
www.allitebooks.com

http://www.allitebooks.org

Getting Started
with Windows VDI

Create, maintain, and secure scalable and resilient
virtual desktops with Windows 8.1 and Windows
Server 2012 R2

Andrew Fryer

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Windows VDI

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2014

Production reference: 1070714

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-146-1

www.packtpub.com

Cover image by Andrew Fryer (andrew.fryer@live.co.uk)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Andrew Fryer

Reviewers
Ed Baker

Erik Bakker

Marin Frankovic

Patrick Lownds

Puthiyavan Udayakumar

Commissioning Editor
Akram Hussain

Acquisition Editor
Neha Nagwekar

Content Development Editor
Sruthi Kutty

Technical Editors
Dennis John

Sebastian Rodrigues

Gaurav Thingalaya

Copy Editors
Insiya Morbiwala

Aditya Nair

Alfida Paiva

Laxmi Subramanian

Project Coordinator
Venitha Cutinho

Proofreaders
Ting Baker

Ameesha Green

Paul Hindle

Indexers
Mehreen Deshmukh

Rekha Nair

Graphics
Ronak Dhruv

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Andrew Fryer (andrew.fryer@live.co.uk and @deepfat) started out by working
in the IT industry for the British government in a number of roles, including as a
forensic computer expert and development team leader. This was followed by his
second career as a BI consultant, mainly on the Microsoft platform in a variety of
industries from MTV to Marks & Spencer.

For the last seven years, Andrew has been a Technical Evangelist for Microsoft in
the UK. Essentially, this includes working with Microsoft's latest technologies and
explaining the art of the possible to the TechNet community. Some of this includes
presenting at big events such as TechEd, IPExpo, and TechDays Online, as well as
smaller, more focused events such as IT camps and individual customer engagements.
Andrew also tries to keep his blog named Insufficient data (www.andrewfryer.com) up
to date with practical advice and how-to videos, as well as thought leadership around
the wider issues affecting IT in the UK. You'll also find Andrew presenting at various
user groups in the UK, such as Spiceworks, the Virtualization User Group,
and SQLBits.

Thanks to Juliet and my other family—the TechNet UK team of Dan,
Ed, Simon, Renee, Steve, and of course Andy M for their support and
for letting me get a word in edgeways!

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Ed Baker, BSc(Hons), FBCS CITP, FIAP, is a 25-year veteran in the IT industry.
Currently employed as an Infrastructure Evangelist, Ed spends most of his
time writing, blogging, talking, and playing tech. Ed holds a good number of
industry certifications, including those in Microsoft's MCSE Private Cloud, Server
Infrastructure, and many more. Ed is currently a Microsoft Certified Trainer (MCT)
and acts as a Regional Lead for the United Kingdom.

Ed is a Freemason, and currently the Communications Officer for the Province of
Worcestershire in the United Kingdom; when not talking Freemasonry or tech, Ed
spends most of his time either riding his beloved motorcycle or engaging in charity
fundraising by running, walking, or jumping!

Ed is a contributing author to several Microsoft Official Academic Curriculum titles
covering Windows Server 2012 and Windows 8. Ed is a Chartered Professional
Fellow of the British Computer Society and a Fellow of the Institution of Analysts and
Programmers. Ed also spent many years as a lecturer at Open University, covering
topics as varied as Project Management, Windows Server, Linux, and Robotics.

Erik Bakker is a freelance consultant / architect based in the Netherlands with
a strong focus on Microsoft and Citrix virtualization technologies (SBC and VDI),
and implementing and designing Microsoft Private and Public cloud solutions and
the System Center Suite in large enterprise environments.

He's been a Microsoft MCSE since 1999 and has broad knowledge of almost
any Microsoft product. Besides Microsoft certification, he also holds the highest
technical certification for Citrix and is a Certified Citrix Integration Architect and
Certified Citrix Expert for Virtualization. Erik can be contacted on Twitter using
the @bakker_erik handle.

www.allitebooks.com

http://www.allitebooks.org

Marin Frankovic was born in Makarska, Croatia, in 1976, where he completed
elementary and part of high school. He graduated from high school in the USA, where
he attended his senior year as an exchange student. In 2003, he earned the mag. oec.
degree from the Faculty of Economics in Zagreb, majoring in Business Computing. As
a student, he volunteered in his faculty's IT department for a year as technical support.

After obtaining his degree, Marin started as a Microsoft MOC and IBM ACE
instructor in the largest private IT education company, Algebra. There, he also started
as a consultant for infrastructure, virtualization, and cloud computing based on
Microsoft technologies. Later on, when Algebra opened private colleges for applied
computing, he took on a position as head of the operating systems department and
took on the responsibility of creating course curriculums and managing several
lecturers and assistants.

He also delivers lectures on several key courses in system administration track.
Five years in a row, Microsoft honored him with the MVP title for System Center
and Datacenter Management. Marin is a regular speaker on all regional conferences,
such as WinDays, KulenDayz, MobilityDay, NT konferenca, MS NetWork, and
DevArena. In 2011, he was awarded the Microsoft ISV award for his contribution to
the Microsoft community. Marin regularly writes technical articles for the Mreža IT
magazine. His main interests today are cloud computing, virtualization as its core
component, and resources consolidation based on Microsoft technologies such as
Windows Server and System Center applications.

Patrick Lownds is a Master Solution Architect working in the EMEA Data Center
Consulting practice for TS Consulting, which is a business unit in Hewlett-Packard's
Enterprise Group division. Patrick is based in London, England, and spends
the majority of his time consulting on virtualization, cloud, and workforce
productivity solutions.

Patrick has been working in the IT industry since 1988, focusing mainly on core
infrastructure technologies within the data center, and has in the past worked with
virtual desktop solutions from Citrix, Microsoft, and VMware. In fact, one of the first
VDI projects Patrick was ever involved in was for VMware VDM 2.0 back in 2008.

Patrick holds a number of certifications from Citrix, Microsoft, and VMware, and
was recognized for his independent community leadership, technical expertise, and
real-world knowledge of Microsoft products back in 2009, when he was awarded
the title of Microsoft Most Valuable Professional (MVP) for Hyper-V. Patrick speaks
around the world at numerous HP and Microsoft events, and his work has been
published in magazines, articles, and books.

www.allitebooks.com

http://www.allitebooks.org

When not consulting, speaking, or writing about virtualization, cloud, and workforce
productivity solutions, he can be most often found on a rugby pitch teaching Tag
Rugby to children of various ages. Patrick can be contacted on Twitter using the
handle @PatrickLownds.

Puthiyavan Udayakumar has more than six years' IT experience with
expertise in Citrix, VMware, Microsoft products, and Apache CloudStack. He has
extensive experience in designing and implementing virtualization solutions using
various Citrix, VMware, and Microsoft products. He is an IBM-certified Solution
Architect and Citrix-certified Enterprise Engineer. In addition, he has more than 15
certifications in infrastructure products.

He is the author of the book, Getting Started with Citrix® CloudPortal™, Packt Publishing
and Getting Started with Citrix Provisioning Services 7.0, Packt Publishing. He holds a
master's degree in Science with a specialization in System Software from Birla Institute
of Technology and Science, Pilani, and also holds a national award from the Indian
Society for Technical Education. He has presented various research papers at more
than 15 national and international conferences, including IADIS (held in Dublin,
Ireland) followed by the IEEE pattern.

I would like to thank Packt Publishing for giving me the opportunity
to review this book. It is a very well-written book, and the project
coordinator has done a great job on it.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today
and view nine entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise
on Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Putting the V in VDI – An Introduction to Virtualization
in Hyper-V 11

Server virtualization and Hyper-V 12
Virtual Hard Disks 13
Installing and configuring Hyper-V 14
Configuring Hyper-V 16
Creating a simple virtual machine 20

Checkpoints 25
Managing Windows Server and Hyper-V 25

Hyper-V Server and Server Core 27
Getting started with server management 29
Creating the RDS-DC VM 29
Configuring the new VM as a DC 32
Adding users and groups 34
Joining the physical host to the domain 35
Managing multiple servers in Server Manager 35
Desired State Configuration 37

Summary 38
Chapter 2: Designing a Virtual Desktop Infrastructure 39

Remote Desktop Services and VDI 39
Advantages of remote desktops 41

VDI versus Session Virtualization 42
Remote applications in RDS 43
VDI roles 44

Remote Desktop Virtualization Host 44
Remote Desktop Connection Broker 45
Remote Desktop Web Access Server 45

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Remote Desktop Gateway 45
Remote Desktop licensing server 46
Remote Desktop Session Host 46

Types of VDI collections 46
Getting started with VDI 48

Creating the virtual desktop template 49
Setting up and configuring the RDS roles 51
Creating a Pooled Collection 56

Creating an RD Session Collection 61
Summary 65

Chapter 3: Putting the D in VDI – Creating a Desktop Template 67
Desktop deployment for VDI 67
Microsoft deployment tools 70
Installing MDT 71
Working with answer files 73
Building a new Virtual Desktop Template with MDT 76

Creating a task sequence to deploy the captured OS to
the reference computer 76
Updating the deployment share 77
Creating the reference computer 78
Running the deployment wizard 79

Automating MDT 81
Deploying applications with MDT 84
Configuring collection properties 86
Group Policy and the virtual desktop 88

Group Policy with Session Virtualization 88
Application control 89

Summary 94
Chapter 4: Putting the R in Remote Desktop 95

Introducing the Remote Desktop Gateway 95
Certificates 96

Creating a self-signed certificate 98
Getting started with the Remote Desktop Gateway 99
Active Directory authentication 104

Opening additional ports on the firewall 104
Relying on a forest trust relationship 104
Using a read-only domain controller 105

Creating an RODC 105
Creating the perimeter network 108

Configuring the virtual switches 111

Table of Contents

[iii]

Configuring Routing and Remote Access 112
Completing the gateway design 113

Locking down the perimeter network 116
Active Directory 116
The remote desktop 118

Remote access without using the gateway 120
Summary 120

Chapter 5: High Availability 123
Why high availability matters for VDI 123
Designing HA for VDI 124
HA for the RD Broker role 124

Creating an RD Broker Farm 125
HA for the RD Web Access and RD Gateway roles 136

Setting up NLB 137
HA and Hyper-V 143
HA for virtual desktop collections 145

HA for session collections 145
HA for VDI collections 147

Summary 150
Chapter 6: Scale and Performance 151

Understanding scale and performance 151
Testing RDS 153

Hyper-V 154
RDS role servers 155

RD Broker 155
Tuning the RD Gateway and RD Web Access roles 156

Session Collections 158
Testing Session Collections 159

Pooled and Personal Collections 160
Virtual Desktop Template optimization 160

Dynamic memory 160
Processor 162
Networking 162

VM storage 163
Tuning Windows 8 for VDI 167
Capacity planning for VDI collections 172

Client settings 173
Desktop as a Service 176
Summary 177

Table of Contents

[iv]

Chapter 7: Maintenance and Monitoring 179
Maintenance 179

Windows Server Update Services 179
Installing and configuring WSUS 180

Maintaining the RDS servers and hosts 185
Virtual desktops 191

Recreating pooled virtual desktops 191
Monitoring 194

Managing and shadowing users' sessions 196
The Remote Desktop Diagnostic tool 198
Microsoft System Center 201

Configuration Manager 202
Operations Manager 203
Orchestrator 204
Virtual Machine Manager 205
System Center Advisor 205

Summary 207
Chapter 8: Managing User Profiles and Data 209

Background and options 209
User Profile Disks 211

Using the built-in tools in Windows for managing the users' settings 214
Enabling Roaming Profiles 215

Creating the Security Group 218
Creating the file share 218
Using Active Directory to enable Roaming Profiles 221

Super-mandatory profiles 221
Configuring Folder Redirection and Offline Files 223

User Environment Virtualization 224
Installing UE-V 227

Setting up the file shares for UE-V 228
Deploying the UE-V agent 230

Using Group Policy to manage UE-V 231
Adding and creating UE-V settings location templates 235

Summary 236
Chapter 9: Virtual Applications 237

RD RemoteApp 237
Publishing RemoteApps from a session host 238
Publishing RemoteApps from a Pooled Collection 244

Application virtualization 244
App-V architecture and components 245

App-V packages 248

Table of Contents

[v]

Installing the App-V infrastructure 249
Installing the App-V client to virtual desktops 251
Installing the App-V Client to session hosts 252

Configuring App-V 253
Creating an App-V sequence 256
Deploying a package 260
UE-V and App-V 261
App-V and System Center Configuration Manager 261

Summary 262
Chapter 10: Licensing and the Future of VDI 263

Windows Server 263
Remote desktop licensing 265
License activation for Windows 268

Windows 8.1 269
Other software 271

MDOP 271
SQL Server 272
Office 2013 and Office 365 272
Third-party VDI solutions 272

The future of VDI – Desktop as a Service 273
Summary 274

Index 275

Preface
Virtual Desktop Infrastructure (VDI) has been around for several years; however, it
has never really become a mainstream solution. I think there are a variety of reasons
for this:

• While many vendors promised enormous savings from implementing
VDI, the claimants often neglected to mention the amount of backend
server computation, networking, and storage that is required.

• Specialist solutions were required to make this work, for example,
the remote desktop client to get VDI to run on things such as iPads and
Android slates, as well as separate tools to manage VDI deployments.

• The licensing of Windows in VDI is seen as complex and ambiguous.
• Finally, the user experience in VDI has never been as rich as when using a

"physical" client desktop. This has meant deployments have been limited
to specific parts of some organizations, such as dealing rooms, hot-desk
workers, and manufacturing environments.

So why did I want to write a book on this? Because it is still a hot topic; it not only
promises to further rationalize and consolidate the IT infrastructure in a business,
but it can also address one of the top trends and concerns in IT today: Bring Your
Own Device (BYOD). Providing access to VDI from iPads and Android tablets
means that IT still has control of corporate applications and data, without having to
actually manage those devices. There is clearly an appetite for VDI, as can be seen
by recent moves made by various big players in the IT industry. Dell has acquired
Quest and thin-client manufacturer Wyse, and VMware continues to develop the
VMWare View offering with internal development and acquisitions. Perhaps the
most significant recent change is what Microsoft has been doing in VDI. They
have launched Windows Server 2012 R2 to handle the backend virtualization and
management of VDI along with Windows 8.1 for desktops. Significantly, they have
also released up-to-date, freely available remote desktop clients for iOS and Android,
removing the need to use third-party software for BYOD scenarios.

Preface

[2]

In this book, I have included details on how Remote Desktop Services (RDS)
has evolved from the old Terminal Services, because RDS also provides virtual
desktops. The difference is that Remote Desktop Services provides virtual desktop
as a collection of sessions on a common server operating system, where VDI is the
business of running of copies of Windows client, each in its own virtual machine on
a virtualization host.

Exploring VDI
The only way I learn about a new technology is to actually use it, even if it's just a
lab or demo setup. I haven't included step-by-step guides, as they already exist on
TechNet, but I have given you enough guidance to follow along and try for yourself
if you have had some exposure to Windows Server, and how to manage it either via
the built-in Server Manager or using PowerShell.

PowerShell
I am going to be making use of PowerShell, because we all need to use PowerShell
a lot more anyway. It has a lot of benefits, as follows:

• It's a lot easier to read. It has a simplified syntax and there are many more
commands. So, there is a lot less effort involved if anyone needs to work
with things such as Windows Management Instrumentation (WMI), DHCP,
DNS, and many many others.

• The PowerShell ISE (integrated scripting environment) that ships with
Windows has an array of tools to make it easier to write code such as
IntelliSense and tab completion. It also helps you fill in all the switches
with the command list on the right-hand side of the main window and
assists with flow control (by navigating to Edit | Snippets, as shown in
the following screenshot).

Preface

[3]

• It's harder to make mistakes with PowerShell, and while we will laugh at
and learn from the red errors we get from PowerShell, this is going to be
down to bad typing. In a user interface, on the other hand, we could
easily miss a checkbox or setting, and it may not show up until later.

• It also makes for a better book. You don't want to spend hours staring at
endless screen grabs on your e-book reader or carry around a 2 kg book.
I don't have to explain everything click-by-click and screen-by-screen.
There's lots of help on the Web, as well as courses and great books to
help you get deeper into it.

Preface

[4]

• All of Microsoft's solutions and products conform to common engineering
criteria, part of which requires every feature to have a PowerShell command,
but not necessarily a user interface. So, there are things you can only do
in PowerShell; for example, we can only configure the advanced features
of data deduplication on our file shares and work with virtual machine
networks, as there is no interface exposed in Windows Server for these.
The same applies to other Microsoft products such as SQL Server and
Exchange. Hence, to quote the inventor of PowerShell, Jeffrey Snover,
we either need to learn PowerShell or give up IT and play golf!

Please note that the code in this book is designed to show what can be achieved
while being as concise and clear as possible, so it's stripped of comments and error
trapping that would appear if it was for use in production.

A quick introduction to PowerShell
PowerShell is made of a series of cmdlet packages of commands. When you install a
Microsoft product or add in a feature to a server, there will be one or more cmdlets
to go with it. These have to be loaded before they can be used with the command
import-module [module name]..

Any PowerShell command is essentially a Verb-Noun combination followed by a lot
of switches, for example, get-PhysicalDisk, and any get command is just looking
at things. The verbs are typically get, add, and set, but the list of nouns goes on for
miles! A lot of commands have switches, some of which must be completed, while
others have defaults. For example, Get-PhysicalDisk will show all the disks as no
property was specified, such as the name of a disk or a particular size. A key point
about PowerShell is the pipe (|) command, which passes objects between commands.
Have a look at the following example:

Get-NetAdapterBinding | Get-Member

The first part of this command returns the network binding of the network cards
I have on my computer and then pipes these objects to display all the properties
and methods of those cards. Having worked out properties I am interested in,
I can refine my command as follows:

Get-NetAdapterBinding | where enabled -EQ $true | Select-Object -Property
Name, DisplayName, ifDesc| Out-GridView

Now, the various network bindings are piped into a filter to return those bindings
that are enabled. The surviving objects are then piped to select-object, which will
return the specified properties (Name, DisplayName, and IFDesc) of these objects and
pipe those into Out-GridView, which shows them in a graphical table interface.

Preface

[5]

PowerShell can be run remotely in this case on another server called Orange:

Invoke-command –ComputerName Orange –ScriptBlock {get-physicalDisk}

This can be extended to run persistent sessions on remote servers that will survive
a reboot, and we can actually fire a PowerShell script file (.ps1) at another server as
well. We have barely touched the surface of PowerShell, but it is enough to help you
get an idea of the code in this book.

What this book covers
Chapter 1, Putting the V in VDI – An Introduction to Virtualization in Hyper-V, provides
the ground work for the rest of the book, as Hyper-V is the foundation of Microsoft's
VDI architecture.

Chapter 2, Designing a Virtual Desktop Infrastructure, introduces the architecture and
roles in a Microsoft VDI deployment.

Chapter 3, Putting the D in VDI – Creating a Desktop Template, shows how to use
the tools we use to deploy Windows to laptops and desktops and apply them for
creating templates for VDI.

Chapter 4, Putting the R in Remote Desktop, introduces the gateway role to provide
secure access to VDI over the Internet.

Chapter 5, High Availability, explores how to make each role in a VDI deployment
resistant to failure by adding in redundancy. This also allows us to carry out
planned maintenance without affecting our users.

Chapter 6, Scale and Performance, discusses how to expand a basic deployment to
provide access to thousands of users and best practices to optimize performance.

Chapter 7, Maintenance and Monitoring, shows how we can update our VDI
deployments with patches for new applications. This also looks at troubleshooting
and tuning for performance.

Chapter 8, Managing User Profiles and Data, looks at how to ensure our users get the
same experience each time they log in and have access to their data. This includes
several techniques for doing this depending on whether our users use VDI all the
time or make use of physical desktops as well.

Chapter 9, Virtual Applications, describes two key topics for VDI: Remote Desktop
RemoteApp, which allows us to serve individual applications rather than whole
desktops, and App-V, which allows us to stream and deploy applications to virtual
desktops without the need to go through the traditional installation process.

www.allitebooks.com

http://www.allitebooks.org

Preface

[6]

Chapter 10, Licensing and the Future of VDI, explains how to efficiently license
the various deployment scenarios for VDI, such as Bring Your Own Device,
and options for remote workers.

What you need for this book
This book is built around a hands-on lab experience, which will need you to have
access to a server or laptop with 16 GB RAM, at least an i5 processor, and 200 GB
disk space, preferably SSD (if not two disks), to separate the management OS from
the disk used to store and run virtual machines.

Microsoft VDI uses Hyper-V as a server role in Windows Server 2012 R2. This is
the OS that is needed for the host server. This can be downloaded (http://msdn.
microsoft.com/en-us/library/dn205286.aspx) as a 180-day evaluation from
TechNet or with an MSDN subscription. We'll explore a number of tools from
Microsoft to enhance our VDI deployment, including the following free tools:

• The Windows Assessment and Deployment Toolkit (ADK) for Windows
8.1, downloadable from http://www.microsoft.com/en-us/download/
details.aspx?id=39982

• The Microsoft Deployment Toolkit (MDT) 2013, downloadable from
http://www.microsoft.com/en-in/download/details.aspx?id=40796

• The Remote Desktop Diagnostic Tool (RDVDiag), downloadable from
http://www.microsoft.com/en-us/download/details.aspx?id=40890

We'll also make use of other paid Microsoft products:

• The Microsoft Desktop Optimization Pack (MDOP) is only available to
customers with software assurance, or MSDN subscribers.

• We will also make use of SQL Server to enable high availability,
and support the metadata used for updating services and MDOP. SQL
Server 2014 Evaluation Edition can be downloaded from http://technet.
microsoft.com/en-us/evalcenter/dn205290 for a 180-day free trial.

The only third-party applications needed are Foxit Enterprise Reader and VLC
media player, but these are just used as example applications to show deployment,
and any application you may have would be equally suitable to learn the techniques
in this book.

Preface

[7]

Who this book is for
VDI bridges two skill sets: the desktop specialist looking after the deployment
of applications, desktops, and management of user profiles; and the datacenter
specialist, who manages the backend roles and services that servers provide, such as
virtualization. I also recognize that while Hyper-V and Windows VDI are growing in
popularity, there will be many experts in other technologies who will understand the
concepts but not necessarily the way things work in Windows VDI, or some of the
Microsoft terminology.

I am going to assume you have heard of PowerShell and PowerCLI and have had
some exposure to that, as well as the basics of core infrastructure, such as TCP/IP
and Active Directory, and have used Windows to some degree. However, as no
one is an expert in everything, I have introduced all of the topics relevant to VDI
in this book. Also, there are many subtle changes in Windows Server 2012 R2 and
Windows 8.1, specifically for VDI, that are hidden in the advanced dialog boxes
and new switches in PowerShell. I'll be looking into a lot of those.

Conventions
PowerShell commands within the text are shown as follows: "We can see the disks
available on a server by using get-disk".

If I need to use a block of PowerShell, it will appear as follows:

$CompNames =@("orange","grey")

foreach ($CompName in $CompNames)

{

 Invoke-Command -ComputerName $CompName -ScriptBlock {

 Set-ItemProperty -Path "HKLM:\SYSTEM\CurrentControlSet\Services\
VmHostAgent\Parameters" -Name "Concurrency" -value 5

 Restart-Computer -Force}

}

New terms and important words are shown in bold.

Preface

[8]

I shall refer to the tile-based interface in Windows 8.1 and Windows Server 2012 R2
as the modern UI on which we can run modern applications. In contrast to this,
there is also the traditional UI that looks much like Windows 7, where we can run
our Microsoft Management Console (MMC) snap-ins, Server Manager, and what
I will refer to as traditional applications.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Preface

[9]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Putting the V in VDI – An
Introduction to Virtualization

in Hyper-V
Most IT professionals would define VDI as a collection of Virtual Machines (VMs),
each running a Windows client OS (Windows 8.1 in this book) that our users will
connect to from a variety of devices, such as thin clients, tablets and smart phones,
laptops, and so on. In fact, there are other ways of doing this, but these can also rely
on VMs, so a basic knowledge of this server virtualization is essential before we can
understand Virtual Desktop Infrastructure (VDI) itself.

Strictly speaking, the business of running multiple operating systems,
each in its own VM on one physical host is called server virtualization.
This may seem to be picky, but as we'll see in later chapters, there is also
application and user virtualization, both of which have their part to play
in Windows-based VDI.

In this book, we'll be using Hyper-V, the Microsoft solution to virtualize the
operating system away from the underlying hardware. Hyper-V is now in its fourth
generation and is included inside Windows Server 2012 R2, but may be new to some
readers. So, in this chapter, we'll explore the basics of Hyper-V by creating a simple
VM. We can then see how to manage this VM and lay the foundation for deploying
VDI by implementing a Domain Controller (DC) in the VM.

Putting the V in VDI – An Introduction to Virtualization in Hyper-V

[12]

Server virtualization and Hyper-V
The Hyper-V role has been a part of the Windows Server operating system since
Windows Server 2008. It is also included in the Windows 8 and Windows 8.1 client
operating systems. This enables developers to run virtualized servers on a Windows
client, but in Windows 8/8.1, the Hyper-V role does not contain advanced features
that are available in the full Server edition, which we need for VDI.

It's technically possible to run nearly any x86 or x64 OS in Hyper-V,
but if you want support from Microsoft, the Guest OS must either be a
supported version of Windows Server or Client, or a supported version and
distribution of Linux. For example, Windows Server 2000 and Windows
XP aren't supported at all, so they aren't supported on Hyper-V. The full
details of Guest OS support in Hyper-V can be found at http://technet.
microsoft.com/en-us/library/cc794868(v=WS.10).aspx.

Hyper-V can be deployed in a variety of ways, and the easiest of these is simply to
add the role into Windows Server running on a physical server. When the hypervisor
is installed, the host operating system sits in a parent partition, which is essentially
like a VM, and is just there to manage the hypervisor. Technically speaking, Hyper-V
is like VMware's ESXi, a true Type 1 or bare-metal hypervisor. This deep integration
with the latest virtualization hardware is reflected in the high performance limits for
Hyper-V in Windows Server 2012 R2, as shown in the following table:

Resource Limit
Host – CPU 320 cores
Host – memory 4 TB
Host – limit of logical processors that can be assigned to VMs 2,048
Host cluster – nodes 64
Host cluster – highly available VMs 8,000
VM – logical processors 64
VM – memory 1 TB
VM – virtual disk size 64 TB (VHDX)

These limits are beyond the capabilities of most modern servers and enable all but
the largest workloads to be virtualized, including substantial VDI deployments.

Most modern servers are designed to run Hyper-V and, by association, support
VDI. However, you should check that your servers have been tested with Windows
Server 2012 R2 before using it for VDI in production, either with your hardware
vendor or directly on the Microsoft Hardware Compatibility List (HCL) at
http://windowsservercatalog.com/results.aspx?bCatId=1283&avc=10.

Chapter 1

[13]

For Hyper-V servers running VDI VMs, there's also a further hardware
prerequisite – Second Level Address Translation (SLAT) on the
CPUs. This is needed for RemoteFX, the technology used to virtualize
a Graphics Processing Unit (GPU). Advanced Micro Devices (AMD)
refers to this as Nested Page Table (NPT) or Rapid Virtualization
Indexing (RVI), and Intel calls it Extended Page Table (EPT). Either
way, you'll need a CPU that supports this if you want a good graphics
experience for users in Windows VDI.

Before any servers or laptop can run Hyper-V, virtualization support must be
enabled in the BIOS / Unified Extensible Firmware Interface (UEFI), specifically
the following features:

• Data Execution Protection (DEP)
• CPU-assisted virtualization depends on which CPU manufacturer you have,

and you'll either need to enable Intel VT-x or AMD-V

If Hyper-V is installed without these supporting features in place, the Hyper-V
service will not start, and we'll get errors in the event log of the server.

Virtual Hard Disks
In server virtualization, a physical disk is represented by a single file, a Virtual
Hard Disk (VHD), and a VM will have one or more of these. In Hyper-V, VHDs
have either the VHD or VHDX extension, where VMware uses the VMDK format.
The VHD format came out with Hyper-V in Windows Server 2008, while the newer
VHDX format was introduced with Windows Server 2012. VHDX has a number of
advantages over the older format, but both are supported in Windows Server 2012
R2. They have the following properties:

• VHD is limited to 2 TB, whereas VHDX can be up to 64 TB, the limit for
a New Technology File System (NTFS) volume

• VHDX has the concept of physical and logical block sizes to run much faster
on larger physical disks of 4 KB block size

• VHDX is more resilient to failure and is extensible for use by third parties, as it
has additional XML metadata to rack updates and store custom information

Putting the V in VDI – An Introduction to Virtualization in Hyper-V

[14]

VHDs have other uses outside of server virtualization, for example,
Windows backups are in VHD format and now, with Windows Server 2012,
they are in VHDX format. In this book, I will refer to Virtual Hard Disks as
VHDs, and I'll point out when there is a specific need to use VHDX.

We have three different options when creating VHDs or VHDXs, as follows:

• Fixed-size disks: These are also known as thick provisioning disks, where
VHDs reserve space equal to their size on a physical disk.

• Dynamically expanding disks: These are also known as thin provisioning
disks, and these just put a placeholder on the physical disk they are stored
on. The disk then grows as data is written into it.

Originally, fixed disks were much faster than differencing disks, but at
the expense of reserving space on the disk and making them larger and
more difficult to move around. The gap has closed in Windows Server
2012 R2, but it's worth remembering that a fixed disk on a clean physical
disk will be contiguous and not fragmented, and a dynamic disk has to
store all the information about where all the physical blocks are. So, there
will always be a performance penalty.

• Differencing disks: They work by creating a VHDX where changes are
written to the differencing disk, but they are based on a parent disk that
never changes. The parent disk can either be a fixed or dynamic disk,
and the differencing disk will inherit this property.

Microsoft's VDI makes extensive use of both differencing disks and
dynamically expanding disks, but this is all done automatically for us.

Installing and configuring Hyper-V
In order to explore Hyper-V and then overlay VDI on it, we are going to need a
server to work with. For evaluation purposes, this could simply be a modern laptop;
I have a 16 GB laptop with an Intel i7 processor, which I have modified by adding
a 750 GB Solid State Drive (SSD) to reduce disk contention when I am running
multiple VMs. I am assuming that you have something like this to work on. The key
thing is that it can support Hyper-V, and you have enough RAM and disk space to
support the running of multiple VMs on it. Microsoft's Windows Server 2012 R2 is
available as a free evaluation, which is good for 180 days once activated. This can be
downloaded from the following link:

Chapter 1

[15]

http://technet.microsoft.com/en-us/evalcenter/dn205286.aspx

An option is available to alter the Boot Configuration Database (BCD)
to boot directly from a VHD or VHDX (this requires a minimum of a
VHD or VHDX running Windows 7 or Windows Server 2008 R2). One
advantage of this option is that it gives us the ability to change different
VHDs or VHDXs quickly and create alternative OS configurations.
The full details are available on TechNet at http://technet.
microsoft.com/en-us/library/dd799299(v=WS.10).aspx.
Navigate to Manage | Add Roles and Features.

Our first task is to add in the Hyper-V role from Server Manager. Perform the
following tasks to achieve this:

1. Select the server you are working on in the Before You Begin page and click
on Next.

2. On the Installation Type page, select the option Role-based or feature-based
installation.

3. Select the server you wish to work on and click on Next.
4. Select Hyper-V from the Server Roles page and click on Next.
5. You'll see that the option to install the Hyper-V management tools is already

selected, so click on Next.
6. Don't create any virtual switches on this screen. We'll want to explore this

and create our own as we configure Hyper-V after it's installed.
7. On the Confirmation page, be sure to select Restart the Destination Server

Automatically If Required and click on Install.

We can do the same thing with just one PowerShell command as follows:
Add-WindowsFeature Hyper-V –IncludeManagementTools -Restart

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

No other server roles should be installed on a server with the Hyper-V
role installed, with one exception: failover clustering. Failover clustering
is needed to provide High Availability (HA) of Virtual Machines.

After the server reboots twice, we are ready to use Hyper-V.

www.allitebooks.com

http://www.allitebooks.org

Putting the V in VDI – An Introduction to Virtualization in Hyper-V

[16]

Configuring Hyper-V
Before we can use Hyper-V to create VMs, we need to perform some initial
configuring to provide the resources that our VMs will need, such as CPU,
graphics, storage, and networking. This is done through the Hyper-V Settings
option in Hyper-V Manager, the Microsoft Management Console (MMC)
snap-in that we've just installed, as shown in the following screenshot:

Chapter 1

[17]

The first two options are how we set the default locations for VMs and their VHDXs.
Notice that, by default, new VMs and their associated disks get stored on C:, which
is probably the last place we want them, especially if we have just configured Boot to
VHD, as the VHDXs for the VMs will now reside inside another VHDX file. So, we
need to change this to a large fast disk that will be a suitable home for our VMs (in my
case, e:\TempVMStore, which is sitting on an SSD). We'll return to the other settings
for Hyper-V in later chapters, as it would be good to get a basic VM up and running
quickly so that we can explore Hyper-V. The final step before we create a VM is to
configure networking in Hyper-V by creating one or more virtual switches that we can
then connect to our VMs. There are three types of virtual switches, as follows:

• External virtual switch: This is bound to an actual network adapter on
our host (physical NIC). There's an important setting for external networks
to allow the management operating system to share this network adapter.
If this is set, then a host server can communicate with other physical and
virtual servers over the physical NIC. If it's left unchecked, then the physical
host cannot use that physical NIC.

• Internal virtual switch: This type of virtual switch is not bound to a physical
switch at all. We could use this for our first look at VDI if we are doing
everything on one physical server, as it allows the physical host and the
guest VMs to connect over it.

• Private virtual switch: This can also be useful for some types of sandbox
or restricted services as it allows the VMs to communicate over it, but there
is no communication with the physical host at all.

Any internal virtual switches and external virtual switches that are set to be shared
with the management operating system will be visible in the network connections
on the host, and they will appear with vEthernet (the name of the virtual switch in
Hyper-V). Private switches and external virtual switches that are not shared will only
show up as virtual switches in Hyper-V and are completely hidden from the host.

Putting the V in VDI – An Introduction to Virtualization in Hyper-V

[18]

On my demo setup, shown in the following screenshot, we can see what's going on if
we look at the network connections and the Hyper-V switches:

Chapter 1

[19]

Here, we can see that I have created two virtual switches: RDS-Switch and
RDS Internet in Hyper-V. These correspond to the two network connections:
vEthernet (RDS-Switch) and vEthernet (RDS Internet). What isn't obvious until
we examine its settings is that the Ethernet network connection is controlled by
Hyper-V. The only protocol that is enabled when Hyper-V is managing a physical
NIC is the Hyper-V Extensible Virtual Switch. The easiest way to see all of this is
using PowerShell, as I can get all the relevant information on one screen using the
following command:

Get-NetAdapterBinding | where enabled -EQ $true | Select-Object -
Property Name, DisplayName, ifDesc| Out-GridView

This works by looking for all the protocols on each of the network connections
and filtering out the ones that are enabled before outputting the specific properties.
I am interested in a grid view, like the one shown in the following screenshot:

My suggestion for a simple lab setup is to create an external switch and allow the
management operating system to share it so that we can reach our VMs from outside
the physical server.

Putting the V in VDI – An Introduction to Virtualization in Hyper-V

[20]

Creating a simple virtual machine
Before we build our first VM, we need to understand what we are creating.
In Hyper-V, the VM is made up of three things, as follows:

• One or more Virtual Hard Disks (VHDX), one of which will have the OS.
• Metadata about how the VM is configured, such as how many logical

processors it has, how much memory, how many Network Interface
Cards (NICs) it has, and what these are connected to.

• Its memory execution state. If a VM is running and has 2 GB of RAM
memory, then this is what is in that 2 GB of RAM. VMs can be paused/saved
in the same way as a physical laptop has hibernation. VMs can be set to be
automatically saved when the host is shut down. When a VM is resumed,
this memory state is copied back into the RAM. The file for this is the BIN file,
and its size is related to the amount of memory allocated to the VM.

One of the simplest ways to create a VHDX complete with an operating system
is with PowerShell. Actually, the PowerShell code is pretty complex, but it's
encapsulated in a script available from the TechNet gallery (http://gallery.
technet.microsoft.com/scriptcenter/Convert-WindowsImageps1-0fe23a8f).

You can either work out the command-line switches for this script or invoke it with
-showUI, as shown in the following command:

.\Convert-WindowsImage.ps1 -ShowUI

The preceding command will give you a simple UI to fill in to create an image. One
reason for doing it this way is that there are multiple installation options on a given
Windows ISO, for example, in Windows Server, there will be the option to install
Server Core or the full user interface, and the dropdown in the UI will allow you to
select that. We'll be using this script later to create a VHDX with Windows 8.1 as a
template for our VDI VMs. For now, we can use this script to make a VHDX from the
Windows Server 2012 R2 ISO. I suggest that we call this WS2012R2 Sysprep.VHDX to
denote that the OS is in a sysprepped state.

If we just copied the disk of an existing VM, then its System Identifier
(SID) remains the same even though we might rename the server or
client, and we won't be able to have both the VMs in the same domain.
We use sysprep to remove the SID, and when each copy is started, a
unique SID is created so that each VM can then properly join a domain.

Chapter 1

[21]

We could at this stage go and build a VM around it, but as we will be creating
several VMs and the disk space is limited in our demo lab, we will make use of
differencing disks. To create a differencing disk from this VHDX, we can use the
New Virtual Hard Disk Wizard dialog box in Hyper-V Manager. We will perform
the following steps:

1. From Hyper-V Manager, navigate to New | Hard Disk in the task pane.
Click on Next to skip past the Before You Begin screen.

2. In the Choose Disk Format screen, select the VHDX format and click
on Next.

3. In the Choose Disk Type screen, select Differencing.
4. In the Specify Name and Location screen, give the disk a name and path.

It's a good idea to name disks used to store and run a server OS on a VM
with the same name as the VM they belong to. We'll use Test.VHDX for
this and put it on a path where you have good disk speed, and away from
the host server OS if possible (I am using e:\TempVMStore throughout this
book). Click on Next to continue.

5. In the Configure Disk screen, we need to identify the sysprepped VHDX
we created earlier, WS2012R2 Sysprep.VHDX, and click on Next to continue.

6. We can then confirm our choices on the Summary screen and click on Finish
to create the disk.

The equivalent command in PowerShell is as follows:

New-VHD –Path "E:\TempVMStore\Test.VHDX" -Differencing –ParentPath
"E:\TempVMStore\ WS2012R2 Sysprep.VHDX"

If we look at the Test.VHDX disk that we just created, it's just 4 Mb in size because
it's dynamically expanding (thin provisioned), which means we have declared what
the size it is (in this case, based on the size of the parent disk). But, as yet we haven't
used any of it, so it's just a placeholder. Now we need to specify the other resources
that our test VM will need. The New Virtual Hard Disk Wizard dialog box could be
used for this. If you do decide to do this, you'll realize that there are a lot of settings
to specify, such as the number of processors, memory, disks, and networking. Rather
than fill this book with lots of screenshots of dialog boxes like this, it's simpler and
more efficient to use PowerShell. In fact, we can create a working VM with just one
(rather long) command line, as follows:

New-VM -Name Test -VHDPath 'E:\Temp VM Store\test.vhdx' -
MemoryStartupBytes 1Gb -BootDevice IDE -SwitchName
HostNetLogicalSwitch

Putting the V in VDI – An Introduction to Virtualization in Hyper-V

[22]

The terms used in the command line are explained as follows:

• -Name: This is the name given to the VM
• -VHDPath: This is the VHDX we just created, and this gets mounted onto the

virtual IDE connector in the VM
• -MemoryStartupBytes: This is how much memory we are giving the VM,

and PowerShell knows what MB, GB, TB, and even PB (petabytes) are
• -BootDevice: This means we are going to boot from our new VHDX
• -SwitchName: This is the name of the external virtual switch that we

have created

If we go back to Hyper-V Manager, we can see our new VM Test. It's currently
turned off, and before we start it, we can review the settings we have made.
This is shown in the following screenshot:

Chapter 1

[23]

Here, we can see that it has 1 GB memory, that the VHDX we made is connected to the
IDE controller, and the network adapter is connected to our virtual switch. Note that
some of the hardware settings here can only be made while the VM is off for example,
we can add in another network adapter or a second hard disk could be connected to
the IDE controller. Some operations can be performed online and it is possible to add
or remove virtual disks that reconnected to the Small Computer System Interface
(SCSI) adapter while the machine is on. But, in this type of VM, we can only boot from
a disk connected to an IDE controller. There is actually no difference in performance
when you connect a VHD or VHDX to either type of controller.

There is a new type of VM in Windows Server 2012 R2, a second-generation VM that
removes a lot of these restrictions. It's based on UEFI rather than BIOS and, if we
look at its settings alongside the first-generation VM we created, there are a number
of changes. This is shown in the following screenshot:

Putting the V in VDI – An Introduction to Virtualization in Hyper-V

[24]

As you can see, there is Firmware instead of BIOS. In a second-generation VM, we
are booting from a file. It's not shown in the screenshot, but we can also enable a
secure boot so that the VM won't start if the VHDX with the OS has been modified
externally. Second-generation VMs only have SCSI connectors to attach virtual disks
and DVD drives. Only VHDX format virtual disks can be used, and these can be
expanded while the VM is online. There are other changes that are not visible here;
the VMs make less demands on the hypervisor, and the attack surface of the VMs is
reduced. However, I am going to stop there because at the time of writing, we can't
use a second-generation VM as a VDI template. So all the desktop VMs that we are
going to create in this book are going to have to be from the first-generation VM.
Hopefully, this will be possible soon so VDI can make use of the benefits of this new
type of VM.

Second-generation VMs don't support RemoteFX, so USB redirection
won't work. If we try to use a second-generation VM as a template for
VDI, then the process will fail. For more on second-generation VMs,
refer to http://technet.microsoft.com/en-us/library/
dn282285.aspx.

We can now start our VM either by right-clicking on it or using the following simple
PowerShell command:

start-VM –Name Test

In the preceding command, –Name is our test VM. When we run this command, our
new VM will come out of sysprep and all the settings and changes made during that
process will be written to our new differencing disk, not the read-only parent disk
(WS2012R2 Sysprep.VHDX). This differencing disk will now take up about 700 MB.
It's also worth noting that the VM is using resources on the host via the Hyper-V
integration components (similar to VMware tools), which provide driver support for
the virtual devices we have specified, such as the SCSI and network adapters. We
can connect to our VM at any time after start up by right-clicking on it in Hyper-V
Manager, and we can watch it complete its initial configuration. After that, we can
enter the administrator password and see that it is now running Windows Server
2012 R2.

Chapter 1

[25]

Checkpoints
In Hyper-V, it's possible to capture the state of a VM at a point in time and roll back
by creating a checkpoint (in VMware and older versions of Hyper-V, this is called
a snapshot). This uses the same differencing system. However, this is controlled by
Hyper-V, so don't delete or merge these disks directly! When a checkpoint is made,
the state of the VHD is frozen by making it read only, and a new VHD (an AVHD in
Hyper-V) is created, into which any changes are written. Reverting to a checkpoint
removes the AVHD and re-enables the original VHD. When checkpoints are deleted,
the checkpoint AVHDs are merged back into the original VHD or chain of AVHDs
if you have more than one checkpoint. It's also important to understand that
checkpoints will impact the performance of a VM just as differencing disks do,
and that creating checkpoints for a VM is not a substitute for creating a backup.

Managing Windows Server and Hyper-V
The Test VM we created is largely useless as it is; it has no roles and features on
it and we can only connect to it using the Hyper-V console, the virtual equivalent
of wandering into a data center and logging on to it directly. Windows Server is
designed to be remotely managed, whether it's used for Hyper-V or performing a
role in VDI. There are several ways of doing this from another server or desktop with
the Remote Server Administration Tools (RSAT) via System Center, and of course
with command-line tools such as PowerShell.

www.allitebooks.com

http://www.allitebooks.org

Putting the V in VDI – An Introduction to Virtualization in Hyper-V

[26]

In older versions of Windows Server, remote management had to be enabled, but
now it's already configured for servers and desktops in the same Active Directory
(AD) domain. This has greatly increased the power of Server Manager as it's now
possible to see how groups of servers are performing either by their function or by
some grouping of your own, as shown in the following screenshot:

The boxes with the dark gray (red in reality) headers have issues, and these can be
identified by simply clicking on the problem identified in the box: Manageability,
Events, Performance, or BPA results. With RSAT installed, all the individual servers
can be managed by using tools appropriate to the roles they are performing. For
example, if the server is running Hyper-V, then you are presented with the option
to use Hyper-V Manager, where you would get the DNS console option for a DNS
server. You can also remotely connect to them and run those RSAT tools remotely from
the server you are working on. Server Manager can also add and remove roles and
features on any of the managed servers, or to a VHDX while the VM is turned off.

Chapter 1

[27]

Hyper-V Server and Server Core
Remote management is very important when it comes to putting Hyper-V into
production. We have already established that having any roles and features on a
Hyper-V host apart from Hyper-V is not best practice. So why have the management
tools and any kind of user interface on these servers at all? There is no good answer
to that and there are two ways of achieving this, as follows:

• If we are going to use a physical server to host VMs running Windows Server,
we should use the default way of installing Windows Server, Server Core.

• If the physical host is going to host VMs running Windows client VMs for
VDI or we plan to deploy Linux VMs, then we should use the free, cut-down
version of Windows Server, Hyper-V Server 2012 R2 (http://technet.
microsoft.com/en-us/evalcenter/dn205299.aspx). This only has the
Hyper-V role, the file server role, and the failover clustering feature included
in it.

In both cases, there is no graphical shell included, such as MMC. There are just six
essential tools that we can use in an emergency for local management, as follows:

• PowerShell
• Command line
• Task Manager
• Registry Editor
• Notepad
• SConfig, a lightweight shell for basic tasks

The SConfig shell – just enough options to configure the operating system before it can be remotely managed

Putting the V in VDI – An Introduction to Virtualization in Hyper-V

[28]

Both Server Core and Hyper-V Server require far less patches and updates (only
about 25 percent compared to a full installation of Windows Server), and at about 4
GB, they are under half the size of a full installation of Windows Server. The other
benefit is that with no Internet Explorer, no one can go surfing the Web on our
servers! Just to be clear, this is the only interface available in Hyper-V Server. The
new feature for Windows Server 2012 is the option to post-install the server graphical
shell and management tools on top of Server Core, or remove them just like any
other role or feature. Have a look at the following screenshot:

The effects of changing the options under User Interfaces and Infrastructure are
as follows:

• Removing all of the options leaves us with the Server Core option
• If we just keep the Server Graphical Shell feature, we can still run MMC

snap-ins and Server Manager, but there won't be a modern desktop, an
explorer bar, file explorer, or Internet Explorer; this is often referred to
as "MinShell"

• If we elect to install Windows with a user interface, we'll get the
Server Graphical Shell and Graphical Management Tools and
Infrastructure features

Chapter 1

[29]

• If we add in the Desktop Experience feature, our server will look even more
like Windows 8.1, complete with the Windows Store

Getting started with server management
The simplest way to show the power of management in Windows Server is to have
some domain-joined servers that we can manage, as remote management in Windows
Server 2012 R2 is enabled by default across a domain. Domain membership is also
needed for VDI as we'll see in the next chapter, so we need to build a DC. We already
know that we shouldn't add roles like AD to a server running Hyper-V, but we could
deploy the AD role to our test VM and set it up as a DC. However, I suggest we make
a new VM from scratch and configure this as a DC, if there is room on your server for
that, so we can see how to manage another VM and a host. We'll also make this VM a
Dynamic Host Configuration Protocol (DHCP) server so that any new VMs we create
can be assigned IP addresses. Finally, we'll add the RSAT tools in here so that we can
manage everything from this one VM.

Creating the RDS-DC VM
We can manually create a new VM called RDS-DC by following these steps:

1. Create a new internal virtual switch called Remote Desktop Services (RDS)
using the following command:
New-VirtualSwitch –Name "RDS Switch" –type internal

2. Create a new VHD called RDS-DC.VHDX based on WS2012R2 Sysprep.VHDX
using the following command:
New-VHD –Path "E:\TempVMStore\RDS-DC.VHDX" -Differencing –
ParentPath "E:\TempVMStore\ WS2012R2 Sysprep.VHDX"

3. Create a new VM as we did for the test VM, but with the following properties:
 ° Call it RDS-DC
 ° Give it at least 512 MB RAM and one logical processor
 ° Connect it to the RDS switch we just created

The command line will look like the following:

New-VM -Name RDS-DC -VHDPath 'E:\Temp VM Store\RDS-DC.vhdx' -
MemoryStartupBytes 512Mb -BootDevice IDE -SwitchName "RDS
Switch"

1. Add the roles and features directly into the new VHD that we just made
without starting it.

Putting the V in VDI – An Introduction to Virtualization in Hyper-V

[30]

2. From Server Manager on the host, go to Add Roles and Features. From the
Installation Type screen, select Role-based or feature-based installation and
click on Next.

3. In the Select destination server screen, check the Select a virtual hard disk
option, as shown in the following screenshot:

4. In this dialog box, we select our physical host to mount the VHD on to
(Orange.contoso.com in the screenshot), and the path to the VHD we just
created. Click on Next to continue.

5. From the Select Server Roles screen, select Active Directory Domain
Services, DHCP Server, and DNS Server. We'll get warnings as we add
these roles, such as the need to install DNS and not having a static IP address.
These can be ignored as we'll be addressing them once the VM is started.
Click on Next to continue.

Chapter 1

[31]

6. From the Features screen, expand the Remote Server Administration Tools
option and select the features as shown in the following screenshot:

7. On the Confirm installation selections screen, note that we can save
our choices onto an XML file and then use this again to create identical
server installations by simply using the PowerShell command Add-
windowsFeature. We'll do that and save the file as RDS-DC installation
config.xml. Then click on Install to add the features to the VHD.

Putting the V in VDI – An Introduction to Virtualization in Hyper-V

[32]

At this point, the new VM has the features installed on it but they aren't configured.
The VM has not been turned on and it's still in a sysprepped state. This allows VMs
to be configured exactly as we want and stored as templates. We can even patch the
OS in the same way, using the Disk Image Servicing Management tool (DISM.exe).
We can now start to configure the options we have installed by performing
the following steps:

1. Start the VM from Hyper-V Manager and wait for it to come out of sysprep.
You should see the preview screen at the bottom of Hyper-V Manager
change from the Windows logo to the initial post sysprep setup screen.

2. Connect to the VM from Hyper-V Manager by double-clicking on it.
3. Set the language for your region and accept the license agreement.
4. Set the administrator password (we'll be using Passw0rd! as the standard for

all passwords). The VM will complete its initial setup.
5. Log in to the VM, and in Server Manager, select the local server in the

navigation pane and rename the VM to RDS-DC. Leave it in a workgroup and
reboot it.

6. Configure the network card with a static IP address (192.168.0.1).
7. From Server Manager, select the local server and right-click on the link next

to Ethernet IPv4 address assigned by DHCP,IPv6 enabled.
8. Right-click on the Ethernet adapter and select Internet Protocol Version 4.

Then click on Properties.
9. Select the checkbox Use the following IP address. Set the IP address field

to 192.168.0.1 with a Subnet mask value of 255.255.255.0. Leave the
Default gateway field blank and set the Preferred DNS server field to
127.0.0.1. Click on OK and Close to accept these settings and close the
Network Connections window.

Configuring the new VM as a DC
Now that we have the AD role installed on RDS-DC, we can promote it to a DC
from Server Manager, while in the earlier versions of Windows, we used DCPromo.
We need to perform the following steps:

Chapter 1

[33]

1. In Server Manager, select the yellow warning flag that displays Promote this
server to a domain controller to open the Active Directory Domain Services
Configuration Wizard window. Note that DCPromo (dcpromo.exe) is gone,
and that this is how domain controllers are created in Windows Server 2012
R2. This is shown in the following screenshot:

2. In the Deployment Configuration screen, select the option Add a new forest
and set the root domain name to Contoso.com. Click on Next to continue.

3. In the Domain Controller Options screen, leave all the options as they
are and set the Directory Services Restore Mode (DSRM) password to
Passw0rd!. Click on Next to continue.

4. On the DNS Options screen, ignore the warning and click on Next
to continue.

5. In the Additional Options screen, leave the NetBIOS domain name as
Contoso and click on Next to continue.

6. Click on Next through the next couple of screens, and in the Prerequisites
Check screen, ignore the warnings about NT4 and DNS delegation and click
on Install. The server will now reboot.

7. Reconnect to the RDS-DC VM and log in as Contoso/Administrator. Then
configure the new VM as a DHCP server by selecting the Complete DHCP
Configuration warning flag in Server Manager, which will launch the DHCP
Post-Install configuration wizard.

8. Authorize the service in our new domain with the Contoso/Administrator
domain credentials and click on Commit. Close the wizard.

Putting the V in VDI – An Introduction to Virtualization in Hyper-V

[34]

9. From the Tools menu in Server Manager, select DHCP to open the DHCP
MMC snap-in. Expand rds-dc.contoso.com in the left navigation pane.

10. Right-click on IPv4 and select New Scope to launch the New Scope Wizard
window. Call the scope VDI-Scope and set its description to Pool for VDI
desktop virtual machines.

11. In the IP address screen, set the Start IP address to 192.168.0.100 and the
End IP address to 192.168.0.254, and click on Next.

12. Click on Next on the Add Exclusions and Delay and Durations screens.
13. On the Configure DHCP Options screen, select Yes, I want to configure

these options now and click on Next.
14. Click on Next on the Router screen.
15. On the Domain Name and DNS Servers screens, you should see the parent

domain already set to Contoso.com. The only address we need in the IP
addresses window is 192.168.10.1 so that the DHCP clients can have the
DNS server set as well as being granted an IP address.

16. On the WINS scope screen, click on Next.
17. On the Activate Scope screen, select Yes, I want to activate this scope now

and click on Next.
18. Click on Finish to complete the DHCP scope wizard.
19. Refresh the IP address on the host and confirm that the host can get an IP

address in this range and can ping RDS-DC.

Adding users and groups
Now that we have a DC, it would be good to have some users and groups in there
that we can use in our VDI lab setup in the next chapter. We will add users and
groups by performing the following steps:

1. Open the Active Directory Administrative Center dialog box and create
a new Organizational Unit (OU) called RDS-VDI. In this OU, create the
following users and groups:

 ° Three new users, RDSUser1, RDSUser2, and RDSUser3 with password
as Passw0rd!, and set the password to never expire

 ° Two new groups, VDI-Users and Session Users

2. Add RDSUser1 and RDSUser2 to the VDI-Users group.
3. Add RDSUser2 and RDSUser3 to the Session-Users group

(note that RDSUser2 belongs to both groups)

Chapter 1

[35]

Joining the physical host to the domain
The included script to create a DC stops here, but for the VDI we need to have our
physical host in our new domain. Our physical host will be registered in the domain
because it will be able to resolve the new DC; it's connected to the internal switch we
created and set to use DHCP by default. Our new DC is a DHCP server, and part of
this means that the domain and domain controller can be resolved in DNS. So, all we
have to do is perform the following steps:

1. In Server Manager, on the host, select the local server on the left-hand
navigation pane and click on the name of the server to bring up its
system properties.

2. Click on Change and select the contoso.com domain. When asked to enter
the domain credentials, use the contoso/administrator account with the
password Passw0rd! to join the domain.

3. Reboot the host. Note that the VMs on the host will restart automatically
if they were on when the host is shut down. This is a default that can be
overridden in the setting for each VM.

Join the Test VM we made earlier to the domain in the same way so that we
can contrast managing a physical host with a VM. To do this, we perform the
following steps:

1. In Hyper-V Manager, on the host, right-click on the Test VM we made
already and select Settings. Change the network adapter to RDS-Switch.

2. Connect to the VM and complete the initial setup of this VM (set the local
administrator password to Passw0rd!).

3. Log in to the Test VM and in Server Manager, select the local server in
the navigation pane and click on the server name. Rename this server to
RDS-Test and join it to the Contoso domain.

Managing multiple servers in Server Manager
Now we can begin to see the management abilities of Windows Server. We will
perform the following steps:

1. Log in to RDS-DC and open Server Manager.
2. From the All Servers icon on the left-hand side navigation pane, select

Add Servers.

www.allitebooks.com

http://www.allitebooks.org

Putting the V in VDI – An Introduction to Virtualization in Hyper-V

[36]

3. Select all the servers in the Contoso domain. Note that we can manage other
servers that aren't in our domain if we can discover them and have the
credentials to log in to them.

Now you should see something like the following screenshot:

I can manage all my servers from here. You'll notice that as you added the host
server, the Hyper-V server group was added to the navigation pane. If we select it,
you'll see your host server. If we right-click on it, we can get to Hyper-V Manager
because Server Manager knows what roles and features are on each server that it's
managing. Hyper-V Manager is only on our DC because we installed RSAT, and
if you go to the Tools menu in Server Manager, you can see all of the consoles and
utilities that are provided.

Chapter 1

[37]

Underneath any list of servers in Server Manager, there is a complete readout of the
servers in a given group, which includes event logs and the roles and features on
each server by default. We can also turn on performance counters for our servers and
enable the Best Practices Analyzer (BPA) to get meaningful advice and guidance on
any issues that affect all our managed servers.

It's possible to manage earlier versions of Windows Server (2008 and 2008
R2) by adding in PowerShell 3 and Windows Remote Management 3. The
only thing we can't do with these older versions is remotely install roles
and features.

PowerShell also has extensive support to manage multiple servers, and we have the
ability to run remote PowerShell sessions that can persist after a reboot to carry out
complex tasks. Many of the operations we carry out in Server Manager are in simple
PowerShell scripts running behind the scenes, such as when we promoted the RDS-
DC VM to being a DC.

Desired State Configuration
While Server Manager can show us what's happening with all our servers, it doesn't
actually do anything. It just shows us what problems there might be and gives us the
tools to investigate and fix them. One aspect of this is that we often want our servers
to stay exactly in the configuration, and with Windows Server 2012 R2, PowerShell 4
can now be used for Desired State Configuration (DSC). This allows servers to be in
a known configuration with the following aspects:

• The roles and features that are enabled
• Files and directories
• Installed software
• Registry settings
• Running services
• Environment variables

DSC can both check and enforce depending on how it is set up. Behind the scenes,
a Microsoft Operations File (MOF) is created based on your script. It's then
possible to configure a central server with the DSC service (Add-WindowsFeature –
name DSC-Service), which can then check the configurations on other servers for
application installation files, specific files, and settings. If they are not there, then
DSC can replace them to put them back into the required state.

Putting the V in VDI – An Introduction to Virtualization in Hyper-V

[38]

No doubt, Microsoft and third-party vendors such as Dell and Idera will be bringing
out tools to simplify the creation of these files to the point where a given template
server can be examined, as well as the MOF files and content built from it, so that a
series of servers can be kept in a given configuration. That's pretty much what we
need to do in VDI, except that we want to manage lots of VMs running desktops and
keep them in a desired state.

Summary
In this chapter, you acquired basic knowledge of how Microsoft performs server
virtualization with Hyper-V. You saw how to perform an initial setup and
configuration of a Hyper-V host, sufficient to create a simple virtual machine running
on that host. This allowed us to create a virtual DC that then gave us a quick way to
manage our virtualization hosts and other VMs joined to that domain. This is very
important because it's so simple to create lots of VMs, and we can only manage them
at scale by managing them from one place rather than connecting to each in turn
to check their health and configuration. Another key part of the management story
is PowerShell, and it's important that we all get used to it as it makes our actions
less repeatable and gives us the tools to quickly create VMs with a given set of
specifications and keep them in a desired configuration.

Besides being an exercise in itself, all of the practical sections in this chapter provide
the foundation we need to create VDI deployment; we need virtualization hosts, we
need a domain controller, and we need those hosts to belong to our new domain. We
are now ready to start looking at VDI itself and, in the next chapter, we'll examine the
different forms of VDI and its architecture. On the way, we'll also create a simple VDI
lab setup.

We'll also be using more of PowerShell!

Designing a Virtual Desktop
Infrastructure

In this chapter, we'll explore what exactly is meant by VDI and how that differs
from the remote desktops that were provided by Terminal Services from as far back
as Windows NT4, and are still in use today. This will help us choose the right option
for our users based on their needs as well as the resources we'll need to provide each
type of VDI. We'll then explore the various roles that go into making up Windows
VDI; some of these can be run as virtual machines (VMs), but some of which must be
real physical hosts running Hyper-V to serve up the virtual desktops themselves.
We can then put this theory into practice to create a simple lab setup to offer two
different kinds of virtual desktops running on a single host. Finally, we can review
what we have created by accessing VDI from a variety of modern devices such as
Windows- or Mac-based laptops, as well as Android, iOS, or Windows tablets
and phones.

Remote Desktop Services and VDI
What Terminal Services did was to provide simultaneous access to the desktop
running on a server / group of servers. The name was changed to Remote Desktop
Services (RDS) with the release of Windows Server 2008 R2, but actually this
encompasses both VDI and what Terminal Services was, and it is now referred to as
Session Virtualization. This is still available alongside VDI in Windows Server 2012
R2; each user who connects to the server is granted a Remote Desktop Session (RD
Session) on an RD Session Host and shares this same server-based desktop. Microsoft
refers to any kind of remote desktop as a virtual desktop and these are grouped into
collections made available to specific group users and managed as one, and a Session
Collection is a group of virtual desktops based on Session Virtualization.

Designing a Virtual Desktop Infrastructure

[40]

It's important to note here that what the users see with Session Virtualization is
the desktop interface delivered with Windows Server, which is similar to but not
the same as the Windows client interface, for example, it does have a modern UI
by default. In the previous chapter, we saw that we could add/remove the user
interface features in Windows Server to change the way it looked. One of these,
the Desktop Experience option, is there specifically to make Windows Server look
more like Windows client, and in Windows Server 2012 R2, if you add this feature
option in, you'll get the Windows store just as you do in Windows 8.1.

VDI also provides remote desktops to our users over Remote Desktop Protocol
(RDP), but it does this in a completely different way. In VDI, each user accesses a
VM running a Windows client (Windows 8.1 Enterprise edition for this book), and
so the user experience looks exactly the same as it would on a laptop or physical
desktop. In Windows VDI, the collection of VMs run on Hyper-V and our users
connect to them with RDP just as they can connect to the RD Sessions described
earlier. The other parts of RDS are common to both as we'll see shortly, but what is
important for now is that RDS manages the VDI VMs for us and organizes which
users are connected to which desktops and so on. So, we don't directly create VMs
in a collection or directly set up security on them. Instead, a collection is created
from a template, which is a special VM that is never turned on as the Guest OS is
sysprepped, and turning it on would instantly negate that. The VMs in a collection
inherit this master copy of the Guest OS and any installed applications as well. The
settings for the template VM are also inherited by the virtual desktops in a collection:
CPU memory, graphics, networking, and so on. As we'll see, there are a lot of VM
settings that specifically apply to VDI rather than for VMs running a server OS as
part of our infrastructure.

To reiterate, VDI in Windows Server 2012 R2 is one option in an RDS deployment,
and it's even possible to use VDI alongside RD Sessions for our users. For example,
we might decide to give RD Sessions for our call center staff and use VDI for our
remote workforce. Traditionally, the RD Session Hosts have been set up on physical
servers as older versions of Hyper-V, and VMware wasn't capable of supporting
heavy workloads like this. However, as we saw in the last chapter, we can put up to
4 TB RAM and 64 logical processors into one VM (physical hardware permitting)
and run large RD Session deployments virtually.

Our users connect to our virtual desktop collections of whatever kind with an RDP
client, which connects to the RDS servers using RDP.

When we connect to any server with the Microsoft
Terminal Services client (MSTSC.exe), we are using
RDP for this. But, without setting up RDS, there are
only two administrative sessions available per server.

Chapter 2

[41]

Many of the advantages and disadvantages of running any kind of remote desktop
apply to both the solutions.

Advantages of remote desktops
Given that the desktop computing for our users is now going to be done in the
data center, we only need to deploy powerful desktops and laptops to those users
who are going to have difficulty connecting to our RDS infrastructure. Everyone
else could either be equipped with thin client devices, or given access from other
devices they already have if working remotely, such as tablets or their home PCs
and laptops. Thin client computing has evolved in line with advances in remote
desktop computing, and the latest devices from 10ZiG, Dell, and HP among others
support multiple high-resolution monitors, smart cards, and webcams for unified
communications, which are also enabled in the latest version of RDP (8.1). Using
remote desktops can also reduce overall power consumption for IT, as an efficiently
cooled data center will consume less power than the sum of thin clients and servers
in an RDS deployment. In one case, I saw that this saving resulted in a green charity
saving 90 percent of its IT power bill.

Broadly speaking, managing remote desktops ought to be easier than managing
their physical equivalents. For a start, they'll be running on standard hardware,
so installing and updating drivers won't be so much of an issue. RDS has specific
tooling for this, which we'll see in Chapter 5, High Availability, to create a largely
automatic process for keeping our collections of remote desktops in a desired state.
VDI doesn't exist in a vacuum, and there are other Microsoft technologies to make
any desktop management easier with other types of virtualization as follows:

• User profiles have long been a problem for desktop specialists. RDS in
Windows Server 2012 introduced the concept of User Profile Disk (UPD),
which are special differencing disks specifically available to store users'
settings. These disks are then reattached when a given user logs back in, and
all their files' application settings are available. These can be used with both
Session Virtualization and VDI, but are not interchangeable across the two.
If we want our users to roam between RDS and physical desktops, there are
the traditional techniques such as folder redirection and new ones such as
User Environment Virtualization (UE-V), and we'll look at that in detail in
Chapter 8, Managing User Profiles and Data.

Designing a Virtual Desktop Infrastructure

[42]

• Application Virtualization (App-V) allows us to deploy applications to the
user who needs them when and where they need them, so we don't need to
create desktops for different types of users who need special applications;
we just need a few of these and only deploy generic applications on these
and those that can't make use of App-V. This is covered in detail in Chapter 9,
Virtual Applications. Even if App-V is not deployed, VDI administrators have
total control over remote desktops, as we have many number of security
techniques at our disposal. In the worst case scenario, we can remove any
installed applications every time a user logs off!

The simple fact that the desktop and applications we are providing to our users
are now running on servers under our direct control also increases our IT security.
Patching is now easy to enable particularly for our remote workforce, as when they
are on site or working remotely, their desktop is still in the data center. RDS in all its
forms is then an ideal way of allowing a Bring Your Own Device (BYOD) policy.
Users can bring in whatever device they wish into work or work at home on their
own device (WHOYD is my own acronym for this!) by using an RDP Client on that
device and securely connecting with it. Then there are no concerns about partially
or completely wiping users' own devices or not being able to, because they aren't
in a connected state when they are lost or stolen.

VDI versus Session Virtualization
So, why are these two ways of providing remote desktops in Windows there and
what are the advantages and disadvantages of each? First and foremost, Session
Virtualization is always going to be much more efficient than VDI. It's going to
provide more desktops on less hardware. This makes sense if we look at what's
going on in each scenario. If we have 100 remote desktop users to provide for, the
following techniques could be adopted according to the two ways mentioned earlier:

• In Session Virtualization, we are running and sharing one operating system
and this will comfortably sit on 25 GB of disk. For memory, we need roughly
2 GB per CPU, and we can then allocate 100 MB of memory to each RD
Session. So, on a quad-core CPU Server, for 100 RD Sessions we'll need 8 GB
+ (100 MB*100) of memory, so less than 18 GB RAM.

We'll look at scale and performance for Session Virtualization in
more detail in Chapter 6, Scale and Performance.

Chapter 2

[43]

• If we want to support those same 100 users on VDI, we need to provision 100
VMs each with their own OS. To do this, we need 2.5 TB of disk and if we
give each VM 1 GB of RAM, then 100 GB of RAM is needed. This is a little
unfair on VDI in Windows Server 2012 R2, as we can cut down on the disk
space need and be much more efficient in memory than this. But, even with
these new technologies, we would need 70 GB of RAM and say circa 400 GB
of disk.

Remember that with RDS our users are going to be running the desktop that comes
with Windows Server 2012 R2 and not Windows 8.1. Our RDS users are sharing one
desktop, so they cannot be given administrative rights to that desktop. This may
not be that important for them but can also affect what applications can be put onto
the server desktop, and some applications just won't work on a Server OS anyway.
Users' sessions can't be moved from one session host to another while the user is
logged in. So if we need to take a session host down for any reason, we may need
to do this out of office hours to patch session hosts and update the applications on
them, if we want to avoid interrupting our users' work.

VDI on the other hand means that our users are using Windows 8.1, which they
will be happier with. This may well be the deciding factor regardless of the cost, as
our users are paying for this and their needs should take precedence. Application
installations are the same as they would be for a physical desktop, where certain
software won't install onto a server-based OS or work when we use a server for
Session Virtualization. It can be easier to manage VDI as well; but, this will only
apply if we are good at managing desktops in the physical world and are using
the right tools for managing desktops such as App-V and UE-V in the Microsoft
Desktop Optimization Pack (MDOP) suite.

Remote applications in RDS
Another part of the RDS story is the ability to provide remote access to individual
applications rather than serving up a whole desktop. This is called RD RemoteApp
and it simply provides a shortcut to an individual application running either on
a virtual or remote session desktop. I have seen this used for legacy applications
that won't run on the latest versions of Windows and to provide access to secure
applications, as it's a simple matter to prevent cut and paste or any sharing of
data between a remote application, and the local device it's executing on. RD
RemoteApps work by publishing only the specified applications installed on
our RD Session Hosts or VDI VMs.

Designing a Virtual Desktop Infrastructure

[44]

VDI roles
VDI is made up of a number of roles. This is very clear once we have set it up as we
are presented with a deployment overview screen in Server Manager in Windows
Server 2012 R2, as shown in the following screenshot:

This diagram is not only an architecture overview of how RDS works but it's also
used to manage our deployments. Now we can see what the roles are. Let's look
at what each of them does in more detail.

Remote Desktop Virtualization Host
This is a Windows Server with the Hyper-V role or the free Hyper-V Server just as we
set up in Chapter 1, Putting the V in VDI - An Introduction to Virtualization in Hyper-V.
It's where our VDI VMs will be run from. We saw how to set this up in the previous
chapter and how to create a VM to run on it. When we set up RDS, we declare which of
our servers will host these VMs, as the RDS service will manage these servers directly
and allow us to deploy collections of VMs and manage which user is connected to
which VM in which collection. While this host must obviously be one or more physical
servers, all of the other roles in RDS can be run inside VMs. These VMs could also be
run on the same physical server as is used in a Remote Desktop Virtualization Host
(RD Virtualization Host), so alongside the VDI VMs and that's what we'll do in our
lab. Note that we should use Hyper-V Manager to control the VM running the RDS
roles, but the VDI VMs should be managed from the RDS console.

Chapter 2

[45]

Remote Desktop Connection Broker
Creating virtual machines one by one across a group of physical hosts is fairly easy
to script in PowerShell, but managing and maintaining them is difficult without
some sort of tool. We also need to allow users to access them and do this in a way
that each user gets their own desktop or application backed by one of those VMs.
This orchestration function is exactly what Remote Desktop Connection Broker
(RD Broker) does. It's a role that can be assigned to any Windows Server and can
co-exist with all the other RDS roles but one—we have already established that no
other roles should be installed on a physical server running Hyper-V, so in this case
our RD Virtualization Host.

If we think of RDS as a classic three-tier service, then the RD Broker is the middle tier
with all the business logic and deployment metadata in it. So when we make changes
to RDS via the browser or using PowerShell, this is where the configuration changes
we make are stored. The RD Broker is also the gatekeeper of RDS and controls who
has access to what and who is currently using both VDI and RD Sessions. It has a
simple load-balancing mechanism so that users' sessions are distributed across the
session hosts in a given collection.

Remote Desktop Web Access Server
The Remote Desktop Web Access Server (RD Web Access Server) is the web
frontend of RDS where users can access the desktop they have permission to. Both VDI
and RD Sessions can be made accessible from here, and really, all this role service does
is to present what is in the RD Broker to the users. RD RemoteApps are also surfaced
on the web portal and one nice touch introduced in Windows 7 is that if you configure
your user's desktop to point to the web portal, any application a user has access to will
just show up in the start options alongside the real applications on their desktops.

Remote Desktop Gateway
This is a variation on the Web Access role, specifically designed to allow users
to access remote desktops over the Internet without the need to create a VPN
connection. This works by running the RDP protocol over HTTPS to ensure the
connection is encrypted and secure. It is possible to deploy the Gateway with one
or two firewalls and connect to an Active Directory Domain Services (ADDS) in
different ways as well.

www.allitebooks.com

http://www.allitebooks.org

Designing a Virtual Desktop Infrastructure

[46]

Remote Desktop licensing server
This server is there to pass out the licensing Client Access Licenses (CAL) to the rest
of the RDS infrastructure. We'll take a look at this role in more detail in Chapter 10,
Licensing and the Future of VDI, but essentially it stores the license keys for our CALs
and integrates with AD to hand these out as our users' login to RDS.

Remote Desktop Session Host
This is the server role that provides Session Virtualization via RD Sessions that
we have already compared to VDI. Traditionally, these have been physical servers
because they demand a lot of CPU, RAM, and I/O. But with the much higher limits
for these in Hyper-V, we now have the option to run them as VMs with a small loss
of performance running them as Hyper-V VMs.

Types of VDI collections
There are two basic types of VDI collections, Personal and Pooled, alongside
the Session Collections in Session Virtualization. Each type of collection can be
automatically managed by the RDS infrastructure as follows:

• Personal Collections: These are created for each of our users, and whenever
they log in, they get the same VM. All we have done here is to move the OS
running on a physical desktop into a VM on our data center. Because this is
so similar to real desktops, it gives our user the best personal experience;
but, at the same time, it is most expensive to run and maintain.

• Pooled Collections: These are much like a pool car system where a company
buys a set of identical vehicles, which employees can sign out and use as they
need. When they are returned, they are cleaned and refueled to be ready for
the next user. In the same way, Pooled VMs are signed out as users request
them and they won't get the same VM the next time they log in. Also, these
VMs will typically be reset to a starting state after the user logs out, ensuring
that each user gets the same experience each time. A collection of these
Pooled VMs can be managed as one VM as far as patching and updating is
concerned, and we don't need to create a VM for each user; just sufficient
VMs for the maximum concurrent user demand.

If we compare the costs of these two types of VDI against Session Virtualization,
we can see that Pooled VMs offer a useful compromise on cost. This is shown in the
following screenshot:

Chapter 2

[47]

While at the same time, Pooled VMs offer a balance of usability for our users and
application compatibility, as shown in the following screenshot:

It's alright to combine Pooled and Personal Collections into one VDI deployment
and to have more than one of each type to provide collections suited to particular
groups of users. Whichever type of VDI collection you decide to create, you'll need
to create this from a virtual desktop template. This is simply a VM built around the
client OS (in our case, Windows 8.1 Enterprise Edition) configured as required and
sysprepped. The VM settings such as memory, CPU, and networking are inherited
by all the VMs in the collection, and the VM is never actually turned on, as the OS
would come out of sysprep.

Designing a Virtual Desktop Infrastructure

[48]

You could also include applications in a virtual desktop template, but
then we need endless collections to provide the right applications to
each group of users. However, there is a much better way, and that's
to use App-V to stream applications to users when they log in to a
VDI desktop, a real desktop, or an RD Session. We'll see how this
works in Chapter 8, Managing User Profiles and Data.

Getting started with VDI
The various RDS roles can be combined for smaller deployments, and one option
in the RDS deployment wizard is to put the RD Web Access, Broker, and Hosts of
whichever type onto one server (a quick deployment). That might be acceptable for
Session Virtualization, but the virtualization host role is Hyper-V, which should only
be used for this. So, for our first foray into VDI, it would be good to have a semi-
production look and feel and do things a bit more manually to see what's going on.
Our target is to build a simple VDI deployment, as shown in the following diagram:

Chapter 2

[49]

We have already done some of the setup we need in the Creating the RDS-DC VM
section of Chapter 1, Putting the V in VDI - An Introduction to Virtualization in Hyper-V.
We have the RDS-DC and RDS virtual switches and our physical host is domain-
joined. We also have the DHCP role configured with a scope, which we can use to
assign IP addresses to our VDI VMs. What we need to do next is to create the other
two VMs in the diagram for the RDS Broker and RD Web Access roles. We could
do this manually for each of these VMs in the same way as we did in the Creating
a simple virtual machine section of Chapter 1, Putting the V in VDI - An Introduction to
Virtualization in Hyper-V. However, I have included a PowerShell script for this on
my blog and also at the end of the book to do all of this for you. This will create a
further VM RDS-Session Host, which will be used to create a Session Collection later
in this chapter.

Creating the virtual desktop template
We also need to create a virtual desktop template that will be the basis for our
first VDI collection. The quickest way to create a basic virtual desktop template is
to use the same Convert-WindowsImage.ps1 PowerShell script that we used in
the previous chapter to make a VHD based on Windows Server 2012 R2. The only
difference is, this time we will create a Windows client VHD by running it against an
evaluation edition of Windows 8.1 Enterprise edition (http://technet.microsoft.
com/en-us/evalcenter/hh699156.aspx), which is the ISO file referred to in the
following script:

<#Variables for the name of the DC and where the VM is going to be
stored, and what Virtual Switch it's connected to #>
$VMName = "RDS-VDITemplate"
$VMSwitch = "RDS-Switch"
$WorkingDir = "E:\Temp VM Store\"
$VMPath = $WorkingDir + $VMName
$SysPrepVHDX = $WorkingDir + $VMName +"\RDS-VDITemplate.VHDX"
<# Housekeeping to delete the VM and associated files from the last time
this was run:
 #1. delete the VM from Hyper-V #>
 $vmlist = get-vm | where vmname -in $vmname
 $vmlist | where state -eq "saved" | Remove-VM -Verbose -Force
 $vmlist | where state -eq "off" | Remove-VM -Verbose -Force
 $vmlist | where state -eq "running" | stop-vm -verbose -force -Passthru
| Remove-VM -verbose -force
 #2. get back the storage
 If (Test-Path $VMPath) {Remove-Item $VMPath -Recurse}
Create the VHD from the Installation iso
md $VMPath

Designing a Virtual Desktop Infrastructure

[50]

cd ($WorkingDir + "resources")
.\Convert-WindowsImage.ps1 -SourcePath ($WorkingDir +"Resources\
9600.16384.WINBLUE_RTM.130821-1623_X64FRE_ENTERPRISE_EVAL_EN-US-IRM_CENA_
X64FREE_EN-US_DV5.ISO") -Size 100GB -VHDFormat VHDX -VHD $SysPrepVHDX
-Edition "Enterprise"
#Create the VM itself
New-VM –Name $VMName –VHDPath $SysPrepVHDX -SwitchName $VMSwitch -Path
$VMPath -Generation 1 -BootDevice IDE
<# feel free to change these settings to tune your VDI VMs and remember
each VM will get the same settings as these#>
Set-VM -Name $VMName –MemoryStartupBytes 1024Mb
Set-VM -Name $VMName -DynamicMemory
Set-VM -Name $VMName -MemoryMinimumBytes 512Mb
Set-VM -Name $VMName -AutomaticStartAction StartIfRunning
Set-Vm -Name $VMName -AutomaticStopAction ShutDown
Set-Vm -Name $VMName -ProcessorCount 2

Having created the virtual desktop template with the preceding script, we need to be
aware of the following aspects:

• This machine needs to be left in a sysprepped state, and so it must not
be started.

• Any settings we make for memory CPU and so on will be inherited
by all the VDI VMs in our collection. We need to be particularly careful
with memory as Hyper-V doesn't overcommit memory, so we need to
be aware that the number of VMs in our collection multiplied by the
memory setting for this template need to be less than we have on our host,
and also factor in the three other VMs we'll be running. So, the Set-VM ..
–MemoryStartupBytes and -MemoryMinimumBytes settings in the above
script will need to be planned carefully.

We also need to understand what's happening when a user logs into our VDI
development. They'll be given some way of navigating to the RDS Web Access portal,
where they'll log in. The Broker service will assign them a virtual desktop—either their
own in a Personal Collection, or a random virtual desktop from a Pooled Collection.
When a user logs in each time, they'll see that their desktop is the way they left it when
they last used it; that's pretty simple to understand because a Personal Collection gets
the same virtual desktop each time. This is where the UPD mentioned earlier comes
into play. RDS mounts these automatically for us when a user logs in and intercepts
which settings we want to store on the UPD, so we don't have to do any configuration
of the desktop itself, such as to modify application paths and user profile paths. When
a user then logs out of a virtual desktop in a Pooled Collection, the VM underpinning
the desktop is rolled back to an initial checkpoint and the UPD is disconnected from it.

Chapter 2

[51]

Next time they log in, their UPD is then simply attached to the VM running their
next virtual desktop. UPDs do not capture any application users might install in a
session; and if that is a requirement, then Personal Collections will allow for that.
Therefore, in Pooled Collection, we want to set up our users to not have this ability
possibly by using the AppLocker features of Group Policy to prevent this.

Setting up and configuring the RDS roles
In order to use the RDS deployment wizard, we need to manage all of the servers
we are going to use. For this, we need to perform the following steps:

1. On the physical host, open Hyper-V Manager. Right-click on the RDS-DC
VM and click on Connect.

2. Open Server Manager and navigate to Manage | Add Servers from the menu.
3. Add in all the VMs created by the script (RDS-Broker, RDS-Web,

and RDS-SHost) and your physical host.

You should now see those servers in Server Manager as shown in the
following screenshot:

Designing a Virtual Desktop Infrastructure

[52]

Here, I have changed the columns displayed and my host is called Orange (note that
it says Physical in the Type column).

While Remote Desktop Services appears on the
navigation pane, here that's only because our DC
is running Remote Server Administration Tools
(RSAT); so, the tools are there but aren't configured.

Now, we are in a position to run the RDS deployment wizard, which will allow us to
provision the roles on our Broker, Web Access Host, and Virtualization Host in one
go, and get us to the point where we can create our first VDI collection. For this, we
need to perform the following steps:

1. On the DC (RDS-DC), open Server Manager, and from the menu, navigate
to Manage | Add Roles and Features.

2. Click on Next to skip to the Before You Begin screen.
3. On the Select installation type screen, there is a special option, Select

Remote Desktop Services Installation, to orchestrate our deployment.
So, select this option and click on Next.

4. In the Select deployment type screen, there are two ways to set up RDS:
standard and quick. Quick puts all of the roles and features onto one
host (which must be a physical host for VDI) and creates a collection
automatically. This is definitely not the best practice and is automated,
that is, it's hard to see what the options are. So, we will select a standard
deployment as you would do for a production environment of any size.
Click on Next to continue.

5. In the Select deployment scenario screen, we can see that RDS allows us
to select the two desktop solutions we want to use. As we'll see later, we
can combine these into one infrastructure, but for now, select the Virtual
machine-based desktop deployment option and click on Next.

6. In the Review Role Services screen, click on Next as we have already
discussed what these are.

7. In the Specify RD Connection Broker server screen, select RDS-Broker
from the Server Pool section shown in the upcoming screenshot.

8. Only servers already managed by Server Manager will show up in the
Server Pool section.

9. Click on the arrow to the right of the pool to add this server to the selected
column, as shown in the following screenshot:

Chapter 2

[53]

10. Then click on Next to continue.
11. In the Specify RD Web Access server screen, select RDS-Web from the

Server Pool section and again click on the arrow to the right of this column
to add the server to the selected column. Click on Next.

12. In the Specify RD Virtualization Host server screen, select your physical
host. In my lab, that's a laptop called Orange that's running all of my VMs.
Click on Next.

13. On the Confirm selections screen, click on the Restart the destination
server automatically if required checkbox. This will only force a restart
if the Hyper-V role is not already installed on the physical server used
as an RD Virtualization host.

14. Click on Deploy to complete the wizard. Behind the scenes is a PowerShell
Script, which, on larger deployments, will perform the installations in
parallel across the various servers selected. Click on Close when the wizard
has finished.

Designing a Virtual Desktop Infrastructure

[54]

We can now see what it has done in the following screenshot by clicking on that
previously unconfigured Remote Desktop Services option in Server Manager on
our DC:

The diagram in the center, which we have already seen, is not just a diagram. We
can hover over it to configure it, and the green crosses indicate that we haven't set up
licensing or a Gateway server yet. Confusingly, we haven't set up an RD Session Host,
which is also in gray like the roles we have configured. But, it's connected by a dotted
line to the rest of the infrastructure, and it's the only icon here that isn't a hyperlink to
install that feature. The wizard has also created some default settings and before we
create a collection we should review and change some of these by navigating to Tasks
| Edit deployment options above the Deployment Overview diagram.

Chapter 2

[55]

At the moment, we only need to worry about three of these options as follows:

• RD Web Access: This shows us the web page from which users can connect
to our collections; in our case, http://rds-web.contoso.com/RDWeb.
Following the link now will be pointless as we haven't created a collection, so
all we'll get is a blank page. If you do follow that link, you'll get a certificate
error (certificates will be covered in Chapter 7, Maintenance and Monitoring),
which you can ignore. You can then log in as an administrator to see there's
nothing there yet.

• Active Directory: We do want all the VMs in our collection to belong to a
discrete Organizational Unit (OU) RDS-VDI. There's a warning when we
elect to do this, which occurs because the RDS Broker needs permission
to create computer entries in this OU for the VMs in our VDI collections.
Click on Apply after doing this, and note that it's possible to capture the
PowerShell script to do this as follows:
Grant-RDOUAccess -ConnectionBroker "RDS-Broker.Contoso.com" -
OU "RDS-VDI"

• Export Location: The first thing that will happen when we create a collection
is that the virtual desktop template will be exported from Hyper-V to a
specified share. This is because it will then be copied multiple times for
each VM, and in a production environment, this would be copied across the
multiple virtualization hosts running a collection. By default, this is a share
on the broker (in our case, \\RDS-BROKER\RDVirtualDesktopTemplate),
and you may wish to change this to a more appropriate location because
as it stands, it's inside a VM which may have limited space.

We also need to think about where all our virtual desktops will be stored. For our
lab, we might only have one server available, and so we can just store these locally.
However, in larger deployments, it's possible to host either one of the following:

• Clustered Shared Volumes (CSV): These are shared storage fronted by a
Windows Server Failover Cluster (which we'll shorten to Cluster)

• File share: This is not the simple share that you create by right-clicking on a
folder and selecting Share; it's an advanced file share for applications created
on a server configured as a File Server from Server Manager. File Servers in
Windows Server 2012 R2 can be scaled out for high availability and exhibit
many of the features of a SAN, such as deduplication and tiered storage.

www.allitebooks.com

http://www.allitebooks.org

Designing a Virtual Desktop Infrastructure

[56]

Finally, there are a couple of prerequisites, as follows that we need to configure
before we can create our first collection:

• Our virtualization host must have an IP address on one of its physical
switches that we'll need to physically connect our server to a network.
This shouldn't be a problem as when we created our VMs, we used an
internal virtual switch, which effectively isolated our VDI from any
other physical or virtual servers on any network that the physical host
is connected to. In a real environment, we would want to expose VDI
to the internal network and possibly the Internet for remote workers.

• We need to create a simple share to store the UPDs that we are going
to create. So, in the directory where the VMs for our labs are stored,
create a folder called VDI-UPD and share it (in my case, that will be
on my Orange laptop so \\Orange\VDI-UPD).

Creating a Pooled Collection
We can now create our first collection and given that the most efficient type of VDI is
a Pooled Collection, this is the one we'll create first. To get started, we need to go back
into Server Manager on our RDS-DC domain controller and go to the RDS Overview
tab. From there, we can launch the New Collection wizard by right-clicking on
our virtualization host in the Overview diagram and selecting Create New Virtual
Desktop Collection. To complete the wizard, perform the following tasks:

1. Read the Before You Begin screen and click on Next.
2. In the Name the Collection screen, give the collection a name such as First

Pooled Collection and optionally a description, and then click on Next.
3. In the Collection Type screen, select a Pooled Collection. Leave the

Automatically create and manage virtual desktops option checked and
click on Next.

4. In the Specify the virtual desktop template screen, select the
RDS-VDITemplate template that we made earlier and click on Next.

5. In the Desktop Settings screen, note that we can provide an existing sysprep
unattend answer file (typically called unattend.xml, which I'll refer to as an
answer file), which would contain all of the necessary information about how
to configure the desktops as they come out of sysprep. We'll go into this in
the next chapter, but for now we can enter the key settings in the wizard by
selecting Provide unattended installation settings and clicking on Next.

Chapter 2

[57]

6. In the Unattended installation settings screen, select your local time zone
and, then select Contoso.com as the domain and RDS-VDI as the OU we
made earlier. Click on Next.

7. In the Specify users and groups screen, we can select who will have access
to use the collection. If you have used the supplied script to create the RDS-
DC domain controller, you can remove all the users and add Contoso / VDI
Users. This screen also allows us to set how many virtual desktops we want
to create and how they will be named. Leave the number at 2 for now, and
change the prefix to FPC- and the suffix to 1 (so our VMs will be called FPC-1
and FPC-2). Click on Next.

8. In the Specify virtual desktop allocation screen, we could spread our virtual
desktop VMs across our virtualization hosts, but since we only have one
host, we can just click on Next to continue.

9. In the Specify virtual desktop storage screen, we can decide where our VMs
are stored. Since we only have a single host, we can select Store on each RD
Virtualization Host server, and enter the path to the location where our VMs
are stored (which in my lab setup is E:\Temp VM Store). There is also an
option to store the parent disk in a separate location. A shared SSD would be
a good location for this, as it will be read often and only overwritten when
the collection is patched. Finally, notice the option to roll back the collection
when the user logs off. This will automatically revert the underlying VM to
an initial checkpoint (snapshot). Leave this option checked and click on Next.

10. In the Specify user profile disks screen, we can opt to use UPDs and specify
the share where they'll reside. In our case, this is the share we created earlier,
that is, \\servername\VDI-UPD. Click on Next to continue.

11. We can check all our settings in the Summary screen and click on Finish to
complete the wizard.

This wizard will take about 10 minutes to run, and we can see what's happening
behind the scenes by opening Hyper-V Manager on our host server. The RDS-
VDITemplate VM will be exported from Hyper-V to the template share we specified
in the wizard. This will be used to create the two virtual desktops we asked for
(FPC-1 and FPC-2). These will appear as VMs in Hyper-V, and we can see that they
will be started by the Collection creation wizard then bought out of sysprep and
configured with the settings we specified (time zone, domain, OU, and so on).

Designing a Virtual Desktop Infrastructure

[58]

Once they have been configured, the wizard will then restart them, as it would
happen as part of the sysprep process. Then, they'll be checkpointed so that when
a user logs off, they'll revert to this initial state, as you can see in the following
screenshot of Hyper-V Manager:

If we then look at what's on the disk, we'll see that in our VM store there will be
a folder named as Fast_Pooled_Coll, which will contain two of our VMs and a
local copy of the virtual desktop template in a folder called IMGS. In the share we
created for our UPDs, there is a UVHD-template VHD, which is a thin-provisioned
disk, set to the size we specified in the wizard. Returning to the RDS overview on our
RDS-DC, we can see our fast-pooled collection underneath the virtualization host on
the Overview diagram. If we navigate to Collections | Fast Pooled Collection in the
navigation pane on the left, we can see our collection with its two virtual desktops
and the status Running.

Chapter 2

[59]

VDI always leaves two spare virtual desktops as running
so that users can log in quickly. The surplus will be put
into a saved state to save resources.

We can now test our virtual desktop by connecting to our Web Access server by
performing the following steps:

1. Open Internet Explorer on our physical host and go to https://rds-web.
contoso.com/RdWeb.

2. We'll get a certificate warning, which we can ignore, and then we'll be asked
to sign on. Use RDSUser1/Passw0rd!.

3. Click on the Fast-Pooled Collection.
4. On the Remote Desktop Connection screen, we can select to pass through

various resources on the local machine such as the clipboard drives and
printers. Check everything and click on Connect.

Notice that as RDSUser1 is signing on for the first time, there's a lot of initial
configuration going on. So, login will be slower than usual before the Windows 8.1
desktop appears. Also notice that the remote desktop connection bar at the top of the
screen thinks we are connected to RDS-Broker.Contoso.com and not a particular VM
in our collection (FPC-1 or FPC-2). If we go back and look at our collection in Server
Manager (click on refresh in the menu bar first), we can see that FPC-1 is running and
that RDSUser1 is signed in to it.

If we want to assess VDI from another device, then we can quickly do this by changing
the RDS switch from being an internal switch to an external one in Hyper-V Manager
on our host, or by running the following PowerShell command lines on the host:

$PhysicalNIC=Get-NetAdapter|where interfacedescription -like "*Broadcom*"

$RDSSwitch=Get-VMSwitch|Where Name -EQ "RDS-Switch"

Set-VMSwitch -NetAdapterInterfaceDescription $PhysicalNIC.
InterfaceDescription -VMSwitch $RDSSwitch -AllowManagementOS $True

This works by finding the physical NIC on the host (the physical NIC on my laptop is
a Broadcom) and then altering the properties of our RDS switch to use that physical
NIC, and still allow the Management OS on the physical host to use the NIC.

A physical NIC can only be bound to one virtual switch at a
time, so this script might fail because there isn't an available
NIC for the virtual switch to connect to.

Designing a Virtual Desktop Infrastructure

[60]

Once we have done that, we could connect a physical network switch/router to that
NIC to allow our VDI deployment to be accessed from other devices, as shown in the
following diagram:

Now, any device with an RDP client on it can use the VDI collection we just
created by simply connecting to that switch and going to our Web Access portal
(https://rds-web.contoso.com/RdWeb) in a browser.

We need to use the right remote desktop client to get the best
from our VDI deployment, which is RDP 8.1. This is included in
Windows 8.1, and there are also clients available for Windows 7
and the other devices that are increasingly found in the workplace.
The following links are sources for downloading the remote
desktop clients for these operating systems:

• Android: https://play.google.com/store/apps/
details?id=com.microsoft.rdc.android.

• iOS: https://itunes.apple.com/us/app/
microsoft-remote-desktop/id714464092

• Mac: https://itunes.apple.com/us/app/
microsoft-remote-desktop/id715768417

Chapter 2

[61]

There is of course PowerShell support for all of this and, in fact, there is just one
command to create a new collection—in this case a Personal Managed Collection.
The command that can be used is as follows:

New-RDVirtualDesktopCollection `
 -ConnectionBroker RDS-Broker.contoso.com `
 -PersonalManaged `
 -CollectionName "Fast Personal Collection" `
 -VirtualDesktopTemplateName RDS-VDITemplate `
 -VirtualDesktopTemplateHostServer Orange.Contoso.com`
 -Domain Contoso.com `
 -OU RDS-VDI`
 -UserGroups VDI-Users`
 -VirtualDesktopAllocation 2 `
 -StorageTypeLocalStorage `
 -LocalStoragePath 'E:\Temp VM Store'`
 -VirtualDesktopNamePrefix FXC`
 -AutoAssignPersonalVirtualDesktopToUser`
 -CustomSysprepUnattendFilePath "\\Orange\tempVMstore\resources\ ??"

You can see that this command needs all of the same configuration settings that we
put into the Create Collection wizard. However, this command has no mechanism for
inserting unattend settings into the virtual desktop template like we did in the wizard
(such as the time zone), and so the last parameter is a reference to an unattend file.
This setting is optional and we'll use unattend (that is answer files) files inside the VDI
templates in Chapter 3, Putting the D in VDI – Creating a Desktop Template.

Creating an RD Session Collection
Given that Session Virtualization offers greater efficiency at the expense of user
experience, we should compare how it works and what it can offer against VDI.
We already have most of the infrastructure that we need for this; all that's missing is
a session host; actually, we have one already as the script to create RDS-Broker and
RSD-Web also included a third VM RDS-SHost, which we can use for this. Before
we configure it and create a Session Collection (a collection of virtual desktops
using Session Virtualization), we need to create a share for the UPDs just as we did
for our Pooled Collection. However, these are different from the UPDs in a Pooled
Collection, and we can't store them in the same location. So, we'll need to create
another folder in our working directory (I suggest RDS-UPD) and share that out as
<hostname>\RDS-UPD.

Designing a Virtual Desktop Infrastructure

[62]

UPDs are only really appropriate for a group of users who use one
type of virtual desktop (via VDI or Session Virtualization) and don't
ever use a physical desktop. For those users who do use a variety of
different desktop types, there are the usual mechanisms for handling
user profiles such as folder redirection. However, with Server 2012
and the latest MDOP; there is also UE-V and we'll look at this in
Chapter 6, Scale and Performance.

We can then use the RDS installation wizard (from our RDS-DC VM) to add in this
session host to the rest of our RDS infrastructure, much as we did to set up the roles
earlier. For this, we need to perform the following tasks:

1. From the Server Manager menu, navigate to Manage | Add Roles and
Features to launch the wizard. Click on Next, and on the Installation Type
screen, select the Select Remote Desktop Services Installation option and
click on Next.

2. In the Select deployment type screen, notice that the RD Connection Broker
is already set to RDS-Broker.Contoso.com and so, we are extending our
RDS infrastructure and not building a new one this time. Leave the Standard
Deployment option selected and click on Next.

3. In the Select deployment scenario screen, the Virtual machine-based
desktop deployment option is grayed out as we have already created it, and
so our only option is Session-based desktop deployment. Click on Next.

4. As before, we get the Review role services screen to review. Click on Next.
5. We can ignore the Specify RD Connection Broker screen as we already have

it selected for us. Click on Next.
6. We can also ignore the Specify RD Web Access server screen as we already

have one of those as well. Click on Next.
7. In the Specify RD Session Host server screen, highlight RD-SHost.contoso.

com in the Server Pool column and click on the arrow to the right of this
column to add it to the selected column. If it's not there, then check that
this server is being managed in Server Manager and rerun the wizard.
Click on Next.

8. In the Confirm selections screen, check the Restart the destination server
automatically if required option and click on Deploy.

The PowerShell equivalent to this is just a one liner with two switches as follows:

New-RDSessionDeployment -SessionHost "RDS-SHost.contoso.com" -
ConnectionBroker "RDS-Broker.contoso.com"

Chapter 2

[63]

Here, we just have to specify the right command and declare our RD Broker and the
server to use as a session host, making sure we use fully qualified domain names
(FQDN). Either way, the remote desktop overview diagram will now have subtly
changed; there is now a solid line connecting the RD Connection Broker to the RD
Session Host, and this icon will turn blue when we hover over it to enable us to add
more session hosts as we scale up our deployment. Having added a session host,
we are now in a position to create a Session Collection just as we created a Pooled
Collection earlier. We will perform the following steps:

1. Right-click on the RD Session Host icon in the RDS Deployment Overview
diagram and select Create Session Collection.

2. In the Name the collection screen, call it Fast Session Collection and
optionally enter a suitable description. Click on Next.

3. In the Specify RD Session Host server screen, highlight RD-SHost.contoso.
com in the Server Pool column and click on the arrow to the right of this
column to add it to the selected column. Click on Next.

4. In the User Groups screen, remove Contoso\Domain Users and click on
Add. In the Select Users or Groups pop-up box, type session and click
on Check Names. Session-Users should appear. (You should have used
the supplied script to create a DC; if not, select a suitable group or use the
default of Domain Users.) Click on OK.

5. In the User Profile Disks screen, we will again make use of UPDs and enter the
path to the share we created for this (for example, \\<hostname>\RDS-UPD).

6. In the Confirmation screen, review the options and click on Create.

Our Session Collection will now show up in the navigation screen on the left and
underneath the RD Session Host icon on the RD Deployment Overview diagram.
Our users can access as before; if we go back to the Web Access portal now in the
Internet Explorer and log in as contoso/RDSUser3 (password = Passw0rd!), we can
see our Fast Session Collection and login (you may well be asked to log in again).
However, this brings up the traditional UI that we are used to as IT professionals,
where our users would expect to see the modern UI. There are other capabilities our
users would expect, such as video playback, and audio; all of which are encapsulated
in the Desktop Experience server feature. However, it's important not to install this
or any applications on the session host before it has the session host role service
installed, as applications won't work unless installed in a special way. We'll see
this in Chapter 8, Managing User Profiles and Data (when we look at application
deployment). We can either do this by navigating to Server Manager | Add Roles
and Features from our RDS-DC domain controller or with the following line of
PowerShell command:

Add-WindowsFeature –Name Desktop-Experience -ComputerName RDS-SHost -
Restart

Designing a Virtual Desktop Infrastructure

[64]

Here, the –Restart option is needed as this is required when this feature is added in.
The audio service on Windows Server 2012 R2 isn't on by default either, so to rectify
that we use the following commands:

Get-Service -Name AudioSrv | Start-Service

Get-Service -Name AudioSrv | Set-Service -StartupType Automatic

If we reconnect to our Fast Session Collection for the Web Access portal as
RDS-User3/Passw0rd!, we can now see the modern desktop at login and notice
that the store is now there, and so is the modern UI control panel on the modern
UI start screen, which we can get to by clicking on the down arrow underneath the
tiles to show all the applications currently available to this user, and then selecting
the PC settings icon, as shown in the following screenshot:

Chapter 2

[65]

Summary
Microsoft RDS includes two techniques for providing virtual desktops, Session
Virtualization and VDI based on a collection of Windows 8 VMs. While Session
Virtualization uses far less hardware resources, it is based on a server OS, which can
be a jarring experience for our users and limit the applications we can offer using this
technique. VDI consumes more resources, but offers our users a first-class experience.
If we have good tools and practices in place to manage real desktops, then we can
quickly deploy VDI without too much additional training. There's no right answer
here, so it's about what is right for the department or business that will use VDI.

We have now got a basic VDI deployment setup, but the virtual desktops we have
created are based on a clean copy of Windows 8.1, which is not what we'd want to
provide in a production setting.

In the next chapter, we'll use some of the tools that we would use to deploy physical
desktops and use these to create a properly configured desktop with applications,
and the configuration settings needed to optimize Windows 8.1 for VDI.

Now that we have got a good understanding of how VDI works and what our
options are, we can turn our attention to the design of the desktop itself. So far,
all we have done is given our users a clean copy of Windows 8.1, but there are no
applications in it nor is it at all configured as it would be in production. So in the
next chapter, we'll look at how to design and configure our virtual desktop template
in a similar way, and with similar tools to how we would build physical desktops.

Putting the D in VDI –
Creating a Desktop Template

This chapter is all about the desktop, because VDI is only as good as the desktop, and a
good desktop design will make life easy for our users, while keeping our management
efforts to a minimum. Desktop design is a well-established discipline, and there are
many tools available for it; however, there are special considerations for deploying
virtual desktops, and if our VDI is to be a success, we must understand them. Many of
these tools are free or are already included in both the Windows client and server OS.
So, we will review these tools to see what they do and then use one of them to create
a semiautomated process to create a more sophisticated Virtual Desktop Template
and deploy a simple application as part of the process. We'll also take a look at what
is present in the Group Policy that can help us in setting up and managing VDI.

Desktop deployment for VDI
The business of looking after all of the devices that are used for work by our users
was hard enough when all we had to worry about were the various generations of
desktops and laptops from different manufacturers. Today, our users are getting the
majority of their work done on all sorts of devices, tablets, laptops, and smartphones,
and these also have to be managed, even if they are owned by our users and not
corporately funded. That is a topic for another book, but what is important here
are two things:

• Our virtual desktops have to be deployed and managed with even more
care than real desktops, because if something goes wrong, it won't just
affect a single user whose laptop we broke; it will affect the whole group
of users who will access the VDI we just made or modified.

Putting the D in VDI – Creating a Desktop Template

[68]

• As we saw in the previous chapter, VDI can be accessed from most of
the new kinds of devices our users have. Furthermore, if we grant them
access to corporate resources, we can ensure that no data (or application)
will be running on those devices as it's all inside our data center and under
our control.

The key difference with VDI is that we run our desktops as VMs in Hyper-V, and so
the drivers we need are already in the OS and are the same for every deployment.
Hyper-V has RemoteFX built into it to make VDI more efficient, while providing a
better user experience. For example, in Windows Server 2012 R2, graphics-intensive
applications can be supported in VDI either by the virtualization of a high-end
graphics card in the physical host or by the emulation of a card similar to it with
spare CPU cycles. RemoteFX also includes USB redirection, where USB peripherals
on a local device, such as smart card readers for authentication and web cameras for
unified communications, are available inside the virtual desktop.

The other thing that makes VDI easier to set up is that the actual deployment process is
taken care of, as we saw in the previous chapter. All we had to do to make a collection
was to provide a Virtual Desktop Template, which was then copied and cloned to
create our virtual desktops. However, the way we created that template was very
simple—all we did was create a new VM based on a VHD converted from Windows
8.1 Enterprise Evaluation media. For VDI, in production, we would want to customize
this image in a number of ways, and when it comes to Session Virtualization, we also
need to configure the Windows Server OS to match what we have on our Windows
client desktops as far as possible.

Desktops are not much use without applications. While users might install applications
on their real desktops, in VDI, we will only want to allow this for Personal Collections
and set these to not roll back to an initial state when the user logs off, or they will
lose the application they just installed. In that case, we are now giving our users the
responsibility to manage their own VM, just as some organizations let users manage
their own laptops. If we think about Pooled or Session Collections, the virtual
desktop for each user is identical except for the users' settings, so each user accessing
that collection will get the same applications. If a group of users needs a certain set
of applications that won't be available to others, we can create a collection for that
particular group based on a Virtual Desktop Template with those applications, plus
any others that are used by the whole business. This is acceptable as far as it goes, but
we live in a world of matrix management and dotted reporting lines. While we want
each of our collections to be accessed by many users, we don't want to give user access
to multiple collections.

Chapter 3

[69]

The following screenshot provides a description about the collection to be used as
the head of sales with access to finance:

The solution to this problem is Application Virtualization, where users get the
applications they need as they log on to any desktop, whether it is real, session
based, or via VDI. Microsoft's solution to this is App-V (we will take a look at
this in detail in Chapter 8, Managing User Profiles and Data). However, it's not free per
se—it's part of the MDOP that comes with Software Assurance. As a result, if you
don't have this solution or have applications that won't work with App-V, you
may still have to contend with the problem of matching users to applications
and collections.

The other issue that affects desktop deployment, be it physical or virtual, is
the settings and profiles of the users. We created User Profile Disks (UPDs)
in the previous chapter to allow our users to keep these settings from session
to session, but UPDs only work inside a collection. So, if a user has access to
multiple collections, their settings will look different inside each of these and
also won't be carried across to any physical desktop that they log in to.

Putting the D in VDI – Creating a Desktop Template

[70]

We can see this by logging in to our RD Web Access portal as Contoso\
RDSUser2 (with the password, Passw0rd!). Click on the fast-pooled
collection, and change the lock screen picture to the one of piano keys
and log out of it. Connect back into the fast-pooled collection again,
and note that the lock screen is still the same picture. Now, click on the
session collection, and you will see that this isn't the same. Any changes
you make here will only work if you go back into that same collection.

So, we might need to use some of the traditional approaches to manage user profiles,
enable folder redirection, and so on. We will cover all this in Chapter 7, Maintenance
and Monitoring.

Microsoft deployment tools
There are all sorts of tools that can deploy a Windows OS to a desktop, but a lot of
the older tools rely on capturing an image in binary form, which can't be tuned or
modified. All three of Microsoft's deployment tools are file based and allow us to
inject applications, patches, and user settings into deployments so that we can create
and keep an updated library of resources that we can deploy Windows from at scale.
These tools are as follows:

• Disk Image & Service Management (DISM): This is a command-line tool
included in the OS, which replaced ImageX in Windows 7 / Windows 2008.
It can work on a running OS (in /Online mode) or on WIM files and VHDs.
It has a lot of switches and is quite tricky to get working. DISM is also the
only way to sideload modern apps designed for Windows 8.1.

• The Windows Assessment and Deployment Toolkit (ADK): This is a
free tool that replaced the Windows Automated Installation Kit (WAIK)
when Windows 8 was released. The deployment tool uses DISM and allows
you to edit answer files in a managed way through its interface. However,
deployment using the ADK is quite a manual process. There are other tools
in ADK for testing, managing licenses, and a User State Migration Tool
(USMT) to capture existing users' settings and put them into special files
(MIG) that can be replayed back to an image.

Chapter 3

[71]

• The Microsoft Deployment Toolkit (MDT): This is a free solution accelerator
that makes the deployment of images with the ADK a lot easier, and is widely
used for this reason. It allows us to set up a desktop in a known state and use
this as a template to roll out an image to all of our PC estate. It is very similar
to the way VDI uses a virtual desktop in the final chapter. What MDT does
that RDS doesn't is that it gives us a workbench to make this initial template,
including providing options to add applications and capture users' settings.

• System Center Configuration Manager 2012 R2 (CM12R2): This is a paid,
comprehensive desktop management solution that is not only designed to
handle very large-scale Windows deployments, but also update and monitor
these deployments to ensure that they are in compliance with the desired
baselines that we configure. CM12R2 doesn't just manage the Windows OS;
it also handles application management and includes System Center Endpoint
Protection, which is Microsoft's enterprise-grade, anti-malware solution.
However, it doesn't have any specific tools to deploy VDI. It actually uses
MDT to perform deployment under the covers, and so works in much the
same way.

The question is, which tool should we use for VDI deployment? If we have access to
CM12R2, we should use it, but if not, then MDT is the best bet as it is free and makes
using the ADK easier. So, let's take a look at how MDT works so that we can adapt it
for VDI.

Installing MDT
We really need MDT to run on its own VM, which I will refer to it as RDS-Ops.
MDT can run on either Windows 8.1 or Windows Server 2012 R2, but I am going to
suggest using the Server OS and creating a VM with extra VHD for the resources used
by MDT.

I have included a script to create RDS-Ops that does this and enables
deduplication in Windows Server to save more than 80 percent space
on this second drive.
If hardware resources are limited on your host, you may want to shut
down all of the running VMs, except the RDS-DC, manually or with
the following PowerShell command:
Get-VM |where status -NE "Running" | where name -NE
RDS-DC | stop-VM

Putting the D in VDI – Creating a Desktop Template

[72]

Once RDS-Ops is in place, install MDT 2013 by performing the following steps:

1. Install the parts of the ADK 8.1 (http://www.microsoft.com/en-us/
download/details.aspx?id=39982) that are the prerequisites for MDT:
the deployment tools, Windows preinstallation environment (winPE),
and User State Migration Tools (USMT). The initial ADK download is
tiny because it pulls the rest of the installation files as part of the setup.
There is a way to pull this down and deploy it to other computers; run
adksetup /layout <Path> and then run adksetup again, as follows,
to install just the three components that MDT needs:
adksetup.exe /quiet /installpath <the path specified in the
layout option> /features OptionId.DeploymentTools OptionId.
WindowsPreinstallationEnvironment OptionId.UserStateMigrationTool'

2. Now, download and install MDT 2013 (http://www.microsoft.com/
en-us/download/details.aspx?id=25175). MDT will then be able to be
installed from the command line with MicrosoftDeploymentToolkit2013_
x64.msi /Quiet.

The MDT download includes a series of quick start guides in a zipped
documentation folder, which is good background reading; we'll refer to these later.
Before we start using MDT, we need to create a special share where MDT will store
all the files we use. Do this on the new VHD that was created (in my case, E:) with
the following steps:

1. In RDS-Ops, open Deployment Workbench (using the down arrow from
the start screen or by searching for it).

2. Right-click on the Deployment Shares icon in the navigation pane and
select New Deployment Share.

3. On the Path screen, leave this as is (C:\DeploymentShare), and click
on Next.

4. Leave Share name as is, and click on Next.
5. Give it a descriptive name or leave it as is, and click on Next.
6. On the options screen, uncheck everything except Ask if an image should

be captured, and click on Next.
7. Click on Next on the Summary screen to create the share. When it's finished,

click on Finish to close the wizard.

We now have a deployment share that has a folder structure within which we can
store all the resources we need to deploy images, as shown in the following screenshot:

Chapter 3

[73]

Working with answer files
The tools that were downloaded include sample answer files that we can adapt,
but before we can use them, we need to import an operating system to work with
as follows:

1. Mount the Windows Enterprise Evaluation ISO into the VM you are using
for MDT (RDS-Ops). To do this, go to the menu at the top of the VM console,
then go to Media | DVD drive | Insert disk, and browse to the ISO.

2. On the RDS-Ops, go back into the Deployment Workbench, expand
Deployment Share that was just created, and select Operating Systems.
Right-click and select Import Operating System.

3. In the OS Type screen, select Full set of Source Files and click on Next.
4. On the source screen, browse to the DVD drive in the VM (probably D:)

and you should see the ISO file mounted. Select this and click on Next.
5. On the destination screen, the destination directory will already be

populated (which you can change). Click on Next.
6. Review the choices in the summary screen and click on Next to import the

OS. When it's done, you'll see this OS under the list of operating systems.

Putting the D in VDI – Creating a Desktop Template

[74]

We can now see the operating system in the Workbench. We can't get to the
corresponding answer file in MDT directly; we have to use Windows System Image
Manager, which will be present in all the applications below the start screen on the
modern desktop in RDS-Ops. It should already have our operating system, as MDT
has configured it to point to the operating systems in our deployment share. The
following screenshot shows the Windows System Image Manager window:

Chapter 3

[75]

The Answer File section in the mid section has nothing in it, just a series of
placeholders for different parts of the OS deployment process. We can add
components to it from the components in our Windows image on the left-hand
side by right-clicking on one. If we do that for any one of these, we will see that
each component in the image only applies to certain components in the answer
file—in other words, certain configuration items are only set at specific points in
the deployment process. There's a lot of complexity here, which would need a
book in its own right, but what we could do to get started is to open a sample
answer file and look at how it works. Perform the following steps:

1. In the Windows System Image Manager, go to File | Open and navigate
to C:\Program Files (x86)\Windows Kits\8.1\Assessment and
Deployment Kit\Deployment Tools\Samples\Unattend. Select the
Autounattend_x64_BIOS_sample.xml file and click on Open.

2. Click on Yes to accept the message about associating the answer file to
the Windows image.

The components 1 Windows PE and 4 Specialize now have the settings, but still
don't really contain anything useful. A simple, practical example of the sort of
thing that can be done is to adapt this answer file to join a domain. Perform the
following steps:

1. In the Windows Image pane, search for amd64_Microsoft-Windows-
UnattendedJoin_6.3.9600.16384_neutral and right-click on it.

2. Select Add Setting to Pass 4 specialize.
3. In the Answer File pane, expand 4 Specialize and navigate to

amd64_Microsoft-Windows-UnattendedJoin_neutral, and right-click to
get help about this setting; note that this will only work for Windows 8.1
Enterprise. Then, click on the identification hyperlink in the help section to
find out how to configure this setting, and note that we can grab the XML
and also hack another answer file with it if we want to.

We can add in a vast array of options here: we can specify networks, set up devices
and the user experience, and add user accounts with predefined scripts that will be
executed when the user logs in. We can also add and remove Windows features and
configure licensing and activation. Having made the changes here, all we need to do
for VDI is to grab this file and use it as we create a collection. For example, we could
now create a Personal Collection based on this file using the script at the end of the
previous chapter. However, this is a very detailed way of affecting changes and is
limited to just the OS itself. If we want a richer solution, we need to start looking at
how MDT itself is built on top of the ADK.

Putting the D in VDI – Creating a Desktop Template

[76]

Building a new Virtual Desktop Template
with MDT
There is an easier way to create our template, and that is to adapt the Lite Touch
Installation (LTI) process; we can use it in the following way:

1. We import an image of an operating system from the installation media,
which we already did in the previous section.

2. We create a process (MDT task sequence) to describe how to deploy this OS
to a reference computer.

3. We create a boot image from the OS and use the task sequence to install the
OS to the reference computer.

4. We can now use this image to do the installation by just mounting the ISO
image that MDT produced and boot the reference computer VM from that.

5. We can then run the Deployment Wizard from our reference computer and,
rather than capturing it for use in LTI to target computers, as described in
the MDT documentation, we can just sysprep the reference computer for it
to become our Virtual Desktop Template.

For a more detailed description, refer to Quick Start
Guide for Lite Touch Installation.docx, which is included
in the MDT documentation, and the complete installation
is actually much longer than this book!

So, let's try building a template with MDT in our lab.

Creating a task sequence to deploy the
captured OS to the reference computer
Now, you need to create a task sequence to deploy the captured image of Windows
8.1 to your reference computer:

1. In Deployment Workbench on RDS-Ops, navigate to Task Sequence
Node. Right-click and select New Task Sequence.

2. On the General Settings screen, give the sequence a unique name,
for example, Win81Ref, and a name like Windows 8.1 Reference
Deployment (x64). Click on Next.

3. On the Select Template screen, choose what you want to do in
the workbench, such as a server deployment, and deploy to VHD.
Select Standard Client Task Sequence and click on Next.

Chapter 3

[77]

4. You might think that we would want to deploy to VHD, but this task
sequence is designed around the Boot to VHD feature in Windows 7/2008R2,
and later, where the OS on a physical host can reside on a VHD, it is mounted
as part of the boot process. This option is not present to deploy an OS to a
virtual machine.

5. On the Select OS screen, select the OS we have already imported and click
on Next.

6. In Specify Product Key, click on Next to accept the default (Do not specify
a product key at this time).

7. On the OS Settings screen, enter some meaningful details for the name,
organization, and home page, and click on Next.

8. On the Admin password screen, use your standard lab password
(in my case, Passw0rd!) and click on Next.

9. Review the summary information you entered and click on Next.

The new task sequence is now stored in our deployment share. Before we can use
it, we should enable monitoring to troubleshoot any issues by performing the
following steps:

1. Navigate to the deployment share you created and right-click on it to open
its properties.

2. Select the tab in the rightmost corner, that is, Monitoring. Check the
Enable monitoring for this share option and leave the ports as they are.
Click on Apply.

3. Click on the Rules tab and confirm whether the monitoring is enabled by
noting that the entry, EventService=http://RDS-MDT:9800, is now present.
Click on OK to close the properties.

Updating the deployment share
We can now update the deployment share to publish the work we have done.
Right-click on our deployment share and select Update Deployment Share.
Leave the default options as they are and click through the wizard.

Before closing the wizard, it's useful to see what actually happened. Two boot
images have been created, one for x86 and the other for x64 in both the WIM and
ISO formats. If we open the file explorer and navigate to the deployment share on
the disk, there is now a folder in there called boot, and that's where these images
are. Note that there is a WIM (Windows Imaging Format) file for each and a
corresponding ISO file.

Putting the D in VDI – Creating a Desktop Template

[78]

Creating the reference computer
The reference computer is going to be used to make our Desktop Template, so
whatever we do here will be inherited by the template and any VDI collections
created from that template. Our reference computer is a VM, and we can create
it using a couple of lines of PowerShell:

$VMName = "RDS-Ref"
$VMSwitch = "RDS-Switch"
$WorkingDir = "E:\Temp VM Store\"
$VMPath = $WorkingDir + $VMName
$VHDXPath = $WorkingDir + $VMName +"\" + $VMName +".VHDX"

Housekeeping - delete the VM from Hyper-V
$vmlist = get-vm | where vmname -in $vmname
$vmlist | where state -eq "saved" | Remove-VM -Verbose -Force
$vmlist | where state -eq "off" | Remove-VM -Verbose -Force
$vmlist | where state -eq "running" | stop-vm -verbose -force
-Passthru | Remove-VM -verbose -force
Housekeeping - get back the storage
If (Test-Path $VMPath) {Remove-Item $VMPath -Recurse}

Create the VHD from the Installation iso
md $VMPath
New-VHD -Path $VHDXPath -Dynamic -SizeBytes 30Gb

#Create the VM itself
New-VM –Name $VMName –VHDPath $VHDXPath -SwitchName $VMSwitch -Path
$VMPath -Generation 1

change these setting to suit your lab setup
Set-VM -Name $VMName –MemoryStartupBytes 1024Mb
Set-VM -Name $VMName -DynamicMemory
Set-VM -Name $VMName -MemoryMinimumBytes 512Mb
Set-VM -Name $VMName -AutomaticStartAction StartIfRunning
Set-Vm -Name $VMName -AutomaticStopAction ShutDown
Set-Vm -Name $VMName -ProcessorCount 2

#Mount the iso from the deployment share
Set-VMDvdDrive -VMName $VMName -Path '\\rds-ops\DeploymentShare$\Boot\
LiteTouchPE_x64.iso'

Start-VM -Name $VMname

Chapter 3

[79]

Here, we are simply creating a VM with the settings we want, as before. However,
this time, we are creating a blank, dynamic VHDX and mounting the ISO file we made
previously into the DVD drive so that when it starts, we will have the OS we just made
by updating our deployment share. There are also some housekeeping commands at
the start of this script to remove the VM and its associated storage if it's already there,
so we can run this script again and again as we test our settings in MDT.

Running the deployment wizard
When we connect to our VM after it's come out of sysprep, we will be presented
with an MDT flash screen that we can run the deployment wizard from to install
a new operating system. Before we select that, it would be good to set the right
language. However, we won't need to worry about static IP as we connect to the
VM from the console. The steps to run the deployment wizard are as follows:

1. First of all, we need to access our deployment share. So, on the Credentials
screen, we enter the values as follows:

 ° User Name: administrator
 ° Password: Passw0rd!
 ° Domain: contoso.com

2. In the Task Sequence screen, we see the task sequence we created earlier to
create our reference computer—Windows 8.1 Reference deployment (x64);
we select it and click on Next.

3. In the Computer Details screen, we fill out the details of the domain and
give the VM a name. As we have seen, the VDI wizard gives us the option
to join a domain, and that option is also part of the PowerShell command
to create a collection, so all we need to do here is give the machine a name,
such as RDS-Ref, and click on Next.

4. On the Move Data and Settings screens, we click on Next as there is no data
to move—it's a new VM!

5. On the User Data (restore) screen, we click on Next as we aren't using USMT.
6. On the Locale and Time screen, we put in the details of our region and click

on Next.
7. Now, we depart from the LTI process in the MDT documentation. All we

need to do at this stage is to sysprep this VM, and it's ready to be our Virtual
Desktop Template. We select the Sysprep this Computer option and click
on Next.

8. On the Ready to begin screen, we review what we have set and click on
Begin to start the installation.

Putting the D in VDI – Creating a Desktop Template

[80]

We will now see the various stages of the Lite Touch installation execution, as
the OS is installed and when it has got to the point where we can log in (with
administrator\Passw0rd!), we can see the sysprep process being executed.
The Deployment Summary screen is as follows:

We can then eject the DVD from the VM from its properties in Hyper-V Manager on
our host or we can run Set-VMDvdDrive –VMName RDS-OPs –Path $Null from the
host instead, to do the same thing.

Chapter 3

[81]

This VM is now ready to either form the basis of a new collection or update an
existing collection. And, we can confirm this by following the steps to create a
pooled collection in the previous chapter, but this time we would select RDS-Ref
as the VM to be the Virtual Desktop Template. What is more important is that we
now have a basic but repeatable process to create our Virtual Desktop Template,
but there are two areas we need to address to make it more useful:

• We don't really have to connect to the reference computer to complete the
deployment wizard as we know all the answers. In other words, we really
want ZTI and not LTI.

• We haven't really done any customization in MDT yet, such as adding
applications and removing features.

Automating MDT
There are two files we need to work with to automatically enter all of the
information we supplied to run the deployment wizard, both of which are in
the properties of our MDT deployment share. On the Rules tab for the share,
we observed some settings when we set up the monitoring. These settings are
applied once the deployment wizard is running, but before that, another INI
file is used—Bootstrap.ini—which can be customized from this screen as
well. Perform the following steps to automate MDT:

1. Connect to RDS-Ops, and in Deployment Workbench, right-click on
MDT Deployment Share and select Properties.

2. From the Rules tab, select Edit Bootstrap.ini and modify it as follows:
[Settings]
Priority=Default

[Default]
DeployRoot=\\RDS-OPS\DeploymentShare$
UserID=Administrator
UserDomain=CONTOSO
UserPassword=Passw0rd!
KeyboardLocale=en-US
SkipBDDWelcome=YES.

3. Navigate to File | Save and then close the file, but stay in the Rules tab.

Putting the D in VDI – Creating a Desktop Template

[82]

What we have done here is supply the credentials we were first asked for in
the deployment wizard to access the deployment share. Since we are doing this
automatically, we can also suppress the welcome screen with SkipBDDWelcome=YES.
However, one of the things we initially did when we ran this manually was to select
our task sequence and also specify which options we want inside the task sequence,
such as the name of the machine, locale and time zone. We can enter all of this
directly in the Rules tab.

Edit the Rules tab to contain the following settings—the order doesn't really matter
and the line gaps are just there for clarity:

[Settings]
Priority=Default
Properties=MyCustomProperty

[Default]
DeploymentType=NEWCOMPUTER
OSInstall=YES
SkipAdminPassword=YES
SkipProductKey=YES
SkipComputerBackup=YES
SkipBitLocker=YES
EventService=http://RDS-Ops:9800
SkipBDDWelcome=YES

SkipTaskSequence=YES
TaskSequenceID=Win81Ref

SkipCapture=YES
DoCapture=SYSPREP
FinishAction=SHUTDOWN

SkipComputerName=YES
SkipDomainMembership=YES

SkipLocaleSelection=YES
KeyboardLocale=en-US
UserLocale=en-US
UILanguage=en-US

SkipPackageDisplay=YES
SkipSummary=YES
SkipFinalSummary=YES

SkipTimeZone=YES
TimeZoneName=Central Standard Time

SkipUserData=Yes

Chapter 3

[83]

Technically, these rules are the CustomSettings.ini file and most of these settings
are documented on TechNet (http://technet.microsoft.com/en-us/library/
bb490304.aspx#E0CB0AA); however, this is a bit out of date. For example, in
MDT2013, it's possible to sysprep and shut down the OS, but these settings are not
documented here. So, you will have to rely on community posts and other related
data to get more information, for example, http://blogs.technet.com/b/chuck_
kiessling/archive/2013/02/05/mdt-2012-quot-customsettings-ini-quot-
switches.aspx.

What we are doing here is skipping various screens, for example, SkipCapture=YES,
and then supplying the answers these screens would have asked us; in this case,
DoCapture=SYSPREP and FinishAction=SHUTDOWN. These screens will sysprep and
shut down RDS-Ref at the end of the deployment wizard. When you have made these
changes, remember to update the MDT deployment share with the following steps:

1. Right-click on MDT Deployment Share and select Update Deployment
Share. Accept the defaults and click on Finish to close the wizard when
it has completed.

2. We can now test if it works by rerunning PowerShell to create the reference
computer (RDS-Ref) mentioned previously.

We can get a good idea of what our new process is doing by keeping an eye on the
console of RDS-Ref as it goes through the installation process. We can see where we
are in the task sequence from the Monitoring section in Deployment Workbench.

Select Monitoring in the Deployment Workbench navigation pane. Select the log
that's running in the mid section and double-click on it to open it. This will show
you any errors and where the deployment has got to. If there's nothing here, check
the MDT deployment share property rules to ensure that the Monitoring option is
still enabled (something like EventService=http://RDS-Ops:9800).

If the process doesn't work the first time, don't worry. You
are learning, and all you need to do to retest is turn off the
reference computer (RDS-Ref) in Hyper-V manager, make
any changes you want in the deployment workbench, and
rerun the script to create the reference computer again.

Doing all of this to create our VDI template might seem like a lot of extra work right
now, but we have created a framework that we can build on, and so we now have
the ability to do the following:

• We can quickly create variations on what we have done to create templates
for each of our different collections

Putting the D in VDI – Creating a Desktop Template

[84]

• We can keep our environment up to date using MDT to add in updates, as
we will see in Chapter 5, High Availability

• We can extend what we have done to include the applications we want in
each of our collections, which is what we will look at in the next section

Deploying applications with MDT
MDT can easily manage our application deployment needs from a simple MSI/EXE
file to applications with dependencies. For a quick demo, we can use a PDF reader
such as Foxit.

You will have to register with Foxit to get an MSI file of their enterprise reader to
do this, but it is free. If you don't want to do that, you can follow along with an MSI
file of your own. When you have the MSI file, copy it onto RDS-Ops in its own folder
called Foxit. Perform the following steps to deploy applications with MDT:

1. First, import the application. Connect to RDS-Ops and open Deployment
Workbench. Expand MDT Deployment Share and right-click on
Applications, and select New Application to launch New Application Wizard.

2. In the Application Source type screen, note that you can get the application
from a share and deploy bundles of applications. Select the Application with
source files option and click on Next.

3. On the details screen, enter Publisher as Foxit, enter Application name
as Foxit Enterprise Reader, enter the value for Version if you know it,
and optionally, enter the value for Language if you want to. Click on Next.

4. On the source screen, locate the folder that contains the MSI file and click
on Next.

5. On the destination directory screen, enter Foxit Enterprise Reader and
click on Next.

6. On the command details screen, set the installation command to the following:
msiexec /i EnterpriseFoxitReader612.1224_enu.msi /quiet

Set the working directory to \\RDS-OPS\DeploymentShare$\Applications\
Foxit Enterprise Reader, in other words, to the physical path of the
installation file.

7. Check the settings on the summary screen and click on Next to import the
application. Review the output and click on Finish to close the wizard.

Chapter 3

[85]

8. Expand the Foxit directory under Applications in the navigation pane on
the left-hand side of the screen, and the new application will show up in the
center of the screen. Right-click on it and select Properties. On the General
tab, you will see that the application has a GUID, which we should know, so
copy this to the clipboard. On the Details tab, set what OS it can be deployed
on, and on the Dependencies tab, set any other applications or fields that this
depends on.

9. All you have to do now is customize the task sequence to install this
application. To do this, expand Task Sequences in the deployment share
and right-click on the task sequence you already created to set its properties.
By default, the type of task sequence you selected earlier already has an
application install step included. To find it, expand the State Restore folder
on the task sequence list and then edit the application settings as shown in
the following screenshot:

Putting the D in VDI – Creating a Desktop Template

[86]

10. Set the Name field to Install Foxit Reader and click on the Browse...
button to locate the Foxit Reader application you just imported. Click on
OK to apply this.

11. To avoid being given the option to install Foxit in the deployment wizard,
re-edit the rules (control Settings.ini) of the MDT deployment share
properties with the GUID of the application in the default section (under
[default]) as shown in the following code:
SkipApplications=Yes
Applications001 ={ec8fcd8e-ec1e-45d8-a3d5-613be5770b14}

Here, the SkipApplications setting will hide the confirmation, and the
GUID for the application can be obtained from the General tab of the
properties of the application.

12. Now, rerun the script to create the reference VM (remember to disconnect
the ISO file and update the deployment share before running the script
again). Obviously, some applications such as Office will require more
effort than this, but the principle is the same:

 ° Test whether the command-line installation works without
using MDT

 ° Import the application into MDT
 ° Modify the task sequence to install the application (there can

be multiple install application steps in a task sequence)
 ° Edit the deployment share rules
 ° Update the deployment share
 ° Rerun the deployment

Configuring collection properties
When we created our collections in the previous chapter, we went with the defaults
for everything. However, there are a number of options we can set that will determine
the desktop experience our users get. If we go back to our RDS-DC domain controller
and go into the Remote Desktop Services node of Server Manager and then select
Fast Pooled Collection, we can see its properties by selecting Edit Properties from the
task option of the Properties pane. The following screenshot displays the Fast Pooled
Collection Properties window:

Chapter 3

[87]

There are two groups of settings we are interested in here: the Client Settings in the
previous screenshot and use of User Profile Disks. The client settings allow us to
quickly restrict what our users can do with the local devices they're using to connect
to our virtual desktop. This is where we can quickly lock down the clipboard and
plug-and-play devices and drives, which would otherwise enable our users to take
data away from the virtual desktop, if we want to use RDS in a secure environment.
However, we might only want to restrict certain users or home users from doing
this. In this case, we can do the same thing we did in Group Policy, with filters on
the users that it will affect, as we will see shortly.

Setting restrictions here does not show up in Group Policy
anywhere. So, be aware that the principle of least privilege
applies if you make settings here and in Group Policy.

Putting the D in VDI – Creating a Desktop Template

[88]

The client settings for Session Collections are nearly the same, except that we have
a couple of extra options for printer redirection. We can also limit the number of
monitors a user can use. Since Session Collections handle many users from one
host, we also get the option to load balance sessions across several hosts. In VDI,
we saw that we can decide how many virtual desktops we want to deploy to each
virtualization host and load balance it that way.

We had a quick look at User Profile Disks (UPDs) in the previous chapter. In the
details setting for the UPDs, we can refine them to exclude certain folders, such as
the standard folders (pictures, documents, videos, and so on), and also include any
folders of our own that might be needed by certain applications.

Group Policy and the virtual desktop
Group Policy can be applied in a more fine-grained way to control the desktop
experience our users get when accessing virtual desktops. There are also some
other specific settings we need to be aware of, specifically the special settings
used for Session Virtualization and to restrict what applications our users can use.
This is not strictly something we need to implement in the VDI; however, it's not
a well-known feature of Group Policy either. It can be used to reduce the number
of different collections we maintain by blocking certain virtual desktop users from
running an application even though it's installed in the collection.

Group Policy with Session Virtualization
There's a whole collection of settings to configure Session Virtualization, which
can be found under Computer Configuration\Policies\Administrative
Templates\Windows Components\Remote Desktop Services\Remote Desktop
Session Host. The following options give us more control than the collection
properties we saw earlier:

• Application compatibility: There's a special compatibility mode that is
needed by some applications to run inside an RD session, which can be
set here. Also, the session host has just one IP address, so we might need to
assign virtual IP addresses for our session users so that they have different
connections to a backend service that is discriminating on IP addresses.

• Connections and their limits can be set here, including the ability to shadow
a user's session, which is available in Windows Server 20012R2 again.

Chapter 3

[89]

• Device and resource redirection: This is the fine-grained approach to
restricting users from using various local devices. Here, we can restrict
which users this applies to, whereas setting this at the collection level
means it is universal for all users.

• Licensing: This connects the environment to a licensing server, which we
will look at in the chapter on licensing.

• Printer redirects to set the default printer.
• Profiles: This controls user profiles.
• RD Connection Broker: These settings are for scaling out a farm of brokers.

We'll configure those in the next chapter from a special wizard for this.
• A remote session environment contains detailed settings, such as the

screen resolution.
• Security can be restricted here by limiting the kinds of clients that are

allowed to connect.
• Session time limits allow us to log out of an inactive session after a

given time.
• Temporary folders: This lets us set whether to assign an individual

temporary folder for each user and the option to delete these when
they log out.

Application control
AppLocker replaced software restriction policies in Windows Server 2008 R2 as a
more comprehensive set of tools to manage which applications our users can and
cannot run. There is a special service built into Windows called the Application
Identity Service, which is used by AppLocker to collect which applications are
running them, to audit, block, or allow them. The rules themselves are defined in
the AppLocker wizard built into Group Policy, and there are special PowerShell
commands for AppLocker as well. In Windows Server 2012 R2 / Windows
8.1, AppLocker can also be used to control modern applications. There are two
approaches that we can adopt when using it, and while these can be combined,
the principle of least privilege applies to both of them. They are as follows:

• Blacklist applications: We declare which applications our users are
forbidden to run, so if the application is not listed, the user can run it.

• Whitelist applications: We declare only those applications that we want
our users to run.

Putting the D in VDI – Creating a Desktop Template

[90]

Before you can work with these policies, you need to enable the application identity
services on your virtual desktops, which you can do from Group Policy as well,
as follows:

1. On the domain controller RDS-DC, open the Group Policy Management
tool. Expand the Contoso.com domain and select the organizational unit,
RDS-VDI, as shown in the following screenshot:

Chapter 3

[91]

2. Right-click on this, select Create a GPO in this domain, and link it here.
3. Right-click on the new Group Policy and select Edit.
4. In Group Policy Management Editor, navigate to Computer Configuration

| Policies | Windows Settings | Security Settings | System Services;
then, select the application identity service, right-click on it, and select
Properties. Check Define this policy setting and set the Service Setup
mode to Automatic.

5. Click on OK to close this, and then close Group Policy Management Editor.

You could also change the preferences in Group Policy to start this service, which is the
newer way to do this sort of thing in Group Policy. Perform the following steps:

1. In Group Policy Management Editor, navigate to Computer Configuration
| Preferences | Control Panel Settings | Services.

2. Right-click on Services and click on New. In the General tab, click on the
ellipsis to find Application Service (AppIDSvc), and choose the service
action as Start Service. The clever thing here is that if there's a problem,
you can handle it by setting options in the Recovery tab. You can set the
first, second, and subsequent failures as well and select the retry interval.

The policy has precedence over a preference if both are
applied to the same thing.

Putting the D in VDI – Creating a Desktop Template

[92]

3. Now, you are ready to set up and test the rules you want to enforce on
the users. Add this to the policy you just created using Group Policy
Management Editor and by navigating to Group Policy Management
Editor expand Computer Configuration | Policies | Windows Settings |
Security Settings | Application Control Policies | AppLocker:

Chapter 3

[93]

First, we can opt to enforce our policies. If we click on the link on the wizard screen
on the right to Configure Rule Enforcement, we can not only control each type of
executable file, but we can also elect enforce rules or click on each dropdown and
select Audit Only. The Advance tab here also allows us to control DLLs, but this
can be dangerous as we might easily block a DLL that an application depends on.
DLL control will also mean a lot of management and, potentially, huge policy files
if we decide to blacklist or whitelist them.

For executable files, Windows installers (.msi), and scripts, we can choose which
level to declare rules at:

• The application publisher
• The application path
• The file hash—a unique signature restricted to a version of an application

This is similar for modern Windows 8.1 applications as well (which AppLocker
refers to as Packaged Apps):

• Publisher
• Package name
• Package version

AppLocker can also be run from any machine, such as our reference computer.
We just navigate to it from inside Group Policy Management Editor (GPEdit.msc).
This means that we can scan the programs on a desktop, create a template we can
export, and then import it to our domain policy. This is particularly useful for modern
apps in Windows 8.1.

The Windows Store and modern control panel are both modern
applications, so remember to include rules to allow or deny
these as well in your AppLocker policies.

Having done a scan and decided which users will be subject to the rules, we can
then export them by right-clicking on the AppLocker node in the editor and selecting
Export to create an XML file to be imported elsewhere. In fact, we can load this into
MDT and deploy directly as well, if necessary.

Putting the D in VDI – Creating a Desktop Template

[94]

Summary
We had a good first look at what can be done to design and configure our virtual
desktops using MDT, to store our configuration setting for the OS and for any
applications we want in our collections. We have the workings of a process where
we can automate the creation of a collection from a PowerShell script. We have
also seen that we can configure Group Policy packs inside MDT if we want to.
Although, for VDI, it is simpler to rely on our virtual desktops and users that
belong to an OU that we can apply policies to. Finally, we saw that there are a
number of Group Policy settings specific to RDS and VDI, such as controlling
USB redirection, as well as other useful features, such as AppLocker, to restrict
our users from running designated applications. Now that we have the tools to
build virtual desktops for the enterprise, we can turn our attention to delivering
these to our users, some of whom might be working at remote locations, such as
from home, in a branch office, or on site with a customer. So, in the next chapter,
we are going to put the R in Remote Desktop Services.

Putting the R in
Remote Desktop

Many users now spend more and more time doing work away from the office, driven
partly by flexible working practices, and because reliable mobile communications
are available more widely and at a reduced cost. So, in this chapter, we will look at
how to extend VDI outside of the local network so that our remote workers can use
a virtual desktop wherever they can get a connection and on whatever device they
have. This will include looking at several technologies not specifically related to VDI;
we'll need to create trusted certificates to enable secure communications with these
remote users. We'll need to look at firewalls and see how to authenticate our users
without exposing too much of our Active Directory (AD) infrastructure.

We'll need to work with quite a few VMs to emulate the infrastructure
surround in VDI, as it gets extended to the Internet, if the lab
environment is to properly reflect what even a basic production
environment looks like. I shall indicate which VMs we can shut down
to keep this to a minimum.

Introducing the Remote Desktop Gateway
Modern work styles, branch offices, and having our users work closely with our
clients at their locations are just some of the reasons why users will want access to
corporate resources when they aren't in the office (or head office). If we can extend
our VDI to these users, then they will have nearly the same experience as they would
at work (if the communications are fast and reliable enough!).

Putting the R in Remote Desktop

[96]

We could just leave our VDI as is and implement a VPN to create a connection to
our RD Web Access Server, and if the device they are connecting from is joined to
our domain, then we could go a stage further and implement the Microsoft Direct
Access and Built-in VPN to create a connection without any third-party software
at either end. However, there is no need to do any of this if all we want to do is
extend VDI to our remote users as there is a special role in RDS called the Remote
Desktop Gateway (I shall just call it the RD Gateway from now on) that helps with
this. Like any gateway, it is designed to be secure and is typically installed on a
perimeter network, that is, it is installed on a network that is separated from the
internal network by at least one firewall. It will use Secure Socket Layer (SSL)
to establish an RDP session with remote users; this means that we will need the
certificate infrastructure used in secure web traffic to support it. The RD Gateway
also needs to identify and authenticate our users, and therefore, it needs access to our
AD infrastructure. There are several ways of configuring the RD Gateway to achieve
these objectives depending on our requirements and on the core infrastructure we
already have in place to expose IT resources externally. Before we consider this, we
need to understand more about the infrastructure it relies on.

Certificates
We need to have a basic understanding of Public Key Infrastructure (PKI)
and how certificates are used in SSL to ensure that the remote access to our RD
Gateway works. A full discussion on this is outside the scope of this book, so I
will direct you to TechNet (http://technet.microsoft.com/en-us/library/
dd277320.aspx) and to this popular primer on the subject by Steve "Planky" Plank
(http://blogs.msdn.com/b/plankytronixx/archive/2010/10/23/crypto-
primer-understanding-encryption-public-private-key-signatures-and-
certificates.aspx) for more information.

SSL has actually been superseded by Transport Layer Security (TLS), but
many of us still refer to this as SSL. However, you will also see references
to TLS in TechNet. I'll call it SSL in this book to keep things simple.

We only need certificates in VDI to encrypt SSL between the gateway and our
external users and not for the many other uses they also have. To do this, we need
to have what's called an X.509 certificate, where X.509 is the industry standard
definition for PKI. The simplest certificate we often see in demos is the self-signed
certificate that can be created from inside Internet Information Services (IIS) or
via PowerShell on a given machine and is typically used to create a secure website.
We could use self-signed certificates for VDI, but in production, these aren't really
feasible as they need to be managed manually. We would need to distribute and

Chapter 4

[97]

install them on any other device used to connect to our VDI, and we would have to
devise a process to renew them when they expire. This would cause us more security
problems than it would solve, and our help desk would be flooded with calls from
users struggling to connect. We actually saw evidence of this problem in the Creating
a Pooled Collection section of Chapter 2, Designing a Virtual Desktop Infrastucture, when
we connected to the RD Web Access portal (http://rds-web.contoso.com/RDWeb),
where we got a certificate error, which we ignored, before we could connect. This
occurred because the client we used didn't trust the certificate from the RD Web
Access Server IIS site.

Fortunately, there is a much better way. Windows Server includes Active Directory
Certificate Services (AD CS) to provide certificates so it can act as a Certificate
Authority (CA). CAs do more than issue certificates; they also automatically revoke
them and issue new ones, as needed, by maintaining Certificate Revocation Lists
(CRLs) that are digitally signed for security purposes. The validity of certificates
from clients connecting to our VDI is checked by an Online Responder service
against the CRL that is using the industry standard Online Certificate Status
Protocol (OCSP) that runs over HTTP.

When the role is installed, we get three options to choose from, as follows:

• Standalone root CA: This makes the server the highest level in a PKI
hierarchy and is not integrated with AD at all

• Enterprise root CA: This also makes the server the highest level in a PKI
hierarchy but is integrated with AD

• Subordinate CA: The server is part of, but not the root of, an existing
PKI hierarchy

So, which of these options do we want for VDI? Before we answer that, we need
to understand how our VDI will be accessed by our remote workers if we equip
our remote workers with domain-joined Windows laptops or Windows To Go
memory sticks.

Windows To Go is a Windows 8 / 8.1 Enterprise technology for
running the OS from a special USB memory stick (http://www.
microsoft.com/en-us/windows/enterprise/products-and-
technologies/devices/windowstogo.aspx). The user boots from
this technology, and the OS they run is domain joined, possibly with
BitLocker enabled and the OS and storage on the actual laptop invisible
to them; C: is just the storage on the memory stick.

Putting the R in Remote Desktop

[98]

All we have to do is use an Enterprise CA to generate our certificates as the remote
devices will trust the certificate since they are in the same domain.

However, many of us might want to deploy certificates that can be trusted on any
device that may not be joined to our domain and may not be a Windows device
at all. To do this, we need to invest in a third-party root CA from companies
such as DigiCert, GoDaddy, Symantec (VeriSign) Thawte, and so on (the full list
can be viewed at http://social.technet.microsoft.com/wiki/contents/
articles/14215.windows-and-windows-phone-8-ssl-root-certificate-
program-member-cas.aspx), and then create our PKI subordinate for this root
CA. Alternatively, we could just buy an SSL certificate from these same providers,
in which case the certificates will be part of the third parties' PKIs. This is a much
cheaper option, as we will just be using the certificate for one purpose on one or two
gateway servers rather than deploying a multifunction PKI throughout our entire
infrastructure. One important option to keep in mind when buying or configuring
certificates in AD CS is the use of wildcards in the certificate name, technically
known as Subject Alternate Names (SANs)—not to be confused with Storage Area
Networks referred to elsewhere in this book!. These SAN certificates allow for the
wider use of a certificate; for example, *.contoso.com allows us to get the certificate
for mail.contoso.com, vdi.contoso.com, and so on.

For our initial evaluation, I am going to suggest that we simply use self-signed
certificates, as the work done to set up AD CS is considerable and usually the
responsibility of a dedicated team in a large organization.

Creating a self-signed certificate
The simplest way to create a self-signed certificate is to do this from any server that
is running IIS, for example, RDS-DC. However, creating a certificate in IIS Manager
doesn't give us much control over the certificate, and the one thing we can't do is
define any alternative names. Fortunately, in PowerShell 4, there is now a set of PKI
commands that allow us to do exactly what we want.

Don't do this in production! Self-signed certificates are, at best,
difficult to manage and, at worst, a big security risk.

Chapter 4

[99]

Firstly, we need to create the certificate on our domain controller RDS-DC, and the
following command will create it at LocalMachine\My:

New-SelfSignedCertificate `
 -CertStoreLocation cert:\LocalMachine\My `
 -DnsName rds-Broker.contoso.com,rds.contoso.com,rds-gateway.com

Now, we can export the certificate with its private key for use on our other servers
with the following commands:

$Cert = Get-ChildItem -Path cert:\localmachine\My | `
 where subject -EQ "CN=RDS-Broker.contoso.com, CN=RDS-
Web.contoso.com, CN=rds.contoso.com"

$pwd = ConvertTo-SecureString -String "Passw0rd!" -Force –AsPlainText

Export-PfxCertificate `
 -cert $cert `
 -FilePath 'C:\RDS-Web self signed certificate 1.pfx' `
 -Password $pwd

There is also a PowerShell command called add-PFXCertificate that we could use
to actually deploy the certificate to a designated part of a certificate store on any of
our servers. However, these certificates are better controlled from the deployment
properties in the RDS overview, and now that we have created our certificate, we can
configure our gateway to use it.

Getting started with the Remote Desktop
Gateway
We can easily set up an RD Gateway with a special wizard within the RDS Overview
of Server Manager. It's recommended best practice to co-locate the RD Web Access
and RD Gateway roles, so that's what we'll do here.

Once this VM has been created, we need to manage and configure it. To do this from
Server Manager, perform the following tasks:

1. Connect to the RDS-DC VM from Hyper-V Manager on the physical host.
Open Server Manager and navigate to Remote Desktop Services.

Putting the R in Remote Desktop

[100]

2. In the RDS overview diagram, which was shown earlier, click on the RD
Gateway icon (currently just a green plus sign) to launch the Add RD
Gateway Servers wizard. The following screenshot shows the RD
overview diagram:

3. On the Select a server screen, click on the RDS-Web server from the server
pool. Click on the middle arrow to add it to the list of selected servers and
click on Next.

4. On the SSL Certificate Name screen, we are being reminded that the SSL
certificate we use must correspond to the Fully Qualified Domain Name
(FQDN) of our gateway server. Enter RDS.contoso.com and click on Next.

5. Click past the Confirmation screen, and click on Add to complete the wizard.

Chapter 4

[101]

The gateway role has now been installed on RDS-Web; however, there is a warning
at the bottom of the final Progress screen that says The following role services
require a certificate to be configured and there is a Configure certificate hyperlink
to do exactly this under the warning. The hyperlink will take you to the Certificate
screen in the Deployment Properties wizard that we saw in the Creating the virtual
desktop template section of Chapter 2, Designing a Virtual Desktop Infrastructure. We
can use our new self-signed certificate to make then necessary changes to our
deployment by doing the following:

1. Click on the Configure certificate hyperlink on the Progress screen to open
the Manage Certificates screen of the Configure Deployment wizard that
we saw in the Setting up and configuring the RDS roles section of Chapter 2,
Designing a Virtual Desktop Infrastructure.

2. In the Manage Certificates screen, highlight the row marked RD Connection
Broker – Enable Single Sign On and click on Select Existing Certificate.

3. Check the Choose a different certificate option and browse to the certificate
we created earlier: \\rds-DC\c$\RDS-Web self signed certificate.
pfx. Enter the password, Passw0rd!, and check the Allow the certificate to
be added to the Trusted Root Certificate Authorities certificate store on the
destination computers option. Click on OK to select the certificate and close
the screen.

4. Note that since the certificate is now available, the State column for the RD
Connection Broker – Enable Single Sign On row now says ready to apply.
Click on Apply to complete the process.

The certificate for this role is now in place, and its level is set to untrusted. We can
now repeat steps 2, 3, and 4 to add our certificate to each of the role services (RD
Connection Broker-Publishing, RD Web Access, and RD Gateway). Note that when
we highlight either the RD Web Access or RD Gateway role services, we are warned
that because we have the web access role on the same server, we must use the same
certificate for both of the roles. Before we close the Deployment Properties wizard, we
need to look at the RD Gateway settings as well. From here, we can explicitly set the
name of our RD Gateway server (in our case, RDS-Web.contoso.com), identify how
we authenticate against the RD Gateway, and determine whether these credentials are
then used for the remote computers, which for us are our virtual desktops.

Putting the R in Remote Desktop

[102]

We can also elect to bypass the gateway for local addresses; however, for testing
purposes, we should uncheck this option so that the RD Gateway is always in use.
All of these settings show up in two other places in the Remote Desktop client under
Advance Properties | Gateway Settings. This brings up the following screenshot:

This screenshot shows that our users can change the settings, but actually, if they
use the remote desktop client directly against our VDI like this, then what the client
will try to do is actually log on to the gateway and not access our VDI collection
at all; this attempt will fail as our users don't have rights to log on to this server. If
they are on a device that is connected to our domain, we can control the gateway
settings from Group Policy by navigating to User Configuration | Administrative
Templates | Windows Components | Remote Desktop Services | RD Gateway
and preventing them from logging on to our servers directly.

Chapter 4

[103]

When we created the gateway, we specified the name for the gateway to be
associated with our SSL certificate and set it to rds.contoso.com. However, this
name doesn't actually exist; the name of our gateway is RDS-Web.contoso.com. So,
for the RDS clients to resolve this name, create an alias (or CName) in DNS. Perform
the following steps:

1. Connect to the RDS-DC VM, and from the Tools menu in Server Manager,
select DNS to open the DNS Manager window.

2. Navigate to rds-dc | Forward Lookup Zones.
3. Right-click on Contoso.com and select New Alias (CNAME).
4. Set the alias name to RDS, leave the FQDN as rds.contoso.com, and set the

FQDN for the target host to rds-web.contoso.com. Click on OK to create
the entry.

As usual, there is a simple PowerShell command to do this, as follows:

Add-DnsServerResourceRecordCName -Name rds -ZoneName contoso.com -
ComputerName rds-dc.contoso.com -HostNameAlias rds-web.contoso.com

We can now check whether our gateway is working by opening Internet Explorer
either from RDS-DC or from the physical host and navigating to the URL https://
rds.contoso.com/rdweb. Note that we still get the certificate warning we saw
before, but since we just ignored it and signed in just now, it will prevent us from
accessing our virtual desktops. We can confirm this by ignoring the warning again,
proceeding to the site, and signing in as contoso/RDSUser2 (password: Passw0rd!).
When we try and access our Fast Session Collection, we get an error: This computer
can't verify the identity of the RD Gateway RDS-Web.contoso.com. In order to fix
this, you need to install the SSL certificate you have been using on the local machine
that you are connecting from. Perform the following steps:

1. Click on the red X of the certificate in the address bar and select
View Certificates.

2. Look at the Details tab of the certificate to confirm whether it's the one we
made earlier with all our alternate names.

3. On the General tab, select Install Certificate.
4. Select the Current User option and click on Next.
5. Select the Place all certificates in the following store option and browse

to Trusted Root Certification Authorities. Click on Next.
6. Click on Finish to install the certificate and then close the browser.

Putting the R in Remote Desktop

[104]

7. Go back to https://rds.contoso.com/rdweb. Note that we don't have a
certificate error anymore.

8. Sign in as contoso/RDSUser2 again (password: Passw0rd!), and select the
Fast Session Collection option. You will now be logged in without any
further requests for your credentials.

We now have a working RD Gateway before we have begun with our VDI
deployment. However, before we proceed any further and begin to add more
complexity to it, we should check whether the basic configuration works so that
we know what to fix in case of any issues.

Active Directory authentication
We saw that when we connected to our VDI in the Creating a Pooled Collection section
of Chapter 2, Designing a Virtual Desktop Infrastucture, we were asked to sign in with
our domain credentials so that the broker role could identify who we are and assign
us with the correct collection in our VDI. We also need to do the same thing for the
RD Gateway, and in fact, the RD Gateway needs to be joined to our domain. So,
what are our options, given that we will want to put the RD Gateway on some sort of
perimeter network?

Opening additional ports on the firewall
We could just open up the ports we need from the perimeter network so that
the gateway server can communicate with AD and the rest of our VDI. In this
scenario, we would need to unblock the ports for a wide variety of traffic, for
authentication and authorization to the domain, DNS, CRL, and the actual RDP
traffic. Understandably, this isn't very secure and would probably be opposed by
your network security team.

Relying on a forest trust relationship
It is possible to set up AD so that different domains trust each other, and this can be
done in one or both directions. So, we could install a DC in our perimeter network
and create a domain called rds.dmz.com, for example, and then join the gateway
to that domain. We can then set up a one-way trust system between that domain
and our corporate domain, contoso.com. This would cut down the ports we would
need to open to just the AD Forest traffic and the RDP protocol. However, in this
scenario, we have a fully working DC in our perimeter network, which might not be
acceptable to the IT security team either.

Chapter 4

[105]

Using a read-only domain controller
This was new for Windows Server 2008 and was originally designed for branch
offices where the link to the head office could occasionally fail, but users could
still log in to the branch by authenticating against the in-branch read-only domain
controller (RODC). It works by caching specified users credentials, and we can
control which accounts are cached. In our case, all we need is our VDI users, and we
can block any caching of privileged domain accounts so that they are never stored
on this DC. There does have to be one-way synchronization from the other DCs
to the RODC for the maintenance of the designated RODC accounts, for example,
as passwords are changed. Another consideration is DNS, and while it would be
quite usual to have this running alongside a DC, in a branch scenario, this would be
another security headache in a perimeter network.

I mention all of this because using one or more RODCs in the perimeter network is the
recommended approach to AD authentication in VDI. Similarly, the recommended
method to keep DNS up to date is to use DHCP to maintain DNS records.

There is a complete setup guide to deploy AD in a perimeter
network, which includes the specifics of RODCs as well, available
at http://technet.microsoft.com/en-us/library/
dd728028(v=ws.10).aspx.

Creating an RODC
Creating an RODC used to be quite difficult, but among the many features in
Windows Server 2012 R2, there are now more wizards and the option to save from
the PowerShell script. For RODCs, there are two wizards. We can preauthorize a
designated RODC from the Active Directory Administrative Console, or we can set
up the RODC when we add the Active Directory Domain Services role. The reason
there are two options here is because it is possible to create an RODC using an offline
domain join when it's not connected to the network where our DCs are. However,
we are doing this on a VM in Hyper-V so that we can create the RODC VM on our
existing network for now and move it around once it is configured.

Putting the R in Remote Desktop

[106]

We are going to use two more VMs in this chapter to create the RODC
(RDS-RODC) itself, and another to spoof the perimeter network; as
usual, there is a script for this. If we don't have the resources to run any
more VMs, then it's possible to test what we are doing by deleting any
collection or stopping the initial VM we used in Chapter 1, Putting the V
in VDI – An Introduction to Virtualization in Hyper-V. So, what you need
to have running is the RDS-SHost (to provide session-based virtual
desktops), RDS-Broker, RDS-Web (which is now our gateway), and
RDS-DC VMs.

I think it's important to understand the basics of RODCs, so step through the wizard
to make one on a clean VM that's already a member of the contoso.com domain
(RDS-RODC, if you have used my script). Perform the following tasks:

1. Connect to the VM from Hyper-V Manager as contoso/administrator.
2. Install the Active Directory Domain Services role from the Add Roles and

Features option or with the following PowerShell command:
Install-WindowsFeature -name AD-Domain-Services -
IncludeManagementTools

3. If you have used PowerShell, click on Refresh in Server Manager.
4. Click on the yellow warning in the top-right corner of Server Manager and

select Promote this Server to a domain controller by launching the Active
Directory Services Configuration wizard.

5. Review the settings on the Deployment Configuration screen and click on
Next to add this server as a new DC into the contoso.com domain.

6. On the Domain Controller Options screen, check all of the options: Domain
Name System (DNS) Server, Global Catalog (GC), and Read-only Domain
Controller (RODC). Set the Directory Services Restore Mode (DSRM)
password to Passw0rd!, confirm it, and click on Next.

7. On the RODC options screen, specify which accounts will be stored on the
RODC and which will not as well as setting a delegated administrator for the
RODC. We'll set RDSAdmin as the delegated administrator and leave the other
settings as given on the screen. This will prevent key accounts from being
stored on the RODC, and you can add in your VDI users to the Allowed
RODC Password Replication Group later to ensure that their credentials are
stored on the RODC. Click on Next.

8. Leave the settings on the Additional Options screen as they are and click
on Next.

9. Leave the settings on the Paths screen as they are and click on Next.

Chapter 4

[107]

10. On the Review Options screen, check whether the options are as you
intended. You can see how to do all of this in PowerShell by clicking on
View Script. The following command lines will be available in View Script:
Import-Module ADDSDeployment

Install-ADDSDomainController `
-AllowPasswordReplicationAccountName @("CONTOSO\Allowed RODC
Password Replication Group") `
-NoGlobalCatalog:$false `
-CriticalReplicationOnly:$false `
-DatabasePath "C:\Windows\NTDS" `
-DelegatedAdministratorAccountName "CONTOSO\RDSAdmin" `
-DenyPasswordReplicationAccountName
@("BUILTIN\Administrators", "BUILTIN\Server Operators",
"BUILTIN\Backup Operators", "BUILTIN\Account Operators",
"CONTOSO\Denied RODC Password Replication Group") `
-DomainName "Contoso.com" `
-InstallDns:$true `
-LogPath "C:\Windows\NTDS" `
-NoRebootOnCompletion:$false `
-ReadOnlyReplica:$true `
-SiteName "Default-First-Site-Name" `
-SysvolPath "C:\Windows\SYSVOL" `
-Force:$true

This could easily be adapted to roll out multiple RODCs, for example, to
branch offices.

11. Click on Next to run a prerequisite check.
12. On the Prerequisite Check screen, you'll get the usual warning about

cryptography and NT4, which you can ignore, and you can configure the
RODC by clicking on Install.

You now need to make a few changes in AD on your RDS-DC so that your users'
accounts are on the RODC, and you need to remove the RDSAdmin account from the
domain admins group; otherwise, it won't be replicated to the RODC, and you won't
be able to manage it. Perform the following steps:

1. Connect to RDS-DC as contoso/administrator and open Server Manager.
In the Tools menu, select Active Directory Administrative Center.

2. Select Global Search at the bottom of the navigation pane, and enter Allowed
in the Global Search window. Right-click on Allowed RODC Password
Replication Group and select properties. Navigate to Members and click on
Add on the right-hand side of the screen.

3. In the Select Users dialog box, enter VDI-Users;SessionUsers; RDS
Administrators (RDSAdmin) and click on OK.

Putting the R in Remote Desktop

[108]

4. Navigate to Contoso (local) | RDS-VDI and right-click on RDS-
Administrator. Then, select Properties.

5. Navigate to Member Of and select Domain Admins. Click on Remove and
then on OK to confirm and close this screen.

6. Repeat this for Enterprise Admins, as in both cases, the RDS admin account
won't be replicated to the RODC if it's in either of these groups.

The equivalent PowerShell script can be captured from the bottom of the Active
Directory Administrative Console as follows:

Set-ADGroup -Add:@{'Member'="CN=VDI-Users,OU=RDS-VDI,DC=Contoso,DC=com",
"CN=Session-Users,OU=RDS-VDI,DC=Contoso,DC=com", "CN=RDS
Administrator,OU=RDS-VDI,DC=Contoso,DC=com"} -Identity:"CN=Allowed RODC
Password Replication Group,CN=Users,DC=Contoso,DC=com" -Server:"RDS-DC.
Contoso.com"

Remove-ADPrincipalGroupMembership -Confirm:$false -Identity:"CN=RDS
Administrator,OU=RDS-VDI,DC=Contoso,DC=com" -MemberOf:"CN=Domain Admins,C
N=Users,DC=Contoso,DC=com" -Server:"RDS-DC.Contoso.com"

Remove-ADPrincipalGroupMembership -Confirm:$false -Identity:"CN=RDS
Administrator,OU=RDS-VDI,DC=Contoso,DC=com" -MemberOf:"CN=Enterprise Admi
ns,CN=Users,DC=Contoso,DC=com" -Server:"RDS-DC.Contoso.com"

Our RODC is now ready for use, but it has no real value as it stands because our
RDS-DC is available and our VDI doesn't know about this new DC.

Creating the perimeter network
So far, in this book, we have created several VMs to create a simple VDI in a box for
our labs. All of these VMs that we just created, including the gateway and RODC, are
connected to the same Hyper-V virtual switch (RDS-Switch)—it can be considered
our private or corporate LAN—and so our current lab setup looks like the following:

Chapter 4

[109]

The current lab setup

Since RDS-Switch is an external virtual switch bound to a physical NIC on our
host, the LAN extends beyond the physical host, and we are able to connect to our
VDI from whatever was connected to that NIC. However, we can create more than
one virtual switch on a Hyper-V host, and as we saw in Chapter 1, Putting the V
in VDI – An Introduction to Virtualization in Hyper-V, each of these can be private,
internal, or external; additionally, the type can be changed from one to the other
even if running VMs are using the switch (it's a bit like changing the patch cable in
our real switches). So, we can create a new virtual switch to handle our perimeter
network (we'll call it RDS-Perimeter) alongside our existing RDS-Switch and then
make the RDS-Switch an internal virtual switch so that it's only visible to our host
and the VMs connected to it. Our new RDS-Perimeter switch will now be our
external virtual switch; note that only one virtual switch can be bound to a physical
NIC, but this NIC will not be available to the host (remember to use the setting
Allow the management operating system to share this network adapter, which if
not set, will mask this network adapter from the host).

In production, you might well decide to run all of your VMs in a
perimeter network on a dedicated host. The host would never be
connected to the perimeter network itself, but would typically have
another physical NIC used expressly to manage it.

Putting the R in Remote Desktop

[110]

Just to be clear, at this point, a VM connected only to RDS-Perimeter cannot
communicate at all with a VM connected only to RDS-Switch. In a real perimeter
network, there would be limited connectivity between the two, but this would be
subject to routing, and they would probably be separated by a firewall so that only
certain ports, protocols, and applications were able to traverse the two networks.
This is easy to replicate in Windows Server with the built-in firewall and Routing
and Remote Access Services (RRAS) role. Putting all of this together results in a
setup like the following diagram:

The design for our RDS Gateway lab

Here, we now have the RDS-Perimeter on a new 10.10.10.x subnet, and our
physical host is only connected to RDS-Switch, which is now internal. I am going
to suggest that we use a dedicated VM (RDS-RRAS in the diagram) as this mimics
what there would be in production; this VM also has two virtual NICs and is
connected to both of the virtual networks. Once we have this VM configured, we
can move our gateway and RODC VMs to the new perimeter network by simply
changing their static IP address, connecting them to the RDS-Perimeter virtual
switch, and updating DNS to reflect their new location.

Chapter 4

[111]

Configuring the virtual switches
Before you can configure anything else, you need to create the new virtual network
and adjust the settings of your existing virtual switches (RDS-Switch). Perform the
following tasks:

1. Create the RDS-Switch VM and internal virtual switch by performing the
following steps:

1. On the host server that you are using, open Hyper-V Manager.
2. From the Actions pane, select Virtual Switch Manager.
3. Select RDS-Switch and check the Internal Network option.

Then, click on Apply.

2. Create the RDS-Perimeter switch and make it an external virtual switch by
performing the following steps:

1. While still inside the Virtual Switch Manager, select New Virtual
network switch on the left-hand pane.

2. Select External and click on Create Virtual Switch.
3. Name the switch RDS-Perimeter, select the appropriate switch from

the drop-down box under External network, and deselect Allow the
management operating system to share this network adapter.

4. Click on OK to confirm the settings and close the Virtual
Switch Manager.

The equivalent PowerShell script is as follows:

Get-VMSwitch | where name –eq RDS-Switch | Set-VMSwitch –SwitchType
Internal

$PhysicalNIC = Get-NetAdapter | where interfacedescription -Like
"*gigabit*"

New-VMSwitch -NetAdapterInterfaceDescription $PhysicalNIC.
InterfaceDescription -Name RDS-Perimeter

Here, you'll need to change *gigabit* to an appropriate search term to find the
physical NIC in your host.

Putting the R in Remote Desktop

[112]

Configuring Routing and Remote Access
The script used to create the RODC that we configured earlier also created another
VM: RDS-RRAS. This VM is not a member of the contoso.com domain; it has two
virtual NICs and the Routing and Remote Access feature already installed on it.
However, it's not configured as it's better to be able to configure a server like this
when testing similar VDI scenarios.

If you want to create a blank VM for this, then you just need to
preconfigure it with the following PowerShell script:
#Add in the routing role into the RRASVM while the VM is
off but has the server OS installed

Add-WindowsFeature -Vhd (path to your new VHD) -Name
"routing" -IncludeManagementTools -ComputerName orange

#Add a second NIC and leave it unconnected

Add-VMNetworkAdapter -VMName $RRASVM

The traditional Routing and Remote Access role is now inside the much more
powerful Remote Access role in Windows Server 2012 R2, which also covers Direct
Access, reverse proxy capabilities, and VPN. All you need here is a simple router; to
get this router, perform the following steps:

1. Connect to the RDS-RRAS VM in Hyper-V Manager as .\administrator
(password: Passw0rd!). Open Server Manager and navigate to Local Server.
Click on the IP address for Ethernet to open the Network Connections
dialog box.

2. Right-click on Ethernet2 and select Properties.
3. Highlight the row for Internet Protocol Version 4(TCP/IPv4) and click

on Properties.
4. Set the IP address to 10.10.10.1, the subnet to 255.255.255.0, and the

gateway to 10.10.10.2. Click on OK to close this window, and click on
Close on the Ethernet 2 properties window.

5. Go back to Server Manger, and click on the refresh icon to confirm whether
the IP address for Ethernet2 is now set.

6. From the Tools menu in Server Manager, select Routing and Remote Access.
7. Right-click on the RDS-RRAS server and select Configure and Enable

Routing and Remote Access to launch the Routing and Remotes Access
Server Setup wizard.

8. Click on Next on the welcome screen.

Chapter 4

[113]

9. Select Custom Configuration and click on Next.
10. Select LAN Routing and click on Next.
11. Confirm that the LAN Routing option has been selected, and click on Finish

to complete the wizard.
12. Click on Start Service to enable routing.

If we have a look at the RRAS manager now, we will see that our service is green.
If we navigate to IPv4 | General, there are four interfaces, namely, Loopback,
Internal, Ethernet, and Ethernet2, and the last two have a type named dedicated.
If we right-click on either Ethernet interface to look at its properties, we will see that
Enable IP router manager is enabled. All we need to do now is move our VMs across
to the new virtual network and alter some network and DNS settings, and we will
have implemented what is in the preceding diagram.

Completing the gateway design
You now need to move the VMs, RDS-Web and RDS-RODC, into the perimeter
network, which is simply a matter of connecting them to the RDS-Perimeter switch.
Perform the following tasks:

1. In Hyper-V Manager on the host, right-click on RDS-Web and
select Settings.

2. In the Network Adapter Settings dialog box, change the virtual switch to
RDS-Perimeter and click on Apply.

3. Repeat the process for RDS-RODC by selecting RDS-RODC from the top-left
corner of the Settings screen, set its network adapter to RDS-Perimeter, and
click on OK to close the Settings window.

The VM can be left running. This is the virtual equivalent of
swapping the router that a real server is connected to.

We now need to reconfigure the IP addresses of these servers to reflect the new
subnet we are using in the perimeter network (10.10.10.0/24) and the location
of our IP gateway (our RDS-RRAS server), as shown in the design diagram for
the network.

Putting the R in Remote Desktop

[114]

We can do this in each VM by navigating to Server Manager | Local Server
and clicking on the current IP address for the server to change it in Network
Connections. The settings we need to change are the IPv4 properties of the
Ethernet adapter, and they need to be set as follows:

• The RDS-RODC IPv4 address (10.10.10.2), subnet mask (255.255.255.0),
gateway (10.10.10.1), and DNS server (127.0.0.1)

• The RDS-Web IPv4 address (10.10.10.3); subnet mask (255.255.255.0);
gateway (10.10.10.1); and DNS server (10.10.10.2), that is, RDS-RODC

The PowerShell script to do this is harder to understand as there is no native
command, so we have to call a Windows Management Interface (WMI) using
the following command:

$wmi = Get-WmiObject win32_networkadapterconfiguration -filter
"ipenabled ='true'";

There's a good article on how to run commands like this across multiple
servers at http://technet.microsoft.com/en-us/library/
ff730958.aspx.

In the same way, you also need to alter the IP gateway settings on the various
servers in your internal network to point to the RRAS Server (192.168.10.24) so
that the DC can update the RODC and the RDP traffic can be routed between the RD
Gateway and the RD Broker. You'll have to do this manually as these servers have
static IP addresses.

Finally, you need to update the DNS records on your internal network to point to the
new addresses for the RD Gateway and RODC by performing the following steps:

1. Connect to the RDS-DC VM, and from the Tools menu in Server Manager,
select DNS to open the DNS Manager wizard.

2. Navigate to rds-dc | Forward Lookup Zones.
3. Right-click on RDS-Web and select Properties.
4. Set the IP address to 10.10.10.3 and then click on OK.
5. Repeat this for RDS-RODC, but set its new IP address to 10.10.10.2.

As usual, there is a PowerShell command to do this, as follows:
CLS

$DNSZone = 'contoso.com'

$DNSServer = 'RDS-DC.contoso.com'

$OldDNS = get-DnsServerResourceRecord -Name RDS-RODC -ZoneName $DNSZone

Chapter 4

[115]

-ComputerName $DNSServer

$NewDNS = get-DnsServerResourceRecord -Name RDS-RODC -ZoneName $DNSZone
-ComputerName $DNSServer

$NewDNS.RecordData.IPv4Address = "10.10.10.2"

Set-DnsServerResourceRecord -OldInputObject $OldDNS -NewInputObject
$NewDNS -ZoneName $DNSZone -ComputerName $DNSServer -PassThru

$OldDNS = get-DnsServerResourceRecord -Name RDS-Web -ZoneName $DNSZone
-ComputerName $DNSServer

$NewDNS = get-DnsServerResourceRecord -Name RDS-Web -ZoneName $DNSZone
-ComputerName $DNSServer

$NewDNS.RecordData.IPv4Address = "10.10.10.3"

This PowerShell script also shows how a variable (in this case, $NewDNS) inherits the
complete methods and properties of the object it is set to.

After all of these changes to your networking, you now need to test that your VDI is
still working, as all you have done so far is to put your servers on a different subnet.
Perform the following tasks:

1. In Hyper-V Manager on the host, connect to the RDS-RODC VM and open
Internet Explorer.

2. Browse to https://rds.contoso.com/rdweb.
3. You will get the familiar certificate warning in Internet Explorer again, and

you need to install this certificate in the folder located at personal/trusted
root certificates.

4. Sign in as contoso/RDSUser2 (password: Passw0rd!) and connect to Fast
Session Collection.

The next thing you can do is test whether the RODC is working by temporarily
disabling the main DC (RDS-DC). To do this, right-click on the RDS-DC VM in
Hyper-V Manager on the host and select Pause.

Saving a VM is a bit like putting a laptop into hibernation; the memory
state is written to disk, and when the laptop or VM is resumed, the
memory state is read back into the RAM. Most of our VMs in a large
Pooled Collection will be in the saved state when they aren't in use, as
they won't take up any CPU or RAM in this state and can be restored to
the point they were at before the save.

Putting the R in Remote Desktop

[116]

We can now rerun our previous test to ensure that our user accounts are available
on the RODC and that our VDI infrastructure still works properly. If there are
authentication problems, we can resume the DC (from Hyper-V Manager, right-click
on the VM and select Resume) and fix any issues and retest. When everything is
working, resume the DC as we'll need it again later.

Locking down the perimeter network
At the moment, our RRAS router is not blocking any traffic; it's just that our RODC
and RD Gateway are on a different subnet from the rest of our VMs. In reality, there
would be firewalls blocking all but the essential traffic between these two networks.
We can simulate this on our RRAS box now that we have our routing working
and our RODC is authenticating our users as we want. If anything breaks as we
implement any firewall rules, we'll know that it's these rules that are causing the
issue and not anything else. Before we implement the rules, we need to plan what
we are doing.

Active Directory
The DC needs to update the RODC as we change passwords, create new users,
and permit them to use our VDI collections by adding them to the relevant groups.
As noted earlier, there is quite a list of ports that are needed for the AD replication
traffic, but the good news is that we only need to allow this traffic into the perimeter
network from our domain controllers and block all of the traffic coming back the
other way. The static ports are listed in the following table:

Service TCP UDP
The RPC endpoint mapper 135 135
The RPC static port for AD
replication

These are dynamic but can be limited by the setting of
registry keys on the DC

Kerberos 88 88
LDAP 389 LDAP

Ping
389

LDAP over SSL 636 -
Global catalog LDAP 3268 -
Global catalog LDAP over
SSL

3269 -

SMB over IP (Microsoft-DS) 445 445
DNS 53 53

Chapter 4

[117]

Service TCP UDP
NTP 123 -
FRS Normally dynamic, but can be changed in

the registry; for example, in HKEY_LOCAL_
MACHINE\SYSTEM\CurrentControlSet\
Services\NTDS\Parameters, change
"TCP/IP Port"=dword:0000c000, where
dword(which is in hex) = 0000c000 is
port 49152.

There is also a Remote Process Call (RPC) service, and the ports for this are
dynamic, and several are needed. However, we could adopt a different approach
and implement IP security (IPsec) between the DC and RODC. If we do this,
we can just create a specific route on our router to allow all traffic from the DC
(192.168.10.1) to the RODC (10.10.10.2) on our RRAS server.

There's a complete guide to configuring IPsec at http://technet.
microsoft.com/en-us/library/bb742429.aspx.

What you can do in your lab to emulate this is just create the rules you want in
RRAS. There are two mechanisms. You can use inbound filters in RRAS itself, or you
can configure the Windows Firewall ports. Note that if you do both, then the traffic
will have to satisfy both sets of rules to get through to a destination. You can perform
a simple test to start with, using the following steps:

1. Connect to the RDS_RRAS VM as .\Administrator (password: Passw0rd!)
from Hyper-V Manager on the host.

2. From the Tools menu in Server Manager, select Routing and Remote Access
to open the Routing and Remote Access console.

3. Navigate to RDS-RRAS | IPv4 | General, right-click on Ethernet (which
should have an IP address of 192.168.10.24), and select Properties.

4. Click on Inbound Filters.

Putting the R in Remote Desktop

[118]

5. Click on New and enter the following:

Property Setting
Source Network X
IP Address 192.168.10.1

Subnet Mask 255.255.255.255

Destination Network X
IP Address 10.10.10.2

Subnet Mask 255.255.255.0

Protocol Any

6. Click on OK.
7. Check the Drop all packets except those that meet the criteria below option,

and click on OK to close the Inbound Filters screen.
8. Click on OK to close the Ethernet Properties screen.

If you now connect to the RDS-DC VM and ping RDS-RODC, you should get a reply,
but if you ping RDS-Web, it will fail. If you connect to RDS-Broker and try these
tests, they will all fail.

The remote desktop
Clearly, we also need to allow Remote Desktop Protocol (RDP) traffic in and out
of our internal network. We'll need a few other ports open as well, as shown in the
following table:

Service TCP UDP
RDP 3389 3389

3391
SSL 443 -
The RD Web Access connection to the RD Broker as the web
server is now on our perimeter network

5504 -

WMI and remote PowerShell 5985

We can apply these rules in RRAS by specifying the protocol, source, and
destination ports as well as the source and destination IP addresses, as shown
in the following screenshot:

Chapter 4

[119]

The resulting filters will look like the following screenshot:

As soon as we apply any of these rules, all other kinds of traffic coming from the
perimeter network into the internal network will be blocked, so I recommend testing
at each stage to save time and frustration!

Putting the R in Remote Desktop

[120]

Remote access without using the
gateway
When we set up the RRAS service to bridge our network, we installed the routing
role service into our RDS-RRAS VM, which is part of the Remote Access role.
The other parts of this role allow us to create connectivity for our remote users that
can be used for a wide variety of purposes, including VDI. Direct Access allows
domain-joined Windows 7/8 clients to seamlessly join the corporate network over
the Internet using a variety of secure protocols, and will resort to SSL if that's all that
will work. Direct Access is very easy to set up as there is no extra software on the
client, and all the configuration changes are made up centrally with Group Policy.
There is also a fully functional VPN server in Windows Server 2012 R2 that can be
accessed from any device. The VPN technology can work with most VPN security
providers (Dell SonicWall, Juniper, RSA, Cisco, F5, and so on) and is supported on
IOS4 VPN and IOS Lion as well as on the Android smartphone client (the details are
available at http://technet.microsoft.com/en-us/library/jj613765.aspx). If
any of these technologies are used, then we won't really need the RD Gateway, and
all we'll need to do is work with the security team that implements remote access to
ensure that our VDI users have a good experience.

Summary
In this chapter, we have seen that Windows VDI has a built-in role, the RD
Gateway, which allows us to provide virtual desktops to our remote workers
over a secure Internet connection from nondomain-joined devices. The security of
these connections is based on SSL, and so the gateway makes use of trusted X.509
certificates, much the same way as a secure website would. We typically put the
gateway in a perimeter network or DMZ, but it will only work if we have a way of
authenticating remote users with AD. We did this by putting a special read-only
domain controller in the same perimeter network. This complexity has made this
chapter the hardest one to understand in this book, but that's basically because
security is hard, and in many organizations, this is done by a dedicated team. It's also
worth mentioning that while we did some basic work with certificates, we would
never use self-signed certificates in production. Finally, for production VDIs, there
would be some sort of enterprise firewall in front of the perimeter network and
possibly between it and the internal network, and there would be a public IP so that
our users can get to it from wherever they are.

Chapter 4

[121]

Now that we can offer secure virtual desktops to our remote workers, we will
probably need to think about resiliency, as our remote users might be working late
or be connecting in from different time zones. In the next chapter, we will see how to
scale up VDI and, at the same time, make it highly available so that we can survive
an outage of any of the parts of our deployment caused either due to a failure or
because we need to do some sort of planned maintenance.

High Availability
This chapter is all about making VDI more available, and to do that, we need to
ensure that each role in our VDI deployment has some sort of redundancy so that if
there is any kind of failure, there is a standby server that can immediately provide
the same service. So we will look at how to enable HA for each role (the RD Broker,
the RD Gateway, and RD Web Access server) and how to enable HA in each of the
different types of virtual desktop collections. At each stage, we'll implement this in
our lab setup wherever possible.

Why high availability matters for VDI
What makes VDI different from some other parts of the IT fabric is that if it's very
close to our users and if we give virtual desktops to a group of users, then those
users are wholly dependent on them to access their work and other systems. So, if
we are going to put VDI into production, we are going to need to implement HA
completely for it. Given that the physical hardware is pretty reliable these days, the
main reason we implement HA is to allow us to do planned maintenance on parts
of a service without stopping it, or because we need to reverse a change we made
that has caused our VDI to become unstable. Of course, things will go wrong as
well, but that's more often caused by configuration changes than something physical
that ceases to work. In either case, we need to minimize the impact of these issues
on downtime for our users and the amount of work they might lose. Looking at all
of this from our users' point of view, we need to ask, "Can we connect to our VDI
and get a new virtual desktop?" and "What happens to our sessions and work if
something fails while we are already logged on to a virtual desktop?" Even with
the best design, our users will notice if part of our VDI fails, and they may have
to log in and out again either because we have patched their virtual desktops or
some unplanned event has occurred, for example, in cases where a host (be that a
virtualization or session host) has failed in some way.

High Availability

[124]

The meaning of high availability is to a certain extent open to
interpretation, but it usually means that there will be some outage as
the standby system comes online and that this should be automatic.
I will use the term continuous availability to indicate that there is no
outage at all when a failure occurs.

Designing HA for VDI
To implement any kind of HA in a system, we need to ensure that there is no single
point of failure, and, if we are extra cautious, we may even want to have three
components in place so that even if we take one out for maintenance, there are still
two left to provide resiliency. VDI doesn't live in isolation, so if we are implementing
HA, then we must ensure that the resources needed for VDI are similarly protected
from failure such as Active Directory, networking fabric, and storage. However, in
this chapter, we will just concern ourselves with the different roles in VDI: the RD
Web Access Portal, the RD Gateway, the RD Broker, and the servers that provide
our collections of any type. We also need to understand the impact of server
virtualization on both the VDI role server and our VDI collections because we
have to allow for planned maintenance of our Hyper-V hosts and be able to cope
if they fail unexpectedly. As we'll see, different parts of VDI make use of different
techniques to enable high availability, but all of these are built into the Windows
Server and are well established.

HA for the RD Broker role
HA for the Remote Desktop Broker (RD Broker) role changed in Windows Server
2012. We used to use Windows Failover Clustering and add the RD Broker as a role in
a cluster, whereas it is now based around a central SQL Server database to which all
the RD Brokers connect and there is no cluster. The individual RD Brokers are then put
into an RD Broker Farm, which is just a set of entries in DNS, and make use of DNS
Round Robin to spread out the incoming connections and provide active-active high
availability. It is possible to use a third-party solution in place of DNS Round Robin,
but we'll use it in our lab, and one requirement is that we must use static IP addresses
for our RD Brokers (which we have already done). The SQL Server database behind
the RD Broker Farm is now another point of failure, and so it also needs to be made
highly available. A lengthy discussion of HA for SQL Server is not really in the scope
of this book, but the following are the principal options available in SQL Server 2012,
any of which will be suitable to host our broker database:

Chapter 5

[125]

• A SQL Server cluster, where cluster nodes share an instance of SQL Server
hosted on a shared storage of some kind (2 x nodes for Standard and OS for
an Enterprise edition)

• Availability groups, where copies of databases are kept in sync across cluster
nodes with no shared storage (Enterprise edition only)

• Database mirroring, where a copy of a database is kept up-to-date in a
read-only state on another server (Standard and Enterprise editions),
which can be failed over automatically by a witness server

Creating an RD Broker Farm
We won't concern ourselves here with setting up SQL Server in any kind of HA
deployment as that's not the focus of this book; instead, we'll do a straight SQL Server
install and store this on a single VM. I am going to suggest that you keep the number
of VMs down; we'll use the RDS-Ops VM that we used for MDT in Chapter 3, Putting
the D in VDI – Creating a Desktop Template. The detailed instructions are as follows:

1. Download SQL Server 2012 SP1 evaluation (http://technet.microsoft.
com/en-us/evalcenter/hh225126.aspx).

2. Go to the Hyper-V Manager on your host and start RDS-Ops VM if it's not
already running (right-click on it and click on Start).

3. Open the console for RDS-Ops, and in the Console menu, navigate to Media
| DVD Drive | Insert Disk.

4. Mount the ISO that contains Windows Server 2012 R2 onto the RDS-Ops VM.
5. Log in to RDS-OPs as contoso\Administrator (password as Passw0rd!).
6. Install the .NET Framework 3.5 with the following PowerShell command:

Add-WindowsFeature NET-Framework-Core -Source D:\sources\sxs

Here, D:\ points to the DVD drive with the Windows Server ISO on.

7. On the Console menu bar, navigate to Media | DVD Drive | Insert Disk.
8. This time, mount the ISO that contains SQL Server 2012 SP1.
9. Install SQL Server from the command line using the following command:

start-process "D:\Setup.exe" -ArgumentList '/Q /
IAcceptSQLServerLicenseTerms /Action=Install /
AgtSvcStartupType=Automatic /BrowserSvcStartupType=Disabled /
Features=SQL,Tools /IndicateProgress /InstanceName=MSSQLSERVER
/RsSvcStartupType=Automatic /SQLSvcAccount="NT Authority\
Network Service" /AgtSvcAccount="NT Authority\System" /
SQLSysAdminAccounts="BUILTIN\Administrators"' -NoNewWindow -Wait

High Availability

[126]

10. This will do a basic unattended install of the database engine and
management tools using local accounts to run the database and agent
services (and assuming that the SQL Server media is on D:).

11. We can check if SQL Server is now installed by going to the Windows
Start screen on RDS-Ops and typing SQL and then selecting SQL Server
Configuration Manager. In this tool, expand SQL Server Services and
confirm that SQL Server and the SQL Server Agent are both running.

12. We now need to ensure that we can connect to SQL Server remotely from
our RD Broker by opening up a firewall rule on RDS-Ops to allow inbound
access to SQL Server using either the Windows Firewall manager or the new
PowerShell firewall commands in Windows Server 2012 R2, which are
as follows:
New-NetFirewallRule -DisplayName "Allow SQLServer" -Direction
Inbound -Program "C:\Program Files\Microsoft SQL Server\MSSQL11.
MSSQLSERVER\MSSQL\Binn\sqlservr.exe" -RemoteAddress localsubnet
-Profile Domain

13. Now, we have a working SQL Server installation; we need to grant
permission to it so that our brokers can create our broker database on it.
The most efficient way to do this is to create a group in AD and add our RD
Brokers to that group, which we can do on our RDS-DC from the Active
Directory Administrative Center (ADAC) by right-clicking on Contoso
and selecting New Group. We'll call the group HA-Brokers and we'll need
to add in the RDS-Broker and RDS-DC computers to it using the following
PowerShell commands:
New-ADGroup -GroupCategory:"Security" -GroupScope:"Global"
-Name:"HA-Brokers" -Path:"DC=Contoso,DC=com" -SamAccountName:"HA-
Brokers" -Server:"RDS-DC.Contoso.com"

Add-ADPrincipalGroupMembership -Identity:"CN=RDS-BROKER,CN=Compute
rs,DC=Contoso,DC=com" -MemberOf:"CN=HA-Brokers,DC=Contoso,DC=com"
-Server:"RDS-DC.Contoso.com"

Add-ADPrincipalGroupMembership -Identity:"CN=RDS-
DC,CN=Computers,DC=Contoso,DC=com" -MemberOf:"CN=HA-
Brokers,DC=Contoso,DC=com" -Server:"RDS-DC.Contoso.com"

Chapter 5

[127]

The wizard to create the SQL Server database executes from the server
we are using, not the RD Broker. So in the preceding commands, the
RDS-DC is also added to the HA Broker group, but it can be removed
once the database is in place.

14. We can then grant permissions in SQL Server to that group. Initially, when
we run the wizard, we need to create a database, so we need to grant the
dbcreator privilege. We can do this from SQL Server Management Studio,
but in a production setup, we probably won't have the privileges to do that,
and instead, we would send the following PowerShell script over to the
DBA team:
#Load up the PowerShell for SQL Server
Import-Module sqlps

#Create a SQL Server login for the group
$DBName = "RDBroker"
$SQLInstance = "RDS-Ops"
$ADGroup = "contoso\HA-Brokers"
$NewLogin = New-object Microsoft.SqlServer.Management.Smo.Login`
 -ArgumentList $SQLInstance, $ADGroup
$NewLogin.LoginType = "WindowsUser"
$NewLogin.Create()
#Assign the new login DB Creation rights
$NewLogin.AddToRole("dbcreator")

This is a very odd looking PowerShell that is using the Windows
Management Framework (WMF) to do the work for us. If you type this
out and use tab completion in the PowerShell ISE, you'll see that it will
tab-complete all of this, so it is then just a matter of understanding the
class, in this case, SQL Server Management Objects (SMO).

High Availability

[128]

15. Each of our RD Broker(s) needs to connect to the same SQL Server to create
and access the central broker database, and to do that, we also need to install
the SQL Server native client (available at www.microsoft.com/fwlink/?Li
nkID=239648&clcid=0x409) on them by simply running sqlncli.msi. The
final piece of the puzzle is to create a DNS entry (an "A" record) for each RD
Broker in our farm with the name of the Broker Farm. We can do this from
the DNS console on our RDS-DC (by navigating to Server Manager | Tools)
by creating new records in Forward Lookup Zones | Contoso.com,
as shown in the following screenshot:

The RDS-BrokerFarm entry has the same IP address as RDS-Broker

The following is the PowerShell command to do this:
Add-DnsServerResourceRecord -Name RDS-BrokerFarm -IPv4Address
192.168.10.21 -A -ZoneName contoso.com -ComputerName RDS-DC.
contoso.com

Chapter 5

[129]

For simplicity, I suggest that we disable any inbound filters and
firewall rules we created on our RDS-RRAS box in Chapter 4, Putting
the R in Remote Desktop, until we have our HA working properly.

We can now configure the broker for high availability in the RDS Overview diagram
using the following steps:

1. Connect to the RDS-DC VM as contoso\Administrator
(password: Passw0rd!).

2. Expand Remote Desktop Service and navigate to the Remote Desktop
Services Overview screen.

3. Right-click on the RD Connection Broker icon in the overview diagram and
select Configure High Availability.

4. Note the information in the Before you begin screen and click on Next.
5. Set the database connection string as DRIVER=SQL Server Native Client

11.0;SERVER=RDS-Ops; Trusted_Connection=Yes;APP=Remote Desktop
Services Connection Broker;DATABASE=RDBroker and the value of
Database Location as c:\Program Files\Microsoft SQL Server\
MSSQL11.MSSQLSERVER\MSSQL\DATA, which is the default location for SQL
Server databases. We also need to enter the DNS Resource Record Name,
which corresponds to the DNS entries we just created for the RD Broker
Farm we just created, RDS-BrokerFarm.contoso.com.

If we have implemented some sort of HA solution for SQL Server
and we want to use that for the RD Broker database, then the
connection string needs to reflect the solution we have used.

The following command is for the SQL Server failover cluster:

DRIVER=SQL Server Native Client 11.0;SERVER=<cluster>;
Trusted_Connection=Yes;APP=Remote Desktop Services Connection
Broker;DATABASE=<broker_database>;

The following command is for SQL Server Availability Group:

DRIVER=SQL Server Native Client 11.0;SERVER= <availability_group_liste
ner>;MultiSubnetFailover=True;Trusted_Connection=Yes;APP=Remote Desktop
Services Connection Broker;DATABASE=<broker_database>;

High Availability

[130]

The following command is for SQL Server mirroring:

DRIVER=SQL Server Native Client 11.0;SERVER=<sql_server_
instance1>;Failover_Partner=<sql_server_instance2>;Trusted_
Connection=Yes;APP=Remote Desktop Services Connection
Broker;DATABASE=<broker_database>;

There's just one line of PowerShell to set up HA for the broker once we have declared
the necessary variables. This is as follows:

$RDBroker = "RDS-Broker.contoso.com"

$DBConnection = "DRIVER=SQL Server Native Client 11.0;SERVER=RDS-
Ops;Trusted_Connection=Yes;APP=Remote Desktop Services Connection
Broker;Database=RDBroker"

$DBPath = "c:\Program Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\
MSSQL\DATA\RDBroker.mdf"

Set-RDConnectionBrokerHighAvailability -ConnectionBroker $RDBroker
-DatabaseFilePath $DBPath -ClientAccessName "RDS-BrokerFarm.contoso.com"
-DatabaseConnectionString $DBConnection

<#Notice that when using PowerShell we specify the path to the actual
database file we'll create not just the folder#>.

If we go back to the RDS Overview diagram, we'll notice that the RD Broker icon
has now changed to reflect that it is now configured for high availability. More
importantly, the Web Access server has now been configured to reference the Broker
Farm that we created in DNS rather than the single RD Broker we had before, and
we now have a database on RDS-Ops, as we can see by going into SQL Server
Management Studio (SSMS) on RDS-Ops.

Chapter 5

[131]

The RD Broker database now has all of the information needed by the broker including the brokers
that are present

The various tables in this database give us an insight into what the broker does, but we
should not edit these directly from here. Now, since we have this database, we don't
need our AD Group of Broker (HA-Brokers) to have dbcreator rights to SQL Server
anymore; all we need to do is grant database ownership to the actual broker database
(RD Broker).

High Availability

[132]

We can do this in SSMS by navigating to RDS-Ops | Security | Logins | contoso\
HABrokers, selecting server roles from properties, and unchecking dbcreator. The
PowerShell equivalent is as follows:

Import-Module sqlps

cd SQLServer:\SQL\RDS-Ops\default\roles

$dbcreator = Get-ChildItem | where name -eq dbcreator

($dbcreator).dropmember("contoso\HA-Brokers")

Notice here that we can traverse the SQL Server hierarchy just as we
would in a folder, and the same applies to the registry; for example,
cd HKLM: takes us to the local machine hive.

Instead of those permissions, we can just grant the database ownership (db_owner)
privilege on the database we have just created by navigating to the properties of the
login again and selecting User Mapping and checking the options as shown in the
following screenshot:

Chapter 5

[133]

Again, we can use the following PowerShell script for this:

#Load up the PowerShell for SQL Server
Import-Module sqlps
$DBName = "RDBroker"
$SQLInstance = "RDS-Ops"
$ADGroup = "contoso\HA-Brokers"
$SQLserver = new-object Microsoft.SqlServer.Management.Smo.Server`
-ArgumentList $SQLInstance
$DB = $SQLserver.Databases[$DBname]
$SQLlogin = $SQLserver.Logins[$ADGroup]
#this creates a new user in the RDBrokerdatabase
$DBUser = New-Object Microsoft.SqlServer.Management.Smo.User`
-ArgumentList $DB, $ADGroup
$DBUser.Login = $ADGroup
$DBUser.Create()
$RoleName = "db_owner"
$DBrole = $DB.Roles[$RoleName]
$DBrole.AddMember($ADGroup)

Now that we have got HA for the RD Broker role properly configured for one server,
we can quickly add in more servers to actually make this role highly available and to
check that it works. The following design is what we are aiming for:

Our new design that shows the RDS Broker Farm with our SQL Server database on RDS-Ops

High Availability

[134]

We are going to add in another RD Broker (RDS_Broker2). To do that, we are going
to need another VM, and as we will also need VMs to set up HA for the Web Access
/ Gateway role and another RD Session Host, I suggest that we edit the PowerShell
script in Chapter 2, Designing a Virtual Desktop Infrastructure, which we used to create
our VDI VMs and create three new ones:

Line No Value to change To be replaced with
19 $RDWebVM = "RDS-Web" $RDWebVM = "RDS-Web2"

20 $RDBrokerVM = "RDS-Broker" $RDBrokerVM = "RDS-
Broker2"

22 $RDSHostVM ="RDS-SHost" $RDSHostVM ="RDS-SHost2"

276 -IPAddr "192.168.10.20" -IPAddr "10.10.10.4"

276 -Network $VirtualSwitch -Network "Perimeter-
Switch"

276 -DNSSvr "192.168.10.1" -DNSSvr "10.10.10.2"

277 -IPAddr "192.168.10.21" -IPAddr "192.168.10.31"

287 -IPAddr "192.168.10.22" -IPAddr "1092.168.10.32"

Once these VMs have been created, we need to bring them under management in
Server Manager on our RDS-DC, as shown:

A Server Manager on RDS-DC with all the HA VMs we'll need

Chapter 5

[135]

Now, we can use RDS-Broker2 as another RD Broker in our Broker Farm by
performing the same steps as we did for the first broker:

1. Install the SQL Server native client on RDS-Broker2.
2. Add RDS_Broker2 into the HA-Brokers group in AD so that it will have

access to our SQL Server broker database, as shown:
Add-ADPrincipalGroupMembership -Identity:"CN=RDS-Broker2,CN=Comput
ers,DC=Contoso,DC=com" -MemberOf:"CN=HA-Brokers,DC=Contoso,DC=com"
-Server:"RDS-DC.Contoso.com"

3. Create another DNS record for the farm with the IP address of RDS-Broker2,
as shown:
Add-DnsServerResourceRecord -Name RDS-BrokerFarm -IPv4Address
192.168.10.31 -A -ZoneName contoso.com -ComputerName RDS-DC.
contoso.com

Now, we can make this VM a part of our RD Broker Farm with the following steps:

1. Open Server Manager, and in the RDS Overview diagram, right-click on the
RD Connection Broker icon and select Add RD Connection Broker Server.

2. Click on Next, and in the Select a Server screen, double-click on RDS-
Broker2.contoso.com to add it to the selected server list, and click on Next.

3. Click on Add to add the server to the RD Broker Farm.

The equivalent PowerShell is just one line and is as follows:

Add-RDserver -Role RDS-CONNECTION-BROKER -Server RDS-Broker2.contoso.com
-ConnectionBroker "RDS-broker.contoso.com"

In Chapter 4, Putting the R in Remote Desktop, we enabled the RD Gateway and built a
perimeter network. So, we must check that our certificates are ok and set the gateway
on the new RD Broker to point to our RRAS server. Perform the following steps to
do so:

1. From the RDS Overview diagram, select Task | Edit Deployment Properties
and navigate to Certificates. You should see that the entries for the two RD
Connection Broker settings have a status of Error. Highlight RD Connection
Broker –Enable Single Sign On and click on Select existing certificate.

2. In the Select Existing Certificate screen, select Apply the certificate that
is stored on the RD Connection Broker Server and enter the password
(Passw0rd!). Check the option Allow the trusted certificate to be added to
the Trusted Root Authorities certificate store on the destination computers
and click on OK. Click on Apply on the Deployment properties screen.

High Availability

[136]

3. Repeat step 2 for the RD Connection Broker – Publishing Role Service.
4. Connect to RDS-Broker2 and set its gateway by going to Server Manager

and navigating to a local server. Click on its IP address (192.1768.10.31) to
bring up its Network Connections. Right-click on the Ethernet connection
and go to the properties of the IPv4 protocol. Set the value of Gateway to
192.168.10.24 (the RDS-RRAS server) and click on OK and on OK again to
close the network connection.

Now that we have two RD Brokers in place, we can retest if our collections are
working. We can see that when we connect to a virtual desktop, the remote desktop
title bar reflects the name of our RD Broker Farm (RDS-BrokerFarm.contoso.
com). We can also test failover by pausing one of the RD Brokers, which we can
do from Hyper-V Manager by right-clicking on RDS-Broker and selecting Pause.
We can then check if we can still connect to our VDI deployment and log in to a
virtual desktop. We can also try logging into a virtual desktop and then stop one
of the brokers. In this case, while we may lose the connection momentarily, we will
automatically be connected back into the same session we were using and continue
to work from where we left off.

HA for the RD Web Access and RD
Gateway roles
We can enable HA for Web Access and Gateway roles by using Network Load
Balancing (NLB), and it's possible to use the built-in NLB server role in Windows
Server 2012 R2 to do this or use a third-party appliance. In the spirit of this book,
we'll look at how to do this with Windows Server because it's good to see what's
possible in the box before looking at the extra expense of a third-party tool. In order
to set up NLB, each participating server has to have a fixed IP address on one of its
NICs, which is what we have already.

In older versions of Windows Server, we needed to have a dedicated
NIC for NLB; however, in Windows Server 2012 R2, there is now
NIC teaming, the idea being we can use the entire capacity of all of
our NICs and then isolate traffic that go over the same network using
VLANs, subnets, and so on.

Our VDI design will evolve again to achieve this by putting another server
(RDS-Web2) into our perimeter network, which will have the RD Web Access
and RD Gateway roles to form a two-node NLB cluster for these roles.

Chapter 5

[137]

RDS-Web and RDS-Web 2 with NLB

Setting up NLB
The first thing we need to do is install the NLB role on our Web Access / Gateway
Server (RDS-Web). Perform the following steps to do so:

1. Connect to RDS-Web, and from the Server Manager menu, select
Manage | Add Roles and Features.

2. In the Select installation type screen, select Role-based or Feature-based
installation and click on Next.

3. For Select destination Server, select RDS-Web and click on Next.
4. In Select Roles, click on Next.
5. In Select Features, select Network Load Balancing, and in the popup

that appears, include the management tools and click on Add Features.
Click on Next.

6. In the Confirmation screen, click on Install.

In PowerShell, we can do this in one line, which is as follows:

Add-WindowsFeature -Name NLB -IncludeManagementTools

High Availability

[138]

We can now go back to Server Manager and configure the NLB cluster by navigating
to Tools | Networking Load Balancing Manager and performing the following steps:

1. In the Network Load Balancing Manager screen, right-click on Network
Load Balancing Cluster and select New Cluster.

2. In the New Cluster Connect screen, enter RDS-Web as the value of Host.
The interfaces on this server will then be populated. Click on Next.

3. In the Host Parameters screen, the Priority indicates a unique ID for
this node, and we'll leave it at 1. We can also see the fixed IP address
(10.10.10.3) that will identify this host on the cluster. We'll leave the
default start state as Started and click on Next.

4. For Cluster IP Addresses, we will set up an IP address that will be used for
the whole cluster. We can add multiple addresses in order to serve different
websites, but for our needs, we will just enter 10.10.10.10 with a subnet
mask of 255.255.255.0 and click on Next and on Next again.

5. In the next Cluster Parameters screen, we can enter an Internet name for the
cluster. We'll enter VDI, but this actually doesn't do anything. What we must
do is set the value of Cluster Operation to Multicast so that we can discover
it across our RRAS server.

6. We can set port rules for load balancing in the same way that we did in
Chapter 4, Putting the R in Remote Desktop, for routing and remote access.
For now, we can leave this blank and click on OK to set up the cluster.

The PowerShell for this is as follows:

New-NlbCluster `
 -ClusterName VDI`
 -HostName RDS-Web`
 -InterfaceName Ethernet
 -ClusterPrimaryIP 10.10.10.10`
 -SubnetMask 255.255.255.0 `
 -OperationMode Multicast

We can now ping our NLB cluster, but it can't really do anything because it doesn't
appear in DNS, although it does have an IP address 10.10.10.10. Back in Chapter
4, Putting the R in Remote Desktop, we added in a special (CName) DNS record to
direct users to our RD Gateway, and this corresponds to the name in our certificate
that signs the Web Access portal and Gateway. So what we need to do is delete that
record and create a conventional host or a record for our NLB cluster that points to
its IP address (10.10.10.10). Perform the following steps to do so:

Chapter 5

[139]

1. Connect to the RDS-DC VM, and from the Tools menu in Server Manager,
select DNS to open DNS Manager.

2. Expand rds-dc | Forward Lookup Zones.
3. Right-click on Contoso.com and navigate to the rds CName record and

delete it.
4. Right-click on Contoso.com and select New Host (A or AAAA).
5. Set the name to RDS and leave and set the IP address to 10.10.10.10.

Click on OK to create the entry.

The PowerShell command to do this is as follows:

Remove-DnsServerResourceRecord -Name RDS -RRType CName -ZoneName contoso.
com -ComputerName RDS-DC.contoso.com

Add-DnsServerResourceRecordA -Name RDS -IPv4Address 10.10.10.10 -ZoneName
contoso.com -ComputerName RDS-DC.contoso.com

Although our NLB cluster is working, it only has one node in it, and so it's not really
balancing anything nor is it highly available. So let's add in another web server, RDS-
Web2. As with the first server, we need to add in the NLB feature, which we can do
using the following PowerShell command from our RDS-DC VM:

Add-WindowsFeature -Name NLB –ComputerName "RDS-Web2"

We don't need the management tools, but we do need to specify the machine to
install the feature on. Because we have the remote administration tools on RDS-DC,
we can also add the node into the cluster from here by navigating to Server Manager
Tools | Networking Load Balancing Manager and performing the following steps:

1. Right-click on Network Load Balancing Cluster and select Connect
to Existing.

2. In the Connect RDS-Host screen, enter RDS-Web as the value of Host.
The interfaces on this server will then be populated. Click on Finish.

3. Right-click on VDI(10.10.10.10) and select Add Host to Cluster.
4. In the Connect screen, enter RDS-Web2, click on Connect, and we can

see the Ethernet interface with an address 10.10.10.4. Click on Next.
5. In the Host Parameters screen, leave all the defaults as they are and click

on Next.
6. In the Port Rules screen, we'll leave the rules as they are to simplify things

and click on Finish to add the node to the cluster.

High Availability

[140]

The PowerShell command for this is as follows:

Add-NlbClusterNode -HostName "RDS-Web" -InterfaceName Ethernet
-NewNodeName "RDS-Web2" -NewNodeInterface Ethernet

We can now see our NLB cluster with the two nodes, as shown in the
following screenshot:

Our NLB cluster is now able to balance traffic; however, the new RDS-Web2 server
is not part of our RDS deployment. So we need to go into Remote Desktop Services
Overview on the RDS-DC diagram and add it in, using the following steps:

1. Right-click on the RD Web Access icon and select Add RD Web
Access Servers.

2. In the Select a server screen, double-click on RDS-Web2 to select it and click
on Next.

3. In the Confirm selections screen, click on Add to add the server into
the deployment.

You can run the following PowerShell command instead:

Add-RDServer -Server "RDSWeb2.contoso.com" -Role RDS-WEB-ACCESS
-ConnectionBroker RDS-Broker.contoso.com

Chapter 5

[141]

When I was testing the PowerShell scripts in this chapter, I found that
because I had suspended RDS-Broker, RDS-Broker2 had become the
active management server, and this meant that I had to use this server
wherever I had to set the active management server either by navigating
to Deployment Overview | Tasks | Set Active RD Connection Broker
or with the following PowerShell command:
Set-RDActiveManagementServer -ManagementServer RDs-
broker.contoso.com

Now, we need to repeat the process to add this server in as a gateway:

1. Right-click on the RD Gateway icon and select Add RD Gateway Servers.
2. In the Select a server screen, double-click on RDS-Web2 to select it and click

on Next.
3. In the Confirm selections screen, click on Add to add the server into

the deployment.

The following Add-RDSServer PowerShell command can be used for this as before:

Add-RDServer -Server RDS-Web2.contoso.com" -Role RDS-GATEWAY
-GatewayExternalFqdn "RDS.CONTOSO.COM" -ConnectionBroker "RDS-Broker.
contoso.com"

However, we also need to provide the FQDN of the Gateway while adding a new RD
Gateway server. Now, we need to install the certificate we have been using to secure
the RD Gateway onto this new server using the following steps:

1. From the RDS Overview diagram, navigate to Task | Edit Deployment
Properties and navigate to Certificates. You should see that the entries for
the RD Web Access and RD Gateway roles have a status of Error. Highlight
RD Web Access and click on Select Existing Certificate.

2. In the Select Existing Certificate screen, select Apply the certificate that
is stored on the RD Connection Broker Server and enter the password
(Passw0rd!). Check the option to allow the trusted certificate to be added to
the Trusted Root Authorities certificate store on the destination computers
and click on OK. Click on Apply on the Deployment properties screen.

3. Repeat steps 1 and 2 for the RD Gateway role.

High Availability

[142]

The management of RD Gateway is one of the few parts of RDS that still has its own
console, the RD Gateway Manager, and we need to use this to configure the Gateway
Farm using the following steps:

1. Open the Remote Desktop Gateway Manager (search for it from the start
menu on RDS-DC).

2. Right-click on the RD Gateway Manager icon and select Connect to RD
Gateway Server. Select Remote Server and enter RDS-Web.

3. Right-click on RDS-Web and select Properties.
4. In the Server Farm tab, add in RDS-Web and RDS-Web2. They should both

have a status of OK, as shown:

5. The only other thing we need to do on our new Web Access server is to set its
gateway to 10.10.10.1 (the RRAS server).

6. Connect to RDS-Web2 and set its gateway by going to Server Manager and
navigating to the local server. Click on its IP address (10.10.10.4) to bring
up its Network Connections. Right-click on the Ethernet connection and
go to the properties of the IPv4 protocol. Set the Gateway to 10.10.10.1
(the RDS-RRAS server) and click on OK and again on OK to close the
network connection.

Chapter 5

[143]

We should now test if we have actually got high availability working for our
RD Gateway by pausing the RDS-Web VM in Hyper-V manager and connecting
to https: RDS.contoso.com/RDWeb to confirm if we can still connect to our
collections. We can also see that if we are already connected to a virtual desktop
and either one of the gateways is paused, we can continue to work as if nothing has
happened. Hence, we can now carry out panned maintenance on any of our RDS role
servers without affecting our users, and our users are also protected from failure of
any one of these servers.

HA and Hyper-V
So far in this chapter, we have considered each of the RDS server roles as though
they are individual physical servers; however, we have all of these roles running
as Hyper-V VMs, and there is no reason why we wouldn't virtualize them in
a production deployment. However, this means that we have another point of
failure—the physical host on which these VMs are running. So what can be done
to ensure we can either take a physical host offline to maintain it or survive an
unexpected failure?

The simplest approach is to have a second host and put one set of our servers on
each host, as illustrated by the following diagram:

High Availability

[144]

Then, if either host fails, we have a complete set of servers to continue to support our
RDS deployment. We can further enhance this by putting our physical hosts into a
Windows cluster and enabling HA for the VMs on that cluster by storing them on a
shared storage that is accessible to all nodes in the cluster. This is illustrated in the
following figure:

This means that we have the option to drain a host of its VMs for planned
maintenance with Hyper-V Live Migration; hence, the VMs don't stop in the process.
If a host fails, the VMs that were running on it will automatically start on the
surviving nodes. This isn't easy to do in our lab setup, as we would need a second
physical host joined to our domain and both hosts would need access to a shared
storage. If we already have Hyper-V in production and have implemented HA for it,
then these servers are easily added to that.

I have made videos of how to set/create an HA VM in a lab setup with
just two laptops. If you do want to try this out, check out my blog at
http://blogs.technet.com/b/andrew/archive/2013/01/14/
evaluate-this-high-availability-virtual-machines.aspx.

Chapter 5

[145]

HA for virtual desktop collections
So far in this chapter, we have managed to ensure that when our RDS management
servers fail, our users are hardly affected—they can still connect and get a new
virtual desktop, and if they are logged in, they won't lose any work and only suffer
a minor interruption. However, the collections we have created are running on
individual hosts, and if these fail, our users won't be able to connect, and if they are
already connected, they will lose their session. So what can be done to make our
collections more resilient? The answer depends on the type of collection, so let's look
at each of these in turn.

HA for session collections
We can easily add in more session host servers and use these to load balance and scale
our collections; however, this will only provide a minimal HA capability, as all this
will do is allow our collection to be available when users need a new session-based
virtual desktop. What this doesn't do is to allow our users' sessions to survive the loss
of the session host that's running their particular virtual desktop. This is because our
users' sessions just exist in memory, so they are not preserved when the server is lost.
When we do add in a new session host along with adding it into our deployment, we
also need to specify that it is being used to host a particular collection.

One key thing to note is that each session host in a given collection
must be configured in exactly the same way; so each server must have
the same version of the OS with the same patches. The applications,
folder layout, and so on must also be identical. This is because we don't
have fine-grain control over which user ends up using which session
host to provide their virtual desktop and they will want a consistent
experience across these hosts.

We can quickly set up a second session host by using the last of the new VMs we
created earlier in this chapter (RDS-SHost2), using the following steps:

1. On RDS-DC, connect to Server Manager and bring up the Deployment
Overview in Remote Desktop Services.

2. Right-click on the RD SessionHost icon and select Add RD Session
Host servers.

3. In the Select a server screen, double-click on RDS-SHost2 to select it
and click on Next.

4. In the Confirm selections screen, click on Add to add the server into
the deployment.

High Availability

[146]

The Add-RDServer command in PowerShell does the same thing, as illustrated in the
following line of command:

Add-RDServer -Server RDShost2.contoso.com -Role RDS-RD-SERVER

 -ConnectionBroker RDS-Broker.contoso.com

We can then allocate this server to the session collection that we already have, using
the following steps:

1. Still in Server Manager on RDS-DC, navigate to Remote Desktop Services
| Collections | Fast Session Collection to display all the properties and
settings of our collection.

2. In the Host Servers pane, navigate to Tasks | Add RD Session Host servers.
3. In the Select a server screen, double-click on RDS-SHost2 to select it and

click on Next.
4. In the Confirm selections screen, click on Add to add the server into the

deployment. Click on Close to complete the process when the server is added.

The equivalent PowerShell command for this is as follows:

Add-RDSessionHost -SessionHost RDS-Shost2.contoso.com -ConnectionBroker
RDS-Broker.contoso.com -CollectionName "fast session collection"

In Windows Server 2012 R2, we can quickly set up load balancing across these
two session hosts by going to the Properties pane for the collection and selecting
Edit Properties from Tasks. The following screenshot shows the output of the
mentioned steps:

Chapter 5

[147]

Now, if we want to do a planned maintenance on a session host, we could deny new
connections to the given host from here and wait until none of our users are on it
before taking it offline to work on it. If a session host fails unexpectedly, our users will
lose their session, but the situation is not too disastrous if we have their data and the
user profile disk on a shared storage of some kind—they will be able to log in to a new
session and get back to their last saved copy of any work they were doing very quickly.

HA for VDI collections
We also need additional hosts if we want to provide any kind of redundancy for VDI
collections of whatever type, but these will be virtualization hosts (physical servers
that run Hyper-V). If a host actually fails, the VMs on it will restart after the host
comes back online. We can also manually move VMs from one virtualization host to
another with the move-RDVirtualDesktop PowerShell command so that we can take
a virtualization offline for planned maintenance.

move-RDVirtualDesktop allows us to move virtual desktops between
hosts even if they aren't in a cluster; however, to do that, the two hosts need
to trust each other, and the simplest way to do that is to set up Credential
Security Support Provider Protocol (CredSSP) between them. If we want
to move a VM FPC-01 from server 1 to server 2, then we should run the
following PowerShell commands:
Enable-WSManCredSSP -Role "Client" -DelegateComputer *
-Force
Enable-WSManCredSSP -Role "Server" -DelegateComputer *
-Force
$Creds = Get-Credential #which will prompt for credentials
to use

Move-RDVirtualDesktop -SourceHost "Server1.contoso.com"
-DestinationHost "Server2.contoso.com" -Name "FPC-01"
-Credential $Creds

High Availability

[148]

We can provide better and faster resilience for our VDI collections by creating them
on shared storage rather than local storage as we did in Chapter 2, Designing a Virtual
Desktop Infrastructure. We can then combine our hosts into a Hyper-V cluster that
allows us to automatically patch nodes on the cluster and perform very fast live
migrations of our virtual desktops to move them from node (virtualization host)
to node. In the following screenshot, I have created a new pooled VDI collection
of two virtual desktops; each of these resides on a different virtualization host
(gray and orange).

However, RDS isn't aware that these hosts are in a cluster and we can't add a whole
cluster as a host. So, if we use a cluster, then it's best to use the tools in the cluster
(either via PowerShell or in Cluster Manager), as shown in the following screenshot:

Chapter 5

[149]

We can see that the two VMs, CC1 and CC2, are in the cluster and that I can easily
move them with Live Migration from one host to another. If I do this, the user won't
be aware of it and neither will it show up in the RDS overview in Server Manager
until we refresh it. If I break the connection or stop one of these servers (for example,
gray), then a connected user (RDSUser1) will lose their session and any unsaved work.
However, they will be able to connect straight back in, and their profile and saved
work will be there, so for them, it's exactly like their laptop crashed in the real world.

High Availability

[150]

Summary
In this chapter, we have seen that Windows Server 2012 R2 has a range of built-
in tools that can be applied to different roles in our VDI deployment to minimize
the impact of any server failure. Just as importantly, we can take parts of the
infrastructure offline for maintenance without affecting our users, and we will cover
more of that in Chapter 7, Maintenance and Monitoring. In older versions of Windows,
the price of HA was that we had a redundant server that was largely idle until a
failure occurred. However, the HA that we implemented here not only provides us
with HA, it also allows us to scale up our deployment. In the next chapter, we'll see
how to get the best VDI performance from what we have, how to test and plan for
larger deployments, and what the limits are in Windows Server 2012 R2.

Scale and Performance
Now that we have made our VDI deployment as reliable as possible, we can
apply some of the same techniques for scaling it up to provide virtual desktops
for more and more users. In this chapter, we will review each role and service in a
VDI deployment to see how to tune and scale it up. This will include a look at the
impact of virtualizing the roles as well as our virtual desktops. We will look at what
RemoteFX is and how it balances rich user experiences such as video streaming,
device redirection, and multitouch over limited bandwidth connections. We will
also revisit the Virtual Desktop Template and look at how its settings and those of
Windows 8.1 can be optimized.

Understanding scale and performance
In the previous chapter, we made our VDI deployment highly available, but if our
virtual desktops don't perform well or it takes a long time to connect, our users will
think it's failed anyway and will call the helpdesk. The challenge here is to try and
provide consistent performance even when there is peak demand. If our users are
doing different things at different times, a high performance task such as opening a
large spreadsheet in Excel will be offset by a user who is doing nothing more than
reading their e-mail. However, if our users all sign in at the same time, certain parts
of our infrastructure will come under pressure at the same time, which we must
allow for as well. So how can we predict what resources our users will need? The
following are some of the ways we can do this:

• We can take advice from Microsoft and its partners. In this chapter, I have
tried to include as much best practice as I could find in white papers, from
Microsoft Premier Field Engineers who implement this in production, and
from the engineering team that develops RDS.

• We can pilot an implementation and put a host under more and more load
to see how it performs.

Scale and Performance

[152]

• Use testing tools and simulators to put a VDI deployment under load to see
how it performs.

• Assess the resources used by sample users on their real desktops and use
those as a basis for capacity planning.

None of these are perfect as no two users behave in the same way and idealized
testing must be a sort of an average; nonetheless, these are the best guides we have.
It's also worth bearing in mind that VDI is as much about winning the hearts and
minds of our users as it is about technology, so we should aim to give our users the
best experience we can, consistent with the work they are required to do rather than
limiting their experience for the sake of economy. For example, kiosk-like terminals
on a factory floor are a good candidate for session-based collections serving out just
one or two applications to a group of thin client terminals. On the other hand, hot-
desking knowledge workers would benefit from full-fidelity Windows 8 on multiple
monitors, so they can use rich applications and make use of unified communications.
This is why we have the choice of collection types in RDS, which we covered in
Chapter 1, Putting the V in VDI – An Introduction to Virtualization in Hyper-V.

In addition to capacity planning, we also need to tune all of the resources we have in
our VDI deployments: networking, I/O, memory, and CPU, as any one of these will
slow our users' response time down. The good news is that VDI in Windows does a
pretty good job of balancing the resources we give it to a large extent, so each of our
users gets a fair share without us having to constantly tune everything. Our main
focus will be on tuning the settings of our Virtual Desktop Template and the hosts
on which our collections will run.

We can break down our examination of scale and performance into three areas:

• The server roles managing our remote desktop services (the RD Brokers,
RD Gateway, and so on)

• The hosts, be they session or virtualization hosts, that serve our
virtual desktops

• The virtual desktop VMs if we are using VDI rather than Session
Virtualization

We also need to be aware of the scalability limits. Actually, the limit on any pure
Microsoft VDI deployment is not down to any hard performance limit of Windows
Server—it is largely limited by the lack of management tools to control VDI. The
only tools that Microsoft supplies out of the box in Windows Server to manage
RDS are Server Manager and PowerShell. Server Manager simply can't handle
deployments where there are hundreds of users online—it's simply too hard to find
who is connected to what and fix any problems they might have in the list of users
and connections in the collections view. We can, of course, use PowerShell scripts

Chapter 6

[153]

to mash together a set of tools to do management at scale, but this wouldn't really
be enterprise and production ready. So, Microsoft's unpublished but recommended
guidance is that RDS by itself is really only suitable for deployments of about 500
desktops, despite the fact that it has tested more than 2,500 VDI deployments and has
published performance white papers on how that was done. As in the past, Microsoft
still recommends implementing partner solutions from Citrix, Dell, and so on.

Microsoft's white paper on the performance of a 2500-seat VDI
deployment can be found at http://download.microsoft.com/
download/6/1/8/618657D7-9D3F-42BD-89F8-8C8963F9EC91/
Windows_Server_2012_VDI_Deployment_Guide.pdf and
a confusingly similar but more detailed white paper at http://
download.microsoft.com/download/2/4/B/24B5EC7D-1D03-
49A2-B792-C7EDF24549EE/Windows_Server_2012_Capacity_
Planning_for_VDI_White_Paper.pdf.

Testing RDS
If we want to test a VDI deployment, we need to put it under a predictable load and
have repeatable tests to see the effect of any changes to our deployment. We also
need an automated system for this, as we can't ask all our users or the IT department
to log in and run a series of scripts. There are two sets of tools available, the Remote
Desktop Simulation tools (http://www.microsoft.com/en-us/download/
details.aspx?id=2218) from Microsoft and the more sophisticated but expensive
cross-platform solution from LoginVSI (http://www.loginvsi.com). The Microsoft
tool is very manual to set up and is only suitable for testing Session Collections. The
following are required for its working:

• A test controller to orchestrate the testing
• A number of clients that simulate the load (the tool has been tested for 50

sessions per client)
• A server component that runs on the RD Session Host server being tested.

There are detailed instructions included in the download and a couple of sample
test files. LoginVSI can be used for VDI of whatever type of collection and has the
advantage of allowing us to contrast and compare the VDI solutions from more
than one vendor on the same configuration. It was used by Microsoft for the white
paper referred to in this chapter and so can easily handle simulation and testing for
large deployments. It comes with a set of sample workloads and we can use these as
is or configure a more realistic model for our organization, for example, to include
applications that we use and to do the kind of printing we need.

Scale and Performance

[154]

One other mechanism that can be employed is using sizing tools such as Lakeside
SysTrack (http://www.lakesidesoftware.com/) to determine what kind of
resource requirements a typical user in a given department needs before they move
to VDI and then making a collection from this sizing study. This method is less about
simulation and more about the current resource profile.

Hyper-V
We have made use of Hyper-V in three ways in this book: to run the role services
that manage our RDS deployment, to host virtual desktops in our pooled and
personal VDI collections, and to provide two session hosts for our session-based
collection. If we decide to use VMs for any of these, we must understand what we
can do to tune Hyper-V itself and how to scale up if needed. Broadly speaking, we
lose about seven percent of our performance by virtualizing a workload, but many
new servers are over-specified on the CPU, so this isn't a big penalty for the agility
and manageability we get in return.

When we first configured Hyper-V in Chapter 1, Putting the V in VDI – An Introduction
to Virtualization in Hyper-V, all we did was add in a virtual switch having installed
the role. Actually, there is hardly any need to set anything here; however, it is worth
mentioning networking because at the moment we have just one NIC attached to our
host that is handling all our traffic, which is not good for HA or performance. We
could add in separate NICs and assign each to a separate kind of traffic, such as for
connectivity to shared storage, management, and live migration; however, what we
can do instead is to create a team of our NICs in Windows Server and rely on VLAN
and subnets to separate out the traffic.

We can try out NIC teaming by just adding another NIC of any make
(I use a simple USB NIC in my laptop for this) to our server. You then
need to remove the existing NIC from Hyper-V by setting the virtual
switch connected to the NIC to be internal. You can then team the
two NICs by navigating to Server Manager | Local manager | NIC
teaming. The final step is to make your virtual switch external again
by associating it to the Microsoft Network Adapter Multiplexor Driver.
I have a post on this at http://blogs.technet.com/b/andrew/
archive/2012/12/11/evaluate-this-nic-teaming.aspx.

This means that our network traffic is now load-balanced efficiently across our
NICs. If an NIC fails, our users won't be affected. We'll look at the specific impact
of Hyper-V on each role and the collection type as we cover each role service.

Chapter 6

[155]

RDS role servers
In the previous chapter, we spent a lot of time implementing HA for the brokers, and
the Web Access and gateway servers in our VDI deployment. In the process, we also
implemented load balancing so that each role is active rather than active-passive,
where the standby server is idle most of the time. We also virtualized all of these
server roles and discussed how they should be deployed on two Hyper-V hosts for
HA. From a performance point of view, it is best practice not to put the role services
on the same host as the one we use for our collections. In Microsoft's performance
white papers, a 2,000-seat deployment is fronted by two Hyper-V servers, just as
we set up for our HA configuration, where the two servers were Dell R620s with 16
cores and 96 GB of RAM, which was sufficient to run the RD Broker, Gateway, Web
Access, and SQL Server for the broker-shared database.

Microsoft has general tuning guidelines for Windows Server 2012 R2,
which includes computing, networking, storage, as well as the RD
and Hyper-V roles. See http://msdn.microsoft.com/en-us/
library/windows/hardware/dn529133.aspx.

RD Broker
The performance of the RD Broker role determines the connection rate and time to
connect to our virtual desktops, so what can we do to ensure we are getting the best
performance? We can scale up by adding more resources to a single RD Broker or
scale out by creating an RD Broker farm, as we did for HA in the previous chapter.
To recap, a broker farm has multiple RD Brokers accessing a shared SQL Server
database. Load is balanced across the individual RD Brokers using DNS round-robin
so that our HA solution is active. So does this improve performance?

In smaller collections of less than 100 VMs, the broker can handle up to 10
connections per second, where the slowest connection takes less than a second and
adding in a second broker will have little impact on this. Doubling the number of
brokers doesn't give double the benefit. In Microsoft's tests on two quad-core CPUs,
the connection time was reduced from 4.6 to 3.3 seconds when there were 2,500 VMs
in the collection, and this rose to 3.7 seconds for a 5,000 VM collection. So, the only
reason for having more than one RD Broker in all but the largest deployments is for
high availability.

The Microsoft white paper on RD Broker performance based on using
quad-core servers in an HA configuration using a shared SQL Server
database can be found at http://www.microsoft.com/en-us/
download/details.aspx?id=38779.

Scale and Performance

[156]

This means, if we decide to add in a third broker so that two are always available
in case of a failure, the third server will have little or no impact on improving the
connection response time. The broker is also capable of handing off connections
to multiple session hosts. A two-broker farm can comfortably handle connections
to over 100 session hosts in under 4 seconds. Again, adding more brokers doesn't
really affect this. In these situations, it's the SQL Server database server that's under
pressure, although it is far more efficient than the Windows Internal Database
(WID) used in single RD Broker deployments. In the Microsoft white paper,
a quad-core SQL Server instance is used with a minimum of 4 GB RAM. So, if more
scale or performance is needed, we should look at adding more resources to SQL
Server, such as using a higher edition and using the new in-memory engine in SQL
Server 2014, or using SSD storage for at least the system tempDB database and
increasing the memory available to it.

Tuning the RD Gateway and RD Web
Access roles
RD Gateway performance is all about connectivity; our users connect over SSL
port 443, which is then translated into UDP and TCP/IP traffic on port 3389.
If performance is slow for our internal users, we should check that we have set
Bypass the RD Gateway for local addresses by navigating to Remote Desktop
Services | Overview | Deployment Properties. We should also ensure that we
have got UDP properly configured on the RD Gateway by checking the Transport
Settings in the properties of each Gateway server in the RD Gateway Manager, as
shown in the following screenshot:

Chapter 6

[157]

Microsoft has released a performance white paper on a 2,500 VDI deployment based
on Windows Server 2012. In addition to detailing how to set up the collections, it also
covers the setup of the role servers. In these tests, an RD Gateway with 4 cores and
8 GB RAM could support 1,000 connections a second, each with a throughput of 60
KB/sec.

The only other adjustment we can try is to tune the idle timeout setting of the RD
Web Access Application pool that our Gateway is using in IIS. Have a look at the
following example:

appcmd set config /section:applicationPools /[name='PoolName
'].processModel.idleTimeout:0.00:30:00

In this code, PoolName is the name of the application pool.

Scale and Performance

[158]

Session Collections
In a Session Collection, we need to ensure that a single server has enough resources
for each user session running on it and enough left to support the underlying OS.
Because everything is running on one copy of the OS and everyone has the same
copy of the desktop, we need to be mindful to keep what is on each desktop to the
minimum required.

Hyper-V in Windows Server 2008 R2 only allowed a maximum of four logical
processors to be assigned to a VM, which isn't sufficient for larger Session
Collections. However, with Server 2012 R2, we can add up to 64 logical processors to
a VM if the hardware supports it, and so even the largest session hosts can now be
virtualized and we'll only see a small loss in performance.

A logical processor can be likened to a core on a physical host, and
Hyper-V can only assign logical processors to a particular VM up to
the number of cores on the host or 64, whichever is lower. So, on a
32-core host, we can only have 32 logical processors in any VM, and
on a 128-core host, it's the 64 core limit in a VM that would apply.

If we do decide to virtualize our session hosts, we should not over-commit the
logical processors on that host. In other words, the sum of logical processors of
all the VMs on the host should not exceed the cores on that host. One reason why
I think virtualizing session hosts is a good idea is because it allows us to carve up a
big server into several session hosts, which gives us resilience if one VM fails and
allows us to patch and update each of these in turn. Our broker can handle and
balance across multiple session hosts, so performance won't be a factor there. We
can also use virtualization to use two hosts in an active-active scenario across two
Session Collections, which might allow us to load-balance different types of users,
as shown in the following diagram:

Chapter 6

[159]

Multiple session hosts providing two Session Collections across two virtualization hosts

Testing Session Collections
Microsoft hasn't updated its performance testing white paper for Windows
Server 2008 R2 (http://www.microsoft.com/en-us/download/confirmation.
aspx?id=17190), but there's lots of useful information on how to test and on
considerations for I/O memory and CPU. If we look at the testing of the most
demanding user, from these tests, we can see that an 8-core, 2.4 GHz server of five
years ago can support up to 310 users if we load the server up with a 128 GB RAM,
so round about 400 MB of RAM per user. The other interesting statistic is the worst-
case network traffic of 14 KB per user, which means that commodity servers will
easily handle hundreds of users. What is hard to assess is disk I/O, as this will
depend on where the profile disks are, the users' data files, and so on. If our session
hosts are physical servers, a modern array of disks in the same rack will easily
handle this throughput; the only recommendation would be to put the paging files
on a local SSD.

Scale and Performance

[160]

Pooled and Personal Collections
The performance of these collections depends on the performance of the
virtualization hosts our virtual desktops are running on and the settings and
configuration of the Virtual Desktop Templates used to create the collections.
Having got this right, we can then look at how many virtual desktops we can run
on a given server for a given workload.

Virtual Desktop Template optimization
There are two areas to consider when configuring our templates: the settings of
the VM itself and the settings inside the guest operating system. There are a lot of
settings in a Hyper-V VM that are present specifically to configure the performance
of VDI VMs.

Dynamic memory
Unlike VMWare, Microsoft does not over-commit memory except in one special case.
So, if our virtualization host has 64 GB of memory, it has to be shared among the VM
and the management OS.

The memory reserved for the management OS is set internally by
Windows Server and should not be overridden unless advised to do
so by Microsoft support.

What Hyper-V does instead is dynamically manage memory. The following
screenshot shows the settings for a VDI template VM in Hyper-V:

Chapter 6

[161]

This allows the VM to start with a startup RAM setting of 1,024 MB to enable it to
boot quickly. Once it's running, the memory allocated will drop to the minimum
RAM setting of 512 MB unless the VM needs more, in which case the other settings
come into play. The memory buffer allows us to determine when a VM asks for
more memory; in this case, if the buffer falls below 20 percent (so 80 percent or
more of the memory is in use), more memory will be allocated, up to the maximum
RAM setting (if there is memory available). However, if the host is under memory
pressure, the memory weight setting will determine which VMs get allocated more
memory and which will not. This last setting will be the same for all the VMs in a
collection, so each user will get a fair share. If we want to prioritize some users, we
should create separate collections based on a VDI template that reflects this. Dynamic
memory will also hand memory back from the VM to the host when the memory
buffer is above the specified setting. As our users open and close applications,
Hyper-V will automatically ensure that there is memory there to support them.

Scale and Performance

[162]

There is that one exception to over-committing memory that I mentioned earlier:
if a VM has to restart when the server is under memory pressure, there may not
be enough free memory to meet the startup RAM requirement. In this single case,
Hyper-V will use a special smart paging file to allow the VM to restart. We can set
the Smart paging file location in the properties of a VM. If we have a local SSD on
our server, this would be a good use of that, as the file is only in temporary use.

Processor
We can set how many logical processors each VM will get and set relative weights,
as shown in the following screenshot:

Processor settings for a VDT template VM

The resource controls will only be of value if there are different collections with
different settings on the same host, as these will be the same for each VM in a
VDI collection.

Networking
Quality of Service (QoS) can also be set for network bandwidth, but again, this will
only really be relevant where there are multiple collections with different settings
on the same host. Hyper-V can also leverage the latest improvements in NICs, such
as IPSec offloading and Server Root IO Virtualization (SR-IOV) to free up CPU on
our hosts, but these are not really suitable for Hyper-V as they bypass the physical

Chapter 6

[163]

switch, and more importantly, you can't use SR-IOV and NIC teaming. As a result,
we would lose HA and flexibility if we used this for our collections. The only other
setting of interest in here is Advanced Features under Protected Network, which
will automatically move a VM if its network is lost.

VM storage
I/O performance is a key part of VDI performance, but before we look at that, we
need to understand how the VMs in our VDI collection are stored on disk. If we go
into Hyper-V on our host and look at one of the VMs (FPC1) we made in Chapter 2,
Designing a Virtual Desktop Infrastructure, we can see the chain of disks it has by going
to Settings | IDE Controller 0 | Hard drive and clicking on the Inspect button. If
we keep clicking on the Inspect button, we will see that we have three hard disks
that relate to our VM, as shown in the following diagram:

The relationship between virtual hard disks and snapshots for our FPC1-pooled VM

The current state of the VM is written to the checkpoint disk (FPC1-guid.avhdx) as
the user works on their session. The disk associated with the rollback checkpoint is
a VHDX with the same name as the VM. This captures the saved state of the VM as
it started for the first time after sysprep and is what the VM will roll back to when a
user logs off, so it's ready for the next user. This VHDX is a differencing disk based
on a copy of the VHDX that was part of our Virtual Desktop Template VM. This
copy (Template.VHDX on the previous diagram) is read-only, and we can control its
location as part of the collection deployment properties.

Scale and Performance

[164]

RDS was not the only technology that got a significant overhaul in Windows Server
2012; there were also major improvements to the storage engine, which gives us new
options for storing our VMs. And these were further enhanced in Windows Server
2102 R2. Storage is a big topic and we'll just skim the surface here to cover what
is relevant for hosting our virtual desktops. First of all, there are Storage Spaces
and Storage Pools. Storage Pools allow us to group a bunch of commodity
Serial-Attached SCSI (SAS), Serial ATA (SATA), or USB into something
like a Redundant Array of Independent Disks (RAID).

Storage Pools also support disk enclosures, commonly known as
JBOD (just a bunch of Disks), where the disks in the enclosure are not
already in a RAID configuration. However, we can't use fiber channel
and iSCSI-controlled storage for Storage Pools. For more details, refer to
the Storage Spaces FAQ at http://social.technet.microsoft.
com/wiki/contents/articles/11382.storage-spaces-
frequently-asked-questions-faq.aspx#What_types_of_
drives_can_I_use_with_Storage_Spaces.

We can then lay a special virtual hard disk, a storage space over this, format it and
create shares on it, and use it just like any file server. This is relevant to VDI because
instead of creating simple shares like we might do on any folder, we can create
a special Application Share specifically designed to host VMs and SQL Server
databases and use this as a location for our virtual desktops in our VDI collections.

Dell has a whitepaper on Storage Spaces at http://en.community.
dell.com/techcenter/extras/m/white_papers/20439139.aspx.

Chapter 6

[165]

The following figure shows how this fits together to provide storage for our virtual
desktop VMs:

In the preceding diagram, we have three file servers in a scale-out file server cluster
that are connected to our shared storage. This is a bit like a SAN, where each file server
can be considered a storage controller. Like a SAN, Storage Spaces also allows us to
declare RAID-like configurations, such as mirror, parity, and hot spare, to survive
disk failures. If a File Server Node fails, then the next node automatically picks up the
connection so quickly that if we were playing video, we would only lose one or two
frames. Modern storage is increasingly moving toward hybrid solutions, where SSDs
are integrated into the solution to provide faster access to "hot" blocks of data that
are in continuous use. Windows Server 2012 R2 emulates this capability with tiered
storage in storage spaces so that when we create a space, we can declare how much
SSD and how much hard disk to use. The Windows Server 2012 R2 filesystem will then
work out which are the hot blocks and automatically store them on SSD for us. We can
also override this behavior by pinning files to the SSD tier. For example, we could pin
our VHD template VHDX on the SSD tier just to be sure it's there:

$SSDTier = Get-StorageTier –FriendlyName "Collection Space" | Get-
StorageTier -MediaType SSD
Set-FileStorageTier -FilePath S:\TemplateParent.VHDX
-DesiredStorageTier $SSDTier

Scale and Performance

[166]

In this code, Collection Space is the storage space we have already created.
Within that, there is already an SSD Tier. S:\TemplateParent.VHDX is the copy of
the VHDX template specified in our deployment, and S: is the drive to our storage
space. We can also do this from the file server inside the Server Manager.

Another new storage technology introduced in Windows Server 2012 is
deduplication, which modifies the way the Windows File System (NTFS) works
by examining common chunks across files and removing the duplicates. This is
an out-of-band process that is normally scheduled to run on a low priority in the
background or out of hours. Initially, Microsoft did not support putting VHD for
running VMs on deduplicated volumes, but this was changed in Windows Server
2012 R2 for one use case: pooled VDI Collections. If we look at how collections create
and use VHDXs, we have one parent template VHDX that's read-only and we have
a differencing disk for each VM in our collection that are practically identical. In fact,
apart from their unique ID (SSID) and name, they are identical and make excellent
candidates for deduplication as they don't change; it's only the VHDX at the end of
the chain that changes while our users are logged on.

I have two step-by-step posts on storage:
• How to set up tiered storage (http://blogs.technet.

com/b/andrew/archive/2013/10/02/labb-ops-part-
3-storage-in-windows-server-2012r2.aspx).

• How to set up a scale-out file server using two VMs rather
than two physical hosts (http://blogs.technet.com/b/
andrew/archive/2013/12/02/lab-ops-part-10-
scale-out-file-servers.aspx).

Two other performance tips that might be useful are as follows:

• Enable caching for the Cluster Shared Volumes (CSV), which is where
we can allocate memory on the file server nodes in our cluster to be used,
in much the same way as the cache on a SAN Controller. CSV cache is not
compatible with tiered storage or deduplication, but deduplication already
has a built-in caching system and this would be redundant anyway.

For details on how to configure this, refer to this MSDN
post: http://blogs.msdn.com/b/clustering/
archive/2012/03/22/10286676.aspx.

Chapter 6

[167]

• Look at the setting storage QoS in the properties of the VM template to
ensure fair use between the VMs in a VDI Collection. This can be done in the
properties of the VDI template VM by expanding the plus sign next to the
hard disk and navigating to the advanced features. We can set the maximum
and minimum IOPS that the selected disk on that VM can have. Remember
that each VM will get the same setting and that setting this also enables it to
be monitored in the event logs of the host and through WMI. We can also
set this on the fly for a given VM by using the Set-VMHardDisk PowerShell
command with the -minimumIOPS and -maximumIOPS switches.

Tuning Windows 8 for VDI
In Chapter 3, Putting the D in VDI – Creating a Desktop Template, we looked at how
MDT enabled us to manage the creation of a Virtual Desktop Template; however,
we didn't do any specific tuning of the desktop for VDI. For a start, Microsoft
recommends that we use the 64-bit version of Windows 8, although this takes up a
bit more space as it works better with RemoteFX, especially if we plan to virtualize
a real GPU on our host. We can eliminate the 350 MB partition Windows 8 creates
for BitLocker, as we won't need it for VDI, by adding a rule to our Task Sequence
DoNotCreateExtraPartition=YES. We should also review the configuration of the
services that are running in our template. Microsoft recommends that we should
disable the following (note that a lot of these are already set to manual):

Service Default
setting

Description

Application Layer
Gateway Service

Manual This service manages mobile broadband [Global
System for Mobiles (GSM) and Code Division
Multiple Access (CDMA)], data card / embedded
module adapters, and connections by autoconfiguring
the networks. Microsoft strongly recommends
that this service be kept running for the best user
experience of mobile broadband devices.

Background
Intelligent Transfer
Service

Manual VDI infrastructure is usually connected to fast LAN or
WAN links to infrastructure servers hosting data.

BitLocker Drive
Encryption Service

Manual
(TS)

BitLocker is not available for use in VMs.

Block-Level Backup
Engine Service

Manual This service is used to back up data on the client
computer; it is not used for VMs.

Bluetooth Support
Service

Manual
(TS)

Bluetooth Wireless is not supported from VMs.

Scale and Performance

[168]

Service Default
setting

Description

Computer Browser Manual
(TS)

This maintains an updated list of computers on
the network and supplies this list to computers
designated as browsers.

Device Association
Service

Manual
(TS)

This enables pairing between the system and wired or
wireless devices.

Device Setup
Manager

Manual
(TS)

This enables the detection, download, and installation
of device-related software. If this service is disabled,
devices may be configured with outdated software
and may not work correctly.

Diagnostic Policy
Service

Automatic This service enables problem detection,
troubleshooting, and resolution for Windows
components. If this service is stopped, diagnostics will
no longer function.

Diagnostic Service
Host

Manual The Diagnostic Policy Service uses the Diagnostic
Service Host to host diagnostics that need to run in
a Local Service context. If this service is stopped, no
diagnostics that depend on it will function.

Diagnostic System
Host

Manual The Diagnostic Policy Service uses the Diagnostic
System Host to host diagnostics that need to run in
a Local System context. If this service is stopped, no
diagnostics that depend on it will function.

Family Safety Manual This service is a stub for the Windows Parental
Control functionality that existed in the Windows
Vista operating system. It is provided for backward
compatibility only.

Fax Manual This enables you to send and receive faxes using
fax resources available on this computer or on the
network.

Function Discovery
Resource
Publication

Manual This publishes the computer and resources attached
to this computer so that they can be discovered
over the network. If this service is stopped, network
resources will no longer be published and will not be
discovered by other computers on the network.

Home Group
Listener

Manual This is used to establish Home Groups; it is not used
with VMs in a corporate environment.

Home Group
Provider

Manual
(TS)

This is used to establish Home Groups; it is not used
with VMs in a corporate environment.

Microsoft iSCSI
Initiator Service

Manual Internet SCSI (iSCSI) will not be used on virtual
desktops.

Chapter 6

[169]

Service Default
setting

Description

Microsoft Software
Shadow Copy
Provider

Manual This manages software-based volume shadow copies
taken by the Volume Shadow Copy service. If this
service is stopped, software-based volume shadow
copies cannot be managed. If this service is disabled,
any services that explicitly depend on it will fail to
start.

Offline Files Manual
(TS)

Optimize Drives Manual This helps the computer run more efficiently by
optimizing files on storage drives.

Secure Socket
Tunneling Protocol
Service

Manual This service publishes a machine name using the
Peer Name Resolution Protocol. The configuration is
managed via the netsh context p2p pnrp peer.

Shell Hardware
Detection

Automatic This provides notifications for AutoPlay hardware
events.

SNMP Trap Manual This receives trap messages generated by local or
remote Simple Network Management Protocol
(SNMP) agents and forwards the messages to the
SNMP management programs running on this
computer. If this service is stopped, SNMP-based
programs on this computer will not receive SNMP
trap messages. If this service is disabled, any services
that explicitly depend on it will fail to start.

SSDP Discovery Manual This discovers networked devices and services that
use the Simple Service Discovery Protocol (SSDP),
such as Universal Plug-and-Play (UPnP) devices. It
also announces SSDP devices and services running on
the local computer. If this service is stopped, SSDP-
based devices will not be discovered. If this service is
disabled, any services that explicitly depend on it will
fail to start.

Telephony Manual This provides Telephony API support for programs
that control telephony devices on the local computer
and, through the LAN, on servers that are also
running the service.

UPnP Device Host Manual This allows the computer to host UPnP devices. If
this service is stopped, any hosted UPnP devices will
stop functioning and no additional hosted devices can
be added. If this service is disabled, any services that
explicitly depend on it will fail to start.

Scale and Performance

[170]

Service Default
setting

Description

Windows Backup Manual This provides Windows Backup and Restore
capabilities.

Windows Color
System

Manual The WcsPlugInService service hosts the non-Microsoft
Windows Color System color device model and the
gamut map model plug-in modules.

Windows Connect
Now – Config
Registrar

Manual WCNCSVC hosts the Windows Connect Now
Configuration, which is Microsoft's implementation of
the Wi-Fi-Protected Setup protocol.

Windows Error
Reporting Service

Manual
(TS)

This allows errors to be reported when programs stop
working or responding and allows existing solutions
to be delivered. This also allows logs to be generated
for diagnostic and repair services.

Windows Media
Player Network
Sharing Service

Manual This shares Windows Media Player libraries with
other networked players and media devices using
UPnP.

WLAN AutoConfig Manual The WLANSVC service provides the logic required
to configure, discover, connect, and disconnect from
a wireless LAN (WLAN), as defined by Institute of
Electrical and Electronics Engineers (IEEE) 802.11
standards.

WWAN
AutoConfig

Manual This service manages mobile broadband (GSM and
CDMA), data card / embedded module adapters,
and connections by autoconfiguring the networks.
Microsoft strongly recommends that this service be
kept running for the best user experience of mobile
broadband devices.

Microsoft also recommends that we consider disabling the following services:

Service Default
setting

Description

Microsoft
BranchCache

Manual This service caches network content from peers on
the local subnet.

Distributed Link
Tracking Client

Automatic This tracks NTFS filesystem links locally and across
the network (but only if the service is also running
on the remote system).

Encrypting File
System Manual

Manual
(TS)

This provides the core file encryption technology
used to store encrypted files on NTFS filesystem
volumes. If this service is stopped or disabled,
applications will be unable to access encrypted files.

Chapter 6

[171]

Service Default
setting

Description

Extensible
Authentication
Protocol (EAP)

Manual The EAP service provides network authentication
in such scenarios as 802.1x wired and wireless
networks, virtual private network (VPN), and
Network Access Protection (NAP).

File History Service Manual
(TS)

This protects user files from accidental loss by
copying them to a backup location.

Microsoft Account
Sign-In Assistant

Manual
(TS)

This enables user sign-in through Microsoft account
identity services. If this service is stopped, users
will not be able to log on to the computer with their
Microsoft account.

Sensor Monitoring
Service

Manual
(TS)

This monitors various sensors to expose data and
adapt to system and user state. If this service is
stopped or disabled, the display brightness will not
adapt to lighting conditions. Stopping this service
may affect other system functionality and features
as well.

Themes Automatic This provides user experience theme management.

Volume Shadow
Copy

Manual This manages and implements volume shadow
copies used for backup and other purposes. If
this service is stopped, shadow copies will be
unavailable for backup and the backup may fail. If
this service is disabled, any services that explicitly
depend on it will fail to start.

Windows Defender Automatic
(TS)

This helps protect users from malware and other
potentially unwanted software.

Windows Search Automatic
(Delayed)

This provides content indexing, property caching,
and search results for files, email, and other content.

Finally, we should enable one service that's actually manual by default: the Network
List Service, which identifies the networks to which the computer has connected,
collects and stores properties for these networks, and notifies applications when
these properties change.

Rather than manually edit this list, Microsoft Premier Field Engineer Jess
Stokes has produced a VB Script to modify Windows 8 in this fashion on
his blog Hot off the presses, get it now, the Windows 8 VDI optimization script,
courtesy of PFE! at http://blogs.technet.com/b/jeff_stokes/
archive/2013/04/09/hot-off-the-presses-get-it-now-
thewindows-8-vdi-optimization-script-courtesy-of-pfe.aspx.

Scale and Performance

[172]

We can then continue to thoroughly review other aspects of the OS, such as:

• Remove as many items as possible from the task scheduler and review what
is running, particularly for third-party applications

• Set the event logs to a much smaller size and ensure they are set to overwrite
• Disable System Restore and Hibernate

Finally, before we sysprep the image, we should perform a disk cleanup with the
built-in tool in Windows 8 plus conduct a thorough check of our own, as this will
reduce I/O in itself and the impact of antivirus I/O if that's installed as well.

Clearly, we will want to limit what applications we put on our Virtual Desktop
Template, but there is one we'll certainly need, and that is the one that will have the
biggest impact on performance: our antimalware solution. This kind of software has
a bad reputation on real desktops. So, having multiple copies of it running inside
our collections will compound any performance problems. We essentially have two
options here:

• Run the agent inside each VM as we would on a real desktop.
Microsoft estimates that we will experience a 10 to 12 percent
increase in disc I/O per VM.

• Scan our VDI template and create exceptions for operating system files.
If a user gets a virus notification, we can shut down the VM and it will
revert to its snapshot and the user just has to log in again.

We will cover keeping AV signatures up to date along with patching
the desktop OS and application in the next chapter.

Capacity planning for VDI collections
In Microsoft's white paper on testing a 2,000-seat pooled VDI collection, 14 identical
virtualization hosts were used to run 150 VMs per host. This was then put under
load by using the LoginVSI tool running the standard medium workload that comes
with it. Each of the virtualization hosts had 16 cores and 256 GB RAM, and the VMs
were stored locally on each server across a set of 10 x SAS disks (72 GB 15K RPM).
The Virtual Desktop Template was configured as per the guidance in this chapter
and Office 2013 was installed. The conclusion of the tests was that:

Chapter 6

[173]

• One core is needed per 10 users to keep the core below 80
percent utilization.

• Each VM needed about 1 GB RAM when running Windows 8 and Office
2013. However, this test didn't make use of RemoteFX for graphics-intensive
tasks. We should allow a maximum of another 1 GB of RAM for those
users who will be running more graphics-intensive applications, as will be
discussed in the upcoming sections.

• I/O was about 10 IOPS per VM for a running VM.
• 400 KBPS bandwidth was needed per user.

Client settings
Now that we understand what to do to scale and tune the remote desktop role
servers, we can consider how to ensure our virtual desktops of whatever type are
running efficiently while providing our users with a rich desktop experience. Our
users are going to want access to the capabilities of their local devices, to make use
of unified communications, to print, and to touch the screens on their tablets. This
is all provided in RemoteFX, which is available for both session- and VDI-based
virtual desktops. RemoteFX was originally based on virtualizing the GPU in a
graphic card, and it will still do this if there is a supported card in the physical server
we are using. Now, in Windows Server 2012, it covers a range of technologies to
enrich the client experience and make the best use of limited bandwidth. We have
already discussed USB redirection to enable local devices such as web cameras and
printers to be used inside a virtual desktop, but what's important here is the impact
on performance, which comes down to how much bandwidth we have. RemoteFX
will automatically compensate for slower bandwidth WAN connections by making
use of UDP as well as TCP on port 3389. UDP is used for traffic such as audio and
video, where having smooth rather than choppy streaming is really important at the
expense of error checking and waiting for missing packets. UDP is also used where
possible for interactive graphics and touch control, but if UDP is blocked, TCP will
be used instead. Apart from the progressive rendering of web content and images
and smoother video streaming, RemoteFX in RDP 8 also allows support for unified
communications such as Lync inside a virtual desktop and will work over WAN
connections as well. All of these benefits come at a price, and that is the memory
overhead needed for RemoteFX, which we need to be aware of. In the physical
world, a graphics card has both dedicated and shared memory (VRAM) available for
graphics-intensive workloads, and these concepts are then virtualized in RemoteFX
for VDI.

Scale and Performance

[174]

We can go into our VDI VM and look at the VRAM by running the DXDiag
(DirectX diagnostic) tool, but this number will have no relation to the VRAM on a
real graphics card if we are using one. Things changed for Windows 8.1 and we'll get
either 128 MB out of 256 MB of dedicated VRAM and anywhere from 64 MB to 1 GB
of shared VRAM depending on the startup RAM allocated to the VM based on the
following calculation:

TotalSystemMemoryAvailableForGraphics = MAX(((TotalSystemMemory - 512)
/ 2), 64MB)

The definitive post on VRAM for RemoteFX in Windows 8.1 is at
http://blogs.msdn.com/b/rds/archive/2013/12/04/
remotefx-vgpu-improvements-in-windows-server-
2012-r2.aspx.

This all becomes useful over remote connections, but there's no point in having
this capability if it's not secure. So, the UDP traffic also makes use of SSL to ensure
that this traffic is encrypted as well. There's very little we can or need to do to
enable RemoteFX.

RemoteFX makes use of Second Level address Translation
(SLAT) on modern CPUs, and this technology will only work if
this capability is present. Intel refers to SLAT as EPT and AMD
as Nested Page Tables (NPT).

However, if we do want to use this technology to virtualize graphics cards in our
hosts, we need to do two things: we need to declare the graphics card to Hyper-V
in Hyper-V settings and then add in a RemoteFX graphics card in to our VMs.
Remember, if we do this for a VDI template, all the VMs in a given collection
will have this feature; also remember that we'll need this same setup on all our
virtualization hosts if we want to move those VMs from host to host.

If we want to test it, the easiest way to do that is to connect to our VDI deployment
from a VM running Windows 8 and edit its settings in Hyper-V to set the network
adapter QOS to simulate a typical WAN bandwidth, for example, 2 MBPS, and then
connect to our VDI and run a desktop.

Chapter 6

[175]

If you want to see what RemoteFX does when using a real graphics card,
you'll need a supported card (the list of supported cards is at http://
server.windowsmarketplace.com) in the physical server. You can
then go into a VM in Hyper-V and add in a RemoteFX graphics card:

If this VM is your Virtual Desktop Template, you could build a
collection that would have the ability to access the GPU on the host for
graphics-intensive programs such as CAD and market trading solutions.

When our users connect to a virtual desktop, we can either allow them to set up
their preferences or control them centrally from the deployment properties of our
collection in Server Manager:

Client settings for a Session Collection

Scale and Performance

[176]

We have already noted in Chapter 4, Putting the R in Remote Desktop, that we might
disable some of these for security reasons. The defaults can be left as is for good
performance; for example, if we do allow local printing, the Remote Desktop Easy
Print Driver is a much better option for this, as we won't need to install printer
drivers on our virtual desktops, which can soak up resources and which need to be
maintained. The more monitors we allow our users to have, the more bandwidth and
processing power we will need, but again RemoteFX will automatically minimize the
impact of this on our users and on our servers.

Desktop as a Service
The future of RDS may well mean that we start to use Desktop as a Service
(DaaS), where we can simply rent desktops based on Windows Servers acting as
RD Session Hosts from cloud providers such as Amazon, Google, and Microsoft.
Amazon already has this service in place, but it's based on the older Windows
Server 2008 R2 technologies, and there are also some major hosting providers who
also offer this. Microsoft has not offered its own DaaS, but that is about to change
and we will be able to license RDS on VMs running in Microsoft Azure's cloud
platform for running our software and our VMs. This will allow us to either upload
or create a VM on Azure configured to provide session-based collections that can
be accessed from anywhere with an Internet connection. We can also configure
a Gateway and integrate this infrastructure with what we have running in our
data center with Active Directory Services and VPN tunneling so that Azure just
becomes an extension of what we have already. This can also be integrated with
another Microsoft online service, Office 365, so that our users can work completely
independently of our data center and we can scale this up and down as we need, for
example, if we decide to take on more staff or contractors. We still have work to do
to make this happen, such as the configuration of our session desktops to provide
any applications our users need and to secure and integrate these Azure VMs with
our own infrastructure for seamless sign-on, group policy, and patching. At the time
of this writing, there is no sign yet of a cloud-based VDI service, where we would
be able to spin up Pooled or Personal Collections of Windows client-based VMs on
platforms such as Azure, but this is technically possible; it's just not licensed yet.

Chapter 6

[177]

Summary
Remote desktop services are designed to be scalable, and the main challenge we
have is to plan the capacity we need to support a given user base and profile. In this
chapter, we have seen that there is a lot of guidance out there and that LoginVSI can
be used to verify the performance of our collections against standard or customized
workloads. We have also covered performance tuning of the role services and the
setting of our collections and how to configure Windows 8 for VDI. Now that we
have a secure, fast, and reliable VDI deployment, we need to think about how to
maintain and manage it and that's what we will look at in the next chapter.

Maintenance and Monitoring
In this chapter, we will look at how to keep our VDI deployments up to date with
the latest patches and updates, while minimizing the impact of planned maintenance
on our users. We'll look at monitoring our deployment and how to troubleshoot the
problems that might occur. We'll finish up with a quick introduction to Microsoft
System Center and the parts of the suite that are relevant to VDI.

Maintenance
Our VDI deployment needs to be maintained to keep it up to date, and this affects
the Remote Desktop role services and hosts as well as the virtual desktops. We will
need to deploy patches and fixes from Microsoft that could affect Windows Server,
the Windows Client OS, and any Microsoft applications we have deployed on
our desktops. The same applies to any third-party applications and, in particular,
whatever anti-malware solution we have in place to protect our virtual desktops.
Finally, we will need to modify our VDI deployments in response to change requests
from the business, such as to provide more virtual desktops to new users and update
them with new applications.

Windows Server Update Services
The update and patching element of VDI maintenance incurs a big overhead for little
return, as the best that can happen is that VDI isn't broken, infected, or compromised.
Hopefully, it's a process that's already established in our IT department, as this applies
to all our real desktops and other infrastructure servers. Typically, this is all done with
Windows Server Updates Services (WSUS).

Maintenance and Monitoring

[180]

This is a Windows Server role service that is a central management point where
patches and updates from Microsoft can be managed. We can then use Group Policy
settings to direct our servers and desktops to get updates from our WSUS server rather
than directly from Microsoft, which gives us a number of benefits, as follows:

• We can have a process to test patches and updates against our server
and then deploy them once we are satisfied; they won't break anything
in production. However, we can elect to deploy certain classes of patches
automatically, for example, critical updates and security fixes.

• We only have to expose our WSUS server to the Internet to get the patches,
and we don't clog up our Internet connection by repeatedly downloading the
same patch for each desktop or server that needs it.

WSUS stores all our updates and fixes centrally on a designated share, and is backed
by a database to store the metadata about each update and data about what patches
have been installed, approved, and so on. So, we can get rich reports on how the
services are working. In a production environment, this is typically SQL Server,
although it is possible to use WSUS with the database that comes with Windows
Server, the Windows Internal Database (WID). WSUS can also be extended by using
System Center Configuration Manager, which allows us to have desired baselines for
our desktops and servers and report on compliance against these.

WSUS applies equally well to VDI and allows us to manage updates for all parts of
our deployment: the Remote Desktop role services, virtualization, and session hosts,
as well as the virtual desktops themselves.

Installing and configuring WSUS
We have already deployed SQL Server in our lab for the RDS Broker HA database
running on RDS–Ops, so I am going to suggest we deploy WSUS on that server
as well.

If you haven't installed SQL Server on RDS-Ops already, then please
refer to the Creating an RD Broker Farm section of Chapter 5, High
Availability, which will help you get do a basic setup of SQL Server that
we can use for WSUS.

Chapter 7

[181]

We'll also need to expose this VM to the Internet to see how WSUS works. The
easiest way to achieve that is to add in a second virtual NIC into the RDS-Ops VM
that is connected to a virtual switch on our host and has Internet access. We will
perform the following steps:

1. From Hyper-V Manager on the physical host, go to Virtual Switch Manager.
2. Select New Virtual Switch and select External, and then click on Create

Virtual Switch.
3. Set the name of the switch to RDS-Internet, and in the External Network

drop-down menu, select an NIC on the host that is connected to the Internet.
Click on OK to create the virtual switch.

On my laptop, I create a new external switch, which is either bound to
the onboard wireless NIC or plugin a USB NIC, depending on whether
I have access to the Internet over a wireless or wired connection

4. Right-click on the RDS-Ops VM and select Shutdown.
5. When the VM has shut down, right-click on it again and select Settings.
6. From the Add Hardware icon, select Network Adapter and click on Add.
7. In the Virtual Switch drop-down menu, select RDS-Internet and click on

OK to add the new network.
8. Right-click on RDS-Ops and select Start. RDS-Ops should now be connected

to the Internet.

WSUS needs to store the updates in a folder for onward distribution to individual
servers and desktops. When we set up Microsoft Deployment Toolkit (MDT) in the
Installing MDT section of Chapter 3, Putting the D in VDI – Creating a Desktop Template,
we also created a separate volume E: on RDS-Ops using the new deduplication
feature in Windows Server 2012; this will ensure that the space taken up by updates
is also kept to a minimum. All we need to do before we install WSUS is create a
folder, E:\Updates, to use this volume. We can now log on to RDS-Ops and install
WSUS by performing the following steps:

1. From the Server Manager menu, navigate to Manage | Add Roles
and Features.

2. Click on Next on the Before You Begin screen.
3. On the Installation Type screen, select Role-based or feature-based

installation and click on Next.

Maintenance and Monitoring

[182]

4. On the Destination server screen, click on Next as RDS-Ops is already
selected for us.

5. In the Server Roles screen, select Windows Server Update Services. In the
pop up that appears, simply click on Add Features. Then click on Next.

6. In the Server features screen, click on Next.
7. Read the notes in the Windows Server Updates Services screen and click

on Next.
8. In the Role services screen, select WSUS Services and Database only, as we

will be using SQL Server and not the WID database. Then click on Next.
9. In the Content Location screen, enter E:\Updates and click on Next.
10. In the Database Instance selection screen, enter .\ to specify the default

instance on the local server. Click on Check connection to ensure it's
working and then click on Next.

11. In the Web Server Role (IIS) screen, click on Next. Click on Next to skip off
the web services screen as the wizard has made the right choices for us.

12. Review the settings and click on Install.

You might see a warning triangle in Server Manager telling us that
we need to perform some post-deployment tasks, but if we click on
this, it doesn't do anything as the wizard has already done everything.

This is the equivalent PowerShell script:

#Install the WSUS features the database integration and management
tools

Add-WindowsFeature ("UpdateServices-Services","Updateservices-DB") -
IncludeManagementTools

#Create the folder for the updates

if(!(test-path E:\updates)){Md e:\Updates}

#Configure WSUS to use the local SQL Server instance and use the
folder we just made

Start-Process "C:\Program Files\Update Services\Tools\wsusutil.exe" -
ArgumentList 'postinstall SQL_INSTANCE_NAME=localhost
CONTENT_DIR=E:\Updates'

We can now configure WSUS in our environment to select where to get updates
from, what updates to get, which servers to apply them to, and how approvals of
different types of updates are set. We will perform the following steps:

Chapter 7

[183]

1. On RDS-Ops, navigate to Server Manager | Tools | Windows Server
Update Services.

2. In the Update Services console, navigate to RDS-Ops and expand it. Select
Options and click on the bottom option, WSUS Configuration.

3. Click on Next on the Before You Begin screen, and again on the Join the
Microsoft improvement Program screen.

4. Click on Next on the Choose Upstream Server screen. In a small lab setup
like this, we'll be downloading updates directly from Microsoft. In larger
production environments, there might need to be a hierarchy of WSUS
servers to distribute updates across large and distributed sites, where child
WSUS servers get updates from another parent WSUS server.

5. On the Proxy Server screen, click on Next or configure a proxy if you have
one in place.

6. Click on Start Connecting and grab a coffee, as this will take a few minutes!
7. On the Choose languages screen, check Download updates only in these

languages and choose your local language. Click on Next.
8. On the Product screen, we'll select just the following options, and click on

Next to continue:
 ° Everything related to Windows 8.1
 ° Windows Defender
 ° All the Windows Server 2012 R2 options
 ° Microsoft SQL Server 2012

9. In the Classifications screen, note the options and click on Next.
10. In the Set Sync screen, leave the option Sync Manually, but note that we

could schedule this and click on Next.
11. In the Finished screen, check the option Begin initial synchronization and

click on Next.
12. Review the other things we will need to do and click on Finish to complete

the wizard.
13. After the initial download has been completed (which can take a while!),

expand Computers and right-click on All Computers and select Add
Computer Group.

14. Call the group RDS-Servers and click on Add.
15. Finally, we will be using Group Policy to assign computers to groups, and

so, we need to go to Computers in the Options tab and check the Use Group
Policy or registry setting on Computers; then click on OK to confirm this.

Maintenance and Monitoring

[184]

Now we can assign updates to our RDS servers by selecting one or more of them,
right-clicking on them, and selecting Approve. When we do this, we can assign
which group the updates are approved for. There is a limited set of PowerShell
commands to approve updates and check status, for example, to approve all the
critical updates to our RDS-Servers group, we can use the following command:

Get-Wsusupdate | where classification -eq "critical updates" |
approve-wsusupdate -Action Install -TargetGroupName "RDS-Servers"

We can also configure WSUS to approve all updates of a given type automatically
from Automatic Approvals in the Options tab.

If we want to look at the status of an individual update, then we'll get
an error: Microsoft Report Viewer Distributable is required for this
feature. Fortunately, we can click on the link in the error and install it!

This will now go away and pull down an initial set of updates, and when it
completes, we will get an overview of how WSUS is set up, as shown in the
following screenshot:

Chapter 7

[185]

As the preceding wizard shows, we need to do a few things to start using this
service, such as approving updates and assigning updates to computers, but before
we dive in and set up our update process, we need to think about how to use WSUS
in a VDI deployment. For our servers, we will apply all the updates we approve
directly to our servers, but we might want to have a different approach for our
personal and pooled virtual desktops.

Maintaining the RDS servers and hosts
We are now in a position to set up our RDS servers and hosts to receive updates,
and the way this is usually done is with Group Policy. To keep things simple,
we will create an Active Directory (AD) group with all our servers in and create a
Group Policy linked to that group. To create the group in AD, we will perform the
following steps:

1. Connect to the RDS-DC VM, and in Server Manager, navigate to
Tools | Active Directory Administrative Center.

2. Navigate to Contoso | Computers and right-click on the middle pane.
Then navigate to New | Group.

3. Call the group RDS-Servers, and in the members tab, click on the
Add button.

4. In the Select Users, Contacts, Computers dialog box, change the object type
and only select Computers. Type in RDS and click on Check Names. Select all
the objects and click on OK. We could also add in our physical host (mine is
called orange). Click on OK to create the group.

The following two lines of PowerShell create the group and add in the computers
(which you can see in the PowerShell history windows in ADAC):

New-ADGroup -GroupCategory:"Security" -GroupScope:"Global" -
Name:"RDS-Servers" -Path:"CN=Computers,DC=Contoso,DC=com" -
SamAccountName:"RDS-Servers" -Server:"RDS-DC.Contoso.com"

Set-ADGroup -Add:@{'Member'="CN=RDS-
BROKER,CN=Computers,DC=Contoso,DC=com", "CN=RDS-
BROKER2,CN=Computers,DC=Contoso,DC=com", "CN=RDS-DC,OU=Domain
Controllers,DC=Contoso,DC=com", "CN=RDS-
OPS,CN=Computers,DC=Contoso,DC=com", "CN=RDS-RODC,OU=Domain
Controllers,DC=Contoso,DC=com", "CN=RDS-
SHOST,CN=Computers,DC=Contoso,DC=com", "CN=RDS-
SHOST2,CN=Computers,DC=Contoso,DC=com", "CN=RDS-
WEB,CN=Computers,DC=Contoso,DC=com", "CN=RDS-
WEB2,CN=Computers,DC=Contoso,DC=com",
"CN=ORANGE,CN=Computers,DC=Contoso,DC=com"} -Identity:"CN=RDS-
Servers,CN=Computers,DC=Contoso,DC=com" -Server:"RDS-DC.Contoso.com"

Maintenance and Monitoring

[186]

We can now create a Group Policy Object (GPO) to set up this group of servers to
use WSUS for updates by performing the following tasks:

1. Connect to the RDS-DC VM, and in Server Manager, navigate to Tools |
Group Policy Management.

2. In the Group Policy Management console, navigate to Group Policy
Management | Forest | Contoso.com.

3. Right-click on Contoso.com and select Create a GPO in this domain and
link it here.

4. Call the policy Update RDS-Servers and click on OK.
5. Click on the new GPO and ignore the warning.
6. In the Security Filtering window, highlight authenticated users and click on

Remove and OK to confirm.
7. Click on Add, and in the Select Users, Computer or Group screen, enter

RDS-Servers and click on Check Names. Click on OK to add the group to
the GPO.

Before we dive in and edit the GPO, we need to think about how we should apply
updates to our RDS servers and hosts, preferably without affecting our users. We
have already seen how to implement HA in Chapter 5, High Availability, and we can
build on this by updating each server role in such a way that at least one instance
is in place while the other is offline. For example, for the RD Broker role in our lab,
we will update and reboot RDS-Broker and bring it online before updating RDS-
Broker2. This is only important if an update needs a reboot. WSUS doesn't really
have a mechanism for this, so what can we do to stop WSUS installing updates that
could reboot all of our servers at the same time? We could split our servers into
separate groups in WSUS and configure separate update schedules for each of these
in Group Policy so that they are set to update at different times. Another approach
would be to prevent any of our servers from rebooting automatically after updates
and have a separate maintenance script to test if there are any servers pending a
reboot, and then do that in a sequence. For now, let's edit our GPO to see how to get
WSUS working at a basic level by performing the following steps:

Chapter 7

[187]

1. Right-click on the GPO and select Edit to open the Group Policy
Management Editor dialog box.

2. Navigate to Computer Configuration | Policies | Computer Management |
Administrative Templates | Windows Components | Windows Update.

3. We need to specify RDS-Ops as our WSUS server. For that, we perform the
following steps:

1. Double-click on Specify intranet Microsoft update services location.
2. Click on Enabled.
3. Set the option Set the intranet update service for detecting updates:

to http://RDS-Ops:8530.
4. Set the option Set the Intranet Statistics server: to http://RDS-

Ops:8530 and click on OK.

4. We want our RDS servers to be assigned the RDS-Servers group in WSUS.
We will perform the following steps for that:

1. Double-click on the Client Side Editing policy.
2. Click on Enabled.
3. Set the Target group name for this computer option to RDS-Servers

and click on OK.

5. We can then schedule when our updates are applied by performing the
following steps:

1. Double-click on the Configure Automatic Updates policy.
2. Set the Configure Automatic updating option to 4 – Auto download

and schedule the install.
3. Note that we have the option to set when this is done and click on

OK.

6. We then need to enable the following policies in the same way:
 ° No auto-restart with logged on users for scheduled automatic

updates installations. This will prevent our servers from restarting
until we want to initiate that process.

 ° Allow Automatic Updates immediate installation.

Maintenance and Monitoring

[188]

The final thing we will want to do is configure our domain firewall via Group Policy
to allow our servers to see the WSUS intranet site, which is on port 8530 by default,
by performing the following steps:

1. Still in Group Policy, navigate to Computer Configuration | Policies |
Windows Settings | Security Settings | Windows Firewall with Advanced
Security. Right-click on Inbound Rules and select New Rule.

2. In the Rule Type screen, select Port.
3. In the Protocol and Ports screen, enter 8530 in the Specific local ports field

and click on Next.
4. Click on Next to skip over to the Action screen.
5. In the Profile screen, uncheck Private and Public and click on Next.
6. In the Name screen, call the rule WSUS default update port and click on

Finish to create the rule in the policy.

We can quickly review the changes we have made by selecting the new policy
(Update RDS-Servers), clicking on the Setting tabs, and then expanding the sections
that have an enabled flag on them, as shown in the following screenshot:

Chapter 7

[189]

Group Policy and WSUS will take some time to settle in and start
working. If you haven't used Group Policy before, you can use
the wizard under Group Policy Modeling and Group Policy
Results to troubleshoot.

Maintenance and Monitoring

[190]

If we have to restart a virtualization host as part of an update, then any VMs running
on them won't be available while the physical host reboots, such as our Pooled and
Personal Collection, as well as any server roles we have virtualized. If we have
implemented Hyper-V clusters as part of our HA solution to protect our RDS role
services or as the location for pooled and personal desktops, then we can use a new
feature of Windows Server 2012 to automatically move the VMs to other nodes in
the cluster during an update. Cluster Aware Updating (CAU) is the technology
used, and it is installed as part of the tools for managing a cluster along with Failover
Cluster Manager. CAU can either be implemented as a role on the cluster so it
updates itself, or it can be run remotely from another server or desktop with RSAT
installed. PowerShell cmdlets exist to support this as well. We'll need special rules
and Group Policy in place to use this feature, and they are outlined as follows:

• Automatic updates should not be applied to the cluster
• All cluster nodes should be in the same target group so that they get the

same updates from the same source
• Have a process in place to ensure that the right updates are applied to

the cluster

Apart from those, it is simply a matter of implementing the update process and
monitoring the status of the updates in WSUS. The Cluster Aware Updating console
is shown in the following screenshot:

The Cluster Aware Updating console

Chapter 7

[191]

Refer to http://technet.microsoft.com/en-us/library/
hh831694.aspx for more on setting up and using CAU.

Virtual desktops
We can patch our virtual desktops with WSUS in exactly the same way as we can for
the server roles; we can create a GPO for them and create a group in WSUS to control
which updates they get. However, our Pooled and Personal Collections may contain
hundreds or even thousands of desktops, all of which will need to be patched in
the same way at the same time, and this will create a massive spike in I/O, which
is referred to as an I/O storm. This could bring our whole VDI deployment to a
standstill. So, what can be done to minimize this problem?

• If we are using Pooled Collections or Personal Collections that are reset after
a user logs off, we could update the entire collection by patching just the VDI
template and then using the option in RDS to recreate the collection.

• If we have to use persistent Personal Collections, then these will have to be
individually patched. So, we would have to write some code of our own to
try and patch groups of desktops rather than updating them all, possibly
using different scheduling windows for desktops sharing the same storage
or host servers.

• We can use System Center Configuration Manager 2012 R2 (CM12),
the latest version of Microsoft's device management solution. This has
a non-controllable randomized mechanism for patching built-in virtual
desktops. We'll see how this works later in the chapter.

Recreating pooled virtual desktops
We can quickly extend the task sequence we created in the Building a new Virtual
Desktop Template with MDT section of Chapter 3, Putting the D in VDI – Creating a
Desktop Template, to automatically pick up any approved updates from WSUS.
We will perform the following steps:

1. Connect to RDS-Ops and open the Deployment Workbench console.
2. Navigate to Deployment Workbench | Deployment Shares | MDT

Deployment Share (E:\Deployments) | Task Sequences.
3. Right-click on Windows 8.1 Reference Deployment and select properties.

Maintenance and Monitoring

[192]

4. There are two places where updates can be applied and both of these are in
the State Restore node: Windows Update (Pre-application Installation) and
Windows Update (Post-application Installation). Select Windows Update
(Post-application Installation) and uncheck Disable this step. Click on OK
to close the task sequence.

We need to set the location of our WSUS server as there won't be any Group Policy
applied during the OS installation. We will perform the following steps:

1. Right-click on the MDT Deployment Share environment and select
Properties. From the Rules tab, select Edit Bootstrap.ini and add the
following under the [Default] section to point to our WSUS server web
service, WSUSServer=http://RDS-Ops:8530.

2. Right-click on the MDT Deployment Share environment and select Update
Deployment Share. Accept the defaults and click on Finish to close the
wizard when it has completed.

We can now rerun the PowerShell script in the Creating the reference computer section
of Chapter 3, Putting the D in VDI – Creating a Desktop Template, to create the reference
computer (RDS-Ref). We then need to recreate our desktop collection, which we
can do by navigating to Server Manager Remote Desktop Services | Collections |
Collection Name (in our case, Fast Pooled Collection), and in the Virtual Desktops
pane, navigating to Tasks | Recreate All Virtual Desktops. We can then decide
which new template to use (for example, RDS-Ref created in Chapter 3, Putting the D
in VDI – Creating a Desktop Template) and how our users are affected by this change.
The following screenshot shows the Recreate All Virtual Desktops wizard:

Chapter 7

[193]

We can wait for our user to log off, set a grace period for this, after which they will
be forced to log off, or immediately log them off (first option in the preceding screen)
or at a scheduled time (second option). This is going to depend on how critical the
update is and how much we wish to disrupt our users for the sake of security. If we
decide to do this, we can use the following PowerShell command:

Update-RDVirtualDesktopCollection `
 -ConnectionBroker RDS-Broker.contoso.com `
 -CollectionName "Fast Pooled Collection"`
 -VirtualDesktopTemplateHostServer orange.contoso.com `
 -VirtualDesktopTemplateName RDS-Ref `
 -DisableVirtualDesktopRollback `
 -ForceLogoffTime 12:00am `

The preceding code is easier to read because I have split the line
up using the ` character, which is the PowerShell line continuation
character. This means it's easy for us to read and it will still execute
properly, so it is a bit like the ; character in SQL.

Maintenance and Monitoring

[194]

Then, we can add this command to the script to create the reference computer and
schedule this process to run once a week after Microsoft releases its patches to fully
automate the update process after we have approved any patches.

If we have created a Personal Collection with unmanaged desktops—in other words,
they will keep their virtual desktops as it is between sessions—then we have no
choice but to patch these machines directly as though they are real desktops. There
is no UI in Remote Desktop Services to control this, but there is PowerShell support
with Set-RDPersonalVirtualDesktopPatchSchedule. As the name suggests, we
can set up schedules for individual desktops to avoid the I/O storm problem. We
can manage which patches the desktops get by assigning a GPO to the OU that the
virtual desktops are part of. This GPO should reference a named group of computers
in WSUS in the target group name in the client-side settings entry, as we did earlier
for our role servers.

Monitoring
There are a variety of built-in tools that we can use to ensure our VDI deployments
are working properly. Firstly, any errors in our VDI deployment will show up in the
Server Manager dashboard view, and the section for our RDS roles will turn red and
direct us to the problem. We can then enable a couple of other features to give us
more information about the performance and smooth running of our deployments.
We can turn on performance counters for our role servers and hosts by right-clicking
on each server and selecting Start performance counters. This is particularly useful
for keeping an eye on the session and virtualization hosts. The following screenshot
depicts performance counters:

Chapter 7

[195]

Performance counters for a Virtualization Host

This will show up any problems with the servers that are coming under pressure
(if any), and we can set the memory threshold that triggers the alert; the default is
2 MB and a more realistic figure might be 500 MB. There is also the built-in Best
Practice Analyzer (BPA), which will pick up any errors and warnings that might
not be obvious in the Event Viewer.

Maintenance and Monitoring

[196]

To run the BPA, go to Server Manager on RDS-DC and scroll down to the section
heading, BEST PRACTICES ANALYZER. Click on Tasks and select BPA. This
brings up the following screen:

Best Practices Analyzer results for RDS-Broker

Managing and shadowing users' sessions
If our users encounter problems on their remote desktops, then it can be useful
to log in to their session and help them resolve their problem. Clearly, this could
be a security risk but we can do this by only allowing our helpdesk staff to have
this capability, and our users can see what is happening and grant permission
to allow this. If our users are using a session-based desktop, then we can do this
by navigating to Server Manager | Remote Desktop Services | Collection |

Chapter 7

[197]

<Collection name> and finding their connection in the Connections pane by
right-clicking and selecting Shadow. We can let the user know that this is what
we are doing and ask their permission to interact with their session. We can also
send them a message, perhaps to ask them to log off before we have to restart their
session for some planned maintenance, and there's a PowerShell command for that
too, as follows:

Send-RDUserMessage -HostServer "rds-SHost.contoso.com" -
UnifiedSessionID 1 -MessageTitle "Message from Administrator" -
MessageBody "Please save your work. You will be logged off in 15
minutes"

If we want to use a command line to shadow a session, then we need its session ID
from PowerShell; for example, in our lab, we use the following command:

Get-RDUserSession -ConnectionBroker "RDS-Broker.contoso.com" -
CollectionName "Fast Pooled Collection"

And, then we can run MSTSC from the command line or in PowerShell with a new
(for RDP 8.1) option to shadow the session as follows:

mstsc /v:<ServerName> /shadow:<SessionID>

This capability doesn't exist for Pooled and Personal Collections, so we will have to
rely on the user knowing that they can ask for Remote Assistance via Easy Connect,
which is part of Windows 8.1. This is all enabled in Group Policy. Firstly, we need
to set up Remote Assistance for a GPO linked to the OU for our collections, which
can be done by navigating to Computer Configuration | Policies | Administrative
Templates | System | Remote Assistance. We enable the following features
over there:

• Enable Configure Offer Remote Assistance and set Permit helpers to
remotely control the computer to Allow helpers to remotely control the
computer. Set the Helpers group to a domain group for the helpdesk team,
and we can test this with Contoso/Administrators in our lab setup. Click
on OK.

• Enable Configure Solicited Remote Assistance. Set Permit remote control
of this computer to Allow helpers to remotely control the computer.

We then need to alter the firewall for this policy (Computer Configuration | Policies |
Windows Settings | Security Settings | Windows Firewall with Advanced Security)
and create two new inbound rules on TCP port 135: one for the program %WINDIR%\
System32\msra.exe and the other for %WINDIR%\System32\raserver.exe.

Maintenance and Monitoring

[198]

The Remote Desktop Diagnostic tool
The Microsoft RDS engineering team have released a beta tool for RDS diagnostics
called RDV Diag (http://www.microsoft.com/en-us/download/details.
aspx?id=40890). It needs to be installed on an RD Broker and needs to be run with
an administrator account. It has five different tabs within it for looking at each aspect
of our VDI deployment as follows:

• The Virtual Machines tab gives us a complete readout of every VM on
our virtualization hosts just by clicking on each one. This is shown in the
following screenshot:

Diagnostic details for the FPC1 VM in a Pooled VM Collection

Chapter 7

[199]

All is well in the preceding screenshot, but if there were problems, such as
the VM not being managed by the broker, then there would be appropriate
errors in the Broker section. The other tabs give us a lot more detail about the
health of our deployment.

• The Collections tab also gives us a lot more information than we can get
from Server Manager just by clicking on the collection we want to examine,
such as the details of the job that created the collection. This is shown in the
following screenshot:

Diagnostic information for the Fast Pooled Collection

Maintenance and Monitoring

[200]

This gives information about the job that created the collection and pulls in
all of the collection information onto one screen. The Provisioning tab shows
all of the jobs we have invoked to create or change collections with timings
and status.

• The Connections tab gives a history of all of the last 300 sessions, and we can
filter this either by user or by VM.

• The Database tab allows us to extract all of the tables that sit in the RD
Broker database. This is more useful if we aren't using HA, as by default this
is hidden away in the WID; whereas, in Chapter 4, Putting the R in Remote
Desktop, we used SQL Server, which means that this data is more accessible.

• Events & Traces allows us to go even deeper into what's going on in the
broker. If we press F1, we can collect all of the relevant event log entries into
one file to examine them. We can invoke tracing with F4; this brings up a
dialog box to start tracing. We can then run whatever the problem is, and
once it has occurred, click on Repro and Stop. The files can then be collected
from the RDV Diag installation folder, and if we can't figure out what they
are telling us, then we can forward these to Microsoft support. The following
screenshot displays the diagnostic information for the Fast Pooled Collection:

Chapter 7

[201]

Diagnostic information for the Fast Pooled Collection

Microsoft System Center
Microsoft's System Center suite is a separately licensed solution for managing all
aspects of the IT infrastructure. There are a number of components in the suite that
used to be separate products, and while none of them are explicitly for VDI, they can
add some useful capabilities that aren't present in Server Manger and other free tools
that we have looked at so far. Each of the System Center components would warrant
a separate book, so I just want to give you a taste of the parts of System Center that
are relevant to VDI and cover the basics of what they are for and how they work.

Maintenance and Monitoring

[202]

Configuration Manager
For larger VDI deployments, we may want to consider managing our virtual
desktops with the same tool used in many businesses for managing real desktops,
System Center Configuration Manager 2012 R2 (CM12). This builds on the
capabilities of WSUS as well as MDT, which we saw in the Microsoft deployment
tools section of Chapter 3, Putting the D in VDI – Creating a Desktop Template. This
makes patching and deployment of our virtual desktop easier to set up and will also
manage our role servers and hosts as well. It also includes System Center Endpoint
Protection (SCEP) with its management agent, as an anti-malware tool that has
minimal impact on VDI, allowing this to be easily added into our virtual desktop
template and for us to keep this up to date. CM12 also minimizes the I/O storm
problem by having a built-in randomized delay for any scheduled updates on VMs,
and how CM12 works will depend on the type of collection we have. The types of
collections are as follows:

• Personal Collections: They are treated exactly as though they are real
desktops. As they are created, they will be registered in CM12, which will
install the agent on the desktop if it's not there already. Given that the CM12
agent includes SCEP, we will probably create a template for all our virtual
desktops (be they pooled or personal), which will have this included already.
In fact, if we have CM12, we could and should use it to build the virtual
desktop template for us rather than the hand-crafted work we did in the
Building a new Virtual Desktop Template with MDT section of Chapter 3,
Putting the D in VDI – Creating a Desktop Template. CM12 actually has a
built-in mechanism to create a VHD, but as with MDT, we will want a
sysprepped VHD as the end result so that we can simply import what we did
in Chapter 3, Putting the D in VDI – Creating a Desktop Template, into CM12.

• Pooled Collections: They will confuse CM12 because if we have a process
to continually recreate our Collection to keep it up to date, possibly by using
CM12's deployment tools, then the new desktops will be seen by CM12
as being completely new. So, Microsoft's advice is to exclude them in any
inventory task.

• Session-Based Collections: They will not show up at all; CM12 will just see
the session host as one server, and won't be aware of users' sessions.

CM12 also has Remote Assistance built in and allows for much easier management
of the Group Policy we'll need.

Chapter 7

[203]

Operations Manager
Possibly the most widely known out of the System Center suite, Operations Manager
2012 R2 (OM12) is how we can get a deep insight into the health of any part of our
data center, including the fabric (switches, storage, and servers) in far more detail
than in Server Manager. Along with gathering data, there are extensive tools to show
health and report warnings and alerts, as well as customizable dashboards. The key
to the Operations Manager's flexibility is the use of free and paid Management Packs
(MPs). Each Management Pack provides monitoring and alerting for a given part of
the infrastructure; this might be hardware, the operating system, or applications from
Microsoft and third parties. Many of these are free and are provided by Microsoft;
others are paid for and there are tools to author our own if we want to. While
Management Packs are great, some of them can be very noisy because they give us far
too much information, so it's important to tune and deploy them one by one so that
real problems are not masked by a lot of irrelevant information.

The best place to start with Management Packs is to refer to this series
of articles on TechNet at http://technet.microsoft.com/en-
us/library/hh212709.aspx. Management Packs for all versions of
Windows Server can be downloaded from http://www.microsoft.
com/en-us/download/details.aspx%3Fid%3D9296. Third-
party packs are on Microsoft System Center Marketplace at http://
systemcenter.pinpoint.microsoft.com/en-US/home.

Downloaded Management Packs are normally sealed (read-only), and rather than
unsealing them, we can possibly break them or have our changes overwritten by a
newer version we download. It is best practice to put any changes (overrides) into
our own Management Pack along with other settings, group reports, and so on.
There is a specific Management Pack for Remote Desktop Services (http://1drv.
ms/1f6BSjg). This gives really good insight to the health of the all the server roles
in our deployment, and so if OM12 is deployed and there are in-house skills to
configure it for RDS monitoring, then it will definitely be of use, but it's probably not
worth investing in if no other part of System Center is in use elsewhere.

Like other parts of System Center, OM12 uses an agent on each of our servers. Once
we have this deployed, the server we have under monitoring will be automatically
added to the folder structure within OM12 in much the same way that Server
Manager knows that a server is running RDS or Hyper-V, and places it in the
appropriate grouping.

Maintenance and Monitoring

[204]

Orchestrator
Orchestrator is best described as PowerShell meets Visio, as you can see in the
following screenshot:

An Orchestrator runbook to update an Operations Manager alert

It allows us to use graphical tools to represent a process (runbooks) that can reach
out to any other management tools we might have in our data center through an
extensive set of integration packs. This integration extends from Microsoft products
such as Exchange SharePoint, Azure, and so on to non-Microsoft solutions such as
VMware, Cisco, HP, and IBM (the complete list is at http://technet.microsoft.
com/en-us/library/hh295851.aspx). There aren't any special integration packs
or sample runbooks for RDS, so we would have to start from scratch. But, if we find
ourselves doing the same maintenance task on our VDI deployments more than
once a week, then it should be possible to automate this. For example, if we have a
lot of temporary employee turnaround, say in our call center, we will want to add
these users to the right groups so that they have access to VDI and have some sort

Chapter 7

[205]

of algorithm to work out whether we need to provision or decommission a number
of virtual desktops. We can invoke runbooks directly from CM12, so we could come
up with a comprehensive patching process that would allow us to recreate or apply
patches to our virtual desktops on the back of an approval of updates in CM12, and
which will give us logging and error trapping that is not in the scripts in this book.

Virtual Machine Manager
Virtual Machine Manager (VMM) manages all of the fabric that underpins virtual
machines: virtualization hosts, networking, and storage; however, it is not aware of
VDI except that it will see the virtual desktops we create in RDS as virtual machines.
So, my recommendation is not to add VDI virtualization hosts into VMM so that our
virtual desktop VMs are just managed from Server Manager, PowerShell, and the
RDV Diagnostic tools, and thus kept away from VMM administrators.

System Center Advisor
Advisor is the odd man out in the System Center suite, in that it is free to use and is
a cloud service that is part of Microsoft's online services (such as Azure One Drive
and Office 365). It gathers information from our servers and produces an online
dashboard of alerts, errors, and warnings, which is based on Microsoft's current
best practices. Advisor works by installing an agent on our servers; actually, it's
the Operations Manager agent, which collects data every day and posts it to the
Microsoft Advisor service.

Maintenance and Monitoring

[206]

There is also the option to use a gateway server so that only one of our servers needs
an Internet connection to use the service. The following screenshot displays the
System Center Advisor screen:

Advisor doesn't have any specific features for RDS, but will give you advice on
AD, Hyper-V, SQL Server (which might be useful for our RD Broker database in
HA mode), and general server health. We can also integrate the information from
Advisor into Operations Manager so that we have a complete left-to-right view of
the health of our servers.

Chapter 7

[207]

Summary
In this chapter, we have seen how we can use the standard mechanism, WSUS, to
keep all of our VDI deployments up to date with the latest patches and updates. We
have been able to monitor our deployment with some basic counters and the BPA
in Server Manager, and we have a basic understanding of how System Center can
help us manage and automate VDI. We also saw how the VDT enabled us to get a
deeper insight into problems that might occur. Now that we have all the foundations
in place for a secure and reliable VDI, we need to turn our attention to managing our
users, and in the next chapter, we'll see how we can manage them and their profiles
and settings, whether they are just using VDI or a mix of VDI and real desktops.

Managing User Profiles
and Data

In this chapter, we will look at how to manage our users' profiles and settings so
that they get a consistent experience in VDI, which we may also want to be in sync
with to get a look and feel of their physical desktops. There are a number of ways of
handling this depending on what types of desktops our users will connect to. We'll
look at all of the various options and the considerations for using each of them and
then move on to examining how to implement each of them. We will also cover the
newest technology for managing user profiles: User Environment Virtualization
(UE-V).

Background and options
When a user logs on to Windows, all of their settings are written into a collection of
files, collectively known as their profile. A user's profile will contain a record of how
they have configured their desktop and certain applications, such as the following:

• Desktop shortcuts and display settings.
• Internet settings, favorites, history cookies, as well as cached sites.
• Applications settings that include any customization that are written in the

user's profile folder structure. A good example is Office, where templates,
menu options, styles, and so on are stored on a per-user basis.

• The various My* folders (My Documents, My Pictures, and so on) with our
users' work.

• OneDrive for personal or business use (part of Office 365), if that is being used.

Managing User Profiles and Data

[210]

Leaving all of the mentioned components on a given desktop makes it difficult to
manage and puts the data at risk as the OS and files can get damaged or corrupted.
Hence, IT managers have tried to store key parts of this data on servers. Back in the
days of Windows XP, this was a tough process both to implement and for users as
it delayed logon and logoff times and was often responsible for the very problem
we were trying to avoid: corrupting our users' profiles. The two main techniques we
used were as follows:

• Roaming Profiles: Here, a user's settings were stored on a server and
downloaded to whichever machine they were using, and then any changes
were written back to the server when they logged off

• Folder Redirection: This set users' folders to point to file server shares rather
than the local C:, for example, My Documents

For virtual desktop users, this was OK, provided that users only used the old
terminal services, but if they did need to log in to a physical desktop as well, then
they could also wait ages to log in and log off as their profile was copied between
the local machine and the central server storing the profiles. There was also a feature
called Offline Files, where local copies of shared files were continually synchronized
with a central share to reduce the big hit on I/O during logoff and logon. This
feature also made key files available for use when a server connection wasn't
available. Later versions of Windows have refined these tools and improvements
to storage traffic (for example, Server Message Block Version 3) have made this
more efficient. However, as well as making things easier, there are also additional
considerations in Windows 8, specifically the modern Start screen and the modern
applications that run on it that are available from the Microsoft Store. So we need to
understand what are our options and what they are for. One option to simplify the
management of the profile is to simply enforce a mandatory profile with a standard
look and feel for all our users, which they cannot change. This might be suitable for
kiosks in shops and on a factory floor, and also for users who are only allowed to
perform a specific set of tasks.

For those organizations with Microsoft Software Assurance (SA), there is an
additional set of free tools collectively known as Microsoft Desktop Optimization
Pack (MDOP), and one of these is UE-V. These tools are all there for use with
physical desktops; for virtual desktops, there is another approach we can use, User
Profile Disks (UPDs), which we briefly saw back in Chapter 2, Designing a Virtual
Desktop Infrastructure. UPDs are simple to set up and work with, so why wouldn't
we just use this option for VDI? The problem with UPDs is that they are bound to
a specific collection, so if all our users ever do is use a virtual desktop from a single
collection, then this would be sufficient. However, if users use different collections as

Chapter 8

[211]

well as physical desktops, then we need a separate mechanism, and the techniques
for managing profiles across multiple physical desktops need to be used in
conjunction with VDI. The best mechanism for this is UE-V, so we should use that if
we are licensed for it. UE-V handles profiles very effectively across the network and
has the ability to learn about how applications store settings and capture those very
efficiently along with users' Windows settings. If this isn't an option, we can only
make use of the built-in options for Roaming Profiles and Folder Redirection.
In all cases, we can use Folder Redirection and Offline Files to ensure the users'
work is stored centrally.

The following figure will help us in selecting the tool to be used for
profile management:

Now that we understand when to use each of these, let's look at how they work
in detail.

User Profile Disks
In Chapter 1, Putting the V in VDI – An Introduction to Virtualization in Hyper-V, we saw
that Hyper-V uses three kinds of Virtual Hard Disks (VHD): Fixed, Dynamic, and
Differencing. When we create a personal or pooled collection from a virtual desktop
template, the VHD associated with the template is copied to a destination we specify,
for example, to an SSD-backed volume on a file server, and a differencing disk is then
created from that for each Virtual Desktop (VM) in the collection.

Managing User Profiles and Data

[212]

If we then decide to enable UPDs, then each user gets a new differencing disk based on
the VM differencing disk and this works because each of the VM differencing disks are
identical. This is illustrated in the following figure:

Normally, it is not possible to break a chain of differencing disks, but UPDs allow
this, and this means that a particular user's UPD will get attached to whichever
pooled desktop VM he/she is assigned to by the broker. It allows us to slide in an
updated parent disk when we recreate a collection to update it. UPDs are also used
for Session Virtualization, but in this case, there is simply a separate dynamic VHD
for each session user that is simply mounted on C: when they log in and detached
when they log out. This is a simple matter as Windows Server 2012 allows us to
mount VHD by just clicking on it; however, by default, it will be assigned a drive
letter. Because both types of UPDs are dynamic or thin-provisioned, they only
occupy the space that would be needed to store profile settings.

Chapter 8

[213]

By default, all of our users' settings get stored in their UPD. We can override this
behavior in the collection properties if we want to by excluding some folders and
adding in others that our users might need, as shown in the following screenshot:

The User Profile Disks section in the properties of a collection

Managing User Profiles and Data

[214]

We can also limit the maximum size of the UPDs and hopefully encourage our users
to think about what they need to store. To see how these disks work in our pooled
collection, perform the following steps:

1. Log in to our RDS Web portal (https://rds.contoso.com/rdweb) as
contoso\RDSUser2 (password is Passw0rd!) and then select the Fast
Pooled collection.

2. Once we have signed in, move some of the tiles around on the Start screen,
change the background color of the desktop, create a new WordPad file on
the desktop, and rename it RDSUser1.

3. Log out of the desktop and then sign in again to check whether the settings
have been preserved.

4. Repeat all of this for contoso\RDSUser2.

If we have a look at the current state of one of our VMs while a user is logged on (go
to Hyper-V Manager, right-click on it, and select Settings), we can see that Hyper-V
has registered the UPD as the system disk of the VM; when we sign out, this will
revert back to the differencing disk for that VM (FPC1 or 2, followed by a GUID). We
can also go to our physical host and mount one of the UPDs by simply right-clicking
on it. We'll get a new drive (say S:) and, if we explore it, we'll see exactly the same
structure as we would if we looked at a user's personal folder.

If you have created the documents detailed in the previous steps,
then they'll be visible in the desktop folder.

Using the built-in tools in Windows for
managing the users' settings
If our users need to use physical desktops as well as VDI as part of their role, we
have to resort to using the same set of tools that the desktop team has traditionally
used to manage those physical desktops. This includes controlling the profile itself
and using Offline Files and Folder Redirection to keep our users' data on our central
file servers. This is largely controlled through Group Policy, and so we don't have to
make any changes to our virtual desktop templates to accommodate this. If you have
used these tools on previous versions of Windows, you may note that there are three
new enhancements to Windows 8/ Server 2012:

• The Always Offline mode: If we configure folders using the Always Offline
mode, all the files are cached to the local disk even on high-speed internal
networks. Changes are periodically written back to the central file servers
using more Group Policy settings.

Chapter 8

[215]

• Cost-aware synchronization: Windows 8 knows when our users are
connecting over a metered network, and if we configure this, then our users
will automatically be in the offline mode on these metered networks to avoid
incurring excessive data charges.

• Primary Computer Support: This allows us to restrict folder redirection to
only a user's primary devices, such as their main laptop or a VDI collection.
If they use anything else, then they won't get their profile. A user's primary
computers are tagged in AD either through the UI or with PowerShell.

Enabling Roaming Profiles
The basic principles of enabling our users' profiles to move from machine to machine
have not really changed since Windows XP.

Best practices, such as minimizing what's in the profile and not
using EFS, for Roaming Profiles may still be relevant and can be
found at http://technet.microsoft.com/en-us/library/
cc784484(v=WS.10).aspx.

There are one or two things that have changed and there are also some special
considerations for VDI. If we want to use Roaming Profiles for users accessing our
Virtual Desktops, we could enforce this on our desktops rather than per user, which
was Microsoft's best practice. However, if our users are exclusively using VDI, then
we can just implement UPDs and not worry about Roaming Profiles and so on. So
what we need to do is set up Roaming Profiles in Active Directory for these users.
We also need to be aware that if we are using session-based virtualization and then
allowing our users to also use a real or virtual desktop based on Windows 8.1, then
our users' profiles are moving between a Server OS and the Client OS. To make that
work, we need to enable different profile versions, and this requires a Microsoft
Knowledge Base (KB) update, for example, KB 2887595 (http://support.
microsoft.com/kb/2887595), and a new registry key. These changes need to be
made to our session hosts and our VDI template, and the good news is we can take
advantage of WSUS, which we set up in Chapter 7, Maintenance and Monitoring. We
can do this by doing the following:

1. Connect to RDS-DC and from Server Manager, navigate to Tools |
Windows Server Update Services.

2. In the Update Services console, right-click on Update Services and select
Connect to Server. Enter RDS-Ops.contoso.com and click on OK.

3. Expand RDS-Ops.contoso.com and navigate to Updates.
4. Right-click on Critical updates and select Search.

Managing User Profiles and Data

[216]

5. Enter 2887595 and click on Find Now, which should return three entries: the
ones we need to approve for Windows 8.1. Right-click on each one and select
Approve. Approve the update for All computers as our VDI desktops aren't
in a WSUS-targeted group.

6. Now we will just need to recreate our VDI collection using the RDS-Ref script
we used in Chapter 7, Maintenance and Monitoring.

We also need to alter the registry of our session hosts and virtual desktops to add
in a new entry. Rather than doing this on each machine, we can use Group Policy.
We'll edit the default domain policy, using the following steps, as this will cover our
virtual desktops and hosts:

1. Connect to RDS-DC and in Server Manager, navigate to Tools | Group
Policy Management.

2. Navigate to contoso.com, right-click on Default Domain Policy, and
select Edit.

3. In the Group Policy Management Editor screen, navigate to Default
Domain Policy | Computer Configuration | Preferences | Windows
Settings.

4. Right-click on Registry and go to New | Registry Item. Leave the value
of Hive as is, and in the Key path, navigate to My Computer | HKEY_
LOCAL_MACHINE | SYSTEM | CurrentControlSet | Services | ProfSvc
| Parameters and then click on Select.

5. Set the value of Value name to UseProfilePathExtensionVersion,
Value type to REG-DWORD, and Value data to 1. Click on OK to create
the new registry item, as shown in the following screenshot:

Chapter 8

[217]

This is a good example of how we can manage our VDI deployments without having
to dive into each one as we need to make changes and apply updates. However, we
now need to get on with the business of creating our Roaming Profiles. We can do
this by doing the following:

1. Create a security group in AD for Folder Redirection and so on, and assign
this group to our roaming users.

2. Create a file share(s) on a Windows Server 2012 or R2 server for our users'
profiles and folders (My Documents and so on). In order to properly manage
the share, we should enable the File Server Resource Manager to limit what
our users can store and to retrieve quotas on how much they can store.

3. Use Active Directory to set up Roaming Profiles.

Managing User Profiles and Data

[218]

Creating the Security Group
We can create a new Security Group in our lab environment and just add in one user,
contoso\RDSUser2, as they already have access to both our session and pooled
collections and we can see their settings roam across these. Perform the following
steps to create Security Groups:

1. Connect to RDS-DC and in Server Manager, navigate to Tools | Active
Directory Administrative Center from the menu.

2. Right-click on Contoso and go to New | Group.
3. Name the group Roaming-Users.
4. Scroll down to the Members section and click on Add.
5. Type in RDS User2, click on Check Names, and click on OK.
6. Click on OK at the bottom of the screen to create the group.
7. The PowerShell History window will show you the following scripts to

perform the preceding steps in PowerShell:
New-ADGroup -GroupCategory:"Security" -GroupScope:"Global"
-Name:"Roaming-Users" -Path:"DC=Contoso,DC=com"
-SamAccountName:"Roaming-Users" -Server:"RDS-DC.Contoso.com"
Set-ADGroup -Add:@{'Member'="CN=RDS User2,OU=RDS-
VDI,DC=Contoso,DC=com"} -Identity:"CN=Roaming-
Users,DC=Contoso,DC=com" -Server:"RDS-DC.Contoso.com"

Creating the file share
We'll use RDS-Ops for our file share as it has a number of shares on it already and
is enabled for deduplication, which means we'll get good disk savings (70 percent)
by storing users' data on that. We might also want to use the File Server Resource
Manager (FSRM) to control quotas on our users' files and profiles. This is simply
a Role Service (an optional part of the File Server role) that we can turn on by
navigating to Server Manager | Add Roles and features, as we have done several
times before, or with the following line of PowerShell command:

Add-WindowsFeature –ComputerName RDS-Ops FS-Resource-Manager –
IncludeManagementTools

Now, since we have enabled FSRM, we can create the file share using the
following steps:

1. We can go back to Server Manager and navigate to File and Storage
Services | Shares.

2. Right-click on RDS-OPs and select New Share to open the New
Share wizard.

Chapter 8

[219]

3. In the Select the profile for this share screen, select SMB Share – Advanced
and click on Next.

4. In the Select the server and path for this share screen, select RDS-Ops as the
Server, then select the E: volume as the Share location, and click on Next.

5. In the Specify share name screen, we'll call the share Roaming-Profiles$
(the $ suffix hides the share from casual browsing).

6. In the Configure share settings screen, we can select various advanced
sharing options, and certainly, access-based enumeration should be enabled
so our users can't see what they don't have access to. Encryption might be
important, and Allow caching of share should be enabled so that we can
enable offline files on the users' PCs if not on our virtual desktops. Click on
Next to make the selections.

7. In the Specify permission to control access screen, we need to allow our
users access to just their personal folders, not the whole share. Hence, select
Customize Permissions.

8. Click on Disable inheritance, and then click on Convert inherited
permissions into explicit permission on this object.

9. Set the permissions as shown in the following screenshot:

Managing User Profiles and Data

[220]

The specific special permissions we need to set for our Roaming-Users group
are the advanced permissions List folder/read data and Create folders/
append data, which should be applied to this folder only, as shown in the
following screenshot:

10. Click on OK to apply the permissions and on Next to move on to the next
screen in the New File Share wizard.

11. In the Specify folder management properties screen, we can set that this
folder is for user files and click on Next.

12. In the Apply a quota to a folder or volume screen, we can use the
capabilities of FSRM to set limits on how much data our users can use,
and we'll use the template Monitor 500MB share. Click on Next.

13. Click on Create to enable the new file share.

Chapter 8

[221]

Using Active Directory to enable Roaming Profiles
We'll just enable Roaming Profiles for one user, RDS User2, to see how it works.
We can do this by doing the following:

1. On RDS-DC in Server Manager, navigate to Tools | Active Directory
Administration Center.

2. In the Global Search option enter RDS. Double-click on RDS User2.
3. In the properties for RDS User2, scroll down or navigate to the Profile

section and set the value of Profile path to \\RDS-Ops\Roaming_Profiles$\
%username%, where %username% will automatically replace the username
when the user signs in.

4. Some applications use the Home setting, and we can set that to \\rds-ops\
roaming-Profiles$, where the username will be appended during login.

We can now test this by connecting to the RD Web portal (http://rds/rdweb) and
logging in to our fast-pooled collection and then logging out of that and into our fast
session collection. You should see that our user RDS-User2 now has a folder in our
Roaming Profiles share and the only way to get to that is by being signed in as this
user and navigating to \\RDS-Ops\Roaming-Profiles$\RDS-User.V2. Note the V2
suffix; it is the direct result of the version changes we made earlier.

Super-mandatory profiles
In some organizations, we can get away with everyone having the same profile
and so any change they make are reset when they log in again by using mandatory
profiles, and if this is not available, they'll just be given a temporary profile for that
session. There is also a stronger option of super-mandatory profiles, and if a user
can't get this profile, they will not be able to log in at all. If we want to do this for our
VDI users, we need to do the following:

1. Create a clean Windows 8.1 VM as we did in Chapter 2, Designing a Virtual
Desktop Infrastructure, and modify the script to create a new VM, for example,
RDS-Profile.

2. Start the new VM and log in. Configure the appearance icons desktop
background as you wish.

Managing User Profiles and Data

[222]

3. From RDS-Ops, create a new answer file (unattend.xml) using the System
Imaging tool we have already installed as part of the WADK in Chapter 3,
Putting the D in VDI – Creating a Desktop Template, then do the following:

1. Select the option Create a new answer file to use with Sysprep.
2. Select File | New Answer File. An empty answer file appears in the

Answer File pane.
3. In the Windows Image pane, expand Components, right-click on

amd64_Microsoft-Windows-Shell-Setup, and then click on Add
Setting to Pass 4 specialize.

4. In the Answer File pane, select amd64-Microsoft-Windows-Shell-
Setup_neutral from under the Components\4_specialize\ folder.

5. In the Microsoft-Windows-Shell-Setup Properties pane, in the
Settings section, type in the value CopyProfile = true.

6. Save this new answer file to \\RDS-Profile\C$ (our new VM) and
name it CopyProfile.

4. Back on our RDS-Profile VM, open a command prompt, run CD C:\
Windows\System32\sysprep, and then run sysprep /oobe /reboot /
generalize /unattend: c:\unattend.xml.

5. Complete the out-of-box experience, and then log back on to the computer
using an account that has local administrator privileges.

6. Right-click on the Windows icon on the Start menu and select System.
7. In the System screen, select Advanced system settings.
8. In the System Properties screen, in the Advanced tab, click on Settings in the

User Profiles section.
9. Click on Default Profile and then click on Copy To.
10. In the Copy To dialog box, set the Copy Profile to: path to \\RDS-Ops\

Roaming-Profiles$\Mandatory.V2. Under Permitted to use, click on
Change, type in Everyone, and then click on OK.

11. Click on OK to copy the default user profile.
12. Open File Explorer, navigate to \\RDS-Ops\Roaming-Profiles$\

Mandatory.V2, and rename the hidden system file from NTUser.dat to
NTUser.man.

13. The final step is to go back into Active Directory and set the Profile path of
a test user (we could use RDSUser 3) to point to the mandatory profile we
have just created, just as we did to enable Roaming Profiles.

Chapter 8

[223]

Configuring Folder Redirection and
Offline Files
There is no dependency between Folder Redirection and Roaming Profiles – they
are two tools to help us do a better job of allowing users to move from desktop to
desktop. However, enabling Folder Redirection with Offline Files removes the Big
Data transfer that occurs when a user logs on and off because the files the user is
working on are continually synced with the local copy and file server. We might
want to keep Roaming Profiles away from our user's other folders, and we might
also want to apply Folder Redirection to users who don't have Roaming Profiles
enabled. I am going to suggest we continue to work on our roaming user (RDS
User2) in our Roaming Users Group and add in Folder Redirection and Offline Files
on a new share to see how this all works with a minimum of extra effort. So we need
to create another share in exactly the same way as we just did to create \\RDS-Ops\
Roaming-Profile$, but this time the share will be called Redirected-Folders$
on E: of RDS-Ops and will look like this: \\RDS-Ops\Redirected-Files$. We can
then edit our Roaming User GPO using the following steps:

1. Right-click on the Roaming Users GPO and click on Link Enabled to unlink
the policy until we have finished editing it.

2. Right-click on Roaming Users GPO again and click on Edit.
3. In the Group Policy Management Editor screen, navigate to User

Configuration | Policies | Windows Settings | Folder Redirection.
4. Right-click on Documents and select Properties.
5. In the Properties dialog box, select Basic - Redirect everyone's folder to the

same location. In the Target folder location section, select Create a folder
for each user under the root path, and for the Root Path, enter \\RDS-Ops\
Redirect-Files$, which will automatically create a folder structure for
each user so RDS User2 will get to store their documents on \\RDS-Ops\
Redirected-Files$\RDSUser2\Documents.

6. Click on the Settings tab of the GPO, and in the Policy Removal section, click
on Redirect the folder back to the local userprofile location when the policy
is removed. This means that if we remove this GPO, the users' profiles will
revert to their original settings.

7. Close the Group Policy Management Editor window.

Managing User Profiles and Data

[224]

In a production VDI deployment, we would only allow our users' sessions
to persist for personal collections, and even then we might decide not to
do that. This means that if we aren't using UPDs in our collections, we will
need to repeat the last six steps for all the users' folders and settings we
want them to keep between sessions.

8. To enable our new GPO, right-click on Roaming Users and select
Link Enabled.

9. The quick and dirty way to apply the GPO in our lab is to restart the relevant
VMs; otherwise, we will need to connect to each one (RDS-host, RDS-Host2,
and the VMs in our pooled collection).

10. In the Select User, Computer, or Group dialog box, type in Roaming-Users,
click on Check Names, and then on OK to add the group.

Once we test this is working ok, then we can move on to enable one of the new
features of Folder Redirection in Windows Server 2012—Always Offline—for our
users by performing the following steps:

1. Right-click on the Roaming Users GPO and click on Link Enabled to unlink
the policy until we have finished editing.

2. Right-click on the Roaming Users GPO again and click on Edit.
3. In the Group Policy Management Editor screen, navigate to Computer

Configuration | Policies | Administrative Templates | Network | Offline
Files.

4. Right-click on Configure slow-link mode and select Edit.
5. In the Configure slow-link mode, click on Enabled.
6. In the Options box, click on Show.
7. In the Show Contents screen, specify \\RDS-Ops\Redirected-Files$

to enable the Always Offline mode on our user's redirected folders. In the
Value box, type in Latency=1 to set the latency threshold to one millisecond
and then click on OK.

User Environment Virtualization
UE-V is only available as part of the Microsoft Desktop Optimization Pack, which
is free for customers with Software Assurance. The download to evaluate and test it
is not freely available, so you'll either need access to the SA resources or an MSDN
subscription (http://msdn.microsoft.com/en-us/subscriptions). UE-V is
unique among the tools that we have looked at so far, in that it is designed around
Windows 8, so it's aware of managing the new user settings and the modern apps

Chapter 8

[225]

that form the tiles in the Windows 8 start screen. It also works in a very different
way to Roaming Profiles as it is application aware, and when an application like
PowerPoint launches, it will update the user's profile (registry settings and so on)
based on what is stored centrally. This avoids the following problems that could be
encountered by our users:

• The settings needs are only downloaded for an application or a part of
the OS when a user opens it, which means the big hit of pulling down a
profile is avoided.

• Switching between Session-based desktops and Windows desktops is
handled better.

• UE-V is designed to work with Application Virtualization (App-V), another
part of MDOP that allows applications to be separated from the underlying OS
in the same way as Hyper-V separates the OS itself for the physical hardware.
The use of App-V means that we don't have to build Virtual Desktops with
applications in them, as we'll see in the next chapter, but for now, we just need
to know that UE-V works with installed and virtualized applications.

By default, UE-V understands how common applications such as Office work
through the use of a set of XML-based templates, and we can add our own template
or override what is included with UE-V. There is a Microsoft-hosted gallery of IE-V
templates at http://gallery.technet.microsoft.com/site/search?f%5B0%5D.
Type=RootCategory&f%5B0%5D.Value=UE-V&f%5B0%5D.Text=UE-V that includes
Microsoft products such as Office and third-party software from vendors such as
Firefox, Adobe, and Google. The following three mechanisms can be used to manage
Windows 8 (as opposed to desktop applications designed for Windows 7):

• We can elect to sync settings or not
• We have a list of how designated Windows 8 apps are managed
• We have a default behavior setting for Windows 8 apps that are not in the list

If we have applications we want to manage in a specific way, we can install them
on to a reference computer, use UE-V Generator to monitor the behavior of an
application as it launches, and create a template from that. The generator also
provides an interface to modify existing templates.

How does all of this work in practice? UE-V creates settings package files within the
user profile (%userprofile%\AppData\Local\Microsoft\UEV\%computername%)
to store the settings for Windows and an application. When a user logs in for the first
time, it creates an initial folder that stores the initial state of the settings.

Managing User Profiles and Data

[226]

A second folder, Current, is also created, which records what has changed. The
changes are written into the following two kinds of files:

• PKGX: These files contain registry information and metadata about the
second kind of file

• PKGDAT: These files have settings normally stored in XML or INI files

Each folder for a Windows setting or application will have one or more PKGX files
and zero or more PKGDAT files. This folder structure is then kept in sync to a central
share and with offline files.

Note that all of the UE-V packages will be hidden, so you'll need to
change the View Files setting in the explorer to see them. For example,
when logged on as RDS User 1 with UE-V enabled, we'll see the
following file structure: C:\Users\RDSUser1\AppData\Local\
Microsoft\UEV\LocalSyncFolder\SettingsPackages.

UE-V has no server console component or user interface, and all we actually need to
do to deploy UE-V is install the UE-V agent to each of our virtual desktops. We can
then manage UE-V in a number of ways: via Group Policy, via PowerShell, or using
WMI (Windows Management Interface). Our users will see that UE-V is working via
the Company Settings Center, which we can optionally present to them and add in
such details of how to contact the helpdesk, as shown:

The Company Settings Center screen that is part of the UE-V agent

Chapter 8

[227]

Installing UE-V
Installing UE-V for our VDI deployment is fairly straightforward. The following
steps illustrate it:

1. Set up a file share for each user's UE-V settings to be stored.
2. Set up a central location for the UE-V templates using another file share (also

referred to as the UE-V template catalog).
3. Install the UE-V agent to our pooled virtual desktop collection. We can

modify the work we did in Chapter 3, Putting the D in VDI – Creating a Desktop
Template, to update our virtual desktop template and then recreate the
collection. For our session hosts, we can install the agent directly.

4. Implement Group Policy to configure UE-V. I suggest we create a new GPO
linked to a new security group so we can leave the work we have done on
Roaming Profiles in place for comparison.

Before we do any of this, we need to have a test user and group in our lab so we
can see how UE-V works. We'll create a new group in AD—UEV-Users—and then
assign RDS User1 to this group; as with RDS User 2, we'll make this user a member
of both the Session and VDI users-groups so we can see UE-V working as they
change desktops. Hopefully, you now know how to do this in the ADAC; if not, the
following is the PowerShell script that will make the necessary changes:

New-ADGroup -GroupCategory:"Security" -GroupScope:"Global" -Name:"UEV-
Users" -Path:"DC=Contoso,DC=com" -SamAccountName:"UEV-Users"
-Server:"RDS-DC.Contoso.com"
Set-ADGroup -Add:@{'Member'="CN=RDS User1,OU=RDS-
VDI,DC=Contoso,DC=com"} -Identity:"CN=UEV-Users,DC=Contoso,DC=com"
-Server:"RDS-DC.Contoso.com"
Add-ADPrincipalGroupMembership -Identity:"CN=RDS User1,OU=RDS-
VDI,DC=Contoso,DC=com" -MemberOf:"CN=Session-Users,OU=RDS-
VDI,DC=Contoso,DC=com" -Server:"RDS-DC.Contoso.com"

Managing User Profiles and Data

[228]

Setting up the file shares for UE-V
We'll use RDS-Ops for the two file shares we need. We can create these in exactly the
same way we did for the Roaming-Profile$ share in the earlier section, Creating the
file share, except the following points:

• For the share for the user's settings, we'll just create a Simple-SMB share
and we'll call the share UEV-Profiles$. And we'll assign the advanced
permissions List folder/read data and Create folders/append data for this
folder only to our new AD group UEV-Users, as shown:

Chapter 8

[229]

• For the share that will store the UE-V template, we'll create a Simple-SMB
Share called UEV-Templates$ with the following NTFS permissions:

User account Recommended
permissions

Apply to

Creator/owner Full control This folder, its subfolders, and its files

Domain
computers

List folder contents and
read

This folder, its subfolders, and its files

Everyone No permissions No permissions

Administrators Full control This folder, its subfolders, and its files

The share permissions can be left as is. The following screenshot shows the
mentioned permissions:

Managing User Profiles and Data

[230]

Deploying the UE-V agent
The UE-V download is in the ISO format and contains .exe and .msi for the agent.
We can use the MSI in MDT to modify our task sequence that we created in Chapter
3, Putting the D in VDI – Creating a Desktop Template, as follows:

1. Download the MDOP ISO to your Hyper-V host.
2. Connect to RDS-Ops and in the Hyper-V menu for this connection, navigate

to Media | DVD drive and then navigate to the UE-V ISO (something like
mu_user_experience_virtualization_2.0_x86_x64_dvd_3220555.iso).

3. As we saw in the Deploying applications with MDT section of Chapter 3, Putting
the D in VDI – Creating a Desktop Template, we need to import the application.
Open Deployment Workbench, expand MDT Deployment Share, right-
click on Applications, and select New Application to launch the New
Application Wizard.

4. In the Application Source type screen, select the Application with source
files option and click on Next.

5. In the Details screen, enter the value of Publisher as Microsoft, Application
name as UE-V, and Version as 2.0. Click on Next.

6. In the Source screen, locate the folder with the EXE file (which should be D:)
and click on Next.

7. In the Destination directory screen, leave the default of Microsoft UE-V and
click on Next.

8. We need to install the agent, and we can optionally set switches to say where
the user's settings are to be stored and where the UE-V templates are, but
we are going to use Group Policy to set these anyway. This also allows us to
make changes and correct errors without the need to reinstall the agent. So
all we need specify here is the following:
msiexec.exe /i AgentSetupX64.msi /quiet /norestart

9. Set the working directory to \\RDS-OPS\DeploymentShare$\\
Applications\Microsoft UE-V 2.

10. Check the settings in the Summary screen and click on Next to import the
application. Review the output and click on Finish to close the wizard.

11. Expand the Applications directory under Applications in the navigation
pane to the left and the new application will show up on the center screen.
Right-click on it and select Properties. In the General tab, we can see that
the application has a GUID, which we need to know, so copy this to the
clipboard. In the Details tab, we could set what OS it can be deployed to, and
in the Dependencies tab, we could set any other applications or fields that
this application depends on.

Chapter 8

[231]

12. Next, we need to customize our Task Sequence to install UE-V. To do this,
expand Task Sequences in the deployment share and right-click on the Task
Sequence we already created to set its properties. By default, the type of task
sequence we selected earlier already has an application install step included.
To find it, expand the State Restore folder on the task sequence list and then
copy and paste the entry for Install Foxit Reader.

13. Edit the second of the Install Foxit Reader application copy as follows:
1. Set the value of Name to Install UE-V.
2. Check the option Install a single application.
3. Set the value of Application to install to Microsoft UE-V 2.0 (use

Browse to find it).
4. Click on Apply.

14. We can then add this application into the [Default] section of the rules of
our deployment share to install it automatically. The entry should look like
the following:
Applications002 = <GUID copied from the properties of the
Microsoft UE-V 2.0 application we just copied>

15. Now we can recreate our RDS-Ref VM and then use this as a virtual desktop
template to recreate our pooled collection, as we did earlier in this chapter, to
apply the special update needed for profile versions.

We can also install the agent on our session hosts by mounting the UE-V ISO onto
each VM and installing it with the same switches mentioned previously.

In a real production, it is essential to keep all the session hosts that
are used to serve out a collection in exactly the same configuration, so
where we have used RDS-Host and RDS-Host2 to form a collection,
UE-V must be installed on both of them as we have no direct control
over which user will use which host.

Using Group Policy to manage UE-V
Because UE-V is not part of Windows Server itself, we need to import a special
UE-V administrative template into Group Policy. The download is available from
http://www.microsoft.com/en-us/download/details.aspx?id=41183, and once
we have it, we just need to run it on RDS-DC and accept all the defaults.

Managing User Profiles and Data

[232]

When it has finished installing, we can create a new GPO just like we did for Folder
Redirection earlier, but this time we'll call the GPO UE-V and we'll set the security
filtering so that GPO is only applied to our new AD Group UE-V Users, as shown in
the following screenshot:

We can then right-click Edit to edit the GPO and configure UE-V by navigating to
Users | Administrative Templates | Windows Components | Microsoft User
Experience Virtualization. In the Group Policy Management Editor screen, we can
review how UE-V works and make some basic changes for our lab:

• Do not use the Sync Provider: This will effectively disable UE-V. By default,
the Sync Provider is enabled and UE-V will work.

• Do Not synchronize: By default, Windows 8 apps are synchronized, so we
can turn this off if we need to.

• Roam Windows Settings: We'll enable this and check Desktop Settings,
Themes, and Ease of Access so that our users get the same desktop look as
the switch desktops.

• Setting Package Size warning threshold: This allows us to be alerted if a
package file (the PKGX and PKGDAT files) size reaches a certain size.

Chapter 8

[233]

• Synchronization Timeout: This is in milliseconds and the default is 20000.
• Settings Storage Path: We need to enable this and set the storage path

to \\RDS-Ops\UEV-Profiles$\%username%.
• Use User Experience Virtualization (UE-V): This is enabled by default.
• Sync Setting over a metered connection: Windows 8 detects metered

networks such as paring a desktop with a phone to connect to the Internet,
and we can then decide whether to allow UE-V to work over this.

• Sync Setting over a metered connection when roaming: This disables UE-V
when we are not connected to our normal service provider.

We then go to the corresponding folder for computers by navigating to Computer
Configuration | Administrative Templates | Windows Components | Microsoft
User Experience Virtualization.

Note that as elsewhere in Group Policy, if we set something in
Users, it takes precedence over the corresponding Computer
Configuration setting.

There are the following additional options we'll need to be aware of that aren't
included in the settings for users:

• Contact IT Link text: This is the text for the URL of our helpdesk on the
Company Settings Center screen.

• Contact IT URL: This is the actual URL of our helpdesk in the Company
Settings Center screen.

• First Use Notification: This lets a user know they are using UE-V in the
system tray on their desktop. We will enable this to see it working.

• Settings Template Path: We need to enable this and set the path to the
share we created for the UEV templates: \\RDS-Ops\UEV-Template$.
There is an option to replace the default Microsoft templates, but in most
scenarios, we will want to add additional templates, not overwrite the ones
that were supplied.

• Sync unlisted Windows 8 apps: Because the programming model for
Windows apps has sync built in, we can reliably just enable any unlisted
app to get it to work if we want to.

• Tray Icon: This puts the UE-V agent icon into the system tray. We will enable
this to see that UE-V is working.

Managing User Profiles and Data

[234]

In both Users and Computer Configuration, there are two additional folders, one for
Applications (traditional desktop applications) and one for Windows 8 apps, and we
can disable roaming for any of these if we want. However, this list is not an exhaustive
one; for example, it didn't originally include Office 2013 because it has built-in cloud-
based roaming capabilities of its own. So we need to understand how to get new
templates for Microsoft and how to create our own for non-Microsoft applications.

We can also manage UE-V with our old friend PowerShell, and one thing we
might want to check is whether UE-V has been configured from Group Policy by
connecting to any of our virtual desktops with Get-UEVConfiguration, as shown:

We can also make changes, and the following script can be used to set up the template
path on each of our virtual desktop computers instead of using Group Policy:

$ServerList = @("RDS-SHost","RDS-Shost2","FPC1", "FPC2")
$domaincred = new-object -typename System.Management.Automation.
PSCredential -argumentlist "Contoso\administrator", (ConvertTo-
SecureString "Passw0rd!" -AsPlainText -Force)
foreach($Server in $ServerList){
 invoke-command -ComputerName $Server {
 Set-UevConfiguration -Computer -SettingsTemplateCatalogPath "\\
RDS-Ops\UEV-Template$"} -Credential $domaincred
}

However, this will fail on FPC1 and 2 because they don't have remote management
configured and so we would need to enable this first (run winrm quickconfig as an
administrator from the command line or in PowerShell).

Chapter 8

[235]

UE-V can also be managed from System Center Configuration Manager
2012 R2, and there is a configuration pack for this available at http://
go.microsoft.com/fwlink/?LinkId=317263. This allows settings
to be made as part of an overall configuration baseline and to check that
UE-V is working as expected.

Adding and creating UE-V settings location
templates
Application templates are just XML files, but then so is a modern Word document,
and just as we can edit in Microsoft Word, so there is the UE-V Generator, which is
included in the UE-V download (toolbox.exe). We need to set this up as a clean VM
and use the script we used in Chapter 2, Designing a Virtual Desktop Infrastructure, and
modify the script to create a new VM, for example, RDS-UEV. We can then install
the Generator there and the Foxit Enterprise Reader we used in Chapter 3, Putting the
D in VDI – Creating a Desktop Template, as a basis for creating a new template. We can
then launch the generator to see how it works using the following steps:

1. In the Generator start screen, select Create a settings location template.
2. Set the file path to C:\Program Files (x86)\Foxit Software\Foxit

Reader\Foxit Reader.exe. There is no need to add any command-line
arguments or set the working folder; just click on Next.

3. The Generator will launch the Foxit Reader and, because this is the first time
we have run it, it will ask us if we want to use it as our default PDF reader.
Say yes to this and confirm Foxit as our selection in the subsequent popup
that gives us the choice of the reader or Foxit Reader.

4. The Generator will ask us to close Foxit Reader as soon as it's loaded, so we'll
do that.

5. The Generator should respond with Location discover is complete. Click on
Next to continue.

6. In the Review Locations screen, we can see that the Generator has found the
registry key for the Foxit Reader (in my case, it also picked up Software\
Microsoft\Speech\Voices, which I unchecked). Click on Next to continue.

7. In the Edit Template screen, we can edit the metadata for the template
and we can see that five file locations have been discovered along with one
registry location.

8. We can then save this template to our central share, \\RDS-Ops\UEV-
Template$.

Managing User Profiles and Data

[236]

The Generator can't be used for the following types of applications:
• Virtualized applications
• Applications that are offered through Terminal Services
• Java applications
• Windows 8 applications

We'll be looking at the first two in the next chapter on applications
and examine how to make sure UE-V works with those. Windows 8
applications are already managed by UE-V, so the only thing we would
have to handcraft in UE-V are Java applications, by manually creating a
template. Note, however, that the Generator can't validate it either.

There is also a link on the Generator to download templates from Microsoft
(http://gallery.technet.microsoft.com/site/search?f%5B0%5D.
Type=RootCategory&f%5B0%5D.Value=UE-V&f%5B0%5D.Text=UE-V), and a good
example is that there is now an official Office 2013 template we can use once we have
downloaded it and copied it to our template share. UE-V will run a scheduled task
to pull down new and changed templates from the template share we set in
Group Policy.

We can now test that we have UE-V working by making some changes to our
desktop, opening a WordPad file or other application. UE-V will write our changes
to the UE-V user setting share we created, and we can see those if we browse to
it (\\RDS-Ops\UEV-Profile$\RDS-User1) while logged in as RDS User1. Note
the files will be hidden here as well. So UE-V is pretty straightforward once we
understand how it works; it quietly syncs our users' data as they work with little
intervention from us other than to configure it.

Summary
In this chapter, we have seen the various methods for allowing users to keep
their settings. Our lab example is now using all these technologies, but possibly
not in a way that we would use in production. UPDs can only be used in isolation
if we restrict our users to one collection. If not, we need to use either Roaming
Profiles or UE-V. Both of these techniques can be used in conjunction with
Folder Redirection and Offline Files, but UE-V is smarter in the way it
synchronizes settings for applications and Windows, and if we have MDOP,
we should use it. The other reason for using UE-V is that it works well with
another part of MDOP: App-V. That's what we'll be looking at in the next chapter
along with another kind of application virtualization—RD RemoteApp—and the
business of running an application in RDS that looks just like any other application
on a user's physical desktop.

Virtual Applications
So far in this book, we have looked at Server Virtualization, Desktop Virtualization,
and most recently User Environment Virtualization, and now it's time to turn our
attention to Application Virtualization. This is the separation of the application
from the operating system it would normally run on, and we'll actually cover two
entirely different techniques in this chapter: using remote desktop services to serve
individual applications rather than whole desktops (known as RD RemoteApp); and
App-V, where we deploy applications to both physical and virtual desktops that
run in a sandboxed environment rather than actually installing them on the virtual
desktops in our collections. We'll look at what these techniques are used for and why
they matter and then deploy them into our lab to see them in action.

RD RemoteApp
RDS allows us to serve any individual application running on any of our collections
rather than the whole desktop. To our users, it will look like just another app on their
device, albeit a Windows app. If the user is on a Windows machine, the RemoteApp
will look like just another icon on their desktop; however, we can't serve Windows
8 apps with RemoteApp. There are a number of reasons why RemoteApp is widely
used for all sorts of situations:

• Security: We can provide an application that handles sensitive data so that
all the user can do is run it. No data or details of the application will ever
appear on the physical device it is accessed from, so it can co-exist on one
screen. However, in the past, some organizations such as the police would
have deployed a second device on a different network to do this.

• Single use: If all a user needs is one application, we could just deliver this to
a thin client device in their location. This might be useful in museums and
galleries or in a manufacturing environment. A variation of this is the branch
office, where running an application from a central server makes sense
because we don't have IT support to provide local help.

Virtual Applications

[238]

• Legacy systems: Despite XP being in its terminal phase and Windows
Server 2003 nearly obsolete, some organizations need to run applications
on these platforms. It is also possible that the rest of these systems are more
up to date. While some of these scenarios are not supported by Microsoft,
the applications are still essential to the business and have not or cannot be
replaced. A related use is where there may be a compatibility issue between
versions of the same application on a desktop.

RemoteApps are controlled inside the RDS section of Server Manager and are
just an extension of the properties of a collection, and it doesn't matter if it is a
Pooled or Session Collection. All we have to do is declare which applications on
the virtual desktops we wish to publish to our users and which users can access
each application. While it is possible to create RemoteApps based on a Pooled VDI
Collection, this means each user requiring simultaneous access to the app will
need access to a Pooled Virtual Desktop, which is a VM. It is a big overhead on our
Virtualization Hosts to just serve out applications, so we will typically want to use
RemoteApps served from Session Collections as much as possible, as this is far more
efficient (as we saw in Chapter 2, Designing a Virtual Desktop Infrastructure). Given
that all our users will see is the application rather than a server-based desktop, the
only reason not to use RemoteApps on Pooled Collections is because we can't get
the candidate application to work on Windows Server acting as a Session Host or
because of the licensing restrictions of the application.

Publishing RemoteApps from a session host
We can create a RemoteApp from any program installed on our session hosts that
our Session Collection is running on. Let's see how to set this up in Server Manager
by just publishing on WordPad and Paint, which are already installed on the server:

1. Connect to RDS-DC and Server Manager.
2. Navigate to Remote Desktop Services | Collections | Fast Session

Collection (which we created in Chapter 2, Designing a Virtual Desktop
Infrastructure) as shown in the following screenshot:

Chapter 9

[239]

3. Click on Publish RemoteApp programs in the RemoteApp Programs section
of the screen.

4. The RemoteApp wizard will launch and scan the session host to see what
applications are installed on it. Select Paint and WordPad from the list and
click on Next.

5. Click on Publish on the confirmation screen to close the wizard.

To do the same thing in PowerShell, we need to confirm that Paint and WordPad
are installed and then set them up as RemoteApps with the following snippet:

Get-RDAvailableApp `
 -CollectionName "Fast Session Collection" `
 -ConnectionBroker RDS-broker.contoso.com `
|where displayname -In ("Paint", "WordPad") `
| New-RDRemoteApp `
 -CollectionName "Fast Session Collection" `
 -ConnectionBroker RDS-broker.contoso.com

Virtual Applications

[240]

In this code, the first command returns a list of the apps that can be published as
RemoteApps in a given collection, which we can then use to look for Paint and
WordPad, and then publish these with the New-RDRemoteApp command.

That's all there is to a basic RD RemoteApp deployment, and these RemoteApps
are now available to our users; for example, if we log in to the RD Web Portal
(http://rds.contosos.com/rdweb) as RDSUser3, we'll see Paint and WordPad
listed as applications. Have a look at the following screenshot:

If we click on one of these, it will only open that application on the local desktop, and
if we look carefully, we'll see a slightly modified icon on the taskbar to indicate it's a
RemoteApp. If our users access RemoteApps from Windows (7 or later), we can save
them the trouble of going to the web portal by configuring them to appear as icons
on their desktop. They can also be made to appear on the Windows 8 start screen by
configuring Group Policy. Follow the following steps to do so:

1. Connect to RDS-DC, and in Server Manager, go to Tools | Group Policy
Management.

2. Navigate to Contoso.com and right-click on Create a GPO in this domain
and link it here. Name the policy RemoteApp and click on OK. Right-click
on RemoteApp and select Edit.

3. In Group Policy Management Editor, navigate to User Configuration |
Policies | Administrative Templates | Windows Components | Remote
Desktop Services | RemoteApp and Desktop Connections.

Chapter 9

[241]

4. Double-click on the setting Specify default connection URL.
5. Check the Enabled option and enter https://rds-contoso.com/rdweb/

Feed/webfeed.aspx as Default connection URL.

We will need to test this from any of our VMs by connecting to one of them and
forcing a policy update to get this to take effect (from an elevated PowerShell or
command prompt, type in GPUpdate /force). If we then examine the list of installed
applications, they will show up as the latest ones installed:

Notice that we also get a link to our Fast Pooled Collection. The RemoteApps
and virtual desktops will also show up in Favourites in the users' profile, under
Microsoft | Windows | Start Menu | Programs | Work Resources (RADC). What
has happened behind the scenes is that a .rdp file has been copied from the RD Web
Portal to the user's local profile and then a shortcut has been created to launch the
Remote Desktop client (MSTSC.exe) for each RemoteApp / Virtual Desktop the user
has access to.

Virtual Applications

[242]

Users can also set this up for themselves by running a search for RemoteApp on the
local desktop and launching RemoteApp and Desktop Connections (a utility in the
Control Panel). From there, they can connect to the RD Web Portal if we haven't
set this up for them (https://rds.contoso.com/rdweb/feed/webfeed.aspx), as
shown in the following screenshot:

However, if we have set up Group Policy to push the location of RemoteApps, we
have created a default connection, which can only be removed by using Group Policy.

We can now go back to Remote Desktop Services in Server Manager to refine our
basic RemoteApp by right-clicking a published RemoteApp and selecting Edit to
change its properties, for example, to:

• Change the General properties of the RemoteApp (including its name),
hide it from being shown in the RD Web Portal, and create groups of folders
for them.

• Specify the command-line parameters to launch a RemoteApp and block the
use of command-line parameters from the client.

Chapter 9

[243]

• Refine which users in the collection can run the RemoteApp, or leave it as
default, where all the users who have access to the collection can run all the
RemoteApps in the collection.

• Set the file type associations so that if we have configured a default
connection in GPO, our users will launch the RemoteApp automatically
when they try and open a local file of the right type.

To see file associations in action, we change them using Paint by clicking the option
for BMP. We will need to force a refresh of the RemoteApp setting on the local
machine by going back into RemoteApp and Desktop Connections on a local
machine (I have a base Win 8.1 VM in my lab for this, which is domain-joined to
Contoso.com on RDS-DC) and clicking on the Properties button in Work Resources
(default connection) and clicking on Update Now in the next screen.

If we have enabled a default connection to the RD Web Portal with Group Policy,
these file associations are used on the local machine. For example, when we
published Paint earlier, there is a file association to BMP files, and if we right-click
on a local BMP file that has been configured with a default connection, we'll get the
following window, which shows that the RD RemoteApp will launch automatically
if we open this file. Have a look at the following screenshot:

We have already seen that it's a simple matter to create a Session Collection spread
over multiple session hosts, whether this is for HA, for scale, or both. If we are going
to use a multihost collection like this to serve RemoteApps, the app must be installed
identically on each host as we have no control over which user accesses which host.
We'll create usability problems and users will possibly lose their work if this is not
done. RDS will try and enforce this when we set up a new RemoteApp, as the search
for installed applications at the start of the RemoteApp wizard or by using the
PowerShell command Get-RDAvalaibleApp will only show what's installed on all of
our session hosts in a given collection.

Virtual Applications

[244]

Publishing RemoteApps from a Pooled
Collection
The process to create RD RemoteApps from a Pooled Collection is much the same,
but at first sight, this might look like a waste of a VM, which is being used just to
publish one application to one user. For many scenarios, session-based RemoteApps
is indeed the way to go, but there are those awkward and powerful apps that a
certain set of users might need, particularly if they are not in the office. A good
example is CAD, where an architect or engineer might be on-site with a lightweight
or rugged device but needs to amend the drawings away from office. Doctors
accessing diagnostic tools or an organization wishing to offer access to expensive and
complex software to external contractors might also make use of this. The concerned
applications won't run under session virtualization.

Application virtualization
One of the biggest challenges in providing VDI of any kind to our users is that we
need to include all the applications they need across our various collections. At one
extreme, we could deploy all our applications on just one collection that everyone
uses; at the other, we could end up using just Personal Collections, with each
virtual desktop replacing a physical desktop. The problem here is that we install
applications on operating systems that run on specific computers, but it's our users
who need access to them. So what we really want to do is assign applications to
users. This is exactly how App-V works, and if that's all it did, it would still be an
essential tool in VDI; however, it also has other useful features:

• Applications deployed as App-V packages are completely decoupled from
the OS they are running on, so we don't install them on our session hosts or
in our Virtual Desktop Template. This reduces the need to patch and update
them and we only need to apply the relevant OS updates.

• App-V isolates applications from each other, so we can run potentially
incompatible applications on the same desktop where we might have had two
different collections. A good example is Office. We put Excel 2007 alongside
Excel 2013, but a finance user might need both of these to run modern BI
analysis as well as some old macros that won't work in the new version.

• App-V is smart enough to know when to update cached applications and
will do this for us, so if we update the applications deployed by App-V
centrally, the new version will cascade out to all our virtual desktops.

Chapter 9

[245]

However, there are some things it can't do that we need to be aware of, as follows:

• It won't virtualize Internet Explorer, as that's part of the OS and not an app
• We can't virtualize Java
• Certain types of other applications can't be virtualized, such as anything that

is installed at boot time or that needs access to drivers, uses COM+, or uses
DLLs that run DLLHost.exe

It's also important to understand that some applications virtualize well and are easy
to implement while others require more effort. The applications that are tougher
to virtualize will have more dependencies on other software and will have more
registry setting as well as store configuration information in unusual places.
We'll see how this plays out as we start to use App-V in our lab.

App-V, like UE-V, is a component of the Microsoft Desktop
Optimization Pack (MDOP) and the only way to license it is to have
Software Assurance in place. It is possible to test and evaluate App-V
with an MSDN subscription.

App-V architecture and components
App-V works by capturing an application we want to virtualize and putting this
information into a package that is then deployed to a desktop. The process of capturing
all the information about how a package works is called Sequencing and works in a
similar way to how we captured user settings for UE-V in the previous chapter.

Virtual Applications

[246]

The package is then stored on a file share controlled by an App-V console and a web
service that stores metadata about each package in a SQL Server database. Packages
are controlled on each desktop by an App-V client. The App-V architecture is shown
in the following figure:

When a user wants to run an application, the App-V client intercepts the requests and
checks to see if the relevant package is already in memory. If it is, it will open; if not,
the local App-V cache is checked to see if the package has been downloaded before
and it'll load that if it has. However, if the package isn't available locally, it will be
streamed from the designated App-V Publisher, as shown in the following figure:

User
App-V Client

Virtual Desktop

If the package is in
memory then
launch it

If the package is not
in memory retrieve it
from the local cache

If the package is not
in the local cache get
it from the App-V
Server

Memory

App-V Publisher

Load the package
into memory1 4

Local App-V cache

2 Also write it to
the local cache5

3

Chapter 9

[247]

That's fine for scenarios where users are on physical desktops, especially if they are
working remotely, as this works well for that. However, the local cache is of limited
use in VDI. Therefore, in App-V 5, this could be replaced by directing the App-V
client to a Shared Content Store (SCS), which means that we don't end up with lots
of copies of packages in our Pooled or Personal Collections. SCS also works really
well with Session Collections as it can detect that a package is in the shared memory
on the session hosts, so if another user asks for the same application, it will just use
the copy in memory.

The App-V server side roles can all be combined for smaller deployments, but
App-V can also be scaled out if needed. A single publishing server can handle up to
20,000 desktops and the Management Server and database in turn can manage 50
publishing servers, that is, 1,000,000 desktops! HA is also a necessary part of App-V
as our users won't be able to run any App-V applications if the infrastructure is
unavailable and each App-V server role uses the same techniques we have already
looked at in Chapter 5, High Availability:

• The SQL Server databases can be mirrored or we can use SQL Always if
we have SQL Server 2012 Enterprise Edition or later. Note that we can't use
SQL Express for this, as App-V has a dependency on the SQL Server Agent
service, which is not present in the free version.

• We can load-balance the IIS management console in the same way we have
load-balanced the RD Web Portal.

• We can use a Scale-Out File Server (a Windows Server cluster with this role)
to store the packages on a generic file share that is fast and highly available.

There are more details on capacity planning for App-V at http://
technet.microsoft.com/en-us/library/dn595131.aspx.

There is also a reporting system built into App-V to provide monitoring. App-V
can also be integrated into System Center Configuration Manager for complete
device and user management. Once the App-V infrastructure is in place, we need to
deploy the packages for the applications we want to virtualize. There are predefined
package accelerators already available to help us deploy applications, such as
Microsoft Office 2010 and 2013, but if there isn't one for a given application, we will
need to sequence the application ourselves.

Virtual Applications

[248]

App-V packages
Now that we understand how App-V deploys packages, we need to know what
a package actually is and how we create one. A package is nothing more than a
collection of files of the following types:

File type Description

.appv The Virtual Application Package file containing all assets
and states organized into streamable feature blocks

.msi Executable deployment wrapper that allows the manual
deployment of the .appv files or deployment via existing
third-party deployment platforms

_DeploymentConfig.XML This is used for customizing the default publishing
parameters for all applications in a package

_UserConfig.XML This is used for customizing the publishing parameters
directed to specific user groups for all applications in a
package

.cab An optional file if a Package Accelerator file is used to
automatically rebuild a previously sequenced virtual
application package

.appvt An optional Sequencer Template file used to retain
commonly reused sequencer settings

These files are created by a special sequencing tool included in App-V. We launch
this on a clean reference computer (a VM with a fresh installation of Windows 8.1
with no other applications installed) and then it sits in the background capturing
the setting of an application as we install it. Having completed the application
installation, we reopen the sequencer to make additional configuration changes and
then deploy the package to our App-V servers.

App-V is a big topic in its own right, so all we are going to do in this
chapter is to see how it fits in with VDI using a simple application as
an example. For more information, you may wish to refer to Getting
Started with Microsoft Application Virtualization 4.6, Packt Publishing,
which is downloadable from http://www.packtpub.com/
article/faq-virtualization-and-microsoft-app-v.

Chapter 9

[249]

Installing the App-V infrastructure
We are going to use App-V 5.0 sp2 as it available on MSDN and works with Windows
Server 2012 R2 and Windows 8.1. We will put all the App-V server roles (the server
databases and publisher) on RDS-Ops, as we have SQL Server on there and a
deduplicate volume on which we can create the share to host the App-V packages:

1. Mount the App-V ISO file (something like mu_application_
virtualization_hosting_for_desktops_5.0_service_pack_2_x86_
cd_3210319.iso) on RDS-Ops from Hyper-V Manager and connect to
RDS-Ops.

2. Open the DVD drive and you should see three folders: one for the client, one
for the sequencer, and one for the server; open the server folder, and launch
the App-V Server installer (APP_SERVER_SETUP.exe).

3. Click on Install on the start screen, accept the license terms on the Getting
Started screen, and click on Next. Select Use Microsoft Update... on the
update screen and click on Next.

4. On the Feature Select screen, select all of the options and click on Next.
5. On the Installation Location screen, leave the location as it is and click

on Next.
6. On the first Configure screen, we will install the default instance of SQL

Server and the default configuration of the Management Server database,
so just click on Next to continue.

7. On the second Configure screen, click on Next as we are using the
default options.

8. On the third Configure screen, we will use the default instance of SQL Server
for the reporting and the default Reporting Server database configuration, so
click on Next.

9. On the fourth Configure screen, click on Next as we are using the default
options for the reporting database.

10. On the fifth Configure screen, enter contoso\administrator, where in a
production environment, we would create or use an AD Group for this. We
also need to specify a port for the management website and we'll use 100 for
that. Click on Next.

11. On the sixth Configure screen, we need to specify the web service port for
the publishing services, and we'll use 101 for this. Click on Next.

Virtual Applications

[250]

12. On the seventh Configure screen, we need a port binding for Reporting
Services, and we'll use 102 for that. Click on Next.

13. Click on Install on the Ready screen to complete the wizard and install the
App-V server roles.

We can check whether the installation is ok by opening SQL Server Management
Studio and connecting to RDS-Ops with Windows authentication, and we'll see
that two new databases are installed: AppVManagement and AppVReporting. If
we launch IIS Manager from RDS-Ops, we should see our three new websites: the
management service, the publishing service, and Reporting Services. To connect to
the management console, we'll need to install Silverlight on RDS-Ops and then we
will see something like the following:

Finally, we will need a share to host our packages. We will call this share App-V
Packages and host it on our App-V Server RDS-Ops. It needs just one extra permission:
the machine account, RDS-Ops, must have full control of the share. Now that we have
our server in place, we need to deploy the App-V client to our VDI deployment.

Chapter 9

[251]

Installing the App-V client to virtual desktops
We can make use of MDT and the techniques we used in Chapter 3, Putting the D in
VDI – Creating a Desktop Template, to recreate our Pooled VDI Collection to include
the App-V Client, just as we did in the previous chapter to add the UE-V agent:

1. We need to connect to RDS-Ops if we aren't already, launch the MDT
Workbench, and mount the App-V ISO we used in the last section.

2. As in Chapter 3, Putting the D in VDI – Creating a Desktop Template and Chapter
8, Managing User Profiles and Data, we need to import the App-V client
application. Open Deployment Workbench. Expand MDT Deployment
Share, right-click on Applications, and select New Application to launch the
New Application Wizard.

3. In the Application Source type screen, select the Application with source
files option and click on Next.

4. In the details screen, for Publisher, enter Microsoft, Application name as
App-V, and Version as 5.0 sp2. Then click on Next.

5. In the Source screen, locate the folder with the EXE file (which should be
D:\APP-V 5.0 CLIENT SP1\CORE MSI) and click on Next.

6. In the Destination directory screen, leave the default of Microsoft App-V 5.0
sp2 and click on Next.

7. The App-V client has a lot of switches to configure it, but as with UE-V in the
previous chapter, we can use Group Policy to set these centrally; therefore,
all we need to specify here is:
msiexec.exe /i APPV_CLIENT_MSI_X64.msi /quiet /norestart

8. Set the working directory to \\RDS-OPS\DeploymentShare$\\
Applications\Microsoft UE-V 2.

9. Check the settings in the summary screen and click on Next to import the
application. Review the output and click on Finish to close the wizard.

10. Expand the Applications directory under Applications in the navigation
pane to the left, and the new application will show up on the center screen.
Right-click on it and select Properties. In the General tab, we can see that
the application has a GUID, which we need to know, so copy this to the
clipboard. In the Details tab, we could set what OS it can be deployed on.
And in the Dependencies tab, we could set any other applications or fields
that this depends on.

Virtual Applications

[252]

11. Now we need to add in a step into our Task Sequence to install the App-V
client. To do this, expand Task Sequences in the deployment share and
right-click on the Task Sequence we have already created to set its properties.
By default, the type of Task Sequence we selected earlier already has an
application install step included. To find it, expand the State Restore
folder on the Task Sequence list and then then copy and paste the entry for
Install Foxit Reader.

12. Edit the second of the Install Foxit Reader application copy as follows:
1. Set Name to Install App-V.
2. Check the option Install a single application.
3. Set Application to install to Microsoft App-V 5.0 sp1 (use Browse to

find it). Click on Apply.

13. We can then add this application into the [Default] section of the rules
of our deployment share to install it automatically. The entry should like
the following:
Applications003 = <GUID copied from the properties of the
Microsoft App-V 5.0 sp2>

14. Now, we can recreate our RDS-Ref VM and then use this as the Virtual
Desktop Template to recreate our Pooled Collection, as we did earlier in
this chapter, to apply the special update needed for profile versions.

Finally, we will open up the firewall on the client so that App-V can communicate
with the publisher web service, which, for the lab, is port 101. We could do this as
part of the design of our virtual desktop or implement this rule in Group Policy,
which would be the best approach if we plan to use App-V across several VDI
and Session Collections or to physical desktops.

Installing the App-V Client to session hosts
There's a special App-V Client for RDS, as session hosts are running Windows Server
and not Windows client and our users are in session on the same OS and not on
separate copies of the OS. All we need to do is mount the special ISO for App-V on
RDS (mine was called mu_application_virtualization_for_remote_desktop_
services_5.0_service_pack_2_x86_cd_3209756.iso), navigate to the D:\App-V
Client for RDS <XX> folder, and run APPV_CLIENT_FOR_RDS.exe.

Chapter 9

[253]

Remember that we need to put the session host into the user mode—as we
did to install the UE-V agent in the previous chapter—before we perform
the installation either by navigating to Control Panel | Install Application
on Remote Desktop Server or running Change /user install before
the installation and change /user execute afterwards.

We can accept the default options during the installation as we will manage App-V
centrally across our VDI deployment with Group Policy. We need to install App-V
on all of our RD Session Hosts (RDS-SHost and RDS-SHost2 in our lab) to keep them
in sync.

Configuring App-V
We could have installed the App-V client with a multitude of command-line
switches to configure it to connect to our server, configure SCS, and various
other options. We can use the PowerShell cmdlets that come with App-V, such
as set-appvclientconfiguration to configure settings on a client and add-
appvpublishingserver to direct the client to the publishing server. However, the
most effective way to ensure all our App-V clients are in a desired state is to use
Group Policy. However, Group Policy, as shipped, doesn't know anything about
how to manage App-V, so we need to add in an Administrative Template (ADMX)
file to our Group Policy infrastructure. The ADMX files for MDOP are included in
one download, so if you already set up Group Policy for UE-V, the App-V template
is already installed as well. If not, download the installer from http://www.
microsoft.com/en-us/download/details.aspx?id=41183 and run it on RDS-DC.

Ideally, we should apply the GPO to configure all the virtual desktops in our lab, so
on both the Pooled Collections and our session hosts. However, as we are just going
to deploy an application to our Pooled Collection, all we need to do is to create a new
GPO in our RDS-VDI OU and restrict it to the computers in it:

1. On RDS-DC, open Group Policy Management (by going to Server
Manager | Tools).

2. In the Group Policy Management console, navigate to Group Policy
Management | Forest: Contoso.com | Domains | Contoso.com.

3. Right-click on RDS-VDI and select Create a GPO in this domain and link
it here.

4. Name the GPO App-V Computers and click on OK.
5. Highlight the new App-V Computers GPO, and in the Security Filtering

section, select Authenticated Users and select Remove.

Virtual Applications

[254]

6. Still in Security Filtering, click on Add and enter Domain Computers and
click on OK.

7. Right-click and edit the App-V Computers GPO.
8. In Group Policy Management Editor, navigate to Users | Administrative

Templates | System | App-V to review the options we can control in
App-V.

There are eight separate folders of settings for App-V, and it is worth going through
them to see how the client and server can be configured:

• CEIP: There's just a single object to enable the Customer Experience
Improvement Program, which we can ignore.

• Client coexistence: The one object in this folder allows earlier versions of
App-V to work with packages created in earlier versions.

• Integration: This folder is for advanced integration of App-V with roaming
profiles. Given that App-V and UE-V are both in MDOP, you have the other
the best option is to use them together.

• Publishing: Here, we can specify whether the user sees App-V in action
as it refreshes and the setting for up to five publishing servers to enable
redundancy if one or more of the servers specified is missing. We'll enable
the Enable Publishing Refresh UX policy and configure the Enable Publishing
Server 1 Settings, as follows, to see it in action in our lab:

1. Click on Enabled to enable the policy.
2. Set the display name to RDS-Ops.
3. Set Publishing Server URL to http://RDS-Ops:101.
4. Set Global Publishing Refresh on Logon to True.
5. Set User Publishing Refresh Interval to 1.
6. Set User Publishing Refresh Interval Unit to Hour.

These setting changes we are making here are just to test App-V. In
a production environment, you'll want to set the publishing refresh
differently to suit how often you add and change packages.

• Reporting: We edit the one policy in this folder, Reporting Server, to send
telemetry about App-V so we can monitor it. Enable the policy and set the
Reporting Server URL to http://RDS-Ops:102/ and the Reporting time
to 12.

Chapter 9

[255]

• Scripts: This allows us to run any scripts in the packages.
• Streaming: This controls how packages are sent to the desktop from the

App-V Server:

 ° Specify what to load in the background (that is, Autoload):
This allows us to load all the applications automatically, just the
ones that have been used previously, or none of them.

 ° Allow first time application launches if on a high cost Windows
8 metered connection: Windows 8 can detect if it's connected via a
metered network connection (for example, 4G), and so we can control
how App-V behaves in this instance.

 ° Certificate filter for client SSL: We can define a certificate in the
local store to encrypt App-V streaming over SSL.

 ° Location provider: This specifies the CLSID for a compatible
implementation of the AppvPackageLocationProvider interface
such as System Center Configuration Manager.

 ° Package installation root: This specifies where the applications and
updates will be installed. Normally, this is in the user profile.

 ° Package source root: This overrides the source location for
downloading package content.

 ° Package store access control: This determines whether access
to the package store should be controlled based on the package
publishing status.

 ° Reestablishment interval: This determines the number of seconds
between attempts to reestablish a dropped session.

 ° Reestablishment retries: This specifies the number of times to retry
connecting a dropped session.

 ° Shared Content Store (SCS): This specifies whether to use SCS and
its location.

To set up SCS, we will need to create a file share (APPV-SCS) in exactly
the same way as we did in Chapter 8, Managing User Profiles and Data,
except that we'll need to grant the advanced permissions List Folder/
Read data and Create Folders/Append data to the RDS-VDI users, and
these should only be applied to this folder only. When we have this
file share in place, enable the policy and set the path to the share, for
example, \\RDS-Ops\APV-SCS.

 ° Verify certificate revocation list: This verifies the server certificate
revocation status before streaming using HTTPS

Virtual Applications

[256]

Creating an App-V sequence
We need to create a clean VM with the App-V sequencing tool installed on it. The
OS needs to reflect the OS that the App-V packages will be deployed to; so if we are
using session hosts, we should use Windows Server, where, for VDI, we will use the
Windows client. For our lab environment, I am going to suggest we use a Windows
8.l VM, which doesn't need to be domain-joined; we just need the App-V sequencer
installed on it.

To quickly create a clean VM for App-V, use the script in Chapter 3,
Putting the D in VDI – Creating a Desktop Template and change the name
of the VM; for example, RDS-AppV.

Once the App-V sequencer is installed, it's very important to checkpoint the VM, as
we might make mistakes in the sequencing process and we will need to revert to the
state the VM was in before we started the installation of the application we wish to
sequence. The detailed steps to install App-V are as follows:

1. Mount the App-V ISO (something like mu_application_virtualization_
hosting_for_desktops_5.0_service_pack_2_x86_cd_3210319.iso) on
the VM from Hyper-V Manager.

2. Connect to the VM, go through the sysprep questions, and when the VM is
ready to use, install the sequencing tool at D:\AppV-SEQUENCER 5.0 SP2\
APPV-SEQUENCER-Setup.exe.

3. Checkpoint the VM in Hyper-V.

Now, we can begin to design the process, referred to as a recipe in App-V, to
sequence an application. The first thing to be aware of is how the application is
installed. Secondly, document the answers to the first three questions listed here
and note the rest of the points:

• Does this application do something that App-V doesn't support, and is there
a workaround available?

• Are there any prerequisites as far as components are concerned? Also, are
there any updates and patches needed to complete the installation?

• Are there any post-installation steps required?
• If the first thing an application does is unzip and install, extract to a

temporary folder before starting the sequencer; otherwise, we'll have the
ZIP file and the unextracted files in the package, which will slow down the
installation and take up more space.

Chapter 9

[257]

• App-V has a Primary Virtual Application Directory (PVAD) setting that
should be set to match the directory the application is installed to ensure
application compatibility and best performance. The simplest way to check
this is to start the installation of a package and see where it installs by
default, cancel the installation, and use this as the PVAD.

• If the application has an option installed on first use, this should be disabled.
• If the application has an option to check for updates, this must be disabled as

we will use App-V to sequence and deploy a new version.
• If the application has initial startup steps to configure it, document these.

We can then launch the sequencer, which will give us lots of useful links to help us
use it. We can also configure its working by navigating to Menu | Tools | Options.
We can also set up a working (scratch) directory and set its naming conventions.
In the Parse Items and Exclude Items tabs, we can configure where the sequencer
scans for changes as we install our applications. These items include both folders and
registry settings. To show how the process works, let's look at a simple example of
the VLC media player, which will allow our users to play DVDs on their local drives
(this functionality is not included in Windows 8):

1. Connect to the reference computer we created just now and launch Microsoft
Application Virtualization Sequencer.

2. In the Sequencer start screen, select Create a New Virtualization Package.
3. In the Packaging Method screen, select Create Package (default) and click

on Next.

You can get App-V package accelerators to assist in deploying
and then select the option to use an accelerator; for example, the
Office accelerators can be found at http://gallery.technet.
microsoft.com/office/site/search?f%5B0%5D.
Type=RootCategory&f%5B0%5D.Value=App-V.

4. In the Prepare Computer screen, we'll get some warnings about other
software that are running; in my case, it is Windows Search, Defender,
and Antivirus. I went into the Defender console to turn it off and I stopped
the Windows Search service from Services. It's also a good idea to ensure
that automatic updates are disabled on the reference VM we are using to
avoid confusing the sequencer. Click on Refresh to confirm that there are no
warnings and click on Next.

Virtual Applications

[258]

If you plan to enable User Account Control (UAC) in your VDI
deployment, make sure the reference computer is set up in the
same way.

5. In the Type of Application screen, we can choose to deploy straight
applications or add-ins and middleware. For example, there are Power BI
add-ins for Excel our user might need to do work with business intelligence.
Select Standard Application (default) and click on Next.

6. In the Select Installer screen, we need to point to the application installer
we want to work with. I downloaded VLC media player and then installed it
from there. Enter the path to the installer (vlc-2.1.3-win32.exe) and click
on Next.

7. In the Package Name screen, enter VLC Media player 2.1.3 and enter
c:\Program Files (x86)\VideoLAN\VLC as Primary Virtual Directory
and click on Next.

8. App-V will launch the installation of the VLC media player and sit in the
background, as shown in the following screenshot:

Chapter 9

[259]

9. We can now go through the steps to install the VLC media player:
1. Select the appropriate Installer Language in the VLC ,media player

installer and click on OK.
2. Accept the license terms and click on Next.
3. Choose the components you want to install and click on Next.
4. Note that by default, the VLC media player will install to c:\Program

Files (x86)\VideoLAN\VLC, and if we decide to install it elsewhere,
the PVAD and this setting should match. Click on Next.

5. Click on Install, and when the installation has finished, uncheck the
option to run VLC.

10. On the Installations screen, check the I am finished installing option and
click on Next.

11. On the Configure Software screen, we have the option to run the
application and configure first use. Highlight VLC media player and
click on Run selected.

1. VLC will open and pop up a screen asking us to check for updates
and automatically retrieve media info. Uncheck the updates option
and click on Continue.

2. Close the VLC media player.

12. You might get a warning in the Installation Report screen that files have
been excluded from the package. Click on the warning to see what the issue
is; in my case, it was simply that one or more files were excluded from the
package because they are located in excluded paths. Missing files can cause
unexpected application failures. The following files were excluded: C:\
Users\Andrew\AppData\Local and C:\Users\Andrew\AppData\Local\
Microsoft. This can be ignored as the VLC media player doesn't use these
folders. Close the warning and click on Next.

13. In the Customize screen, we can restrict operating systems that can run the
package, and we should do this for RDS if our users are going to use both
Pooled Collection and Session Collections. For the Session Collection, we
need to create a separate package for the application using a Windows Server
2012 R2 VM as a reference computer. Click on the Customize option and
click on Next.

14. Click on Next and ignore the warning to leave the streaming options as is,
as our VDI environment will be connected over a fast LAN.

15. In the Target OS screen, select the x86 and x64 versions of Windows 8.1 and
click on Next.

Virtual Applications

[260]

16. Give the package a meaningful description and select Create to create
the package.

17. Ignore the warning if there is one and click on Close.

Deploying a package
We now have a folder on our desktop containing the package we created, which we
can now deploy to our App-V Server (RDS-Ops):

1. Connect to RDS-Ops and copy the package to the share we created to host
our packages (RDS-Ops\AppV-Packages).

2. Open the App-V web portal and, in the packages section, click on
Add or Upgrade Packages. We'll need to select the .AppV file and import
the package.

3. The package will now show up in the Packages screen as unpublished,
as shown in the following screenshot:

Chapter 9

[261]

Now we need to do two things: publish the package and grant access to it.
Publishing is simply a matter of right-clicking on it and selecting Publish, and we
can also right-click on it and set Active Directory Access. Enter contoso\VDI-
Users and click Grant Access. We can now test this by logging on to the RD web
portal (https://rds.contoso.com/rdweb) as contoso\RDSUser1, and we'll see
our VLC application in the list of applications. We can check whether everything
is working by looking at the event logs on both the client and server, as there is
a special section for App-V, which we can reach by navigating to Event Viewer |
Applications and Service Logs | Microsoft | App-V. We can also use PowerShell
to check whether all is well on the client with Get-AppvPublishingServer and
Get-AppvClientConfiguration to check whether our group policy has updated the
location of our publisher, and Get-AppvClientPackage to see what packages are
currently available on the client.

UE-V and App-V
UE-V and App-V are designed to work together, and the agents for each of these,
although different, won't interfere with each other. There is just one thing to be careful
of, and that is that UE-V can't see the settings for a package deployed with App-V. So,
if we are going to deploy an application for use with both of these technologies, we'll
need to train the UE-V Generator against a physical installation of an application so
that it can determine where the user settings and configuration are stored.

App-V and System Center Configuration Manager
App-V is an extensible system that allows it to be controlled by other
solutions—the obvious one being System Center Configuration Manager
2012 R2 (CM12R2). CM12R2 has the concept of advertisements, through which
users can get applications or have them delivered automatically. This process then
essentially replaces the App-V server, and while this does give a common location
from where a user's devices, applications, and settings can be controlled, we have
already seen that CM12R2 doesn't really work with VDI, although it does work with
session hosts. So, my advice is if you have it already, it might be worth seeing how it
works with VDI, but that it doesn't have sufficient integration with VDI to warrant
using it just for managing our virtual desktops and App-V.

Virtual Applications

[262]

Summary
In this chapter, we have seen that we can use RD RemoteApp to offer individual
applications to users rather than a whole desktop so they can use it without
installing on the physical device they are using. This can be considered to be one
form of application virtualization. We also saw that we can deploy applications to
our virtual desktops with App-V so that they don't need to be installed and can be
targeted at specific users; also, by doing this, we have a single point of management
for updating them. However, App-V is not part of Windows; it is part of MDOP,
and that is only licensed for customers who have signed up to Microsoft's Software
Assurance program. Licensing is perhaps the hardest part of VDI to understand, and
that is what we shall look at in the next chapter.

Licensing and the Future
of VDI

In this chapter, we will review the wider licensing requirements needed to deploy
VDI in our organizations. We will look at what we need across Windows Server and
the more complicated licensing for Windows 8/8.1. Then we'll look at the licensing
requirements of the additional software we have used in this book such as SQL
Server and MDOP and conclude with a look at how Office is licensed in a VDI world.
In the last section of this book, we will look at how we might use a service or cloud
provider to provide VDI rather than using our own servers, and what the licensing
implications are of this.

This chapter is for guidance only. I have researched this to the best
of my abilities. Before making any decisions about implementing
VDI or preparing a business case for it, you should definitely check
with Microsoft or your Microsoft licensing reseller for up-to-date
information about license compliance and costs.

Windows Server
We have used Windows Server to underpin our VDI deployment and have made
use of a variety of roles and features such as RDS's own Active Directory, Update
Services, File Servers, and of course Hyper-V. All of these features are built-in in
the two main paid editions of Windows Server: Data Center and Standard. The
other important edition is Hyper-V Server, which is a cut-down version that has
no GUI (such as Server Core) and only has the Hyper-V and File Server roles and
the Failover Clustering feature. So it's designed to be remotely managed.

Licensing and the Future of VDI

[264]

When we install any of the following on a physical server, we get a certain amount
of rights to use the same operating system in the guest VMs that are running on
that host:

• Windows Server Datacenter edition: This is licensed per two physical CPUs
(the number of cores doesn't matter) and allows us to run an unlimited
number of VMs on that server using the same OS and certain earlier
versions of Windows Server.

• Windows Server Standard edition: This is also licensed per two physical
CPUs but only allows us to run two VMs on that host, provided that there
are no other roles installed on the host OS apart from Hyper-V. Apart from
this limitation, there is no restriction on any of the features compared with
the Datacenter edition, so the decision to use Standard or Datacenter is
simply a question of the costs of the two. Typically, if you have more than
eight server VMs per host, then the datacenter is going to cost less. Also,
bear in mind that if we are planning on moving VMs between hosts, say for
planned maintenance, there may be licensing issues if we are using Standard
edition on our hosts.

• Hyper-V Server: This confers no licensing rights to guest VMs, so they must
be licensed themselves. This is perfect for our VDI virtualization hosts as
we will be licensing Windows Client anyway; in large deployments, we will
have dedicated hosts for these VMs.

The definitive guide to licensing Windows Server can be found at
http://www.microsoft.com/licensing/about-licensing/
briefs/remote-desktop-services.aspx.

Applying this to a medium-to-large VDI deployment, we would have two or three
physical hosts running the Datacenter edition, which will host our RDS role servers
(for example, the Broker Web Access portal) in HA, plus the additional server we
have used, such as Updates Services, AD, and App-V. Our Pooled and Personal VDI
Collections will run on dedicated hosts running on Hyper-V Server. That excludes
session hosts, and these are licensed to allow our users to simultaneously access them
for VDI; there is a special Window Server role service for this: the RD Licensing server.

Chapter 10

[265]

Remote desktop licensing
The licensing for session hosts is either licensed by a device or by a user, and we
need to buy the appropriate Client Access Licenses (CALs) to suit our needs. If our
users are hot-desking, possibly using thin clients, then we can license each of those
devices and any user can access our session collections from those. Licensing in this
way would be good for schools, manufacturing, and call centers where all we need to
manage is the device, not the user. However, our mobile and remote workers, such
as the sales and marketing teams, may need to use their laptops, tablets, and phones
to access their virtual desktop, and so we'll use RDS User CALs for these users and
manage the user, not the device. The problem is that a given VDI deployment can
only be licensed in one way, so if we have both scenarios in an organization, we may
need to create more than VDI deployments to get around this.

You may have noticed that there is one thing missing from our VDI lab on the RDS
Deployment diagram (on RDS-DC): there's no licensing server, just a green cross to
indicate we need to add one, as shown in the following screenshot:

Licensing and the Future of VDI

[266]

To set up and configure a licensing server using RDS-Ops again, perform the
following steps:

1. Click on the green cross.
2. On the Add RD Licensing Servers screen, select RDS-Ops, and click on Next

and on Add to complete the process.

However, while the RD licensing server is now in place, it has no licenses associated
with it, and we'll now need to add those. Perform the following steps to do so:

1. To add licenses from RDS-DC or RDS-Ops, navigate to Server Manager |
Tools | Terminal Services | Remote Desktop Services Licensing and open
RD Licensing Manager.

2. Connect to RDS-Ops by right-clicking on All Servers.
3. We'll need to add our new license server to the Terminal Services License

Servers Group in AD to allow it to issue RDS User Client Access Licenses
(CALs) to our VDI users. We can fix this by clicking on Review in the
Configuration column, clicking on Add to AD Group, ignoring the warning,
and clicking on OK.

4. The server will still have a status of not activated as it has not been registered
with Microsoft. To do this, you will need to connect RDS-Ops to the Internet.
One way to do this is to stop the VM, add in an extra network adapter, and
connect that to an NIC on the host that has an Internet connection.

5. Once we put in our company details, the license server will contact Microsoft
Clearinghouse to register the server. When this is complete, we can add in
licenses from our MSDN subscription.

We now need to configure the licensing server in the Broker to reflect the licenses
we have added by navigating to Server Manager | Remote Desktop Services |
Overview on RDS-DC and then navigating to Tasks | Edit Deployment Properties,
as shown in the following screenshot:

Chapter 10

[267]

The one problem with the licensing server is that it is a single point of failure, so
what happens if we take it offline for maintenance or it fails for some reason? Even
if any client device has an unexpired Per Device RDS CAL, it will still be able to
connect to our RDSH servers. Any devices that do not have a Per Device RDS CAL
or have an expired RDS CAL will not be able to connect until we get a new RD
licensing server running. If the server is to be out of action for some time, we can
install our RDS CALs on a different server. To do that, we need to contact the MS
Clearinghouse, explain why the server failed, and they will help us to install the RDS
CALs on the new server.

For disaster recovery, Microsoft's advice is to have a second RD licensing server (with
no CALs installed) and have it listed as the second server on our VDI deployments.
Then, devices that do not already have a Per Device RDS CAL will be given temporary
licenses if the primary RD licensing server fails. However, devices that have an expired
CAL will not be able to connect until we reinstall the RDS CALs on the secondary
server with the assistance of the MS Clearinghouse.

Licensing and the Future of VDI

[268]

License activation for Windows
One of the new roles in Windows Server 2012 is Volume Activation Services,
and this allows us to activate various Microsoft licenses and works with Active
Directory-Based Activation (ADBA) and a Key Management Server (KMS) where
we have a Generic Volume License Key (GVLK). There are several other tools for
managing license keys that can be used as well, such as the Volume Activation
Management Tool (VAMT), which comes with the Windows Assessment and
Deployment kit that we used in Chapter 3, Putting the D in VDI – Creating a Desktop
Template. This can be backed by a SQL Server database and can centrally manage
all our keys for Windows and Office. If these tools are not in place, we will need
to expose a server or desktop (physical or virtual) to the Internet to be activated
by Microsoft with one exception: if a physical server running Windows Server
2012 R2 has any VMs that are also running Windows Server 2012 (be it Datacenter,
Standard, or Essentials), then those VMs will be automatically activated by the
host using Automatic Virtual Machine Activation (AVMVA). In VDI, we can
use a combination of AVMVA to activate the VMs running our role servers and
our session hosts (if these are VMS themselves), and we can use the other tools to
activate our virtual desktops in our Pooled and Personal Collections. The procedure
for doing this would be as follows:

1. Obtain a KMS host key from Microsoft Volume Licensing.
2. Install the Volume Activation role server either from Add roles and features

in Server Manager or with the following PowerShell command:
Install-WindowsFeature VolumeActivation

3. Open Server Manager and navigate to Tools | Volume Activation Tools.
4. On the Select Volume Activation Method screen, select Active Directory-

based Activation and click on Next (you'll need Enterprise administrator
rights to do this).

5. Enter the KMS host key and optionally a name for the Active Directory
object, and then click on Next.

This approach won't work for Office 2010 but does work for Office 2013. So, if the
activation of an older version is needed, then we would need to set up a traditional
KMS server. However, in its latest version that can also be done through the Volume
Activations tools. Remember that in both cases you'll need to ensure the KMS port is
open on client OS (port 1688 by default).

Chapter 10

[269]

Windows 8.1
Licensing VDI in a modern organization is not easy to understand, especially where
we might have contractors and staff bringing their own devices to work or using
their own devices in remote locations. The key to simplifying this is to have Software
Assurance to license all the devices, which also allows us to use MDOP and enable
App-V and UE-V to simplify our VDI deployments and this gives us another benefit:
Virtual Desktop Access (VDA) licensing. This is perfect to remotely access a VM
running Windows that is running on another device (our virtualization host). VDA
is configured per device and is a subscription, and we may need to acquire extra
licenses because VDA works in the following manner:

• If the device is a corporate laptop or desktop running Windows 8/8.1 that is
covered by SA, then VDA is included.

Some thin client devices such as those from Dell and 10ZiG run a
cut-down version of Windows: Windows 8 embedded. These already
include VDA and so a separate device license is not needed but
does need to be included in SA (http://www.microsoft.com/
licensing/about-licensing/briefs/windows_embedded_8.
aspx). There is also Windows ThinPC, which allows older devices to
access VDI by essentially turning them into thin clients with a similar
cut-down version of Windows.

• If the corporate device can't run Windows, for example, a thin client, iPad,
or Android tablet, then we can buy VDA (about $100 per device per year)
for that so these corporate devices can access our VDI deployment.

Either of these allows us to add an optional Companion Subscription License (CSL)
that allows the user of that corporate device to access VDI from up to four companion
devices such as smartphones and tablets owned by the user but used at work.

Licensing and the Future of VDI

[270]

Finally, if our users are using devices away from the office, then the Roaming Use
Rights that are included with SA allow them to access VDI when they are away from
the office. This is illustrated in the following figure:

Do we have SA?

VDA license is included with SA for
devices running Windows

Companion Subscription License is
needed

Is the business owned device running
Windows?

Yes

Yes

No VDA license needed for the device

Will we allow users to bring their
devices to work?

Yes

Yes

No
Will we allow users to bring use their
devices to work remotely?

Yes

SA allows Roaming Use Rights

No

One thing to note is that when we employ temporary staff such as contractors, even
if they have licensed copies of Windows themselves (possibly provided by another
organization with SA), they still need to be licensed to access our virtual desktops,
and this is definitely worth checking up on with a licensing specialist.

Some organizations and vendors use VDI but use Windows Server as
the guest OS in each VM rather than a Windows Client. This is not the
same as Session Virtualization and does allow the deployment of a
wider set of applications where some applications can't be installed or
can't be licensed. While this does allow each user to have their own VM
and so be more isolated than they would be in Session Virtualization,
we are still giving our users a server OS.

Chapter 10

[271]

Other software
In addition to Windows Server 2012 R2 and Windows 8.1, we have used several
other Microsoft solutions and tools in this book to manage and configure our VDI
deployments. Some of these are not licensed per se, for example, the Microsoft
Deployment Toolkit (MDT) and Windows Assessment and Deployment Toolkit
(ADK), but others are paid licenses and so we need to be aware of how these are
licensed to assess whether they are useful enough to warrant the additional cost.

MDOP
In this book, we have looked at two of the features of MDOP (the Microsoft Desktop
Optimization Pack), App-V, and UE-V, but there are several other utilities that might
be useful as well, particularly if we are also managing physical desktops, as follows:

• Advanced Group Policy Management (AGPM): This allows for proper
change control and management of group policy where thus far we have just
been making changes to our "live" lab environment. This works by having
a central service and then a client on each target machine, much as we have
already for UE-V and App-V.

• Microsoft BitLocker Administration and Monitoring (MBAM): This enables
Enterprise management of the status and keys for Microsoft's disk encryption
technology, BitLocker, on servers, and clients.

• Diagnostic and Recovery Toolset (DaRT): This is a detailed set of tools for
repairing Windows Server and Client, including repair tools for getting back
partitions and file recovery utilities.

For more details on MDOP, visit the MDOP Tech Center
(http://technet.microsoft.com/en-US/windows/
bb899442.aspx?ocid=wc-mscom-ent).

MDOP is only available to customers with SA and requires a subscription of $10 per
device per year at the time of this writing. However, App-V is included with RDS
CALs for using application virtualization with Session Virtualization.

Licensing and the Future of VDI

[272]

SQL Server
We have used SQL Server for a number of purposes in this book to enable HA
Broker and as databases for WSUS and App-V. If we plan to implement VDI with
high availability, our SQL Server databases for the Broker and for App-V must also
be HA. The simplest way to do that is with mirroring, and the cheapest edition of
SQL Server that includes this is the Standard edition. For App-V, we also need to use
Standard edition because App-V makes use of SQL Agent to schedule jobs and run
background tasks, and this is not included in the free Express edition.

Office 2013 and Office 365
Office 365 is the pay per user per month version of Office and can also include
SharePoint, Lync, and Exchange Online. The higher-level plans allow for the
deployment of desktop versions of Office to up to five devices per user; however,
Office 365 cannot be licensed for any kind of shared desktop solutions such as the
Session and Pooled Collections in Remote Desktop Services, so currently we can only
use it for personal collections assigned to individual users. That leaves Office 2013,
which can still be used in VDI with either Standard or Professional Plus editions.
The difference between the two editions is that Pro Plus adds Business Intelligence
and Lync to the basic products for unified communication.

Third-party VDI solutions
This book has been all about how to use VDI without using third-party technologies,
notably Citrix, Dell, and of course VMWare. There is some advantage in laying
these technologies over VDI, notably the ability to manage VDI at scale, but all these
solutions will incur significant costs as well; a detailed examination of these would
fill another book or two. All I want to mention here is that if the OS provided to the
user is Windows-based, then the requirements for licensing also apply. So, if we
build a VMWare View environment where the Guest OS is a Windows client, then
SA, VDA, and CSLs will be needed in exactly the same way as if the solution uses
Microsoft's VDI. One outcome of this is that VMWare recommends using Windows
Server as the Guest OS in the VM-based virtual desktops as the licensing is cheaper
and easier to manage. Note that this is not the same as session-based collections,
where a single physical machine or VM has many users sessions; it is one VM per
user (Pooled or Personal to that user), but running Windows Server with the desktop
experience enabled to make it look like Windows Client and have things such as
video playback enabled.

Chapter 10

[273]

The future of VDI – Desktop as a Service
Throughout this book, we have configured our own infrastructure for VDI, but
as with many other IT services, there is a push to provide VDI from third-parties,
either hosting or cloud providers, to provide agility and scalability while reducing
the management overhead of running VDIs. There are several ways we might
achieve this—we could use a public cloud provider such as Amazon Web Services
(AWS) or Microsoft Azure, or we could simply get a hosting provider to run our
customized desktops for us. AWS now includes a service to do this, and this can
include Office as well, and there will at some point be a similar Desktop as a Service
on Microsoft Azure. However, hosting providers must use the Service Provider
Licensing Agreement (SPLA) to pass on Microsoft licensing to end users, and
currently this does not include Office 365 or Windows Client. So while the Amazon
service might look like Windows 7, it's actually based on Windows Server 2008 R2
with the desktop experience added, but it is based on a VM per user and not Session
Virtualization. In fact, none of Microsoft's license agreements for Windows Client or
Office 365 allow for this kind of deployment, so even if we could use a cloud service
to set up VDI, we will have to use the server OS in the same way that Amazon does
today if we are to be license compliant or use Session Virtualization.

If we have software assurance, we can use RDS CALs to access these
third-party solutions. For more details on this, refer to the Microsoft
Product Use Rights (http://www.microsoft.com/licensing/
about-licensing/product-licensing.aspx).

In either case, your users will want to sign is as they normally would—with their
domain credentials—and when they log in they will want to access corporate data
and resources. This means that we will have to create some sort of directory trust or
synchronization and probably a site-to-site VPN.

Given these licensing restrictions, the use of the cloud for VDI is rather limited,
but there are one or two use cases where this sort of approach is used and a good
example of this is how Microsoft now provides Visual Studio Online so that
developers can collaborate and work remotely on any device capable of running
the Microsoft RDP client to design and test software. The code can be kept in the
cloud by the project team and shared without letting the code leak to a local device,
thus protecting intellectual property across teams of contractors while allowing
collaboration. We could do the same thing with our software and possibly offer
this as an RD RemoteApp to third-parties or internal teams, particularly if it's niche
or legacy software. This can be particularly effective if the data is collocated in the
cloud, for example, if we were to provide desktops with specialized tools to access
Big Data in solutions such as Microsoft's HDInsight, which is based on Hadoop
running on potentially hundreds of VMs in Azure.

Licensing and the Future of VDI

[274]

Clearly, this is a fast-changing area so it's worth checking new offerings
from cloud providers such as Amazon and Microsoft, especially as the
release cycle and pricing models change far more rapidly than with
traditional locally installed software and services.

Summary
In my opinion, licensing was the hardest part of a Microsoft-based VDI solution and
is one of the reasons why it was not widely adopted in the past. However, the rules
have changed with things like VDA. With the built-in benefits that come with SA
and CSL, it's pretty straightforward to implement a BYOD strategy. There is still a lot
of confusion, doubt, and restrictions when using a third party to host VDI, but this is
the fastest changing part of IT, with new updates typically coming out every month,
meaning that new possibilities may emerge that will completely change the rules.
So it's even more important to be up to date, especially as Desktop as a Service is
now the hot topic across the industry and not just with Microsoft.

Index
Symbols
.appv file type 248
.appvt file type 248
.cab file type 248
.msi file type 248
_DeploymentConfig.XML file type 248
_UserConfig.XML file type 248

A
Active Directory Administrative

Console 105
Active Directory-Based Activation

(ADBA) 268
Active Directory Certificate Services

(AD CS) 97
Active Directory Domain Services

(ADDS) 45
 Active Directory (AD)

about 55
used, for enabling Roaming Profile 221

AD authentication
additional ports, opening on firewall 104
forest trust relationship 104
RODC, using 105

Administrative Template (ADMX) file 253
Advanced Group Policy Management

(AGPM) 271
Advanced Micro Devices (AMD) 13
Always Offline mode 214
Amazon Web Services (AWS) 273
answer files

working with 73-75
application compatibility 88

Application Identity Service
about 89
enabling 90-93

Application Layer service 167
applications

deploying, with MDT 84-86
Application Share 164
Application Virtualization. See App-V
AppLocker

about 89
blacklist applications 89
whitelist applications approach 89

App-V
about 244
and System Center Configuration

Manager 261
and UE-V 261
configuring 253-255
features 244
limitations 245
package, deploying 260, 261

App-V architecture
and components 245-247
App-V packages 248

App-V Client
about 246
installing, to session hosts 252, 253
installing, to virtual desktops 251, 252

App-V infrastructure
installing 249, 250

App-V package files
.appv 248
.appvt 248
.cab 248
.msi 248

[276]

_DeploymentConfig.XML 248
_UserConfig.XML 248

App-V Publisher 246
App-V sequence

creating 256-259
App-V settings folders

CEIP 254
Client coexistence 254
Integration 254
Publishing 254
Reporting folder 254
Scripts folder 255
Streaming folder 255

Automatic Virtual Machine Activation
(AVMVA) 268

B
Background Intelligent Transfer

Service 167
Best Practices Analyzer. See BPA
BitLocker Drive Encryption Service 167
blacklist applications 89
Block-Level Backup Engine Service 167
Bluetooth Support Service 167
Boot Configuration Database (BCD) 15
BPA 37, 195
Bring Your Own Device (BYOD) policy 42

C
CEIP folder 254
Certificate Authority (CA) 97
Certificate Revocation Lists (CRLs) 97
certificates

deploying 98
self-signed certificate, creating 98
using 96

Client Access Licenses (CAL) 46, 265
Client coexistence folder 254
client settings

about 173, 174
for session collection 176

Cluster Aware Updating (CAU) 190
Clustered Shared Volumes (CSV) 55, 166
CM12

about 202
personal collections 202

pooled collections 202
session-based collections 202

Code Division Multiple Access
(CDMA) 167

collection properties
configuring 86-88

Collections tab 199
command line terms, PowerShell 22
Companion Subscription License (CSL) 269
Company Settings Center 226
Computer Browser 168
Configuration Manager 2012 R2. See CM12
Connections tab 200
cost-aware synchronization 215
Credential Security Support Provider

Protocol (CredSSP) 147

D
DaaS 176, 273
Database tab 200
Datacenter edition 264
Data Execution Protection (DEP) 13
deployment share

updating 77
deployment wizard

running 79-81
Desired State Configuration. See DSC
Desktop as a Service. See DaaS
desktop design 67
Desktop Experience option 40
Device Association Service 168
Device Setup Manager 168
Diagnostic and Recovery

Toolset (DaRT) 271
Diagnostic Policy Service 168
Diagnostic Service Host 168
Diagnostic System Host 168
Direct Access

setting up 120
Directory Services Restore

Mode (DSRM) 33, 106
Disk Image & Service

Management (DISM) 70
Distributed Link 170
Domain Controller (DC) 11
DSC 37

[277]

DXDiag (DirectX diagnostic) tool 174
Dynamic Host Configuration

Protocol (DHCP) 29

E
Encrypting File System Manual 170
Enterprise root CA 97
Events & Traces tab 200
Export Location 55
Extended Page Table (EPT) 13
Extensible Authentication

Protocol (EAP) 171
external virtual switch 17

F
Family Safety 168
Fax 168
File History Service 171
File Server Resource Manager (FSRM) 218
File share 55
file share, Roaming Profiles

creating 218-220
file share, UE-V

setting up 228, 229
Folder Redirection

about 210
configuring 223, 224

Fully Qualified Domain Name (FQDN) 100
Function Discovery Resource

Publication 168

G
Gateway Service 167
Generic Volume License Key (GVLK) 268
Global System for Mobiles (GSM) 167
GPO

creating 186
Graphics Processing Unit (GPU) 13
Group Policy

about 51
using 88
using, for UE-V management 231-234

Group Policy Object. See GPO
groups

adding 34

H
HA

about 15, 124
and Hyper-V 143, 144
designing, for VDI 124
for RD Web Access, NLB used 136
for VDI collection 147-149

Hardware Compatibility List (HCL) 12
High Availability. See HA
Home Group Listener 168
Home Group Provider 168
Hyper-V

about 11, 12
and HA 143, 144
configuring 16-19
deploying 12
installing 14, 15
managing 25, 26
using 154

Hyper-V Server
about 263
and Server Core 27, 28

I
installation

MDT 71, 72
UE-V 227

Institute of Electrical and Electronics
Engineers (IEEE) 170

Integration folder 254
internal virtual switch 17
Internet Information Services (IIS) 96
Internet SCSI (iSCSI) 168
IP security (IPsec)

configuring, URL 117

J
JBOD (just a bunch of Disks) 164

K
KB 2887595 key 215
Key Management Server (KMS) 268
KMS host key 268

[278]

L
Lakeside SysTrack

URL 154
licensing 89
Lite Touch Installation (LTI) process 76
local management

tools 27
LoginVSI

URL 153

M
Management Packs (MPs) 203
mandatory profile 210
maximum RAM setting 161
MDOP

about 43 69, 210, 224, 245
physical desktops, managing 271
URL 271

MDT
about 71, 181, 271
automating 81-83
installing 71, 72
used, for application deployment 84-86
used, for building virtual desktop

template 76-81
memory buffer 161
Microsoft Account Sign-In Assistant 171
Microsoft BitLocker Administration and

Monitoring (MBAM) 271
Microsoft BranchCache 170
Microsoft Deployment Toolkit. See MDT
Microsoft deployment tools

about 70
Disk Image & Service Management

(DISM) 70
MDT 71
System Center Configuration Manager

2012 R2 (CM 12R2) 71
Windows Assessment and Deployment

Toolkit (ADK) 70
Microsoft Desktop Optimization Pack. See

MDOP
Microsoft iSCSI Initiator Service 168
Microsoft Knowledge Base (KB) update 215
Microsoft Management Console (MMC) 16

Microsoft Operations File (MOF) 37, 38
Microsoft Software Shadow Copy

Provide 169
Microsoft System Center

about 201
CM12 202
OM12 203
orchestrator 204
System Center Advisor 205, 206
VMM 205

minimum RAM setting 161
multiple servers

managing, in Server Manager 35, 36

N
Nested Page Table (NPT) 13
Network Interface Cards (NICs) 20
Network Load Balancing. See NLB
New Technology File System (NTFS) 13
NLB

about 136
setting up 137-142

O
Office 365 272
Office 2013 272
Offline Files

about 169, 210
configuring 223

OM12 203
Online Certificate Status Protocol

(OCSP) 97
Operations Manager 2012 R2. See OM12
Optimize Drives 169
orchestrator 204
Organizational Unit (OU) 34, 55

P
Packaged Apps 93
performance

examining, areas 152
perimeter network

AD 116-118
creating 108-110
gateway design, finishing 113-115

[279]

Remote Access, configuring 112, 113
remote desktop 118, 119
routing, configuring 112, 113
virtual switches, configuring 111

Personal Collections, VDI collections 46
Personal Collections, CM12 202
physical host

joining, to domain 35
PKGDAT file 226
PKGX file 226
Pooled Collection

RD RemoteApp, publishing from 244
Pooled Collections, VDI collections

about 46, 47
creating 56-61

Pooled Collections, CM12 202
Primary Computer Support 215
Primary Virtual Application Directory

(PVAD) 257
private virtual switch 17
profile 209
Public Key Infrastructure (PKI) 96
Publishing folder 254

Q
Quality of Service (QoS) 162

R
Rapid Virtualization Indexing (RVI) 13
RD Broker

about 29, 45
configuring, for HA 129, 130
HA 124, 125
performance, improving 155

RD Broker farm
creating 125-135
VM, including in 135, 136

RD Connection Broker 89
RD Gateway

about 45, 95, 96
setting up 99-104
tuning 156, 157

RD Remote App
about 23, 437
publishing, from Pooled Collection 244

publishing, from session host 238-243
refining 242, 243

RD RemoteApp, benefits
legacy systems 238
security 237
single use 237

RDS
about 40
advantages 41, 42
Management Pack, URL 203
remote application 43
testing 153
working, requisites 153

RDS role servers
RD Gateway 156, 157
RD Web Access roles 156, 157

RDS-DC VM
creating 29-32

RD Session Collection
creating 61-64

RDS-Perimeter 110
RDS roles

configuring 51-56
setting up 51-56

RDS-RRAS 110
RDS servers and hosts

AD group, creating 185
domain firewall, configuring 188
GPO, creating 186
GPO, editing 186, 187

RDS-Switch 110
RDS Web portal

URL 214
RDV Diag

URL 198
RD Web Access portal

about 55
URL 97

RD Web Access roles
tuning 156

RD Web Portal
URL 240

read-only domain controller. See RODC
recipe, App-V

designing 256
Redundant Array of Independent Disks

(RAID) 164

[280]

reference computer
creating 78, 79

Remote Access role 120
Remote Desktop Broker. See RD Broker
Remote Desktop Connection

Broker See RD Broker
Remote Desktop Diagnostic tool

Collections tab 199
Connections tab 200
Database tab 200
Events & Traces tab 200
Virtual Machines tab 198, 199

Remote Desktop Gateway. See RD Gateway
Remote desktop licensing

about 265
adding 266
configuring 266
disadvantage 267

Remote desktop licensing server 46
Remote Desktop Protocol (RDP) 40, 118
Remote Desktop Services. See RDS
Remote Desktop Session Host 46
Remote Desktop Session (RD Session) 39
Remote Desktop Simulation tools

URL 153
Remote Desktop Virtualization Host

(RD Virtualization Host) 44
Remote Desktop Web Access Server

(RD Web Access Server) 45
RemoteFX 68
Remote Process Call (RPC) 117
Remote Server Administration Tools

(RSAT) 25, 52
Reporting folder 254
Roaming Profiles

about 210
enabling 215-217
enabling, AD used 221
file share, creating 218-220
Security Group, creating 218

Roaming User GPO
editing 223, 224

RODC
about 105
creating 105-107
using 105

Routing and Remote Access Services
(RRAS) role 110

S
scale

examining, areas 152
scale-out file server

setting up, URL 166
Scripts folder 255
SCS

setting up 255
Second Level Address Translation

(SLAT) 13
second session host

setting up 145
Secure Socket Layer (SSL) 96
Secure Socket Tunneling Protocol

Service 169
Security Group

creating 218
self-signed certificate

creating 98, 99
Sensor Monitoring Service 171
Sequencing 245
Serial ATA (SATA) 164
Serial-Attached SCSI (SAS) 164
Server Core

and Hyper-V Server 27, 28
server management

starting with 29
Server Management Objects (SMO) 127
Server Manager

multiple servers, managing 35-37
Server Root IO Virtualization (SR-IOV) 162
Service Provider Licensing Agreement

(SPLA) 273
session-based collections, CM12 202
session collections

about 158
HA 145-147
server, allocating to 146
testing 159

session host
App-V Client, installing to 252, 253
RD RemoteApps, publishing from 238-243

[281]

Session Virtualization
about 39
versus VDI 42, 43

Session Virtualization configuration,
options

application compatibility 88
device and resource redirection 89
licensing 89
profiles 89
RD Connection Broker 89
temporary folders 89

Shared Content Store. See SCS
Shell Hardware Detection 169
Simple Network Management Protocol

(SNMP) 169
Simple Service Discovery Protocol

(SSDP) 169
simple virtual machine

checkpoints 25
creating 20-24

Small Computer System Interface (SCSI) 23
smart paging file 162
SNMP Trap 169
Software Assurance (SA) 69, 210
Solid State Drive (SSD) 14
SQL Server 272
SQL Server Management Studio

(SSMS) 130
SSDP Discovery 169
Standalone root CA 97
Standard edition 264
startup RAM setting 161
Storage Pools 164
Storage Spaces 164
Streaming folder 255
Subject Alternate Names (SANs) 98
Subordinate CA 97
super-mandatory profiles

about 221
using 221, 222

System Center Advisor 205, 206
System Center CM12 191
System Center Configuration Manager

2012 R2 (CM 12R2)
about 71, 261
and App-V 261

System Center Endpoint Protection
(SCEP) 202

System Identifier (SID) 20

T
task sequence

creating, for captured OS Windows 8.1
image deployment 76, 77

TechNet
URL 203

Telephony 169
temporary folders 89
Themes 171
third-party VDI solutions 272
tiered storage

setting up, URL 166
Tracking Client 170
Transport Layer Security (TLS) 96

U
UE-V

about 20, 41, 210, 225
and App-V 261
installing 227
managing, Group Policy used 232-234
user problem, avoiding 225
user setting, additional options 233
working 232

UE-V agent
deploying 230, 231

UE-V Generator
drawback 236
templates, URL 236
working, steps 235

UE-V installation
agent, deploying 230, 231
file shares, setting up 228, 229

unattend file 61
UE-V template catalog 227
Unified Extensible Firmware Interface

(UEFI) 13
Universal Plug-and-Play (UPnP) 169
UPDs

about 41, 69, 141, 212
issue 210
size, limiting 214

[282]

super-mandatory profiles 221
using 173
Windows built-in tools, using 214
working, in pooled collection 214

UPnP Device Host 169
USB redirection 68
User Account Control (UAC) 258
User Environment Virtualization. See UE-V
User Profile Disks. See UPDs
user resources

predicting, ways 151
users

adding 34
users' session

managing 196, 197
User State Migration Tool (USMT) 70

V
VDI

about 11, 40
collections, types 46
desktop, deploying 67-70
HA, designing for 124
HA importance 123
RDS roles, configuring 51
reiterating 40
roles 44
starting with 48, 49
versus Session Virtualization 42, 43
virtual desktop template, creating 49
Windows 8, tuning for 167-172
Windows VDI 40

VDI collections
capacity planning 172
HA 147-149

VDI collections, types
personal collections 46
pooled collections 46

VDI deployment
maintenance 179
monitoring 194, 195
users' session, managing 196, 197

VDI deployment maintenance
RDS servers and hosts 185-190
virtual desktops 191
WSUS 179

VDI roles
about 44
Remote Desktop Connection Broker

(RD Broker) 45
Remote Desktop Gateway 45
Remote desktop licensing server 46
Remote Desktop Session Host 46
Remote Desktop Virtualization Host

(RD Virtualization Host) 44
Remote Desktop Web Access Server

(RD Web Access Server) 45
VHD

about 13
creating, options 14
disks, differencing 14
disks expansion 14
fixed-size disks 14

Virtual Desktop Infrastructure. See VDI
virtual desktops

App-V Client, installing to 251, 252
issue, minimizing 191
pooled virtual desktops, recreating 191-194

virtual desktop template
building, with MDT 76-81
creating 49, 50

virtual desktop template optimization
dynamic memory 160-162
logical processors, setting 162
networking 162, 163

Virtual Hard Disk. See VHD
Virtual Machine Manager. See VMM
Virtual Machines tab 198, 199
Virtual Machines (VMs)

about 11
configuring, as DC 32-34
including, in RD Broker Farm 135
performance tips 166
storing, on disk 163-166

virtual switches
configuring 111
external 17
internal 17
private 17

VMM 205
Volume Activation Management Tool

(VAMT) 268

[283]

Volume Activation Services 268
Volume Shadow Copy 171

W
whitelist applications 89
WIM (Windows Imaging Format) file 77
Windows

license activation 268
Windows 8

tuning, for VDI 167-172
Windows Assessment and Deployment

Toolkit (ADK) 70, 271
Windows Automated Installation Kit

(WAIK) 70
Windows Backup 170
Windows built-in tools

Always Offline mode 214
cost-aware synchronization 215
Primary Computer Support 215

Windows Color System 170
Windows Connect Now - Config

Registrar 170
Windows Defender 171
Windows Error Reporting Service 170

Windows Internal Database (WID) 156, 180
Windows Management Framework

(WMF) 127
Windows Management Interface (WMI) 114
Windows Media Player Network Sharing

Service 170
Windows preinstallation environment

(winPE) 72
Windows Search 171
Windows Server

Datacenter edition 264
Hyper-V Server 264
Standard edition 264
using 263

Windows Server Updates Services. See
WSUS

Windows To Go 97
WLAN AutoConfig 170
WSUS

about 180
benefits 180
configuring 181-185
installing 181-185

WWAN AutoConfig 170

Thank you for buying
Getting Started with Windows VDI

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Getting Started with Citrix
VDI-in-a-Box
ISBN: 978-1-78217-104-1 Paperback: 86 pages

Design and deploy virtual desktops using Citrix
VDI-in-a-Box

1. Design a Citrix VDI-in-a-Box solution.

2. Get the budget for Citrix VDI-in-a-Box by
building a case.

3. Implement a Citrix VDI-in-a-Box proof of
concept and Citrix VDI-in-a-Box solution.

VMware View 5 Desktop
Virtualization Solutions
ISBN: 978-1-84968-112-4 Paperback: 288 pages

A complete guide to planning and designing
solutions based on VMware View 5

1. Written by VMware experts Jason Langone and
Andre Leibovici, this book is a complete guide
to planning and designing a solution based on
VMware View 5.

2. Secure your Visual Desktop Infrastructure
(VDI) by having firewalls, antivirus, virtual
enclaves, USB redirection and filtering, and
smart card authentication.

3. Analyze the strategies and techniques used
to migrate a user population from a physical
desktop environment to a virtual desktop
solution.

Please check www.PacktPub.com for information on our titles

Citrix® XenDesktop® 7 Cookbook
ISBN: 978-1-78217-746-3 Paperback: 410 pages

Over 35 recipes to help you implement a fully
featured XenDesktop® 7 architecture with a rich and
powerful VDI experience

1. Implement the XenDesktop 7 architecture and
its satellite components.

2. Learn how to publish desktops and applications
to the end user devices, optimizing their
performance and increasing the general security.

3. Designed in a manner which will allow you to
progress gradually from one chapter to another
or to implement a single component only
referring to the specific topic.

Machine Learning with R
ISBN: 978-1-78216-214-8 Paperback: 396 pages

Learn how to use R to apply powerful machine
learning methods and gain an insight into
real-world applications

1. Harness the power of R for statistical
computing and data science.

2. Use R to apply common machine learning
algorithms with real-world applications.

3. Prepare, examine, and visualize data
for analysis.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Putting the V in VDI – An Introduction to Virtualization in Hyper-V
	Server virtualization and Hyper-V
	Virtual Hard Disks
	Installing and configuring Hyper-V
	Configuring Hyper-V
	Creating a simple virtual machine
	Checkpoints

	Managing Windows Server and Hyper-V
	Hyper-V Server and Server Core
	Getting started with server management
	Creating the RDS-DC VM
	Configuring the new VM as a DC
	Adding users and groups
	Joining the physical host to the domain
	Managing multiple servers in Server Manager
	Desired State Configuration

	Summary

	Chapter 2: Designing a Virtual Desktop Infrastructure
	Remote Desktop Services and VDI
	Advantages of remote desktops

	VDI versus Session Virtualization
	Remote applications in RDS
	VDI roles
	Remote Desktop Virtualization Host
	Remote Desktop Connection Broker
	Remote Desktop Web Access Server
	Remote Desktop Gateway
	Remote desktop licensing server
	Remote Desktop Session Host

	Types of VDI collections
	Getting started with VDI
	Creating the virtual desktop template
	Setting up and configuring the RDS roles
	Creating a Pooled Collection

	Creating an RD Session Collection
	Summary

	Chapter 3: Putting the D in VDI – Creating a Desktop Template
	Desktop deployment for VDI
	Microsoft deployment tools
	Installing MDT
	Working with answer files
	Building a new Virtual Desktop Template with MDT
	Creating a task sequence to deploy the captured OS to the reference computer
	Updating the deployment share
	Creating the reference computer
	Run the deployment wizard

	Automating MDT
	Deploying applications with MDT
	Configuring collection properties
	Group Policy and the virtual desktop
	Group Policy with Session Virtualization
	Application control

	Summary

	Chapter 4: Putting the R into Remote Desktop
	Introducing the Remote Desktop Gateway
	Certificates
	Creating a self-signed certificate

	Getting started with the Remote Desktop Gateway
	Active Directory authentication
	Opening additional ports on the firewall
	Relying on a forest trust relationship
	Using a read-only domain controller

	Creating an RODC
	Creating the perimeter network
	Configuring the virtual switches
	Configuring Routing and Remote Access
	Completing the gateway design

	Locking down the perimeter network
	Active Directory
	The remote desktop

	Remote access without using the gateway
	Summary

	Chapter 5: High Availability
	Why high availability matters for VDI
	Designing HA for VDI
	HA for the RD Broker role
	Creating an RD Broker Farm

	HA for the RD Web Access and RD Gateway roles
	Setting up NLB

	HA and Hyper-V
	HA for virtual desktop collections
	HA for session collections
	HA for VDI collections

	Summary

	Chapter 6: Scale and Performance
	Understanding scale and performance
	Testing RDS

	Hyper-V
	RDS role servers
	RD Broker
	Tuning the RD Gateway and RD Web Access roles

	Session Collections
	Testing Session Collections

	Pooled and Personal Collections
	Virtual Desktop Template optimization
	Dynamic memory
	Processor
	Networking

	VM storage
	Tuning Windows 8 for VDI
	Capacity planning for VDI collections

	Client settings
	Desktop as a Service
	Summary

	Chapter 7: Maintenance and Monitoring
	Maintenance
	Windows Server Update Services
	Installing and configuring WSUS

	Maintaining the RDS servers and hosts
	Virtual desktops
	Recreating pooled virtual desktops

	Monitoring
	Managing and shadowing users' sessions

	The Remote Desktop Diagnostic tool
	Microsoft System Center
	Configuration Manager
	Operations Manager
	Orchestrator
	Virtual Machine Manager
	System Center Advisor

	Summary

	Chapter 8: Managing User Profiles and Data
	Background and options
	User Profile Disks
	Using the built-in tools in Windows for managing the users' settings
	Enabling Roaming Profiles
	Creating the Security Group
	Creating the file share
	Using Active Directory to enable Roaming Profiles

	Super Mandatory Profiles
	Configuring Folder Redirection and
Offline Files

	User Environment Virtualization
	Installing UE-V
	Setting up the file shares for UE-V
	Deploying the UE-V agent

	Using Group Policy to manage UE-V
	Adding and creating UE-V settings location templates

	Summary

	Chapter 9: Virtual Applications
	RD RemoteApp
	Publishing RemoteApps from a session host
	Publishing RemoteApps from a Pooled Collection

	Application virtualization
	App-V architecture and components
	App-V packages

	Installing the App-V infrastructure
	Installing the App-V client to virtual desktops
	Installing the App-V Client to session hosts

	Configuring App-V
	Creating an App-V sequence
	Deploying a package
	UE-V and App-V
	App-V and System Center Configuration Manager

	Summary

	Chapter 10: Licensing and the Future of VDI
	Windows Server
	Remote desktop licensing
	License activation for Windows

	Windows 8.1
	Other software
	MDOP
	SQL Server
	Office 2013 and Office 365
	Third-party VDI solutions

	The future of VDI – Desktop as a Service
	Summary

	Index

