
www.allitebooks.com

http://www.allitebooks.org

Getting Started with CreateJS

Design and develop astounding animated web
applications using CreateJS

Afshin Mehrabani

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Getting Started with CreateJS

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2014

Production Reference: 1130214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-026-0

www.packtpub.com

Cover Image by Manohar V (manoharv.cam@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Afshin Mehrabani

Reviewers
Bryan Butler

Danilo Matamoros

Kailash Nadh

Acquisition Editors
Neha Nagwekar

Julian Ursell

Content Development Editor
Sankalp Pawar

Technical Editors
Mrunmayee Patil

Aman Preet Singh

Copy Editors
Brandt D'Mello

Adithi Shetty

Project Coordinator
Sanket Deshmukh

Proofreader
Elinor Perry-Smith

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

About the Author

Afshin Mehrabani is a 21-year-old software engineer and an open source
programmer. He is also a computer software engineering student. He started
with programming and PHP web development when he was 12 years old. Later,
he entered the Iran Technical and Vocational Training Organization. He was ranked
first and has also bagged a golden medal in a competition on web development in
his country. He also became a member of the Iran's National Elite Foundation by
producing a variety of new programming ideas.

He has worked as a software engineer in the Tehran Stock Exchange and is
presently the head of the web development team at Yara International.
He cofounded the Usablica team in early 2012 to develop and produce usable
applications. Afshin is the author of IntroJs, WideArea, Flood.js, and some other
open source projects.

Also, he has contributed to Socket.IO, Engine.IO, and some other open source projects.
His interests lie in creating and contributing to open source applications, writing
programming articles, and challenging himself with new programming technologies.

He has already written different articles about JavaScript, NodeJS, HTML5,
and MongoDB, which are published in different academic websites. Afshin has
five years of experience with PHP, Python, C#, JavaScript, HTML5, and NodeJS
in many financial and stock-trading projects.

I would like to thank my parents and my lovely sister Parvin for
their support, which gave me the power to keep going.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Bryan Butler has developed a wide variety of digital media and web-based projects
in Ireland and the UK since 2002. These include everything from brand websites,
mobile solutions, and asset/administration management systems to interactive TV
interfaces, e-learning simulators, and educational games. He currently specializes in
providing digital and web-based solutions using the latest HTML5 technologies.
For more information and examples of his work you can go to www.brybutler.com.

Danilo Matamoros is a web developer professional with over seven years of
experience working in multiple projects in Latin America and Australia, having
developed more than 20 websites and web applications for organizations in the
private, public, educational, charity, tourism, and commercial sectors.

Kailash Nadh is an independent developer, researcher, and tech consultant with
over a decade of experience. His research interests include computational, linguistics,
and artificial intelligence. For more information about him visit his personal website
at http://nadh.in.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Installing CreateJS	 5

Understanding CreateJS and subsets	 5
Downloading CreateJS	 6
GitHub	 6
Understanding the Content Delivery Network	 8
Setting up the libraries	 9

The production environment	 9
The development environment	 9

Building the source code	 11
Summary	 12

Chapter 2: Commencing with CreateJS	 13
Exploring CreateJS	 13
Working with events	 15
Summary	 17

Chapter 3: Working with Drag-and-drop Interactions	 19
The scenario	 19
Understanding the on function	 20
Creating a drag-and-drop interaction	 21

The complete example	 22
Summary	 23

Chapter 4: Performing Animation and Transforming Function	 25
Creating animations with CreateJS	 25
Understanding TweenJS	 26

What is tweening?	 26

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Understanding API and methods of TweenJS	 27
Creating a simple animation	 27

Scenario	 28
Transforming shapes	 29

An example of Transforming function	 29
Understanding Sprite Sheet	 31

Developing animations using Sprite Sheet	 31
Summary	 35

Chapter 5: Utilizing Caching in EaselJS	 37
Exploring the caching feature of EaselJS	 37
Understanding the cache method	 38

Example of using cache	 38
Using cache in complex shapes and animations	 40
Caching Bitmap	 43
Summary	 46

Chapter 6: Using Filters in EaselJS	 47
Understanding the Filter class	 47
Using the AlphaMapFilter class	 49
Using the AlphaMaskFilter class	 51
Implementing the BlurFilter class 	 53
Utilizing the ColorFilter class	 54
Using the ColorMatrixFilter class	 56
Summary	 57

Chapter 7: Developing a Painting Application	 59
Preparing the stage	 59
Understanding the init function	 61
Implementing the handleMouseDown function	 62
Using the handleMouseMove function	 63
Utilizing the handleMouseUp function	 64
Downloading the source code	 65
Summary	 65

Chapter 8: Utilizing Vector Masks	 67
Learning about vector masks	 67
Using a vector mask with Bitmap images	 69
Playing with vector masks	 72
Summary	 73

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 9: Developing Your First CreateJS Application	 75
Understanding your application structure	 75
Developing the index.html file	 77
Implementing the app.js file	 79
Preview of the final application	 83
Summary	 83

Index	 85

www.allitebooks.com

http://www.allitebooks.org

Preface
CreateJS is a full-featured tool for web developers to create and maintain animations
and drawings in web browsers using HTML5. It consists of some modules, each of
which performs different tasks to manage a web-based application.

In this book, we will discuss the different parts of CreateJS using many interactive
examples and screenshots.

What this book covers
Chapter 1, Installing CreateJS, serves as a quick installation reference for users new
to CreateJS.

Chapter 2, Commencing with CreateJS, covers getting started with CreateJS and
other components, using API, and configuring modules.

Chapter 3, Working with Drag-and-drop Interactions, discusses the drag-and-drop
features of CreateJS and how to customize these features in projects or
extend them.

Chapter 4, Performing Animation and Transforming Function, covers how to use
animation and transform objects on the page using CreateJS.

Chapter 5, Utilizing Caching in EaselJS, covers how to use caching in CreateJS for
better performance in animations.

Chapter 6, Using Filters in EaselJS, discusses using filters in images and objects
in CreateJS.

Chapter 7, Developing a Painting Application, discusses how to develop a simple
painting application that is drawn on the canvas using graphics.

Preface

[2]

Chapter 8, Utilizing Vector Masks, discusses using shapes as a clipping path on any
display object.

Chapter 9, Developing Your First CreateJS Application, covers how to build and create a
UI from scratch with CreateJS.

What you need for this book
All examples and source code present in this book work in modern web browsers.
You will need to install the latest version of Google Chrome or Mozilla Firefox for
all the examples to work perfectly.

Who this book is for
If you are a web developer with some experience in JavaScript development and
want to enter the fascinating world of feature-rich Internet applications using
CreateJS, then this book is perfect for you.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text are shown like this: "In EaselJS, when you have a shape, or even
better, an instance of the DisplayObject that doesn't change frequently, it's better
to use the cache function to cache it in a different Canvas element".

A block of code is set as follows:

var circle = new createjs.Shape();
circle.graphics.beginFill("red").drawCircle(0, 0, 50);
circle.x = 100;
circle.y = 100;

Any command-line input or output is written as follows:

Install the grunt command line utility globally

npm install grunt-cli -g

Preface

[3]

Install all the dependencies from package.json

npm install

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "With
drop-down menus, users can change the Brush Style, Brush Size, Background
Color, and Brush Color fields."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[4]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: https://www.packtpub.com/sites/
default/files/downloads/0260OS_coloredimages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Installing CreateJS
Installing and using a client-side library in the right manner is really important.
Using a large client-side library incorrectly could cause real problems; one obvious
problem is the slow loading of web pages. In this chapter, we are going to see how
we can set up and use CreateJS for both development and production environments.

In this chapter, you'll learn about the following topics:

•	 Requirements
•	 Download
•	 Installation and setup

Understanding CreateJS and subsets
CreateJS contains different libraries such as SoundJS, TweenJS, EaselJS,
and PreloadJS. Each one has different requirements to run in browsers.

TweenJS should work in all browsers and their older versions as well. SoundJS
requires HTMLAudio, Flash, or WebAudio, and these features need modern
browsers. SoundJS should work perfectly with the following browsers:

•	 Google Chrome 31+
•	 Mozilla Firefox 25+
•	 Internet Explorer 9+
•	 Opera 18+

Installing CreateJS

[6]

Among the mobile browsers, it should work with these:

•	 iOS Safari 4.0+
•	 Android browser 2.3+
•	 BlackBerry browser 7.0+

PreloadJS should work with all browsers, even Internet Explorer 6.

EaselJS has a dependency on HTML5 canvas, so your audiences should have one
of the following browsers to be able to use EaseJS:

•	 Google Chrome 31+
•	 Mozilla Firefox 25+
•	 Internet Explorer 9+
•	 Opera 18+

For mobile, one of these browsers is required:

•	 iOS Safari 3.2+
•	 Opera Mini 5.0-7.0
•	 Android browser 2.1+
•	 BlackBerry browser 7.0+

Downloading CreateJS
There are some ways to download and include CreateJS files into your project
which are discussed in the following sections.

GitHub
You can download the latest version of CreateJS and all subsets from the GitHub,
as shown in the following screenshot from https://github.com/CreateJS/:

Chapter 1

[7]

After going to each repository, you can either download the ZIP folder of the latest
changes or use the Git clone command to get the source from GitHub, as shown
in the following screenshot:

You can find this box on the right-hand side of each repository page, which helps
you to get the code.

Installing CreateJS

[8]

Understanding the Content Delivery Network
CreateJS has a great Content Delivery Network (CDN), which contains all
versions and all subset libraries hosted. You can access CDN servers from
http://code.createjs.com/.

Using the CDN-hosted versions of CreateJS libraries in your project
allows them to be downloaded quickly and cached across different
sites using the same version of the libraries. This can reduce
bandwidth costs and page load times.

You can find all versions at http://code.createjs.com/ as shown in the
following screenshot:

Chapter 1

[9]

You can also use a combined version of all subsets and libraries that contains all
of the latest stable versions of all libraries, including EaselJS, TweenJS, SoundJS,
and PreloadJS.

Setting up the libraries
After choosing how to download the source, you need to set up the library to
make it work. In this section, we are going to see how to set up the library for
both production and development environments.

The production environment
If you want to use CreateJS in the production environment, things will be much
easier. All you need to use is a single compiled source file. For this purpose, you can
either use hosted files from CreateJS CDN or build locally, and then link in locally.

Using CDN
In this case, all you need to do is link <script…> to the source of the file in the
CreateJS CDN server (see the Downloading CreateJS section of this chapter);
after that, everything should work properly.

The development environment
If you want to debug, develop using CreateJS, or see how things are going on
inside CreateJS, you need to use uncompiled source files.

For each library, you can find the uncompiled source files at /src/.
All dependencies and source code will be here.

To use uncompiled source files, the important thing to keep in mind is that all
files should be called in the correct order; otherwise, you will get some errors.
Luckily, there is a file in each project that will give you hints on how to include
files in the correct order. This config file is placed in build/config.json.

www.allitebooks.com

http://www.allitebooks.org

Installing CreateJS

[10]

You can see an example of this config for EaselJS in the following screenshot:

So, you have to put <script…> and load files in this order. You can find the same
config file in the same location for other projects too.

Chapter 1

[11]

After loading all JS files, you can use the library and also put your breakpoints on
the source code to trace or debug it.

Building the source code
All CreateJS libraries use Grunt to make and build files, so you need to have the
NodeJS and Grunt module installed (0.10.2 or greater is required).

First of all, get the latest version of NodeJS from www.nodejs.org and install it. Then
go to the /build folder for the library (for example, EaselJS) and run the following
commands in your command environment:

Install the grunt command line utility globally

npm install grunt-cli -g

Install all the dependencies from package.json

npm install

After executing these commands, you should obtain a result as shown in the
following screenshot:

Installing CreateJS

[12]

After installing all dependencies, you have only one step left to build the library.
Go to the library folder and run the following command:

grunt build

You should see the following result in your command environment:

When you see the Done, without errors message, you can find your compiled file
in the /lib folder of the library, named {PROJECT_NAME}-{VERSION}.min.js, for
example easeljs-0.7.0.min.js. This is exactly same as the files in the CDN server.
You can link your script tag locally to this file and use it.

For more information about options and how to work with them, you can read the
README.md file in the /build folder of each library.

Summary
In this chapter, we have learned how to set up and prepare CreateJS for different
environments, because as a programmer, you may want to make changes to CreateJS
or customize it for yourself. We also discussed using CreateJS for the production
environment, using CDN servers, and building the source code.

In the next chapter, we are going to discuss how to write the first working example
with CreateJS and how to use the API.

Commencing with CreateJS
In this chapter, we are going to talk about working with basic objects and events
in CreateJS and EaselJS. After learning about these topics, you can work with
basic methods and functions in CreateJS to create your shapes, and control
them using events.

We are going to discuss the following topics:

•	 Exploring CreateJS
•	 Working with APIs
•	 Methods and events

Exploring CreateJS
EaselJS is one of the main CreateJS modules, which enable developers to work
with Canvas elements. To work with EaselJS, we need to have a canvas element,
so all shapes can be rendered into this area. After creating an instance of Stage
class, we need to add displayObject to the Stage class. EaselJS supports the
following features:

•	 Bitmap: This is used for the images.
•	 Shape and Graphics: These are used for the vector graphics.
•	 SpriteSheet and Sprite: These are used for the animated Bitmaps.
•	 Text: This is used for the simple text instances.
•	 Container: These hold other DisplayObjects.
•	 DOMElement: This is used to control the HTML DOM elements.

When the Stage object wraps the canvas element, all shapes and text appear in
the Canvas element.

Commencing with CreateJS

[14]

For more details, check the EaselJS documentation at http://www.
createjs.com/Docs/EaselJS/modules/EaselJS.html.

Let's go through an example of creating a basic shape in EaselJS. Here, we have
a canvas element with a specific height and width:

<canvas id="demoCanvas" width="500" height="200"></canvas>

CreateJS has a Stage method, which accepts a canvas element in the first
parameter, and we should pass the ID of our canvas element to it:

var stage = new createjs.Stage("demoCanvas");

We now have a stage for our canvas element. In the next step, we need to create
a shape:

var circle = new createjs.Shape();
circle.graphics.beginFill("red").drawCircle(0, 0, 50);
circle.x = 100;
circle.y = 100;

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

In the first line, a circle variable is created. It contains the Shape object from
EaselJS. All Shape objects have a graphics property.

In the next line, we fill it with the color red using the beginFill method, and then in
the line after that, we create a circle with the drawCircle method. The drawCircle
method has three parameters; the first two parameters are used for positioning the
circle (x and y axis values) and the last parameter is the radius in pixels. Thus, we
have created a circle with position 0 (relative to the shape's position) and radius 50.

EaselJS supports method chaining, we can call all functions one after another,
just as we have seen in our previous example of creating the circle and filling in
the background color.

After creating the Shape object, we need to add it to our stage object and also
update the stage as follows:

stage.addChild(circle);
stage.update();

Chapter 2

[15]

Keep in mind that after adding child (shape, circle, and so on), we have to call the
update method from the stage object to update the stage; otherwise, the code will
not run properly and we will not get the desired result. You can see the result of our
simple code in the following screenshot:

Working with events
DisplayObject has a method to add events to shapes or objects. Using
addEventListener, we can add an event to DisplayObject (for example, shape).
This function has two mandatory arguments:

•	 The name of the event
•	 The callback function for the event

We will understand this method of working with events with the following code:

displayObject.addEventListener("click", handleClick);
function handleClick(event) {
 // Click happened.
}

In the first line, a click event is added to displayObject so that the handleClick
function is called when the user clicks on the object. The handleClick function is
empty in this example.

Let's consider our earlier example of the circle and add a click event to our circle.
Inside the callback function of the click event, we move the circle 10 pixels to right.
Here is the code for that:

circle.addEventListener("click", handleClick);
function handleClick(event) {
event.target.x += 10;
stage.update();
}

Commencing with CreateJS

[16]

In the first line, we have our DisplayObject. Using addEventListener, the click
event is added to the circle. Our callback handler is handleClick. Inside this
function,
we can get target objects (the circle shape, in this example) and change properties
of the shape (for example, width, height, or position) via the event variable.

event.target is the target shape object. In every callback function call, we add the
x property with 10 and then call the update function from the stage object. We have
to call the update function after changing properties in order to apply changes.

Remember that to add events to DisplayObject, we need to add an event listener
first and then add displayObject to the stage. Here is the complete source code for
our example:

var stage = new createjs.Stage("demoCanvas");

var circle = new createjs.Shape();
circle.graphics.beginFill("red").drawCircle(0, 0, 50);
circle.x = 100;
circle.y = 100;

circle.addEventListener("click", handleClick);
function handleClick(event) {
 event.target.x += 10;
 stage.update();
}
stage.addChild(circle);
stage.update();

EaselJS has many more events, and you can use all of them in the same example
explained previously.

Chapter 2

[17]

Currently DisplayObjects supports the following events:

•	 click: The user clicks and releases the mouse
•	 dblclick: The user double-clicks the mouse
•	 mousedown: The user clicks the mouse
•	 mouseout: The user moves the mouse pointer away from an object
•	 mouseover: The user moves the mouse pointer over an object
•	 pressmove: The user clicks the mouse and then moves it
•	 pressup: The user releases the mouse either over or outside the object
•	 rollout: The user rolls away from a child element
•	 rollover: The user rolls over a child element

For more details, refer to http://www.createjs.com/Docs/
EaselJS/classes/DisplayObject.html#events.

Summary
In this chapter, we have learned how to work with the basic functions and events
of CreateJS and EaselJS. We have learned how to create a stage object in EaselJS,
what DisplayObject is, and how to append them to the stage object.

We also created the first simple shape in EaselJS, a circle. In the last part of the
chapter, we discussed how to add an event listener to an object in EaselJS.

In the next chapter, we are going to go through complex examples to create a
drag-and-drop interaction and use mouse events in EaselJS.

Working with Drag-and-drop
Interactions

In this chapter, we will go through the basic events and callbacks of CreateJS to make
a drag-and-drop feature. After reading this chapter, you will be able to understand
common events of objects in CreateJS and also how to change properties such as
width or height. We will cover the following topics in this chapter:

•	 Scenarios for drag-and-drop
•	 Mouse events
•	 Creating an example to drag-and-drop

The scenario
All we need to do to create a drag-and-drop feature is to bind events to
DisplayObject on the Stage object (such as a circle) and then change the x and y axes
of the target object continuously as the mouse is moved. Fortunately, CreateJS provides
many events on mouseover, and we can use them to achieve our goals.

In further sections, we will see how we can bind events to objects and get
information from the mouse cursor. We will also see how to change the
properties of an object or shape in the Stage object.

www.allitebooks.com

http://www.allitebooks.org

Working with Drag-and-drop Interactions

[20]

Understanding the on function
In EaselJS, you can get access to all mouse events, such as click, mouse up, and so on.
A MouseEvent instance is passed as the only parameter for all mouse event callbacks.
It includes the stageX and stageY properties, which indicate the cursor's position
relative to the stage coordinates.

In the following example, pressed will be logged on to the console when the mouse
is clicked over the circle; thereafter, mouse moves will be logged whenever the
mouse moves until the mouse is released.

circle.on("mousedown", function(mousedownEvent) {
 console.log("pressed");
 circle.on("pressmove", function(moveEvent) {
 console.log("mouse moved:
 "+moveEvent.stageX+","+moveEvent.stageY);
 });
});

As you can see, we can simply bind a mouse event to our DisplayObject object and
then read or alter the properties on each event callback. The following screenshot
displays the output of the previous example along with the details of mouse events:

In the next section, we will put all these things together and create a simple
drag-and-drop interaction.

Chapter 3

[21]

Creating a drag-and-drop interaction
We learned in the previous chapter that the first requirement for working with
EaselJS is to create a Stage object and then append all the DisplayObject objects
to it. Suppose we have a Canvas element with the ID demoCanvas. We will need
the following code for the same:

var stage = new createjs.Stage("demoCanvas");

If you want to track the movement of mouse cursor events when the mouse cursor
leaves the Canvas element, mouseMoveOutsideproperty should be set to true:

stage.mouseMoveOutside = true;

In the next step, a circle will be created:

var circle = new createjs.Shape();
circle.graphics.beginFill("red").drawCircle(0, 0, 50);

And, of course, we have to add our shape to the stage element shown as follows:

stage.addChild(circle);

Now, it's time to bind functions to the mousedown and pressmove events:

circle.on("mousedown", function (evt) {
 var offset = {
 x: evt.target.x - evt.stageX,
 y: evt.target.y - evt.stageY
 };

 circle.on("pressmove", function (ev) {
 ev.target.x = ev.stageX + offset.x;
 ev.target.y = ev.stageY + offset.y;
 stage.update();
 });
});

As you can see, we have set a callback function for the mousedown event of our
display object, circle. Inside the anonymous function, there is an offset variable
that has two properties, x and y. These properties collect the offset values of the
mouse cursor on every mouse down within the shape (circle in this example), so we
can use this offset value to change the position of the circle. In this example, x or y
could be between +50 and -50.

After that, an anonymous function is added to the pressmove event of the shape.

Working with Drag-and-drop Interactions

[22]

Inside the next anonymous function for the pressmove event, we have two lines of
code. Both calculate the position of the mouse cursor and then alter the coordinates
of the target shape. ev.stageX and ev.stageY always give you the coordinates of
the mouse cursor within the stage. Therefore, using these properties, we can change
the coordinates of the target shape correctly.

Everything is ready now, but there's one last step we should perform to complete
the challenge. As we learned earlier in EaselJS, we should call the update function
in order to update the stage after making any changes in objects in the stage event.
In the drag-and-drop example, we are changing the coordinates of the target shape
continuously. Therefore, we also have to update the Stage event continuously;
the question is how. The answer to this question is that we have to call
stage.update() on the call for each event as follows:

stage.update();

EaselJS will update the stage event after each change to the coordinates of the circle.

The complete example
Here you can see the whole source code for creating a simple drag-and-drop
interaction:

stage = new createjs.Stage("demoCanvas");
stage.mouseMoveOutside = true;

var circle = new createjs.Shape();
circle.graphics.beginFill("red").drawCircle(100, 100, 50);
stage.addChild(circle);

circle.on("mousedown", function(evt) {
 var offset = {
 x: evt.target.x - evt.stageX,
 y: evt.target.y - evt.stageY
 };

 circle.on("pressmove", function(ev) {
 ev.target.x = ev.stageX + offset.x;
 ev.target.y = ev.stageY + offset.y;
 stage.update();
 });
});

stage.update();

Chapter 3

[23]

After running the example, you should see a red circle, as shown in the following
screenshot. By clicking and dragging the circle, the coordinates of the circle will
be changed.

Summary
In this chapter, we have learned how to work with the mousedown and pressmove
events, how to change object properties, and also how to update the stage event
continuously using EaselJS features. With a combination of all the mentioned
features, we can build an animation or say drag-and-drop interactions
with CreateJS.

In the next chapter, we will discuss working with the animation and transformation
of objects with CreateJS to develop awesome animations in browsers.

Performing Animation and
Transforming Function

Now that you have learned how to work with events and callbacks in the previous
chapter, it's time to move ahead and work with the Animation and Transforming
function. This chapter is supposed to be more interactive than the previous chapter,
because we are going to talk about and use the Animation and Transforming function
of CreateJS. In this chapter, we use TweenJS and EaselJS to create basic animation in
browsers.
You can then use these functions to create more innovative animations.

In this chapter, we will cover the following topics:

•	 Creating animations with CreateJS
•	 Understanding TweenJS
•	 Understanding the TweenJS API
•	 Creating simple animations
•	 Transforming shapes
•	 Understanding Sprite Sheets
•	 Developing animations using Sprite Sheet

Creating animations with CreateJS
As you may already know, creating animations in web browsers during web
development is a difficult job because you have to write code that has to work in all
browsers; this is called browser compatibility. The good news is that CreateJS provides
modules to write and develop animations in web browsers without thinking about
browser compatibility. CreateJS modules can do this job very well and all you need
to do is work with CreateJS API.

Performing Animation and Transforming Function

[26]

Understanding TweenJS
TweenJS is one of the modules of CreateJS that helps you develop animations in
web browsers. We will now introduce TweenJS.

The TweenJS JavaScript library provides a simple but powerful tweening
interface. It supports tweening of both numeric object properties and CSS
style properties, and allows you to chain tweens and actions together to
create complex sequences.—TweenJS API Documentation

For more information on TweenJS, please refer to the official documentation at:

http://www.createjs.com/Docs/TweenJS/modules/TweenJS.html

What is tweening?
Let us understand precisely what tweening means:

Inbetweening or tweening is the process of generating intermediate frames between
two images to give the appearance that the first image evolves smoothly into the
second image.—Wikipedia

For more information on tweening, visit:

http://en.wikipedia.org/wiki/Tweening

The same as other CreateJS subsets, TweenJS contains many functions and methods;
however, we are going to work with and create examples for specific basic methods,
based on which you can read the rest of the documentation of TweenJS to create
more complex animations.

Chapter 4

[27]

Understanding API and methods of
TweenJS
In order to create animations in TweenJS, you don't have to work with a lot
of methods. There are a few functions that help you to create animations.
Following are all the methods with a brief description:

•	 get: It returns a new tween instance.
•	 to: It queues a tween from the current values to the target properties.
•	 set: It queues an action to set the specified properties on the specified target.
•	 wait: It queues a wait (essentially an empty tween).
•	 call: It queues an action to call the specified function.
•	 play: It queues an action to play (un-pause) the specified tween.
•	 pause: It queues an action to pause the specified tween.

The following is an example of using the Tweening API:

var tween = createjs.Tween.get(myTarget).to({x:300},400).
set({label:"hello!"}).wait(500).to({alpha:0,visible:false},1000).
call(onComplete);

The previous example will create a tween, which:

•	 Tweens the target to an x value of 300 with duration 400ms and sets
its label to hello!.

•	 Waits 500ms.
•	 Tweens the target's alpha property to 0 with duration 1s and sets the

visible property to false.
•	 Finally, calls the onComplete function.

Creating a simple animation
Now, it's time to create our simplest animation with TweenJS. It is a simple but
powerful API, which gives you the ability to develop animations with method chaining.

Performing Animation and Transforming Function

[28]

Scenario
The animation has a red ball that comes from the top of the Canvas element and
then drops down.

In the preceding screenshot, you can see all the steps of our simple animation;
consequently, you can predict what we need to do to prepare this animation.
In our animation,
we are going to use two methods: get and to.

The following is the complete source code for our animation:

var canvas = document.getElementById("canvas");
var stage = new createjs.Stage(canvas);

var ball = new createjs.Shape();
ball.graphics.beginFill("#FF0000").drawCircle(0, 0, 50);

ball.x = 200;
ball.y = -50;

var tween = createjs.Tween.get(ball) to({
 y: 300
}, 1500, createjs.Ease.bounceOut);

stage.addChild(ball);
createjs.Ticker.addEventListener("tick", stage);

In the second and third line of the JavaScript code snippet, two variables are
declared, namely; the canvas and stage objects. In the next line, the ball variable
is declared, which contains our shape object. In the following line, we drew a red
circle with the drawCircle method (we have discussed about the drawCircle
method in the previous chapter). Then, in order to set the coordinates of our
shape object outside the viewport, we set the x axis to -50 px.

Chapter 4

[29]

After this, we created a tween variable, which holds the Tween object; then, using the
TweenJS method chaining, the to method is called with duration of 1500 ms and the
y property set to 300 px. The third parameter of the to method represents the ease
function of tween, which we set to bounceOut in this example.

In the following lines, the ball variable is added to Stage and the tick event is
added to the Ticker class to keep Stage updated while the animation is playing.
You can also find the Canvas element in line 30, using which all animations and
shapes are rendered in this element.

Transforming shapes
CreateJS provides some functions to transform shapes easily on Stage.
Each DisplayObject has a setTransform method that allows the transforming
of a DisplayObject (like a circle).

The following shortcut method is used to quickly set the transform properties on
the display object. All its parameters are optional. Omitted parameters will have
the default value set.

setTransform([x=0] [y=0] [scaleX=1] [scaleY=1] [rotation=0] [skewX=0]
[skewY=0] [regX=0] [regY=0])

This was taken from:

http://www.createjs.com/Docs/EaselJS/classes/Shape.html#method_
setTransform

Furthermore, you can change all the properties via DisplayObject directly (like
scaleY and scaleX) as shown in the following example:

displayObject.setTransform(100, 100, 2, 2);

An example of Transforming function
As an instance of using the shape transforming feature with CreateJS, we are going
to extend our previous example:

var angle = 0;
window.ball;
var canvas = document.getElementById("canvas");
var stage = new createjs.Stage(canvas);

ball = new createjs.Shape();

www.allitebooks.com

http://www.allitebooks.org

Performing Animation and Transforming Function

[30]

ball.graphics.beginFill("#FF0000").drawCircle(0, 0, 50);

ball.x = 200;
ball.y = 300;

stage.addChild(ball);

function tick(event) {
 angle += 0.025;
 var scale = Math.cos(angle);

 ball.setTransform(ball.x, ball.y, scale, scale);
 stage.update(event);
}

createjs.Ticker.addEventListener("tick", tick);

In this example, we have a red circle, similar to the previous example of tweening.
We set the coordinates of the circle to 200 and 300 and added the circle to the
stage object. In the next line, we have a tick function that transforms the shape
of the circle. Inside this function, we have an angle variable that increases with
each call. We then set the ballX and ballY coordinates to the cosine of the angle
variable. The transforming done is similar to the following screenshot:

This is a basic example of transforming shapes in CreateJS, but obviously you
can develop and create better transforming by playing with a shape's properties
and values.

Chapter 4

[31]

Understanding Sprite Sheet
In this section, we will discuss about the EaselJS feature to make an animation
using a series of images. This feature is called Sprite Sheet. A Sprite Sheet
combines a series of images or frames of an animation to produce 2D or 3D
animation. For instance, if you want to animate a hero that is walking, we can
combine all frames of the walking character into a single image, and then make
the animation using the Sprite Sheet feature of EaselJS.

The following is a series of images (animation frames) that are combined into a
single image:

In the next section, you will learn how to use the Sprite Sheet feature to
develop animations.

Developing animations using Sprite Sheet
Let's start by understanding the SpriteSheet class. This class is used to initialize the
Sprite Sheet feature and encapsulate its properties and configurations. After creating
the SpriteSheet class, we can use its methods to control the animation.

The basic configuration of this class has three mandatory properties:

•	 The image or images to use for animation frames.
•	 The position of each image, which can be defined using a single value for

all frames or even with an individual configuration for each frame.
•	 The representation of the animation, which can be defined by a start and

end frame or with individual values for each frame.

The following is a code snippet defines the configuration for the SpriteSheet class:

data = {
 // list of images or image URIs to use. SpriteSheet can handle
preloading.
 // the order dictates their index value for frame definition.

Performing Animation and Transforming Function

[32]

images: [image1, "path/to/image2.png"],

 // the simple way to define frames, only requires frame size because
frames are consecutive:
 // define frame width/height, and optionally the frame count and
registration point x/y.
 // if count is omitted, it will be calculated automatically based on
image dimensions.
frames: {width:64, height:64, count:20, regX: 32, regY:64},

// OR, the complex way that defines individual rects for frames.
 // The 5th value is the image index per the list defined in "images"
(defaults to 0).
frames: [
 // x, y, width, height, imageIndex, regX, regY
 [0,0,64,64,0,32,64],
 [64,0,96,64,0]
],

 // simple animation definitions. Define a consecutive range of
frames (begin to end inclusive).
 // optionally define a "next" animation to sequence to (or false to
stop) and a playback "speed".
animations: {
 // start, end, next, speed
run: [0,8],
jump: [9,12,"run",2]
}

// the complex approach which specifies every frame in the animation
by index.
animations: {
 run: {
 frames: [1,2,3,3,2,1]
 },
 jump: {
 frames: [1,4,5,6,1],
 next: "run",
 speed: 2
 },
stand: { frames: [7] }
 }
}

Chapter 4

[33]

The following is a sample configuration for the SpriteSheet class:

var data = {
 images: ["sprites.jpg"],
 frames: { width:50, height:20 },
 animations: {
 run:[0,4],
 jump:[5,8,"run"]
 }
};

This is explained more in detail at: http://www.createjs.com/Docs/EaselJS/
classes/SpriteSheet.html

Now, we will develop a simple walking animation using Sprite Sheets. The following
is our sprite image that will be used for the animation frames:

Sprite image

The next step is to configure our SpriteSheet class. The following is the configuration:

var data = {
 "animations":
 {
 "run": [0, 15]
 },
 "images": ["running.png"],
 "frames": {
 "height": 70,
 "width": 51,
 "regX": 0,
 "regY": 0,
 "count": 16
 }
};

We have a total of 16 frames for our animation; hence, the run frameset that defines
the frames of the animation, starts from 0 and extends till 15. We defined the path
of the sprite image. We then defined the configuration of the frames with height 70,
width 51 (this is the width of each individual image), and a count of 16 that refers
to the number of frames.

Performing Animation and Transforming Function

[34]

The following is the complete source code for the animation:

stage = new createjs.Stage(document.getElementById("canvas"));

varss = new createjs.SpriteSheet({
 "animations":
 {
 "run": [0, 15]
 },
 "images": ["running.png"],
 "frames": {
 "height": 70,
 "width": 51,
 "regX": 0,
 "regY": 0,
 "count": 16
 }
});

var grant = new createjs.Sprite(ss, "run");

stage.addChild(grant);
createjs.Ticker.setFPS(40);
createjs.Ticker.addEventListener("tick", stage);

As seen in previous examples, first we defined the stage using the Stage class.
After that, the SpriteSheet class was initiated using the configuration, and then we
passed the object to the Sprite class to start the animation. The second parameter for
the Sprite class defines the starting frameset for animation. Finally, we added the
Sprite object to the stage with the addChild method.

It's important to add the tick event to the Ticker class and pass the Stage object
to it to start the animation; otherwise, you will see a blank screen. Furthermore,
using the Ticker class and setFPS method, we can control the ratio of rendering
the animation.

Chapter 4

[35]

The following image shows a preview of our Sprite Sheet example:

Summary
In this chapter, we have learned how to develop and create animations with TweenJS
and EaselJS. We discussed in detail about working with chaining methods in TweenJS,
callback functions in animations, and also how to change a shape's properties with
TweenJS functions. We then learned how to transform with EaselJS in order to change
a shape's properties like rotation or scale. We then went on to learn about utilizing the
Sprite Sheet feature to create animated characters.

In the next chapter, we will discuss about caching techniques in CreateJS and how
to improve the performance of applications using cache.

Utilizing Caching in EaselJS
As you know, after developing an animation, it's very important to work on the
performance issues to make it smooth. The performance of rendering animations
varies between browsers but there are some techniques like caching that can simply
improve the performance. In this chapter, we will learn how to make better and
smooth animations or drawings using the EaselJS caching system of DisplayObject.

In this chapter, we will cover the following topics:

•	 Exploring the caching feature of EaselJS
•	 Understanding the cache method
•	 Example of using cache
•	 Using cache in animations
•	 Using cache with Bitmap

Exploring the caching feature of EaselJS
In EaselJS, when you have a shape, or even better, an instance of the DisplayObject
that doesn't change frequently, it's better to use the cache function to cache it in a
different Canvas element. This technique will help you use EaselJS in the drawing
process to animate and render animations or drawings smoothly, as the shapes
don't need to be rendered with every tick.

It is basically the main idea of using the cache method in the DisplayObject class.
All you need to do is learn more about using the cache method in EaselJS. In further
sections, we will go through methods, their usage, and how to create animations
with caching.

Utilizing Caching in EaselJS

[38]

Understanding the cache method
In order to understand how caching a DisplayObject works in EaselJS, we take
the example of an imaginary canvas area so that the cached elements get rendered
into it and each time you need to update the target shape, you call the cache
method again.

You can see the definition of the cache method inside the DisplayObject class
in the following piece of code:

cache (x, y, width, height, [scale=1])

Draws the display object into a new canvas, which is then used for subsequent
draws. For complex content that does not change frequently (ex. a Container with
many children that do not move, or a complex vector Shape), this can provide for
much faster rendering because the content does not need to be re-rendered each tick.
The cached display object can be moved, rotated, faded, etc freely, however if its
content changes, you must manually update the cache by calling updateCache()
or cache() again. You must specify the cache area via the x, y, w, and h
parameters. This defines the rectangle that will be rendered and cached using
this display object's coordinates.

This has been taken from:

http://www.createjs.com/Docs/EaselJS/classes/DisplayObject.
html#method_cache

As you can see, the cache method accepts four mandatory and one optional
parameter. The first and second parameters define the coordinate of the cache
area; the third and fourth parameters define the width and height of the cache
area. Using the last parameter, you can define the scale of shape inside the cache
area. By default it is set as 1, but you can change it.

Example of using cache
Now it's time to see an example of using the cache method in EaselJS.
The following piece of code uses the cache method to render a circle into
a canvas element:

var shape = new createjs.Shape();
shape.graphics.beginFill("#ff0000").drawCircle(0, 0, 25);
shape.cache(-25, -25, 50, 50);

Chapter 5

[39]

In the first line, we created a shape using the Shape class, filled it with red color,
and then rendered it at (0, 0) with a radius of 25. In the third line, you will notice
the use of the cache method. In this line, a cache area is created at -25, -25 with a
width and height of 50.

In order to update the target shape (the shape variable in the above
example), you need to call the cache or updateCache method with
all new parameters again.

The complete source code and result is as follows:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html;
 charset=UTF-8">
<title>Cache method in EaselJS</title>
<script type='text/javascript' src='createjs.js'></script>

<script type='text/javascript'>
window.onload=function() {
 var canvas = document.getElementById("testCanvas");
 var stage = new createjs.Stage(canvas);

 var shape = new createjs.Shape();
 shape.graphics.beginFill("#ff0000").drawCircle(0, 0, 25);
 shape.cache(-25, -25, 50, 50);

 stage.addChild(shape);
 stage.update();
}
</script>

</head>
<body>
<canvas id="testCanvas" width="400" height="100" style="border:
1px solid black;"></canvas>
</body>
</html>

www.allitebooks.com

http://www.allitebooks.org

Utilizing Caching in EaselJS

[40]

The above source code is the completed example of using the cache method in
EaselJS. The result of this source code is as shown in the following screenshot:

Using cache in complex shapes and
animations
Caching in EaselJS comes in handy when you have a complex shape or animation
in your canvas. In most cases, complex shapes with details shouldn't get rendered
in every tick. So you can simply use the cache method to cache it in order to prevent
rendering overhead.

Now we will see a complex example from the EaselJS library (source: https://
github.com/CreateJS/EaselJS/blob/master/examples/Cache.html) and the
effect of using a cache technique on that. In this animation, we will create about 200
complex circles and move them on each tick. There is a checkbox on the page that
controls the enabling or disabling of caching for all shapes inside the canvas area
using cache and uncache methods.

The following screenshot shows us a preview of our animation (notice the checkbox):

There are three main functions that handle this animation and all the logics; init,
tick, and toggleCache. We will discuss each one of them separately.

Chapter 5

[41]

In the first lines of the code, we will use the following variables:

var canvas;
var stage;
var shape;
varcircleRadius= 30;
var rings = 30;

The first variable holds the canvas element, the second one is used for the Stage
object, the shape variable is used to draw shapes on the stage, and circleRadius
and rings are used for basic settings of circles. circleRadius is used to define
the radius of each circle and rings is used to define the number of rings inside
each circle.

The following code shows the the basic init method that draws all shapes and
prepares the stage:

Function init() {
 // create a new stage and point it at our canvas:
 canvas = document.getElementById("testCanvas");
 stage = new createjs.Stage(canvas);

 // create a large number of slightly complex vector shapes,
and give them random positions and velocities:

 var colors = ["#828b20", "#b0ac31", "#cbc53d", "#fad779", "#f9e4ad",
"#faf2db", "#563512", "#9b4a0b", "#d36600", "#fe8a00", "#f9a71f"];

 for(var i= 0; i< 200; i++) {
 shape = new createjs.Shape();
 for(var j = rings; j > 0; j--) {
 shape.graphics.beginFill(colors
 [Math.random() * colors.length | 0])
 .drawCircle(0, 0, circleRadius * j / rings);
 }
 shape.x = Math.random() * canvas.width;
 shape.y = Math.random() * canvas.height;
 shape.velX = Math.random() * 10 - 5;
 shape.velY = Math.random() * 10 - 5;

 stage.addChild(shape);
 }

 // add a text object to output the current FPS:

Utilizing Caching in EaselJS

[42]

 fpsLabel = new createjs.Text("-- fps", "bold 18px Arial", "#FFF");
 stage.addChild(fpsLabel);
 fpsLabel.x = 10;
 fpsLabel.y = 20;

 // start the tick and point it at the window so we can do some
work before updating the stage:
 createjs.Ticker.addEventListener("tick", tick);
 createjs.Ticker.setFPS(50);
}

This code is used to create the stage and all shape objects. In lines 3 and 4, the
Stage object is created. In line 8, we defined random colors for circle rings.
After that, we have used a for-loop, which draws 200 different circles with random
positions on the stage. We have another for-loop to draw rings inside the circles in
line 12.

In our animation, we have a label that indicates the Frames per Second (FPS) rate
on each tick. So, in lines 28 to 31, we have defined our label properties. In line 34,
the Ticker class is created and in line 36, the FPS of the animation is set to 50.

After the init function, we have a tick function that will be called on each tick
by EaselJS:

function tick(event) {
 var w = canvas.width;
 var h = canvas.height;
 var l = stage.getNumChildren() - 1;

 // iterate through all the children and move them according to
their velocity:
 for(var i= 1; i< l; i++) {
 var shape = stage.getChildAt(i);
 shape.x = (shape.x + shape.velX + w) % w;
 shape.y = (shape.y + shape.velY + h) % h;
 }
 fpsLabel.text = Math.round(createjs.Ticker.getMeasuredFPS()) +
 " fps";
 // draw the updates to stage:
 stage.update(event);
}

Chapter 5

[43]

The main job of the above init function is to change the position of all the circles on
the stage on each tick, set the current FPS rate to the label, and then update the stage.
The reason there is -1 in line 4 is to exclude the label object from children; keep in
mind that we only need to change the position of all the circles.

The last function is the toggleCache function. This method enables or disables
caching for all circles:

function toggleCache(value) {
 // iterate all the children except the fpsLabel, and set up the
cache:
 var l = stage.getNumChildren() - 1;
 for(var i= 0; i< l; i++) {
 var shape = stage.getChildAt(i);
 if (value) {
 shape.cache(-circleRadius, -circleRadius, circleRadius * 2,
 circleRadius * 2);
 } else {
 shape.uncache();
 }
 }
}

This function is called only when you check or uncheck the checkbox on the page
so it enables or disables caching for all circle objects on stage. There is a for-loop
that iterates over all circle shapes and calls the cache or uncache method according
to the status of the checkbox. Consequently, the caching for circle shapes will be
enabled or disabled.

By clicking on the checkbox, you can obviously see that the animation rendering
gets smoother when caching is enabled.

Finally, you can find the complete source code of our animation on the Packt website.

Caching Bitmap
In this section, we will utilize the cache method with Bitmap and AlphaMaskFilter
to develop a reflection effect in EaselJS. The target is to load an image and create
a Bitmap class to draw the image. Then, clone the Bitmap image, change the
rotation and add a gradient background, and use AlphaMaskFilter to create
the reflection effect.

Utilizing Caching in EaselJS

[44]

The following screenshot is a preview of the result:

The following is the source code of this example:

function init() {
 var canvas = document.getElementById("canvas");
 var stage = new createjs.Stage(canvas);

 var image = new Image();
 image.src = "easeljs.png";

 //wait to load the image
 image.onload = function(evt) {
 var bitmap = new createjs.Bitmap(evt.target);
 var width = bitmap.image.width;
 var height = bitmap.image.height;

 //clone the existing bitmap to use as reflection
 var reflectBitmap = bitmap.clone();
 reflectBitmap.regY = height;
 reflectBitmap.rotation = 180;

 //to add a padding from the main bitmap
 reflectBitmap.y = height + 2;
 reflectBitmap.scaleX = -1;

 var maskShape = new createjs.Shape();

Chapter 5

[45]

 var graphics = maskShape.graphics;
 //add reflection effect
 graphics.beginLinearGradientFill(["rgba(255, 255, 255, 0)"
 , "rgba(255, 255, 255, 0.6)"], [0.5, 1], 0, 10, 0, height);
 graphics.drawRect(0, 0, width, height);
 graphics.endFill();

 maskShape.cache(0, 0, width, height);

 reflectBitmap.filters =
 [new createjs.AlphaMaskFilter(maskShape.cacheCanvas)];
 reflectBitmap.cache(0, 0, width, height);

 //add both pictures
 stage.addChild(bitmap);
 stage.addChild(reflectBitmap);
 stage.update();
 }
}

As seen in previous examples, firstly, we created the Stage class. Then, in order to
load the image, we used the Image class and passed the address of the image to the
src property. The Image class has an onload event, which helps developers know
when the image is loaded completely. We used this event to execute other parts of
the application correctly.

After that, we used a Bitmap class and passed the image parameter from the Image
class to it. Because we need the width and height of the picture, we saved them into
two different variables called width and height. At this moment, we have the first
picture but we should have one more picture to create the reflection effect. So, we
used the clone function to duplicate the image. In order to change the rotation,
scale, and coordination of the second image, we changed the regY, rotation, y,
and scaleX properties.

After that, a new shape is created using the Shape class. This is the mask layer that
will be used for the AlphaMaskFilter. Then, we added a linear background to it
to create the reflection effect and cached it using the cache function. Finally, an
AlphaMaskFilter is added to the second picture (a cloned Bitmap class) and
this shape is used as the mask layer. The second picture is also cached again.
Both pictures are added to Stage using the addChild function and Stage is
also updated with the update function.

Utilizing Caching in EaselJS

[46]

Summary
In this chapter, we have learned how to work with the cache method in EaselJS
to create better drawings and animations on the canvas. The reason we use caching
in EaselJS is to provide better and faster animation rendering in browsers and also
use fewer resources while rendering the animations or drawings. In the next section,
we discussed about using the cache method with the Bitmap class to create the
reflection effect.

In the next chapter, we will talk about applying filters in canvas with EaselJS,
which is one of the best features of EaselJS, and you can make fantastic stuff
with this feature.

Using Filters in EaselJS
One of the great features of CreateJS is the ability to play with filters and apply
various filters to pictures and shapes easily. CreateJS makes it easy by providing
a Filter class and filters property for DisplayObject; accordingly, we can
simply create instances of the Filter class and apply them to the objects. In this
chapter, we will have a look at CreateJS filters and some basic examples of working
with the Filter class.

In this chapter, we will cover the following topics:

•	 Understanding the Filter class
•	 How to use built-in EaselJS filters

Understanding the Filter class
EaselJS comes with a Filter class, which is the base class for all other filters,
and other filter classes should inherit from this class. Filters need to be applied
to objects that have been cached using the cache method; after that, if the object
gets changed again, we should use the cache or updateCache methods to update
the shape.

The following is an example of applying filters to an object:

 /* Add canvas and stage */
 var canvas = document.getElementById("canvas");
 var stage = new createjs.Stage(canvas);

/* create and draw the shape */
var circle = new createjs.Shape();
circle.graphics.beginFill("red").drawCircle(50, 50, 40);

/* add the blur filter to filters property */

Using Filters in EaselJS

[48]

circle.filters = [new createjs.BlurFilter(5, 5, 10)];
/* cache the shape to apply the filter */
circle.cache(0, 0, 100, 100);
/* add shape to stage and update */
stage.addChild(circle);
stage.update();

In the first line, we have created a shape object; in the next line, we have created
a circle with the color red. The next line contains the filter configurations, and in
the last line we have cached the object using the cache function.

Using the cache method in examples with filtering will not only boost performance
but will also apply the filter to the shape and make it work.

EaselJS contains several basic filters, such as blur or color filters, that you can
use easily. Here is a list of built-in filters:

•	 AlphaMapFilter: This is used to map a grayscale image to the alpha
channel of a display object.

•	 AlphaMaskFilter: This is used to map the alpha channel of an image to
the alpha channel of a display object.

•	 BlurFilter: This applies vertical and horizontal blur to a display object.
•	 ColorFilter: This color transforms a display object.
•	 ColorMatrixFilter: This transforms an image using a ColorMatrix.

In the next section, we will discuss all these filters in detail.

Chapter 6

[49]

Using the AlphaMapFilter class
The AlphaMapFilter is an built-in filter is used for applying a grayscale alpha map
image (or canvas) to the target. To be clearer, the alpha channel of the result will be
copied from the red channel of the map and the RGB channels will be copied from
the target object.

Generally, it is recommended that you use AlphaMaskFilter, because it has
much better performance.

This has been taken from: http://www.createjs.com/Docs/EaselJS/classes/
AlphaMapFilter.html

The following code snippet is the definition for this class:

AlphaMapFilter (alphaMap)

The parameters are as follows:

alphaMap | Image | HTMLCanvasElement

We have used the grayscale image or the canvas as the alpha channel. It should be
of the same dimensions as the target.

The following code is an example of using the AlphaMapFilter class:

/* Add canvas and stage */
var canvas = document.getElementById("canvas");
var stage = new createjs.Stage(canvas);

/* Create filter */
var box = new createjs.Shape();
box.graphics.beginLinearGradientFill(["#0000ff", "#ff0000"]
 , [1, 0], 0, 0, 0, 300)
box.graphics.drawRect(0, 0, 300, 300);
box.cache(0, 0, 300, 300);

/* create the second shape */
var box2 = new createjs.Shape();

www.allitebooks.com

http://www.allitebooks.org

Using Filters in EaselJS

[50]

box2.graphics.beginLinearGradientFill(["#0000ff", "#ff0000"]
 , [0, 1], 0, 0, 0, 300);
box2.graphics.drawRect(0, 0, 300, 300);

/* Add filter to box2 */
box2.filters = [
 new createjs.AlphaMapFilter(box.cacheCanvas)
];
/* and finally, cache the shape to apply changes */
box2.cache(0, 0, 300, 300);

/* Add bitmap to stage and update stage */
stage.addChild(box2);
stage.update();

In the first few lines of the code, we created a rectangle created with a linear gradient
and then cached the object using cache method. The reason for caching the object is
to use it in the filter parameters.

Then, we created the box2 variable; it's our parent shape. This shape is the same
as the first one, but the gradient color is different. We have changed the colors for
the start and end of the linear gradient. Afterward, we added AlphaMapFilter to
the box2 filters and the box variable as the parameter of the filter. Then, in to order
apply the filter to the shape, we cached the shape using the cache method and added
it to the stage.

A preview of the previous example is shown in the following image:

Chapter 6

[51]

Using the AlphaMaskFilter class
This filter is similar in usage to the AlphaMapFilter class, but we will briefly talk
about this filter as well. As per the CreateJS documentation, it's recommended
that you use this filter instead of AlphaMapFilter because it has much better
performance.

AlphaMaskFilter applies the alpha mask from the mask image (or canvas) to the
target. The alpha channel of the result will be derived from the mask, and the RGB
channels will be copied from the target object.

Here is how we define the AlphaMaskFilter class:

AlphaMaskFilter (mask)

The parameters in this code snippet are as follows:

mask | Image

This class is an instance of the Image class.

Here is an example of using this filter:

/* Declare variables */
var canvas, stage, img;

function init() {
 /* Add canvas and stage */
 canvas = document.getElementById("canvas");
 stage = new createjs.Stage(canvas);

 /* Load image */
 img = new Image();
 img.onload = handleimg; //function that's called once image
has loaded
 img.src = "targetImg.png"; //image url
}

function handleimg() {
 /* Create mask layer */
 var box = new createjs.Shape();
 box.graphics.beginLinearGradientFill(["#000000", "rgba
 (0, 0, 0, 0)"], [0, 1], 0, 0, 0, 200)
 box.graphics.drawRect(0, 0, 200, 200);
 box.cache(0, 0, 200, 200);

 /* Create bitmap */

Using Filters in EaselJS

[52]

 var bmp = new createjs.Bitmap(img);

 /* Add filter to bitmap */
 bmp.filters = [
 new createjs.AlphaMaskFilter(box.cacheCanvas)
];
 bmp.cache(0, 0, 200, 200);

 /* Add bitmap to stage and update stage */
 stage.addChild(bmp);
 stage.update();
}

As you can see, the usage of this filter is almost the same as AlphaMapFilter.

The example source code is divided into two functions, init and handleimg.
In order to load the image properly, we used the Image class and the onload event.
We then used the handleimg function for the onload event callback function.

Inside init function, stage class is created. We also configured the Image class and
assigned the handleimg function to the onload event. A major part of the example's
source code is inside the handleimg function. In the first few lines, we created a
rectangle with a linear gradient background. The reason for using the rgba function
to define color is to change the alpha channel of the gradient so that the filter will
derive this alpha channel for the final result. Finally, we cached the shape using
the cache method.

Then, we loaded an image using the Bitmap function and also applied it to the
bmp variable with the filters property. We also cached this image in order to
apply the filter changes.

The following screenshot illustrates the result of our example:

Chapter 6

[53]

Implementing the BlurFilter class
The Blur filter is one of usable filters for creating innovative animations and drawings.
In this section, we will have a discussion about using the BlurFilter class.

This filter applies a blur box to DisplayObject.

This filter is CPU intensive, particularly if the quality is set to higher
than 1.

Here is the definition of the BlurFilter class and its parameters:

BlurFilter ([blurX=0] [blurY=0] [quality=1])

The parameters included in this code snippet are as follows:

•	 [blurX=0] | Number: It is an optional parameter. It is used to set the
horizontal blur radius in pixels.

•	 [blurY=0] | Number: It is an optional parameter. It is used to set the
vertical blur radius in pixels.

•	 [quality=1] | Number: It is an optional parameter. It is used to set the
number of blur iterations.

Here is an example of using the Blur filter with a red circle:

/* Add canvas and stage */
var canvas = document.getElementById("canvas");
var stage = new createjs.Stage(canvas);

/* create circle shape */
var shape = new createjs.Shape().set({x:100,y:100});
shape.graphics.beginFill("#ff0000").drawCircle(0,0,50);

/* create blur filter and add to shape */
var blurFilter = new createjs.BlurFilter(5, 5, 1);
shape.filters = [blurFilter];

/* add getbounds to give spread effect to blur */
var bounds = blurFilter.getBounds();
shape.cache(-50+bounds.x, -50+bounds.y, 100+bounds.width,
100+bounds.height);

/* add shape to stage and update */
stage.addChild(shape);
stage.update();

Using Filters in EaselJS

[54]

In the first line, we have the shape variable, which is the variable for our shape,
a circle. In the next line, we filled the circle with the red color and finished drawing
the shape using the drawCircle function.

Then, we created the blur filter using three parameters and applied it to the shape
object with the filters property. In order to find the dimension of the caching area,
we used the getBounds function because, as you know, the blur filter has some more
padding after applying the getBounds function.

Utilizing the ColorFilter class
This filter applies a color transform to DisplayObject. This filter comes handy
when you need to play with colors in EaselJS.

In the following code snippet, you can see the definition of this filter:

ColorFilter ([redMultiplier=1] [greenMultiplier=1]
 [blueMultiplier=1] [alphaMultiplier=1] [redOffset=0]
 [greenOffset=0] [blueOffset=0] [alphaOffset=0])

The various parameters in this code snippet are as follows:

•	 [redMultiplier=1]– Number: It is an optional parameter. It sets the value
to multiply with the red channel. The value should be between 0 and 1.

•	 [greenMultiplier=1]– Number: It is an optional parameter. It sets the value
to multiply with the green channel. The value should be between 0 and 1.

•	 [blueMultiplier=1]– Number: It is an optional parameter. It sets the value
to multiply with the blue channel. The value should be between 0 and 1.

•	 [alphaMultiplier=1]– Number: It is an optional parameter. It sets the value
to multiply with the alpha channel. The value should be between 0 and 1.

•	 [redOffset=0]– Number: It is an optional parameter. It sets the value to add
to the red channel after it has been multiplied. The value should be between
-255 and 255.

Chapter 6

[55]

•	 [greenOffset=0]– Number: It is an optional parameter. It sets the value to
add to the green channel after it has been multiplied. The value should be
between -255 and 255.

•	 [blueOffset=0]– Number: It is an optional parameter. It sets the value to
add to the blue channel after it has been multiplied. The value should be
between -255 and 255.

•	 [alphaOffset=0]– Number: It is an optional parameter. It sets the value to
add to the alpha channel after it has been multiplied. The value should be
between -255 and 255.

Here is an example of using this filter:

/* Add canvas and stage */
var canvas = document.getElementById("canvas");
var stage = new createjs.Stage(canvas);

var shape = new createjs.Shape().set({x:100,y:100});
shape.graphics.beginFill("#ff0000").drawCircle(0,0,50);

shape.filters = [
 new createjs.ColorFilter(0,0,0,1, 0,0,255,0)
];
shape.cache(-50, -50, 100, 100);
/* add shape to stage and update */
stage.addChild(shape);
stage.update();

In this example, we created a red circle and then changed its color to blue using
ColorFilter. This is done by multiplying all the channels with 0 (except for the
alpha channel, which is set to 1) and then adding the value 255 to the blue channel
and 0 to the other channels.

Using Filters in EaselJS

[56]

Using the ColorMatrixFilter class
With this filter, you can play with complex color operations, such as saturation,
brightness, or inversion. This filter uses the ColorMatrix class to perform the action.

The following code snippet defines this class:

ColorMatrixFilter (matrix)

The parameters present in this code snippet are as follows:

•	 matrix– Array: A 4x5 matrix describing the color operation to perform
using the ColorMatrix class.

Here is an example of using this filter:

/* Add canvas and stage */
var canvas = document.getElementById("canvas");
var stage = new createjs.Stage(canvas);

var shape = new createjs.Shape().set({x:100,y:100});
shape.graphics.beginFill("#ff0000").drawCircle(0,0,50);

var matrix = new createjs.ColorMatrix()
 .adjustHue(180).adjustSaturation(100);
shape.filters = [
 new createjs.
 ColorMatrixFilter(matrix)
];

shape.cache(-50, -50, 100, 100);
/* add shape to stage and update */
stage.addChild(shape);
stage.update();

Chapter 6

[57]

In the preceeding example, we created a red circle and then inverted the hue and
changed the saturation to 100. We started by creating the stage class in the first
line. Then, we created a circle using the drawCircle function. To place the circle
in the viewport of the canvas element, we used the set function to change the
x and y values.

Then, we initiated the matrix variable using the ColorMatrix class. We used the
adjustHue and adjustSaturation functions to change the hue and saturation of
the circle. An acceptable value for adjustHue is between -180 to 180. This value
for adjustSaturation is between -100 and 100. We set the hue value to 180 and
saturation value to 100 in our example to see the difference better.

We applied all using the filter property of the shape variable. Finally, we cached
the shape using the cache method and updated the stage using update method to
apply the changes.

Summary
In this chapter, we learned how to use the built-in filters in EaselJS to change
DisplayObject properties such as color, hue, saturation, and so on. We also
discussed the definition and basic usage of the filters with interactive examples
and screenshots.

In the next chapter, we will discuss the creation of a web-based painting application
using all the methods and functions that we have learned up to now.

Developing a Painting
Application

In this chapter, we will create a simple painting application using almost all
the EaselJS features that we have already discussed in the previous chapters.
This chapter will be more interactive and challenging, as we need to wrap up
everything that we have already learned. So let's get started.

In this chapter, we will cover the following topics:

•	 Preparing the stage
•	 Understanding the mousemove, mouseup, and mousedown events
•	 Implementing each callback function

Preparing the stage
The overall functionality of this application is almost the same as drag-and-drop
applications; we will use the mousedown, mouseup, and mousemove events to handle
the painting logic. First, we will create a stage object and then an array of colors that
will be used for the color of brushes. We will enable the touch feature for web browsers
and for devices that support touch events. Finally, we set callback functions for the
mousedown, mouseup, and mousemove events to handle the drawing feature and draw
the lines.

www.allitebooks.com

http://www.allitebooks.org

Developing a Painting Application

[60]

The following screenshot shows a preview of our painting application:

The final source code consists of the following functions:

•	 init: It is used to create the stage and prepare other objects.
•	 handleMouseDown: It is used to handle the mousedown event and bind

the mousemove event.
•	 handleMouseMove: It is used to handle the mousemove event and draw

the line.
•	 handleMouseUp: It is used to handle the mouseup event and unbind the

mousemove event to stop drawing.

The following image illustrates how the events work together to draw a line:

In further sections, we will discuss more about the source code and how it is created.

Chapter 7

[61]

Understanding the init function
Inside the init function, we will setup the stage, declare the basic variables, and also
attach functions to the main events like the mousedown event.

The following code is the source code of the init function:

function init() {
 var canvas = document.getElementById("cvs");
 var index = 0;
 var colors = ["#828b20", "#b0ac31", "#cbc53d", "#fad779", "#f9e4ad",
 "#faf2db", "#563512", "#9b4a0b", "#d36600", "#fe8a00", "#f9a71f"];

 var stage = new createjs.Stage(canvas);
 stage.autoClear = false;
 stage.enableDOMEvents(true);

 createjs.Touch.enable(stage);
 createjs.Ticker.setFPS(24);
 drawingCanvas = new createjs.Shape();

 stage.addEventListener("stagemousedown", handleMouseDown);
 stage.addEventListener("stagemouseup", handleMouseUp);

 stage.addChild(drawingCanvas);
 stage.update();
}

In the first line of the function's body, we have a global canvas variable, which refers
to our Canvas element in the page. We have an index variable that holds a counter
to choose a color for brushes while painting and the next line contains an array of
colors. We choose one value from this array randomly using the index variable.
After that, as seen in previous examples, we have to create a stage object; this is
also a global variable.

After that, we set the autoClear property of stage to false. This property indicates
whether the stage should clear the rendered elements on the canvas automatically
or not. By setting this value to false, we can manually control the clearing.

Then, we enabled the DOM (Document Object Model) events using the
enableDOMEvents method. This method actually enables or disables the event
listener, which stage adds to DOM elements such as window, document,
and canvas.

Developing a Painting Application

[62]

In the following lines, touch events and frames per second (FPS) are configured.
The setFPS function sets the target frame rate in frames per second. This function
is a member o f the Ticker class. The Ticker class is one of the major features of
EaselJS that provides a centralized ticker or heartbeat and listeners can subscribe
to the ticker event to be notified when time elapsed.

Then, the global variable drawingCanvas is initialized with a Shape object and it
will be our painting shape. In the following events, we will use this variable to
complete the drawing process.

Further, the mousedown and mouseup events are assigned to proper functions and then
a painting shape is added to stage. There are some ways to add an event listener and
one of them is using the addEventListener function. Pass the name of the event and
the function to it. We used the addEventListener function in this example.

Similar to the previous examples, we have to add the shape to stage and update it
using the update function. In the following lines, we added the shape to stage and
updated it.

This is the definition of the init function. Actually, this function is a bootstrap
function to start the painting application. Inside this function, all events to paint
and draw are configured. In the following sections, we will discuss the event
callback function.

Implementing the handleMouseDown
function
The following code is the source code of the handleMouseDown function, which is
used to handle the mousedown event:

function handleMouseDown(event) {
 color = colors[(index++) % colors.length];
 stroke = Math.round(Math.random() * 30 + 10);
 oldPt = new createjs.Point(stage.mouseX, stage.mouseY);
 oldMidPt = oldPt;
 stage.addEventListener("stagemousemove", handleMouseMove);
}

This function is used to handle the mousedown event and will be called after pressing
the mouse button. Inside this function, we set the color and size of a stroke, and hold
the current mouse position to use in the next function call.

Chapter 7

[63]

All variables are global, so you can't see any var keyword before them in order to
have the variables in the following function calls and other scopes. In the last line,
a function also sets the mousemove event in order to manage the drawing lines.
Actually, the mousemove event fires whenever the mouse cursor moves in stage.

The color of the brush is selected from the colors array that is defined in the init
function, one after the other, using the index variable. What we do to select the next
color from the array is increase the index variable and then calculate the division's
remainder. With this simple hack, we can choose a value between zero and the
length of the array.

The size of the brush is selected using the random function. The random function
from the Math class in JavaScript returns a value between 0 and 1 (but not 1).
By multiplying this value with 30, we can get a value between 0 and 30 (but not
30). The round function also rounds up a number in JavaScript.

And the important part of that code is that stage.mouseX and stage.mouseY return
the current mouse coordinate on the Canvas element. We use those variables to get
the mouse position and hold it in a global variable. These values will be used to draw
the lines and the reason we save them in a global variable is to provide accessibility
in other scopes and functions. As you can see, we used the Point class to collect
the coordinate of the mouse cursor. The Point class represents a two-dimensional
coordinate system in EaselJS and we use this class to save the cursor pointer.

Using the handleMouseMove function
This function actually draws the line and is used to handle the mousemove event.
This is our main function to handle drawing.

The source code of the mousemove function is as follows:

function handleMouseMove(event) {
 var midPt = new createjs.Point(oldPt.x + stage.mouseX>> 1,
 oldPt.y + stage.mouseY>> 1);

 drawingCanvas.graphics.clear().setStrokeStyle
 (stroke, 'round', 'round').beginStroke(color).moveTo
 (midPt.x, midPt.y).curveTo(oldPt.x, oldPt.y,
 oldMidPt.x, oldMidPt.y);

 oldPt.x = stage.mouseX;
 oldPt.y = stage.mouseY;

 oldMidPt.x = midPt.x;

Developing a Painting Application

[64]

 oldMidPt.y = midPt.y;

 stage.update();
}

This function is called continuously while the mouse cursor is dragging over stage.
In this function, we draw the line using the beginStroke function and then save the
current mouse position again in order to use it in the following function calls; actually,
the following mouse move. By each move of the mouse cursor, this function is called
again, so we will have the line.

In the first line you can see the right shift operator (the >> operator). We
used this function to simplify the Math.floor(num / 2)operation.
Actually, num>> 1 and Math.floor(num / 2) have the same result.

After that, we update the stage using the update function to apply changes to the
stage and render everything to the canvas.

Utilizing the handleMouseUp function
This function is called when a user releases the mouse click and uses it to end the
drawing lines and remove the event from stage. Its source code is as follows:

function handleMouseUp(event) {
 stage.removeEventListener("stagemousemove", handleMouseMove);
}

All we do in this function is call removeEventListener to remove the mousemove
event and prevent calling the function anymore. After removing this event from
stage, the handleMouseMove function won't call anymore. So, by moving the mouse
cursor, EaselJS won't call our function until the next mousedown event. That's exactly
what we want to handle in the painting logic.

Chapter 7

[65]

In the following screenshot, you can see a preview of this application:

Downloading the source code
This painting example is one of the basic EaselJS samples. You can download the
complete source code of the project from EaselJS's GitHub:

https://github.com/CreateJS/EaselJS/blob/master/examples/CurveTo.html

Summary
In this chapter, we have discussed how to create a simple painting application
from scratch using the mousemove, mousedown, and mouseup events, and it's a
good exercise to understand the concept of those events. Then, we learned how
to manage mouse events inside each other to draw a line. The addEventListener
and removeEventListener functions were used to add and remove an event from
an object.

Also, we learned how to use the stroke feature in EaselJS to draw lines with a
specific color and size. We used the beginStorke, curveTo, and moveTo functions
to draw the lines and handle the painting logic.

In the next chapter, we will talk about vector mask and how to create a mask layer
in CreateJS.

Utilizing Vector Masks
In this chapter, we will talk about utilizing vector masks in CreateJS and how to
develop animation or drawings using vector masks. First off, we should know
what a vector mask is and what it does. With vector masks, we can control which
parts of the parent layer are hidden or revealed. We can even add a special effect
to the vector mask to make that part of the parent layer different from the rest.

In this chapter we will cover:

•	 Learning about vector masks
•	 Adding a vector mask to an existing DisplayObject object
•	 Applying vector masks to pictures
•	 Animating the mask layer

Learning about vector masks
Vector masking is a useful feature in EaselJS that enables developers to create
awesome animations or drawings easily. There is a mask property for every
DisplayObject object, with which you can apply a mask layer, or in other words;
create a layer over an existing shape or picture. After applying the mask layer and
updating the stage event, you will see that a new layer masks the existing layer.
In other words, you can control what part of the parent layer is hidden or revealed
with vector masks.

Background layer (parent)

Mask layer

Utilizing Vector Masks

[68]

Furthermore, mask layers are also shapes, so you can change the mask layer
properties continuously to create animations.

Here is an example of using a vector mask in EaselJS:

/* Declare stage in usual way */
var canvas = document.getElementById("canvas");
var stage = new createjs.Stage(canvas);

/* Create the mask */
var mask = new createjs.Shape();
mask.graphics.drawCircle(0, 0, 30);
mask.x = 100;
mask.y = 100;

var bg; /* Create a red background */
var bg = new createjs.Shape();
bg.graphics.clear().beginFill("red").rect(0, 0, 400, 200);

/* Add mask to background */
bg.mask = mask;

/* Add to stage */
stage.addChild(bg);

/* update stage in usual way */
stage.update();

As with other examples in this book, we first get the canvas element from the
page and then create the Stage object. Then, we create a simple circle using the
Shape class and the drawCircle function. For the default position, we set both
x and y to 100. This circle is our vector mask layer.

Then, we create a bg variable that contains a rectangle filled with the color red.
After that, we assign the first shape—that is, the circle—to the mask property
of the bg variable. Finally, we add the bg variable to stage.

Here is the output of the preceding source code:

Chapter 8

[69]

For you to understand the example better, look at the following screenshot. It is
what the output will be after removing the mask layer.

As you can see in the first example, our mask layer is seen only in the circular
shape, but in the next example, the whole rectangle is seen because there is no
mask layer anymore.

The following screenshot shows the mask layer independently:

After assigning the mask layer to the parent layer (the red rectangle), the only
visible part of the rectangle will be the visible part of the mask layer.

In the next section, we will look at a drag-and-drop example with mask layers.

Using a vector mask with Bitmap images
In this section, you will learn to use the vector mask, filters, and a Bitmap class with
an example. The Bitmap class is a subset of DisplayObject; thus, it has almost all
the properties of the Shape class, such as filters, mask, and so on.

Here is an example of using a vector mask with a Bitmap class:

//query the canvas element
var canvas = document.getElementById("canvas");

//create the Stage class

Utilizing Vector Masks

[70]

var stage = new createjs.Stage(canvas);

//create the mask layer
var mask = new createjs.Shape();
mask.x = img.width / 2;
mask.y = img.height / 2;
mask.graphics.drawCircle(0, 0, 100);

var bg = new createjs.Bitmap(img);
//add blur filter
bg.filters = [new createjs.BlurFilter(50,50,10)];
bg.cache(0,0,img.width,img.height);
bg.mask = mask;
stage.addChild(bg);

stage.update();

In the first line, we created the canvas variable that refers to our canvas element
on the page. Then, we initiated the stage variable with the Stage class.

In the next line, we initiated a mask variable using the Shape class. This shape is our
mask layer, and it's a circle. For the mask layer coordinates, we used img.width / 2
and img.height / 2 to place the mask layer in the center of the picture. Then, we
created the circle using the drawCircle method.

Then we created the bg variable, which refers to our image. We initiated this variable
using the Bitmap class; the first parameter of the Bitmap class is the Image class.
We already loaded the image using the Image class.

Here is an example of loading an image and using an onload event:

var img = new Image();
img.src = "easlejs.png";

img.onload = function(evt) {
 //logic
}

You can use the same approach to load images and pass them to the
Bitmap class in EaselJS.

Then, we added a blur filter to the picture filters and cached the shape using the
cache method.We used the original image dimensions for the cache method.
Then we assigned the mask layer to the bg variable using the mask property.

Chapter 8

[71]

Finally, we added the bg variable to the stage event and updated this event to apply
the changes.

In order to understand the differences better, look at the following output screenshot
of the bg variable without the mask property. This is the Bitmap class without the
mask layer.

The following image shows the vector mask separately:

The following screenshot illustrates the final result of our example with the
mask layer:

Utilizing Vector Masks

[72]

As you can see, the whole image is visible in the first screenshot. However, the only
visible part in the third image is our mask layer, that is the circle. That's the way
vector masks work with pictures and shapes. You can create any shape and mask
an existing layer, such as a picture with this shape.

In the next example, we will create a drag-and-drop interaction using vector masks.

Playing with vector masks
Now, we will complete our previous example to create a simple drag-and-drop
example using vector masks. The idea is to change the x and y coordinates of the
mask layer on the mousemove event of the parent layer so that we can only see
the masked layer over the existing shape. It will seem that only a circular shape is
being dragged, but what's actually happening is that our mask layer is changing
continuously. The source code of our example is as follows:

var stage = new createjs.Stage("canvas");
var mask = new createjs.Shape();

mask.graphics.drawCircle(0, 0, 30);
mask.x = 100;
mask.y = 100;

var bg = new createjs.Shape();
bg.graphics.clear().beginFill("red").rect(0, 0, 400, 400);

bg.mask = mask;

function handlePress(event) {
 event.addEventListener("mousemove", handleMove);
}

function handleMove(event) {
 mask.x = stage.mouseX;
 mask.y = stage.mouseY;
 stage.update();
}

bg.addEventListener("mousedown", handlePress);

stage.addChild(bg);
stage.update();

Chapter 8

[73]

As in the previous example, we created a mask layer in the shape of a circle in the
first line. We specified the default coordinates for the mask layer with x=100 and
y=100. Then, we created a bg variable that contains the background or parent layer.

Because we need the coordinates of the mask layer to change continuously as we
move the mouse cursor, we bound a callback function to both mousedown and
mousemove events. Then, inside the mousemove callback function, we changed the
co-ordination of the mask layer and updated the stage.

The result will look like a drag-and-drop ball over the stage, but actually, it's our
mask layer that keeps changing with every mouse move.

Summary
The vector mask feature is one of the most useful features for drawing and
developing animations, not only in CreateJS but in all other tools. In this chapter,
we learned how to create vector mask layers in EaselJS and also how to enhance
them to create animations. This feature also comes handy when you need to apply
a different filter to a specific part of an existing shape or picture.

In the next chapter, we will wrap up everything to create a complete UI from scratch
using all the CreateJS features that we have already talked about.

Developing Your First
CreateJS Application

In our previous chapters, you learned everything you need to know about building
impressive web applications using CreateJS. In this chapter, we will wrap up
everything and learn to build an actual application using CreateJS from scratch.
We will develop a simple painting application with options such as the ability to
change the background color, brush color, brush style, brush size, and so on. Also,
you will learn about the tricks and tips that will help you develop better JavaScript
libraries and applications.

In this chapter, we will cover the following topics:

•	 Conceptualizing the application
•	 Explaining the structure of the application
•	 Implementing every part of the application
•	 Getting an image exported from the Canvas element

Understanding your application structure
To demonstrate the application development with CreateJS, we will build a painting
application. In this application, we will use the EaselJS module and some pure
JavaScript snippets to get an image exported from the Canvas element. As you
know, EaselJS renders all outputs into a Canvas element; there are some JavaScript
functions to get an image output from the Canvas element.

This application contains three files:

•	 index.html

Developing Your First CreateJS Application

[76]

•	 app.js

•	 style.css

In the index.html file, we create the HTML elements and link external files to it.
app.js is the main JavaScript file that contains almost all JavaScript code to run an
application, and style.css is used to style the page, drop-down menus, and other
minor elements.

We split the dependencies into different files to manage them better and provide
better performance while loading the application. External static files will be cached in
browsers, so users will not require to download them every time the page is refreshed.

Our painting application mainly works with EaselJS features, such as the curveTo
and beginStroke functions. In order to control the application's global settings
such as the background color and brush color, we have global variables that hold
the settings. We will be using them in other events or functions. These variables
are changed when the user clicks on the different options and menus present on
the page.

The preview of the application interface is as follows:

The application has a navigation bar that consists of four drop-down menus and
a title. With the drop-down menus, users can change the brush style, brush size,
background color, and brush color. Also, there is an Export link that converts the
Canvas element to a PNG image, and gives a download link to the user from
where the user can download the image.

Our drop-down menus work with pure CSS code so we don't need any JavaScript
code for them. In the next section, we will explain each part in detail.

Chapter 9

[77]

Developing the index.html file
Our main HTML page has a simple structure. Following is a head tag in an
HTML page:

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="content-type" content="text/html;
 charset=UTF-8">
 <title>Painting</title>
 <link rel="stylesheet" type="text/css"
 href="style.css">
</head>

In the head tag, we only link the CSS file to the page. Other JavaScript files will
be connected to the page at the end of the file and the reason is to provide better
performance while loading the page. When we add stylesheets in the head tag and
JavaScript files at the end of the HTML file (before closing the body tag), our page
interface will appear to work faster because the browser doesn't wait to load all
JavaScript and CSS files. The web browser loads CSS files because they are in the
head tag, and after rendering all the HTML elements, it loads the JavaScript files.
This trick gives a better feeling about the application's performance to users.

In the following lines, we have the body and wrapper elements:

<body>
 <div id="wrapper">
 <div id="header">
 <h1>Painting</h1>

The wrapper layer is the container for all other elements. Also the div header is
the container for the black-colored header at the top of the page, as seen on the
output screen. This section also contains the drop-down menus and export links.

The source code for one of the drop-down menus to choose the color of the brushes
is as follows:

<div id="colorPicker" class="pickerDropDown">
 Brush color

 <div class="sub">

Developing Your First CreateJS Application

[78]

 <a href="javascript:void(0);"
 class="sphexbrushColor" style="background:
 #FD7400;">
 #FD7400

 <a href="javascript:void(0);"
 class="sphexbrushColor" style="background:
 #FFE11A;">
 #FFE11A

 <a href="javascript:void(0);"
 class="sphexbrushColor" style="background:
 #BEDB39;">
 #BEDB39

 <a href="javascript:void(0);"
 class="sphexbrushColor" style="background:
 #1F8A70;">
 #1F8A70

 <a href="javascript:void(0);"
 class="sphexbrushColor" style="background:
 #004358;">
 #004358

 </div>
</div>

Each drop-down menu has a div element with a subclass. Inside the div element,
we have some ul and li elements that define the drop-down menu. For color
pickers, we have a circle that shows the current color. Other drop-down menus
have the same structure. After drop-down menus, we have a link to export
the image.

Chapter 9

[79]

The source code for the same is as follows:

<div id="exportToImage" class="pickerDropDown">

 <a href="javascript:void(0)"
 onclick="exportToImage(this);">Export

</div>

As you can see, we have a function call when a user clicks on the Export link. We call
the exportToImage function, which converts the Canvas element to a PNG image.

We will explain this function better in the next sections.

Finally, we have the definition of the Canvas element:

<div id="main">
 <canvas id="pStage"></canvas>
</div>

The canvas id object is assigned with the pStage value and is placed inside
a div element. After that, we link our two JavaScript files. The first file is the
CreateJS library with all subsets in a combined file and the second is the
app.js file as shown:

<script type='text/javascript'
 src="http://code.createjs.com/createjs-
 2013.12.12.min.js"></script>
<script type='text/javascript' src="app.js"></script>

We use CreateJS CDN servers to load the main library file. This file is already
minified and we can use it in the production environment.

Implementing the app.js file
The app.js file is the main JavaScript file that contains all functionality and logic
for the painting application. This file consists of five functions; one of them is the
main function that performs the set up of other events and configures and creates
the stage. The next three functions are the callback functions for different mouse
events, and the last function is used to create a PNG image from the Canvas element.
But before everything else, we have the global variable's declaration shown as follows:

Developing Your First CreateJS Application

[80]

var canvas, stage, drawingCanvas, oldPt, oldMidPt, bgLayer,
 brushColor, brushSize, bgColor, brushStyle, mouseMoveFn;

We will explain more about the usage of each variable in the next sections.

After that, we have the init function, which is the main function for the application.

 canvas = document.getElementById("pStage");

 canvas.width = window.innerWidth;
 canvas.height = window.innerHeight - 73;

 //set default colors
 brushColor = "#004358";
 bgColor = "#FCFFF5";
 brushSize = 12;
 brushStyle = "round";

In the first line, we get the Canvas element using the getElementById function.
Then we set the width and height of the Canvas element to the window's width
and height to fit the canvas to the page. The reason we use -73 for the innerHeight
value is to prevent vertical scrolling of the page as our header height is about
73 pixels. After that, default options are set. You can change them with to do
your preferred options.

In order to bind the onclick events to the drop-down menus, we have a simple
for loop that iterates over the ul items and binds the onclick event to the links:

 //bind onclick event to the brush color picker
 for (var i = document.getElementsByClassName("brushColor").length
 - 1; i>= 0; i--) {
 var item = document.getElementsByClassName("brushColor")[i];

 item.onclick = function () {
 brushColor = document.querySelector("#colorPicker
 .fill").style.backgroundColor =
 this.style.backgroundColor;
 }
 };

Chapter 9

[81]

In the first line, we have a for loop that iterates over the drop-down items,
and then binds an onclick event to each item. The same code is also used
for other drop-down menus. Finally, we end the file with the following code:

 stage = new createjs.Stage(canvas);
 stage.autoClear = false;

 createjs.Touch.enable(stage);

 stage.on("stagemousedown", mouseDownCallback);
 stage.on("stagemouseup", mouseUpCallback);

 bgLayer = new createjs.Shape();
 bgLayer.graphics.beginFill(bgColor).drawRect(0, 0, canvas.width,
 canvas.height);
 stage.addChild(bgLayer);

 drawingCanvas = new createjs.Shape();
 stage.addChild(drawingCanvas);
 stage.update();

In the first line, like our previous examples, Stage is the object that is created.
After that, we set the autoClear property to false in order to manage the stage
object getting cleared manually. Then, we set the touch feature to enable.

We are developing a painting application so we need to bind callback functions
to the mousedown, mouseup, and mousemove events in order to manage and control
mouse events. In the next lines, we bind callback functions to the stagemousedown
and stagemouseup events, which are used to handle the mouse-click events.

In the painting application, we have a background layer where the user
can change the color using the drop-down menu.

In the next lines, we create a Shape object that is used for the background layer and
then we create the next shape to draw the painting lines. Both of these shapes are
added to the stage using the addChild function.

The source code for the mouseDownCallback event is as follows:

oldMidPt = oldPt = new createjs.Point(stage.mouseX, stage.mouseY);
mouseMoveFn = stage.on("stagemousemove", mouseMoveCallback);

Developing Your First CreateJS Application

[82]

Inside this function, we collect the current mouse cursor's coordinates and also add
a callback function to the stagemousemove event.

The mouseMoveCallback function source code is shown as follows:

Var midPt = new createjs.Point(Math.floor((oldPt.x + stage.mouseX)
 / 2), Math.floor((oldPt.y + stage.mouseY) / 2));

drawingCanvas.graphics.setStrokeStyle(brushSize,
 brushStyle).beginStroke(brushColor).moveTo(midPt.x,
 midPt.y).curveTo(oldPt.x, oldPt.y, oldMidPt.x, oldMidPt.y);

oldPt.x = stage.mouseX;
oldPt.y = stage.mouseY;

oldMidPt.x = midPt.x;
oldMidPt.y = midPt.y;

stage.update();

In the first line, we calculate the next point that we need for the moveTo function
using the current mouse position and the old mouse position. In the next line,
we create a stroke with the current options and move the point to the new
coordinates that we have calculated in the first line. After that, old positions
are updated and finally the update function is called from the stage object.

Our last callback function for events is the mouseUpCallback function. Inside this
function, we unbind the callback function from stagemousemove to stop drawing,
which is shown as follows:

stage.off("stagemousemove", mouseMoveFn);

The last function is the exportToImage function, which is used to get a PNG image
exported from the Canvas element. In this function, we convert the Canvas element
to a PNG image format with base 64 and set the output to the link's href object.
There is a function called toDataUrl that converts the contents from the Canvas
element to an image. The exportToImage function is called when the Export link
is clicked by a user. The following code explains the same:

var dateTime = new Date();

obj.href = canvas.toDataURL();
obj.download = "paint_" + dateTime.getHours() + "-" +
 dateTime.getMinutes() + "-" + dateTime.getSeconds();

Chapter 9

[83]

At the end of the file, we call the init function to start the application:

init();

Preview of the final application
Once the code is run, our painting application will be ready for use. The preview of
our final application is as shown in the following screenshot:

Summary
In this chapter, we learned to create an actual web application using CreateJS from
scratch and use the different features offered by this library. We gained experience
on how to declare global options and change them using user inputs, and apply the
changes in the application. Also, we learned how to export images from the Canvas
element using the powerful JavaScript API.

Furthermore, we discussed how to include static files such as JavaScript and CSS
to provide better performance while loading the application.

Every new beginning is some beginning's end and as you turn the last pages of
this intuitive guide, you are empowered to explore, discover, develop, and build
astounding web applications using CreateJS. In this age of the Internet citizenship,
HTML5 has emerged as a powerful platform, where you can make your mark
with compelling web applications. So go ahead, create the next amazing web
app, and thrill the world!

Index
A
addChild function 81
AlphaMapFilter class

about 49
parameters 49
using 49, 50

AlphaMaskFilter class
using 51, 52

animations
creating, with CreateJS 25

app.js file, application development
implementing 79-82

application development, CreateJS
app.js file, implementing 79-82
final application, previewing 83
index.html file, development 77, 78
performing 75, 76

B
beginFill method 14
Bitmap 13
Bitmap images

vector masks, using with 69-72
blur box 53
BlurFilter class

about 53
implementing 53, 54
parameters 53

C
caching feature, EaselJS

bitmap, caching 43, 45
cache method 38

example 38, 39
exploring 37
using, in complex shapes and animations

40-43
call method, TweenJS 27
CDN

about 8, 9
using 9

ColorFilter class
about 54
parameters 54, 55
utilizing 54

ColorMatrixFilter class
about 56
parameters 56
using 56, 57

Container 13
Content Delivery Network. See CDN
CreateJS

about 5
animations, creating with 25
application development 75
downloading 6
downloading, from Github 6, 7
drag-and-drop 19
EaselJS 13
TweenJS 26

D
development environment 9, 10
DisplayObject class 37
DisplayObject object

mask property 67
displayObjects

click event 17

[86]

dblclick event 17
mousedown event 17
mouseout event 17
pressmove event 17
pressup event 17
rollout event 17
rollover event 17

DOMElement 13
drag-and-drop

on function 20
scenario 19

drag-and-drop interaction
creating 21, 22
example 22, 23

drawCircle method 14

E
EaselJS

about 5, 13
AlphaMapFilter class 49
AlphaMaskFilter class 51
BlurFilter class 53
browser support 6
caching feature, exploring 37
ColorFilter class 54
ColorMatrixFilter class 56
events, working with 15, 16
features 13
Filter class 47
mobile browser support 6
vector masks 67
working with 13, 14

EaselJS library
URL 40

events
working with 15, 16

example, shape transforming feature 29, 30
exportToImage function 82

F
Filter class 47, 48
Flash 5
Frames per Second (FPS) rate 42

G
getElementById function 80
get method, TweenJS 27
Github

CreateJS, downloading from 6, 7
Graphics 13
Grunt 11

H
handleClick function 15
handleMouseDown function

implementing, in painting application 62,
63

handleMouseMove function
implementing, in painting application 63,

64
handleMouseUp function

implementing, in painting application 64
HTMLAudio 5

I
index.html file, application development

developing 77, 78

L
libraries

setting up 9

M
mouseUpCallback function 82
moveTo function 82

N
NodeJS

URL 11

P
painting application

creating 59
handleMouseDown function, implementing

62, 63

[87]

handleMouseMove function, using 63, 64
handleMouseUp function, using 64, 65
init function 61
source code, downloading 65
stage, preparing 59, 60

pause method, TweenJS 27
play method, TweenJS 27
PreloadJS 5
production environment 9

S
set method, TweenJS 27
Shape 13
shapes

transforming 29
simple animation

creating 27
scenario 28

SoundJS
about 5
browser support 5
mobile browser support 6

source code
building 11, 12

Sprite 13
Sprite Sheet

about 31
animations, developing 31-34

SpriteSheet 13

T
Text 13
toggleCache function 43
to method, TweenJS 27
TweenJS

about 5, 26
methods 27
official documentation 26
Tweening API 27

V
vector masks

about 67, 68
example 68, 69
playing with 72, 73
using, with Bitmap images 69-72

W
wait method, TweenJS 27
WebAudio 5

Thank you for buying
Getting Started with CreateJS

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of
our commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no
writing experience, our experienced editors can help you develop a writing career,
or simply get some additional reward for your expertise.

Instant EaselJS Starter
ISBN: 978-1-78216-518-7 Paperback: 54 pages

Build innovative and engaging HTML5 canvas
applications for your mobile and desktop browsers

1.	 Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2.	 Learn to create interactive web content with
the latest version of EaselJS framework and
the HTML5 Canvas element

3.	 Starts with the basics and you will soon
find yourself creating responsive and
customized applications

4.	 Learn how to use EaselJS, TweenJS,
and PreloadJS to create user interfaces
and interactive animations

HTML5 for Flash Developers
ISBN: 978-1-84969-332-5 Paperback: 322 pages

Leverage your Flash skill set and learn to create
content using a wide range of HTML5 web
development features

1.	 Discover and utilize the wide range of
technologies available in the HTML5 stack

2.	 Develop HTML5 applications with external
libraries and frameworks

3.	 Prepare and integrate external HTML5
compliant media assets into your projects

Please check www.PacktPub.com for information on our titles

Mastering Web Application
Development with AngularJS
ISBN: 978-1-78216-182-0 Paperback: 372 pages

Build signal-page web applications using the power
of Angular JS

1.	 Make the most out of AngularJS by
understanding the AngularJS philosophy and
applying it to real life development tasks

2.	 Effectively structure, write, test, and finally
deploy your application

3.	 Add security and optimization features to
your AngularJS applications

4.	 Harness the full power of AngularJS by
creating your own directives

Learning jQuery
Fourth Edition
ISBN: 978-1-78216-314-5 Paperback: 444 pages

Better interaction, design, and web development with
simple JavaScript techniques

1.	 An introduction to jQuery that requires
minimal programming experience

2.	 Detailed solutions to specific client-side
problems

3.	 Revised and updated version of this popular
jQuery book

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing CreateJS
	Understanding CreateJS and subsets
	Downloading CreateJS
	GitHub
	Understanding the Content Delivery Network
	Setting up the libraries
	The production environment
	The development environment

	Building the source code
	Summary

	Chapter 2: Commencing with CreateJS
	Getting started with CreateJS
	Working with events
	Summary

	Chapter 3: Working with Drag-and-drop Interactions
	The scenario
	Understanding the on function
	Creating a drag-and-drop interaction
	The complete example

	Summary

	Chapter 4: Performing Animation and Transforming Function
	Creating animations with CreateJS
	Understanding TweenJS
	What is tweening?

	Understanding API and methods of TweenJS
	Creating a simple animation
	Scenario

	Transforming shapes
	An example of Transforming function

	Understanding Sprite Sheet
	Developing animations using Sprite Sheet

	Summary

	Chapter 5: Utilizing Caching in EaselJS
	Exploring the caching feature of EaselJS
	Understanding the cache method
	Example of using cache

	Using cache in complex shapes and animations
	Caching Bitmap
	Summary

	Chapter 6: Using Filters in EaselJS
	Understanding the Filter class
	Using the AlphaMapFilter class
	Using the AlphaMaskFilter class
	Implementing the BlurFilter class
	Utilizing the ColorFilter class
	Using the ColorMatrixFilter class
	Summary

	Chapter 7: Developing a Painting Application
	Preparing the stage
	Understanding the init function
	Implementing the handleMouseDown function
	Using the handleMouseMove function
	Utilizing the handleMouseUp function
	Downloading the source code
	Summary

	Chapter 8: Utilizing Vector Masks
	Learning about vector masks
	Using a vector mask with Bitmap images
	Playing with vector masks
	Summary

	Chapter 9: Developing Your First CreateJS Application
	Understanding your application structure
	Developing the index.html file
	Implementing the app.js file
	Preview of the final application
	Summary

	Index

