
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Getting	Started	with	OpenCart	Module
Development

www.allitebooks.com

http://www.allitebooks.org

Table	of	Contents

Getting	Started	with	OpenCart	Module	Development

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers	and	more

Why	Subscribe?

Free	Access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Getting	Started	with	OpenCart	Modules

Creating	the	Hello	World	module

Changes	made	in	the	admin	folder

Changes	made	in	the	catalog	folder

Installing,	configuring,	and	uninstalling	a	module

Installing	a	module

Configuring	the	module

Layouts	for	the	module

Positions	for	the	module

Status	of	the	module

www.allitebooks.com

http://www.allitebooks.org

Sort	order	of	the	modules

Show	same	module	in	different	layouts

Effects	of	clicking	on	the	Add	Module	button

Uninstalling	the	module

File	structure	–	admin	and	frontend

Creating	the	language	files	for	the	admin	module	in	OpenCart

Creating	the	controller	in	the	admin	section	of	the	OpenCart	module

Creating	the	template	file	at	admin	in	the	OpenCart	module

Breadcrumbs	section	for	the	module

Creating	the	language	file	for	catalog	(frontend)	module	in	OpenCart

Creating	the	controller	file	for	catalog	(frontend)	module	in	OpenCart

Creating	the	template	file	for	catalog	(frontend)	module	in	OpenCart

Summary

2.	Describing	The	Code	of	Extensions

Global	library	methods

Detailed	description	of	the	Featured	module

Configuring	the	Featured	module	in	OpenCart	1.5.5.1

Exploring	the	code	used	in	the	Featured	module

Exploring	the	featured.php	file	under	the	admin	folder

Exploring	the	featured.tpl	file	under	admin	folder

Exploring	the	featured.php	file	under	the	catalog	folder

The	Shipping	module

Changes	made	in	the	admin	folder

Changes	made	in	the	catalog	folder

The	Payment	module

Off-site	payment

On-site	payment

The	Order	Total	module

Summary

3.	Creating	Custom	OpenCart	Modules

Getting	started	with	feedback	management

www.allitebooks.com

http://www.allitebooks.org

Database	tables	for	feedback

Creating	files	at	the	admin	section	for	feedback

Creating	the	language	file	at	the	admin	section

Creating	the	model	file	at	the	admin	section

Creating	the	controller	file	at	the	admin	section

Creating	the	template	files	for	form	and	list	at	the	admin

Creating	the	model	file	at	the	catalog	folder	frontend

Creating	the	language	file	at	the	frontend

Creating	the	controller	file	at	the	frontend

Creating	the	template	file	at	the	frontend

The	Tips	module

Creating	the	language	file	at	the	admin	section

Creating	the	controller	file	at	the	admin	section

Creating	the	template	file	at	the	admin	section

Changes	made	in	the	cart	file	at	the	frontend

Changes	in	the	shopping	cart	page	to	show	tips

Summary

Index

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Getting	Started	with	OpenCart	Module
Development

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Getting	Started	with	OpenCart	Module
Development
Copyright	©	2013	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author(s),	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	October	2013

Production	Reference:	1211013

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78328-037-7

www.packtpub.com

Cover	Image	by	Aniket	Sawant	(<aniket_sawant_photography@hotmail.com>)

www.allitebooks.com

http://www.packtpub.com
mailto:aniket_sawant_photography@hotmail.com
http://www.allitebooks.org

Credits
Author

Rupak	Nepali

Reviewers

Jack	W.	Davis

Aditya	Menon

Acquisition	Editor

Akram	Hussain

Commissioning	Editor

Subho	Gupta

Technical	Editors

Pooja	Arondekar

Menza	Mathew

Copy	Editor

Mradula	Hegde

Sayanee	Mukherjee

Project	Coordinator

Amey	Sawant

Proofreader

Bernadette	Watkins

Indexer

Monica	Ajmera	Mehta

Production	Coordinator

Adonia	Jones

Cover	Work

Adonia	Jones

About	the	Author
Rupak	Nepali,	a	PHP	programmer	from	Nepal,	has	been	working	on	OpenCart	since
2010	and	has	completed	many	projects	and	made	many	modules	on	OpenCart	to	meet
client	requirements.	He	handles	http://opencartnepal.com	personally	as	well	as	updates	his
personal	site	http://rupaknepali.com.np	with	his	works	Mr.	Nepali	currently	works	as	a
full-time	freelancer	on	oDesk	as	well	as	on	various	freelancer	sites.	He	holds	a	Bachelor’s
degree	in	Computer	Information	Systems.

I	wish	to	thank	my	parents,	especially	my	mother	Subthara	Nepali	and	my	father	Bhairab
Nepali,	who	emphasized	the	importance	of	literacy,	and	my	brothers	who	helped	at	every
step,	as	well	as	all	my	friends,	and	seniors,	who	provided	their	support	and	encouragement
to	write	this	book.

Thanks	to	Packt	Publishing	who	provided	me	with	such	a	great	opportunity	and	all	the
team	members	who	assisted	me	in	publishing	this	book.

http://opencartnepal.com
http://rupaknepali.com.np

About	the	Reviewers
Jack	W.	Davis	is	an	e-commerce	developer	specializing	in	OpenCart	and	on-page	SEO
for	online	stores.	He	runs	an	OpenCart	development	company	called	Destrove,	which	has
helped	hundreds	of	businesses	expand,	upgrade,	and	design	their	e-commerce	stores.	With
years	of	development	experience	and	a	creative	outlook	on	software	design,	Jack	has
become	a	recognized	figure	in	OpenCart	development	communities.

Jack	also	runs	a	popular	e-commerce	news	and	tutorial	website	www.CartAdvisor.com,
where	he	spends	most	of	his	time	writing	about	e-commerce	software	and	helping	others
customize	their	online	stores.

Aditya	Menon	is	an	experienced	developer,	and	the	web	is	his	primary	platform.	Aditya
works	for	Adbhuth,	a	privately	held	start-up.	An	overview	of	his	strengths,	functions,	and
aspirations	include	predominantly	using	PHP	and	JavaScript.	He	has	written	and
improvised	applications	working	with	teams	from	across	five	continents.	He	is	happy	to
produce	and	extend	intelligently	built	code	bases,	with	exemplary	architectures.	He	also
follows	industry	standards	and	best	practice	discussions	closely,	and	acts	on	wisdom
gained	from	these	arenas.	Aditya	is	currently	a	consultant	and	a	developer	on	multiple
start-up	teams	from	across	the	world.	He	is	constantly	on	the	lookout	for	new	tools	and
techniques	to	make	development	faster,	easier,	and	more	joyful.	He	looks	at	a	future	where
technology	in	general	and	software	in	particular,	play	even	more	important	and	impressive
roles	in	human	life.	Learning	new	languages	and	paradigms	to	build	these	tools	of	the
future	is	what	delights	him	the	most.	He	currently	lives	in	New	Delhi,	India.	He	is	a	23-
year-old	man,	eager	to	travel	the	world,	and	explore	new	opportunities.

I	would	like	to	thank	Mymo,	mom,	and	dad!

http://www.CartAdvisor.com

www.PacktPub.com

Support	files,	eBooks,	discount	offers	and
more
You	might	want	to	visit	www.PacktPub.com	for	support	files	and	downloads	related	to
your	book.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

http://PacktLib.PacktPub.com

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	access,	read	and	search	across	Packt’s	entire	library	of	books.	

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com

Why	Subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print	and	bookmark	content
On	demand	and	accessible	via	web	browser

www.allitebooks.com

http://www.allitebooks.org

Free	Access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	nine	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
If	you	can	code	OpenCart	modules,	you	can	customize	OpenCart	and	make	e-commerce
sites	easier	to	administer	and	also	change	the	way	the	default	OpenCart	system	works.
This	book	shows	you	how	to	create	all	sorts	of	extensions:	OpenCart	module,	Order	Total
module,	ideas	for	creating	payment,	shipping	modules,	and	ways	to	create	custom	pages
and	forms	on	OpenCart	module	to	carry	out	the	insert,	edit,	delete,	and	list	functions.

This	book	focuses	on	teaching	you	all	aspects	of	OpenCart	modules	by	showing	and
defining	code	examples.	The	book	uses	default	OpenCart	module	to	clone	other	modules,
the	process	by	which	one	module	gets	transferred	to	another.	It	shows	each	and	every	line
of	code	and	describes	them	so	readers	know	what	the	code	does.	You	will	clone	the
Google_talk	module	in	the	first	chapter.	In	the	second	chapter,	you	will	learn	about	all	the
available	methods	in	OpenCart,	and	at	last	you	will	create	two	custom	module	feedback
pages	and	the	Tips	Order	Total	modules.

Each	chapter	teaches	you	to	make	a	new	OpenCart	module;	you	will	thus	be	able	to	make
three	modules	by	reading	this	book.	You	will	be	able	to	create	the	Hello	World	module	by
cloning	the	Google	talk	module	that	you	can	then	change	to	the	Welcome	Message
module.	Likewise,	you	will	get	a	description	of	each	code	of	default	featured	module	of
OpenCart,	and	then	create	the	Feedback	pages	to	manage	the	feedbacks.	In	the	end,	you
will	be	able	to	create	an	Order	Total	module	called	Tips	Order	Total	module.

Each	chapter	builds	a	practical	module	from	the	ground	up	using	step-by-step	instructions
and	examples.

What	this	book	covers
Chapter	1,	Getting	Started	with	OpenCart	Module,	shows	us	how	to	clone	the	Google_talk
module	to	the	Hello	World	module	and	lists	ways	to	install,	configure,	and	uninstall	the
OpenCart	module	and	show	the	structure	of	the	file	of	admin	and	frontend.

Chapter	2,	Describing	The	Code	of	Extensions,	lists	all	global	methods	of	OpenCart,
shows	you	how	to	configure	the	feature	module,	describes	the	code	of	the	feature	module,
shows	the	way	to	start	the	coding	for	the	shipping	module,	and	describes	the	payment
module.

Chapter	3,	Create	Custom	OpenCart	Module,	shows	you	how	to	create	a	feedback	module
and	the	Tips	Order	Total	module.	It	also	shows	how	code	works	and	are	managed.

What	you	need	for	this	book
OpenCart,	along	with	knowledge	of	the	backend	and	frontend	of	the	software	is	needed
for	this	book.

Who	this	book	is	for
This	book	is	for	programmers	working	with	OpenCart,	who	want	to	develop	custom
OpenCart	modules.	You	need	to	be	familiar	with	the	basics	of	OpenCart	and	PHP
programming;	after	reading	the	book,	you	will	be	able	to	create	customized	OpenCart
modules.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	different
kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an	explanation	of	their
meaning.

Code	words	in	text	are	shown	as	follows:	”	As	given	at	the	controller,
$group=helloworld,	$data	is	$_POST,	and	$store_id	is	0..”

A	block	of	code	is	set	as	follows:

public	function	install($type,	$code)	{

		$this->db->query("INSERT	INTO	"	.	DB_PREFIX	."extension	SET	`type`	=	'"	.	

$this->db->escape($type)	.	"',	`code`	=	'"	.	$this->db->escape($code)	.	

"'");

}

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes,	for	example,	appear	in	the	text	like	this:	”	The	file	structure	is
divided	into	two	sections	admin	and	catalog“.

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

www.allitebooks.com

http://www.allitebooks.org

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

www.allitebooks.com

mailto:copyright@packtpub.com
http://www.allitebooks.org

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Getting	Started	with	OpenCart
Modules
OpenCart	is	an	e-commerce	cart	application	built	with	its	own	in-house	framework	that
uses	the	Model	View	Controller	(MVC)	language	pattern;	thus	each	module	in	OpenCart
also	follows	the	MVCL	patterns.	The	controller	creates	logic	and	gathers	data	from	the
model	and	passes	it	to	display	them	in	the	view.	The	OpenCart	modules	have	admin	and
catalog	folders.	The	files	in	the	admin	folder	help	in	controlling	the	settings	of	modules
and	the	files	in	the	catalog	folder	handle	the	presentation	layer	(frontend).	Each	module
has	its	own	files	by	which	it	gets	modular,	and	changing	one	module’s	file	does	not	affect
other	modules.

Creating	the	Hello	World	module
We	assume	that	you	already	know	PHP	and	have	installed	OpenCart,	and	are	familiar	with
the	OpenCart	backend	and	frontend,	as	well	as	you	have	some	coding	knowledge	of	PHP.

You	are	going	to	create	the	Hello	World	module	which	just	has	one	input	box	in	the	admin
settings	for	the	module,	and	the	same	content	is	shown	on	the	frontend.	The	first	step	to
creating	a	module	is	using	a	unique	name,	so	that	there	will	not	be	a	conflict	with	other
modules.	The	same	unique	name	is	used	to	create	the	filename	and	classname	to	extend
the	controller	and	the	model.

There	are	generally	six	to	eight	files	that	need	to	be	created	for	each	module,	and	they
follow	a	similar	structure.	If	there	is	an	interaction	with	the	database	tables,	we	have	to
create	two	extra	models.	The	following	screenshot	shows	the	hierarchy	of	files	and	folders
of	an	OpenCart	module:

So	now	you	know	the	basic	directory	structure	of	OpenCart	module.	The	file	structure	is
divided	into	two	sections	admin	and	catalog.	The	admin	folders	and	files	deal	with	the
setting	of	the	modules	and	data	handling,	while	the	catalog	folders	and	files	handle	the
frontend.

Let’s	start	with	an	easy	way	to	make	a	module.	You	are	going	to	make	the	duplicate	of	the
default	Google	Talk	module	of	OpenCart	and	change	it	to	the	Hello	World	module.	We	are
using	Dreamweaver	to	work	with	files.

Changes	made	in	the	admin	folder
Following	are	the	steps	to	make	changes	in	the	admin	folder:

1.	 Navigate	to	admin/controller/module/	and	copy	google_talk.php	and	paste	in	the
same	folder.	Rename	it	to	helloworld.php	and	open	it	in	your	favorite	text	editor,
then	look	for	the	following	line	of	code:

classControllerModuleGoogleTalk	extends	Controller	{

Change	the	class	name	to:

classControllerModuleHelloworld	extends	Controller	{

2.	 Now	find	google_talk	and	replace	all	with	helloworld	as	shown	in	the	following
screenshot:

3.	 Then,	save	the	file.
4.	 Navigate	to	admin/language/english/module/	and	copy	google_talk.php	and

paste	in	the	same	folder;	rename	it	to	helloworld.php	and	open	it.	Then	look	for	the
following	line	of	code:

$_['entry_code']	=	'Google	Talk	Code:

Goto

		<a	href="http://www.google.com/talk/service/badge/New"

				target="_blank">

				<u>Create	a	Google	Talk	chatback	badge</u>

			and	copy	&	paste	the	generated	code	into	the	

		text	box.

';

5.	 And	replace	with	following	code:

$_['entry_code']	=	'Hello	World	Content';

6.	 Then	again	find	google_talk	and	replace	all	with	helloworld.
7.	 Then,	save	the	file.
8.	 Navigate	to	admin/view/template/module/	and	copy	the	google_talk.tpl	file	and

paste	it	in	the	same	folder	and	rename	it	to	helloworld.tpl;	open	it	and	look	for
google_talk	and	replace	it	with	helloworld	and	save	it.

Changes	made	in	the	catalog	folder
Following	are	the	steps	to	make	changes	in	the	catalog	folder:

1.	 Go	to	catalog/controller/module/	and	copy	the	google_talk.php	file	and	paste	it
in	the	same	folder	and	rename	it	to	helloworld.php;	open	it	and	look	for	the
following	line	of	code:

class	ControllerModuleGoogleTalk	extends	Controller	{

Change	the	class	name	to	:

class	ControllerModuleHelloworld	extends	Controller	{

2.	 Now	look	for	google_talk	and	replace	all	with	helloworld	and	save	it.
3.	 Navigate	to	catalog/language/english/module/	and	copy	the	google_talk.php

file	and	paste	it	in	the	same	folder	and	rename	it	to	helloworld.php;	open	it	and	look
for	Live	Chat	and	replace	it	with	Hello	World	and	save	it.

4.	 Navigate	to	catalog/view/theme/default/template/module/	and	copy	the
google_talk.tpl	file	and	paste	it	in	the	same	folder	and	rename	it	to
helloworld.tpl.

With	the	preceding	file	and	code	changes	complete,	our	Hello	World	module	is	ready	to
be	installed.	Now	log	in	to	the	admin	section	and	navigate	to	Extensions	|	Modules,	then
look	for	Hello	World	and	click	on	[install],	then	click	on	[Edit]	of	the	Hello	World
module.	Then	type	the	content	that	you	would	like	to	show	on	the	frontend	in	the	Hello
World	Content	field.	Now	click	on	the	Add	Module	button	and	adjust	the	settings	as	per
your	requirements	and	click	on	Save.	With	the	settings	as	per	the	following	image,	the
module	will	be	shown	in	the	User	Account	links	box	(Login,	My	Account,	Edit	Account,
and	so	on)	for	the	customer	to	access	as	per	the	layout	and	it	will	be	shown	in	the	right
column,	as	the	status	is	enabled.	The	following	screenshot	shows	the	settings	for	the	Hello
World	module:

Now	navigate	to	the	frontend	of	the	site	and	click	on	the	My	Account	link	on	the	home
page;	you	will	see	the	Hello	World	module	as	shown	in	the	following	screenshot:

Following	are	the	list	of	files	that	you	need	to	upload	to	your	live	server:

admin/language/english/module/helloworld.php

admin/controller/module/helloworld.php

admin/view/template/module/helloworld.tpl

catalog/controller/module/helloworld.php

catalog/language/english/module/helloworld.php

catalog/view/theme/default/template/module/helloworld.tpl

By	uploading	the	files,	installing	the	module,	and	providing	the	settings,	your	Hello	World
module	is	ready	to	use.

You	can	change	the	Hello	World	text	at
catalog/language/english/module/helloworld.php	to	your	desired	text	like	Welcome
to	our	Store	and	type	the	welcome	message	at	the	Hello	World	Content	while	setting
the	module	and	showing	the	welcome	message	at	the	frontend.

Installing,	configuring,	and	uninstalling	a	module
There	are	many	default	modules	in	OpenCart.	How	modules	get	installed	and	which	are
the	database	tables	that	hold	the	settings	of	the	module	are	really	big	questions	for	the
developer.

Installing	a	module
Navigate	to	admin	|	Extensions	|	Modules,	where	you	will	find	the	list	of	modules.	Click
on	[Install]	and	the	module	gets	installed,	as	shown	in	the	following	screenshot:

When	you	click	on	the	[Install]	module,	the	extension/module	controller’s	install	function
is	called.	Now	open	admin/controller/extension/module.php,	you	will	see	the	public
function	install(),which	performs	the	permission	check.	If	you	get	the	Permission
Denied!	message,	as	shown	in	the	following	screenshot,	you	have	to	provide	the	access
permission	from	admin	|	User	|	User	Group	and	edit	the	user	and	check	or	tick	mark	the
module/extension,	so	you	will	be	able	to	edit	the	modules.

If	you	are	provided	the	access,	it	loads	the	admin/model/setting/extension.php
function	install().

public	function	install($type,	$code)	{

		$this->db->query("INSERT	INTO	"	.	DB_PREFIX	."extension	SET	`type`	=	'"	.	

$this->db->escape($type)	.	"',	`code`	=	'"	.	$this->db->escape($code)	.	

"'");

}

This	means	that	data	is	inserted	into	the	extension	table	of	the	database	with	type=module,

www.allitebooks.com

http://www.allitebooks.org

and	code=helloworld,	in	case	of	our	Hello	World	module.

Configuring	the	module
After	clicking	on	[Install]	of	the	module,	[Edit]	[Uninstall]	gets	activated;	after	clicking
on	[Edit],	you	will	see	the	configuration	section	for	the	module.	As	per	the	Hello	World
module,	the	following	screenshot	shows	the	configuration	section	on	clicking	on	[Edit]:

The	Hello	World	Content	field	is	saved	in	the	setting	table	(oc_setting	or	as	per	the
prefixes	used	during	installation	of	OpenCart)	of	the	database	as	per	the	name	of	the	input
box	with	group	column	of	“helloworld”.	For	this	module,	navigate	to	the	file
admin/view/template/module/helloworld.tpl,	where	you	will	find	the	following	code:

<textarea	name="helloworld_code"	cols="40"	rows="5"><?php	echo	

$helloworld_code;	?></textarea>

Thus,	the	message	or	text	you	typed	in	the	text	area	is	passed	to	the
admin/controller/module/helloworld.php	controller	and	the	following	lines	of	code	is
processed:

if	(($this->request->server['REQUEST_METHOD']	==	'POST')	&&	$this-

>validate())	{

		$this->model_setting_setting->editSetting('helloworld',$this->request-

>post);

		$this->session->data['success']	=	$this->language->get('text_success');

		$this->redirect($this->url->link('extension/module','token='	.	$this-

>session->data['token'],	'SSL'));

}

It	checks	if	the	form	is	submitted	through	the	POST	method	and	checks	whether	the	Hello
World	Content	field	is	empty	or	not	with	the	validate	function.	If	the	content	is	not	empty
and	the	form	is	submitted	through	the	POST	method,	it	calls	the	editSetting	function
which	is	in	admin/model/setting/setting.php.

public	function	editSetting($group,	$data,	$store_id	=	0)	{

		$this->db->query("DELETE	FROM	"	.	DB_PREFIX	.	"setting	WHERE	

				store_id	=	'"	.	(int)$store_id	.	"'	AND	`group`	=	'"	.	$this-

						>db->escape($group)	.	"'");

		foreach	($data	as	$key	=>	$value)	{

				if	(!is_array($value))	{

						$this->db->query("INSERT	INTO	"	.	DB_PREFIX	.	"setting	SET	

								store_id	=	'"	.	(int)$store_id	.	"',	`group`	=	'"	.	$this-

										>db->escape($group)	.	"',	`key`	=	'"	.	$this->db-

												>escape($key)	.	"',	`value`	=	'"	.	$this->db-

														>escape($value)	.	"'");

				}	else	{

				$this->db->query("INSERT	INTO	"	.	DB_PREFIX	.	"setting	SET	

						store_id	=	'"	.	(int)$store_id	.	"',	`group`	=	'"	.

								$this->db->escape($group)	.	"',	`key`	=	'"	.	$this->

										db->escape($key)	.	"',	`value`	=	'"	.	$this->

												db->escape(serialize($value))	.	"',	serialized	=	

														'1'");

				}

		}

}

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com	.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

As	given	at	the	controller,	$group=helloworld,	$data	is	the	$_POST,	and	$store_id	is	0.
First	it	deletes	all	the	Hello	World	settings	and	then	starts	to	insert	the	new	values.
Following	are	the	rows	inserted	in	the	setting	table	of	the	database:

If	the	value	of	the	input	field	of	the	form	is	in	array,	the	value	is	saved	with	serialized.
Thus	serialized	becomes	1,	or	else	the	value	of	serialized	is	0.

The	serialize($value),	serialize	function	of	PHP	generates	a	storable	representation	of	a
value	for	an	array.

http://php.net/manual/en/function.serialize.php

Layouts	for	the	module
OpenCart	has	default	page	layouts	that	are	based	on	the	route	of	the	page.	Some	of	the

http://www.packtpub.com
http://www.packtpub.com/support
http://php.net/manual/en/function.serialize.php

layouts	can	be	found	at	admin	|	System	|	Design	|	Layouts,	and	they	are	as	follows:

Account
Affiliate
Category
Checkout
Contact
Default
Home
Information
Manufacturer
Product
Sitemap

Now	edit	one	of	them,	let’s	consider	Account,	as	shown	in	the	following	screenshot:

The	value	of	Route	is	account;	this	means	that	the	module	will	be	seen	where	the	route
value	contains	account.	If	your	URL	is	http://example.com/index.php?
route=account/login,	the	module	is	shown	as	route=account.	If	you	want	to	show	the
module	in	the	account	section,	you	have	to	change	the	layout	to	Account.

If	you	like	to	show	the	module	in	affiliate	section,	you	have	to	choose	the	Affiliate	layout
as	the	route	of	Affiliate,	that	is,	route=affiliate	in	the	URL.

Similarly,	for	other	layouts,	check	the	route	at	admin	|	System	|	Setting	|	Design	|
Layouts	|	Edit,	see	the	route,	and	check	the	URL	route;	you	will	find	where	the	module
will	show	on	choosing	the	layout	name.

Positions	for	the	module
There	are	four	positions	for	modules.	They	are	as	follows:

Column	Left
Column	Right
Content	Top
Content	Bottom

The	following	table	shows	the	available	positions	for	modules	in	the	frontend.

Header

Content	Left

Content	Top

Content	RightMain	Content

Content	bottom

Footer

Choose	as	per	your	need	of	module	position.

Status	of	the	module
Status	shows	whether	the	module	is	enabled	or	disabled.	If	enabled,	it	is	shown	at	the
frontend,	else	it	is	not.

Sort	order	of	the	modules
If	there	is	more	than	one	module	in	any	of	the	positions,	sort	order	plays	its	role.	Let	us
suppose	two	modules,	Hello	World	and	Account,	are	positioned	to	the	right	column	of
layout	Account,	and	you	like	to	show	Hello	World	first,	and	then	below	it,	the	Account
module,	you	have	to	insert	Sort	order	1	for	Hello	World	and	Sort	order	2	for	Account.
If	you	do	not	insert	sort	order,	it	shows	at	the	top.	You	will	then	be	able	to	see	the	modules
in	the	right	column,	as	shown	in	the	following	screenshot:

Show	same	module	in	different	layouts
We	can	easily	show	the	same	module	in	a	different	layout.	To	do	this,	click	on	the	Add
Module	button	and	another	row	of	the	table	is	added;	select	the	appropriate	layout,
position,	status,	and	the	sort	order,	then	click	on	the	Save	button.	You	will	be	able	to	see
the	module	in	the	respective	layout.	When	you	click	on	the	Add	Module	button,	the	next
row	is	added,	as	shown	in	the	following	screenshot:

Effects	of	clicking	on	the	Add	Module	button
The	Add	Module	button	shows	another	row	for	the	module	setting.	Open
admin/catalog/view/template/helloworld.tpl	and	you	will	see	the	following	code,
which	is	for	the	Add	Module	button:

<?php	echo	$button_add_module;	?>

On	clicking	the	Add	Module	link,	the	addModule	function	is	called;	the	addModule
function	adds	a	row	just	below	the	previous	row.

Uninstalling	the	module
Navigate	to	admin	|	Extensions	|	Modules,	and	you	will	find	the	list	of	modules.	Just
click	on	[Uninstall],	the	module	gets	uninstalled	and	all	settings	get	deleted.	Let’s	see	how
it	is	done.	Open	admin/controller/extension/module.php,	you	will	see	the	public
function	uninstall(),which	performs	the	permission	check	and	if	there	is	permission
access,	it	loads	the	model	setting/extension	uninstall	function.

File	structure	–	admin	and	frontend
When	someone	uses	the	module,	it	is	reliable	to	have	the	admin	section	so	that	the	user
can	handle	the	module	functionality	as	well	as	position,	layout,	status,	and	sort	order	by
which	users	can	show	the	module	wherever	they	like.

Creating	the	language	files	for	the	admin	module	in	OpenCart
Language	files	are	also	named	with	MODULENAME.php.	For	example,	let’s	say	we	want	to
create	a	file	containing	hello	world	messages	or	text;	we	have	to	create	helloworld.php.
Language	files	use	“constant=value”	configuration.	The	constant	name	is	used	in	the	code;
it	never	changes,	only	the	value	for	that	language	changes.	If	English	language	is	active,	it
retrieves	the	constant	from	the	English	language	folder’s	file;	if	another	language	is	active,
it	retrieves	from	the	other	language	folder’s	file.	For	example,	if	English	language	is
active,	the	constant	is	taken	from	the	English	language	folder’s	file.

$_['text_review']	=	'Product	Review';

If	Spanish	language	is	active,	the	constant	is	taken	from	the	Spanish	language	folder’s	file.

$_['text_review']	=	'De	Revisión	de	Producto';

If	German	language	is	active,	the	constant	is	taken	from	the	German	language	folder’s	file.

$_['text_review']	=	'ProduktBewertung';

A	similar	process	is	followed	for	the	other	languages	installed.

Within	the	file,	we	will	assign	each	line	of	text	to	a	variable	as	$_['variablename'].	The
same	variable	name	will	be	used	in	the	controller	to	access	the	text	or	messages.	For
example,	in	the	following	code:

$this->data['heading_title']	=	$this->language->get('heading_title');

Now	on,	we	will	use	the	heading_title	controller	to	access	the	“Hello	World”	text.

You	can	see	the	following	code	at	admin/language/english/module/helloworld.php.

<?php

$_['heading_title']							=	'Hello	World';

$_['text_module']									=	'Modules';

$_['text_success']								=	'Success:	You	have	modified	module	Hello	

World!';

$_['text_content_top']				=	'Content	Top';

$_['text_content_bottom']	=	'Content	Bottom';

$_['text_column_left']				=	'Column	Left';

$_['text_column_right']			=	'Column	Right';

$_['entry_code']										=	'Hello	World	Content';

$_['entry_layout']								=	'Layout:';

$_['entry_position']						=	'Position:';

$_['entry_status']								=	'Status:';

$_['entry_sort_order']				=	'Sort	Order:';

$_['error_permission']				=	'Warning:	You	do	not	have	permission	to	modify	

module	Hello	World!';

$_['helloworld_content']										=	Hello	World	Content';

?>

Creating	the	controller	in	the	admin	section	of	the	OpenCart	module
Controller	is	the	core	file	where	all	the	logic	and	magic	take	place.	This	is	also	where	the
variables	for	values	and	language	are	set	and	passed	to	the	view	variables	for	display.	A
Controller	in	OpenCart	is	simply	a	class	file	that	is	named	in	a	way	that	can	be	associated
with	a	URL.

Consider	this	URL:	http://example.com/index.php?route=module/helloworld.

In	the	above	example,	OpenCart	would	attempt	to	find	a	controller	file	helloworld.php	in
the	module	folder	with	class	ControllerModuleHelloworld.

We	can	see	the	code	at	admin/controller/module/helloworld.php	whose	functionalities
are	described	as	follows:

In	OpenCart,	controller	class	names	must	start	with	the	controller	and	the	folder	on	which
the	module	is	located	and	the	filename	without	extension.	For	example,	in	the	Hello	World
module,	the	class	name	for	the	controller	is	ControllerModuleHelloworld	as	it	is	inside
the	module	folder	and	the	filename	is	helloworld.php.	Also,	always	make	sure	your
controller	extends	the	parent	controller	class.

class	ControllerModuleHelloworld	extends	Controller	{

Whenever	the	controller	is	called,	the	index	function	(public	function	index())	is	always
loaded	by	default.

$this->language->load('module/helloworld');

The	preceding	line	of	code	loads	the	language	file	variables	of	helloworld.php	which	is
in	the	module	folder	at	admin/language/*/module/helloworld.php	(*	represents	the
language	folder)	and	now	you	are	able	to	get	the	text	or	messages	with	reference	to
variables	like	$this->language->get('heading_title').	This	means	the	Hello	World
text	is	ready	to	transfer	to	the	template	files.

$this->document->setTitle($this->language->get('heading_title'));

The	preceding	line	of	code	sets	the	title	of	the	document	Hello	World.

The	$this->load->model('setting/setting')	variable	loads	the	setting.php	file	of
the	setting	folder	which	is	in	the	model	folder.	As	explained	previously,	it	loads
admin/model/setting/setting.php.	Your	module	can	load	any	model	file	in	its
controller	file	using	the	following	code,	if	they	are	in	the	same	admin	or	catalog	folder	as
the	controller.	You	will	need	to	specify	the	path	to	the	file	you	want	to	load	from	the	admin
folder	within	the	parentheses.	The	preceding	code	will	load	the	settings	class	so	we	have
access	to	the	functions	within	the	ModelSettingSetting	class	in	our	model’s	controller
file.	Use	the	following	format	in	your	code	to	call	a	function	from	a	loaded	model	file:

$this->model_setting_setting->editSetting('helloworld',$this->request-

>post);

if	(($this->request->server['REQUEST_METHOD']	==	'POST')	&&$this-

>validate())	{

$this->model_setting_setting->editSetting('helloworld',$this->request-

>post);$this->session->data['success']	=	$this->language-

>get('text_success');$this->redirect($this->url-

>link('extension/module','token='	.	$this->session->data['token'],	'SSL'));

		}

When	a	form	is	saved	in	the	module	section,	the	preceding	lines	of	code,	which	are	at
admin/controller/module/helloworld.php	run.	If	the	code	is	submitted	through	the
POST	method	and	validates	function	return	true,	all	the	settings	are	saved	to	the	database
at	the	setting	table	and	a	success	message	is	assigned	to	the	success	variable	and	is
redirected	to	the	list	of	the	module	page.

protected	function	validate()	{

		if	(!$this->user->hasPermission('modify',	'module/helloworld'))	{

				$this->error['warning']	=	$this->language->get('error_permission');

		}

		if	(!$this->request->post['helloworld_code'])	{

				$this->error['code']	=	$this->language->get('error_code');

		}

		if	(!$this->error)	{

				return	true;

		}	else	{

				return	false;

		}

}

When	a	form	is	submitted,	validation	is	checked	for	whether	permission	is	provided	or
not.	It	is	checked	whether	the	Hello	World	Content	consists	of	the	text	or	not.	If	no
access	is	provided	or	no	content	is	entered,	error	is	returned	true,	by	which	it	shows	Code
Required	or	Permission	Denied!	and	alerts	the	user	to	provide	the	access	or	insert	the
content.

$this->data['heading_title']	=	$this->language->get('heading_title');

$this->data['text_enabled']	=	$this->language->get('text_enabled');

The	$this->language->get('heading_title')	variable	gets	the	value	of	the
$_['heading_title']	variable	from	the	language	file	helloworld.php,	which	is	“Hello
World”	and	is	assigned	to	$this->data['heading_title'].	Likewise,	for	$this-
>language->get('text_enabled'),	“Enabled”	is	assigned	to	$this-
>data['text_enabled']	and	the	same	for	the	other	files.

		if	(isset($this->error['warning']))	{

				$this->data['error_warning']	=	$this->error['warning'];

		}	else	{

				$this->data['error_warning']	=	'';

		}

The	Hello	World	module	checks	for	access	permission	and	gives	a	warning	if	the	user	has
no	access	to	the	module.

		if	(isset($this->error['code']))	{

				$this->data['error_code']	=	$this->error['code'];

		}	else	{

				$this->data['error_code']	=	'';

		}

If	no	content	is	inserted	in	the	Hello	World	Content	field	and	the	user	tries	to	save	the
module,	it	validates	whether	the	content	is	inserted	or	not;	if	content	is	not	inserted,	an
error	is	activated	by	which	it	will	show	the	error	code	as	“Code	Required”.

$this->data['breadcrumbs']	=	array();

$this->data['breadcrumbs'][]	=	array(

		'text'						=>	$this->language->get('text_home'),

		'href'						=>	$this->url->link('common/home',	'token='	.	$this->session-

>data['token'],	'SSL'),

		'separator'	=>	false

);

$this->data['breadcrumbs'][]	=	array(

		'text'						=>	$this->language->get('text_module'),

		'href'						=>	$this->url->link('extension/module',	'token='	.	$this-

>session->data['token'],	'SSL'),

		'separator'	=>'	::	'

);

$this->data['breadcrumbs'][]	=	array(

		'text'						=>	$this->language->get('heading_title'),

		'href'						=>	$this->url->link('module/helloworld',	'token='	.	$this-

>session->data['token'],	'SSL'),

		'separator'	=>'	::	'

);

Breadcrumbs	are	defined	in	an	array,	and	contain	elements	such	as	text,	href,	and
separator.	Text	elements	hold	the	word	to	show	in	the	template	file,	href	holds	the	link	for
the	word,	and	separator	holds	what	to	use	to	separate	between	words.	This	is	shown	in	the
preceding	lines	of	code.

		'text'						=>	$this->language->get('text_home'),

The	preceding	line	of	code	holds	the	“Home”	word	as	per	the	language	file.

		'href'						=>	$this->url->link('common/home',	'token='	.	$this->session-

>data['token'],	'SSL'),

The	preceding	line	of	code	holds	the	link	to	the	“Home”	word.

		'separator'	=>	false

The	preceding	line	of	code	holds	the	separator	between	the	breadcrumbs;	if	no	separator	is
needed,	false	is	assigned.

$this->data['action']	=	$this->url->link('module/helloworld',	'token='	.	

$this->session->data['token'],	'SSL');

The	preceding	line	of	code	will	create	a	link	and	store	it	into	the	action	variable.	If	we
have	to	create	the	link	in	the	admin	area,	we	have	to	use	it	as	explained	previously.	A
token	is	used	to	preserve	the	admin	user	state.

$this->data['modules']	=	array();

$this->data['modules']	=	$this->config->get('helloworld_module');

An	empty	array	is	defined	and	we	assign	$this->data['modules']	with	all	the	settings	of
helloworld_module.

$this->load->model('design/layout');

It	loads	the	layout.php	file	of	the	design	folder	which	is	in	the	model	folder.	As
explained	previously,	it	loads	admin/model/design/layout.php.	The	preceding	code	will
load	the	layout	class,	so	we	have	access	to	the	functions	within	the	ModelDesignLayout
class	in	our	module’s	controller	file.

$this->data['layouts']	=	$this->model_design_layout->getLayouts();

The	underscores	(model_design_layout)	refer	to	the	file	designations	for
model/design/layout.php.	The	layouts	variable	now	holds	all	the	layouts	that	are
created	at	System	|	Design	|	Layout	at	the	admin	sections.

$this->template	=	'module/helloworld.tpl';

$this->children	=	array('common/header','common/footer');

In	the	controller,	you	will	need	to	load	your	module’s	template	file	in	view.	To	do	so,	set
$this->template	to	$this->template	=	'module/helloworld.tpl',	and	it	loads
admin/view/template/module/helloworld.tpl.

$this->response->setOutput($this->render());

The	$this->response->setOutput()	variable	sends	data	to	the	browser	whether	it’s
HTML	or	JSON	and	$this->render	constructs	the	output	HTML	from	the	templates/data.

Creating	the	template	file	at	admin	in	the	OpenCart	module
This	refers	to	the	template	or	TPL	files.	All	variables	that	are	passed	from	the	controller	to
the	view	can	be	used	for	displaying	the	output	of	calculations	or	functionality.

Open	the	admin/view/template/module/helloworld.tpl	file;	we	are	describing	the	code
taking	some	snippets	only.

<?php	echo	$header;	?>

<?php	echo	$footer;	?>

The	$header	and	$footer	variables	are	passed	from	the	controller	as	the	template’s
children.

$this->children	=	array('common/header','common/footer');

With	this,	the	content	of	the	header	and	footer	are	shown	on	the	module	section.

Breadcrumbs	section	for	the	module
For	keeping	track	of	navigation,	breadcrumbs	are	used;	in	the	template	file,	breadcrumbs
are	shown	by	the	following	lines	of	code:

<div	class="breadcrumb">

<?phpforeach	($breadcrumbs	as	$breadcrumb)	{

		?>

		<?php	echo	$breadcrumb['separator'];	?><a	href="<?php	echo	

www.allitebooks.com

http://www.allitebooks.org

$breadcrumb['href'];	?>"><?php	echo	$breadcrumb['text'];

		?>

<?php	}	?>

</div>

The	$breadcrumbs	array	has	been	passed	by	the	controller	files.	The	$breadcrumbs	array
consists	of	the	separator,	URL	link,	and	the	text	to	show.	All	elements	of	the
$breadcrumbs	array	are	managed	in	the	controller.

<?php	if	($error_warning)	{

		?>

		<div	class="warning"><?php	echo	$error_warning;	?></div>

<?php	}	?>

A	warning	will	show	up	if	you	have	no	permission	to	access	or	edit	the	module.	As	for	the
Hello	World	module,	it	checks	for	permission	and	shows	a	warning	if	the	user	has	no
access	to	the	module.	The	following	screenshot	shows	the	Breadcrumbs,	Header	image
and	Title,	and	Header	save	and	cancel	button:

The	following	line	of	code	shows	the	image	icon	near	the	heading	title:

<h1><imgsrc="view/image/module.png"	alt=""	/><?php	echo	$heading_title;	?>

</h1>

The	following	line	of	code	shows	the	heading	title	that	is	passed	from	the	controller:

$this->data['heading_title']	=	$this->language->get('heading_title');

The	following	lines	of	code	show	the	buttons	to	save	and	cancel:

<div	class="buttons">

		<?php	echo	$button_save;	

?>

		<a	href="<?php	echo	$cancel;	?>"	class="button"><?php	echo	

$button_cancel;	?>

</div>

On	clicking	the	Save	button,	the	form	with	ID	is	submitted;	on	clicking	the	Cancel	button,
it	calls	the	extension/module	controller,	which	means	it	is	redirected	to	the	list	of	modules.

<form	action="<?php	echo	$action;	?>"	method="post"enctype="multipart/form-

data"	id="form">

When	the	form	code	is	initiated,	it	has	id=form,	which	is	used	in	the	Save	button	to
submit	the	form.	When	we	click	on	the	Save	button,	an	action	to	the	module	/	Hello	World
controller	processes	the	submitted	data.

The	*	shows	the	asterisk	(*)	in	red	color	by	the	style

class	required.

<textarea	name="helloworld_code"	cols="40"	rows="5"><?php	echo	

$helloworld_code;	?></textarea>

<?php	if	($error_code)	{

		?>

		<?php	echo	$error_code;	?>

<?php	}	?>

This	is	the	text	area	field	which	holds	some	data;	if	this	text	area	is	submitted	empty,	it
shows	as	an	error.

<tr>

		<td	class="left"><?php	echo	$entry_layout;	?></td>

		<td	class="left"><?php	echo	$entry_position;	?></td>

		<td	class="left"><?php	echo	$entry_status;	?></td>

		<td	class="right"><?php	echo	$entry_sort_order;	?></td>

		<td></td>

</tr>

The	table	heading	is	shown	by	the	preceding	code	and	it	will	look	as	shown	in	the
following	screenshot:

In	the	following	code	snippet,	the	$module_row	variable	is	defined.	It	is	assigned	to	zero
and	is	increased	with	the	foreach	loop,	so	it	is	the	count	of	the	module	rows	that	increases
on	clicking	on	the	Add	Module	button.

<?php	$module_row	=	0;	?>

<?phpforeach	($modules	as	$module)	{	?>

The	$modules	array	carries	the	setting	of	the	module;	if	it	is	empty,	only	the	Add	Module
button	is	shown.

<select	name="helloworld_module[<?php	echo	$module_row;	?>][layout_id]">

		<?php	foreach	($layouts	as	$layout)	{

		?>

				<?php	if	($layout['layout_id']	==	$module['layout_id'])	{?>

						<option	value="<?php	echo	$layout['layout_id'];	?

>"selected="selected"><?php	echo	$layout['name'];

						?></option>

				<?php	}	else	{	?>

				<option	value="<?php	echo	$layout['layout_id'];	?>"><?php	echo	

$layout['name'];	?></option>

				<?php	}	?>

		<?php	}	?>

</select>

The	preceding	code	shows	the	Layout	option.	If	the	layout	id	matches	the	module	layout
id,	which	has	been	already	saved,	the	selected	layout	is	shown	among	other	layouts,	else
layouts	are	shown	as	default.	The	layout	arrays	have	been	passed	from	the	controller.
Similarly,	for	the	position,	select	fieldname	as	helloworld_module	with	its	second
element	as	position.

<select	name="helloworld_module[<?php	echo	$module_row;?>][position]">

As	we	already	know,	there	are	four	positions	described	in	OpenCart;	they	are	content	top,
content	bottom,	column	left,	and	column	right.	The	position	module	code	for	the	content
top	is	as	follows:

<?php	if	($module['position']	==	'content_top')	{?>

		<option	value="content_top"	selected="selected"><?php	echo	

$text_content_top;	?></option>

<?php	}	else	{

		?>

		<option	value="content_top"><?php	echo	$text_content_top;?></option>

<?php	}	?>

If	module	position	is	already	defined	and	is	equal	to	content_top,	content	top	is	selected,
else	others	are	selected	as	default.	It	works	in	a	similar	way	for	the	content	bottom,
column	left,	and	column	right.

<select	name="helloworld_module[<?php	echo	$module_row;?>][status]">

		<?php	if	($module['status'])	{

				?>

				<option	value="1"	selected="selected"><?php	echo	$text_enabled;	?>

</option>

				<option	value="0"><?php	echo	$text_disabled;	?></option>

		<?php	}	else	{	?>

				<option	value="1"><?php	echo	$text_enabled;	?></option>

				<option	value="0"	selected="selected"><?php	echo	$text_disabled;	?>

</option>

		<?php	}	?>

</select>

The	preceding	code	is	to	show	the	module	status;	if	module	is	enabled,	option	value	is
equal	to	1,	else	it	is	0.	If	module	status	is	defined	or	equal	to	1,	it	shows	that	the	module	is
already	defined,	so	enabled	is	selected.	If	it	is	not	defined,	disabled	is	selected.

<input	type="text"	name="helloworld_module[<?php	echo	$module_row;?>]

[sort_order]"	value="<?php	echo	$module['sort_order'];	?>"size="3"	/>

The	preceding	code	holds	the	sort	order	of	the	module.

<a	onclick="$('#module-row<?php	echo	$module_row;	?

>').remove();"class="button"><?php	echo	$button_remove;	?>

The	preceding	code	line	removes	the	rows	when	we	click	on	the	Remove	button.

<?php	echo	$button_add_module;	?>

On	clicking	on	the	Add	Module	link,	function	addModule	is	called,	which	adds	a	row	just

below	the	previous	row.

function	addModule()	{}

The	preceding	function	adds	the	rows	for	the	modules	setting.	We	can	add	as	many
modules	as	we	like,	just	keep	on	clicking	on	the	Add	Module	button.	The	following
screenshot	shows	multiple	rows	for	setting	after	clicking	on	the	Add	Module	button:

Creating	the	language	file	for	catalog	(frontend)	module	in	OpenCart
You	can	create	a	language	file	in	a	similar	way	as	we	did	in	the	admin	section.	For	the
frontend,	your	language	file	will	be	located	at
catalog/language/english/module/MODULENAME.php.	The	filename	should	be	the	same
as	the	module	name.	As	per	the	Hello	World	module,	the	language	file	name	is
helloworld.php,	it	is	created	at	catalog/language/english/module/	and	consists	only
of	the	following	code:

<?php

		//	Heading

		$_['heading_title']		=	'Hello	World';

?>

The	Hello	World	text	is	assigned	to	heading_title;	with	the	same	heading_title,	it	is
accessible	to	the	controller.

Creating	the	controller	file	for	catalog	(frontend)	module	in	OpenCart
A	controller	file	of	a	module	for	the	frontend	is	found	at
catalog/controller/module/MODULENAME.php;	as	per	the	Hello	World	module,	we	can
see	the	helloworld.php	files	at	catalog/controller/module.	Since	we	named	the	file
helloworld.php	and	put	it	at	module/folder,	the	controller	classname	will	be
ControllerModuleHelloworld.

class	ControllerModuleHelloworld	extends	Controller	{

Also,	always	make	sure	your	controller	extends	the	parent	controller	class	so	that	it	can
inherit	all	its	functions.

protected	function	index()	{

The	index	function	is	always	loaded	by	default	if	the	second	segment	of	the	URL	is
empty.	We	can	load	the	module	controller	at	http://example.com/index.php?
route=module/helloworld/index	or	http://example.com/index.php?
route=module/helloworld.

Here	the	second	segment	of	the	URI	is	index;	if	you	have	created	other	functions,	we	can
call	the	function	of	the	module	by	passing	it	into	the	second	segment	of	the	URL.

$this->language->load('module/helloworld');

Loading	of	language	files	is	done	with	the	preceding	line	of	code.	According	to	the
previous	line,	the	helloworld.php	file	at	catalog/language/english/module/	is	loaded
if	English	language	is	active	or	it	will	load	as	per	the	language	activated.	For	example,	if
Spanish	language	is	active,	it	loads	from	catalog/language/spanish/module/.

$this->data['heading_title']	=	$this->language->get('heading_title');

The	preceding	line	fetches	the	text	“Hello	World”	with	$this->language-
>get('heading_title');	and	assigns	it	to	the	heading_title	variable	of	the	data	array.
The	$heading_title	file	will	show	“Hello	World”	in	the	template	files.

if	(isset($this->request->server['HTTPS'])	&&	(($this->request-

>server['HTTPS']	==	'on')	||	($this->request->server['HTTPS']==	'1')))	{

				$this->data['code']	=	str_replace('http',	

'https',html_entity_decode($this->config->get('helloworld_code')));

				}	else	{

						$this->data['code']	=	html_entity_decode($this->config-

>get('helloworld_code'));

				}

The	first	line	of	code	checks	whether	SSL	is	active.	If	SSL	is	active,	the	link’s	http	of
$this->config->get('helloworld_code')	is	replaced	with	https.

You	will	be	able	to	get	the	value	of	the	setting	table	in	a	database	by	passing	the	key.	For
example,	consider	the	setting	table	of	a	database	that	consists	of	the	following	rows,	as
shown	in	the	following	screenshot:

If	you	want	to	show	Dressing	Shop,	you	can	get	it	easily	wherever	you	like	in	the

controller,	model,	or	template	files.	You	just	have	to	type	the	following	line	of	code:

echo	$this->config->get('config_name');

But	if	serialized	is	equal	to	1,	it	means	that	the	value	is	stored	in	an	array.

if	(file_exists(DIR_TEMPLATE	.	$this->config->get('config_template')	.	

'/template/module/helloworld.tpl'))	{

				$this->template	=	$this->config->get('config_template')	

.'/template/module/helloworld.tpl';

				}	else	{

				$this->template	=	'default/template/module/helloworld.tpl';

				}

		$this->render();

You	can	get	an	active	template	name	from	$this->config->get('config_template');
the	preceding	lines	of	code	check	whether	the	helloworld.tpl	file	is	on	the	active
template	or	not.	If	the	file	is	found	in	the	active	template,	it	uses	it,	or	it	will	use	one	from
the	default	template.	It	will	be	better	if	we	keep	the	files	on	the	default	theme.

Creating	the	template	file	for	catalog	(frontend)	module	in	OpenCart
You	can	find	the	template	file	at	catalog/view/theme/<template	name>/module;	as	for
the	Hello	World	module,	the	file	name	is	helloworld.tpl.	OpenCart	frontend	template
files	have	deeper	folder	structures	than	the	admin	ones	because	admin	sections	can	have
only	one	template.	For	the	frontend,	on	the	other	hand,	there	can	be	any	number	of
templates;	among	them,	one	is	selected	from	the	admin	|	system	|	setting	|	edit	|	the	store
and	at	the	store	tab	choose	the	best	template	under	the	Template	field.

A	folder	named	<template	name>	is	created	at	catalog/view/theme.	One	of	the	basic
rules	in	OpenCart	is	never	to	edit	the	default	theme	template	file	because	if	OpenCart	does
not	find	certain	template	files	on	your	theme	<template	name>	folder,	it	will	find	them	on
the	default	theme.	While	upgrading,	the	changes	made	on	your	custom	theme	will	also	get
overridden.	If	template	files	are	not	found	on	the	default	theme,	it	shows	the	following
error:

Notice:	Error:	Could	not	load	template
catalog/view/theme/customtheme/template/module/helloworld.tpl!	in
system\engine\controller.php

Here,	the	theme	folder’s	name	is	customtheme.

If	you	see	this	kind	of	error,	it	means	that	helloworld.tpl	is	missing	on	the	customtheme
and	default	theme	folders.	So	you	need	to	create	the	helloworld.tpl	file	at
catalog/view/theme/customtheme/template/module/	or
catalog/view/theme/default/template/module/.	Since	the	helloworld.tpl	file	is	not
the	default	file	of	OpenCart,	we	can	place	it	either	on	customtheme	or	in	default	theme.

If	you	require	any	changes	on	the	default	theme	template	files,	you	have	to	copy	the	files
and	folders	to	the	customtheme	folder	and	make	changes	on	the	customtheme	folder’s
files,	so	upgrading	it	will	help	in	preserving	your	changes.	The	following	are	the	code	on
catalog/view/theme/default/module/helloworld.tpl.

<div	class="box">

		<div	class="box-heading"><?php	echo	$heading_title;	?></div>

		<div	class="box-content"	style="text-align:	center;"><?php	echo	$code;	?>

</div>

</div>

The	$heading_title	file	holds	the	text	“Hello	World”	and	$code	holds	the	message	or
text	that	is	inserted	into	the	Hello	World	module	at	the	backend.

Summary
In	this	chapter,	we	duplicated	the	Google_talk	module	to	create	the	Hello	World	module.
Hello	World	is	created,	installed,	configured,	and	uninstalled.	On	configuration,	we
inserted	some	data	and	showed	the	same	at	the	frontend.

We	found	out	how	code	works	in	the	Hello	World	module	and	its	file	and	folder	structure.
We	also	described	all	the	code	that	we	used	in	the	Hello	World	module’s	files.	Taking
reference	of	Hello	World	module,	we	should	be	able	to	go	through	other	modules	and
become	familiar	with	the	modules	of	OpenCart.

www.allitebooks.com

http://www.allitebooks.org

Chapter	2.	Describing	The	Code	of
Extensions
In	this	chapter	we	will	cover	most	of	the	code	that	is	used	in	OpenCart	to	perform
different	functions,	which	will	be	helpful	in	creating	modules.	We	have	used	OpenCart
Version	1.5.5.1.

Global	library	methods
OpenCart	has	many	predefined	methods	that	can	be	called	anywhere,	such	as	in	the
controller	folder	or	in	the	model,	and	in	the	view	template	files.	You	can	find	system
level	library	files	at	system/library/.	The	following	shows	the	different	methods,	how
they	can	be	written,	and	what	their	functions	are:

Affiliate:	You	can	find	most	of	the	affiliate	code	under	the	affiliate	section,	and	check
the	files	at	catalog/controller/affiliate/	and	likewise	at
catalog/model/affiliate/.	The	following	are	the	list	of	methods	we	can	use	for
the	affiliate	library:

$this->affiliate->login($email,	$password);

This	command	ensures	that	the	e-mail	and	password	are	passed	to	the	method.	If
the	username	(e-mail)	and	password	match	among	the	affiliates,	it	logs	into	the
affiliate	section.	You	can	find	this	code	at
catalog/controller/affiliate/login.php	on	the	validate	function.

$this->affiliate->logout();

The	affiliate	is	logged	out.	It	means	the	affiliate	ID	will	be	cleared	and	its
session	will	be	destroyed,	as	well	as	the	affiliate’s	first	name,	last	name,	e-mail,
telephone	number,	and	fax	number	are	given	empty	values.

$this->affiliate->isLogged();

It	checks	whether	the	affiliate	is	logged	in.	If	you	want	to	show	some	message	to
the	logged-in	affiliate	only,	can	you	do	so,	as	follows:

if($this->affiliate->isLogged()){

		echo	"Welcome	to	the	Affiliate	Section";

}else	{

		echo	"You		are	not	at	Affiliate	Section";

}

$this->affiliate->getId();

When	we	echo	the	preceding	line,	it	will	show	the	active	affiliate’s	ID.

$this->affiliate->getFirstName();

When	we	echo	the	preceding	line,	it	will	show	the	active	affiliate’s	first	name.

$this->affiliate->getLastName();

When	we	echo	the	preceding	line,	it	will	show	the	active	affiliate’s	last	name.

$this->affiliate->getEmail();

When	we	echo	the	preceding	line,	it	will	show	the	active	affiliate’s	e-mail.

$this->affiliate->getTelephone();

When	we	echo	the	preceding	line,	it	will	show	the	active	affiliate’s	telephone

number.

$this->affiliate->getFax();

When	we	echo	the	preceding	line,	it	will	show	the	active	affiliate’s	fax	number.

$this->affiliate->getCode();

When	we	echo	the	preceding	line,	it	will	show	the	active	affiliate’s	tracking
code,	which	is	used	to	track	referrals.

Cache:	It	consists	of	the	cache	files	and	is	located	under	system/cache.

$this->cache->get($key);

You	can	retrieve	the	cache	file	as	per	the	key	value	passed	with	this	method.

In	the	following	example,	if	the	cache	file	of	country	is	found	in	the
system/cache	folder,	it	directly	takes	the	data	from	there	,	else	performs
database	queries	to	retrieve	the	country:

$country_data	=	$this->cache->get('country');

if	(!$country_data)	{

		$query	=	$this->db->query("SELECT	*	FROM	"	.	DB_PREFIX	

."countryORDER	BY	name	ASC");

		$country_data	=	$query->rows;

		$this->cache->set('country',	$country_data);

}

return	$country_data;

$this->cache->set($key,	$value);

It	helps	in	creating	the	cache	files.	Considering	the	preceding	example	about	the
country	cache	file,	if	the	cache	file	is	not	found	in	the	system/cache	folder,
then	queries	to	the	database	are	performed	and	the	retrieved	data	is	set	with	the
key	of	the	country.

$this->cache->delete($key);

It	deletes	the	file	in	the	cache	folder	as	per	the	key	value	provided.

For	example:	$this->cache->delete('country');	deletes	the	country	cache
file.

Captcha:	Captcha	functions	are	not	automatically	instantiated;	you	have	to	access
them	as	follows:

Write	the	captcha	function	under	controller	as	follows:

public	function	captcha()	{

		$this->load->library('captcha');

		$captcha	=	new	Captcha();

		$this->session->data['captcha']	=	$captcha->getCode();

		$captcha->showImage();

}

When	the	template	file	is	called,	the	Captcha	image	is	shown.

”controller/captcha”	in	the	preceding	code	line	is	the	path	where	you	make
the	captcha	function.	For	example,	if	you	write	the	function	in	the
information/information.php	file,	it	will	be	information/information.

Cart:	System-instantiated	cart	objects	are	available	for	use.	They	are	as	follows:

$this->cart->getProducts();

It	gives	the	list	of	all	products	in	the	array	of	the	cart.

$this->cart->add($product_id,	$qty	=	1,$option	=	array());

It	adds	products	to	the	cart;	just	pass	the	product	ID,	your	desired	quantity,	and
your	desired	options.

$this->cart->update($key,	$qty);

If	you	need	to	update	a	product	in	the	cart,	this	method	is	used	where	$key	is	the
product	ID	and	$qty	is	the	quantity	you	added.

$this->cart->remove($key);

If	you	want	to	remove	a	product	from	the	cart,	this	method	is	used	where	$key	is
the	product	ID	that	you	wish	to	remove.

$this->cart->clear();

If	you	wish	to	remove	all	the	products	at	once,	this	method	is	used.

$this->cart->getWeight();

It	gives	the	sum	of	the	weight	of	all	products	in	the	cart	which	requires	shipping.

$this->cart->getSubTotal();

It	gives	the	subtotal	of	all	products	which	are	in	the	cart	before	being	taxed.

$this->cart->getTaxes();

It	gives	the	array	of	total	taxes	applied	to	the	cart.

$this->cart->getTotal();

It	gives	the	total	of	all	products	in	the	cart	after	being	taxed.

$this->cart->countProducts();

It	gives	the	total	number	of	products	in	the	cart.

$this->cart->hasProduct();

It	checks	whether	the	cart	has	products	or	not.

$this->cart->hasStock();

It	checks	for	the	stock	of	each	product	in	the	cart.	If	it	has	stock,	it	returns	true;
else	false	(means	no	stock).

$this->cart->hasShipping();

It	checks	whether	each	product	in	the	cart	has	shipping	or	not.	If	a	product	has
shipping,	true	is	returned;	else	false.

$this->cart->hasDownload();

It	checks	whether	each	product	in	the	cart	is	downloadable	or	not.	If	a	product	is
downloadable,	true	is	returned;	else	false.

Config:	The	config	values	are	loaded	from	the	Settings	table	of	the	database.

$this->config->set($key,	$value);

It	is	used	to	override	the	$key	value	of	the	“Settings”	table	value	of	the
database.	It	does	not	save	the	value	to	the	database.

For	example,	if	you	want	to	show	a	different	store	name	than	the	set	value	in	the
database,	we	add	the	following	code	in	the	controller	folder:

$this->config->set('config_name','New	Store	Name');

Normally,	when	we	echo	$this->config->get('config_name');	we	get	the
store	name;	however	since	the	set	value	is	changed	now,	we	will	get	the	store
name	as	“New	Store	Name“.

$this->config->get($key);

It	returns	the	set	value	as	per	the	$key	value	passed.	If	there	is	no	key	value,	it
returns	null.	For	example,	when	you	echo	$this->config-
>get('config_name');,	you	will	get	the	store	name.

Currency:	It	consists	of	the	methods	that	can	be	applied	to	currencies:

$this->currency->set($currency);

It	sets	or	overrides	the	currency	code	to	be	used	in	the	session	as	well	as	sets
the	cookie	for	the	currency.

$this->currency->format($number,	$currency='',$value='',

$format=true)

It	formats	the	number	to	the	currency	passed.	For	example,	if	you	have	the
number	100	and	currency	USD,	it	will	be	formatted	to	$100.00.	Here	$number	is
the	price	value,	$currency	is	the	currency	code,	$value	is	the	conversion	rate
between	the	currencies,	and	$format	is	to	format	the	currencies.	For	example

$this->currency->format(50,	'USD',		1,	false);

gives	50.00	as	the	output	and

$this->currency->format(50,	USD,	1,	true);

gives	$50.00	as	the	output.

By	navigating	to	Admin	|	System	|	Localization	|	Currencies,	we	can	find	the

settings	where	we	insert	the	currency,	the	currency	sign,	the	position	of	the	sign,
the	decimal	points	to	show,	and	so	on.

$this->currency->convert($value,	$from,	$to);

If	currency	is	set	from	Admin|	System|	Localization|	Currencies,	the	value
passed	is	converted	from	a	certain	chosen	currency	to	another.

$this->currency->getId($currency='');

If	you	need	the	ID	of	the	currency,	we	have	to	use	the	getId()	method.	For
example,	by	using	$this->currency->getId('USD');,	you	will	get	the	ID	of
the	US	dollar.	USD	is	the	code	for	the	currency	inserted.

If	no	currency	code	is	defined,	it	returns	zero.

$this->currency->getSymbolLeft(($currency='');

Some	currencies’	symbols	appear	to	the	left	of	the	value;	for	example,	$100	in
the	case	of	100	US	dollars.	We	can	get	the	symbol	on	the	left	side	of	the	value
with	the	use	of	the	method.	Now,	echo	$this->currency-
>getSymbolLeft('USD');

$this->currency->getSymbolRight(($currency='');

Some	currencies’	symbols	appear	on	the	right	side	of	the	value,	for	example,	the
Swedish,	100krona.	We	can	get	the	symbol	on	the	right	side	of	the	value	with
this	method.	Now,	echo	$this->currency->getSymbolRight('SEK');

$this->currency->getDecimalPlace($currency='');

Navigate	to	Admin	|	System	|	Localization	|	Currencies	|	Insert	Button,	where
there	is	a	Decimal	Places	field	to	insert	the	currency.	The	setting	is	activated	as
per	the	activated	currency.	If	we	insert	2	in	the	input	field	and	then	save	it	after
the	decimal,	two	values	are	displayed:	$100.00.	Now,	echo	$this->currency-
>getDecimalPlace('USD');

$this->currency->getCode();

It	returns	you	the	ISO	code	that	you	inserted	at	Admin	|	System	|	Localization	|
Currencies	|	Insert	Button.

$this->currency->getValue($currency	=	'');

It	gives	the	set	value	of	the	Value	field	while	inserting	the	currency.	It	is	taken
as	the	exchange	rate	for	the	specified	currency	with	respect	to	the	default
currency.

$this->currency->has($currency);

It	checks	whether	the	passed	currency	exists	in	the	OpenCart	currency	list.	If	it
finds	the	currency,	it	returns	true;	else	false.

Customer:	It	consists	of	the	customer	data.

$this->customer->login($email,	$password,$override	=	false);

It	logs	a	customer	in.	It	checks	for	the	customer’s	username	and	password	when
$override	is	passed	false,	else	only	for	current	logged	in	status	and	the	e-mail.
If	it	finds	the	correct	entry,	the	OpenCart	wish	list	entries	are	retrieved.	In
addition	to	this,	customer	ID,	first	name,	last	name,	e-mail,	telephone,	fax,
newsletter	subscription	status,	customer	group	ID,	and	address	ID	can	also	be
globally	accessed	by	the	customer.	It	also	updates	the	customer	IP	address	from
where	he/she	logs	in.

$this->customer->logout();

When	it	is	called,	it	logs	out	the	customer.	First	of	all,	it	updates	the	OpenCart
wish	list	field	of	the	customer	table	in	the	database	and	destroys	the	customer’s
session	ID.	Then,	it	assigns	a	blank	value	to	the	customer	object’s	data	such	as
customer	ID,	first	name,	last	name,	e-mail,	telephone,	fax,	newsletter,	customer
group	ID,	and	address	ID.

$this->customer->isLogged();

It	checks	whether	the	customer	is	logged	in	or	not.	If	he/she	is	logged	in,	it
returns	true	else	false.	For	instance,	consider	the	following	lines	of	code:

if($this->customer->isLogged()){

		echo	"You	are	at	the	logged	customer	section";

}else{

		echo	"You	have	not	logged	in	yet";

}

$this->customer->getId();

When	you	echo	it,	it	gives	you	the	customer	ID	of	the	logged-in	customer.

$this->customer->getFirstName();

When	we	echo	this	line,	we	will	show	the	active	customer’s	first	name.

$this->customer->getLastName();

When	we	echo	the	preceding	line,	it	will	show	the	active	customer’s	last	name.

$this->customer->getEmail();

When	we	echo	the	preceding	line,	it	will	show	the	active	customer’s	e-mail
address.

$this->customer->getTelephone();

When	we	echo	the	preceding	line,	it	will	show	the	active	customer’s	telephone
number.

$this->customer->getFax();

When	we	echo	the	preceding	line,	it	will	show	the	active	customer’s	fax	number.

$this->customer->getFirstName();

When	we	echo	the	preceding	line,	it	will	show	the	active	customer’s	first	name.

$this->customer->getNewsletter();

When	we	echo	the	preceding	line,	it	will	show	either	0	or	1,	if	1	is	shown,	it
means	the	customer	is	subscribed	to	the	newsletter.	If	zero	is	shown,	it	means
the	customer	is	not	subscribed	to	the	newsletter.

$this->customer->getCustomerGroupId();

When	we	echo	the	preceding	line,	it	will	show	the	active	customer’s	group	ID.

$this->customer->getBalance();

When	we	echo	the	preceding	line,	it	will	show	the	active	customer’s	current
balance.	When	you	view	the	“Your	Transaction”	link	after	logging	in	to	the
customer	section,	you	will	find	the	total	current	balance;	the	same	balance	is
shown	by	this	code.

$this->customer->getRewardPoints();

When	we	echo	the	preceding	line,	it	will	show	the	active	customer’s	total
remaining	reward	points	earned.

Database:	The	db	class	helps	to	query	the	database	to	perform	insert,	select,
delete,	and	update,	as	well	as	providing	methods	to	clean	the	data	by	escaping,
getting	the	last	inserted	ID,	and	the	total	count	of	rows.

$this->db->query($sql);

It	executes	the	passedsql	statement.	For	instance,	consider	the	following	lines
of	code:

$query	=	$this->db->query("SHOW	COLUMNS	FROM`".DB_PREFIX."product`	

LIKE	'youtube'");

if(!$query->num_rows){

		$this->db->query("ALTER	TABLE	`".DB_PREFIX."product`ADD	`youtube`	

TEXT	NOT	NULL");

}

These	lines	of	code	are	written	in	the	controller	file	or	model	files	of
OpenCart.	The	method	searches	for	the	YouTube	column	in	the	product	table,
and	if	it	is	not	found,	it	alters	the	product	table	by	adding	another	column
named	YouTube.

$this->db->escape($value);

It	escapes	or	cleans	the	data	before	entering	it	to	the	database	to	avoid	the	SQL
injection.	Developers	perform	this	for	security	reasons.

$this->db->countAffected($sql);

It	returns	the	count	of	affected	rows	from	the	most	recent	query	execution.

$this->db->getLastId($sql);

It	returns	the	ID	of	the	last	inserted	row	from	the	most	recent	query	execution.

Document:	Document	library	methods	can	be	called	from	controller,	only	before
rendering	the	document.

$this->document->setTitle($title);

This	line	of	code	sets	the	page’s	title.

$this->document->getTitle();

This	line	of	code	gets	the	page’s	title.

$this->document->setDescription($description);

This	line	of	code	gets	the	page’s	meta	description.

$this->document->getDescription();

This	line	of	code	gets	the	page’s	meta	description.

$this->document->setKeywords($keywords);

This	line	of	code	sets	the	page’s	keyword	meta	tag.

$this->document->getKeywords();

This	line	of	code	gets	the	page’s	keyword	meta	tag.

For	the	home	page	of	OpenCart,	the	title	and	description	keywords	are	accessed
from	the	settings	inserted	at	System	|	Settings	|	Edit	and	under	the	Store	tab.
And	for	other	pages,	title	and	description	is	set	as	defined	to	override	the	default
values	as	per	the	need	in	the	controller	file.

$this->document->addLink($href,	$rel);

It	adds	the	link	at	the	head	section	as	follows:

$this->document->addLink($this->url->

If	we	write	the	preceding	line	of	code	in	the	controller	file,	we	will	see	the
following	code	at	the	head	sections:

link('product/product',	'product_id=42','canonical');

<link	href="http://example.com/index.php?

route=product/product&product_id=42"rel="canonical"	/>

A	canonical	page	is	the	preferred	version	of	a	set	of	pages	with	highly	similar
content.

Note
Why	specify	a	canonical	page?	It’s	common	for	a	site	to	have	several	pages	listing
the	same	set	of	products.	For	example,	one	page	might	display	the	products	sorted	in
alphabetical	order,	while	other	pages	display	the	same	products	listed	by	price	or	by
rating.

Details	of	a	canonical	page	can	be	found	at	the	following	URL:

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=139394

$this->document->getLinks();

It	lists	the	set	links.	Mostly,	calls	are	made	in	the	header	of	controller.

$this->document->addStyle($href,	$rel	=	'stylesheet',	$media	=

'screen');

It	adds	the	extra	style	sheet	needed	only	in	the	page.	For	example,	consider	the
following	lines	of	code:

$this->document-

>addStyle('catalog/view/javascript/jquery/colorbox/colorbox.css');

The	colorbox.css	file	is	needed	in	the	product	details	page,	so	it	is	called	in
catalog/controller/product/product.php	and	the	style	sheet	is	added	to	the
<head>	section	of	the	document.

$this->document->getStyles();

It	lists	the	style	sheet	at	the	<head>	section	of	the	document.	Mostly,	calls	are
made	in	the	header	controller.

As	with	the	addStyle	method,	colorbox.css	is	added,	so	a	line	is	added	in	the
<head>	section	of	the	document.	The	following	is	the	line	we	can	see	on	the
<head>	section	of	the	document.

<link	rel="stylesheet"type="text/css"href=

	 "catalog/view/javascript/jquery/colorbox/colorbox.css

	 	 	 "media="screen"	/>

$this->document->addScript($script);

It	adds	the	script	files	(for	example,	JavaScript	files)	needed	only	in	the	page.
For	example:

$this->document-

>addScript('catalog/view/javascript/jquery/tabs.js');

This	adds	the	tabs.js	files	wherever	the	preceding	line	of	code	is	added.

$this->document->getScripts();

It	lists	the	script	files	added	with	the	addScript	method.	Just	as	the	addScript
code	in	the	preceding	example,	where	the	tabs.js	file	is	added,	the	following
line	of	code	is	added	in	the	<head>	section	of	the	document:

<script	

type="text/javascript"src="catalog/view/javascript/jquery/tabs.js">

</script>

Encryption:	You	can	find	the	encryption	file	at	system/library/encryption.php
which	has	the	Encryption	class	and	its	object	name	is	encryption.	It	is	used	to
encrypt	and	decrypt	the	values.

http://support.google.com/webmasters/bin/answer.py?hl=en&answer=139394

$this->encryption->encrypt($value);

It	encrypts	the	data	based	on	the	key	in	the	admin	settings.

$this->encryption->decrypt($value);

It	decrypts	the	data	based	on	the	key	in	the	admin	settings.

Language:	You	can	find	all	the	data	under	catalog/language:

$this->language->get($key);

It	gets	the	value	of	the	key	from	the	language	file.	For	example:

$this->language->get('heading_title');

It	searches	for	the	value	of	heading_title	in	the	language	file.

$this->language->load($filename);

It	loads	the	language	file	and	makes	its	variable	for	use.

$this->language->load('catalog/category');

It	loads	the	catalog/language/english/catalog/category.php	file	when	the
English	language	is	active	or	loads	the	respective	language’s	category.php.

Length:	You	can	find	the	length	file	at	system/library/length.php	which	has	the
Length	class	and	its	object	name	is	length.	It	is	used	to	convert,	format,	and	get	the
unit	of	length.

$this->length->convert($value,	$from,	$to);

The	passed	value	is	converted	as	per	the	value	provided.	For	example,	consider
the	following	lines	of	code:

$length	=	$this->length->convert($this->config->get(

	 'ups_length'),	$this->config->get(

	 	 'config_length_class_id'),	$this->config->get(

	 	 	 'ups_length_class_id'));

The	configured	length	is	converted	to	the	UPS	length.

$this->length->format($value,	$length_class_id,$decimal_point	=

'.',	$thousand_point	=	',');

The	passed	value	is	formatted	to	the	required	length	format.

$this->length->getUnit($length_class_id);

It	returns	the	length’s	unit,	such	as	cm	or	inches.

Log:	You	can	find	all	the	log	files	stored	under	system/logs.

$this->log->write($message);

It	writes	the	message	passed	on	to	the	system/logs/error.txt	file.	For
example:

$this->log->write('This	is	the	error	message');

If	you	write	this	code	and	then	refresh	the	URL	which	calls	this	file,	the	This	is
the	error	message	message	is	logged	in	the	error.txt	file.

Mail:	You	are	shown	an	example	directly	for	mail,	which	will	help	you	understand
the	concept	more	clearly.	With	the	following	lines	of	code,	an	e-mail	is	sent:

$mail	=	new	Mail();

$mail->setTo($this->request->post['email']);

$mail->setFrom($this->config->get('config_email'));

$mail->setSender($this->config->get('config_name'));

$mail->setSubject(html_entity_decode($subject,	ENT_QUOTES,'UTF-8'));

$mail->setText(html_entity_decode($message,	ENT_QUOTES,'UTF-8'));

$mail->send();

The	setTo()	method	sets	the	receiver	to	whom	the	mail	is	addressed,	the
setFrom()method	sets	the	sender’s	e-mail	ID	,	setSender()	sets	the	name	of	the
sender,	setSubject()	sets	the	subject	section	of	the	mail,	setText()sets	the	text	for
the	message	if	it’s	only	text	(if	it	is	an	HTML	e-mail,	we	use	setHtml()),	and	the
send()method	sends	the	mail.

Pagination:	The	following	code	snippet	is	a	part	of	the	user	listing.

$pagination	=	new	Pagination();

$pagination->total	=	$user_total;

$pagination->page	=	$page;

$pagination->limit	=	$this->config->get('config_admin_limit');

$pagination->text	=	$this->language->get('text_pagination');

$pagination->url	=	$this->url->link('user/user',	'token='	.	$this-

>session->data['token']	.	$url	.'&page={page}','SSL');

$this->data['pagination']	=	$pagination->render();

total	is	the	total	number	of	users,	page	is	the	page	number	that	is	available	through
the	GET	value,	limit	is	defined	by	the	setting	in	the	admin,	text	shows	the	numbers
and	extra	messages,	and	url	is	to	move	to	other	pages.	With	this	rendering
$pagination	is	available	for	the	template	view	to	show	the	page	numbers.

Request:	Two	commonly	used	methods	for	a	request-response	communication
between	a	client	and	server	are	GET	and	POST.	In	OpenCart,	these	are	written	as
follows:

$this->request->get;

$this->request->post;

For	a	selected	element,	it	is	respectively	written	as:

$this->request->get['selected'];

$this->request->post['selected'];

Response:	You	can	find	the	response	system	files	at	system/library/response.php,
which	have	a	class	name	of	Response	and	its	object	name	is	response.

$response	=	new	Response();

$response->addHeader('Content-Type:	text/html;	charset=utf-8');

The	addheader()method	adds	the	content	type	used	by	the	document.

$this->redirect($url);

It	redirects	the	page	to	the	URL	specified.	$url	passed	should	have	the	complete
URL.

Session:	It	stores	the	active	session	data:

$this->session->getId()

It	returns	the	active	session	ID.

Tax:	System-initiated	tax	objects	are	used	in	OpenCart.	They	are	as	follows:

$this->tax->setShippingAddress($country_id,	$zone_id);

It	sets	the	shipping	address	with	the	country	ID	and	zone	ID.

$this->tax->setPaymentAddress($country_id,	$zone_id);

It	sets	the	payment	address	with	the	country	ID	and	zone	ID.

$this->tax->setStoreAddress($country_id,	$zone_id);

It	sets	the	store	address	with	the	country	ID	and	zone	ID.

$this->tax->calculate($value,	$tax_class_id,$calculate	=	true);

It	calculates	the	tax,	only	if	$tax_class_id	is	set	and	$calculate	is	set	to	true.

URL:	It	helps	in	making	the	full	URL.	You	can	find	the	URL	file	at
system/library/url.php	which	has	the	class	name	url	and	its	object	name	is	url.

$this->url->link($route,	$args	=	'',	$connection	='NONSSL')

It	makes	the	URL	to	be	passed	as	the	$route	variable.	If	SSL	is	active,	it	makes
https://;	else	http://.

User:	You	can	find	most	of	the	user	code	under	the	account	section,	and	you	can
check	the	files	at	catalog/controller/account/.	The	following	are	the	list	of
methods	we	can	use	for	the	user	library:

$this->user->getId();

When	we	echo	the	preceding	line,	it	will	show	the	active	user’s	ID.

$this->user->login($username,	$password);

When	the	username	and	password	are	passed	to	the	method,	and	if	they	match
among	the	users,	it	logs	in	to	the	administration	section.

$this->users->logout();

The	admin	user	gets	logged	out.	It	means	that	the	user	ID	will	be	cleared,	its
session	will	be	destroyed,	and	the	user’s	username	and	user	ID	are	assigned
empty	values.

$this->users->isLogged();

It	checks	if	the	user	is	logged	in	or	not.

$this->users->hasPermission($key,	$value);

It	checks	whether	the	user	has	permission	or	not.	For	example:

if	(!$this->user->hasPermission('modify','catalog/category))	{

$this->error['warning']	=	$this->language->get('error_permission');

}

The	preceding	code	checks	whether	the	user	is	provided	access	to	modify	or
insert	the	categories.	Permission	for	users	can	be	provided	by	navigating	to
Admin	|	System	|	Users	|	User	Group,	where	one	can	edit	or	insert	a	new	user
and	provide	the	necessary	permission	to	the	user.

$this->users->getId();

It	returns	the	active	user’s	ID.

$this->users->getUserName();

It	returns	the	active	user’s	username.

Weight:	You	can	find	the	weight	file	at	system/library/weight.php	which	has	a
class	name	Weight	and	its	object	name	is	weight	and	is	used	to	convert,	format,	and
get	the	unit	of	weight.

$this->weight->convert($value,	$from,	$to);

The	passed	value	is	converted	as	per	the	value	provided	to	the	desired	weight.
The	$value	attribute	is	the	weight	of	the	products	on	the	shopping	cart,	$from	is
the	weight	class	needed	to	be	converted,	and	$to	is	the	required	weight	class.
You	can	insert	and	edit	the	weight	class	by	navigating	to	Admin	|	System	|
Weight	Class.

$this->weight->format($value,	$weight_class_id,$decimal_point	=

'.',	$thousand_point	=	',');

The	passed	value	is	formatted	to	the	required	weight	format.

$this->length->getUnit($weight_class_id);

It	returns	the	weight’s	unit,	such	as	kg,	pound,	or	gram.

Detailed	description	of	the	Featured
module
The	Featured	module	highlights	specific	products	so	that	they	will	be	helpful	in
increasing	the	sales	and	lets	users	know	which	products	are	highlighted.

Configuring	the	Featured	module	in	OpenCart
1.5.5.1
In	this	section,	you	will	see	how	to	configure	the	Featured	module	in	OpenCart	and
likewise	you	can	configure	other	modules	as	per	the	requirements:

1.	 Log	in	to	the	Administrator	dashboard,	hover	over	the	Extensions	tab,	and	then
click	on	Modules	to	see	a	list	of	modules.	If	the	Featured	module	is	not	already
installed,	click	on	[Install].

2.	 In	order	to	configure	a	featured	product,	click	on	[Edit].	On	clicking,	the	following
screen	is	seen:

3.	 Now	start	typing	the	name	of	the	products,	and	it	will	auto	complete	and	pop-out	the
list	of	the	name	of	the	products	that	matches	the	words	with	the	product	name.
Choose	the	product	that	you	want	to	show	at	the	featured	products,	and	it	will	show
in	the	list.

4.	 Now,	to	add	another	product,	just	type	again	and	choose	the	right	product.	By	doing
this,	make	the	list	of	featured	products.	If	you	do	not	want	the	products	on	the
featured	list,	just	click	on	the	red	minus	sign	to	the	right	of	the	product	and	the
product	will	be	removed	from	the	list.

5.	 Now	click	on	the	Add	Module	button	and	provide	the	setting	for	the	appearance	of
the	module.	Some	setting	columns	are:

Limit:	This	indicates	the	number	of	products	to	show.	Although	we	insert	many
products,	only	a	limited	number	of	products	are	shown.
Image	(W	x	H)	and	Resize	Type:	This	option	is	used	to	insert	the	width	and
height	of	the	image	to	be	shown	for	the	respective	layout	and	position.
Layout:	This	is	the	page	where	the	featured	products	will	be	shown.
Position:	This	option	indicates	the	place	where	the	module	will	be	shown.
Status:	This	option	is	shown	at	the	frontend	only	if	it	is	enabled.
Sort	Order:	This	option	indicates	the	order	in	which	it	will	be	displayed	at	the

frontend.

6.	 Add	as	many	modules	as	you	wish	in	different	layouts	and	positions	and	then	click
on	Save.

Exploring	the	code	used	in	the	Featured	module
When	you	click	on	[Edit]	of	the	installed	Featured	module,	the	route	module/featured	is
called.	It	means	that	there	are	files	named	featured.php	in	the	module	folder	in
controller.	So	let’s	start	with	listing	the	files	used	by	the	Featured	module:

admin/controller/module/featured.php

admin/language/english/module/featured.php

admin/view/template/module/featured.tpl

catalog/controller/module/featured.php

catalog/language/english/module/featured.php

catalog/view/theme/default/template/module/featured.tpl

Exploring	the	featured.php	file	under	the	admin	folder
OpenCart’s	Controller	is	simply	a	class	file	that	is	named	in	a	way	that	can	be	associated
with	a	URI.	The	class	name	should	start	with	the	word	Controller	followed	by	the	folder
name	and	the	file	name.	For	example:

class	ControllerModuleFeatured	extends	Controller	{

The	preceding	code	line	creates	the	Controller	class	of	the	Featured	module.	The	class
name	starts	with	Controller,	followed	by	the	module	folder,	and	then	the	featured	file.
The	Featured	module’s	Controller	file	is	named	as	featured.php	and	is	in	the	module
folder.	As	always,	it	has	extended	the	Controller	parent.

If	the	file	name	consists	of	an	underscore	(_),	there	will	be	no	problems	with	respect	to	the
class	name.	Everything	except	the	underscore	needs	to	be	the	same.	If	your	Controller
file	is	named	with	an	underscore,	you	have	to	make	the	language	file	with	an	underscore
as	well.	Never	use	an	underscore	for	the	class	name.

Most	of	the	related	code	is	already	described	in	Chapter	1,	Getting	Started	with	OpenCart
Modules,	so	you	have	the	description	of	the	code	and	how	it	works	functionally.	By
default,	the	index()	method	is	called	unless	the	second	segment	is	passed	in	the	URI.
While	clicking	on	[Edit],	no	second	segment	is	passed,	so	it	runs	the	index()	method,
which	loads	the	language	files	named	featured.php	in	the	module	folder	in	the	language
section,	and	sets	the	title	of	the	document	as	follows:

$this->document->setTitle($this->language->get('heading_title'));

It	then	loads	the	model	file,	setting.php,	and	when	the	module	is	saved,	it	validates	the
data	by	checking	the	permission	and	checking	whether	the	image	size	is	inserted	or	not.
Check	the	validate()	method,	find	out	how	it	returns	true	when	validation	is	successful
and	assigns	the	error	message;	it	returns	false	if	there	is	some	error,	such	as	permission
denied	and/or	the	image’s	height	and	width	are	not	entered.

if	(isset($this->request->post['featured_module']))	{

		foreach	($this->request->post['featured_module']	as$key	=>	$value)	{

				if	(!$value['image_width']	||	!$value['image_height'])	{

						$this->error['image'][$key]	=	$this->language->get('error_image');

				}

		}

}

The	preceding	code	shows	how	the	error	message	gets	activated	if	height	and/or	width	are
not	inserted	on	saving	the	module.

$this->data['heading_title']	=	$this->language->get('heading_title');

$this->data['text_enabled']	=	$this->language->get('text_enabled');

$this->data['text_disabled']	=	$this->language->get('text_disabled');

The	text	and	messages	to	be	shown	at	view	are	assigned	from	the	language	files	to	data
variables;	you	can	see	similar	lines	of	code	which	perform	this	function:

if	(isset($this->error['image']))	{

		$this->data['error_image']	=	$this->error['image'];

}	else	{

		$this->data['error_image']	=	array();

}

If	someone	forgets	to	insert	the	height	and/or	width	of	the	image,	the	error	messages	to	be
shown	are	assigned.	The	breadcrumbs	are	defined	in	an	array	as	follows:

$this->data['breadcrumbs']

And	the	action	links	are	defined	as	follows:

$this->data['action']	=	$this->url->link('module/featured','token='	.	

$this->session->data['token'],	'SSL');

The	list	of	products	that	you	have	inserted	is	submitted	in	$_POST['featured_product']
and	all	the	product	IDs	are	separated	by	a	comma.	Similarly,	the	products	stored	in	the
database	for	the	Featured	module	are	also	saved	with	their	product	IDs	separated	by
commas:

The	following	code	checks	whether	the	product	is	submitted	and	then	takes	the	product
IDs	from	the	POST	method;	if	not,	it	takes	from	the	database	value:

if	(isset($this->request->post['featured_product']))	{

		$products	=	explode(',',	$this->request->post['featured_product']);

}	else	{

		$products	=	explode(',',	$this->config->get('featured_product'));

}

$products	is	run	through	a	loop	to	make	an	array	of	products’	names	and	IDs	and	is
passed	to	the	template	view.

$this->data['modules']	=	$this->config->get('featured_module');

The	preceding	line	of	code	retrieves	the	settings	of	the	Featured	module	from	the
database.	Other	parts	of	the	code	are	similar	to	those	defined	in	the	Hello	World	module,
in	Chapter	1,	Getting	Started	with	OpenCart	Modules,	and	the	same	logics	are	applied	to
the	language	file,	so	we	don’t	need	to	describe	these	here.

Exploring	the	featured.tpl	file	under	admin	folder
We	will	be	describing	only	the	extra	code	snippets,	as	most	of	them	are	already	described
in	the	Hello	World	module.

The	most	distinguishing	section	in	the	Featured	module	is	the	autocomplete	input	box.
For	that,	let’s	create	an	input	box	as	follows:

<input	type="text"	name="product"	value=""	/>

Whenever	a	user	starts	to	type	in	the	text	box,	the	following	code	starts	to	work:

$('input[name=\'product\']').autocomplete({

It	searches	for	similar-named	products	as	follows:

admin/index.php?route=catalog/product/autocomplete

If	it	finds	products,	the	product,	on	clicking,	gets	appended	to	the	featured	product	ID’s
<div>	element	and	a	product	list	is	generated.	The	code	is	shown	in	the
admin/view/template/module/featured.tpl	file	as	follows:

$('#featured-product').append('<div	id="featured-product'	+ui.item.value	+	

'">'	+	ui.item.label	+	'<imgsrc="view/image/delete.png"	alt=""	/><input	

type="hidden"	value="'	+	ui.item.value	+	'"/></div>')

When	the	red	minus	sign,	to	the	right	of	the	product,	is	clicked,	the	following	code	snippet
gets	activated	that	deletes	the	rows	of	product:

$('#featured-product	div	img').live('click',	function()	{

		$(this).parent().remove();

		$('#featured-product	div:odd').attr('class',	'odd');

		$('#featured-product	div:even').attr('class',	'even');

		data	=	$.map($('#featured-product	input'),	function(element){

				return	$(element).attr('value');

		});

		$('input[name=\'featured_product\']').attr('value',data.join());	

});

Exploring	the	featured.php	file	under	the	catalog	folder
Only	the	extra	code	snippets	are	described,	as	most	of	them	are	discussed	in	Chapter	1,
Getting	Started	with	OpenCart	Modules,	and	most	of	them	are	similar	to	the	Hello	World
module.

$products	=	explode(',',	$this->config->get('featured_product'));

If	we	echo	$this->config->get('featured_product'),	we	will	get	the	product	IDs	that
are	separated	by	commas.	Thus,	the	$products	array	is	assigned	by	separating	the	product
IDs	by	commas.

if	(empty($setting['limit']))	{

		$setting['limit']	=	5;

}

If	there	is	no	limit	inserted	while	setting	the	Featured	module,	it	will	show	only	five
products.

$products	=	array_slice($products,	0,	(int)$setting['limit']);

An	iteration	is	performed	using	foreach	to	the	$products	array,	and	with	the	help	of
$this->model_catalog_product->getProduct($product_id);,	all	details	of	the	product
are	retrieved	and	only	the	required	elements	are	assigned	to	the	$products	array	to	be
passed	to	the	template	file	as	follows:

$this->data['products'][]	=	array(

		'product_id'	=>	$product_info['product_id'],

		'thumb'	=>	$image,

		'name'	=>	$product_info['name'],

		'price'	=>	$price,

		'special'	=>	$special,

		'rating'	=>	$rating,

		'reviews'	=>sprintf($this->language->get('text_reviews'),

(int)$product_info['reviews']),

		'href'	=>	$this->url->link('product/product','product_id='	.	

$product_info['product_id'])

);

With	the	preceding	code,	only	the	required	data	such	as	product_id,	thumb,	and	name	are
assigned	to	the	array	that	will	be	shown	in	the	template	file.

The	code	of	catalog/view/theme/default/template/module/featured.tpl	are	similar
to	the	Hello	World	module	template	file.	Here,	products	that	are	added	on	the	backend	are
shown.	The	$products	array	is	received	from	the	controller	file,	which	consists	of	the
product	ID,	thumb	of	image,	name,	price,	special	price,	rating,	reviews,	and	link	to	the
product	details.	The	same	data	are	shown	in	the	Featured	module’s	frontend.

The	Shipping	module
OpenCart	has	many	prebuilt	shipping	modules.	Navigate	to	Admin	|	Extensions	|
Shipping,	it	lists	out	the	Shipping	module	as	shown	in	the	following	screenshot:

You	have	to	install	and	configure	it,	and	it	will	be	shown	at	the	frontend	under	Shipping
Methods	while	performing	a	checkout.

As	you	already	know,	modules	or	extensions	can	be	created	by	cloning	an	existing	one
that	functions	in	a	similar	way	to	what	you	want.	So,	for	Shipping,	we	will	be	cloning	any
one	of	them	that	fulfills	our	requirement.	For	example,	if	you	want	the	shipping	cost	to	be
charged	as	per	the	total	cost	purchased,	you	can	clone	the	weight-based	shipping	module;
likewise,	if	you	want	to	make	DHL	shipping	rates	module	using	the	live	rate,	look	up	from
the	DHL	site.	You	need	to	start	with	the	existing	UPS	shipping	extension.

Let’s	start	to	make	the	Shipping	module	that	is	based	on	the	total	cost	purchased.

Changes	made	in	the	admin	folder
In	this	section	we	will	see	the	changes	that	are	to	be	made	in	the	admin	folder	to	create	the
shipping	module:

1.	 Navigate	to	admin/controller/shipping/	and	copy	weight.php	and	paste	it	in	the
same	folder.	Rename	it	to	totalcost.php,	open	it	in	your	favorite	text	editor,	and
then	find	the	following	lines:

class	ControllerShippingWeight	extends	Controller	{

Change	the	class	name	as	follows:

class	ControllerShippingTotalcost	extends	Controller	{

Now	find	“weight”	and	replace	all	with	“totalcost“.	Then,	save	the	file.

2.	 Navigate	to	admin/language/english/shipping	and	copy	weight.php	and	paste	in
the	same	folder	and	rename	it	to	totalcost.php	and	open	it.	Then	find	“Weight”	and
replace	all	with	“Total	Cost“.

After	performing	the	replace,	find	the	following	code:

$_['entry_rate']	=	'Rates:
Example:	

5:10.00,7:12.00	Total	Cost:Cost,	totalcost:Cost,	etc..';

Then	perform	the	following	changes:

$_['entry_rate']	=	'Total	cost:Rates:
Example:	

100:10.00,200:20.00Total	Cost:ShippingCost,	TotalCost:Shipping	

Cost,etc.';

3.	 Navigate	to	admin/view/template/shipping,	copy	the	weight.tpl	file,	and	paste	it
in	the	same	folder.	Rename	it	to	totalcost.tpl,	open	it,	then	find	“weight“,	replace
it	with	“totalcost“,	and	then	save	it.

Changes	made	in	the	catalog	folder
After	the	changes	are	made	in	the	admin	folder,	we	will	now	see	the	changes	to	be	made	in
the	catalog	folder	to	create	the	shipping	module.

1.	 Go	to	catalog/model/shipping,	copy	the	weight.php,	paste	it	in	the	same	folder,
and	rename	it	tototalcost.php.	Open	it	and	find	the	following	line:

class	ModelShippingWeight	extends	Model	{

Change	the	class	name	as	follows:

class	ModelShippingTotalcost	extends	Model	{

Now	find	“weight”	and	replace	all	with	“totalcost”.	After	performing	the
replacement,	find	the	following	lines	of	code:

$totalcost	=	$this->cart->gettotalcost();

And	perform	the	following	changes:

$totalcost	=	$this->cart->getSubTotal();

Our	requirement	is	to	show	the	shipping	cost	as	per	the	total	cost	purchased,	so	we
have	performed	this	change.

Now,	find	the	following	lines:

if	((string)$cost	!=	'')	{

$quote_data['totalcost_'	.	$result['geo_zone_id']]	

=array('code'=>'totalcost.totalcost_'	.	$result['geo_zone_id'],'title'	

=>	$result['name']	.	'('	.	$this->language->get('text_totalcost')	.	''	

.	$this->totalcost->format($totalcost,	$this->config-

>get('config_totalcost_class_id'))	.	')',

'cost'=>	$cost,

'tax_class_id'	=>	$this->config->get('totalcost_tax_class_id'),

'text'=>	$this->currency->format($this->tax->calculate($cost,	$this-

>config->get('totalcost_tax_class_id'),$this->config-

>get('config_tax'))));

}

As	we	need	only	the	name,	change	the	following	line	of	code:

'title'=>	$result['name']	.	'	('	.	$this->language-

>get('text_totalcost')	.	''	.	$this->totalcost->format($totalcost,	

$this->config->get('config_totalcost_class_id'))	.	')',

To	the	following:

'title'	=>	$result['name'],

Weight	has	different	classes	such	as	kilogram,	gram,	and	pound,	but	in	our	total	cost
purchased,	we	did	not	have	any	class	specified,	so	we	have	removed	it.

Now	click	on	Save.

2.	 Go	to	catalog/language/english/shipping	and	copy	the	weight.php	file	and	paste

it	in	the	same	folder	and	rename	it	to	totalcost.php.	Open	it	and	find	“Weight”	and
replace	it	with	“Total	Cost”

With	these	changes,	the	module	is	ready	to	be	installed.	Navigate	to	Admin	|
Extensions	|	Shipping,	find	Total	Cost	Based	Shipping,	click	on	[Install],	provide
the	permission	to	modify	and	access	to	the	user,	and	then	edit	to	configure	it.	In	the
general	tab,	make	a	change	in	the	Status	field	to	Enabled.	Other	tabs	are	loaded	as
per	the	Geo	Zone	setting.	For	default,	UK	Shipping	and	UK	VAT	Zone	are	set	as
Geo	Zone:

3.	 Now	insert	Total	cost	Rates.	If	the	subtotal	reaches	100	and	the	shipping	cost	is	20,
we	have	to	insert	100:20.

4.	 If	the	customer	tries	to	order	more	than	the	inserted	total	cost,	shipping	is
deactivated.

5.	 In	this	way,	you	can	now	clone	the	Shipping	modules	and	make	the	changes	on	the
logics	as	necessary.

The	Payment	module
Any	module	can	be	made	by	cloning	an	existing	module	with	similar	functionality	as	it
will	make	coding	very	easy	and	fast.	You	can	view	the	list	of	Payment	modules	by
navigating	to	Admin	|	Extensions	|	Payments.

Now	you	can	also	make	the	Payment	module	similar	to	the	Shipping	module.	While
making	the	Payment	module,	we	have	to	work	out	in	the	Payment	folder.

Before	starting	to	write	a	payment	module,	you	need	to	know	the	on-site	payment	and	off-
site	payment,	which	are	the	broad	categories	of	the	payment	methods.

Off-site	payment
Off-site	payment	means	making	payment	to	the	payment	service	by	redirecting	to	the
payment	service	website	and	making	the	transaction;	upon	success	or	failure,	they	are
returned	back	to	the	relevant	pages.	If	payment	is	successful,	it	shows	the	success	page,
else	it	will	show	the	failure	message.

Some	of	the	off-site	payment	modules	are:	PayPal	Standard,	Moneybookers,	LiqPay,
PayPoint,	and	so	on.

If	you	are	using	the	off-site	payment,	choose	one	of	the	off-side	payment	modules	of
OpenCart	and	then	clone	your	desired	Payment	modules.

On-site	payment
Payments	are	made	on	the	same	site	with	on-site	payment;	it	means	the	customer	never
leaves	your	site	to	make	the	payment.	Some	of	the	on-site	OpenCart	payment	modules	are:
Authorize.net	AIM,	PayPal	Pro,	SagePay	Direct,	and	so	on.

If	using	on-site	payment,	it	is	suggested	to	have	the	SSL	certificate	and	SSL	enabled	on
the	setting	in	OpenCart.

If	you	are	using	on-site	payment,	choose	one	of	the	on-site	payment	modules	and	clone	it
and	make	your	desired	module.

Most	of	the	code	will	be	the	same,	only	the	controller	file,	catalog	and	some	time	view
template	forms	need	to	be	changed	while	creating	the	Payment	modules.

The	Order	Total	module
Order	totals	are	those	modules	which	affect	the	total	price	of	the	order.	You	can	find	the
list	of	order	totals	at	Admin	|	Extensions	|	Order	Totals.	Some	of	them	are:

Coupon:	This	option	allows	the	customer	to	apply	the	coupon	discount
Store	Credit:	If	you	have	store	credit,	it	automatically	decreases	the	total	purchase
cost	with	the	available	credit

Handling	Fee:	This	option	provides	an	additional	fee	for	handling	the	product
Low	Order	Fee:	This	option	provides	extra	cost	if	the	customer	orders	the	minimum
specified	quantity
Reward	Points:	Points	are	accumulated	which	can	be	used	to	buy	reward	points
products
Sub-Total:	This	option	shows	the	subtotal	separately
Taxes:	This	option	shows	taxes	separately
Total:	This	option	shows	the	total	amount	to	be	billed
Gift	Voucher:	This	option	is	used	to	gift	credit	to	purchase	the	products

When	they	are	applied,	there	is	a	change	in	the	Total	value,	so	they	are	placed	on	the
Order	Totals	module.	You	will	be	able	to	see	the	Order	totals	module	in	the	next
chapter.	We	will	show	you	how	to	create	the	Order	totals	modules.	We	will	go	in	depth
with	the	Tips	Order	Total	module,	as	when	someone	likes	to	add	Tips,	there	is	an
increase	on	the	order	total.

Summary
In	this	chapter,	we	explored	most	of	the	system	level	libraries	that	OpenCart	provides.	We
explored	most	of	the	extra	code	used	in	the	Featured	Product	module	by	which	you	are
now	able	to	know	the	code	flow	of	the	OpenCart	module.	Likewise,	we	created	a	new
Shipping	module,	which	shows	the	shipping	cost	according	to	the	total	cost	purchased	by
cloning	the	weight-based	shipping.	Similarly,	we	discussed	the	payment	module	of
OpenCart	and	the	ways	to	clone	it.	With	this,	you	are	able	to	start	coding	with	OpenCart
Extensions	(Modules,	Payments,	and	Shipping).

Chapter	3.	Creating	Custom	OpenCart
Modules
In	this	chapter	we	will	create	a	Feedback	module	and	a	Tips	module	and	show	how	code
works	and	are	managed.	You	already	know	how	to	duplicate	or	clone	the	module,	as
explained	in	Chapter	1,	Getting	Started	with	OpenCart	Modules,	and	likewise	know	most
of	the	global	methods,	which	make	it	easy	for	you	to	create	a	module.	In	the	Feedback
module,	visitors	will	be	able	to	write	feedback	about	the	site,	and	the	feedback	provided
will	be	approved	by	the	admin	and	shown	at	the	frontend.	At	last,	we	will	create	the	Order
Total	module	as	tips	get	added	to	the	order	total.

Getting	started	with	feedback
management
We	will	show	you	the	way	to	create	the	admin	form	and	the	list	page,	after	this	we	will
move	forward	to	make	the	frontend	pages	where	visitors	can	submit	their	feedback	and
lists	of	the	feedback.	As	always,	we	will	start	with	analyzing	our	requirements	and	seeing
which	part	of	OpenCart	resembles	them,	so	that	we	can	clone	the	pages,	making	it	easy	to
work	with	the	code.

Database	tables	for	feedback
We	start	by	making	tables	at	the	database.	As	OpenCart	is	multistore,	multilanguage
support	and	can	be	shown	at	many	layouts,	we	need	to	take	care	of	those	as	well.	For
these,	we	have	to	make	approximately	four	tables:	feedback,	feedback_description,
feedback_to_layout,	and	feedback_to_store.

In	the	following	screenshot,	oc_	is	the	database	prefix	we	use	while	installing	Opencart.	If
you	are	not	sure	about	the	database	prefix,	you	can	see	the	config.php	file	at	the	root
folder	of	the	OpenCart,	open	it,	and	find	the	line	“define('DB_PREFIX'“.	You	will	see
define('DB_PREFIX',	'oc_');	and	as	per	this	the	database	prefix	is	oc_.	The
oc_feedback	table	stores	the	status,	sort	order,	date	added,	and	date	modified	with	the
feedback	ID.	The	oc_feedback_description	table	stores	the	author	name,	feedback
given,	and	language	ID	for	multiple	languages.	The	oc_feedback_to_store	table	saves
the	store	ID	and	feedback	for	the	particular	store	of	OpenCart	whose	feedback	needs	to	be
shown	as	OpenCart	are	multistores,	and	the	oc_feedback_to_layout	table	stores	to
whichever	layout	the	feedback	module	is	to	be	shown.

The	following	screenshot	shows	the	database	schema:

The	following	are	the	queries	that	need	to	run	in	the	database	to	create	the	feedback	table,
feedback	description	table,	feedback	to	layout	table,	and	feedback	to	store	table.	If	you
have	used	a	prefix	other	than	the	oc_,	change	oc_	to	that	prefix	on	the	following	query;
only	then	it	will	be	ready	to	run.

CREATE	TABLE	IF	NOT	EXISTS	`oc_feedback`	(

		`feedback_id`	int(11)	NOT	NULL	AUTO_INCREMENT,

		`sort_order`	int(3)	NOT	NULL	DEFAULT	'0',

		`status`	tinyint(1)	NOT	NULL,

		`date_added`	datetime	NOT	NULL	DEFAULT	'0000-00-00	00:00:00',

		`date_modified`	datetime	NOT	NULL	DEFAULT	'0000-00-00	00:00:00',

		PRIMARY	KEY	(`feedback_id`)

)	ENGINE=MyISAM		DEFAULT	CHARSET=utf8	AUTO_INCREMENT=5	;

CREATE	TABLE	IF	NOT	EXISTS	`oc_feedback_description`	(

		`feedback_id`	int(11)	NOT	NULL,

		`language_id`	int(11)	NOT	NULL,

		`feedback_author`	varchar(255)	NOT	NULL,

		`description`	text	NOT	NULL,

		PRIMARY	KEY	(`feedback_id`,`language_id`)

)	ENGINE=MyISAM	DEFAULT	CHARSET=utf8;

CREATE	TABLE	IF	NOT	EXISTS	`oc_feedback_to_layout`	(

		`feedback_id`	int(11)	NOT	NULL,

		`store_id`	int(11)	NOT	NULL,

		`layout_id`	int(11)	NOT	NULL,

		PRIMARY	KEY	(`feedback_id`,`store_id`)

)	ENGINE=MyISAM	DEFAULT	CHARSET=utf8;

CREATE	TABLE	IF	NOT	EXISTS	`oc_feedback_to_store`	(

		`feedback_id`	int(11)	NOT	NULL,

		`store_id`	int(11)	NOT	NULL,

		PRIMARY	KEY	(`feedback_id`,`store_id`)

)	ENGINE=MyISAM	DEFAULT	CHARSET=utf8;

After	running	the	preceding	query	on	database,	we	now	will	start	to	make	the	custom	page
to	list	out	all	the	feedback	with	pagination	and	a	form	to	edit	and	insert	the	feedback	at	the
admin	section.	Then,	we	will	move	to	the	frontend	pages.	As	you	know,	OpenCart	follows
the	MVC	framework,	so	you	need	to	manage	the	files	likewise.	For	the	feedback,	you
need	to	create	files	as	shown	in	the	following	screenshot:

Creating	files	at	the	admin	section	for	feedback
At	the	admin	section,	we	will	create	files	that	will	create	a	list	of	feedback	and	also	a	form
to	insert	or	edit	the	feedback	and	save	it	into	the	database.	For	this,	we	will	start	with	the
language	file,	which	is	the	easiest	one.

Creating	the	language	file	at	the	admin	section
Create	a	file	at	admin/language/english/catalog/feedback.php,	and	paste	the
following	lines	of	code:

<?php

$_['heading_feedback']=	'Feedback';

$_['heading_feedback_author']=	'Feedback';

$_['text_success']						=	'Success:	You	have	modified	feedback!';

$_['text_default']						=	'Default';

$_['column_feedback_author']=	'Feedback	Author';

$_['column_sort_order']	=	'Sort	Order';

$_['column_action']					=	'Action';

$_['entry_feedback_author']=	'Feedback	Author:';

$_['entry_description']	=	'Feedback	Description:';

$_['entry_store']							=	'Stores:';

$_['entry_status']						=	'Status:';

$_['entry_sort_order']		=	'Sort	Order:';

$_['entry_layout']						=	'Layout	Override:';

$_['error_warning']					=	'Warning:	Please	check	the	form	carefully	for	

errors!';

$_['error_permission']		=	'Warning:	You	do	not	have	permission	to	modify	

feedback!';

$_['error_description']	=	'Description	must	be	more	than	3	characters!';

$_['error_store']							=	'Warning:	This	feedback	page	cannot	be	deleted	as	

its	currently	used	by	%s	stores!';

?>

The	preceding	lines	of	code	are	written	to	describe	the	text	that	is	set	to	variable	for	the
language,	which	can	be	accessed	and	used	in	the	controller	files.

Creating	the	model	file	at	the	admin	section
To	create	a	model	file,	you	need	to	make	a	model	folder,	and	in	this	folder,	it	will	be	called
at	the	controller	as	$this->load-
>model(FOLDER_NAME/FILE_NAME_WITHOUT_EXTENSION').	For	the	feedback,	you	have	to
create	a	file	named	feedback.php	at	admin/model/catalog/feedback.php.	Thus,	you	can
load	this	file	at	controller	as	this->load->model('catalog/feedback').

After	creating	the	file,	you	need	to	make	a	unique	class	name	starting	with	the	word
Model,	followed	by	the	folder	name,	and	then	file	name	without	extensions.	So,	for	our
feedback,	the	class	name	will	be	ModelCatalogFeedback,	which	extends	the	parent	Model
class.

<?php

class	ModelCatalogFeedback	extends	Model	{

		public	function	addfeedback($data)	{

				$this->db->query("INSERT	INTO	"	.	DB_PREFIX	.	"feedback	SET	sort_order	

=	'"	.	(int)$data['sort_order']	.	"',	status	=	'".	(int)$data['status']	.	

"'");

				$feedback_id	=	$this->db->getLastId();

				foreach	($data['feedback_description']	as	$language_id	=>$value)	{

						$this->db->query("INSERT	INTO	"	.	DB_PREFIX	."feedback_description	

SET	feedback_id	=	'"	.(int)$feedback_id	.	"',	language_id	=	'"	.

(int)$language_id	.	"',		feedback_author=	'"	.	$this->db-

>escape($value['feedback_author'])	.	"',	description	=	'".	$this->db-

>escape($value['description'])	.	"'");

				}

				if	(isset($data['feedback_store']))	{

						foreach	($data['feedback_store']	as	$store_id)	{

								$this->db->query("INSERT	INTO	"	.	DB_PREFIX	."feedback_to_store	SET	

feedback_id	=	'"	.(int)$feedback_id	.	"',	store_id	=	'"	.	(int)$store_id	

."'");

						}

				}

				if	(isset($data['feedback_layout']))	{

						foreach	($data['feedback_layout']	as	$store_id	=>	$layout)	{

								if	($layout)	{

										$this->db->query("INSERT	INTO	"	.	DB_PREFIX	."feedback_to_layout	

SET	feedback_id	=	'"	.(int)$feedback_id	.	"',	store_id	=	'"	.	

(int)$store_id.	"',	layout_id	=	'"	.	(int)$layout['layout_id']	."'");

								}

						}

				}

				$this->cache->delete('feedback');

		}

}

The	preceding	code	shows	how	we	can	query	the	database.	We	have	to	start	with	$this-
>db->query()	and	inside	the	braces	we	write	the	SQL	query	that	we	have	already	seen	in
the	global	methods	in	Chapter	2,	Describing	The	Code	of	Extensions.	As	per	the	preceding
code,	$this->db->query()	inserts	the	feedback	ID,	sort	order,	and	status	on	the	feedback
table	and	retrieves	the	feedback	ID	that	was	inserted	last	and	assigns	it	to	$feedback_id.
Also,	$data['feedback_description']	is	looped	as	you	can	have	multiple	descriptions
because	it	can	contain	many	languages.	Thus,	it	inserts	the	feedback	ID,	language	ID,
author,	and	feedback	description	into	the	description	table.	As	OpenCart	supports	the
multistore	and	multiple	layouts,	you	must	take	care	of	them.	After	the	insertion	of	the
description,	we	have	to	run	the	store	query	to	insert	the	store	followed	by	the	layout
insertion.	Then	a	cache	is	deleted	if	it	was	already	created.

public	function	editfeedback($feedback_id,	$data)	{

		$this->db->query("UPDATE	"	.	DB_PREFIX	.	"feedback	SET	sort_order	=	'"	.	

(int)$data['sort_order']	.	"',	status	=	'"	.(int)$data['status']	.	"'	WHERE	

feedback_id	=	'"	.(int)$feedback_id	.	"'");

		$this->db->query("DELETE	FROM	"	.	DB_PREFIX	."feedback_description	WHERE	

feedback_id	=	'"	.(int)$feedback_id	.	"'");

		foreach($data['feedback_description']	as	$language_id	=>	$value)	{

				$this->db->query("INSERT	INTO	"	.	DB_PREFIX	."feedback_description	SET	

feedback_id	=	'"	.(int)$feedback_id	.	"',	language_id	=	'"	.	

(int)$language_id.	"',		feedback_author=	'"	.	$this->db-

>escape($value['feedback_author'])	.	"',	description	=	'"	.$this->db-

>escape($value['description'])	.	"'");

		}

		$this->db->query("DELETE	FROM	"	.	DB_PREFIX	.	"feedback_to_storeWHERE	

feedback_id	=	'"	.	(int)$feedback_id	.	"'");

		if	(isset($data['feedback_store']))	{

				foreach	($data['feedback_store']	as	$store_id)	{

						$this->db->query("INSERT	INTO	"	.	DB_PREFIX	.	"feedback_to_store	SET	

feedback_id	=	'"	.	(int)$feedback_id	.	"',	store_id	=	'"	.	(int)$store_id	.	

"'");

				}

		}

		$this->db->query("DELETE	FROM	"	.	DB_PREFIX	.	"feedback_to_layout	WHERE	

feedback_id	=	'"	.	(int)$feedback_id	.	"'");

		if	(isset($data['feedback_layout']))	{

				foreach	($data['feedback_layout']	as	$store_id	=>	$layout)	{

						if	($layout['layout_id'])	{

								$this->db->query("INSERT	INTO	"	.	DB_PREFIX	.	"feedback_to_layout	

SET	feedback_id	=	'"	.	(int)$feedback_id	.	"',	store_id	=	'"	.	

(int)$store_id	.	"',	layout_id	=	'"	.	(int)$layout['layout_id']	.	"'");

						}

				}

		}

		$this->db->query("DELETE	FROM	"	.	DB_PREFIX	.	"url_alias	WHERE	query	=	

'feedback_id="	.	(int)$feedback_id.	"'");

		$this->cache->delete('feedback');

}

The	queries	update	the	database	table	row	of	feedback,	feedback	description,	feedback
store,	and	feedback	layout.	The	first	query	shown	in	the	code	will	update	the	feedback
table	row,	but	for	other	tables	of	feedback	description,	feedback	store,	and	feedback
layout,	it	first	deletes	all	the	related	feedback	as	per	the	feedback	ID	and	then	inserts	them
again.	When	the	feedback	table	is	updated,	it	deletes	all	the	related	feedback	description	in
the	feedback_description	table	and	then	inserts	the	updated	data;	although	no	changes
are	made,	it	takes	them	as	the	new	value	and	inserts	this	in	the	loop.	The	same	is	done	for
feedback_to_layout	and	feedback_to_store.	Then	it	deletes	the	cache	if	it	is	already
created.

public	function	deletefeedback($feedback_id)	{

		$this->db->query("DELETE	FROM	"	.	DB_PREFIX	.	"feedback	WHERE	feedback_id	

=	'"	.	(int)$feedback_id	.	"'");

		$this->db->query("DELETE	FROM	"	.	DB_PREFIX	.	"feedback_description	WHERE	

feedback_id	=	'"	.	(int)$feedback_id	.	"'");

		$this->db->query("DELETE	FROM	"	.	DB_PREFIX	.	"feedback_to_store	WHERE	

feedback_id	=	'"	.	(int)$feedback_id	.	"'");

		$this->db->query("DELETE	FROM	"	.	DB_PREFIX	.	"feedback_to_layout	WHERE	

feedback_id	=	'"	.	(int)$feedback_id	.	"'");

		$this->cache->delete('feedback');

}

The	preceding	code	is	used	to	delete	the	feedback;	you	have	to	take	care	to	delete	data
from	all	the	tables	whenever	you	use	the	delete	operation.	As	per	our	feedback,	you	have
to	delete	data	from	the	feedback,	feedback_description,	feedback_to_store,	and
feedback_to_layout	tables	as	well	as	the	cache	file.

public	function	getfeedback($feedback_id)	{

		$query	=	$this->db->query("SELECT	*	FROM	"	.	DB_PREFIX	.	"feedback	WHERE	

feedback_id	=	'"	.	(int)$feedback_id	.	"'");

		return	$query->row;

}

The	preceding	code	snippet	is	used	to	retrieve	a	row;	to	run	a	select	query,	you	have	to	run
the	query	with	$this->db->query(),	and	then	assign	to	some	variable	and	run	with
$Variable_Name->row;.	To	retrieve	a	single	column	and	to	retrieve	multiple	rows,	we
have	to	write	$Variable_Name->rows;,	which	returns	an	array.	As	per	our	SQL	query,	we
just	need	a	single	row	of	the	specified	feedback	ID	so	we	have	performed	$query->row;.

public	function	getfeedbackDescriptions($feedback_id)	{

		$feedback_description_data	=	array();

		$query	=	$this->db->query("SELECT	*	FROM	".DB_PREFIX	.	

"feedback_description	WHERE	feedback_id	='".	(int)$feedback_id	."'");

		foreach	($query->rows	as	$result)	{

				$feedback_description_data[$result['language_id']]	=	array(

				'feedback_author'	=>	$result['feedback_author'],

				'description'	=>	$result['description']);

		}return	$feedback_description_data;

}

The	preceding	code	retrieves	the	description	of	the	respective	feedback	ID	passed	and	will
return	all	the	languages’	description	as	well	as	return	the	description	in	an	array.

public	function	getTotalFeedbacks()	{

		$query	=$this->db->query("SELECT	COUNT(*)	AS	total	FROM	

".DB_PREFIX."feedback");

		return	$query->row['total'];

}

The	preceding	lines	of	code	return	the	total	number	of	feedback.

public	function	getfeedbacks($data	=	array())	{

		if	($data)	{

				$sql	=	"SELECT	*	FROM	"	.	DB_PREFIX	.	"feedback	f	LEFT	JOIN	".	

DB_PREFIX	.	"feedback_description	fd	ON	(f.feedback_id	=	fd.feedback_id)	

WHERE	fd.language_id	=	'"	.	(int)$this->config->get('config_language_id')	.	

"'";

				$sort_data	=	array('fd.feedback_author','f.sort_order');

				if	(isset($data['sort'])	&&in_array($data['sort'],	$sort_data))	{

								$sql	.=	"	ORDER	BY	"	.	$data['sort'];

						}	else	{$sql	.=	"	ORDER	BY	fd.feedback_author";

		}

		if	(isset($data['order'])	&&	($data['order']	==	'DESC'))	{

				$sql	.=	"	DESC";

		}	else	{$sql	.=	"	ASC";

}

if	(isset($data['start'])	||	isset($data['limit']))	{

		if	($data['start']	<	0)	{	 $data['start']	=	0;	}

		if	($data['limit']	<	1)	{	 $data['limit']	=	20;	}

		$sql	.=	"	LIMIT	"	.	(int)$data['start']	.	","	.	(int)$data['limit'];

}

$query	=	$this->db->query($sql);

return	$query->rows;

}	else	{

		$feedback_data	=	$this->cache->get('feedback.'	.	(int)$this->config-

>get('config_language_id'));

		if	(!$feedback_data)	{

				$query	=	$this->db->query("SELECT	*	FROM	"	.	DB_PREFIX	.	"feedback	f	

LEFT	JOIN	"	.	DB_PREFIX	.	"feedback_description	fd	ON	(f.feedback_id	=	

fd.feedback_id)	WHERE	fd.language_id	=	'"	.	(int)$this->config-

>get('config_language_id')	.	"'	ORDER	BY	fd.feedback_id.");

				$feedback_data	=	$query->rows;

				$this->cache->set('feedback.'	.	(int)$this->config-

>get('config_language_id'),	$feedback_data);

		}

		return	$feedback_data;

		}

}

For	retrieving	all	the	feedback	from	the	database	we	use	the	preceding	code.	The	$data
array,	which	is	passed	in	the	function,	holds	the	sort	order,	order	by,	limit	of	rows,	and
helps	in	filtering,	sorting,	and	limiting	the	rows	from	the	whole	data.	If	$data	is	set,	it
retrieves	data	from	the	SQL	query	and	retrieves	the	required	rows	by	filtering	as	per
$data;	else	it	tries	to	retrieve	from	the	cache	files	if	it	is	already	set.	If	it	does	not	find	the
cache,	it	again	runs	the	query	and	retrieves	the	rows	of	feedback	and	sets	the	cache	and
returns	the	array	of	feedback.	It	will	retrieve	the	data	from	the	feedback	and
feedback_description	table	and	return	as	an	array.	It	is	sorted	by	passed	data	as	name	or
so	on,	else	by	default,	it	is	sorted	by	$feedback_id.

public	function	getfeedbackStores($feedback_id)	{

		$feedback_store_data	=	array();

		$query	=	$this->db->query("SELECT	*	FROM	"	.	DB_PREFIX	.	

"feedback_to_store	WHERE	feedback_id	=	'"	.	(int)$feedback_id	.	"'");

		foreach	($query->rows	as	$result)	{

				$feedback_store_data[]	=	$result['store_id'];

		}

		return	$feedback_store_data;

}

The	preceding	code	returns	all	stores	that	the	specified	feedback	ID	passed.

public	function	getfeedbackLayouts($feedback_id)	{

		$feedback_layout_data	=	array();

		$query	=	$this->db->query("SELECT	*	FROM	"	.	DB_PREFIX	.	

"feedback_to_layout	WHERE	feedback_id	=	'"	.	(int)$feedback_id	.	"'");

		foreach	($query->rows	as	$result)	{

				$feedback_layout_data[$result['store_id']]	=	$result['layout_id'];

		}

		return	$feedback_layout_data;

}

The	preceding	code	returns	all	the	layouts	of	the	specified	feedback	ID	passed.

public	function	getTotalfeedbacksByLayoutId($layout_id)	{

		$query	=	$this->db->query("SELECT	COUNT(*)	AS	total	FROM	"	.	DB_PREFIX	.	

"feedback_to_layout	WHERE	layout_id	=	'"	.	(int)$layout_id	.	"'");

		return	$query->row['total'];

		}

?>

The	getTotalfeedbacksByLayout	function	will	return	the	number	of	feedback	counts	that
the	layout_id	has	passed	and	closes	the	main	model	class.	In	this	way,	you	can	create	the
model	file	and	make	any	kinds	of	data	retrieval,	insertion,	and	deletion	work	and	these
will	be	used	on	the	controller	files	by	loading	the	model	file.

Creating	the	controller	file	at	the	admin	section
Now	you	will	see	the	controller	file	of	admin	that	controls	all	the	code	insert,	list,
delete,	and	form	sections.	You	will	get	a	description	on	each	of	them.	Create	a	file	at
admin/controller/catalog/feedback.php	and	start	to	insert	the	following	lines	of	code:

<?php

class	ControllerCatalogFeedback	extends	Controller	{

		private	$error	=	array();

		public	function	index()	{

				$this->language->load('catalog/feedback');

				$this->document->setTitle($this->language->get('heading_feedback'));

				$this->load->model('catalog/feedback');

				$this->getList();

}

You	created	a	controller	named	ControllerCatalogFeedback,	which	is	extended	from	the
parent	called	Controller.	Next,	you	made	the	index	function,	which	gets	loaded	by
default.	Within	that,	it	loads	the	language	files	you	have	already	created,	and	the	title	is	set
with	the	feedback	heading	and	loaded	with	the	feedback.php	model	file.

public	function	insert()	{

		$this->language->load('catalog/feedback');

		$this->document->setTitle($this->language->get('heading_feedback'));

		$this->load->model('catalog/feedback');

		if	(($this->request->server['REQUEST_METHOD']	==	'POST')	&&	$this-

>validateForm())	{

						$this->model_catalog_feedback->addfeedback($this->request->post);

						$this->session->data['success']	=	$this->language-

>get('text_success');

						$url	=	'';

						if	(isset($this->request->get['sort']))	{

								$url	.='&sort='	.	$this->request->get['sort'];}

						if	(isset($this->request->get['order']))	{

								$url	.='&order='	.	$this->request->get['order'];}

						if	(isset($this->request->get['page']))	{

								$url	.='&page='	.	$this->request->get['page'];

						}

						$this->redirect($this->url->link('catalog/feedback','token='	.	$this-

>session->data['token']	.	$url,	'SSL'));

				}

		$this->getForm();

}

When	you	click	on	the	Insert	button,	this	function	is	called,	and	it	loads	the	feedback
language	file	and	sets	the	title	of	the	document	as	“Feedback”,	as	heading_feedback
holds	the	text	“Feedback”.	Then,	it	loads	the	feedback.php	model	file	and	checks	whether

its	form	is	submitted	or	not.	If	the	form	is	not	submitted,	it	will	load	the	getForm()
function	from	the	same	feedback.php	controller	file	that	shows	the	form.	If	the	form	is
submitted	and	is	validated,	it	will	save	the	data	into	the	database	and	sends	the	$_POST
value	to	model	$this->model_catalog_feedback->addfeedback($this->request-
>post);	for	adding	the	feedback	to	the	database.	Then,	the	success	session	is	set	and
applied	with	the	sort	order	and	limit	and	is	redirected	to	the	list	of	the	feedback.

public	function	update()	{

		$this->language->load('catalog/feedback');

		$this->document->setTitle($this->language->get('heading_feedback'));

		$this->load->model('catalog/feedback');

		if	(($this->request->server['REQUEST_METHOD']	==	'POST')	&&	$this-

>validateForm())	{

				$this->model_catalog_feedback->editfeedback($this->request-

>get['feedback_id'],	$this->request->post);

				$this->session->data['success']	=	$this->language->get('text_success');

				$url	=	'';

				if	(isset($this->request->get['sort']))	{

						$url	.='&sort='	.	$this->request->get['sort'];}

				if	(isset($this->request->get['order']))	{

						$url	.='&order='	.	$this->request->get['order'];}

				if	(isset($this->request->get['page']))	{

						$url	.='&page='	.	$this->request->get['page'];}

				$this->redirect($this->url->link('catalog/feedback',	'token='.	$this-

>session->data['token']	.	$url,	'SSL'));

				}

		$this->getForm();

		}

When	we	click	on	the	edit	link,	the	update	page	is	loaded	and	hence	the	update	function	of
this	controller	is	called.	It	also	loads	the	feedback.php	language	file,	sets	the	title	of	the
document,	and	loads	the	feedback.php	model	file.	If	the	submitted	data	are	valid	and	the
requested	method	is	POST,	the	feedback	will	be	saved	into	the	database,	else	it	again	calls
the	form	and	the	form	is	shown.	Update	is	made	using	code	$this-
>model_catalog_feedback->editfeedback($this->request->get['feedback_id'],

$this->request->post);.	It	calls	the	update	function	of	the	feedback	model,	and	the
session	is	set,	it	is	applied	the	sort	order	limit,	and	redirected	to	the	list	of	the	feedback.

public	function	delete()	{

		$this->language->load('catalog/feedback');

		$this->document->setfeedback_author($this->language-

>get('heading_feedback'));

		$this->load->model('catalog/feedback');

		if	(isset($this->request->post['selected'])	&&	$this->validateDelete())	{

				foreach	($this->request->post['selected']	as	$feedback_id)	{

						$this->model_catalog_feedback->deletefeedback($feedback_id);

				}

				$this->session->data['success']	=	$this->language->get('text_success');

				$url	=	'';

				if	(isset($this->request->get['sort']))	{

						$url	.='&sort='	.	$this->request->get['sort'];}

				if	(isset($this->request->get['order']))	{

						$url	.=	'&order='	.	$this->request->get['order'];

				}

				if	(isset($this->request->get['page']))	{

						$url	.='&page='	.	$this->request->get['page'];

				}

				$this->redirect($this->url->link('catalog/feedback',	'token='.	$this-

>session->data['token']	.	$url,	'SSL'));

				}

		$this->getList();

}

For	deleting	the	feedback,	the	preceding	code	is	used.	On	the	list	of	feedback	page	when
you	select	the	checkbox,	which	is	to	the	left	of	each	row,	and	click	on	the	delete	button,
the	delete	function	of	the	controller	is	executed.	It	deletes	the	selected	rows	from	the
database,	and	the	query	that	it	runs	is	with	the	help	of	$this->model_catalog_feedback-
>deletefeedback($feedback_id);.	The	deletefeedback	function	will	be	run	on	the	loop
or	on	each	selected	row,	and	the	rows	are	deleted.

Till	now,	we	have	shown	you	the	full	code	but	taking	the	length	of	the	code	into
consideration,	we	are	now	doing	a	copy,	paste,	and	replace	action	by	which	it	will	be	easy
for	us	to	mention	only	the	required	code	and	discard	the	one	that	is	already	mentioned.

Navigate	to	admin/controller/catalog/information.php	and	open	it.	Now	find	the
protected	function,	getList(),	copy	the	whole	function	to	our	feedback.php	controller,
and	paste	to	the	controller	class	just	below	the	delete	class	as	we	mentioned
previously;	however,	you	can	keep	it	anywhere	outside	the	other	functions.	After	pasting,
find	all	the	“information”	words	and	change	them	to	“feedback”.	Likewise,	find	all	the
“title”	words	and	change	them	to	feedback_author	but	only	within	the	getList()
function	and	not	in	the	entire	document.	With	the	changes	mentioned	previously,	you	will
see	the	following	lines	of	code:

if	(isset($this->request->get['sort']))	{

		$sort	=	$this->request->get['sort'];

}	else	{

		$sort	=	'fd.feedback_author';

}

$url	=	'';

if	(isset($this->request->get['sort']))	{

		$url	.='&sort='	.	$this->request->get['sort'];

}

Whenever	you	click	on	Sort	Order	on	the	list,	it	starts	to	order	the	table	according	to	the
sort	order.	If	there	is	no	click,	it	sorts	by	feedback_author.	Similarly,	the	page	number
and	order	number	are	set	as	well	as	the	get	value	of	sort	of	the	URL.

$this->data['breadcrumbs']	=	array();

$this->data['breadcrumbs'][]	=	array(

		'text'						=>	$this->language->get('text_home'),

		'href'						=>	$this->url->link('common/home',	'token='	.	$this->session-

>data['token'],	'SSL'),

		'separator'	=>	false

);

Breadcrumbs	are	created	in	an	array	and	passed	on	to	the	template	file.

$this->data['insert']	=	$this->url->link('catalog/feedback/insert',	

'token='	.	$this->session->data['token']	.	$url,	'SSL');

$this->data['delete']	=	$this->url->link('catalog/feedback/delete',	

'token='	.	$this->session->data['token']	.	$url,	'SSL');

Insert	and	delete	links	are	created	and	passed	on	to	the	template	file.

$data	=	array(

		'sort'		=>	$sort,

		'order'	=>	$order,

		'start'	=>	($page	-	1)	*	$this->config->get('config_admin_limit'),

		'limit'	=>	$this->config->get('config_admin_limit')

);

$feedback_total	=	$this->model_catalog_feedback->getTotalfeedbacks();

$results	=	$this->model_catalog_feedback->getfeedbacks($data);

Results	are	received	by	querying	the	database.

foreach	($results	as	$result)	{

		$action	=	array();

		$action[]	=	array(

				'text'	=>	$this->language->get('text_edit'),

		'href'	=>	$this->url->link('catalog/feedback/update',	'token='	.$this-

>session->data['token']	.	'&feedback_id='	.$result['feedback_id']	.	$url,	

'SSL')

);

		$this->data['feedbacks'][]	=	array(

				'feedback_id'	=>	$result['feedback_id'],

				'feedback_author'	=>	$result['feedback_author'],

				'sort_order'					=>	$result['sort_order'],

				'selected'							=>isset($this->request->post['selected'])	

&&in_array($result['feedback_id'],	$this->request->post['selected']),

				'action'									=>	$action

);

}

Results	received	are	combined	to	make	it	an	array	and	passed	to	the	template	file.

$this->data['heading_feedback_author']	=	$this->language-

>get('heading_feedback_author');

$this->data['text_no_results']	=	$this->language->get('text_no_results');

Messages	are	retrieved	from	the	language	file	and	passed	to	the	template	file.	Now	again
navigate	to	admin/controller/catalog/information.php,	and	open	it	to	find	the
getForm()protected	function	and	copy	the	whole	function’s	code	to	our	feedback.php
controller.	Paste	this	into	the	controller	class	just	below	the	getlist()	function	as	we
mentioned	previously,	but	you	can	keep	it	anywhere	outside	the	other	functions.

After	pasting,	find	all	the	“information”	words	and	change	them	to	“feedback”,	and
likewise	find	all	the	“title”	words	and	change	them	to	feedback_author,	but	only	within
the	getForm()	function	and	not	in	the	entire	document.	As	there	are	some	extra	fields,	we
have	to	remove	the	following	code	snippet:

if	(isset($this->request->post['keyword']))	{

		$this->data['keyword']	=	$this->request->post['keyword'];

}	elseif	(!empty($feedback_info))	{

		$this->data['keyword']	=	$feedback_info['keyword'];

}	else	{$this->data['keyword']	=	'';}

if	(isset($this->request->post['bottom']))	{

		$this->data['bottom']	=	$this->request->post['bottom'];

}	elseif	(!empty($feedback_info))	{

		$this->data['bottom']	=	$feedback_info['bottom'];

}	else	{$this->data['bottom']	=	0;}

Once	the	replacement	is	complete	and	the	extra	fields	are	removed,	our	getForm	function
is	ready.

$this->data['heading_feedback_author']	=	$this->language-

>get('heading_feedback_author');

$this->data['text_default']	=	$this->language->get('text_default');

$this->data['text_enabled']	=	$this->language->get('text_enabled');

The	preceding	lines	of	code,	and	many	such	lines	in	the	function,	take	the	text	or	the
sentence	from	the	language	and	pass	it	to	the	template	files.

if	(isset($this->request->get['feedback_id'])	&&	($this->request-

>server['REQUEST_METHOD']	!=	'POST'))	{

		$feedback_info	=	$this->model_catalog_feedback->getfeedback($this-

>request->get['feedback_id']);

		}

This	part	of	code	checks	whether	the	feedback_id	is	passed	with	the	GET	method	of	the
form,	and	if	so,	it	will	retrieve	the	feedback	and	assign	it	to	$feedback_info.

$this->data['token']	=	$this->session->data['token'];

To	preserve	the	session	state	within	the	admin	section,	the	token	session	is	defined	and
needs	to	be	passed	within	all	the	URLs	used	within	the	admin	section.

$this->load->model('localisation/language');

$this->data['languages']	=	$this->model_localisation_language-

>getLanguages();

It	loads	the	language.php	model,	which	is	at	the	localization	folder	on	the	model	section.
It	is	loaded	to	load	languages	used	in	the	site.	All	languages	used	are	passed	to	the
template	file	as	the	languages	variable.

if	(isset($this->request->post['feedback_description']))	{

		$this->data['feedback_description']	=	$this->request-

>post['feedback_description'];

}	elseif	(isset($this->request->get['feedback_id']))	{

		$this->data['feedback_description']	=	$this->model_catalog_feedback-

>getfeedbackDescriptions($this->request->get['feedback_id']);

}	else	{$this->data['feedback_description']	=	array();}

The	preceding	code	checks	whether	feedback_description	is	passed	as	POST,	and
feedback_id	is	passed	as	a	GET	method	or	something	else.	If	feedback_description	is
passed	as	POST,	it	will	hold	the	POST	data	and	if	feedback_id	is	passed	as	the	GET	method,
it	will	retrieve	feedback_description	from	the	database.	If	it	is	none,	it	will	assign	the

blank	array	to	feedback_description.

$this->load->model('setting/store');

$this->data['stores']	=	$this->model_setting_store->getStores();

It	loads	the	store.php	model	from	the	setting	folder	and	retrieves	all	the	stores	and	passes
it	to	the	template	as	the	stores	variable.

if	(isset($this->request->post['feedback_store']))	{

		$this->data['feedback_store']	=	$this->request->post['feedback_store'];

}	elseif	(isset($this->request->get['feedback_id']))	{

		$this->data['feedback_store']	=	$this->model_catalog_feedback-

>getfeedbackStores($this->request->get['feedback_id']);

}	else	{$this->data['feedback_store']	=	array(0);}

If	the	store	is	passed	as	POST,	it	will	hold	the	POST	data;	if	feedback_id	is	passed	as	GET,	it
will	retrieve	the	store	from	the	database.	If	it	is	none,	it	will	assign	an	array	with	the	zero
value	to	the	store,	which	is	the	default	store	value.	The	overall	request	data	is	checked
with	the	following	lines	of	code.

if	(isset($this->request->post['feedback_layout']))	{

		$this->data['feedback_layout']	=	$this->request->post['feedback_layout'];

}	elseif	(isset($this->request->get['feedback_id']))	{

		$this->data['feedback_layout']	=	$this->model_catalog_feedback-

>getfeedbackLayouts($this->request->get['feedback_id']);

}	else	{$this->data['feedback_layout']	=	array();}

The	code	snippets	check	whether	feedback_layout	is	passed	as	POST,	feedback_id	is
passed	as	a	GET	method,	or	something	else.	If	feedback_layout	is	passed	as	POST,	it	will
hold	the	POST	data,	if	feedback_id	is	passed	as	the	GET,	it	will	retrieve	feedback_layout
from	the	database.	If	it	is	none,	it	will	assign	the	blank	array	to	feedback_layout.

protected	function	validateForm()	{

		if	(!$this->user->hasPermission('modify',	'catalog/feedback'))	{

				$this->error['warning']	=	$this->language->get('error_permission');

		}

		if	($this->error	&&	!isset($this->error['warning']))	{

				$this->error['warning']	=	$this->language->get('error_warning');

		}	

		if	(!$this->error)	{return	true;}	else	{return	false;}

}

The	validateForm()function	is	to	validate	the	form	and	needs	to	be	copied	just	below	the
getForm()	function.	It	checks	for	user	permission,	whether	to	modify	the	feedback	section
or	not.	If	it	does	not	have	permission,	an	error	is	shown.

protected	function	validateDelete()	{

		if	(!$this->user->hasPermission('modify',	'catalog/feedback'))	{

				$this->error['warning']	=	$this->language->get('error_permission');

		}

		if	(!$this->error)	{return	true;}	else	{return	false;}

}

The	validateDelete()function	is	used	to	validate	deletion.	First,	it	checks	whether	the
user	has	permission	to	modify	or	not.	If	the	user	has	permission	to	modify,	only	he/she	is

able	to	delete.	Then,	they	place	the	closing	curly	brace	at	the	end	for	the	class.

Creating	the	template	files	for	form	and	list	at	the	admin
Navigate	to	admin/view/template/catalog/,	copy	information_form.tpl,	paste	it	in
the	same	folder,	and	rename	it	as	feedback_form.tpl.	Likewise,	copy	the
information_list.tpl	file,	paste	on	the	same	folder,	and	rename	it	to
feedback_list.tpl.

Now	open	the	feedback_list.tpl	file,	look	for	information,	and	replace	all	with
feedback.	Likewise,	look	for	title	and	replace	all	with	feedback_author.	Your
feedback_list.tpl	is	now	ready	after	the	replacing	process.	Most	of	the	code	is	already
described	in	the	feedback_list.tpl	file,	so	we	are	ignoring	them.

Now	open	the	feedback_form.tpl	file,	look	for	information,	and	replace	all	with
feedback.	Likewise,	find	title	and	replace	all	with	feedback_author.	It	contains	some
extra	fields,	so	we	have	to	remove	them.	Remove	the	following	code	from	the
feedback_form.tpl	file:

<tr>

		<td><?php	echo	$entry_keyword;	?></td>

		<td><input	type="text"	name="keyword"	value="<?php	echo	$keyword;	?>"	/>

</td>

</tr><tr>

		<td><?php	echo	$entry_bottom;	?></td>

		<td><?php	if	($bottom)	{	?>	<input	type="checkbox"	name="bottom"	

value="1"	checked="checked"	/>

		<?php	}	else	{	?>	<input	type="checkbox"	name="bottom"	value="1"/>

		<?php	}	?></td>

</tr><tr>

<td><?php	echo	$entry_keyword;	?></td>

<td><input	type="text"	name="keyword"	value="<?php	echo	$keyword;?>"	/>

</td>

</tr><tr>

		<td><?php	echo	$entry_bottom;	?></td>

		<td><?php	if	($bottom)	{	?>	<input	type="checkbox"	name="bottom"value="1"	

checked="checked"	/>

		<?php	}	else	{	?>	<input	type="checkbox"	name="bottom"	value="1"/>

		<?php	}	?></td>

</tr>

After	removing	the	preceding	code,	feedback_form.tpl	is	ready.	We	are	describing	some
code	snippets	from	the	feedback_form.tpl	file,	while	the	others	are	described	already.

<td><textarea	name="feedback_description[<?php	echo	

$language['language_id'];	?>][description]"	id="description<?php	echo	

$language['language_id'];	?>"><?php	echo	

isset($feedback_description[$language['language_id']])	?	

$feedback_description[$language['language_id']]['description']	:	'';	?>

</textarea>

		<?php	if	(isset($error_description[$language['language_id']]))	{	?>

		<?php	echo	

$error_description[$language['language_id']];	?>

		<?php	}	?>

</td>

The	preceding	code	shows	the	text	area.	Here	the	name	of	the	text	area	of	the	form	is
named	as	the	feedback_description[<?php	echo	$language['language_id'];	?>]
[description]	array	for	storing	description	as	per	the	language.	To	show	the	editor,
id=description<?php	echo	$language['language_id'];	?>	plays	a	vital	role.	With	the
same	ID	name,	the	following	code	is	called	to	show	the	editor:

<script	type="text/javascript"	src="view/javascript/ckeditor/ckeditor.js">

</script>

<script	type="text/javascript"><!--

<?phpforeach	($languages	as	$language)	{	?>

CKEDITOR.replace('description<?php	echo	$language['language_id'];?>',	{

		filebrowserBrowseUrl:'index.php?route=common/filemanager&token=<?php	echo	

$token;?>',

		filebrowserImageBrowseUrl:'index.php?route=common/filemanager&token=<?php	

echo	$token;?>',

		filebrowserFlashBrowseUrl:'index.php?route=common/filemanager&token=<?php	

echo	$token;?>',

		filebrowserUploadUrl:'index.php?route=common/filemanager&token=<?php	echo	

$token;?>',

		filebrowserImageUploadUrl:'index.php?route=common/filemanager&token=<?php	

echo	$token;?>',

		filebrowserFlashUploadUrl:'index.php?route=common/filemanager&token=<?php	

echo	$token;?>'

});

<?php	}	?>

//--></script>

With	this,	the	JavaScript	code	CKEditor	is	loaded	on	the	text	area	field.	Write	the	entire
code	and	call	the	ID	of	the	text	area	at	CKEDITOR.replace('description<?php	echo
$language['language_id'];	?>',	replace	with	your	ID	of	the	text	area,	and	the	editor
will	be	shown	at	your	text	area.

With	this,	we	complete	the	changes	at	the	admin	section.	Now	we	are	moving	towards	the
frontend	or	catalog	folder.

Creating	the	model	file	at	the	catalog	folder	frontend
We	need	to	create	a	model	file	to	retrieve	data	from	the	database.	We	will	make	the	file	at
the	catalog	folder.	Navigate	to	catalog/model/catalog/	and	create	feedback.php	and
insert	the	following	lines	of	code:

<?php

Class	ModelCatalogFeedback	extends	Model	{

		public	function	getFeedbacks()	{

				$query	=	$this->db->query("SELECT	DISTINCT	*	FROM	"	.	DB_PREFIX.	

"feedback	f	LEFT	JOIN	"	.	DB_PREFIX	."feedback_description	fd	ON	

(f.feedback_id	=	fd.feedback_id)	LEFT	JOIN	"	.	DB_PREFIX.	

"feedback_to_store	f2s	ON	(f.feedback_id	=	f2s.feedback_id)WHERE	

fd.language_id	=	'"	.	(int)$this->config->get('config_language_id')	.	"'	

AND	f2s.store_id	=	'"	.	(int)$this->config->get('config_store_id')	.	"'	AND	

f.status	=	'1'");

				return	$query->rows;

		}

		public	function	getTotalFeedbacks()	{

				$query	=	$this->db->query("SELECT	COUNT(*)	AS	total	FROM	"	.DB_PREFIX	.	

"feedback	f	LEFT	JOIN	"	.	DB_PREFIX	.	"feedback_to_store	f2s	ON	

(f.feedback_id	=	f2s.feedback_id)	WHERE	f2s.store_id	=	'"	.	(int)$this-

>config->get('config_store_id')	.	"'	AND	f.status	=	'1'");

		return	$query->row['total'];

		}

}

?>

We	create	a	class	named	ModelCatalogFeedback	as	the	feedback.php	file	is	created	in	the
catalog	folder.	Then,	we	create	a	public	function,	getFeedbacks.	It	queries	the	database	to
select	all	the	data	that	have	the	status	of	1	from	the	feedback	table	and	the
feedback_description	table,	which	is	then	returned.	At	last,	we	create	a	public	function
called	getTotalFeedbacks.	It	queries	the	database	and	counts	all	the	active	feedback.	It
returns	the	total	number	of	active	feedback.	The	model	file,	feedback.php,	is	ready.

Creating	the	language	file	at	the	frontend
Now	navigate	to	catalog/language/english/product/,	create	a	feedback.php	file,	and
paste	the	following	lines	of	code:

<?php

$_['text_feedback']					=	'List	of	feedback';

$_['text_description']		=	'List	of	feedback';

$_['text_keywords']		=	'List	of	feedback';

$_['text_error']								=	'Feedback	not	found!';

$_['text_empty']								=	'There	are	no	feedbacks	to	list.';

?>

The	required	sentences	are	defined	on	the	variable.	Create	the	feedback.php	language
file.

Creating	the	controller	file	at	the	frontend
After	creating	the	language	and	model	file,	we	are	creating	the	controller	file.	Navigate	to
catalog/controller/product/,	create	feedback.php,	and	insert	the	following	code:

<?php

class	ControllerProductFeedback	extends	Controller	{		

		public	function	index()	{

				$this->language->load('product/feedback');

				$this->load->model('catalog/feedback');

The	language	file	and	model	files	are	loaded	to	get	the	language	and	retrieve	the	model
methods.

if	(isset($this->request->get['page']))	{

		$page	=	$this->request->get['page'];

		}	else	{	$page	=	1;}

if	(isset($this->request->get['limit']))	{

		$limit	=	$this->request->get['limit'];

}	else	{

		$limit	=	$this->config->get('config_catalog_limit');

}

It	will	set	the	$page	variable	to	the	GET	value	of	the	page	if	GET	is	set,	else	$page	will	be	1.
This	is	needed	for	pagination.	It	will	set	the	$limit	variable	to	the	GET	value	of	the	limit.
If	GET	is	not	set,	$limit	will	be	the	value	of	the	catalog	limit	of	the	setting	from	the
admin.

$this->data['breadcrumbs']	=	array();

$this->data['breadcrumbs'][]	=	array(

		'text'						=>	$this->language->get('text_home'),

		'href'						=>	$this->url->link('common/home'),

		'separator'	=>	false

);

$this->data['breadcrumbs'][]	=	array(

		'text'						=>	$this->language->get('text_feedback'),

		'href'						=>	$this->url->link('product/feedback'),

		'separator'	=>'::'

);

It	adds	the	breadcrumb,	which	is	passed	as	an	array	to	the	template	file.

$this->document->setTitle($this->language->get('text_feedback'));

$this->document->setDescription($this->language->get('text_description'));

$this->document->setKeywords($this->language->get('text_keywords'));

The	preceding	lines	of	code	set	the	document	title,	metadescription,	and	keywords.	These
are	described	in	the	language	file.

$this->data['heading_title']	=	$this->language->get('text_feedback');

$this->data['text_empty']	=	$this->language->get('text_empty');

$this->data['button_continue']	=	$this->language->get('button_continue');

The	preceding	lines	of	code	are	for	retrieving	the	message	from	the	language	file	and
passing	it	to	the	template	file.

$url	=	'';

if	(isset($this->request->get['page']))	{

		$url	.='&page='	.	$this->request->get['page'];

}

$this->data['feedbacks']	=	array();

$data	=	array(

		'start'														=>	($page	-	1)	*	$limit,

		'limit'														=>	$limit

);

The	$data	variable	is	passed	as	the	parameter	to	retrieve	only	a	limited	number	of	the
feedback	data.

$results	=	$this->model_catalog_feedback->getfeedbacks($data);

foreach	($results	as	$result)	{

		$this->data['feedbacks'][]	=	array(

				'feedback_author'		=>	

$result['feedback_author'],'description'=>html_entity_decode($result['descr

iption'],ENT_QUOTES,	'UTF-8'),

);

}

The	$results	variable	retrieves	the	data,	and	it	is	run	through	the	loop	to	assign	only	the
author’s	name	and	the	described	feedback.	Feedback	description	is	stored	as	encoded
HTML,	and	we	have	to	decode	it	to	show	only	the	formatted	HTML;	we	parse	it	with
html_entity_decode.

$feedback_total	=	$this->model_catalog_feedback->getTotalFeedbacks();

The	preceding	line	of	code	retrieves	the	total	number	of	active	feedback.

$pagination	=	new	Pagination();

$pagination->total	=	$feedback_total;

$pagination->page	=	$page;

$pagination->limit	=	$limit;

$pagination->text	=	$this->language->get('text_pagination');

$pagination->url	=	$this->url->link('product/feedback','&page={page}');

$this->data['pagination']	=	$pagination->render();

The	preceding	lines	of	code	pass	the	pagination	variable	to	the	template	file	to	show
pagination.

$this->data['limit']	=	$limit;

$this->data['continue']	=	$this->url->link('common/home');

if	(file_exists(DIR_TEMPLATE	.	$this->config->get('config_template')	.	

'/template/product/feedback.tpl'))	{

				$this->template	=	$this->config->get('config_template')	

.'/template/product/feedback.tpl';

		}	else	{

				$this->template	=	'default/template/product/feedback.tpl';

		}

It	checks	whether	the	template	file	for	the	current	active	theme	is	available	or	not,	and	if
available,	it	will	render	the	feedback.tpl	file,	else	it	renders	the	feedback.tpl	file	from
the	default	theme.

$this->children	=	array(

		'common/column_left',

		'common/column_right',

		'common/content_top',

		'common/content_bottom',

		'common/footer',

		'common/header'

);

$this->response->setOutput($this->render());

}

}

?>

With	this,	the	feedback.php	controller	file	is	also	ready.

Creating	the	template	file	at	the	frontend
Navigate	to	catalog/view/theme/default/template/product,	create	feedback.tpl,	and

insert	the	following	code:

<?php	echo	$header;	?><?php	echo	$column_left;	?><?php	echo$column_right;	?

>

<div	id="content"><?php	echo	$content_top;	?>

<div	class="breadcrumb">

<?phpforeach	($breadcrumbs	as	$breadcrumb)	{	?>

<?php	echo	$breadcrumb['separator'];	?><a	href="<?php	echo	

$breadcrumb['href'];	?>"><?php	echo	$breadcrumb['text'];	?>

<?php	}	?>

</div>

The	preceding	lines	of	code	show	the	breadcrumbs.

<h1><?php	echo	$heading_title;	?></h1>

<?php	if	($feedbacks)	{	?>

<div	class="content">

<?phpforeach	($feedbacks	as	$feedback)	{	?>

<div>

<div	class="name">Name:	<?php	echo	$feedback['feedback_author'];	?></div>

<div	class="description"><?php	echo	$feedback['description'];	?></div>

</div>

<?php	}	?>

The	preceding	lines	of	code	show	the	List	of	feedback,	Author	name,	and	its	description
as	shown	in	the	following	screenshot:

To	show	the	pagination	for	the	template	file,	we	have	to	insert	the	following	lines	of	code
to	the	part	where	we	would	like	to	show	the	pagination:

<div	class="pagination"><?php	echo	$pagination;	?></div>

It	shows	the	pagination	in	the	template	file	and	mostly	we	show	the	pagination	at	the
bottom,	so	paste	the	code	at	the	end	of	the	feedback.tpl	file.

</div>

<?php	}	?>

<?php	if	(!$feedbacks)	{	?>

<div	class="content"><?php	echo	$text_empty;	?></div>

If	there	are	no	feedback,	a	message	saying	There	are	no	feedbacks	to	show	is	shown	as
per	the	language	file.

<div	class="buttons">

<div	class="right"><a	href="<?php	echo	$continue;	?>"	class="button"><?php	

echo	$button_continue;	?></div>

</div>

<?php	}	?>

<?php	echo	$content_bottom;	?></div>

<?php	echo	$footer;	?>

With	this,	the	template	file	is	also	complete	and	thus	our	feedback	management	is
complete.

Now,	we	insert	the	link	on	the	menu	to	be	able	to	manage	the	feedback,	so	navigate	to
admin/language/english/common/header.php	and	look	for	the	following	line	of	code:

$_['text_zone']																								=	'Zones';

And	after	this	insert	the	following	line	of	code:

$_['text_feedback']																								=	'Feedback';

In	the	language	file,	we	defined	text_feedback,	which	we	need	to	call	at	the	controller
and	pass	it	to	the	template.	Now,	we	are	calling	in	the	controller	file,	so	navigate	to
admin/controller/common/header.php	and	look	for	the	following	line	of	code:

$this->data['heading_title']	=	$this->language->get('heading_title');

Then	insert	the	following	line	of	code:

$this->data['text_feedback']	=	$this->language->get('	text_feedback');

Likewise,	for	linking	the	Feedback	word,	we	have	to	define	the	URL	and	it	is	done	as
shown	in	the	following	code.	For	this,	we	have	to	insert	the	following	lines	of	code	just
before	$this->data['stores']	=	array();:

$this->data['feedback_link']	=	$this->url->link('catalog/feedback',	

'token='	.	$this->session->data['token'],	'SSL');

Now	navigate	to	admin/view/template/common/header.tpl	and	look	for	the	following
line	of	code:

<a	href="<?php	echo	$review;	?>"><?php	echo	$text_review;	?>

Then,	insert	the	following	line	of	code:

<a	href="<?php	echo	$feedback;	?>"><?php	echo	$feedback;	?>

With	the	preceding	code	insertion,	you	will	be	able	to	see	the	Feedback	link	when	you
hover	on	Catalog	of	the	admin	menu.	Now	click	on	the	Feedback	link	and	you	will	be	able
to	see	the	list	of	feedback,	if	there	is	any,	as	well	as	the	Insert	button	and	the	Delete

button.	Now	you	are	ready	to	manage	the	feedback.

Till	now	we	have	created	the	page	to	list	the	feedback	and	a	form	to	edit,	delete,	and	insert
the	feedback.	Now,	you	can	also	create	the	module	for	feedback	by	following	the	steps	in
the	previous	chapters.	For	viewing	the	list	of	feedback	at	the	frontend,	we	have	to	use	the
link	as	follows	and	insert	the	link	somewhere	in	the	templates	so	that	visitors	will	be	able
to	see	the	feedback	list.
http://www.example.com/index.php?route=product/feedback

The	Tips	module
We	are	creating	the	Tips	module.	When	the	Tips	module	is	activated	at	the	admin	section
from	Admin	|	Extensions	|	Order	Totals,	it	will	be	listed	in	the	Order	Totals	listing	page,
and	you	will	see	the	Tips	module	activated	at	Shopping	Cart.	After	entering	the	amount
and	clicking	on	the	Apply	Tips	button,	the	extra	amount	is	added	to	the	order	total,	which
adds	to	the	total	cost	of	the	order.

Creating	the	language	file	at	the	admin	section
To	create	a	language	file	for	the	Order	Total	module,	we	have	to	create	the	file	at	the	total
folder	in	the	language	folder.	Navigate	to	admin/language/english/total/,	and	create	a
tips.php	file	and	insert	the	following	lines	of	code:

<?php

$_['heading_title']				=	'Tips	Fee';

$_['text_total']							=	'Order	Totals';

$_['text_success']	=	'Success:	You	have	modified	tips	fee	total!';

$_['entry_total']						=	'Order	Total:';

$_['entry_fee']								=	'Fee:';

$_['entry_tax_class']		=	'Tax	Class:';

$_['entry_status']					=	'Status:';

$_['entry_sort_order']	=	'Sort	Order:';

$_['error_permission']	=	'Warning:	You	do	not	have	permission	to	modify	

Tips	fee	total!';

?>

Creating	the	controller	file	at	the	admin	section
After	creating	the	language	file,	we	now	need	to	create	the	controller	file.	Navigate	to
admin/controller/total/	and	create	tips.php	and	insert	the	following	code.	Most	of
the	code	has	already	been	described,	so	we	will	skip	the	descriptions	here.

<?php

class	ControllerTotaltips	extends	Controller	{

		private	$error	=	array();

		public	function	index()	{

				$this->language->load('total/tips');

				$this->document->setTitle($this->language->get('heading_title'));

				$this->load->model('setting/setting');

				if	(($this->request->server['REQUEST_METHOD']	==	'POST')	&&$this-

>validate())	{

						$this->model_setting_setting->editSetting('tips',	$this->request-

>post);

						$this->session->data['success']	=	$this->language-

>get('text_success');

						$this->redirect($this->url->link('extension/total',	'token='.	$this-

>session->data['token'],	'SSL'));

				}

The	group	column	in	the	database	setting	table	has	the	value	tips	as	the	word	“tips”	is
passed	from	$this->model_setting_setting->editSetting('tips',	$this->request-
>post);	and	therefore	each	setting	value	of	the	Tips	module	will	have	the	tips	value	in
the	group	column.	When	saved,	we	will	see	rows	at	the	setting	table	as	shown	in	the
following	screenshot:

The	following	is	the	language	section	part	in	the	controller	to	assign	the	variable,	which
will	be	used	on	the	template	files:

$this->data['heading_title']	=	$this->language->get('heading_title');

$this->data['text_enabled']	=	$this->language->get('text_enabled');

$this->data['text_disabled']	=	$this->language->get('text_disabled');

$this->data['text_none']	=	$this->language->get('text_none');

$this->data['entry_status']	=	$this->language->get('entry_status');

$this->data['entry_sort_order']	=	$this->language->get('entry_sort_order');

$this->data['button_save']	=	$this->language->get('button_save');

$this->data['button_cancel']	=	$this->language->get('button_cancel');

if	(isset($this->error['warning']))	{

		$this->data['error_warning']	=	$this->error['warning'];

}	else	{

		$this->data['error_warning']	=	'';

}

Up	to	this	point,	the	language	is	loaded	to	the	variable	and	passed	to	the	template	files.

$this->data['breadcrumbs']	=	array();

$this->data['breadcrumbs'][]	=	array(

		'text'						=>	$this->language->get('text_home'),

		'href'						=>	$this->url->link('common/home',	'token='	.	$this->session-

>data['token'],	'SSL'),

		'separator'	=>	false

);

$this->data['breadcrumbs'][]	=	array(

		'text'						=>	$this->language->get('text_total'),

		'href'						=>	$this->url->link('extension/total',	'token='	.$this-

>session->data['token'],	'SSL'),

		'separator'	=>'	::	'

);

$this->data['breadcrumbs'][]	=	array(

		'text'						=>	$this->language->get('heading_title'),

		'href'						=>	$this->url->link('total/tips',	'token='	.	$this->session-

>data['token'],	'SSL'),

		'separator'	=>'	::	'

);

Breadcrumbs	are	created	in	an	array	and	passed	to	the	template	files.

$this->data['action']	=	$this->url->link('total/tips',	'token='	.$this-

>session->data['token'],	'SSL');

$this->data['cancel']	=	$this->url->link('extension/total','token='	.	

$this->session->data['token'],	'SSL');

if	(isset($this->request->post['tips_status']))	{

		$this->data['tips_status']	=	$this->request->post['tips_status'];

}	else	{

		$this->data['tips_status']	=	$this->config->get('tips_status');

}

if	(isset($this->request->post['tips_sort_order']))	{

		$this->data['tips_sort_order']	=	$this->request->post['tips_sort_order'];

}	else	{

		$this->data['tips_sort_order']	=	$this->config->get('tips_sort_order');

}

$this->template	=	'total/tips.tpl';

$this->children	=	array(

		'common/header',

		'common/footer'

);

$this->response->setOutput($this->render());

}

protected	function	validate()	{

		if	(!$this->user->hasPermission('modify',	'total/tips'))	{

				$this->error['warning']	=	$this->language->get('error_permission');

		}

if	(!$this->error)	{

		return	true;

}	else	{

		return	false;

}

}

}

?>

Until	here,	the	cancel	and	form	action	URL	are	defined,	and	the	status	of	the	Tips	module
is	assigned	as	per	the	active	POST	method,	else	from	the	database	config	settings.
Likewise,	a	sort	order	of	the	Tips	module	is	assigned	and	the	tips.tpl	template	is
rendered.

The	validate	function	is	to	check	whether	the	user	has	the	permission	to	modify	or	not.	If
they	do,	only	then	it	returns	true,	else	false.

Creating	the	template	file	at	the	admin	section
Navigate	to	admin/view/template/total/	and	create	tips.tpl	and	insert	the	following
code:

<?php	echo	$header;	?>

<div	id="content">

<div	class="breadcrumb">

<?php	foreach	($breadcrumbs	as	$breadcrumb)	{	?>

<?php	echo	$breadcrumb['separator'];	?><a	href="<?php	echo	

$breadcrumb['href'];	?>"><?php	echo	$breadcrumb['text'];	?>

<?php	}	?>

</div>

<?php	if	($error_warning)	{	?>

<div	class="warning"><?php	echo	$error_warning;	?></div>

<?php	}	?>

<div	class="box">

<div	class="heading">

<h1><imgsrc="view/image/total.png"	alt=""	/><?php	echo	$heading_title;	?>

</h1>

<div	class="buttons"><?php	

echo	$button_save;	?><a	href="<?php	echo	$cancel;	?>"	class="button"><?

php	echo	$button_cancel;	?></div>

</div>

<div	class="content">

<form	action="<?php	echo	$action;	?>"	method="post"	

enctype="multipart/form-data"	id="form">

<table	class="form">

<tr>

<td><?php	echo	$entry_status;	?></td>

<td><select	name="tips_status">

<?php	if	($tips_status)	{	?>

<option	value="1"	selected="selected"><?php	echo	$text_enabled;	?></option>

<option	value="0"><?php	echo	$text_disabled;	?></option>

<?php	}	else	{	?>

<option	value="1"><?php	echo	$text_enabled;	?></option>

<option	value="0"	selected="selected"><?php	echo	$text_disabled;	?>

</option>

<?php	}	?>

</select></td>

</tr>

<tr>

<td><?php	echo	$entry_sort_order;	?></td>

<td><input	type="text"	name="tips_sort_order"	value="<?php	echo	

$tips_sort_order;	?>"	size="1"	/></td>

</tr>

</table>

</form>

</div>

</div>

</div>

<?php	echo	$footer;	?>

Changes	made	in	the	cart	file	at	the	frontend
Navigate	to	catalog/view/theme/default/template/checkout/	and	open	cart.tpl	and
paste	the	following	code	just	before	the	<?php	if	($voucher_status)	{	?>	code.

<?php	if	($this->config->get('tips_status')==1)	{	?>

<tr	class="highlight">

<td><?php	if	($next	==	'tips')	{	?>

<input	type="radio"	name="next"	value="tips"	id="use_tips"	

checked="checked"	/>

	 <?php	}	else	{	?>

<input	type="radio"	name="next"	value="tips"	id="use_tips"	/>

<?php	}	?></td>

<td>Enter	the	Tips</td>

</tr>

<?php	}	?>

The	preceding	code	will	show	a	radio	button	followed	by	the	Enter	the	Tips	text.	On
selecting	this	radio	button,	div	with	the	id	of	tips	is	displayed.

Now	just	before	the	<div	id="voucher"	class="content">	line,	paste	the	following
code:

<div	id="tips"	class="content"	style="display:	<?php	echo	($next	==	'tips'	

?	'block'	:	'none');	?>;">

<form	action="<?php	echo	$action;	?>"	method="post"	

enctype="multipart/form-data">

							Enter	your	amount

<input	type="text"	name="tips"	value=""	/>

<input	type="hidden"	name="next"	value="tips"	/>

<input	type="submit"	value="Apply	Tips"	class="button"	/>

</form>

</div>

It	shows	the	Enter	your	amount	form	and	an	Apply	Tips	button.

Changes	in	the	shopping	cart	page	to	show	tips
Navigate	to	catalog/controller/checkout/	and	open	cart.php.	Look	for	//	Voucher
and	paste	the	following	lines	of	code	before	it:

//	Tips				

if	(isset($this->request->post['tips']))	{

		$this->session->data['tips']	=	$this->request->post['tips'];

		$this->session->data['success']	=	$this->language->get('text_tips');

		$this->redirect($this->url->link('checkout/cart'));

}

It	activates	the	session	for	total	extension.	While	installing	the	Order	Total	module,	it	is
saved	on	the	extension	table	as	total	just	like	the	Tips	module	gets	saved	as	shown	in	the
following	screenshot:

So	once	the	session	of	tips	is	activated,	the	entire	total	is	calculated	and	we	do	not	need	to
work	out	another.	We	just	need	to	activate	the	session	of	the	tips,	which	we	have	done
with	the	preceding	code.	With	this,	our	Order	Total	module	is	complete.

Summary
In	this	chapter,	we	learned	the	ways	to	manage	data.	This	was	achieved	by	creating	pages,
listing	it	out,	inserting	the	data	to	the	database	and	retrieving	it	either	to	display	or	to	edit,
and	finally	deleting	the	data.	Likewise,	we	showed	you	how	to	list	the	data	at	the	frontend
by	making	the	page.	At	the	end,	we	created	the	Order	Total	Tips	module	and	showed	you
how	it	changed	the	order	totals.	Using	this,	you	will	be	able	to	create	modules	and	pages
to	manage	the	data	across	OpenCart.

Index
A

Add	Module	button
effects	/	Effects	of	clicking	on	the	Add	Module	button

admin	folder
modifications	/	Changes	made	in	the	admin	folder
featured.php	file,	exploring	/	Exploring	the	featured.php	file	under	the	admin
folder
featured.tpl	file,	exploring	/	Exploring	the	featured.tpl	file	under	admin	folder
changes	/	Changes	made	in	the	admin	folder

admin	module
language	files,	creating	/	Creating	the	language	files	for	the	admin	module	in
OpenCart

admin	section
controller,	creating	/	Creating	the	controller	in	the	admin	section	of	the
OpenCart	module
template	file,	creating	at	/	Creating	the	template	file	at	admin	in	the	OpenCart
module,	Breadcrumbs	section	for	the	module
files	creating,	for	feedback	/	Creating	files	at	the	admin	section	for	feedback
language	file,	creating	at	/	Creating	the	language	file	at	the	admin	section,
Creating	the	language	file	at	the	admin	section
model	file,	creating	at	/	Creating	the	model	file	at	the	admin	section
controller	file,	creating	at	/	Creating	the	controller	file	at	the	admin	section,
Creating	the	controller	file	at	the	admin	section
template	files,	creating	at	/	Creating	the	template	files	for	form	and	list	at	the
admin,	Creating	the	template	file	at	the	admin	section

affiliate	/	Global	library	methods

C
cache	/	Global	library	methods
captcha	/	Global	library	methods
cart	/	Global	library	methods
cart	file

modifications,	at	frontend	/	Changes	made	in	the	cart	file	at	the	frontend
catalog	(frontend)	module

language	file,	creating	for	/	Creating	the	language	file	for	catalog	(frontend)
module	in	OpenCart
controller	file,	creating	for	/	Creating	the	controller	file	for	catalog	(frontend)
module	in	OpenCart
template	file,	creating	for	/	Creating	the	template	file	for	catalog	(frontend)
module	in	OpenCart

catalog	folder
modifications	/	Changes	made	in	the	catalog	folder
featured.php	file,	exploring	/	Exploring	the	featured.php	file	under	the	catalog
folder
changes	/	Changes	made	in	the	catalog	folder

catalog	folder	frontend
model	file,	creating	at	/	Creating	the	model	file	at	the	catalog	folder	frontend

code,	Featured	module
exploring	/	Exploring	the	code	used	in	the	Featured	module

config	/	Global	library	methods
controller

creating,	in	admin	section	/	Creating	the	controller	in	the	admin	section	of	the
OpenCart	module

controller	file
creating,	for	catalog	(frontend)	module	/	Creating	the	controller	file	for	catalog
(frontend)	module	in	OpenCart
creating,	at	admin	section	/	Creating	the	controller	file	at	the	admin	section,
Creating	the	controller	file	at	the	admin	section
creating,	at	frontend	/	Creating	the	controller	file	at	the	frontend,	Creating	the
template	file	at	the	frontend

currency	/	Global	library	methods
customer	/	Global	library	methods

D
database	/	Global	library	methods
database	tables

for	feedback	/	Database	tables	for	feedback
document	/	Global	library	methods

E
encryption	/	Global	library	methods

F
featured.php	file

under	admin	folder,	exploring	/	Exploring	the	featured.php	file	under	the	admin
folder,	Exploring	the	featured.tpl	file	under	admin	folder
under	catalog	folder,	exploring	/	Exploring	the	featured.php	file	under	the
catalog	folder

featured.tpl	file
under	admin	folder,	exploring	/	Exploring	the	featured.tpl	file	under	admin
folder

Featured	module
in	OpenCart	1.5.5.1,	configuring	/	Configuring	the	Featured	module	in
OpenCart	1.5.5.1
code,	exploring	/	Exploring	the	code	used	in	the	Featured	module
featured.tpl	file	under	admin	folder,	exploring	/	Exploring	the	featured.tpl	file
under	admin	folder
featured.php	file	under	catalog	folder,	exploring	/	Exploring	the	featured.php	file
under	the	catalog	folder

feedback
about	/	Getting	started	with	feedback	management
database	tables	/	Database	tables	for	feedback
files,	creating	for	admin	section	/	Creating	files	at	the	admin	section	for
feedback

frontend
language	file,	creating	at	/	Creating	the	language	file	at	the	frontend
controller	file,	creating	at	/	Creating	the	controller	file	at	the	frontend
template	file,	creating	at	/	Creating	the	template	file	at	the	frontend
cart	file,	modifications	/	Changes	made	in	the	cart	file	at	the	frontend

G
getForm()	function	/	Creating	the	controller	file	at	the	admin	section
getList()	function	/	Creating	the	controller	file	at	the	admin	section
Global	library	methods

affiliate	/	Global	library	methods
cache	/	Global	library	methods
captcha	/	Global	library	methods
cart	/	Global	library	methods
config	/	Global	library	methods
currency	/	Global	library	methods
customer	/	Global	library	methods
database	/	Global	library	methods
document	/	Global	library	methods
encryption	/	Global	library	methods
language	/	Global	library	methods
length	/	Global	library	methods
log	/	Global	library	methods
mail	/	Global	library	methods
pagination	/	Global	library	methods
request	/	Global	library	methods
response	/	Global	library	methods
session	/	Global	library	methods
tax	/	Global	library	methods
URL	/	Global	library	methods
user	/	Global	library	methods
weight	/	Global	library	methods

H
Hello	World	Content	field	/	Configuring	the	module
Hello	World	module

creating	/	Creating	the	Hello	World	module

L
language	/	Global	library	methods
language	file

creating,	for	catalog	(frontend)	module	/	Creating	the	language	file	for	catalog
(frontend)	module	in	OpenCart
creating,	at	admin	section	/	Creating	the	language	file	at	the	admin	section,
Creating	the	language	file	at	the	admin	section
creating,	at	frontend	/	Creating	the	language	file	at	the	frontend

language	files
creating,	for	admin	module	/	Creating	the	language	files	for	the	admin	module	in
OpenCart

length	/	Global	library	methods
log	/	Global	library	methods

M
mail	/	Global	library	methods
model	file

creating,	at	admin	section	/	Creating	the	model	file	at	the	admin	section
creating,	at	catalog	folder	frontend	/	Creating	the	model	file	at	the	catalog	folder
frontend

module
Hello	World	module,	creating	/	Creating	the	Hello	World	module
admin	folder,	modifications	/	Changes	made	in	the	admin	folder
catalog	folder,	modifications	/	Changes	made	in	the	catalog	folder
installing	/	Installing	a	module
configuring	/	Configuring	the	module
layouts	/	Layouts	for	the	module
positions	/	Positions	for	the	module
status	/	Status	of	the	module
sort	order	/	Sort	order	of	the	modules
same	module,	displaying	in	different	layout	/	Show	same	module	in	different
layouts
Add	Module	button,	effects	/	Effects	of	clicking	on	the	Add	Module	button
uninstalling	/	Uninstalling	the	module

O
oc_feedback_description	table	/	Database	tables	for	feedback
oc_feedback_to_store	table	/	Database	tables	for	feedback
off-site	payment	/	Off-site	payment
on-site	payment	/	On-site	payment
OpenCart	1.5.5.1

Featured	module,	configuring	/	Configuring	the	Featured	module	in	OpenCart
1.5.5.1

Order	Total	module
about	/	The	Order	Total	module

P
pagination	/	Global	library	methods
payment	module

about	/	The	Payment	module
off-site	payment	/	Off-site	payment
on-site	payment	/	On-site	payment

positions,	module
column	left	/	Positions	for	the	module
column	right	/	Positions	for	the	module
column	top	/	Positions	for	the	module
column	bottom	/	Positions	for	the	module

R
request	/	Global	library	methods
response	/	Global	library	methods

S
session	/	Global	library	methods
shipping	module

about	/	The	Shipping	module
admin	folder,	changes	/	Changes	made	in	the	admin	folder
catalog	folder,	changes	/	Changes	made	in	the	catalog	folder

shopping	cart	page
to	show	tips,	modifications	/	Changes	in	the	shopping	cart	page	to	show	tips

sort	order	/	Sort	order	of	the	modules

T
tax	/	Global	library	methods
template	file

creating,	at	admin	/	Creating	the	template	file	at	admin	in	the	OpenCart	module,
Breadcrumbs	section	for	the	module
creating,	for	catalog	(frontend)	module	/	Creating	the	template	file	for	catalog
(frontend)	module	in	OpenCart
creating,	at	admin	section	/	Creating	the	template	file	at	the	admin	section

template	files
creating,	for	list	/	Creating	the	template	files	for	form	and	list	at	the	admin
creating,	for	form	/	Creating	the	template	files	for	form	and	list	at	the	admin

Tips	module
about	/	The	Tips	module
language	file,	creating	at	admin	section	/	Creating	the	language	file	at	the	admin
section
controller	file,	creating	at	admin	section	/	Creating	the	controller	file	at	the
admin	section
template	file,	creating	at	admin	section	/	Creating	the	template	file	at	the	admin
section
cart	file	at	frontend,	modifications	/	Changes	made	in	the	cart	file	at	the	frontend
shopping	cart	page	to	show	tips,	modifications	/	Changes	in	the	shopping	cart
page	to	show	tips

U
uninstall()	/	Uninstalling	the	module
update	function	/	Creating	the	controller	file	at	the	admin	section
URL	/	Global	library	methods
user	/	Global	library	methods

V
validateForm()function	/	Creating	the	controller	file	at	the	admin	section

W
weight	/	Global	library	methods

	Getting Started with OpenCart Module Development
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers and more
	Why Subscribe?
	Free Access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Getting Started with OpenCart Modules
	Creating the Hello World module
	Changes made in the admin folder
	Changes made in the catalog folder
	Installing, configuring, and uninstalling a module
	Installing a module
	Configuring the module
	Layouts for the module
	Positions for the module
	Status of the module
	Sort order of the modules
	Show same module in different layouts
	Effects of clicking on the Add Module button
	Uninstalling the module
	File structure – admin and frontend
	Creating the language files for the admin module in OpenCart
	Creating the controller in the admin section of the OpenCart module
	Creating the template file at admin in the OpenCart module
	Breadcrumbs section for the module
	Creating the language file for catalog (frontend) module in OpenCart
	Creating the controller file for catalog (frontend) module in OpenCart
	Creating the template file for catalog (frontend) module in OpenCart
	Summary
	2. Describing The Code of Extensions
	Global library methods
	Detailed description of the Featured module
	Configuring the Featured module in OpenCart 1.5.5.1
	Exploring the code used in the Featured module
	Exploring the featured.php file under the admin folder
	Exploring the featured.tpl file under admin folder
	Exploring the featured.php file under the catalog folder
	The Shipping module
	Changes made in the admin folder
	Changes made in the catalog folder
	The Payment module
	Off-site payment
	On-site payment
	The Order Total module
	Summary
	3. Creating Custom OpenCart Modules
	Getting started with feedback management
	Database tables for feedback
	Creating files at the admin section for feedback
	Creating the language file at the admin section
	Creating the model file at the admin section
	Creating the controller file at the admin section
	Creating the template files for form and list at the admin
	Creating the model file at the catalog folder frontend
	Creating the language file at the frontend
	Creating the controller file at the frontend
	Creating the template file at the frontend
	The Tips module
	Creating the language file at the admin section
	Creating the controller file at the admin section
	Creating the template file at the admin section
	Changes made in the cart file at the frontend
	Changes in the shopping cart page to show tips
	Summary
	Index

