)
σ,σ′

(4.199)

and where

p
c(6k)
i (σ, σ′)

def
= P

(
r

(6k)
i , σi+1 = σ′

∣∣∣ σi = σ, u
(k)
i = 1

)
= P

(
r

(6k)
i

∣∣∣ σi+1 = σ′, σi = σ, u
(k)
i = 1

)
×P

(
σi+1 = σ′

∣∣∣ σi = σ, u
(k)
i = 1

)
(4.200)

Analogously to (4.173) we obtain the following expression for the log-likelihood
ratio of the a posteriori probabilities for u(k)

i :

z
(k)
i = log

P
(
u

(k)
i = 0

∣∣∣ r[0,n+m)

)
P
(
u

(k)
i = 1

∣∣∣ r[0,n+m)

)
= log

P
(
u

(k)
i = 0

)
P
(
u

(k)
i = 1

) P
(
r

(k)
i

∣∣∣ u(k)
i = 0

)
P
(
r

(k)
i

∣∣∣ u(k)
i = 1

) γ
(6k)
i

γ
c(6k)
i

(4.201)

where γ(6k)
i and γc(6k)

i are defined by

e0P0P1 . . . Pi−1P
(6k)
i Pi+1 . . . Pn+m−1

def
= (γ

(6k)
i 0 . . . 0) (4.202)

THE ONE-WAY ALGORITHM FOR APP DECODING 283

and
e0P0P1 . . . Pi−1P

c(6k)
i Pi+1 . . . Pn+m−1

def
= (γ

c(6k)
i 0 . . . 0) (4.203)

respectively.
The first factor in (4.201) is the ratio of the a priori probabilities of the information

symbol u(k)
i , the second is the intrinsic likelihood ratio, and the third is the extrinsic

likelihood ratio.

4.6 THE ONE-WAY ALGORITHM FOR APP DECODING

The BCJR algorithm is only applicable to terminated convolutional codes. In this
section we consider the one-way algorithm, which is a forward-only algorithm for
a posteriori decoding of convolutional codes. It uses a sliding window and can be
considered as the APP decoding counterpart to the Viterbi algorithm with a finite
back-search limit to be considered in Section 5.5.

The one-way algorithm calculates the a posteriori probability for u(k)
i = 0 given

that the receiver has reached depth i+τ , i.e., based on the received sequence r[0,i+τ).
Hence, analogously to (4.163) we have

P
(
u

(k)
i = 0 | r[0,i+τ)

)
=
P (r[0,i+τ), u

(k)
i = 0)

P (r[0,i+τ))

=

∑
σ[0,i+τ]∈S

(k)

[0,i+τ]i

P
(
r[0,i+τ)

∣∣ σ[0,i+τ]

)
P (σ[0,i+τ])∑

σ[0,i+τ]∈S[0,i+τ]
P
(
r[0,i+τ)

∣∣ σ[0,i+τ]

)
P (σ[0,i+τ])

, 1 ≤ k ≤ b (4.204)

where S[0,i+τ] and S(k)
[0,i+τ]i are given by

S[0,i+τ]
def
=
{
σ[0,i+τ] = σ0σ1 . . . σi+τ

∣∣ σ0 = 0
}

(4.205)

and

S(k)
[0,i+τ]

def
=
{
σ[0,i+τ] = σ0σ1 . . . σi+τ

∣∣∣σ0 = 0 &σi → σi+1 ⇒ u
(k)
i = 0

}
(4.206)

respectively. Let

γi+τ
def
=

2ν−1∑
σ=0

αi+τ (σ) (4.207)

where αi+τ (σ) is given by (4.174). Then it follows that γi+τ equals the denominator
of (4.204).

Let

α
(k)
i+τ =

(
α

(k)
i+τ (0)α

(k)
i+τ (1) . . . α

(k)
i+τ (2ν − 1)

)
def
= e0P0P1 . . . Pi−1P

(k)
i Pi+1 . . . Pi+τ−1 (4.208)

284 DECODING OF CONVOLUTIONAL CODES

where Pi and P (k)
i are given by (4.164) and (4.169), respectively. Then let

γ
(k)
i+τ

def
=

2ν−1∑
σ=0

α
(k)
i+τ (σ) (4.209)

We conclude that the numerator of (4.204) equals γ(k)
i+τ . Hence, we can rewrite

(4.204) as

P
(
u

(k)
i = 0

∣∣∣ r[0,i+τ)

)
= γ

(k)
i+τ/γi+τ (4.210)

Both γ(k)
i+τ and γi+τ can be calculated recursively. First we consider γi+τ . For γi+τ

it follows immediately from (4.174) that

α0 = e0

αi+τ+1 = αi+τPt
(4.211)

which together with (4.207) yields γi+τ+1.
In order to calculate γ(k)

i+τ we introduce

α
(k)
ij =

(
α

(k)
ij (0)α

(k)
ij (1) . . . α

(k)
ij (2ν − 1)

)
def
= e0P0P1 . . . Pi−1P

(k)
i Pi+1 . . . Pj−1, j − τ < i ≤ j − 1, 1 ≤ k ≤ b

Let

Aij =

α

(1)
ij

α
(2)
ij
...

α
(b)
ij

 , j − τ < i ≤ j − 1 (4.212)

be a b× 2ν matrix and let At be a (bτ + 1)× 2ν matrix whose first τ entries are the
matrices Ait, t− τ + 1 ≤ i ≤ t, and the last entry is the vector αt given by (4.174),
that is,

At =

At−τ+1,t

At−τ+2,t

...
At,t
αt

 (4.213)

It is easily shown that

AtPt =

At−τ+1,t+1

At−τ+2,t+1

...
At,t+1

αt+1

 (4.214)

THE ONE-WAY ALGORITHM FOR APP DECODING 285

If we delete the top matrix At−τ+1,t+1 from AtPt, shift all matrices At−i+1,t+1,
1 ≤ i < τ , up one position, and replace the matrix At,t+1 by the matrix

At+1,t+1 =

α

(1)
t+1,t+1

α
(2)
t+1,t+1

...
α

(b)
t+1,t+1

 =

αtP

(1)
t

αtP
(2)
t

...
αtP

(b)
t

 (4.215)

then we obtain

At+1 =

At−τ+2,t+1

At−τ+3,t+1

...
At+1,t+1

αt+1

 (4.216)

The rows of the deleted top matrix At−τ+1,t+1 are the vectors α(k)
t+1, 1 ≤ k ≤ b,

defined by (4.208). They are used to calculate the probabilities P (u
(k)
t−τ+1 = 0,

r[0,t+τ)) according to (4.210).
The sparseness of the matrices Pt and P

(k)
t can be exploited to simplify the

calculation of the elements of the matrix At. Assign to each of 2ν states at depth t of
the trellis a (bτ + 1)-dimensional column vector metric

µt(σ) = (µ
(1)
t−τ+1,t(σ)µ

(2)
t−τ+1,t(σ) . . . µ

(b)
t−τ+1,t(σ)µ

(1)
t−τ+2,t(σ)µ

(2)
t−τ+2,t(σ)

. . . µ
(b)
t−τ+2,t(σ) . . . µ

(1)
t,t (σ)µ

(2)
t,t (σ) . . . µ

(b)
t,t (σ)µt(σ))T, t = 0, 1, . . . , 0 ≤ σ < 2ν

such that

µ0(σ) =

{
(00 . . . 01)T, if σ = 0

(00 . . . 00)T, otherwise
(4.217)

For t = 1, 2, . . . we first calculate

µ̂t(σ
′) =

2ν−1∑
σ=0

µt−1(σ)pt−1(σ, σ′) (4.218)

then we exclude the first b components of (4.218) (for t ≥ τ − 1 they are used
for calculating the a posteriori probabilities P

(
u

(k)
t−τ

∣∣∣ r[0,t)

)
, 1 ≤ k ≤ b), shift

all components except the last one b positions up, and replace the following entries
b(τ − 1) + 1, b(τ − 1) + 2, . . . , and bτ by

µ
(1)
t,t (σ′)

µ
(2)
t,t (σ′)

...
µ

(b)
t,t (σ′)

 def
=

2ν−1∑
σ=0

µt−1(σ)

p

(1)
t−1(σ, σ′)

p
(2)
t−1(σ, σ′)

...
p

(b)
t−1(σ, σ′)

 (4.219)

286 DECODING OF CONVOLUTIONAL CODES

Then we obtain the metric µt+1(σ′).
As mentioned above, the first b entries of the vectors µ̂t(σ

′), 0 ≤ σ′ < 2ν , viz.,

µ̂
(k)
t−τ,t(σ

′) =
2ν−1∑
σ=0

µ
(k)
t−τ,t−1pt−1(σ, σ′), 1 ≤ k ≤ b (4.220)

are used together with µt(σ′), 0 ≤ σ′ < 2ν , to calculate the a posteriori probability

P
(
u

(k)
i−τ = 0 | r[0,t)

)
= γ

(k)
i /γt, 1 ≤ k ≤ b (4.221)

where

γ
(k)
t =

2ν−1∑
σ′=0

µ̂
(k)
t−τ,t(σ

′), 1 ≤ k ≤ b (4.222)

and

γt =
2ν−1∑
σ=0

µt(σ) (4.223)

Finally, we obtain the a posteriori probabilities from (4.210).
The sliding window algorithm requires more memory than the Viterbi algorithm

but less than the BCJR algorithm. The decoding delay is much less than that of the
BCJR algorithm.

EXAMPLE 4.13

Consider the binary-input, 8-ary output DMC used in Example 4.2. Suppose
that the encoding matrix G(D) = (1 + D + D2 1 + D2) is used and assume
that the a priori probabilities for the information symbols are P (ut = 0) =
2/3, t = 0, 1, Let r = 1104 0112 1101 0111 0113 0403 0411 1201 0111

1202 0401 0302 1101 0111 . . . be the received sequence.
For the sliding window algorithm we obtain the following results:
τ = 6

i γ
(1)
i+τ γi+τ P

(
u

(1)
i = 0

∣∣∣ r[0,i+τ)

)
ûi

0 0.5376 · 10−12 0.5458 · 10−12 0.9849 0
1 0.3166 · 10−14 0.9089 · 10−14 0.3483 1
2 0.1342 · 10−16 0.5249 · 10−16 0.2557 1
3 0.2137 · 10−18 0.3780 · 10−18 0.5652 0
4 0.2299 · 10−20 0.2599 · 10−20 0.8844 0
5 0.3132 · 10−22 0.5014 · 10−22 0.6246 0
6 0.3536 · 10−24 0.6478 · 10−24 0.5458 0
7 0.1108 · 10−26 0.4668 · 10−26 0.2374 0
8 0.1841 · 10−28 0.3076 · 10−28 0.5984 1

τ = 12

THE ONE-WAY ALGORITHM FOR APP DECODING 287

0 1 2 3 4 5 6
10−5

10−4

10−3

10−2

10−1

Eb/N0 [dB]

Pb

Figure 4.30 Bit error probabilities for G(D) = (1 + D + D2 1 + D2) for the one-way
algorithm and the AWGN channel. The curves from left to right are for τ = 4, 6, 10, 20.

i γ
(1)
i+τ γi+τ P

(
u

(1)
i = 0

∣∣∣ r[0,i+τ)

)
ûi

0 0.6393 · 10−24 0.6478 · 10−24 0.9868 0
1 0.1944 · 10−26 0.4668 · 10−26 0.4164 1
2 0.6923 · 10−29 0.3076 · 10−28 0.2251 1

In Figs. 4.30 and 4.31 we show the bit error probabilities for the AWGN channel
when the sliding window APP decoding algorithm is used for maximum a posteriori
probability (MAP) decoding for rate R = 1/2 convolutional codes encoded by the
encoding matrices G(D) = (1 +D +D2 1 +D2) and G(D) = (1 +D +D2 +
D3 + D6 1 + D2 + D3 + D5 + D6) (Qualcomm’s memory m = 6 encoder),
respectively.

288 DECODING OF CONVOLUTIONAL CODES

0 1 2 3 4 5 6
10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 [dB]

Pb

Figure 4.31 Bit error probabilities for G(D) = (1 + D + D2 + D3 + D6 1 + D2 +
D3 +D5 +D6) for the one-way algorithm and the AWGN channel. The curves from left to
right are for τ = 12, 18, 30, 60.

4.7 A SIMPLE UPPER BOUND ON THE BIT ERROR PROBABILITY
FOR EXTREMELY NOISY CHANNELS

When concatenated schemes (see Section 1.5) operate near the channel capacity
(cf. Chapter 9) their component encoders may operate above capacity. In this section,
we shall investigate the decoding bit error probability of convolutional codes near
and above the channel capacity.

In particular, we shall show that, at extremely low signal-to-noise ratios, a system-
atic feedback encoder results in a lower bit error probability than does a nonsystematic
feedforward encoder for the same convolutional code. We showed in Section 4.2 that
the free distance is the principal determiner of the burst error probability for large
signal-to-noise ratios when maximum-likelihood decoding is used. Since the burst
error probability, as well as the free distance, is a code property, the burst error
probability is the same whether the convolutional code was encoded by a systematic

A SIMPLE UPPER BOUND ON THE BIT ERROR PROBABILITY FOR EXTREMELY NOISY CHANNELS 289

feedback encoder or by a nonsystematic feedforward encoder. The decoding bit error
probability, however, depends on the encoder (cf. Section 4.4).

Consider a rate R = b/c generator matrix G(D) of a convolutional code with a
right pseudoinverse G̃−1(D). Let the number of taps in a right pseudoinverse be the
total number of nonzero coefficients in the power series that are entries in the c × b
matrix G̃−1(D). Then we have the following:

Definition A tap-minimal right pseudoinverse G̃−1
tm(D) of the generator matrix

G(D) is a right pseudoinverse ofG(D) with the minimum number of taps among all
right pseudoinverses of G(D).

EXAMPLE 4.14

Consider the rate R = 1/2, memory m = 5, convolutional encoding matrix
G(D) = (1 +D2 +D5 1 +D+D2 +D4 +D5). It has the tap-minimal right
pseudoinverse

G̃−1
tm(D) =

(
1 +D
D

)
(4.224)

with three taps. It is easily verified thatG(D)G̃−1
tm(D) = 1. Hence, we conclude

that (4.224) is not only a right pseudoinverse but also a right inverse of G(D).
Moreover, since G(D) is not systematic and since it clearly has no right inverse
with only two taps; we conclude that (4.224) is tap-minimal.

Next we define the pseudoinverse decoder (π-decoder) for convolutional codes.
Assume that we use a convolutional code C encoded by the generator matrixG(D) for
communication over the BSC with crossover probability ε. Our decoding technique
is as simple as it gets: We feed the received sequence r directly to a tap-minimal
right pseudoinverse of G(D) whose output is the decoded information sequence. At
a first glance this sounds too simple to be useful, but let us analyze this decoder.

Assume without loss of generality that we transmit the allzero sequence. Let
r1, r2, . . . , rni be a sequence ofni received statistically independent random variables
for which P (rj = 1) = 1 − P (rj = 0) = ε. Let nodd

i and neven
i denote the largest

odd and even integers, respectively, that are ≤ ni. Then the probability that an odd
number of the random variables rj are 1s is

P odd
i =

(
ni
1

)
ε1(1− ε)ni−1 +

(
ni
3

)
ε3(1− ε)ni−3 + · · ·

+

(
ni
nodd
i

)
εn

odd
i (1− ε)ni−n

odd
i (4.225)

290 DECODING OF CONVOLUTIONAL CODES

and the probability that an even number of the random variables rj are 1s is

P even
i =

(
ni
0

)
ε0(1− ε)ni +

(
ni
2

)
ε2(1− ε)ni−2 + · · ·

+

(
ni
neven
i

)
εn

even
i (1− ε)ni−n

even
i (4.226)

From (4.225) and (4.226) it follows that

P odd
i + P even

i = (ε+ (1− ε))ni = 1 (4.227)
−P odd

i + P even
i = (−ε+ (1− ε))ni = (1− 2ε)

ni (4.228)

Solving for P odd
i yields

P odd
i =

1

2
(1− (1− 2ε)ni) (4.229)

From this result we conclude that the exact bit error probability using the π-decoder
is

Pb =
1

b

b∑
i=1

1

2
(1− (1− 2ε)ni) (4.230)

where ni is the number of taps for the ith output of the right pseudoinverse. Clearly,
the righthand side of (4.230) is an upper bound on the decoding bit error probability
with BCJR decoding. We call it the π-bound. For crossover probabilities ε < 0.5,
the bound given by the right-hand side of (4.230) suggests that systematic encoders,
which have the fewest taps, namely b, in their tap-minimal right pseudoinverse,
give lower decoding bit error probability than nonsystematic ones. In Fig. 4.32 we
compare the π-bound with the simulated bit error probability for the BCJR decoder
for various generator matrices.10 We conclude that for extremely noisy BSCs the
π-bound is very tight and on such channels the superiority of systematic encoding is
confirmed.

Consider the binary erasure channel (BEC), which is shown in Fig. 1.22. When we
transmit over the BEC, the binary input symbol is received correctly with probability
1 − δ and erased, that is, received as the symbol ∆, with probability δ. In order to
use our π-decoder we assume that either a zero or a one are assigned randomly with
equal probability to the erased symbols in the channel output sequence. This binary
sequence, in which 1s occur with probability 1

2δ, is then fed into the π-decoder, which
yields the bit error probability

Pb =
1

b

b∑
i=1

1

2
(1− (1− δ)ni) (4.231)

10To obtain a compact notation for the generator matrices, we use the octal notation illustrated by the
following memory m = 6 polynomial: 1 + D + D4 + D5 + D6 with coefficients (110 011 1) which
are collected in groups of three starting from the left yielding 634. (If 1 + m is not a multiple of three,
padding is used at the right-hand side.)

A SIMPLE UPPER BOUND ON THE BIT ERROR PROBABILITY FOR EXTREMELY NOISY CHANNELS 291

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

π-bound for
systematic n = 1

π-bound for
n = 5

π-bound for
n = 3

π-bound for
n = 2

ε

Pb

n=5, G=(751 557), m=8, dfree =12

n=3, G=(634 564), m=6, dfree =10

n=2, G=(542 742), m=7, dfree =9

n=2, G=(5 7), m=2, dfree =5

n=1, G=(400 557/751), m=8, dfree =12

n=1, G=(4 5/7), m=2, dfree =5

n=1, G=(4 7), m=2, dfree =4

Figure 4.32 π-Bounds and simulated BCJR-decoding bit error probability on a BSC of
various rate R = 1/2 convolutional encoders.

Again this Pb is an upper bound on the minimal bit error probability decoding.
Ancheta’s linear source coding bound for the binary symmetric source (BSS)11

states that the minimum rate required to achieve a bit error probability Pb in the
source reconstruction for linear source coding of a BSS is

RL(Pb) = 1− 2Pb binary digits/source letter (4.232)

Moreover, when used as a linear source encoder with n and r input and output
symbols, respectively, any n × r binary matrix of rank r achieves this bound if and
only if it has n− r allzero rows [Anc77].

Using Ancheta’s bound for linear source coding, we can show (see Problem 4.26)
that the minimum decoding bit error probability that can be achieved with rate R
linear encoding for a BEC is

Pb = (1− C/R)/2 (4.233)

where C = 1− δ is the channel capacity of the BEC.
In Fig. 4.33 we show the π-bounds and simulated decoding bit error probabilities

for BEC for various generator matrices together with the lower bound (4.233). Also

11A BSS is a source that outputs statistically independent equiprobable binary digits.

292 DECODING OF CONVOLUTIONAL CODES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

lower bound (4.233)
for linear coding

lower bound (4.234) for
systematic, nonlinear coding

π-bound for
systematic n = 1

π-bound for
n = 3

π-bound for
n = 2

δ

Pb

n=3, G=(634 564), m=6, dfree =10

n=2, G=(542 742), m=7, dfree =9

n=2, G=(5 7), m=2, dfree =5

n=1, G=(400 557/751), m=8, dfree =12

n=1, G=(4 5/7), m=2, dfree =5

n=1, G=(4 7), m=2, dfree =4

Figure 4.33 π-Bounds and simulated BCJR-decoding bit error probability on a BEC of
various rate R = 1/2 convolutional encoders.

for extremely noisy BECs, the π-bound is very tight and again on such channels the
superiority of systematic encoding is confirmed.

The best decoding bit error probability Pb obtainable with linear coding on a BSC
with crossover probability ε (0 ≤ ε ≤ 1/2) is at least as great as that obtainable with
linear coding on BEC with erasure probability δ = 2ε (see Problem 4.27).

Finally, we remark that Shamai et al. [SVZ98] have given a general formulation
for the minimum code rate required to approach a specified bit error probability,
showing that nonsystematic encoding is inherently superior to systematic encoding.
For systematic encoding on the BEC, their minimum code rate can be explicitly
written as

R =
C

1− (1− C)h(Pb
1−C)

(4.234)

for all bit error probabilities Pb with 0 < Pb ≤ (1− C)/2. This lower bound is also
shown in Fig. 4.32. From the two lower bounds in Fig. 4.32 we conclude that it is
impossible with linear encoding to obtain with systematic encoding the performance
promised by (4.234). The inherent superiority of nonsystematic encoding over sys-
tematic encoding appears to be limited to the case where nonlinear codes are used,
which is the atypical case in practice.

TAILBITING TRELLISES 293

· · ·

G0 G1 Gm

ut

vt

· · ·ut−1 ut−2 ut−m

Figure 4.34 A polynomial generator matrix G(D) realized in controller canonical form.

4.8 TAILBITING TRELLISES

So far we have used the zero-tail (ZT) method to terminate convolutional codes into
block codes. If the trellis is short, the rate loss due to the terminating m dummy
b-tuples (zeros when the generator matrix is polynomial and realized in controller
canonical form) might not be acceptable. In this section, we will briefly describe a
method to terminate convolutional codes into block codes without any rate loss. This
method is called tailbiting and can be used to construct powerful trellis representations
of block codes.

Consider a rateR = b/c convolutional code C encoded by a polynomial generator
matrix

G(D) = G0 +G1D + · · ·+GmD
m (4.235)

of memory m realized in controller canonical form as shown in Fig. 4.34.
Let us truncate the causal codewords after L c-tuples, where L > m. Then,

assuming that the encoder state is allzero at time t = 0, we have

vt = utG0 + ut−1G1 + · · ·+ ut−mGm, 0 ≤ t < L (4.236)

or, equivalently,
v[0,L) = u[0,L)GL (4.237)

where

GL =

G0 G1 . . . Gm
G0 G1 . . . Gm

.
G0 G1 . . . Gm

G0 G1 . . . Gm−1

.
...

. . . G1

G0

(4.238)

is an L× L matrix and Gi, 0 ≤ i ≤ m, are b× c matrices.

294 DECODING OF CONVOLUTIONAL CODES

Let σL = (σL1 σL2 . . .σLm) denote the encoder state at time t = L. Clearly,
we have

σL = (uL−1 uL−2 . . .uL−m) (4.239)

Now we assume that we have the encoder state at time t = 0 equal to the encoder
state at time L, that is, σ0 = σL, and that the input is the allzero sequence. If we
let vzi[0,L) denote the output sequence corresponding to initial encoder state σL and
allzero input sequence, then vzi[0,L) can be expressed as

vzi[0,L) = uzi[0,L)G
zi
L (4.240)

where
uzi[0,L) = (0 0 . . . 0uL−m uL−m+1 . . . uL−1) (4.241)

and

Gzi
L =

Gm

Gm−1 Gm
...

. . .
G1 G2 . . . Gm

(4.242)

is anL×Lmatrix. Hence, we conclude the codewords of the tailbiting representation
of the block code Btb obtained from the convolutional code C encoded by generator
matrixG(D) by using the reciprocal of the lastm input b-tuples as the initial encoder
state can be compactly written as

v[0,L) = u[0,L)G
tb
L (4.243)

where

Gtb
L = GL +Gzi

L

=

G0 G1 . . . Gm
G0 G1 . . . Gm

.
G0 G1 . . . Gm

Gm G0 G1 . . . Gm−1

Gm−1 Gm
.

...
...

. G1

G1 G2 . . . Gm G0

(4.244)

is the L× L generator matrix for the tailbiting representation of the block code Btb.

TAILBITING TRELLISES 295

00

01

10

11

Figure 4.35 Circular trellis of length L = 6 for a 4-state tailbiting representation of a block
code.

Since we require that we have the same state at the beginning as at the end, we
can use a circular trellis for the tailbiting representation of a block code. In Fig. 4.35
we show as an example a circular trellis of length L = 6 for a 4-state tailbiting
representation.

A circular trellis of length L corresponds to a total of K = bL information
symbols, c code symbols per branch, block length N = Lc, 2b branches per trellis
node; the number of codewords is

M = 2K = 2bL (4.245)

and its rate is
R = K/N = b/c (4.246)

The block code is the union of 2bm subsets corresponding to the paths that go through
each of the 2bm states at time 0. These are 2bm cosets of the (N,K − bm) zero-tail
terminated convolutional code corresponding to the paths that go through the allzero
state at time 0.

It remains to find the minimum distance dmin of the block code. Since it is linear,
it is enough to find the minimum weight of the nonzero codewords. The nonzero (?)
block code trellis paths fall into two cases, which are illustrated in Fig. 4.36.

Case (i): The neighbor path touches the allzero path at least once; all paths considered are
within the subset of paths leaving the allzero state. By the tailbiting condition
they will sooner or later remerge with the allzero path. Finding the minimum
weight among such paths is the same as finding the minimum weight path for
a convolutional code. By the symmetry of the circular trellis, the behavior of
paths out of one allzero node is the same as for all the other allzero nodes. The

296 DECODING OF CONVOLUTIONAL CODES

case (i)

case (ii)

Figure 4.36 Two different types of paths.

minimum weight of the paths within this subset is the (L − m − 1)th order
row distance, but we call it the intra minimum distance of the tailbiting trellis
representation of the block code and denote it dintra. If L is long enough, dintra
is equal to the free distance of the corresponding convolutional code, but in
general we have dintra ≥ dfree.

Case (ii): The neighbor path never touches the allzero path. This case is unique to block
codes. For each nonzero starting state, we have to find the minimum weight
path and then take the minimum over all outcomes. We call the minimum
distance between the code subsets, that is, between the subset considered in
case (i) and its cosets, the inter minimum distance of the tailbiting trellis
representation of the block code and denote it dinter.

The minimum distance of the block code is

dmin = min {dintra, dinter} (4.247)

If the tailbiting circle is long enough, case (i) paths lead to the minimum distance, but
for short circles case (ii) codewords may lead to the minimum weight path, that is,
dinter might be less than dintra. Hence, short tailbiting representations of block codes
have quite different optimal (largest distance) generators than do zero-tail terminated
convolutional codes.

So far, we have constructed tailbiting representations of block codes from con-
volutional codes by first truncating the semi-infinite generator matrix G for the
convolutional code,

G =

 G0 G1 . . . Gm
G0 G1 . . . Gm

.

 (4.248)

TAILBITING TRELLISES 297

after L rows,

G0 G1 . . . Gm
G0 G1 . . . Gm

.
G0 G1 . . . Gm

G0 Gm−1 Gm
. . .

...
. . .

G0 G1 . . . Gm

(4.249)

which is an L × (L + m) matrix. Then we “wraparound” the part consisting of the
last m columns and obtainGtb

L as given in (4.244).
We can also construct convolutional codes by “unwrapping” a tailbiting generator

matrix of the typeGtb
L and then extending the “unwrapped” matrix to a semi-infinite

generator matrix for the corresponding convolutional code.

EXAMPLE 4.15

Consider the rate R = 1/2 convolutional code with encoding matrix G(D) =
(1+D2+D3 1+D) of memorym = 3 and with dfree = 5. By the “wraparound”
technique, we obtain the following generator matrix for a tailbiting representation
of the corresponding (12, 6) block code:

Gtb
6 =

11 01 10 10 00 00
00 11 01 10 10 00
00 00 11 01 10 10
10 00 00 11 01 10
10 10 00 00 11 01
01 10 10 00 00 11

 (4.250)

It can be verified that dintra = dfree = 5, dinter = 4, and dmin = 4. (Adding rows
3, 4, 5, and 6 gives the codeword 01 00 01 10 00 10 of Hamming weight 4 which
upper-bounds dmin.) By increasing the number of information symbols by two to
K = 8, we obtain a (16, 8) block code with dmin = dfree = 5.

The (24, 12) extended Golay code B24 with dmin = 8 is a quite remarkable block
code that has often been used as a benchmark in the studies of code structure and
decoding algorithms. Surprisingly enough, there exists a rate R = 1/2 tailbiting
representation of B24 that requires only 16 states [CFV99]. It has the following

298 DECODING OF CONVOLUTIONAL CODES

generator matrix:

Gtb
12 =

11 01 11 01 11 00 00 00 00 00 00 00
00 11 11 10 01 11 00 00 00 00 00 00
00 00 11 01 10 11 11 00 00 00 00 00
00 00 00 11 01 11 01 11 00 00 00 00
00 00 00 00 11 01 11 01 11 00 00 00
00 00 00 00 00 11 11 10 01 11 00 00
00 00 00 00 00 00 11 01 10 11 11 00
00 00 00 00 00 00 00 11 01 11 01 11
11 00 00 00 00 00 00 00 11 01 11 01
01 11 00 00 00 00 00 00 00 11 11 10
10 11 11 00 00 00 00 00 00 00 11 01
01 11 01 11 00 00 00 00 00 00 00 11

(4.251)

We notice that if we regardGtb
12 as a rateR = 1/2 generator matrix, the corresponding

generator matrix for the convolutional code is time varying with period T = 4 and of
memorym = 4. That is, we need a 2bm = 21·4 = 16-state trellis. However,Gtb

12 can,
for example, also be regarded as a rateR = 4/8 generator matrix with a corresponding
time-invariant generator matrix of memory m = 1, that is, 2bm = 24·1 = 16 states.

EXAMPLE 4.16

By “unwrapping” Gtb
12 we obtain, for example, the rate R = 1/2 Golay convolu-

tional code (GCC) with the time varying with period T = 4 encoding matrix of
memory m = 4,

GGCC
t (D) =

(
1 +D2 +D4 1 +D +D2 +D3 +D4

)
, t = 0, 4, . . .(

1 +D +D2 +D4 1 +D +D3 +D4
)
, t = 1, 5, . . .(

1 +D2 +D3 +D4 1 +D +D3 +D4
)
, t = 2, 6, . . .(

1 +D2 +D4 1 +D +D2 +D3 +D4
)
, t = 3, 7, . . .

(Notice that Gt(D) = Gt+3(D).) Alternatively, we can obtain the R = 4/8
Golay convolutional code with the time-invariant encoding matrix of memory
m = 1,

GGCC(D) =

1 +D 0 1 0 1 +D 1 1 1

0 1 +D 1 1 D 1 +D 1 0
D D 1 +D 0 0 D 1 +D 1
0 D 0 1 +D D D D 1 +D

The rate R = 4/8 Golay convolutional code has dfree = 8 and the following path
weight enumerator:

T (W) =
W 8(49−20W 4−168W 8+434W 12−560W 16+448W 20−224W 24+64W 28−8W 32)

1−28W 4−17W 8+118W 12−204W 16+204W 20−128W 24+48W 28−8W 32

= 49W 8 + 1352W 12 + 38521W 16 + 1096224W 20 + · · · (4.252)

TAILBITING TRELLISES 299

When we consider the GCC as a time varying rate R = 1/2 convolutional code it
is reasonable to average the spectra for the four different phases. With this convention
we have

T (W) = 12.25W 8 + 338W 12 + 9455.25W 16 + 264376W 20 + · · · (4.253)

If we multiply the values n8 and n12 in (4.253) by 4, then we obtain the numbers
given by (4.252) but

4n16 = 4 · 9455.25 = 37821 (4.254)

which is 700 less than the corresponding number for the rate R = 4/8 GCC. The
time varying rate R = 1/2 GCC has memory m = 4. Hence, its shortest detour
from the allzero sequence is of length (1 + m)c = (1 + 4)2 = 10 code sym-
bols. The rate R = 4/8 GCC has memory m = 1 and, then, a shortest detour of
(1 +m)c = (1 + 1)8 = 16. The information sequence 100001000000 . . . is encoded
as 11 01 11 01 11 11 11 10 01 11 00 00 . . . and 11011101 11111110 01110000 . . ., re-
spectively. The first code sequence corresponds to two consecutive detours, each of
length 10 code symbols and of weight 8. The second code sequence corresponds to
a single detour of length (2 + 1)8 = 24 code symbols and of weight 16. The path
weight enumerator counts only single detours. Hence, this code sequence is counted
when we consider the GCC as a rate R = 4/8 convolutional code but not when we
consider it as a rate R = 1/2 convolutional code. This phenomenon explains the
discrepancy in the numbers of weight 16 code sequences.

The GCC is doubly-even, that is, the weights of the codewords grow in steps of
4, and it can easily be verified that its codewords are self-orthogonal, that is, the
Golay convolutional code is self-dual. A code that is both doubly-even and self-dual
is called Type II.

EXAMPLE 4.17

The rate R = 4/8, time-invariant, memory m = 1 (16-state), convolutional code
encoded by encoding matrix [JSW00]

G(D) =

0 0 1 D 1 +D 1 +D 1 D
D 0 0 1 1 1 +D 1 +D 1

1 +D D 1 +D D D 0 1 0
1 +D 1 +D 0 0 D 1 D 1

 (4.255)

is also Type II and has free distance dfree = 8, but its path weight enumerator

T (W) =
W 8(33−6W 4+8W 8−138W 12+260W 16−226W 20+112W 24−32W 28+4W 32)

1−30W 4−W 8+20W 12+32W 16−74W 20+56W 24−22W 28+4W 32

= 33W 8 + 984W 12 + 29561W 16 + 886644W 20 + · · · (4.256)

is better than that of the GCC (4.252).

300 DECODING OF CONVOLUTIONAL CODES

EXAMPLE 4.18

Through the “wraparound” technique, we can from the rate R = 4/8 encoding
matrix in Example 4.12 obtain a tailbiting representation of a rate R = 16/32
block code with dmin = 8:

G =

00101110 00011101 00000000 00000000
00011111 10000110 00000000 00000000
10100010 11111000 00000000 00000000
11000101 11001010 00000000 00000000
00000000 00101110 00011101 00000000
00000000 00011111 10000110 00000000
00000000 10100010 11111000 00000000
00000000 11000101 11001010 00000000
00000000 00000000 00101110 00011101
00000000 00000000 00011111 10000110
00000000 00000000 10100010 11111000
00000000 00000000 11000101 11001010
00011101 00000000 00000000 00101110
10000110 00000000 00000000 00011111
11111000 00000000 00000000 10100010
11001010 00000000 00000000 11000101

(4.257)

The tailbiting termination does not work for certain encoders at certain tailbiting
lengths. For encoders with feedback and for catastrophic encoders it can happen that
we do not have a one-to-one mapping between the information sequences and the
codewords.

Consider the systematic rate R = 1/2 encoding matrix

G(D) =

(
1

1 +D2

1 +D +D2

)
(4.258)

whose minimal realization is shown in Fig. 2.4. Assume that we start the encoder in
the state σ0 = (01) and feed it with zeros. Then we have the following sequence of
encoder states: (01) (10) (11) (01) . . ., that is, we return to the state (01) at every
third time instant. The corresponding code sequence is 00 01 01 00 Clearly, when
the tailbiting length L is a multiple of three, we have two codewords, one of them is
a multiple of 00 01 01 and the other is the allzero codeword, that both correspond to
the allzero information sequence. Hence, tailbiting fails for the encoding matrix if
the tailbiting length is a multiple of three.

Tailbiting will also fail if we have two information sequences corresponding to
the same codeword. As an example of this situation we consider the catastrophic
encoding matrix

G(D) =
(

1 +D2 1 +D +D2 +D3
)

(4.259)

If we start in state σ0 = (111), then the codeword corresponding to the information
sequence u = (1 1 . . . 1) is the allzero codeword. For a linear encoder the allzero

TAILBITING TRELLISES 301

information sequence always corresponds to the allzero codeword; thus, we have two
information sequences that correspond to the allzero codeword and we conclude that
for the catastrophic encoder matrix (4.259) tailbiting fails for all tailbiting lengths.

The following theorem states when the tailbiting technique works.

Theorem 4.14 Consider a rate R = b/c convolutional generator matrix G(D). Let
γb(D)/q(D) denote the bth invariant factor ofG(D), where q(D) is the least common
multiple (lcm) of all denominators of G(D). Tailbiting works for tailbiting length L
if and only if both γb(D) and q(D) are relatively prime to the polynomial 1 +DL.

Proof : Tailbiting works if and only if there exists a one-to-one mapping between
u(D) and v(D). Write G(D) as its invariant factor decomposition

G(D) = A(D)Γ(D)B(D) (4.260)

and let

v′(D) = (v′1(D) v′2(D) . . . v′c(D))

= v(D)B−1(D) (mod (1 +DL)) (4.261)

and

u′(D) = (u′1(D)u′2(D) . . . u′b(D))

= u(D)A−1(D) (mod (1 +DL)) (4.262)

Since A(D) and B(D) have unit determinants they are invertible modulo 1 + DL

and it follows that v′(D) and u′(D) are in one-to-one correspondence with v(D)
and u(D), respectively. We have

v′(D) = u(D)G(D)B−1(D) = u(D)A(D)Γ(D)

= u′(D)Γ(D) (mod (1 +DL)) (4.263)

We exploit (2.60) and rewrite (4.263) as

v′i(D) =

γi(D)

q(D)
u′i(D) (mod (1 +DL)), 1 ≤ i ≤ b

0, b < i ≤ c
(4.264)

Hence, tailbiting works if and only if there exists a one-to-one mapping between
v′i(D) and u′i(D) modulo 1 + DL for all i, that is, if and only if γi(D), i ≤ i ≤ b,
and q(D) are all invertible modulo 1 + DL. It is well known that γi(D) and q(D)
are invertible if and only if gcd(γi(D), 1 +DL) = 1 and gcd(q(D), 1 +DL) = 1. If
gcd(γb(D), 1+DL) = 1, it follows, since γi(D) | γb(D), that gcd(γi(D), 1+DL) =
1, 1 ≤ i ≤ b, and we conclude that tailbiting works if and only if both q(D) and
γb(D) are relatively prime to 1 +DL.

The following example shows that tailbiting can also work with catastrophic
encoders.

302 DECODING OF CONVOLUTIONAL CODES

EXAMPLE 4.19

Consider the rate R = 2/3 polynomial, catastrophic generator matrix G(D)
(q(D) = 1) and its Smith form decomposition

G(D) =

(
1 1 +D D
D2 D 1 +D +D2 +D3

)

=

(
1 0
D2 1

)(
1 0 0
0 1 +D +D2 0

) 1 1 +D D
0 D 1
0 1 0

 (4.265)

If we consider tailbiting length L = 5, then, since γ2(D) = 1 + D + D2 and
gcd(1 +D +D2, 1 +D5) = 1, it follows from Theorem 4.14 that tailbiting will
work althoughG(D) is catastrophic. However, if we have tailbiting lengthL = 6,
then, since gcd(1 +D +D2, 1 +D6) = 1 +D +D2, tailbiting fails.

Corollary 4.15 For noncatastrophic feedforward convolutional encoders tailbiting
works for all tailbiting lengths L.

Proof : For a feedforward encoder we have q(D) = 1 and, hence, gcd(q(D), 1 +
DL) = 1 for all L. From Corollary 2.11 we know that a polynomial generator
matrix is noncatastrophic if and only if γb(D) = Ds for some integer s ≥ 0. Since
gcd(Ds, 1 +DL) = 1 for all L ≥ 0 and all s ≥ 0 it follows from Theorem 4.14 that
tailbiting works for all lengths L.

4.9 DECODING OF TAILBITING CODES

An obvious decoding method for tailbiting trellises is to use the Viterbi algorithm
for each of the 2ν subcodes where ν is the overall constraint length and a subcode
consists of the codewords going through a given state. This procedure leads to 2ν

candidate codewords, and the best one is chosen as the decoder output.
A simpler but suboptimal decoding method is to initialize the metrics for all states

at t = 0 to zero and then decode with the Viterbi algorithm going around the cyclic
trellis a few times. Stop the Viterbi algorithm after a preset number of cycles n.
Trace the winning path backward to determine whether it contains a cycle of length
L that starts and ends in the same state. If such a cycle exists, it is chosen as the
decoder’s decision; otherwise the result is an erasure. Experiments have shown that
a few decoding cycles often suffice [ZiC89]. However, the decoding performance
may be significantly affected by “pseudo-codewords” corresponding to trellis paths
of more than one cycle that do not pass through the same state at any integer multiple
of the cycle length other than the pseudo-codeword length.

In Fig. 4.37 we compare the bit error probabilities when these two algorithms are
used to decode the 16-state tailbiting representation of the extended Golay code when
it is used to communicate over the BSC.

DECODING OF TAILBITING CODES 303

−2 2 6 10
10−6

10−4

10−2

100

Eb/N0 [dB]

Pb

Figure 4.37 Comparison of the bit error probabilities for the 16-state extended Golay code.
The bundles of curves correspond to soft decisions (left) and hard decisions (right). In each
bundle the curves correspond to (from left to right) ML-decoding and suboptimal decoding
with 10, 5, and 3 cycles, respectively.

Next we consider a posteriori probability (APP) decoding of rateR = b/c tailbit-
ing block codes of block length N = Lc code symbols, where L is the block length
in branches. We assume that the underlying rate R = b/c convolutional code has
memory m and overall constraint length ν. Let σt denote the encoder state at depth
t where σt ∈ {0, 1, . . . , 2ν − 1}.

We impose the tailbiting condition that only those paths that start and end at the
same state are valid. Then as a counterpart to S[0,n+m] in (4.161) we let S[0,L](σ)
denote the set of all state sequences σ[0,L] such that σ0 = σL = σ, that is,

S[0,L](σ)
def
=
{
σ[0,L] = σ0 σ1 . . . σL

∣∣ σ0 = σL = σ
}
,

σ ∈ {0, 1, . . . , 2ν − 1} (4.266)

As a counterpart to S(k)
[0,n+m]i in (4.162) we let S(k)

[0,L]i(σ) denote the set of state
sequences σ[0,L] such that σ0 = σL = σ and the transition from state σi at depth i

304 DECODING OF CONVOLUTIONAL CODES

to state σi+1 at depth i+ 1 implies that u(k)
i = 0, that is,

S(k)
[0,L]i(σ)

def
=
{
σ[0,L] = σ0 σ1 . . . σL

∣∣∣ σ0 = σL = σ & σi → σi+1 ⇒ u
(k)
i = 0

}
,

σ ∈ {0, 1, . . . , 2ν − 1} (4.267)

To obtain the a posteriori probability that u(k)
i = 0 given the received sequence r[0,L],

we have to sum both the numerator and denominator of (4.163) over all starting and
ending states such that σ0 = σL = σ. Then we obtain the following expression:

P
(
u

(k)
i = 0

∣∣∣ r[0,L)

)
=
P (r[0,L), u

(k)
i = 0)

P (r[0,L))

=

∑2ν−1
σ=0

∑
σ[0,L]∈S

(k)

[0,L]i
(σ)

P
(
r[0,L)

∣∣ σ[0,L]

)
P (σ[0,L])∑2ν−1

σ=0

∑
σ[0,L]∈S[0,L](σ) P

(
r[0,L)

∣∣ σ[0,L]

)
P (σ[0,L])

,

0 ≤ i < L, 1 ≤ k ≤ b (4.268)

The tailbiting counterparts to the vectors αi and βi defined in (4.174) and (4.175),
respectively, are 2ν × 2ν dimensional matrices, viz.,

Ai = P0P1 . . . Pi−1, 1 ≤ i ≤ L (4.269)

and

B
(k)
i = P T

L−1P
T
L−2 . . . P

T
i+1

(
P

(k)
i

)T
, 0 ≤ i < L, 1 ≤ k ≤ b (4.270)

where Pi and P (k)
i are given by (4.164) and (4.169), respectively. By convention

A0 = I2ν (4.271)

where I2ν is the 2ν × 2ν identity matrix.
As a tailbiting counterpart to γ(k)

i (cf. (4.172)), we have the 2ν × 2ν dimensional
matrix

C
(k)
i = Ai

(
B

(k)
i

)T

= P0P1 . . . Pi−1

(
P

(k)
i

)
Pi+1 . . . PL−1, 0 ≤ i < L, 1 ≤ k ≤ b (4.272)

Because of the tailbiting condition, we are interested in the sum of the diagonal
elements of the matrices AL and C(k)

i . Along the diagonals of AL and C(k)
i we have∑

σ[0,L]∈S[0,L](σ)

P
(
r[0,L)

∣∣ σ[0,L]

)
P (σ[0,L]), 0 ≤ σ < 2ν

and ∑
σ[0,L]∈S

(k)

[0,L]i
(σ)

P
(
r[0,L)

∣∣ σ[0,L]

)
P (σ[0,L]), 0 ≤ σ < 2ν

DECODING OF TAILBITING CODES 305

respectively. Hence, we can rewrite (4.268) as

P
(
u

(k)
i = 0

∣∣∣ r[0,L)

)
=

TrC
(k)
i

TrAL
, 0 ≤ i < L, 1 ≤ k ≤ b (4.273)

where TrM =
∑
imii is called the trace of the matrix M = (mij)ij .

Also in the tailbiting version of the BCJR algorithm we exploit the sparseness of
the matrix Pt and compute the a posteriori probabilities P

(
u

(k)
i = 0

∣∣∣ r[0,L)

)
by

trellis searches.
Let us introduce the forward (vector) metric

µt(σ
′) =

(
µt0(σ′)µt1(σ′) . . . µt(2ν−1)(σ

′)
)

(4.274)

In the forward direction, we start at depth t = 0 with the (vector) metric

µ0(σ) = eσ, 0 ≤ σ < 2ν (4.275)

Then for t = 1, 2, . . . , L we calculate the forward (vector) metric

µt(σ
′) =

2ν−1∑
σ=0

µt−1(σ)pt−1(σ, σ′), 0 ≤ σ′ < 2ν (4.276)

where pt−1(σ, σ′) is given by (4.165). The vectors µt(σ
′), 0 ≤ σ′ < 2ν , are stored

at the corresponding states.
Analogously to the forward (vector) metric µt(σ

′), we introduce the backward
(vector) metrics

µ̃t(σ) =
(
µ̃t0(σ) µ̃t1(σ) . . . µ̃t(2ν−1)(σ)

)
(4.277)

and
µ̃

(k)
t (σ) =

(
µ̃

(k)
t0 (σ) µ̃

(k)
t1 (σ) . . . µ̃

(k)
t(2ν−1)(σ)

)
(4.278)

In the backward direction we start at depth L with the (vector) metric

µ̃L(σ) = eσ, 0 ≤ σ < 2ν (4.279)

Then for t = L− 1, L− 2, . . . , 0 we calculate the backward metrics

µ̃t(σ) =
2ν−1∑
σ′=0

µ̃t+1(σ′)pt(σ, σ
′), 0 ≤ σ < 2ν (4.280)

and

µ̃
(k)
t (σ) =

2ν−1∑
σ′=0

µ̃t+1(σ′)p
(k)
t (σ, σ′), 0 ≤ σ < 2ν , 1 ≤ k ≤ b (4.281)

where pt(σ, σ′) and p(k)
t (σ, σ′) are given by (4.165) and (4.170), respectively.

306 DECODING OF CONVOLUTIONAL CODES

Finally, we have the (scalar) metrics

µ
(k)
iσ

def
=

2ν−1∑
σ′=0

µiσ(σ′)µ̃
(k)
iσ (σ′), 0 ≤ i < L, 0 ≤ σ < 2ν , 1 ≤ k ≤ b

(4.282)
Since

2ν−1∑
σ=0

µLσ(σ) = TrAL (4.283)

and
2ν−1∑
σ=0

µ
(k)
iσ = TrC

(k)
i , 0 ≤ i < L, 1 ≤ k ≤ b (4.284)

we have the following BCJR algorithm for a posteriori probability decoding of
tailbiting trellises.

Algorithm BCJRTB (BCJR algorithm for APP decoding of tailbiting trellises)
BCJRTB1. Initialize µ0(σ) = µ̃L(σ) = eσ, 0 ≤ σ < 2ν .

BCJRTB2. For t = 1, 2, . . . , L calculate

µt(σ
′) =

2ν−1∑
σ=0

µt−1(σ)pt−1(σ, σ′), 0 ≤ σ′ < 2ν

BCJRTB3. For t = L− 1, L− 2, . . . , 0 calculate

µ̃t(σ) =
2ν−1∑
σ′=0

µ̃t+1(σ′)pt(σ, σ
′), 0 ≤ σ < 2ν

and

µ̃
(k)
t (σ) =

2ν−1∑
σ′=0

µ̃t+1(σ′)p
(k)
t (σ, σ′), 0 ≤ σ < 2ν , 1 ≤ k ≤ b

BCJRTB4. For i = 0, 1, . . . , L− 1 and k = 1, . . . , b calculate

µ
(k)
iσ =

2ν−1∑
σ′=0

µiσ(σ′)µ̃
(k)
iσ (σ′), 0 ≤ i < L, 0 ≤ σ < 2ν , 1 ≤ k ≤ b

and output

P
(
u

(k)
i = 0

∣∣∣ r[0,L)

)
=

∑2ν−1
σ=0 µ

(k)
iσ∑2ν−1

σ=0 µLσ(σ)

DECODING OF TAILBITING CODES 307

1 1 1 1

0 0 0 0
11 11 11

01 01 01

10

00

10

00

10

00

r = 1104 0102 1102

Figure 4.38 The tailbiting trellis used in Example 4.7.

1 1 1 1

0 0 0 0

(1.0000 0.0000) (1.6781 0.0077)·10−2 (2.0750 0.2828)·10−4 (1.3467 0.2287)·10−6

(0.0000 1.0000) (0.0074 1.6058)·10−2 (0.0770 0.5189)·10−4 (0.2242 0.3447)·10−6

Figure 4.39 The forward (vector) metrics µt(σ
′) are written next to the corresponding

states.

EXAMPLE 4.20

Consider the same channel as in Example 4.2 and suppose that the encoding matrix
G(D) = (1 1 +D) is used to encode a tailbiting representation of a block code
of block length N = 6 code symbols. Assume that the a priori probabilities for
the K = 3 information symbols and P (ut = 0) = 2/3, t = 0, 1, 2. The trellis
together with the received sequence is shown in Fig. 4.38.

We will use the BCJR tailbiting algorithm to obtain the a posteriori probabilities
P
(
ut = 0

∣∣ r[0,3)

)
, t = 0, 1, 2.

First we calculate the probabilities pt(σ, σ′) and p(1)
t (σ, σ′). Then we calculate

the forward (vector) metricsµt(σ
′) according to (4.275) and (4.276) and write the

values next to the corresponding states in Fig. 4.39 (BCJRTB2).
The backward (vector) metrics µ̃t(σ) and µ̃(k)

t (σ) are calculated according to
(4.280) and (4.281), and their values are written next to the corresponding states
in Figs. 4.40 and 4.41, respectively (BCJRTB3).

We have now reached step BCJRTB4 and calculate µ(1)
iσ according to (4.282).

Then we obtain

µ
(1)
00 + µ

(1)
01 = 1.3467 · 10−6

µ
(1)
10 + µ

(1)
11 = 1.3640 · 10−6

µ
(1)
20 + µ

(1)
21 = 1.3467 · 10−6

corresponding to the three information symbols. Since

µL0(0) + µL1(1) = 1.6914 · 10−6

308 DECODING OF CONVOLUTIONAL CODES

1 1 1 1

0 0 0 0

(1.3467 0.2242)·10−6 (0.8019 0.1327)·10−4 (0.6457 0.0851)·10−2 (1.0000 0.0000)

(0.2287 0.3447)·10−6 (0.1386 0.2140)·10−4 (0.0889 0.6179)·10−2 (0.0000 1.0000)

Figure 4.40 The backward (vector) metrics µ̃t(σ) are written next to the corresponding
states.

1 1 1 1

0 0 0 0

(1.3457 0.2227)·10−6 (0.7980 0.1052)·10−4 (0.6457 0.0000)·10−2

(0.0062 0.0010)·10−6 (0.1099 0.0145)·10−4 (0.0889 0.0000)·10−2

Figure 4.41 The backward (vector) metrics µ̃(1)
t (σ) are written next to the corresponding

states.

we have the a posteriori probabilities

P
(
u

(1)
0 = 0

∣∣∣ r[0,3)

)
= 0.7962

P
(
u

(1)
1 = 0

∣∣∣ r[0,3)

)
= 0.8065

P
(
u

(1)
2 = 0

∣∣∣ r[0,3)

)
= 0.7962

Hence, the maximum a posteriori decision for the information symbols is
û = 000.

In Fig. 4.42 we compare the bit error probabilities when the BCJR tailbiting
algorithm is used to decode the 16-state and 64-state tailbiting representations of
the extended Golay code when they are used to communicate over the BSC. The
discrepancy between the two curves is due to the different mappings between the
information symbols and the codewords for the two representations.

4.10 BEAST DECODING OF TAILBITING CODES

In this section, we will describe a Bidirectional Efficient Algorithm for Searching
Trees (BEAST) [BHJ04, BJK04a]. It was developed for determining distance spectra
of convolutional encoders (see Chapter 10) but turned out to be very powerful for
maximum-likelihood decoding of block codes in general and tailbiting block codes
in particular.

BEAST DECODING OF TAILBITING CODES 309

−1 1 3 5 7 9
10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 [dB]

Pb

Figure 4.42 Bit error probabilities for the 16-state (left curve) and 64-state (right curve)
tailbiting representations of the extended Golay code B24.

Consider as a simple example the rate R = 1/2, memory m = 2 convolutional
encoding matrix with free distance dfree = 4,

G(D) =
(

1 1 +D +D2
)

(4.285)

Its semi-infinite generator matrix G is

G =

 11 01 01
11 01 01

.

 (4.286)

By choosing tailbiting length L = 4 we obtain

GeH =

11 01 01 00
00 11 01 01
01 00 11 01
01 01 00 11

 (4.287)

310 DECODING OF CONVOLUTIONAL CODES

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

00 00 00 00

11 11 11 11

11 11 11 11

00 00 00 00

10 10 10 10

01 01 01 01

01 01 01 01
10 10 10 10

Figure 4.43 A sectionalized (c = 2) tailbiting trellis for the (8, 4, 4) extended Hamming
code.

which is a generator matrix for an (8, 4, 4) extended Hamming code (cf. Prob-
lem 1.22). In Fig. 4.43 we show its sectionalized (tailbiting) trellis; we have c = 2
code symbols per branch, or, equivalently, per trellis section.

Next we shall aim at unsectionalized (tailbiting) trellises, that is, we shall consider
trellises with only one code symbol per branch. Then we start by rewriting the
generator matrix (4.287) as

GeH =

1 1 0 1 0 1 0 0
0 0 1 1 0 1 0 1
0 1 0 0 1 1 0 1
0 1 0 1 0 0 1 1

 (4.288)

In Section 2.6 we defined the span of a Laurent series. Similarly, when we consider
unsectionalized trellises and the row vectors of the corresponding generator matrices,
we define the span of a vector x of finite length to be the interval [start(x), end(x)]
from the index of the first nonzero component of x, that is, start(x), to the index of
the last nonzero component, that is, end(x), where 1 ≤ start(x) ≤ end(x) ≤ N .

For tailbiting trellises the definition of the span is slightly more subtle since the
time axis is circular. Thus, it is possible to have start(x) > end(x). The first
nonzero component of x may be chosen as any nonzero component of x. The
index of the “last nonzero component” of x is the least integer end(x) such that
[start(x), end(x) +N](moduloN) covers all nonzero components of x.

We say that a vector x is active during the interval [start(x), end(x) − 1] =
[start(x), end(x)), which we call the active interval of x.

The circular active interval is

[start(x), end(x)]
def
= [start(x), end(x) +N)(modulo N) (4.289)

and its length is {
end(x)− start(x) if end(x) ≥ start(x)

N − start(x) + end(x) otherwise
(4.290)

BEAST DECODING OF TAILBITING CODES 311

Let µn be the state complexity of the (tailbiting) trellis for the (tailbiting) block
code B at position n, that is,

µn = logn |Sn|, 0 ≤ n ≤ L (4.291)

where |Sn| denotes the cardinality of the state set Sn at position n. The (N+1)-tuple

µ = (µ0 µ1 . . . µN) (4.292)

is called the state complexity profile of the trellis. The maximal state complexity or
µ-state complexity of the trellis is defined as [CFV99]

µmax = max
n=0,1,...,L

{µn} (4.293)

The maximal state complexity of a minimal trellis of any (N,K) linear block
code is upper-bounded by the Wolf bound [Wol78]

µmax ≤ min{K,N −K} (4.294)

If we sum the µ-state complexities over all positions we obtain the π-state (product)
complexity [CFV99]

π =
L−1∑
n=0

µn (4.295)

Definition Let gj , j = 0, 1, . . . ,K − 1, be the jth row of the generator matrix G of
an (N,K, dmin) block code. Then the matrix G is said to be in minimal-span form
if, for every j 6= k,

start(gj) 6= start(gk)

end(gj) 6= end(gk)
(4.296)

that is, there are not two rows in G that start or end in the same position.

The importance of the minimal-span form follows from the following theorem
[For88, KsS95, McE96], which we give without a proof:

Theorem 4.16 Let the generator matrix G be in minimal-span form. Then the
corresponding trellis has both minimal maximal state complexity and minimal product
complexity over all conventional trellises for the given code.

A given generator matrix can be transformed into its minimal-span form by using
Gaussian elimination in a two-step procedure. First, the matrix is reduced to row
echelon form, which determines unique starting positions for every row. Then unique
ending positions of the rows are obtained by the “cancellation above” procedure,
starting from the last row.

Consider row gj . When it starts, its information bit uj enters the encoder and
influences the output code symbols during the active interval of the row gj . Thus,

312 DECODING OF CONVOLUTIONAL CODES

the number of active rows at a certain position n determines the corresponding state
complexity of the minimal trellis.

We summarize the most important properties of the minimal trellises:

• There are at most two branches arriving at or leaving each state; they carry the
opposite code symbols.

• If a row starts (becomes active) at position n, n = 0, 1, . . . , N − 1, then all
nodes at position n branch into two children nodes at position n+ 1.

• If a row ends at position n, n = 0, 1, . . . , N −1, then pairs of nodes at position
n merge into one child at position n+ 1.

• If no row starts or ends at position n, then every node at position n is connected
to exactly one child (the same state) at position n+ 1.

• If a row starts and ends at the same position n (that is, its active interval is
empty), then each state at position n is connected to its child (the same state)
at position n+ 1 by two parallel branches, carrying code symbols 0 and 1.

The state complexity of a tailbiting trellis for a linear code C with generator matrix
G at each position n is equal to the number of rows an in G that are active, that is,
µn = an [CFV99, KoV98]. We have the following theorem [BJK02], which we give
without a proof:

Theorem 4.17 For any linear code C defined by the generator matrix G correspond-
ing to a linear unsectionalized tailbiting trellis with maximal state complexity µmax

and product state complexity π, there exists an equivalent generator matrix Gtsf in
tailbiting span form corresponding to a linear unsectionalized tailbiting trellis with
maximal state complexity µtsf ≤ µmax and product state complexity πtsf ≤ π.

The minimal trellis yields the smallest state complexity when we assume a fixed
ordering of the code symbols. By permuting the columns of the generator matrix
we obtain an equivalent code which might have a reduced trellis state complexity. A
minimal trellis with the smallest maximal state complexityµmax among all equivalent
codes is called the absolute minimal trellis. Finding a permutation that yields the
absolute minimal trellis is in general NP-hard.

Now we return to the generator matrix GeH given in (4.288). By elementary row
operations we can obtain (left as an exercise!) the equivalent minimal-span form

GeH
MS =

1 1 0 1 0 1 0 0
0 1 1 1 1 0 0 0
0 0 1 1 0 1 0 1
0 0 0 1 1 1 1 0

 (4.297)

The complexity profile of its trellis is µ = (012343210) with maximal state com-
plexity µmax = 4, or equivalently 16 states in the middle of the trellis.

BEAST DECODING OF TAILBITING CODES 313

0

1

0

1

1

0

0

1

1

0

1

0

0

1

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

0

1

0

1

1

0

0

1

Figure 4.44 An absolute minimal trellis for the (8, 4, 4) extended Hamming code.

By permuting the columns and perfoming elementary row operations of GeH
MS we

can obtain (left as an exercise!) the absolute minimal-span form (for an equivalent
code) [Mas78, For88, Mud88, BeB93]

GeH
AMS =

1 1 1 1 0 0 0 0
0 1 1 0 0 1 1 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1

 (4.298)

Its complexity profile isµ = (012323210) with maximal state complexity µmax = 3.
An absolute minimal trellis is shown in Fig. 4.44.

For an AWGN channel with BPSK modulation at the signal-to-noise ratio Es/N0

the conditional density is

p (r | v) =
1

(
√
πN0)N

e−
1
N0
‖r−x‖2 (4.299)

where x = x0x1 . . . xN−1 is the signal sequence transmitted over the channel. The
relation between the bipolar signal sequence x and the codeword v is

xk = 2vk − 1 =

{
−1, vk = 0

+1, vk = 1
(4.300)

The squared Euclidean distances between xi and xj is defined as

‖xi − xj‖2
def
=

N−1∑
k=0

(xik − xjk)2 (4.301)

which we denote as d2
E(vi,vj). From (4.300) follows that

d2
E(vi,vj) = 4dH(vi,vj) (4.302)

314 DECODING OF CONVOLUTIONAL CODES

From (4.299) we conclude that for transmission over the AWGN channel with BPSK

log p (r | v) =−N log
√
πN0 −

1

N0

(
‖r‖2 + ‖x‖2

)
(4.303)

+
2
√
Es

N0

N−1∑
i=0

|ri| −
4
√
Es

N0
λ(x, r)

where the correlation discrepancy λ(x, r) between the signal sequence x and the
received sequence r is defined as

λ(x, r) =
N−1∑
i=0

λ(xi, ri) (4.304)

where

λ(xi, ri) =

{
|ri|, sign(ri) 6= sign(xi)

0, sign(ri) = sign(xi)
(4.305)

Since BPSK is equi-energy signaling we can choose A and f (`)
k in (4.3) such that

minimizingµ(v, r) is equivalent to minimizing λ(x, r). In other words, an algorithm
that minimizes λ(x, r) performs soft-decision ML decoding.

The correlation discrepancy is a generalization of the Hamming distance metric
(4.9) for the BSC to soft-decision ML decoding. The weighted Hamming distance
between the the binaryN -tuplesa = a0a1 . . . aN−1 and b = b0b1 . . . bN−1 is defined
as [Kab91]

dwH(a, b) =
N−1∑
i=0

{
ωi, ai 6= bi

0, ai = bi
(4.306)

where ωi ≥ 0 are any weights that can be reliabilities of symbols.
Consider the ith received symbol ri and let hi denote its hard decision, that is,

hi
def
=

{
0, ri > 0

1, ri < 0
(4.307)

The reliability of hi is

Lh(vi) = log
p
(
ri
∣∣ xi = +

√
Es
)

p
(
ri
∣∣ xi = −

√
Es
) =

4
√
Es

N0
ri (4.308)

Hence, the weighted Hamming distance dwH (v,h) between the codeword v and
the hard-decision received sequence h = h0h1 . . . hN−1, with reliability weights
ωi = |Lh(vi)|, i = 0, 1, . . . , N − 1, is equal to the correlation discrepancy λ(x, r)
scaled by the factor 4

√
Es/N0), that is,

dwH (v,h) =
N−1∑
i=0

{
|Lh(vi)|, vi 6= hi

0, vi = hi
(4.309)

BEAST DECODING OF TAILBITING CODES 315

We are now well-prepared to introduce the Bidirectional Efficient Algorithm for
Searching Trees (BEAST)

We can represent any block code of block length N by a trellis with N sections.
In Fig. 4.44 we have shown the absolute minimal trellis for the (8, 4, 4) extended
Hamming code. The idea behind BEAST is that when decoding we grow a forward
tree starting from the root at depth 0 and a backward tree starting from the toor
at depth N . These two trees are embedded in the trellis as will be illustrated in
Example 4.21.

Let ξ denote a node in the code tree and let ξp be its parent node. Every node is
characterized by the following three parameters: state σ(ξ), depth l(ξ), and distance
d(ξ). In the forward tree we use subscript F for the depth lF(ξ) and the distance dF(ξ).
The depth lF(ξ) is the length (in branches) and the distance dF(ξ) is the weighted
Hamming distance dwH

(
r[0,lF(ξ)) , v[0,lF(ξ))

)
, where v[0,lF(ξ)) is the code sequence

along the path ξroot → ξ.
In the backward tree we use the subscript B and obtain the depth lB(ξ) and the

distance dB(ξ), where dB(ξ) is the weighted Hamming distance dwH(r[N−lB(ξ),N),
v[N−lB(ξ),N)), where v[N−lB(ξ)) is the code sequence along the path ξ → ξroot.
Finally, we have σ(ξroot) = σ(ξtoor) = 0.

BEAST needs a target metric threshold T ; then it will find all codewords whose
path metrics are below or at this threshold. If there are no paths below or at the
threshold, we must increase T . If there are several paths below or at T , then we
simply pick the one with the smallest metric; that path is our ML decision! Clearly,
for BEAST to be efficient, how to choose the threshold is crucial. We shall return to
this problem after having described the algorithm.

For hard-decision decoding, the path metric is the Hamming distance and the
threshold increments are δi = 1, all i. A good choice for the initial threshold is
T1 = ddmin/2e, where dmin is the minimum Hamming distance of the code.

Remark: This choice of T1 is motivated by the fact that the covering radius of good
codes is roughtly half the minimum distance. The cover radius is the smallest integer
ρ such that for any received sequence r there exists at least one codeword within
Hamming distance ρ from r. In other words, ρ is the smallest radius of Hamming
spheres, centered at each codeword, such that they cover the entire space.

For the AWGN channel we use the weighted Hamming distance and the threshold
increments δ1, δ + 2, . . . , δN are chosen to be |Lh(vi)| = (4

√
Es/N0)|ri| sorted in

increasing order. Clearly, we can eschew the factor 4
√
Es/N0 and simply use the

sorted absolute values |ri|. The threshold is initialized as

T1 =

ddmin/2e∑
i=1

δi (4.310)

Algorithm B (BEAST for ML and List decoding)
B1. Initialization: Initialize the metric threshold T with a starting value T = T1.

Initialize the forward tree with the zero-state root, which haswF = 0, `F = 0.

316 DECODING OF CONVOLUTIONAL CODES

Initialize the backward tree with the zero-state toor, which has wB = 0,
`B = 0. Initialize the codeword list as L = ∅.

B2. Forward search: Extend the forward tree to find the set of nodes

F =

{
ξ
∣∣∣wF(ξ) ≥ T/2, wF(ξp) < T/2, `F(ξ) ≤ N − min

ξ′∈B
{`B(ξ′)}

}
Hence, every node at depth below N − minξ′∈B{`B(ξ′)}, whose weight is
below T/2, is extended.12 Every extended node needs to be stored so that
it remembers its parent. If a child node has reached or exceeded the target
weight T/2, it is placed in the set F and not extended further. Hence, F
contains the leaves of the partially explored forward tree. For each leaf inF ,
its state, depth, weight, and parent node are stored.

B3. Backward search: Extend the backward tree to find the set of nodes

B =

{
ξ
∣∣∣wB(ξ) ≤ T/2, `B(ξ) ≤ N − min

ξ′∈F
{`F(ξ′)}

}
In the backward direction, every node whose weight does not exceed T/2
is extended and included in the set B. Nodes with weights larger than T/2
are neither extended nor stored. Thus, the set B contains all interior nodes
of the partially explored backward tree. For each node in B, its state, depth,
weight, and parent node are stored.

B4. Matching: Find all pairs of nodes (ξ, ξ′) ∈ F × B such that σ(ξ) = σ(ξ′)
and `F(ξ) + `B(ξ′) = N . Each such match uniquely describes a codeword
with the metricw = wF(ξ)+wB(ξ′). Discard all candidates that do not fulfill
w ≤ T (without this condition the chosen codewords are not necessarily the
globally best candidates; see Example 4.21 below).

B5. For each match with metric w ≤ T , perform backtracing from the matching
node to the root/toor to obtain the corresponding codeword. Add the so-
found codeword to the list L in a sorted manner, according to its metric w.
The best codeword has the smallest w. If the number of codewords on the
updated list is ≥ L, output the L best ones together with their metrics and
stop13 (for ML decoding, L = 1). Otherwise, increment i, increment the
threshold T ← T + δi, and go to step B2.

The following example illustrates the efficiency of BEAST.

12Since the nodes in the sets F and B are stored in the order of increasing depth, then minξ′∈B{`B(ξ′)}
is simply the depth of the first node in B. The same holds for the set F .
13If the list of L best codewords is not unique (e.g., for the BSC), the BEAST outputs one of the possible
lists.

BEAST DECODING OF TAILBITING CODES 317

EXAMPLE 4.21

Assume that the (8, 4, 4) extended Hamming code with the generator matrix
(4.298) is used to communicate over the AWGN channel with BPSK signalling
and that the received sequence is

r = (0.18 − 0.56 0.91 0.60 − 0.02 1.60 2.80 0.34)

Then the hard-decision received sequence is

hch = (0 1 0 0 1 0 0 0)

The correlation discrepancy will be used as a decoding metric. Hence, the thresh-
old increments are

{δi}Ni=1 = {0.02, 0.18, 0.34, 0.56, 0.60, 0.91, 1.6, 2.8} (4.311)

and the initial threshold is T1 =
∑2
i=1 δi = 0.02 + 0.18 = 0.2. First, we grow

a forward tree with the target metric T1/2 = 0.1. The tree is shown in Fig. 4.45.
The extended nodes are marked with unfilled (white) circles. The leaves of the
forward tree, marked with filled (black) circles, are nodes whose metrics are
wF(ξ) ≥ T1/2 = 0.1. Their states, weights, and depths are stored in the set F :

Fσ = {1000, 0000, 0100, 0110}
Fw = {0.18, 0.56, 0.91, 0.6}
F` = {1, 2, 3, 4}

0

1

0

1

1

0

0

1

1

0

1

0

0

1

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

0

1

0

1

1

0

0

1

0.18

0.56

0.91

0.6

Figure 4.45 Forward tree for T1/2 = 0.1: filled nodes are leaves of the partially explored
tree whose metrics exceed T1/2; their states, metrics, and depths are stored in the list F .
Interior nodes are visited, but not stored.

318 DECODING OF CONVOLUTIONAL CODES

The next step is to grow a backward tree to find all paths with metrics wB ≤
T1/2 = 0.1. The backward tree is shown in Fig. 4.46. All visited nodes have
weights wB(ξ) ≤ 0.1 and are stored in the set B:

Bσ = {0000, 0000, 0000, 0000, 0000, 0000, 0000}
Bw = {0.0, 0.0, 0.0, 0.0, 0.02, 0.02, 0.02}
B` = {0, 1, 2, 3, 4, 5, 6}

Matching of the sets F and B is illustrated in Fig. 4.47, and it yields one matching
node: Fσ∩Bσ = {0000} at depth `F = 2, with the total weightw = 0.56+0.02 =
0.58 > T1. This match corresponds to the allzero codeword. Since its metric is
larger than the current threshold, this needs not be the best codeword and, hence,
we do not accept it as the solution. Instead, we increase the threshold and continue
the search.

0

1

0

1

1

0

0

1

1

0

1

0

0

1

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

0

1

0

1

1

0

0

1

0.58

0.02

0.02

0.62

0.02

0.0

1.6 0.0

2.8

0.0

0.34

0.0

Figure 4.46 Backward tree for T1/2 = 0.1: filled nodes are interior nodes of the partially
explored tree, with metrics not larger than T1/2. Their states, weights, and depths are stored in
the set B. The leaves of the backward tree (nodes connected via dashed branches to the interior
nodes) are checked to have metrics exceeding T1/2 and are neither extended nor stored.

In the next step, we increase the threshold by the next smallest absolute reli-
ability value, T2 = T1 + 0.34 = 0.54, and we extend the forward tree from the
previous step, using T2/2 = 0.27 as the target metric value. Fig. 4.48 shows the
obtained forward tree. The stored nodes are:

Fσ = {0000, 1100, 1000, 0100, 0110, 0000, 0001}
Fw = {0.56, 0.74, 1.09, 0.91, 0.6, 1.78, 3.0}
F` = {2, 2, 3, 3, 4, 6, 7}

The backward tree with the target metric wB ≤ T2/2 = 0.27 is the same as in
the previous step (Fig. 4.46), that is, no node can be extended. The matching of

BEAST DECODING OF TAILBITING CODES 319

0

1

0

1

1

0

0

1

1

0

1

0

0

1

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

0

1

0

1

1

0

0

1

0.56+0.02

Figure 4.47 Matching the forward and the backward tree in the first iteration: there is one
matching node (highlighted) corresponding to the allzero codeword. Its metric is above the
current threshold and is thus not accepted.

0

1

0

1

1

0

0

1

1

0

1

0

0

1

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

0

1

0

1

1

0

0

1

0.56

0.74

1.09

0.91

0.6

1.78

3.0

Figure 4.48 Forward tree in the second iteration, with threshold T2 = 0.54.

the two trees is shown in Fig. 4.49. There are now two matching nodes, with the
total metrics 0.58 and 1.78, respectively. Both values are above T2 and we need
to increase the threshold again and continue the search.

In the third step, the threshold is T3 = T2 + 0.56 = 1.1. Using T3/2 = 0.55
as the target metric in the forward direction does not change the forward tree from
the previous step. The backward tree gets extended as shown in Fig. 4.50. The
matching of the sets F and B is shown in Fig. 4.51. There are four matching

320 DECODING OF CONVOLUTIONAL CODES

0

1

0

1

1

0

0

1

1

0

1

0

0

1

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

0

1

0

1

1

0

0

1

0.56+0.02 1.78+0.00

Figure 4.49 Matching the forward and the backward tree in the second iteration: there are
two matching nodes (highlighted), but both have total metrics above the current threshold and
are thus not accepted.

nodes:

Mσ = Fσ ∩ Bσ = {0000, 0100, 0000, 0001}
Mw = {0.58, 1.25, 1.78, 3.32}
M` = {2, 3, 6, 7}

0

1

0

1

1

0

0

1

1

0

1

0

0

1

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

0

1

0

1

1

0

0

1

0.58

0.02

1.25

0.02

0.62

0.34

0.94

0.02

0.34

0.00

1.60

0.34

1.94

0.00

3.14

2.80

0.34

0.00

0.34

0.00

Figure 4.50 Backward tree in the third iteration, with threshold T3 = 1.1.

Since only the node at depth `F = 2 with σ(ξ) = 0000 has total metric below
T3 = 1.1 (in general, there may be more such nodes, in which case we pick the one

BEAST DECODING OF TAILBITING CODES 321

0

1

0

1

1

0

0

1

1

0

1

0

0

1

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

0

1

0

1

1

0

0

1

0.56+0.02

0.91+0.34

1.78+0.00

2.98+0.34

Figure 4.51 Matching the forward and the backward tree in the third iteration: there are
four matching nodes (highlighted). The one with the smallest metric below the threshold
determines the ML path.

with the minimal metric) this node determines the ML path: v̂ML = 00000000,
with the corresponding information sequence ûML = 0000.

If we were interested in finding the L = 2 best codewords, we would need to
increase the threshold once again and extend the trees. We would obtain that the
second-best codeword is v2 = 01101001 with the metric 1.25.

Note that the ML codeword was already found in the first decoding step, but
it was not accepted as a final decision since its metric was above the current
threshold. This ensures that we pick the codeword with the smallest metric of all
codewords. This also holds for a list of L best codewords; for example, accepting
the match we found in the second step (codeword 11001100, with the metric 1.78)
as a second best codeword would be erroneous, since in the next step we found
the codeword 01101001 with a smaller metric.

The total number of nodes visited by BEAST during decoding is 23 (11 in the
forward and 12 in the backward tree). ML decoding with the Viterbi algorithm
requires visiting all nodes in the trellis, which amounts to 34 nodes.

Since BEAST operates on trees, it does not take into account merging properties
of the code trellis, as the Viterbi algorithm does. One might suspect that BEAST
visits many “duplicate” nodes and, hence, that it is less efficient than the Viterbi
algorithm from a complexity point of view. However, it can be shown that when
performing ML decoding for the BSC, BEAST will not visit more nodes than the
Viterbi algorithm. Similarly, when performing bounded distance decoding up to dmin
for the AWGN channel, BEAST will not visit more nodes than the Viterbi algorithm
[BJK04a].

322 DECODING OF CONVOLUTIONAL CODES

2 4 6 8 10 12 14 16 18 20 22 24

1
2
3
4
5
6
7
8
9

10
11
12

column No.

ro
w

N
o.

0 2 4 6 8 10 12 14 16 18 20 22 24
1
2
3
4
5
6
7
8
9

10
11

column No.

co
m

pl
ex

ity
pr

ofi
le

Figure 4.52 Active rows (left) and state complexity profile µ (right) for the (24, 12, 8)
extended Golay code with generator matrix (4.312).

EXAMPLE 4.22

Consider the (24, 12, 8) extended Golay code with generator matrix

G =

1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 1 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

(4.312)

The active rows and the complexity profile of G are given in Fig. 4.52. The
maximal state complexity, µmax = 9, determines the complexity of the Viterbi ML
decoder.

The bit error probability for BEAST soft-decision ML decoding is shown in
Fig. 4.53. The maximum and average number of visited nodes are illustrated in
Fig. 4.54 for both BEAST and the Viterbi algorithm. The average complexity
of BEAST at low SNR is about 24 = 16 times lower than the complexity of the
Viterbi algorithm.

Asymptotically BEAST-ML decoding is more efficient than Viterbi-ML de-
coding. So-called double-zero-tail terminated codes [BJK04b] have the lowest
upper bound on the BEAST decoding complexity. For high code rates, this bound
is an improvement on previously known bounds on the ML decoding complexity
(see [BHJ05]).

COMMENTS 323

0 1 2 3 4 5 6
10−6

10−5

10−4

10−3

10−2

10−1

100

SNR Eb/N0 dB

Pb

Figure 4.53 Bit error probability for the ML-decoded (24, 12, 8) extended Golay code with
generator matrix (4.312).

0 1 2 3 4 5 6 7
1

2

3

4

5

6

7

8

9

SNR Eb/N0 dB

lo
g
2
(N

o.
of

vi
si

te
d

no
de

s/
K

)

Viterbi

Maximum

Average

Figure 4.54 Average and maximum number of visited nodes per bit (in logarithmic scale) for
BEAST-ML decoding for the (24, 12, 8) extended Golay code with generator matrix (4.312).

4.11 COMMENTS

By presenting his decoding algorithm Viterbi gave a remarkable boost both to aca-
demic work on coding theory and to industrial applications. Using signal flowcharts
for analyzing convolutional codes was introduced by Viterbi [Vit71]. The “few” and

324 DECODING OF CONVOLUTIONAL CODES

“many” idea which we have exploited for bounding the error probability for fixed
convolutional codes can be found in Fano’s textbook [Fan61], where it is applied to
random ensembles of block codes. For convolutional codes the “few” and “many”
idea was first used in [CJZ84a].

Exact calculations of the bit error probability for rate R = 1/2 convolution codes
encoded by minimal-basic encoding matrices realized in controller canonical form
for memory m = 1 and m = 2 are given in [BBL95] and [LTZ04], respectively.

The closed-form expression for the exact bit error probability for Viterbi decoding
in Section 4.4 is from [BHJ12] (see also Florian Hug’s thesis [Hug12]).

The Bahl, Cocke, Jelinek, and Raviv (BCJR) algorithm [BCJ74] was introduced
in 1974 as a decoding method for convolutional codes or block codes with a trellis
structure. For a tutorial introduction to a general class of two-way algorithms, the
reader is referred to [For97].

The simple upper bound presented in Section 4.7 grew out of the embryos [JMS00,
JMS02, HJM01].

Tailbiting representations of block codes were introduced by Solomon and van
Tilborg [Sov79]. See also [MaW86].

BEAST was introduced in [BHJ01, BHJ04] as an efficient algorithm for deter-
mining the spectra and decoding of block and convolutional codes (see also Marc
Handlery’s thesis [Han02]). In [BJK04a] decoding of block codes by BEAST was
treated in depth and the superiority of BEAST was demonstrated (see also Maja
Lončar’s thesis [Lon07]). For tailbiting block codes it turns out that it was very effi-
cient to first obtain the absolute minimal-span form and then decode with BEAST. In
[BJK07] list decoding with BEAST was analyzed. Example 4.21 in Section 4.10 is
from Maja Lončar’s thesis [Lon07]. In Florian Hug’s thesis [Hug12] the efficiency
of BEAST for decoding LDPC codes and other codes on graphs was demonstrated.

PROBLEMS

4.1 Consider the rate R = 1/2, memory m = 1, systematic encoding matrix
G(D) = (1 1 +D).

a) Draw the length ` = 5 trellis.
b) Suppose that the encoder is used to communicate over a BSC with crossover

probability ε, 0 < ε < 1/2. Use the Viterbi algorithm to decode the received
sequence r = 10 01 11 11 11 11.

c) How many channel errors have occurred if the optimal path corresponds to
the transmitted sequence?

4.2 Consider the rate R = 1/2, memory m = 2 encoding matrix G(D) = (1 +
D +D2 1 +D2).

a) Draw the length ` = 4 trellis.
b) Suppose that the encoder is used to communicate over a BSC with crossover

probability ε, 0 < ε < 1/2. Use the Viterbi algorithm to decode the received
sequence r = 11 11 00 11 01 11.

PROBLEMS 325

1

0

12

11

01

02
0.631

0.278

0.081

0.010

0.631

0.278

0.081

0.010

Figure 4.55 DMC used in Problems 4.8 and 4.28.

c) Suppose that the information sequence is u = 1011. How many channel
errors are corrected in (b)?

4.3 Repeat Problem 4.2 for r = 10 11 10 10 01 00 and u = 0100.

4.4 Repeat Problem 4.2 for r = 00 11 10 01 00 00 and u = 0000.

4.5 Consider a binary-input, 8-ary output DMC with transition probabilitiesP (r | v)
given in Example 4.2.

a) Suppose that the rate R = 1/2 encoder with encoding matrix G(D) =
(1 + D + D2 1 + D2) is used to communicate over the given channel.
Use the Viterbi algorithm to decode r = 1314 1304 0204 0113 0311 0411.

b) Connect the channel to a BSC by combining the soft-decision outputs
01, 02, 03, 04 and 11, 12, 13, 14 to hard-decision outputs 0 and 1, respec-
tively. Use the Viterbi algorithm to decode the hard-decision version of the
received sequence in (a).

4.6 Repeat Problem 4.5 for r = 0403 1301 0111 1101 0112 1104.

4.7 Repeat Problem 4.5 for r = 1104 0112 1101 0111 1301 0403.

4.8 Consider the binary-input, 4-ary output DMC with transition probabilities given
in Fig. 4.55.

a) Suppose that the rate R = 1/2 encoder with encoding matrix G(D) =
(1 + D + D2 1 + D2) is used to communicate over the given channel.
Use the Viterbi algorithm to decode r = 0111 1201 1102 0111 1211 1112.

b) Connect the channel to a BSC by combining the soft-decision outputs 01, 02

and 11, 12 to hard-decision outputs 0 and 1, respectively. Use the Viterbi
algorithm to decode the hard-decision version of the received sequence in
(a).

4.9 Consider the binary-input, 8-ary output DMC shown in Fig. 4.6 with transition
probabilities P (r | v) given by the following table:

326 DECODING OF CONVOLUTIONAL CODES

r
04 03 02 01 11 12 13 14

v
0 0.1415 0.3193 0.2851 0.1659 0.0676 0.0180 0.0025 0.0001
1 0.0001 0.0025 0.0180 0.0676 0.1659 0.2851 0.3193 0.1415

Suppose that the rate R = 1/2 encoder with encoding matrix G(D) = (1 +
D2 1 +D +D2) is used to communicate over the given channel.

After appropriate scaling and rounding of the metrics, use the Viterbi algorithm
to decode r = 0112 1213 0302 0103 0302 0201.

4.10 Consider the binary-input, 8-ary output DMC shown in Fig. 4.6 with transition
probabilities P (r | v) given by the following table:

r
04 03 02 01 11 12 13 14

v
0 0.2196 0.2556 0.2144 0.1521 0.0926 0.0463 0.0167 0.0027
1 0.0027 0.0167 0.0463 0.0926 0.1521 0.2144 0.2556 0.2196

Repeat Problem 4.5 for r = 0213 1202 0113 1111 1214 1111.

4.11 Consider the communication system in Problem 4.5.
a) Which parameters determine the system error-correcting capability?
b) Find the values of the parameters in (a).

4.12 Consider a binary-input, q-ary output DMC with a high signal-to-noise ratio.
Which of the following three convolutional encoding matrices will perform best in
combination with ML decoding?

G1(D) =
(
1 +D 1 +D +D2

)
G2(D) =

(
1 +D +D2 +D3 1 +D3

)
G3(D) =

(
1 1 +D2 +D4

)
4.13 Suppose that we use the rateR = 1/2 convolutional encoding matrixG(D) =
(1 + D2 1 + D) to encode 998 information bits followed by two dummy zeros.
The codeword is transmitted over a BSC with crossover probability ε, 0 < ε < 1

2 .
a) What is the total number of possibly received sequences?
b) Find the total number of codewords.
c) Suppose that the received sequence r = (r1r2 . . . r?) is given by

ri =

{
1, i = 536, 537

0, otherwise

Find the ML decision for the information sequence.

PROBLEMS 327

4.14 Use the periodic sequence [111001]∞ as puncturing sequence together with
the encoding matrix G(D) = (1 +D2 1 +D +D2) to communicate over a BSC
with crossover probability ε.

a) Find the rate for the punctured code.
b) Use the Viterbi algorithm to decode r = 01010101.

4.15 Consider the encoding matrix in Problem 3.9 and assume that it is realized in
controller canonical form. Evaluate the upper bounds on the burst error probability
for a BSC with crossover probability ε.

a) ε = 0.1

b) ε = 0.01

c) ε = 0.001

4.16 Repeat Problem 4.15 for the encoding matrix in Problem 3.10.

4.17 Verify (4.20) for d even.

4.18 Verify (4.30).

4.19 Van de Meeberg [Mee74] derived a slightly tighter bound than (4.33).
a) Show that

p2i ≤
(

2δ − 1

δ

)
2−2δ

(
2
√
ε
)2i

where

δ =

⌊
d∞ + 1

2

⌋
Hint: (1− ε)2i−1

∑2i−1
e=i

(
ε

1−ε

)e
= 2−2i (2

√
ε)

2i (1−ε)i−εi
1−2ε .

b) Show that

PB <

(
2δ − 1

δ

)
2−2δ

×
(

1

2
(T (W) + T (−W)) +

W

2
(T (W)− T (−W))

) ∣∣∣
W=2

√
ε

4.20 In Fig. 4.24 we illustrated four trellis sections for φt = 0 for the encoder used
in Example 4.10.

a) Draw the remaining four trellis sections for φt = 0 and verify the entries
in the rows corresponding to φt = 0 for A00 and B00.

b) Draw all eight trellis sections for φt = −2 and verify the entries in the rows
corresponding to φt = −2 for A00 and B00.

c) Repeat (b) for φt = −1.
d) Repeat (b) for φt = 1.
e) Repeat (b) for φt = 2.

4.21 Consider the encoder in Example 4.10.
a) Determine A01 and B01.

328 DECODING OF CONVOLUTIONAL CODES

b) Determine A10 and B10.
c) Determine A11 and B11.

4.22 Prove van de Meeberg’s bound (4.56) on the bit error probability.

4.23 Consider the rate R = 1/2, memory m = 1, systematic encoding matrix
G(D) = (1 1 + D). Suppose that the encoder is used to communicate over a
BSC with crossover probability ε = 0.045. Assume that the received sequence
r = 10 01 11 11 11 11.

Use the BCJR algorithm to decode the received sequence when
a) the information symbols a priori are equiprobable.
b) P (ut = 0) = 2/3.
c) P (ut = 0) = 1/3.

4.24 Repeat Problem 4.23 for the rate R = 1/2, memory m = 2 encoding matrix
G(D) = (1 +D +D2 1 +D2) and r = 11 11 00 11 01 11.

4.25 Repeat Problem 4.23 for the rate R = 2/3, memory m = 1 encoding matrix

G(D) =

(
1 1 D
D 1 +D 1

)
and r = 010 111 000.

4.26 Prove formula (4.233).

4.27 Show that the best decoding bit error probability Pb obtainable with linear
coding on a BSC with crossover probability ε, 0 ≤ ε ≤ 1/2, is at least as great as
that obtainable with linear coding on BEC with erasure probability δ = 2ε.

4.28 Consider the binary-input, 4-ary output DMC with transition probabilities
given in Fig. 4.55.

Suppose that the rate R = 1/2 encoder with encoding matrix G(D) = (1 +
D + D2 1 + D2) is used to communicate over the given channel. Use the BCJR
algorithm to decode r = 0111 1201 1102 0111 1211 1112 when

a) the information symbols a priori are equiprobable.
b) P (ut = 0) = 2/3.
c) P (ut = 0) = 1/3.

4.29 Consider the binary-input, 8-ary output DMC shown in Fig. 4.6 with transition
probabilities P (r | v) given by the following table:

r
04 03 02 01 11 12 13 14

v
0 0.1415 0.3193 0.2851 0.1659 0.0676 0.0180 0.0025 0.0001
1 0.0001 0.0025 0.0180 0.0676 0.1659 0.2851 0.3193 0.1415

Repeat Problem 4.28 for r = 0112 1213 0302 0103 0302 0201.

4.30 Consider the binary-input, 8-ary output DMC shown in Fig. 3.3 with transition
probabilities P (r | v) given by the following table:

PROBLEMS 329

r
04 03 02 01 11 12 13 14

v
0 0.2196 0.2556 0.2144 0.1521 0.0926 0.0463 0.0167 0.0027
1 0.0027 0.0167 0.0463 0.0926 0.1521 0.2144 0.2556 0.2196

Repeat Problem 4.28 for r = 0213 1202 0113 1111 1214 1111.

4.31 Repeat Problem 4.23 for the one-way algorithm when τ = 2, 3, 4. Decode
only the first two information symbols.

4.32 Repeat Problem 4.24 for the one-way algorithm when τ = 4. Decode only
the first two information symbols.

4.33 Repeat Problem 4.28 for the one-way algorithm when τ = 4. Decode only
the first two information symbols.

4.34 Construct a 2-state (8, 4) tailbiting representation by using the convolutional
encoding matrix G(D) = (1 1 + D). Suppose that this block code is used to
communicate over the BSC with crossover probability ε = 0.045. Assume that the
received sequence r = 10 01 11 11.

Use the BCJR tailbiting algorithm to decode the received sequence when
a) the information symbols a priori are equiprobable.
b) P (ut = 0) = 2/3.
c) P (ut = 0) = 1/3.

4.35 Construct a 4-state (4, 2) tailbiting representation by using the convolutional
encoding matrix G(D) = (1 +D +D2 1 +D2). Suppose that this block code is
used to communicate over the BSC with crossover probability ε = 0.045. Assume
that the received sequence r = 11 11.

Use the BCJR tailbiting algorithm to decode the received sequence when
a) the information symbols a priori are equiprobable.
b) P (ut = 0) = 2/3.
c) P (ut = 0) = 1/3.

4.36 Use the 4-ary output DMC given in Problem 4.28 and repeat Problem 4.34
for r = 0111 1201 1102 0111.

4.37 Use the 4-ary output DMC given in Problem 4.28 and repeat Problem 4.35
for r = 0111 1201.

4.38 Use the 8-ary output DMC given in Problem 4.29 and repeat Problem 4.34
for r = 0111 1213 0302 0103.

4.39 Use the 8-ary output DMC given in Problem 4.29 and repeat Problem 4.35
for r = 0111 1213.

4.40 Assume that Gilbert-Varshamov’s lower bound on the minimum distance for
block codes (3.183) and Costello’s lower bound on the free distance for convolutional
codes (3.162) are asymptotically tight. Show for a rateR tailbiting trellis of length L
encoded by a generator matrix of memory m that the best error-correcting capability

330 DECODING OF CONVOLUTIONAL CODES

for a given decoding complexity is obtained for

L

m
=

R

−ρ log(21−R − 1)
+ o(m)

where ρ is the Gilbert-Varshamov parameter.

4.41 Consider the tailbiting generator matrix

Gtb =

11 10 11 00
00 11 10 11
11 00 11 10
10 11 00 11

and encode u = 1001.

a) Find the starting state σstart.
b) Find the codeword.

4.42 [Sta01] Consider the tailbiting of lengthL = 4 using the equivalent systematic
encoder to the encoder defined in Problem 4.41.

a) Find the rational generator matrix.
b) Find the codeword corresponding to the information sequence u(D) =

1 +D +D3.

4.43 [Sta01] Consider the rate R = 2/3 polynomial generator matrix

G(D) =

(
1 1 +D D
D2 D 1 +D +D2 +D3

)
a) Find the Smith form decomposition of G(D).
b) Is G(D) noncatastrophic?
c) Consider tailbiting length L = 5. Does tailbiting work?
d) Consider tailbiting length L = 6. Does tailbiting work?

4.44 [Lon07] Consider the (5, 3, 2) block code whose parity-check matrix is

H =

(
1 1 0 1 0
0 1 1 0 1

)
a) Find its generator matrix.
b) Draw the trellis of the (5, 3, 2) code.
c) Bring the generator matrix into minimal-span form.
d) Permute the columns of the minimal-span form in (c) and obtain a generator

matrix with a slightly improved complexity profile.
e) Draw the trellis corresponding to the generator matrix in (d).

4.45 [Hug12] Consider the (6, 3, 3) shortened Hamming code with generator ma-
trix

G =

 1 0 0 1 0 1
0 1 0 1 1 0
0 0 1 0 1 1

PROBLEMS 331

Find its minimal-span form which is used to communicate over an AWGN channel.
The received sequence is

r = (0.82 − 0.42 0.17 1.25 0.83 0.37)

Use BEAST to obtain the ML decision v̂.

CHAPTER 5

RANDOM ENSEMBLE BOUNDS FOR
DECODING ERROR PROBABILITY

In this chapter, we continue our analysis of the decoding error probability of the
Viterbi decoding algorithm for convolutional codes but for the ensemble of time-
varying convolutional codes and derive upper bounds for the burst and bit error
probabilities that are exponentially decreasing with the memory of the convolutional
code. A general lower bound for the decoding error probability of convolutional
coding is proved and it is shown how the R0-criterion can be used to quantize the
channel outputs.

5.1 UPPER BOUNDS ON THE OUTPUT ERROR BURST LENGTHS

The errors in the output from the Viterbi decoder are grouped in error bursts. In this
section, we will upper-bound the distribution of the lengths of these error events for
the ensemble of periodically time-varying convolutional codes. In the next section
we will use these upper bounds to obtain upper bounds on the burst error probability.
For simplicity we will only consider the binary symmetric channel (BSC).

Consider the ensemble E(b, c,m, T) of binary, rate R = b/c, periodically time-
varying convolutional codes encoded by polynomial, periodically time-varying gen-
erator matrices of memory m and period T which we introduced in Section 3.6. Let

Fundamentals of Convolutional Coding, 2. Edition. By Rolf Johannesson, Kamil Sh. Zigangirov
Copyright c© 2015 John Wiley & Sons, Inc.

333

334 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

û and e = u + û denote the decision for the information sequence and the error
sequence in the decoder output, respectively.

In Section 3.6 we also introduced the set Ur[t1−m,t2+m] of information sequences
ut1−mut1−m+1 . . .ut2+m such that the first m and the last m subblocks are zero
and such that they do not contain m + 1 consecutive zero subblocks. We have the
following:

Definition The decoder output error sequence e[t−m−1,t+j+m+1] is called an error
burst or error event of length j + 1 starting at time t and ending at time t+ j + 1 if
et−m−1 = 0, e[t−m,t+j+m] ∈ Ur[t−m,t+j+m], and et+j+m+1 = 0.

In order to upper-bound the distribution of the length of an error burst starting at
time t, we consider the block code Bt(j) given by

Bt(j) =
{
v[t,t+j+m]

∣∣ v[t,t+j+m] = 0 or
v[t,t+j+m] = u[t−m,t+j+m]G[t,t+j+m], (5.1)
u[t−m,t+j+m] ∈ Ur[t−m,t+j+m]

}
where G[t,t+j+m] is given by (3.136). The rate of the block code Bt(j) is upper-
bounded by

r(j) =
j + 1

j +m+ 1
R (5.2)

(This is an upper bound since we have imposed a restriction on u[t−m,t+j+m].)
Assume that the transmitted sequence is the allzero sequence, and letLt(j) denote

the event that an error burst starting at depth t has length j + 1. A necessary—but
not sufficient—condition for Lt(j) to occur is that the block code Bt(j) will be
erroneously decoded. Thus, we have

P (Lt(j)) ≤ P (Et(j)) (5.3)

where Et(j) denotes the event that Bt(j) is erroneously decoded. Hence, we can
obtain an upper bound on P (Lt(j)) by upper-bounding the error probability of the
block code Bt(j).

For a periodically time-varying with period T convolutional code, we define the
probability of the event that an error burst has length j + 1, j ≤ T , to be

P (L(j))
def
= max

0≤t<T
{P (Lt(j))} (5.4)

The probability P (L(j)) is upper-bounded by

P (L(j)) ≤
T−1∑
t=0

P (Lt(j)) (5.5)

Before we proceed we need the following:

UPPER BOUNDS ON THE OUTPUT ERROR BURST LENGTHS 335

Definition The computational cutoff rate R0 for the BSC with crossover probability
ε is given by

R0
def
= 1− log

(
1 + 2

√
ε(1− ε)

)
(5.6)

Using the Bhattacharyya parameter z (4.20), we can express R0 as

R0 = 1− log(1 + z) (5.7)

which can be rewritten as
2−R0 =

1 + z

2
(5.8)

Now we have the following:

Lemma 5.1 (Random coding bound) Consider the ensemble E(b, c,m, T) of bi-
nary, rate R = b/c, periodically time-varying convolutional codes encoded by poly-
nomial, periodically time-varying generator matrices of memory m and period T ,
where T = O(m2). For rate r(j) given by (5.2) the average probability that an
error burst has length j + 1 when we communicate over the BSC and use maximum-
likelihood decoding is upper-bounded by the inequality

E[P (L(j))] ≤ 2−(R0−r(j)+o(1))(j+m+1)c (5.9)

for j ≤ T and rates 0 ≤ r(j) < R0, where R0 is the computational cutoff rate.

Proof : From Theorem 3.25 and (4.20) it follows that over the ensembleE(b, c,m, T)
the probability that each codeword v[t,t+j+m] 6= 0, j ≤ T , causes an error is upper-
bounded by

(j+m+1)c∑
i=0

(
(j +m+ 1)c

i

)
2−(j+m+1)czi =

(
1 + z

2

)(j+m+1)c

= 2−R0(j+m+1)c (5.10)

where the last equality follows from (5.8).
We combine (5.10) with the upper bound 2r(j)(j+m+1)c on the total number of

codewords in Bt(j) and apply (5.3) and (5.5) and the lemma follows.

Next we have the following definition:

Definition The expurgation rate Rexp for the BSC with crossover probability ε is
given by

Rexp = 1− h

(
2
√
ε(1− ε)

1 + 2
√
ε(1− ε)

)
(5.11)

where h(·) is the binary entropy function (1.22).

For rates r(j) less than the expurgation rate Rexp, we can obtain an essen-
tially stronger bound. Consider the fraction of convolutional codes in the ensemble

336 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

E(b, c,m, T) whose active row distances satisfy the condition in Lemma 3.32. Since
this fraction is larger than f , it follows analogously to the proof of Lemma 5.1 that
the average error probability for this expurgated ensemble is upper-bounded by

Eexp[P (E(j))] = max
0≤t<T

{Eexp[P (Et(j))]}

≤ T

f

(j+m+1)c∑
i=ârj+1

(
(j +m+ 1)c

i

)
2(r(j)−1)(j+m+1)czi (5.12)

j0 < j < T

where ârj is the largest integer satisfying (3.174) and j0 is the smallest integer
satisfying (3.172).

For any λ > 0, we can further upper-bound (5.12):

Eexp[P (E(j))] ≤ T

f

(j+m+1)c∑
i=ârj+1

(
(j +m+ 1)c

i

)
2λ(i−ârj)2(r(j)−1)(j+m+1)czi

≤ T

f
2(r(j)−1)(j+m+1)c2−λâ

r
j

(j+m+1)c∑
i=0

(
(j +m+ 1)c

i

)
2λizi

=
T

f
2(r(j)−1)(j+m+1)c2−λâ

r
j (1 + 2λz)j+m+1)c (5.13)

j0 < j < T

Let us choose

2λ =
ρ̂

(1− ρ̂)z
, λ > 0 (5.14)

where

ρ̂ =
ârj

(j +m+ 1)c
>

z

1 + z
(5.15)

and where the inequality follows from λ > 0. Then we can rewrite (5.13) as

Eexp[P (E(j))] ≤ T

f
2(r(j)−1)(j+m+1)c2h(ρ̂)(j+m+1)czρ̂(j+m+1)c

=
T

f
2(h(ρ̂)+r(j)−1)(j+m+1)czρ̂(j+m+1)c

≤ 1− f
fT

zρ̂(j+m+1)c, j0 < j < T (5.16)

where the last inequality follows from (3.174). Let us choose f = 1/2; then we have

Eexp[P (E(j))] ≤ 1

T
zρ̂(j+m+1)c, j0 < j < T (5.17)

From (3.174) it follows that

h(ρ̂) ≤ 1− r(j)− log(2T 2)

(j +m+ 1)c
(5.18)

UPPER BOUNDS ON THE OUTPUT ERROR BURST LENGTHS 337

By choosing T = O(m2), we obtain that for large values of m we have j0 = 0
(cf. Section 3.8). Furthermore,

h(ρ̂) ≤ 1− r(j) +O

(
logm

m

)
(5.19)

and, hence, for large values of m we can replace ρ̂ by ρ+O
(

logm
m

)
, where ρ is the

Gilbert-Varshamov parameter for the rate r(j). Thus, we have

Eexp[P (E(j))] ≤ 2ρ(j+m+1)c log z+O(m) (5.20)

where j < T and (cf. (5.15))

ρ >
z

(1 + z)
+O

(
logm

m

)
(5.21)

For the BSC we have the Bhattacharyya parameter (cf. (4.20))

z = 2
√
ε(1− ε) (5.22)

and, finally, we obtain

Eexp[P (E(j))] ≤ 2
ρ(j+m+1)c log

(
2
√
ε(1−ε)

)
+O(logm) (5.23)

where j ≤ T and

ρ >
2
√
ε(1− ε)

1 + 2
√
ε(1− ε)

+O

(
logm

m

)
(5.24)

or, equivalently,

r(j) < Rexp +O

(
logm

m

)
(5.25)

where the expurgation rate Rexp is given by (5.11).
From inequality (5.3) we obtain the next lemma.

Lemma 5.2 (Expurgation bound) Consider the ensemble E(b, c,m, T) of binary,
rateR = b/c, periodically time-varying convolutional codes encoded by polynomial,
periodically time-varying generator matrices of memory m and period T , where
T = O(m2). There exists a subset containing at least half of the codes such that the
average probability that an error burst has length j + 1 when used to communicate
over the BSC with maximum-likelihood decoding is upper-bounded by the inequality

Eexp[P (L(j))] ≤ 2
ρ(j+m+1)c log

(
2
√
ε(1−ε)

)
+O(logm) (5.26)

for j < T , 0 ≤ r(j) < Rexp + O
(

logm
m

)
and where ρ = h−1(1 − r(j)) is

the Gilbert-Varshamov parameter for the rate r(j) and Rexp is the expurgation rate
(5.11).

Next, we introduce another definition.

338 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

Definition The critical rateRcrit for the BSC with crossover probability ε is given by

Rcrit = 1− h
(√

ε
√
ε+
√

1− ε

)
(5.27)

where h(·) is the binary entropy function (1.22).

We will now derive the so-called sphere-packing bound for rates r(j) > Rcrit. We
will exploit the idea of “few” (F) and “many” (M) errors introduced in Section 4.3.

Assume that the allzero sequence is transmitted over the BSC and that r[t,t+j+m]

is received and decoded by a maximum-likelihood decoder. Let the set M be the
event of errors such that

wH(r[t,t+j+m]) ≥ ρ(j +m+ 1)c (5.28)

where ρ is the Gilbert-Varshamov parameter for the rate r(j). The set F is the
complement ofM. Following the thread in Section 4.3, we upper-bound the average
error probability for the ensemble E(b, c,m, T) by (cf. (4.81))

E[P (Et(j))] ≤ E[P (Et(j),F)] + P (M) (5.29)

Let i0 be the smallest integer larger than or equal to ρ(j +m+ 1)c, that is,

i0 = dρ(j +m+ 1)ce (5.30)

Then from (5.28) it follows that

P (M) =

(j+m+1)c∑
i=i0

(
(j +m+ 1)c

i

)
εi(1− ε)(j+m+1)c−i (5.31)

For any λ > 0 we have

P (M) ≤
(j+m+1)c∑

i=i0

(
(j +m+ 1)c

i

)
εi(1− ε)(j+m+1)c−i2λ(i−i0)

≤ 2−λρ(j+m+1)c

(j+m+1)c∑
i=i0

(
(j +m+ 1)c

i

)
(ε2λ)i (5.32)

×(1− ε)(j+m+1)c−i

Next, we upper-bound the right-hand side of (5.32) by extending the summation to
i = 0. Then we obtain

P (M) < 2−λρ(j+m+1)c

(j+m+1)c∑
i=0

(
(j +m+ 1)c

i

)
(ε2λ)i(1− ε)(j+m+1)c−i

= 2−λρ(j+m+1)c(1− ε+ 2λε)(j+m+1)c (5.33)

UPPER BOUNDS ON THE OUTPUT ERROR BURST LENGTHS 339

Its minimal value is achieved when

λ = λ0 = log
ρ(1− ε)
(1− ρ)ε

(5.34)

The minimizing value λ0 > 0 if and only if ρ > ε, which corresponds to

r(j) < C = 1− h(ε) (5.35)

where C is the channel capacity of the BSC.
Inserting λ0 into (5.33) yields

P (M) <

(
ρ(1− ε)
(1− ρ)ε

)−ρ(j+m+1)c(
1− ε+

ρ(1− ε)
1− ρ

)(j+m+1)c

= 2−(ρ log ρ
ε+(1−ρ) log 1−ρ

1−ε)(j+m+1)c, ρ > ε (5.36)

Next we will upper-bound E[P (Et(j),F)]. Suppose that the word received over the
BSC contains i errors where i < i0, that is, we have a situation with “few” errors.
Assuming maximum-likelihood decoding, we can upper-bound the error probability
by the probability that a randomly chosen codeword is at distance at most i from the
received word. Since these two events are independent, we have the following upper
bound:

E[P (Et(j),F)] ≤
i0−1∑
i=0

i∑
k=0

2r(j)(j+m+1)c

(
(j +m+ 1)c

k

)
2−(j+m+1)c

×
(

(j +m+ 1)c

i

)
εi(1− ε)(j+m+1)c−i (5.37)

Now we introduce two parameters λ′ > 0 and µ > 0 such that we can extend the
summation intervals without increasing the bound too much. Thus, we can further
upper-bound (5.37) as follows:

E[P (Et(j),F)] ≤
i0−1∑
i=0

(j+m+1)c∑
k=0

(
(j +m+ 1)c

k

)(
(j +m+ 1)c

i

)
×2(r(j)−1)(j+m+1)c2µ(i−k)2λ

′(i0−1−i)εi(1− ε)(j+m+1)c−i

≤ 2λ
′(i0−1)2(r(j)−1)(j+m+1)c

(j+m+1)c∑
k=0

(
(j +m+ 1)c

k

)
2−µk

×

(
i0−1∑
i=0

(
(j +m+ 1)c

i

)
(ε2µ−λ

′
)i(1− ε)(j+m+1)c−i

)
≤ 2λ

′ρ(j+m+1)c2(r(j)−1)(j+m+1)c(1 + 2−µ)(j+m+1)c

×

(
i0−1∑
i=0

(
(j +m+ 1)c

i

)
(ε2µ−λ

′
)i(1− ε)(j+m+1)c−i

)
(5.38)

340 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

where we have used (5.30) to obtain the last inequality. Extending the summation
over i to i = (j +m+ 1)c, we obtain:

E[P (Et(j),F)] ≤ 2λ
′ρ(j+m+1)c2(r(j)−1)(j+m+1)c(1 + 2−µ)(j+m+1)c

×(1− ε+ ε2µ−λ
′
)(j+m+1)c (5.39)

It is straightforward (but tedious) to show that the upper bound (5.39) achieves its
minimum value for

µ = µ0 = log
1− ρ
ρ

(5.40)

and

λ′ = λ′0 = log
(1− ρ)2ε

ρ2(1− ε)
(5.41)

where ρ is the Gilbert-Varshamov parameter. The inequality λ′0 > 0 is equivalent to

ρ ≤
√
ε

√
ε+
√

1− ε
(5.42)

which corresponds to

r(j) ≥ 1− h
(√

ε
√
ε+
√

1− ε

)
= Rcrit (5.43)

where Rcrit is the critical rate (5.27).
By inserting (5.40) and (5.41) into (5.39), we obtain

E[P (Et(j),F)] ≤ 2−(ρ log ρ
ε+(1−ρ) log 1−ρ

1−ε)(j+m+1)c (5.44)

which holds for j < T and r(j) ≥ Rcrit.
We can obtain an upper bound by combining (5.29), (5.36), and (5.44). Somewhat

surprisingly, we can obtain a more elegant upper bound directly from (5.29), (5.32),
and (5.38) by inserting the parameters λ = λ0, λ′ = λ′0, and µ = µ0:

E[P (Et(j))] ≤ E[P (Et(j),F)] + P (M)

≤
(

(1− ρ)2ε

ρ2(1− ε)

)ρ(j+m+1)c

2(r(j)−1)(j+m+1)c(1− ρ)−(j+m+1)c

×
i0−1∑
i=0

(
(j +m+ 1)c

i

)(
(1− ε)ρ

1− ρ

)i
(1− ε)(j+m+1)c−i

+

(
(1− ρ)ε

ρ(1− ε)

)ρ(j+m+1)c (j+m+1)c∑
i=i0

(
(j +m+ 1)c

i

)(
(1− ε)ρ

1− ρ

)i
×(1− ε)(j+m+1)c−i

=

(
(1− ρ)ε

ρ(1− ε)

)ρ(j+m+1)c (j+m+1)c∑
i=0

(
(j +m+ 1)c

i

)(
(1− ε)ρ

1− ρ

)i
×(1− ε)(j+m+1)c (5.45)

UPPER BOUNDS ON THE OUTPUT ERROR BURST LENGTHS 341

where the last equality follows from

r(j) = 1− h(ρ) (5.46)

By evaluating the sum in (5.45), we obtain

E[P (Et(j))] ≤
(

(1− ρ)ε

ρ(1− ε)

)ρ(j+m+1)c(
(1− ε)ρ

1− ρ
+ 1− ε

)(j+m+1)c

=

((ρ
ε

)−ρ(1− ρ
1− ε

)−(1−ρ)
)

(5.47)

= 2−(ρ log ρ
ε+(1−ρ) log 1−ρ

1−ε)(j+m+1)c

which holds for ratesRcrit ≤ r(j) < C, whereC is the channel capacity for the BSC.
Applying (5.3) and (5.5) completes the proof of the next lemma.

Lemma 5.3 (Sphere-packing bound) Consider the ensemble E(b, c,m, T) of bi-
nary, rate R = b/c, periodically time-varying convolutional codes encoded by poly-
nomial, periodically time-varying generator matrices of memory m and period T ,
where T = O(m2). For rates r(j) given by (5.2), the average probability that an
error burst has length j + 1 when we communicate over the BSC and use maximum-
likelihood decoding is upper-bounded by the inequality

E[P (L(j))] ≤ 2−(ρ log ρ
ε+(1−ρ) log 1−ρ

1−ε+o(1))(j+m+1)c (5.48)

for j < T ,Rcrit ≤ r(j) < C, and where ρ = h−1(1−r(j)) is the Gilbert-Varshamov
parameter for the rate r(j) and Rcrit is the critical rate (5.27).

From our derivations we can also deduce the following (cf. [Gal68]):

Theorem 5.4 There exists a binary block code B(j) of rate r(j) and block length
(j + m + 1)c such that the event E(j) that B(j) is erroneously decoded, when it is
used to communicate over the BSC together with maximum-likelihood decoding, is
upper-bounded by

P (E(j)) ≤ 2−(EB(r(j))+o(1))(j+m+1)c (5.49)

where EB(·) is the block coding exponent

EB(r) =

−ρ log

(
2
√
ε(1− ε)

)
, 0 ≤ r < Rexp

R0 − r, Rexp ≤ r < Rcrit

ρ log ρ
ε + (1− ρ) log 1−ρ

1−ε , Rcrit ≤ r < C

(5.50)

and where
ρ = h−1(1− r) (5.51)

342 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

Rexp Rcrit R0 C

R0

1
2 log

(
2
√
ε(1− ε)

)

r

EB(r)

Figure 5.1 The block coding exponent EB(r) for the BSC with crossover probability
ε = 0.045, that is, R0 = 1/2.

is the Gilbert-Varshamov parameter, Rexp is the expurgation rate, and Rcrit is the
critical rate.

We call the interval [0, Rexp) the expurgation region, the interval [Rexp, Rcrit) the
random coding region, and the interval [Rcrit, C) the sphere-packing region. As we
will see later, the main exponential term of the bound in the last interval coincides
with the main exponential term of the lower bound for decoding error probability
called the sphere-packing bound.

In Fig. 5.1 we show the block coding exponent EB(r) for the BSC with crossover
probability ε = 0.045, which corresponds to R0 = 1/2. The transition points
between the expurgation, random coding, and sphere-packing regions are marked
with •.

From (5.3) it immediately follows that a convolutional code exists in the ensemble
E(b, c,m, T) such that the probability of the event Lt(j) that an error burst starting
at depth t, t ≥ 0, has length j + 1, 0 ≤ j < T , is upper-bounded by the right side of
inequality (5.49), that is,

P (L(j)) ≤ 2−(EB(r(j))+o(1))(j+m+1)c (5.52)

where EB(r(j)) and r(j) are given by (5.50) and (5.2), respectively.
We define the error burst length exponent L(`) to be

L(`)
def
=

EB(r(j))(j +m+ 1)

m
(5.53)

where
` = (j + 1)/m (5.54)

UPPER BOUNDS ON THE OUTPUT ERROR BURST LENGTHS 343

0 r R C
0

EB(r)

0.5

E0

R

EB(r)

0 2 4 6
0

0.5

`

L(`)

Figure 5.2 Geometrical interpretation of the relation between the block coding exponent
EB(r) and the error burst length exponent L(`) for the BSC with crossover probability
ε = 0.045.

Then we have the following:

Theorem 5.5 There exists a binary, rate R = b/c, periodically time-varying convo-
lutional code encoded by a polynomial, periodically time-varying generator matrix
of memory m and period T , where T = O(m2), such that the probability of a length
j + 1 error burst from a maximum-likelihood decoder when used to communicate
over the BSC is upper-bounded by

P (L(j)) ≤ 2−(L(`)+o(1))mc (5.55)

where j < T , ` = (j + 1)/m, and L(`) is the error burst length exponent given by
(5.53).

The error burst length exponent L(`) can be constructed geometrically from
the block coding exponent EB(r(j)). This construction is similar to Forney’s in-
verse concatenated construction (cf. Fig. 3.12). Consider the block coding exponent
EB(r(j)) as given in Fig. 5.2. Draw a straight line from the point (R, 0) through
(r(j), EB(r(j))). This line intersects the EB(r)-axis in the point (0, E0). From
Fig. 5.2 and (5.2) it follows that

EB(r(j))

E0
=
R− r(j)

R
= 1− r(j)

R
=

m

j +m+ 1
=

1

`+ 1
(5.56)

Thus, by combining (5.53) and (5.56) we obtain

L(`) = E0 (5.57)

as illustrated in Fig. 5.2.
In Fig. 5.3 we show the error burst length exponent L(`) for various rates for the

BSC. The transition points between the expurgation, random coding, and sphere-
packing regions are marked with •.

344 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

0 2 4 6 8 10
0

0.5

1

1.5

`

L(`)

R = 0.4

R = 0.5

R = 0.6

Figure 5.3 The error burst length exponentL(`) for various rates for the BSC with crossover
probability ε = 0.045.

R0 C
0

5

10

R

`crit

Figure 5.4 The critical length `crit for the BSC with crossover probability ε = 0.045
corresponding to R = R0 = 1/2.

The value of ` = (j + 1)/m for which L(`) achieves its minimum is called the
critical length and denoted `crit. It is the most probable (normalized) length of an
error burst. In Fig. 5.4 we show the critical length as a function of the rate R. We
notice that `crit approaches infinity whenR approaches the channel capacity. In other
words, when we communicate at rates close to the channel capacity the typical error
bursts are very long. Thus, we cannot draw any conclusions about the burst error

BOUNDS FOR PERIODICALLY TIME-VARYING CONVOLUTIONAL CODES 345

probability from the initial part of the path weight enumerator. The discontinuity
at the computational cutoff rate R0 is due to the straight line in the block coding
exponent EB(r(j)) for rates Rexp ≤ r(j) < Rcrit. For R = R0, we have E0 = R0.
Thus, the critical length makes a jump at R0 from

`crit =
R0

EB(Rexp)
− 1 =

Rexp

R0 −Rexp
for R = R0 − ε (5.58)

to
`crit =

R0

EB(Rcrit)
− 1 =

Rcrit

R0 −Rcrit
for R = R0 + ε (5.59)

Since the critical length is derived from the block coding exponent EB(r), which is a
lower bound on the “true” error exponent, it follows that the critical length shown in
Fig. 5.4 is a lower bound on the “true” value. However, in Section 5.3 we show that
in the sphere-packing region the block coding exponent is tight. Hence, `crit assumes
the correct value for rates R0 < R < C.

5.2 BOUNDS FOR PERIODICALLY TIME-VARYING CONVOLUTIONAL
CODES

In order to upper-bound the burst error probability via the distribution of the error burst
lengths for the ensemble E(b, c,m, T), we have to restrict the burst error probability
to those error events caused by bursts of lengths that are at most T . Denote this
restricted burst error probability by P T

B . Then we use the union bound and obtain
from (5.52) that

P T
B ≤

T−1∑
j=0

P (L(j))

≤ T2−(EB(r(jmin))+o(1))(jmin+m+1)c (5.60)

where the real number jmin is the value of j (here we allow j to be any real number)
that minimizes the exponent of the right-hand side of (5.52).

Let us introduce
f(j) = EB(r(j))(j +m+ 1)c (5.61)

Then we have
P T

B ≤ T2−f(jmin)+o(1)(jmin+m+1)c (5.62)

In the expurgation region, that is, for rates 0 ≤ r(j) < Rexp, we have

f(j) = −ρ(j +m+ 1)c log z (5.63)

where z is the Bhattacharyya parameter (4.20) and ρ is the Gilbert-Varshamov pa-
rameter, that is,

r(j) =
j + 1

j +m+ 1
R = 1− h(ρ)

= 1 + ρ log ρ+ (1− ρ) log(1− ρ) (5.64)

346 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

Regarding j as a continuous variable and taking the derivatives of (5.63) and (5.64),
we obtain (notice that ρ is a function of j)

f ′(j) = −ρ′(j +m+ 1)c log z − ρc log z (5.65)

and
r′(j) =

m

(j +m+ 1)2
R = ρ′ log

ρ

1− ρ
(5.66)

Since
f ′(jmin) = 0 (5.67)

we obtain from (5.65) and (5.66) that

ρ = −ρ′(jmin +m+ 1)

= − mR

(jmin +m+ 1) log ρ
1−ρ

(5.68)

where
ρ = 1− h−1(r(jmin)) (5.69)

Hence, by inserting (5.68) into (5.63) we obtain

f(jmin) = −ρ(jmin +m+ 1)c log z

=
mcR

log(ρ
1−ρ)

log z (5.70)

It is beneficial to introduce a parameter s, 1 < s <∞, such that

ρ =
z1/s

1 + z1/s
(5.71)

(If 0 < ρ < z
1+z , then we can always find such an s.) Then we obtain from (5.68)

that

ρ log
ρ

1− ρ
= − mR

jmin +m+ 1
= r(jmin)−R

= 1 + ρ log ρ+ (1− ρ) log(1− ρ)−R (5.72)

where the last equality follows from (5.64). Using (5.71), we can rewrite (5.72) as

R = 1 + log(1− ρ) = 1− log(1 + z1/s) (5.73)

By inserting (5.71) into (5.70), we obtain

f(jmin)/mc = sR = s(1− log(1 + z1/s)) (5.74)

where the last equality follows from (5.73).
Next, we introduce the expurgation function

Gexp(s)
def
= s(1− log(1 + z1/s)) (5.75)

BOUNDS FOR PERIODICALLY TIME-VARYING CONVOLUTIONAL CODES 347

where 1 < s <∞ and z is the Bhattacharyya parameter. Hence, in the expurgation
region we have the parametric dependence

f(jmin)/mc = Gexp(s)
R = Gexp(s)/s

(5.76)

where 1 < s <∞ or, equivalently, 0 < R < R0.
From (5.63), (5.71), and (5.76) it follows that

jmin +m+ 1 =
−Gexp(s)(1 + z1/s)m

z1/s log z

= − (1− log(1 + z1/s))(1 + z1/s)m

z1/s log z1/s
= −R(1 + z1/s)m

z1/s log z1/s
(5.77)

From (5.75) and (5.76) we have

z1/s = 21−R − 1 (5.78)

which we insert into (5.77) and obtain

jmin + 1

m
= −R21−R + (21−R − 1) log(21−R − 1)

(21−R − 1) log(21−R − 1)
, 0 < R < R0 (5.79)

In particular, when R→ R0 or, equivalently, when s→ 1, we have

lim
s→1

jmin + 1

m
= −

(1 + z) log 1+z
2 + z log z

z log z
=

Rexp

R0 −Rexp
(5.80)

which coincides with (5.58).
In the random coding region, that is, for rates Rexp ≤ r(j) < R0, we have

(cf. (5.50))

f(j) = (R0 − r(j))(j +m+ 1)c

= R0mc− r(j)(j +m+ 1)c+ (j + 1)R0c

= R0mc− (j + 1)Rc+ (j + 1)R0c

= R0mc+ (j + 1)(R0 −R)c (5.81)

The minimum value of f(j) is obtained for j = 0. Hence, for the random coding
region we have

f(0)/mc = R0 + (R0 −R)/m (5.82)

This bound is valid for the same region of rates R as the expurgation bound, viz.,
0 ≤ R < R0, and since it is weaker than (5.76) it can be omitted.

Finally, we consider the sphere-packing region, that is, rates R0 ≤ r(j) < C,
where

f(j) =

(
ρ log

ρ

ε
+ (1− ρ) log

1− ρ
1− ε

)
(j +m+ 1)c (5.83)

348 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

Then the minimizing value of j, viz., jmin, is the root of

f ′(jmin) =

(
ρ′(jmin +m+ 1)c log

ρ(1− ε)
(1− ρ)ε

+

(
ρ log

ρ

ε
+ (1− ρ) log

1− ρ
1− ε

)
c

)
ln 2 = 0 (5.84)

where ρ′ satisfies (5.66). Using (5.84) we can rewrite (5.83) as

f(jmin) = −ρ′(jmin +m+ 1)2c log
ρ(1− ε)
(1− ρ)ε

= −Rmc
log ρ(1−ε)

(1−ρ)ε

log ρ
1−ρ

(5.85)

where the last equality follows from (5.66).
Again it is beneficial to introduce a parameter s. Here we choose s, 0 ≤ s ≤ 1,

such that

ρ =
ε

1
1+s

ε
1

1+s + (1− ε)
1

1+s

(5.86)

or, equivalently,

log
ρ

1− ρ
=

1

1 + s
log

ε

1− ε
(5.87)

Then, from (5.85) we obtain

f(jmin)/mc = sR (5.88)

From (5.84) it follows that

ρ′(jmin +m+ 1) = −
ρ log ρ

ε + (1− ρ) log 1−ρ
1−ε

log ρ(1−ε)
(1−ρ)ε

(5.89)

We insert (5.86) inside the logarithms in the numerator of (5.89), split the denomi-
nator, and obtain

ρ′(jmin +m+ 1) = −
ρ log ε

− s
1+s

ε
1

1+s+(1−ε)
1

1+s
+ (1− ρ) log (1−ε)−

s
1+s

ε
1

1+s+(1−ε)
1

1+s

log ρ
1−ρ − log ε

1−ε

= −
− s

1+s (ρ log ε+ (1− ρ) log(1− ε))− log
(
ε

1
1+s + (1− ε)

1
1+s

)
log ρ

1−ρ − (1 + s) log ρ
1−ρ

(5.90)

where we used (5.87) in order to simplify the denominator. From (5.86) it follows
that

log ε = (1 + s)
(

log ρ+ log
(
ε

1
1+s + (1− ε)

1
1+s

))
(5.91)

BOUNDS FOR PERIODICALLY TIME-VARYING CONVOLUTIONAL CODES 349

and

log(1− ε) = (1 + s)
(

log(1− ρ) + log
(
ε

1
1+s + (1− ε)

1
1+s

))
(5.92)

Inserting (5.91) and (5.92) into (5.90) yields

ρ′(jmin +m+ 1)

=
−s(ρ log ρ+ (1− ρ) log(1− ρ))− (1 + s) log

(
ε

1
1+s + (1− ε)

1
1+s

)
s log ρ

1−ρ

=
−(ρ log ρ+ (1− ρ) log(1− ρ))− 1+s

s log
(
ε

1
1+s + (1− ε)

1
1+s

)
log ρ

1−ρ
(5.93)

Equality (5.66) can be rewritten as

ρ′(jmin +m+ 1) =
mR

(jmin +m+ 1) log ρ
1−ρ

(5.94)

and from (5.64) it follows that

R− r(j) =
mR

j +m+ 1
(5.95)

Combining (5.94) and (5.95) yields

ρ′(jmin +m+ 1) =
R− r(j)
log ρ

1−ρ

=
R− 1− ρ log ρ− (1− ρ) log(1− ρ)

log ρ
1−ρ

(5.96)

where the last equality follows from (5.64). From (5.93) and (5.96) we conclude that

R = 1− 1 + s

s
log
(
ε

1
1+s + (1− ε)

1
1+s

)
(5.97)

Let us define the Gallager function for the BSC to be

G(s) = s− (1 + s) log
(
ε

1
1+s + (1− ε)

1
1+s

)
(5.98)

Then, for the sphere-packing region we obtain from (5.88) and (5.97) the following
parametric expression:

f(jmin)/mc = G(s)
R = G(s)/s

(5.99)

where 0 < s ≤ 1. (The existence of a solution for all R, 0 ≤ R < C, of the second
equation in (5.99) follows from the properties of G(s) shown in Problem 5.1.)

350 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

From (5.83), (5.97), (5.98), and (5.99) it follows that

jmin +m+ 1

=
G(s)m

ρ log ρ
ε + (1− ρ) log 1−ρ

1−ε

= − sRm

ρ log ε
s

1+s + (1− ρ) log(1− ε)
s

1+s + log
(
ε

1
1+s + (1− ε)

1
1+s

)
= − Rm

ρ log ρ+ (1− ρ) log(1− ρ) + 1+s
s log

(
ε

1
1+s + (1− ε)

1
1+s

) (5.100)

or, equivalently,

jmin + 1

m
= − ρ log ρ+ (1− ρ) log(1− ρ) + 1

ρ log ρ+ (1− ρ) log(1− ρ) + 1−R
(5.101)

where ρ is defined by (5.86). In particular, for R = R0 we have

jmin + 1

m
=

Rcrit

R0 −Rcrit
(5.102)

which coincides with (5.59).
From (5.60) and (5.61) it follows that the restricted burst error probability can be

upper-bounded by
P T

B ≤ T2−f(jmin)+o(1)(j+m+1)c (5.103)

By choosing T = O(m2), say, we can summarize our efforts in the following:

Theorem 5.6 There exists a binary rate R = b/c, periodically time-varying convo-
lutional code encoded by a polynomial, periodically time-varying generator matrix
of memory m and period T , where T = O(m2), such that the burst error probability
due to error bursts of lengths at most T from a maximum-likelihood decoder when
used to communicate over the BSC is upper-bounded by

P T
B ≤ 2−(EC(R)+o(1))mc (5.104)

where

EC(R) =

{
Gexp(s)

R = Gexp(s)/s,
1 ≤ s <∞, 0 ≤ R ≤ R0{

G(s)

R = G(s)/s,
0 < s ≤ 1, R0 ≤ R < C

(5.105)

is the convolutional coding exponent for the expurgation and sphere-packing regions,
respectively, and where R0 is the computational cutoff rate (5.6), Gexp(s) is the
expurgation function (5.75), G(s) is the Gallager function (5.98), and C is the
channel capacity for the BSC.

BOUNDS FOR PERIODICALLY TIME-VARYING CONVOLUTIONAL CODES 351

R0 C

R0

− 1
2
log
(
2
√
ε(1−ε)

)

R

EC(R)

Figure 5.5 The convolutional coding exponent EC(R) for the BSC with ε = 0.045, that is,
R0 = 1/2.

From (5.73) it follows that R→ 0 when s→∞. Hence, from (5.75) we obtain

EC(0) = −1

2
log z (5.106)

where z is the Bhattacharyya parameter (4.20). In Fig. 5.5 we show the convolutional
coding exponentEC(R) for the BSC with ε = 0.045, which corresponds toR0 = 1/2.

Forney [For74] showed that the convolutional coding exponent can easily be
constructed from the block coding exponent and vice versa. Let r denote the rate of
the block code B that gives the largest contribution to P T

B , that is, r = r(jmin). Then,
for the expurgation region we combine (5.64), (5.71), (5.73), (5.75), and (5.76) and
obtain

Gexp(s)
(

1− r

R

)
= sR− (1− h(ρ))s

=
log z

log ρ
1−ρ

(log(1− ρ) + h(ρ)) = −ρ log z

= EB(r) (5.107)

where 0 ≤ r < Rexp and 0 ≤ R < R0.

352 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

Rexp Rcrit R0 C

R0

− 1
2
log
(
2
√
ε(1−ε)

)

EB(r)

EC(R)

r,R

EB(r), EC(R)

Figure 5.6 Geometrical construction ofEC(R) fromEB(r) and vice versa for the BSC with
crossover probability ε = 0.045.

Similarly, for the sphere-packing region we combine (5.51), (5.86), (5.87), (5.98),
and (5.99) and obtain

G(s)
(

1− r

R

)
= G(s)

(
1− (1− h(ρ))s

G(s)

)
= −(1 + s) log

(
ε

1
1+s + (1− ε)

1
1+s

)
+ h(ρ)s

= − log ε+ (1 + s) log ρ+ h(ρ)s

= − log ε+
log ε

1−ε
log ρ

1−ρ
log ρ+ h(ρ)

(
log ε

1−ε
log ρ

1−ρ
− 1

)
= ρ log

ρ

ε
+ (1− ρ) log

1− ρ
1− ε

= EB(r) (5.108)

where Rcrit ≤ r < C and R0 ≤ R < C.
Hence, it follows from (5.107) and (5.108) that the convolutional and block coding

exponents are related as

EC(R) =
R

R− r
EB(r) (5.109)

The corresponding geometrical construction is shown in Fig. 5.6. Notice that the
random coding region for the block coding exponent collapses into the point (R0, R0)
on the EC(R) curve.

In Section 4.2 we showed that the free distance is the principal determiner for the
error probability when we use maximum-likelihood decoding at large signal-to-noise
ratios, and in Section 3.5 we showed that the free distance for convolutional codes
encoded by systematic, polynomial, encoding matrices is off by a factor (1 − R)

BOUNDS FOR PERIODICALLY TIME-VARYING CONVOLUTIONAL CODES 353

R0 C

R0

− 1
2
log
(
2
√
ε(1−ε)

)

Esys
C (R)

EC(R)

R

Esys
C (R), EC(R)

Figure 5.7 The convolutional coding exponents Esys
C (R) and EC(R) for the BSC with

ε = 0.045.

compared to the free distance for convolutional codes encoded by nonsystematic
generator matrices. In the proof of Heller’s bound (Theorem 3.22), the “effective”
length when we used systematic, polynomial, encoding matrices was only (m(1 −
R)+ i)c instead of (m+ i)c for nonsystematic generator matrices. We have the same
reduction in the derivation of the corresponding upper bound on the error probability.
Hence, we have the following:

Theorem 5.7 There exists a binary rateR = b/c, periodically time-varying convolu-
tional code encoded by a systematic, polynomial, periodically time-varying encoding
matrix of memory m and period T , where T = O(m2), such that the burst error
probability due to error bursts of lengths at most T from a maximum-likelihood
decoder when used to communicate over the BSC is upper-bounded by

P T
B ≤ 2−(E

sys
C (R)+o(1))mc, 0 ≤ R < C (5.110)

where
Esys
C (R) = EC(R)(1−R) (5.111)

is the convolutional coding exponent for convolutional codes encoded by systematic,
polynomial encoding matrices.

In Fig. 5.7 we compare the convolutional coding exponents Esys
C (R) and EC(R)

for the BSC with ε = 0.045 which corresponds to R0 = 1/2.
We will conclude this section by upper-bounding the bit error probability via the

distribution of the error burst lengths for the ensemble E(b, c,m, T). Thus, we have
to restrict the bit error probability to those events caused by bursts of lengths that are
at most T . We denote this restricted bit error probability by P T

B .

354 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

Since an error burst of length j + 1 can cause at most (j + 1)b bit errors, we have

P T
B ≤

T−1∑
j=0

(j + 1)b P (L(j)) (5.112)

Combining (5.112) and (5.49), we obtain

P T
B ≤

T−1∑
j=0

(j + 1)b 2−(EB(r(j))+o(1))(j+m+1)c (5.113)

Now we rewrite (j + 1)b as

(j + 1)b = 2log((j+1)b) = 2o(1)(j+m+1) (5.114)

which is inserted into (5.113). Thus, the restricted bit error probability is upper-
bounded by

P T
B ≤

T−1∑
j=0

(j + 1)b 2−(EB(r(j))+o(1))(j+m+1)c

≤ T2−(EB(r(jmin))+o(1))(jmin+m+1)c (5.115)

which coincides with (5.60). Hence, for the restricted bit error probability we obtain
the following as a counterpart to Theorem 5.6:

Theorem 5.8 There exists a binary rate R = b/c, periodically time-varying convo-
lutional code encoded by a polynomial, periodically time-varying generator matrix
of memory m and period T , where T = O(m2), such that the bit error probability
due to error bursts of lengths at most T from a maximum-likelihood decoder when
used to communicate over the BSC is upper-bounded by

P T
B ≤ 2−(EC(R)+o(1))mc, 0 ≤ R < C (5.116)

where the convolutional coding exponent EC(R) is given by (5.105).

As a counterpart to Theorem 5.7 we have the following:

Theorem 5.9 There exists a binary rateR = b/c, periodically time-varying convolu-
tional code encoded by a systematic, polynomial, periodically time-varying encoding
matrix of memory m and period T , where T = O(m2), such that the bit error prob-
ability due to error bursts of lengths at most T from a maximum-likelihood decoder
when used to communicate over the BSC is upper-bounded by

P T
B ≤ 2−(E

sys
C (R)+o(1))mc, 0 ≤ R < C (5.117)

where the convolutional coding exponent Esys
C (R) is given by (5.111).

Asymptotically, for increasing memory, the upper bound on the restricted bit error
probability decreases exponentially with the same exponent as the upper bound on
the restricted burst error probability.

LOWER ERROR PROBABILITY BOUNDS FOR CONVOLUTIONAL CODES 355

5.3 LOWER ERROR PROBABILITY BOUNDS FOR CONVOLUTIONAL
CODES

As a counterpart to our upper bounds on the burst and bit error probabilities, we will
derive lower bounds; that is, we will be concerned with finding the minimum burst
and bit error probabilities any rate R convolutional code of memory m must exceed.
First, we need the corresponding bound for block codes. For simplicity we study
only the BSC.

Consider an arbitrary rate r binary block code of block length N and assume that
it is used to communicate over the BSC with crossover probability ε. The number of
codewords is

M = 2rN (5.118)

Our goal is to obtain a lower bound on error probability P (E), where

P (E) = 1− P (E)
def
= 1−min

i

{
P
(
E
∣∣ i)} = max

i
{P (E | i)} (5.119)

where P
(
E
∣∣ i) and P (E | i) denote the probability of correct and erroneous decod-

ing, respectively, when the codeword v(i), i = 0, 1, . . . ,M − 1, is transmitted. Let
Di denote the decoding region for the ith codeword, that is,

Di
def
=
{
r
∣∣∣ r is decoded as v(i)

}
(5.120)

i = 0, 1, . . . ,M − 1. Then it follows that

P (E | i) =
∑
r∈Di

P
(
r
∣∣∣ v(i)

)
(5.121)

Clearly,

min
i
{|Di|} ≤

2N

M
= 2(1−r)N (5.122)

For the BSC we have

P
(
r
∣∣∣ v(i)

)
= εdH(r | v(i))(1− ε)N−dH(r | v(i)) (5.123)

where dH(r,v(i)) is the Hamming distance between the received word r and the ith
codeword v(i).

The conditional probability of receiving r when the ith codeword is transmitted,
P
(
r
∣∣ v(i)), is monotonically increasing with decreasing dH(r,v(i)). Hence, in

order to achieve its maximal value, the sum (5.121) should be taken over those
received words r that are equal to v(i), at Hamming distance 1 from v(i), at Hamming
distance 2 from v(i), and so on until we have reached |Di| terms.

Let k0 denote the largest integer such that

k0−1∑
k=0

(
N

k

)
≤ |Di| (5.124)

356 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

and let

0 ≤ Ai = |Di| −
k0−1∑
k=0

(
N

k

)
<

(
N

k0

)
(5.125)

Then for a given value of |Di|, the maximum possible value of P
(
E
∣∣ i) will be

P
(
E
∣∣ i) =

k0−1∑
k=0

(
N

k

)
εk(1− ε)N−k +Aiε

k0(1− ε)N−k0 (5.126)

or, equivalently, since
N∑
k=0

(
N

k

)
εk(1− ε)N−k = 1 (5.127)

the smallest possible value of the error probability P (E | i) will be

P (E | i) = 1− P
(
E
∣∣ i)

=
N∑

k=k0

(
N

k

)
εk(1− ε)N−k −Aiεk0(1− ε)N−k0

>

(
N

k0 + 1

)
εk0+1(1− ε)N−k0−1 (5.128)

where the inequality follows from (5.125).
From (5.122) and (5.125) we obtain

2(1−r)N ≥ min
i
{|Di|} ≥

k0−1∑
k=0

(
N

k

)
>

(
N

k0 − 1

)
(5.129)

By combining (5.119), (5.128), and (5.129) we obtain the following parametric lower
bound of error probability for rate r block codes:

2(1−r)N >
(
N

k0−1

)
P (E) >

(
N

k0+1

)
εk0+1(1− ε)N−k0−1

(5.130)

Remark: The bound (5.130) is known as the sphere-packing bound for the following
reason. The set of sequences at distance k0 or less from a codeword can be interpreted
as a sphere of radius k0 around that codeword. If we could choose codewords such
that the set of spheres of radius k0 around the different codewords exhausted the
space of binaryN -tuples and intersected each other only on the outer shells of radius
k0, then the error probability would be lower-bounded by (5.130).

To obtain a more illuminative form of our lower bound, we need the following:

LOWER ERROR PROBABILITY BOUNDS FOR CONVOLUTIONAL CODES 357

Lemma 5.10 The binomial coefficient
(
N
k

)
satisfies the inequality(

N

k

)
≥

√
N

8k(N − k)
2h(

k
N)N (5.131)

where h(·) is the binary entropy function (1.22).

Proof : The lemma follows from a refinement of Stirling’s formula [Fel68]:
√

2πnnne−ne(12n+1)−1

< n! <
√

2πnnne−ne(12n)−1

(5.132)

Hence, we have(
N

k

)
=

N !

k!(N − k)!

>

√
N

2πk(N − k)

NN

kk(N − k)N−k
e(12N+1)−1−(12k)−1−(12(N−k))−1

(5.133)

We note that
−(12k)−1 − (12(N − k))−1 ≥ −1/9, (5.134)

except for k = 1, N − k = 1; k = 1, N − k = 2; and k = 2, N − k = 1. Thus, with
these exceptions,

e(12N+1)−1−(12k)−1−(12(N−k))−1

> e−1/9 >

√
2π

8
(5.135)

and (
N

k

)
>

√
N

2πk(N − k)

√
2π

8
2(− k

N log k
N−(1− k

N) log(1− k
N))N

=

√
N

8k(N − k)
2h(

k
N)N (5.136)

For the exceptions the inequality can easily be verified numerically; in fact, for
k = N − k = 1 we have equality.

We have k0 < N/2, and, hence, we can rewrite (5.131) as(
N

k0

)
≥ 1√

8ρ(1− ρ)N
2h(ρ)N (5.137)

where ρ = k0/N < 1/2. Then from (5.130) we obtain

1− r > h(ρ−1)− 1

2N
log(8ρ−1(1− ρ−1)N)

= h(ρ+ o(1)) + o(1) (5.138)

358 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

where
ρ−1 = (k0 − 1)/N = ρ− 1/N (5.139)

and

− 1

N
logP (E) < ρ+1 log

ρ+1

ε
+ (1− ρ+1) log

1− ρ+1

1− ε
+

1

2N
log(8ρ+1(1− ρ+1)N)

= (ρ+ o(1)) log
ρ+ o(1)

ε
+ (1− ρ+ o(1)) log

1− ρ+ o(1)

1− ε
+ o(1) (5.140)

where
ρ+1 = (k0 + 1)/N = ρ+ 1/N (5.141)

Both h(ρ) and ρ log ρ
ε + (1− ρ) log 1−ρ

1−ε are continuously differentiable functions of
ρ. It follows from (5.138) that

ρ > h−1(1− r) + o(1) (5.142)

When N →∞ we can always choose ρ to be arbitrarily close to h−1(1− r), and it
follows that

− 1

N
P (E) < ρ log

ρ

ε
+ (1− ρ) log

1− ρ
1− ε

+ o(1) (5.143)

where
ρ = 1− h−1(r) (5.144)

Thus, we have proved the next theorem.

Theorem 5.11 For any rate r block code B with block length N that is used to
communicate over the BSC with crossover probability ε, the error probability is
lower-bounded by

P (E) > 2−(Esph
B (r)+o(1))N (5.145)

where Esph
B (r) is the block sphere-packing exponent

Esph
B (r) = ρ log

ρ

ε
+ (1− ρ) log

1− ρ
1− ε

(5.146)

and ρ is the Gilbert-Varshamov parameter (5.144).

We are now well prepared to derive the corresponding lower bound on the burst
error probability for convolutional codes.

Lemma 5.12 For any rateR = b/c convolutional code encoded by a generator matrix
of memorym and overall constraint length ν = bm that is used to communicate over
the BSC with crossover probability ε, the burst error probability is lower-bounded by

PB > 2−(Esph
C (R)+o(1))mc (5.147)

LOWER ERROR PROBABILITY BOUNDS FOR CONVOLUTIONAL CODES 359

where Esph
C (R) is the convolutional sphere-packing exponent

Esph
C (R) = G(s0) (5.148)

s0 satisfies
R = G(s0)/s0 (5.149)

and 0 ≤ R < C.

Proof : Theorem 5.11 states that for any ε > 0 there exists a block length Nε such
that for any N > Nε we have

P (E) > 2−(Esph
B (r)+ε)N (5.150)

Analogously, Lemma 5.12 states that for any ε > 0 there exists a memory mε such
that for any m > mε we have

PB > 2−(Esph
C (R)+ε)mc (5.151)

Now suppose that inequality (5.151) does not hold. Then as a consequence there
exists a certain ε such that for any large enough mε there exists a memory m > mε

such that
PB < 2−(Esph

C (R)+2ε)mc (5.152)

Then we terminate this convolutional code (with very good burst error probability
according to (5.152)) into a block code B of rate r such that

Esph
C (R) =

R

R− r
Esph
B (r) (5.153)

and that the block length is

N =
Esph
C (R)

Esph
B (r)

mc (5.154)

It is easily shown that such a rate r exists for all R, 0 ≤ R < C.
Next we will show that this block code has such good error probability that it

violates (5.150) and thus cannot exist.
Let us choose mε such that

Esph
C (R)− Esph

B (r)

Esph
B (r)

mε < 2εmεc (5.155)

Then for any m > mε we have the number of information subblocks

j + 1
def
=

(
Esph
C (R)

Esph
B (r)

− 1

)
m < 2εmc (5.156)

360 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

The error probability P (E) for our block code B is equal to the probability that we
will have an error burst starting in at least one of the j + 1 positions. Thus, there
exists an m > mε such that

P (E) < (j + 1)PB < (j + 1)2−(Esph
C (R)+2ε)mc (5.157)

where the last inequality follows from (5.152). Combining (5.156) and (5.157) yields

P (E) < 2−(Esph
C (R)+ε)mc (5.158)

Inserting (5.154) into (5.158) gives

P (E) < 2−(Esph
B (r)+εEsph

B (r)/Esph
C (R))N

= 2−(Esph
B (r)+ε′)N (5.159)

where

ε′ =
εEsph
B (r)

Esph
C (R)

(5.160)

Thus, assuming that inequality (5.151) does not hold, we have constructed a block
code whose error probability satisfies (5.159), which contradicts Theorem 5.11.
Hence, we conclude that inequality (5.151) must hold and the proof is complete.

Next we will derive a simple lower bound that is much better than the bound in
Lemma 5.12 for low rates.

From Heller’s asymptotic bound (Corollary 3.23) it follows that for any codeword
there always exists a codeword at distance

d =

(
1

2
+ o(1)

)
(m+ 1)c

=

(
1

2
+ o(1)

)
mc (5.161)

or less. Assume that such a codeword is transmitted over the BSC with crossover
probability ε. Then, assuming that d is even, the burst error probability is lower-
bounded by the probability that an error is caused by a codeword of weight d, that
is,

PB >
1

2

(
d

d/2

)
εd/2(1− ε)d−d/2 +

d∑
i=d/2+1

(
d

i

)
εi(1− ε)d−i

>
1

2

(
d

d/2

)
εd/2(1− ε)d/2

>
1

2

√
d

8(d/2)(d− d/2)
2h(

d/2
d)dεd/2(1− ε)d/2

=
1

2
√

2d

(
2
√
ε(1− ε)

)d
= 2(log z+o(1))d

= 2(1
2 log z+o(1))mc (5.162)

LOWER ERROR PROBABILITY BOUNDS FOR CONVOLUTIONAL CODES 361

where the last inequality follows from Lemma 5.1 and z is the Bhattacharyya param-
eter (4.20).

It can be shown (Problem 5.2) that (5.162) also holds for d odd. Thus, we have
the following:

Lemma 5.13 For any rate R = b/c convolutional code C encoded by a generator
matrix of memory m and overall constraint length ν = bm that is used to com-
municate over the BSC with crossover probability ε, the burst error probability is
lower-bounded by

PB > 2(1
2 log z+o(1))mc (5.163)

where z is the Bhattacharyya parameter (4.20).

In the sphere-packing region,R0 ≤ R < C, in Section 5.2 we restricted the values
of s to 0 < s ≤ 1. Here we extend the permissible values of s to include s > 1. Then
it follows from (5.86) and (5.97) that ρ → 1/2 and R → 0 when s → ∞. Then,
from (5.108) we obtain

Esph
C (0) = − log z (5.164)

and, hence, at R = 0 the exponent Esph
C (0) is twice the exponent in Lemma 5.13.

We summarize our results in the following:

Theorem 5.14 For any rate R = b/c convolutional code C encoded by a generator
matrix of memory m and overall constraint length ν = bm that is used to com-
municate over the BSC with crossover probability ε, the burst error probability is
lower-bounded by

PB > 2−(Elow
C (R)+o(1))mc (5.165)

where Elow
C (R) is the convolutional lower-bound exponent

Elow
C (R) = min

{
Esph
C (R),−1

2
log
(

2
√
ε(1− ε)

)}
(5.166)

and 0 ≤ R < C.

From (5.105) and (5.108) it follows that in the sphere-packing regionR0 ≤ R < C
the convolutional lower-bound exponent Elow

C (R) is identical to the convolutional
coding exponent EC(R). Hence, in this region the convolutional coding exponent
is asymptotically optimal. In Fig. 5.8 we show the convolutional coding and lower-
bound exponents for our upper and lower bounds.

In order to lower-bound the bit error probability we return to (4.38), that is,

Pb = lim
J→∞

∑J−1
j=0 Ij

b
∑J−1
j=0 (Nj + Lj)

with probability 1 (5.167)

where the jth burst contains Ij errors, is of length Lj , and is separated from the
previous burst by Nj b-tuples.

362 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

R0 C

R0

− 1
2
log
(
2
√
ε(1−ε)

)

− log
(
2
√
ε(1−ε)

)

E low
C (R)

EC(R)

R

E low
C (R), EC(R)

Figure 5.8 The convolutional coding exponent EC(R) and the lower-bound exponent E low
C

for the BSC with crossover probability ε = 0.045.

Since according to our definition an error burst cannot have more than m consec-
utive error-free b-tuples, it follows that

Ij ≥
Lj

m+ 1
(5.168)

By combining (5.167) and (5.168), we can lower-bound the bit error probability as
follows:

Pb ≥ lim
J→∞

∑J−1
j=0 Lj

b(m+ 1)
∑J−1
j=0 (Nj + Lj)

=
limJ→∞

1
J

∑J−1
j=0 Lj

b(m+ 1)
(

limJ→∞
1
J

∑J−1
j=0 Nj + limJ→∞

1
J

∑J−1
j=0 Lj

)
=

E[L]

b(m+ 1)(E[N] + E[L])

≥ 1

b(m+ 1)(E[N] + 1)
with probability 1 (5.169)

where the last inequality follows from the fact that the error burst length is lower-
bounded by 1.

Next we return to the burst error probability which can be expressed as the limit
of the ratio between the number of error bursts and the number of nodes in which an

GENERAL BOUNDS FOR TIME-VARYING CONVOLUTIONAL CODES 363

error burst could have started, that is (cf. (4.43)),

Pb = lim
J→∞

J

J +
∑J−1
j=0 (Nj −m)

=
1

1 + limJ→∞
1
J

∑J−1
j=0 Nj −m

=
1

E[N] + 1−m
with probability 1 (5.170)

Equation (5.170) can be rewritten as

1

E[N] + 1
=

PB

PBm+ 1
≥ PB

m+ 1
(5.171)

where we used PB ≤ 1 to obtain the inequality.
Combining (5.169) and (5.171) yields

Pb ≥
PB

b(m+ 1)2
= PB2− log(b(m+1)2) = PB2−o(1)mc (5.172)

Finally, we lower-bound PB by (5.165) and obtain the following:

Theorem 5.15 For any rate R = b/c convolutional code C encoded by a gener-
ator matrix of memory m and overall constraint length ν = bm that is used to
communicate over the BSC with crossover probability ε, the bit error probability is
lower-bounded by

Pb > 2
−
(
Elow
C (R)+o(1)

)
mc (5.173)

where Elow
C (R) is the convolutional lower-bound exponent given by (5.166) and

0 ≤ R < C.

Asymptotically, for increasing memory, the lower bound on the bit error probabil-
ity decreases exponentially with the same exponent as the lower bound on the burst
error probability.

5.4 GENERAL BOUNDS FOR TIME-VARYING CONVOLUTIONAL
CODES

In Sections 5.1 and 5.2, we studied the ensemble of periodically time-varying con-
volutional codes when used to communicate over the BSC. In this section we will
consider a more general channel, viz., the binary-input, q-ary output discrete mem-
oryless channel (DMC). We need a more general ensemble, viz., the ensemble of
(nonperiodically) time-varying convolutional codes. For this ensemble we define

PB
def
= lim

T→∞

1

T

T−1∑
t=0

P

T−1⋃
j=0

Lt(j)

 ≤ lim
T→∞

1

T

T−1∑
t=0

T−1∑
j=0

P (Lt(j)) (5.174)

where P (Lt(j)) is the probability that a burst starting at depth t has length j + 1.

364 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

Consider the situation when we use a convolutional code together with maximum-
likelihood (ML) decoding to communicate over a binary-input, q-ary output DMC
with input v and output r and transition probabilities P (r | v).

First we will obtain an upper bound on the decoding error probability P2(E) when
the code consists of only two codewords. This simple case is both nontrivial and
interesting.

LetP2 (E | i) denote the conditional error probability given that the codeword v(i),
i = 0, 1, is transmitted, and let Di denote the decoding region for the ith codeword,
that is,

Di
def
=
{
r
∣∣∣ r is decoded as v(i)

}
(5.175)

Then it follows that

P2 (E | i) =
∑
r 6∈Di

P
(
r
∣∣∣ v(i)

)
(5.176)

Although (5.176) appears to be very simple, it will be most useful to have an upper
bound on the error probability that is independent of i. Hence, we multiply each term
of the sum of (5.176) by

(
P
(
r
∣∣∣ v(i)

)
/P
(
r
∣∣∣ v(i)

))λ
where 0 < λ ≤ 1 and i denotes the binary complement of i. Since we as-
sume maximum-likelihood decoding, it follows that our estimate v̂ = v(i), that
is, r ∈ Di, if P

(
r
∣∣ v(i)

)
> P

(
r
∣∣∣ v(i)

)
(ties are resolved arbitrarily) or, that

v̂ 6= v(i), that is, r 6∈ Di, if P
(
r
∣∣ v(i)

)
< P

(
r
∣∣∣ v(i)

)
. In other words, the ratio(

P
(
r
∣∣∣ v(i)

)
/P
(
r
∣∣ v(i)

))λ
is at most 1 when r ∈ Di and at least 1 when r 6∈ Di.

Hence, we obtain the upper bound

P2 (E | i) ≤
∑
r 6∈Di

P
(
r
∣∣∣ v(i)

)(
P
(
r
∣∣∣ v(i)

)
/P
(
r
∣∣∣ v(i)

))λ
=
∑
r 6∈Di

(
P
(
r
∣∣∣ v(i)

))λ (
P
(
r
∣∣∣ v(i)

))1−λ

<
∑
r

(
P
(
r
∣∣∣ v(i)

))λ (
P
(
r
∣∣∣ v(i)

))1−λ
(5.177)

Let λ = 1/2; then the last sum in the bound (5.177) is independent of the
transmitted codeword. Hence, we have

P2(E) = P2 (E | 0) = P2 (E | 1) <
∑
r

√
P
(
r
∣∣ v(0)

)
P
(
r
∣∣ v(1)

)
(5.178)

GENERAL BOUNDS FOR TIME-VARYING CONVOLUTIONAL CODES 365

Since the channel is memoryless we can simplify (5.178):

P2(E) <
∑
r1

∑
r2

· · ·
√∏

j

P (rj | v(0)
j)P (rj | v(1)

j)

=
∏
j

∑
r

√
P (r | v(0)

j)P (r | v(1)
j) (5.179)

where ∑
r

√
P (r | v(0)

j)P (r | v(1)
j) = 1 for v(0)

j = v
(1)
j (5.180)

Let d denote the Hamming distance between the two codewords, that is,

d = dH

(
v(0),v(1)

)
(5.181)

We have now proved the following:

Theorem 5.16 (Bhattacharyya bound) When using two codewords for communi-
cation over a binary-input DMC with transition probabilitiesP (r | v) and maximum-
likelihood decoding, the decoding error probability is upper-bounded by

pd <

(∑
r

√
P (r | 0)P (r | 1)

)d
(5.182)

where d is the Hamming distance between the two codewords.

From Theorem 5.16 follows immediately the Bhattacharyya bound for the BSC
(4.20).

EXAMPLE 5.1

Consider the binary-input, 8-ary output DMC given in Example 4.2. For this
channel∑
r

√
P (r | 0)P (r | 1)

=
√

0.434 · 0.002 + · · ·+
√

0.002 · 0.434

= 2
(√

0.434 · 0.002 +
√

0.197 · 0.008 +
√

0.167 · 0.023 +
√

0.111 · 0.058
)

= 0.42 (5.183)

and
p10 < 0.4210 ≈ 1.7 · 10−4 (5.184)

Consider a rate R = b/c, memory m time-invariant convolutional code with
weight spectrum nd (cf. (3.35)) used for communication over a binary-input DMC

366 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

and maximum-likelihood decoding. From (4.25) and (5.182) it follows that the burst
error probability, PB, is upper-bounded by

PB ≤
∞∑

d=dfree

ndpd (5.185)

where

pd <

(∑
r

√
P (r | 0)P (r | 1)

)d
def
= zd (5.186)

where z is the Bhattacharyya parameter for the binary-input DMC.
Next consider the ensemble E(b, c,m,∞) of binary, rate R = b/c time-varying

convolutional codes encoded by polynomial, time-varying, generator matrices of
memory m which we introduced in Section 3.6. The distance spectrum does in
general depend on the time t, but its average E[nd] is independent of t.

The average of the burst error probability taken over this ensemble is upper-
bounded by

E[PB] <
∞∑
d=0

E[nd]z
d (5.187)

where E[nd] can be calculated by summing the probabilities for all incorrect paths
of weight d. Since the number of incorrect paths of length (j +m+ 1) branches is
upper-bounded by 2(j+1)b and since the probability that each of these incorrect paths
has weight d is equal to

(
(j+m+1)c

d

)
2−(j+m+1)c, we obtain

E[nd] <
∞∑
j=0

2(j+1)b

(
(j +m+ 1)c

d

)
2−(j+m+1)c, d = 0, 1, 2, . . . (5.188)

Hence, by inserting (5.188) into (5.187) we have

E[PB] <
∞∑
d=0

∞∑
j=0

2(j+1)b

(
(j +m+ 1)c

d

)
2−(j+m+1)czd

=
∞∑
j=0

(j+m+1)c∑
d=0

2(j+1)b

(
(j +m+ 1)c

d

)
2−(j+m+1)czd

=
∞∑
j=0

2(j+1)b

(
1 + z

2

)(j+m+1)c

=

(
1 + z

2

)mc ∞∑
j=0

(
2R

1 + z

2

)(j+1)c

(5.189)

where the last sum converges if

2R
1 + z

2
< 1 (5.190)

GENERAL BOUNDS FOR TIME-VARYING CONVOLUTIONAL CODES 367

Before we proceed with upper-bounding the burst error probability, we generalize
our definition of the computational cutoff rate for the BSC (5.6) to a general discrete
memoryless channel:

Definition The computational cutoff rate R0 for a general DMC with transition
probabilities P (r | v) and input distribution Q(v) is given by

R0
def
= − log

min
Q

∑
r

(∑
v

√
P (r | v)Q(v)

)2

 (5.191)

It is most interesting and, perhaps, somewhat surprising that for binary-input
channels the probability distribution

Q(0) = Q(1) =
1

2
(5.192)

is the minimizing one (Problem 5.2). Hence, expanding the square in (5.191) gives

R0 = − log

(
1

4

∑
r

(
P (r | 0) + 2

√
P (r | 0)P (r | 1) + P (r | 1)

))

= − log

(
1

2

(
1 +

∑
r

√
P (r | 0)P (r | 1)

))

= 1− log

(
1 +

∑
r

√
P (r | 0)P (r | 1)

)
(5.193)

and we have the following:

Lemma 5.17 The cutoff rateR0 for a binary-input DMC with transition probabilities
P (r | v) is

R0 = 1− log(1 + z) (5.194)

where z is the Bhattacharyya parameter defined by (5.186).

EXAMPLE 5.2

For the BSC with crossover probability ε it follows from (5.194) that

R0 = 1− log
(

1 + 2
√
ε(1− ε)

)
(5.195)

which coincides with the definition for the BSC (5.6). As a specific instance, we
find

R0 =
1

2
when ε = 0.045 (5.196)

368 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

EXAMPLE 5.3

Consider the binary erasure channel (BEC) with erasure probability δ shown in
Fig. 1.22. Its cutoff rate is

R0 = 1− log
(

1 +
√

(1− δ)0 +
√
δδ +

√
0(1− δ)

)
= 1− log(1 + δ) (5.197)

As a specific instance, we find

R0 =
1

2
when δ =

√
2− 1 = 0.414 (5.198)

So 4.5% “channel errors” are as bad as 41.4% erasures!

Both the BSC and the BEC have

R0 = 1 when ε = 0 and δ = 0, respectively (5.199)

and
R0 = 0 when ε =

1

2
and δ = 1, respectively (5.200)

Now we return to our derivation and rewrite (5.194) as

2R0
1 + z

2
= 1 (5.201)

By comparing the inequality (5.190) with (5.201), we conclude that the last sum in
(5.189) converges if R < R0. Hence, we have

E[PB] <

(
1 + z

2

)mc (2R 1+z
2)c

1− (2R 1+z
2)c

= 2−R0mc
2(R−R0)c

1− 2(R−R0)c

= c(R)2−R0mc = 2−(R0+o(1))mc for R < R0 (5.202)

where
c(R) =

1

2(R0−R)c − 1
(5.203)

Since the average of the burst error probability taken over our ensemble is upper-
bounded by (5.202), we have the following:

Theorem 5.18 There exists a binary, rateR = b/c, time-varying, convolutional code
encoded by a polynomial, time-varying generator matrix of memory m such that its
average burst error probability when used to communicate over a binary-input DMC
with maximum-likelihood decoding is upper-bounded by

PB < 2−(R0+o(1))mc for R < R0 (5.204)

where R0 is the computational cutoff rate.

GENERAL BOUNDS FOR TIME-VARYING CONVOLUTIONAL CODES 369

Next we will obtain a corresponding upper bound on burst error probability for the
sphere-packing region, that is, for rates R0 ≤ R < C. Then we need the Gallager
function for the binary-input DMC with transition probabilities P (r | v):

G(s)
def
= − log

(∑
r

(
1

2
P (r | 0)

1
1+s +

1

2
P (r | 1)

1
1+s

)1+s
)

(5.205)

where 0 < s <∞. For the BSC, definition (5.205) coincides with definition (5.98).
We also notice that for s = 1 we have the important equality

G(1) = R0 (5.206)

For simplicity, in the sequel we will only consider binary-input and output-symmetric
DMC, that is, we impose the restriction that

P (r | 0) = P (−r | 1) , all r (5.207)

All channels we consider in this book are output-symmetric.
For the sphere-packing region we will again exploit the idea of separating the error

event E into two disjoint events corresponding to “few” F and “many” M errors,
respectively. Hence, we have (cf. (4.81))

E[PB] = E[P (E)] ≤ E[P (E ,F)] + P (M) (5.208)

Since we are considering output-symmetric channels we can without loss of generality
assume that the allzero sequence is transmitted. Let r = r0r1 . . ., where ri =

r
(1)
i r

(2)
i . . . r

(c)
i , denote the received sequence. Then we introduce the cumulative

metric

St =
t∑
i=0

Zi (5.209)

where

Zi =
c∑
`=1

µi` (5.210)

µi`
def
= µ(r

(`)
i) = log

P
(
r

(`)
i

∣∣∣ 0
) 1

1+s

1
2P
(
r

(`)
i

∣∣∣ 0
) 1

1+s

+ 1
2P
(
r

(`)
i

∣∣∣ 1
) 1

1+s

−R (5.211)

and the value of the parameter s will be chosen later.

Remark: For the BSC, µ(0) = sα and µ(1) = sβ, where α and β are defined
by (4.86) and (4.87), respectively, the parameter a in (4.86) and (4.87) is given by
a = ε

1
1+s /

(
ε

1
1+s + (1− ε)

1
1+s

)
, and s satisfiesG(s) = sR, whereG(s) is given by

(5.98).

370 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

As in Sections 3.4 and 4.3 we have a random walk 0, S0, S1, S2, . . ., and we say
that those error patterns for which St hits or crosses (from above) a certain barrier u
contain many errors.

From Wald’s identity (Corollary B.6) follows

P (M) = P (min
t
{St} ≤ u) ≤ 2−λ0u (5.212)

where λ0 < 0 is a root of the equation

g(λ)
def
= E[2λµ(r)] =

∑
r

2λµ(r)P (r | 0) = 1 (5.213)

Combining (5.211) and (5.213) yields

2−λ0R

(∑
r

P (r | 0)
λ0

1+s+1

(
1

2
P (r | 0)

1
1+s +

1

2
P (r | 1)

1
1+s

)−λ0
)

= 1 (5.214)

Exploiting the output symmetry of the channel, we can rewrite (5.214) as

2−λ0R

(∑
r

(
1

2
P (r | 0)

λ0
1+s+1

+
1

2
P (r | 1)

λ0
1+s+1

)

×
(

1

2
P (r | 0)

1
1+s +

1

2
P (r | 1)

1
1+s

)−λ0
)

= 1 (5.215)

Now we choose s = s0 to be a positive root of

G(s) = sR (5.216)

whereG(s) is the Gallager function and 0 < s0 ≤ 1 ifR ≥ R0. We can easily verify
that λ0 = −s0 satisfies (5.215). Hence, for s ≤ s0 we have

P (M) ≤ 2s0u ≤ 2su (5.217)

where s0 is a positive root of (5.216).
To upper-bound the probability that a burst starts at the root and that we have an

error pattern with few errors, P (E ,F), we use, as before, the union bound and obtain

P (E ,F) ≤
∑
k

P (E(k),F) (5.218)

where E(k) is the event that a burst error starting at the root is caused by path k.
Let us assume that the allzero codeword is transmitted and that path k has weight

wk and remerges with the allzero path at depth j +m+ 1, j ≥ 0. Then,

P (E(k),F) =
∑

r[0,j+m]∈Dk,F
P
(
r[0,j+m]

∣∣ 0[0,j+m]

)
(5.219)

GENERAL BOUNDS FOR TIME-VARYING CONVOLUTIONAL CODES 371

where Dk is the decoding region for the kth path and F is the region corresponding
to few errors. In the region Dk we haveP

(
r[0,j+m]

∣∣∣ v(k)
[0,j+m]

)
P
(
r[0,j+m]

∣∣ 0[0,j+m]

)
λ1

≥ 1 (5.220)

where v(k)
[0,j+m] is the first j +m+ 1 c-tuples of the kth path and λ1 > 0. Similarly,

in the region F we have
2λ2(Sj+m−u) ≥ 1 (5.221)

where λ2 > 0. Thus, combining (5.219), (5.220), and (5.221) yields

P (E(k),F) ≤
∑

r[0,j+m]∈Dk,F

P
(
r[0,j+m]

∣∣∣ v(k)
[0,j+m]

)
P
(
r[0,j+m]

∣∣ 0[0,j+m]

)
λ1

×2λ2(Sj+m−u)P
(
r[0,j+m]

∣∣ 0[0,j+m]

)
≤

∑
all r[0,j+m]

P
(
r[0,j+m]

∣∣∣ v(k)
[0,j+m]

)
P
(
r[0,j+m]

∣∣ 0[0,j+m]

)
λ1

×2λ2(Sj+m−u)P
(
r[0,j+m]

∣∣ 0[0,j+m]

)
(5.222)

Next we insert (5.209), (5.210), and (5.211) into (5.222) and exploit the memoryless-
ness of the DMC. Then we obtain

P (E(k),F) ≤ 2−λ2u

j+m∏
i=0

c∏
`=1

2−λ2R
∑
r
(`)
i

P
(
r

(`)
i

∣∣∣ v(k)(`)
i

)λ1

P
(
r

(`)
i

∣∣∣ 0
)λ1

P
(
r

(`)
i

∣∣∣ 0
) λ2

1+s+1

×
(

1

2
P
(
r

(`)
i

∣∣∣ 0
) 1

1+s

+
1

2
P
(
r

(`)
i

∣∣∣ 1
) 1

1+s

)−λ2
)

= 2−λ2u

(
2−λ2R

∑
r

P (r | 0)
λ2
1+s−λ1+1

P (r | 1)
λ1

×
(

1

2
P (r | 0)

1
1+s +

1

2
P (r | 1)

1
1+s

)−λ2
)wk

×

(
2−λ2R

∑
r

P (r | 0)
λ2
1+s+1

×
(

1

2
P (r | 0)

1
1+s +

1

2
P (r | 1)

1
1+s

)−λ2
)(j+m+1)c−wk

(5.223)

where v(k)
i = v

(k)(1)
i v

(k)(2)
i . . . v

(k)(c)
i is the ith c-tuple of the codeword correspond-

ing to the kth path. Let

λ1 =
1

1 + s
(5.224)

372 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

and

λ2 = 1− s (5.225)

Then we have

P (E(k),F) ≤ 2−(1−s)uZwk1 Z
c(j+m+1)−wk
2 (5.226)

where

Z1 = 2−(1−s)R
∑
r

(P (r | 0)P (r | 1))
1

1+s

×
(

1

2
P (r | 0)

1
1+s +

1

2
P (r | 1)

1
1+s

)−1+s

(5.227)

and

Z2 = 2−(1−s)R
∑
r

P (r | 0)
2

1+s

(
1

2
P (r | 0)

1
1+s +

1

2
P (r | 1)

1
1+s

)−1+s

= 2−(1−s)R
∑
r

(
1

2
P (r | 0)

2
1+s +

1

2
P (r | 1)

2
1+s

)
×
(

1

2
P (r | 0)

1
1+s +

1

2
P (r | 1)

1
1+s

)−1+s

(5.228)

where the last equality follows from the output symmetry of the channel.
By combining (5.218) and (5.226), we obtain

E[P (E ,F)] ≤ 2−(1−s)u
∞∑
j=0

(j+m+1)c∑
w=1

E[n(w, j +m+ 1)]

×Zw1 Z
(j+m+1)c−w
2 (5.229)

where n(w, j+m+1) denotes the number of paths of weightw and length j+m+1
c-tuples.

For the ensemble E(b, c,m,∞) we have

E[n(w, j +m+ 1)] ≤
(

2b(j+1) − 1
)((j +m+ 1)c

w

)(
1

2

)(j+m+1)c

< 2b(j+1)

(
(j +m+ 1)c

w

)
2−(j+m+1)c (5.230)

GENERAL BOUNDS FOR TIME-VARYING CONVOLUTIONAL CODES 373

Further upper-bounding of (5.229) by extending the sum over w to include w = 0
and inserting (5.230) into (5.229) yield

E[P (E ,F)] ≤ 2−(1−s)u
∞∑
j=0

2b(j+1)−(j+m+1)c

×
(j+m+1)c∑
w=0

(
(j +m+ 1)c

w

)
×Zw1 Z

(j+m+1)c−w
2

= 2−(1−s)u
∞∑
j=0

2b(j+1)−(j+m+1)c(Z1 + Z2)(j+m+1)c

= 2−(1−s)u
(
Z1 + Z2

2

)mc ∞∑
j=0

(2R−1(Z1 + Z2))(j+1)c

= 2−(1−s)u
(
Z1 + Z2

2

)mc
(2R−1(Z1 + Z2))c

1− (2R−1(Z1 + Z2))c
(5.231)

where the last equality requires that

R < log
2

Z1 + Z2
(5.232)

From (5.227) and (5.228) it follows that

Z1 + Z2

2
= 2−(1−s)R

×
∑
r

(
1

2
P (r | 0)

2
1+s + P (r | 0)

1
1+s P (r | 1)

1
1+s +

1

2
P (r | 1)

2
1+s

)
×
(

1

2
P (r | 0)

1
1+s +

1

2
P (r | 1)

1
1+s

)−1+s

= 2−(1−s)R
∑
r

(
1

2
P (r | 0)

1
1+s +

1

2
P (r | 1)

1
1+s

)2

×
(

1

2
P (r | 0)

1
1+s +

1

2
P (r | 1)

1
1+s

)−1+s

= 2−(1−s)R
∑
r

(
1

2
P (r | 0)

1
1+s +

1

2
P (r | 1)

1
1+s

)1+s

= 2−(1−s)R−G(s) (5.233)

Hence, inequality (5.232) is equivalent to

R < G(s)/s (5.234)

or, again equivalently,
s < s0 (5.235)

374 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

where s0 is defined by (5.216).
Combining the bounds (5.208), (5.217), and (5.231) with equality (5.233) yields

E[PB] ≤ E[P (E ,F)] + P (M)

≤ 2−(1−s)u2−((1−s)R+G(s))mc (2R−1(Z1 + Z2))c

1− (2R−1(Z1 + Z2))c
+ 2su (5.236)

where s < s0.
Let us choose

u = −((1− s)R+G(s))mc (5.237)

Then we obtain

E[PB] ≤
(

1 +
(2R−1(Z1 + Z2))c

1− (2R−1(Z1 + Z2))c

)
2−s((1−s)R+G(s))mc

=
1

1− (2R−1(Z1 + Z2))c
2−s((1−s)R+G(s))mc (5.238)

Now, if we choose s to be slightly less than s0,

s = s0 − 1/m (5.239)

say, and use (5.216), then we obtain

E[PB] ≤ 2((1−s)R+G(s))c+(sG(s0)−s0G(s))mc

1− (2R−1(Z1 + Z2))c
2−s0Rmc

= 2−(G(s0)+o(1))mc (5.240)

where 0 < s0 ≤ 1, or, equivalently, R0 ≤ R < C.
Finally, since the average of the burst error probability can be upper-bounded by

(5.240), we have proved the following:

Theorem 5.19 There exists a binary, rateR = b/c, time-varying convolutional code
encoded by a polynomial, time-varying generator matrix of memory m such that its
average burst error probability when used to communicate over a binary-input and
output-symmetrical DMC with maximum-likelihood decoding is upper-bounded by

PB ≤ 2−(EC(R)+o(1))mc (5.241)

where

EC(R) =

R0, 0 ≤ R < R0{
G(s),

R = G(s)/s,
0 < s ≤ 1, R0 ≤ R < C

(5.242)

for the random coding and sphere-packing regions, respectively, and where G(s) is
the Gallager exponent for the DMC (5.205) and R0 is the computational cutoff rate
for the DMC (5.191).

BOUNDS FOR FINITE BACK-SEARCH LIMITS 375

Consider a rate R = b/c, memory m, minimal-basic convolutional encoding
matrix whose overall constraint length is ν = bm. Let S denote the set of encoder
states of the controller canonical form realization of the encoding matrix. Thus, the
complexity of the encoder is

|S| = 2bm (5.243)

and, hence, the complexity of the encoder satisfying (5.241) is at most 2bm. By
combining (5.241), (5.242), and (5.243) we obtain the following:

Theorem 5.20 There exists at least one time-varying, rate R < C, convolutional
code of memory m with burst error probability satisfying

PB <

{
(|S|)−R0/R+o(1), 0 ≤ R < R0

(|S|)−s0+o(1), R0 ≤ R < C
(5.244)

where o(1)→ 0 when |S| → ∞ and s0 is given by (5.216).

The burst error probability decreases algebraically with increasing complexity.
In particular, it follows from Theorem 5.20 that the single number R0 not only

determines a range of rates, 0 ≤ R < R0, over which reliable communication is
possible but also determines the coding complexity necessary to obtain a given error
probability.

5.5 ERROR BOUNDS FOR FINITE BACK-SEARCH LIMITS

In the Viterbi decoding described in Section 4.1, we postponed the decision of the
decoded codeword until we had reached the end of the trellis, which was terminated
using the zero-tail method. Here we will consider a suboptimal version of Viterbi
decoding in which when the decoding has reached depth t, t ≥ τ , outputs a decision
of the information b-tuple at depth t− τ ; τ is called the back-search limit. Our aim is
to derive upper bounds on the burst error probability for the ensemble of rateR = b/c,
time-invariant convolutional codes encoded by generator matrices of memory m for
the back-search limit τ = m+ 1.

The decoding rule is simple: for each depth t ≥ τ choose among the paths leading
to the states at this depth the one or, in case of ties, arbitrarily one of those with
maximum Viterbi metric and output as the decoder estimate the (t−τ)th information
b-tuple corresponding to the chosen path.

Since we consider the ensemble of randomly chosen time-invariant convolutional
codes, without loss of generality we can study the burst error probability at the root.

To upper-bound the burst error probability we will use the block code B given by

B =
{
v[0,m]

∣∣ v[0,m] = 0 or arises from u[0,m] with u0 6= 0
}

(5.245)

The number of codewords is

M = (2b − 1)2bm + 1 (5.246)

376 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

and the block length is
N = (m+ 1)c (5.247)

Hence, the rate of the block code is slightly less than the rate of the convolutional
code R = b/c.

Assume that the allzero sequence is transmitted over the BSC, and let E denote
the error event for the Viterbi decoder with back-search limit τ = m + 1. Then,
a necessary and sufficient condition for E is that the block code B is erroneously
decoded.

Lemma 5.21 (Random coding bound) There exists a binary, rate R = b/c, time-
invariant convolutional code encoded by a generator matrix of memory m such that
its burst error probability when used to communicate over the BSC with Viterbi
decoding with back-search limit τ = m+ 1 is upper-bounded by the inequality

PB < 2−(R0−R)(m+1)c, 0 ≤ R < Rcrit (5.248)

whereR0 andRcrit are the computational cutoff rate and the critical rate, respectively.

Proof : The required statistical properties follow from Lemma 3.13. Then from
(4.20) it follows that over the ensemble E(b, c,m, 1) the probability that each code-
word v[0,m] that arises from an information sequence u[0,m] with u0 6= 0 causes an
error is upper-bounded by

(m+1)c∑
i=0

(
(m+ 1)c

i

)
2−(m+1)czi =

(
1 + z

2

)(m+1)c

= 2−R0(m+1)c (5.249)

where the last equality follows from (5.8) and z is the Bhattacharyya parameter
(4.20). We combine (5.249) with the upper bound 2R(m+1)c on the total number of
codewords in B and the lemma follows.

Lemma 5.22 (Expurgation bound) In the ensemble E(b, c,m, 1) of binary, rate
R = b/c, time-invariant convolutional codes encoded by generator matrices of mem-
ory m, there exists a subset containing at least a 2−bth fraction of the codes such
that their average burst error probability when used to communicate over the BSC
with Viterbi decoding with back-search limit τ = m + 1 is upper-bounded by the
inequality

Eexp[PB] < (2b − 1)2
ρ
(

log
(

2
√
ε(1−ε)

))
(m+1)c

, 0 ≤ R < Rexp (5.250)

where ρ is the Gilbert-Varshamov parameter of the rate R, Rexp is the expurgation
rate, and ε is the crossover probability for the BSC.

Proof : The probability that the minimum distance between the allzero codeword
and any other codeword in the block code B with the number of codewords given in
(5.246) does not exceed d0 is upper-bounded by

(M − 1)

d0∑
i=0

(
(m+ 1)c

i

)
2−(m+1)c ≤ (2b − 1)2bm2(h(d0

(m+1)c)−1)(m+1)c (5.251)

BOUNDS FOR FINITE BACK-SEARCH LIMITS 377

Let
d0 = bρ(m+ 1)cc (5.252)

where ρ is the Gilbert-Varshamov parameter. Then (5.251) can be further upper-
bounded by

(2b − 1)2bm2(h(ρ)−1)(m+1)c = (1− 2−b)2b(m+1)2−R(m+1)c = 1− 2−b (5.253)

Hence, at least the 2−bth fraction of the block codes has such distances that are not
less than d0 + 1. These block codes form an expurgated ensemble. The average error
probability for this subensemble is upper-bounded by (cf. (5.12))

Eexp[P (E)] ≤ 2b(M − 1)

(m+1)c∑
i=d0+1

(
(m+ 1)c

i

)
2−(m+1)czi (5.254)

where z is the Bhattacharyya parameter (4.20). Then analogously to (5.13) we obtain

Eexp[P (E)] ≤ (2b − 1)2R(m+1)c

(m+1)c∑
i=d0+1

(
(m+ 1)c

i

)
2λ(i−d0−1)−(m+1)czi

= (2b − 1)2(R−1)(m+1)c2−λ(d0+1)

(m+1)c∑
i=d0+1

(
(m+ 1)c

i

)
(2λz)i (5.255)

where we have chosen λ to be

λ = log
ρ

(1− ρ)z
> 0, 0 ≤ R < Rexp (5.256)

(cf. (5.14)). Next we upper-bound (5.255) by extending the summation to start at
i = 0. Then we obtain

Eexp[P (E)] ≤ (2b − 1)2(R−1)(m+1)c2−λ(d0+1)

(m+1)c∑
i=0

(
(m+ 1)c

i

)
(2λz)i

= (2b − 1)2(R−1)(m+1)c2−λ(d0+1)(1 + 2λz)(m+1)c (5.257)

Inserting (5.256) into (5.257) and using (5.252) yield

Eexp[P (E)] ≤ (2b − 1)2(R−1)(m+1)c

(
(1− ρ)z

ρ

)d0+1

(1− ρ)−(m+1)c

< (2b − 1)2(R−1)(m+1)c
(

(1− ρ)−(1−ρ)ρ−ρ
)(m+1)c

zρ(m+1)c

= (2b − 1)2(R−1+h(ρ))(m+1)czρ(m+1)c

= (2b − 1)zρ(m+1)c = (2b − 1)2
ρ
(

log
(

2
√
ε(1−ε)

))
(m+1)c (5.258)

and the proof is complete.

378 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

For the sphere-packing region, Rcrit ≤ R < C, we have the following:

Lemma 5.23 (Sphere-packing bound) There exists a binary, rate R = b/c, time-
invariant convolutional code encoded by a generator matrix of memory m such that
its burst error probability when used to communicate over the BSC with crossover
probability ε with Viterbi decoding with back-search limit τ = m + 1 is upper-
bounded by the inequality

PB < 2−(ρ log ρ
ε+(1−ρ) log 1−ρ

1−ε)(m+1)c, Rcrit ≤ R < C (5.259)

where ρ is the Gilbert-Varshamov parameter of the rate R, that is,

ρ = h−1(1−R) (5.260)

Rcrit is the critical rate, and C is the channel capacity for the BSC.

Proof : As usual, the proof in the sphere-packing region uses the idea of splitting
the error events in “few” (F) and “many” (M) errors introduced in Section 4.3. Let

M =
{
r[0,m+1]

∣∣ wH(r[0,m+1] ≥ ρ(m+ 1)c)
}

(5.261)

and F is the complement ofM. The average burst error probability is now upper-
bounded by (cf. (5.24))

E[PB] = E[P (E)] ≤ E[P (E),F] + P (M) (5.262)

where P (M) is upper-bounded by (cf. (5.33))

P (M) < 2−λρ(m+1)c(1− ε+ 2λε)(m+1)c (5.263)

where λ is given by (5.34).
Analogously, E[P (E),F] is upper-bounded by (cf. (5.39))

E[P (E),F] ≤ 2λ
′ρ(m+1)c2(R−1)(m+1)c(1 + 2−µ)(m+1)c

×(1− ε+ ε2µ−λ
′
)(m+1)c (5.264)

where µ and λ′ are given by (5.40) and (5.41), respectively.
By inserting (5.263) and (5.264) into (5.262) we obtain (cf. (5.47))

E[P (E)] < 2 · 2−(ρ log ρ
ε+(1−ρ) log 1−ρ

1−ε)(m+1)c (5.265)

If we instead use more elegant bounds analogous to (5.32) and (5.38), we can avoid
the factor 2 and obtain (5.259).

We can now summarize our results in the following:

Theorem 5.24 There exists a binary, rate R = b/c, time-invariant convolutional
code encoded by a generator matrix of memorym such that its burst error probability

QUANTIZATION OF CHANNEL OUTPUTS 379

when used to communicate over the BSC with crossover probability ε with Viterbi
decoding with back-search limit τ = m+ 1 is upper-bounded by the inequality

PB < 2−E
fbs(R)(m+1)c (5.266)

where Efbs(R) is the finite back-search limit exponent given by

Efbs(R) =

{
−ρ log

(
2
√
ε(1− ε)

)
+ log(2b−1)

(m+1)c , 0 ≤ R < Rexp

EB(R), Rexp ≤ R < C
(5.267)

and where
ρ = h−1(1−R) (5.268)

is the Gilbert-Varshamov parameter of the rateR,EB(R) is the block coding exponent
(5.50), Rexp is the expurgation rate, Rcrit is the critical rate, and C is the channel
capacity for the BSC.

We notice that when we use Viterbi decoding with back-search limit τ = m+ 1,
the burst error probability is determined by the block coding exponent. When we use
Viterbi decoding with the decoding postponed to the end of the trellis, the burst error
probability is determined by the convolutional coding exponent.

Finally, we remark that for the ensemble E(b, c,m,∞) of time-varying convo-
lutional codes encoded by generator matrices of memory m, Viterbi decoding with
back-search limit τ can also be analyzed for τ > m+ 1 [Zig72].

5.6 QUANTIZATION OF CHANNEL OUTPUTS

In Section 5.1 we introduced the computational cutoff rateR0, which is an important
design criterion. Massey [Mas74] showed that it can be effectively employed in
modulation system design. Here we will use the R0 criterion to determine the
quantization thresholds on the AWGN channel when BPSK modulation is used.

It is easily seen from (5.194) that for the unquantized output channel we have the
following:

Theorem 5.25 The computational cutoff rate R0 for a binary-input, unquantized
output channel is

R0 = 1− log

(
1 +

∫ ∞
−∞

√
pr|v (α | 0) pr|v (α | 1)dα

)
(5.269)

where pr|v (· | ·) denotes the transition density function.

Corollary 5.26 The computational cutoff rateR0 for the AWGN channel with BPSK
modulation at signal-to-noise ratio Es/N0 is

R0 = 1− log
(

1 + e−Es/N0

)
(5.270)

380 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

Proof : From (5.269) follows

R0 = 1− log

(
1 +

∫ ∞
−∞

√
1√
πN0

e−
(α+
√
Es)2

N0
1√
πN0

e−
(α−
√
Es)2

N0 dα

)

= 1− log

(
1 +

∫ ∞
−∞

1√
πN0

e−
α2+Es
N0 dα

)
= 1− log

(
1 + e−Es/N0

)
(5.271)

EXAMPLE 5.4

The unquantized AWGN channel with BPSK modulation at signal-to-noise ratio
Es/N0 = 0 dB is

R0(∞) = 1− log(1 + e−1) = 0.548 (5.272)

Using hard decisions, that is, only two output values, we obtain a BSC with
crossover probability (see Problem 1.32):

ε = Q
(√

2
)

= 0.079 (5.273)

and, hence,

R0(2) = 1− log
(

1 + 2
√

0.079(1− 0.079)
)

= 0.379 (5.274)

which is substantially smaller than R0(∞).

Which signal-to-noise ratio is required for a BSC to achieve the same computa-
tional cutoff rate R0 as for the unquantized AWGN channel at Es/N0 = 0 dB?

From (5.194) it follows that the crossover probability for the BSC can be expressed
as

ε =
1

2
−
√

2−R0(1− 2−R0) (5.275)

By combining (5.272) and (5.275) we obtain

ε = 0.035 (5.276)

and by solving (1.12)
ε = Q

(√
2Es/N0

)
(5.277)

Es/N0 = 2.15 dB (5.278)

that is, we have a slightly more than 2-dB loss due to hard decisions.
The binary-input, 8-ary output DMC in Example 4.2 is a quantization to q = 8

output levels of an AWGN channel with BPSK modulation at signal-to-noise ratio
Es/N0 = 0 dB. This particular quantization was in actual use in the space program.
The corresponding thresholds were set before we knew how to find the optimum ones
[Mas74] (see also Problem 5.2).

QUANTIZATION OF CHANNEL OUTPUTS 381

Definition We will say that a given quantization scheme with q different outputs is
optimum if it maximizes R0 for all ways of quantizing the channel to q outputs.

For a given q, the AWGN channel with BPSK modulation reduces to a binary-
input, q-ary output DMC. Let the q output symbols be r1, r2, . . . , rq . From (5.194)
it follows that

R0 = 1− log

1 +

q∑
j=1

√
P (rj | 0)P (rj | 1)

 (5.279)

MaximizingR0 is equivalent to minimizing the sum on the right-hand side of (5.279).
Let Ti be the quantization threshold between the regions where ri and ri+1 will be the
output. A necessary condition for this minimization is that for each i the derivative
of the sum with respect to Ti equals 0. Since only the terms for j = i and j = i+ 1
in the sum depend on Ti, we have

d

dTi

(√
P (ri | 0)P (ri | 1) +

√
P (ri+1 | 0)P (ri+1 | 1)

)
=

1

2
√
P (ri | 0)P (ri | 1)

(P (ri | 0) p (Ti | 1) + p (Ti | 0)P (ri | 1))

+
1

2
√
P (ri+1 | 0)P (ri+1 | 1)

× (−P (ri+1 | 0) p (Ti | 1)− p (Ti | 0)P (ri+1 | 1)) (5.280)

Equation (5.280) follows from

dP (rj | v)

dTi
=

p (Ti | v) , j = i

−p (Ti | v) , j = i+ 1

0, j 6= i, j 6= i+ 1

(5.281)

where we have used the fact that

d

dx

∫ x

a

f(z)dz = f(x) (5.282)

and
d

dx

∫ b

x

f(z)dz = −f(x) (5.283)

The condition that (5.280) equals 0 can be written√
P (ri | 0)

P (ri | 1)
p (Ti | 1) +

√
P (ri | 1)

P (ri | 0)
p (Ti | 0)

=

√
P (ri+1 | 0)

P (ri+1 | 1)
p (Ti | 1) +

√
P (ri+1 | 1)

P (ri+1 | 0)
p (Ti | 0) , all i (5.284)

382 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

which is equivalent to

p (Ti | 0)

p (Ti | 1)
=

√
P (ri | 0)

P (ri | 1)

√
P (ri+1 | 0)

P (ri+1 | 1)
, all i (5.285)

Given that r = α, we define the likelihood ratio on the unquantized channel as

λ(α)
def
=

p (α | 0)

p (α | 1)
(5.286)

For the DMC obtained by quantization of the continuous channel, we define the
likelihood ratio for the output letter rj as

λrj
def
=

P (rj | 0)

P (rj | 1)
(5.287)

The necessary condition (5.285) can then be formulated as follows:

Theorem 5.27 A quantization scheme with thresholds Ti which converts a binary-
input, continuous output channel into a DMC with q output levels is optimum in the
sense of maximizing R0 for all quantization schemes giving q output only if

λ(Ti) =
√
λriλri+1

, all i (5.288)

that is, the likelihood ratio when r = Ti on the unquantized channel must be the
geometric mean of the likelihood ratios for the two output letters whose quantization
regions the threshold Ti divides.

Remark: Lee [Lee76] has constructed an example showing that the optimality
condition (5.288) is in general not sufficient.

EXAMPLE 5.5

For the AWGN with BPSK modulation at signal-to-noise ratio Es/N0 we have

λ(α) =

1√
πN0

e−
(α−
√
Es)

2

N0

1√
πN0

e−
(α+
√
Es)

2

N0

= e
4α
√
Es

N0 (5.289)

which is a single-valued function of α.

Massey suggested the following algorithm to compute the set of thresholds
[Mas74]:

Choose T1 arbitrarily. This determines λr1 as well as λ(T1). Hence, we can then
choose T2 such that the resulting λr2 will satisfy (5.288). We can then choose T3

QUANTIZATION OF CHANNEL OUTPUTS 383

such that the resulting λr3 will satisfy (5.288) and so on. If we can complete the
procedure up to the choice of Tq−1 and this choice gives as well

λ(Tq−1) =
√
λrq−1

λrq (5.290)

then we stop. If we are unable to choose some Ti along the way or if

λ(Tq−1) >
√
λrq−1

λrq (5.291)

then we have to decrease T1 and repeat the procedure. On the other hand, if

λ(Tq−1) <
√
λrq−1λrq (5.292)

then we know that our choice of T1 was too small and we must adjust our guess of
T1 and repeat the procedure.

EXAMPLE 5.6

By applying the previous procedure, we obtain the following quantization thresh-
olds for the AWGN channel with BPSK at signal-to-noise ratio Es/N0 = 0 dB
and assuming

√
Es = 1:

q R0(q) T1 T2 T3 T4 T5 T6 T7

2 0.378 0
4 0.498 −0.731 0 −0.731
8 0.534 −1.273 −0.761 −0.362 0 0.362 0.0.761 1.273
∞ 0.548

Symmetry considerations indicate that we have only one local maximum ofR0.
This is also the global maximum; hence, the quantization thresholds are optimum.

EXAMPLE 5.7

To achieve a cutoff rate R0 = 0.548 we need the following signal-to-noise ratios:

q R0 Es/N0 dB
2 0.548 2.148
4 0.548 0.572
8 0.548 0.157
∞ 0.548 0

From the previous example it follows that compared to hard decisions there is a
considerable gain in using four levels of quantization but not much of an advantage
to go beyond eight levels.

384 RANDOM ENSEMBLE BOUNDS FOR DECODING ERROR PROBABILITY

5.7 COMMENTS

Error probability bounds for block codes when used to communicate over the BSC
were already presented by Elias in 1955 [Eli55]. The modern versions of the upper
bounds for block codes as presented here are inspired by Fano [Fan61] and Gallager
[Gal65, Gal68]. The “few” and “many” idea which we have exploited several times
in this volume can be found in Fano’s textbook.

Lower bounds on the error probability for block codes were derived by Shannon,
Gallager, and Berlekamp [SGB67].

For convolutional codes the upper bounds on the error probability were derived
by Yudkin in 1964 [Yud64] and the lower bounds by Viterbi in 1967 [Vit67]. The
tight upper bounds on the error probability were also derived in [Zig85].

The ideas of constructing the convolutional coding exponent from the block coding
exponent and vice versa, as well as the concept of critical length, go back to Forney
[For74].

For general, nonlinear trellis codes, Pinsker [Pin67] derived a lower bound on the
error probability for decoding with finite back-search limit τ . His bound is similar
to the sphere-packing bound for block codes of block length N = τc.

PROBLEMS

5.1 Show the following properties of the Gallager function (5.98).
a) G(s) > 0 for s > 0

b) G′(s) > 0 for s ≥ 0

c) G′′(s) < 0 for s > 0

d) lims→∞G
′(s) = 0

e) G′(0) = C

f) G′(1) = Rcrit

5.2 Verify (5.162) for d odd.

5.3 Find a Bhattacharyya-type upper bound for the burst error probability when
using a convolutional code with two codewords for communication over a binary-
input, unquantized output DMC with transition density function pr|v .

5.4 Show that for a binary-input DMC, R0 is maximized when the inputs are used
with equal probability.

5.5 a) Find R0 for the binary-input, 8-ary output DMC given in Example 4.2.
b) Convert the channel in (a) to a binary erasure channel (BEC) by combining

the soft-decision outputs 04, 03; 02, 01, 11, 12; and 13, 14 to hard-decision
outputs 0,∆, and 1, respectively. Find R0 for this channel.

c) Find R0 for the BSC in Problem 4.5.

5.6 a) Find R0 for the AWGN channel with BPSK modulation at Es/N0 = 1 dB.
b) Convert the channel in (a) to a 4-ary DMC with optimum R0 and find the

quantization thresholds.

PROBLEMS 385

c) Repeat (b) for an 8-ary DMC.

5.7 Repeat Problem 5.6 for Es/N0 = 2 dB.

CHAPTER 6

LIST DECODING

Viterbi decoding (Chapter 4) is an example of a nonbacktracking decoding method
that at each time instant examines the total encoder state space. The error-correcting
capability of the code is fully exploited. We first choose a suitable code and then
design the decoder in order to “squeeze all juice” out of the chosen code.

Sequential decoding (Chapter 7) is a backtracking decoding method that (asymp-
totically) fully exploits the error-correcting capability of the code.

In list decoding we first limit the resources of the decoder; then we choose a
generator matrix with a state space that is larger than the decoder state space. Thus,
assuming the same decoder complexity, we use a more powerful code with list
decoding than with Viterbi decoding. A list decoder is a powerful nonbacktracking
decoding method that does not fully exploit the error-correcting capability of the
code.

In this chapter we describe and analyze list decoding, which is an important and
interesting decoding method based on the idea that we at each time instant create
a list of the L most promising initial parts of the codewords. For a given decoder
complexity, list decoding of convolutional codes encoded by systematic encoding
matrices is in fact superior to Viterbi decoding of convolutional codes encoded by
nonsystematic encoding matrices.

Fundamentals of Convolutional Coding, 2. Edition. By Rolf Johannesson, Kamil Sh. Zigangirov
Copyright c© 2015 John Wiley & Sons, Inc.

387

388 LIST DECODING

u

v(2)

v(1)

Figure 6.1 A rateR = 1/2 systematic convolutional encoder with encoding matrixG(D) =
(1 1 +D +D2 +D4).

6.1 LIST DECODING ALGORITHMS

List decoding is a nonbacktracking breadth-first search of the code tree. At each
depth only the L most promising subpaths are extended, not all, as is the case with
Viterbi decoding. These subpaths form a list of size L. (Needless to say, starting at
the root, all subpaths are extended until we have obtained L or more subpaths.)

Since the search is breadth-first, all subpaths on the list are of the same length;
finding the L best extensions reduces to choosing the L extensions with the largest
values of the Viterbi metric (4.2).

Assuming a rate R = b/c convolutional encoder of memory m, we append, as
was the case with Viterbi decoding, a tail of bm dummy zeros to the information
bits in order to terminate the convolutional code into a block code. The following
algorithm is the simplest version of a list decoding algorithm:

Algorithm LD (List decoding)
LD1. Load the list with the root and metric zero; set t = 0.

LD2. Extend all stored subpaths to depth t + 1 and place the L best (largest
Viterbi metric) of their extensions on the list.

LD3. If we have reached the end, then stop and choose as the decoded codeword
a path to the terminating node with the largest Viterbi metric; otherwise
increment t by 1 and go to LD2.

Assume that the allzero information sequence is encoded by the rate R = 1/2,
memory m = 4, systematic encoder with encoding matrix G(D) = (1 1 + D +
D2 +D4) given in Fig. 6.1 and that the sequence r = 00 11 01 00 00 00 00 00 . . . is
received over a BSC.

In Fig. 6.2 we show the code tree that is partially explored by the list decoding
algorithm. We have used a list of size L = 3, which should be compared with the 16
states that would have been examined at each depth by the Viterbi algorithm. At the
root and at depth 1, only one and two states, respectively, are extended. The upper
(lower) branch stemming from an extended state represents information bit 0 (1). We
notice that the correct path is lost at depth 4 and that the correct state is recovered
at depth 6. A correct path loss is a serious kind of error event that is typical for list
decoding. It will be discussed in depth later in this chapter.

LIST DECODING ALGORITHMS 389

0000

0

1000

2

0000

0

1100

3

0100

3

1000

0

0000

2

1110

4

0110

4

1100

2

0100

0

1000

3

0000

3

1110

4

0110

2

1010

1

0010

1

1000

5

0000

3

1011

3

0011

3

1101

2

0101

2

1001

3

0001

1

1110

3

0110

4

1010

4

0010

2

1000

2

0000

2

1001

4

0001

2

1100

3

0100

3

1000

4

0000

2

1000

3

0000

3

1110

5

0110

3

1000

4

0000

2

r = 00 11 01 00 00 00 00 00 . . .

. . .

. . .

. . .

11

00

10

01

11

00

11

00

10

01

11

00

11

00

10

01

11

00

10

01
10

01

11

00

10

01

11

00

10

01

11

00
10

01

11

00

10

01

11

00

11

00

Figure 6.2 List decoding (L = 3). Partially explored tree demonstrating a correct path loss
at depth 4 and a spontaneous recovery of the correct state at depth 6.

The extension process that takes place in Fig. 6.2 is illustrated in Fig. 6.3 in a way
that resembles an implementation of the list decoding algorithm. The upper branches
enter states at even positions counted from the top (positions 0, 2, . . . , 2L − 2), and
the lower branches enter states at odd positions (positions 1, 3, . . . , 2L− 1).

An efficient representation of the extension process is given in Fig. 6.4. It is
understood that we have the states in the same positions as in Fig. 6.3. The extended
states are denoted by “·”. The extended paths can be traced backward through the
array in the following way. Suppose that the ∗ at breadth k and depth j+1 represents
the best path traced backward so far. The best position at depth j is then represented
by the (bk/2c+ 1)th ∗ (counted from the top). Furthermore, the decided information
bit is k (mod 2).

390 LIST DECODING

0000

0
0000

0

1000

2
0000

2

1000

0

0100

3

1100

3

0000

3

1000

3

0100

0

1100

2

0110

4

1110

4

0000

3

1000

5

0010

1

1010

1

0110

2

1110

4

0001

1

1001

3

0101

2

1101

2

0011

3

1011

3

0000

2

1000

2

0010

2

1010

4

0110

3

1110

3

0000

2

1000

4

0100

3

1100

3

0001

2

1001

4

0000

2

1000

4

0110

3

1110

5

0000

3

1000

3

. . .

. . .

. . .

. . .

. . .

. . .

Figure 6.3 An illustration of the extension process for list decoding (L = 3).

breadth

5

4

3

2

1

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

depth
0 1 2 3 4 5 6 7 8

· · ·

· · ·
· · ·

Figure 6.4 An example of an array representing the extension process for list decoding
(L = 3).

EXAMPLE 6.1

Consider the array in Fig. 6.4 and suppose that the ∗ at breadth 0 and depth 5
represents the best path traced backward so far. Then we obtain (b0/2c+ 1) = 1,
that is, the first ∗ at depth 4, and û4 = 0 (mod 2) = 0.

• The first ∗ at depth 4 is at breadth 2. Thus, continuing backward we obtain
(b2/2c+ 1) = 2, that is, the second ∗ at depth 3, and û3 = 2 (mod 2) = 0.

• The second ∗ at depth 3 is at breadth 2. Hence, we have (b2/2c + 1) = 2,
that is, the second ∗ at depth 2, and û2 = 2 (mod 2) = 0.

• The second ∗ at depth 2 is at breadth 1. Thus, (b1/2c+ 1) = 1, that is, the
first ∗ at depth 1, and û1 = 1 (mod 2) = 1.

• Finally, the first ∗ at depth 1 is at breadth 0 and, hence, û0 = 0.

In conclusion, the decided information sequence is û = (01000 . . .).

Let us return to the partially explored tree in Fig. 6.2. We notice that at depth 8
we have a duplicate of the state (0000). The two states (0000) have accumulated
Hamming distances 2 and 3, respectively. The two subtrees stemming from these
two nodes are, of course, identical. Hence, a path passing the first of these two states
will always be superior to a corresponding path passing the latter one. We will obtain

LIST DECODING—PERFORMANCE 391

an improved version of the list decoding algorithm if at each depth we delete inferior
duplicates before we select the L best extensions to be put on the list. Searching
only for duplicates of only one state (in our case the tentatively best) can easily be
done linearly in L. We do not worry about duplicates of other states since subpaths
stemming from nonoptimal states are deleted from the list of the L best subpaths very
fast. Furthermore, obtaining the Lth poorest path in the list is of order L [Knu73],
and comparing the remaining paths to this one is also of order L. Hence, the list
decoding algorithm is actually linear in L [MoA84, AnM91].

6.2 LIST DECODING—PERFORMANCE

Consider a rate R = b/c, memory m encoder for a convolutional code C, the BSC,
and the received binary sequence

r[0,t] = r0r1 . . . rt (6.1)

where ri ∈ Fc2, 0 ≤ i ≤ t. We look at the sphere Sδ(r[0,t]) with radius δ around the
received sequence r[0,t], that is,

Sδ(r[0,t]) =
{
y[0,t] | dH(r[0,t],y[0,t]) ≤ δ

}
(6.2)

where y[0,t] ∈ F(1+t)c
2 . The number of (initial parts of length (1 + t)c of the)

codewords v in this sphere is

Nt(δ, r[0,t]) =
∣∣ {v[0,t] ∈ Sδ(r[0,t]) | v ∈ C

} ∣∣ (6.3)

Let N(e, r) be the maximal number of codewords which can occur in a sphere with
center r and radius e over all t, that is,

N(e, r) = max
t
{Nt(e, r[0,t])} (6.4)

Maximizing over all possible received sequences, we get the sphere of radius e with
the maximal number of codewords for the code C:

Nmax(e)
def
= max

r
{N(e, r)} (6.5)

A list decoder that has to correct all e-error combinations, no matter where they start,
must keep at leastL = Nmax(e) paths in the decoder memory. Otherwise the decoder
might lose the correct path, and there exists at least one e-error sequence that may
not be corrected.

How large should we choose L? If

L ≥ Nmax(e) (6.6)

then the following statements hold:

392 LIST DECODING

(i) If at most e errors occur, then a list decoder of list size L will not lose the
correct path.

(ii) If the used code has free distance dfree ≥ 2e+ 1, then all e-error combinations
will be decoded correctly.

The parameter Nmax(e) can be illustrated by assuming that all codewords at some
trellis level are points in a plane and by using a coin [And89]. Move a coin with
radius e around until it covers the largest number of codewords. The largest such
number at any trellis level is Nmax(e), the least L which is necessary to avoid losing
the correct path.

EXAMPLE 6.2

The following table shows Nmax(e) for the systematic rate R = 1/2, memory
m = 11, convolutional encoding matrixG(D) = (1 1 +D+D2 +D5 +D6 +
D8 +D10 +D11) with free distance dfree = 9.

e 2 3 4
Nmax(e) 4 9 19

A list decoder for this encoding matrix decodes all 4-error combinations cor-
rectly if L is large enough. The sphere around any received sequence with radius
4 contains at most Nmax(4) = 19 codewords. So we have to use at least L = 19
paths in order to fully reach the 4-error correction potential of the given code.

In Chapter 2 we showed in Theorem 2.74 that every convolutional generator ma-
trix is equivalent to a systematic rational encoding matrix. Consider a rate R = b/c,
memory m, nonsystematic polynomial convolutional encoding matrix and its sys-
tematic rational equivalent. Expand the rational functions of the systematic encoding
matrix into power series in D and truncate after Dm. Then we obtain a systematic
polynomial encoding matrix that is equivalent to the nonsystematic one over the first
memory length, that is, their code trees are identical over the first m + 1 branches.
Hence, these two encoding matrices have exactly the same distance profile.

Suppose that both a nonsystematic polynomial encoding matrix of memory m
and a systematic polynomial encoding matrix, in general also of memory m, that are
equivalent over the first memory length are used together with a list decoder.

For a range of interesting values of L, the list decoder will operate mostly in
the identical parts of the code trees encoded by the two encoders. The burst error
probability measured at the root will be almost the same for both encoders.

Consider the memory m = 31 ODP nonsystematic convolutional encoding ma-
trix (octal notation, see Chapter 10) Gnonsys = (74041567512 54041567512) with
dfree = 25. By long division of the generator polynomials and truncation, we ob-
tain the following memory m = 31 ODP systematic convolutional encoding matrix
Gsys = (40000000000 67115143222) with dfree = 16. These two encoding matri-
ces are equivalent over the first memory length. In Fig. 6.5 we compare for various L
the burst error probability PB measured at the root of the code tree when the received

LIST DECODING—PERFORMANCE 393

3.5 4.0 4.5 5.0 5.5 6.0

10−4

10−3

10−2

L = 16

L = 32

L = 64

L = 128

Eb/N0 [dB]

PB

Gsys

Gnonsys

Figure 6.5 Burst error probability, PB, measured at the root for list decoding—systematic
vs. nonsystematic convolutional encoding matrices.

sequences are decoded by a list decoder. The simulations give striking support of the
conclusions given above.

A very different result occurs when encoding matrices with widely varying dis-
tance profiles are tested. In Fig. 6.6 we compare the burst error probabilities at
L = 32 for five encoding matrices, all with dfree = 10, each of whose distance profile
successively underbounds the others. The result is a sequence of widely varying PB
curves arranged in the same order. The encoding matrices are

G1 = (400000 714474), m = 15, dfree = 10

d = (2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 8)

G2 = (400000 552234), m = 15, dfree = 10

d = (2, 2, 3, 4, 4, 4, 57, 5, 5, 6, 6, 6, 7, 7, 8, 8)

394 LIST DECODING

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

10−4

10−3

10−2

Eb/N0 [dB]

PB

G1

G2

G3

G4

G5

Figure 6.6 A nested set of distance profiles leads to a nested set of PB curves.

G3 = (400000 447254), m = 15, dfree = 10

d = (2, 2, 2, 3, 3, 3, 3, 4, 5, 6, 6, 6, 6, 7, 7, 7)

G4 = (400000 427654), m = 15, dfree = 10

d = (2, 2, 2, 2, 3, 3, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6)

G5 = (400000 417354), m = 15, dfree = 10

d = (2, 2, 2, 2, 2, 3, 4, 5, 5, 6, 6, 6, 6, 6, 6, 7)

It appears that for a given list size L almost all the variations in the burst error
probability for different encoding matrices can be traced to variations in the distance
profiles. The burst error probability performance depends almost entirely on the
distance profile and not on either the free distance or the type of the encoding matrix
(systematic or nonsystematic).

Now we will turn to perhaps the most important comparison: list versus Viterbi
decoding. In Fig. 6.7 we show the results when nonsystematic encoding matrices
with optimum free distances are used. The list decoder decodes a memory m = 9
encoding matrix at L = 16, 32, 64, 128, 256, while the Viterbi algorithm decodes

LIST DECODING—PERFORMANCE 395

3.0 3.5 4.0 4.5 5.0 5.5 6.0

10−5

10−4

10−3

L = 16

L = 32

L = 64

L = 128

L = 256

Eb/N0 [dB]

PB

List decoding, G1

Viterbi decoding, G2

Viterbi decoding, G3

Viterbi decoding, G1

Figure 6.7 Burst error probability, PB. List vs. Viterbi decoding.

three encoding matrices of memory 7, 8, and 9 whose survivor numbers are 128, 256,
and 512, respectively. From the simulations we conclude that for the same burst error
probability the Viterbi algorithm requires somewhat more than twice the survivors of
the list decoder. The encoding matrices are

G1 = (4734 6624), m = 9, dfree = 12 (6.7)
G2 = (712 476), m = 7, dfree = 10 (6.8)
G3 = (561 753), m = 8, dfree = 12 (6.9)

So far we have considered only burst error probability. The situation is quite
different when we deal with bit error probability. A correct path loss is a severe
event that causes many bit errors. If the decoder cannot recover a lost correct path
it is, of course, a “catastrophe,” that is, a situation similar to the catastrophic error
propagation that can occur when a catastrophic encoding matrix is used to encode
the information sequence. The list decoder’s ability to recover a lost correct path
depends heavily on the type of encoding matrix that is used.

396 LIST DECODING

3.0 3.5 4.0 4.5 5.0 5.5 6.0

10−4

10−3

10−2

10−1

L = 16

L = 16
L = 128

L = 128

Eb/N0 [dB]

Pb

Gsys

Gnonsys

Figure 6.8 Bit error probability, Pb, for list decoding—systematic vs. nonsystematic,
polynomial convolutional encoding matrices.

A systematic, polynomial encoding matrix supports a spontaneous recovery. This
is illustrated in Fig. 6.8 where we compare the bit error probability for list decoders
with various list sizes when they are used to decode sequences received over a BSC
and encoded with both systematic and nonsystematic, polynomial encoding matrices
with the same distance profile. The free distance of the systematic, polynomial
encoding matrix is by far the least, yet its bit error probability is more than 10 times
better. The encoding matrices are

Gsys = (4000000 7144655), m = 20, dfree = 13 (6.10)
Gnonsys= (6055051 4547537), m = 20, dfree = 22 (6.11)

The only advantage of the nonsystematic encoding matrix is its larger free dis-
tance. Yet this extra distance has almost no effect on either the burst or the bit error
probability. Nor does it change the list size L needed to correct e errors as long as e
falls within the powers of the systematic, polynomial encoding matrix.

THE LIST MINIMUM WEIGHT 397

A suggestion of why systematic, polynomial encoding matrices offer rapid recov-
ery of a lost correct path may be found by considering the trellises of rate R = 1/2
random systematic, polynomial, and nonsystematic encoding matrices. Suppose the
correct path is the allzero one and no errors occur for a time, and consider an arbitrary
trellis node. The 0-branch (the one that inserts a zero into the encoder shift register)
is the one leading back to the correct path. For a systematic, polynomial encoding
matrix, the distance increment of this “correct” branch is 0.5 on the average, while
the incorrect branch has increment 1.5. For a nonsystematic encoding matrix, these
average increments are both 1 and give no particular direction of the search back to
the correct path.

In conclusion, using systematic, polynomial convolutional encoding matrices es-
sentially solves the correct path loss problem with list decoders. Since both system-
atic and nonsystematic encoding matrices have the same error rate in the absence of
correct path loss, systematic, polynomial encoding matrices are clearly superior to
nonsystematic ones.

In Fig. 6.9 we compare list and Viterbi decoding with respect to the bit error
probability. We have chosen Viterbi decoders with complexities that are twice the
list sizes of the list decoders. The list decoders outperform the corresponding Viterbi
decoders. The encoding matrices are

G1 = (4000000 7144655), m = 20, dfree = 13 (6.12)
G2 = (712 476), m = 7, dfree = 10 (6.13)
G3 = (561 753), m = 8, dfree = 12 (6.14)
G4 = (4734 6624), m = 9, dfree = 12 (6.15)

6.3 THE LIST MINIMUM WEIGHT

In this section we will introduce the list minimum weight for convolutional codes. It
is an important parameter when we analyze the error performance of list decoding.
It is related to the number of errors that can be guaranteed to be corrected by a list
decoder.

In the previous section we used a sphere of fixed radius e. By counting the number
of codewords within the sphere when we moved the center of the sphere to all possible
received sequences with at most e errors, we obtained guidelines on how to choose
the list size L for a given guaranteed error-correcting capability e. Now we will
turn the problem around. Consider a list decoder with a fixed list size L. For every
t = 0, 1, . . . and every received sequence r[0,t] ∈ F(1+t)c

2 , let δL(r[0,t]) denote the
largest radius of a sphere SδL(r[0,t])(r[0,t]) with center r[0,t] such that the number of
codewords in the sphere is

Nt(δL(r[0,t]), r[0,t]) ≤ L (6.16)

The smallest such radius is of particular significance, and we have the following:

398 LIST DECODING

3.0 3.5 4.0 4.5 5.0 5.5 6.0

10−4

10−3

10−2

10−1

L = 16

L = 32

L = 64

L = 128

Eb/N0 [dB]

Pb

List decoding, G1

Viterbi decoding, G2

Viterbi decoding, G3

Viterbi decoding, G4

Figure 6.9 Bit error probability, Pb. List vs. Viterbi decoding.

Definition For a list decoder with a given list size L, the list minimum weight wmin is

wmin = min
t

min
r[0,t]

{
δL(r[0,t])

}
(6.17)

where r[0,t] is the initial part of the received sequence r.

We immediately have the next theorem.

Theorem 6.1 Given a list decoder of list sizeL and a received sequence with at most
wmin errors. Then the correct path will not be forced outside the list of L survivors.

Unfortunately, wmin is hard to estimate. This leads us to restrict the minimization
to those received sequences that are codewords. Thus, we obtain the following:

Definition For a given list size L the list weight wlist of the convolutional code C is

wlist = min
t

min
v[0,t]

{δL(v[0,t])} (6.18)

THE LIST MINIMUM WEIGHT 399

where v[0,t] is the initial part of the codeword v ∈ C.

The importance of the list minimum weight can be inferred from the following:

Theorem 6.2 The list minimum weight wmin is upper- and lower-bounded by wlist
according to ⌊

1

2
wlist

⌋
≤ wmin ≤ wlist (6.19)

Proof : The right inequality of (6.19) follows immediately from (6.17) and (6.18).
To prove the left inequality of (6.19), we consider the spheres Sb 1

2wlistc(r[0,t]) of
radius b 1

2wlistcwith centers at all received sequences r[0,t]. If all such spheres contain
less thanL codewords, we are done. If not, consider any one of the nonempty spheres
and take another sphere Swlist(v[0,t]) of radius wlist with center at any codeword v(i)

in the smaller sphere (Fig. 6.10). Clearly, we have

Sb 1
2wlistc(r[0,t]) ⊆ Swlist(v

(i)
[0,t]) (6.20)

By the definition ofwlist, the larger sphere contains at most L codewords. Thus, from
(6.20) it follows that the smaller sphere contains at most L codewords. Furthermore,
the correct path cannot be forced outside the list if the received sequence r[0,t]

contains at most b 1
2wlistc errors.

From Theorems 6.1 and 6.2 we immediately have the following:

Corollary 6.3 Given a list decoder of list size L and a received sequence with at
most b 1

2wlistc errors. Then the correct path will not be forced outside the list of L
survivors.

If the number of errors exceeds b 1
2wlistc, then it depends on the code C and on the

received sequence r whether the correct path is not forced outside the list.

EXAMPLE 6.3

Both the list minimum weight wmin and the list weight wlist for the convolutional
code C encoded by the rate R = 1/2, memory m = 4, systematic convolutional
encoding matrix G(D) = (1 1 +D +D2 +D4) are shown in Fig. 6.11.

To prove a random coding lower bound on wlist we consider the ensemble of
E(b, c,∞, 1), that is, the ensemble of infinite-memory, time-invariant convolutional
codes with generator matrix

G =

 G0 G1 . . .
G0 G1 . . .

.

 (6.21)

in which each digit in each of the matrices Gi, i = 0, 1, . . ., is chosen independently
with probability 1/2. Hence, over the ensemble E(b, c,∞, 1) all code symbols on a

400 LIST DECODING

× ×

wlist b 1
2wlistc

v
(i)
[0,t] r[0,t]

Figure 6.10 Illustration for the proof of Theorem 6.2.

1 2 3 4 5 6 7 8 9
0

1

2

3

4

L

wmin, wlist

b 1
2wlistc

wmin

wlist

Figure 6.11 The list minimum weight wmin and the list weight wlist for the convolutional
code C given in Example 6.3.

subpath diverging from the allzero path are mutually independent (cf. Theorem 3.25).
Furthermore, these code symbols are also equally probable binary digits.

The next lemma and theorem establish lower bounds on the list weight wlist that
are similar to Costello’s lower bound on the free distance of a convolutional code
(Theorem 3.28):

Lemma 6.4 The fraction of binary, rate R = b/c, infinite-memory, time-invariant
convolutional codes with polynomial encoding matrices used with list decoding of

THE LIST MINIMUM WEIGHT 401

list size L, having list weight wlist, and satisfying the inequality

wlist >
logL

− log(21−R − 1)
+

log((2R − 1)(1− f))

− log(21−R − 1)
− 1 (6.22)

exceeds f , where 0 ≤ f < 1.

Proof : Suppose that C belongs to the ensemble of infinite-memory, time-invariant
convolutional codes. Let C[0,t) denote the truncation at depth t of the code C. One
of the paths in the code tree representing C[0,t) corresponds to the allzero path. In
this code tree, 2b − 1 subpaths exist differing from the allzero path at depth t − 1,
and, in general, there exist (2b − 1)2`b subpaths differing from the allzero path at
depth t− `− 1, ` = 0, 1, . . . , t− 1. Since all code symbols on the subpaths differing
from the allzero path are independent and equiprobable binary digits (Lemma 3.13),
it follows that the probability that a subpath differing from the allzero path at depth
t− `− 1 has weight i is equal to(

(`+ 1)c
i

)(
1

2

)(`+1)c

The probability that the weight of this subpath is less than w is equal to

w−1∑
i=0

(
(`+ 1)c

i

)(
1

2

)(`+1)c

Let vk[0,t) be a code sequence arising from a nonzero information sequence, and let
us introduce the indicator function

ϕw(vk[0,t)) =

{
1 if wH(vk[0,t)) < w

0 else
(6.23)

Let Nw(t) denote the number of subpaths in the truncated code tree for C[0,t) having
weight less than w. Clearly,

Nw(t) =
∑
k

ϕw(vk[0,t)) (6.24)

Hence, we have

E[Nw(t)] =
∑
k

E[ϕw(vk[0,t))]

=
∑
k

P (wH(vk[0,t)) < w)

= 1 +
t−1∑
`=0

(2b − 1)2`b
w−1∑
i=0

(
(`+ 1)c

i

)(
1

2

)(`+1)c

(6.25)

402 LIST DECODING

By extending the sum over ` in (6.25) to all nonnegative integers, we obtain an upper
bound that is independent of t. Omitting the argument t in the random variableNw(t)
and upper-bounding (2b − 1)2`b by 2(`+1)b, we obtain

E[Nw] < 1 +
∞∑
`=0

w−1∑
i=0

2(`+1)b

(
(`+ 1)c

i

)
2−(`+1)c (6.26)

We use the substitution
k = (`+ 1)c (6.27)

and upper-bound the right side of (6.26) by summing over k = 0, 1, 2, . . .,

E[Nw] <
∞∑
k=0

w−1∑
i=0

(
k

i

)
2k(R−1) (6.28)

Substituting
x = 2R−1 (6.29)

into (6.28) and using the formulas

∞∑
k=0

(
k

i

)
xk =

xi

(1− x)i+1
(6.30)

and
w−1∑
i=0

xi

(1− x)i+1
=

1

1− x

(
x

1−x

)w
− 1(

x
1−x

)
− 1

(6.31)

for 0 < x < 1, we obtain

E[Nw] <
1

(2R − 1)(21−R − 1)w
(6.32)

For a given list size L and value f , we choose a ŵ such that

1

(2R − 1)(21−R − 1)ŵ
≤ L(1− f) <

1

(2R − 1)(21−R − 1)ŵ+1
(6.33)

Then, from (6.32) and the left inequality of (6.33) it follows that

E[Nŵ] < L(1− f) (6.34)

and, thus, for more than a fraction f of the codes in the ensemble, we must have
Nŵ ≤ L, which implies a list weight wlist that is not less than ŵ. By rewriting the
right inequality of (6.33) as

ŵ >
logL

− log(21−R − 1)
+

log((2R − 1)(1− f))

− log(21−R − 1)
− 1 (6.35)

THE LIST MINIMUM WEIGHT 403

we have completed the proof.

Next we shall show that our lower bound on the list weightwlist for general convo-
lutional codes also holds for convolutional codes encoded by systematic, polynomial
encoding matrices.

Consider the ensemble E(b, c,∞, 1) of binary, rate R = b/c, infinite-memory,
time-invariant, convolutional codes with systematic, polynomial encoding matrices

G =

 G0 G1 . . .
G0 G1 . . .

.

 (6.36)

in which each (b× c) submatrix Gi, i = 0, 1, . . ., is systematic, that is,

Gi =

1 0 . . . 0

... g1,b+1 gg1,b+2 . . . g1,c

0 1 . . . 0
... g2,b+1 gg2,b+2 . . . g2,c

. .

0 0 . . . 1
... gb,b+1 ggb,b+2 . . . gb,c

 (6.37)

and each digit gij , i = 1, 2, . . . , b, j = b + 1, b + 2, . . . , c, is chosen independently
with probability 1/2 to be 0 or 1.

Lemma 6.5 The fraction of binary, rate R = b/c, infinite-memory, time-invariant
convolutional codes with systematic, polynomial encoding matrices used with list
decoding of list size L, having a list weight wlist, and satisfying inequality (6.22),
exceeds f , where 0 ≤ f < 1.

Proof : Suppose that C belongs to the ensemble of infinite-memory, time-invariant
convolutional codes with systematic, polynomial encoding matrices. Let C[0,t) denote
the truncation at depth t of the code C. In the code tree there exist

(
b
i

)
subpaths

differing from the allzero path at depth t − 1 with a weight of information symbols
equal to i, i = 1, 2, . . . , b. Correspondingly, there exist no more than

(
(`+1)b
i

)
subpaths differing from the allzero path at depth t − ` − 1, with a weight of its
information symbols equal to i, i = 1, 2, . . . , b(` + 1). The probability that the
weight of the parity check symbols of the subpath differing from the allzero path at
depth t− `− 1 has weight j − i, j ≥ i, is equal to

(
(`+ 1)(c− b)

j − i

)(
1

2

)(`+1)(c−b)

404 LIST DECODING

Thus (cf. (6.26)), the average of the number of subpaths of C[0,t) having weights less
than w is upper-bounded by the inequality

E[Nw] < 1 +
∞∑
`=0

w−1∑
j=0

j∑
i=0

(
(`+ 1)b

i

)(
(`+ 1)(c− b)

j − i

)(
1

2

)(`+1)(c−b)

= 1 +
∞∑
`=0

w−1∑
j=0

(
(`+ 1)c

j

)
2−(`+1)(c−b) (6.38)

where the equality follows from the identity

j∑
i=0

(
n

j − i

)(
k

i

)
=

(
n+ k

j

)
(6.39)

Since (6.38) is analogous to (6.26), the remaining part of the proof is similar to the
proof of Lemma 6.4.

By letting f = 0 and combining Lemmas 6.4 and 6.5, we obtain the following:

Theorem 6.6 There exists a binary, rate R = b/c, infinite-memory, time-invariant
convolutional code with nonsystematic and systematic, polynomial generator matri-
ces used with list decoding of list size L, having a list weight wlist, and satisfying the
inequality

wlist >
logL

− log(21−R − 1)
+O(1) (6.40)

where

O(1) =
log((2R − 1)(21−R − 1))

− log(21−R − 1)
(6.41)

Since a list decoder has L states and a Viterbi decoder for a convolutional code of
overall constraint length ν has 2ν states, our lower bound on wlist (6.40) is similar to
Costello’s lower bound on dfree (3.164).

It follows from Theorem 6.6 that convolutional codes encoded by both nonsystem-
atic generator matrices and systematic, polynomial encoding matrices have principal
determiners of the correct path loss probability that are lower-bounded by the same
bound. For the free distance, which is the principal determiner of the error prob-
ability with Viterbi decoding, Costello’s lower bounds on the free distance differ
by the factor 1 − R, depending on whether the convolutional code is encoded by
a nonsystematic generator matrix or by a systematic, polynomial encoding matrix
(cf. Theorem 3.28 and Problem 3.17). This different behavior reflects a fundamental
and important difference between list and maximum-likelihood decoding.

Next we will derive an upper bound on the list weight that resembles our lower
bound. In the derivation we will use a Hamming-type upper bound on the list weight
for convolutional codes, but first we need the corresponding bound for block codes
(cf. the Hamming bound for binary block codes given in Problem 1.17).

THE LIST MINIMUM WEIGHT 405

The list weight wlist for a block code B of block length N is obtained if we let
t = 0 and use c = N code symbols on each branch in the definition of the list weight
wlist for a convolutional code C (6.18).

Lemma 6.7 The list weight wlist for a binary block code B of block length N and
rate R when used with list decoding of list size L satisfies the inequality

b 1
2wlistc∑
i=0

(
N

i

)
≤ L2N(1−R) (6.42)

Proof : Assume that the inequality does not hold. Then, counting all points in the
spheres of radius b 1

2wlistc around the 2NR codewords we will fill the whole space
(2N points) more than L-fold. Hence, at least one of these points in the spheres
must have been counted at least L+ 1 times; that is, it must belong to at least L+ 1
spheres. The codewords at the centers of these at least L+ 1 spheres with one point
in common are at most 2b 1

2wlistc apart. Let any of these codewords be centered in
a sphere of radius 2b1

2wlistc. That sphere contains at least L + 1 codewords, which
contradicts the definition of wlist. Thus, the inequality (6.42) must hold.

Corollary 6.8 The list weight wlist for a binary block code B of block length N and
rate R when used with list decoding of list size L satisfies the inequality(

h

(
1

N

⌊
1

2
wlist

⌋)
− 1 +R

)
N <

1

2
logN + logL+

1

2
(6.43)

where h() is the binary entropy function (1.22).

Proof : We have the following series of inequalities:
b 1

2wlistc∑
i=0

(
N

i

)
>

(
N

b 1
2wlistc

)
>

√
N

8b 1
2wlistc(N − b 1

2wlistc)
2Nh(

1
N b

1
2wlistc)

≥ 1√
2N

2Nh(
1
N b

1
2wlistc) (6.44)

where the first inequality is obvious and the second inequality follows from Lemma 5.1.
By combining Lemma 6.7 and (6.44), we obtain

1√
2N

2Nh(
1
N b

1
2wlistc) < L2N(1−R) (6.45)

Taking the logarithm completes the proof.

For convolutional codes we have the following counterpart to Lemma 6.7:

Lemma 6.9 The list weightwlist for a convolutional code of rateR = b/cwhen used
with list decoding of list size L satisfies the inequality

b 1
2wlistc∑
i=0

(
(t+ 1)c

i

)
≤ L2(t+1)c(1−R) (6.46)

406 LIST DECODING

for t = 0, 1,

Proof : Follows immediately from Lemma 6.7 applied to C[0,t) for each t =
0, 1,

Theorem 6.10 The list weight wlist for a binary, rate R = b/c convolutional code
when used with list decoding of list size L satisfies the inequality

wlist <
2 logL

− log(21−R − 1)
+ o(logL) (6.47)

Proof : For convolutional codes we obtain from (6.46) the following counterpart to
(6.43): (

h

(
1

(t+ 1)c

⌊
1

2
wlist

⌋)
− 1 +R

)
(t+ 1)c

<
1

2
log((t+ 1)c) + logL+

1

2
(6.48)

for t = 0, 1, Let

t0 + 1 =

⌊
1

c(1− 2R−1)

⌊
1

2
wlist

⌋⌋
(6.49)

Then, for any given rate R > 0 there exists a sufficiently large b 1
2wlistc such that the

inequalities
2

c

⌊
1

2
wlist

⌋
< t0 + 1 ≤ 1

c(1− 2R−1)

⌊
1

2
wlist

⌋
(6.50)

hold.
Let t = t0 in (6.48). From the left inequality in (6.50) it follows that the argument

for the binary entropy function in (6.48) is less than 1/2. From the right inequality in
(6.50) it follows that this argument is at least (1 − 2R−1). Since the binary entropy
function is increasing in the interval [0, 1

2], we obtain

(h(1− 2R−1)− 1 +R)(t0 + 1)c <
1

2
log((t0 + 1)c) + logL+

1

2
(6.51)

By simple manipulations, we can show that

h(1− 2R−1)− 1 +R = −(1− 2R−1) log(21−R − 1) (6.52)

Combining (6.51) and (6.52) gives the important inequality

−(t0 +1)c(1−2R−1) log(21−R−1) <
1

2
log((t0 +1)c)+logL+

1

2
(6.53)

By using the well-known inequality

log x ≤ x− 1, x > 0 (6.54)

UPPER BOUNDS ON THE PROBABILITY OF CORRECT PATH LOSS 407

it follows from (6.53) that

(t0 + 1)Ac−
√

(t0 + 1)c− logL < 0 (6.55)

where
A = −(1− 2R−1) log(21−R − 1) (6.56)

By combining (6.50) and (6.55) we obtain

wlist <
2 logL

− log(21−R − 1)
+ (1− 2R−1)

√
1 + 4A logL

A2
+

1− 2R−1

A2

+ (1− 2R−1)c+ 2 =
2 logL

− log(21−R − 1)
+O

(√
logL

)
(6.57)

Thus, the proof is complete.

It is interesting to notice that the main term in the upper bound for wlist is exactly
twice the main term in the corresponding lower bound.

Finally, from Theorems 6.6 and 6.10 we obtain the following:

Theorem 6.11 Given any received sequence with at most e errors. Then there exists
a rate R = b/c convolutional code such that the correct path is not lost when it is
used with list decoding of list size L satisfying (asymptotically) the inequalities(

1

21−R − 1

) 1
2 e

. L .

(
1

21−R − 1

)e
(6.58)

In particular, we have the next corollary.

Corollary 6.12 Given any received sequence with at most e errors. Then there exists
a rate R = 1/2 convolutional code such that the correct path is not lost when it is
used with list decoding of list size L satisfying (asymptotically) the inequalities(

1 +
√

2
) 1

2 e

. L .
(

1 +
√

2
)e

(6.59)

As expected, the required list size grows exponentially with the number of errors to
be corrected.

6.4 UPPER BOUNDS ON THE PROBABILITY OF CORRECT PATH
LOSS

The correct path loss on the tth step of a list decoding algorithm is a random event
Ecpl
t which consists of deleting at the tth step the correct codeword from the list of

the Lmost likely codewords. In this section, we derive both expurgation and sphere-
packing upper bounds on the probability of this correct path loss for the ensemble
E(b, c,∞, 1) of infinite-memory, time-invariant convolutional codes.

408 LIST DECODING

Our expurgation bound is valid for transmission ratesR less than the computational
cutoff rate R0:

Lemma 6.13 (Expurgation bound for list decoding) For a list decoder of list size
L and the BSC with crossover probability ε there exist infinite-memory, time-
invariant, binary convolutional codes of rate R = b/c with systematic and non-
systematic, polynomial generator matrices such that the probability of correct path
loss is upper-bounded by the inequality

P (Ecpl
t) ≤ L−sO(1) (6.60)

for rates 0 ≤ R < R0, where s, 1 ≤ s <∞, satisfies

R = Gexp(s)/s (6.61)

Gexp(s) is the expurgation function (5.75), and O(1) is independent of L.

Remark: When the rateR→ R0 the exponent of theL-dependent factor of the upper
bound in Lemma 6.13 approaches −1, while the second factor approaches +∞.

In the proof we need the following:

Lemma 6.14 (Markov inequality) If a nonnegative random variable X has an av-
erageE[X], then the probability that the outcome exceeds any given positive number
a satisfies

P (X ≥ a) ≤ E[X]

a
(6.62)

Proof : The lemma follows immediately from

E[X] =
∑
x

xP (X = x) ≥
∑
x≥a

xP (X = x)

≥ a
∑
x≥a

P (X = x) = aP (X ≥ a) (6.63)

Proof (Lemma 6.13): Consider the ensembles E(b, c,∞, 1) of binary, rate R = b/c,
infinite-memory, time-invariant convolutional codes with systematic or nonsystem-
atic, polynomial encoding matrices, respectively. LetwbL/2c-list denote the list weight
when the list size is bL/2c. Then we let the bL/2c codewords of weight wbL/2c-list
or less be on the list of size L. The remaining dL/2e places are filled with codewords
having weights more than wbL/2c-list. This is done as follows. Expurgate from the
code ensemble all codes for which wbL/2c-list does not satisfy the inequality

wbL/2c-list >

⌈
logbL/2c

− log(21−R − 1)
+

log
(
(2R − 1)(1− f)

)
− log(21−R − 1)

− 1

⌉
def
= w0 (6.64)

and consider from now on only the subensembles for which the inequality (6.64) is
satisfied.

UPPER BOUNDS ON THE PROBABILITY OF CORRECT PATH LOSS 409

According to Lemmas 6.4 and 6.5, each of these subensembles contains more
than a fraction f of the codes of the ensemble. Assuming list decoding of list size
L of the codes of each subensemble, a necessary condition to lose the correct path
at the tth step of the decoding is that the number of subpaths in the tree at the depth
t, having weight more than wbL/2c-list and surpassing the correct path, exceed dL/2e
since then the total number of paths exceeds L. The probability that a particular
subpath of weight j would surpass the correct (allzero) path is upper-bounded by

the Bhattacharyya bound (4.20), viz., by
(

2
√
ε(1− ε)

)j
. The fraction of subpaths

diverging from the allzero path at depth t− `− 1 having weight j is upper-bounded
by

(
(`+ 1)c

j

)
2−(`+1)c

The average of the number of subpaths having weight not less thanw0 and surpassing
the correct path evaluated over the ensemble is upper-bounded by

∞∑
`=0

∞∑
j=w0

2b(`+1)

(
(`+ 1)c

j

)
2−(`+1)c

(
2
√
ε(1− ε)

)j

If we evaluate the average over the subensemble containing only the fraction f of the
codes, then the upper bound is weakened by a factor of 1/f . Hence, for f > 0 in
the subensemble, the mathematical expectation of the number N of subpaths, which
surpass the correct path, is upper-bounded by

E[N] <
1

f

∞∑
`=0

∞∑
j=w0

(
(`+ 1)c

j

)
2−(`+1)(c−b)

(
2
√
ε(1− ε)

)j
<

1

f

∞∑
k=0

∞∑
j=w0

(
k

j

)
2k(R−1)

(
2
√
ε(1− ε)

)j
=

1

(1− 2R−1)f

∞∑
j=w0

(
2
√
ε(1− ε)

(21−R − 1)

)j
(6.65)

The sum on the right-hand side of (6.65) converges if

2
√
ε(1− ε)

21−R − 1
=

21−R0 − 1

21−R − 1
< 1 (6.66)

410 LIST DECODING

that is, if R < R0. From (6.66) we have for f > 0 that

E[N] <
1

(1− 2R−1)f

(
2
√
ε(1− ε)

21−R − 1

)w0

1

1− 2
√
ε(1−ε)

21−R−1

=
21−R

f(21−R − 21−R0)

(
2
√
ε(1− ε)

21−R − 1

)w0

=
1

f(1− 2R−R0)

(
2
√
ε(1− ε)

21−R − 1

)w0

≤ (bL/2c)−
log(2

√
ε(1−ε))

log(21−R−1) (bL/2c) 1

f

1

1− 2R−R0

×
(
(2R − 1)(1− f)(21−R − 1)

)− log(2
√
ε(1−ε))

log(21−R−1)
+1

(6.67)

where the last inequality follows from (6.64).
Let s satisfy (6.61). Then combining (6.61) and (5.57) yields

s

(
1− log

(
1 +

(
2
√
ε(1− ε)

)1/s
))

= sR (6.68)

Assuming s 6= 0, we obtain

s =
log
(

2
√
ε(1− ε)

)
log(21−R − 1)

(6.69)

Thus, inequality (6.67) can be rewritten as

E[N] < (bL/2c)1−s 1

f

1

1− 2R−R0

(
(2R − 1)(1− f)(21−R − 1)

)1−s
(6.70)

From Lemma 6.14 it follows that the probability of correct path loss at the tth step
of list decoding for rates R < R0 is upper-bounded by the inequalities

P (Ecpl
t) <

E[N]

dL/2e
< L−sOf (1) (6.71)

where

Of (1) =
1

1− 2R−R0
2s

1

f

(
(2R − 1)(1− f)(21−R − 1)

)1−s
(6.72)

If we choose f = 1/2 say, we get

O1/2(1) =
1

1− 2R−R0

(
(2R − 1)(21−R − 1)

)1−s
(4ε(1− ε))

1

log(21−R−1)

def
= O(1) (6.73)

and the proof is complete.

UPPER BOUNDS ON THE PROBABILITY OF CORRECT PATH LOSS 411

For the sphere-packing region, R0 ≤ R < C, we have the following upper bound
on the probability of correct path loss:

Lemma 6.15 (Sphere-packing bound for list decoding) For a list decoder of list
size L and the BSC with crossover probability ε, there exist infinite-memory, time-
invariant, binary convolutional codes of rate R = b/c with systematic and nonsys-
tematic, polynomial generator matrices such that the probability of correct path loss
is upper-bounded by the inequality

P (Ecpl
t) < L−sO(logL) (6.74)

for rates R0 ≤ R < C, where s, 0 < s ≤ 1, satisfies

R = G(s)/s (6.75)

G(s) is the Gallager function (5.98), and O(logL)
logL → constant when L→∞.

Proof : For the sphere-packing region we shall as before exploit the idea of sep-
arating the error event Ecpl

t into two disjoint events corresponding to “few” F and
“many”M errors, respectively. Hence, we have (cf. (4.81))

E[P (Ecpl
t)] ≤ E[P (Ecpl

t ,F)] + P (M) (6.76)

Without loss of generality, we assume that the allzero sequence is transmitted. Let
r[0,t) = r0r1 . . . rt−1, where ri = (ri1ri2 . . . ric), denote the received sequence of
length t c-tuples.

We introduce a backward random walk 0, S0, S1, . . . , St−1, where

S` =
∑̀
i=0

Zi, 0 ≤ ` < t (6.77)

starting with 0 at a node at depth t, S0 at depth t− 1, and so on, until we have St−1

at the root. The branch metric Zi is given by

Zi =
c∑
j=1

Yij (6.78)

where

Yij =

{
α if r(t−1−i)j = 0

β otherwise
(6.79)

and (cf. (5.211))
α = log (1−ε)

1
1+s

1
2 (1−ε)

1
1+s+ 1

2 ε
1

1+s
−R

β = log ε
1

1+s

1
2 (1−ε)

1
1+s+ 1

2 ε
1

1+s
−R

(6.80)

412 LIST DECODING

The parameter s will be chosen later. We say that those error patterns for which St
hits or crosses (from above) a certain barrier u contain “many” errors.

Following the same steps as in the derivation given by (5.212) to (5.217) we obtain
(see also Corollary B.6)

P (M) = P (min
`
{S`} ≤ u) ≤ 2su (6.81)

where 0 < s ≤ s0 and s0 is a positive root of the equation

G(s0) = s0R (6.82)

Next we upper-bound the probability that the correct path is lost at depth t and that
we have an error pattern with “few” errors. Let Nt denote the number of paths at
depth t which surpass the correct path. Then, since the correct path is lost at depth t
if Nt ≥ L, it follows from the Markov inequality (Lemma 6.14) that

P (Ecpl
t ,F) ≤ E[Nt | F]P (F)

L
(6.83)

Consider an arbitrary subpath which diverges from the correct path at depth t− `−1,
0 ≤ ` < t. A necessary condition that this path surpasses the correct one is that the
Hamming distance between this path and the received sequence is not more than the
number of channel errors i in the last ` + 1 subblocks. In case of the event F , that
is, that we have “few” errors, the random walk must satisfy S` > u. Thus, assuming
nonsystematic generator matrices we obtain

E[Nt | F]P (F) ≤
t−1∑
`=0

∑
i|S`>u

i∑
w=0

2b(`+1)

(
(`+ 1)c

i

)
εi(1− ε)(`+1)c−i

×
(

(`+ 1)c

w

)
2−(`+1)c (6.84)

For S` > u we have

2λ2(S`−u) > 1 (6.85)

UPPER BOUNDS ON THE PROBABILITY OF CORRECT PATH LOSS 413

where λ2 > 0. Combining (6.84) and (6.85) yields

E[Nt | F]P (F) ≤
t−1∑
`=0

∑
i|S`>u

i∑
w=0

2b(`+1)

(
(`+ 1)c

i

)
εi(1− ε)(`+1)c−i

×
(

(`+ 1)c

w

)
2−(`+1)c2λ2(St−u)

≤ 2−λ2u
t−1∑
`=0

(`+1)c∑
i=0

i∑
w=0

2b(`+1)

(
(`+ 1)c

i

)
εi(1− ε)(`+1)c−i

×
(

(`+ 1)c

w

)
2−(`+1)c2λ2(α((`+1)c−i)+βi)

≤ 2−λ2u
t−1∑
`=0

(`+1)c∑
i=0

(`+1)c∑
w=0

2b(`+1)

(
(`+ 1)c

i

)
εi(1− ε)(`+1)c−i

×
(

(`+ 1)c

w

)
2−(`+1)c2λ1(i−w)2λ2(α((`+1)c−i)+βi) (6.86)

where λ1 > 0 and λ2 > 0. From (6.86) it follows that

E[Nt | F]P (F) < 2−λ2u
∞∑
`=0

2b(`+1)

(
1 + 2−λ1

2

)(`+1)c

×
(
ε2λ1+λ2β + (1− ε)2λ2α

)(`+1)c
(6.87)

Let

λ1 =
1

1 + s
log

1− ε
ε

(6.88)

λ2 = 1− s (6.89)

and

u = − logL (6.90)

414 LIST DECODING

Then we obtain

E[Nt | F]P (F) < 2(1−s) logL
∞∑
`=0

2b(`+1)

(
ε

1
1+s + (1− ε)

1
1+s

2(1− ε)
1

1+s

)(`+1)c

×

(1−ε
ε

) 1
1+s ε1+ 1−s

1+s 2−(1−s)R + (1− ε)1+ 1−s
1+s 2−(1−s)R(

1
2ε

1
1+s + 1

2 (1− ε)
1

1+s

)1−s

(`+1)c

= L1−s
∞∑
`=0

2b(`+1)
(
ε

1
1+s + (1− ε)

1
1+s

)(1+s)(`+1)c

2−s(`+1)c2(s−1)R(`+1)c

= L1−s
∞∑
`=0

2R(`+1)2−G(s)(`+1)c2(s−1)R(`+1)c

= L1−s
∞∑
`=0

2−(G(s)−sR)(`+1)c

= L1−s
∞∑
`=0

2−(G(s)−sG(s0)/s0)(`+1)c

= L1−s 1

2(G(s)−sG(s0)/s0)c − 1
(6.91)

where G(s) is the Gallager function (5.98) and the last sum converges for all s such
that 0 < s < s0 and s0 satisfies (6.75). Combining (6.76), (6.83), (6.90), and (6.91)
yields

E[P (Ecpl
t)] ≤ L−s 1

2(G(s)−sG(s0)/s0)c − 1
+ 2−s logL

= L−s
1

1− 2−(G(s)−sG(s0)/s0)c
(6.92)

Let us choose

s = s0 −
1

logL
(6.93)

Then we obtain
E[P (Ecpl

t)] ≤ L−s0O(logL) (6.94)

where O(logL)
logL → constant when L→∞, and the proof for nonsystematic generator

matrices is complete.
For systematic, polynomial generator matrices, we replace (6.84) by (cf. (6.38))

E[Nt | F]P (F) ≤
t−1∑
`=0

∑
i|S`>u

i∑
w=0

w∑
k=0

(
(`+ 1)c

i

)
εi(1− ε)(`+1)c−i

×
(

(`+ 1)b

k

)(
(`+ 1)(c− b)

w − k

)
2−(`+1)(c−b) (6.95)

UPPER BOUNDS ON THE PROBABILITY OF CORRECT PATH LOSS 415

Using the identity (6.39), we can rewrite (6.95) as (6.84) and then repeat the steps
(6.86)–(6.97).

Since
O(logL)

logL
= 2O(log logL) = L

O(log logL)
logL = Lo(1) (6.96)

where o(1) → 0 when L → ∞, it follows that the expurgated bound (6.60) can be
written

P (Ecpl
t) ≤ L−s+o(1) (6.97)

for rates 0 ≤ R < R0, where s satisfies (6.61).
We can now summarize Lemmas 6.13 and 6.15 in the following:

Theorem 6.16 For a list decoder of list sizeL and the BSC with crossover probability
ε, there exist infinite-memory, time-invariant, binary convolutional codes of rate
R = b/c with systematic and nonsystematic, polynomial generator matrices such
that the probability of correct path loss is upper-bounded by the inequality

P (Ecpl
t) ≤ L−s+o(1) (6.98)

where s satisfies {
R = Gexp(s)/s, 0 ≤ R < R0

R = G(s)/s, R0 ≤ R < C
(6.99)

Gexp(s) is the expurgation function (5.75) and G(s) is the Gallager function (5.98),
and o(1)→ 0 when L→∞.

The upper bound in Theorem 6.16 can be rewritten as

P (Ecpl
t) ≤ L−s+o(1) = 2−(s+o(1)) logL = 2−(EC(R)+o(1))(logL)/R (6.100)

where EC(R) is the convolutional coding exponent (5.105). Hence, if we choose the
list size L equal to the number of encoder states, assuming that ν = bm, that is,

L = 2bm (6.101)

then our upper bound on the probability of correct path loss (6.100) coincides with
the upper bound on the burst error probability (5.104).

For the ensemble of general, nonlinear trellis codes it can be shown that for list
decoding the exponent of (6.98) in the sphere-packing region, viz., s = G(s)/R, is
somewhat surprisingly correct for all rates, 0 ≤ R < C [ZiK80]! We conjecture that
list decoding of convolutional codes encoded by systematic, polynomial generator
matrices is superior to Viterbi decoding of convolutional codes encoded by nonsys-
tematic generator matrices. This conjecture is in fact given strong support by the
experiments reported in Section 6.2.

416 LIST DECODING

6.5 LOWER BOUND ON THE PROBABILITY OF CORRECT PATH LOSS

As a counterpart to the upper bound on the probability of correct path loss for list
decoding used when we communicate over the BSC, we will derive a lower bound.
Following the path of reasoning in Section 6.3 we begin by proving the corresponding
lower bound for block codes.

Theorem 6.17 Suppose that a block code B of rate r and block length N with
list decoding of list size L is used to communicate over the BSC with crossover
probability ε. If

r̃ = r − logL

N
(6.102)

and

N =
Esph
C (r) logL

Esph
B (r̃)r

(6.103)

where Esph
C (r) and Esph

B (r̃) are the convolutional sphere-packing exponent (5.148)
and block sphere-packing exponent (5.146), respectively. Then the probability that
the correct codeword will not be on the list ofL codewords chosen by the list decoder
is lower-bounded by

PL(Ecpl) > L−s+o(1) (6.104)

where s, 0 < s <∞, satisfies
r = G(s)/s (6.105)

G(s) is the Gallager function (5.98), and o(1)→ 0 when L→∞.

Proof : LetP (Ecpl | i) denote the probability that the transmitted codewordv(i), i =
0, 1, . . . , 2rN − 1, will appear on the list of the L most probable codewords that is
produced by the list decoder. For each received sequence r, a list of L codewords is
produced. Let Di denote the set of received sequences r such that the codeword v(i)

is on the list corresponding to r. Then we have

P (Ecpl | i) =
∑
r∈Di

P (r | v(i)) (6.106)

Clearly,

min
i
{| Di |} ≤ L

2N

2rN
= 2(1−r̃)N (6.107)

where r̃ is given by (6.102).
Let

P (Ecpl)
def
= max

i
{P (Ecpl | i)} (6.108)

Then, by repeating the steps (5.123)–(5.130) we obtain the parametric lower bound

2(1−r̃)N >
(
N

k0−1

)
P (Ecpl) >

(
N

k0+1

)
εk0+1(1− ε)N−k0−1

(6.109)

LOWER BOUND ON THE PROBABILITY OF CORRECT PATH LOSS 417

where k0 is the largest integer such that (cf. (5.124))

k0−1∑
k=0

(
N

k

)
≤ min{| Di |} (6.110)

Following the steps in the proof of Theorem 5.11 yields

P (Ecpl) > 2−(Esph
B (r̃)+o(1))N (6.111)

where Esph
B (r̃) is given by (5.146) and o(1)→ 0 when N →∞.

Inserting (6.103) into (6.111) yields

P (Ecpl) > 2−(Esph
C (r)/r+o(1)) logL = L−s+o(1) (6.112)

where s, 0 < s <∞, satisfies (6.105).
We notice that r̃ as given by (6.102) is related to r by the equation

Esph
C (r) =

r

r − r̃
Esph
B (r̃) (6.113)

which shows the existence (at least for large N) of r̃ and N satisfying (6.102) and
(6.103), respectively.

We will now prove the corresponding lower bound on the probability of correct
path loss for convolutional codes:

Theorem 6.18 Suppose that a rateR = b/c convolutional code with list decoding of
list size L is used to communicate over the BSC with crossover probability ε. Then
the probability of correct path loss is lower-bounded by the inequality

P (Ecpl) > L−s+o(1) (6.114)

where s, 0 < s <∞, satisfies
R = G(s)/s (6.115)

and o(1)→ 0 when L→∞.

Proof : The proof is similar to the proof of Lemma 5.12. The theorem states that
for any ε > 0 there exists a list size Lε such that for any L > Lε we have

P (Ecpl) > L−(s+ε) (6.116)

Now suppose that inequality (6.116) does not hold. Then, as a consequence, a
convolutional code and a certain ε > 0 exist such that for any large Lε there exists a
list decoder with list size L > Lε such that

P (Ecpl) < L−(s+2ε) (6.117)

418 LIST DECODING

Construct a block code by truncating this convolutional code so that its rate is equal
to the rate R of the convolutional code (no zero termination) and its block length N
is given by

N =
Esph
C (R) logL

Esph
B (r̃)R

(6.118)

where
r̃ = R− logL

N
(6.119)

For this block code the probability that the correct codeword will not be on the list
is upper-bounded by the probability of correct path loss for the convolutional code
at depths 1, 2, . . . , N/c. Using the union bound we obtain from (6.117) and (6.108)
that

PL(Ecpl) <
N

c
L−(s+2ε) =

Esph
C (R) logL

Esph
B (r̃)Rc

L−(s+2ε) (6.120)

Let us choose Lε such that

Esph
C (R) logLε

Esph
B (r̃)Rc

< (Lε)
ε (6.121)

Then, for any L > Lε we have

PL(Ecpl) < L−(s+ε) (6.122)

in contradiction to Theorem 6.17. Hence, we conclude that inequality (6.116) must
hold and the proof is complete.

Let us rewrite the lower bound in Theorem 6.18 as

P (Ecpl) > L−s+o(1) = 2−(s+o(1)) logL = 2−(Esph
C (R)+o(1))(logL)/R (6.123)

where Esph
C (R) is the convolutional sphere-packing exponent (5.148). Thus, if we

choose
L = 2bm (6.124)

then our lower bound on the probability of correct path loss coincides with the
lower bound on the burst error probability for high rates given in Lemma 5.12.
For maximum-likelihood decoding we derived a tighter lower bound for low rates
(Lemma 5.13). Such a bound does not exist for list decoding.

6.6 CORRECT PATH LOSS FOR TIME-INVARIANT CONVOLUTIONAL
CODES

In this section, we use a path weight enumerator and derive upper bounds on the
probability of correct path loss for time-invariant convolutional codes which are
similar to Viterbi’s bounds in Section 4.2. Consider the trellis for a rate R = b/c,

CORRECT PATH LOSS FOR TIME-INVARIANT CONVOLUTIONAL CODES 419

time-invariant convolutional code encoded by a generator matrix of memory m.
Assuming a realization in controller canonical form, the signal flowchart introduced
in Section 3.10 consists of 2bm + 1 states, since the zero state is split into two—a
source and a sink state. Let ξj(W), j = 1, 2, . . . , 2bm − 1, be dummy variables
representing the generating functions of the weights of all paths leading from the left
zero state to the 2bm − 1 intermediate states, respectively. Assuming W < 1, order
these dummy variables in decreasing order, that is,

ξ1(W) ≥ ξ2(W) ≥ · · · ≥ ξ2bm−1(W) (6.125)

Notice that since W < 1, a large value of ξ(W) corresponds to low weight on the
paths that are represented by ξ(W).

Let us introduce the `-list path weight enumerator

T`(W)
def
=

2bm−1∑
j=`+1

ξj(W) (6.126)

As before Ecpl
t denotes the event that the correct path is deleted at the tth step from

the list of the L most likely codewords. Then we have the following:

Theorem 6.19 For convolutional codes encoded by a generator matrix with `-list path
weight enumerator T`(W) and used to communicate over the BSC with crossover
probability ε, the probability of correct path loss for a list decoder of list size L is
upper-bounded by

P (Ecpl
t) ≤ min

0≤`<L

{
T`(W) |

W=2
√
ε(1−ε)

L− `

}
(6.127)

Proof : Since a convolutional code is linear, we can without loss of generality
assume that the allzero codeword has been transmitted. The states at depth t are
ordered according to increasing weights of the best paths leading to these states. If
the allzero state (that is, the state corresponding to the transmitted path) is not among
the L best states, a correct path loss has occurred. The probability that a certain
path of weight w will be ranked by the list decoder higher than the allzero path is
upper-bounded by the Bhattacharyya bound (4.20), viz., (2

√
ε(1− ε))w. Then, it

follows that the average of the number of states ranked higher than the allzero state
is upper-bounded by

T0(W) =
2bm−1∑
j=1

ξj(W) (6.128)

where
W = 2

√
ε(1− ε) (6.129)

From (6.128) and Lemma 6.14 we obtain the upper bound

P (Ecpl
t) = P (N ≥ L) ≤

T0(W) |
W=2
√
ε(1−ε)

L
(6.130)

420 LIST DECODING

where N denotes the number of states ranked higher than the allzero state.
The bound (6.130) can be improved if we assume that the `, 0 ≤ ` < L, states

represented by the ` largest values of the dummy variables, viz., ξj , 1 ≤ j ≤ `,
always remain on list. This assumption holds when both the crossover probability ε
and the list size L are relatively small (that is, in the situations that are of practical
interest). Assuming that these ` states will always stay on the list, we expurgate these
states and consider only list size L− `. Then the average of the number of remaining
states ranked higher than the allzero state is upper-bounded by

T`(W) =
2bm−1∑
j=`+1

ξj(W) (6.131)

where W is given by (6.129).
Again, we apply Lemma 6.14 and obtain

P (Ecpl
t) = P (n ≥ L− `) ≤

T`(W) |
W=2
√
ε(1−ε)

L− `
(6.132)

Optimizing over ` completes the proof.

EXAMPLE 6.4

The signal flowchart for the rate R = 1/2, memory m = 3, systematic encoding
matrix G(D) = (1 1 +D+D3), realized in controller canonical form, is given
in Fig. 6.12. We obtain the following linear system of equations:

ξ1(W) = ξ2(W) +Wξ3(W)
ξ2(W) = Wξ4(W) + ξ5(W)
ξ3(W) = Wξ6(W) + ξ7(W)
ξ4(W) = W 2 +Wξ1(W)
ξ5(W) = W 2ξ2(W) +Wξ3(W)
ξ6(W) = Wξ4(W) +W 2ξ5(W)
ξ7(W) = Wξ6(W) +W 2ξ7(W)

(6.133)

Solving (6.133) gives

ξ1(W) = W 3 1+3W 2−6W 4+4W 6−W 8

1−3W 2−4W 4+7W 6−4W 8+W 10

def
= ξo2(W)

ξ2(W) = W 4 1−W 2+W 4

1−3W 2−4W 4+7W 6−4W 8+W 10

def
= ξo5(W)

ξ3(W) = W 4 2−3W 2+3W 4−W 6

1−3W 2−4W 4+7W 6−4W 8+W 10

def
= ξo4(W)

ξ4(W) = W 2 1−2W 2−W 4+W 6

1−3W 2−4W 4+7W 6−4W 8+W 10

def
= ξo1(W)

ξ5(W) = W 5 3−2W 2

1−3W 2−4W 4+7W 6−4W 8+W 10

def
= ξo7(W)

ξ6(W) = W 3 1−2W 2+2W 4−W 6

1−3W 2+4W 4+7W 6−4W 8+W 10

def
= ξo3(W)

ξ7(W) = W 4 1−W 2+W 4

1−3W 2−4W 4+7W 6−4W 8+W 10

def
= ξo6(W)

(6.134)

CORRECT PATH LOSS FOR TIME-INVARIANT CONVOLUTIONAL CODES 421

where ξoi (W), 1 ≤ i ≤ 7, denotes a reordering in decreasing order for small
values of W .

For small values of W we obtain from Theorem 6.19 the following upper
bounds on the probability of the correct path loss:

L = 1 : P (Ecpl
t) ≤

7∑
j=1

ξoj (W) ≈W 2 (6.135)

L = 2 : P (Ecpl
t) ≤ min

1

2

7∑
j=1

ξoj (W),
7∑
j=2

ξoj (W)

 ≈ 2W 3 (6.136)

L = 3 : P (Ecpl
t) ≤ min

1

3

7∑
j=1

ξoj (W),
1

2

7∑
j=2

ξoj (W),

7∑
j=3

ξoj (W)

 ≈W 3 (6.137)

L = 4 : P (Ecpl
t) ≤ min

1

4

7∑
j=1

ξoj (W),
1

3

7∑
j=2

ξoj (W),

1

2

7∑
j=3

ξoj (W),
7∑
j=4

ξoj (W)

 ≈ 3W 4 (6.138)

L = 5 : P (Ecpl
t) ≤ min

1

5

7∑
j=1

ξoj (W),
1

4

7∑
j=2

ξoj (W),

1

3

7∑
j=3

ξoj (W),
1

2

7∑
j=4

ξoj (W),
7∑
j=5

ξoj (W)

 ≈ 2W 4 (6.139)

A probability of correct path loss of the order W 3 requires L = 2, while a
probability of correct path loss of the order W 4 requires L = 4.

For the Gaussian channel we have the corresponding bound:

Theorem 6.20 For convolutional codes of rate R encoded by generator matrices
with `-list path weight enumerator T`(W) and used to communicate over the AWGN
channel with signal-to-noise ratioEb/N0 the probability of correct path loss for a list
decoder is upper-bounded by

P (Ecpl
t) ≤ min

0≤`<L

{
T`(W) |W=e−REb/N0

L− `

}
(6.140)

422 LIST DECODING

100 001

010

101

110 011

111

000 000

W 2

W

W 1

W

W

W 2 W

1 W 2

W 1

WW 2 W

ξ4(W) ξ1(W)

ξ2(W)

ξ5(W)

ξ7(W)

ξ6(W) ξ3(W)

Figure 6.12 Signal flowchart for the encoding matrix in Example 6.4.

Proof : This theorem follows immediately from the proof of Theorem 6.19 if we

replace
(

2
√
ε(1− ε)

)w
by the corresponding Bhattacharyya bound for the Gaussian

channel, viz., (e−REb/N0)w (cf. Theorem 4.7).

6.7 COMMENTS

Elias introduced list decoding for block codes in 1955 in the very same paper where
convolutional codes were introduced for the first time [Eli55]. Anderson introduced
a list algorithm for source coding in his M.Sc. thesis 1969 [And69]. He called it the
“M -algorithm,” where M denotes the number of extended paths. Actually, it was
conceived in August 1968 during a camping trip in Quebec, Canada. “It was very
cold and I tried to forget how cold it was!”

Early theoretical work on list decoding was done by Zigangirov and Kolesnik
[ZiK80]. Further investigations of the list decoding algorithm (the M -algorithm)
were done by Anderson and his students; see, for example, [Lin86, And89, And92].
The bounds on the list weight were derived by Johannesson and Zigangirov, see
[JoZ96], which together with [ZiO93] contains various bounds of the same type as
those presented here.

Use of systematic convolutional encoders to solve the correct path loss problem
was first reported in [Ost93]. This phenomenon is discussed in depth in [OAJ98].

PROBLEMS 423

PROBLEMS

6.1 Consider a binary symmetric channel BSC with the error sequence e =
01 01 10 00 00 Decode the received sequence for the following combinations
of encoders and decoders:

a) Systematic convolutional encoding matrixG(D) = (1 1+D+D2+D4),
dfree = 5. List decoder with L = 3.

b) Systematic convolutional encoding matrix G(D) = (1 1 + D + D3 +
D4 +D5 +D8), dfree = 7. List decoder with L = 3.

c) Nonsystematic convolutional encoding matrixG(D) = (1+D+D2 1+
D2), dfree = 5. Viterbi algorithm.

d) Nonsystematic convolutional encoding matrixG(D) = (1+D+D4 1+
D2 +D3 +D4), dfree = 7. Viterbi algorithm.

6.2 Consider a binary symmetric channel BSC with the error sequence e =
01 01 10 01 00 00 Decode the received sequence for the following combinations
of encoders and decoders:

a) Systematic convolutional encoding matrixG(D) = (1 1+D+D2+D4),
dfree = 5. List decoder with L = 3.

b) Systematic convolutional encoding matrix G(D) = (1 1 + D + D2 +
D5 +D6 +D8 +D10 +D11), dfree = 9. List decoder with L = 3.

c) Nonsystematic convolutional encoding matrixG(D) = (1+D+D2 1+
D2), dfree = 5. Viterbi algorithm.

6.3 Consider the rateR = 1/2 convolutional encoding matrixG(D) = (1 +D3 +
D4 1 + D4). Suppose that the encoder is used to communicate over a BSC with
crossover probability ε. Use the list decoder with L = 4 to decode the received
sequence r = 11 01 10 10 11 00 10 11 10 01 01 11. Eight information bits followed
by four dummy zeros have been encoded.

6.4 Consider the binary-input, 8-ary output DMC shown in Fig. 4.6 with transition
probabilities P (r | v) given by the following table:

r
04 03 02 01 11 12 13 14

v
0 0.2196 0.2556 0.2144 0.1521 0.0926 0.0463 0.0167 0.0027
1 0.0027 0.0167 0.0463 0.0926 0.1521 0.2144 0.2556 0.2196

An information sequence is encoded by the encoding matrix G(D) = (1 + D +
D2 1 +D2). Use a list decoder of list size L to decode

r = 0213 1202 0113 1111 1214 1111

Find the minimum value of L for which the output from the list decoder is a
maximum-likelihood estimate of the transmitted information sequence. (Use appro-
priate scaling and rounding of the metrics.)

6.5 Consider the systematic convolutional encoding matrix G(D) = (1 1 + D)
with dfree = 3. Find the following parameters:

424 LIST DECODING

a) Nmax(e) for e = 1, 2

b) wmin for L = 1, 2, 3

c) wlist for L = 1, 2, 3

6.6 Repeat Problem 6.5 for the systematic convolutional encoding matrixG(D) =
(1 1 +D +D2) with dfree = 4.

6.7 Consider the nonsystematic convolutional encoding matrixG(D) = (1 +D+
D2 1 +D2) with dfree = 5. Find the following parameters:

a) Nmax(e) for e = 1, 2

b) wmin for L = 1, 2, 3

c) wlist for L = 1, 2, 3

d) Find two systematic convolutional encoding matrices that are equivalent
over the first memory length.

6.8 Consider the rate R = 1/2, memory m = 3, nonsystematic encoding matrix
G(D) = (1 +D+D2 +D3 1 +D2 +D3) and assume that it is used together with
list decoding with list size L = 3 to communicate over the BSC.

Show that P (Ecpl
t) . 1.5W 3, where W = 2

√
ε(1− ε).

CHAPTER 7

SEQUENTIAL DECODING

In Chapter 4, we saw that Viterbi decoding is maximum-likelihood and that the com-
plexity of Viterbi’s algorithm grows exponentially with the overall constraint length
ν of the encoder. If a certain application requires extremely low error probability, we
may have to use an encoder with such a large overall constraint length, ν = 25 say,
that the Viterbi decoder would be hopelessly complex.

In this chapter, we describe a class of algorithms, called sequential decoding algo-
rithms, whose complexity is essentially independent of the memory of the encoder.
In sequential decoding, only one encoder state is examined at each time instant. By
allowing backtracking, sequential decoding approaches asymptotically a maximum-
likelihood decision for the transmitted sequence (with increasing encoder memory).
It is an example of a decoding method that (asymptotically) fully exploits the error-
correcting capability of the code. We choose a code whose encoder memory is long
enough to warrant essentially error-free decoding. Sequential decoding algorithms
are almost maximum-likelihood, and they can be easily implemented.

When we consider convolutional encoders with overall constraint lengths so large
that Viterbi decoding is impractical, we usually view the encoding process as a walk
through a tree instead of through a trellis. The fundamental idea behind sequential
decoding is that in the decoding process we should explore only the most promising
paths. If a path to a node looks “bad” we can discard all paths stemming from this

Fundamentals of Convolutional Coding, 2. Edition. By Rolf Johannesson, Kamil Sh. Zigangirov
Copyright c© 2015 John Wiley & Sons, Inc.

425

426 SEQUENTIAL DECODING

10

01

10

01

00

11

11

01

00

10

11

01

10

01

code sequence

Figure 7.1 A rate R = 1/2 tree code.

node without any essential loss in performance from that of a maximum-likelihood
decoder.

We begin by introducing a quality measure that could guide a decoder in its search
for the most promising path to explore. This will lead us naturally to the stack
algorithm, which is the simplest one to describe and analyze. After discussing the
stack algorithm, we will be well prepared for the more intricate Fano algorithm. Then
we discuss Creeper, which combines the best properties of the other two algorithms.
For all three algorithms we analyze their computational performances and obtain
upper bounds on the decoding error probabilities.

7.1 THE FANO METRIC

Consider the tree diagram for a rate R = 1/2, binary tree code shown in Fig. 7.1.
Starting at the root at time 0, we traverse the tree from left to right and choose the
upper branch when the corresponding information symbol is 0 and the lower branch
when it is 1. Thus the information sequence 101 . . . is encoded as the code sequence
01 00 01

First we will consider “hard decisions” and then we will extend our results to “soft
decisions.”

Suppose that we receive the sequence r = 00 10 01 . . . over a BSC and that in the
decoding process we have obtained in some unexplained way the partially explored
tree shown in Fig. 7.2.

Regardless of which path the decoder eventually will choose, it must pass through
exactly one of the leaves in this tree. It is tempting to ask: “Which of these four
paths is the most promising to extend?” In the Viterbi algorithm we always compare

THE FANO METRIC 427

10

01 00

11

11

01

v(0)

v(3)

v(2)

v(1)

Figure 7.2 Partially explored tree.

paths of the same length and prefer the one closest to the received sequence—in,
for example, Hamming distance. Here the situation is more subtle. Should we, for
instance, prefer v(0) with one erroneous symbol of two instead of v(2) with two
erroneous symbols of six? It depends on the channel—if the crossover probability
is very small, then v(0) is more promising than v(2), but if it is very large, then we
should extend v(2)! We will now analyze the situation in more detail.

Let us assume that the tree code shown in Fig. 7.1 belongs to the ensemble of
binary tree codes in which each digit on each branch is chosen independently with
probability 1/2.

All information bits are also chosen independently with equal probability. Let X
denote a particular configuration of all symbols in the partially explored tree, and let
Hi denote the hypothesis that the transmitted path corresponds to the information
sequence u(i), i = 0, 1,

The noise symbols are independent and 1 and 0 occur with probability ε and 1− ε,
respectively, where ε is the crossover probability of the BSC.

Let ni denote the length of the path v(i) in c-tuples, and let di = dH(r[0,ni),v
(i))

denote the Hamming distance between the path v(i) and the corresponding part of
the received sequence, r[0,ni), i = 0, 1,

Suppose that Hj maximizes P (Hi | X, r), i = 0, 1, Then the natural choice
for the most promising path to extend is v(j)! Using Bayes’ rule, we have

P (Hi | X, r) =
P (X | Hi, r)P (Hi | r)

P (X | r)
(7.1)

where

P (X | Hi, r) =
P (r | X,Hi)P (X | Hi)

P (r | Hi)
(7.2)

and, since the hypothesis Hi and the received sequence r are independent if we do
not know the configuration X ,

P (Hi | r) = P (Hi) = 2−niRc (7.3)

428 SEQUENTIAL DECODING

Without additional knowledge, neither the received sequence r nor the configuration
X is dependent on the hypotheses. Hence, we have

P (r | Hi) = P (r) (7.4)

and
P (X | Hi) = P (X) (7.5)

Inserting (7.4) and (7.5) into (7.2) and then inserting (7.2) and (7.3) into (7.1) and
multiplying by the factor P (r)P (X | r) /P (X), we see that we can equivalently
maximize

P (r | X,Hi)P (Hi) = (1− ε)nic−diεdi2−(n−ni)c2−niRc

= 2−nc
(
(1− ε)21−R)nic−di (ε21−R)di (7.6)

where n ≥ maxj{nj} is the length of the received sequence in c-tuples.
Again, equivalently, in the case of hard decisions we can maximize

µF(r[0,ni),v
(i)
[0,ni)

)
def
= (nic− di)(log(1− ε) + 1−R) + di(log ε+ 1−R) (7.7)

i = 0, 1, . . ., which quantity is usually called the hard-decision Fano metric (although
it is not a metric in the mathematical sense).

The most promising path to extend is the one whose Fano metricµF(r[0,ni),v
(i)
[0,ni)

)
is the largest!

In general, the Fano metric for the path v[0,t) is

µF(r[0,t),v[0,t)) =
t−1∑
k=0

µF(rk,vk) (7.8)

where µF(rk,vk) is the Fano branch metric.
For notational convenience we sometimes use

α
def
= log(1− ε) + 1−R

β
def
= log ε + 1−R

(7.9)

Then the Fano branch metric can be expressed as

µF(rk,vk) = jα+ (c− j)β (7.10)

where c− j = dH(rk,vk). It has the distribution

P (µF(rk,vk) = jα+ (c− j)β) =

(
c

j

)
(1− ε)jεc−j (7.11)

if the branch is on the correct (transmitted) path and for the ensemble of random tree
codes, the distribution

P (µF(rk,vk) = jα+ (c− j)β) =

(
c

j

)
2−c (7.12)

THE FANO METRIC 429

if the branch is on an incorrect (erroneous) path.
From (7.11) it follows that along the correct path we have

E[µF(rk,vk)] = ((1− ε)α+ εβ)c

= ((1− ε)(log(1− ε) + 1−R) + ε(log ε+ 1−R))c

= (1− h(ε)−R)c = (C −R)c (7.13)

where h(ε) is the binary entropy function (1.22) and C = 1 − h(ε) is the channel
capacity for the BSC.

If R < C, then on the average we have an increase in the Fano metric along the
correct path.

Along an incorrect path we have

E[µF(rk,vk)] =

(
1

2
α+

1

2
β

)
c

=

(
1

2
(log(1− ε) + 1−R) +

1

2
(log ε+ 1−R)

)
c

=
(

1−R+ log
√
ε(1− ε)

)
c ≤ −Rc (7.14)

with equality if and only if ε = 1/2. On the average, the Fano metric will always
decrease along an incorrect path!

The Fano symbol metric is

µF
def
= µF(r

(`)
k , v

(`)
k)

def
=

{
α if r(`)

k = v
(`)
k

β if r(`)
k 6= v

(`)
k

(7.15)

where α and β are given by (7.9).

EXAMPLE 7.1

Consider a rate R = 1/2 convolutional code used to communicate over a BSC
with crossover probability ε = 0.045. Then we have the following Fano symbol
metric:

µF(r
(`)
k , v

(`)
k) =

{
α = log 0.955 + 1− 1/2 = 0.434 if r(`)

k = v
(`)
k

β = log 0.045 + 1− 1/2 = −3.974 if r(`)
k 6= v

(`)
k

(7.16)

For simplicity, we scale and round the metrics and obtain

µ′F(r
(`)
k , v

(`)
k) =

{
+0.5, no error
−4.5, error

(7.17)

for the BSC with ε = 0.045.

Remark: We can scale the Fano metrics with any positive factor γ. If we choose

γ = (1 + s)/s (7.18)

430 SEQUENTIAL DECODING

where s satisfies
R = G(s)/s (7.19)

and G(s) is the Gallager function (5.98), then we obtain the metric (5.211) used to
prove the error bound for time-varying convolutional codes for the sphere-packing
region (Theorem 5.19).

We will now extend the Fano metrics to the situation when soft demodulator
outputs are available. The derivation given above is valid up to equation (7.6), which
should be replaced by

P (r | X,Hi)P (Hi) =

ni−1∏
j=0

P
(
rj

∣∣∣ v(i)
j

) n∏
k=ni

P (rk)2−niRc

=
n∏
k=0

P (rk)

ni−1∏
j=0

P
(
rj

∣∣∣ v(i)
j

)
P (rj)

2−niRc (7.20)

where ni is the length of the codeword v(i) = v
(i)
0 v

(i)
1 . . .v

(i)
ni−1 and n ≥ maxj{nj}

is the length of the received sequence. Again we take the logarithm and, equivalently,
maximize

µF(r
(i)
[0,ni)

,v[0,ni))
def
=

ni−1∑
j=0

log
P
(
rj

∣∣∣ v(i)
j

)
P (rj)

−Rc

=

ni−1∑
j=0

c∑
`=1

log
P
(
r

(`)
j

∣∣∣ v(i)(`)
j

)
P (r

(`)
j)

−R

 (7.21)

where rj = r
(1)
j r

(2)
j . . . r

(c)
j and v(i)

j = v
(i)(1)
j v

(i)(2)
j . . . v

(i)(c)
j , i = 0, 1, The

terms in the first sum are the Fano branch metrics, and the terms in the double sum
are the Fano symbol metrics.

EXAMPLE 7.2

Consider a rateR = 1/2 convolutional code used to communicate over a binary-input,
8-ary output DMC with equiprobable inputs and transition probabilities P (r | v)
given by the following table:

r
04 03 02 01 11 12 13 14

v
0 0.434 0.197 0.167 0.111 0.058 0.023 0.008 0.002
1 0.002 0.008 0.023 0.058 0.111 0.167 0.197 0.434

Then we have the following Fano symbol metrics:
r

04 03 02 01 11 12 13 14

v
0 0.49 0.44 0.31 −0.11 −1.04 −2.55 −4.18 −7.27
1 −7.27 −4.18 −2.55 −1.04 −0.11 0.31 0.44 0.49

THE STACK ALGORITHM 431

For simplicity we scale and round to integers and obtain:
r

04 03 02 01 11 12 13 14

v
0 9 8 6 − 2 −18 −46 −75 −131
1 −131 −75 −46 −18 − 2 6 8 9

7.2 THE STACK ALGORITHM

The discussion in the previous section leads us naturally to the obvious stack algo-
rithm, in which we store the Fano metrics for all paths leading to a terminal node
and then extend to next depth the path with the greatest Fano metric. The adjective
“stack” is used to indicate that the paths in the partially explored tree are ordered by
the Fano metrics. The best path is placed at the top of the stack; then we have the
second best path and so on.

Remark: Although it is an abuse of notations, we have chosen to follow a deeply
rooted tradition in using the word “stack” instead of the proper word “list.”

When we use a rateR = b/c convolutional encoder of memorym to communicate
a finite number of information bits, `b say, we append a tail ofmb dummy zeros to the
information bits in order to terminate the convolutional code into a block code. If the
string of dummy zeros is shorter than mb we do not fully exploit the error-correcting
capability of the code to protect the last information symbols.

Algorithm S (Stack)
S1. Load the stack with the root and the metric zero.

S2. Remove the top node and place its successors in the stack according to their
metrics.

S3. If the top path leads to the end of the tree, then stop and choose the top path
to be the decoded codeword; otherwise go to S2.

EXAMPLE 7.3

Consider the rate R = 1/2 binary convolutional encoding matrix G(D) = (1 +
D +D2 1 +D2) with memory m = 2. We encode ` = 3 information symbols
and m = 2 dummy zeros. Assuming that the code is used together with a BSC
with ε = 0.045, we use the Fano symbol metrics given in Example 7.4, viz.,

µF =

{
+0.5, no error
−4.5, error

(7.22)

The received sequence r = 01 10 01 10 11 is decoded by the stack algorithm as
follows (the stack entries are the paths u(i) and the corresponding Fano metrics):

432 SEQUENTIAL DECODING

00

11

00

11

10

01

11

00

00

10 11

r = 01 10 01 10 11

0

−4

−4

−8

−8

−3

−13

−7

−7

−11

−6 −5

Figure 7.3 Partially explored binary tree—hard decisions.

Step 0 1 2 3 4
−, 0 0,−4 1,−4 10,−3 100,−7

stack 1,−4 00,−8 00,−8 101,−7
contents 01,−8 01,−8 00,−8

11,−13 01,−8
11,−13

5 6 7
101,−7 1010,−6 10100,−5
00,−8 00,−8 00,−8
01,−8 01,−8 01,−8

1000,−11 1000,−11 1000,−11
11,−13 11,−13 11,−13

The partially explored tree is shown in Fig. 7.3 together with the Fano metrics.
The stack algorithm’s decision is the path 10100 or the information sequence 101.

EXAMPLE 7.4

The same code as that used in Example 7.2 is used to communicate over a binary-
input, 8-ary output DMC with equiprobable inputs and transition probabilities
P (r | v) given in Example 7.1 where the following Fano metrics per symbol were
calculated:

r
04 03 02 01 11 12 13 14

v
0 9 8 6 −2 −18 −46 −75 −131
1 −131 −75 −46 −18 −2 6 8 9

THE FANO ALGORITHM 433

The soft demodulator outputs r = 0112 1302 0413 1103 1211 are decoded by
the stack algorithm as follows:

Step 0 1 2 3
−, 0 0,−12 10,+2 0,−48

stack 1,−48 0,−48 101,−64
contents 11,−133 100,−121

11,−133

4 5 6
101,−64 1010,−58 10100,−54
01,−86 01,−86 01,−86
00,−117 00,−117 00,−117
100,−121 100,−121 100,−121
11,−133 11,−133 11,−133

The partially explored tree is shown in Fig. 7.4 together with the Fano metrics
per symbol. The stack algorithm’s decision is the path 10100 or the information
sequence 101.

00

11

00

11

10

01

11

00 10 11

r = 0112 1302 0413 1103 1211

0

−48

−12

−117

−86

+2

−133

−121

−64 −58 −54

Figure 7.4 Partially explored binary tree—soft decisions.

7.3 THE FANO ALGORITHM

The Fano algorithm is an extremely clever algorithm for sequential decoding. It
generally visits more nodes than the stack algorithm, but since it requires essentially
no memory it is more suitable for hardware implementations. In practice, this more
than compensates for the additional computations needed to decode a given sequence.

434 SEQUENTIAL DECODING

T ← T−∆ µpre ≥ T? Move
back

Tighten
threshold

First
visit?

End of
tree?

Move
forward

µlook ≥ T?

Look forward
to best node

Look
back

From worst
node?

Look forward
to next

best node

Yes

No

Yes

No

No Yes

Yes

Yes

No

No

Start
T = 0 µcur = 0

Stop

Figure 7.5 Flowchart of the Fano algorithm.

The Fano decoder moves from a certain (current) node either to its predecessor
or to one of its immediate successors—it never jumps. The flowchart of the Fano
algorithm is shown in Fig. 7.5, where µlook and µpre are the Fano metrics of the
successor node which we look at and the predecessor node, respectively. If the
decoder looks backward from the root, we assume that the “predecessor” of the root
has a metric value of −∞.

The decoder can visit a node only if its Fano metric µF is larger than or equal
to the current value of a certain threshold T which takes on only discrete values
. . . ,−2∆,−∆, 0,∆, 2∆, . . ., where ∆ is the stepsize.

If the decoder visits a new node then the threshold should be increased by the
largest multiple of ∆ such that the new threshold T does not exceed the current

THE FANO ALGORITHM 435

metric, that is, such that T ≤ µcur < T + ∆ holds. If it explores the immediate
predecessor of the current node and the predecessors metric is lower than the
threshold then the threshold should be lowered by ∆.

If the successor’s metric falls below the threshold, then the Fano decoder first
moves backward and then tries to move forward to its next best successor. If this
fails, another move backward is necessary, and so on. Eventually, all paths with
metrics above the threshold T have been systematically visited.

Init;

Look forward to best node;

while µlook < T do . see note 1.
T ← T −∆

end while
Move forward;
while not end of tree do . see note 2.

if First visit then
Tighten threshold;

end if
Look forward to best node;

while µlook<T do . see note 3.
if µpre ≥ T then

repeat . see note 5.
Move back;

until not ((From worst node) & (µpre ≥ T))

if not (From worst node) then . see note 7.
Look forward to next best node;

else
T ← T −∆ . see note 6.
Look forward to nest node;

end if
else

T ← T −∆
Look forward to best node;

end if
end while
Move Forward;

end while

When the Fano decoder reaches the node where the threshold T was increased
the previous time, the Fano decoder lowers T by ∆ and tries to move forward again,
now with a lower threshold. This means that when a node is revisited, T + ∆ ≤ µcur
holds. Eventually, the Fano decoder will reach the end of the tree and complete the
decoding procedure.

“First visit?” can be detected using µcur and µpre as follows:

436 SEQUENTIAL DECODING

If µpre < T + ∆ holds, the previous node npre cannot have been visited with a
threshold higher than T . Hence, the previous visit of npre was a “first visit” and, since
ncur is a successor of npre, ncur is also visited for the first time.

If µpre ≥ T + ∆ and µcur < T + ∆ hold, then it follows that ncur cannot have been
visited before, but npre has. Since µcur < T + ∆, the threshold is already tight.

If µpre ≥ T + ∆ and µcur ≥ T + ∆ hold, both npre and ncur have been visited
before and the threshold should not be increased.

Hence, the condition for the threshold to be increased can be written

µpre < T + ∆
µcur ≥ T + ∆

(7.23)

where the first inequality in (7.23) indicates a first visit and the second inequality in
(7.23) indicates that the threshold is not already tight.

Notes

1. If the threshold is too high, then it must be lowered.

2. This is the main loop. As long as we do not encounter any channel errors we
will execute this loop.

3. The metric is decreased on the chosen path.

4. We have moved forward and tightened the threshold, so we cannot move
backward. Since we cannot proceed forward either, we have to lower the
threshold in order to continue.

5. After having examined both successor nodes, we have returned to the present
node. We will continue backward as long as we are coming from the worst
node and are staying above the threshold.

6. As in 5 but here the threshold is too high. We have to decrease the threshold
before we can proceed forward.

7. We have moved backward and are looking forward to the next best node that
we have not examined.

7.4 THE CREEPER ALGORITHM*

The stack algorithm is simple to describe and analyze. It is very attractive from a
pedagogical point of view. However, any practical implementation includes accesses
to the large stack (external) memory. These accesses will limit the clock frequency. In
the Fano algorithm we can eliminate these external memory accesses and thus execute
the algorithm at a higher clock frequency. On the other hand, the Fano algorithm
will visit more nodes; this drawback does not override the strong implementational
advantages.

THE CREEPER ALGORITHM* 437

In this section we will describe an algorithm that is a compromise between the stack
and Fano algorithms. It visits more nodes than the stack algorithm but fewer than the
Fano algorithm, while it can be implemented without the need of an external memory
that slows down the clock frequency. We call this sequential decoding algorithm
Creeper since it explores the code tree in a way that resembles the behavior of a
creeping plant.

Consider the partially explored tree in Fig. 7.6. Let ncur denote the current node
with metric µcur, and let its two successors be nx and ny with metrics µx and µy ,
respectively. Also, assume without loss of generality that µx ≥ µy holds. We call
the path leading to the current node the stem of the partially explored tree. The
subtrees stemming from the stem are denoted T1, T2, When we have computed
(for the first time) the metrics of the successor nodes of a given node, we say that
these successor nodes are examined but not visited. Let µ1, µ2, . . . , µ7 be the metrics
of the best, that is, largest, metric examined but not visited nodes in the subtrees
T1, T2, . . . , T7, respectively. In Fig. 7.7 we let only the root of subtree Ti, viz., nτi ,
together with the largest metric of an examined node in that subtree, µi, represent
subtree Ti.

Assume that the metric of the current node ncur is the largest among the metrics
of all examined but not visited nodes in the subtrees, that is,

µcur ≥ max{µ1, µ2, . . . , µ7} (7.24)

Furthermore, assume that the metric µ3 is the second largest.
The stack algorithm removes the current top node of the stack, ncur, and calculates

the metrics of its two successor nodes, nx and ny , and compares these metrics with
µ3, the metric of n3, the new top node of the stack. If µx ≥ µ3 ≥ µy , then the stack
algorithm proceeds to node nx, which will be the next top node; n3 will again be the
node with the second largest metric on the stack. If µ3 > µx ≥ µy , then node n3 will
remain as the top node of the stack. In the next step, the stack algorithm removes the
top node (n3) from the stack and so on.

Creeper has only stored (some of) the nodes shown in Fig. 7.7. Hence, it cannot
move directly to n3. Instead, since µ3 is the largest metric, Creeper will move to nτ3
and with nτ3 as the new current node work its way to node n3 in the subtree T3. When
nτ3 is made the current node, the stem is pruned at node ns3, which is stored together
with the metric value µ′3 representing the metrics of all examined nodes stemming
from ns3, viz.,

µ′3 = max{µ4, µ5, µ6, µ7, µx} (7.25)

and the decoding process is continued. (In general, Creeper stores only a subset of
the nodes along the stem. Moreover, only a subset of these are considered important
enough to warrant the storage of the associated µ-value.)

If we, as in the stack algorithm, always visit the nodes with the largest metrics, we
will jump tonτ3 also whenµ3 is only slightly larger thanµx. This causes a substantial
increase in the number of computations. By introducing a threshold T , we can restrict
the algorithm to return to only those nodes that are sufficiently promising, that is, with
metrics above the threshold T . These nodes are called buds and are stored on a node
stack.

438 SEQUENTIAL DECODING

0

1

T1

T2

T3

T4

T5 T6

T7

root

nx

nyncur

Figure 7.6 A partially explored tree.

The nodes on the node stack are referred to by the node stack pointer NP . The
top node is denoted n(NP), the second n(NP −1), and so on. The node n(NP −1)
corresponds to the closest bud.

Some of the nodes on the node stack are considered so good that their metrics
should affect the threshold, viz., increase it. These nodes are called T-nodes, and to
each T -node there is a metric value stored on the threshold stack. This metric value,
denoted µτ , is the metric of the best examined but not visited node in the subtree

THE CREEPER ALGORITHM* 439

0

nτ1 , µ1

ns1, µ
s
1

nτ2 , µ2

ns2, µ
s
2

nτ3 , µ3

ns3, µ
s
3

ns4, µ
s
4

nτ4 , µ4

ns5, µ
s
5

nτ5 , µ5

ns6, µ
s
6

nτ6 , µ6

nx, µx
ny, µyns7, µ

s
7

= ncur

nτ7 , µ7

Figure 7.7 The stem corresponding to the partially explored tree in Fig. 7.6.

stemming from that node the previous time that subtree was explored. This value is
a measure of what we expect to find if we later should (re-)visit that subtree. For
each node on the node stack there is also a flag, F , denoted F (NP), that indicates
whether or not the corresponding node is a T -node.

The elements on the threshold stack are referred to by the threshold stack pointer
TP , and the elements on the stack are denoted µτ (TP), µτ (TP − 1), and so on. We
also denote the subtree stemming from theT -node corresponding to the valueµτ (TP)
by τ(TP), and so on. The current threshold T is computed asQ(µτ (TP−1)), where

Q(x) =
⌊ x

∆

⌋
∆ (7.26)

is a quantization function that converts x into the largest multiple of a positive
parameter ∆ not larger than x. By convention, we let Q(−∞) = −∞. The
threshold for the current subtree is constructed with the help of the metric of the best
examined but not visited node in τ(TP − 1).

Creeper must remember the maximum metric, µmax, of all nodes that have been
examined so far. If it finds a node (nx) with a metric larger than µmax and also ny has
a metric above T , then these nodes are stored as T -nodes and the new threshold will
be computed as T = Q(µy). Thus, the threshold is raised only when it is likely that

440 SEQUENTIAL DECODING

n(−1) = dummy

µτ (−1) = −∞

n(0) = ncur = root

µτ (0) = ?

Figure 7.8 The stack looks like this when Creeper starts. The purpose of the dummy node,
or rather its associated threshold µτ (−1) = −∞, is to guarantee that Rule One is the very
first rule to be applied. Thus, in the sequel none of the root’s successors will be removed.

the decoder is following the correct path, that is, when a new µmax value is found.
It is less likely that a threshold raise occurs while examining an incorrect path. All
non-T-nodes in τ(TP) that are stacked have metrics µ satisfying T ≤ µ ≤ µmax, but
these non-T -node buds are not necessarily stacked according to increasing metrics.

The threshold T will determine the further actions of the algorithm. Creeper will
continue to explore the tree forward to nx if µx ≥ T . If µy ≥ T , ny should also
be stored on the node stack. If µx < T , the decoder cannot move forward and will
leave the current subtree for the subtree stemming from n(NP − 1). Depending
on whether or not that node is a T -node, different actions must be taken. If it is a
T -node, the decoder must decide whether or not to keep the T -node on the threshold
stack. If it is a non-T -node, a backtracking move is made in order to systematically
examine all paths above the threshold.

We are now well prepared to give a formal description of Creeper. For simplicity
we consider only rate R = 1/c convolutional codes. The Creeper algorithm for rate
R = b/c convolutional codes is given at the end of this section.

Algorithm C (Creeper rate R = 1/c)
C1. Store the root node, n(0), and a dummy sibling, n(−1), on the node stack as

T -nodes, that is, F (0) = F (−1)← 1.
Set µτ (−1)← −∞ on the threshold stack.
Set µmax ← −∞, TP = NP ← 0, and ncur ← root. See Fig. 7.8.

C2. Compute the successor metrics µx, µy (µx ≥ µy) and the threshold T =
Q(µτ (TP − 1)). Ties are resolved by choosing nx among the successors in
an arbitrary way.

C3. Perform one of six actions depending on the corresponding conditions. The
actions are specified in Fig. 7.9.

C4. If we have reached the end of the tree, STOP, and output the current path as
the estimated information sequence; otherwise go to C2.

The exchange(,) operation above simply changes places of the two elements
on top of the appropriate stack. Stacking at most two (2b in general) elements at each

THE CREEPER ALGORITHM* 441

Rule Condition Decoder actions

One
T ≤ µy

and
µx > µmax

ncur ← nx

n(NP + 1)← ny

n(NP + 2)← nx

µτ (TP + 1)← µy

µτ (TP + 2)← −∞
F (NP + 1)← 1

F (NP + 2)← 1

NP ← NP + 2

TP ← TP + 2

µmax ← µx

Two
T ≤ µy

and
µx ≤ µmax

ncur ← nx

n(NP + 1)← ny

n(NP + 2)← nx

F (NP + 1)← 0

F (NP + 2)← 0

NP ← NP + 2

Three µy < T ≤ µx
ncur ← nx

µτ (TP)← max{µy , µτ (TP)}
µmax ← max{µx, µmax}

Four

µx < T ncur ← n(NP − 1)

and µτ (TP)← max{µx, µτ (TP)}
F (NP − 1) = 1 exchange (µτ (TP), µτ (TP − 1))

and exchange (n(NP), n(NP − 1))

max(µx, µτ (TP)) exchange (F (NP), F (NP − 1))

≥ Q(µτ (TP − 3)) µτ (TP)← −∞

Five

µx < T ncur ← n(NP − 1)

and µτ (TP − 2)← max{µx,
F (NP − 1) = 1 µτ (TP), µτ (TP − 2)}

and NP ← NP − 2

max{µx, µτ (TP)) TP ← TP − 2

< Q(µτ (TP − 3)}

Six
µx < T ncur ← n(NP − 1)

and µτ (TP)← max{µx, µτ (TP)}
F (NP − 1) = 0 NP ← NP − 2

Figure 7.9 Six rules that specify the behavior of Creeper for rate R = 1/c.

depth makes the hardware memory requirements roughly proportional to the code
tree depth. Note that the initial conditions guarantee that at the very first iteration
Rule One always will apply. It is easy to see that exactly one of the six conditions
above will always apply. If the received sequence is error-free, condition one will
always hold, thus, making all nodes in the decoder stack as T -nodes. In Figs. 7.10–
7.17 we illustrate how Creeper explores the tree and how the stacks are affected by
the different rules. Note that in these figures TP and NP have not been updated in
order to make it easier to follow the actions.

442 SEQUENTIAL DECODING

n(NP − 5)

µτ (TP − 3)

n(NP − 4)

µτ (TP − 2)

n(NP − 3)

µτ (TP − 1)

n(NP − 2)

µτ (TP)

n(NP)

n(NP − 1)

ncur

ny

nx

Figure 7.10 The situation could look like this before one of the rules One, Two, Three, or
Six is applied. The nodes n(NP −2), n(NP −3), n(NP −4), and n(NP −5) are T -nodes
and marked •, the nodes n(NP − 1) and n(NP) are non-T -nodes and marked ◦, the nodes
marked • are not stored on the stack.

n(NP − 5)

µτ (TP − 3)

n(NP − 4)

µτ (TP − 2)

n(NP − 3)

µτ (TP − 1)

n(NP − 2)

µτ (TP)

n(NP)

n(NP − 1) n(NP + 1) = ny
µτ (TP + 1) = µy

n(NP + 2) = ncur

µτ (TP + 2) = −∞

Figure 7.11 Rule One: Move forward and stack both successors as T -nodes. Two elements,
corresponding to the two new T -nodes, are stacked on the threshold stack.

n(NP − 5)

µτ (TP − 3)

n(NP − 4)

µτ (TP − 2)

n(NP − 3)

µτ (TP − 1)

n(NP − 2)

µτ (TP)

n(NP)

n(NP − 1) n(NP + 1) = ny

n(NP + 2) = ncur

Figure 7.12 Rule Two: Move forward and stack both successors as non-T -nodes.

Consider the rate R = 1/2 binary convolutional encoding matrix G(D) = (1 +
D + D2 1 + D2) with memory m = 2. Assuming the encoder is used together
with a BSC with crossover probability ε = 0.045, we use the Fano symbol metrics

µF =

{
α = +0.5, no error
β = −4.5, error

(7.27)

Since we have two symbols on each branch, the Fano symbol metrics in (7.27)
correspond to the Fano branch metrics +1,−4, and −9 when we have 0, 1, and 2
assumed errors per branch, respectively. Let r = (01 01 00 10 00 . . .) be the received

THE CREEPER ALGORITHM* 443

n(NP − 5)

µτ (TP − 3)

n(NP − 4)

µτ (TP − 2)

n(NP − 3)

µτ (TP − 1)

n(NP − 2)

µτ (TP)

n(NP)

n(NP − 1)

ncur

Figure 7.13 Rule Three: Move forward and update µτ (TP) with max{µy, µτ (TP)}.
Sinceny has been examined but will not be visited this time, τ(TP) is visited and consequently
µτ (T) will be updated using µy .

n(NP − 5)

µτ (TP − 3)

n(NP − 4)

µτ (TP − 2)

n(NP − 3)

µτ (TP − 1)

n(NP − 2)

µτ (TP)

ncur

Figure 7.14 Rule Six: Move sideways-backward to the closest (non-T -)node on the
node stack and delete the two top elements on the node stack. Update µτ (TP) with
max{µx, µτ (TP)}.

n(NP − 3)

µτ (TP − 3)

n(NP − 2)

µτ (TP − 2)

n(NP − 1)

µτ (TP − 1)

n(NP)

µτ (TP)

ncur nx

ny

Figure 7.15 The situation could look like this before one of the rules Four or Five is applied.
The metric value max{µx, µτ (TP)} of the best examined but not visited node in τ(TP) is
compared to Q(µτ (TP − 3).

sequence. The code tree and its node metrics are given in Fig. 7.18. Finally, we
assume the threshold spacing ∆ = 3.

In Fig. 7.19(a–h) we show the first eight steps of Creeper’s travel through the code
tree and how the variables involved change. In case of a tie between the successor
metrics, we assume that the zero path is always chosen first. Big black circles are
T -nodes, big white circles are non-T -nodes, and the small black circles correspond
to nodes that have been visited but that are not stored on the node stack.

444 SEQUENTIAL DECODING

n(NP − 3)

µτ (TP − 3)

n(NP − 2)

µτ (TP − 2)

n(NP) = ncur

µτ (TP) = −∞

n(NP − 1)

µτ (TP − 1)

Figure 7.16 Rule Four: Move to closest (T -)node on the stack and exchange the two top
elements of the node and threshold stacks.

n(NP − 3)

µτ (TP − 3)

n(NP − 2)

µτ (TP − 2)

ncur

Figure 7.17 Rule Five: Move to the closest (T -)node on the stack and delete the two top
elements on the node and threshold stacks.

The node currently being visited is the node from which the two dotted arrows
originate. These arrows indicate that the nodes pointed to are currently being exam-
ined. The dotted lines correspond to the subtrees in τ(TP) that have been examined
or visited and that have been discarded. The metrics at the end of these lines are the
metrics of the nodes at the end of these paths, that is, nodes that have been examined
but not visited. Evidently, these metrics lie below the current threshold. For each
graphic in Fig. 7.19(a–h), we describe the situation and state which condition will
hold for that situation.

(a) The initial condition guarantees that Condition One holds, leading to stacking
of the successors as T -nodes and updating µmax to −4.

(b) The threshold T is given by Q(−4) = −6, so both successors lie below T .
Thus, µτ (2) is updated to −8. The closest node on the stack is a T -node, and
max{−8,−∞} is not less than Q(µτ (−1)) = −∞, so Condition Four holds.

(c) Only one successor node lies above the threshold, so Condition Three holds,
making the other node update µτ (2). Also, µmax is updated to −3.

(d) Both successors lie above T , but none exceeds µmax, so Condition Two holds.

(e) Both successors lie below T and the closest node on the stack is a non-T -node.
Thus, Condition Six holds, so µτ (2) is updated to −11.

THE CREEPER ALGORITHM* 445

00

11

0

0

1

−4

−13

−3

−7

−7

−11

−11
−16

−6

01

10 −10

−10

10

01

11

00

01

10

00

11

10

01

11

00

01

10

−4

−8

−8

00

11

00

11

10

01

00

11

10

01

11

00

01

10

100001 0001r =

Figure 7.18 The part of the code tree with its node metrics that is used in the example.

(f) Only one successor node lies above the threshold, so Condition Three holds,
making the other node update µτ (2), which will not change.

(g) Both successors lie belowT and the closest node is aT -node, and max{−10,−11}
is not less than Q(µ(−1)) = −∞, so Condition Four holds.

446 SEQUENTIAL DECODING

0

µτ (−1) = −∞
T = −∞

−4

−4

(a)

0

−4

µτ (1) = −4

T = −6

−4
µτ (2) = −∞

−8

−8

(b)

0

−4

µτ (2) = −∞

−4

µτ (1) = −8
T = −9

−3

−13

(c)

0

−4

µτ (2) = −13

−4

µτ (1) = −8
T = −9

−3
−7

−7
−13

(d)

0

−4
µτ (2) = −13

−4

µτ (1) = −8
T = −9

−3 −7

−7−13 −11

−11

(e)

0

−4
µτ (2) = −11

−4

µτ (1) = −8
T = −9

−3 −7
−6

−13 −11

−11

−16

(f)

0

−4
µτ (2) = −11

−4

µτ (1) = −8
T = −9

−3 −7 −6

−13 −11

−11

−16

−10

−10

(g)

0

−4
µτ (1) = −10

T = −12

−4

µτ (2) = −∞

−8

−8

(h)

Figure 7.19 The first eight steps of Creeper when ∆ = 3 and the received sequence is
(01 01 00 10 00 . . .). The node metrics are shown next to the corresponding nodes.

(h) We have the same situation as in (b) except that we have a threshold that is
lowered by an amount of 2∆ compared to (b), and a new µmax value.

From Fig. 7.19(g) it is evident that all nodes in τ(2) with metrics above T = −9
have been visited (metrics −4,−3,−7,−7,−6) and that no node with metric below

THE CREEPER ALGORITHM* 447

T has been visited. Furthermore, the best metric of all nodes that have been examined
but not visited (metrics −13,−11,−11,−16,−10,−10) is remembered (µτ (1) in
Fig. 7.19(h) after the exchange of stack elements).

The example shows that Creeper, contrary to the Fano algorithm, does not always
increase (tighten) the threshold when a node is visited for the first time. Instead,
Creeper continues in the current subtree as long as the best known alternative is not
better; the threshold is constructed using the metric of the best known alternative
as T = Q(µτ (TP − 1)). When a new largest (so far) metric, µmax, has been
found, a new T -node is stacked (Rule One) and a threshold increase occurs. Usually,
the threshold increases occur along the correct path; along the incorrect paths the
threshold is usually kept constant, allowing Creeper to exhaust most of the incorrect
subpaths to be explored in one forward attempt. In the incorrect subtree the Fano
algorithm moves forward, tightens the threshold, backs up, lowers the threshold,
continues forward, and so on, visiting the same incorrect nodes several times. After
the threshold T has been decreased (as a consequence of Rule Four or Five), Creeper
will always visit at least one node that it had not visited before.

We conclude this section by briefly discussing an extension of Creeper to rate
R = b/c convolutional codes. In this case, any number of the 2b successor nodes
to the current node could be suitable for further investigation, that is, have a metric
above the current threshold. At each depth a variable number of nodes could be
stacked, not just zero or two as in the original Creeper for R = 1/c.

Stems from earlier levels are not allowed to be visited until all possible paths
stemming from nodes at larger depths are exhausted. Therefore, we have to store the
number of promising nodes at each depth along with these nodes, in order to keep
track of remaining candidate stems.

This number is decreased as paths leading into “bad” parts of the tree are discarded
using a certain threshold but could be increased when the parent node is revisited
with a lower threshold, which may allow more successor nodes to be promising than
at the previous visits.

Since we have to control a varying number of stacked nodes and corresponding µτ
values at a certain depth, we introduce two stacks similar to those in the rateR = 1/c
version, viz., a node object stack and a threshold object stack. An object (of any of
the two kinds) now holds several elements, all associated with sibling nodes at the
same depth. The node object stack pointer, NP , is used as reference to the objects
on the node object stack and the threshold object stack pointer, TP , as reference to
objects on the threshold stack.

A node object contains: N , denoting the number of promising sibling nodes at
that depth; the N sibling nodes denoted n1, . . . , nN ; and a flag F , denoting whether
the N nodes are T -nodes (F = 1) or not (F = 0). The nodes are initially sorted
such that ni has a metric not less than that of ni+1.

A node object is denoted N(NP), N(NP − 1), and so on, depending on the
relative position of the object from the top of the node object stack.

A threshold object contains N metric values, µ1
τ , µ

2
τ , . . . , µ

N
τ , where N is the

number of corresponding T -nodes. These metrics are kept sorted so that the relations
µiτ ≥ µi+1

τ , i = 1, . . . , N − 1, hold.

448 SEQUENTIAL DECODING

Each such value is the metric of a node that has been examined but not yet visited
in the subtree stemming from the corresponding node in an appropriate node object
on the node object stack.

A threshold object is denoted µ(TP), µ(TP − 1), and so forth, depending on the
relative position of the object from the top of the threshold object stack.

A specific value or node within a particular object is denoted N(NP).N (the
number of promising siblings in the topmost node object). The flag F and the N
nodes are referred to in a similar way, and so are the µiτ values in the threshold objects
in the threshold object stack.

The currently visited node is denoted ncur.
The 2b successors to ncur are denoted n1, . . . , n2b and their corresponding metrics

are µ1 ≥ · · · ≥ µ2b , possibly after sorting.
Now we are ready to give a formal description of the rate R = b/c version of

Creeper.

Algorithm C (Creeper rate R = b/c)
C1. Let TP = 0. Let NP = 0. Store a node object, N(NP), on the node

object stack with N(NP).N = 2, N(NP).F = 1, N(NP).n1 = root, and
N(NP).n2 = a dummy node. Let µ(TP) be a corresponding threshold
object with

µ(TP).µ1
τ = µ(TP).µ2

τ = −∞

Finally, let T = −∞, ncur = root, and µmax = −∞.

C2. Compute the threshold T = Q(µ(TP).µ2
τ). Compute and sort the metrics

of all successors to ncur. Ties are resolved in an arbitrary way. Let N be the
number of successors having metrics not smaller than T .

C3. Perform one of six actions specified in Fig. 7.20.

C4. If we have reached the end of the tree, STOP, and output the current path as
the estimated information sequence; otherwise go to C2.

The “resort” operation in Rule Four is simple. All thresholds in the threshold
object are already sorted except for threshold one, which only has to be inserted in
the proper place. Node one is inserted in the same place in the node object so that
the node and its corresponding threshold always have the same order number.

The “renumber” operation in Rules Five and Six is even simpler since after
threshold one has been deleted the remaining thresholds remain sorted as before.

The “resorting” operation corresponds to an exchange of two elements when we
have a rate R = 1/c code.

7.5 SIMULATIONS

In the table below we compare the stack and Fano algorithms with Creeper. We have
simulated the transmission of a large number of frames over a BSC with crossover

SIMULATIONS 449

Rule Condition Decoder actions

One
N ≥ 2
and

µ1 > µmax

ncur = n1

N(NP + 1).ni = ni, i = 1, . . . , N

N(NP + 1).N = N

N(NP + 1).F = 1

NP = NP + 1

µ(TP + 1).µ1
τ = −∞

µ(TP + 1).µiτ = µi, i = 2, . . . , N

if N < 2b, then µ(TP).µ1
τ = max{µN+1, µ(TP).µ1

τ}
TP = TP + 1

µmax = max{µmax, µ1}

Two
N ≥ 2
and

µ1 ≤ µmax

ncur = n1

N(NP + 1).ni = ni, i = 1, . . . , N

N(NP + 1).N = N

N(NP + 1).F = 0

NP = NP + 1

if N < 2b, then µ(TP).µ1
τ = max{µN+1, µ(TP).µ1

τ}

Three N = 1

ncur = n1

µmax = max{µmax, µ1}
µ(TP).µ1

τ = max{µ2, µ(TP).µ1
τ}

Four

N = 0 ncur = N(NP).n2

and µ(TP).µ1
τ = max{µ1, µ(TP).µ1

τ}
N(NP).F = 1 Resort the N(NP).N thresholds in µ(TP)

and Resort the N(NP).N nodes in N(NP) accordingly
max{µ1, µ(TP).µ1

τ} µ(TP).µ1
τ = −∞

≥ Q(µ(TP − 1).µ2
τ)

Five

N = 0
and

N(NP).F = 1
and

max{µ1, µ(TP).µ1
τ}

< Q(µ(TP − 1).µ2
τ)

ncur = N(NP).n2

µ(TP − 1).µ1
τ = max{µ1, µ(TP).µ1

τ , µ(TP − 1).µ1
τ}

Delete N(NP).n1

Delete µ(TP).µ1
τ

Renumber the remaining N(NP).N − 1 thresholds in µ(TP)

Renumber the remaining N(NP).N − 1 nodes in N(NP)

N(NP).N = N(NP).N − 1

if N(NP).N = 1, then NP = NP − 1, and TP = TP − 1

Six
N = 0
and

N(NP).F = 0

ncur = N(NP).n2

µ(TP).µ1
τ = max{µ1, µ(TP).µ1

τ}
Delete N(NP).n1

Renumber the remaining N(NP).N − 1 nodes in N(NP)

N(NP).N = N(NP).N − 1

if N(NP).N = 1, then NP = NP − 1

Figure 7.20 Six rules that specify the behavior of Creeper for rate R = b/c.

probability ε = 0.034 which corresponds to a rateR = 0.9R0, that is, 10% below the
computational cutoff rate R0 when R = 1/2. We used the rate R = 1/2, memory
23, ODP convolutional encoding matrix G(D) = (75744143 55346125) with free
distance dfree = 25. (The polynomials are given in octal notation.) Information

450 SEQUENTIAL DECODING

sequences of 500 bits were encoded as 1046 bit code sequences (frames) before the
transmission; that is, m = 23 dummy information zeros were used to terminate the
convolutional code (ZT). We have simulated the transmission of 1,000,000 frames
(200,000 for Fano) when the average number of computations needed to decode the
first branch Ĉ1 was estimated. When the average number of computations needed
to decode a branch Ĉ was estimated, 200,000 frames were transmitted. The frames
were aborted when C and C1 exceeded 100. Due to the large encoder memory,
no frames whose decoding terminated normally were erroneously decoded. (The ∆
values in the table are optimized empirically and shown before scaling and quantizing
to integers.)

Algorithm Ĉ1 sim. Ĉ sim.
Stack 1.20 1.29

Creeper, ∆ = 2.6 1.23 1.54
Fano, ∆ = 4.8 1.71 2.26

The estimations of Ĉ suggest that Creeper is significantly more efficient than the
Fano algorithm and only slightly worse than the stack algorithm.

Finally, in Figs. 7.21 and 7.22, we show simulations of the computational distri-
butions for the number of computations P (C1 ≥ x) and P (C ≥ x), respectively, for
the three algorithms.

7.6 COMPUTATIONAL ANALYSIS OF THE STACK ALGORITHM

The curse of sequential decoding is that the number of computations needed to decode
a received sequence varies with the channel noise in a particularly nasty way.

Consider the ensemble E(b, c,∞, 1) of infinite-memory, time-invariant, rate R =
b/c convolutional codes and the partially explored binary tree shown in Fig. 7.23.
For simplicity we assume that the decoder operates continuously in the infinite code
tree, and since the codes have infinite-memory we assume that the decoder never
makes any decoding errors. Let Ti, i = 1, 2, . . ., denote the set of extended nodes in
the ith incorrect subtree (∅ denotes the empty set).

If we count as a computation every extension of a node, then the number of
computations needed to decode the ith correct node, Ci, can be written as

Ci = 1 + |Ti| (7.28)

i = 1, 2, . . ., where |Ti| denotes the cardinality of the set Ti. Since for the ensemble
of random infinite tree codes the statistical properties are the same for all subtrees,
the random variables Ci, i = 1, 2, . . ., all have the same distribution, but they are
certainly not independent. Thus, for the average number of computations per branch,
Cav, we have

Cav = E[Ci] (7.29)

all i. Without loss of generality, we will only consider the first incorrect subtree, that
is, the incorrect subtree stemming from the root.

COMPUTATIONAL ANALYSIS OF THE STACK ALGORITHM 451

100 101 102
10−4

10−3

10−2

10−1

100

F

C

S

x

P (C1 ≥ x)

Figure 7.21 Simulations of the computational distribution functionsP (C1 ≥ x) for the Fano
(F), Creeper (C), and stack (S) algorithms for the BSC with crossover probability ε = 0.034.

It is obvious thatCav will depend on the distribution of the minimum of the metrics
along the correct path.

In Section 7.1 we introduced the Fano metric. Now we will consider a more
general symbol metric for the BSC, viz.,

µ =

{
α = log(1− ε) + 1−B, no error
β = log ε+ 1−B, error

(7.30)

where the parameter B is called the bias. When B = R, we have the Fano symbol
metric.

The following lemma is important when we want to characterize the behavior of
the metric along the correct path. It follows from Wald’s identity (Corollary B.6), and
it gives a most useful upper bound on the minimum of the metric along the correct
path.

452 SEQUENTIAL DECODING

100 101 102
10−4

10−3

10−2

10−1

100

F

C

S

x

P (C1 ≥ x)

Figure 7.22 Simulations of the computational distribution functionsP (C ≥ x) for the Fano
(F), Creeper (C), and stack (S) algorithms for the BSC with crossover probability ε = 0.034.

Lemma 7.1 Consider the BSC and let µmin denote the minimum of the metric
µ(r[0,t),v[0,t)) along the correct path, that is,

µmin = min
t
{µ(r[0,t),v[0,t))} (7.31)

Then
P (µmin ≤ x) ≤ 2−λ0x (7.32)

where λ0 is the smallest root of the equation

g(λ)
def
= E[2λ0µ(rk,vk)] =

(
(1− ε)2λ0α + ε2λ0β

)c
= 1 (7.33)

where α and β are given by (7.30).

Equation (7.33) always has the root λ0 = 1. To obtain a nontrivial bound from
(7.32), equation (7.33) should have a root λ0 < 0. This problem is addressed in the
following (see Example B.1):

COMPUTATIONAL ANALYSIS OF THE STACK ALGORITHM 453

T1

transmitted sequence

1st correct
node

2nd correct
node

3rd correct node

T2

T1

T3 = ∅

Figure 7.23 Partially explored binary tree.

Corollary 7.2 Consider a convolutional code of rateR < C, where C is the channel
capacity of the BSC. Then, for the Fano metric there exists a negative root of (7.33),
viz.,

λ0 = − s

1 + s
(7.34)

where s satisfies the equality
G(s) = sR (7.35)

and G(s) is the Gallager function (5.98).

Let the information sequence u′[0,j) also denote the corresponding node at depth j in
the first incorrect subtree, and let us introduce the function

ϕ(u′[0,j)) =

{
1 if node u′[0,j) is extended
0 else

(7.36)

Then, from (7.28) it follows that

Cav = E[C1] = 1 +
∞∑
i=1

∑
u′

[0,j)
∈T1

E[ϕ(u′[0,j))] (7.37)

Consider the random walk S′0 = 0, S′1, . . . , S
′
j associated with the node u′[0,j), where

S′t =
t−1∑
i=0

Z ′i (7.38)

454 SEQUENTIAL DECODING

and Z ′i = µ(v′i, ri) is the ith branch metric along the incorrect path u′[0,j).
In the ensemble E(b, c,∞, 1) the branch metrics along an incorrect path, Z ′i,

are independent, identically distributed, random variables with the distribution (see
Example B.2)

P (Z ′i = jα+ (c− j)β) =

(
c

j

)(
1

2

)c
(7.39)

j = 0, 1, . . . , c. Hence, we have

E[Z ′i] =

(
1

2
α+

1

2
β

)
c =

(
1−R+

√
ε(1− ε)

)
c < 0 (7.40)

and

gZ′i(λ) = E[2λZi] =

(
1

2
2λα +

1

2
2λβ
)c

(7.41)

For a nodeu′[0,j) in the incorrect subtree to be extended, it is necessary that the random
walk S′0, S

′
1, . . . , S

′
j does not drop below a barrier at µmin. What will happen when

mint{S′t} = µmin? It depends on how the stack algorithm is implemented. A
common and efficient method of resolving the ties when two nodes have exactly the
same cumulative metrics is to use the “last in/first out” principle. In our analysis, we
will adopt the more pessimistic view: in case of a tie between a node on the correct
path and an incorrect node, always extend the incorrect node.

Let
fj(y, z)

def
= P (S′t ≥ y, 0 ≤ t < j, S′j = z) (7.42)

Then the probability that a node u′[0,j) in the first incorrect subtree will be extended,
given that µmin = y, can be upper-bounded by

E[ϕ(u′[0,j)) | µmin = y] =
∑
z≥y

fj(y, z) (7.43)

Thus, we have

E [C1 | µmin = y] = 1 +
∞∑
j=1

∑
u′

[0,j)∈T1

E
[
ϕ(u′[0,j))

∣∣∣ µmin = y
]

= 1 +
∞∑
j=1

(2b − 1)2b(j−1)
∑
z≥y

fj(y, z) (7.44)

From (7.40) and Lemma B.1 it follows that the infinite random walkS′0, S
′
1, . . . , S

′
j , . . .

will cross from above any finite barrier at y < 0, that is,

∞∑
j=1

∑
z<y

fj(y, z) = 1 (7.45)

COMPUTATIONAL ANALYSIS OF THE STACK ALGORITHM 455

Furthermore, since the random walk S′t will eventually cross the barrier y, it follows
that ∑

z≥y

fj(y, z) =
∞∑

t=j+1

∑
z<y

ft(y, z) (7.46)

Hence, inserting (7.46) into (7.44) yields

E [C1 | µmin = y] = 1 +
∞∑
j=1

(2b − 1)2b(j−1)
∞∑

t=j+1

∑
z<y

ft(y, z) (7.47)

Next we replace the “1” in (7.47) by the double sum in (7.45) and obtain

E [C1 | µmin = y] =
∞∑
t=1

∑
z<y

ft(y, z) +
∞∑
j=1

(2b − 1)2b(j−1)
∞∑

t=j+1

∑
z<y

ft(y, z)

=
∞∑
t=1

∑
z<y

ft(y, z) +
∞∑
j=1

2bj
∞∑

t=j+1

∑
z<y

ft(y, z) (7.48)

−
∞∑
j=1

2b(j−1)
∞∑

t=j+1

∑
z<y

ft(y, z)

=
∞∑
j=0

2bj
∞∑

t=j+1

∑
z<y

ft(y, z)−
∞∑
j=0

2bj
∞∑

t=j+2

∑
z<y

ft(y, z)

=
∞∑
j=0

2bj
∑
z<y

fj+1(y, z) =
∞∑
t=1

2b(t−1)
∑
z<y

ft(y, z) (7.49)

From Wald’s identity (Corollary B.4) it follows that

∞∑
t=1

2bt
∑
z<y

ft(y, z) ≤ 2−λ1(y+cβ) (7.50)

where λ1 > 0 is a positive root of

gZ′t(λ1) = 2−b (7.51)

(That g′Z′i(λ1) < 0 and the existence of such a λ1 for the Fano metric are shown in
Example B.2.) Then, by combining (7.48) and (7.50), we obtain the upper bound

E [C1 | µmin = y] ≤ 2−b2−λ1(y+cβ) (7.52)

Thus, we have proved the following:

Lemma 7.3 The average number of computations needed to decode the first correct
node given that the minimum metric along the correct path is µmin = y is upper-
bounded by

E [C1 | µmin = y] ≤ 2−λ1(y+cβ)−b (7.53)

456 SEQUENTIAL DECODING

where λ1 is a positive root of equation (7.51) and β is given by (7.30).

For the Fano metric we show in Example B.2 that λ1 = 1/(1 + s) is a positive
root of (7.51), where s satisfies (7.35). Hence, we have the following:

Corollary 7.4 For the Fano metric we have the following:

E [C1 | µmin = y] ≤ 2−
1

1+s (y+cβ)−b (7.54)

where s is the solution of equation (7.35).

Without any essential loss of accuracy we assume that the metric values can be
written

α = α0δ (7.55)

and
β = β0δ (7.56)

where α0 and β0 are integers and δ > 0. Then {µmin} = {0,−δ,−2δ,−3δ, . . .} and
we have

Cav = E[C1] =
∞∑
i=0

E [C1 | µmin = −iδ]P (µmin = −iδ)

≤
∞∑
i=0

2λ1(iδ−cβ)−bP (µmin = −iδ)

= 2−λ1cβ−b

(∞∑
i=0

2iλ1δ(P (µmin ≤ −iδ)− P (µmin ≤ −(i+ 1)δ))

)

= 2−λ1cβ−b

(∞∑
i=0

2iλ1δP (µmin ≤ −iδ)−
∞∑
i=1

2(i−1)λ1δP (µmin ≤ −iδ)

)

= 2−λ1cβ−b

((
1− 2−λ1δ

)(∞∑
i=0

2iλ1δP (µmin ≤ −iδ)

)
+ 2−λ1δ

)
(7.57)

Now we use Lemma 7.1 and obtain

Cav ≤ 2−λ1cβ−b

((
1− 2−λ1δ

)(∞∑
i=0

2iλ1δ2iλ0δ

)
+ 2−λ1δ

)
(7.58)

The sum converges if λ0 + λ1 < 0 and, finally, we have

Cav ≤ 2−λ1cβ−b
(

1− 2−λ1δ

1− 2(λ0+λ1)δ
+ 2−λ1δ

)
= 2−λ1cβ−b 1− 2λ0δ

1− 2(λ0+λ1)δ
≤ 2−λ1cβ−b λ0

λ0 + λ1
(7.59)

where the last inequality follows from the fact that (1 − e−x)/x is decreasing for
x > 0. Thus we have proved the next theorem.

COMPUTATIONAL ANALYSIS OF THE STACK ALGORITHM 457

Theorem 7.5 The average number of computations per branch for the stack algo-
rithm when used to communicate over the BSC is upper-bounded by

Cav ≤
λ0

λ0 + λ1
2−λ1cβ−b (7.60)

where λ0 and λ1 are the negative and positive roots of equations (7.33) and (7.51),
respectively, and λ0 + λ1 < 0.

The factorλ0/(λ0+λ1) in the upper bound (7.60) regarded as a function of the bias
B achieves its minimum for B = R, that is, for the Fano metric (see Problem 7.10).
Hence, the following corollary is of particular interest.

Corollary 7.6 If we use the Fano metric, then the average number of computations
per branch for the stack algorithm when used to communicate over the BSC is
upper-bounded by

Cav ≤
s

s− 1
2−

1
1+s cβ−b for R < R0 (7.61)

where s is the solution of equation (7.35) and R0 is the computational cutoff rate.

Proof : For the Fano metric the inequality

λ0 + λ1 =
1− s
1 + s

< 0 (7.62)

is satisfied if and only if s > 1, that is, if and only if R < R0.

By choosing the biasB = R0 we obtain the Gallager (symbol) metric [Gal68] for
the BSC,

µG =

{
α = log(1− ε) + 1−R0

β = log ε+ 1−R0

(7.63)

Remark: Although the Gallager metric gives a weaker bound on the average number
of computations, it is, as we will see in the sequel, important when we analyze the
error probability for sequential decoding.

Since the Gallager metric is the same as the Fano metric whenR = R0, it follows
from (7.34) that λ0 = −1/2 for the Gallager metric (where we also have used that
s = 1 when R = R0, cf. (5.206)). For R < R0 and bias B ≤ R0 the root λ1 < 1/2
(see Problem 7.11).

Corollary 7.7 If we use the Gallager metric, then the average number of computa-
tions per branch for the stack algorithm when used to communicate over the BSC is
upper-bounded by

Cav ≤
λ0

λ0 + λ1
2−λ1cβ−b for R < R0 (7.64)

458 SEQUENTIAL DECODING

where λ0 = −1/2, λ1 is the positive root of the equation(
1

2
2λ1α +

1

2
2λ1β

)c
= 2−b (7.65)

α and β are the Gallager symbol metrics given in (7.63), and λ0 + λ1 < 0.

SinceCav is finite forR < R0, we obtain the following from the Markov inequality
(Lemma 6.14):

Theorem 7.8 When the stack algorithm is used to communicate over the BSC, then
the computational distribution for the number of computations needed to decode any
correct node, Ci, i = 1, 2, . . ., is upper-bounded by

P (Ci ≥ x) ≤ Cavx
−1 for R < R0 (7.66)

where Cav is the average number of computations per branch and R0 is the compu-
tational cutoff rate.

Remark: For the ensemble E(b, c,∞, 1) of rate R = b/c, infinite-memory, time-
invariant convolutional codes, Zigangirov [Zig66] has shown that for the stack algo-
rithm used with the Fano metric the sth moment of Ci, E[Csi], is finite for 0 < s ≤ 1
if R < G(s)/s and, hence, that

P (Ci ≥ x) ≤ E[Csi]x−s (7.67)

Furthermore, for the ensemble of general, nonlinear, infinite-memory trellis codes,
Zigangirov strengthened (7.67) to

P (Ci ≥ x) ≤ OR(1)x−s (7.68)

for
R < R(s) = G(s)/s (7.69)

where 0 < s <∞ and OR(1) depends on the rate R but not on x.
As a counterpart to the upper bound on the computational distribution (7.66) we

have the following lower bound:

Theorem 7.9 When the stack algorithm is used to communicate over the BSC, then
the computational distribution for the number of computations needed to decode the
information b-tuple ui−1, Ci, i = 1, 2, . . ., is lower-bounded by

P (Ci ≥ x) ≥ x−s+o(1), 0 ≤ R < C (7.70)

for at least one information b-tuple ui−1, i = 1, 2, . . ., where s is the solution of
(7.35), that is, s = Esph

C (R)/R, and o(1)→ 0 when x→∞.

COMPUTATIONAL ANALYSIS OF THE STACK ALGORITHM 459

Proof : The proof is similar to the proof of Lemma 5.12 and Theorem 6.18. The
theorem states that for at least one i, i = 1, 2, . . ., and any ε > 0 there exists a value
xε such that for any x > xε we have

P (Ci ≥ x) > x−(s+ε) (7.71)

Suppose that (7.71) does not hold. Then as a consequence there exist a rate R = b/c
convolutional code decoded with the stack algorithm and a certain ε > 0 such that
for all i, i = 1, 2, . . ., and any large xε there exists an x > xε such that

P (Ci ≥ x) < x−(s+2ε), i = 1, 2, . . . (7.72)

We terminate this convolutional code (with very good computational distribution
according to (7.72)) into a block code B of rate R (no zero tail) and block length N .

In order to decode this code, we use the stack algorithm as a (block) list decoder
with list size L = x. Assume that the decoder operates only up to depth N/c, where
the block length is

N =
Esph
C (R) log x

Esph
B (r̃)R

(7.73)

and
r̃ = R− log x

N
(7.74)

Each time the decoder reaches the depthN/c, it stores the corresponding node on the
list and chooses the next node from the stack and operates according to the rules of
the stack algorithm. Assume that the stack algorithm stops after making x(2b−1)−1

computations. Since each computation of the stack algorithm increases the number
of nodes on the stack by (2b − 1), the number of stored paths is equal to x.

Extend in an arbitrary way all paths that are shorter than N/c c-tuples. The list
decoder will not make an error if the number of computations for none of the N/c
information b-tuples exceeds x/(N/c). Thus, using the union bound and (7.72), the
probability of error for the (block) list decoder is upper-bounded by

PL(E) <
N

c

(xc
N

)−(s+2ε)
(
N

c

)1+s+2ε

x−(s+2ε) (7.75)

Choose xε such that (
Esph
C (R) log xε

Esph
B (r)Rc

)1+s+2ε

< (xε)
ε (7.76)

Then, for any x > xε we have

PL(E) < x−(s+ε) (7.77)

in contradiction to Theorem 6.17. Hence, we conclude that inequality (7.71) must
hold and the proof is complete.

460 SEQUENTIAL DECODING

7.7 ERROR PROBABILITY ANALYSIS OF THE STACK ALGORITHM

In this section, we will upper-bound the probability of decoding error for the stack
algorithm. Hence, we must assume that the codes have finite memory since otherwise
we have zero probability of decoding errors. We consider the ensemble E(b, c,m,∞)
of binary, rate R = b/c, time-varying convolutional codes of memory m. Then we
have

v = uGt (7.78)

where

Gt =

 G0(t) G1(t+ 1) . . . Gm(t+m)
G0(t+ 1) G1(t+ 2) . . . Gm(t+ 1 +m)

.

 (7.79)

in which each digit in each of the matrices Gi(t) for 0 ≤ i ≤ m and t = 0, 1, . . . is
chosen independently and is equally likely to be 0 and 1.

Assume without loss of generality that the allzero sequence is transmitted over the
BSC and that the stack algorithm with the metric µ (7.30) with a general bias B > 0
is used to decode the received sequence r.

Since the analysis of the probability of decoding error for the stack algorithm is
the same for all correct nodes, we consider only the root and the decoding of the first
information b-tuple u0.

In the first incorrect subtree stemming from the root, there are (2b − 1) nodes at
depthm+1 which have the same state as the (m+1)th correct node. In general, in the
first incorrect subtree there are (2b− 1)2bj nodes at depth (j+m+ 1), j = 0, 1, . . .,
which have the same state as the (j + m + 1)th correct node. We call these nodes
mergeable.

First, we assume that the rate is less than the computational cutoff rate, that is,
0 < R < R0.

Consider an arbitrary mergeable node u′[0,j+m], j = 0, 1, . . ., in the first incorrect
subtree. A necessary condition that an error burst will start at the root is that at least
one of the mergeable nodes in the first incorrect subtree will be extended. Introduce
the function

ϕ(u′[0,j+m]) =

{
1 if the mergeable node u′[j+m] is extended
0 else

(7.80)

Then the probability that the mergeable nodeu′[j+m] is extended is simplyE[ϕ(u′[j+m])].
Hence, the probability that an error burst will start at the root is upper-bounded by
the average number of the extended, mergeable nodes in the first incorrect subtree,
that is,

P (E1) <
∞∑
j=0

∑
u′

[0,j+m]
∈Tm1

E[ϕ(u′[0,j+m])] (7.81)

where T m1 is the set of mergeable nodes in the first incorrect subtree.

ERROR PROBABILITY ANALYSIS OF THE STACK ALGORITHM 461

Consider the random walk S′0 = 0, S′1, . . . , S
′
j+m+1 associated with the node

u′[0,j+m], where

S′t =
t−1∑
i=0

Z ′i (7.82)

and Z ′i = µ(ri,vi) is the ith branch metric along the path u′[0,j+m]. A necessary
condition for a mergeable node u′[0,j+m] in the first incorrect subtree to be extended
is that the random walk S′0, S

′
1, . . . , S

′
j+m+1 does not cross (from above) a barrier

at µmin, where µmin is the minimum metric along the correct path. Assume that
µmin = y and introduce (see (7.42))

fj+m+1(y, z)
def
= P (S′t ≥ y, 0 ≤ t ≤ j +m, S′j+m+1 = z) (7.83)

Then

E[ϕ(u′[0,j+m]) | µmin = y] =
∑
z≥y

fj+m+1(y, z) (7.84)

Analogously to (7.81) we have

P (E1 | µmin = y) <
∞∑
j=0

∑
u′

[0,j+m]
∈Tm1

E
[
ϕ(u′[0,j+m])

∣∣∣ µmin = y
]

(7.85)

Inserting (7.84) into (7.85) yields

P (E1 | µmin = y) <
∞∑
j=0

∑
u′

[0,j+m]
∈Tm1

∑
z≥y

fj+m+1(y, z)

=
∞∑
j=0

(2b − 1)2bj
∑
z≥y

fj+m+1(y, z) (7.86)

Since in the incorrect subtree we will eventually cross the barrier we have, analogously
to (7.45), ∑

z≥y

fj+m+1(y, z) =
∞∑

t=j+m+2

∑
z<y

ft(y, z) (7.87)

Then we insert (7.87) into (7.86) and obtain

P (E1 | µmin = y) <
∞∑
j=0

(2b − 1)2bj
∞∑

t=j+m+2

∑
z<y

ft(y, z)

= 2−bm(2b − 1)
∞∑
j=0

2b(j+m)
∞∑

t=j+m+2

∑
z<y

ft(y, z) (7.88)

462 SEQUENTIAL DECODING

The right side of (7.88) can be further upper-bounded by

P (E1 | µmin = y) < 2−bm(2b − 1)
∞∑
j=0

2bj
∞∑

t=j+1

∑
z<y

ft(y, z)

= 2−bm(2b − 1)
∞∑
t=1

t−1∑
j=0

2bj

∑
z<y

ft(y, z)

= 2−bm(2b − 1)
∞∑
t=1

2bt − 1

2b − 1

∑
z<y

ft(y, z)

< 2−bm
∑
t=1

2bt
∑
z<y

ft(y, z) (7.89)

(cf. (7.47)). Analogously to (7.53), we obtain

P (E1 | µmin = y) < 2−bm2−λ1(y+cβ) (7.90)

where λ1 satisfies (7.50) and β is given by (7.30) and, then, analogously to (7.57) we
can show that

P (E1) =
∞∑
i=0

P (E1 | µmin = −iδ)P (µmin = −iδ)

< 2−bm2−λ1cβ

(
(1− 2−λ1δ)

(∞∑
i=0

2i(λ0+λ1)δ

)
+ 2−λ1δ

)
(7.91)

The sum in inequality (7.91) converges if λ0 + λ1 < 0, and we obtain analogously
to (7.59) that

P (E1) < 2−λ1cβ
λ0

λ0 + λ1
2−Rmc (7.92)

where λ0 + λ1 < 0.
If we choose the Fano metric, then

P (E1) < O(1)2−Rmc for R < R0 (7.93)

where
O(1) = 2−

1
1+s cβ

s

s− 1
(7.94)

We notice that for the Fano metric we have obtained an upper bound on the error
probability for the stack algorithm whose exponentR decreases linearly with the rate
R! The reason is that although the Fano metric should be chosen in order to obtain a
good computational performance, it is not optimal from an error probability point of
view. In fact, for rates R close to zero, it is far from optimal.

Next we consider the sphere-packing regionR0 < R < C. Then, as always when
we consider this region, we separate the event that an error burst starts at the root

ERROR PROBABILITY ANALYSIS OF THE STACK ALGORITHM 463

node into two disjoint events corresponding to “few” (F) and “many” (M) errors,
respectively. Then we have

P (E1) = P (E1 | F)P (F) + P (E1 | M)P (M)

≤ P (E1 | F)P (F) + P (M) (7.95)

where we have upper-bounded P (E1 | M) by 1.
To state more precisely what we mean by “few” and “many” errors, we consider

the minimum metric µmin along the correct path. Let those error patterns for which
the metric stays above the barrier u < 0, that is, for which

µmin > u (7.96)

contain “few” errors and those error patterns for which the metric hits or crosses the
barrier contain “many” errors. From Lemma 7.1 it follows that

P (M) = P (µmin ≤ u) ≤ 2−λ0u (7.97)

where λ0 is the smallest root of (7.33).
The probability

P (E1,F) = P (E1 | F)P (F) (7.98)

is equal to the joint probability that µmin > u and that at least one of the mergeable
nodes in the first incorrect subtree is extended. Then, for µmin = y > u we have
(cf. (7.90))

P (E1 | µmin = y) < 2−bm2−λ1(y+cβ) (7.99)

where λ1 satisfies (7.50) and β is given by (7.30). We let

u = −(i0 + 1)δ (7.100)
y = −iδ (7.101)

464 SEQUENTIAL DECODING

and, then, analogously to (7.57), we get

P (E1 | F)P (F) <

i0∑
i=0

2−bm2−λ1(−iδ+cβ)P (µmin = −iδ)

= 2−bm−λ1cβ

(
i0∑
i=0

2λ1iδ(P (µmin ≤ −iδ)− P (µmin ≤ −(i+ 1)δ))

)

= 2−bm−λ1cβ

(
i0∑
i=0

2λ1iδP (µmin ≤ −iδ)−
i0+1∑
i=1

2λ1(i−1)δP (µmin ≤ −iδ)

)

= 2−bm−λ1cβ

 (1− 2−λ1δ)

(
i0∑
i=0

2λ1iδP (µmin ≤ −iδ)

)

+ 2−λ1δP (µmin ≤ 0)− 2λ1i0δP (µmin ≤ −(i0 + 1)δ)

< 2−bm−λ1cβ

(
(1− 2−λ1δ)

(
i0∑
i=0

2λ1iδ2λ0iδ

)
+ 2−λ1δ

)
(7.102)

where the last inequality follows from Lemma 7.1.
Assuming that λ0 + λ1 6= 0, we have

P (E1 | F)P (F) < 2−bm−λ1cβ

(
(1− 2−λ1δ)(2(λ0+λ1)(i0+1)δ − 1)

2(λ0+λ1)δ − 1
+ 2−λ1δ

)
= 2−bm−λ1cβ

(1− 2−λ1δ)2−(λ0+λ1)u + 2λ0δ − 1

2(λ0+λ1)δ − 1
(7.103)

By inserting (7.103) and (7.97) into (7.95), we obtain

P (E1) < 2−bm−λ1cβ
(1− 2−λ1δ)2−(λ0+λ1)u + 2λ0δ − 1

2(λ0+λ1)δ − 1
+ 2−λ0u (7.104)

For the Fano metric we conclude from (7.34) and Example B.2 that

λ0 = − s

1 + s
(7.105)

and
λ1 =

1

1 + s
(7.106)

where s is the solution of
G(s) = sR (7.107)

and G(s) is the Gallager function (5.98). Hence,

λ0 + λ1 =
1− s
1 + s

> 0 (7.108)

ERROR PROBABILITY ANALYSIS OF THE STACK ALGORITHM 465

if and only if s < 1, that is, if and only if R > R0.
Since λ0 < 0 and λ0 + λ1 > 0, it follows that

2λ0δ − 1

2(λ0+λ1)δ − 1
< 0 (7.109)

Furthermore,

(1− 2−λ1δ)

2(λ0+λ1)δ − 1
<

(
1− 2−λ1δ

λ1δ

)(
(λ0 + λ1)δ

1− 2−(λ0+λ1)δ

)(
λ1

λ0 + λ1

)
<

λ1

λ0 + λ1
(7.110)

where in order to obtain the last inequality we have used that (1−e−x)/x is decreasing
with increasing x. Thus, we can further upper-bound (7.104):

P (E1) <
λ1

λ0 + λ1
2−bm−λ1cβ2−(λ0+λ1)u + 2−λ0u (7.111)

In order to transform our bound (7.111) into a more illuminative form, whenR > R0

we use the optimal value of the barrier, viz.,

u = −1 + s

s
G(s)mc (7.112)

Next we insert (7.105), (7.106), (7.108), and (7.112) into (7.111) and obtain

P (E1) <
1

1− s
2−

1
1+s cβ2

1−s
s G(s)mc−bm + 2−G(s)mc

=

(
1

1− s
2−

1
1+s cβ2

G(s)
s mc−Rmc + 1

)
2−G(s)mc

=

(
1

1− s
2−

1
1+s cβ + 1

)
2−G(s)mc (7.113)

where the last inequality follows from (7.107). Finally, we obtain

P (E1) < O(1)2−G(s)mc for R > R0 (7.114)

where
O(1) =

1

1− s
2−

1
1+s cβ + 1 > 0 (7.115)

Remark: It is somewhat surprising that the constant factor in the upper bound
(7.114), that is,O(1), is better than the corresponding factor for maximum-likelihood
decoding (cf. Theorem 5.19). The explanation is that here we have used a more
advanced bounding procedure.

Next we consider the special case R = R0, which implies that s = 1. Hence,
assuming the Fano metric, we have

λ0 = −λ1 = −1/2 (7.116)

466 SEQUENTIAL DECODING

That is, we have λ0 + λ1 = 0. We return to the last inequality of (7.102) and obtain

P (E1 | F)P (F) < 2−bm−λ1cβ

(
(1− 2−δ/2)

i0∑
i=0

1 + 2−δ/2

)
= 2−bm−cβ/2((1− 2−δ/2)(i0 + 1) + 2−δ/2)

< 2−bm−cβ/2(1 + (i0 + 1)δ/2) (7.117)

By inserting (7.117) and (7.97) into (7.95), we obtain

P (E1) < 2−bm−cβ/2(1− u/2) + 2u/2 (7.118)

Again we use the optimal value of the barrier, viz.,

u = −2R0mc (7.119)

and obtain

P (E1) < 2−R0mc−cβ/2(1 +R0mc) + 2−R0mc

<
(

2−cβ/2(1 +R0mc) + 1
)

2−R0mc (7.120)

Finally, we obtain

P (E1) < O(m)2−R0mc for R = R0 (7.121)

where
O(m) = 2−cβ/2(1 +R0mc) + 1 (7.122)

We summarize our results in the following:

Theorem 7.10 If we use the Fano metric, then for the ensemble of rate R = b/c,
time-varying convolutional codes of memory m the burst error probability for the
stack algorithm when used to communicate over the BSC is upper-bounded by

P (E1) <

O(1)2−Rmc, 0 ≤ R < R0

O(m)2−R0mc, R = R0

O(1)2−G(s)mc, R0 < R < C

(7.123)

where s is the solution of (7.107), G(s) is the Gallager function given by (5.98), and
R0 is the computational cutoff rate.

For rates R0 ≤ R < C we have the same exponents in our upper bounds on the
error probability for sequential decoding as we have for maximum-likelihood (ML)
decoding, but in the region 0 ≤ R < R0 the bound for sequential decoding is much
worse than that for ML decoding. This is because from the error probability point
of view the Fano metric is not the best choice for rates R < R0. By replacing the
Fano metric by the Gallager metric for rates R < R0 we can obtain a stronger bound

ERROR PROBABILITY ANALYSIS OF THE STACK ALGORITHM 467

on the error probability at the expense of an increased number of computations as
follows:

By replacing b (= Rc) by
b0 = R0c (7.124)

in (7.86), we can obtain a strengthening for rates R < R0. As before, λ0 is the
smallest root of (7.33) but now λ1 is the positive root of

1

2
2λ1α +

1

2
2λ1β = 2−R0 (7.125)

For the Gallager metric it is easily verified that

λ0 = −1

2
(7.126)

and
λ1 =

1

2
(7.127)

Since λ0 +λ1 = 0 we can use the Gallager metric and repeat the derivation of (7.121)
and obtain the following:

Theorem 7.11 If we use the Gallager metric, then for the ensemble of rateR = b/c,
time-varying convolutional codes of memory m the burst error probability for the
stack algorithm when used to communicate over the BSC is upper-bounded by

P (E1) <

{
O(m)2−R0mc, 0 ≤ R ≤ R0

O(1)2−G(s)mc, R0 < R < C
(7.128)

where s is the solution of (7.107), G(s) is the Gallager function given in (5.98), and
R0 is the computational cutoff rate.

Hitherto we have assumed that the sequential decoder had no back-search limit,
that is, the decoder could, if required, back up as far as to the root of the code tree.
Now we assume (cf. Section 5.5) that we have a finite back-search limit τ that is an
excursion further back than τ branches from the foremost node is prohibited. For
simplicity we will restrict our analysis to the case τ = m+1, wherem is the encoder
memory.

Consider the ensemble E(b, c,m, 1) of binary, rate R = b/c, time-invariant con-
volutional codes of memorym. In the first incorrect subtree there are (2b−1)2b(τ−1)

nodes at depth τ . A necessary condition that the subpath corresponding to an error
burst will start at the root is that it will pass one of these nodes at depth τ , that is,
that the metric of such a node is not less than the minimum metric along the correct
path. In order to minimize the probability that an error burst starts at the root when
we have the finite back-search limit τ = m+ 1, P (E fbs

1), we need a metric different
from the Fano and Gallager metrics, viz., the Zigangirov metric for the BSC:

µZ =

{
α = log(1− ε) + 1−G(sz)/sz

β = log ε+ 1−G(sz)/sz
(7.129)

468 SEQUENTIAL DECODING

where sz , 0 < sz ≤ 1, is the solution of

G′(s) = R (7.130)

if this solution is upper-bounded by 1 and where sz = 1 if the solution of (7.130)
is greater than 1. As before, G(s) is the Gallager function (5.98). (The value of sz
maximizes the reliability function

EB(R) = G(s)− sR for Rcrit ≤ R < C (7.131)

and the pair (EB(R), G′(sz)) defines parametrically the sphere-packing bound for
block codes in this region.) For the BSC it is easily verified that

sz =
log 1−ε

ε

log 1−ρ
ρ

− 1 for Rcrit ≤ R < C (7.132)

where ρ is the Gilbert-Varshamov parameter with respect to the rate R, that is,

ρ = h−1(1−R) (7.133)

The rate corresponding to sz = 1 is the critical rate Rcrit (5.27).
For rates R ≤ Rcrit the Zigangirov metric coincides with the Gallager metric.
It is easily verified that for the Zigangirov metric the negative root λ0 of (7.33) is

λ0 = − sz
1 + sz

(7.134)

Thus, P (M) satisfies (7.97) when λ0 is given by (7.134).

Remark: For rates Rcrit ≤ R < C, the Zigangirov metric (7.129) can be written as{
α = 1+sz

sz
log (1−ε)

1−ρ
β = 1+sz

sz
log ε

ρ

(7.135)

which can be scaled to {
α′ = log 1−ε

1−ρ
β′ = log ε

ρ

(7.136)

Analogously, for rates 0 ≤ R < Rcrit we obtain{
α′ = log 1−ε

1−ρcrit
β′ = log ε

ρcrit

(7.137)

where ρcrit is the Gilbert-Varshamov parameter with respect to the rate Rcrit, viz.,

ρcrit = h−1(1−Rcrit) (7.138)

ERROR PROBABILITY ANALYSIS OF THE STACK ALGORITHM 469

We have λ1 = 1/2 and

λ1 =
1

1 + sz
< 1/2 (7.139)

for rates 0 < R ≤ Rcrit and Rcrit < R < C, respectively, and it is easily verified that

1

2
2λ1α +

1

2
2λ1β = 2−G(sz)/sz (7.140)

Consider the rates Rcrit < R < C. The conditional probability that at least one of
the nodes at depth τ = m + 1 in the first incorrect subtree is visited given that we
have few errors, that is, P (E fbs

1 | F), is upper-bounded by the conditional expectation
of the number of visited nodes at depth m+ 1 in the first incorrect subtree given the
event F . Then we obtain (for τ = m+ 1)

P
(
E fbs

1

∣∣ µmin = y
)
≤
∑
z≥y

(2b − 1)2bmfm+1(y, z)

≤ 2b(m+1)
∑
z≥y

P (µm+1 = z)2λ1(z−y)

< 2b(m+1)

(∑
all z

P (µm+1 = z)2λ1z

)
2−λ1y

= 2b(m+1)

(
1

2
2λ1α +

1

2
2λ1β

)(m+1)c

2−λ1y (7.141)

where λ1 > 0. Next, we let u = −(i0 + 1)δ, y = −iδ, and assume that λ0 +λ1 > 0,
that is, R > Rcrit. Then analogously to (7.102) and (7.103) we can show that

P
(
E fbs

1

∣∣ F)P (F) =

i0∑
i=0

P
(
E fbs

1

∣∣ µmin = −iδ
)
P (µmin = −iδ)

< 2b(m+1)

(
1

2
2λ1α +

1

2
2λ1β

)(m+1)c

×
(

(1− 2−λ1δ)2(λ0+λ1)(i0+1)δ + 2λ0δ − 1

2(λ0+λ1)δ − 1

)
= 2b(m+1)

(
1

2
2λ1α +

1

2
2λ1β

)(m+1)c

× (1− 2−λ1δ)2−(λ0+λ1)u + 2λ0δ − 1

2(λ0+λ1)δ − 1
(7.142)

Analogously to (7.104) we obtain

P (E fbs
1) < 2b(m+1)

(
1

2
2λ1α + 2λ1β

)(m+1)c

×
(

(1− 2−λ1δ)2−(λ0+λ1)u + 2λ0δ − 1

2(λ0+λ1)δ

)
+ 2−λ0u (7.143)

470 SEQUENTIAL DECODING

Using (7.109), (7.110), and (7.140), it follows from (7.143) that

P (E fbs
1) <

λ1

λ0 + λ1
2b(m+1)2−

G(sz)
sz

(m+1)c2−(λ0+λ1)u + 2−λ0u (7.144)

We choose the barrier to be

u = −1 + sz
sz

(G(sz)− szR)(m+ 1)c (7.145)

insert (7.134), (7.139), and (7.145) into (7.144), and obtain

P (E fbs
1) <

λ1

λ0 + λ1
2b(m+1)2−

G(sz)
sz

(m+1)c2
1−sz
sz

(G(sz)−szR)(m+1)c

+ 2−(G(sz)−szR)(m+1)c =
λ0 + 2λ1

λ0 + λ1
2−(G(sz)−szR)(m+1)c(7.146)

Finally, we have

P (E fbs
1) < O(1)2−(G(sz)−szR)(m+1)c for R > Rcrit (7.147)

and

O(1) =
λ0 + 2λ1

λ0 + λ1
=

2− sz
1− sz

(7.148)

Next, we consider the special case when R = Rcrit, which implies that sz = 1.
Hence, assuming the Zigangirov metric we have

λ0 = −λ1 = −1/2 (7.149)

Then, analogously to (7.117) and (7.118), we can show that for the barrier

u = −2R0(m+ 1)c (7.150)

we have
P (E fbs

1) < O(m)2−(R0−R)(m+1)c for R = Rcrit (7.151)

where
O(m) = (R0(m+ 1)c+ 1) + 1 (7.152)

Finally, to make the analysis complete, we consider rates R < Rcrit. Then the
Zigangirov metric coincides with the Gallager metric, and analogously to (7.128) we
obtain

P (E fbs
1) < O(m)2−(R0−R)(m+1)c, 0 ≤ R < Rcrit (7.153)

where O(m) is given by (7.152).
We summarize our results in the following (cf. Theorem 5.24):

Theorem 7.12 If we use the Zigangirov metric, then for the ensemble of rate R =
b/c, time-invariant convolutional codes of memory m the burst error probability for

ANALYSIS OF THE FANO ALGORITHM 471

the stack algorithm with back-search limit m + 1 when used to communicate over
the BSC is upper-bounded by

P (E fbs
1) <

{
O(m)2−(R0−R)(m+1)c, 0 ≤ R ≤ Rcrit

O(1)2−(G(sz)−szR)(m+1)c, Rcrit < R < C
(7.154)

where sz is given by (7.132), G(sz) is the Gallager function given by (5.98), R0 is
the computational cutoff rate, and Rcrit is the critical rate.

Remark: If we use a tail that is shorter than bm the protection of the last information
symbols will be weakened [Joh77b].

Remark: The sequential decoder will perform about as well with a rate R = b/c
systematic encoder of memory mc/(c − b) as with a rate R = b/c nonsystematic
encoder of memory m. Due to the systematicity, the first b symbols on each branch
in the tail, which is used to terminate the encoded sequence, are zeros. The zeros are
known beforehand and can be omitted before transmission. Hence, the two encoders
require the same allotted space for transmission of their corresponding tails. The
factor c/(c − b) by which the memories differ is the same factor by which Heller’s
upper bounds on the free distance differ when systematic and nonsystematic encoders
are used.

7.8 ANALYSIS OF THE FANO ALGORITHM

Our analysis of the Fano algorithm is based on the results we obtained for the
stack algorithm. First we analyze the computational behavior and consider, as for
the stack algorithm, the ensemble E(b, c,∞, 1) of infinite-memory, time-invariant,
rate R = b/c convolutional codes. We need the following properties of the Fano
algorithm. They follow immediately from the description of the algorithm.

Property F1: A node u[0,t) is extended by the Fano algorithm only if its metric
µ(r[0,t),v[0,t)) is not less than the threshold T .

Property F2: Let µmin denote the minimum metric along the correct path. The
threshold T is always greater than µmin −∆, where ∆ is the stepsize, that is,

Tmin
def
= min{T} > µmin −∆ (7.155)

Property F3: For any value of the threshold T , each node can be visited at most
once.

From Properties F1 and F3 it follows that given Tmin = y, the number of visits to
any node with metric µ = z, where z ≥ y, is upper-bounded by⌈

z − y
∆

⌉
<
z − y

∆
+ 1 (7.156)

472 SEQUENTIAL DECODING

Since the root has metric 0, it can be visited at most −y/∆ + 1 times. Analogously
to (7.44), we can show that the conditional average of the number of computations
needed to decode the first correct node, given Tmin = y, is upper-bounded by

E [C1 | Tmin = y] < (−y/∆ + 1) +
∞∑
j=1

(2b − 1)2b(j−1)
∑
z≥y

(
z − y

∆
+ 1

)
fj(y, z)

= −y/∆ +

1 +
∞∑
j=1

(2b − 1)2b(j−1)
∑
z≥y

fj(y, z)

−∆−1

∞∑
j=1

(2b − 1)2b(j−1)
∑
z≥y

(y − z)fj(y, z) (7.157)

In order to upper-bound the right side of (7.157), we use the following inequality
from Appendix B (see Corollary B.5):

∞∑
t=1

t
∑
x<y

ft(y, x) ≥ y ln 2

g′λ(0)
(7.158)

where

g′λ(0) =

(
1

2
α+

1

2
β

)
c ln 2 = E[Z ′i] ln 2 (7.159)

and Z ′i is the ith branch metric µ(ri,v
′
i) along the incorrect path u′[0,j).

Combining (7.157) and (7.158) yields

E [C1 | Tmin = y] < −y/∆ +

1 +
∞∑
j=1

(2b − 1)2b(j−1)
∑
z≥y

fj(y, z)

−E[Z ′i]∆

−1
∞∑
j=1

(2b − 1)2b(j−1)

×
∑
z≥y

∞∑
t=1

t
∑

x<y−z
ft(y − z, x)fj(y, z) (7.160)

From (7.44) and (7.52) we conclude that

1 +
∞∑
j=1

(2b − 1)2b(j−1)
∑
z≥y

fj(y, z) ≤ 2−b−λ1(y+cβ) (7.161)

The sum ∑
x<y−z

ft(y − z, x)

is the probability that the random walk, given that it started from level z, where z ≥ y,
crosses the barrier y for the first time at the depth t. Then,∑

z≥y

fj(y, z)
∑

x<y−z
ft(y − z, x)

ANALYSIS OF THE FANO ALGORITHM 473

is the probability that the random walk, given that it started from level 0, crosses
the barrier y for the first time at the depth j + t. This latter probability can also be
expressed as ∑

z<y

fj+t(y, z)

Hence, we have ∑
z≥y

fj(y, z)
∑

x<y−z
ft(y − z, x) =

∑
z<y

fj+t(y, z) (7.162)

Using (7.161) and (7.162) we can upper-bound (7.160):

E[C1 | Tmin = y] < −y/∆ + 2−b−λ1(y+cβ)

−E[Z ′i]∆
−1
∞∑
j=1

(2b − 1)2b(j−1)
∞∑
t=1

t
∑
z<y

fj+t(y, z)

= −y/∆ + 2−b−λ1(y+cβ)

−E[Z ′i]∆
−1(1− 2−b)

∞∑
k=1

k∑
j=1

(k − j)2bj
∑
z<y

fk(y, z)

= −y/∆ + 2−b−λ1(y+cβ) − E[Z ′i]∆
−1(1− 2−b)

×
∞∑
k=1

(
k2b

2bk − 1

2b − 1
− k2b(k+2) − 2b(k+1)(k + 1) + 2b

(2b − 1)2

)∑
z<y

fk(y, z)

= −y/∆ + 2−b−λ1(y+cβ) − E[Z ′i]∆
−1(1− 2−b)

×
∞∑
k=1

(
− k2b

2b − 1
+

2b(k+1)

(2b − 1)2
− 2b

(2b − 1)2

)∑
z<y

fk(y, z) (7.163)

In order to further upper-bound (7.163) we use the following two simplifications:
From (7.158) it follows that

∞∑
k=1

k
∑
z<y

fk(y, z) ≥ y

E[Z ′i]
(7.164)

and from (7.50) it follows that

∞∑
k=1

2bk
∑
z<y

fk(y, z) ≤ 2−λ1(y+cβ) (7.165)

Furthermore, from (7.45) we have

∞∑
k=1

∑
z<y

fk(y, z) = 1 (7.166)

474 SEQUENTIAL DECODING

Inserting (7.164), (7.165), and (7.166) into (7.163) yields

E [C1 | Tmin = y] < −y/∆ + 2−b−λ1(y+cβ)

−E[Z ′i]∆
−1(1− 2−b)

(
− y2b

(2b − 1)E[Z ′i]
+

2b2−λ1(y+cβ)

(2b − 1)2
− 2b

(2b − 1)2

)
= −y/∆ + 2−b−λ1(y+cβ) + y/∆− E[Z ′i]2

−λ1(y+cβ)

∆(2b − 1)
+

E[Z ′i]

∆(2b − 1)

< 2−b−λ1(y+cβ) − E[Z ′i]2
−λ1(y+cβ)

∆(2b − 1)

=

(
2−b − E[Z ′i]

∆(2b − 1)

)
2−λ1cβ2−λ1y (7.167)

By combining (7.155) and (7.167), we obtain

E [C1 | µmin = y] <

(
2−b − E[Z ′i]

(2b − 1)∆

)
2−λ1cβ+λ1∆−λ1y

=

(
1− E[Z ′i]

(1− 2−b)∆

)
2λ1∆2−b−λ1cβ2−λ1y (7.168)

The function 2λ1∆/∆ attains its minimum when

∆ =
1

λ1 ln 2
(7.169)

Since in a practical situation the second term in the parentheses on the right-hand
side of (7.168) is essentially greater than 1, we use (7.169) as a good approximation
of the optimal value of the stepsize. Inserting (7.169) into (7.168) gives

E [C1 | µmin = y] < CF2−λ1y (7.170)

where

CF =

(
1− (α+ β)λ1 ln 2

2(1− 2−b)

)
e2−b−λ1cβ (7.171)

Without any essential loss of accuracy we assume that the metric values can be written

α = α0δ (7.172)

and

β = β0δ (7.173)

ANALYSIS OF THE FANO ALGORITHM 475

where α0 and β0 are integers and δ > 0. Then µmin ∈ {0,−δ,−2δ,−3δ, . . .} and
we have

Cav = E[C1] =
∞∑
i=0

E [C1 | µmin = −iδ]P (µmin = −iδ)

<
∞∑
i=0

CF2iλ1δ(P (µmin ≤ −iδ)− P (µmin ≤ −(i+ 1)δ))

= CF

(∞∑
i=0

2iλ1δP (µmin ≤ −iδ)−
∞∑
i=1

2(i−1)λ1δP (µmin ≤ −iδ)

)

= CF

(
(1− 2−λ1δ)

(∞∑
i=0

2iλ1δP (µmin ≤ −iδ)

)
+ 2−λ1δ

)
(7.174)

Now we use Lemma 7.1 and obtain

Cav < CF

(
(1− 2−λ1δ)

(∞∑
i=0

2iλ1δ2iλ0δ

)
+ 2−λ1δ

)
(7.175)

The sum converges if λ0 + λ1 < 0 and, finally, we have

Cav < CF

(
1− 2−λ1δ

1− 2(λ0+λ1)δ
+ 2−λ1δ

)
= CF

1− 2λ0δ

1− 2(λ0+λ1)δ
≤ CF

λ0

λ0 + λ1
(7.176)

where the last inequality follows from the fact that (1− e−x)/x is decreasing for all
x. Thus, we have proved the following

Theorem 7.13 The average number of computations per branch for the Fano algo-
rithm when used to communicate over the BSC is upper-bounded by

Cav < CF
λ0

λ0 + λ1
(7.177)

where λ0 and λ1 are the negative and positive roots of equations (7.33) and (7.51),
respectively, such that λ0 + λ1 < 0 and CF is given in (7.171).

From (7.105) and (7.108), we have the next corollary.

Corollary 7.14 If we use the Fano metric, the average number of computations per
branch for the Fano algorithm when used to communicate over the BSC is upper-
bounded by

Cav < CF
s

s− 1
for R < R0 (7.178)

where s is the solution of (7.35) and R0 is the computational cutoff rate.

476 SEQUENTIAL DECODING

Also for the Fano algorithm we can use the Markov inequality (Lemma 6.14) and
obtain the following:

Theorem 7.15 When the Fano algorithm is used to communicate over the BSC then
the computational distribution for the number of computations needed to decode any
correct node, Ci, i = 1, 2, . . ., is upper-bounded by

P (Ci ≥ x) ≤ Cavx
−1 for R < R0 (7.179)

where Cav is the average number of computations per branch and R0 is the compu-
tational cutoff rate.

Remark: For the ensemble E(b, c,∞, 1) of rate R = b/c, infinite-memory, time-
invariant convolutional codes Falconer [Fal66] has shown that for the Fano algorithm
the sth moment of Ci, E[Csi], is finite for 0 < s ≤ 1 if R < G(s)/s and, hence, that

P (Ci ≥ x) ≤ E[Csi]x−s (7.180)

For the ensemble of general, nonlinear, infinite-memory trellis codes Savage [Sav66]
strengthened (7.180) to

P (Ci ≥ x) ≤ OR(1)x−s (7.181)

for
R < R(s) = G(s)/s (7.182)

where s is a strictly positive integer and OR(1) depends on the rate R but not on x.
The lower bound on the computational distribution that we derived in Section 7.6

(Theorem 7.9) is also valid for the Fano algorithm.
The error probability analysis of the Fano algorithm is quite similar to the cor-

responding analysis of the stack algorithm. The only difference is in the necessary
condition for a mergeable node u′[0,j+m] in the incorrect subtree to be extended. For
the Fano algorithm, the condition is that the random walk S′0, S

′
1, . . . , S

′
j+m+1 does

not cross a barrier at Tmin, while for the stack algorithm the barrier is at µmin. Thus,
we use inequality (7.155) and instead of (7.92) we obtain

P (E1) < 2−λ1cβ+λ1∆ λ0

λ0 + λ1
2−Rmc (7.183)

where λ0 + λ1 < 0 and R < R0.
Analogously to Theorem 7.10 we can prove the next theorem.

Theorem 7.16 If we use the Fano metric, then for the ensemble of rate R = b/c,
time-varying convolutional codes of memory m the burst error probability for the
Fano algorithm when used to communicate over the BSC is upper-bounded by

P (E1) <

O(1)2−Rmc 0 ≤ R < R0

O(m)2−R0mc R = R0

O(1)2−G(s)mc R0 < R < C

(7.184)

ANALYSIS OF CREEPER* 477

where s is the solution of (7.107), G(s) is the Gallager function given by (5.98), and
R0 is the computational cutoff rate.

For the Gallager metric we can show the following counterpart to Theorem 7.11:

Theorem 7.17 If we use the Gallager metric, then for the ensemble of rateR = b/c,
time-varying convolutional codes of memory m the burst error probability for the
Fano algorithm when used to communicate over the BSC is upper-bounded by

P (E1) <

{
O(m)2−R0mc 0 ≤ R ≤ R0

O(1)2−G(s)mc R0 < R < C
(7.185)

where s is the solution of (7.107), G(s) is the Gallager function given by (5.98), and
R0 is the computational cutoff rate.

Finally, when we use the Fano algorithm with a finite back-search limit, we can
show the following counterpart to Theorem 7.12:

Theorem 7.18 If we use the Zigangirov metric, then for the ensemble of rate R =
b/c, time-invariant convolutional codes of memory m the burst error probability for
the Fano algorithm with back-search limit m + 1 when used to communicate over
the BSC is upper-bounded by

P (E fbs
1) <

{
O(m)2−(R0−R)(m+1)c 0 ≤ R ≤ Rcrit

O(1)2−(G(sz)−szR)(m+1)c Rcrit < R < C
(7.186)

where sz is given by (7.132), G() is the Gallager function given by (5.98), R0 is the
computational cutoff rate, and Rcrit is the critical rate.

7.9 ANALYSIS OF CREEPER*

For the analysis of computational behavior we consider as before the ensemble
E(b, c,∞, 1) of binary, rateR = b/c, time-invariant convolutional codes with infinite-
memory.

The following properties are quite similar to those of the Fano algorithm:

Property C1: A node u[0,t) is extended by Creeper only if its metric µ(r[0,t),v[0,t))
is not less than the threshold T .

From the description of Creeper it follows that the value of the threshold is
a multiple of the stepsize ∆ and that it is decreased at least twice between two
successive visits to a certain node. Hence, we have the following:

Property C2: The threshold decrement between two successive visits to a certain
node is at least 2∆.

Property C2 implies that Creeper will not get stuck in a loop.

478 SEQUENTIAL DECODING

Property C3: Let µmin denote the minimum metric along the correct path. The
minimum value of the threshold for Creeper is lower-bounded by

Tmin > µmin − 2∆ + cβ (7.187)

Property C4: For each value of the threshold T Creeper can visit a node at most
once.

From Properties C1 and C4 it follows that for given Tmin = y the number of visits
to any node with metric µ = z, where z ≥ y, is upper-bounded by⌈

z − y
2∆

⌉
<
z − y
2∆

+ 1 (7.188)

Thus, since the root has metric 0 it can be visited at most −y/2∆ + 1 times.
Analogously to (7.157) we can show that the conditional expectation of the number

of computations needed to decode the first correct node given that Tmin = y is upper-
bounded by the inequality

E [C1 | Tmin = y] < − y

2∆
+ 1 +

∞∑
j=1

(2b − 1)2b(j−1)
∑
z≥y

(
z − y
2∆

+ 1

)
fj(y, z)

(7.189)
The upper bound (7.189) for Creeper differs from its counterpart for the Fano algo-
rithm only by the factor of 2 in front of the stepsize ∆. Therefore, repeating the steps
(7.158)–(7.167) yields

E [C1 | Tmin = y] <

(
1− E[Z ′i]

2(1− 2−b)∆

)
22λ1∆−b−λ1cβ2−λ1y (7.190)

Combining Property C3 and (7.190) yields (cf. (7.168))

E [C1 | µmin = y] <

(
1− E[Z ′i]

2(1− 2−b)∆

)
24λ1∆−b−2λ1cβ2−λ1y (7.191)

The function 24λ1∆/∆ attains its minimum when

∆ =
1

4λ1 ln 2
(7.192)

Since in a practical situation the second term in the parentheses on the right-hand
side of (7.191) is essentially greater than 1, we use (7.192) as a good approximation
of the optimal value of the stepsize. Inserting (7.192) into (7.191) gives

E [C1 | µmin = y] < CC2−λ1y (7.193)

where

CC =

(
1− 2(α+ β)λ1 ln 2

1− 2−b

)
e2−b−2λ1cβ (7.194)

ANALYSIS OF CREEPER* 479

and analogously to (7.176) we obtain

Cav = E[C1] < CC
λ0

λ0 + λ1
(7.195)

Thus, we have proved the following:

Theorem 7.19 The average number of computations per branch for Creeper when
used to communicate over the BSC is upper-bounded by

Cav < CC
λ0

λ0 + λ1
(7.196)

where λ0 and λ1 are the negative and positive roots of equations (7.33) and (7.51),
respectively, such that λ0 + λ1 < 0 and CC is given by (7.194).

From (7.105) and (7.108), we have the next corollary.

Corollary 7.20 If we use the Fano metric, the average number of computations per
branch for Creeper when used to communicate over the BSC is upper-bounded by

Cav < CC
s

s− 1
for R < R0 (7.197)

where s is the solution of (7.35) and R0 is the computational cutoff rate.

Again we can use the Markov inequality (Lemma 6.14) and obtain the following:

Theorem 7.21 When Creeper is used to communicate over the BSC then the com-
putational distribution for the number of computations needed to decode any correct
node, Ci, i = 1, 2, . . ., is upper-bounded by

P (Ci ≥ x) ≤ Cavx
−1 for R < R0, (7.198)

where Cav is the average number of computations per branch and R0 is the compu-
tational cutoff rate.

The lower bound on the computational distribution given in Theorem 7.9 is also
valid for Creeper.

By comparing CC and CF, one might expect Creeper to perform worse than the
Fano algorithm. In our proof technique, we (have to) use a lower bound on the
threshold, viz., Tmin > µmin − 2∆ + cβ, which does not show that the average
behavior of Creeper is much better. For the Fano and stack algorithms, we can use
the more realistic bounds, Tmin > µmin − ∆ and Tmin = µmin, respectively. The
simulations reported in Section 7.5 show the superior computational performance of
Creeper compared to the Fano algorithm.

For the error probability, we can analogously to Theorem 7.16 prove the next
theorem.

480 SEQUENTIAL DECODING

Theorem 7.22 If we use the Fano metric, then for the ensemble of rate R = b/c,
time-varying convolutional codes of memorym the burst error probability for Creeper
when used to communicate over the BSC is upper-bounded by

P (E1) <

O(1)2−Rmc 0 ≤ R < R0

O(m)2−R0mc R = R0

O(1)2−G(s)mc R0 < R < C

(7.199)

where s is the solution of (7.107), G(s) is the Gallager function given by (5.98), and
R0 is the computational cutoff rate.

For the Gallager metric, we can show the following counterpart to Theorem 7.17:

Theorem 7.23 If we use the Gallager metric, then for the ensemble of rateR = b/c,
time-varying convolutional codes of memorym the burst error probability for Creeper
when used to communicate over the BSC is upper-bounded by

P (E1) <

{
O(m)2−R0mc 0 ≤ R ≤ R0

O(1)2−G(s)mc R0 < R < C
(7.200)

where s is the solution of (7.107), G(s) is the Gallager function given by (5.98), and
R0 is the computational cutoff rate.

Finally, when we use Creeper with a finite back-search limit, we can show the
following counterpart to Theorem 7.18:

Theorem 7.24 If we use the Zigangirov metric, then for the ensemble of rate R =
b/c, time-invariant convolutional codes of memory m the burst error probability for
Creeper with back-search limit m + 1 when used to communicate over the BSC is
upper-bounded by

P (E fbs
1) <

{
O(m)2−(R0−R)(m+1)c 0 ≤ R ≤ Rcrit

O(1)2−(G(sz)−szR)(m+1)c Rcrit < R < C
(7.201)

where sz is given by (7.132), G() is the Gallager function given by (5.98), R0 is the
computational cutoff rate, and Rcrit is the critical rate.

7.10 COMMENTS

Wozencraft presented the first sequential decoding algorithm [Woz57]. It inspired
all the subsequent discoveries but is much more complicated as well as less effective
than the other sequential decoding algorithms.

In 1963, Fano published a most ingenious algorithm for sequential decoding
[Fan63]. It is still considered to be the most practical sequential decoding algorithm.
The Fano algorithm was intensively studied by graduate students at MIT during the

PROBLEMS 481

1960s; among them were Falconer [Fal66], Haccoun [Hac66], Heller [Hel67], Savage
[Sav66], Stiglitz [Sti63], and Yudkin [Yud64]. It was used for space and military
applications in the late 1960s.

Zigangirov published the stack algorithm in 1966 [Zig66] and Jelinek in 1969
[Jel69]. Zigangirov used recursive equations to analyze sequential decoding algo-
rithms [Zig74].

An embryo of Creeper appears in [Zig75]. It was further developed in [CJZ84b],
and the final version and its analysis are given in [Nys93, NJZ97].

Among all of those analysts who addressed the problem of bounding the distri-
bution function of the number of computation, we would like to mention Jacobs and
Berlekamp [JaB67].

Massey [Mas75]: “It has taken a long time to reach the point where one understands
why the early sequential decoding algorithms ‘worked’ and what they were really
doing.”

PROBLEMS

7.1 Consider the rate R = 1/2, memory m = 2 convolutional encoding matrix
G(D) = (1 +D +D2 1 +D2).

a) Draw the complete code tree for length ` = 3 and tail m = 2.
b) Find the Fano metrics for a BSC with crossover probability ε = 0.045, that

is, R = R0 = 1/2.
c) Use the stack algorithm to decode the received sequencer = 00 01 10 00 00.

How many computations are needed?
d) Repeat (c) with the Fano algorithm with threshold increment ∆ = 4.
e) Are the decisions in (c) and (d) maximum-likelihood?

7.2 Repeat Problem 7.1 (c–e) for r = 01 01 00 00 11.

7.3 Consider a binary-input, 8-ary output DMC with transition probabilitiesP (r |v)
given in Example 7.1. Suppose that four information symbols (and a tail of three
dummy zeros) are encoded by G(D) = (1 + D + D2 + D3 1 + D2 + D3). Use
the stack algorithm to decode the received sequence r = 0202 0104 0304 0213 1411

1312 0403.

7.4 Repeat Problem 7.3 for G(D) = (1 +D +D2 1 +D2) and r = 1104 0112

1101 0111 1301 0403. Is the decision maximum-likelihood?

7.5 Consider the BEC with erasure probability δ = 1/2. Suppose that three
information symbols (and a tail of two dummy zeros) are encoded by the encoding
matrix G(D) = (1 +D +D2 1 +D2).

a) Find the Fano metric.
b) Use the stack algorithm to decode the received sequence r = 1∆ ∆∆ 0∆

∆1 ∆∆.

7.6 Consider the following Z channel:

482 SEQUENTIAL DECODING

1

0

1

0

1/2

1

1/2

Suppose that three information symbols (and a tail of two dummy zeros) are
encoded by the encoding matrix G(D) = (1 +D +D2 1 +D2).

a) Find the Fano metric.
b) Use the stack algorithm to decode the received sequencer = 01 00 00 10 10.

c) Is the decision in (b) maximum-likelihood?

7.7 Consider a rate R = 1/2 convolutional code with encoding matrix G(D) =
(1+D+D2 1+D2) that is used to communicate over a binary-input, 8-ary output
DMC with transition probabilities P (r | v) given by the following table:

r
04 03 02 01 11 12 13 14

v
0 0.2196 0.2556 0.2144 0.1521 0.0926 0.0463 0.0167 0.0027
1 0.0027 0.0167 0.0463 0.0926 0.1521 0.2144 0.2556 0.2196

Suppose that four information symbols (and a tail of two dummy zeros) are
encoded.

a) Use an appropriate choice of integer metrics and the stack algorithm to
decode the received sequence r = 0213 1202 0113 1111 1214 1111.

b) Is the decision in (a) maximum-likelihood?

7.8 Consider a rate R = 1/3 convolutional code with encoding matrix G(D) =
(1 +D+D3 1 +D2 +D3 1 +D+D2 +D3) that is used to communicate over
the BSC with crossover probability ε = 0.095.

a) Find R0 for this channel.
b) Suppose that a tail of three information symbols is used. Make an appro-

priate choice of integer metrics and use the stack algorithm to decode the
received sequence r = 010 001 101 100 000 011 110.

7.9 Consider the rate R = 1/2, convolutional code with the systematic encoding
matrixG(D) = (1 1 +D+D2 +D4) that is used to communicate over the binary-
input, 8-ary output DMC with transition probabilities P (r | v) given by the following
table:

r
04 03 02 01 11 12 13 14

v
0 0.1402 0.3203 0.2864 0.1660 0.0671 0.0177 0.0024 0.0001
1 0.0001 0.0024 0.0177 0.0671 0.1660 0.2864 0.3203 0.1402

PROBLEMS 483

Suppose that after the information symbols and a tail of four dummy zeros have
been encoded, the four “known” (systematic encoder!) zeros in the encoded tail
are deleted before transmission. The sequence r = 1201 0212 1311 1211 0312 is
received.

a) How many information symbols were encoded?
b) After an appropriate choice of integer metrics, use the stack algorithm to

decode r.

7.10 Show that the factor λ0/(λ0 +λ1) in the upper bound on the average number
of computations per branch for the stack algorithm (Theorem 7.5) regarded as a
function of the bias B achieves its minimum for B = R, that is, for the Fano metric.

7.11 Show that for rates R < R0 and bias B ≤ R0 the positive root λ1 of the
equation (

1

2
2λ1α +

1

2
2λ1β

)
= 2−R

is strictly less than 1/2 (cf. Corollary 7.7).

CHAPTER 8

LOW-DENSITY PARITY-CHECK CODES

The previous chapters are devoted to classical convolutional codes. In this chapter,
we consider a special class of convolutional codes, namely low-density parity-check
(LDPC) convolutional codes. These codes are defined using sparse syndrome for-
mers, that is, syndrome formers for which entries are mostly zeros. As we shall
show, these codes are suitable for low-complexity iterative decoding. In parallel to
describing and analyzing the LDPC convolutional codes we describe their block code
counterpart, the low-density parity-check block codes

In Section 8.1, we give the formal definition of the LDPC block codes introduced in
Chapter 1. Then, in Section 8.2, we introduce LDPC convolutional codes. Section 8.3
is devoted to the description of permutors. Analyses of the minimum/free distances
of LDPC block/convolutional codes are given in Section 8.4. In Section 8.5, we
describe Gallager’s iterative decoding algorithm, also known as the belief propagation
algorithm, both for LDPC block and LDPC convolutional codes. Iterative limits and
thresholds of LDPC codes are investigated in Section 8.6. In Section 8.7, we introduce
braided block codes, a variant of LDPC convolutional codes.

Fundamentals of Convolutional Coding, 2. Edition. By Rolf Johannesson, Kamil Sh. Zigangirov
Copyright c© 2015 John Wiley & Sons, Inc.

485

486 LOW-DENSITY PARITY-CHECK CODES

8.1 LDPC BLOCK CODES

In Section 1.3, we briefly introduced LDPC block codes. In this section, we shall
give a formal definition of LDPC block codes. When constructing and analyzing
LDPC convolutional codes it is convenient to operate with the transposed parity-
check matrix HT (that is, the syndrome former). Thus, we shall use the transposed
parity-check matrix also in our description of the LDPC block codes.

Definition A binary block code of block length N , defined by the N × L, L < N ,
transposed parity-check matrix HT,

HT =

h0

h1

...
hN−1

 (8.1)

is called a low-density parity-check (LDPC) block code if all rowshn = (hn0 hn1 . . .
hn(L−1)) of HT are sparse, that is, if

wH(hn)� L, n = 0, . . . , N − 1 (8.2)

A code defined by a transposed parity-check matrix HT of rank r, r ≤ L, has the
code rate R = 1 − r/N . This rate is lower-bounded by the design rate of the code
Rd

def
= 1 − L/N . The code rate and the design rate coincide when the parity-check

matrix has full rank.

Definition A regular binary (N, J,K) LDPC block code is a code defined by an
N ×L, L < N , transposed parity-check matrix HT, having exactly J 1s in each row
(J � L), K 1s in each column (K � N), and 0s elsewhere.

It follows from this definition that the number of columns in such a transposed
parity-check matrix equals L = NJ/K and, hence, that the design rate of the code is
Rd = 1−J/K. The fraction of 1s in the transposed parity-check matrices of regular
(N, J,K) LDPC block codes is decreasing with increasing block length N .

In contrast to regular LDPC block codes, the number of 1s in the rows/columns
of a transposed parity-check matrix in an irregular LDPC block code varies. We
consider only regular LDPC codes.

As we know from Section 1.3, the connections between parity-check equations
and code symbols of an LDPC block code can be illustrated not only by a parity-
check matrix but also by a Tanner graph. To each row in the transposed parity-check
matrix HT corresponds a symbol (variable) node in the Tanner graph, and to each
column corresponds a constraint (check) node. A symbol node is connected with
a constraint node by an edge if the element at the intersection of the corresponding
row and column in HT is equal to unity. A sparse parity-check matrix will therefore
result in a weakly connected graph with a relatively small amount of edges.

LDPC BLOCK CODES 487

Consider the two sets of nodes

N (l) = {n | hnl = 1} (8.3)

and

L(n) = {l | hnl = 1} (8.4)

where hnl is the element in row n and column l of the matrix HT. In the Tanner
graph, N (l) enumerates the symbol nodes connected to the constraint node l and
L(n) enumerates the constraint nodes connected to the symbol node n.

The number of edges which leave a symbol/constraint node is called the degree of
this node. Each symbol node of a regular (N, J,K) LDPC block code has degree J
and each constraint node has degreeK. For irregular LDPC block codes, the degrees
of the symbol and constraint nodes vary. Usually one considers random ensembles
of irregular LDPC codes and the ensembles are defined by the degree distributions
of symbol and constraint nodes.

We shall focus on two ensembles of regular LDPC block codes, introduced by
Gallager [Gal62, Gal63]. First we consider the ensemble B1(N, J,K) of regular
(N, J,K) LDPC codes with parity-check matrices (1.77). Then we shall study the
ensemble B2(N, J,K) of regular (N, J,K) LDPC block codes with parity-check
matrices that are composed from permutation matrices.14

The transposed parity-check matrices of codes in the ensemble B1(N, J,K) are
(cf. (1.77))

HT =
(
HT

1 H
T
2 . . . HT

J

)
(8.5)

where each submatrixHT
j , j = 1, 2, . . . , J , is anN×M matrix, whereM = N/K =

L/J . All submatrices have one 1 in each row and K 1s in each column and all the
other entries are 0s.

14A permutation matrix is a binary square matrix having exactly one 1 in each column and in each row.

488 LOW-DENSITY PARITY-CHECK CODES

EXAMPLE 8.1

The following transposed parity-check matrix defines a regular (12, 2, 3) LDPC
block code15 from the ensemble B1(12, 2, 3):

HT =

0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1
0 1 0 0 0 0 0 1
0 0 1 0 0 0 1 0
0 0 1 0 1 0 0 0
0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 0
0 0 0 1 0 1 0 0
1 0 0 0 0 0 1 0
0 0 1 0 1 0 0 0

(8.6)

Its design rate is Rd = 1− J/K = 1− 2/3 = 1/3.
The constraint nodes of the Tanner graph of this code (Fig. 8.1), c0, c1, . . . , c7,

are divided into J = 2 groups; the constraint nodes cl, l ∈ {0, 1, 2, 3}, are in
the first group and the constraint nodes cl, l ∈ {4, 5, 6, 7}, are in the second
group. Each of the symbol nodes, v0, v1, . . . , v11, is connected with exactly one
constraint node from each group. For example, the symbol node corresponding to
code symbol v5 is connected with the constraint nodes cl, l ∈ L(5) = {2, 6} (thick
lines). These constraint nodes are connected with the symbol nodes corresponding
to the code symbols vn, n ∈ N (2) = {5, 6, 11} and n ∈ N (6) = {1, 5, 10},
respectively (thick and dashed lines).

Lemma 8.1 Each N ×M submatrix HT
j , j = 1, 2, . . . , J , of the transposed parity-

check matrix (8.5) can be chosen in (KM)!/(K!)M different ways, where M =
N/K.

Proof : There are
(
KM
K

)
ways to form the first column of HT

j . If the first column is
fixed, then the second column can be chosen in

(
K(M−1)

K

)
different ways, and so on.

We conclude that there exists(
KM

K

)(
K(M − 1)

K

)(
K(M − 2)

K

)
· · ·
(
K

K

)
=

(KM)!

(K!)M
(8.7)

different submatrices HT
j .

15Gallager’s condition “containing mostly 0s and relatively few 1s” for the transposed parity-check matrix
HT in this example is not fulfilled because the code is short, but we still call it an LDPC code.

LDPC BLOCK CODES 489

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

c0 c1 c2 c3 c4 c5 c6 c7

Figure 8.1 The Tanner graph for the code in Example 8.1.

From Lemma 8.1 it follows that the number of different codes in the ensemble
B1(N, J,K) equals

(
(KM)!/(K!)M

)J
. Using Stirling’s formula [Fel68]

n! = nne−n+o(n) (8.8)

where o(n)/n → 0 when n → ∞, we obtain that the number of different codes in
B1(N, J,K) equals

eJN lnN− JNK ln(K!)−JN+o(N) (8.9)

Consider now the ensembleB2(N, J,K) of regular LDPC block codes with parity-
check matrices composed from permutation matrices. The convolutional counterpart
of block codes from the ensemble B2(N, J,K) is convenient for analyzing the free
distance and the thresholds of LDPC convolutional codes (see Sections 8.4 and 8.6).

The transposed parity-check matricesHT of the codes in the ensembleB2(N, J,K)
are defined as

HT =

P (11) P (12) . . . P (1J)

P (21) P (22) . . . P (2J)

...
P (K1) P (K2) . . . P (KJ)

 (8.10)

where P (kj), k = 1, 2, . . . ,K, j = 1, 2, . . . , J , are M × M permutation matri-
ces and M = N/K. If these matrices are chosen randomly and independently
of each other such that all M ! values are equiprobable, then we get an ensemble
B2(N, J,K) of regular (N, J,K) LDPC block codes with transposed parity-check
matrices composed of permutation matrices. The total number of different codes in
the ensemble B2(N, J,K) equals (M !)JK . Using Stirling’s formula (8.8) we obtain
that the number of different codes in B2(N, J,K) equals

eJN lnN−JN lnK−JN+o(N) (8.11)

From (8.9) and (8.11) it follows that the number of codes in the ensembleB1(N, J,K)

is about eJN/K ln(KK/K!) times larger than that of the codes in the ensemble
B2(N, J,K).

490 LOW-DENSITY PARITY-CHECK CODES

EXAMPLE 8.2

The following transposed parity-check matrix composed of 4 × 4 permutation
matrices defines a regular (12, 2, 3) LDPC block code in the ensembleB2(12, 2, 3):

HT =

0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1
1 0 0 0 0 0 1 0
0 0 1 0 1 0 0 0

(8.12)

As in the Tanner graph of the code considered in Example 8.1, the constraint
nodes of the Tanner graph of the code defined by the transposed parity-check
matrix (8.12) are divided into J = 2 groups and each symbol node is connected
with exactly one node from each of these two groups. Moreover, the symbol nodes
of the graph are divided intoK = 3 groups and each constraint node is connected
with exactly one symbol node from each group (Problem 8.2).

When we study iterative decoding of LDPC block codes, it is convenient to use
a computational tree stemming from a symbol node representing an arbitrary code
symbol vn. In Fig. 8.2 we illustrate such a computational tree for a regular (N, J,K)
LDPC block code.

Each node at an even level k = 2`, ` = 0, 1, . . ., of the tree represents one
of the N symbols of the codeword and each node at an odd level k = 2` + 1,
` = 0, 1, . . ., represents one of the J parity-check equations. We call the set of
symbols corresponding to the nodes at even levels of the tree a vn-clan. The set of
symbols in the 2`th level, where ` is a nonnegative integer, is called the `th generation
of the clan. The symbol vn, represented by the root at level zero, is called the clan
head of the vn-clan.

The symbols in the clan, excluding vn, are called the descendants of the clan head
vn. The J edges leaving the root, together with the nodes they lead to, correspond to
the J parity-check equations that include the clan head. The nodes at this first level
are called the families of the clan head. Each of these nodes, in turn, is connected to
K − 1 edges leading to K − 1 nodes at the second level. These K − 1 second-level
nodes correspond to theK−1 symbols that (together with the clan head) are included
in the parity-check equation represented by a family of the clan head. They are called
children or direct descendants of the clan head. Hence, the clan head has J families
and in each family there are K − 1 children.

LDPC BLOCK CODES 491

· · · · · · · · ·

· · · · · · · · ·
1 J − 1

· · · · · · · · ·

1 2 J

1 2 K − 1

k = 6

k = 5

k = 4

k = 3

k = 2

k = 1

k = 0

children

families

children

families

children

families

clan head vn
symbol nodes

constraint nodes

Figure 8.2 Computational tree of an (N, J,K) LDPC code.

Each child of the clan head has J − 1 families, that is, J − 1 edges leave each
second-level node leading to J − 1 nodes in the third level of the tree. These J − 1
third-level nodes correspond to the J − 1 parity-check equations that include a child
of the clan head but not the clan head itself. Each of the third-level families includes
K − 1 children, that is, the K − 1 edges leaving each third-level node lead to K − 1
nodes at the fourth level, and so on. This expansion of levels can be continued
indefinitely, but eventually, since the total number of symbols in a codeword and the
number of constraints are finite, different nodes in the tree on level k will represent
the same symbol or constraint. In this case we say that the vn-clan graph has a cycle,
and starting from level k this code cannot be described by a cyclefree graph, that is,
by a tree.

Definition The vn-clan graph is called 2`0-cyclefree if all symbol nodes of the clan
graph up to the `0th generation correspond to different symbols, but in the set of
symbol nodes of the clan graph in the (`0 + 1)th generation there are at least two
nodes that represent the same symbol.

Definition An LDPC block code is called 2`0-cyclefree if all vn-clan graphs, n =
0, . . . , N−1, are 2`-cyclefree, where ` ≥ `0, and there exists at least one 2`0-cyclefree
clan graph.

492 LOW-DENSITY PARITY-CHECK CODES

clan head v5

2 6

6 11 1 10

4 3 0

children

families

children

symbol nodes

constraint nodes

Figure 8.3 The v5-clan graph for the LDPC block code given by the Tanner graph in Fig. 8.1.

EXAMPLE 8.1 (Cont’d)

In Fig. 8.3 we show the v5-clan graph for the LDPC block code given by the
Tanner graph in Fig. 8.1. It is 2-cyclefree (`0 = 1).

The parameter `0 characterizes the number of independent iterations during belief
propagation decoding of 2`0-cyclefree LDPC block codes (see Section 8.5). When
analyzing the thresholds of LDPC block codes we assume that the iterative decoder
operates on cyclefree graphs with independent decision statistics.

Theorem 8.2 (Gallager [Gal63]) If a regular (N, J,K) LDPC block code is 2`0-
cyclefree, then

`0 <
logN

log ((J − 1)(K − 1))
(8.13)

Proof : Consider an arbitrary vn-clan of a regular (N, J,K) LDPC block code. To
the root (the 0th generation) corresponds one symbol, namely vn, in the 1st generation
(level 2) there are J(K − 1) symbols, . . ., and in the `th generation there are

J(K − 1) ((J − 1)(K − 1))
(`−1)

> ((J − 1)(K − 1))
` (8.14)

symbols. Since the number of different symbols in the `0th generation of a clan does
not exceed N , we have

((J − 1)(K − 1))
`0 < N (8.15)

From (8.15) we conclude that inequality (8.13) holds.

The proof of a nontrivial lower bound for `0 is more difficult. Gallager construc-
tively proved [Gal62, Gal63] that for J ≥ 2 the ensemble B2(N, J,K) contains a

LDPC BLOCK CODES 493

regular (N, J,K) 2`0-cyclefree LDPC block code such that

`0 >
logN

2 log ((J − 1)(K − 1))
− γ (8.16)

where γ is a constant depending on J and K but not on N . This proof is valid
only for regular LDPC block codes from the ensemble B2(N, J,K). Similar bounds
for more general LDPC block codes can be obtained if we “expurgate” symbols
which cause short cycles [LTZ05]. We preassign to these symbols known values, for
example, 0s, and will not transmit them over the channel. If the fraction of these
expurgated symbols goes to zero when N →∞, then the rate loss also goes to zero
when N →∞.

In Section 8.4, we shall prove that if J ≥ 3 then there exists a regular (N, J,K)
LDPC block code whose minimum distance asymptotically grows linearly with N .
The following theorem is due to Gallager [Gal63] and shows that if J = 2 then
the minimum distance of regular (N, J,K) LDPC block codes grows not faster than
O(logN).

Theorem 8.3 The minimum distance of a regular (N, 2,K) LDPC block code with
design rate Rd = 1− 2/K is upper-bounded by

dmin < 2 +
2 logN/2

log(K − 1)
(8.17)

Proof : Consider a vn-clan graph of a regular (N, 2,K) LDPC block code. The
number of symbol nodes in the `th generation of the clan is 2(K − 1)` < N . If the
clan graph is 2`0-cyclefree, then

`0 <
logN/2

log(K − 1)
(8.18)

and there exists a cycle of length (in edges) 4`0 + 4 which includes 2`0 + 2 symbol
nodes. Assume that all symbols of a codeword corresponding to nodes along this
cycle are 1s and all the other symbols of this codeword are 0s. From (8.16) it follows
that the number of symbols along this cycle is less than 2 + 2 logN/2

log(K−1) . Since the
allzero sequence is a codeword, the minimum distance dmin is upper-bounded by
(8.17).

The following theorem establishes an upper bound for the minimum distance of
LDPC block codes from the ensemble B2(N, J,K).

Theorem 8.4 The minimum distance of a regular (N, J,K) LDPC block code with
a parity-check matrix composed of M ×M permutation matrices from the ensemble
B2(N, J,K) can be upper-bounded by the inequality

dmin ≤ 2M =
2N

K
(8.19)

494 LOW-DENSITY PARITY-CHECK CODES

Proof : Consider N -tuple v, N = KM , consisting of K M -tuples, that is, v =
v1 v2 . . .vK , where vk = vk0 vk1 . . .vk(M−1), k = 1, 2, . . . ,K. Suppose that two
of the M -tuples vk, k = 1, 2, . . . ,K, for example, v1 and v2, are allone tuples and
all the other M -tuples of v are allzero vectors. Then v is a codeword having weight
2M = 2N/K and the minimum distance of the code cannot exceed 2N/K.

The bound (8.19) is nontrivial for large K; it is tight for small design rates
Rd = 1− J/K and loose for large Rd.

Next we introduce generalized low-density parity-check (GLDPC) block codes.
In Section 1.3 we considered a regular (N, J,K) LDPC block code as a code having
single-error-detecting codes of length K as constituent codes. If we allow other
constituent block codes, then we obtain GLDPC block codes. For example, a length
(µ − κ)N GLDPC block code, having the (µ, κ) Hamming codes as constituent
codes, can be constructed from a regular (N, J,K) LDPC block code, whereK = µ,
as follows.

Let HT
LDPC be an N × L transposed parity-check matrix of a regular (N, J,K)

LDPC block code, where K = µ = 2λ − 1, λ = 3, 4, . . ., and let HT
Ham be a µ × λ

transposed parity-check matrix of the (µ, κ) Hamming code, where κ = µ − λ.
The L binary column vectors hT

l of HT
LDPC have length N and Hamming weight

wH(hl) = µ = K.
We obtain the Hamming expansion of the vector hT

l by replacing K 1s in hT
l by

the rows of the µ × (µ − κ) matrix HT
Ham, taken in any order, and by replacing the

N − K 0s in hT
l by the allzero row vector (0 0 . . . 0) of length λ = µ − κ. The

Hamming expansion of the vector hT
l is an N × (µ − κ) matrix which we denote

H̃T(hT
l).

A transposed parity-check matrix HT
GLDPC of the GLDPC code having Hamming

codes as constituent codes can be constructed by replacing the L column vectors
hT
l , l = 0, 1, . . . , L − 1, of the matrix HT

LDPC by the Hamming expansions of these
vectors.

LDPC BLOCK CODES 495

EXAMPLE 8.3

Consider the construction of a length N = 21 GLDPC block code with (7, 4)
Hamming codes as constituent codes. In the transposed parity-check matrix

HT
LDPC =

0 1 0 0 0 1
1 0 0 0 1 0
0 0 1 0 0 1
0 0 1 1 0 0
0 0 1 0 1 0
1 0 0 0 1 0
0 0 1 0 0 1
0 1 0 1 0 0
0 1 0 0 1 0
0 1 0 0 1 0
1 0 0 0 1 0
0 0 1 0 0 1
0 1 0 1 0 0
0 0 1 0 0 1
1 0 0 1 0 0
0 1 0 0 0 1
0 0 1 1 0 0
1 0 0 1 0 0
0 1 0 0 0 1
1 0 0 0 1 0
1 0 0 1 0 0

(8.20)

defining an LDPC (21, 2, 7) block code, we replace the K = 7 1s in the column
vectors hT

l , l = 0, 1, . . . , 5, by the K = µ = 7 rows of the following transposed
parity-check matrices for the equivalent Hamming codes, taken in order,

HT(0)
Ham =

1 0 0
0 1 1
1 0 1
0 1 0
0 0 1
1 1 1
1 1 0

 HT(1)
Ham =

0 1 1
0 1 0
0 0 1
1 0 1
1 0 0
1 1 1
1 1 0

 HT(2)
Ham =

1 0 1
0 1 0
1 1 0
1 0 0
1 1 1
0 0 1
0 1 1

HT(3)
Ham =

0 1 0
0 1 1
1 1 0
1 1 1
1 0 0
1 0 1
0 0 1

 HT(4)
Ham =

0 1 1
1 0 0
0 1 0
1 1 0
1 1 1
0 0 1
1 0 1

 HT(5)
Ham =

1 0 1
0 1 1
1 1 1
1 1 0
0 0 1
0 1 0
1 0 0

(8.21)

496 LOW-DENSITY PARITY-CHECK CODES

and the 0s in the columns by allzero row vectors (0 0 0). The resulting transposed
parity-check matrix HT

GLDPC consists of J = 2 submatrices

HT
GLDPC =

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

(8.22)

Each submatrix has a single nonzero 3-tuple in all of its N = 21 rows. The trans-
posed parity-check matrix HT

GLDPC, having irregular structure, defines a GLDPC
block code. The design rate of this code is (Problem 8.6)

Rd = 1− J(µ− κ)

µ
=

1

7
(8.23)

In a similar way we can construct a GLDPC block code from a regular (N, J,K)
LDPC block code using as constituent codes arbitrary (µ, κ) block codes withµ = K.
The parity-check matrix of such a GLDPC block code has, in general, an irregular
structure.

More detailed descriptions and analyses of GLDPC block codes are given in
[LeZ98, LeZ99].

8.2 LDPC CONVOLUTIONAL CODES

Low-density parity-check convolutional codes are time-varying convolutional codes.
In Section 3.6 we introduced time-varying convolutional codes via their time-varying
generator matrices. When we study LDPC convolutional codes it is more convenient
to use transposed parity-check matrices (syndrome formers); thus, we let the time-
varying convolutional code be determined by the set of sequences v satisfying the
equation

vHT = 0 (8.24)

LDPC CONVOLUTIONAL CODES 497

where v = . . . v−1 v0 v1 . . . vt . . . and where vt = v
(1)
t v

(2)
t . . . v

(c)
t , v(i)

t ∈ F2,
i = 1, 2, . . . , c, and HT is a bi-infinite time-varying syndrome former. We have
the following straightforward generalization of (2.412) to time-varying syndrome
formers:

vtH
T
0 (t) + vt−1H

T
1 (t) + · · ·+ vt−msH

T
ms

(t) = 0, t ∈ Z (8.25)

where ms is the memory of the syndrome former and the submatrices

HT
i (t) =

h

(1,1)
i (t) · · · h

(1,c−b)
i (t)

...
...

h
(c,1)
i (t) · · · h

(c,c−b)
i (t)

 (8.26)

with 0 ≤ i ≤ ms, are the c× (c− b) entries of the bi-infinite syndrome former

HT =

.

HT
0 (t) HT

1 (t+ 1) . . . HT
ms

(t+ms)

HT
0 (t+ 1) HT

1 (t+ 2) . . . HT
ms

(t+ms + 1)

.

 (8.27)

To simplify the description of LDPC convolutional codes we use periodically
time-varying syndrome formers.

Definition Suppose that there exists a positive integer T such that the submatrices
(8.26) of the syndrome former (8.27) satisfy the equalities

HT
i (t) = HT

i (t+ T), i = 0, 1, . . . ,ms (8.28)

for all t ∈ Z. The convolutional code determined by the section HT
[0,T) of the

bi-infinite syndrome former HT
[−∞,∞] is called periodic. The minimal T for which

(8.28) is fulfilled is the period.

We assume that HT
0 (t), t ∈ Z, have full rank and, without loss of generality, that

the last c−b rows ofHT
0 (t), t ∈ Z, are linearly independent. Furthermore, we assume

that HT
ms

(t) 6= 0, at least for one t ∈ Z. A systematic encoder can be obtained if
the first b symbols of vt coincide with the information symbols, that is, v(i)

t = u
(i)
t ,

i = 1, 2, . . . , b. In the sequel we shall use the notation HT
[t1,t2] for the part of the

syndrome former matrix (8.27) that starts with the c− b columns at time t1 and ends
with the c− b columns at time t2.

498 LOW-DENSITY PARITY-CHECK CODES

Let HT
[0,T) denote one period section of the syndrome former HT, that is, a

vertical segment consisting of (c− b)T columns ofHT:

HT
[0,T) =

HT
ms

(0)
... HT

ms
(1)

HT
1 (0)

...
. . .

HT
0 (0) HT

1 (1)
. . . HT

ms
(T − 1)

HT
0 (1)

. . .
...

. . . HT
1 (T − 1)

HT
0 (T − 1)

(8.29)

Then
v[−ms,T)H

T
[0,T) = 0[0,T) (8.30)

where v[−ms,T) is a binary c(ms + T)-tuple and 0[0,T) is the (c− b)T -tuple of 0s.
The sets of symbols belonging to the rows of the bi-infinite syndrome former

HT
[−∞,∞] can be compactly written as (c − b)(ms + 1)-dimensional binary row

vectors hn, −∞ < n <∞, that is,

HT
[−∞,∞] =

. . .
h−1

h0

h1

. . .

 (8.31)

Definition Let the rate R = b/c convolutional code C be defined by its bi-infinite
syndrome former (8.31) of memory ms. It is called a low-density parity-check
(LDPC) convolutional code if the row vectors hn are sparse for all n, that is, if

wH(hn)� (c− b)ms, −∞ < n <∞ (8.32)

Definition A regular (ms, J,K) LDPC convolutional code is an LDPC convolutional
code of syndrome memory ms, determined by a sparse syndrome former (8.31),
having exactly J 1s in each row, J � (c − b)ms, exactly K 1s in each column,
K � cms, and 0s elsewhere.

We shall consider regular periodically time-varying (ms, J,K, T) LDPC convo-
lutional codes, where ms is the syndrome former memory, J is the number of 1s
in each row of the syndrome former, K is the number of 1s in each column of the
syndrome former, and T is the period of the code. We consider also the ensemble
of regular nonperiodical (ms, J,K) LDPC convolutional codes. By definition, the
period of these codes is T =∞.

LDPC CONVOLUTIONAL CODES 499

1 0 0 1
0 1 1 0
0 1 0 1
1 0 1 0
1 1 0 0
0 0 1 1
0 1 0 1
1 0 1 0

(a)

0
1
1 1
0 0
0 1 0
1 0 1
1 0 0 1
0 1 1 0

1 0 1
0 1 0

0 0
1 1

1
0

(b)

Figure 8.4 Illustration of the unwrapping method to construct the syndrome former of a bi-
infinite regular periodically time-varying (4, 3, 6) LDPC convolutional code. Steps (a) and (b).

We begin by describing an “unwrapping method” for constructing bi-infinite
LDPC convolutional codes from LDPC block codes. Consider the following:

EXAMPLE 8.4

In order to construct a bi-infinite rate R = 1/2 regular LDPC convolutional code
we first build an 8× 4 transposed parity-check matrix of a regular (8, 2, 4) LDPC
block code, having exactly two 1s in each row and exactly four 1s in each column.
This matrix is cut below the diagonal as illustrated in Fig. 8.4(a).

Then we unwrap the part which is below the diagonal as shown in Fig. 8.4(b).
After that, four column vectors (1 1)T are appended from below (Fig. 8.5(c)). The
resulting four columns represent one period of the bi-infinite syndrome former of
an LDPC convolutional code. An indefinite sliding repetition of this pattern up to
the left and down to the right (Fig. 8.5(d)) leads to a syndrome former HT with
J = 3 1s in each row and K = 6 1s in each column yielding a rate R = 1/2
convolutional code with syndrome former memory ms = 4 and period T = 4.
We say that this syndrome former determines a bi-infinite regular periodically
time-varying (ms, J,K, T) LDPC convolutional code.

500 LOW-DENSITY PARITY-CHECK CODES

0
1
1 1
0 0
0 1 0
1 0 1
1 0 0 1
0 1 1 0
1 1 0 1
1 0 1 0

1 0 0
1 1 1

1 1
1 0

1
1

(c)

t = 0

t = 1

t = 2

t = 3

1
0
1 0
0 1

. . . 0 1 1
1 0 0
1 0 1 0
0 1 0 1
1 1 0 0 1
1 0 1 1 0

1 1 0 1 0
1 0 1 0 1

1 0 0 1
1 1 1 0

1 1 0
1 0 1 . . .

1 1
1 0

1
1

(d)

Figure 8.5 Illustration of the unwrapping method to construct the syndrome former of a bi-
infinite regular periodically time-varying (4, 3, 6) LDPC convolutional code. Steps (c) and (d).

The segmentHT
[0,4) of its syndrome former is

HT
[0,4) =

0
1
1 1
0 0
0 1 0
1 0 1
1 0 0 1
0 1 1 0
1 1 0 1
1 0 1 0

1 0 0
1 1 1

1 1
1 0

1
1

(8.33)

Moreover,

v[−4,4)H
T
[0,4) = 0[0,4) (8.34)

LDPC CONVOLUTIONAL CODES 501

Next we consider general time-varying LDPC convolutional codes. Let

u = u[−∞,∞] = . . . u−1 u0 u1 . . . ut . . . (8.35)

whereut = u
(1)
t u

(2)
t . . . u

(b)
t and u(i)

t ∈ F2, i = 1, 2, . . . , b, be a bi-infinite informa-
tion sequence which is mapped by a convolutional encoder of rate R = b/c, b < c,
into the bi-infinite code sequence

v = v[−∞,∞] = . . . v−1 v0 v1 . . . vt . . . (8.36)

where vt = v
(1)
t v

(2)
t . . . v

(c)
t and v(i)

t ∈ F2, i = 1, 2, . . . , c. For convenience, we
sometimes use the notation vct+i−1 to denote v(i)

t , i = 1, 2, . . . , c.
Consider the following construction of a systematic time-varying encoder for an

LDPC convolutional code. Let the last c− b rows ofHT
0 (t) form the (c− b)× (c− b)

identity matrix. Then the code symbols at time t are determined as (cf. (2.478) where
we consider a systematic time-invariant encoder)

v
(j)
t = u

(j)
t , j = 1, 2, . . . , b (8.37)

v
(j)
t =

b∑
k=1

v
(k)
t h

(k,j−b)
0 (t)

+

ms∑
i=1

c∑
k=1

v
(k)
t−ih

(k,j−b)
i (t), j = b+ 1, b+ 2, . . . , c (8.38)

The encoder for this convolutional code can be implemented by c shift registers
of length ms with time-varying tap-weights corresponding to the matrix entries
h

(k,j−b)
i (t). It is a syndrome former realization of a convolutional encoder. The

overall constraint length of the encoder, that is, the number of binary symbols which
the encoder keeps in its memory, equals cms.

Such a shift-register realization of a systematic rate R = 1/2 encoder for the
time-varying LDPC code given in Example 8.4 is shown in Fig. 8.6 for time instants
t = 0 modulo T , where T = 4. It is based on a syndrome former HT

[−∞,∞] with
memory ms = 4. The taps are given by the first column of (8.33). The next three
columns determine the taps for the remaining time instants t = 1, 2, 3 modulo T .

We have described a particular syndrome former realization of the encoder. An-
other, less complex, realization of an LDPC convolutional encoder is the partial
syndrome realization [PJS08].

A partial-syndrome encoder keeps at time t in its memory the partial syndrome

pt = pt1 pt2 . . . ptms
(8.39)

where pti = p
(1)
ti p

(2)
ti . . . p

(c−b)
ti , i = 1, 2, . . . ,ms, that is, only (c − b)ms bits

instead of cms bits for the syndrome encoder. We consider pt to be the state of the
partial-syndrome encoder at time t.

502 LOW-DENSITY PARITY-CHECK CODES

ut

v
(1)
t

v
(2)
t

Figure 8.6 Realization of a systematic rate R = 1/2 syndrome former encoder for the
LDPC convolutional code specified by (8.33). The taps are shown for the time instants t = 0
modulo T .

To obtain a recursion for the partial syndrome we truncate the bi-infinite syndrome
formerHT (8.27) after the row that starts with HT

0 (t) at time t, that is, we obtain

HT
tr =

. . . HT
ms

(t− 1)

. . .
... HT

ms
(t)

. . .
... . . . HT

ms
(t+ 1)

. . . HT
1 (t− 1) HT

2 (t) . . .
. . .

. . . HT
0 (t− 1) HT

1 (t) HT
2 (t+ 1) . . . HT

ms
(t+ms − 1)

HT
0 (t) HT

1 (t+ 1) HT
ms

(t+ms)

(8.40)

Consider the triangle in (8.40). At time t we define the partial syndrome pt =
pt1 pt2 . . . ptms

as

pt1 = vt−1H
T
1 (t) + vt−2H

T
2 (t) + · · ·+ vt−msH

T
ms

(t)

pt2 = vt−1H
T
2 (t+ 1) + vt−2H

T
3 (t+ 1) + · · ·+ vt−msH

T
ms

(t+ 1)

...
ptms

= vt−1H
T
ms

(t+ms − 1)

(8.41)

If we slide the triangle one step back to time t − 1, its bottom row will start with
HT

1 (t− 1). Then we obtain its second component of the partial syndrome pt−1 as

p(t−1)2 = vt−2H
T
2 (t) + vt−3H

T
3 (t) + · · ·+ vt−msH

T
ms

(t) (8.42)

Comparing (8.41) and (8.42) yields

pt1 = vt−1H
T
1 (t) + p(t−1)2 (8.43)

We conclude that, in general, we have the following recursion:

pti =

{
vt−1H

T
i (t+ i− 1) + p(t−1)(i+1), t ∈ Z+, 1 ≤ i < ms

vt−1H
T
ms

(t+ms − 1), t ∈ Z+, i = ms
(8.44)

LDPC CONVOLUTIONAL CODES 503

v
(2)
t

ut v
(1)
t

Figure 8.7 Realization of a systematic R = 1/2 partial-syndrome former encoder for a
LDPC convolutional code specified by (8.33). The taps are shown for time instants t = 0
modulo T .

If we begin the encoding at time t = 0, say, then p0 is set equal to the allzero
(c− b)ms-tuple.

Introduce the notation vt = v
(1)
t v

(2)
t where v(1)

t = ut is the subblock of b
information symbols and v(2)

t is the subblock of c − b parity symbols and assume
that the partial-syndrome former encoder in the systematic realization is in state pt at
time t. Then the subblock v(1)

t enters the encoder. From (8.25) and (8.41) it follows
that the subblock v(2)

t can be obtained from the equation

vtH
T
0 (t) =

(
v

(1)
t v

(2)
t

)
HT

0 (t) = pt1 (8.45)

Since the last c− b rows of HT
0 (t) form the (c− b)× (c− b) identity matrix, the

code symbols at time t can be determined as (cf. (2.488), which is the time-invariant
counterpart)

v
(j)
t = u

(j)
t , j = 1, 2, . . . , b (8.46)

v
(j)
t =

b∑
k=1

v
(k)
t h

(k,j−b)
0 (t) + p

(j−b)
t1 , j = b+ 1, b+ 2, . . . , c− b (8.47)

A partial-syndrome encoder can be implemented using c− b shift registers, each
with ms memory units; see Fig. 8.7 for a partial-syndrome former encoder imple-
mentation of the syndrome former encoder shown in Fig. 8.6. The overall constraint
length of the encoder is (c− b)ms. Thus, the encoder memory complexity of partial-
syndrome realizations is in general less than that of the syndrome former realization.

The memory complexity grows linearly with the syndrome former memory ms
while the number of operations (multiplications and additions) per encoded informa-
tion symbol grows linearly with K but it does not depend on ms [PJS08].

In Example 8.4 we have considered the vertical unwrapping construction of the bi-
infinite syndrome former of a time-varying LDPC convolutional code. Jimenez and
Zigangirov [JiZ99] used the horizontal unwrapping method described in Fig. 8.8(a)–
(d) when they introduced LDPC convolutional codes. In Fig. 8.8(d) we have shown
the horizontal segment H

T
[0,T) of the syndrome former for a semi-infinite LDPC

504 LOW-DENSITY PARITY-CHECK CODES

convolutional code with period T = 4. Let the submatrix H
T
[0,T) consisting of cT

rows be a horizontal segment of the semi-infinite syndrome former HT. Then

v[0,T)H
T
[0,T) = 0[0,T)pT (8.48)

where 0[0,T) is the (c− b)T -tuple of 0s and pT is a binary (c− b)ms-tuple called the
partial syndrome of v[0,T).

Later we will analyze semi-infinite LDPC convolutional codes and will show that
they have better performances than the corresponding LDPC block codes. Notice
that the vertical and horizontal unwrapping methods result in LDPC convolutional
codes that are shifted versions (one time unit) of each other.

The syndrome formers of LDPC convolutional codes constructed above can be
considered as counterparts of the transposed parity-check matrices of LDPC block
codes from the ensemble B1(N, J,K) introduced in Section 8.1. Now we consider a
construction of regular periodically time-varying LDPC convolutional codes, which is
a convolutional counterpart of the LDPC block codes from the ensembleB2(N, J,K)
with the transposed parity-check matrix (8.10).

1 0 0 1
0 1 1 0
0 1 0 1
1 0 1 0
1 1 0 0
0 0 1 1
0 1 0 1
1 0 1 0

(a)

1 0 0 1
0 1 1 0

1 0 1 0
0 1 0 1

0 0 1 1
1 1 0 0

1 0 1 0
0 1 0 1

(b)

1 1 0 0 1
1 0 1 1 0

1 1 0 1 0
1 0 1 0 1

1 0 0 1 1
1 1 1 0 0

1 1 0 1 0
1 0 1 0 1

(c)

1 1 0 0 1
1 0 1 1 0

1 1 0 1 0
1 0 1 0 1

1 0 0 1 1
1 1 1 0 0

1 1 0 1 0
1 0 1 0 1

1 1 0 0 1
1 0 1 1 0

1 1 0 1 0
...

(d)

Figure 8.8 Illustration of the horizontal unwrapping method to construct the syndrome
former of a semi-infinite regular periodically time-varying (4, 3, 6) LDPC convolutional code.

LDPC CONVOLUTIONAL CODES 505

In Fig. 8.9 we show one period of the syndrome formerHT
[0,T−1] for a periodically

time-varying convolutional code. The squares are M ×M permutation matrices.
In terms of the syndrome former (8.27) with submatrices (8.26) this code has the
parameters ms = 2, b = M , and c = 2M . The design rate is Rd = M/2M and
each 2M ×M matrixHT

i (t+ i) (8.26) consists of twoM ×M permutation matrices
P

(1)
i (t+ i) and P (2)

i (t+ i), that is,

HT
i (t+ i) =

(
P

(1)
i (t+ i)

P
(2)
i (t+ i)

)
, i = 0, 1, 2, t = 0, 1, . . . , T − 1 (8.49)

The matrices (8.49) have full rank equal to M . The parameters of a regular pe-
riodically time-varying (ms, J,K, T) LDPC convolutional code with its syndrome
former given in Fig. 8.9 are ms = J − 1 = 2, J = 3, and K = 6. We as-
sume that the first M symbols, v2Mt, v2Mt+1, . . . , v2Mt+M−1, of the subblock
vt = v2Mt v2Mt+1 . . . v2M(t+1)−1 are information symbols and the lastM symbols,
v2Mt+M v2Mt+M+1 . . . v2M(t+1)−1, are parity symbols, that is, we use systematic
encoding.

HT
[0,T−1] =

...

J = 3

K = 6

2TM

M×M permutation matrices

Figure 8.9 One period of a syndrome former for regular periodically time-varying LDPC
convolutional codes from the ensemble C(M,J,K, T).

Consider one period of the syndrome formerHT
[0,T−1] as presented in Fig. 8.9. If

we would choose the permutation matricesP (k)
i (t+i), k = 1, 2, i = 0, 1, . . . ,ms, and

t = 0, 1, . . . , T −1, randomly, independently from each other such that allM ! values
are equiprobable, we obtain the ensemble C(M,J,K, T) of regular periodically time-
varying LDPC convolutional codes. We consider also the ensemble C(M,J,K) of
regular nonperiodical LDPC convolutional codes (that is, T = ∞). We shall use
these ensembles for analyses of the free distance and the thresholds of regular LDPC
convolutional codes.

506 LOW-DENSITY PARITY-CHECK CODES

EXAMPLE 8.5

Consider one period of the syndrome former constructed from 3× 3 permutation
matrices with period T = 1,

HT
[0,0] =

0 1 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 0 1 0 1 0 0
0 0 1 1 0 0 1 0 0
0 1 0 0 0 1 0 1 0
1 0 0 0 1 0 0 0 1

 (8.50)

This syndrome former has the following parameters: M = 3, b = 3, c = 6,
Rd = 3/6, ms = 2, and T = 1. It defines a regular (ms = 2, J = 3,K =
6, T = 1) LDPC convolutional code. By permuting the rows in (8.50) we obtain
the following syndrome former:

H ′T[0,0] =

1 0 0 0 1 0 1 0 0
0 1 0 1 0 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 1 0
0 0 1 1 0 0 1 0 0

 (8.51)

By further permutation of the rows we obtain the period T = 3 syndrome former

H ′′T[0,2] =

1 0 0 0 1 0 1 0 0
1 0 0 0 1 0 0 0 1

1 0 1 0 0 0 1 0 0
1 0 0 0 1 0 1 0 0

1 0 0 1 0 0 1 0 0
1 1 0 0 1 0 0 0 0

 (8.52)

The syndrome formers (8.50), (8.51), and (8.52) define equivalent codes. The
syndrome former (8.52) has the following parameters: memory ms = 8, period
T = 3, b = 1, c = 2, andRd = 1/2. It defines a regular periodically time-varying
(ms = 8, J = 3, K = 6, T = 3) LDPC convolutional code.

Note that in general, by permuting rows of the syndrome former in Fig. 8.9, an
equivalent design rate Rd = 1/2 regular periodically time-varying LDPC convolu-
tional code can be obtained (see [STL07]). The syndrome memory is upper-bounded
by the inequality ms ≤ JM − 1.

There are two realizations of encoders for codes in Fig. 8.9. These are the
syndrome former realization and the partial-syndrome realization. How can we give
a meaningful definition of the overall constraint length of these encoders? Since in
practice information symbols enter the encoder symbolwise, not by large blocks of
length M , we define the overall constraint length of the encoder in syndrome former

LDPC CONVOLUTIONAL CODES 507

realization as ν = cms ≤ c(JM − 1). Similarly, the overall constraint length of the
partial-syndrome realization of the encoder is defined as ν = ms ≤ JM − 1.

This theory can be generalized to arbitrary codes from ensemble C(M,J,K, T).
Let a be the greatest common divisor of J and K, that is, a = gcd(J,K). Then
codes from this ensemble are equivalent to regular periodical (ms, J,K) LDPC
convolutional codes with syndrome memory ms ≤ JM − 1. The design rate of
the code is Rd = b/c, where b = (K − J)/a, c = K/a. It can be shown that
the overall constraint length of the encoder in syndrome former realization and in
partial-syndrome realization are upper-bounded as ν ≤ K(JM − 1)/a and ν ≤
(K − J)(JM − 1)/a, respectively.

In order to simplify our analysis we consider also tailbiting LDPC codes. Then
we can reduce our analysis of the free distance of an LDPC convolutional code to
the analysis of a block code. In Fig. 8.10 we show the transposed parity-check
matrix H̃T

[0,N−1] of a tailbiting LDPC code. It is constructed from a period of length

T HT
[0,T−1] of the syndrome former of a regular periodically time-varying LDPC

convolutional code given in Fig. 8.9. For this construction we used the “wraparound”
method described in Section 4.8.

H̃T
[0,N−1] =

...

2TM

Figure 8.10 The transposed parity-check matrix of a tailbiting LDPC convolutional code of
block length N = 2TM .

It is convenient to use the computational tree also for describing and analyzing
LDPC convolutional codes. We can construct such a computational tree similarly to
the one we constructed for the LDPC block code in Fig. 8.2. If the LDPC convolu-
tional code is a regular (ms, J,K) LDPC convolutional code and the codewords are
bi-infinite, then the computational tree is also regular as the one given in Fig. 8.2.
That means that a clan head has J families, the other clan members have J − 1
families, and in each family there are K − 1 children. But if the convolutional
encoder starts to operate from the allzero state and ends also in the allzero state, then
the computational tree becomes irregular, which means that the number of children
varies between the families. As we shall see in Section 8.6, this irregularity of the

508 LOW-DENSITY PARITY-CHECK CODES

tree causes an essential improvement of the performance in comparison with the
corresponding regular LDPC block codes.

All definitions related to the computational tree for regular LDPC convolutional
codes are similar to the definitions introduced in Section 8.1 for regular LDPC
block codes. Important examples are the definitions of the 2`0-cyclefree clan and
the 2`0-cyclefree code. A lower bound on the parameter `0 characterizing the
number of independent iterations during belief propagation decoding of regular LDPC
convolutional codes was derived by Truhachev [Tru04]. It states that there exists
a regular periodically time-varying (ms, J,K, T) LDPC convolutional code with
parameter `0 satisfying the inequality

`0 >
log (ms + 1)

2 log ((J − 1)(K − 1))
− γ (8.53)

where γ is a constant depending on J and K but not on ms. This bound is similar to
the bound (8.16) for (N, J,K) LDPC block codes.

8.3 BLOCK AND CONVOLUTIONAL PERMUTORS

An essential building block used in the construction of various LDPC codes, con-
sidered in this chapter, as well as of turbo codes, considered in Chapter 9, is the
permutor. In this section we define the single and multiple block permutors and
the single and multiple convolutional permutors. We introduce their parameters and
discuss methods for their construction and implementation. We shall give two differ-
erent descriptions of permutors, namely, the matrix and array descriptions. Finally we
describe the multiple Markov permutor, which is a useful tool for analyzing distance
properties.

Definition An N ×N square matrix P = (pnl), n, l = 0, . . . , N − 1, having one 1
in each row, one 1 in each column, and 0s elsewhere, is called permutation matrix or
single block permutor.

There are N ! permutation matrices of size N ×N . A permutation matrix can be
constructed from the N ×N diagonal matrix by permuting the columns or the rows.

Let theN -dimensional vectorx = (x0 x1 . . . xN−1) be an input of single permutor
P . Then the vector y = (y0 y1 . . . yN−1),

y = xP (8.54)

is the output of the permutor P .
Next we introduce multiple block permutors (MBPs).

Definition AnN ×L binary matrix P = (pnl), n = 0, . . . , N − 1, l = 0, . . . , L− 1,
describes a multiple block (N, J,K)-permutor if it has J 1s in each row, K 1s in
each column, such that N/K = L/J , and 0s elsewhere. The pair (J,K) is called
the permutor’s multiplicity.

BLOCK AND CONVOLUTIONAL PERMUTORS 509

If L = N , J = K, then the permutor is called symmetric.
It is important to emphasize that, in contrast to operations of single permutors,

operations of multiple permutors can in general not be represented as the product of
the input vector x and a permutation matrix P .

To describe the operation of multiple permutors we use, in addition to the matrix
representation P = (pnl), the array representation. In this representation, the MBP is
regarded as a memory array, where each nonzero element in P represents a memory
cell that can store an input symbol. Therefore, each column of this array can store K
symbols and each row can store J symbols. The input sequence is the sequence of
N J-dimensional column vectors xn, n = 0, 1, . . . , N − 1, where

xn = (xn0 xn1 . . . xn(J−1))
T (8.55)

These N column vectors can be represented as the J × N matrix X = (x0 x1

. . . xN−1).
When an input sequence enters the permutor, the symbols of theN J-dimensional

columns vectors are placed into the array memory positions row by row, starting from
the top of the array. The output sequence is a sequence of L K-dimensional column
vectors yl, where

yl = (yl0 yl1, . . . yl(K−1))
T (8.56)

which can be represented as the K × L matrix Y = (y0 y1 . . .yL−1).
The MBP generates the output sequence Y by reading out the contents of the

array memory positions column by column, starting from the left of the array. The
multiple permutation operator ~ is defined by

Y = X ~ P (8.57)

In the inverse MBP, the symbols are inserted into the memory cells columnwise and
read out rowwise. Thus, the inverse of a multiple block permutor is described by the
transpose matrix P T, that is,

X = Y ~ P T (8.58)

An MBP can be constructed by using operations of rowwise and columnwise
interleaving:

Definition Consider K matrices P (k) = (p
(k)
nl), k = 1, 2, . . . ,K, n = 0, 1, . . . , N −

1, and l = 0, 1, . . . , L − 1, of size N × L. Then the matrix P = (pnl), n =
0, 1, . . . ,KN − 1, l = 0, 1, . . . , L− 1, of size KN × L, where

p(nK+k−1)l = p
(k)
nl (8.59)

is called a rowwise interleaving of the matrix set {P (1), P (2), . . . , P (K)} and denoted

P = �(P (1), P (2), . . . , P (K)) (8.60)

510 LOW-DENSITY PARITY-CHECK CODES

Definition Consider J matrices P (j) = (p
(j)
nl), j = 1, 2, . . . , J , n = 0, 1 . . . , N − 1,

and l = 0, 1, . . . , L − 1, of size N × L. Then, the matrix P = (pnl), n =
0, 1, . . . , N − 1, l = 0, 1, . . . , JL− 1, of size N × JL such that

pn(lJ+j−1) = p
(j)
nl (8.61)

is called a columnwise interleaving of the matrix set {P (1), P (2), . . . , P (J)} and
denoted

P = � (P (1), P (2), . . . , P (J)) (8.62)

We can construct anN×L, whereN = KM , L = JM , multiple block permutor
P of multiplicity (J,K) from a set of JK conventional permutation matrices, P (kj),
1 ≤ k ≤ K, 1 ≤ j ≤ J , of sizeM×M , as follows: First, using rowwise interleaving,
we construct from the set of size M ×M matrices {P (j1), P (j2), . . . , P (jK)}, j =
1, 2, . . . , J , a set of KM ×M matrices P (j), j = 1, . . . , J ,

P (j) = �(P (j1), P (j2), . . . , P (jK)) (8.63)

Then, by columnwise interleaving of the matrix set {P (1), P (2), . . . , P (J)}, we
construct the final matrix

P = �

(
P (1), P (2), . . . , P (J)

)
(8.64)

EXAMPLE 8.6

Using four 2× 2 conventional permutation matrices,

P (11) = P (12) = P (22) =

(
1 0
0 1

)
, P (21) =

(
0 1
1 0

)
we obtain after the rowwise interleaving step

P (1) = �
(
P (11), P (12)

)
=

1 0
1 0
0 1
0 1

P (2) = �
(
P (21), P (22)

)
=

0 1
1 0
1 0
0 1

After the columnwise interleaving step, the following symmetric MBP with mul-
tiplicity (2, 2) is obtained:

P = �

(
P (1), P (2)

)
=

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

BLOCK AND CONVOLUTIONAL PERMUTORS 511

1

1

1

1

1 1

1

1

1

1

Figure 8.11 Unwrapping a 5× 5 matrix.

Other multiple block permutors with multiplicity (2, 2) are obtained using different
initial conventional permutation matrices.

Definition A bi-infinite matrix P = (pnl), n, l ∈ Z, that has one 1 in each row and
one 1 in each column and that satisfies the causality condition

pnl = 0, n > l (8.65)

is called a single convolutional permutor.

Letx = . . . x0x1 . . . xn . . . denote the bi-infinite binary-input sequence of a single
convolutional permutor and let y = . . . y0y1 . . . yl . . .,

y = xP (8.66)

denote the corresponding output sequence. The convolutional permutor permutes the
symbols in the input sequence.

The identity convolutional permutor, whose matrix P has 1s only along the
diagonal, that is, pnn = 1, n ∈ Z, is a special case of a single convolutional
permutor. If

pn(n+δ) = 1, n ∈ Z (8.67)

then the matrix P is a delay permutor with delay δ. The identity permutor is a delay
permutor with delay δ = 0.

For construction of convolutional permutors from block permutors we can use the
unwrapping procedure described in Section 8.2.

EXAMPLE 8.7

Suppose that we have a 5×5 matrixP for a single block permutor (see Fig. 8.11).
First, we cut this matrix just below its main diagonal. Next, we unwrap the
submatrix which is below the diagonal.

Continuing the construction of convolutional permutor we repeat indefinitely
the unwrapped matrix as shown in Fig. 8.12, where we also have shifted the
matrix one position to the right and introduced an additional delay of one symbol
by adding a diagonal of only 0s. Thus we avoid that an input symbol appears
directly at the output. (All blanks denote 0s; the 0s along the diagonal are the only
0s actually written as 0s in the figure.)

512 LOW-DENSITY PARITY-CHECK CODES

. . .

0

0

0

0

0

0

0

0

0

0

0

0

0

0
. . .

. . .

. . .

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 8.12 A single convolutional permutor obtained from the unwrapped matrix in
Fig. 8.11.

The unwrapping method can be generalized and used for construction of multiple
convolutional permutors (MCPs) of multiplicity (J,K) from multiple block permu-
tors of multiplicity (J,K). The following example illustrates the construction of a
matrix P describing a symmetric multiple convolutional permutor.

EXAMPLE 8.8

In Fig. 8.13 we present a construction of an MCP with multiplicity J = K = 2
and period T = 5. For the construction we use the unwrapping procedure.

First, we choose a symmetric 5×5 block permutor of multiplicity (J = K = 2)
(Fig. 8.13(a)). Then we cut this matrix just below its main diagonal. Next, the
lower and upper parts are unwrapped (Fig. 8.13(b)) and repeated indefinitely to
yield the multiple convolutional permutor of multiplicity (J = K = 2) and period
T = 5 as shown in Fig. 8.13(c).

Next we define a general MCP.

BLOCK AND CONVOLUTIONAL PERMUTORS 513

1 1 0 0 0
0 0 1 0 1
0 1 0 1 0
1 0 1 0 0
0 0 0 1 1

(a) Multiple block permutor.

1 1 0 0 0
0 1 0 1 0

0 1 0 0 1
0 0 1 0 1

1 0 0 0 1

(b) Unwrapped block permutor.

1 1 0 0 0
0 1 0 1 0

0 1 0 0 1
0 0 1 0 1

1 0 0 0 1
1 1 0 0 0

0 1 0 1 0
0 1 0 0 1

0 0 1 0 1
1 0 0 0 1

(c) Multiple convolutional permutor.

Figure 8.13 Construction of a multiple periodic convolutional permutor.

Definition Consider the bi-infinite binary matrix

P =

. . .
. . .

pn(n+δ) pn(n+δ+1) . . . pn(n+∆)

. . . p(n+1)(n+δ+1) p(n+1)(n+δ+2) . . . p(n+1)(n+∆+1)

. . .
. . . p(n+2)(n+δ+2) p(n+2)(n+δ+3) . . . p(n+2)(n+∆+2)

. . .
. . .

. . .

(8.68)

The matrix (8.68) describes a multiple convolutional permutor with minimum delay
δ ≥ 0, maximum delay ∆ ≥ δ, and multiplicity (J,K) if

• For all l < n+ δ, n, l ∈ Z, the entries pnl are equal to zero.

• For all l > n+ ∆, n, l ∈ Z, the entries pnl are equal to zero.

• For at least one n, n ∈ Z, the entry pn(n+δ) is nonzero.

• For at least one n, n ∈ Z, the entry pn(n+∆) is nonzero.

514 LOW-DENSITY PARITY-CHECK CODES

• Each row of the matrix P has exactly J 1s.

• Each column of the matrix P has exactly K 1s.

The valuew = ∆−δ+1 is called the width of the convolutional permutor. If J = K,
the permutor is symmetric.

Definition An MCP of multiplicity (J,K) is periodic if there is a positive integer T
such that

pnl = p(n+KT)(l+JT), n, l ∈ Z (8.69)

The minimum T for which (8.69) is fulfilled is called the period of the multiple
convolutional permutor.

Similarly to the MBP case, additionally to the matrix representation of an MCP
we will use an array representation. In this representation, each nonzero element in
P represents a memory cell that can store an input symbol. Each column of this
memory array can storeK symbols and each row J symbols. The input sequence is a
bi-infinite sequence of J-dimensional column vectors, which can be represented as a
bi-infinite matrix X = (. . .x0 x1 . . .xn . . .), where xn is defined by (8.55). When
an input sequence enters the permutor, the symbols of the J-dimensional column
vectors are placed into the memory array positions row by row.

The output sequence is a bi-infinite sequence of K-dimensional column vectors
which can be represented as a bi-infinite matrix Y = (. . .y0 y1 . . .yl . . .), where
yl is defined by (8.56). The MCP generates the output sequence Y by reading
out the contents of the memory array positions column by column. The multiple
convolutional permutation operator ~ is defined by

Y = X ~ P (8.70)

In the inverse permutor, the symbols are placed into the memory cells columnwise
and read out rowwise. Thus, the inverse of a symmetric multiple block permutor is
described by the transpose matrix P T.

The parameters δ, ∆, and w are important for characterizing a multiple convo-
lutional permutor. Another important parameter is its overall constraint length ν.
By definition, the overall constraint length ν of a permutor is equal to the maximum
number of symbols that are stored in an array realization of the permutor. Particularly,
to define formally the overall constraint length of a symmetric permutor (J = K)
we introduce the set

Pt = {pnl | n ≤ t, l > t} , n, l, t ∈ Z (8.71)

Let the Hamming weight wH(Pt) of a set Pt be the number of nonzero elements in
the set. Then the overall constraint length of the multiple convolutional permutor is
defined as

ν = max
t
{wH(Pt)} (8.72)

BLOCK AND CONVOLUTIONAL PERMUTORS 515

Remark: Since a bi-infinite MCP constructed by the unwrapping method has the
same number J of 1s on each row and same number K of 1s on each column, the
weight of Pt does not depend on t. Therefore, the weight of Pt characterizes the
permutor independently of t.

EXAMPLE 8.6 (Cont’d)

The parameters of the multiple convolutional permutor in Fig. 8.13(c) are
T = 5, δ = 0, ∆ = 4, ν = 6.

Theorem 8.5 Consider the ensemble of symmetric MCPs of multiplicity J = K
constructed with the unwrapping procedure from random T × T interleaved MBPs
of multiplicity J = K. Suppose these MBPs are built using the rowwise and
columnwise interleaving procedure from a set of J2 randomly chosen permutation
matrices. Then, the mathematical expectation E[ν] of the overall constraint length
of an MCP over the ensemble is

E[ν] = J(T − 1)/2 (8.73)

Proof : An underlying random MBP has T 2 entries. Among the entries of an MBP,
JT are 1s. Thus, the theorem follows from the fact that there are T (T − 1)/2 entries
below the main diagonal of the underlying MBP and that the probability that an entry
is a 1 is J/T .

Theorem 8.5 and the T -periodic property of the MCPs due to the unwrapping
construction procedure lead us to the following definition.

Definition Consider a symmetric MCP of multiplicity J = K constructed with the
unwrapping procedure using a T × T symmetric MBP of multiplicity J = K. The
MCP is called typical if:

• It has period T .

• It has width w = T .

• It has overall constraint length ν = J(T − 1)/2.

We formulated the definition of a typical MCP in the symmetric case. The
reformulation of the definition for the nonsymmetric case is left as an exercise
(Problem 8.14).

If we transform a symmetric MCP P = (pnl) of multiplicity J = K with min-
imum delay δ, maximum delay ∆, and overall constraint length ν using a shift
pnl → pn(l+a), a ∈ Z+ of all its elements, we obtain a new MCP having mini-
mum delay δ + a, maximum delay ∆ + a, and overall constraint length ν + Ja
(Problem 8.16).

To simplify our analysis we also consider the ensemble of multiple Markov per-
mutors (MMPs), introduced in [ELZ99, ELT00]. A multiple symmetric Markov

516 LOW-DENSITY PARITY-CHECK CODES

MMP A
dd

iti
on

m
od

2zn1

zn2

un v
(1)
n

v
(2)
n

Figure 8.14 An example of a rate R = 1/2 systematic encoder for (2, 4) LDPC
convolutional codes based on multiple Markov permutors.

permutor of multiplicity JMMP and overall constraint length ν can be described as
a memory device which stores ν binary symbols 0 and 1. These ν binary symbols
correspond to the constraint length ν positions in the permutor. At each time unit n,
the permutor chooses JMMP of these stored symbols with no preference and forms a
block of output symbols (yn1yn2 . . . ynJMMP). Then it replaces them with JMMP of
its input symbols. The probability that a particular stored symbol is chosen is equal
to JMMP/ν. As a consequence, for any positive τ , the probability that a symbol will
stay in the permutor more than τ time units is strictly positive, which implies that
the maximum delay ∆ =∞. The minimum delay is δ = 1 and the average delay is
equal to ν/JMMP.

We can consider the ensemble of multiple Markov permutors as an infinite set of
permutors; each of them is deterministic, but the choice of the permutor from the
ensemble is random.

EXAMPLE 8.9

A rate R = 1/2 systematic encoder of a regular16 (2, 4) LDPC convolutional
code is shown in Fig. 8.14. It uses an MMP with overall constraint length ν
and multiplicity JMMP = 2. The output of the permutor in the nth time moment
are two symbols zn = zn1 zn2 randomly chosen in the permutor. Adding these
symbols and the input information symbol un = v

(1)
n gives the parity symbol v(2)

n .
The output of the encoder in the nth time unit is vn = v

(1)
n v

(2)
n . The encoder

replaces the two removed symbols in the permutor by the symbols v(1)
n and v(2)

n

and then encodes the next information symbol.

16For LDPC convolutional codes using Markov permutors, the syndrome former memory ms is not
defined; we use simply the notation “regular (J,K) LDPC convolutional codes” without mentioning the
memory.

LOWER BOUNDS ON DISTANCES OF LDPC CODES 517

For general rate R = 1/2 regular (JMMP, 2JMMP) LDPC convolutional codes
using symmetric Markov permutors of multiplicity JMMP, the encoder (see Fig. 8.15)
chooses randomly a set of 2(JMMP − 1) symbols from the permutor and calculates
the parity symbol v(2)

n by adding these symbols and the input information symbol
ut = v

(1)
n . Then it replaces the 2(JMMP − 1) early removed symbols in the permutor

by JMMP − 1 copies of v(1)
n and JMMP − 1 copies of v(2)

n and comes to the next step
of the encoding.

un v
(1)
n

A
dd

iti
on

m
od

2

MMP

v
(2)
n

...

...

...

...

JMMP − 1
{

JMMP − 1
{

Figure 8.15 A systematic encoder using a multiple Markov permutor for a rate R = 1/2
regular (JMMP, 2JMMP) LDPC convolutional code .

8.4 LOWER BOUNDS ON DISTANCES OF LDPC CODES

In this section, we derive lower bounds for the minimum distance of regular LDPC
block codes and for the free distance of regular LDPC convolutional codes. We start
with the derivation of minimum distance bounds for LDPC block codes from the
ensembles B1(N, J,K) and B2(N, J,K). To formulate the bounds we introduce the
function

G(λ, ρ) = g(λ)− λρ− J − 1

J
h(ρ) (8.74)

where 0 < ρ < 1/2, λ < 0,

g(λ) =
1

K
log
((1 + 2λ

)K
+
(
1− 2λ

)K
2

)
(8.75)

and h(ρ) is the binary entropy function (1.22). Then we introduce the function

F (ρ) = min
λ<0
{G(λ, ρ)} (8.76)

518 LOW-DENSITY PARITY-CHECK CODES

and the parameter ρ∗ (if it exists17) such that

ρ∗ = sup
0<ρ<1/2

{ρ : F (ρ) < 0} (8.77)

Theorem 8.6 For J ≥ 3, there exists a code in the ensemble B1(N, J,K) with
minimum distance lower-bounded by

dmin ≥ ρJKN + o(N) (8.78)

where o(N)/N → 0 as N → ∞, ρJK = ρ∗ − ε, ρ∗ satisfies to (8.77), and ε is an
arbitrary small positive number.18

Theorem 8.7 For J ≥ 3, there exists a code in the ensemble B2(N, J,K) with
minimum distance lower-bounded by

dmin ≥ min{ρJKN + o(N), 2N/K} (8.79)

where o(N) and ρJK are defined in Theorem 8.6.

In Table 1.1 the parameters ρJK for J = 3, 4, 5 and K = 4, 5, 6 are given. They
are compared with the corresponding Gilbert-Varshamov parameters.

Since the proofs of Theorems 8.6 and 8.7 are similar, we shall give a detailed
proof only of Theorem 8.6 and then outline the proof of Theorem 8.7. The proof is
based on the lemmas formulated and proved below.

According to Theorem 1.3 the N -tuple v = v0 v1 . . . vN−1 is a codeword if and
only if

vHT = 0[0,L−1] (8.80)

where HT is an N × L transposed parity-check matrix and 0[0,L−1] is the length L
allzero vector. From (8.5) and (8.80) it follows that for codes from the ensemble
B1(N, J,K)

vHT
j = 0[0,M−1], j = 1, 2, . . . , J (8.81)

where M = N/K and the submatrices HT
j are defined in (8.5).

We denote the set ofM parity-check equations (8.81) byS(j), j = 1, 2, . . . , J . Let
d = wH(v) be the Hamming weight of the codewordv, and let s(j)

m ,m = 1, 2, . . . ,M ,
be the number of 1s in theN -tuple v included into themth equation of S(j) such that

d = s
(j)
1 + s

(j)
2 + · · ·+ s

(j)
M (8.82)

Since v is a codeword, the components s(j)
m are even, that is, s(j)

m ∈ {0, 2, . . . , 2K0},
where K0 = bK/2c. The distribution of the nonzero symbols of the codeword v
among the M parity-check equations of S(j), that is, the vector s(j) =

(
s

(j)
1 s

(j)
2

17Numerical calculations show that for practically interesting cases it exists.
18We cannot numerically calculate the parameter ρ∗, but we can calculate its lower bound ρJK .

LOWER BOUNDS ON DISTANCES OF LDPC CODES 519

. . . s
(j)
M

)
, is called the weight distribution of the set S(j). Let ν(j)

2i , i = 0, 1, . . . ,K0,
denote the number of components s(j) which are equal to 2i. The vector ν(j) =

(ν
(j)
0 ν

(j)
2 . . . ν

(j)
2K0

) is called the constraint decomposition of the weight distribution
s(j).

Lemma 8.8 The components of the constraint decomposition vectorν(j) = (ν
(j)
0 ν

(j)
2

. . . ν
(j)
2K0

) satisfy the equalities

K0∑
i=0

ν
(j)
2i = M (8.83)

K0∑
i=0

2iν
(j)
2i = d (8.84)

Proof : The set of M parity-check equations S(j) consists of K0 + 1 subsets such
that the ith subset, containing 2i, i = 0, 1, . . . ,K0, 1s, consists of ν(j)

2i equations,
which proves (8.83).

The sum in (8.84) counts the number of nonzero symbols of the codeword v in all
check equations of S(j). Since each symbol can participate only in one equation in
S(j), the sum equals the total number of nonzero symbols in the codeword.

Lemma 8.9 Given a constraint decomposition ν(j) = (ν
(j)
0 ν

(j)
2 . . . ν

(j)
2K0

), there are

M !

ν
(j)
0 !ν

(j)
2 ! · · · ν(j)

2K0
!

(8.85)

ways to choose the corresponding weight distribution s(j).

Proof : The lemma follows directly from the definitions of the constraint decompo-
sition ν(j) and the weight distribution s(j).

Lemma 8.10 For a given codeword v of weight d and a given weight distribution
s(j), the number of ways to choose the corresponding submatrixHT

j in the ensemble
B1(N, J,K) is given by

d!(N − d)!∏K0

i=0 ((2i)!(K − 2i)!)
ν

(j)
2i

(8.86)

This number depends only on the weight of the codeword v and the constraint
decomposition ν(j) of the weight distribution s(j).

Proof : The proof is similar to the proof of Lemma 8.1. Suppose that the weight
distribution s(j) is given. Given a codeword v of weight d, there are

(d
s
(j)
1

) (N−d
K−s(j)1

)
ways to form the first column of HT

j . The second column can then be chosen in

520 LOW-DENSITY PARITY-CHECK CODES

(d−s(j)1

s
(j)
2

) (N−d−K+s
(j)
1

K−s(j)2

)
different ways, and so on. We conclude that HT

j can be
chosen in (

d

s
(j)
1

)(
N − d
K − s(j)

1

)(
d− s(j)

1

s
(j)
2

)(
N − d−K + s

(j)
1

K − s(j)
2

)
· · ·
(
s

(j)
M

s
(j)
M

)(
K − s(j)

M

K − s(j)
M

)
=

d!(N − d)!
K0∏
i=0

((2i)!(K − 2i)!)
ν

(j)
2i

(8.87)

different ways.

Lemma 8.11 Given a codeword v of weight d and the jth constraint decomposition
ν(j) = (ν

(j)
0 ν

(j)
2 . . . ν

(j)
2K0

), the probability fd(ν
(j)
0 , ν

(j)
2 , . . . , ν

(j)
2K0

) for the ensemble
B1(N, J,K) of choosing the corresponding submatrix HT

j equals

fd(ν
(j)
0 , ν

(j)
2 , . . . , ν

(j)
2K0

) =

M !

ν
(j)
0 ! ν

(j)
2 !···ν(j)

2K0
!

∏K0

i=0

(
K!

(2i)!(K−2i)!

)ν(j)
2i

N !
d!(N−d)!

(8.88)

Proof : The total number of ways to choose the matrix Hj in B1(N, J,K) is given
by Lemma 8.1. Then it follows that the number of ways to choose HT

j for a given
codeword v of weight d and its jth weight distribution s(j) is given by (8.86). The
number of ways to choose the jth weight distribution s(j) is given by (8.85). Then
we have

fd(ν
(j)
0 , ν

(j)
2 , . . . , ν

(j)
2K0

) =

M !

ν
(j)
0 !ν

(j)
2 !···ν(j)

2K0
!

d!(N−d)!∏K0
i=0((2i)!(K−2i)!)ν

(j)
2i

N !
(K!)M

=

M !

ν
(j)
0 ! ν

(j)
2 !···ν(j)

2K0
!

∏K0

i=0

(
K!

(2i)!(K−2i)!

)ν(j)
2i

N !
d!(N−d)!

(8.89)

We say that an N -tuple v of weight d satisfies the set of equations S(j), j =
1, 2, . . . , J , if in each of theM equations of S(j) an even number of nonzero symbols
of v are included. In the ensemble B1(N, J,K), the probability that an N -tuple v of
weight d satisfies the set of equations S(j) is

P
(j)
d =

∑
ν(j):

∑K0
i=0 2iν

(j)
2i =d

fd(ν
(j)
0 , ν

(j)
2 , . . . , ν

(j)
2K0

) (8.90)

If v satisfies the J sets of equations S(j), j = 1, 2, . . . , J , it is a codeword. The
probability Pd that an N -tuple v of weight d is a codeword of a randomly chosen

LOWER BOUNDS ON DISTANCES OF LDPC CODES 521

code in the ensemble B1(N, J,K) equals

Pd =
J∏
j=1

P
(j)
d (8.91)

Now we are ready to prove Theorem 8.6:

Proof (Theorem 8.6): From Lemma 8.1, Lemmas 8.8–8.11, and (8.90) we obtain
the following upper bound for P (j)

d :

P
(j)
d =

∑
ν(j):

K0∑
i=0

2iν
(j)
2i =d

fd(ν
(j)
0 , ν

(j)
2 , . . . , ν

(j)
2K) (8.92)

=
∑

ν(j):
K0∑
i=0

2iν
(j)
2i =d

2
λ(

2K0∑
i=0

2iν
(j)
2i −d)

fd(ν
(j)
0 , ν

(j)
2 , . . . , ν

(j)
2K0

) (8.93)

≤
∑
∀ν(j)

2
λ(
K0∑
i=0

2iν
(j)
2i −d)

fd(ν
(j)
0 , ν

(j)
2 , . . . , ν

(j)
2K0

) (8.94)

= 2−λd
∑
∀ν(j)

M !

ν
(j)
0 !ν

(j)
2 !···ν(j)

2K0
!

K0∏
i=0

(
K!22λi

2i!(K−2i)!

)ν(j)
2i

N !
d!(N−d)!

(8.95)

= 2−λd
(
N

d

)−1
((

1 + 2λ
)K

+
(
1− 2λ

)K
2

)M
(8.96)

where λ is a negative constant. In going from (8.92) to (8.96), we first multiply the
terms by 2λ(

∑K0
i=0 2iν

(j)
2i −d), which does not change the sum since the summation is

over the constraint decompositions ν(j) satisfying the condition
∑K0

i=0 2iν
(j)
2i = d.

We then replace the summation over ν(j) satisfying the condition
∑K0

i=0 2iν
(j)
2i = d

by a summation over all ν(j), which can only increase the sum. In transition from
(8.95) to (8.96) we use the formula of polynomial decomposition.

From (8.92)-(8.96) we obtain

P
(j)
d ≤ 2(g(λ)−λρ−h(ρ))N+o(N), j = 1, 2, . . . , J (8.97)

where g(λ) is defined by (8.75), ρ = d/N is the normalized Hamming weight, and
h(ρ) is the binary entropy function (1.22). From (8.91) and (8.97) it follows that

Pd ≤ 2(g(λ)−λρ−h(ρ))JN+o(N) (8.98)

Since the number of N -tuples having weight d equals
(
N
d

)
, the mathematical expec-

tationMd over the ensemble B1(N, J,K) of the number of codewords having weight

522 LOW-DENSITY PARITY-CHECK CODES

d is upper-bounded by the inequality

Md =

(
N

d

)
Pd ≤ 2(g(λ)−λρ− J−1

J h(ρ))JN+o(N) (8.99)

= 2G(λ,ρ)JN+o(N)

where G(λ, ρ) is defined by (8.74). From (8.76) and (8.99) we obtain

Md ≤ 2F (ρ)JN+o(N) (8.100)

where F (ρ) is defined by (8.76). From (8.100) it follows that for ρ = ρ∗ − ε, ε > 0,
the mathematical expectation of the number of codewords of weight d in the ensemble
goes to zero if N →∞, which completes the proof.

Next we shall emphasize a few important steps in the proof of Theorem 8.7.
The transposed parity-check matrix HT of a code in the ensemble B2(N, J,K) is

defined by (8.10). It can also be given by (8.5) where

HT
j =

P (1j)

P (2j)

...
P (Kj)

 (8.101)

and P (kj), j = 1, 2, . . . , J , k = 1, 2, . . . ,K, are M ×M permutation matrices.
Consider an N -tuple v, where N = KM , consisting of K M -tuples, that is,

v = v1v2 . . .vK , where vk = vk1 vk2 . . . vkM , k = 1, 2, . . . ,K. Let d1, d2, . . . , dK
be the Hamming weights of v1,v2, . . . ,vK , respectively. We say that v has weight
decomposition d = (d1, d2, . . . , dK). The Hamming weight d of v with weight

decomposition d is d = d1 + d2 + · · ·+ dK . There exist
K∏
k=1

(
M
dk

)
different N -tuples

v with the weight composition d.
We have proved (Theorem 8.4) that codes in the ensemble B2(N, J,K) always

have at least one codeword v = v1v2 . . .vK of weight 2N/K that contains two
M -tuples, vk1 and vk2 , say, which are allone M -tuples and all other M -tuples vk,
k 6= k1, k2 are allzero M -tuples. We denote the set of such codewords V . Below
we exclude the codewords v ∈ V from consideration and consider only codewords
v /∈ V .

Similarly to codes from the ensemble B1(N, J,K), an N -tuple v, v /∈ V , is a
codeword if and only if it satisfies the J sets S(j), j = 1, 2, . . . , J , of the equations
(constraints) (8.81) where the matrices HT

j are defined by (8.101). Each set consists
of M equations.

Consider the mth parity-check equation of S(j). Instead of the variable s(j)
m

used in the analysis of the ensemble B1(N, J,K) we introduce the binary K-tuple
σ

(j)
m = σ

(j)
m1 σ

(j)
m2 . . . σ

(j)
mK where σ(j)

mk = 1 if one of the nonzero symbols of vk,
k = 1, 2, . . . ,K, is included in the mth parity-check equation of S(j) and σ(j)

mk = 0

otherwise. If v is a codeword, the vectors σ(j)
m have even Hamming weight. The

LOWER BOUNDS ON DISTANCES OF LDPC CODES 523

jth weight distribution for codes of the ensemble B2(N, J,K) is defined as the set
s(j) =

{
σ

(j)
1 ,σ

(j)
2 , . . . ,σ

(j)
M

}
.

Now we define the jth constraint composition ν(j). Let ν(j)
0 be the number of

K-tuples σ(j)
m , m = 1, 2, . . . ,M , which consists of K 0s. Then, let ν(j)

2 (k1, k2)

be the number of K-tuples σ(j)
m involving two 1s, one from vk1

and one from vk2
;

the other (K − 2) components of σ(j)
m are 0s. In general, let ν(j)

2i (k1, k2, . . . , k2i),
i = 1, . . . ,K0, be the number of K-tuples σ(j)

m involving 2i 1s, a single 1 from each
of theM -tuples vk1

,vk2
, . . . ,vk2i

, and 0s from the remaining (K−2i) components
of σ(j)

m . Observe that the arguments of ν(j)
2i (k1, k2, . . . , k2i) are distinct, that is,

ki 6= kj if i 6= j. Furthermore, ν(j)
2i (k1, k2, . . . , k2i) is invariant to permutations of

the arguments, for example, ν(j)
2i (k1, k2, . . . , k2i) = ν

(j)
2i (k2, k1, . . . , k2i). In other

words, ν(j)
2i (k1, k2, . . . , k2i) is a function of the set {k1, k2, . . . , k2i}. To emphasize

this fact, we henceforth write ν(j)
2i ({k1, k2, . . . , k2i}) for ν(j)

2i (k1, k2, . . . , k2i). Then
the jth constraint composition vector ν(j), j = 1, 2, . . . , J , is defined as

ν(j) =
(
ν

(j)
0 {ν(j)

2 ({k1, k2})} . . . {ν(j)
2K0

({k1, . . . , k2K0
})}
)

(8.102)

where {ν(j)
2i ({k1, . . . , k2i})}, i = 0, 2, . . . ,K0, is the set of all

(
K
2i

)
components

ν
(j)
2i ({k1, . . . , k2i}).

The following lemma is a counterpart to Lemma 8.8.

Lemma 8.12 The components of the constraint decompositionν(j) satisfy the equal-
ities

ν
(j)
0 +

∑
{k1,k2}

ν
(j)
2 ({k1, k2}) +

∑
{k1,k2,k3,k4}

ν
(j)
4 ({k1, k2, k3, k4}) + · · ·

+
∑

{k1,...,k2K0
}

ν
(j)
2K0

({k1, . . . , k2K0
}) = M

(8.103)

and ∑
{k2}

ν
(j)
2 ({k1, k2}) +

∑
{k2,k3,k4}

ν
(j)
4 ({k1, k2, k3, k4}) + · · ·

+
∑

{k2,...,k2K0
}

ν
(j)
2K0

({k1, . . . , k2K0
}) = dk1

, k1 = 1, 2, . . . ,K
(8.104)

Equations (8.103) and (8.104) for the constraint composition ν(j) of codes of
the ensemble B2(N, J,K) are generalizations of equations (8.83) and (8.84) for the
constraint composition ν(j) of codes in the ensemble B1(N, J,K). The set of ν(j)

that satisfies equation (8.104) is denoted D(j)
d .

The next three lemmas are similar to Lemmas 8.9–8.11.

524 LOW-DENSITY PARITY-CHECK CODES

Lemma 8.13 Given a constraint composition ν(j) defined by (8.102), there are

M !

ν
(j)
0 !
∏
{k1,k2} ν

(j)
2 ({k1, k2})! . . .

∏
{k1...,k2K0

} ν
(j)
2K0

({k1, . . . , k2K0
})!

(8.105)

ways to choose the corresponding weight distribution s(j).

Lemma 8.14 For a given codeword v of weight composition d and a given weight
distribution s(j), the number of ways to choose the corresponding submatrix HT

j in
the ensemble B2(N, J,K) is given by

K∏
k=1

dk!(M − dk)! (8.106)

Equation (8.106) is a generalization of (8.86) to the ensemble B2(N, J,K).

Lemma 8.15 Given a codewordvwith weight compositiond and jth constraint com-
position ν(j), the probability fd(ν

(j)
0 , ν

(j)
2 , . . . , ν

(j)
2K0

) for the ensemble B2(N, J,K)

of choosing the corresponding submatrix HT
j equals (cf. (8.88))

fd(ν
(j)
0 , ν

(j)
2 , . . . , ν

(j)
2K0

) =

M !

ν
(j)
0 !

∏
{k1,k2}

ν
(j)
2 ({k1,k2})!...

∏
{k1,...,k2K0

} ν
(j)
2K0

({k1,...,k2K0
})!∏K

k=1

(
M
dk

)
(8.107)

Lemma 8.15 follows from Lemmas 8.13 and 8.14 and from the fact that there are
(M !)K different submatrices HT

j .
The following formulas, generalizing formulas (8.90) and (8.92)-(8.96), deter-

mine the probability P (j)
d that the K-tuple v = v1v2 . . .vK ,v /∈ V , with weight

composition d satisfies the set of equations S(j), j = 1, 2, . . . , J , and yields the
upper bound

P
(j)
d =

∑
ν(j)∈D(j)

d

fd(ν
(j)
0 , ν

(j)
2 , . . . , ν

(j)
2K)

≤ 2−
∑K
k=1 λkdk

K∏
k=1

(
M

dk

)(∏K
k=1(1 + 2λk) +

∏K
k=1(1− 2λk)

2

)M
(8.108)

where λk < 0, k = 1, 2, . . . ,K. To prove (8.108) we first multiply the terms by

K∏
k1=1

2
λk1

(∑
{k2}

ν
(j)
2 ({k1,k2})+···+

∑
{k2,...,k2K0

} ν
(j)
2K0

({k1,...,k2K0
})−dk1

)
(8.109)

and then summarize over all ν(j).

LOWER BOUNDS ON DISTANCES OF LDPC CODES 525

Note that the upper bound (8.108) for the probability P
(j)
d depends not on a

single auxiliary variable λ as in the case of the ensemble B1(N, J,K) but on a set
{λ1, λ2, . . . , λK} of auxiliary variables.

We can rewrite (8.108) as

P
(j)
d ≤ 2(Kg̃(λ1,λ2,...,λK)−

∑K
k=1 λkρk−

∑K
k=1 h(ρk))M+o(M) (8.110)

where λk < 0, k = 1, 2, . . . ,K, ρk = dk/M , k = 1, 2, . . . ,K, are normalized
Hamming weights of the M -tuples vk, h(ρ) is the binary entropy function (1.22),
and

g̃(λ1, λ2, . . . , λK) =
1

K
log

∏K
k=1(1 + 2λk) +

∏K
k=1(1− 2λk)

2
(8.111)

From (8.110) we obtain similarly to (8.99) that the mathematical expectation over
the ensemble B2(N, J,K) of the number of codewords with weight composition d
is upper-bounded by

Md ≤ 2G̃(λ,ρ)KJM+o(M) (8.112)

where λ = (λ1 λ2 . . . λK), ρ = (ρ1 ρ2 . . . ρK),

G̃(λ,ρ) = g̃(λ1, λ2, . . . , λK)− 1

K

K∑
k=1

λkρk −
J − 1

JK

K∑
k=1

h(ρk) (8.113)

Let
F̃ (ρ) = max

ρ: 1
K

∑
ρk=ρ

min
λ
{G̃(λ,ρ)} (8.114)

Lower-bounding the minimum distance for block codes from the ensembleB2(N, J,K)
requires operations with K auxiliary variables λ1, λ2, . . . , λK and K variables
ρ1, ρ2, . . . , ρK . But, because of the symmetry of the problem with respect to the
considered variables, it can be reduced to the analysis of a function of the two auxil-
iary variables λ and ρ. This follows from the following lemma proved in [STL07].

Lemma 8.16 If J ≥ 3 and ρ = (1/K)
∑
ρk is fixed, ρ < 2/K, then the conditional

extremum (8.114) of the function G̃(λ,ρ) is attained at the points ρ = ρ0 =
(ρ ρ . . . ρ), λ = λ0 = (λλ . . . λ), where all coordinates of the vector ρ0 are equal
and all coordinates of the vector λ0 are equal.

Note that
G̃(λ0,ρ0) = G(λ, ρ) (8.115)

where G(λ, ρ) is defined by (8.74) and

F̃ (ρ0) = F (ρ) (8.116)

where F (ρ) is defined by (8.76).
From Lemma 8.16, Theorem 8.7 follows.

526 LOW-DENSITY PARITY-CHECK CODES

Consider now lower-bounding the free distance of LDPC convolutional codes.
There are two different approaches to this problem considered in [STL07] and
[TZC10], respectively. They yield the same numerical results. In the first case,
nonperiodically time-varying regular LDPC convolutional codes from ensemble
C(M,J,K) with “expurgated” information bits and the corresponding segments of
a code sequence were considered. It means that we expurgate low-weight segments
of the code sequences by fixing one of the information bits in the initial information
block to zero. If the sizeM of the permutation matrices of the syndrome former goes
to infinity, then the loss in rate is negligible.

In the second case, regular periodically time-varying LDPC convolutional codes
from the ensemble C(M,J,K, T), which we introduced in Section 8.2, were consid-
ered. Their analysis uses the same ideas as lower-bounding the minimum distance
of codes from the ensemble B2(N, J,K) but involves even more auxiliary variables.
We shall follow this approach. To avoid cumbersome notations, we focus on the
analysis of the case J = 3 and K = 6. The corresponding syndrome former is
presented in Fig. 8.9.

Instead of lower-bounding the free distance dfree for the codes from the ensemble
C(M,J,K, T)

∣∣
J=3,K=6

we shall lower-bound the minimum distance d̃[0,T−1] of
the corresponding tailbiting LDPC code with the transposed parity-check matrix
H̃T

[0,T−1] given in Fig. 8.10. The block length is N = 2MT . The ensemble of the

corresponding tailbiting LDPC codes is denoted C̃(M,J,K, T)
∣∣
J=3,K=6

. For this
analysis of tailbiting codes we can use essentially the same method as the one we
used for analyzing dmin of LDPC block codes from the ensemble B2(N, J,K).

Lemma 8.17 The free distance dfree of a regular periodically time-varying LDPC
convolutional code from the ensemble C(M,J,K, T) is lower-bounded by the mini-
mum distance d̃[0,T−1] of the corresponding tailbiting LDPC code from the ensemble
C̃(M,J,K, T) with block length N = 2MT , that is,

dfree ≥ d̃[0,T−1] (8.117)

Lemma 8.17 is proved in [TZC10].
Consider a length 2TM T -tuple ṽ = ṽ

(1)
0 ṽ

(2)
0 . . . ṽ

(1)
T−1ṽ

(2)
T−1, where ṽ(i)

t =

ṽ
(i)
t1 ṽ

(i)
t2 . . . ṽ

(i)
tM , i = 1, 2, t = 0, 1, . . . , T − 1. A T -tuple ṽ[0,T−1] is a codeword of a

regular tailbiting LDPC code if and only if it satisfies the TM equations (constraints)
defined by the transposed parity-check matrix H̃T

[0,T−1] of the code, that is,

ṽ[0,T−1]H̃
T
[0,T−1] = 0 (8.118)

For the ensemble C̃(M,J,K, T)|J=3,K=6, these TM parity-check equations can be
divided into T sets where the tth set S(t), t = 0, 1, . . . , T − 1, consists of the M
parity-check equations determined by the six permutation matrices located in the tth
column, t = 0, 1, . . . , T − 1, of the syndrome former H̃T

[0,T−1] in Fig. 8.10.

LOWER BOUNDS ON DISTANCES OF LDPC CODES 527

Let d̃(i)
t be the Hamming weight of the T -tuple ṽ(i)

t , i = 1, 2, t = 0, 1, . . . , T − 1.
We then say that ṽ[0,T−1] has the weight composition

d̃[0,T−1] =
(
d̃

(1)
0 d̃

(2)
0 d̃

(1)
1 d̃

(2)
1 . . . d̃

(1)
T−1d̃

(2)
T−1

)
(8.119)

The Hamming weight of the T -tuple ṽ[0,T−1] with weight composition d̃[0,T−1] is
d̃[0,T−1] = d̃

(1)
0 + d̃

(2)
0 + · · ·+ d̃

(1)
T−1 + d̃

(2)
T−1. Note that there exists

∏T−1
t=0

(M
d̃

(1)
t

)
×∏T−1

t=0

(M
d̃

(2)
t

)
T -tuples ṽ[0,T−1] with weight composition d̃[0,T−1]. In the asymp-

totic case, M → ∞, it is more convenient to operate with the normalized weight
composition ρ̃[0,T−1] =

(
ρ̃

(1)
0 ρ̃

(2)
0 . . . ρ̃

(1)
T−1ρ̃

(2)
T−1

)
, where ρ̃(i)

t = d̃
(i)
t /M .

We introduce the additional notations

ρ̃(t) =
(
ρ̃

(1)
t−2ρ̃

(2)
t−2ρ̃

(1)
t−1ρ̃

(2)
t−1ρ̃

(1)
t ρ̃

(2)
t

)
, t = 0, 1, . . . , T − 1 (8.120)

where by definition ρ̃(i)
−2 = ρ̃

(i)
T−2 and ρ̃(i)

−1 = ρ̃
(i)
T−1 for i = 1, 2, and

λ(t) =
(
λ

(t)
1 λ

(t)
2 . . . λ

(t)
6

)
, t = 0, 1, . . . , T − 1 (8.121)

To formulate our result we introduce the three functions19

G̃(λ(t), ρ̃(t)) = g̃(λ
(t)
1 , λ

(t)
2 , . . . , λ

(t)
6)

−1

6

(
λ

(t)
1 ρ̃

(0)
t−2 + λ

(t)
2 ρ̃

(1)
t−2 + λ

(t)
3 ρ̃

(0)
t−1 + λ

(t)
4 ρ̃

(1)
t−1 + λ

(t)
5 ρ̃

(0)
t + λ

(t)
6 ρ̃

(1)
t

)
− 2

18

(
h(ρ̃

(0)
t−2) + h(ρ̃

(1)
t−2) + h(ρ̃

(0)
t−1) + h(ρ̃

(1)
t−1) + h(ρ̃

(0)
t) + h(ρ̃

(1)
t)
) (8.122)

which is a generalization of the function G̃(λ,ρ) defined by (8.113),

H̃(ρ(t)) = min
λ(t)

{
G̃(λ(t), ρ̃(t))

}
(8.123)

and

Φ(ρ̃[0,T−1]) =
T−1∑
t=0

H̃(ρ(t)) (8.124)

Next we introduce the regionRT (ρ). By definition, the vector ρ̃[0,T−1] ∈ RT (ρ)
if

1

2T

(
T−1∑
t=0

ρ
(1)
t +

T−1∑
t=0

ρ
(2)
t

)
= ρ (8.125)

The function F̃T (ρ) generalizes the function F̃ (ρ) defined by (8.114),

F̃T (ρ) = max
ρ̃[0,T−1]∈RT (ρ)

{Φ(ρ̃[0,T−1])} (8.126)

19Note that we obtain coefficients 1/6 and 2/18 in (8.122) because, for J = 3, K = 6, we have
1/K = 1/6 and (J − 1)/JK = 2/18.

528 LOW-DENSITY PARITY-CHECK CODES

Table 8.1 Numerically calculated parameters ρJK amd ρ(conv)
JK of the distance bounds

for LDPC block and convolutional codes, respectively.

(J,K) ρJK ρ(conv)
JK

(3, 6) 0.023 0.0833
(4, 8) 0.0627 0.1908

Then we introduce the parameter ρ∗T such that

ρ∗T = sup
0<ρ<1/2

{ρ : F̃T (ρ) < 0} (8.127)

Theorem 8.18 For J ≥ 3, there exists a convolutional code in the ensemble C(ms,
J , K, T) with free distance lower-bounded by

dfree ≥ ρ(conv)
JK νR−1 + o(N) (8.128)

where o(N)/N → 0 whenN →∞, ρ(conv)
JK = ρ∗T − ε, where ρ∗T satisfies (8.127), ε is

an arbitrary small positive number, and ν ≤ 3M − 1 is the overall constraint length
of the encoder in the partial-syndrome realization.

Remark: The parameter νR−1 ≤ 2(3M − 1) on the right-hand side of (8.128)
equals the total number of code symbols involved in the parity-check constraints
at any time instant t. This also corresponds to the total number of encoder output
symbols that directly depend on a given block of b input information symbols.

Theorem 8.18 reduced the lower-bounding of dfree for regular periodically time-
varying LDPC convolutional codes to a numerical calculation of the parameter ρ∗T .
This parameter is a nondecreasing function of the period T , and to get a reasonable
lower bound on dfree it is sufficient to choose T of the order 15. In Table 8.1 we give
the parameter ρ(conv)

JK characterizing the lower bound on the free distance of regular
periodically time-varying (ms, J,K, T) LDPC convolutional codes and the parameter
ρJK characterizing Gallager’s lower bound on the minimum distance of regular
(N, J,K) LDPC block codes (see Table 1.1). For J = 3,K = 6, the parameter
ρ(conv)
JK = 0.0833 is about three and half times larger than the parameter ρJK =

0.023 characterizing Gallager’s lower bound for the minimum distance of regular
(N, 3, 6) LDPC block codes. Interestingly, the parameter ρC = −R/ log(21−R − 1)
characterizing the Costello lower bound (3.162) on the free distance of general rate
R = 1/2 convolutional codes, ρC = 0.39, is also about three and half times larger
than the parameter ρGV characterizing the Gilbert-Varshamov lower bound on the
minimum distance of general rate R = 1/2 block codes, that is, ρGV = 0.11. From
Table 8.1 it follows that also in the case when regular LDPC codes have parameters
J = 4,K = 8 we have this effect.

In [Len03] there is an analysis of the free distance for regular (3, 6) LDPC con-
volutional codes using the Markov permutor that yields the value ρ(conv)

JK = 0.125.

ITERATIVE DECODING OF LDPC CODES 529

vn1
vn2

vn3
vn4

vn5
vn6

cl

(a)

cl1 cl2 cl3

vnchannel

(b)

Figure 8.16 Illustration of belief propagation decoding for an (N, 3, 6) LDPC code. In (a)
an update at the constraint node cl (first phase) is shown and in (b) an update at the symbol
node vn (second phase) is shown.

8.5 ITERATIVE DECODING OF LDPC CODES

In this section, we begin by explaining the belief propagation decoding of LDPC
block codes using the Tanner graph introduced in Section 1.3. Then we generalize
the algorithm to LDPC convolutional codes.

Let v = v0v1 . . . vN−1 be a codeword of an LDPC block code transmitted over a
binary-input memoryless channel and let r = r0r1 . . . rN−1 be the received sequence.
The belief propagation algorithm is based on the computation of the a posteriori
probabilities (APPs),

P (vn = 0 | r) (8.129)

for the code symbols vn, n = 0, 1, . . . , N − 1.
First we describe the belief propagation decoding algorithm for regular (N, J,K)

LDPC codes in the case when transmission is over the binary erasure channel
(BEC) considered in Problem 1.27 (Fig. 1.22). In this case, rn ∈ {0, 1,∆},
n = 0, 1, . . . , N − 1, where ∆ is the erasure symbol.

The belief propagation decoding can be considered as message passing between
the symbol and constraint nodes of the Tanner graph (see Fig. 8.16). We assume that
in the beginning of the decoding process the symbols of the received sequence r are
associated with their corresponding symbol nodes. After each iteration, the decoder
reconstructs, if possible, some erased symbols and then, when we consider the BEC,
prescribes symbols of the obtained (modified) tentative sequence r′ = r′0r

′
1 . . . r

′
N−1

to the corresponding symbol nodes.
The operations of the message-passing decoder on the ith step, i = 1, 2, . . . , I ,

can be split into two phases, as illustrated in Fig. 8.16. We recall that l ∈ L(n)
enumerates the set of indices of the constraint nodes that are connected with the
nth symbol node vn and that n ∈ N (l) enumerates the set of indices of the symbol
nodes connected with the lth constraint node cl. In both iterative decoding phases,
the nodes receive messages from the adjacent connected nodes and combine them
using a computational rule to form new messages, which then are sent back to the
corresponding nodes during the next phase of the iterative process.

530 LOW-DENSITY PARITY-CHECK CODES

In the first phase, constraint node cl receives messages from the connected symbol
nodes and performs an update as illustrated in Fig. 8.16(a). It forms messages which
will be sent to the connected symbol nodes during the next phase of the process.
The message that the constraint node cl sends during the second phase to a given
connected symbol node, for example, vn1 in Fig. 8.16(a), depends on the messages
that this constraint node receives from all the other K − 1 connected symbol nodes,
that is, vn2

, vn3
, . . . , vn6

, during the first phase of the iteration. If at least one of
these messages was the erasure symbol ∆, then the constraint node also sends an
erasure symbol to the given symbol node. If a constraint node receives no erasure
symbols from these other nodes, that is, all these received symbols are either 0 or 1,
the constraint node sends during the second phase the modulo-2 sum of these symbols
to the given symbol node. The update at each constraint node cl is performed for
each symbol node vni , ni ∈ N (l), being the given node. This procedure is repeated
for all constraint nodes.

During the second phase the constraint node cl sends a message to a given con-
nected symbol node, for example, vn1 in Fig. 8.16(b). Symbol node vn1 forms
messages which will be sent to the connected constraint nodes during the first phase
of the next iteration step. The message addressed to constraint node cl1 depends
not only on the messages that this symbol node receives from all the other J − 1
connected constraint nodes, that is, cl2 and cl3 , but also on the tentative symbol r′n.
This update at the symbol node is performed for all constraint nodes cli , li ∈ L(n).
This procedure is repeated for all symbol nodes.

During the decoding process, the symbol nodes corresponding to the nonerased
symbols retain these nonerased symbols independently of the messages received
from their connected constraint nodes and continue to pass on the same messages.
If a symbol node keeping an erasure symbol receives from at least one connected
constraint node a 0 or a 1, it replaces the erasure symbol by this symbol and on all
the following iterations it passes on this symbol to its connected constraint nodes.

To formulate the decoding stopping rule, we introduce the definition of the stopping
set [RUr08]:

Definition A stopping set S is a subset of the set of symbol nodes such that all
constraint nodes which are connected to S are connected at least twice.

It can be shown that a symbol of a stopping set is included in at least two parity-
check equations.

Now we formulate the decoding stopping rule.
The decoding continues until either all symbol nodes have been assigned a 0 or

a 1 or the set of erasure symbols in r′ becomes a stopping set. In the first case, the
decoding is successful, that is, the tentative sequence r′ does not contain any erasure
symbols. In the latter case, the decoder declares a decoding failure.

ITERATIVE DECODING OF LDPC CODES 531

The decoding BP algorithm for the BEC can be formulated as follows. We
introduce the statistics z(0)

n , n = 0, 1, . . . , N − 1, such that

z(0)
n =

1 if rn = 0

−1 if rn = 1

0 if rn = ∆

(8.130)

Algorithm BPBEC (The BP algorithm for decoding the output of a BEC)
BPBEC1. Initialize i = 0 and z(0)

n , n = 0, 1, . . . , N − 1.

BPBEC2. While i > 0, for all n ∈ N (l) and l = 0, 1, . . . , L− 1, compute

y
(i)
ln =

∏
n′∈N (l)\n

z
(i−1)
n′

BPBEC3. For n = 0, 1, . . . N − 1, compute z(i)
n using the following rule:

• Set z(i)
n = a, a ∈ {1,−1}, if z(i−1)

n = a or at least one y(i)
ln = a,

l ∈ L(n)

• Set z(i)
n = 0 if z(i−1)

n = 0 and all y(i)
ln = 0, l ∈ L(n)

BPBEC4. The decoding is stopped at the ith step if z(i)
n = z

(i−1)
n for all n =

0, 1, . . . , N − 1; the decoder output is

v̂n =

0 if z(i)

n = 1

1 if z(i)
n = −1

∆ if z(i)
n = 0

Both the description and analysis of the belief propagation decoding algorithms
for LDPC codes for the BSC and AWGN channels are more complicated than for the
BEC. The algorithm is still founded on the message-passing principle in combina-
tion with the APP decoding of the constituent codes, which are single-error-detecting
codes. We describe the message-passing algorithm for a binary-input discrete memo-
ryless channel (DMC). The description of the decoding algorithm for the binary-input
AWGN channel is straightforward.

Suppose that a codeword v = v0v1 . . . vN−1 of a regular (N, J,K) LDPC block
code is transmitted over a binary-input DMC. Let r = r0r1 . . . rN−1 denote the
received sequence and let

πn(0)
def
= P (vn = 0) , n = 0, 1, . . . , N − 1 (8.131)

denote the a priori probability that vn equals zero. In the sequel we will assume that
P (vn = 0) = 1/2.

532 LOW-DENSITY PARITY-CHECK CODES

We introduce the log-likelihood ratio z(0)
n for the code symbol vn given the received

symbol rn. Assuming that P (vn = 0) = πn(0) = 1/2, we obtain

z(0)
n

def
= log

(P (rn | vn = 0)

P (rn | vn = 1)

πn(0)

1− πn(0)

)
= log

P (vn = 0 | rn)

P (vn = 1 | rn)
(8.132)

The statistics z(0)
n is called the intrinsic information about the code symbol vn.

We assume that in the beginning of the iterative decoding process each symbol node
memorizes the corresponding intrinsic information and keeps this information during
the decoding process.

Each symbol node is connected with J constraint nodes. In the first phase of the
first step of the iteration process, the nth symbol node, n = 0, 1, . . . , N−1, sends the
log-likelihood ratio z(0)

nl = z
(0)
n , called “message,” to the connected constraint nodes

l ∈ L(n) (Fig. 8.16(a)). Then the lth constraint node, which receives K messages
z

(0)
nl , n ∈ N (l), calculates the K log-likelihood ratios y(1)

ln , n ∈ N (l),

y
(1)
ln

def
= log

P (vn = 0 | {rn′ , n′ ∈ N (l) \ {n}})
P (vn = 1 | {rn′ , n′ ∈ N (l) \ {n}})

(8.133)

whereP (vn = 0 | {rn′ , n′ ∈ N (l) \ {n}}) andP (vn = 1 |{rn′ , n′ ∈ N (l) \ {n}})
are the conditional probabilities that vn = 0 and vn = 1, respectively, given the set
of the received symbols {rn′ , n′ ∈ N (l) \ {n}}. Since

P (vn = 0 | {rn′ , n′ ∈ N (l) \ {n}})

= P

 ∑
n′∈N (l)\{n}

vn′ = 0

∣∣∣∣∣∣ {rn′ , n′ ∈ N (l) \ {n}}

 (8.134)

and

P (vn = 1 | {rn′ , n′ ∈ N (l) \ {n}})

= P

 ∑
n′∈N (l)\{n}

vn′ = 1

∣∣∣∣∣∣ {rn′ , n′ ∈ N (l) \ {n}}

 (8.135)

we have

P (vn = 0 | {rn′ , n′ ∈ N (l) \ {n}})

=
1

2

(∏
n′∈N (l)\{n}

(P (vn′ = 1 | rn′) + P (vn′ = 0 | rn′))

+
∏

n′∈N (l)\{n}

(P (vn′ = 1 | rn′)− P (vn′ = 0 | rn′))

)
(8.136)

ITERATIVE DECODING OF LDPC CODES 533

and

P (vn = 1 | {r′n, n′ ∈ N (l) \ {n}})

=
1

2

(∏
n′∈N (l)\{n}

(P (vn′ = 1 | rn′) + P (vn′ = 0 | rn′))

−
∏

n′∈N (l)\{n}

(P (vn′ = 1 | rn′)− P (vn′ = 0 | rn′))

)
(8.137)

The log-likelihood ratio y(1)
ln can be expressed as a function of the (K − 1) log-

likelihood ratios z(0)
n′ , n′ ∈ N (l) \ {n}. Using the equality (ez

(0)

n′ − 1)/(ez
(0)

n′ + 1) =

tanh(z
(0)
n′ /2) we obtain, from (8.133), (8.136), and (8.137),

y
(1)
ln

def
= log

P (vn = 0 | {rn′ , n′ ∈ N (l) \ {n}})
P (vn = 1 | {rn′ , n′ ∈ N (l) \ {n}})

= log
1 +

∏
n′∈N (l)\{n} tanh(z

(0)
n′l/2)

1−
∏
n′∈N (l)\{n} tanh(z

(0)
n′l/2)

(8.138)

The calculation of the statistics y(1)
ln , l = 0, 1, . . . , L − 1, n ∈ N (l), completes the

first phase of the first step of the iterative decoding process.
During the second phase of the first step of the iterative decoding process, the

lth, l = 0, 1, . . . , L − 1, constraint node sends log-likelihood ratios y(1)
ln , n ∈ N (l),

to the corresponding connected symbol nodes. Then the nth symbol node, which
receive messages from the connected constraint nodes, calculates J log-likelihood
ratios z(1)

nl , l ∈ L(n),

z
(1)
nl

def
= z(0)

n +
∑

l′∈L(n)\{l}

y
(1)
l′n

= z(0)
n +

∑
l′∈L(n)\{l}

log
1 +

∏
n′∈N (l′)\{n} tanh(z

(0)
n′l′/2)

1−
∏
n′∈N (l′)\{n} tanh(z

(0)
n′l′/2)

(8.139)

Here y(1)
l′n , l′ ∈ L(n) \ {l}, are messages, called extrinsic information, which the nth

symbol node receives from the connected constraint nodes. Calculating the statistics
z

(1)
nl , l ∈ L(n), completes the second phase of the first step of the iteration.

Next we describe the ith step of the iterative process, i = 1, 2, . . . , I − 1. During
the first phase of the ith iteration, the nth symbol node sends messages z(i−1)

nl , which
were calculated in the previous step, to the connected constraint nodes l ∈ L(n).
Then the lth constraint node, l = 0, 1, . . . , L−1, which receivesK messages z(i−1)

nl ,
n ∈ N (l), from the connected symbol nodes, calculates the statistics y(i)

ln , n ∈ N (l)
(cf. (8.138))

y
(i)
ln = log

1 +
∏
n′∈N (l)\{n} tanh(z

(i−1)
n′l /2)

1−
∏
n′∈N (l)\{n} tanh(z

(i−1)
n′l /2)

(8.140)

534 LOW-DENSITY PARITY-CHECK CODES

During the second phase of the ith step, i = 1, 2, . . . , I − 1, of the iterative
decoding process the constraint node l, l = 0, 1, . . . , L−1, sends y(i)

ln as the message
to the connected nth symbol node, n ∈ N (l). Then the symbol node n calculates the
statistics (cf. (8.139))

z
(i)
nl = z(0)

n +
∑

l′∈L(n)\{l}

y
(i)
l′n

= z(0)
n +

∑
l′∈L(n)\{l}

log
1 +

∏
n′∈N (l′)\{n} tanh(z

(i−1)
n′l′ /2)

1−
∏
n′∈N (l′)\{n} tanh(z

(i−1)
n′l′ /2)

(8.141)

which this symbol node will use as messages in the following step of the iter-
ative process. This completes the second phase of the ith step of iteration for
i = 1, 2, . . . , I − 1.

Note that (8.141) is used for calculation of z(i)
nl for all steps of the decoding, except

the final Ith step. In the last step the decoder calculates only one log-likelihood ratio
z

(I)
n for the nth symbol node using

z(I)
n = z(0)

n +
∑
l∈L(n)

y
(I)
ln (8.142)

= z(0)
n +

∑
l∈L(n)

log
1 +

∏
n′∈N (l)\{n} tanh(z

(I−1)
n′l /2)

1−
∏
n′∈N (l)\{n} tanh(z

(I−1)
n′l /2)

(8.143)

Then it makes a hard decision v̂n about the symbol vn using the rule

v̂n =

{
0 if z(I)

n > 0

1 if z(I)
n < 0

(8.144)

(If z(I)
n = 0 the decoder flips a coin, choosing v̂n = 0 or v̂n = 1 with probability

1/2). Since the decoding algorithm can be reduced to alternatively evaluating sums
and products, the algorithm is sometimes called the sum-product algorithm [KFL01].

We have described the belief propagation algorithm in the case of a binary-input
DMC. Generalizations of the algorithm on other binary-input memoryless channels,
such as the binary-input additive white Gaussian noise channel, are straightforward.
In the latter case, instead of (8.132) we operate with the intrinsic information

z(0)
n =

f0(rn)

f1(rn)
(8.145)

where f0(rn) and f1(rn) are the conditional probability density functions of the
received symbol rn given that the transmitted symbol is equal to 0 and 1, respectively.
The BP algorithm for the DMC can be summarized as follows:

ITERATIVE DECODING OF LDPC CODES 535

Algorithm BPDMC (The BP algorithm for decoding the output of a DMC)
BPDMC1. Initialize i = 0 and z(0)

n , n = 0, 1, . . . , N − 1.

BPDMC2. For all l ∈ L(n) and n = 0, 1, . . . , N − 1, set z(0)
nl = z

(0)
n .

BPDMC3. While 0 < i < I , for all n ∈ N (l) and l = 0, 1, . . . , L− 1, compute

y
(i)
ln = log

1 +
∏
n′∈N (l)\{n} tanh(z

(i−1)
n′l /2)

1−
∏
n′∈N (l)\{n} tanh(z

(i−1)
n′l /2)

BPDMC4. For all l ∈ L(n) and n = 0, 1, . . . N − 1, compute

z
(i)
nl = z(0)

n +
∑

l′∈L(n)\{l}

y
(i)
l′n

BPDMC5. For i = I , all n ∈ N (l), and l = 0, 1, . . . , L− 1, compute

y
(I)
ln = log

1 +
∏
n′∈N (l)\{n} tanh(z

(I−1)
n′l /2)

1−
∏
n′∈N (l)\{n} tanh(z

(I−1)
n′l /2)

BPDMC6. For all n = 0, 1, . . . , N − 1, compute

z(I)
n = z(0)

n +
∑
l∈L(n)

y
(I)
ln

BPDMC7. For all n = 0, 1, . . . , N − 1, choose the estimation v̂n according to
(8.144).

Consider iterative decoding of (ms, J,K) LDPC convolutional codes for binary-
input DMC or AWGN channels. We assume that the information sequence

u = u[0,∞) = u0u1 . . .ut . . . (8.146)

and the code sequence

v = v[0,∞) = v0v1 . . .vt . . . (8.147)

are semi-infinite sequences and that the syndrome former is a semi-infinite matrix

HT
[0,∞) =

 HT
0 (0) HT

1 (1) . . . HT
ms

(ms)
HT

0 (1) HT
1 (2) . . . HT

ms
(ms + 1)

.

We shall restrict ourselves to describe decoding of a regular (ms, J,K) LDPC

convolutional code encoded by a systematic encoder of rateR = 1/2 with parameters

536 LOW-DENSITY PARITY-CHECK CODES

b = 1 and c = 2 when HT
0 (t), t = 0, 1, . . ., is the two-dimensional column vector

(1 1)T. The first symbol v2t of the tuple vt = v2tv2t+1 is an information symbol
and the second symbol v2t+1 is a parity symbol. Since each parity-check equation
is associated with one of the columns of the syndrome former, we can enumerate
constraint nodes according to the enumeration of the columns ofHT

[0,∞). Particularly,
symbol nodes corresponding to v2t and v2t+1 are always connected with the tth
constraint node. In other words, t ∈ L(2t), t ∈ L(2t + 1), 2t ∈ N (t), and
2t+ 1 ∈ N (t). Although we consider a particular structure of LDPC convolutional
codes, the algorithm can be easily modified to general LDPC convolutional codes.

There are two variants of the belief propagation decoding algorithm for LDPC
convolutional codes, an algorithm with parallel updating and an algorithm with
on-demand updating. Both algorithms assume pipeline implementations. We shall
describe the algorithm with parallel updating in detail. For our description we shall
use the Tanner graph.

Although the Tanner graph of the LDPC convolutional code has an infinite number
of nodes, the distance between two symbol nodes that are connected to the same
constraint node is limited by the code memory. This allows continuous decoding
with a decoder that operates on a finite window sliding along the received sequence,
similar to a Viterbi decoder with finite back-search limit (see Section 5.5). The
decoding of two symbols that are at least 2(ms + 1) time instants apart can be
performed independently, since these symbols cannot participate in the same parity-
check equation.

A pipeline decoder of a regular (ms, J,K) LDPC convolutional code consists
of set of I separate processors {Di}Ii=1. At the tth time instant the processors
of the pipeline decoder operate within the set of symbol nodes vn, n ∈ T (t) =
{2t, 2t + 1, . . . , 2t − 2I(ms + 1), 2t − 2I(ms + 1) + 1} located in a window of
width 2I(ms + 1). We assume that the intrinsic information z(0)

n (see (8.132) and
(8.145)) for the symbols vn, n ∈ T (t), is available at the decoder. The ith processor,
i = 1, 2, . . . , I , operates at the tth time instant with the tith constraint node, where
ti = t − (i − 1)(ms + 1), and the K symbol nodes connected with this constraint
node. Each processor operates in a window of width (in symbols) 2(ms + 1) such
that the windows in which two processors operate do not overlap and each symbol is
covered by one window. Particularly, the window in which the ith processor operates
at the tth time instant includes the symbols v2ti and v2ti+1.

Let Ti(t) denote the set of K symbol nodes with which processor Di operates at
the tth time instant. We shall say that at the tth time instant processor Di activates
these symbol nodes. Simultaneously, Di activates the constraint node cti .

At the tth time instant, the decoder keeps in memory two sets of decision statistics.
The first set, Z(t) = {znl(t), n ∈ T (t), l ∈ L(n)}, consists of 2J(ms + 1)I
statistics, a counterpart to the statistics (8.141). The second set, Y(t) = {yln(t), l =
t, t− 1, . . . , t− (I − 1)(ms + 1), n ∈ N (l)}, consists of K(ms + 1)I statistics, a
counterpart of statistics (8.140). Particularly, at t = 0, we have

znl(0) =∞, n < 0, l ∈ L(n) (8.148)

(that is, the corresponding symbols vn are known to be 0).

ITERATIVE DECODING OF LDPC CODES 537

At time instant t the decoder updates the sets of the statistics Z(t − 1) and
Y(t − 1) and replaces them by the sets of statistics Z(t) and Y(t) according to
an algorithm which we shall describe later. Particularly, the decoder adds 2J new
statistics znl(t) = z

(0)
n , n = 2t, 2t+1, l ∈ L(n), and excludes 2J statistics znl(t−1),

n = 2t− 2I(ms + 1)− 2, 2t− 2I(ms + 1)− 1, l ∈ L(n), which will not participate
in the future decoding process. The decoder also sets yln(t− 1) = 0, n = 2t, 2t+ 1,
l ∈ L(n).

Next we describe the updating process at the tth time instant, t = 1, 2, . . ., for
the ith processor, i = 1, 2, . . . , I . It consists of two phases. During the first phase,
the vertical step, the symbol nodes n ∈ Ti(t) send messages (log-likelihood ratios
znti(t−1)) to the constraint node cti . These log-likelihood ratios were calculated by
these symbol nodes in the previous steps of the iterative decoding process analogously
to the statistics z(i)

nl in the iterative decoding of LDPC block codes (cf. (8.141)). Then
the constraint node cti calculates the statistics (cf. (8.140))

ytin(t) = log
1 +

∏
n′∈N (ti)\n tanh(zn′ti(t− 1)/2)

1−
∏
n′∈N (ti)\n tanh(zn′ti(t− 1)/2)

, n ∈ Ti(t) (8.149)

and replaces the statistics ytin(t − 1), i = 1, 2, . . . , I , in Y by the statistics ytin(t).
These statistics will be used in the following decoding process.

During the second phase, that is, the horizontal step, of the updating process at
the tth time instant, t = 1, 2, . . ., the ith processor, i = 1, 2, . . . , I − 1, calculates
new statistics z2til(t), l ∈ L(2ti), l 6= ti, and z2ti+1,l(t), l ∈ L(2ti + 1), l 6= ti,
according to

znl(t) = z(0)
n +

∑
l′∈L(n)\l

yl′n(t− 1), n = 2ti, 2ti + 1 (8.150)

The other symbol and constraint nodes, n ∈ T (t), l ∈ L(n), do not change their
statistics znl and yln,

znl(t) = znl(t− 1), n ∈ T (t), n /∈
I⋃
i=1

Ti(t), l ∈ L(n)

yln(t) = yln(t− 1), n ∈ T (t), n /∈
I⋃
i=1

Ti(t), l ∈ L(n)

(8.151)

The decoder will use the newly calculated statistics in the following steps of the
iterative decoding process.

During the second phase of the updating process the Ith processor calculates the
statistics

zn(t) = z(0)
n +

∑
l∈L(n)

yln(t− 1), n = 2tI (8.152)

538 LOW-DENSITY PARITY-CHECK CODES

Then it makes the hard decision with respect to the information symbol v2tI (cf.
(8.144)):

v̂2tI =

{
0 if z2tI ≥ 0,

1 otherwise
(8.153)

and output this symbol.
We have described a variant of pipeline decoding of regular LDPC convolutional

codes with parallel updating. More complicated and more effective variants of
pipeline decoding with on-demand updating are considered in [EnZ99, PJS08]. In
this case the updating of the statistics ytin(t) by the ith processor, i = 1, 2, . . . , I , at
the tth time instant is the same as for the decoding algorithm with parallel updating,
that is, it follows (8.149). But instead of (8.150) for calculation of the statistics znl(t)
we should use20

znl(t) =

{
znl(t− 1) l = ti

znl(t− 1) + ytin(t)− ytin(t− 1) l ∈ L(n), l 6= ti
(8.154)

In other words, the activated symbol nodes receive messages only from the activated
constraint nodes (with parallel updating, the activated symbol nodes receive messages
from all connected constraint nodes; nonactivated constraint nodes send messages
based on nonupdated statistics calculated during the previous steps).

Equation (8.154) assumes that the constraint node cti does not send statistics
ytin(t) to the connected symbol nodes as in the basic case. Instead it sends the
difference between the new and old statistics y, that is, ytin(t) − ytin(t − 1). The
Ith processor makes the hard decision with respect to the information symbol v2tI

(cf. (8.144)) using the rule

v̂2tI =

{
0 if z2tI ,tI (t− 1) + ytI ,2tI (t)− ytI ,2tI (t− 1) ≥ 0,

1 otherwise
(8.155)

and output this symbol.

8.6 ITERATIVE LIMITS AND THRESHOLDS

In Section 1.1 we introduced the Shannon limit for communication with rate R
over the AWGN channel. It is defined as the lowest signal-to-noise ratio per bit,
Eb/N0 = ηsh(R), for which reliable communication over the channel is possible.
For the BEC/BSC, the Shannon limit is defined as the largest erasure/crossover
probability for which it is possible to communicate reliably over the channel with
code rate R. In all cases we assume no limitations on the used coding or decoding
methods.

20Note that the symbol node cn, n ∈ Ti(t), receives only one message, ytin(t), not J as in decoding of
LDPC block codes.

ITERATIVE LIMITS AND THRESHOLDS 539

Suppose that we study communication over the AWGN channel and that we are
restricted to use a certain class of codes, for example, LDPC block or convolutional
codes, and a class of iterative decoding algorithms, for example, belief propagation
decoding algorithms. We denote the family of LDPC block codes of length N by
FN and the family of iterative decoding algorithms for these codes by Dblock.

Let P (I)
b (C,Ab) denote the decoding bit error probability of a code C, C ∈ FN ,

after I decoding iterations using a decoding algorithm Ab, Ab ∈ Dblock.

Definition The iterative decoding limit for the code family FN and the decoding
algorithm family Dblock used to communicate over the binary-input AWGN channel
is ηid if, for all Eb/N0 ≥ ηid, any ε > 0, and sufficiently large positive integers
N and I , there exists a code C, C ∈ FN , and an iterative decoding algorithm Ab,
Ab ∈ Dblock, such that

P
(I)
b (C,Ab) < ε (8.156)

Furthermore, if Eb/N0 < ηid, then there exists an ε > 0 such that for any N and I ,
any code C, C ∈ FN , and any decoding algorithm Ab, Ab ∈ Dblock, we have

P
(I)
b (C,Ab) ≥ ε (8.157)

We denote a family of LDPC convolutional codes of syndrome former memory
ms by Fms , a family of iterative decoding algorithms for these codes by Dconv. Let
P

(I)
b (C,Ac) denote the decoding bit error probability of a convolutional code C,
C ∈ Fms , after I decoding iterations using decoding algorithm Ac, Ac ∈ Dconv.
Then the iterative decoding limit for LDPC convolutional codes can be defined
analogously to the iterative decoding limit for LDPC block codes for the binary-input
AWGN channel (see Problem 8.21).

In contrast to the Shannon limits, which are well known for most memoryless
channels, iterative decoding limits are presently not known for LDPC codes with
belief propagation decoding. Because of this, we can only characterize these iterative
decoding limits by lower and upper bounds. Obviously, the Shannon limit is a lower
bound for the iterative decoding limit for the AWGN channel. An upper bound for
the iterative decoding limit when we communicate over the AWGN channel can be
calculated using density evolution. Such an upper bound is called a threshold and
denoted ηth; thus, we have

ηsh ≤ ηid ≤ ηth (8.158)

It is straightforward to generalize the definitions of the iterative limit and threshold
to the BEC and BSC. Since the definitions are essentially identical for both channels,
we formulate the definitions only for the BEC.

Consider the BEC with erasure probability δ and a family FN of binary LDPC
block codes of length N . Let Dblock denote a family of iterative decoding algo-
rithms for the BEC. Let P (I)

b (C,Ab) denote the bit error probability after I decoding
iterations for a code C, C ∈ FN , and for a decoding algorithm Ab, Ab ∈ Dblock.

540 LOW-DENSITY PARITY-CHECK CODES

Definition The δid is called the iterative decoding limit for the code family FN and
decoding algorithm familyDblock used to communicate over the BEC if for all erasure
probabilities δ ≤ δid, any ε > 0, and sufficiently large positive integersN and I there
exists a code C, C ∈ FN , and decoding algorithm Ab, Ab ∈ Dblock, such that

P
(I)
b (C,Ab) < ε (8.159)

Furthermore, if δ > δid, there exists an ε > 0 such that for any N and I , any code C,
C ∈ FN , and any decoding algorithm Ab, Ab ∈ Dblock, we have

P
(I)
b (C,Ab) ≥ ε (8.160)

The threshold δth for an LDPC code used together with the BEC such that

δth ≤ δid (8.161)

can be calculated by the density evolution method, which in the case of belief
propagation decoding for the BEC is called probability evolution.

In the previous section we described the belief propagation decoding of regular
(N, J,K) LDPC codes for the BEC using a Tanner graph. Now we explain this
decoding method using the computational tree introduced in Section 8.1 (cf. Fig. 8.2).

Consider an arbitrary 2`0-cyclefree regular (N, J,K) LDPC block code. We
describe the decoding of a symbol vn using the tree presentation of a vn-clan (cf.
Fig. 8.2). We can assume that the decoding of a symbol vn starts from level 2`0
(the `0th generation) of the tree and that for the symbols of this generation only the
intrinsic information from the channel is available, that is, a symbol is known only if
it has not been erased by the channel. A symbol of the previous (`0−1)th generation
is known not only if it is not erased by the channel but also if, in at least one of its
families, no symbols has been erased. Therefore, in the first decoding iteration we
can reconstruct some of the erased symbols in the (`0 − 1)th generation. The same
method can be used in the ith iteration for reconstruction of symbols in the (`0− i)th
generation. The probability p(i) that after the ith iteration a symbol in the (`0 − i)th
generation remains erased is given by

p(0) = δ

p(i) = f(p(i−1))
def
= δ(1− (1− p(i−1))K−1)J−1, i > 0 (8.162)

Note that (8.162) is valid only if the iterations are independent, that is, if the number
of iterations I does not exceed `0.

The process of calculating the erasure probabilities δ = p(0) → p(1) → · · · p(i) →
· · · → p(I) described by equation (8.162) is called probability evolution. This process
can be used for analysing the asymptotic behavior of the belief propagation algorithm
when N →∞, I = `0 →∞. In fact, suppose that for given δ = δ1 the probability
p(I) → 0 when I → ∞. Then δ1 is a lower bound on δid, that is, δ1 ≤ δid. To find
the threshold δth, we have to find the maximum value δ1 for which p(I) → 0 when
I →∞.

The following example illustrates the calculation of the threshold for an LDPC
block code used to communicate over BEC.

ITERATIVE LIMITS AND THRESHOLDS 541

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

y = δ0

y = x

y = f(x)

x

y

Figure 8.17 Illustration of the evolution of the probability p(i).

EXAMPLE 8.10

Figure 8.17 shows the function y = f(x) defined by (8.162) for J = 3,K = 4,
and δ = 0.43. This function is below the main diagonal y = x. Then p(I) → 0,
when I →∞ and we conclude that δth ≥ δ.

Since the probability evolution process cannot be infinite, we have to stop the
process either when p(i) becomes sufficiently small or when it remains larger than
some positive constant after sufficiently many iterations. In the first case, we may
either increase δ and repeat the process or declare current value δ as the threshold.
In the second case, we decrease δ and repeat the process.

Next we shall establish what is meant by “sufficiently small p(i)” and what is
meant by “sufficiently many iterations.”

Theorem 8.19 Consider the probability evolution process for a regular (N, J,K)
LDPC code with J > 2 used together with the BEC with erasure probability δ.
Suppose that during the i0th step of the process the probability p(i0) becomes less
than the breakout value

pbr
def
= δ−1/(J−2)(K − 1)−(J−1)/(J−2) (8.163)

Then p(I) → 0 when I →∞.

Proof : Consider (8.162) for J > 2. From the inequality

1− (1− x)K−1 < (K − 1)x, x ∈ (0, 1) (8.164)

542 LOW-DENSITY PARITY-CHECK CODES

it follows that

p(i) < δ((K − 1)p(i−1))(J−1) = (γp(i−1))J−1 (8.165)

where γ = δ1/(J−1)(K − 1). From (8.165) it follows that

p(I) < (γp(I−1))J−1 < γ(J−1)(γp(I−2))(J−1)2

(8.166)

< · · · < (γ
J−1
J−2 p(i0))(J−1)(I−i0)

If p(i0) < pbr = δ−1/(J−2)(K − 1)−(J−1)/(J−2), then p(I) → 0 when I → ∞.
Particularly, δ = p(0) < pbr = δ−1/(J−2)(K − 1)−(J−1)/(J−2) if δ < 1/(K − 1).

From Theorem 8.19 it follows that a “sufficiently small” p(i) is pbr. “Sufficiently
many iterations I” can be determined as follows. For example, if we let I = 1000
and after 1000 steps of the probability evolution process have p(I) > pbr then we stop
the process, decrease δ, and repeat the process with a smaller value of δ.

For J = 2 the breakout value pbr can be found analytically from (8.165). It is
equal to 1/(K − 1) (see Problem 8.18).

Next we describe the density evolution process for a 2`0-cyclefree regular (N, J,K)
LDPC code used together with the AWGN channel (the density evolution process
for a DMC can be described analogously). Let v = v0v1 . . . vN−1 denote a block
of the transmitted code symbols and r = r0r1 . . . rN−1 denote the corresponding
block of the received symbols. Assume that the belief propagation iterative decoding
algorithm described in Section 8.5 is used with a total number of iterations I = `0.
As for the BEC, it is convenient to study the iterative decoding process of a symbol
vn0

in the tree-shaped graph, grown from the symbol vn0
.

Let N` denote the set of symbol nodes at level 2`, ` = 0, 1, . . . , `0, that is, the
`th generation of the vn0

-clan, and let L` denote the set of constraint nodes at level
2`+ 1, that is, the families of symbols of the ` generation. Let L`(n) denote the set
of families of a symbol vn of the `th generation and let N`+1(l) denote the set of
direct descendants of a symbol node vn of the `th generation which belongs to family
l, l ∈ L`(n). The intrinsic information z(0)

n about the symbol vn is defined as

z(0)
n = log

f0(rn)

f1(rn)
(8.167)

where

f0(r) =
1√
πN0

e−
(r−
√
Es)

2

N0

f1(r) =
1√
πN0

e−
(r+
√
Es)

2

N0

(8.168)

and Es is energy per symbol. Then the probability density functions ϕ(0)(z) and
ψ(0)(z) of the random variable z(0)

n , given that vn = 0 and vn = 1, respectively, are

ϕ(0)(z) =
1√

2πσ2
e−

(z−µ)2

2σ2

ψ(0)(z) =
1√

2πσ2
e−

(z+µ)2

2σ2

(8.169)

ITERATIVE LIMITS AND THRESHOLDS 543

where µ = 4Es/N0, σ2 = 16Es/N0. From (8.169) it follows that

ϕ(0)(z) = ψ(0)(−z) (8.170)

and

ϕ(0)(z)

> ψ(0)(z) if z > 0

= ψ(0)(z) if z = 0

< ψ(0)(z) if z < 0

(8.171)

The decoder starts from the `0th generation of the vn0 -clan and proceeds level by
level up towards the clan head. In the ith iteration, i = 1, 2, . . . , `0, all symbol nodes
n, n ∈ N`0−i+1, send messages z(i−1)

nl to the corresponding constraint nodes of the
level 2(`0 − i) + 1 such that the symbol nodes n, n ∈ N`0−i+1(l), send messages
z

(i−1)
nl to constraint node l. The constraint node l, l ∈ L`0−i, receives messages
z

(i−1)
nl from K − 1 nodes n ∈ N`0−i+1(l) and calculates the statistics (cf. (8.140))

y
(i)
ln = log

1 +
∏
n∈N`0−i+1(l) tanh(z

(i−1)
nl /2)

1−
∏
n∈N`0−i+1(l) tanh(z

(i−1)
nl /2)

, l ∈ L`0−i(n), n ∈ N`0−i

(8.172)
Then it sends the message y(i)

ln to the node n, n ∈ N`0−i, such that l, l ∈ L`0−i(n).
Symbol node n, n ∈ N`0−i, calculates the log-likelihood ratios

z
(i)
nl = z(0)

n +
∑

l′∈L`0−i(n)

y
(i)
l′n, n ∈ N`0−i(l), l ∈ L`0−i−1 (8.173)

which will be used during the following step of iterations. This concludes the ith
step of iterations.

The probability distributions of the random variables z(i)
nl depends on i and vn but

not on n and l. Let ϕ(i)(z) and ψ(i)(z) be the probability density functions of the
random variable z(i)

nl conditioned on vn = 0 and vn = 1, respectively. We know that
ϕ(0)(z) = ψ(0)(−z) and that ϕ(0)(z) ≥ ψ(0)(z) if z ≥ 0 and ϕ(0)(z) < ψ(0)(z)
if z < 0. Because of symmetry with respect to the two hypotheses, vn = 0 and
vn = 1, the analogous equations are valid for i > 0, namely ϕ(i)(z) = ψ(i)(−z),
i = 1, 2, . . ., and ϕ(i)(z) ≥ ψ(i)(z) if z ≥ 0, ϕ(i)(z) < ψ

(i)
1 (z), if z < 0. Note that

the ML hard decision with respect to symbol vn, n ∈ Nl0−i, during the ith step of
the iteration process is

v̂n =

{
0 if z(i)

n ≥ 0

1 otherwise
(8.174)

The density evolution process consists of consecutive numerical calculations of
the probability density functions ϕ(0)(z)→ ϕ(1)(z)→ · · · → ϕ(I)(z).

We can ask the same question as in the case of the probability evolution process
for the BEC: When do we have to stop the density evolution process? Suppose that
in parallel to observing the density evolution process we observe the evolution of the

544 LOW-DENSITY PARITY-CHECK CODES

two functionals connected with the density function ϕ(i)(z). The first one is the error
probability π(i)

e of hard decision21 v̂n with respect to a symbol vn, n ∈ Nl0−i, during
the ith step of the iteration process,

π(i)
e =

∫ 0

−∞
ϕ(i)(z)dz =

∫ ∞
0

ψ(i)(z)dz (8.175)

We can observe the hard decision error probability evolution process π(0)
e →

π
(1)
e → · · · → π

(i)
e → · · · → π

(I)
e . If we would prove that for a given Eb/N0 we

have π(I)
e → 0 when I → ∞, then this Eb/N0 is an upper bound on the iterative

decoding limit ηid. Analogously to the BEC case, we may stop the density evolution
process when π(i)

e became sufficiently small.
The second functional is the Bhattacharyya parameter of the random variable z(i)

nl ,

B(i) =

∫ ∞
−∞

√
ϕ(i)(z)ψ(i)(z)dz =

∫ ∞
−∞

√
ϕ(i)(z)ϕ(i)(−z)dz, i = 0, 1, . . .

(8.176)
From (8.169) and (8.176) we conclude that

B(0) = e−
Es
N0 (8.177)

where Es/N0 is the signal-to-noise ratio per symbol, that is,

Es

N0
= R

Eb

N0
(8.178)

The evolution process of the Bhattacharyya parameter is B(0) → B(1) → · · · →
B(i) → · · · → B(I).

From the definition of the Bhattacharyya parameter it follows thatB(i) is an upper
bound on the error probability π(i)

e ,

π(i)
e = P

(
z(i)
n ≤ 0

∣∣∣ vn = 0
)

=

∫ 0

−∞
ϕ(i)(z)dz (8.179)

≤
∫ 0

−∞

√
ϕ(i)(−z)
ϕ(i)(z)

ϕ(i)(z)dz (8.180)

≤
∫ ∞
−∞

√
ϕ(i)(z)ϕ(i)(−z)dz = B(i) (8.181)

where we use the inequality ϕ(i)(−z)/ϕ(i)(z) ≥ 1 for −∞ < z < 0. From (8.181)
it follows that we may stop the density evolution process not only when π(i)

e becomes

21Strictly speaking, π(i)
e is the probability of a hard decision error made on the basis of a message (8.173)

sent by a symbol node to one of its neighboring constraint nodes; that is, it does not include the information
sent by this constraint node to the symbol node, but π(i)

e can be easily calculated in the process of density
evolution. It is an upper bound on the error probability of a hard decision made on the basis of all messages
from all connected constraint nodes.

ITERATIVE LIMITS AND THRESHOLDS 545

sufficiently small but also when B(i) becomes sufficiently small. The following the-
orem establishes what is a “sufficiently small” value of the Bhattacharyya parameter.

Theorem 8.20 Consider communication over the binary-input AWGN channel with
signal-to-noise ratio per symbol Es/N0. Suppose that a regular (N, J,K) LDPC
block code with J > 2 is used and that we observe the Bhattacharyya parameter
evolution process B(0) → B(1) → · · · → B(i) → · · · → B(I). Suppose that during
the i0th step of the process the Bhattacharyya parameter B(i0) becomes less than the
breakout value

Bbr = e
Es

N0(J−2) (K − 1)−(J−1)/(J−2) (8.182)

Then B(I) → 0 when I →∞.

The proof of the theorem is analogous to the proof of Theorem 8.19 and follows
from the inequality

B(i) < B(0)
(

(K − 1)B(i−1)
)J−1

(8.183)

similarly to (8.165) and proved22 in [LTZ05].
Theorem 8.20 establishes the breakout value for the Bhattacharyya parameter

B(i). Using this theorem we can establish the breakout value directly for the error
probability π(i)

e . In fact,

B(i) = 2

∫ ∞
0

√
ϕ(i)(z)ϕ(i)(−z)dz

≤ 2

√∫ ∞
0

ϕ(i)(z) dz

∫ ∞
0

ϕ(i)(−z) dz

= 2

√
π

(i)
e (1− π(i)

e), i = 0, 1, . . . (8.184)

where we have used Cauchy’s inequality. From (8.184), it follows that it is sufficient
to observe the evolution of π(i)

e up to the moment when it becomes less than the
breakout value πbr for the error probability of hard decision v̂n,

πbr =
B2

br

4
=

e
− 2Es
N0(J−2)

4(K − 1)2(J−1)/(J−2)
(8.185)

We shortly summarize our description of the density evolution process for a
regular (N, J,K) LDPC code. First we fix the maximum number of iterations I .
During each step of the density evolution process we choose a signal-to-noise ratio
Eb/N0 = Es/N0R. Then we perform the density evolution process ϕ(i)(z) with
maximum number of iterations I . In parallel we observe the evolution of the error

22If we would replace the B(0) in (8.183) by δ and B(i) by p(i) we obtain the inequality (8.165) for
the BEC. It is interesting to note that for the BEC the Bhattacharyya parameter B(0) equals the erasure
probability δ. Thus, Theorem 8.20 is valid not only for the AWGN channel but also for the BEC if we
would replace e−Es/N0 by δ.

546 LOW-DENSITY PARITY-CHECK CODES

probability for hard decision π(i)
e . If during the ith step, i ≤ I , we have π(i)

e ≤ πbr,
then we stop the density evolution process and either declare the corresponding
Eb/N0 as the threshold or decrease Eb/N0 and repeat the density evolution process
for a new Eb/N0. If π(i)

e > πbr for all i ≤ I , then we increase Eb/N0 and repeat the
density evolution process for a new signal-to-noise ratio.

Calculating the thresholds for LDPC convolutional codes is more complicated.
We shall restrict ourselves to an analysis of the thresholds of regular (ms, J,K)
LDPC convolutional codes from the ensembles C(M,J,K, T) and C(M,J,K). (The
ensemble C(M,J,K) = C(M,J,K, T)|T=∞ was introduced in Section 8.2.)

If we study thresholds for regular (ms, J,K) LDPC convolutional codes with
bi-infinite codewords we will get the same thresholds as those considered above for
regular (N, J,K) LDPC block codes. But we can improve these thresholds if we
study terminated regular (ms, J,K) LDPC convolutional codes.

The syndrome former of a code from C(M,J,K, T) is shown in Fig. 8.9. In terms
of the syndrome former (8.27) the code has the parameters ms = J − 1 = 2, b = M ,
c = 2M , J = 3, and K = 6. Generalization to more general LDPC convolutional
codes is straightforward. The entries HT

i (t + i) of the syndrome former (8.27) are
composed from permutation matrices,

HT
i (t+ i) =

(
P

(1)
i (t+ i)

P
(2)
i (t+ i)

)
, i = 0, 1, J − 1, t = 0, 1, . . . , T − 1 (8.186)

where P (k)
i (t + i), k = 1, 2, are M ×M permutation matrices. All other entries

of the period section of the syndrome former are allzero matrices. By choosing the
permutation matrices P (k)

i (t + i), k = 1, 2, i = 0, 1, J − 1, t = 0, 1, . . . , T − 1,
randomly and independently of each other such that all M ! values are equiprobable,
we obtain the ensemble C(M,J,K, T) of time-varying LDPC convolutional codes.

To calculate the thresholds of the codes from C(M,J,K) we consider transmission
of terminated code sequences over a channel with binary-input symbols. We assume
that we use a code from C(M,J,K) and that the encoder starts from the zero state
and then sends binary code sequences of block length N = 2ML,

v = v[0,L−1] = v0v1 . . .vt . . .vL−1 (8.187)

where vt = (v2Mt v2Mt+1 . . . v2Mt+2M−1), t = 0, 1, . . . , L − 1. We assume that
the first M symbols, v(1)

t = (v2Mt v2Mt+1 . . . v2Mt+M−1), of subblock vt are the
encoder input symbols and the last M symbols, v(2)

t = (v2Mt+M v2Mt+M+1 . . .
v2Mt+2M−1), are the parity-check symbols. Among theML encoder input symbols,
the M(L − τ) first symbols are the information symbols and the last Mτ symbols
form a zero-tail (ZT) termination (cf. Section 4.1). The symbols of the tail bring the
encoder from any state at time t = L− 1− τ to the allzero state at time t = L− 1.

The termination procedure described in [LSC10] leads to the following:

Theorem 8.21 Almost all codes in C(M,J,K) can be terminated with a tail of length
τ = ms + 1 = J blocks, that is, 2MJ bits.

ITERATIVE LIMITS AND THRESHOLDS 547

A sketch of the proof is given in [LSC10].
Terminating LDPC convolutional codes is not only a practical method of trans-

mitting finite blocks of data symbols but also a convenient instrument for theoretical
performance assessment. By terminating LDPC convolutional codes we reduce the
investigation of bi-infinite code sequences to the investigation of LDPC block codes
and we can apply analysis methods developed for the latter.

It follows from Theorem 8.21 that in the ensemble C(M,J,K) almost all resulting
terminated codes has rate

R =
L− τ

2L
=

1

2

(
1− J

L

)
(8.188)

Note that the rate loss is negligible for L � J . Although we consider a particular
structure of LDPC convolutional codes, the terminating algorithm can be easily
modified to general LDPC convolutional codes.

For the analysis of iterative decoding of a particular code symbol vn, it is con-
venient to consider a tree-shaped graph for this symbol, showing how different
code symbols contribute to the decoding of this symbol as the iterations proceed. In
Fig. 8.18 we show the first three levels of the tree in the case of terminated LDPC con-
volutional codes from the ensemble C(M,J,K) when J = 3, K = 6. The figure il-
lustrates the trees of the clan head vn at time instant t = 0 whenn = 0, 1, . . . , 2M−1,
at time instant t = 1 when n = 2M, 2M + 1, . . . , 4M − 1, and at time instant t = 2
when n = 4M, 4M + 1, . . . , 6M − 1. Note that for terminated LDPC convolutional
codes the tree of the clan head vn, n = 2(L−1)M, . . . , 2LM−1, is similar to that of
vn, n = 0, 1, . . . , 2M−1, and the tree of vn, n = 2(L−2)M, . . . , 2(L−1)M−1, is
analogous to that of n = 2M, 2M +1, . . . , 4M −1 since the encoder input sequence
is a zero state driving sequence.

The difference between the computational tree for terminated LDPC convolutional
codes from C(M,J,K) and the computational tree for bi-infinite regular LDPC
convolutional codes from C(M,J,K) is the following. In the second case from all
nodes at odd levels stem K − 1 edges. In the first case there are nodes at odd levels
from which stem fewer than K − 1 edges, namely, 1, 3, . . ., or K − 2 edges. This
leads to irregularities in the Tanner graph of the terminated LDPC convolutional code.
As a consequence, the constraint nodes of lower degrees provide better protection
for the symbols at the beginning and the end of a block. Besides these irregularities
the computational trees are identical. Particularly, we may apply the bound (8.53)
for the number of independent iterations saying that `0 → ∞ when M → ∞ since
terminating LDPC convolutional codes can only increase `0.

In our threshold analysis of LDPC convolutional codes from C(M,J,K) we
follow the principles described in the beginning of this section for regular LDPC
block codes.

Consider an arbitrary 2`0-cyclefree code from C(M,J,K) and the tree of the vn0 -
clan. We assume that the decoding of the symbol vn0 starts from level 2`0. Consider
the ith iteration of the decoding procedure, where 1 ≤ i ≤ `0. In contrast to the
tree description of a regular LDPC block code, considered in Section 8.1, where each

548 LOW-DENSITY PARITY-CHECK CODES

t = 0 t = 1 t = 2

t = 0

(a)

t = 1 t = 2 t = 3

t = 1

(b)

t = 2 t = 3 t = 4

t = 2

(c)

Figure 8.18 The first three levels of the computational trees for t = 0, t = 1, and t = 2
with J = 3.

symbol and constraint node was characterized by the level of the computational tree,
in our case each node is also characterized by the instant t in the Tanner graph.

For terminated codes from C(M,J,K) all symbol nodes n can be divided into
three groups. The symbol nodes n corresponding to the first 2M and the last 2M
symbols vn, n ∈ G0, G0 = {0, 1, . . . , 2M − 1, 2(L− 1)M, . . . , 2LM − 1}, belong
to the first group. The symbol nodes n corresponding to symbols vn, n ∈ G1,
G1 = {2M, 2M + 1, . . . , 4M − 1, 2(L − 2)M, . . . , 2(L − 1)M − 1}, belong to
the second group. All other symbol nodes correspond to n ∈ G2, G2 = {4M, 4M +
1, . . . , 2(L− 2)M − 1}, and belong to the third group.

ITERATIVE LIMITS AND THRESHOLDS 549

Similarly, all constraint nodes c` of the Tanner graph for codes in C(M,J,K)
can be divided into three groups. The 2M constraint nodes c` corresponding to the
first M and the last M parity-check equations defining the code belong to the first
group, that is, ` ∈ H0 = {0, 1, . . . ,M − 1, (L − 1)M, . . . , LM − 1}. Each of
these equations includes two symbols. The 2M constraint nodes c` corresponding
to parity-check equations that include four symbols belong to the second group, that
is, ` ∈ H1, H1 = {M,M + 1, . . . , 2M − 1, (L − 2)M, . . . , (L − 1)M − 1}. The
remaining (L − 4)M constraint nodes c` belong to the third group, that is, ` ∈ H2,
H2 = {2M, 2M + 1, . . . , 3M − 1, (L − 3)M, . . . , (L − 2)M − 1}. These latter
constraint nodes correspond to parity-check equations including six symbols.

Next we analyze the BEC with the erasure probability δ. Let p(i)
{t→(t+j)}, t =

0, 1, . . . , L − 1, j = 0, 1, . . . , J − 1, be the probability that during the ith step,
1 ≤ i ≤ `0, of the iterative decoding process a symbol node at time instant t,
t = 0, 1, . . . , L − 1, located at level 2(`0 − i + 1) of a computational tree, sends
the erasure symbol to a connected constraint node at time instant t + j at the level
2(`0− i)+1. Let q(i)

{(t+j)→t} be the probability that on the ith step, 1 ≤ i ≤ `0, of the
iterative decoding process a constraint node at time instant t+ j, t = 0, 1, . . . , L−1,
j = 0, 1, . . . , J − 1, located at level 2(`0 − i) + 1 of a computational tree sends the
erasure symbol to a connected symbol node at time instant t located at level 2(`− i).
Analogously to (8.162) we obtain

q
(i)
{(t+j)→t} = 1−

(1− p(i−1)
{t→(t+j)})

∏
j′ 6=j

(1− p(i−1)
{(t+j−j′)→(t+j)})

2

 (8.189)

and
p

(i)
{t→(t+j)} = δ

∏
j′ 6=j

q
(i)
{(t+j′)→t} (8.190)

By definition, the boundary condition is

p
(i)
{t→t′} = 0 if t < 0 or t > L− 1 (8.191)

where t′ is any interger.
For regular LDPC block codes and bi-infinite regular LDPC convolutional codes,

the distribution of the messages exchanged during the ith iteration is the same for all
nodes regardless of their positions in the Tanner graph (cf. (8.162)). In the terminated
LDPC convolutional case, while nodes at the same time instant behave identically,
the messages from nodes at different time instants can behave differently and must
be tracked separately.

Thus, the probability evolution procedure in our case involves calculating the
probabilities p(i)

{t→(t+j)} during the ith iteration, i = 1, 2, . . ., for all time instances,
t = 0, 1, . . . , L − 1, and j = 0, 1, . . . , J − 1. It follows from Theorem 8.19 that
if J > 2, it is sufficient to observe the probability evolution up to iteration I , when
the maximum of p(I)

{t→(t+j)} over all t and j becomes less than the breakout value
pbr = δ−1/(J−2)(K − 1)−(J−1)/(J−2) defined by (8.163).

550 LOW-DENSITY PARITY-CHECK CODES

Table 8.2 BEC thresholds δ(conv)
JK of terminated LDPC convolutional codes for the

ensembles C(M,J,K) with different J and K. For comparison the thresholds δ(block)
JK

for the corresponding regular (N, J,K) LDPC block codes are given.

(J,K) R δ
(conv)
JK δ

(block)
JK

(3, 6) 0.49 0.488 0.429
(4, 8) 0.49 0.497 0.383
(5, 10) 0.49 0.499 0.341

Analyses of the thresholds of LDPC convolutional codes for the BEC are given
in [LSC10] and [KRU11]. In Table 8.2 the BEC thresholds, calculated in [LSC10],
for terminated regular LDPC convolutional codes from the ensemble C(M,J,K) are
given for different (J,K). In each case L is chosen so that there is a rate loss of 2%,
that is , R = 0.49. The first column in Table 8.2 shows the values J and K of the
underlying convolutional code, the second column the rate R of the terminated code,
the third column the threshold δ(conv)

JK for terminated LDPC convolutional codes, and
the fourth column the threshold δ(block)

JK for regular (N, J,K) LDPC block codes with
the same J and K. We observe that the thresholds of the terminated convolutional
codes are much better than those for the corresponding block codes. The reason
is that the constraint nodes for either end of the Tanner graph in the terminated
convolutional codes have lower degrees than those for the block codes; that is, the
terminated convolutional codes have a structured irregularity.

Terminated convolutional codes with higher J have better thresholds than those
with lower J . This interesting behavior is different from that of regular (N, J,K)
LDPC block codes, where, for a fixed rate, increasing J typically results in worse
thresholds, since it is necessary to increase K accordingly.23 For regular (N, J,K)
LDPC block codes, the loss due to the higher constraint node degrees outweighs the
gain resulting from the higher symbol node degrees, adversely affecting performance.
However, in the terminated regular LDPC convolutional code case, the codes with
higher J still have strong constraint nodes with low degrees at either end of the
Tanner graph. Thus the symbols at the ends are better protected for codes with larger
symbol degrees, and this results in better thresholds. Furthermore, the thresholds of
terminated regular LDPC convolutional codes practically coincide with the thresholds
of the corresponding regular LDPC block codes for maximum a posteriori probability
(MAP) decoding; these thresholds are called MAP thresholds (see [LSC10] and
[KRU11]). If the density of the parity-check matrices increases, then the MAP
threshold of LDPC codes approaches the Shannon limit of the given rate. In other
words, by using LDPC convolutional codes we can reach the channel capacity even
if the decoding complexity remains nonexponential.

23Clearly, symbol nodes with higher degrees are stronger than those with lower degrees, but higher degree
constraint nodes are weaker than lower degree constraint nodes.

ITERATIVE LIMITS AND THRESHOLDS 551

The threshold analysis of terminated regular LDPC convolutional codes used to
communicate over the binary-input AWGN channel follows the same thread as the
threshold analysis of terminated regular LDPC convolutional codes for the BEC
channel. Namely, the density evolution procedure requires that we observe the
probability density functions for nodes at different time instants.

Consider the ith decoding iteration, where 1 ≤ i ≤ `0, and a symbol node
corresponding to symbol vn = 0 at time instant t, t = 0, 1, . . . , L − 1, located
at level 2(`0 − i + 1) of a computational tree. Let z(i)

nl be the message (8.173)
that this symbol node sends to a connected constraint node and let ϕ(i)

{t→(t+j)}(z),
t = 0, 1, . . . , L − 1, j = 0, 1, . . . , J − 1, be the probability density functions24 of
this message.

Analogously, consider the ith decoding iteration, where 1 ≤ i ≤ `0, and a symbol
node corresponding to symbol vn = 1 at time instant t, t = 0, 1, . . . , L− 1, located
at level 2(`0− i+1) of a computational tree. Let ψ(i)

{t→(t+j)}(z), t = 0, 1, . . . , L−1,

j = 0, 1, . . . , J − 1, be the probability density functions of the message z(i)
nl that

this symbol node sends to a connected constraint node. It follows from symmetry
arguments that ϕ(i)

{t→(t+j)}(z) = ψ
(i)
{t→(t+j)}(−z). The Bhattacharyya parameter

B
(i)
{t→t+j} of these messages, j = 0, . . . , J − 1, is equal to

B
(i)
{t→t+j} =

∫ ∞
−∞

√
ϕ

(i)
{t→(t+j)}(z)ψ

(i)
{t→(t+j)}(z)dz (8.192)

=

∫ ∞
−∞

√
ϕ{t→(t+j)}(i)(z)ϕ

(i)
{t→(t+j)}(−z)dz (8.193)

The Bhattacharyya parameter B(0) of the intrinsic information z(0)
n is given by

(8.177).
The density evolution process for terminated regular LDPC convolutional codes

from C(M,J,K) consists of recurrent calculation sets of probability density functions
{ϕ(0)
{t→(t+j)}(z)} → {ϕ(1)

{t→(t+j)}(z), } → · · · → {ϕ(I)
{t→(t+j)}(z), } for all t =

0, 1, . . . , L− 1, j = 0, 1, . . . , J − 1.
In parallel to the density evolution we observe the Bhattacharyya parameter evo-

lution {B(0)
{t→(t+j)}(z)} → {B

(1)
{t→(t+j)}(z)} → · · · → {B

(I)
{t→(t+j)}(z)} for all

t = 0, 1, . . . , L− 1, j = 0, 1, . . . , J − 1. Here B(0)
{t→(t+j)}(z) = B(0) is defined by

(8.177).
Let B(i)

max denote the largest value of B(i)
{t→(t+j)} over all edges in the graph, that

is,

B(i)
max = max

t,j
{B(i)
{t→(t+j)}}, t = 0, 1, . . . , L− 1, j ∈ {0, . . . , J − 1} (8.194)

24Note that the probability density function of the messages sent by the symbol vn to one of its neighboring
constraint nodes at time instant t+ j depends only on the symbol, its position (time instant) t in the Tanner
graph, the time instant increment j, and iteration i.

552 LOW-DENSITY PARITY-CHECK CODES

The inequalities

B
(i)
{t→(t+j)} ≤ B

(i)
max < B(0)

(
(K − 1)B(i−1)

max

)J−1

(8.195)

are a generalization of (8.183).
Suppose now that, after the ith iteration, i ≤ `0, all Bhattacharyya parameters

B
(i)
{t→(t+j)} become smaller than the breakout value (8.182),

Bbr =
(
B(0)

)−1/(J−2)

(K − 1)−(J−1)/(J−2) (8.196)

Then it follows from (8.195) that if the number of independent iterations I = `0 goes
to infinity, the bit error probability of all symbols converges to zero.

Instead of observing the evolution of the Bhattacharyya parameter B(i)
{t→(t+j)},

we can also observe the evolution of the sets of the probabilities of hard decision
error π(i)

{t→(t+j)}, i = 0, 1, . . . , I , defined analogously; see (8.175). From (8.184), it
follows that it is sufficient to observe the evolution of

π(i)
max = max

t,j
{π(i)
{t→(t+j)}}, t = 0, 1, . . . , L− 1, j ∈ {0, . . . , J − 1} (8.197)

until it becomes less than the breakout value (8.185). This means that we can
perform density evolution until the hard decision error probabilities π(i)

t→(t+j) reach
a sufficiently low level defined by (8.185).

In order to calculate numerically the thresholds of terminated codes from the
ensemble C(M,J,K) it is possible, in principle, to use the standard parallel updating
schedule. In this case we must evaluate numerically, iteration by iteration, the
sets of probability density functions {ϕ(i)

{t→(t+j)}(z), t = 0, 1, . . . , L − 1, j =

0, 1, . . . , J − 1}. Note that, in addition to the node degrees J and K, the termination
length L is another parameter that influences the result. While increasing L reduces
the rate loss of the terminated code, the computational burden of performing density
evolution becomes heavier for larger L.

Both the number of different probability density functions to be tracked and the
number of iterations needed for the effect of the strong nodes at the ends of the
Tanner graph to propagate to the time instants in the center increase with L. Also,
for the AWGN channel, the complexity of the density evolution is much greater than
for the BEC, where a simple one-dimensional recursion formula can be used. In
[LSC10] a sliding window updating schedule was introduced. It reduces the number
of operations required for the threshold computation.

Using the parallel updating schedule and sliding window updating schedule de-
scribed in [LSC10] the thresholds of the terminated regular LDPC convolutional
codes from C(M,J, 2J) for the binary-input AWGN channel were calculated. In Ta-
ble 8.3, the thresholds (Eb/N0)(conv)∗

JK calculated using the parallel updating schedule
are given for different J . The values of L were chosen such that there is a rate loss
of 2%, that is, R = 0.49. The same values can be obtained using the sliding window
updating schedule. Also shown in the table are the threshold values (Eb/N0)(conv)∗∗

JK ,

BRAIDED BLOCK CODES* 553

Table 8.3 Thresholds for the ensembles C(M,J, 2J) with different J for the
binary-input AWGN channel.

(J,K) R (Eb/N0)(conv)∗
JK R (Eb/N0)(conv)∗∗

JK (Eb/N0)(block)
JK

(3, 6) 0.49 0.55 dB 0.5 0.46 dB 1.11 dB
(4, 8) 0.49 0.35 dB 0.5 0.26 dB 1.26 dB
(5, 10) 0.49 0.30 dB 0.5 0.21 dB 2.05 dB

calculated for the case L → ∞, that is, R = 1/2, using the sliding window up-
dating schedule. Finally, the rightmost column of the table shows the thresholds
(Eb/N0)(block)

JK of the regular (N, J,K)|K=2J LDPC block codes with the same J
and K = 2J .

The results in Table 8.3 for the AWGN channel are similar to the results in
Table 8.2 for the BEC. In particular, we observe that the thresholds of regular LDPC
convolutional codes are much better than those of the corresponding regular LDPC
block codes and that the thresholds improve with increasing J .

Simulation results for the BEC of some randomly chosen terminated LDPC convo-
lutional codes with J = 3 (L = 100) and J = 4 (L = 200) are given in Fig. 8.19 and
compared to the corresponding regular LDPC block codes. The choice of L leads to
an equal rateR = 0.49 for both LDPC convolutional codes25. The curves in Fig. 8.19
are obtained with randomly selected permutation matrices of size M = 6000 under
standard belief propagation decoding with the parallel updating schedule. In order
to demonstrate that low error rates are achievable close to the calculated thresholds,
a maximum number of 5000 iterations were simulated to allow a progression of the
reliable messages through all time instants t = 1, . . . , L. Note that, although the
overall block length N = 2LM increases with L, for a fixed M the performance
improves with decreasing L at the expense of a higher rate loss. On the other hand,
after some sufficiently largeL, convergence to a steady behavior is expected since the
potential strength of a convolutional code in C(M,J,K) is determined by its overall
constraint length ν = 2M(ms + 1), which is independent of the termination length
L. While the number of required decoding iterations during the parallel updating
schedule increases significantly with L, the analysis suggests that a sliding win-
dow decoder can provide a good performance complexity trade-off with an iteration
number per decoded symbol that is independent of the termination length L.

8.7 BRAIDED BLOCK CODES*

We begin with the definition of a subclass of braided block codes (BBCs) called
tightly braided block codes (TBBCs) and then we consider sparsely braided block
codes (SBBCs). There are similarities between the TBBCs and Elias’ product codes
[Eli54], which are their block counterparts,26 and similarities between SBBCs and

25Both selected codes can be terminated within τ = ms = J − 1 time instants.

554 LOW-DENSITY PARITY-CHECK CODES

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5

10−5

10−4

10−3

10−2

10−1

100

δ

B
it

E
ra

su
re

R
at

e

(3, 6) conv.
(4, 8) conv.
(3, 6) block
(4, 8) block

Figure 8.19 Simulation results for the BEC of terminated LDPC convolutional codes from
the ensemblesC(M, 3, 6)|M=6000 andC(M, 4, 8)|M=6000 (dashed lines) forL = 100 andL =
200, respectively. Simulation results of regular LDPC block codes composed of permutation
matrices of the same size M = 6000 are shown for comparison (solid lines). The vertical
dashed-dotted lines show the convergence thresholds for the different ensembles.

k1

n1

k2

n2

Column
parity

Parity
on

parity

Row
parity

Information
bits

C1(n1, k1)

C2(n2, k2)

Figure 8.20 An (n1n2, k1k2) product code.

BRAIDED BLOCK CODES* 555

ṽ
(2)
t1

ṽ
(2)
t2

v̂
(1)
(t−2)3

ṽ
(2)
t3

v̂
(1)
(t−1)2 v̂

(1)
(t−1)3

σ
(1)
t

σ
(2)
t

ṽ
(1)
t1 ṽ

(1)
t2 ṽ

(1)
t3

ut v̂
(1)
t1 v̂

(1)
t2 v̂

(1)
t3

v̂
(2)
(t−2)3 v̂

(2)
(t−1)2 v̂

(2)
t1

v̂
(2)
(t−1)3 v̂

(2)
t2

v̂
(2)
t3

ut

t

(a)

ro
w

co
ns

tr
ai

nt
s

co
lu

m
n

co
ns

tr
ai

nt
s

(b)

Figure 8.21 Array (a) and graph (b) representations of a tightly braided code with (7, 4)
Hamming constituent codes.

GLDPC codes considered in Section 8.1
A conventional product code can be defined by a rectangular (n2 × n1) array that

stores the code symbols as illustrated in Fig. 8.20. The information bits are placed in
the upper left corner of the array. The symbols stored in each row of the array form a
codeword v(1) of the horizontal (n1, k1) constituent block code. The symbols stored
in each column of the array form a codeword v(2) of the vertical (n2, k2) constituent
block code.

We consider TBBCs using (µ, κ) Hamming code as constituent codes. The array
representation of a TBBC using Hamming (7, 4)-codes, µ = 7, κ = 4, as constituent
codes is demonstrated in Fig. 8.21(a). The array is of infinite length and has a width
equal to the length µ = 7 of the constituent codes. The area with already encoded
bits is shaded gray. There are two constituent codes, a horizontal code and a vertical
code. We shall use double notation of the symbols in the array. The symbol ṽ(1)

ti

denotes the ith, i = 1, 2, 3, input symbol of the horizontal code at the tth time instant

26There exist several sliding counterparts of Elias product codes; see, for example, [BaT97, FHB89].

556 LOW-DENSITY PARITY-CHECK CODES

(the fourth input symbol is the information bit ut), the symbol ṽ(2)
ti denotes the ith,

i = 1, 2, 3, input symbol of the vertical code at the tth time instant, the symbol v̂(1)
ti

denotes the ith, i = 1, 2, 3, output symbol of the horizontal code at the tth time
instant, and the symbol v̂(2)

ti denotes the ith, i = 1, 2, 3, output symbol of the vertical
code at the tth time instant.

At every time instant t, t = 0, 1, . . ., a new information bit ut is placed on the main
diagonal, indicated by the bold squares, and encoded. The input of the horizontal
encoder is κ = 4 symbols. These are ut and the three parity bits

ṽ
(1)
t =

(
ṽ

(1)
t1 ṽ

(1)
t2 ṽ

(1)
t3

)
(8.198)

previously encoded by the vertical encoder and located on the tth row on the left side
of the main diagonal. Using these symbols, the horizontal encoder calculates three
new parity bits

v̂
(1)
t =

(
v̂

(1)
t1 v̂

(1)
t2 v̂

(1)
t3

)
(8.199)

and places them on the tth row on the right side of the main diagonal. Similarly, the
vertical encoder calculates the parity bits

v̂
(2)
t =

(
v̂

(2)
t1 v̂

(2)
t2 , v̂

(2)
t3

)
(8.200)

using ut and the three parity bits of the horizontal code

ṽ
(2)
t =

(
ṽ

(2)
t1 ṽ

(2)
t2 ṽ

(2)
t3

)
(8.201)

previously calculated by the horizontal encoder and located in the tth column straight
above the main diagonal. Then the encoder places them on the tth column below the
main diagonal.

We describe the encoding process in more detail in the case of direct encoder
realization. Both the horizontal (e = 1) and vertical (e = 2) constituent codes use
the (7, 4) Hamming code with parity-check matrix

H[1,7] =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
1 1 1 0 0 0 1

 (8.202)

Let H[t1,t2] denote the matrix composed of the columns t1, . . . , t2 of the matrix
(8.202), and let HT

[t1,t2] be the transposed matrix H[t1,t2].

At time t, the encoder e keeps in memory the set of σ(e)
t enumerated according to

the output of encoder e, where

σ
(e)
t = {v̂(e)

(t−3)3, v̂
(e)
(t−2)2, v̂

(e)
(t−2)3, v̂

(e)
(t−1)1, v̂

(e)
(t−1)2, v̂

(e)
(t−1)3}, e = 1, 2 (8.203)

This is the set of parity-check symbols calculated by encoder e before. The set σ(e)
t

is the state of the constituent encoder e at time t. When an information symbol ut

BRAIDED BLOCK CODES* 557

enters the TBBC encoder, the constituent encoder e, e = 1, 2, calculates the parity
triple v̂(e)

t = (v̂
(e)
t1 v̂

(e)
t2 v̂

(e)
t3) using the equation

v̂
(e)
t = ṽ

(e)
t HT

[1,3] + utH
T
[4,4], e = 1, 2 (8.204)

where ṽ(e)
t =

(
v̂

(3−e)
(t−3)3v̂

(3−e)
(t−2)2, v̂

(3−e)
(t−1)1

)
, e = 1, 2. Then, the sets σ(e)

t+1, e = 1, 2, are
updated as

σ
(e)
t+1 = {v̂(e)

(t−2)3, v̂
(e)
(t−1)2, v̂

(e)
(t−1)3, v̂

(e)
t1 , v̂

(e)
t2 , v̂

(e)
t3 } (8.205)

The output of the TBBC encoder is v = v1v2 . . .vt . . ., where vt = vt1vt2 . . . vt7
and

vti =

ut i = 1

v̂
(1)
t(i−1) 2 ≤ i ≤ 4

v̂
(2)
t(i−4) 5 ≤ i ≤ 7

(8.206)

Equation (8.204) describes the direct realization of the TBBC encoder in Fig. 8.21.
It can be generalized to an arbitrary TBBC.

The array in Fig. 8.21(a) can be considered as composed of three ribbons (permu-
tors):

(i) a central ribbon of width 1 (identity convolutional permutor),

(ii) an upper ribbon of width 3 (convolutional permutor with minimum delay δ = 1
and maximum delay ∆ = 3),

(iii) a lower ribbon of width 3 (convolutional permutor with minimum delay δ = 1
and maximum delay ∆ = 3).

The central ribbon is used for storing the information bits and its function is
described by the identity convolutional permutor P (0). The upper ribbon stores the
horizontal parity-check symbols and its function is described by a (trivial27) multiple
convolutional permutor P (1) with width w = 3, multiplicity (3, 3), and overall
constraint length ν = 6. The lower ribbon stores the vertical parity-check symbols
and its function is described by a transposed (trivial) multiple convolutional permutor
(P (2))T of the same width, the same multiplicity, and the same overall constraint
length.

In general, the rate of a TBBC is given by

R = R(1) +R(2) − 1 (8.207)

where R(1) and R(2) are the rates of the horizontal and vertical constituent codes
[Tru04]. In our case, the rates of the constituent codes are R(1) = R(2) = 4/7 and
the rate of the TBBC is R = 1/7.

27We call the multiple convolutional permutors P (1) and P (2) trivial since all their array cells are storage
symbols.

558 LOW-DENSITY PARITY-CHECK CODES

As convolutional codes, TBBCs are characterized by their encoder memory m
and overall constraint length ν. In our example, the encoder needs to store 12
previously calculated horizontal and vertical parity-check symbols. Therefore, the
overall constraint length of this encoder realization is ν = 12, which is the sum of the
overall constraint length of the MCPs. The minimum symbol delay is δ = 0 and the
maximum symbol delay ∆ = 3. The symbols stay in the encoder up to a maximum
of three time instances; therefore the memory of the encoder is m = 3.

Along with the array representation of a TBBC, it is interesting to consider the
Tanner graph representation. However, it is convenient to use the alternative graph
representation of a TBBC given in Fig. 8.21(b). In this graph, the constraints imposed
by the horizontal constituent codes are represented by the left nodes; the constraints
imposed by the vertical codes are represented by the right nodes. Each edge of
the graph corresponds to a code symbol. Therefore, seven edges are coming out
of each node and they correspond to the 7 bits of a constituent code. From the
array and graph representations of a TBBC in Fig. 8.21 we observe that none of the
horizontal codewords contains more than one symbol of a vertical codeword and, vice
versa, none of the vertical codewords contains more than one symbol of a horizontal
codeword. This property is fulfilled for any BBCs, both tightly and sparsely braided.
It guarantees that the girth of the Tanner graph of a code is lower-bounded by 8, not
by 4, as it is for conventional LDPC codes.

The memory cells storing symbols in the array do not have to be adjacent and do
not have to be close either. They can be spread apart from each other like the symbols
in the arrays of the multiple convolutional permutors considered in Section 8.3. Codes
described by sparse arrays we call sparsely braided block codes. Due to the larger
memory and to the absence of short loops in their corresponding graph representation,
they have better performance under iterative decoding than TBBC.

The array representation of a SBBC with Hamming (7, 4)-constituent codes is
found in Fig. 8.22, where dark shaded squares indicate array cells with stored symbols.
The array consists of three ribbons. The gray shaded cells indicate the cells keeping
a code symbols. The central ribbon of width w(0) = 1 is described by the identity
permutor P (0) and the upper and lower ribbons are described by the symmetric
multiple convolutional permutors P (1) and (P (2))T, respectively. The permutors
have the same period T = 7, the same multiplicity (3, 3), and the same memory
m = 7. The overall width of the array is w = 15 and the overall constraint length of
the SBBCs is ν = 27.

In analogy with the TBBC encoder, the SBBC in Fig. 8.22 places the information
symbols ut on the central ribbon. The triple ṽ(1)

t = ṽ
(1)
t1 ṽ

(1)
t2 ṽ

(1)
t3 is stored in the three

leftmost gray shaded cells of the tth row, and ṽ(2)
t = ṽ

(2)
t1 ṽ

(2)
t2 ṽ

(2)
t3 is stored in the three

uppermost gray shaded cells of the tth column. The constituent encoders calculate
the parity-check symbols v̂(1)

t and v̂(2)
t in analogy with the TBBC encoder. The

symbols v̂(1)
t are placed in the three rightmost gray shaded cells of the tth row and

the symbols v̂(2)
t are stored in the three lowermost gray shaded cells of the tth column.

BRAIDED BLOCK CODES* 559

ṽ
(2)
t1

ṽ
(2)
t2

ṽ
(2)
t3

ṽ
(1)
t1 ṽ

(1)
t2 ṽ

(1)
t3 v̂

(1)
t1 v̂

(1)
t2 v̂

(1)
t3

v̂
(2)
t1

v̂
(2)
t2

v̂
(2)
t3

ut0

t

Figure 8.22 Array representation of a sparsely braided code with (7, 4) Hamming constituent
codes.

560 LOW-DENSITY PARITY-CHECK CODES

ṽ
(2)
t1

ṽ
(2)
t2

ṽ
(2)
t4

ṽ
(2)
t4

ṽ
(2)
t5

ṽ
(2)
t6

ṽ
(2)
t7

ṽ
(1)
t1 ṽ

(1)
t2 ṽ

(1)
t3 ṽ

(1)
t4 ṽ

(1)
t5 ṽ

(1)
t6 ṽ

(1)
t7 u

(1)
t1 u

(1)
t2 u

(1)
t3 v̂

(1)
t1 v̂

(1)
t2 v̂

(1)
t3 v̂

(1)
t4

u
(2)
t1

u
(2)
t2

u
(2)
t3

v̂
(2)
t1

v̂
(2)
t2

v̂
(2)
t3

v̂
(2)
t4

ut0

t

Figure 8.23 Array representation of a sparsely braided code with (15, 11) Hamming
constituent codes.

The output of the encoder at time t, t = 0, 1, . . ., is again vt = (vt1vt2 . . . vt7), where

vti =

ut, i = 1

v̂
(1)
t(i−1), 2 ≤ i ≤ 4

v̂
(2)
t(i−4), 5 ≤ i ≤ 7

(8.208)

Figure 8.23 illustrates another array describing a SBBC with (15, 11) Hamming
codes as constituent codes, µ = 15, κ = 11. The overall code rateR of this SBBC is
given by (8.207) and equals 7/15. Therefore the information block size is now 7 bits.
As in Fig. 8.22, the array in Fig. 8.23 consists of three ribbons. The central ribbon
has width w(0) = 1 and is described by the identity permutor P (0). The upper and
lower ribbons have widthw(1) = w(2) = 13 and are described by the MCPsP (1) and
(P (2))T, respectively. These permutors have the same memory m = 13, the same
multiplicity (7, 7), and the same width w(1) = w(2) = m. The encoder memory is

BRAIDED BLOCK CODES* 561

m = 13, the overall width of the array describing the SBBC is 2m+ 1 = 27, and the
overall encoder constraint length is ν = 102.

Suppose that, at the tth time instance, an information subblock

ut = ut0u
(1)
t u

(2)
t (8.209)

where u(e)
t = u

(e)
t1 u

(e)
t2 u

(e)
t3 , enters the eth encoder, e = 1, 2. Then, the symbol ut0

is placed in the tth position of the central ribbon, the symbols u(1)
t are placed in

the three leftmost positions of the tth row of the upper ribbon, and the symbols u(2)
t

are placed in the three uppermost positions of the tth column of the lower ribbon.
Next, the horizontal encoder reads the seven symbols ṽ(1)

t =
(
ṽ

(1)
t1 ṽ

(1)
t2 . . . ṽ

(1)
t7

)
,

located in the tth row of the lower ribbon, concatenates them with the information
symbols (ut0u

(1)
t), calculates the parity-check bits v̂(1)

t =
(
v̂

(1)
t1 v̂

(1)
t2 v̂

(1)
t3 v̂

(1)
t4

)
, and

stores them in the four rightmost gray shaded positions of the tth row. Similarly,
the vertical encoder reads ṽ(2)

t =
(
ṽ

(2)
t1 ṽ

(2)
t2 . . . ṽ

(2)
t7

)
, located in the tth column

of the upper ribbon, concatenates them with (ut0u
(2)
t), calculates the parity-check

bits v̂(2)
t =

(
v̂

(2)
t1 v̂

(2)
t2 v̂

(2)
t3 v̂

(2)
t4

)
, and stores them in the four lowermost gray shaded

positions of the tth column. The encoded SBBC sequence is v = v1v2 . . .vt . . .,
where vt = (vt1vt2 . . . vt15) and

vti =

ut0 i = 1

u
(1)
t(i−1) 2 ≤ i ≤ 4

u
(2)
t(i−4) 5 ≤ i ≤ 7

v̂
(1)
t(i−7) 8 ≤ i ≤ 11

v̂
(2)
t(i−4) 12 ≤ i ≤ 15

(8.210)

We have described symmetric BBCs with (7, 4) and (15, 11) Hamming constituent
codes. The generalization to other symmetric BBCs is straightforward and given in
[FTL09].

Simulation results of SBBCs after I = 50 iterations using the described pipeline
decoder taken from [FTL09] are shown in Fig. 8.24. There, the bit error rate Pb
for rate R = 7/15 codes using (15, 11) Hamming constituent codes with memory
m = 105 and m = 4004 are shown. Their performance has a waterfall effect
very close to the threshold for the R = 7/15 code, which is equal to 0.86 dB. For
comparison, the bit error rates Pb of two R = 1/2 GLDPCs based on the (15, 11)
Hamming codes with block lengths N = 3840 and N = 30720 are shown [LeZ99].

The Pb for a rate R = 16/32, memory m = 2244 asymmetric SBBC using
extended (32, 16) and (16, 11) Hamming codes as horizontal and vertical constituent
codes is also shown in the middle. Also there, the performance at the threshold for
the R = 16/32 code, which is equal to 1.13 dB, is given.

The most right curve corresponds to the rate R = 21/31, memory m = 2250
SBBC using identical (31, 26) Hamming constituent codes. As the previous codes,

562 LOW-DENSITY PARITY-CHECK CODES

the performance has also the waterfall behavior at the threshold for rate R = 21/31,
that is, at 1.65 dB.

8.8 COMMENTS

LDPC block codes were discovered by Gallager [Gal62, Gal63] in the early 1960s.
Gallager’s remarkable discovery was mostly ignored by coding researchers for almost
20 years. Important exceptions are two papers by Zyablov and Pinsker [ZyP74,
ZyP75], where two low-complexity decoding algorithms for LDPC codes when
communicating over the BEC and BSC were suggested, for example, the bit-flipping
algorithm. In 1981 Tanner [Tan81] published a new interpretation of LDPC codes
from a graphical point of view. Margulis described the first explicit construction of
codes on graphs [Mar82]. The Tanner and Margulis papers were also ignored by
coding researchers until the 1990s when coding theorists began to investigate codes
on graphs and iterative decoding of these codes. MacKay and Neal rediscovered
Gallager’s LDPC codes [MaN96]. The LDPC codes became strong competitors for
error control in many communication and digital storage systems.

Iterative decoding methods were introduced by Elias as early as 1954 [Eli54].
Gallager used an iterative APP decoding algorithm for decoding of low-density
parity-check block codes [Gal62, Gal63]. He showed that good performances could
be achieved with relatively simple decoding methods.

Jimenez and Zigangirov extended Gallager’s concept of LDPC block codes to
convolutional codes [JiZ99, Jim06]. Distances of LDPC convolutional codes were
studied in [STL07, TZC10]. Iterative decoding threshold analyses for LDPC con-
volutional codes are given in [LSC10] and [KRU11]. Braided block codes were
described and analyzed in [LTZ02, TLZ03], and [FTL09].

Finally, although they are beyond the scope of this book, we would like to mention
the important contributions of Wiberg, Loeliger, and Kötter to iterative decoding of
codes defined on general graphs [WLK95, Wib96].

PROBLEMS

8.1 Draw a Tanner graph of the code defined by the transposed parity-check matrix
(syndrome former)

HT =

1 1 1 0 0
1 1 1 0 0
0 1 1 1 0
1 0 0 1 1
0 0 1 1 1
1 1 0 1 0
0 0 1 1 1
0 1 0 1 1
1 0 1 0 1
1 1 0 0 1

What are the parameters of the LDPC code described by this syndrome former?

PROBLEMS 563

0.6 0.8 1 1.2 1.4 1.6
10−5

10−4

10−3

10−2

10−1

Eb/N0

Pb

GLDPC,N = 3840

GLDPC,N = 30720

m = 105,R = 7/15

m = 4004,R = 7/15

Threshold,R = 7/15

m = 2244,R = 16/32

Threshold,R = 16/32

m = 2250,R = 21/31

Threshold,R = 21/31

Figure 8.24 Simulation results of SBBCs for the AWGN channel. SBBCs of memory
m = 105 and rate R = 7/15; memory m = 4004 and rate R = 7/15; memory m = 2244
and rateR = 16/32; memorym = 2250 and rateR = 21/31 are considered. For comparison
the Pb of two GLDPCs based on (15, 11) Hamming codes are included.

564 LOW-DENSITY PARITY-CHECK CODES

8.2 Draw a Tanner graph of the code from the ensemble B2(12, 2, 3) considered in
Example 8.2. Show that each constraint node is connected with exactly one symbol
node from each of the three groups on which the symbol nodes are divided.

8.3 Consider the code given in Example 8.2 with parameters N = 12, J = 2,
K = 3. Construct three codewords having weight wH = 2N/K = 8.

8.4 The transposed parity-check matrix HT given by (8.12) can be written as a
combination of the submatrices HT

1 and HT
2 , that is, HT = (HT

1 H
T
2).

a) Show that the submatrixHT
1 can be constructed by rowwise interleaving of

the three 4× 4 matrices

P (11) =

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 P (12) =

0 0 0 1
0 1 0 0
0 0 0 1
1 0 0 0

 P (13) =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 1 0

b) Choose matrices P (21), P (22), and P (23) such that their rowwise interleav-

ing gives the submatrix HT
2 .

8.5 Suppose that you are constructing a GLDPC code having (µ, κ) Hamming
codes as the constituent code from an (N, 2,K) LDPC code. How should the
parameters N , K, µ, and κ be related?

8.6 Prove formula (8.23).

8.7 Construct a syndrome former of a (4, 2, 4) LDPC convolutional code from the
following transposed parity-check matrix of an LDPC block code:

1 0 0 0
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0
0 0 0 1

8.8 Use the unwrapping method and construct a syndrome former for an (ms =
4, J = 3,K = 6) LDPC convolutional code from the transposed parity-check matrix

1 1 0 0
1 0 0 1
0 1 1 0
0 0 1 1
1 0 0 1
0 0 1 1
1 1 0 0
0 1 1 0

PROBLEMS 565

of an (N = 8, J = 2,K = 4) LDPC block code.

8.9 Construct a syndrome former of a rate R = 4/8 regular periodically time-
varying LDPC convolutional code from the ensemble C(M = 4, J = 3,K = 6, T =
1) using the submatrices

P
(1)
0 =

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

 P
(1)
1 =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 P
(1)
2 =

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

P
(2)
0 =

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

 P
(2)
1 =

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 P
(2)
2 =

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

Transform by permutation of columns and rows the constructed syndrome former to
a conventional syndrome former of a rate R = 1/2 LDPC convolutional code.

8.10 Combine the identity permutor and the delay permutor with δ = 5 by column-
wise interleaving and find the parameters of the combination.

8.11 Construct a multiple block permutor of multiplicity (J = 3,K = 6) from the
identity matrix

P (kj) =

 1 0 0
0 1 0
0 0 1

 , k = 1, . . . , 6, j = 1, 2, 3

using rowwise and columnwise interleaving.

8.12 Combine the identity permutor and the scrambler shown in Fig. 8.12 by
columnwise interleaving and find the delay and size of the combination.

8.13 Use rowwise and columnwise interleaving to construct a multiple block per-
mutor of multiplicity (J = 3,K = 2) from the submatrices

P (11) =

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

 P (12) =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 P (13) =

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

P (21) =

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

 P (22) =

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 P (23) =

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

8.14 Formulate a definition of a typical MCP for the nonsymmetric case, J 6= K.

8.15 Using the unwrapping procedure, construct a multiple convolutional permutor
from the block permutor given in Problem 8.11. Which are the parameters of the
permutor?

566 LOW-DENSITY PARITY-CHECK CODES

8.16 Suppose that we have a symmetric MCP, P = (pnl), of multiplicity J = K
with minimum delay δ, maximum delay ∆, and overall constraint length ν. Transform
it using a shift pnl → pn,l+a, a ∈ Z+, on all its elements. Show that we obtain a new
MCP having minimum delay δ + a, maximum delay ∆ + a, and overall constraint
length ν + Ja.

8.17 Show that the belief propagation algorithm for the BEC described in Sec-
tion 8.5 has a decoding complexity that is not larger than O(N2).

8.18 Show that the breakout value pbr for the BEC for a regular (N, J,K) LDPC
block code with J = 2 equals 1/(K − 1).

8.19 Suppose that the LDPC block code, defined by the transposed parity-check
matrix of Problem 8.1, is used together with the BEC and that the received sequence
is r = 1 ∆ 0 ∆ 0 ∆ 0 1 1 0, where ∆ is the erasure symbol. Use the belief propagation
algorithm for decoding.

8.20 Repeat Problem 8.19 assuming that the received sequence is r = ∆ ∆ 1 ∆
∆ 0 0 1 1 0.

8.21 Formulate a definition of the iterative decoding limit for an LDPC convolu-
tional code for the binary-input AWGN channel.

CHAPTER 9

TURBO CODING

In the previous chapter we have considered a class of iteratively decodable error
correcting codes—LDPC codes. In this chapter we consider another important class
of iteratively decodable codes—turbo codes and some generalizations of these codes,
such as multiple turbo codes and braided convolutional codes.

Turbo coding is based on two fundamental ideas: a design of a code with ran-
domlike properties and a decoder design that exploits easily implementable iterative
decoding. The codes have exceptionally good performance, particularly at moderate
bit error rates and for large block lengths.

9.1 PARALLEL CONCATENATION OF TWO CONVOLUTIONAL CODES

Turbo codes were invented by Berrou, Glavieux, and Thitimajshima [BGT93, BeG96].
Different variants of turbo codes were suggested later. We begin with a description
of the Berrou, Glavieux, and Thitimajshima scheme.

A turbo code can be defined as parallel concatenation of two convolutional codes.
An example of a turbo encoder is given in Fig. 9.1.

Fundamentals of Convolutional Coding, 2. Edition. By Rolf Johannesson, Kamil Sh. Zigangirov
Copyright c© 2015 John Wiley & Sons, Inc.

567

568 TURBO CODING

ut ut

Permutor

v
(2)
t

v
(1)
t

Figure 9.1 A rate R = 1/3, systematic, parallel concatenated convolutional encoder.

The encoder consists of two parallel systematic rate R = 1/2 memory m = 2
convolutional encoders (constituent encoders) with feedback (recursive encoders)
having the rational generator matrix

G(D) =

(
1

1 +D2

1 +D +D2

)
(9.1)

and a single block permutor (SBP). The input of the turbo encoder is the length K̃
binary information sequence

ũ = u0u1 . . . uK̃−1 (9.2)

The input of the first constituent encoder and the permutor associated with the second
constituent encoder is length K = K̃ +m sequence u,

u = u0u1 . . . uK−1 (9.3)

where m is the memory of the constituent encoder. The first K̃ symbols of this
sequence are symbols of the information sequence ũ; the last m symbols form a tail
such that the first constituent encoder returns to the allzero state. Since the encoding
is systematic, the input sequence (including the tail)

v(0) = v
(0)
0 v

(0)
1 . . . v

(0)
K−1

def
= u (9.4)

is included in the codeword.
The first constituent encoder generates the parity sequence

v(1) = v
(1)
0 v

(1)
1 . . . v

(1)
K−1 (9.5)

PARALLEL CONCATENATION OF TWO CONVOLUTIONAL CODES 569

Since the tail forces the first constituent encoder to return to the allzero state, we can
use the BCJR algorithm for a posteriori probability (APP) decoding, as described in
Section 4.5, for decoding of the code sequence of the first constituent encoder (see
below).

In parallel, the sequence u enters an SBP, defined by aK×K permutation matrix
P = (pik), i = 0, 1, . . . ,K − 1, k = 0, 1, . . . ,K − 1. The output SBP sequence
u(2) = uP enters the second constituent encoder which generates the parity sequence

v(2) = v
(2)
0 v

(2)
1 . . . v

(2)
K−1 (9.6)

In general, the second encoder will be nonterminated. In this case we cannot use
the BCJR algorithm for decoding, but we can use the one-way algorithm for APP
decoding, as described in Section 4.6. This has little effect on the performance for
large lengths K and causes only a small degradation of the performance.

We defined SBP used in the second encoder by the permutation matrix P . An
alternative definition of the SBP is obtained by introducing the length-K index
permutation vector

π =
(
π0 π1 . . . πK−1

)
(9.7)

where 0 ≤ πi ≤ K − 1, i = 0, 1, . . . ,K − 1, πi 6= πi′ , if i 6= i′ and πi is such that
piπi = 1, that is, piπi is the only nonzero entry in row i of the permutation matrix P .
We also consider the inverse index permutation vector

π−1 =
(
π′0 π′1 . . . π′K−1

)
(9.8)

where 0 ≤ π′i ≤ K − 1, i = 0, 1, . . . ,K − 1, π′i 6= π′i′ , if i 6= i′ and π′i is such that
pπ′ii = 1, that is, pπ′ii is the only nonzero entry in column i of the permutation matrix
P .

The combination of the three sequences v(0), v(1), and v(2) gives the final trans-
mitted sequence (codeword)

v = v0v1 . . .vK−1 (9.9)

where vn = v
(0)
n v

(1)
n v

(2)
n , n = 0, 1, . . . ,K − 1, such that the overall code has block

length N = 3K. Since usually K � m, the code rate is R ≈ 1/3.
As we pointed out above, the second encoder will not, in general, return to the

allzero state. The important exception is the case when both constituent encoders are
memory m = 1 recursive convolutional encoders with generator matrix

G(D) =

(
1

1

1 +D

)
(9.10)

Then the tail consists of one symbol uK−1 which equals to 0 if the weight of
the information sequence is even and equals to 1 if the weight of this sequence is
odd. Such an input sequence brings both memory m = 1 constituent convolutional
encoders to the allzero state (Problem 9.1). Because of this, the trellis of a constituent
code starts and ends in an allzero state and we can use the BCJR algorithm for APP
decoding of both constituent codes.

570 TURBO CODING

There is also a tailbiting version of turbo coding when both constituent encoders are
tailbiting encoders and the input sequence consists only of the information sequence
(9.2), that is, K = K̃.

We should also mention a variant of a turbo encoder which is described by
Richardson and Urbanke [RUr08]. In this case, the input of the first constituent
recursive encoder is the length K̃ information sequence ũ plus a tail of m 0s, where
m is the memory of the constituent encoder. We assume that the feedback of the
encoder is switched off during the lastm encoding steps such that the first constituent
encoder will return to the allzero state. The input of the second constituent recursive
encoder is the permuted sequence ũP̃ , where P̃ is a K̃ × K̃ permutation matrix,
plus a tail of m 0s. Again we assume that the feedback of the encoder is switched
off during the last m encoding steps and, hence, the second constituent encoder will
return to the allzero state. Thus, we can use the BCJR algorithm for APP decoding
of both constituent codes independently of their memory. Since we do not need to
send allzero tails, the block length N = 3K −m; since K � m, the code rate is
R ≈ 1/3.

We can modify the original turbo codes to broaden the range of their performance.
We can puncture the parity sequences to achieve higher code rates. For example,
puncturing alternating bits from v(1) and v(2) produces a systematic rate R = 1/2
code. Adding constituent codes and permutors can be used to obtain low rate codes.
In this case, the codes are called multiple turbo codes. We consider such codes in
Section 9.3.

9.2 DISTANCE BOUNDS OF TURBO CODES

In this section, we shall analyze the minimum distance dmin of turbo codes. It was
shown by Breiling [Bre04] that the minimum distance of a turbo code cannot grow
faster than logarithmically with the block length N . In [TLZ01] it was shown that
there exists a turbo code whose minimum distance grows logarithmically with N .
Therefore, these two bounds show that the maximum attainable minimum distance
dmin of turbo codes grows logarithmically with N .

First, we formulate Breiling’s result as follows:

Theorem 9.1 The minimum distance of a turbo code is upper-bounded by a loga-
rithmic function of its block length

dmin ≤ O(logN) (9.11)

The bound (9.11) is valid for conventional turbo codes when the number of
constituent encoders equals 2. The proof of the theorem in the general case is quite
complicated. Below we shall give a simple proof in the case when both constituent
encoders are memorym = 1 recursive convolutional encoders with generator matrix
(9.10). In this case, the proof is similar to the proof that the minimum distance of
regular (N, J,K) LDPC block codes with J = 2 grows as O(logN) when N →∞

DISTANCE BOUNDS OF TURBO CODES 571

(Theorem 8.3). As we shall see in Section 9.3, increasing the number of constituent
encoders improves asymptotically the behavior of the minimum distance.

We consider a turbo code with two memory m = 1 constituent encoders with
generator matrix (9.10); let u = u0u1 . . . uK−1 be the first constituent encoder input
sequence consisting of K − 1 information symbols and one “tail” symbol. The
sequence u has even weight. The permuted sequence u(2), where u(2) = uP , is
the input sequence of the second constituent encoder. We shall study the minimum
distance of turbo codes using a computational tree and shall enumerate the symbol
nodes according to their positions in the sequence u. This computational tree is
similar to the computational tree of the LDPC block codes given in Fig. 8.2 and has
the following peculiarities:

(i) the clan head has two families, other clan members have one family;

(ii) in each family there are not more than two children; there are families having
one child.

Let the input information symbol un, n = 0, 1, . . . ,K − 1, be a clan head. Thus,
it has two families. The first family corresponds to the first constituent code and
the second family corresponds to the second constituent code. By definition, the
children of the clan head of the first family are neighboring information symbols in
the sequence u. Similarly, the children of the clan head in the second family are its
neighboring information symbols in the sequence u(2).

Consider the first family. If n 6= 0 and n 6= K − 1, then, by definition, the
symbol un has in this family two children, un−1 and un+1. The clan head u0 has
in the first family only one child, u1. Similarly, the clan head uK−1 has in the first
family one child, uK−2. The number of children of the clan head un in the second
family depends on the position of the symbol un in the permuted sequence, that is, it
depends on the index of the permutation symbol πn. If πn 6= 0, πn 6= K − 1, then
the symbol has in this family two children, uπ′πn−1

and uπ′πn+1
, where π′n is defined

in (9.8). If πn = 0, or if πn = K − 1, then un has in the second family one child
uπ′1 or uπ′K−2

, respectively.
The nodes of the following levels of the tree are enumerated similarly. Particularly,

a child of the clan head ui, i 6= n, i = 0, 1, . . . ,K − 1, has only one family
corresponding to the first or the second constituent code (this is one of the two
constituent codes different from the code associated with the family of the clan head
un to which ui belongs). If the family corresponds to the first constituent code and
i 6= 0 and i 6= K − 1, then the symbol ui has in this family two children, ui−1 and
ui+1. If the family corresponds to the first constituent code and i = 0 or i = K − 1,
then ui has one child. If the family of ui corresponds to the second constituent code
and πi 6= 0, πi 6= K − 1, then the symbol ui has in this family two children, uπ′πi−1

and uπ′πi+1
. If the family of ui corresponds to the second constituent code and πi = 0

or πi = K − 1, then ui has one child.
According to this construction of the tree, the first generation of the vn-clan can

consist of two, three, or four nodes which are direct descendants (children) of the
clan head (Problem 9.7).

572 TURBO CODING

The second generation of a clan has minimum two descendants. The `th, ` ≥ 2,
generation has minimum 2`−1 descendants. Since the total number of clan members
cannot exceed K, eventually different nodes in the tree will represent the same
symbol, that is, the graph contains a cycle.

The definitions of a cycle, a 2`0-cyclefree clan, and a 2`0-cyclefree code for the
computational tree of turbo code coincide with the corresponding definitions for the
computational tree of an LDPC code given in Section 8.1. The following lemma is
related to Theorem 8.2.

Lemma 9.2 Consider a turbo code of block length N , N ≥ 15, with two recursive
memory m = 1 convolutional encoders as constituent encoders. If the turbo code is
2`0-cyclefree, `0 ≥ 2, then

`0 ≤
logN

log 2
− log 3

log 2
(9.12)

Proof : Consider an arbitrary un-clan, n = 0, 1, . . . ,K − 1, of a length N = 3K
turbo code. To the root node (zeroth generation) corresponds a 1 symbol, un, in
the first and the second generation (on levels 2 and 4) there are not less than two
descendants, in the third generation there are not less than four descendants, . . ., in the
`0th generation, `0 ≥ 2, there are not less than 2`0−1 descendants. Correspondingly,
the number of clan members up to the `0th generation is not less than 2`0 . If the clan
is 2`0-cyclefree, this number does not exceed K = N/3, that is,

N

3
≥ 2`0 (9.13)

symbols. Equation (9.13) is equivalent to (9.12).

From Lemma 9.2 the following theorem follows. It is a partial case of Theorem 9.1.

Theorem 9.3 The minimum distance of a length N turbo code with two memory
m = 1 recursive convolutional encoders as constituent encoders is upper-bounded
by the inequality

dmin < 6 log2N (9.14)

Proof : Consider again a 2`0-cyclefree vn-clan graph and cycles including vn. (We
consider only cycles including the clan head vn, although, in principle, there exist
cycles not including the clan head.) According to the definition of a cyclefree clan,
the vn-clan graph has a cycle of length (in edges) not larger than 4`0 + 4, where `0
satisfies (9.12); it includes not more than 2`0 + 2 symbol nodes.

This cycle includes necessarily the children of the clan head. On each odd
level, particularly level 2`0 + 1, the cycle has two constraint nodes associated with
different constituent codes. On the last level 2`0 + 2, it has one symbol node which
simultaneously belongs to both families on level 2`0 + 1.

Now we construct a codeword of low weight. We ascribe to each symbol node
of the cycle the symbol 1 and ascribe to all other input symbols of the encoder the

PARALLEL CONCATENATION OF THREE ANDMORE CONVOLUTION CODES 573

symbol 0. Then the weight of the turbo encoder input sequence does not exceed
twice the right-hand side of (9.12) plus 1, that is,

2
(logN

log 2
− log 3

log 2

)
+ 1 (9.15)

The parity sequences v(1) and v(2) consist of length 2 “bursts” of 1s. Since each
burst of 1s is created by two neighboring 1s in the input of a constituent encoder,
the weights of the parity sequences v(1) and v(2) do not exceed the weight of the
input encoder sequence and is upper-bounded by (9.15). So, the total weight of the
constructed codeword is upper-bounded by

6
(logN

log 2
− log 3

log 2
+ 1
)

(9.16)

Since log 3/log 2 > 1 we proved inequality (9.14).

The following theorem [TLZ01] establishes a lower bound for the minimum
distance of turbo code:

Theorem 9.4 There exists a block length N turbo code whose minimum distance is
lower-bounded by the inequality

dmin ≥ α logN (9.17)

where the constant α > 0 depends on the type of constituent encoders only.

From Theorems 9.1 and 9.4 it follows that the minimum distance of a turbo code
grows not faster thanO(logN), and there exists a turbo code with minimum distance
dmin = O(logN). In the following section we show that the minimum distance of
multiple turbo codes grows faster than the minimum distance of conventional turbo
codes.

9.3 PARALLEL CONCATENATION OF THREE AND
MORE CONVOLUTION CODES

The conventional turbo codes have relatively poor minimum distances, which causes
their performance curves to flatten out at high signal-to-noise ratios. Although the
minimum distance of a turbo code can be improved by the design of the permutor, it
cannot grow faster than logarithmically with the block length, as has been shown in
Section 9.2. As we will see, multiple turbo codes (MTCs) with encoders which consist
of more than two parallel constituent encoders achieve better minimum distance than
the conventional turbo codes.

An encoder of a J-dimensional MTC consists of J , J ≥ 3, parallel constituent
convolutional encoders and J single block permutors (SBPs) of size K × K, as
shown in Fig. 9.2. (We define the first SBC P (1) to be the K ×K identity matrix.)

574 TURBO CODING

u

.........

.........

Permutor 1

Permutor 2

Permutor 3

Permutor J

Encoder 1

Encoder 2

Encoder 3

Encoder J

Pu
nc

tu
re

v

Figure 9.2 Encoder structure of MTCs.

PARALLEL CONCATENATION OF THREE ANDMORE CONVOLUTION CODES 575

We assume that all constituent encoders are rate R = 1/2 memory m recursive
convolutional encoders.

A length K binary sequence

u = u0u1 . . . uK−1 (9.18)

is the input to the MTC. It can be an information sequence; in this case all constituent
encoders are tailbiting encoders. Similarly to conventional turbo codes, we consider
the case when u consists on K̃ information symbols plus a tail from m binary
symbols such that K = K̃ +m. Particularly, if all constituent encoders are memory
1 recursive convolutional encoders, the tail consists of 1 symbol, as we saw in the
previous section.

The sequence u is fed into J SBP described by K × K permutation matrices
P (j) = (p

(j)
ik), j = 1, 2, . . . , J , i, k = 0, 1, . . . ,K − 1. The permutors are followed

by the constituent encoders such that the jth permuted version of u, that is, u(j) =
uP (j), j = 1, 2, . . . , J , is fed to the jth constituent encoder.

The output sequence of the jth constituent encoder (a parity sequence) is

v(j) = v
(j)
0 v

(j)
1 . . . v

(j)
K−1, j = 1, 2, . . . , J (9.19)

The input MTC sequence

u
def
= v(0) = v

(0)
0 v

(0)
1 . . . v

(0)
K−1

is multiplexed with the output sequences of the J constituent encoders and sent to
the channel. The overall codeword is

v = v0v1 . . .vK−1 (9.20)

where vn = v
(0)
n v

(1)
n . . . v

(J)
n , n = 0, 1, . . . ,K − 1, such that the overall code has

block length N = (J + 1)K and the resulting rate is R = 1/(J + 1). Puncturing
can be used to increase the code rate.

The combination of the first identity permutor and the other J − 1 permutors is
called a J-dimensional permutor. It can be represented by a J-dimensional array
constructed such that its projection to the plane formed by the 1st and the jth
dimensions represents the permutation matrix P (j), j = 2, 3, . . . , J .

Similarly to the consideration in Section 9.1, in parallel to the matrix presentation
of the permutors we introduce the jth index permutation vector

π(j) =
(
π

(j)
0 π

(j)
1 . . . π

(j)
K−1

)
, j = 1, 2, . . . , J (9.21)

where 0 ≤ π(j)
i ≤ K − 1, i = 0, 1, . . . ,K − 1, π(j)

i 6= π
(j)
i′ if i 6= i′ and π(j)

i is such
that p(j)

iπ
(j)
i

= 1, that is, p(j)

iπ
(j)
i

is the nonzero entry in row i of the permutation matrix

P (j).

576 TURBO CODING

The combination of the first identity permutor and the other J − 1 permutors can
be described by the index permutation matrix

Π =

π

(1)
0 π

(1)
1 . . . π

(1)
K−1

π
(2)
0 π

(2)
1 . . . π

(2)
K−1

.

π
(J)
0 π

(J)
1 . . . π

(J)
K−1

 =

0 1 . . . K − 1

π
(2)
0 π

(2)
1 . . . π

(2)
K−1

.

π
(J)
0 π

(J)
1 . . . π

(J)
K−1

 (9.22)

The MTC is fully characterized by the J constituent codes and the index per-
mutation matrix Π. We can also characterize the MTC by the set of K position
vectors

φi =
(
π

(1)
i π

(2)
i . . . π

(J)
i

)
, i = 0, 1 . . . ,K − 1 (9.23)

which are the transposed columns of the matrix Π. The set of K position vectors for
an index permutation matrix Π is denoted ΦK , that is,

ΦK =
{
φ0,φ1, . . . ,φK−1

}
(9.24)

Note that the components of the position vectors φi are integer numbers modulo
K, and, hence, φi ∈ RJK . The following definition introduces a metric in RJK , called
an L1-metric.

Definition The distance ‖φi,φi′‖ between the two vectors φi,φi′ ∈ RJK is defined
as

‖φi,φi′‖
def
=

J∑
j=1

|π(j)
i − π

(j)
i′ | (9.25)

Lemma 9.5 The minimum distance of a length N = (J + 1)K multiple turbo code
with J constituent convolutional codes of memory m = 1 is upper-bounded by the
inequality

dmin ≤ 2 + J + min
i,i′
{‖φi,φi′‖} (9.26)

Proof : Consider a weight 2 input encoder sequence having 1s in positions i and i′,
0 ≤ i < i′ ≤ K − 1. Then the weight of the parity sequence of the first constituent
encoder equals |π(1)

i − π
(1)
i′ |+ 1 = |i− i′|+ 1, the weight of the parity sequence of

the second constituent encoder equals |π(2)
i − π

(2)
i′ |+ 1, . . ., the weight of the parity

sequence of the J th constituent encoder equals |π(J)
i − π(J)

i′ | + 1. The sum of the
weights of the input encoder sequence and the J parity sequences equals

2 + J + ‖φi,φi′‖ (9.27)

and Lemma 9.5 is proven.

To upper-bound dmin we have to upper-bound mini,i′‖φi,φi′‖. We use sphere
packing arguments based on considering the J-dimensional space with metric L1.
In the proof of the block sphere-packing bound in Theorem 5.11 we have considered
the Hamming metric.

PARALLEL CONCATENATION OF THREE ANDMORE CONVOLUTION CODES 577

(a) (b)

Figure 9.3 (a) Two-dimensional sphere: square; (b) three-dimensional sphere: octahedron.

Definition For anyφi ∈ RJK , the sphere SJ(φi, r) with centerφi and radius r, where
r is a positive integer, is defined as the set of points φi′ ∈ RJK such that

‖φi,φi′‖ ≤ r (9.28)

where ‖φi,φi′‖ is defined in (9.25).

The number of points φi′ satisfying (9.28), denoted by V (J)(r), is called the
volume of the sphere SJ(φi, r).

EXAMPLE 9.1

Consider the one-dimensional space, J = 1. In this case RJK is a set of K
nonnegative integer numbers {0, 1, . . . ,K − 1}, that is, φi = π

(1)
i = i. If

r ≤ i ≤ K − 1 − r, then the volume of the sphere S1(φi, r) is maximal,
that is, V (1)(r) = V

(1)
max(r) = 2r + 1. If i < r or i > K − 1 − r, then

2r + 1 > V (1)(r) ≥ r + 1. The minimal volume V (1)
min (r) = r + 1 is obtained

when i = 0 or i = K − 1.

EXAMPLE 9.2

In the two-dimensional case, J = 2, RJK consists ofK2 points andφi = (i, π
(2)
i),

0 ≤ i, π(2)
i ≤ K − 1. The volume V (2)(r) depends on the position of the center

of the sphere and it has minimum V
(2)

min (r) =
∑r+1
k=0 k = (r+ 1)(r+ 2)/2 > r2/2

when it is located in vertices of the two-dimensional square, that is, in points
(i = 0, π(2)

i = 0), or (i = 0, π(2)
i = K − 1), or (i = K − 1, π(2)

i = 0), or
(i = K − 1, π(2)

i = K − 1). If r ≤ i and π(2)
i ≤ K − 1 − r, then the sphere

578 TURBO CODING

S2(φi, r) is a square (see Fig. 9.3(a)), and it has maximal volume

V (2)
max(r) = 2

r−1∑
k=0

V (1)
max(k) + V (1)

max(r)

= 2
r−1∑
k=0

(2k + 1) + 2r + 1 = 2r2 + 2r + 1

(9.29)

In general, we have V (2)
max(r) = 2r2 + 2r + 1 ≥ V (2)(r) ≥ (r + 1)(r + 2)/2 =

V
(2)

min (r) > r2/2.

EXAMPLE 9.3

In the three-dimensional case, that is, J = 3, RJK consists of K3 points and
φi = (i, π

(2)
i , π

(3)
i), 0 ≤ i, π(2)

i and π
(3)
i ≤ K − 1. The volume V (3)(r)

depends on the position of the center of the sphere and it has minimum volume
when it is located in the vertices of the three-dimensional cube. If r ≤ i, π(2)

i ,
π

(3)
i ≤ K − 1 − r, then the sphere S3(φi, r) is an octahedron (see Fig. 9.3(b))

and it has the maximal volume

V (3)
max(r) = 2

r−1∑
k=0

V (2)
max(k) + V (2)

max(r) (9.30)

= 2
r−1∑
k=0

(2k2 + 2k + 1) + 2r2 + 2r + 1

=
4

3
r3 + 2r2 +

8

3
r + 1

The minimal volume is

V (3)
min (r) =

r∑
k=0

V (2)
min (k) (9.31)

=
r∑

k=0

(k + 1)(k + 2)

2

=
1

6
r3 + r2 +

17

6
r >

1

6
r3

In general, a J-dimensional sphere can be viewed as a concatenation of (J − 1)-
dimensional spheres, and the maximal and minimal volumes of SJ(φi, r) can be
found by using the recursion

V (J)
max (r) = 2

r−1∑
k=0

V (J−1)
max (k) + V (J−1)

max (r) (9.32)

PARALLEL CONCATENATION OF THREE ANDMORE CONVOLUTION CODES 579

and

V (J)
min (r) =

r−1∑
k=0

V (J−1)
min (k) (9.33)

It follows by induction from (9.33) that in the general case we have

V (J)
min (r) >

rJ

J !
= O(rJ) (9.34)

Now we are ready to prove the sphere-packing bound for the minimum distance
of a multiple turbo code with J constituent convolutional codes of memory m = 1.

Theorem 9.6 The minimum distance of a length N = (J + 1)K, J ≥ 2, multiple
turbo code with J constituent encoders of memory m = 1 is upper-bounded by the
inequality

dmin < O(N
J−1
J) (9.35)

Proof : Consider the set of codewords which are encoded by the input sequences u
of weight 2. The summarized weight of the input sequence u and the J parity-check
sequences obtained from the sequence u, having 1s in positions i and i′, is given by
formula (9.27). Then from Lemma 9.5 it follows that the minimum distance of the
code is upper-bounded by the inequality dmin ≤ 2 + J + 2r+ 1, where 2r+ 1 is the
minimal distance between the two vectors φi,φi′ ∈ RJK . To optimize this bound we
have to place K = N/(J + 1) spheres of radius r in RJK such that no two spheres
intersect. This requires that

KV (J)
min (r) ≤ KJ (9.36)

where KJ is the number of points in RJK .
From (9.34) and (9.36) it follows that

rJ

J !
< KJ−1 (9.37)

or
r < (J !)

1
JK

J−1
J (9.38)

From (9.22) and (9.34) it follows that

dmin < 2 + J + 2(J !)
1
JK

J−1
J + 1 = O(N

J−1
J) (9.39)

and the proof is complete.

EXAMPLE 9.4

In the two-dimensional case, J = 2, it follows from (9.39) that

dmin < O(
√
N) (9.40)

580 TURBO CODING

This bound is weaker than the bound (9.14) on the minimum distance of the
conventional turbo codes with two constituent convolutional codes of memory
m = 1. In the three-dimensional case, J = 3, we have from (9.39) that

dmin < O(N
2
3) (9.41)

Next we derive a lower (existence) bound on dmin of the multiple turbo codes.

Theorem 9.7 There exists a block length N = (J + 1)K multiple turbo code with
J constituent codes, J ≥ 3, of memory 1 with minimum distance lower-bounded by
the inequality

dmin > O(N
J−2
J −ε) (9.42)

where ε > 0 is arbitrarily small.

Proof : Consider the ensemble of turbo codes having randomly chosenK×K single
block permutors P (j), j = 1, 2, . . . , J, and J memory 1 constituent encoders28. Let
the even number 2w, w ≥ 1, be the Hamming weight of the input encoder sequence
u

def
= v(0) and choose d̂ def

= bK J−2
J −εc = O(K

J−2
J −ε) = O(N

J−2
J −ε). We consider

only the case 2w ≤ d̂ since if 2w > d̂, then dmin > d̂ = O(N
J−2
J −ε).

The number of length K sequences v(0) having weight 2w equals
(
K
2w

)
. Let

M
(j)
w (d), j = 1, 2, . . . , J, be the number of parity-check sequences v(j) of weight d

caused by a sequence v(0) of weight 2w. The sequence v(j), j = 1, 2, . . . , J, can be
presented as the set of w “bursts” of 1s separated by “bursts” of 0s. Since a positive
integer d can be represented as the sum of w positive integers by

(
d−1
w−1

)
ways and a

set of K − d 0s can be represented as a set of w + 1 “bursts” of 0s by
(
K−d
w

)
ways,

we have

M (j)
w (d) =

(
d− 1

w − 1

)(
K − d
w

)
(9.43)

The probability P
(j)
w (d) that a weight 2w input sequence of the jth constituent

encoder causes parity-check sequence v(j) of weight d is

P (j)
w (d) =

(
d−1
w−1

)(
K−d
w

)(
K
2w

) (9.44)

The probability P (j)
w (d ≤ d̂) that a weight 2w input sequence of the jth constituent

encoder causes the parity-check sequence v(j) of weight d ≤ d̂ is

P (j)
w (d ≤ d̂) =

bd̂/2c∑
d=w

(
d−1
w−1

)(
K−d
w

)(
K
2w

) (9.45)

28To simplify the proof we consider the case when the first permutor is not necessarily the identity
permutor. We can do it since the symbols of input encoder sequence can have any order.

PARALLEL CONCATENATION OF THREE ANDMORE CONVOLUTION CODES 581

The probability Pw(d ≤ d̂) that a weight 2w input sequence of a turbo code with
J constituent encoders causes parity-check sequences v(j), j = 1, 2, . . . , J, such that
the weight of each of them does not exceed d̂ is

Pw(d ≤ d̂) =
(bd̂/2c∑
d=w

(
d−1
w−1

)(
K−d
w

)(
K
2w

))J
(9.46)

There are
(
K
2w

)
input sequences v(0) of weight 2w. Then in the ensemble of turbo

codes, the mathematical expectation M(d̂) of the number of codes with J + 1 code
subsequences v(j), j = 0, 1, . . . , J, having weights not exceeding d̂ is

M(d̂) =

bd̂/2c∑
w=1

(
K

2w

)(d̂/2∑
d=w

(
d−1
w−1

)(
K−d
w

)(
K
2w

))J
(9.47)

In the ensemble of turbo codes, the mathematical expectation M(d̂) is an up-
per bound for the mathematical expectation of codes with minimum distance not
exceeding d̂. Then we have for d̂ = bK J−2

J −εc

M(d̂) <

bd̂/2c∑
w=1

(
K

2w

)1−J(
d̂

(
d̂− 1

w − 1

)(
K − d̂
w

))J
=

bd̂/2c∑
w=1

(
K

2w

)1−J(
w

(
d̂

w

)(
K − d̂
w

))J
<

bd̂/2c∑
w=1

wJ
(

2w

w

)J(K!

(K − 2w)!

)1−J
×

(d̂!

(d̂− w)!

)J((K − d̂)!

(K − d̂− w)!

)J
(9.48)

Using the following formulas valid for K →∞(
2w

w

)
= O

(
22w
)

(9.49)

K!

(K − 2w)!
= O

(
K2w

)
(9.50)

d̂!

(d̂− w)!
= O

(
d̂w
)

(9.51)

(K − d̂)!

(K − d̂− w)!
= O

(
K − d̂

)w
(9.52)

we obtain from (9.48)
M(d̂) < O

(
K−εJ

)
(9.53)

From (9.53) follows that in the ensemble of the turbo codes there exists a code with
minimum distance satisfying (9.42).

582 TURBO CODING

9.4 ITERATIVE DECODING OF TURBO CODES

In this section, we first describe iterative decoding of the turbo code introduced in
Section 9.1 and then modify the algorithm for iterative decoding of MTC introduced
in Section 9.3.

Consider decoding of turbo codes. We assume that the code sequence v =

v0v1 . . .vK−1 given by (9.9) and constructed from three sequences, v(0) def
= u,

v(1), and v(2) is transmitted over a discrete memoryless channel. Let

r = r0 r1 . . . rK−1 (9.54)

where rn = r
(0)
n r

(1)
n r

(2)
n , n = 0, 1, . . . ,K − 1, denote the received sequence and let

π(0)
n (0)

def
= P (un = 0) (9.55)

denote the a priori probability that the information symbolun = 0,n = 0, 1, . . . ,K−
1. In practice, we often have P (un = 0) = 1/2.

For decoding a turbo code an iterative decoding algorithm similar to the belief
propagation decoding algorithm of LDPC codes is used. The decoder consists of two
constituent a posteriori probability (APP) decoders. Such decoders were described in
Chapter 4. The iterative decoding process consists of I iteration steps; each iteration
is executed in two phases. The result of the eth phase, e = 1, 2, of the ith iteration,
i = 1, 2, . . . , I , is the sequence

π(e)(i) = π
(e)
0 (i)π

(e)
1 (i) . . . π

(e)
K−1(i) (9.56)

where π(e)
n (i) is the a posteriori probability29 that information symbol un = 0, n =

0, 1, . . . ,K − 1. It is convenient instead of π(e)
n (i) to operate with the corresponding

log-likelihood ratio, that is,

z(e)
n (i)

def
= log

π
(e)
n (i)

1− π(e)
n (i)

(9.57)

and instead of π(e)(i) to operate with the sequence

z(e)(i) = z
(e)
0 (i) z

(e)
1 (i) . . . z

(e)
K−1(i) (9.58)

We will also use the notation

z(0)
n (0)

def
= log

P
(
un = 0

∣∣∣ r(0)
n

)
P
(
un = 1

∣∣∣ r(0)
n

) = log
πn(0)

1− πn(0)
+ log

P
(
r

(0)
n

∣∣∣ un = 0
)

P
(
r

(0)
n

∣∣∣ un = 1
)

(9.59)

29Actually, the decoder operates only with approximated values of the a posteriori probabilities since we
do not have independence between the data used in the different iterations.

ITERATIVE DECODING OF TURBO CODES 583

for the log-likelihood ratio of the a posteriori probability for the symbol un, given
the received symbol rn. It is called the intrinsic information about the information
symbol un = v

(0)
n . We assume that both constituent decoders keep the sequence

z(0)(0) = z
(0)
0 (0) z

(0)
1 (0) . . . z

(0)
K−1(0) in the memory and use it on each step of the

iterative decoding process.
Let r(0), r(1), and r(2) denote the sequences of the received symbols correspond-

ing to the information sequence v(0) def
= u, the first parity sequence v(1), and the

second parity sequence v(2), respectively. Then we let r(0)
6n denote the sequence of

the received symbols corresponding to the sequence u except the received symbol
r

(0)
n ; that is,

r
(0)
6n = r

(0)
0 r

(0)
1 . . . r

(0)
n−1r

(0)
n+1 . . . (9.60)

Similarly, we let the sequence π(e)
6n (i) denote the sequence of the a posteriori proba-

bilities of the symbols of the sequence u except π(e)
n (i) after the eth phase of the ith

iteration; that is,

π
(e)
6n (i) = π

(e)
0 (i)π

(e)
1 (i) . . . π

(e)
n−1(i)π

(e)
n+1(i) . . . (9.61)

On the first phase of the first iteration the first constituent encoder is using r(0)
6n ,

r(1), and
π

(0)
6n (0) = π

(0)
0 (0)π

(0)
1 (0) . . . π

(0)
n−1(0)π

(0)
n+1(0) . . . (9.62)

to calculate the log-likelihood ratios

y(1)
n (1)

def
= log

P
(
r

(0)
6n , r(1)

∣∣∣ un = 0
)

P
(
r

(0)
6n , r(1)

∣∣∣ un = 1
) (9.63)

for the information symbols un = v
(0)
n , n = 0, 1, . . . ,K − 1.

For calculation of y(1)
n (1) the decoder uses the BCJR algorithm of APP decoding

described in Section 4.5. The variable y(1)
n (1) is called the extrinsic information of

the information symbol un on the first iteration for the first constituent decoder. Then
the first constituent decoder calculates the sequence

z(1)(1) = z
(1)
0 (1)z

(1)
1 (1) . . . z

(1)
K−1(1) (9.64)

using the formula
z(1)
n (1) = z(0)

n (0) + y(1)
n (1) (9.65)

and sends it to the second constituent decoder.
On the second phase of the first iteration, the second constituent decoder, knowing

sequence z(1)
n (1) and using formula (9.57), can calculate the a posteriori probabilities

π
(1)
n (1), n = 0, 1, . . . ,K − 1, and, hence, π(1)

6n (1). Using r(0)
6n , r(2), and π(1)

6n (1),

584 TURBO CODING

the decoder, similarly to (9.63), calculates the extrinsic information y(2)
n (1):

y(2)
n (1)

def
= log

P
(
r

(0)
6n , r(2)

∣∣∣ un = 0
)

P
(
r

(0)
6n , r(2)

∣∣∣ un = 1
) (9.66)

The difference between (9.66) and (9.63) is that the decoder is used together with
r

(0)
6n , not r(1) but r(2), and as the a priori probabilities it uses not π(0)(0) but π(1)(1)

calculated by the first constituent decoder on the first phase of the first iteration. Then
the decoder calculates the log-likelihood ratio

z(2)
n (1) = z(0)

n (0) + y(2)
n (1) (9.67)

and sends
z(2)(1) = z

(2)
0 (1) z

(2)
1 (1) . . . z

(2)
K−1(1) (9.68)

to the first constituent decoder. This completes the first iteration.
Now consider the ith iteration, i = 2, 3, . . . , I . On the first phase of the ith

iteration, the first constituent decoder, knowing the sequence of the log-likelihood
ratios z(2)(i−1), can calculate the sequence of the a posteriori probabilitiesπ(2)(i−
1) and, hence, π(2)

6n (i − 1). Using r(0)
6n , r(1), and π(2)

6n (i − 1), the first constituent

decoder calculates y(1)
n (i), n = 0, 1, . . . ,K − 1, similarly to (9.63), and z

(1)
n (i),

n = 0, 1, . . . ,K − 1, similarly to (9.65). Then it sends z(1)(i) to the second
constituent decoder etc. The idea is that on each phase of the iterative decoding
process an active constituent decoder uses (an approximation of) the a posteriori
probabilities, calculated by another constituent encoder on the previous phase of
decoding, as the a priori probabilities and calculates a new approximation of the a
posteriori probabilities.

The decoder alternates in this way during I iterations. The decision of ûn,
n = 0, 1, . . . ,K − 1, is obtained by comparing the final log-likelihood ratio z(2)

n (I)
with the threshold 0:

ûn =

{
0 if z(2)

n (I) > 0

1 if z(2)
n (I) < 0

(9.69)

(If z(I)
n = 0, then the decoder flips a coin and decides ûn = 0 or ûn = 1 with proba-

bility 1/2.) An iterative decoder is illustrated in Fig. 9.4, where û = û0 û1 . . . ûK−1.

The iterative decoding of multiple turbo codes is similar to the iterative decoding of
the conventional turbo codes. In general, for a multiple turbo code with J constituent
codes, each decoding iteration consists of J phases. On the first phase (e = 1)
of the first iteration the decoder calculates similarly to (9.65) the statistics z(1)

n (1)
for n = 0, 1, . . . ,K − 1. The second phase (e = 2) is also similar to the second
phase of the first iteration of the conventional turbo code. The decoder calculates
the statistics z(2)

n (1) for n = 0, 1, . . . ,K − 1, similarly to (9.67). On the following
phases, e = 3, . . . , J , the decoder calculates the statistics z(e)

n (1).

ITERATIVE DECODING OF TURBO CODES 585

r(2)

r(1)

r(0) Permutor

APP
decoder 1

Inverse

Permutor

Permutor

APP
decoder 2

After I
iterations û

z(2)(i−1)z(0)(0)

z(0)(0)

z(2)(i)

z(1)(i)

Figure 9.4 Iterative decoder for turbo codes.

After calculation of the J th statistic z(J)
n (1) the decoder executes the second

iteration consisting of J phases and recursively calculates the statistics z(e)
n (2) for

e = 1, 2, . . . , J . Then the decoder executes the 3th, 4th, . . ., Ith iterations and makes
the decision of ûn similarly to the conventional turbo code case.

We have described the iterative decoding of turbo codes for the discrete mem-
oryless channel (DMC). The decoding of turbo codes for the AWGN channel is
similar but we have to replace the conditional probabilities P

(
r

(0)
n

∣∣∣ un) by the
corresponding probability density functions.

Using turbo codes we can obtain a performance within less than 1 dB from the
Shannon limit. Particularly, the Shannon limit for communication with R = 1/3
codes over the binary-input AWGN channel is −0.495 dB. The thresholds for rate
R = 1/3 turbo codes with constituent convolutional encoders of memories m =
2, 3, 4, 5 when used with this channel are 0.05 dB, −0.08 dB, 0.00 dB, and 0.01 dB,
respectively [LTZ01].

Simulation results of transmission over the AWGN channel for the conventional
turbo code (J = 2) and the three-dimensional MTC (J = 3) are shown in Fig. 9.5
[HLC06]. Both codes have rate R ≈ 1/3 (in the case of MTC puncturing was used
to increase the rate). The length of the encoder input sequence is K = 320 and the
permutor size isK×K. The block lengths are 960. The constituent encoders are the
four-state

(
1 (1 +D2)/(1 +D +D2)

)
encoders (9.1). The minimum distance of

586 TURBO CODING

the chosen codes is 29 for the conventional turbo code and 44 for the MTC. In Fig. 9.5
the bit error probability Pb and block error probability PB are given as functions of
the signal-to-noise ratio per bit Eb/N0 (in dB). Note that for relatively low signal-to-
noise ratios the performances of the two codes are very close (cf. Section 4.8), while
for Eb/N0 = 2.4 dB the performance of the MTC is better than the performance of
the conventional turbo code by more than one order. This reflects the fact that the
MTC has larger minimum distance.

0 0.5 1 1.5 2 2.5
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 [dB]

Pb/PB

J = 2: Pb

J = 2: PB

J = 3: Pb

J = 3: PB

Figure 9.5 Pb and PB as functions of the signal-to-noise ratio Eb/N0 for a rate R = 1/3
conventional turbo code (J = 2) and a rate R = 1/3 three-dimensional MTC (J = 3).

9.5 BRAIDED CONVOLUTIONAL CODES*

In this section, we consider a class of turbo-like codes, braided convolutional codes
(BCCs) [ZLZ10]. Similarly to braided block codes (BBCs), which are described
in Section 8.7, braided convolutional codes use convolutional permutors, introduced
in Section 8.3, as an important constituent element of the code construction, but in
contrast to BBC they do use not block codes but convolutional codes as constituent
codes.

BRAIDED CONVOLUTIONAL CODES* 587

An example of a rate R = 1/3 BCC encoder is shown in Fig. 9.6. The encoder
consists of three single convolutional permutors (SCPs) P (0), P (1), and P (2) and
two constituent convolutional encoders, the horizontal encoder (encoder 1) of rate
R(1) and the vertical encoder (encoder 2) of rate R(2) (we shall consider the case
when R(1) = R(2) = 2/3 in more detail).

An information sequence u = u0u1 . . . ut . . .
def
= v(0) = v

(0)
0 v

(0)
1 . . . v

(0)
t . . . en-

ters the first input of encoder 1 directly, and the permuted information sequence
ṽ(0) = ṽ

(0)
0 ṽ

(0)
1 . . . ṽ

(0)
t . . ., such that ṽ(0) = v(0)P (0) at the output of convo-

lutional permutor P (0) enters the first input of encoder 2. The encoder 1 gen-
erates the parity sequence v(1) = v

(1)
0 v

(1)
1 . . . v

(1)
t . . . and encoder 2 generates

the parity sequence v(2) = v
(2)
0 v

(2)
1 . . . v

(2)
t The permuted parity sequence

ṽ(2) = ṽ
(2)
0 ṽ

(2)
1 . . . ṽ

(2)
t . . ., such that ṽ(2) = v(1)P (1), at the output of convolutional

permutor P (1), is fed back to the second input of encoder 2, and the permuted parity
sequence ṽ(1) = ṽ

(1)
0 ṽ

(1)
1 . . . ṽ

(1)
t . . ., such that ṽ(1) = v(2)P (2) at the output of the

convolutional permutor P (2), is fed back to the second input of encoder 1.

Remark: In the array representation of the BCC we shall denote the second permutor
as the transposed convolutional permutor (P (2))T since the input symbols of the
permutor are inserted columnwise and read out rowwise.

Rate 2/3
Encoder 1

(horizontal)

P (1)

P (0)

P (2)

Rate 2/3
Encoder 2
(vertical)

ṽ
(2)
t v

(1)
t

ṽ
(1)
t v

(2)
tũt

ut

MUX
vt = v

(0)
t v

(1)
t v

(2)
t

Figure 9.6 Encoder for a rate R = 1/3 braided convolutional code.

The information sequence u = v(0) and the parity sequences v(1) and v(2) are
multiplexed into the output sequence of the BCC encoder v = v0v1 . . .vt . . ., where
vt = v

(0)
t v

(1)
t v

(2)
t .

588 TURBO CODING

The BCC encoder is a convolutional-type encoder; the turbo encoder, described
in Section 9.1, is a block-type encoder. If we would compare the BCC encoder in
Fig. 9.6 with the turbo encoder in Fig. 9.1 we can see that, in contrast to the turbo
encoder, whose constituent encoders have one input sequence, the BCC encoder has
constituent encoders with two input sequences. Because of this, the free distance
of the BBC grows linearly with the overall constraint length, while the minimum
distance of the turbo code grows logarithmically with the overall constraint length.

An array representation of a rate R = 1/3 BCC with the encoder given in Fig. 9.6
is illustrated in Fig. 9.7. Each row and column of the array contains one information
symbol, one parity symbol of the vertical encoder, and one parity symbol of the hor-
izontal encoder. The sparse array retains the three-ribbon structure corresponding to
three convolutional permutors. We assume that the SCPs P (j) = (p

(j)
nl), j = 0, 1, 2,

are periodic with periods Tj and are constructed using the unwrapping procedure
described in Section 8.3 with the width of each ribbon equal to the period of the
corresponding permutor. Thus, the widths of the central, upper, and lower ribbons
are T0, T1, and T2, respectively.

ṽ
(2)
t

ũt

ṽ
(1)
t

ut v
(1)
t

v
(2)
t

Horizontal
encoding

Vertical
encoding

P (0)

P (1)

(
P (2)

)T
Figure 9.7 Array representation of a BCC. Notice that ũt = ut−2.

BRAIDED CONVOLUTIONAL CODES* 589

The gray shaded squares in the array indicate cells with stored symbols. The
information symbols are enumerated according to their positions in the sequence
u = v(0); the parity symbols are enumerated according to their positions in the
sequences v(1) and v(2). The information symbols ut are placed in the central
ribbon. The structure of the central ribbon is defined by the convolutional permutor
P (0). Based on the analysis in Section 8.3, a typical convolutional permutor P (0)

has an overall constraint length of ν0 = (T0 − 1)/2. The parity symbols v(1)
t of the

horizontal encoder are placed in the tth row of the upper ribbon. The structure of the
upper ribbon is defined by the typical SCPP (1). To match the ribbon structure of the
array, this permutor has an additional delay of T0 symbols, and its overall constraint
length is ν1 = T0 + (T1 − 1)/2.

The parity symbols v(2)
t of the vertical encoder are placed in the tth column of the

lower ribbon, whose structure depends on a typical convolutional permutor (P (2))T.
To match the array structure, (P (2))T has minimal delay 1, maximal delay T2, and
overall constraint length ν2 = (T2 − 1)/2 + 1.

The memory of the encoder is defined as the maximum number of time units that
a symbol stays in the encoder. The overall constraint length ν of a BCC encoder
is defined as the maximal total number of symbols stored in the encoder. Thus,
if all permutors P (0), P (1), and (P (2))T are typical (see Section 8.3), the overall
constraint length of the BCC encoder is

ν =
T0 − 1

2
+
T1 − 1

2
+
T2 − 1

2
+ T0 + 1 (9.70)

If T0 = T1 = T2 = T , the total width of the three ribbons in a BCC is 3T , and the
total number of symbols stored in the memory of the permutors is given by

ν = 5(T − 1)/2 + 2 (9.71)

Generalizations of the rate R = 1/3 BCC given in Fig. 9.6 to other rates and
constructions are straightforward. We can use different constituent encoders for the
horizontal and vertical encodings. Moreover, in general, P (0), P (1), and (P (2))T

can be multiple convolutional permutors (MCPs).
In Fig. 9.8, the results of some simulations of transmissions using a BCC over

the binary-input AWGN channel are presented. The BCC uses two identical rate
2/3, memory m = 2 systematic constituent encoders with feedback. The generator
matrix of the constituent codes is

G(D) =

 1 0
1

1 +D +D2

0 1
1 +D2

1 +D +D2

 (9.72)

The three convolutional permutorsP (0), P (1), andP (2) used in the encoder were
constructed randomly with the same period T . We assumed that the transmitted
sequence consists of an information sequence of length 50T and a tail of 2T zero tail
bits. Thus, we have a rate loss of 2.67%, that is, the effective rate is about 0.325. In

590 TURBO CODING

the one-way APP decoder, a delay value τ was chosen to be equal to the period T
and I = 100 decoding iterations were performed.30

In Fig. 9.8, we show the effect of the period T of the convolutional permutors
on the bit error probability as a function of the signal-to-noise ratio Eb/N0. We
see that the performance of iterative decoding improves dramatically with increasing
permutor period. The BCC achieves a bit error probability 10−6 at an Eb/N0 of 0.2
dB with permutor period T = 8000, which is only 0.8 dB from the Shannon limit31

of the binary-input AWGN channel with code rate 0.325. The pipeline iterative
one-way decoder does not exhibit an error floor for any of the permutor periods used
in the simulations.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 [dB]

Pb

Permutor period 100
Permutor period 500
Permutor period 1000
Permutor period 8000

Figure 9.8 Error performance of a rate R = 1/3 terminated BCC on an AWGN channel.

In [ZLZ10] an analysis of the free distance is given for the rate R = 1/3 braided
convolutional code using a Markov permutor (see Section 8.3) with overall constraint
length ν. The encoder uses two identical rate R = 2/3 constituent encoders of
memories m = 2, 3, 4. A lower bound on the free distance growing linearly with ν
such that

dfree ≥ ρBCCνR
−1 + o(ν) (9.73)

was proved. The asymptotical coefficient ρBCC is given in Table 9.1.

30The value of τ = T was chosen for convenience, but in a practical implementation, a much smaller
value of τ can be chosen to minimize latency.
31The Shannon limit for R = 1/3 in the binary-input AWGN channel equals−0.495 dB.

COMMENTS 591

Table 9.1 The asymptotic coefficient ρBCC for the lower bound on the free distance
(9.73) of rate R = 1/3 BCCs with constituent codes of various memories, m = 2, 3, 4.

Memory Generator matrix Coefficient ρBCC

m = 2

(
1 0 D2/(1 +D +D2)

0 1 (1 +D2)/(1 +D +D2)

)
0.2023

m = 3

(
1 0 (1 +D +D2 +D3)/(1 +D2 +D3)

0 1 (1 +D +D3)/(1 +D2 +D3)

)
0.2410

m = 4

(
1 0 (1 +D2 +D4)/(1 +D2 +D3 +D4)

0 1 (1 +D +D4)/(1 +D2 +D3 +D4)

)
0.2447

9.6 COMMENTS

As mentioned before, the original concept of turbo coding was introduced in a
talk by Berrou, Glavieux, and Thitimajshima [BGT93] at the IEEE International
Conference on Communication (ICC) held in Geneva, Switzerland, in May 1993.
This presentation set off a revolution in coding and led, among many other important
things, to the rediscovery of Gallager’s LDPC codes.

Multiple turbo codes were introduced by Divsalar and Pollara [DiP95]. Analyses
of multiple turbo codes were given in [KaU98, HLC06]. Laminated turbo codes
[HZC08] is another class of turbo-like codes, similar to multiple turbo codes.

Braided convolutional codes were introduced in [ZLZ10] as a variant of turbo-like
codes.

PROBLEMS

9.1 Show that if the input information sequence has even weight, then the memory
m = 1 convolutional encoder with generator matrix (9.10) terminates in the allzero
state.

9.2 Consider a turbo code with an SBP of length K = 15 described by the index
permutation vector

π =
(
5 8 11 14 2 6 9 12 0 3 10 13 1 4 7

)
Which permutor P corresponds to this index permutation vector? Construct the
inverse of the permutor P .

9.3 Suppose that the constituent codes of the turbo code in Problem 9.2 have
memory m = 1 and generator matrices (9.10). Show that the minimum distance of
this turbo code is upper-bounded by 6, dmin ≤ 6. Can you find a tighter upper bound?

592 TURBO CODING

9.4 Describe the Richardson-Urbanke construction of a turbo encoder with two
constituent encoders of memory m = 2.

9.5 Consider a three-dimensional MTC with two SBP of lengthK = 15. They are
described by the index permutation vectors

π(2) =
(
5 8 11 14 2 6 9 12 0 3 10 13 1 4 7

)
and

π(3) =
(
1 10 4 13 7 2 11 5 14 8 3 12 9 0 6

)
Which permutors P (j), j = 2, 3, correspond to these index permutation vectors?

9.6 Calculate numerically the upper bound (9.26) on the minimum distance of
the three-dimensional MTC with the two SBCs described in Problem 9.5 and with
three constituent recursive convolutional codes of memory m = 1 having generator
matrices (9.10).

9.7 Consider a turbo code with two memorym = 1 constituent convolutional codes
having generator matrix (9.10). Construct the computational tree for an arbitrary input
information symbol un. Show that the clan head can have two, three, or four direct
descendants in the first generation.

9.8 Consider a rate R = 1/3, length N = 18 turbo code with two memory
m = 1 constituent convolutional codes both having generator matrix (9.10). The
encoder of the code uses an SBC defined by the index permutation vector π =(

1 4 2 5 3 0
)
. Suppose that this turbo code is used to communicate over

a BSC with crossover probability ε = 0.045. Assume that the received sequence is
r = 100 010 011 011 011 111.

Use the algorithm described in Section 9.4 to decode the received sequence when
the information symbols are a priori equiprobable.

9.9 Consider the turbo encoder given in Fig. 9.1. Assume that the Richardson-
Urbanke construction for the code termination is used and that the length of the
encoder input information sequence is K̃ = 4. The information symbols un, n =
0, 1, 2, 3, are a priori equiprobable. The index permutation vector for the SBP is
π =

(
1 4 2 5 3 0

)
.

a) What is the length of the codeword?
b) Use the algorithm described in Section 9.4 to decode the received sequence
r = 101 010 010 011 01 11.

CHAPTER 10

CONVOLUTIONAL CODES WITH GOOD
DISTANCE PROPERTIES

We have previously shown that when convolutional codes are used to communicate
over channels at rather low signal-to-noise ratios the Viterbi spectrum is the principal
determiner of the burst error probability when maximum-likelihood (or nearly so)
decoding is used. We have also seen that an optimum distance profile is desirable
to obtain a good computational performance with sequential decoding. Thus, it is
important to find methods for constructing convolutional encoders with both a good
distance spectrum and a good distance profile.

So far there has been little success in finding very good convolutional encoders
by algebraic methods. Most encoders used in practice have been found by computer
search.

In this chapter we discuss two algorithms: FAST for computing the Viterbi
spectrum for convolutional encoders and BEAST for computing the weight spectrum
for block codes and the Viterbi spectrum for convolutional encoders. Extensive tables
of good convolutional encoders are given.

Fundamentals of Convolutional Coding, 2. Edition. By Rolf Johannesson, Kamil Sh. Zigangirov
Copyright c© 2015 John Wiley & Sons, Inc.

593

594 CONVOLUTIONAL CODES WITH GOOD DISTANCE PROPERTIES

σ

σ1

σ0

W

W 1

W 0

w0

w1

Figure 10.1 Successor nodes at time t.

10.1 COMPUTING THE VITERBI SPECTRUM USING FAST

To compute the Viterbi spectrum for a convolutional code encoded by a noncatas-
trophic generator matrix, that is, the number of paths with a given distance, d say, to
the allzero path we exploit the linearity of the code and count the number of weight
d sequences with u0 6= 0 stemming from the zero state and terminating for the first
time at the zero state. For simplicity we limit our discussion to binary codes of
rate R = 1/2. The extension to rate R = 1/c is trivial and to rate R = b/c is
straightforward. We assume that the rate R = 1/2 convolutional code is encoded by
a minimal-memory m generator matrix that is realized in controller canonical form.
As usual ut and vt denote the input and output at time t, respectively.

Suppose we are in an arbitrary node at depth t in the code tree and that we have
produced channel symbols whose total weight isWt. Then, in each subtree stemming
from this node we have to spend the weight (d−Wt). Hence, let us label each node
with the state of the encoder and the remaining weight, that is, W = d−Wt.

Let σt = (σ
(1)
t σ

(2)
t . . . σ

(m)
t), where the state variable σ(n)

t = ut−n for n =
1, 2, . . . ,m and ut = 0 for t < 0 denote the state of the encoder. From each
state we have two successor states, σ0

t+1 = (0ut−1 . . . ut−m−1) and σ1
t+1 =

(1ut−1 . . . ut−m−1), corresponding to information symbol ut equal to zero and
unity, respectively. To simplify the notations we suppress the index t in the se-
quel. For given encoders we can of course use the state of a node to determine
the weights w0 and w1 of the branches stemming from that node. By using these
branch weights together with the node weightW we can determine the two new node
weights W 0 = W − w0 and W 1 = W − w1; see Fig. 10.1.

When searching for a path in the code tree with a given weight we explore a
subtree if and only if the new node weight, Wu, is nonnegative and if the state of the
new node, σu, differs from the zero state. Let us arbitrarily give priority to the zero
branch when we have to select between two new possible nodes.

A straightforward algorithm for determining the number of paths of a given weight
d can be formulated as follows:

Start at state σ = (1 0 . . . 0) with weight W = d − dc
0, where dc

0 is the 0th
order column distance, and move forwards in the code tree. If σ = (0 0 . . . 0 1) and

COMPUTING THE VITERBI SPECTRUM USING FAST 595

000

100

110

011

001

000Start
6

4

3

2

2

0

2

1
1

0

2

dc
0 = 2 dc

1 = 3 dc
2 = 3 dc

3 = 4

Figure 10.2 An example of a weight dfree path.

W 0 = 0, then increase the path counter. If the new node weight is negative or if
the new node is in its zero state, then we will move backwards. Thus, we have to
remember all of the previous information symbols so that we can move backwards
until we find a new “one”-branch with a nonnegative node weight. Then we move
forwards again. A stop condition appears when we reach the root.

This basic algorithm is of course very time consuming. To measure the perfor-
mance of the algorithm we count the total number of nodes visited. Each visit to a
node, regardless if we have been there before or not, is counted as a visit.

As an example we can use this basic algorithm to verify that the memory m =
3 encoder with encoding matrix G(D) = (g11(D) g12(D)) = (1 + D + D2 +

D3 1 + D2 + D3), or in octal notation G = ((g11 g12) = g
(0)
11 g

(1)
11 g

(2)
11 g

(3)
11

g
(0)
12 g

(1)
12 g

(2)
12 g

(3)
12) = (1111 1011) = (74 54), has one path of weight dfree = 6.

(The binary digits are collected in groups of three starting from the left.) We visit as
many as 121 nodes in the explored tree.

Now we shall by an illuminative example show how we can obtain a substantial
reduction in the number of nodes we have to visit.

Our encoding matrix G = (74 54) has an optimum distance profile dp =
(2, 3, 3, 4). In Fig. 10.2 we show only that part of its trellis which contains the
weight 6 (= dfree) path. This path corresponds to the information sequence 11000,
that is, to the encoded sequence v[0,4] = 11 01 01 00 11. Since the column distance is
the minimum of the Hamming weights of the paths with u0 = 1, the distance profile
can be used as a lower bound on the decrease of the node weight along the path. In
steps 1, 2, and 4 in Fig. 10.2 this bound is tight.

If we traverse this path in the opposite direction we will of course get the same
total weight but different node weights. In Fig. 10.3 we can use the distance profile
as a lower bound on the node weights along the path. Notice that if a node has weight
less than this bound, then every path leading backwards to the zero state will give a
negative node weight at the root node; for example, if the node weight in state (001)
is less than dc

3 = dc
m = 4 we must not extend this node when we are traversing the

trellis backwards. More general, the weight of a backwards path stemming from a
node in state σ 6= (00 . . . 0), starting with a one-branch, and eventually leading to
the root node (zero state) is lower-bounded by dc

m.

596 CONVOLUTIONAL CODES WITH GOOD DISTANCE PROPERTIES

000

100

110

011

001

000 Start
0

2

3

4

4

6

2

1
1

0

2

dc
0 = 2 dc

1 = 3 dc
2 = 3 dc

3 = 4

Figure 10.3 The weight dfree path traversed backward.

In Fig. 10.3 we notice that, for example, if the node weight in state (110) would
be less than dc

1 = 3, then we must not extend this node.
The use of the distance profile as a lower bound works for every path from the end

to the root node. Moving backwards from state σ we can reach the states σ−0 and
σ−1, where

σ =
(
? . . .??10 . . . 00︸ ︷︷ ︸

`−1 zeros

) (10.1)

σ−0 =
(
? . . .?100 . . . 00︸ ︷︷ ︸

` zeros

) (10.2)

σ−1 =
(
? . . .?100 . . . 0︸ ︷︷ ︸

`−1 zeros

1) (10.3)

The minimum weights of backwards paths stemming from the states σ−0 and σ−1

are lower-bounded by dc
m−`−1 and dc

m−1, respectively.
Instead of moving backwards in the trellis we can of course reverse the entries

of the generator matrix and move forwards in the corresponding tree and use the
distance profile (of the nonreciprocal generator matrix) to effectively limit the part of
the tree that must be explored.

We shall now describe a Fast Algorithm for Searching a code Tree (FAST) in order
to determine the distance spectrum for a convolutional code with generator matrix
G = (g11 g12) and distance profile dp[CeJ89]. Let

g̃1k =
(
g

(m)
1k g

(m−1)
1k . . . g

(0)
1k

)
, (10.4)

k = 1, 2, denote the generators for the reversed convolutional code encoded by the
reciprocal generator matrix G̃ = (g̃11 g̃12). The distance profile of the reciprocal
generator matrix is denoted d̃

p
= (d̃c

0, d̃
c
1, . . . , d̃

c
m). To calculate the ith spectral

component we start at state σ = (10 . . . 0) with weight W = dfree + i − d̃c
0 in the

code tree generated by the reciprocal generator matrix G̃. Then we reduce this weight
by the weights of the branches that we traverse when the code tree is searched for
nodes with both node weight and state equal to zero. For the state of each explored
node we use the column distances dc

m−l−1 or dc
m−1 to lower-bound the weight of

COMPUTING THE VITERBI SPECTRUM USING FAST 597

Pop W
Pop σ
`← 1

W ←W 1

σ ← σ1

`← 1

W ←W 0

σ ← σ0

`← `+ 1

Stack empty? Stop
Push σ1

Push W 1

W ≥ dc
m?

W 1 ≥ dc
m−1?

W ≥ dc
m?

W 1 ≥ dc
m−1?

W 0 = 0?

` < m?

W 0 ≥ dc
m−`−1?

W 0 ←W − w0

W 1 ←W − w1

`← 1

nd ← 0

W ← d− d̃c
0

σ ← (10 . . . 0)

Start

nd ← nd + 1

No

No

No

Yes

Yes

Yes

No

No

No

Figure 10.4 Flowchart of the FAST algorithm. Notice that wi is calculated using the
reciprocal generator matrix G̃ = (g̃11 g̃12).

any path leading to a zero state. If the weight is less than this bound we will always
reach a weight that is zero or negative at a nonzero state. Hence, it is only necessary
to extend a node if the node weight is larger than or equal to this bound!

If both successor nodes are achievable, then we follow the zero branch and save
(push) the one-branch node (state σ1 and weight W 1) on a stack. Thus we can avoid

598 CONVOLUTIONAL CODES WITH GOOD DISTANCE PROPERTIES

calculating the node weight for the same node twice, and the algorithm will be twice
as fast. (The basic algorithm should of course also be implemented with a stack.)

Our FAST algorithm is shown in Fig. 10.4. If dp ≥ d̃
p
, then the reciprocal entries

in the generator matrix, else the entries in the generator matrix, are used as inputs to
FAST.

Using FAST to verify that ndfree = 1 for our encoding matrix G = (74 54) we
visit only five nodes!

Since we are interested in the spectral components for encoders with optimum (or
good) distance profiles, it is interesting to notice that the better the distance profile
is, the faster FAST runs!

10.2 THE MAGNIFICIENT BEAST

In Section 4.10 we discussed BEAST decoding for tailbing codes. BEAST was
actually developed in order to speed up the calculations of the Viterbi spectra for
convolutional encoders and the weight spectra for block codes [BHJ04].

Consider a rate R = K/N binary block code whose codewords are binary N -
tuples v = (v0 v1. . . vN−1). Such a code can be described either by a forward code
tree of length N starting from the root node (at depth 0) and going forwards or by a
backward code tree starting from the toor node (at depth N) and going backwards.
In the following, we shall distinguish between the forward and the backward code
tree by the subscripts F and B, respectively.

Every node ξ in such a code tree has a unique parent node ξP, assuming only
one binary digit per branch at most two children nodes ξC, and is characterized by
three parameters: its state σ(ξ), weight ω(ξ), and depth `(ξ). Its depth is equal to
the length (in branches) of the path arriving at node ξ and starting from either the
root node ξroot or toor node ξtoor, while its weight is determined by the accumulated
Hamming weight of the corresponding path.

Consider, for example, the path ξroot → ξ in the forward code tree corresponding
to the codeword segment v[0,`F(ξ)). Its accumulated Hamming weight is given by

ωF(ξ) = wH
(
v[0,`F(ξ))

)
=

`F(ξ)−1∑
i=0

wH (vi) (10.5)

where `F(ξroot) = 0, ωF(ξroot) = 0, and σ(ξroot) = 0.
Similarly, the path ξtoor → ξ in the backward code tree corresponds to the codeword

segment v[N−`B(ξ),N) and yields the accumulated Hamming weight

ωB(ξ) = wH
(
v[N−`B(ξ),N)

)
=

N−1∑
i=N−`B(ξ)

wH (vi) (10.6)

where `B(ξtoor) = 0, ωB(ξtoor) = 0, and σ(ξtoor) = 0.
Clearly, for every codeword v with Hamming weight w, there exists a path

ξroot → ξtoor in the code tree with an intermediate node ξ such that

ωF(ξ) =
⌊w

2

⌋
, ωB(ξ) =

⌈w
2

⌉
, `F(ξ) + `B(ξ) = N (10.7)

THE MAGNIFICIENT BEAST 599

Hence, searching for all such paths (codewords) can be split up into two separate and
independent steps: a forward search for all path segments ξroot → ξ with Hamming
weight wF and a backward search for all path segments ξtoor → ξ with Hamming
weight wB, where the forward and backward weights wF and wB can be chosen
freely32 as long as

wF + wB = w (10.8)

Since every branch in a bit-level trellis is labeled by exactly one code symbol, the
length of any such path segment has to satisfy

ωF(ξ) ≤ `F(ξ) ≤ N − ωB(ξ) (10.9)
ωB(ξ) ≤ `B(ξ) ≤ N − ωF(ξ) (10.10)

In other words, the maximum depth of the forward and backward code tree is limited
by N − wB and N − wF, respectively.

Algorithm BSB (BEAST for finding a spectral component for a block code)
BSB1. Forward search: Starting at the root node ξroot, grow a forward code tree

to obtain the set of nodes33

F = {ξ | ωF(ζ) = wF, ωF(ξP) < wF, `F(ξ) ≤ N − wB}

where wF and wB are chosen according to (10.8). The set F contains
the leaves of the partially explored forward code tree, whose accumulated
Hamming weights are equal to the forward weight wF.

BSB2. Backward search: Starting at the toor node ξtoor, grow a backward code
tree to obtain the set of nodes33

B = {ξ | ωB(ζ) = wB, ωB(ξC) > wB, `B(ξ) ≤ N − wF}

Similar to step BSB1, the set B contains the last interior nodes of the
partially explored backward code tree, before their accumulated Hamming
weights exceed the backward weight wB.

BSB3. Matching: Find all pairs of nodes (ξ, ξ′) ∈ F × B such that

σ(ξ) = σ(ξ′), `F(ξ) + `B(ξ′) = N (10.11)

32In order to efficiently exploit the bidirectional idea behind BEAST, the size of the forward and back-
ward code trees should be balanced, that is, the forward and backward weights wF and wB should be
approximately equal.
33The conditionsωF(ξP) < wF andωB(ξC) > wB in the forward and backward setsF andB, respectively,
are necessary to avoid multiple matches corresponding to the same codeword. While one of these two
conditions would be sufficient to avoid such multiple matches, the second condition helps to reduce the
number of stored nodes.

600 CONVOLUTIONAL CODES WITH GOOD DISTANCE PROPERTIES

Each such match describes a unique codeword with Hamming weight
w = ωF(ξ) + ωB(ξ′) = wF + wB. Thus, the number of codewords with
Hamming weight w, that is, the spectral component Aw, follows as

Aw =
∑

(ξ,ξ′)∈F×B

χ(ξ, ξ′)

where χ is the match-indicator function, defined as

χ(ξ, ξ′) =

{
1 if (10.11) holds
0 otherwise

EXAMPLE 10.1

Consider the (6, 3, 3) shortened Hamming block code with parity-check matrix

H =

 0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

Assume that we want to find the number of codewords with Hamming weight

w = dmin = 3, that is, A3. According to (10.8) possible choices for the forward
and backward weights are given by wF = 2 and wB = 1.

The corresponding, partially explored, forward and backward code trees are
illustrated in Fig. 10.5. The nodes stored in the forward setF and in the backward
set B are marked by squares, while dashed lines in the backward code tree indicate
branches to children nodes exceeding the backward weight wB. In total, the

0

1

0

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1root

(1 0 0)

(0 1 1)

(0 1 0)

(0 0 1)

(0 1 0)

(0 1 0)

0

1

0

1

0

0
0

1

toor

(0 1 0)

(0 0 1)

(0 1 0)

(1 0 0)

Figure 10.5 Partially explored forward and backward code trees used by BEAST to
determine the number of codewords with Hamming weight w = 3 for the (6, 3, 3) shortened
Hamming code.

THE MAGNIFICIENT BEAST 601

forward and backward sets contain |F| = 6 and |B| = 4 nodes, respectively,
which are given below:

F =
{(
σ = (1 0 0), ` = 2

)
,
(
σ = (0 1 0), ` = 3

)
,
(
σ = (0 1 1), ` = 3

)
,(

σ = (0 1 0), ` = 4
)
,
(
σ = (0 0 1), ` = 4

)
,
(
σ = (0 1 0), ` = 5

)}
B =

{(
σ = (0 1 0), ` = 1

)
,
(
σ = (0 1 0), ` = 2

)
,(

σ = (0 0 1), ` = 2
)
,
(
σ = (1 0 0), ` = 4

)}
Comparing these nodes, we find three node pairs satisfying the condition

(10.11), which are highlighted in Fig. 10.5: state σ = (1 0 0) with `F = 2
and `B = 4 as well as states σ = (0 1 0) and σ = (0 0 1), both with `F = 4
and `B = 2. Hence, the (6, 3, 3) shortened Hamming code contains A3 = 3
codewords of Hamming weight w = 3.

Next we shall calculate the Viterbi spectrum.
Consider a rate R = b/c convolutional code with free distance dfree. Recall, that

its (i + 1)th Viterbi spectral component is denoted by ndfree+i and is defined as the
number of paths with Hamming weight dfree + i, which diverge from the allzero path
at the root of the code trellis and terminate in the allzero encoder state, but do not
merge with the allzero path until their termini.

Similar to the case when finding the spectral component for a given block code,
there exists an intermediate node σ(ξ) 6= 0 for every path with Hamming weight w
in the code tree which satisfies exactly one of the following c conditions:

ωF(ξ) =
⌊w

2

⌋
+ j, ωB(ξ) =

⌈w
2

⌉
− j, j = 0, 1, . . . , c− 1 (10.12)

where the additional term j = 0, 1, . . . , c − 1 originates from the fact that every
branch in the corresponding trellis or code tree is labeled by a code c-tuple.

Since the length of the detour from the allzero path varies among different code
sequences, several toor nodes have to be taken into account, one for each possible
length of the detour of its code sequences. However, due to the regular and time-
invariant structure of the trellis for convolutional codes, it is sufficient to only consider
a single toor node and instead omit the restriction to a specific depth (length) in (10.7).

Algorithm BSC (BEAST for finding a spectral component for a convolutional
encoder)

BSC1. Forward search: Starting at the root node ξroot, extend the forward code
tree to obtain c sets indexed by j = 0, 1, . . . , c − 1 containing only the
states σ(ξ) of all nodes ξ satisfying

F+j = {ξ | ωF(ξ) = wF + j, ωF(ξP) < wF, σ(ξ) 6= 0}

where wF and hence wB are chosen according to (10.8).

BSC2. Backward search: Starting at the toor node ξtoor, extend the backward
code tree to obtain c sets indexed by j = 0, 1, . . . , c− 1 containing only

602 CONVOLUTIONAL CODES WITH GOOD DISTANCE PROPERTIES

the states σ(ξ) of all nodes ξ satisfying

B−j = {ξ | ωB(ξ) = wB − j, ωB(ξC) > wB, σ(ξ) 6= 0}

BSC3. Matching: For every pair {F+j ,B−j}, j = 0, 1, . . . , c− 1, find all pairs
of nodes (ξ, ξ′) ∈ F+j × B−j with equal states σ(ξ) = σ(ξ′). Then
the number of convolutional code sequences with Hamming weight w
follows as

nw =
c−1∑
j=0

∑
(ξ,ξ′)∈F+j×B−j

χ(ξ, ξ′)

In [BHJ04] a comparison of FAST and BEAST is discussed. For example, when
determining the spectral component n34 for the rate R = 1/2 convolutional encoder
G(D) = (6717423 5056615) of memory m = 20 and dfree = 24, FAST visited
more than 1575 times as many nodes as BEAST. Moreover, BEAST was more than
600 times faster than FAST when programmed in C and run on a Pentium II 400 MHz
computer (this test was done around year 2000!). In that paper a comparison with
Rouanne’s and Costello’s bidirectional [RoC89] showed that their algorithm needed
14, 000 times as many comparisons as BEAST.

The ultimate test of BEAST is calculating the free distance of a rate R = 5/20
hypergraph-based woven convolutional code [HBJ10]. An implementation of its
encoder is illustrated in Fig. 10.6. The input 5-tupleu(1)

i u
(2)
i . . . u

(5)
i , i = 0, 1, 2, . . .,

enters the encoder every fifth clock pulse. The output connections with modulo-2
adders of each of the registers 1–4 (counted from left to right) are time-varying
and determined by the matrices G0, G1, . . . , G4. The connections of register 5 are
time-invariant and are determined by the matrix G5. During each round of five
clock pulses we begin with four circular shifts and obtain the four output 4-tuples
v

(1+4l)
i v

(2+4l)
i . . . v

(4+4l)
i , l = 0, 1, 2, 3, by adding the 4-tuples of the outputs from

the registers 1–4 to the 4-tuples of outputs from register 5. After these four circular
shifts, u(1)

i is back at register 1 and the 4-tuple v(1+4l)
i v

(2+4l)
i . . . v

(4+4l)
i is generated

for l = 4. The corresponding time-varying connections are described by Table 10.1.
All registers can be considered as enlarged delay elements of the encoder of a tail-

biting code. After one clock cycle of five clock pulses a 20-tuple, v(1)
i v

(2)
i . . . v

(20)
i ,

of the rate R = 5/20 convolutional code is generated. Then we shift a new input
5-tuple into the five registers without a circular shift and the next 20-tuple of output
symbols is generated similarly.

Applying the Griesmer bound (3.122) to any rate R = 5/20, memory m = 14
convolutional code, we obtain dfree ≤ 154.

Another approach is based on the row distances of convolutional encoders. For
our encoder we obtain dr

0 = dr
1 = dr

2 = 130 and dr
3 = · · · = dr

6 = 120, and thus, we
have dfree ≤ 120. The row-distance approach yields a much stronger upper bound at
the cost of rather heavy computer computations.

Finally, the BEAST algorithm is used for the code analysis. Finding the free
distance for such a code would take a prohibitively long time without using parallel

THE MAGNIFICIENT BEAST 603

u
(5)
iu

(2)
iu

(3)
iu

(4)
iu

(1)
i

...
v
(1+4l)
i

v
(4+4l)
i

G5G0, G4 G4, G3G3, G2G2, G1

Figure 10.6 Implementation of an R = 5/20 hypergraph-based woven convolutional
encoder.

computations on many processors. Using about 100 processors in parallel yields
the free distance, dfree = 120, of this woven hypergraph-based convolutional code,
where the individual forward and backward sets of the BEAST algorithm are sorted
and merged by individual processors. We thereby obtain that there exists only one
codeword of weight 120 with corresponding length (1 + 3 + 11)20 = 300.

For verifying such a huge free distance, it was crucial to have an extremely
powerful algorithm. We used the BEAST algorithm where the sorting and merging of
the individual forward and backward sets were distributed among several processors,

Table 10.1 Time-varying connections.

Register

Clock pulse 1 2 3 4

1 G0 G2 G3 G4

2 G0 G1 G3 G4

3 G0 G1 G2 G4

4 G0 G1 G2 G3

5 G4 G1 G2 G3

604 CONVOLUTIONAL CODES WITH GOOD DISTANCE PROPERTIES

but we would also like to mention that by running the BEAST algorithm on a single
laptop we could, in a few minutes, obtain that the free distance was at least 80. To
verify dfree = 120 was a task worthy the magnificient BEAST.

It is interesting to notice that Costello’s asymptotic lower bound on the free distance
(3.161) establishes the existence of a code which for the parameters R = 5/20 and
memory m = 14 has dfree ≥ 109.

10.3 SOME CLASSES OF RATE R = 1/2 CONVOLUTIONAL CODES

An exhaustive search for convolutional codes with large dfree is practically impossible
even for relatively short memories. Therefore we need efficient rejecting rules that
limit the computation of dfree to a small fraction of the complete ensemble of encoders.
As we mentioned in Chapter 3 the row distances can be used as a rejecting rule. Their
efficiency is shown by the following example.

Let
G(D) = G0 +G1D + · · ·+GmD

m (10.13)

The total number of rate R = 1/2, memory m = 16 (Gm = (10), (01), or (11))
encoding matrices with G0 = (11) is 3 · 22m−2 = 3, 221, 225, 472. A simple way
to generate all the encoding matrices G = (g11 g12) and eliminate the encoding
matrices G′ = (g12 g11) is: for each g11 test only those g12 for which g̃12 <
g̃11 (in obvious binary notation). The number of encoding matrices is reduced to
3 · 22m−3 − 2m−2 and, thus, we have 1, 610, 596, 352 encoding matrices left to
test. Hoping to find an encoding matrix with dfree = 20 we reject successively all
encoding matrices with dr

j < 20, j = 0, 1, . . . , 15, where 15 is arbitrarily chosen
(see Fig. 10.7). After having used the row distance dr

15, as a rejecting rule only
1034 candidates are left. Another 123 of these can be rejected since they suffer
from catastrophic error propagation. Of the remaining 911 encoding matrices 200
have dfree = 20. The best one is given in Table 10.4. One might suspect that there
exists a memory m = 17, R = 1/2, encoding matrix with dfree = 21. However, all
candidates have row distance dr

10 < 21. The efficiency of using the row distances as
rejecting rules in this case is shown in Fig. 10.7.

In Table 10.2 we give an extensive list of nonsystematic rate R = 1/2 ODP
encoding matrices and in Table 10.3 we list the total number of bit errors for the
codewords of weight dfree for nonsystematic rate R = 1/2 ODP encoding matrices.
In Table 10.4 we give some encoding matrices that have dfree superior to or have better
Viterbi spectra than those of the corresponding ODP encoding matrices in Table 10.2.

Massey and Costello [MaC71] introduced a class of rate R = 1/2 nonsystematic
convolutional encoding matrices called quick-look-in (QLI) encoding matrices in
which the two entries in each encoding matrix differ only in the second position:

GQLI(D) =
(
g11(D) g11(D) +D

)
(10.14)

SOME CLASSES OF RATER = 1/2 CONVOLUTIONAL CODES 605

Table 10.2 Viterbi spectra ndfree+i, i = 0, 1, . . . , 5, for nonsystematic rate R = 1/2
ODP encoding matrices G = (g11 g12).

i

m g11 g12 dfree 0 1 2 3 4 5
2 7 5 5 1 2 4 8 16 32
3 74 54 6 1 3 5 11 25 55
4 62 56 7 2 3 4 16 37 68
5 77 45 8 2 3 8 15 41 90
6 634 564 10 12 0 53 0 234 0
7 626 572 10 1 6 13 20 64 123
8 751 557 12 10 9 30 51 156 340
9 7664 5714 12 1 8 8 31 73 150

10 7512 5562 14 19 0 80 0 450 0
11 6643 5175 14 1 10 25 46 105 258
12 63374 47244 15 2 10 29 55 138 301
13 45332 77136 16 5 15 21 56 161 381
14 65231 43677 17 3 16 44 62 172 455
15 727144 424374 18 5 15 21 56 161 381
16 717066 522702 19 9 16 48 112 259 596
17 745705 546153 20 6 31 58 125 314 711
18 6302164 5634554 21 13 34 72 161 369 914
19 5122642 7315626 22 26 0 160 0 916 0
20 7375407 4313045 22 1 17 49 108 234 521
21 67520654 50371444 24 40 0 251 0 1379 0
22 64553062 42533736 24 4 27 75 147 331 817
23 55076157 75501351 26 65 0 331 0 2014 0
24 744537344 472606614 26 10 45 91 235 465 1186
25 746411326 544134532 27 14 58 120 264 569 1406
26 525626523 645055711 28 24 56 131 273 736 1723
27 7270510714 5002176664 28 1 28 66 138 366 789
28 7605117332 5743521516 30 54 0 356 0 2148 0
29 7306324763 5136046755 30 5 47 97 211 514 1171
30 60425367524 45542642234 32 143 0 240 0 3870 0
31 51703207732 66455246536 32 14 65 136 336 753 1860
32 41273467427 70160662325 33 28 61 167 372 898 2168
33 407346436304 711526703754 34 44 0 338 0 2081 0
34 410174456276 702647441572 34 5 35 84 229 532 1320
35 627327244767 463171036121 36 111 0 553 0 3309 0
36 7664063056054 5707165143064 36 12 53 146 360 783 1917
37 7267577012232 5011131253046 37 18 73 163 381 884 2232
38 6660216760717 4131271202755 38 30 83 225 524 1152 2761
39 42576550101264 66340614757214 38 2 38 97 219 575 1324
40 26204724041271 37146123573117 40 78 0 532 0 6040 0

606 CONVOLUTIONAL CODES WITH GOOD DISTANCE PROPERTIES

Table 10.3 Total number of bit errors for the codewords of weight dfree for
nonsystematic rate R = 1/2 ODP encoding matrices G = (g11 g12).

m g11 g12 dfree ndfree # bit errors
1 6 4 3 1 1
2 7 5 5 1 1
3 74 54 6 1 2
4 62 56 7 2 4
5 77 45 8 2 4
6 634 564 10 12 46
7 626 572 10 1 6
8 751 557 12 10 40
9 7664 5714 12 1 2

10 7512 5562 14 19 82
11 6643 5175 14 1 4
12 63374 47244 15 2 6
13 77442 56506 16 5 16
14 65231 43677 17 3 17
15 764474 573304 18 5 20
16 717066 522702 19 9 55

663256 513502 19 11 53
17 745705 546153 20 6 30
18 7746714 5634664 21 13 73
19 7315626 5122642 22 26 130
20 7375407 4313045 22 1 2
21 67520654 50371444 24 40 260
22 75457402 46705066 24 4 16
23 75501351 55076157 26 65 498
24 744537344 472606614 26 10 82

SOME CLASSES OF RATER = 1/2 CONVOLUTIONAL CODES 607

Table 10.4 Viterbi spectra ndfree+i, i = 0, 1, . . . , 9, for nonsystematic rate R = 1/2
OFD (optimum free distance) encoding matrices G = (g11 g12).

i

m g11 g12 dfree 0 1 2 3 4 5
11 7173 5261 15 14 21 34 101 249 597
12 53734 72304 16 14 38 35 108 342 724
13 63676 45272 16 1 17 38 69 158 414
14 75063 56711 18 26 0 165 0 845 0
15 533514 653444 19 30 67 54 167 632 1402
16 626656 463642 20 43 0 265 0 1341 0
17 611675 550363 20 4 24 76 150 354 826
18 4551474 6354344 22 65 0 349 0 1903 0
19 7504432 4625676 22 5 52 116 163 456 1135
20 6717423 5056615 24 145 0 225 0 3473 0
21 63646524 57112134 24 17 95 136 138 679 2149
22 64353362 41471446 25 47 88 137 313 912 2172
23 75420671 45452137 26 45 0 364 0 1968 0
24 766446634 540125704 27 50 135 118 294 1481 3299
25 662537146 505722162 28 71 196 112 339 2053 4548
26 637044367 450762321 28 9 66 152 307 757 1823

608 CONVOLUTIONAL CODES WITH GOOD DISTANCE PROPERTIES

The main feature of QLI encoding matrices is that they have a feedforward right
pseudo inverse, viz.,

G̃−1
QLI(D) =

(
1

1

)
(10.15)

which can be implemented by a simple modulo 2 adder. Clearly,

GQLI(D)G̃−1
QLI(D) = D (10.16)

This makes it easy to extract an estimate of the information digits from the hard-
decisioned received sequences. Furthermore, since the feedforward right inverse
has “weight” 2, the error amplification factor A = 2 is the smallest possible for
nonsystematic encoders.

encoders
j with dr

j ≥ 20

0 543537361
1 267253166
2 84145636
3 19788663
4 4764506
5 1138502
6 309889
7 96872
8 35853
9 14974

10 7167
11 3954
12 2488
13 1650
14 1233
15 1034

encoders
j with dr

j ≥ 21

0 2204679293
1 791375586
2 160725370
3 16854476
4 1471120
5 101684
6 5098
7 236
8 16
9 2

10 0

Figure 10.7 Two examples of using the row distance as a rejection rule.

In Tables 10.5 and 10.6 we list some QLI encoding matrices.
Extensive lists of systematic ODP encoding matrices G = (4 g12) are given in

Tables 10.7–10.10.

10.4 LOW RATE CONVOLUTIONAL CODES

In Tables 10.11–10.14 we list rate R = 1/3 and R = 1/4 systematic as well
as nonsystematic ODP convolutional encoding matrices. Their free distances are
compared with Heller’s and Griesmer’s upper bounds in Figs. 10.8 and 10.9.

LOW RATE CONVOLUTIONAL CODES 609

Table 10.5 Viterbi spectra ndfree+i, i = 0, 1, . . . , 9, for QLI rate R = 1/2 encoding
matrices.

i

m g11 dfree 0 1 2 3 4 5 6 7 8 9
2 5 5 1 2 4 8 16 32 64 128 256 512
3 54 6 1 3 5 11 25 55 121 267 589 1299
4 46 7 2 4 6 15 37 83 191 442 1015 2334
5 55 8 2 7 10 18 49 124 292 678 1576 3694
6 454 9 4 8 11 25 70 181 405 945 2279 5414
7 542 9 1 4 13 25 51 115 270 686 1663 3955
8 551 10 1 9 18 30 73 172 379 992 2495 5735
9 5664 11 3 6 19 37 83 207 450 1146 2719 6631

10 5506 12 3 11 23 47 99 234 587 1474 3535 8363
11 5503 13 8 16 26 67 146 361 870 2128 5205 12510
12 56414 14 10 21 47 90 210 520 1311 3096 7458 17856
13 46716 14 3 12 32 71 141 335 877 1991 4852 11775
14 51503 15 6 14 36 68 176 469 1006 2390 5924 14285
15 510474 16 11 29 50 122 269 688 1637 3955 9574 22960
16 522416 16 2 21 35 51 155 376 898 2164 5337 12891
17 454643 17 5 23 38 90 230 499 1227 2994 7233 17526
18 5522214 18 6 26 62 139 326 727 1614 4070 10189 24338
19 4517006 18 2 16 42 78 173 445 1120 2610 6158 14933
20 5036543 19 4 24 50 97 253 586 1441 3525 8526 20482
21 47653514 20 7 26 69 138 349 867 1965 4803 11405 27759
22 51102726 20 1 17 42 93 215 476 1096 2733 6640 16127
23 53171663 21 3 31 70 136 327 754 1866 4531 10676 26209
24 510676714 22 7 38 77 171 423 948 2231 5469 13466 32186

610 CONVOLUTIONAL CODES WITH GOOD DISTANCE PROPERTIES

Table 10.6 Viterbi spectra ndfree+i, i = 0, 1, . . . , 9, for QLI rate R = 1/2 ODP
encoding matrices.

i

m g12 dfree 0 1 2 3 4 5 6 7 8 9
2 7 5 1 2 4 8 16 32 64 128 256 512
3 74 6 1 3 5 11 25 55 121 267 589 1299
4 76 6 1 1 3 7 18 40 87 209 476 1096
5 75 8 2 7 10 18 49 124 292 678 1576 3694
6 714 8 1 2 5 14 27 68 157 366 914 2161
7 742 9 1 4 13 25 51 115 270 686 1663 3955
8 743 9 1 1 5 12 21 51 127 316 780 1886
9 7434 10 2 1 6 14 31 112 219 492 1205 2846

10 7422 11 2 5 14 26 57 146 345 841 2070 4956
11 7435 12 5 3 10 45 81 183 427 1020 2593 6186
12 74044 11 1 1 5 18 33 62 162 377 930 2352
13 74046 13 2 6 7 19 48 115 278 676 1726 4070
14 74047 14 2 8 12 32 71 184 402 981 2391 5589
15 740464 14 2 1 6 18 61 89 260 633 1466 3560
16 740462 15 3 5 11 33 67 168 404 992 2470 5903
17 740463 16 2 9 15 46 114 231 585 1344 3179 7850
18 7404634 16 1 2 13 24 43 139 283 741 1717 4040
19 7404242 15 1 0 2 9 19 48 143 315 725 1825
20 7404155 18 2 12 15 45 126 226 552 1412 3329 8109
21 74041544 18 2 4 6 36 78 183 439 1026 2419 6049
22 74042436 19 2 9 13 28 96 225 539 1283 3131 7534
23 74041567 19 1 2 8 26 50 105 302 722 1702 4064
24 740415664 20 1 8 11 29 67 170 427 939 2325 5702
25 740424366 20 1 3 6 19 54 117 242 567 1447 3525
26 740424175 22 8 7 38 52 164 311 806 1996 4828 12103
27 7404155634 22 2 6 14 31 93 186 467 1141 2658 6545
28 7404241726 23 2 7 24 38 105 270 685 1589 3936 9611
29 7404154035 24 6 24 32 84 202 473 1195 2653 6687 16203
30 74041567514 23 1 1 6 10 34 88 208 559 1293 3051
31 74041567512 25 5 11 15 54 134 332 841 2072 4878 11683

LOW RATE CONVOLUTIONAL CODES 611

Table 10.7 Viterbi spectra ndfree+i, i = 0, 1, . . . , 9, for systematic rate R = 1/2 ODP
encoding matrices G = (4 g12).

i

m g12 dfree 0 1 2 3 4 5 6 7 8 9
1 6 3 1 1 1 1 1 1 1 1 1 1
2 7 4 2 0 5 0 13 0 34 0 89 0
3 64 4 1 0 6 0 16 0 69 0 232 0
4 66 5 2 2 1 10 21 29 77 180 332 711
5 73 6 3 0 13 0 55 0 298 0 1401 0
6 674 6 1 3 4 11 25 53 118 274 654 1430
7 714 6 2 0 9 0 46 0 248 0 1289 0
8 671 7 1 5 5 17 35 70 173 452 993 2415
9 7154 8 4 0 19 0 94 0 542 0 3159 0

10 7152 8 3 0 16 0 79 0 457 0 2618 0
11 7153 9 3 5 11 26 52 124 317 821 1870 4364
12 67114 9 1 4 10 15 46 104 224 576 1368 3322
13 67116 10 5 0 27 0 124 0 777 0 4529 0
14 71447 10 4 0 12 0 105 0 517 0 3138 0
15 671174 10 1 0 16 0 78 0 437 0 2391 0
16 671166 12 13 0 46 0 263 0 1486 0 9019 0
17 671166 12 13 0 46 0 263 0 1486 0 9019 0
18 6711454 12 4 0 23 0 154 0 817 0 4896 0
19 7144616 12 3 0 23 0 92 0 556 0 3472 0
20 7144761 12 1 3 10 25 53 110 263 676 1593 3838
21 71447614 12 1 0 7 0 66 0 314 0 1842 0
22 71446166 14 6 0 44 0 189 0 1132 0 6570 0
23 67115143 14 2 0 38 0 168 0 947 0 5726 0
24 714461654 15 5 7 23 62 115 256 669 1648 3999 9703
25 671145536 15 3 7 16 44 112 244 578 1312 3267 8097
26 714476053 16 8 0 54 0 289 0 1691 0 9609 0
27 7144760524 16 7 0 73 0 350 0 1971 0 11624 0
28 7144616566 16 3 0 38 0 134 0 834 0 5052 0
29 7144760535 18 22 0 118 0 695 0 3926 0 22788 0
30 67114543064 16 1 1 10 15 36 101 225 596 1342 3298
31 67114543066 18 11 0 53 0 307 0 1742 0 10218 0

612 CONVOLUTIONAL CODES WITH GOOD DISTANCE PROPERTIES

Table 10.8 Total number of bit errors for the codewords of weight dfree for systematic
rate R = 1/2 ODP encoding matrices G = (4 g12).

m g12 dfree ndfree # bit errors
1 6 3 1 1
2 7 4 2 3
3 64 4 1 1
4 66 5 2 4
5 73 6 3 6
6 674 6 1 2
7 714 6 2 3
8 671 7 1 1
9 7154 8 4 11

10 7152 8 3 8
11 7153 9 3 9
12 67114 9 1 1
13 67116 10 5 13
14 71447 10 4 9
15 671174 10 1 2
16 671166 12 13 44
17 671166 12 13 44
18 6711514 12 4 9
19 7144616 12 3 7
20 7144761 12 1 2
21 71447614 12 1 2
22 71446166 14 6 20
23 67115143 14 2 4
24 714476124 15 5 17
25 671145536 15 3 11
26 714476053 16 8 28
27 7144760524 16 7 28
28 7144616566 16 3 11
29 7144760535 18 22 89
30 71446165670 16 1 2
31 67114543066 18 11 50

LOW RATE CONVOLUTIONAL CODES 613

Table 10.9 Viterbi spectra ndfree+i, i = 0, 1, . . . , 4, for systematic rate R = 1/2 OFD
encoding matrices G = (4 g12).

i

m g12 dfree 0 1 2 3 4
2 7 4 2 0 5 0 13
3 54 4 1 0 6 0 16
4 66 5 2 2 1 10 21
6 674 6 1 3 4 11 25
7 556 7 3 4 7 20 35
8 727 8 7 0 23 0 133
9 5754 8 3 6 8 23 55

10 6716 8 1 4 6 12 39
11 6457 9 2 7 13 27 60
12 65474 10 7 0 43 0 190
13 63656 10 2 8 15 36 70
14 65347 11 6 13 18 50 118
15 647654 12 16 0 71 0 404
16 676456 12 7 21 23 51 146
17 647653 12 2 9 22 43 103
18 7124674 13 7 21 39 66 156
19 6754516 14 21 0 114 0 581
20 6476267 14 9 24 35 84 195
21 67612634 14 1 17 29 61 162
22 65471166 15 10 26 50 79 239
23 67612547 16 34 0 150 0 858
24 647626354 16 11 34 58 132 288
25 674124766 16 4 25 43 90 212
26 732624767 17 13 32 75 169 351
27 7123744254 17 4 27 50 104 266
28 6563731156 18 25 0 165 0
29 7256157123 18 8 36 71 128

614 CONVOLUTIONAL CODES WITH GOOD DISTANCE PROPERTIES

Table 10.10 Minimum distances dm and # truncated codewords v[0,m] of weight dm
for systematic rate R = 1/2 ODP encoding matrices G = (4 g12).

m g12 dm #v[0,m] of weight dm
1 6 3 1
2 6 3 1
3 64 4 3
4 64 4 1
5 65 5 5
6 650 5 2
7 670 6 11
8 670 6 5
9 6710 6 1

10 6710 7 12
11 6711 7 5
12 67114 8 29
13 67114 8 12
14 67115 8 6
15 671150 8 1
16 671144 9 18
17 671151 9 7
18 6711514 9 3
19 6711454 10 31
20 6711454 10 13
21 67114544 10 4
22 67115142 10 1
23 67114543 11 27
24 671145430 11 11
25 671151572 11 5
26 671151505 11 1
27 6711454574 12 21
28 6711454306 12 8
29 6711454311 12 2
30 67114545754 13 43
31 67114545754 13 15
32 67114545755 13 4
33 671145457554 13 1
34 671145457556 14 34
35 671145454470 14 14
36 6711454544704 14 5
37 6711454544676 14 2
38 6711454575564 15 31
39 67114545755644 15 12
40 67114545755712 15 3
41 67114545755713 15 1

LOW RATE CONVOLUTIONAL CODES 615

Table 10.10 (cont’d) Minimum distances dm and # truncated codewords v[0,m] of
weight dm for systematic rate R = 1/2 ODP encoding matrices G = (4 g12).

m g12 dm #v[0,m] of weight dm
42 671145457556464 16 31
43 671145457556464 16 14
44 671145457556153 16 5
45 6711454575561314 16 1
46 6711454575564666 17 39
47 6711454575564667 17 13
48 67114545755646674 17 4
49 67114545755646676 17 1
50 67114545755646676 18 38
51 671145457556466760 18 16
52 671145457556466760 18 7
53 671145457550027077 18 2
54 6711454575571301174 19 43
55 6711454575571301176 19 20
56 6711454575571301176 19 7
57 67114545755713011760 19 2
58 67114545755713011760 20 60
59 67114545755646670367 20 25
60 671145457556466703670 20 10
61 671145457557130117610 20 2
62 671145457557130117611 20 1
63 6711454575571301176114 21 25
64 6711454575571301176114 21 10
65 6711454575571301176114 21 2
66 67114545755713011761144 22 71
67 67114545755646670367016 22 29
68 67114545755646670367017 22 9
69 671145457556466703670170 22 4
70 671145457556466703670170 22 1
71 671145457557130117611463 23 46
72 6711454575564667036701444 23 16
73 6711454575564667036701446 23 5
74 6711454575564667036701447 23 2
75 67114545755713011761146370 24 56
76 67114545755713011761146342 24 20
77 67114545755713011761146373 24 8
78 671145457557130117611463424 24 3
79 671145457557130117611463432 25 74
80 671145457557130117611463433 25 33
81 6711454575571301176114634334 25 16
82 6711454575564667036701447272 25 4

616 CONVOLUTIONAL CODES WITH GOOD DISTANCE PROPERTIES

Table 10.10 (cont’d) Minimum distances dm and # truncated codewords v[0,m] of
weight dm for systematic rate R = 1/2 ODP encoding matrices G = (4 g12).

m g12 dm #v[0,m] of weight dm
83 6711454575564667036701447277 25 1
84 67114545755646670367014472730 26 41
85 67114545755713011761146343362 26 20
86 67114545755713011761146343363 26 6
87 671145457557130117611463433634 26 2
88 671145457556466703670144727304 27 62
89 671145457556466703670144727305 27 28
90 6711454575564667036701447273054 27 11
91 6711454575564667036701447273056 27 5
92 6711454575564667036701447273357 27 1
93 67114545755646670367014472730510 28 42
94 67114545755646670367014472730512 28 20
95 67114545755646670367014472730511 28 5
96 671145457556466703670144727305110 28 1

LOW RATE CONVOLUTIONAL CODES 617

Table 10.11 Viterbi spectra ndfree+i, i = 0, 1, . . . , 5, for systematic rate R = 1/3
ODP encoding matrices G = (4 g12 g13).

i

m g12 g13 dfree 0 1 2 3 4 5
1 6 6 5 1 1 1 1 1 1
2 5 7 6 1 0 2 0 4 0
3 64 74 8 2 0 3 0 8 0
4 56 72 9 1 2 3 3 1 2
5 57 73 10 1 3 1 0 4 10
6 564 754 12 4 0 8 0 12 0
7 516 676 12 1 2 1 7 8 7
8 531 676 13 1 3 3 6 8 9
9 5314 6764 15 3 5 2 4 11 11

10 5312 6766 16 4 0 8 0 20 0
11 5317 6767 16 1 2 4 7 7 15
12 65304 71274 17 1 2 6 8 4 12
13 65306 71276 18 1 3 4 7 5 9
14 65305 71273 19 2 2 3 5 9 23
15 653764 712614 20 2 0 8 0 19 0
16 531206 676672 20 1 0 5 0 11 0
17 653055 712737 22 2 0 7 0 20 0
18 5144574 7325154 24 6 0 19 0 40 0
19 6530576 7127306 24 2 0 11 0 27 0
20 6530547 7127375 26 4 0 21 0 43 0
21 65376114 71261054 26 3 0 11 0 23 0
22 51445036 73251266 26 1 0 4 0 18 0
23 65305477 71273753 28 3 4 3 9 17 25
24 514453214 732513134 28 1 0 8 0 29 0
25 653761172 712610566 30 2 0 14 0 46 0
26 514450363 732512675 31 2 5 9 14 17 25
27 6537616604 7126106264 32 10 0 19 0 43 0
28 6537616606 7126106264 33 5 13 12 13 23 54
29 5312071307 6766735721 33 3 2 5 12 16 31
30 51445320354 73251313564 34 1 6 6 5 14 31

618 CONVOLUTIONAL CODES WITH GOOD DISTANCE PROPERTIES

Table 10.12 Viterbi spectra ndfree+i, i = 0, 1, . . . , 5, for nonsystematic rate R = 1/3
ODP encoding matrices G = (g11 g12 g13).

i

m g11 g12 g13 d∞ 0 1 2 3 4 5
1 4 6 6 5 1 1 1 1 1 1
2 5 7 7 8 2 0 5 0 13 0
3 54 64 74 10 3 0 2 0 15 0
4 52 66 76 12 5 0 3 0 13 0
5 47 53 75 13 1 3 6 4 5 12
6 574 664 744 14 1 0 8 0 11 0
7 536 656 722 16 1 5 2 6 14 18
8 435 526 717 17 1 2 6 7 6 13
9 5674 6304 7524 20 7 0 19 0 40 0

10 5136 6642 7166 21 4 1 4 14 18 28
11 4653 5435 6257 22 3 0 9 0 32 0
12 47164 57254 76304 24 2 8 10 15 18 29
13 47326 61372 74322 26 7 0 23 0 64 0
14 47671 55245 63217 27 6 4 6 21 24 37
15 447454 632734 766164 28 1 6 5 17 24 34
16 552334 614426 772722 30 3 9 20 21 29 49
17 552137 614671 772233 32 7 15 11 21 58 82
18 4550704 6246334 7731724 34 28 0 53 0 112 0
19 5531236 6151572 7731724 35 8 18 29 32 54 78

LOW RATE CONVOLUTIONAL CODES 619

Table 10.13 Viterbi spectra ndfree+i, i = 0, 1, . . . , 5, for systematic rate R = 1/4
ODP encoding matrices G = (4 g12 g13 g14).

i

m g12 g13 g14 dfree 0 1 2 3 4 5
1 4 6 6 6 1 0 1 0 1 0
2 5 6 7 8 1 0 1 0 2 0
3 54 64 74 11 1 0 1 0 5 0
4 56 62 72 12 1 0 1 0 5 0
5 51 67 73 14 1 0 2 0 5 0
6 534 634 754 16 1 3 0 0 3 5
7 516 676 732 18 1 3 1 2 3 3
8 535 637 755 20 2 4 0 3 2 4
9 5350 6370 7554 20 2 0 2 0 9 0

10 5156 6272 7404 20 1 0 1 0 4 0
11 5351 6371 7557 24 1 0 7 0 7 0
12 53514 63714 75574 24 1 0 1 2 1 8
13 51056 63116 76472 26 2 0 2 0 5 0
14 51055 63117 76473 28 1 0 5 0 4 0
15 515630 627350 740424 27 1 0 0 2 3 2
16 530036 611516 747332 30 3 0 2 0 6 0
17 535154 637141 755775 30 1 0 1 0 5 0
18 5105444 6311614 7647074 32 1 0 1 0 3 0
19 5105446 6311616 7647072 34 2 0 3 0 4 0
20 5105447 6311617 7647073 36 2 2 3 5 1 4
21 51054474 63116164 76470730 36 1 0 3 0 4 0
22 51563362 62735066 74040356 38 2 0 3 0 5 0
23 51054477 63116167 76470731 40 1 1 3 4 1 3
24 510544764 631161674 764707304 42 2 0 7 0 5 0
25 510544770 631161666 764707302 42 2 0 3 0 10 0
26 510544771 631161667 764707303 44 1 0 1 3 2 12
27 5105447710 6311616664 7647073024 47 3 3 6 9 13 9
28 5105447714 6311616664 7647073032 48 3 4 2 7 8 17
29 5105447715 6311616671 7647073025 51 6 3 4 8 15 25
30 51054477154 63116166734 76470730324 52 3 2 7 6 9 13

620 CONVOLUTIONAL CODES WITH GOOD DISTANCE PROPERTIES

Table 10.14 Viterbi spectra ndfree+i, i = 0, 1, . . . , 5, for nonsystematic rate R = 1/4
ODP encoding matrices G = (g11 g12 g13 g14).

i

m g11 g12 g13 g14 dfree 0 1 2 3 4 5
1 4 4 6 6 6 1 0 1 0 1 0
2 4 5 6 7 8 1 0 1 0 2 0
3 44 54 64 70 11 1 0 0 1 1 2
4 46 52 66 76 15 1 2 1 1 1 3
5 47 53 67 75 18 3 0 5 0 8 0
6 454 574 664 724 20 3 0 4 0 7 0
7 476 556 672 712 22 1 5 2 2 4 4
8 457 575 663 723 24 1 3 4 7 2 1
9 4730 5574 6564 7104 26 3 0 4 0 12 0

10 4266 5362 6136 7722 28 4 0 5 0 10 0
11 4227 5177 6225 7723 30 4 0 4 0 11 0
12 46554 56174 66450 72374 32 1 3 6 9 6 13
13 45562 57052 64732 73176 34 1 0 11 0 11 0
14 47633 57505 66535 71145 37 3 5 6 10 11 11
15 454374 574624 662564 723354 39 5 7 10 4 5 10
16 463712 566132 661562 727446 41 3 7 7 10 19 11
17 415727 523133 624577 744355 42 1 0 14 0 17 0
18 4653444 5426714 6477354 7036504 45 3 5 8 13 16 14
19 4654522 5617436 6645066 7237532 46 1 0 13 0 20 0
20 4712241 5763615 6765523 7330467 50 13 0 18 0 39 0
21 45724414 55057474 65556514 72624710 50 1 7 6 13 15 13

HIGH RATE CONVOLUTIONAL CODES 621

0 5 10 15 20 25 30
0

5

10

15

20

25

30

systematic encoders

nonsystematic encoders

m

dfree

free distance
Heller’s upper bound
and Griesmer strengthening
optimum distance profile

Figure 10.8 The free distances for rate R = 1/3 systematic and nonsystematic ODP
convolutional codes and comparisons with Heller’s and Griesmer’s upper bounds.

10.5 HIGH RATE CONVOLUTIONAL CODES

In Table 10.15 we list rate R = 2/3 systematic, polynomial, ODP convolutional
encoding matrices

G =

(
1 0 g13

0 1 g23

)
(10.17)

Rate R = 2/3 nonsystematic, polynomial ODP convolutional encoding matrices

G =

(
g11 g12 g13

g21 g22 g23

)
(10.18)

are listed in Table 10.16.
In Section 2.9 (Theorem 2.6) we proved that if an encoding matrix G(D) and

the encoding matrix H(D) of the convolutional dual code both are minimal-basic,
then they have the same overall constraint length ν. Furthermore, in Section 2.10
we showed how to useH(D) to build systematic encoders with feedback of memory
ν = m. Thus, it is natural and quite useful when we search for encoding matrices
to extend the concept of distance profile to dp

ν = (dc
0, d

c
1, . . . , d

c
ν). The encoding

matrices in Table 10.17 are ODP in this extended sense [JoP78]. In Table 10.18 we

622 CONVOLUTIONAL CODES WITH GOOD DISTANCE PROPERTIES

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

50

nonsystematic encoders

m

dfree

free distance
Heller’s upper bound
and Griesmer strengthening
optimum distance profile

systematic encoders

Figure 10.9 The free distances for rate R = 1/4 systematic and nonsystematic ODP
convolutional codes and comparisons with Heller’s and Griesmer’s upper bounds.

give the encoding matrices for the convolutional duals of the codes encoded by the
encoding matrices in Table 10.17.

10.6 TAILBITING TRELLIS ENCODERS

Tailbiting encoders can generate many of the most powerful binary block codes.
Extensive lists of the best tailbiting encoding matrices can be found in [SAJ99,
BJK02, BHJ02, BHJ04].

10.7 COMMENTS

Our search for good convolutional encoding matrices started with the introduction
of the distance profile, which could be used to give an essential reduction of the
set of potential candidates that we had to investigate [Joh75]. It turned out that
for short rate R = 1/2 encoding matrices the ODP condition could be imposed
at no cost in free distance. Additional ODP encoding matrices were reported in
[Joh76, Joh77a, JoP78].

COMMENTS 623

Table 10.15 Viterbi spectra ndfree+i, i = 0, 1, . . . , 5, for systematic rate R = 2/3
ODP encoding matrices.

i

m g13 g23 dfree 0 1 2 3 4 5
1 6 6 2 1 2 5 12 25 54
2 5 7 3 2 5 15 45 127 370
3 54 64 4 7 0 76 0 820 0
4 56 62 4 2 10 22 92 343 1109
5 57 63 5 6 20 55 207 799 2896
6 554 704 5 2 16 46 126 554 2144
7 664 742 6 24 0 237 0 3608 0
8 665 743 6 5 19 52 208 789 3008
9 5504 7064 6 1 12 50 175 605 2346

10 5736 6322 7 8 24 84 323 1211 4718
11 5736 6323 8 44 0 505 0 7586 0
12 66414 74334 8 16 0 260 0 3668 0
13 57372 63226 8 3 27 82 318 1099 4254
14 55175 70223 8 2 14 57 184 705 2821
15 664074 743344 8 1 9 36 122 477 1760
16 664072 743346 10 40 0 588 0 8203 0
17 573713 632255 10 15 52 170 695 2685 10131
18 6641054 7431164 10 18 0 249 0 3638 0
19 5514632 7023726 10 2 19 74 297 1029
20 5514633 7023725 11 8 46 196 696

With the development of the FAST algorithm we achieved a huge improvement in
the speed at which we could determine the Viterbi spectra for convolutional encoders.
Together with extensive tables of rate R = 1/2 convolutional encoding matrices e
the FAST algorithm was reported in [CeJ89].

The BEAST algorithm was first presented at the Allerton Conf. [BHJ01]. Later it
appeared in IEEE Trans. Inform. Theory [BHJ04].

The tables of encoding matrices in the first edition were exended by Florian Hug
[Hug12], who used BEAST and obtained remarkable improvements in the search for
new encoding matrices compared to what could be obtained by FAST.

624 CONVOLUTIONAL CODES WITH GOOD DISTANCE PROPERTIES

Table 10.16 Viterbi spectra ndfree+i, i = 0, 1, . . . , 5, for nonsystematic rate R = 2/3
ODP encoding matrices.

i

m ν g11 g12 g13 g21 g22 g23 dfree 0 1 2 3 4 5
1 2 2 6 6 4 2 6 3 1 4 14 40 116 339
2 3 6 2 4 1 4 7 4 1 5 24 71 239 871
2 4 3 4 5 4 3 7 5 2 13 45 143 534 2014
3 5 60 70 30 64 00 74 6 6 27 70 285 1103 4063
3 6 30 64 64 54 10 54 7 17 53 133 569 2327 8624
4 7 54 30 54 64 62 12 8 41 0 528 0 7497 0
4 8 46 50 26 64 32 52 8 6 43 154 493 1860 7406
5 9 34 46 56 41 17 46 9 17 81 228 933 3469 13203
5 10 43 46 33 55 25 76 10 69 0 925 0 13189 0

Table 10.17 Viterbi spectra ndfree+i, i = 0, 1, . . . , 5, for nonsystematic rate R = 2/3
ODP encoding matrices. These encoding matrices are ODP in the dp

ν sense.
i

ν g11 g12 g13 g21 g22 g23 dν]dν-paths dfree 0 1 2 3 4 5
3 6 2 4 1 4 7 3 2 4 1 5 24 71 239 871
4 6 3 7 1 5 5 4 17 5 7 23 59 240 912 2986
5 60 30 70 34 74 40 4 7 6 9 19 80 276 1122 4121
6 50 24 54 24 70 54 4 2 6 1 17 47 145 613 2269
7 54 30 64 00 46 66 5 30 7 6 26 105 378 1320 5089
8 64 12 52 26 66 44 5 15 8 8 40 157 598 1987 7761
9 54 16 66 25 71 60 5 9 8 1 20 75 243 904 3522

10 53 23 51 36 53 67 6 54 9 9 45 166 593 2353 8879
11 710 260 670 320 404 714 6 29 10 29 0 473 0 6711 0
12 740 260 520 367 414 515 6 27 10 4 34 127 450 1657 6565
13 710 260 670 140 545 533 6 5 11 9 72 222 824 3192 12457
14 676 046 704 256 470 442 7 65 12 58 0 847 0 12416 0
15 722 054 642 302 457 435 7 38 12 25 0 462 0 6583 0
16 7640 2460 7560 0724 5164 4260 7 14 12 7 26 120 437 1695 6470
17 5330 3250 5340 0600 7650 5434 7 7 13 18 73 247 983 3861 14616
18 6734 1734 4330 1574 5140 7014 8 106 14 50 0 764 0 11499 0
19 5044 3570 4734 1024 5712 5622 8 43 14 24 0 425 0 5801 0
20 7030 3452 7566 0012 6756 5100 8 23 14 15 0 185 0 2837 0
21 6562 2316 4160 0431 4454 7225 8 11 15 14 59 187 780 3004 11534
22 57720 12140 63260 15244 70044 47730 9 144 16 50 0 740 0 10665 0
23 51630 25240 42050 05460 61234 44334 9 60 16 10 53 181 661 2555 9981

COMMENTS 625

Table 10.18 Encoding matrices H = (h1 h2 h3) for the convolutional dual of the
codes encoded by the encoding matrices in Table 10.17.

ν h1 h2 h3

3 74 54 64
4 50 62 72
5 65 45 53
6 424 644 764
7 472 752 532
8 635 403 571
9 5014 4634 6664

10 7164 4136 5416
11 5755 7767 6601
12 70414 52464 60244
13 56502 76346 67772
14 71433 53241 61175
15 660004 575734 776554
16 461656 700006 630732
17 544463 433501 615256
18 4114444 5433454 7152024
19 6171512 5475256 4301002
20 7500021 6742327 4162245
21 72164254 45126324 61662214
22 55422416 42035332 60362506
23 45416327 51203765 76300111

APPENDIX A

MINIMAL ENCODERS

In this appendix we show how to obtain the minimal encoders in Examples 2.22 and
2.37. (The readers who would like to learn more about realizations of sequential
circuits are referred to standard textbooks, for example, [Lee78, Gil66].)

EXAMPLE A.1

In Example 2.21 we showed that since the encoding matrix

G′(D) =

(
1 +D D 1

1 +D2 +D3 1 +D +D2 +D3 0

)
(A.1)

is minimal and µ = 3 there exists a minimal realization with only three memory
elements. In order to obtain such a realization we introduce the state variables
shown in Fig. A.1.

Fundamentals of Convolutional Coding, 2. Edition. By Rolf Johannesson, Kamil Sh. Zigangirov
Copyright c© 2015 John Wiley & Sons, Inc.

627

628 MINIMAL ENCODERS

u
(2)
t

u
(1)
t

v
(1)
t

v
(2)
t

v
(3)
t

σ
(21)
t+1 σ

(21)
t

= σ
(22)
t+1

σ
(22)
t

= σ
(23)
t+1

σ
(23)
t

σ
(11)
t+1 σ

(11)
t

Figure A.1 The controller canonical form of the encoding matrix G′(D) in Example A.1.

First we notice that the input of a memory element whose output is σ(ij)
t is

σ
(ij)
t+1. Then we have

σ
(11)
t+1 = u

(1)
t

σ
(21)
t+1 = u

(2)
t

σ
(22)
t+1 = σ

(21)
t

σ
(23)
t+1 = σ

(22)
t

v
(1)
t = σ

(11)
t + σ

(22)
t + σ

(23)
t + u

(1)
t + u

(2)
t

v
(2)
t = σ

(11)
t + σ

(21)
t + σ

(22)
t + σ

(23)
t + u

(2)
t

v
(3)
t = u

(1)
t

(A.2)

For simplicity we use hexadecimal notations for the state-4-tuples,
(
σ

(11)
t σ

(21)
t σ

(22)
t σ

(23)
t

)
.

Then, from (A.2) we obtain Table A.1 for the behavior of the encoder in Fig. A.1.
In order to find which states are equivalent we start by merging those states that

correspond to the same outputs. Hence, we obtain partition P1:

P1: {0, 3, 9, A}, {1, 2, 8, B}, {4, 7, D,E}, {5, 6, C, F}

The states that belong to the same set in P1 are said to be 1-equivalent.
Two states are 2-equivalent if they are 1-equivalent and their successor states

are 1-equivalent. For example, the states 0 and 3 are not 2-equivalent since their
successor states are not 1-equivalent. From Table A.1 and P1 we obtain

P2: {0, 9}, {3, A}, {1, 8}, {2, B}, {4, D}, {7, E}, {5, C}, {6, F}

MINIMAL ENCODERS 629

Table A.1 Successor state and output
(
σ
(11)
t+1 σ

(21)
t+1 σ

(22)
t+1 σ

(23)
t+1 /v

(1)
t v

(2)
t v

(3)
t

)
as a

function of the present state
(
σ
(11)
t σ

(21)
t σ

(22)
t σ

(23)
t

)
and the input

(
u
(1)
t u

(2)
t

)
.

Present Input
state 00 01 10 11

0 0/0 4/6 8/5 C/3
1 0/6 4/0 8/3 C/5
2 1/6 5/0 9/3 D/5
3 1/0 5/6 9/5 D/3
4 2/2 6/4 A/7 E/1
5 2/4 6/2 A/1 E/7
6 3/4 7/2 B/1 F/7
7 3/2 7/4 B/7 F/1
8 0/6 4/0 8/3 C/5
9 0/0 4/6 8/5 C/3
A 1/0 5/6 9/5 D/3
B 1/6 5/0 9/3 D/5
C 2/4 6/2 A/1 E/7
D 2/2 6/4 A/7 E/1
E 3/2 7/4 B/7 F/1
F 3/4 7/2 B/1 F/7

The states that belong to the same set in P2 are 2-equivalent.
Two states are 3-equivalent if they are 2-equivalent and their successor states

are 2-equivalent. Hence, we see that in this example P3 = P2. Thus, we can stop
the procedure and the eight sets in P2 represent the eight states of the minimal
encoder. (In general we proceed until P (k + 1) = P (k).)

We let the first octal digit in each set represent the states
(
σ

(1)
t σ

(2)
t σ

(3)
t

)
of the

minimal encoder. (In order to obtain a linear realization of the minimal encoder
we must let (000) represent the state {0, 9}!) Then we obtain Table A.2.

From Table A.2 we obtain the following table for σ(1)
t+1:

630 MINIMAL ENCODERS

Table A.2 Successor state and output
(
σ
(1)
t+1 σ

(2)
t+1 σ

(3)
t+1/v

(1)
t v

(2)
t v

(3)
t

)
as a function

of the present state
(
σ
(1)
t σ

(2)
t σ

(3)
t

)
and the input

(
u
(1)
t u

(2)
t

)
.

Present Input
state 00 01 10 11

0 0/0 4/6 1/5 5/3
1 0/6 4/0 1/3 5/5
2 1/6 5/0 0/3 4/5
3 1/0 5/6 0/5 4/3
4 2/2 6/4 3/7 7/1
5 2/4 6/2 3/1 7/7
6 3/4 7/2 2/1 6/7
7 3/2 7/4 2/7 6/1

σ
(1)
t σ

(2)
t σ

(3)
t u

(1)
t u

(2)
t

00 01 10 11
000 0 1 0 1
001 0 1 0 1
010 0 1 0 1
011 0 1 0 1
100 0 1 0 1
101 0 1 0 1
110 0 1 0 1
111 0 1 0 1

Clearly,

σ
(1)
t+1 = u

(2)
t (A.3)

For σ(2)
t+1 we have:

σ
(1)
t σ

(2)
t σ

(3)
t u

(1)
t u

(2)
t

00 01 10 11
000 0 0 0 0
001 0 0 0 0
010 0 0 0 0
011 0 0 0 0
100 1 1 1 1
101 1 1 1 1
110 1 1 1 1
111 1 1 1 1

MINIMAL ENCODERS 631

Thus,

σ
(2)
t+1 = σ

(1)
t (A.4)

For σ(3)
t+1 we have:

σ
(1)
t σ

(2)
t σ

(3)
t u

(1)
t u

(2)
t

00 01 10 11
000 0 0 1 1
001 0 0 1 1
010 1 1 0 0
011 1 1 0 0
100 0 0 1 1
101 0 0 1 1
110 1 1 0 0
111 1 1 0 0

It is easily seen that

σ
(3)
t+1 = σ

(2)
t + u

(1)
t (A.5)

Repeating this procedure for each of the outputs we obtain

v
(1)
t = σ

(2)
t + σ

(3)
t + u

(1)
t + u

(2)
t

v
(2)
t = σ

(1)
t + σ

(2)
t + σ

(3)
t + u

(2)
t

v
(3)
t = u

(1)
t

(A.6)

The minimal encoder is shown in Fig. 2.16.

EXAMPLE A.2

In Example 2.37 we showed that

Gsys(D) =

1 0

1 +D2

1 +D +D2

D2

1 +D +D2

0 1
D2

1 +D +D2

1

1 +D +D2

 (A.7)

is equivalent to a minimal-basic encoding matrix with µ = ν = 2. Since Gsys(D)
is systematic it is minimal and, hence, it is also realizable with two memory
elements, albeit not on controller canonical form.

632 MINIMAL ENCODERS

u
(1)
t v

(1)
t

u
(2)
t v

(2)
t

v
(3)
t

v
(4)
t

σ
(21)
t σ

(22)
t

σ
(11)
t σ

(12)
t

Figure A.2 A realization of the systematic encoding matrix in controller canonical form.

Its realization in controller canonical form uses four memory elements and is
shown in Fig. A.2. From the figure follows immediately that

σ
(11)
t+1 = σ

(11)
t + σ

(12)
t + u

(1)
t

σ
(12)
t+1 = σ

(11)
t

σ
(21)
t+1 = σ

(21)
t + σ

(22)
t + u

(2)
t

σ
(22)
t+1 = σ

(21)
t

v
(1)
t = u

(1)
t

v
(2)
t = u

(2)
t

v
(3)
t = σ

(11)
t + σ

(22)
t + u

(1)
t

v
(4)
t = σ

(12)
t + σ

(21)
t + σ

(22)
t + u

(2)
t

(A.8)

Clearly we can ignore the outputs v(1)
t and v(2)

t when we minimize the encoder.
By repeating the state minimization procedure described in Example A.1 we obtain
the following table for the successor state and output

(
σ

(1)
t+1 σ

(2)
t+1/v

(3)
t v

(4)
t

)
as a

function of the present state and present input:

MINIMAL ENCODERS 633

σ
(1)
t σ

(2)
t u

(1)
t u

(2)
t

00 01 10 11
00 00/00 01/01 10/10 11/11
01 10/01 11/00 00/11 01/10
10 11/10 10/11 01/00 00/01
11 01/11 00/10 11/01 10/00

From the table we obtain

σ
(1)
t+1 = σ

(1)
t + σ

(2)
t + u

(1)
t

σ
(2)
t+1 = σ

(1)
t + u

(2)
t

v
(3)
t = σ

(1)
t + u

(1)
t

v
(4)
t = σ

(2)
t + u

(2)
t

(A.9)

The minimal realization is shown in Fig. 2.23.

Finally, we remark that different mappings between the states and their binary
representations will give different realizations that in general are nonlinear. However,
there exist always mappings such that the encoders can be realized by linear sequential
circuits consisting of only memory elements and modulo 2 adders. For the systematic
encoder in Example A.2 there exist six different linear realizations. Two of them
require five adders, three six adders, and one as many as eight adders.

APPENDIX B

WALD’S IDENTITY

Let a random walk be represented by the sequence of random variables S0 =
0, S1, S2, . . . , where

Sj =

j−1∑
i=0

Zi (B.1)

for j ≥ 1 and where theZi’s are independent, identically distributed random variables
such that

P (Zi > 0) > 0 (B.2)

and
P (Zi < 0) > 0 (B.3)

We introduce an absorbing barrier at u < 0 such that the random walk will stop
whenever it crosses the barrier from above, that is, as soon as Sj < u.

Let
g(λ) = E[2λZi] (B.4)

be the moment-generating function of Zi. From (B.2) and (B.3) it follows that
g(λ)→∞ both when λ→∞ and when λ→ −∞. Furthermore,

g(0) = 1 (B.5)

Fundamentals of Convolutional Coding, 2. Edition. By Rolf Johannesson, Kamil Sh. Zigangirov
Copyright c© 2015 John Wiley & Sons, Inc.

635

636 WALD’S IDENTITY

−4 −3 −2 −1 0 1 2 3 4 5

2

4

6

λ0 λ1

λ

g(λ)

Figure B.1 Typical g(λ) = E[2λZi] when E[Zi] > 0 (left) and E[Zi] < 0 (right).

and
g′(λ) |λ=0= E[Zi] ln 2 (B.6)

In Fig. B.1 we show the typical shapes of the moment-generating function g(λ). The
curve to the left corresponds to E[Zi] > 0 and the one to the right to E[Zi] < 0.

We shall now consider the real roots of the equation

g(λ) = 1 (B.7)

From (B.5) it follows that λ = 0 is always a root. From (B.6) we conclude that for
E[Zi] > 0 we have at least one negative root λ0 < 0 and for E[Zi] < 0 at least one
positive root λ1 > 0.

In general we have
g(λ) = g0 (B.8)

where 0 < g0 < 1. This equation has at least two roots if

min
λ
{g(λ)} < g0 (B.9)

but only one root if
min
λ
{g(λ)} = g0 (B.10)

EXAMPLE B.1

Let

Zi =
c∑
s=1

Yis (B.11)

WALD’S IDENTITY 637

where the Yis’s are independent, identically distributed random variables,

Yis =

{
α > 0 with probability 1− ε
β < 0 with probability ε

(B.12)

and

P (Zi = kα+ (c− k)β) =

(
c

k

)
(1− ε)kεc−k (B.13)

From (B.13) we have

g(λ) = E[2λZi] =
c∏
l=1

E[2λYil]

=
(
(1− ε)2λα + ε2λβ

)c
(B.14)

The real root of the equation g(λ) = 1 is equal to the real root of

f(λ) = (1− ε)2λα + ε2λβ = 1 (B.15)

Let
α = (1− ε)/(1− a)
β = ε/a

(B.16)

where 0 < a < 1. Then it is easily verified that λ0 = −1.
Next we let

α = log(1− ε) + 1−B
β = log ε+ 1−B (B.17)

where we assume that

f ′(0) = (1− ε)α+ εβ = 1− h(ε)−B > 0 (B.18)

or, equivalently, that
1− h(ε) > B (B.19)

where
h(x) = −x log x− (1− x) log(1− x) (B.20)

is the binary entropy function. Then there exists a negative root λ0 < 0 of the
equation g(λ) = 1.

Inserting (B.17) into (B.15) yields

(1− ε)1+λ0 + ε1+λ0 = 2λ0(B−1) (B.21)

or, equivalently,

B = 1 +
1

λ0
log
(
(1− ε)1+λ0 + ε1+λ0

)
(B.22)

Let
λ0 = − s

1 + s
(B.23)

638 WALD’S IDENTITY

where s is the solution of
R = G(s)/s (B.24)

andG(s) is the Gallager function for the BSC (5.98). Then we obtain from (B.22)
the important equality

B = R (B.25)

EXAMPLE B.2

Consider Zi given by (B.11), but in this example we let

Yis =

{
α > 0 with probability 1/2

β < 0 with probability 1/2
(B.26)

that is,

P (Zi = kα+ (c− k)β) =

(
c

k

)(
1

2

)c
(B.27)

and

g(λ) =
c∑

k=0

(
c

k

)(
1

2

)c
2λ(kα+(c−k)β)

=

(
1

2
2λα +

1

2
2λβ
)c

(B.28)

The real root of the equation
g(λ) = g0 (B.29)

is equal to the root of

f(λ) =
1

2
2λα +

1

2
2λβ = g

1/c
0 (B.30)

Let
g0 = 2−b (B.31)

or, equivalently,
g

1/c
0 = 2−R (B.32)

and let
α = 1− ρ
β = −ρ (B.33)

where ρ is the Gilbert-Varshamov parameter, that is,

ρ = h−1(1−R) (B.34)

Then the function
f(λ) =

1

2
2λα +

1

2
2λβ (B.35)

WALD’S IDENTITY 639

has its minimum for λmin < 0 such that

f ′(λmin) =

(
1

2
α2λminα +

1

2
β2λminβ

)
ln 2 = 0 (B.36)

or, equivalently, for
λmin = log

ρ

1− ρ
(B.37)

Inserting (B.37) into (B.30) yields

f(λmin) =
1

2
2(1−ρ) log ρ

1−ρ +
1

2
2−ρ log ρ

1−ρ

=
1

2

((
ρ

1− ρ

)1−ρ

+

(
ρ

1− ρ

)−ρ)
= 2h(ρ)−1 = 2−R (B.38)

that is, equation (B.30) has only one root, viz., λmin.
Consider next the case when α and β are given by (B.17). Then, for B = R

we have

f ′(λ) |λ=0 =
1

2
(α+ β) ln 2

=
(
−R+ log

(
2
√
ε(1− ε)

))
ln 2 < 0 (B.39)

and there exists a λ1 > 0 such that

f(λ1) = 2−R (B.40)

In fact, from (B.30) it follows that(
1

2
(1− ε)λ1 +

1

2
ελ1

)
2λ1(1−R) = 2−R (B.41)

or, equivalently, that

R = 1− 1

1− λ1
log
(
(1− ε)λ1 + ελ1

)
(B.42)

If we write λ1 as

λ1 =
1

1 + s
(B.43)

then it follows from (B.42) that s satisfies (B.24).

Let the random variable N denote the time at which the random walk first crosses
the threshold u < 0, that is,

P (N = n) = P (Sj ≥ u, 0 ≤ j < n, & Sn < u) (B.44)

Then we have the following:

640 WALD’S IDENTITY

Lemma B.1 If E[Zi] < 0, then the random walk will eventually cross the threshold
u < 0, that is,

lim
n→∞

P (N ≥ n) = 0 (B.45)

Proof : Clearly,
P (N ≥ n) ≤ P (Sn ≥ u) (B.46)

From (B.1) it follows that

E[2λSn] =
n−1∏
j=0

E[2λZj] = g(λ)n (B.47)

and for λ > 0 we have

E[2λSn] =
∑
all s

2λsP (Sn = s)

≥
∑
s≥u

2λsP (Sn = s) ≥ 2λuP (Sn ≥ u) (B.48)

Then, by combining (B.46), (B.47), and (B.48) we obtain

P (N ≥ n) ≤ 2−λuE[2λSn] ≤ 2−λug(λ)n (B.49)

From the assumption E[Zi] < 0 it follows that there exists a λ > 0 such that
g(λ) < 1. Then, from (B.49) we conclude that (B.45) holds.

Now we consider the general case when E[Zi] can be not only negative but also
positive.

When E[Zi] > 0 we change the probability assignment of the random walk in
such a way that the new random walk will have a negative drift and hence will be
absorbed with probability 1.

We introduce the “tilted” probability assignment

qZ,λ(z) =
fZ(z)2λz

g(λ)
(B.50)

where fZ(z) is the probability assignment for the original random walk. We notice
that

qZ,λ(z) ≥ 0, all z (B.51)

and ∑
z

qZ,λ(z) =
1

g(λ)

∑
z

fZ(z)2λz

=
1

g(λ)
E[2λZ] = 1 (B.52)

WALD’S IDENTITY 641

Let us introduce the corresponding random walk S0,λ = 0, S1,λ, S2,λ . . . , where

Sj,λ =

j−1∑
i=0

Zi,λ (B.53)

for j ≥ 1, where the Zi,λ’s are independent, identically distributed random variables.
We find that

E[Zi,λ] =
∑
z

qZ,λ(z)z

=
1

g(λ)

∑
z

fZ(z)z2λz

=
1

g(λ) ln 2

d

dλ

∑
z

fZ(z)2λz

=
1

g(λ) ln 2

dg(λ)

dλ
(B.54)

Thus by choosing λ such that g′(λ) < 0 we see that E[Zi,λ] < 0 and our tilted
random walk has a negative drift.

Let fλ,n(u, v) denote the probability that the tilted random walk is not absorbed
by the barrier at u < 0 at time j < n and assumes the value v at time n, that is,

fλ,n(u, v)
def
= P (Sj,λ ≥ u, 0 ≤ j < n, Sn,λ = v) (B.55)

For the tilted random walk, (B.44) can be rewritten as

P (N = n) =
∑
v<u

fλ,n(u, v) (B.56)

If we choose λ such that the drift is negative, then it follows from Lemma B.1 that
the tilted random walk will eventually achieve a value less than u with probability 1,
that is,

∞∑
n=1

∑
v<u

fλ,n(u, v) = 1 (B.57)

From (B.50) it follows that

n−1∏
i=0

P (Zi,λ = ai) =
n−1∏
i=0

P (Zi = ai)2
λaig(λ)−1 (B.58)

Hence we have
fλ,n(u, v) = f0,n(u, v)2λvg(λ)−n (B.59)

where
∑n−1
i=0 ai = v. Combining (B.57) and (B.59) we obtain

∞∑
n=1

∑
v<u

f0,n(u, v)2λvg(λ)−n = 1 (B.60)

642 WALD’S IDENTITY

which is known as Wald’s identity for a random walk with one absorbing barrier at
u < 0 [Wal47].

Wald’s identity can also be written in a more compact form:

E[2λSN g(λ)−N] = 1 (B.61)

and we have the following:

Theorem B.2 Let Sj be the random walk given by (B.1) and let g(λ) be the moment-
generating function of the random variable Zi which satisfies (B.2) and (B.3). LetN
be the smallest n for which Sn < u, where the barrier u < 0. Then, for all λ such
that g′(λ) < 0 Wald’s identity (B.61) holds.

Corollary B.3 Let Sj be the random walk given by (B.1) with E[Zi] > 0 and let
g(λ) be the moment-generating function of the random variable Zi which satisfies
(B.2) and (B.3). Let λ0 < 0 be a root of equation (B.7) such that g′(λ0) < 0. Then,

P (Smin < u) ≤ 2−λ0u (B.62)

where
Smin = min

j
{Sj} (B.63)

Proof : From (B.60) we have

1 =
∞∑
n=1

∑
v<u

f0,n(u, v)2λ0vg(λ0)−n

≥ 2λ0u
∞∑
n=1

∑
v<u

f0,n(u, v) = 2λ0uP (Smin < u) (B.64)

In a more general case we would like to upper-bound

∞∑
n=1

∑
v<u

f0,n(u, v)2bn (B.65)

Then we choose λ = λ1 > 0 such that

g(λ1) = 2−b (B.66)

Assume that g′(λ1) < 0. Hence we can use Wald’s identity (B.60) to obtain

1 =
∞∑
n=1

∑
v<u

f0,n(u, v)2λ1v2bn

≤ 2λ1u
∞∑
n=1

∑
v<u

f0,n(u, v)2bn (B.67)

WALD’S IDENTITY 643

or, equivalently,
∞∑
n=1

∑
v<u

f0,n(u, v)2bn ≥ 2−λ1u (B.68)

Suppose that
min{Zi} = zmin < 0 (B.69)

Then,
SN > u+ zmin (B.70)

where zmin is called the maximal overshot, and we obtain from (B.60) that

1 ≥ 2λ1(u+zmin)
∞∑
n=1

∑
v<u

f0,n(u, v)2bn (B.71)

or, equivalently,

2−λ1(u+zmin) ≥
∞∑
n=1

∑
v<u

f0,n(u, v)2bn ≥ 2−λ1u (B.72)

where the last inequality follows from (B.68).
Notice that (B.68) is still valid if g′(λ1) = 0 for λ1 > 0. Then we have to replace

b in (B.66) by b− ε, where ε > 0. Let λ1(ε) be the root of

g(λ) = 2−b+ε (B.73)

then λ1(ε) < λ1 and g′(λ1(ε)) < 0. Hence we use Wald’s identity and obtain

2−λ1(u+zmin) ≥
∞∑
n=1

∑
v<u

f0,n(u, v)2(b−ε)n ≥ 2−λ1(ε)u (B.74)

When ε→ 0 (B.74) will approach (B.68).

Corollary B.4 Let Sj be the random walk given by (B.1) with the absorbing rule
Sj < u, where the barrier u < 0, and let g(λ) be the moment-generating function
of the random variable Zi which satisfies (B.2) and (B.3) and whose minimum value
zmin = min{Zi} < 0. Let λ1 > 0 be a root of equation (B.63) such that g′(λ1) ≤ 0.
Then, inequality (B.72) holds.

Corollary B.5 (Wald’s equality) Let Sj be the random walk given by (B.1) and
assume that the random variable Zi satisfies (B.2) and (B.3) and has E[Zi] < 0.
Then E[N] exists and

E[N] =
∞∑
n=1

n
∑
v<u

f0,n(u, v) = E[SN]/E[Zi] (B.75)

644 WALD’S IDENTITY

Furthermore, if a maximal overshot zmin exists, then

u+ zmin

E[Zi]
≥ E[N] ≥ u

E[Zi]
=
u ln 2

g′(0)
(B.76)

where u < 0 is the barrier and g(λ) is the moment-generating function satisfying
(B.5).

Proof : Taking the derivative of Wald’s identity (B.60) yields

∞∑
n=1

∑
v<n

f0,n(u, v)v2λvg(λ)−n ln 2

−
∞∑
n=1

∑
v<n

f0,n(u, v)2λvng(λ)−n−1g′(λ) = 0 (B.77)

Since
g′(λ) = E[Zi] ln 2 (B.78)

we have for λ = 0

∞∑
n=1

∑
v<n

vf0,n(u, v) = E[Zi]
∞∑
n=1

∑
v<u

nf0,n(u, v) (B.79)

which is equivalent to (B.75). Since

u+ zmin ≤ SN ≤ u (B.80)

(B.76) follows.

Finally, we remark that Wald’s identity is valid not only in the situations when
the random walk crosses the barrier u < 0 but also when it hits it, that is, as
soon as Sj ≤ u. The corresponding reformulations of Lemma B.1, Theorem B.2,
and Corollary B.5 are left as exercises. Since the corresponding reformulations of
Corollary B.3 and Corollary B.4 are used in Chapters 3–7 we give them here.

As a counterpart to Corollary B.3 we have the following:

Corollary B.6 Let Sj be the random walk given by (B.1) with E[Zi] > 0 and let
g(λ) be the moment-generating function of the random variable Zi which satisfies
(B.2) and (B.3). Let λ0 < 0 be a root of equation (B.7) such that g′(λ0) < 0. Then,

P (Smin ≤ u) ≤ 2−λ0u (B.81)

where
Smin = min

j
{Sj} (B.82)

Finally, as a counterpart to Corollary B.4 we have the following:

WALD’S IDENTITY 645

Corollary B.7 Let Sj be the random walk given by (B.1) with the absorbing rule
Sj ≤ u, where the barrier u < 0, and let g(λ) be the moment-generating function of
the random variable Zi which satisfies (B.2) and (B.3) and minimum value zmin =
min{Zi} < 0. Let λ1 > 0 be a root of equation (B.63) such that g′(λ1) ≤ 0. Then
inequality (B.72) holds.

REFERENCES

Anc77. Ancheta, T. C., Jr. (1977), Bounds and techniques for linear source coding. Ph.D.
Thesis, Dept. Elec. Eng., Univ. of Notre Dame, Notre Dame, Ind.

And69. Anderson, J. B. (1969), Instrumentable tree encoding of information sources. M. Sc.
Thesis, School of Elec. Eng., Cornell University, Ithaca, N.Y.

And89. Anderson, J. B. (1989), Limited search trellis decoding of convolutional codes. IEEE
Trans. Inform. Theory, IT-35:944–956.

And92. Anderson, J. B. (1992), Sequential decoding based on an error criterion. IEEE Trans.
Inform. Theory, IT-38:987–1001.

AnM91. Anderson, J. B. and Mohan, S. (1991), Source and Channel Coding—An Algorithmic
Approach. Kluwer Academic, Boston.

BaT97. Baggen, C. P. M. J. and Tolhuizen, L. M. G. M. (1997), On diamond codes. IEEE
Trans. Inform. Theory, IT-43:1400–1411.

BBL95. Best, M. R., Burnashev, M. V., Levy, Y., Rabinovich, A., Fishburn, P. C., Calder-
bank, A. R., and Costello, D. J., Jr. (1995), On a technique to calculate the exact
performance of a convolutional code. IEEE Trans. Inform. Theory, IT-41:441–447.

BCJ74. Bahl, L., Cocke, J., Jelinek, F., and Raviv, J. (1974), Optimal decoding of linear codes
for minimizing symbol error rate. IEEE Trans. Inform. Theory, IT-20:284–287.

BeB93. Berger, Y. and Beéry, Y. (1993), Bounds on the trellis size of linear codes. IEEE
Trans. Inform. Theory, IT-39:203–209.

Fundamentals of Convolutional Coding, 2. Edition. By Rolf Johannesson, Kamil Sh. Zigangirov
Copyright c© 2015 John Wiley & Sons, Inc.

647

648 REFERENCES

BeG96. Berrou, C. and Glavieux, A. (1996), Near-optimum error-correcting coding and
decoding: Turbo codes. IEEE Trans. Commun., COM-44:1261–1271.

Ber82. Berlekamp, E. R. (1982), Bit-serial Reed-Solomon encoders. IEEE Trans. Inform.
Theory, IT-28:869–874.

BGT93. Berrou, C., Glavieux, A., and Thitimajshima, P. (1993), Near Shannon limit error-
correcting coding and decoding: Turbo codes (1). Proc. ICC’93, 1064–1070,
Geneva, Switzerland.

Bha43. Bhattacharyya, A. (1943), On a measure of divergence between two statistical
populations defined by their probability distributions. Bull. Calcutta Math. Soc.,
35:99–110.

BHJ01. Bocharova, I. E., Handlery, M., Johannesson, R., and Kudryashov, B. D. (2001), A
BEAST for prowling in trees. Proc. 39th Annual Allerton Conf. Commun., Control,
and Computing, Monticello, Ill., October.

BHJ02. Bocharova, I. E., Handlery, M., Johannesson, R., and Kudryashov, B. D. (2002),
Tailbiting codes obtained via convolutional codes with large active distance-slopes.
IEEE Trans. Inform. Theory, IT-48:2577–2587.

BHJ04. Bocharova, I. E., Handlery, M., Johannesson, R., and Kudryashov, B. D. (2004), A
BEAST for prowling in trees. IEEE Trans. Inform. Theory, IT-50:1295–1302.

BHJ05. Bocharova, I. E., Handlery, M., Johannesson, R., and Kudryashov, B. D. (2005),
BEAST decoding of block codes obtained via convolutional codes. IEEE Trans.
Inform. Theory, IT-51:1880–1891.

BHJ10. Bocharova, I. E., Hug, F., Johannesson, R., and Kudryashov, B. D. (2010), On
weight enumerators and MacWilliams identity for convolutional codes. Information
Theory and Applications Workshop, San Diego, Calif., Jan. 31–Feb. 05.

BHJ12. Bocharova, I. E., Hug, F., Johannesson, R., and Kudryashov, B. D. (2012), A
closed-form expression for the exact bit error probability for Viterbi decoding of
convolutional codes. IEEE Trans. Inform. Theory, IT-58:4635–4644.

BJK02. Bocharova, I. E., Johannesson, R., Kudryashov, B. D., and Ståhl, P. (2002), Tailbiting
codes: Bounds and search results. IEEE Trans. Inform. Theory, IT-48:137–148.

BJK04a. Bocharova, I. E., Johannesson, R., Kudryashov, B. D., and Lončar, M. (2004),
BEAST for decoding block codes. European Trans. Telecomm., 15(4):297–305.

BJK04b. Bocharova, I. E., Johannesson, R., and Kudryashov, B. D. (2004), Low state
complexity block codes via convolutional codes. IEEE Trans. Inform. Theory, IT-
50:2022–2030.

BJK07. Bocharova, I. E., Johannesson, R., and Kudryashov, B. D. (2007), Trellis complexity
for short linear codes. IEEE Trans. Inform. Theory, IT-53:361–368.

Bla92. Blahut, R. E. (1992), Presentation at the Workshop on Information Theory, Mathe-
matisches Forschungsinstitut, Oberwolfach, Germany, April 5–11.

BMc74. Butman, S. A. and McEliece, R. J. (1974), The ultimate limits of binary coding for
a wideband Gaussian channel. DSN Progress Report 42–22, vol. May–June 1974,
Jet Propulsion Laboratory, Pasadena, Calif., 78–80.

Bre04. Breiling, M. (2004), A logarithmic upper bound on the minimum distance of turbo
codes. IEEE Trans. Inform. Theory, IT-50:1692–1710.

REFERENCES 649

BrV93. Brouwer, A. G. and Verhoeff, T. (1993), An updated table of minimum distance
bounds for linear codes. IEEE Trans. Inform. Theory, IT-39:662–677.

Bus65. Bussgang, J. J. (1965), Some properties of binary convolutional code generators.
IEEE Trans. Inform. Theory, IT-11:90–100.

CCG79. Cain, J. B., Clark, G. C., Jr., and Geist, J. M. (1979), Punctured codes of rate (n−
1)/n and simplified maximum-likelihood decoding. IEEE Trans. Inform. Theory,
IT-25:97–100.

CeJ89. Cedervall, M. and Johannesson, R. (1989), A fast algorithm for computing distance
spectrum of convolutional codes. IEEE Trans. Inform. Theory, IT-35:1146–1159.

CFV99. Calderbank, A. R., Forney, G. D., Jr., and Vardy, A. (1999), Minimal tail-biting
trellises: The Golay code and more. IEEE Trans. Inform. Theory, IT-45: 1435–
1455.

ChC76. Chevillat, P. R. and Costello, D. J., Jr. (1976), Distance and computing in sequential
decoding. IEEE Trans. Commun., COM-24:440–447.

CJZ84a. Cedervall, M., Johannesson, R., and Zigangirov, K. Sh. (1984), A new upper bound
on the first-event error probability for maximum-likelihood decoding of fixed binary
convolutional codes. IEEE Trans. Inform. Theory, IT-30:762–766.

CJZ84b. Cedervall, M., Johannesson, R., and Zigangirov, K. Sh. (1984), Creeper—an easily
implementable algorithm for sequential decoding. Proc. Sixth Int. Symp. Inform.
Theory, Tashkent, USSR.

Cos69. Costello, D. J., Jr. (1969), A construction technique for random-error-correcting
convolutional codes. IEEE Trans. Inform. Theory, IT-19:631–636.

Cos74. Costello, D. J., Jr. (1974), Free distance bounds for convolutional codes. IEEE Trans.
Inform. Theory, IT-20:356–365.

CSZ92. Chepyzhov, V. V., Smeets, B. J. M., and Zigangirov, K. Sh. (1992), The free distance
of fixed convolutional rate 2/4 codes meets the Costello bound. IEEE Trans. Inform.
Theory, IT-38:1360–1366.

DiP95. Divsalar, D. and Pollara, F. (1995), Multiple turbo codes for deep-space communi-
cation, JPL TDA Progr. Rep., 66–77.

Eli54. Elias, P. (1954), Error-free coding. IRE Trans. Inform. Theory, PGIT-4:29–37. Also
in Key Papers in the Development of Coding Theory, E. R. Berlekamp, Ed., (1974),
IEEE Press, New York.

Eli55. Elias, P. (1955), Coding for noisy channels. IRE Conv. Rec., pt. 4, 37–46. Also in
Key Papers in the Development of Coding Theory, E. R. Berlekamp, Ed., (1974),
IEEE Press, New York.

ELT00. Engdahl, K., Lentmaier, M., Truhachev, D., and Zigangirov, K. Sh. (2000), Ana-
lytical approach to low-density convolutional codes. Proc. IEEE Int. Symp. Inform.
Theory, Sorrento, Italy.

ELZ99. Engdahl, K., Lentmaier, M., and Zigangirov, K. Sh. (1999), On the theory of
low-density convolutional code. Proceedings of Symposium on Applied Algebra,
Algebraic Algorithms, and Error Correcting Codes, Hawaii.

EnZ99. Engdahl, K. and Zigangirov, K. Sh. (1999), On the theory of low-density convolu-
tional codes I. Problemy Peredachi Informazii, 35(4):12–28.

650 REFERENCES

Fal66. Falconer, D. D. (1966), A hybrid sequential and algebraic decoding scheme. Ph.D.
Thesis, Dept. of Elec. Eng, MIT, Cambridge, Mass.

Fan61. Fano, R. M. (1961), Transmission of Information. MIT Press, Cambridge, Mass.,
and Wiley, New York.

Fan63. Fano, R. M. (1963), A heuristic discussion of probabilistic decoding. IEEE Trans.
Inform. Theory, IT-9:64–74.

Fel68. Feller, W. (1968), An Introduction to Probability Theory and Its Applications, 3rd
ed.. Wiley, New York.

FHB89. Fuja, T., Heegard, C., and Blaum, M. (1991), Cross parity check convolutional
codes. IEEE Trans. Inform. Theory, IT-35:1265–1276.

FJW96. Forney, G. D., Jr., Johannesson, R., and Wan, Z.-X. (1996), Minimal and canonical
rational generator matrices for convolutional codes. IEEE Trans. Inform. Theory,
IT-42:1865–1880.

For67. Forney, G. D., Jr. (1967), Review of Random Tree Codes. NASA Ames Res. Cen.,
Contract NAS2-3637, NASA CR 73176, Final Rep.; Appx A. See also Forney,
G. D., Jr. (1974), and Convolutional codes II: Maximum-likelihood decoding and
Convolutional codes III: Sequential decoding. Inform Contr., 25:222–297.

For70. Forney, G. D., Jr. (1970), Convolutional codes I: Algebraic structure. IEEE Trans.
Inform. Theory, IT-16:720–738.

For73. Forney, G. D., Jr. (1973), Structural analyses of convolutional codes via dual codes.
IEEE Trans. Inform. Theory, IT-19:512–518.

For74. Forney, G. D., Jr. (1974), Convolutional codes II: Maximum-likelihood decoding
and convolutional codes. Inform. Contr., 25:222–266.

For75. Forney, G. D., Jr. (1975), Minimal bases of rational vector spaces, with applications
to multivariable systems. SIAM J. Control, 13:493–520.

For88. Forney, G. D., Jr. (1988), Coset codes—Part II: Binary lattices and related codes.
IEEE Trans. Inform. Theory, IT-34:1152–1187.

For91. Forney, G. D., Jr. (1991), Algebraic structure of convolutional codes, and algebraic
system theory. In Mathematical System Theory, A. C. Antoulas, Ed., Springer,
Berlin, 527–558.

For94. Forney, G. D., Jr. (1994), Trellises old and new, 115–128. In Communications and
Cryptography—Two Sides of the One Tapestry, R. E. Blahut, et al., Eds., Published
in honor of James L. Massey on the occasion of his 60th birthday. Kluwer Academic,
Boston.

For97. Forney, G. D., Jr. (1997), On iterative decoding and the two-way algorithm. Proc.
Int. Symp. on Turbo Codes & Related Topics, Brest, France.

FoT93. Forney, G. D., Jr. and Trott, M. D. (1993), The dynamics of group codes: State
spaces, trellis diagrams, and canonical encoders. IEEE Trans. Inform. Theory, IT-
39:1491–1513.

FTL09. Feltström, A. J., Truhachev, D., Lentmaier, M., and Zigangirov, K. Sh. (2009),
Braided block codes. IEEE Trans. Inform. Theory, IT-55:2640–2658.

Gal62. Gallager, R. G. (1962), Low-density parity-check codes. IRE Trans. Inform. Theory,
IT-8:21–28.

REFERENCES 651

Gal63. Gallager, R. G. (1963), Low-Density Parity-Check Codes. MIT Press, Cambridge,
Mass.

Gal65. Gallager, R. G. (1965), A simple derivation of the coding theorem and some appli-
cations. IEEE Trans. Inform. Theory, IT-11:3–18.

Gal68. Gallager, R. G. (1968), Information Theory and Reliable Communication. Wiley,
New York.

Gil52. Gilbert, E. N. (1952), A comparison of signalling alphabets. Bell System Tech. J.
31:504–522.

Gil66. Gill, A. (1966), Linear Sequential Circuits: Analysis, Synthesis, and Applications.
McGraw-Hill, New York.

Gol49. Golay, M. J. E. (1949), Notes on digital coding. Proc. I. R. E., 37:657.

Gol67. Golomb, S. W. (1967), Shift Register Sequences, Holden-Day, San Francisco, 1967.
Revised ed., Aegean Park Press, Laguna Hills, Calif., 1982.

Gri60. Griesmer, J. H. (1960), A bound for error-correcting codes. IBM J. Res. Develop.,
4:532–542.

Hac66. Haccoun, D. (1966), Simulated communication with sequential decoding and phase
estimation. S.M. Thesis, Dept. of Elec. Eng., MIT, Cambridge, Mass.

HaH70. Hartley, B. and Hawkes, T. O. (1970), Rings, Modules and Linear Algebra. Chapman
and Hall, London.

Ham50. Hamming, R. W. (1950), Error-detecting and error-correcting codes. Bell Sys. Techn.
J., 29:147–160.

Han02. Handlery, M. (2002), Tales of tailbiting codes. Ph.D. Thesis, Dept. of Information
Technology, Lund University, Lund, Sweden.

HBJ10. Hug, F., Bocharova, I. E., Johannesson, R., and Kudryashov, B. D. (2010), A rate
R = 5/20 hypergraph-based woven convolutional code with free distance 120.
IEEE Trans. Inform. Theory, IT-56:1618–1623.

Hel67. Heller, J. A. (1967), Sequential decoding for channels with time varying phase.
Sc.D. Thesis, Dept. of Elec. Eng., MIT, Cambridge, Mass.

Hel68. Heller, J. A. (1968), Short constraint length convolutional codes. Jet Propulsion Lab.,
California Inst. Technol., Pasadena, Space Programs Summary 37–54, 3:171–177.

HJM01. Handlery, M., Johannesson, R., Massey, J. L., and Ståhl, P., An upper bound on
decoding bit-error probability with linear coding on extremely noisy channels. Proc.
IEEE Int. Symp. Inform. Theory, Washington, D.C., 131.

HJS98. Höst, S., Johannesson, R., Sidorenko, V. R., Zigangirov, K. Sh., and Zyablov, V. V.
(1998), Cascaded convolutional codes. In Communications and Coding, 10–29. M.
Darnell and B. Honary, Eds., Published in honor of Paddy G. Farrell on the occasion
of his 60th birthday. Research Studies Press Ltd. and Wiley.

HJZ95. Höst, S., Johannesson, R., and Zyablov, V. V. (1995), On the construction of concate-
nated codes based on binary conventional convolutional codes. Proc. Seventh Joint
Swedish-Russian Int. Workshop on Inform. Theory, St. Petersburg, Russia, 114–118.

HJZ99. Höst, S., Johannesson, R., Zigangirov, K. Sh., and Zyablov, V. V. (1999), Active
distances for convolutional codes. IEEE Trans. Inform. Theory, IT-45:658–669.

652 REFERENCES

HLC06. He, C., Lentmaier, M., Costello, D. J., Jr., and Zigangirov, K. Sh. (2006), Joint
permutor analysis and design for multiple turbo codes. IEEE Trans. Inform. Theory,
IT-52:4068–4083.

HoJ90. Horn, R. A., and Johnson C. R. (1990), Matrix Analysis, Cambridge University
Press, Cambridge, UK.

Hug12. Hug, F. (2012), Codes on graphs and more. Ph.D. Thesis, Dept. of Elec. and Infor-
mation Technology, Lund University, Lund, Sweden.

HZC08. Huebner, A., Zigangirov, K. Sh., and Costello, D. J., Jr. (2008), Laminated turbo
codes: A new class of block-convolutional codes. IEEE Trans. Inform. Theory,
IT-54:3024–3034.

JaB67. Jacobs, I. M. and Berlekamp, E. R. (1967), A lower bound to the distribution of
computation for sequential decoding. IEEE Trans. Inform. Theory, IT-13:167–174.

Jac85. Jacobson, N. (1985), Basic Algebra I, 2nd ed. Freeman, New York.

Jac89. Jacobson, N. (1989), Basic Algebra II, 2nd ed. Freeman, New York.

Jel69. Jelinek, F. (1969), A fast sequential decoding algorithm using a stack. IBM J. Res.
Dev., 13:675–685.

Jim06. Jiménez-Feltström, A. (2006), Iteratively decodable convolutional codes: Analysis
and implementation aspects. Ph.D. Thesis, Dept. of Inform. Theory, Lund University,
Lund, Sweden.

JiZ99. Jiménez, A. and Zigangirov, K. Sh. (1999), Periodically time-varying convolutional
codes with low-density parity-check matrices. IEEE Trans. Inform. Theory, IT-
45:2181–2190.

JJB04. Jordan, R., Johannesson, R., and Bossert, M. (2004), On nested convolutional codes
and their applications to woven codes. IEEE Trans. Inform. Theory, IT-50:380–384.

JMS00. Johannesson, R., Massey, J. L., and Ståhl, P. (2000), On the decoding bit error
probability for binary convolutional codes. Proc. IEEE Int. Symp. Inform. Theory,
Sorrento, Italy, 328.

JMS02. Johannesson, R., Massey, J. L., and Ståhl, P. (2002), Systematic bits are better and
no buts about it. In Codes, Graphs, and Systems, R. E. Blahut, and R. Koetter, Eds.,
77–89. Published in honor of G. D. Forney, Jr., on the occasion of his 60th birthday.
Kluwer Academic, Boston.

Joh75. Johannesson, R. (1975), Robustly optimal rate one-half binary convolutional codes.
IEEE Trans. Inform. Theory, IT-21:464–468.

Joh76. Johannesson, R. (1976), Some long rate one-half binary convolutional codes with
an optimum distance profile. IEEE Trans. Inform. Theory, IT-22:629–631.

Joh77a. Johannesson, R. (1977), Some rate 1/3 and 1/4 binary convolutional codes with an
optimum distance profile. IEEE Trans. Inform. Theory, IT-23:281–283.

Joh77b. Johannesson, R. (1977), On the error probability of general trellis codes with appli-
cations to sequential decoding. IEEE Trans. Inform. Theory, IT-23:609–611.

JoP78. Johannesson, R. and Paaske, E. (1978), Further results on binary convolutional codes
with an optimum distance profile. IEEE Trans. Inform. Theory, IT-24:264–268.

Jor02. Jordan, R. (2002), Design aspects of woven convolutional codes. Ph.D. Thesis, Univ.
of Ulm, Fortschr.-Ber. VDI Reihe 10 Nr. 714, VDI Verlag, Dusseldorf.

REFERENCES 653

JoS99. Johannesson, R. and Ståhl, P. (1999), New rate 1/2, 1/3, and 1/4 binary convo-
lutional encoders with an optimum distance profile. IEEE Trans. Inform. Theory,
IT-45:1653–1658.

JoW93. Johannesson, R. and Wan, Z.-X. (1993), A linear algebra approach to minimal
convolutional encoders. IEEE Trans. Inform. Theory, IT-39:1219–1233.

JoW94. Johannesson, R. and Wan, Z.-X. (1994), On canonical encoding matrices and
the generalized constraint lengths of convolutional codes. In Communications and
Cryptography—Two Sides of the One Tapestry, R. E. Blahut, et al., Eds., 187–200.
Published in honor of James L. Massey on the occasion of his 60th birthday. Kluwer
Academic, Boston.

JoW98. Johannesson, R. and Wittenmark, E. (1998), Two 16-state, rate R = 2/4 trellis
codes whose free distances meet the Heller bound. IEEE Trans. Inform. Theory,
IT-44:1602–1604.

JoZ89. Johannesson, R. and Zigangirov, K. Sh. (1989), Distances and distance bounds for
convolutional codes. In Topics in Coding Theory—In Honour of Lars H. Zetterberg,
G. Einarsson, et al., Eds., Springer, Berlin, 109–136.

JoZ96. Johannesson, R. and Zigangirov, K. Sh. (1996), Towards a theory for list decoding
of convolutional codes. Probl. Peredachi Inform., 1.

JoZ98. Johansson, T. and Zigangirov, K. Sh. (1998), A simple one-sweep algorithm for
optimal APP symbol decoding of linear block codes. IEEE Trans. Inform. Theory,
IT-44:3124–3129.

JSW00. Johannesson, R., Ståhl, P., and Wittenmark, E. (2000), A note on Type II convolu-
tional codes. IEEE Trans. Inform. Theory, IT-46:1510–1514.

JTZ88. Justesen, J., Thommesen, C., and Zyablov, V. V. (1988), Concatenated codes with
convolutional inner codes. IEEE Trans. Inform. Theory, IT-34:1217–1225.

JZZ95. Johannesson, R., Zigangirov, K. Sh., and Zyablov, V. V. (1995), Lower bounds on
the free distance for random concatenated convolutional codes. Proc. Seventh Joint
Swedish-Russian Int. Workshop on Inform. Theory, St. Petersburg, Russia, 133–136.

Kab91. Kabatyanskii, G. A. (1991), About metrics and decoding domains of Forney algo-
rithm. Proc. 5th Joint Swedish-Russian Int. Workshop on Inform. Theory, Moscow,
Russia, 81–85.

KaU98. Kahale, N. and Urbanke R. (1998), On the minimum distance of parallel and serially
concatenated codes. Proc. IEEE Int. Symp. Information Theory, Cambridge, Mass.

KFA69. Kalman, R. E., Falb, P. L., and Arbib, M. A. (1969), Topics in Mathematical System
Theory. McGraw-Hill, New York.

KFL01. Kschischang, F. R., Frey, B., and Loeliger, H.-A. (2001), Factor graphs and the
sum-product algorithm. IEEE Trans. Inform. Theory, IT-47:498–519.

Knu73. Knuth, D. E. (1973), The Art of Computer Programming, Vol. 3, Searching and
Sorting. Addison-Wesley, Reading, Mass.

KoV98. Kötter, R. and Vardy, A. (1998), Construction of minimal tail-biting trellises. Proc.
IEEE Inform. Theory Workshop, Killarney, Ireland, 72–74.

KRU11. Kudekar, S., Richardson T. J., and Urbanke R. L. (2011), Threshold saturation via
spatial coupling: Why convolutional LDPC ensembles perform so well over the
BEC. IEEE Trans. Inform. Theory, IT-57:803–834.

654 REFERENCES

KsS95. Kschischang, F. R. and Sorokine, V. (1995), On the trellis structure of block codes.
IEEE Trans. Inform. Theory, IT-41:1924–1937.

LaM70. Layland, J. and McEliece, R. (1970), An upper bound on the free distance of a
tree code. Jet Propulsion Lab., California Inst. Technol., Pasadena, Space Programs
Summary 37–62, 3:63–64.

Lee76. Lee, L.-N. (1976), On optimal soft-decision demodulation. IEEE Trans. Inform.
Theory, IT-22:437–444.

Lee78. Lee, S. C. (1978), Modern Switching Theory and Digital Design. Prentice-Hall,
Englewood Cliffs, N.J.

Len03. Lentmaier, M. (2003), Towards a theory of codes for iterative decoding. Ph.D.
Thesis, Dept. of Inform. Theory, Lund University, Lund, Sweden.

LeZ98. Lentmaier, M. and Zigangirov, K. Sh. (1998), Iterative decoding of generalized
low-density parity-check codes. Proc. IEEE Int. Symp. Inform. Theory, Boston.

LeZ99. Lentmaier, M. and Zigangirov, K. Sh. (1999), On generalized low-density parity-
check codes based on Hamming component codes. IEEE Commun. Lett., 3(8):248–
250.

LFM94. Loeliger, H.-A., Forney, G. D., Jr., Mittelholzer, T., and Trott, M. D. (1994), Min-
imality and observability of group systems. Linear Algebra and Its Appli., 205–
206:937–963.

Lin86. Lin, C.-F. (1986), A truncated Viterbi algorithm approach to trellis codes. Ph.D.
Thesis, ECSE Dept., Rensselaer Poly. Inst., Troy, N.Y.

LoM96. Loeliger, H.-A. and Mittelholzer, T. (1996), Convolutional codes over groups. IEEE
Trans. Inform. Theory, IT-42:1660–1686.

Lon07. Lončar, M. (2007), Taming of the BEAST. Ph.D. Thesis, Dept. of Information
Technology, Lund University, Lund, Sweden.

LSC10. Lentmaier, M., Sridharan, A., Costello, D. J., Jr., and Zigangirov, K. Sh. (2010),
Iterative decoding thresholds analysis for LDPC convolutional codes, IEEE Trans.
Inform. Theory, IT-56:5274–5289.

LTZ01. Lentmaier, M., Truhachev, D. V., and Zigangirov, K. Sh. (2001), Analysis of the
asymptotic iterative decoding performance of turbo codes, Proc. IEEE Int. Symp.
Inform. Theory, Washington, D.C., 190.

LTZ02. Lentmaier, M., Truhachev, D. V., and Zigangirov, K. Sh. (2002), Iteratively decod-
able codes on graphs, Proc. ACCT-VIII, St. Peterburg, Russia, Sept., 190–193.

LTZ04. Lentmaier, M., Truhachev, D. V., and Zigangirov, K. Sh. (2004), Analytic expression
for the bit error probability of rate-1/2 memory 2 convolutional encoders, IEEE
Trans. Inform. Theory, IT-50:1303–1311.

LTZ05. Lentmaier, M., Truhachev, D. V., Zigangirov, K. Sh., and Costello, D. J., Jr. (2005),
An analysis of the block error probability performance of iterative decoding, IEEE
Trans. Inform. Theory, IT-51:3834–3855.

MaC71. Massey, J. L. and Costello, D. J., Jr. (1971), Nonsystematic convolutional codes for
sequential decoding in space applications. IEEE Trans. Commun. Technol., COM-
19:806–813.

MaN96. MacKay, D. J. C. and Neal, R. M. (1996), Near Shannon limit performance of low
density parity check codes. Electron. Lett., 32(18):1645–1646.

REFERENCES 655

Mar82. Margulis, G. A. (1982), Explicit construction of graphs without short cycles and low
density codes. Combinatorica, 2:71–78.

Mas63. Massey, J. L. (1963), Threshold Decoding. MIT Press, Cambridge, Mass.

Mas74. Massey, J. L. (1974), Coding and modulation in digital communications. Proc. Int.
Zurich Seminar on Digital Commun., E2(1)–E2(4).

Mas75. Massey, J. L. (1975), Error bounds for tree codes, trellis codes, and convolutional
codes with encoding and decoding procedures. In Coding and Complexity—CISM
Courses and Lectures No. 216, G. Longo, Ed., Springer, Wien.

Mas78. Massey, J. L. (1978), Foundations and methods of channel coding. Proc. Int. Conf.
Inform. Theory and Systems, NTG Fachberichte, Vol. 65, Berlin, Sept.

Mas82. Massey, J. L. (1982), What is a bit of information? Scienta Electric, 28(1):1–11.

Mas84. Massey, J. L. (1984), The how and why of channel coding. Proc. 1984 Int. Zurich
Seminar on Digital Communications, Zurich, 67–73.

MaS67. Massey, J. L. and Sain, M. K. (1967), Codes, automata, and continuous systems:
Explicit interconnections. IEEE Trans. Automatic Control, AC-12:644–650.

MaS68. Massey, J. L. and Sain, M. K. (1968), Inverses of linear sequential circuits. IEEE
Trans. Comput., C-17:330–337.

MaS77. MacWilliams, F. J. and Sloane, N. J. A. (1977), The Theory of Error-Correcting
Codes. North-Holland, Amsterdam.

MaW86. Ma, J. H. and Wolf, J. K. (1986), On tail-biting convolutional codes. IEEE Trans.
Commun., 34:104–111.

MaZ60. Mason, S. and Zimmermann, H. (1960), Electronic Circuits, Signals, and Systems.
Wiley, New York.

McE77. McEliece, R. J. (1977), The Theory of Information and Coding. Addison-Wesley,
Reading, Mass.

McE96. McEliece, R. J. (1996), On the BCJR trellis for linear block codes. IEEE Trans.
Inform. Theory, IT-42:1072–1092.

McE98. McEliece, R. J. (1998), The algebraic theory of convolutional codes. In Handbook
of Coding Theory, Vol. I, V. S. Pless, and W. C. Huffman, Eds., Elsevier Science,
Amsterdam, 1065–1138.

Mee74. Van de Meeberg, L. (1974), A tightened upper bound on the error probability of
binary convolutional codes with Viterbi decoding. IEEE Trans. Inform. Theory,
IT-20:389–391.

MoA84. Mohan, S. and Anderson, J. B. (1984), Sequential coding algorithms: A survey and
cost analysis. IEEE Trans. Commun. Technol., COM-32:169–176.

Mon70. Monna, A. F. (1970), Analyse Non-Archimedienne. Springer, Berlin.

Mud88. Muder, D. J. (1988), Minimal trellises for block codes. IEEE Trans. Inform. Theory,
IT-34:1049–1053.

NJZ97. Nyström, J., Johannesson, R., and Zigangirov, K. Sh. (1997), Creeper—an algorithm
for sequential decoding. Submitted to IEEE Trans. Inform. Theory.

Nys93. Nyström, J. (1993), Creeper—an algorithm for sequential decoding. Ph.D. Thesis,
Dept. of Inform. Theory, Lund University, Lund, Sweden.

656 REFERENCES

OAJ98. Osthoff, H., Anderson, J. B., Johannesson, R., and Lin, C.-F. (1998), Systematic
feed-forward convolutional encoders are better than other encoders with an M -
algorithm decoder. IEEE Trans. Inform. Theory, 44:831–838.

Ols70. Olson, R. R. (1970), Note on feedforward inverses of linear sequential circuits. IEEE
Trans. Comput., C-19:1216–1221.

Omu69. Omura, J. K. (1969), On the Viterbi decoding algorithm. IEEE Trans. Inform. Theory,
IT-15:177–179.

Ost93. Osthoff, H. (1993), Reduced complexity decoding with systematic encoders. Ph.D.
Thesis, Dept. Inform. Theory, Lund University, Lund, Sweden.

Pin67. Pinsker, M. S. (1967), Bounds for error probability and for number of correctable
errors for nonblock codes. Probl. Peredachi Inform., 3:58–71.

Pir88. Piret, P. (1988), Convolutional Codes: An Algebraic Approach. MIT Press, Cam-
bridge, Mass.

PJS08. Pusane, A. E., Jimenes, A. J. F., Sridharan, A. J., Lentmaier, M., Zigangirov, K.
Sh., and Costello, D. J., Jr. (2008), Implementation aspects of LDPC convolutional
codes. IEEE Trans. Commun., COM-50:1060–1069.

RoC89. Rouanne, M. and Costello, D. J., Jr. (1989), An algorithm for computing the distance
spectrum of trellic codes. IEEE J. Select. Areas Commun., 7:929–940.

Roo79. Roos, C. (1979), On the structure of convolutional and cyclic convolutional codes.
IEEE Trans. Inform. Theory, IT-25:676–683.

RUr08. Richardson, T., and Urbanke, R. (2008), Modern Coding Theory. Cambridge Uni-
versity Press, Cambridge, UK.

SAJ99. Ståhl, P., Anderson, J. B., and Johannesson, R. (1999), Optimal and near-optimal
encoders for short and moderate-length tailbiting trellises. IEEE Trans. Inform.
Theory, IT-45:2562–2571.

SAJ02. Ståhl, P., Anderson, J. B., and Johannesson, R. (2002), A note on tailbiting codes
and their feedback encoders. IEEE Trans. Inform. Theory, 48:529–534.

SaM69. Sain, M. K. and Massey, J. L. (1969), Invertability of linear time-invariant dynamical
systems. IEEE Trans. Automatic Contr., AC-14:141–149.

Sav66. Savage, J. E. (1966), Sequential decoding—the computation problem. Bell Syst.
Tech. J., 45:149–176.

SGB67. Shannon, C. E., Gallager, R. G., and Berlekamp, E. R. (1967), Lower bounds to
error probability for coding on discrete memoryless channels. Inform. Contr., 10,
Part I: 65–103 and Part II: 522–552.

Sha48. Shannon, C. E. (1948), A mathematical theory of communications. Bell Sys. Tech.
J. 27:379–423 (Part I), 623–656 (Part II). Also reprinted in Key Papers in the
Development of Information Theory, D. Slepian, Ed., (1974), IEEE Press, New
York, 5–29.

Sov79. Solomon, G. and van Tilborg, H. C. A. (1979), A connection between block and
convolutional codes. SIAM J. Appl. Math., 37:358–369.

Sta01. Ståhl, P. (2001), On tailbiting codes from convolutional codes. Ph.D. Thesis, Dept.
of Information Technology, Lund University, Lund, Sweden.

REFERENCES 657

Sti63. Stiglitz, I. G. (1963), Sequential decoding with feedback. Sc.D. Thesis, Dept. of
Elec. Eng., MIT, Cambridge, Mass.

STL07. Shridharan, A, Truhachev, D., Lentmaier, M., Costello, D. J., Jr., and Zigangirov, K.
Sh. (2007), Distance bounds for an ensemble of LDPC convolutional codes. IEEE
Trans. Inform. Theory, IT-53:4537–4555.

SVZ98. Shamai, S., Verdu, S., and Zamir, R. (1998), Systematic lossy source/channel coding,
IEEE Trans. Inform. Theory, IT-44:564–579.

Tan81. Tanner, R. M. (1981), A recursive approach to low-complexity codes. IEEE Trans.
Inform. Theory, IT-27:533–547.

ThJ83. Thommesen, C. and Justesen, J. (1983), Bounds on distances and error exponents
of unit-memory codes. IEEE Trans. Inform. Theory, IT-29:637–649.

Tho83. Thompson, T. M. (1983), From Error-Correcting Codes through Sphere Packings
to Simple Groups, The Carus Mathematical Monographs No. 21, The Mathematical
Association of America.

TLZ01. Truhachev, D. V., Lentmaier, M., and Zigangirov, K. Sh. (2001), Some results
concerning design and decoding of turbo codes. Probl. Inf. Transm., 37:190–205.

TLZ03. Truhachev, D. V., Lentmaier, M., and Zigangirov, K. Sh. (2003), On braided block
codes. Proc. IEEE Int. Symp. Inform. Theory, Yokohama, Japan, June.

Tru04. Truhachev, D. V. (2004), On the construction and analysis of iteratively decodable
codes. Ph.D. Thesis, Dept. of Inform. Theory, Lund University, Lund, Sweden.

TZC10. Truhachev, D. V., Zigangirov, K. Sh., and Costello, D. J., Jr. (2010), Distance bounds
for periodically time-varying and tail-biting LDPC convolutional codes. IEEE Trans.
Inform. Theory, IT-56:4301–4308.

Var57. Varshamov, R. R. (1957), Estimate of the number of signals in error correcting
codes. Doklady Akad. Nauk SSSR, 117:739–741.

ViO79. Viterbi, A. J. and Omura, J. K. (1979), Principles of Digital Communication and
Coding. McGraw-Hill, New York.

Vit67. Viterbi, A. J. (1967), Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Trans. Inform. Theory, IT-13:260–269.

Vit71. Viterbi, A. J. (1971), Convolutional codes and their performance in communication
systems. IEEE Trans. Commun. Technol., COM-19:751–772.

Vit90. Viterbi, A. J. (1990), From proof to product. 1990 IEEE Commun. Theory Workshop,
Ojai, Calif.

Wal47. Wald, A. (1947), Sequential Analysis. Wiley, New York.

Wib96. Wiberg, N. (1996), Codes and decoding on general graphs. Ph.D. Thesis, Dept. of
Elec. Eng., Linköping University, Linköping, Sweden.

Wil96. Wilson, S. G. (1996), Digital Modulation and Coding. Prentice-Hall, London.

WLK95. Wiberg, N., Loeliger, H.-A., and Kötter, R. (1995), Codes and iterative decoding on
general graphs. Euro. Trans. Telecommun., 6:513–526.

Wol78. Wolf, J. K. (1978), Efficient maximum likelihood decoding of linear block code
using a trellis. IEEE Trans. Inform. Theory, IT-24:76–80.

658 REFERENCES

Woz57. Wozencraft, J. M. (1957), Sequential decoding for reliable communication. IRE
Conv. Rec., 5(2):11–25. See also Wozencraft, J. M., and Reiffen, B. (1961), Sequen-
tial Decoding. MIT Press, Cambridge, Mass.

Yud64. Yudkin, H. L. (1964), Channel state testing in information decoding. Sc.D. Thesis,
Dept. of Elec. Eng., MIT, Cambridge, Mass.

ZiC89. Zigangirov, K. Sh. and Chepyzhov, V. V. (1989), Study of tail biting convolutional
codes. Proc. 4th Joint Swedish-Soviet Int. Workshop Inform. Theory, Gotland, Swe-
den, 52–55.

ZiC91. Zigangirov, K. Sh. and Chepyzhov, V. V. (1991), On the existence of time-invariant
convolutional codes with transmission rates 2/c, c ≥ 4 which meets the Costello
bound. Probl. Peredachi Inform., 3.

Zig66. Zigangirov, K. Sh. (1966), Some sequential decoding procedures. Probl. Peredachi
Inform., 2:13–25.

Zig72. Zigangirov, K. Sh. (1972), On the error probability of the sequential decoding in the
BSC. IEEE Trans. Inform. Theory, IT-18:199–202.

Zig74. Zigangirov, K. Sh. (1974), Procedures of Sequential Decoding. Svjaz, Moscow.

Zig75. Zigangirov, K. Sh. (1975), Procedures of sequential decoding. In Coding and
Complexity—CISM Courses and Lectures No. 216, G. Longo, Ed., Springer, Wien.

Zig85. Zigangirov, K. Sh. (1985), New upper bounds for decoding error probability for
convolutional codes. Probl. Peredachi Inform., 21:20–31.

Zig86. Zigangirov, K. Sh. (1986), New asymptotic lower bound on the free distance for
time-invariant convolutional codes. Probl. Peredachi Inform., 2:34–42.

ZiK80. Zigangirov, K. Sh. and Kolesnik, V. D. (1980), List decoding of trellis codes. Probl.
Control Inform. Theory, 9:347–364.

ZiO93. Zigangirov, K. Sh. and Osthoff, H. (1993), Analysis of global-list decoding for
convolutional codes. European Trans. Telecommun., 4:165–173.

ZLZ10. Zhang, W., Lentmaier, M., Zigangirov, K. Sh., and Costello, D. J., Jr. (2010), Braided
convolutional codes: A new class of turbo-like codes. IEEE Trans. Inform. Theory,
IT-56:316–331.

ZPZ08. Zigangirov, K. Sh., Pusane, A. E., Zigangirov, D. K., and Costello, D. J., Jr. (2008),
On the error-correcting capability of LDPC codes. Probl. Peredachi Inform., 44:214–
225.

ZyP74. Zyablov, V. V. and Pinsker, M. S. (1974), Decoding complexity of low-density codes
for transmission in a channel with erasures, Probl. Peredachi Inform., 10:15–28.

ZyP75. Zyablov, V. V. and Pinsker, M. S. (1975), Estimation of the error-correction com-
plexity of Gallager low-density codes, Probl. Peredachi Inform., 11:23–36.

INDEX

Abstract state, 90
space, 90

Active burst distance, see Active distance
Active column distance, see Active distance
Active distance, 171

active burst distance, 177
active column distance, 174, 193

normalized, 207, 209
active reverse column distance, 175, 193

normalized, 207
active row distance, 172, 193

normalized, 206, 207, 209
active segment distance, 176, 193

normalized, 207, 209
Active interval, 310

circular, 310
Active reverse column distance, see Active

distance
Active row distance, see Active distance
Active segment distance, see Active distance
Algorithm B, BEAST for ML and List decod-

ing, 315
Algorithm BCJR, APP decoding, 276
Algorithm BCJRTB, APP decoding of tailbit-

ing trellis, 306
Algorithm BF, Bit-flipping, 25

Algorithm BPBEC (The BP algorithm for de-
coding the output of a BEC), 531

Algorithm BSB, BEAST for finding a spectral
component for a block code, 599

Algorithm BSC, BEAST for finding a spectral
component for a convolutional en-
coder, 601

Algorithm C, Creeper rate R = 1/c, 440
Algorithm C, Creeper rate R = b/c, 448
Algorithm FAST for computing Viterbi spec-

tra, 596
Algorithm LD, List decoding, 388
Algorithm MB, Minimal-basic encoding ma-

trix, 86
Algorithm S, Stack, 431
Algorithm V, Viterbi algorithm, 229
Ancheta, T. C., Jr., 291
Anderson, J. B., 391, 392, 422, 622
Antipodal signaling, 3
A posteriori probability (APP) decoding, 225,

271, 582
one-way algorithm, 283

APP decoding, see A posteriori probability
(APP) decoding

Arbib, M. A., 66

Fundamentals of Convolutional Coding, 2. Edition. By Rolf Johannesson, Kamil Sh. Zigangirov
Copyright c© 2015 John Wiley & Sons, Inc.

659

660 INDEX

Back-search limit, 283, 375, 376, 378, 379,
384

Baggen, C. P. M. J., 555
Bahl, L., 225, 324
Basis, 13
BCJR algorithm, 271

backward metric, 276
for APP decoding of tailbiting trellis,

306
forward metric, 276

BEAST decoding, 308
Be´ery, Y., 313
Belief propagation (BP) algorithm, see Itera-

tive decoding
Berger, Y., 313
Berlekamp, E. R., 35, 384, 481
Berrou, C., 40, 591
Best, M. R., 264, 324
Bhattacharyya, A., 237
Bhattacharyya bound, 237, 365
Bhattacharyya parameter, 237, 337, 345, 347,

351, 361, 366, 367, 544, 551
Bidirectional Efficient Algorithm for Search-

ing Trees (BEAST), 226
Binary digit, 2
Binary entropy function, 8, 198, 335, 357
Bit, 1, 2
Bit error probability, 5, 235, 240, 243, 244

exact, 255, 263, 290
Gaussian channel, 249
simple error bound, 288

Bit error rate, 5
Bit-flipping (BF) algorithm, see Iterative de-

coding
Blahut, R. E., 8
Blaum, M., 555
Block code, 8

binary, 8
Bose-Chaudhuri-Hocquenhem (BCH), 16
braided, see Braided block code (BBC)
cyclic, 16
dual, 16
equivalent, 14
even-weight, 42
expurgated, 44
extended, 43, 44
Hamming, 16
length, 8
linear, 13, 38
low-density parity-check (LDPC), 22

cyclefree, 572
design rate, 23
irregular, 23, 486

lower bound on minimum distance,
517

minimum distance, 493
regular, 23, 486

maximum-distance-separable (MDS), 17
minimum distance, dmin, 12
on graph, 21
orthogonal, 16
perfect, 43
Reed-Solomon (RS), 16
repetition, 16, 44
self-dual, 16
shortened Hamming code, 600
single-error-correcting, see Hamming code
single-error-detecting, 12
sparsely braided, 558
sphere-packing bound, 356
sphere-packing exponent, 358

Block coding
exponent, 341
expurgation region, 342
random coding region, 342
sphere-packing bound, 342
sphere-packing region, 342

Block error probability, 9, 21
Block length, see Block code
Bocharova, I. E., 217, 226, 308, 312, 321,

322, 324, 598, 602, 622, 623
Bossert, M., 105
Braided block code (BBC), 553

constituent code
horizontal, 555
vertical, 555

direct encoder realization, 556
sparsely braided, 553
tightly braided, 553

Braided convolutional code (BCC), 567, 586
Braided encoder

direct realization, 557
Branch metrics, 251
Breakout value, 541, 545, 552
Breiling, M., 570
Burnashev, M. V., 264, 324
burst error, 35
Burst error probability, 235, 238, 239, 247,

248, 254
Busgang, J. J., 151
Butman, S. A., 38

Cain, J. B., 230
Calderbank, A. R., 264, 297, 311, 312, 324
Cascaded concatenated code, 207
Cauchy’s inequality, 545
Cedervall, M., 250, 324, 481, 596, 623

INDEX 661

Channel
additive white Gaussian noise (AWGN),

3
binary erasure channel (BEC), 45, 290,

368
binary symmetric channel (BSC), 4
memoryless, 4

Channel capacity, 2
for AWGN channel, 37
for BSC channel, 8

Channel coding, 1
Channel coding theorem, 2, 7
Chepyzhov, V. V., 200, 302
Chevillat, P. R., 166
Circular trellis, 295
Clark, G. C., Jr., 230
Cocke, J., 225, 324
Code rate, 8
Code sequence, 49, 53
Code tree, 30
Codeword, 8

estimator, 67
Coding gain, 7

asymptotical, 250
Coding theory, 2
Coherent demodulation, 3
Coin-flip tie-breaking rule, 226, 234
Column distance, 162, 165, 220

function, 166
Complementary error function, 5, 247
Complexity of decoding, 11
Computational cutoff rate, 335, 367, 379
Computational tree, 490

clan, 490
clan head, 490, 571
cyclefree, 572
descendant, 490, 571
family, 490, 571
generation, 490

Concatenated coding, 36
Constituent code, 23
Constituent encoder, 568
Constraint decomposition, 519
Controller canonical form, 51, 217

minimal, 105
Convolutional code, 28, 54

braided, 567, 586
convolutional dual, 135
doubly-even, 299
dual, 134

reversal, 135
ensemble, 181
equivalent, 56, 78
exponent, 350, 353

expurgation bound, 337, 376
fixed, 191
free distance, see free distance
generator matrix, 29
generator submatrix, 29
Golay (GCC), 298
low-density parity-check (LDPC), 486,

496, 498
free distance, 489
lower-bounding free distance, 526
periodic, 497
regular, 498
syndrome former, 486
terminated, 546
unwrapping method, 499

lower-bound exponent, 361
optimum distance profile (ODP), 165
optimum free distance (OFD), 171
random coding bound, 335, 376
sphere-packing bound, 341, 378
sphere-packing exponent, 359
time-invariant, 191
time-varying, 191
Type II, 299

Convolutional encoder, 29, 54
equivalent, 77
minimal, 104
polynomial, 55
systematic, 56
time-varying, 191

Convolutional encoding matrix, 57
equivalent, 77
equivalent minimal-basic, 105
minimal-basic, 83
ODP encoding matrix, 165
polynomial, 392

Convolutional generator matrix, 54
basic, 80
canonical, 109
catastrophic, 56, 170
constraint length, 82
distance profile, 164
equivalent, 77, 78
memory, 28, 82
minimal, 94
minimum distance, 164
noncatastrophic, 57, 170
nonsystematic, 56
overall constraint length, 83
polynomial, 162
reciprocal, 176
systematic, 56
tap-minimal right pseudoinverse, 289
weakly equivalent, 78

662 INDEX

Convolutional permutor
maximum delay, 513
minimum delay, 513
multiple

periodic, 514
overall constraint length, 514
typical, 515, 589
width, 514

Convolutional transducer, 53
Correct path, 179
Correct path loss, 388, 407
Correct state, 179
Correlation discrepancy, 314
Coset, 18
Coset leader, 18
Costello, D. J., Jr., 147, 151, 162, 164, 166,

168, 195, 199, 220, 264, 324,
329, 493, 501, 503, 506, 525,
526, 538, 545, 547, 550, 552,
562, 585, 586, 590, 591, 602,
604

Costello lower bound on free distance, 199,
329

for cascaded convolutional codes, 209
Covering radius, 315
Creeper, see Sequential decoding
Critical length, 344
Critical rate, 338, 341
Crossover probability, 4

Data transmission rate, 2
de Bruijn graph, 31
Decoder, 9

maximum a posteriori probability (MAP),
10

maximum-likelihood (ML), 10
pseudoinverse, 289

Decoding
minimum distance (MD), 11

Decoding error, 9
Decoding failure, 530
Decoding region, 355
Decoding stopping rule, 530
Decoding successful, 530
Defect, 116, 124

external, 124
internal, 124

Delayfree element, 50
Density evolution, 539
Design rate, 486
Determinantal divisor, 60
Discrete memoryless channel (DMC), 6
Distance profile

of a convolutional code, 164, 220

of a generator matrix, 164
optimum (ODP), 165

Divsalar, D., 591
D-transform, 49

Elementary operation, 60
Elias, P., 39, 384, 422, 553, 562
Encoder, 9

inverse, 67
partial-syndrome realization, 147
state, 90
state space, 90

Encoder memory, 29
Encoding matrix

block code, 13
systematic, 13

convolutional code, see Convolutional
encoding matrix

Encoding rule
linear, 13

Energy per information bit, 6, 244
Energy per symbol, 5, 244
Engdahl, K., 515, 538
Ensemble of convolutional codes

time-varying, 191
Ensemble of multiple Markov permutors (MMPs),

515
Error amplification factor, 608
Error burst, 334

length, 334
Error burst length exponent, 342
Error control coding, 2
Error-correcting capability, 12
Error pattern, 12
Expurgation bound

for list decoding, 408
Expurgation function, 346
Expurgation rate, 335, 342
Extended path enumerator, 254
Extrinsic information, 533, 583

Falb, P. L., 66
Falconer, D. D., 476, 481
Fano algorithm, see Sequential decoding
Fano metric, 428

branch, 428
symbol, 429

Fano, R. M., 40, 324, 384, 480
Feller, W., 357, 489
Feltström, A. J., 561, see also Jimenez
Field, 11

binary, 11
finite, 11
of binary Laurent series, 50

INDEX 663

of binary rational functions, 50
Finite back-search limit exponent, 379
First-event error probability, 235
First memory length, 164, 392
Fishburn, P. C., 264, 324
Forney, G. D., Jr., 40, 79, 89, 100, 116, 119,

124, 151, 202, 234, 297, 311–
313, 324, 351, 384

Free distance, 34, 166, 220
Costello bound, 210
Costello lower bound, 199
Griesmer bound, 191
Griesmer bound for convolutional codes,

188
Heller bound, 187, 190

asymptotic, 187, 190
Frey, B., 534
Fuja, T., 555

Gallager
function, 349
parameter, 24

Gallager, R. G., 22, 23, 25, 28, 40, 341, 384,
457, 487, 492, 493, 562

Geist, J. M., 230
Generalized low-density parity-check (GLDPC)

block code, 494
Generator matrix

block code, 13
convolutional code, see Convolutional

generator matrix
Gilbert, E. N., 18, 203, 329
Gilbert-Varshamov lower bound on the mini-

mum distance, 203, 329
Gilbert-Varshamov parameter, 18, 24, 182,

186, 341, 342, 345, 378, 379,
518

Gill, A., 627
Glavieux, A., 40, 591
Global predictable valuation property (GPVP),

119
Golay, M. J. E., 39, 44
Golomb, S. W., 31
Graph

bipartite, 22
cyclefree, 491
node

constraint or factor, 22, 486
degree, 22, 487
symbol or variable, 22, 486

Tanner, 22
Griesmer bound

for convolutional codes, 188, 608, 621,
622

for linear block codes, 188
for systematic convolutional encoding

matrices, 191, 621, 622
Griesmer, J. H., 187

Höst, S., 220
Haccoun, D., 481
Hamming

distance, 10
weighted, 314

expansion, 494
sphere, 43
weight, 10

Hamming bound, 43
Hamming code, see Block code
Hamming, R. W., 15, 39
Handlery, M., 226, 308, 324, 598, 602, 622,

623
Hard decision, 4, 5, 8

probability of error, 552
Hartley, B., 66
Hawkes, T. O., 66
He, C., 585
Heegard, C., 555
Heller

asymptotic bound, 187
for systematic encoding matrices, 190

bound, 187, 190, 608
Heller bound

for convolutional codes, 621
for systematic convolutional encoding

matrices, 622
for systematic convolutional matrices,

621
Heller, J. A., 40, 187, 481
Holub, S., 93
Horn, R. A., 262
Höst S., 171
Hug, F., 217, 324, 330, 602, 623

Incorrect segment, 179
Incorrect sequence, 196
Information, 1, 2

sequence, 49, 53
symbol, 13
theory, 1

Inner code, 36
Inter minimum distance, see Tailbiting code
Interleaving

columnwise, 509
rowwise, 509

Intra minimum distance, see Tailbiting code
Intrinsic information, 532, 583
Invariant factor, 59, 66, 128

664 INDEX

Invariant-factor
decomposition, 66
theorem, 127

Iterative decoding, 21, 485
decoding limit, 539
belief propagation (BP) algorithm

with on-demand updating, 536
with parallel updating, 536

decoding of LDPC codes, 529
Gallager belief propagation (BP) algo-

rithm, 28, 529
Gallager bit-flipping (BF) algorithm, 25
number of independent iterations, 492
turbo code, 582
Zyablov-Pinsker algorithm, 27

Jacobs, I. M., 481
Jacobson, N., 58, 112
Jelinek, F., 40, 225, 324, 481
Jimenez, A. J. F., 147, see also Feltström,

501, 503, 525, 526, 538, 562
Johannesson, R., 105, 151, 164, 171, 190,

217, 220, 226, 250, 299, 308,
312, 321, 322, 324, 422, 471,
481, 596, 598, 602, 621–623

Johnson, C. R., 262
Jordan, R., 105, 108
Justesen, J., 220

Kabatyanskii, G. A., 314
Kahale, N., 591
Kalman, R. E., 66
Knuth, D. E., 391
Kolesnik, V. D., 415, 422
Kötter, R., 312, 562
Kschischang, F. R., 311, 534
Kudekar, S., 550, 562
Kudryashov, B. D., 217, 226, 308, 312, 321,

322, 324, 598, 602, 622, 623

Laurent series, 50
delay, 50
span, 97

Layland, J., 187
Lee, L.-N., 382
Lee, S. C., 104, 627
Lentmaier, M., 147, 265, 324, 493, 496, 501,

503, 506, 515, 525, 526, 528,
538, 545–547, 550, 552, 561,
562, 570, 573, 585, 586, 590,
591

Levy, Y., 264, 324
Lin, C.-F., 422
Linkabit Corporation, 40
List

minimum weight, 397
weight, 398

List decoding, 387
algorithm, 388
correct path loss, 416, 418
`-list path weight enumerator, 419
performance, 391

Loeliger, H.-A., 100, 151, 534, 562
Lončar, M., 226, 321, 324, 330
Low-density parity-check (LDPC) block code,

see Block code, 486
Low-density parity-check (LDPC) convolu-

tional code, see Convolutional code

Ma, J. H., 324
MacKay, D. J. C., 562
MacWilliams, F. J., 203
Margulis, G. A., 40, 562
Markov inequality, 408
Mason, S., 213
Massey, J. L., 2, 40, 75, 150, 151, 164, 228,

313, 324, 379, 380, 382, 481, 604
Matched filter, 4
Maximum a posteriori probability (MAP) de-

coding, 10, 277, 550
Maximum-likelihood (ML) decoding, 10
McEliece, R. J., 37, 38, 151, 187, 311
Memory array, 509
Message, 8, 9
Message passing, 529
Minimal trellis, see Trellis
Minimal-span form, 311

absolute, 313
Minimum distance

block code
Gilbert-Varshamov bound, 18, 202
Griesmer bound, 188
Plotkin bound, 186
Singleton bound, 17

Minimum weight, 16
Minor, 60
Mittelholzer, T., 100, 151
Modulation, 3
Modulo-2 arithmetic, 11
Mohan, S., 391
Monna, A. F., 118
Muder, D. J., 313
Multiple-error event, 235

Neal, R. M., 562
Node, see Graph
Node error probability, 235
Number of errors, 12
Nyquist rate, 36

INDEX 665

Nyström, J., 481

Observer canonical form, 53, 217
Olson, R. R., 151
Omura, J. K., 40, 247, 249
Orthogonal

globally orthogonal set, 118
p-orthogonal set, 118

Osthoff, H., 422
Outer code, 36
Overall constraint length, 589

Paaske, E., 622
Parallel concatenation, 567
Parity check, 14
Parity-check matrix

block code, 15
convolutional code, 132

Parity-check symbol, 15
Passke, E., 621
Path weight enumerator, 213, 247, 248

extended, 216
Period, 497

section, 498
Permutation

matrix, 78, 487, 508, 576
generalized, 78

vector, 569, 575
inverse, 569

Permutor, 36, 508
block

multiple, 508
single, 508
symmetric, 509

convolutional
delay, 511
identity, 511
multiple, 508, 512
single, 508, 511

inverse, 36
Phase-shift keying (PSK), 3

binary (BPSK), 3
π-Bound, 290
π-Decoder, see Decoder, pseudoinverse
Pinsker, M. S., 25, 27, 40, 384, 562
Pipeline implementation, 536
Piret, P., 151
Plotkin bound, 186
Pollara, F., 591
Polynomial, 50

Laurent polynomial, 50
degree, 50

Position vector, 576
Power spectral density, 3

Predictable degree property (PDP), 88, 119
Predictable p-valuation property (PVPp), 119
p-residue matrix, 119
Principle of nonoptimality, 226
Probability evolution, 540
Product formula, 112
Pseudo-codeword, 302
Pseudo-inverse matrix, 75
Punctured code, 230
Puncturing, 229

sequence, 231
Pusane, A. E., 147, 501, 503, 525, 526, 538

Qualcomm Inc., 40
Quick-look-in (QLI) encoding matrix, 604

Rabinovich, A., 264, 324
Random walk

backward, 411
Rate distortion theory, 37
Rational function

causal, 113
degree, 113
delay, 113
finite, 113
polynomial, 113

Rational matrix
constraint length, 109
memory, 109
overall constraint length, 109

Rational transfer function, 52
matrix, 52

Raviv, J., 225, 324
Realizable function, 52
Received sequence, 9
Redundancy, 9
Richardson, T. J., 530, 550, 562, 570
Ring

of binary polynomials, 50
of formal power series, 50

Roos, C., 103
Rouanne, M., 602
Row distance, 168, 220
Row space, 13

Sain, M. K., 75, 150
Savage, J. E., 476, 481
Scrambler, 60
Separation principle, 1
Sequential decoding, 36

bias, 451
Creeper, 426
Creeper algorithm, 437

bud, 437
node object stack, 447

666 INDEX

node stack, 437
simulations, 448
stem, 437
subtree, 437
threshold, 437
threshold object stack, 447

Fano algorithm, 426, 433
flowchart, 434
simulations, 448
threshold, 434

Fano metric, 458, 466, 479, 480
symbol, 429

Gallager metric, 457, 466, 477, 480
Stack algorithm, 426, 431

average number of computations, 450
computational analysis, 450
simulations, 448

Zigangirov metric, 467, 468, 470, 477,
480

Sequential decoding algorithm, 425
Shamai, S., 292
Shannon, C. E., 1, 2, 6–8, 39, 384
Shannon limit, 7, 37
Signal flowchart, 213

extended, 216
Signaling power, 6
Signal-to-noise ratio, 2
Sliding window updating schedule, 552
Sloane, N. J. A., 203
Smeets, B. J. M., 200
Smith form, 58
Soft decision, 6, 8
Solomon, G., 324
Sorokine, V., 311
Source coding, 1

linear, 291
Spectral bit rate, 41
Sphere packing, 576
Sphere-packing bound

for list decoding, 411
Squared Euclidean distance, 313
Sridharan, A., 147, 501, 503, 506, 525, 526,

538, 547, 550, 552, 562
Stack algorithm, see Sequential decoding
Ståhl, P., 299, 312, 324, 330, 622
Standard array, 19
State, 31
State complexity, 311

maximal, 311
µ-state complexity, 311
π-state complexity, 311
product, 311
profile, 311

State-transition diagram, 31

Stiglitz, I. G., 481
Stirling’s formula, 357, 489
Stopping set, 530
Sum-product algorithm, 534
Syndrome, 19, 138

decoder, 20
encoder realization, 146
former, 20, 132
partial syndrome, 147

encoder realization, 147
Systematic encoder, 56

Tailbiting code, 226
decoding, 302
inter minimum distance, 296
intra minimum distance, 296
trellis, 293

Tailbiting encoder
tailbiting works, 301, 302

Tailbiting LDPC code, 507
Tailbiting trellis

sectionalized, 310
unsectionalized, 310

Tanner graph, 486
Tanner, R. M., 22, 40, 562
Tap-minimal right pseudoinverse, see Convo-

lutional generator matrix
Thitimajshima, P., 40, 591
Thommesen, C., 220
Thompson, T. M., 39
Threshold, 539

MAP, 550
Tolhuizen, L. M. G. M., 555
Trace of matrix, 305
Transfer function matrix, 53

delayfree, 54
Transmission gain, 213
Trapping set, see Iterative decoding
Tree code, 30, 426
Trellis, 31, 40

absolute minimal, 312
minimal, 312

Trellis code, 31
Trott, M. D., 100, 151
Truhachev, D. V., 265, 324, 493, 506, 508,

515, 526, 545, 546, 557, 561,
562, 570, 573, 585

Turbo code, 567
multiple, 567, 570

Two-way algorithm, see BCJR algorithm
Typical convolutional permutor, 589

Unit of information, 2
Unwrapping method, 297, 512

INDEX 667

Urbanke, R. L., 530, 550, 562, 570, 591

Valuation, 112
exponential, 112
p-valuations, 112

van de Meeberg bound, 239
on bit error probability, 244

van de Meeberg, L., 238, 244, 327
van Tilborg, H. C. A., 324
Vardy, A., 297, 311, 312
Varshamov, R. R., 18, 203, 329
Verdu, S., 292
Viterbi

algorithm, 35, 226, 229
bound, 238
decoding, 379
metric, 228

branch, 228
symbol, 228

spectral component, 168
weight spectrum, 168

Viterbi, A. J., 35, 40, 168, 213, 225, 229,
238, 243, 247, 249, 323, 384

Wald, A., 635
Wald’s

equality, 643
identity, 252, 642

Wan, Z.-X., 151
Weight

decomposition, 522
distribution, 519

Wiberg, N., 562
Wilson, S. G., 250
Wittenmark, E., 190, 299
Wolf bound, 311
Wolf, J. K., 311, 324
Word error probability, see Block error prob-

ability
Wozencraft, J. M., 39, 480
Wrap-around, 297

Yudkin, H. L., 384, 481

Zamir, R., 292
Zero state driving information sequence, 168
Zero-tail (ZT) termination, 226
Zhang, W., 586, 590, 591
Zigangirov, K. Sh., 40, 147, 171, 200, 220,

250, 265, 302, 324, 379, 384,
415, 422, 458, 481, 493, 496,
501, 503, 506, 515, 525, 526,
538, 545–547, 550, 552, 561,
562, 570, 573, 585, 586, 590,
591

Zimmermann, H., 213
Zyablov, V. V., 25, 27, 40, 171, 220, 562

IEEE PRESS SERIES ON
DIGITAL AND MOBILE COMMUNICATION

John B. Anderson, Series Editor
University of Lund

1. Wireless Video Communications: Second to Third Generation and Beyond
Lajos Hanzo, Peter J. Cherriman, and Jurgen Streit

2. Wireless Communications in the 2lst Century
Mansoor Sharif, Shigeaki Ogose, and Takeshi Hattori

3. Introduction to WLLs: Application and Deployment for Fixed and
Broadband Services
Raj Pandya

4. Trellis and Turbo Coding
Christian B. Schlegel and Lance C. Perez

5. Theory of Code Division Multiple Access Communication
Kamil Sh. Zigangirov

6. Digital Transmission Engineering, Second Edition
John B. Anderson

7. Wireless Broadband: Conflict and Convergence
Vern Fotheringham and Shamla Chetan

8. Wireless LAN Radios: System Definition to Transistor Design
Arya Behzad

9. Millimeter Wave Communication Systems
Kao-Cheng Huang and Zhaocheng Wang

10. Channel Equalization for Wireless Communications: From Concepts to
Detailed Mathematics
Gregory E. Bottomley

11. Handbook of Position Location: Theory, Practice, and Advances
Edited by Seyed (Reza) Zekavat and R. Michael Buehrer

12. Digital Filters: Principle and Applications with MATLAB
Fred J. Taylor

13. Resource Allocation in Uplink OFDMA Wireless Systems: Optimal
Solutions and Practical Implementations
Elias E. Yaacoub and Zaher Dawy

14. Non-Gaussian Statistical Communication Theory
David Middleton

15. Frequency Stabilization: Introduction and Applications
Venceslav F. Kroupa

16. Mobile Ad Hoc Networking: Cutting Edge Directions, Second Edition
Stefano Basagni, Marco Conti, Silvia Giordano, and Ivan Stojmenovic

17. Techniques for Surviving the Mobile Data Explosion
Dinesh Chandra Verma and Paridhi Verma

18. Cellular Communications: A Comprehensive and Practical Guide
Nishith D. Tripathi and Jeffrey H. Reed

19. Fundamentals of Convolutional Coding, Second Edition
Rolf Johannesson and Kamil Sh. Zigangirov

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

	FUNDAMENTALS OF CONVOLUTIONAL CODING
	Contents
	Preface
	Acknowledgement
	1 Introduction
	1.1 Why error control?
	1.2 Block codes—a primer
	1.3 Codes on graphs
	1.4 A first encounter with convolutional codes
	1.5 Block codes versus convolutional codes
	1.6 Capacity limits and potential coding gain revisited
	1.7 Comments
	Problems

	2 Convolutional encoders—Structural properties
	2.1 Convolutional codes and their encoders
	2.2 The Smith form of polynomial convolutional generator matrices
	2.3 Encoder inverses
	2.4 Encoder and code equivalences
	2.5 Basic encoding matrices
	2.6 Minimalbasic encoding matrices
	2.7 Minimal encoding matrices and minimal encoders
	2.8 Canonical encoding matrices*
	2.9 Minimality via the invariantfactor theorem*
	2.10 Syndrome formers and dual encoders
	2.11 Systematic convolutional encoders
	2.12 Some properties of generator matrices—an overview
	2.13 Comments
	Problems

	3 Distance properties of convolutional codes
	3.1 Distance measures—a first encounter
	3.2 Active distances
	3.3 Properties of convolutional codes via the active distances
	3.4 Lower bound on the distance profile
	3.5 Upper bounds on the free distance
	3.6 Timevarying convolutional codes
	3.7 Lower bound on the free distance
	3.8 Lower bounds on the active distances*
	3.9 Distances of cascaded concatenated codes*
	3.10 Path enumerators
	3.11 Comments
	Problems

	4 Decoding of convolutional codes
	4.1 The Viterbi algorithm revisited
	4.2 Error bounds for timeinvariant convolutional codes
	4.3 Tighter error bounds for timeinvariant convolutional codes
	4.4 Exact bit error probability for Viterbi decoding
	4.5 The BCJR algorithm for APP decoding
	4.6 The oneway algorithm for APP decoding
	4.7 A simple upper bound on the bit error probability for extremely noisy channels
	4.8 Tailbiting trellises
	4.9 Decoding of tailbiting codes
	4.10 BEAST decoding of tailbiting codes
	4.11 Comments
	Problems

	5 Random ensemble bounds for decoding error probability
	5.1 Upper bounds on the output error burst lengths
	5.2 Bounds for periodically timevarying convolutional codes
	5.3 Lower error probability bounds for convolutional codes
	5.4 General bounds for timevarying convolutional codes
	5.5 Bounds for finite backsearch limits
	5.6 Quantization of channel outputs
	5.7 Comments
	Problems

	6 List decoding
	6.1 List decoding algorithms
	6.2 List decoding—performance
	6.3 The list minimum weight
	6.4 Upper bounds on the probability of correct path loss
	6.5 Lower bound on the probability of correct path loss
	6.6 Correct path loss for timeinvariant convolutional codes
	6.7 Comments
	Problems

	7 Sequential decoding
	7.1 The Fano metric
	7.2 The stack algorithm
	7.3 The Fano algorithm
	7.4 The Creeper algorithm*
	7.5 Simulations
	7.6 Computational analysis of the stack algorithm
	7.7 Error probability analysis of the stack algorithm
	7.8 Analysis of the Fano algorithm
	7.9 Analysis of Creeper*
	7.10 Comments
	Problems

	8 Lowdensity paritycheck codes
	8.1 LDPC block codes
	8.2 LDPC convolutional codes
	8.3 Block and convolutional permutors
	8.4 Lower bounds on distances of LDPC codes
	8.5 Iterative decoding of LDPC codes
	8.6 Iterative limits and thresholds
	8.7 Braided block codes*
	8.8 Comments
	Problems

	9 Turbo coding
	9.1 Parallel concatenation of two convolutional codes
	9.2 Distance bounds of turbo codes
	9.3 Parallel concatenation of three and more convolution codes
	9.4 Iterative decoding of turbo codes
	9.5 Braided convolutional codes*
	9.6 Comments
	Problems

	10 Convolutional codes with good distance properties
	10.1 Computing the Viterbi spectrum using FAST
	10.2 The magnificient BEAST
	10.3 Some classes of rate R = 1=2 convolutional codes
	10.4 Low rate convolutional codes
	10.5 High rate convolutional codes
	10.6 Tailbiting trellis encoders
	10.7 Comments

	Appendix A: Minimal encoders
	Appendix B: Wald’s identity
	References
	Index
	EULA

