
www.allitebooks.com

http://www.allitebooks.org

Git Version Control
Cookbook

90 hands-on recipes that will increase your productivity
when using Git as a version control system

Aske Olsson

Rasmus Voss

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Git Version Control Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2014

Production reference: 1170714

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-845-4

www.packtpub.com

Cover image by Benoit Benedetti (benoit.benedetti@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Aske Olsson

Rasmus Voss

Reviewers
Kenneth Geisshirt

Shashikant Vaishnav

Commissioning Editor
Martin Bell

Acquisition Editor
Rebecca Youé

Content Development Editor
Govindan K

Technical Editors
Manal Pednekar

Anand Singh

Copy Editors
Mradula Hegde

Gladson Monteiro

Adithi Shetty

Project Coordinator
Shipra Chawhan

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexers
Hemangini Bari

Mariammal Chettiyar

Mehreen Deshmukh

Tejal Soni

Priya Subramani

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Aske Olsson has more than 10 years of experience in the software industry.
With a background as an electrical engineer, he has used every tool available
for development, from a soldering iron over Assembly, C, and Java programming to
different SCM, build– and issue–tracking systems.

Aske has worked for Nokia for 6 years, where he was one of the leading forces behind
complex tool transformation and renewal projects. Among them was a broad adoption
of Git SCM, Gerrit Code Review, and Jenkins CI.

Currently, Aske works at Schantz, a company developing advanced IT solutions for the
financial sector. He develops and maintains their continuous delivery pipeline.

Aske is also one of the four founding partners in the software development tools and
processes company Switch-Gears ApS, where he helps customers, large and small, increase
the maturity and productivity of their software delivery efforts by moving the customers from
legacy tools and working modes to modern open source based tools and processes.

Aske has more than 4 years of experience working with Git, and since 2011, he has been
teaching Git in regular training sessions, from basic Git to its advanced usage.

First, I would like to thank my wife and two kids (soon to be three) for
supporting me and putting up with me while writing this book.

I would also like to thank Rasmus Voss for co-authoring the book with me.
Last but not least, I would like to thank Knud Poulsen, Emanuele Zattin,
Lars Pedersen, and the rest of the tool renewal team at Nokia for all the
good discussions around Git.

www.allitebooks.com

http://www.allitebooks.org

Rasmus Voss is specialized in continuous integration, software releasing, and process
automation. His vast knowledge on these areas has been built by a 10-year career in Nokia
mobile phones in Copenhagen, Denmark and Beijing, China, where he started optimizing
autotesting for the Series 30 platform. He later moved to software releasing and became part
of the team that upgraded the software delivery chain from an old version control system CM
Synergy to Git, incorporating Gerrit for code review and Jenkins for single commit verification,
software releasing, and much more. Rasmus spent 2 years in China working for Nokia where
he sparred with developers, release managers, test engineers, and leaders to optimize the
process so that developers could spend time coding and testers knew what
they were testing.

Today, Rasmus has his own company VossCon, where he consults with companies on how to
make the most of developers and testers by optimizing software releasing, providing visibility
in the delivery chain, upgrading the tool chain, automating tedious processes, and training
developers. He also holds courses on Git, Gerrit, and Jenkins.

First and foremost, I would like to thank my wife and four kids for putting
up with me and the stress it has been moving back to Denmark while
starting a company, writing a book, and also trying to be the best family
father I could be.

I would also like to thank Nokia for the career opportunities they gave
me. Thanks to Aske Olsson for co-authoring the book with me. Thanks to
Jonas Christensen from Schneider Electric who signed the first contract for
my company. Thanks to Knud Poulsen for introducing me to Git, Gerrit,
and Jenkins.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Kenneth Geisshirt is a chemist by education and a geek by nature. He has been
programming for the last three decades. For more than 20 years, he has been using
Unix and Linux as his primary operating system.

He is currently working at Realm, a small database company. He is working on language
bindings (Python, Objective C, Node.js, and so on), and Git is an integrated tool in his daily
work flow.

Kenneth has reviewed books on Vim, Linux system programming, and Octave. He has also
written books on PAM and Linux, and numerous featured articles on open source software.

Shashikant Vaishnav was born and brought up in a desert town of Jodhpur, Rajasthan,
India. He is currently a contract developer at Click Here Media, United Kingdom.

His research interests primarily focus on the areas of technology in education and developing
software that takes into consideration the needs of elementary learners.

He has also been involved with Moodle LMS for quite a long time as a student. While being an
undergraduate, he participated in Google's Summer of Code program and integrated Apache
Solr with Moodle. He also participated as a mentor in the Google Code-in 2013 program for
Sugar Labs.

He completed his undergraduate degree at Government Engineering College, Bikaner,
with a Bachelor of Engineering and Technology in Computer Science in 2013. In college,
he formed a group named LUGB (Linux User Group Bikaner).

Besides his academics focus, he harbors a deep interest for music and sports. He loves to
blog about his experiences with open source technology, travel, and life. To allure himself at
times, he reads spiritual books, does photography, and hacks around with open source stuff.

I want to thank Packt Publishing for giving me the opportunity to contribute
towards this great effort.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Navigating Git 5

Introduction 5
Git's objects 7
The three stages 12
Viewing the DAG 17
Extracting fixed issues 20
Getting a list of the changed files 23
Viewing history with Gitk 24
Finding commits in history 26
Searching through history code 28

Chapter 2: Configuration 31
Configuration targets 31
Querying the existing configuration 34
Templates 36
A .git directory template 38
A few configuration examples 40
Git aliases 44
The refspec exemplified 48

Chapter 3: Branching, Merging, and Options 53
Introduction 53
Managing your local branches 54
Branches with remotes 57
Forcing a merge commit 61
Using git rerere to merge known conflicts 65
The difference between branches 71

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 4: Rebase Regularly and Interactively, and Other Use Cases 73
Introduction 73
Rebasing commits to another branch 74
Continuing a rebase with merge conflicts 75
Rebasing selective commits interactively 78
Squashing commits using an interactive rebase 81
Changing the author of commits using a rebase 86
Auto-squashing commits 89

Chapter 5: Storing Additional Information in Your Repository 95
Introduction 95
Adding your first Git note 96
Separating notes by category 100
Retrieving notes from the remote repository 104
Pushing notes to a remote repository 108
Tagging commits in the repository 110

Chapter 6: Extracting Data from the Repository 115
Introduction 115
Extracting the top contributor 115
Finding bottlenecks in the source tree 120
Grepping the commit messages 126
The contents of the releases 128

Chapter 7: Enhancing Your Daily Work with Git Hooks, Aliases,
and Scripts 133

Introduction 133
Using a branch description in the commit message 134
Creating a dynamic commit message template 138
Using external information in the commit message 144
Preventing the push of specific commits 148
Configuring and using Git aliases 153
Configuring and using Git scripts 158
Setting up and using a commit template 159

Chapter 8: Recovering from Mistakes 163
Introduction 163
Undo – remove a commit completely 164
Undo – remove a commit and retain the changes to files 167
Undo – remove a commit and retain the changes in the staging area 169
Undo – working with a dirty area 171

iii

Table of Contents

Redo – recreate the latest commit with new changes 175
Revert – undo the changes introduced by a commit 179
Reverting a merge 181
Viewing past Git actions with git reflog 186
Finding lost changes with git fsck 188

Chapter 9: Repository Maintenance 193
Introduction 193
Pruning remote branches 194
Running garbage collection manually 196
Turning off automatic garbage collection 199
Splitting a repository 200
Rewriting history – changing a single file 205
Back up your repositories as mirror repositories 206
A quick submodule how-to 209
Subtree merging 214
Submodule versus subtree merging 221

Chapter 10: Patching and Offline Sharing 223
Introduction 223
Creating patches 224
Creating patches from branches 227
Applying patches 229
Sending patches 231
Creating Git bundles 235
Using a Git bundle 238
Creating archives from a tree 241

Chapter 11: Git Plumbing and Attributes 245
Introduction 245
Displaying the repository information 246
Displaying the tree information 248
Displaying the file information 251
Writing a blob object to the database 255
Writing a tree object to the database 257
Writing a commit object to the database 258
Keyword expansion with attribute filters 261
Metadata diff of binary files 264
Storing binaries elsewhere 267
Checking the attributes of a file 272
Attributes to export an archive 273

iv

Table of Contents

Chapter 12: Tips and Tricks 277
Introduction 277
Using git stash 278
Saving and applying stashes 284
Debugging with git bisect 286
Using the blame command 292
Color UI in the prompt 293
Autocompletion 295
Bash prompt with status information 297
More aliases 300
Interactive add 304
Interactive add with Git GUI 310
Ignoring files 313
Showing and cleaning ignored files 317

Index 319

Preface
Git is the clear leader in the new paradigm of distributed version control systems. Originally
developed by Linus Torvalds as a source control management (SCM) system for the Linux
kernel to replace the proprietary SCM BitKeeper, Git has since conquered most of the open
source world and is also used by lots of organizations for their private/proprietary projects.

This book is designed to give you practical recipes for everyday Git usage. The recipes can
be used directly or as an inspiration for you. The book will cover the Git data model through
practical recipes and in-depth explanations so you get a deeper understanding of the internal
workings of Git. This book will show you the following topics:

 f Working with the history. With Git, you have all the history stored locally. Use it to
search through the history, view the history, find the last commit touching a particular
line, and so on.

 f Using branches effectively with options and strategies to push, pull, and merge.

 f Storing and extracting additional metadata in the Git repository.

 f Disaster recovery: local and global.

Git Version Control Cookbook gives you precise step-by-step instructions to various common
and uncommon Git operations. The book can help ease your daily work with Git by providing
recipes for common issues, useful tips and tricks, and in-depth clarifications of why and
how they work.

What this book covers
Chapter 1, Navigating Git, shows how Git stores files and commits. Examples will visually show
you the data model and how to navigate the history and database with simple commands.

Chapter 2, Configuration, shows how a lot can be configured in Git and how configuration
targets are set, the different configuration levels, and some useful targets.

Preface

2

Chapter 3, Branching, Merging, and Options, will give you a deeper understanding of
branching and the options for easy push/pull targets. It also shows you the different
merge strategies and some tips on how to record merge resolutions.

Chapter 4, Rebase Regularly and Interactively, and Other Use Cases, shows you how
rebasing can be used instead of merging along with a lot of other use cases of rebase:
cleaning up the history before publishing, testing single commits, and so on.

Chapter 5, Storing Additional Information in Your Repository, takes you on a tour of Git notes.
It will show you how to tie additional information to a commit, and how to use and see this
information again.

Chapter 6, Extracting Data from the Repository, will show you how to extract statistics and
other metadata from the repository.

Chapter 7, Enhancing Your Daily Work with Git Hooks, Aliases, and Scripts, contains a
collection of recipes to help you automate much of the tedious daily work.

Chapter 8, Recovering from Mistakes, walks you through several recovery scenarios, from
local undo, to where-is-my-old-commit, to global recovery scenarios.

Chapter 9, Repository Maintenance, is a collection of recipes that concern the maintenance
and management of repositories, from forcing garbage collection, over-splitting, and joining
repositories to complete history rewriting.

Chapter 10, Patching and Offline Sharing, shows you how to work offline with Git and share
the work by means other than pushing and pulling.

Chapter 11, Git Plumbing and Attributes, has a collection of recipes that show you how to
utilize the filter feature of Git and a small collection of recipes that cover some of the useful
but not widely known plumbing commands.

Chapter 12, Tips and Tricks, is a collection of recipes that covers various topics, from
simple tips to displaying the current branch in your prompt to advanced Git tools,
such as bisect and stash.

What you need for this book
To follow and recreate the recipes from this book, you will need a computer preferably running
a *NIX operating system. You will need Git installed, preferably Git Version 1.8 or later.

If you are a Windows user, we recommend the Git Extensions package, which ships both
a graphical and textual (bash) Git interface. The latter is required for the recipes in this book.

Preface

3

Who this book is for
This book targets both developers, as well as professional build/release managers who want
a practical guide for the next level of Git. There is something for everyone. Starting with the
Git data model and advancing through branching to metadata and hooks, all through an
easy-to-read recipe structure, the transition from simple everyday use cases to advanced
repository handling is smooth. The book can be easily read and understood by readers from
all categories. The book requires basic knowledge of common GNU/Linux tools and shell/
bash scripting.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input are shown as follows: "Again, we will use the JGit
repository with the master branch pointing to b14a939."

Any command-line input or output is written as follows:

$ git log -G"isOutdated" --oneline

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "We can just write the
commit message in the field in the bottom of the screen and hit Commit."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

4

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website, or added to any list of existing errata, under the Errata section
of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works, in any form, on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

1
Navigating Git

In this chapter, we will cover the following topics:

 f Git's objects

 f The three stages

 f Viewing the DAG

 f Extracting fixed issues

 f Getting a list of the changed files

 f Viewing the history with Gitk

 f Finding commits in the history

 f Searching through the history code

Introduction
In this chapter, we will take a look at Git's data model. We will learn how Git references its
objects and how the history is recorded. We will learn how to navigate the history, from finding
certain text snippets in commit messages to the introduction of a certain string in the code.

Navigating Git

6

The data model of Git is different from other common version control systems (VCSs) in the
way Git handles its data. Traditionally, a VCS will store its data as an initial file followed by a
list of patches for each new version of the file.

Git is different; instead of the regular file and patches list, Git records a snapshot of all the files
tracked by Git and their paths relative to the repository root, that is, the files tracked by Git in the
file system tree. Each commit in Git records the full tree state. If a file does not change between
commits, Git will not store the file once more; instead, Git stores a link to the file.

This is what makes Git different from most other VCSs, and in the following chapters,
we will explore some of the benefits of this powerful model.

Chapter 1

7

The way Git references the files and directories it tracks is directly built into the data model.
In short, the Git data model can be summarized as shown in the following diagram:

The commit object points to the root tree. The root tree points to subtrees and files.
Branches and tags point to a commit object and the HEAD object points to the branch that
is currently checked out. So for every commit, the full tree state and snapshot are identified
by the root tree.

Git's objects
Now that you know Git stores every commit as a full tree state or snapshot, let's look closer
at the object's Git store in the repository.

Git's object storage is a key-value storage, the key being the ID of the object and the
value being the object itself. The key is an SHA-1 hash of the object, with some additional
information such as size. There are four types of objects in Git, branches (which are not
objects, but are important), and the special HEAD pointer that refers to the branch/commit
currently checked out. The four object types are as follows:

 f Files, or blobs as they are also called in the Git context

 f Directories, or trees in the Git context

 f Commits

 f Tags

We will start by looking at the most recent commit object in the repository we just cloned,
keeping in mind that the special HEAD pointer points to the branch currently checked out.

www.allitebooks.com

http://www.allitebooks.org

Navigating Git

8

Getting ready
To view the objects in the Git database, we first need a repository to be examined.
For this recipe, we will clone an example repository located here:

$ git clone https://github.com/dvaske/data-model.git

$ cd data-model

Now you are ready to look at the objects in the database, we will start by looking first at the
commit object, then the trees, the files, and finally the branches and tags.

How to do it...
Let's take a closer look at the object's Git stores in the repository.

The commit object
The special Git object HEAD always points to the current snapshot/commit, so we can
use that as a target for our request of the commit we want to have a look at:

$ git cat-file -p HEAD

tree 34fa038544bcd9aed660c08320214bafff94150b

parent a90d1906337a6d75f1dc32da647931f932500d83

author Aske Olsson <aske.olsson@switch-gears.dk> 1386933960 +0100

committer Aske Olsson <aske.olsson@switch-gears.dk> 1386941455 +0100

This is the subject line of the commit message

It should be followed by a blank line then the body, which is this text.
Here you can have multiple paragraphs etc. and explain your commit. It's
like an email with subject and body, so get people's attention in the
subject

The cat-file command with the -p option pretty prints the object given on the command
line; in this case, HEAD, which points to master, which in turn points to the most-recent
commit on the branch.

We can now see the commit object, consisting of the root tree (tree), the parent commit
object's ID (parent), author and timestamp information (author), committer and timestamp
information (committer), and the commit message.

Chapter 1

9

The tree object
To see the tree object, we can run the same command on the tree, but with the tree ID
(34fa038544bcd9aed660c08320214bafff94150b) as the target:

$ git cat-file -p 34fa038544bcd9aed660c08320214bafff94150b

100644 blob f21dc2804e888fee6014d7e5b1ceee533b222c15 README.md

040000 tree abc267d04fb803760b75be7e665d3d69eeed32f8 a_sub_directory

100644 blob b50f80ac4d0a36780f9c0636f43472962154a11a another-file.txt

100644 blob 92f046f17079aa82c924a9acf28d623fcb6ca727 cat-me.txt

100644 blob bb2fe940924c65b4a1cefcbdbe88c74d39eb23cd hello_world.c

We can also specify that we want the tree object from the commit pointed to by HEAD,
by specifying git cat-file -p HEAD^{tree}, which would give the same results as
the previous one. The special notation HEAD^{tree} means that from the reference given,
(HEAD) recursively dereferences the object at the reference until a tree object is found.
The first tree object is the root tree object found from the commit pointed to by the master
branch, which is pointed to by HEAD. A generic form of the notation is <rev>^<type> and
will return the first object of <type> searching recursively from <rev>.

From the tree object, we can see what it contains: file type/permissions, type (tree/blob),
ID, and pathname:

Type/

Permissions

Type ID/SHA-1 Pathname

100644 blob f21dc2804e888fee6014
d7e5b1ceee533b222c15

README.md

040000 tree abc267d04fb803760b75
be7e665d3d69eeed32f8

a_sub_
directory

100644 blob b50f80ac4d0a36780f9c
0636f43472962154a11a

another-file.
txt

100644 blob 92f046f17079aa82c924
a9acf28d623fcb6ca727

cat-me.txt

100644 blob bb2fe940924c65b4a1ce
fcbdbe88c74d39eb23cd

hello-world.c

Navigating Git

10

The blob object
Now, we can investigate the blob (file) object. We can do it using the same command,
giving the blob ID as target for the cat-me.txt file:

$ git cat-file -p 92f046f17079aa82c924a9acf28d623fcb6ca727

This is the content of the file: "cat-me.txt."

Not really that exciting, huh?

This is simply the content of the file, which we will also get by running a normal cat cat-me.
txt command. So, the objects are tied together, blobs to trees, trees to other trees, and the
root tree to the commit object, all by the SHA-1 identifier of the object.

The branch
The branch object is not really like any other Git objects; you can't print it using the
cat-file command as we can with the others (if you specify the -p pretty print,
you'll just get the commit object it points to):

$ git cat-file master

usage: git cat-file (-t|-s|-e|-p|<type>|--textconv) <object>

 or: git cat-file (--batch|--batch-check) < <list_of_objects>

<type> can be one of: blob, tree, commit, tag.

...

$ git cat-file -p master

tree 34fa038544bcd9aed660c08320214bafff94150b

parent a90d1906337a6d75f1dc32da647931f932500d83

...

Instead, we can take a look at the branch inside the .git folder where the whole Git
repository is stored. If we open the text file .git/refs/heads/master, we can actually
see the commit ID the master branch points to. We can do this using cat as follows:

$ cat .git/refs/heads/master

34acc370b4d6ae53f051255680feaefaf7f7850d

We can verify that this is the latest commit by running git log -1:

$ git log -1

commit 34acc370b4d6ae53f051255680feaefaf7f7850d

Chapter 1

11

Author: Aske Olsson <aske.olsson@switch-gears.dk>

Date: Fri Dec 13 12:26:00 2013 +0100

 This is the subject line of the commit message

...

We can also see that HEAD is pointing to the active branch by using cat with
the .git/HEAD file:

$ cat .git/HEAD

ref: refs/heads/master

The branch object is simply a pointer to a commit, identified by its SHA-1 hash.

The tag object
The last object to be analyzed is the tag object. There are three different kinds of tags:
a lightweight (just a label) tag, an annotated tag, and a signed tag. In the example repository,
there are two annotated tags:

$ git tag

v0.1

v1.0

Let's take a closer look at the v1.0 tag:

$ git cat-file -p v1.0

object 34acc370b4d6ae53f051255680feaefaf7f7850d

type commit

tag v1.0

tagger Aske Olsson <aske.olsson@switch-gears.dk> 1386941492 +0100

We got the hello world C program merged, let's call that a release 1.0

As you can see, the tag consists of an object, which in this case is the latest commit on
the master branch, the object's type (both, commits, and blobs and trees can be tagged),
the tag name, the tagger and timestamp, and finally a tag message.

Navigating Git

12

How it works...
The Git command git cat-file -p will pretty print the object given as an input. Normally,
it is not used in everyday Git commands, but it is quite useful to investigate how it ties
together the objects. We can also verify the output of git cat-file, by rehashing it with the
Git command git hash-object; for example, if we want to verify the commit object at HEAD
(34acc370b4d6ae53f051255680feaefaf7f7850d), we can run the following command:

$ git cat-file -p HEAD | git hash-object -t commit --stdin

34acc370b4d6ae53f051255680feaefaf7f7850d

If you see the same commit hash as HEAD pointing towards you, you can verify whether it is
correct with git log -1.

There's more...
There are many ways to see the objects in the Git database. The git ls-tree command
can easily show the contents of trees and subtrees and git show can show the Git objects,
but in a different way.

See also
 f For further information about Git plumbing, see Chapter 11, Git Plumbing and

Attributes, almost at the end of this book.

The three stages
We have seen the different objects in Git but how do we create them? In this example,
we'll see how to create a blob, tree, and commit object in the repository. We'll learn about
the three stages of creating a commit.

Getting ready
We'll use the same data-model repository as seen in the last recipe:

$ git clone https://github.com/dvaske/data-model.git

$ cd data-model

Chapter 1

13

How to do it…
First, we'll make a small change to the file and check git status:

$ echo "Another line" >> another-file.txt

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working
directory)

 modified: another-file.txt

no changes added to commit (use "git add" and/or "git commit -a")

This, of course, just tells us that we have modified another-file.txt and we need to use
git add to stage it. Let's add the another-file.txt file and run git status again:

$ git add another-file.txt

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: another-file.txt

The file is now ready to be committed, just as you have probably seen before. But what
happened during the add command? The add command, generally speaking, moves files
from the working directory to the staging area, but more than this actually happens, though
you don't see it. When a file is moved to the staging area, the SHA-1 hash of the file is created
and the blob object is written to Git's database. This happens for all the files added and every
time a file is added, but if nothing changes for a file, this means it is already stored in the
database. At first, this might seem that the database is growing quickly, but this is not the
case. Garbage collection kicks in at times, compressing and cleaning up the database and
keeping only the objects that are required.

Navigating Git

14

We can edit the file again and run git status:

$ echo 'Whoops almost forgot this' >> another-file.txt

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: another-file.txt

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working
directory)

 modified: another-file.txt

Now, the file shows up both in the Changes to be committed and Changes not staged for
commit sections. This looks a bit weird at first, but there is of course an explanation. When
we added the file the first time, the content of it was hashed and stored in Git's database.
The changes from the second change of the file have not yet been hashed and written to
the database; it only exists in the working directory. Therefore, the file shows up in both
the Changes to be committed and Changes not staged for commit sections; the first
change is ready to be committed, the second is not. Let's also add the second change:

$ git add another-file.txt

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: another-file.txt

Chapter 1

15

Now, all the changes we have made to the file are ready to be committed and we can
record a commit:

$ git commit -m 'Another change to another file'

[master 55e29e4] Another change to another file

 1 file changed, 2 insertions(+)

How it works…
As we learned previously, the add command creates the blob object, the tree, and commit
objects; however, they are created when we run the commit command. We can view these
objects with the cat-file command, as we saw in the previous recipe:

$ git cat-file -p HEAD

tree 162201200b5223d48ea8267940c8090b23cbfb60

parent 34acc370b4d6ae53f051255680feaefaf7f7850d

author Aske Olsson <aske@schantz.com> 1401744547 +0200

committer Aske Olsson <aske@schantz.com> 1401744547 +0200

Another change to another file

The root-tree object from the commit is:

$ git cat-file -p HEAD^{tree}

100644 blob f21dc2804e888fee6014d7e5b1ceee533b222c15 README.md

040000 tree abc267d04fb803760b75be7e665d3d69eeed32f8 a_sub_directory

100644 blob 35d31106c5d6fdb38c6b1a6fb43a90b183011a4b another-file.txt

100644 blob 92f046f17079aa82c924a9acf28d623fcb6ca727 cat-me.txt

100644 blob bb2fe940924c65b4a1cefcbdbe88c74d39eb23cd hello_world.c

From the previous recipe, we know the SHA-1 of the root tree was
34fa038544bcd9aed660c08320214bafff94150b and of the another-file.txt file
was b50f80ac4d0a36780f9c0636f43472962154a11a, and as expected, they changed
in our latest commit when we updated the another-file.txt file. We added the same file,
another-file.txt, twice before we created the commit, recording the changes to the history
of the repository. We also learned that the add command creates a blob object when called. So
in the Git database, there must be an object similar to the content of another-file.txt the
first time we added the file to the staging area. We can use the git fsck command to check
for dangling objects, that is, objects that are not referred by other objects or references:

$ git fsck --dangling

Checking object directories: 100% (256/256), done.

dangling blob ad46f2da274ed6c79a16577571a604d3281cd6d9

Navigating Git

16

Let's check the contents of the blob using the following command:

$ git cat-file -p ad46f2da274ed6c79a16577571a604d3281cd6d9

This is just another file

Another line

The blob is, as expected, similar to the content of another-file.txt when we added
it to the staging area the first time.

The following diagram describes the tree stages and the commands used to move
between the stages:

See also
 f For more examples and information on the cat-file, fsck, and other plumbing

commands, see Chapter 11, Git Plumbing and Attributes.

Chapter 1

17

Viewing the DAG
The history in Git is formed from the commit objects; as development advances, branches are
created and merged, and the history will create a directed acyclic graph, the DAG, due to the
way Git ties a commit to its parent commit. The DAG makes it easy to see the development
of a project based on the commits. Please note that the arrows in the following diagram are
dependency arrows, meaning that each commit points to its parent commit(s), hence the
arrows point in the opposite direction of time:

A graph of the example repository with abbreviated commit IDs

Viewing the history (the DAG) is built into Git by its git log command. There are also a
number of visual Git tools that can graphically display the history. This section will show
some features of git log.

Getting ready
We will use the example repository from the last section and ensure that the master branch
is pointing to 34acc37:

$ git checkout master && git reset --hard 34acc37

In the previous command, we only use the first seven characters (34acc37) of the commit ID;
this is fine as long as the abbreviated ID used is unique in the repository.

www.allitebooks.com

http://www.allitebooks.org

Navigating Git

18

How to do it...
The simplest way to see the history is to use the git log command; this will display the
history in reverse chronological order. The output is paged through less and can be further
limited, for example, by providing only the number of commits in history to be displayed:

$ git log -3

This will display the following result:

commit 34acc370b4d6ae53f051255680feaefaf7f7850d

Author: Aske Olsson <aske.olsson@switch-gears.dk>

Date: Fri Dec 13 12:26:00 2013 +0100

 This is the subject line of the commit message.

 It should be followed by a blank line then the body, which is this
text. Here

 you can have multiple paragraphs etc. and explain your commit. It's
like an

 email with subject and body, so get people's attention in the subject

commit a90d1906337a6d75f1dc32da647931f932500d83

Author: Aske Olsson <aske.olsson@switch-gears.dk>

Date: Fri Dec 13 12:17:42 2013 +0100

 Instructions for compiling hello_world.c

commit 485884efd6ac68cc7b58c643036acd3cd208d5c8

Merge: 44f1e05 0806a8b

Author: Aske Olsson <aske.olsson@switch-gears.dk>

Date: Fri Dec 13 12:14:49 2013 +0100

 Merge branch 'feature/1'

 Adds a hello world C program.

Turn on colors in the Git output by running git config --global
color.ui auto.

Chapter 1

19

By default, git log prints the commit, author's name and e-mail ID, timestamp, and the
commit message. However, the information isn't very graphical, especially if you want to
see branches and merges.

To display this information and limit some of the other data, you can use the following options
with git log:

$ git log --decorate --graph --oneline --all

The previous command will show one commit per line (--oneline) identified by its
abbreviated commit ID and the commit message subject. A graph will be drawn between the
commits depicting their dependency (--graph). The --decorate option shows the branch
names after the abbreviated commit ID, and the --all option shows all the branches,
instead of just the current one(s).

$ git log --decorate --graph --oneline --all

* 34acc37 (HEAD, tag: v1.0, origin/master, origin/HEAD, master) This is
the sub...

* a90d190 Instructions for compiling hello_world.c

* 485884e Merge branch 'feature/1'

...

This output, however, gives neither the timestamp nor author information, due to the way
the --oneline option formats the output.

Fortunately, the log command gives us the possibility to create our own output format.
So, we can make a history view similar to the previous. The colors are made with the
%C<color-name>text-be-colored%Creset syntax: including the author and
timestamp information, and some colors to display it nicely:

$ git log --all --graph --pretty=format:\

'%Cred%h%Creset -%C(yellow)%d%Creset %s %Cgreen(%ci) %C(bold
blue)<%an>%Creset'

Navigating Git

20

This is a bit cumbersome to write, but luckily it can be made as an alias so you only have to
write it once:

git config ----global alias.graph "log --all --graph
--pretty=format:'%Cred%h%Creset -%C(yellow)%d%Creset %s %Cgreen(%ci)
%C(bold blue)<%an>%Creset'"

Now, all you need to do is call git graph to show the history
as you saw previously.

How it works...
Git traverses the DAG by following the parent IDs (hashes) from the given commit(s).
The options passed to git log can format the output in different ways; this can serve
several purposes, for example, to give a nice graphical view of the history, branches, and
tags, as seen previously, or to extract specific information from the history of a repository to
use, for example, in a script.

See also
 f For more information about configuration and aliases, see Chapter 2,

Configuration.

Extracting fixed issues
A common use case when creating a release is to create a release note, containing among
other things, the bugs fixed in the release. A good practice is to write in the commit message
if a bug is fixed by the commit. A better practice is to have a standard way of doing it, for
example, a line with the string "Fixes-bug: " followed by the bug identifier in the last part
of the commit message. This makes it easy to compile a list of bugs fixed for a release note.
The JGit project is a good example of this; their bug identifier in the commit messages is a
simple "Bug: " string followed by the bug ID.

This recipe will show you how to limit the output of git log to list just the commits since the
last release (tag), which contains a bug fix.

Getting ready
Clone the JGit repository using the following command lines:

$ git clone https://git.eclipse.org/r/jgit/jgit

$ cd jgit

Chapter 1

21

If you want the exact same output as in this example, reset your master branch to the
following commit, b14a93971837610156e815ae2eee3baaa5b7a44b:

$ git checkout master && git reset --hard b14a939

How to do it...
You are now ready to look through the commit log for commit messages that describe the
bugs fixed. First, let's limit the log to only look through the history since the last tag (release).
To find the last tag, we can use git describe:

$ git describe

v3.1.0.201310021548-r-96-gb14a939

The preceding output tells us three things:

 f The last tag was v3.1.0.201310021548-r

 f The number of commits since the tag were 96

 f The current commit in abbreviated form is b14a939

Now, the log can be parsed from HEAD to v3.1.0.201310021548-r. But just running git
log 3.1.0.201310021548-r..HEAD will give us all the 96 commits, and we just want
the commits with commit messages that contain "Bug: xxxxxx" for our release note. The
xxxxxx is an identifier for the bug, for example, a number. We can use the --grep option
with git log for this purpose: git log --grep "Bug: ". This will give us all the commits
with "Bug: " in the commit message; all we need now is just to format it to something we
can use for our release note.

Let's say we want the release note format to look like the following template:

Commit-id: Commit subject
Fixes-bug: xxx

Our command line so far is as follows:

$ git log --grep "Bug: " v3.1.0.201310021548-r..HEAD

This gives us all the bug fix commits, but we can format this to a format that is easily parsed
with the --pretty option. First, we will print the abbreviated commit ID %h, followed by a
separator of our choice |, then the commit subject %s, (first line of the commit message),
followed by a new line %n, and the body, %b:

--pretty="%h|%s%n%b"

The output of course needs to be parsed, but that's easy with regular Linux tools
such as grep and sed:

Navigating Git

22

First, we just want the lines that contain "|" or "Bug: ":

grep -E "\||Bug: "

Then, we replace these with sed:

sed -e 's/|/: /' -e 's/Bug:/Fixes-bug:/'

The entire command put together gives:

\$ git log --grep "Bug: " v3.1.0.201310021548-r..HEAD --pretty="%h|%s%n%b"

| grep -E "\||Bug: " | sed -e 's/|/: /' -e 's/Bug:/Fixes-bug:/'

The previous set of commands gives the following output:

f86a488: Implement rebase.autostash

Fixes-bug: 422951

7026658: CLI status should support --porcelain

Fixes-bug: 419968

e0502eb: More helpful InvalidPathException messages (include reason)

Fixes-bug: 413915

f4dae20: Fix IgnoreRule#isMatch returning wrong result due to missing
reset

Fixes-bug: 423039

7dc8a4f: Fix exception on conflicts with recursive merge

Fixes-bug: 419641

99608f0: Fix broken symbolic links on Cygwin.

Fixes-bug: 419494

...

Now, we can extract the bug information from the bug tracker and put the preceding code in
the release note as well, if necessary.

How it works...
First, we limit the git log command to only show the range of commits we are interested
in, then we further limit the output by filtering the "Bug: " string in the commit message.
We pretty print the string so we can easily format it to a style we need for the release note and
finally find and replace with grep and sed to completely match the style of the release note.

Chapter 1

23

There's more...
If we just wanted to extract the bug IDs from the commit messages and didn't care about the
commit IDs, we could have just used grep after the git log command, still limiting the log
to the last tag:

$ git log v3.1.0.201310021548-r..HEAD | grep "Bug: "

If we just want the commit IDs and their subjects but not the actual bug IDs, we can use the
--oneline feature of git log combined with the --grep option:

$ git log --grep "Bug: " --oneline v3.1.0.201310021548-r..HEAD

Getting a list of the changed files
As seen in the previous recipe where a list of fixed issues was extracted from the history, a list
of all the files that have been changed since the last release can also easily be extracted. The
files can be further filtered to find those that have been added, deleted, modified, and so on.

Getting ready
The same repository and HEAD position (HEAD pointing to b14a939) as seen in the previous
recipe will be used. The release is also the same, which is v3.1.0.201310021548-r.

How to do it...
The following command lists all the files changed since the last release
(v3.1.0.201310021548-r):

$ git diff --name-only v3.1.0.201310021548-r..HEAD

org.eclipse.jgit.packaging/org.eclipse.jgit.target/jgit-4.3.target

org.eclipse.jgit.packaging/org.eclipse.jgit.target/jgit-4.4.target

org.eclipse.jgit.pgm.test/tst/org/eclipse/jgit/pgm/DescribeTest.java

org.eclipse.jgit.pgm.test/tst/org/eclipse/jgit/pgm/FetchTest.java

org.eclipse.jgit.pgm/src/org/eclipse/jgit/pgm/Describe.java

...

How it works...
The git diff command operates on the same revision range as git log did in the
previous recipe. By specifying --name-only, Git will only give the paths of the files as
output changed by the commits in the range specified.

Navigating Git

24

There's more...
The output of the command can be further filtered; if we only want to show which files have
been deleted in the repository since the last commit, we can use the --diff-filter switch
with git diff:

$ git diff --name-only --diff-filter=D v3.1.0.201310021548-r..HEAD

org.eclipse.jgit.junit/src/org/eclipse/jgit/junit/
SampleDataRepositoryTestCase.java

org.eclipse.jgit.packaging/org.eclipse.jgit.target/org.eclipse.jgit.
target.target

org.eclipse.jgit.test/tst/org/eclipse/jgit/internal/storage/file/GCTest.
java

There are also switches for the files that have been added (A), copied (C), deleted (D),
modified (M), renamed (R), and so on.

See also
 f For more information, visit the help page by running git help diff

Viewing history with Gitk
We saw earlier how we can view the history (the DAG) and visualize it with the use of git
log. However, as the history grows, the terminal representation of the history can be a bit
cumbersome to navigate. Fortunately, there are a lot of graphical tools around Git, one of
them being Gitk, which works on multiple platforms (Linux, Mac, and Windows).

This recipe will show you how to get started with Gitk.

Getting ready
Make sure you have Gitk installed:

$ which gitk

/usr/local/bin/gitk

If nothing shows up, Gitk in not installed on your system, or at least is not available on
your $PATH.

Change the directory to the data-model repository from the objects and DAG examples.
Make sure the master branch is checked out and pointing to 34acc37:

$ git checkout master && git reset --hard 34acc37

Chapter 1

25

How to do it...
In the repository, run gitk --all & to bring up the Gitk interface. You can also specify the
commit range or branches you want similar to git log or provide --all to see everything:

$ gitk --all &

How it works...
Gitk parses the information for every commit and the objects attached to it to provide an easy
graphical information screen that shows a graph of the history, author, and timestamp for
each commit. In the bottom half, the commit message and the patches for each file changed
and the list of files changed by the selected commit are displayed.

Though very lightweight and fast, Gitk is a very powerful tool. There are many different context
menus regarding clicking on a commit, a branch, or a tag in the history view. You can create
and delete branches, revert and cherry-pick commits, diff selected commits, and much more.

Navigating Git

26

There's more...
From the interface, you can perform a find and search. Find looks through the history and
search looks through the information displayed in the lower half of Gitk for the currently
highlighted commit.

Finding commits in history
You already saw in the previous recipe how we can filter the output of git log to only list
commits with the string "Bug: " in the commit message. In this example, we will use the
same technique to find specific commits in the entire history.

Getting ready
Again, we will use the JGit repository, trying to find commits related to the keyword
"Performance". In this recipe, we will look through the entire history, so we don't
need the master branch to point to a specific commit.

How to do it...
As we tried earlier, we can use the --grep option to find specific strings in commit
messages. In this recipe, we look at the entire history and search every commit that
has "Performance" in its commit message:

$ git log --grep "Performance" --oneline --all

9613b04 Merge "Performance fixes in DateRevQueue"

84afea9 Performance fixes in DateRevQueue

7cad0ad DHT: Remove per-process ChunkCache

d9b224a Delete DiffPerformanceTest

e7a3e59 Reuse DiffPerformanceTest support code to validate algorithms

fb1c7b1 Wait for JIT optimization before measuring diff performance

How it works...
In this example, we specifically ask Git to consider all of the commits in the history,
by supplying the --all switch. Git runs through the DAG and checks whether the
"Performance" string is included in the commit message. For an easy overview of the
results, the --oneline switch is also used to limit the output to just the subject of the
commit message. Hopefully then the commit(s) we needed to find can be identified from
this much shorter list of commits.

Chapter 1

27

Note that the search is case sensitive; had we searched for "performance" (all in lower
case), the list of commits would have been very different:

$ git log --grep "performance" --oneline --all

5ef6d69 Use the new FS.exists method in commonly occuring places

2be6927 Always allocate the PackOutputStream copyBuffer

437be8d Simplify UploadPack by parsing wants separately from haves

e6883df Enable writing bitmaps during GC by default.

374406a Merge "Fix RefUpdate performance for existing Refs"

f1dea3e Fix RefUpdate performance for existing Refs

84afea9 Performance fixes in DateRevQueue

8a9074f Implement core.checkstat = minimal

130ad4e Delete storage.dht package

d4fed9c Refactored method to find branches from which a commit is
reachable

...

There's more...
We also could have used the find feature in Gitk to find the same commits. Open Gitk with
the --all switch, type Performance in the Find field and hit Enter. This will highlight the
commits in the history view and you can navigate to the previous/next result by pressing
Shift + up arrow, Shift + down arrow, or the buttons next to the Find field. You will still,
however, be able to see the entire history in the view with the matching commits highlighted:

www.allitebooks.com

http://www.allitebooks.org

Navigating Git

28

Searching through history code
Sometimes it is not enough; by just looking through the commit messages in the history, you
may want to know which commits touched a specific method or variable. This is also possible
using git log. You can perform a search for a string, for example, a variable or method, and
git log will give you the commits, adding or deleting the string from the history. In this way,
you can easily get the full commit context for the piece of code.

Getting ready
Again, we will use the JGit repository with the master branch pointing to b14a939:

$ git checkout master && git reset --hard b14a939

How to do it...
We would like to find all the commits that have changes made to lines that contain
the method "isOutdated". Again, we will just display the commits on one line each
then we can check them individually later:

$ git log -G"isOutdated" --oneline

f32b861 JGit 3.0: move internal classes into an internal subpackage

c9e4a78 Add isOutdated method to DirCache

797ebba Add support for getting the system wide configuration

ad5238d Move FileRepository to storage.file.FileRepository

4c14b76 Make lib.Repository abstract and lib.FileRepository its
implementation

c9c57d3 Rename Repository 'config' as 'repoConfig'

5c780b3 Fix unit tests using MockSystemReader with user configuration

cc905e7 Make Repository.getConfig aware of changed config

Eight commits have patches that involve the string "isOutdated".

How it works...
Git traverses the history, the DAG, looking at each commit for the string "isOutdated" in the
patch between the parent commit and the current commit. This method is quite convenient to
find out when a given string was introduced or deleted and to get the full context and commit
at that point in time.

Chapter 1

29

There's more...
The -G option used with git log will look for differences in the patches that contain
added or deleted lines that match the given string. However, these lines could also have
been added or removed due to some other refactoring/renaming of a variable or method.
There is another option that can be used with git log, -S, which will look through the
difference in the patch text similar to the -G option, but only match commits where there
is a change in the number of occurrences of the specified string, that is, a line added or
removed, but not added and removed.

Let's see the output of the -S option:

$ git log -S"isOutdated" --oneline

f32b861 JGit 3.0: move internal classes into an internal subpackage

c9e4a78 Add isOutdated method to DirCache

797ebba Add support for getting the system wide configuration

ad5238d Move FileRepository to storage.file.FileRepository

4c14b76 Make lib.Repository abstract and lib.FileRepository its
implementation

5c780b3 Fix unit tests using MockSystemReader with user configuation

cc905e7 Make Repository.getConfig aware of changed config

The search matches seven commits, whereas the search with the –G option matches eight
commits. The difference is the commit with the ID c9c57d3 is only found with the –G option
in the first list. A closer look at this commit shows that the isOutdated string is only touched
due to renaming of another object, and this is why it is filtered away from the list of matching
commits in the last list when using the –S option. We can see the content of the commit with
the git show command, and use grep -C4 to limit the output to just the four lines before
and after the search string:

$ git show c9c57d3 | grep -C4 "isOutdated"

@@ -417,14 +417,14 @@ public FileBasedConfig getConfig() {

 throw new RuntimeException(e);

 }

 }

- if (config.isOutdated()) {

+ if (repoConfig.isOutdated()) {

 try {

- loadConfig();

+ loadRepoConfig();

 } catch (IOException e) {

2
Configuration

In this chapter, we will cover the following topics:

 f Configuration targets

 f Querying the existing configuration

 f Templates

 f A .git directory template

 f A few configuration examples

 f Git aliases

 f The refspec exemplified

Configuration targets
In this section, we will look at the different layers that can be configured. The layers are:

 f SYSTEM: This layer is system-wide and found in /etc/gitconfig

 f GLOBAL: This layer is global for the user and found in ~/.gitconfig

 f LOCAL: This layer is local to the current repository and found in .git/config

Getting ready
We will use the jgit repository for this example; clone it or use the clone you already have
from Chapter 1, Navigating Git, as shown in the following command:

$ git clone https://git.eclipse.org/r/jgit/jgit

$ cd jgit

Configuration

32

How to do it...
In the previous example, we saw how we could use the command git config --list to
list configuration entries. This list is actually made from three different levels of configuration
that Git offers: system-wide configuration, SYSTEM; global configuration for the user, GLOBAL;
and local repository configuration, LOCAL.

For each of these configuration layers, we can query the existing configuration. On a Windows
box with a default installation of the Git extensions, the different configuration layers will look
approximately like the following:

$ git config --list --system

core.symlinks=false

core.autocrlf=true

color.diff=auto

color.status=auto

color.branch=auto

color.interactive=true

pack.packsizelimit=2g

help.format=html

http.sslcainfo=/bin/curl-ca-bundle.crt

sendemail.smtpserver=/bin/msmtp.exe

diff.astextplain.textconv=astextplain

rebase.autosquash=true

$ git config --list --global

merge.tool=kdiff3

mergetool.kdiff3.path=C:/Program Files (x86)/KDiff3/kdiff3.exe

diff.guitool=kdiff3

difftool.kdiff3.path=C:/Program Files (x86)/KDiff3/kdiff3.exe

core.editor="C:/Program Files (x86)/GitExtensions/GitExtensions.exe"
fileeditor

core.autocrlf=true

credential.helper=!\"C:/Program Files (x86)/GitExtensions/
GitCredentialWinStore/git-credential-winst

ore.exe\"

user.name=Aske Olsson

user.email=aske.olsson@switch-gears.dk

Chapter 2

33

$ git config --list --local

core.repositoryformatversion=0

core.filemode=false

core.bare=false

core.logallrefupdates=true

core.symlinks=false

core.ignorecase=true

core.hidedotfiles=dotGitOnly

remote.origin.url=https://git.eclipse.org/r/jgit/jgit

remote.origin.fetch=+refs/heads/*:refs/remotes/origin/*

branch.master.remote=origin

branch.master.merge=refs/heads/master

We can also query a single key and limit the scope to one of the three layers, by using the
following command:

$ git config --global user.email

aske.olsson@switch-gears.dk

We can set the e-mail address of the user to a different one for the current repository:

$ git config --local user.email aske@switch-gears.dk

Now, listing the GLOBAL layer user.email will return aske.olsson@switch-gears.dk,
listing LOCAL gives aske@switch-gears.dk, and listing user.email without specifying
the layer gives the effective value that is used in the operations on this repository, in this case,
the LOCAL value aske@switch-gears.dk. The effective value is the value, which takes
precedence when needed. When two or more values are specified for the same key, but on
different layers, the lowest layer takes precedence. When a configuration value is needed,
Git will first look in the LOCAL configuration. If not found here, the GLOBAL configuration is
queried. If it is not found in the GLOBAL configuration, the SYSTEM configuration is used.
If none of this works, the default value in Git is used.

In the previous example, user.email is specified in both the GLOBAL and LOCAL layers.
Hence, the LOCAL layer will be used.

How it works...
Querying the three layers of configuration simply returns the content of the configuration
files: /etc/gitconfig for system-wide configuration, ~/.gitconfig for user-specific
configuration, and .git/config for repository-specific configuration. When not specifying
the configuration layer, the returned value will be the effective value.

Configuration

34

There's more...
Instead of setting all the configuration values on the command line by the key value, it is
possible to set them by just editing the configuration file directly. Open the configuration file
in your favorite editor and set the configuration you need, or use the built-in git config -e
repository to edit the configuration directly in the Git-configured editor. You can set the editor
to the editor of your choice either by changing the $EDITOR environment variable or with the
core.editor configuration target, for example:

$ git config --global core.editor vim

Querying the existing configuration
In this example, we will look at how we can query the existing configuration and set the
configuration values.

Getting ready
We'll use jgit again by using the following command:

$ cd jgit

How to do it...
To view all the effective configurations for the current Git repository, run the following command:

$ git config --list

user.name=Aske Olsson

user.email=askeolsson@switch-gears.dk

core.repositoryformatversion=0

core.filemode=false

core.bare=false

core.logallrefupdates=true

remote.origin.url=https://git.eclipse.org/r/jgit/jgit

remote.origin.fetch=+refs/heads/*:refs/remotes/origin/*

branch.master.remote=origin

branch.master.merge=refs/heads/master

The previous output will of course reflect the user running the command. Instead of Aske
Olsson as the name and the e-mail, the output should reflect your settings.

Chapter 2

35

If we are just interested in a single configuration item, we can just query it by its
section.key or section.subsection.key:

$ git config user.name

Aske Olsson

$ git config remote.origin.url

https://git.eclipse.org/r/jgit/jgit

How it works...
Git's configuration is stored in plaintext files, and works like a key-value storage. You can
set/query by key and get the value back. An example of the text-based configuration file is
shown as follows (from the jgit repository):

$ cat .git/config

[core]

 repositoryformatversion = 0

 filemode = false

 bare = false

 logallrefupdates = true

[remote "origin"]

 url = https://git.eclipse.org/r/jgit/jgit

 fetch = +refs/heads/*:refs/remotes/origin/*

[branch "master"]

 remote = origin

 merge = refs/heads/master

There's more...
It is also easy to set configuration values. Just use the same syntax as you did when querying
the configuration, except you need to add an argument to the value. To set a new e-mail
address on the LOCAL layer, we can execute the following command line:

git config user.email askeolsson@example.com

The LOCAL layer is the default if nothing else is specified. If you require whitespaces in
the value, you can enclose the string in quotation marks, as you would do when configuring
your name:

git config user.name "Aske Olsson"

Configuration

36

You can even set your own configuration, which does not have any effect on the core Git,
but can be useful for scripting/builds and so on:

$ git config my.own.config "Whatever I need"

List the value

$ git config my.own.config

Whatever I need

It is also very easy to delete/unset configuration entries:

$ git config --unset my.own.config

List the value

$ git config my.own.config

Templates
In this example, we will see how to create a template commit message that will be displayed in
the editor when creating a commit. The template is only for the local user and not distributed
with the repository in general.

Getting ready
In this example, we will use the example repository from Chapter 1, Navigating Git:

$ git clone https://github.com/dvaske/data-model.git

$ cd data-model

We'll use the following code as a commit message template for commit messages:

Short description of commit

Longer explanation of the motivation for the change

Fixes-Bug: Enter bug-id or delete line
Implements-Requirement: Enter requirement-id or delete line

Save the commit message template in $HOME/.gitcommitmsg.txt. The filename isn't
fixed and you can choose a filename of your liking.

Chapter 2

37

How to do it...
To let Git know about our new commit message template, we can set the configuration
variable commit.template to point at the file we just created with that template;
we'll do it globally so it is applicable to all our repositories:

$ git config --global commit.template $HOME/.gitcommitmsg.txt

Now, we can try to change a file, add it, and create a commit. This will bring up our preferred
editor with the commit message template preloaded:

$ git commit

Short description of commit

Longer explanation of the motivation for the change

Fixes-Bug: Enter bug-id or delete line

Implements-Requirement: Enter requirement-id or delete line

Please enter the commit message for your changes. Lines starting

with '#' will be ignored, and an empty message aborts the commit.

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: another-file.txt

#

~

~

"\.git/COMMIT_EDITMSG" 13 lines, 396 characters

We can now edit the message according to our commit and save to complete the commit.

www.allitebooks.com

http://www.allitebooks.org

Configuration

38

How it works...
When commit.template is set, Git simply uses the content of the template file as a
starting point for all commit messages. This is quite convenient if you have a commit-message
policy as it greatly increases the chances of the policy being followed. You can even have
different templates tied to different repositories, since you can just set the configuration
at the local level.

A .git directory template
Sometimes, having a global configuration isn't enough. You will also need to trigger the
execution of scripts (also known as Git hooks), exclude files, and so on. It is possible to
achieve this with the template option set to git init. It can be given as a command-line
option to git clone and git init, or as the $GIT_TEMPLATE_DIR environment variable,
or as the configuration option init.templatedir. It defaults to /usr/share/git-core/
templates. The template option works by copying files in the template directory to the .git
($GIT_DIR) folder after it has been created. The default directory contains sample hooks
and some suggested exclude patterns. In the following example, we'll see how we can set
up a new template directory, and add a commit message hook and exclude file.

Getting ready
First, we will create the template directory. We can use any name we want, and we'll use
~/.git_template, as shown in the following command:

$ mkdir ~/.git_template

Now, we need to populate the directory with some template files. This could be a hook or
an exclude file. We will create one hook file and an exclude file. The hook file is located in
.git/hooks/name-of-hook and the exclude file in .git/info/exclude. Create the
two directories needed, hooks and info, as shown in the following command:

$ mkdir ~/.git_template/{hooks,info}

To keep the sample hooks provided by the default template directory (the Git installation),
we copy the files in the default template directory to the new one. When we use our newly
created template directory, we'll override the default one. So, copying the default files to our
template directory will make sure that except for our specific changes, the template directory
is similar to the default one, as shown in the following command:

$ cd ~/.git_template/hooks

$ cp /usr/share/git-core/templates/hooks/* .

Chapter 2

39

We'll use the commit-msg hook as the example hook:

#!/bin/sh

MSG_FILE="$1"

echo "\nHi from the template commit-msg hook" >> $MSG_FILE

The hook is very simple and will just add Hi from the template commit-msg hook to
the end of the commit message. Save it as commit-msg in the ~/.git_template/hooks
directory and make it executable by using the following command:

chmod +x ~/.git_template/hooks/commit-msg

Now that the commit message hook is done, let's also add an exclude file to the example.
The exclude file works like the .gitignore file, but is not tracked in the repository.
We'll create an exclude file that excludes all the *.txt files, as follows:

$ echo *.txt > ~/.git_template/info/exclude

Now, our template directory is ready for use.

How to do it...
Our template directory is ready and we can use it, as described earlier, as a command-line
option, an environment variable or, as in this example, to be set as a configuration:

$ git config --global init.templatedir ~/.git_template

Now, all Git repositories we create using init or clone will have the default files of the
template directory. We can test if it works by creating a new repository as follows:

$ git init template-example

$ cd template-example

Let's try to create a .txt file and see what git status tells us. It should be ignored by the
exclude file from the template directory:

$ echo "this is the readme file" > README.txt

$ git status

The exclude file worked! You can put in the file endings yourself or just leave it blank and keep
to the .gitignore files.

To test if the commit-msg hook also works, let's try to create a commit. First, we need a file to
commit. So, let's create that and commit it as follows:

$ echo "something to commit" > somefile

$ git add somefile

$ git commit –m "Committed something"

Configuration

40

We can now check the history with git log:

$ git log -1

commit 1f7d63d7e08e96dda3da63eadc17f35132d24064

Author: Aske Olsson <aske.olsson@switch-gears.dk>

Date: Mon Jan 6 20:14:21 2014 +0100

 Committed something

 Hi from the template commit-msg hook

How it works...
When Git creates a new repository, either via init or clone, it will copy the files from the
template directory to the new repository when creating the directory structure. The template
directory can be defined either by a command-line argument, environment variable, or
configuration option. If nothing is specified, the default template directory will be used
(distributed with the Git installation). By setting the configuration as a --global option, the
template directory defined will apply to all of the user's (new) repositories. This is a very nice
way to distribute the same hooks across repositories, but it also has some drawbacks. As the
files in the template directory are only copied to the Git repositories, updates to the template
directory do not affect the existing repositories. This can be solved by running git init in
each existing repository to reinitialize the repository, but this can be quite cumbersome. Also,
the template directory can enforce hooks on some repositories where you don't want them.
This is quite easily solved by simply deleting the hook files in .git/hooks of that repository.

See also
 f For more information on hooks in Git, please refer to Chapter 7, Enhancing Your Daily

Work with Git Hooks, Aliases, and Scripts

A few configuration examples
There are configuration targets in the core Git system. In this section, we'll take a closer look
at a few of them that might be useful in your daily work.

We'll look at the following three different configuration areas:

 f Rebase and merge setup

 f Expiry of objects

 f Autocorrect

Chapter 2

41

Getting ready
In this exercise, we'll just set a few configurations. We'll use the data model repository from
Chapter 1, Navigating Git:

$ cd data-model

How to do it...
Let's take a closer look at the previously mentioned configuration areas.

Rebase and merge setup
By default, when performing git pull, a merge commit will be created if the history of the
local branch has diverged from the remote one. However, to avoid all these merge commits,
a repository can be configured so it will default to rebase instead of merging when doing git
pull. Several configuration targets related to the option exist as follows:

 f pull.rebase: This configuration, when set to true, will pull to rebase the current
branch on top of the fetched one when performing a git pull. It can also be set
to preserve so that the local merge commit will not be flattened in the rebase, by
passing --preserve-merges to git rebase. The default value is false as
the configuration is not set. To set this option in your local repository, run the
following command:
$ git config pull.rebase true

 f branch.autosetuprebase: When this configuration is set to always, any new
branch created with <git branch or git checkout that tracks another branch
will be set up to pull to rebase (instead of merge). The valid options are as follows:

 � never: This is set to pull to rebase (default)

 � local: This is set to pull to rebase for local tracked branches

 � remote: This is set to pull to rebase for remote tracked branches

 � always: This is set to pull to rebase for all tracked branches

To set this option for all the new branches regardless of tracking remote or local
branches, run the following command:

$ git config branch.autosetuprebase always

Configuration

42

 f branch.<name>.rebase: This configuration, when set to true, applies only to the
<name> branch and tells Git to pull to rebase when performing git pull on the
given branch. It can also be set to preserve so that the local merge commit will not
be flattened when running git pull. By default, the configuration is not set for any
branch. To set the feature/2 branch in the repository to default to rebase instead
of merge, we can run the following command:

$ git config branch.feature/2.rebase true

Expiry of objects
By default, Git will perform garbage collection on unreferenced objects and clean reflog
for entries, both of which are older than 90 days. For an object to be referenced, something
must point to it; a tree, a commit, a tag, a branch, or some of the internal Git bookkeeping like
stash or reflog. There are three settings that can be used to change this time as follows:

 f gc.reflogexpire: This is the general setting to know for how long a branch's
history is kept in reflog. The default time is 90 days. The setting is a length of
time, for example, 10 days, 6 months and it can be turned completely off with
the value never. The setting can be set to match a refs pattern by supplying the
pattern in the configuration setting. gc.<pattern>.reflogexpire: This pattern
can, for example, be /refs/remotes/* and the expire setting would then only
apply for those refs.

 f gc.reflogexpireunreachable: This setting controls how long the reflog
entries that are not a part of the current branch history should be available in the
repository. The default value is 30 days, and similar to the previous option, it is
expressed as a length of time or set to never in order to turn it off. This setting
can, as the previous one, be set to match a refs pattern.

 f gc.pruneexpire: This option tells git gc to prune objects older than the value.
The default is 2.weeks.ago, and the value can be expressed as a relative date like
3.months.ago. To disable the grace period, the value now can be used. To set a
non-default expiry date only on remote branches, use the following command:

$ git config gc./refs/remote/*.reflogexpire never

$ git config gc./refs/remote/*.reflogexpireunreachable "2 months"

We can also set a date so git gc will prune objects sooner:

$ git config gc.pruneexpire 3.days.ago

Chapter 2

43

Autocorrect
This configuration is useful when you get tired of messages like the following one just
because you made a typo on the keyboard:

$ git statis

git: 'statis' is not a git command. See 'git --help'.

Did you mean this?

 status

By setting the configuration to help.autocorrect, you can control how Git will behave
when you accidentally send a typo to it. By default, the value is 0 and it means to list the
possible options similar to the input (if statis is given status will be shown). A negative
value means to immediately execute the corresponding command. A positive value means
to wait the given number of deciseconds (0.1 sec) before running the command, (so there
is some amount of time to cancel it). If several commands can be deduced from the text
entered, nothing will happen. Setting the value to half a second gives you some time to
cancel a wrong command, as follows:

$ git config help.autocorrect 5

$ git statis

WARNING: You called a Git command named 'statis', which does not exist.

Continuing under the assumption that you meant 'status'

in 0.5 seconds automatically...

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: another-file.txt

#

How it works...
Setting the configuration targets will change the way Git behaves. The previous examples
describe a few useful methods to get Git to act differently than its default behavior. You should
be sure when you are changing a configuration that you completely understand what that
configuration does. So, check the Git configuration help page by using git help config.

Configuration

44

There's more...
There are a lot of configuration targets available in Git. You can run git help config and a
few pages down all of them are displayed and explained.

Git aliases
An alias is a nice way to configure long and/or complicated Git commands to represent short
useful ones. An alias is simply a configuration entry under the alias section. It is usually
configured to --global to apply it everywhere.

Getting ready
In this example, we will use the jgit repository, which was also used in Chapter 1, Navigating
Git, with the master branch pointing at b14a93971837610156e815ae2eee3baaa5b7a44b.
Either use the clone from Chapter 1, Navigating Git, or clone the repository again, as follows:

$ git clone https://git.eclipse.org/r/jgit/jgit

$ cd jgit

$ git checkout master && git reset --hard b14a939

How to do it...
First, we'll create a few simple aliases, then a couple of more special ones, and finally a
couple of aliases using external commands. Instead of writing git checkout every time we
need to switch branches, we can create an alias of that command and call it git co. We can
do the same for git branch, git commit, and git status as follows:

$ git config --global alias.co checkout

$ git config --global alias.br branch

$ git config --global alias.ci commit

$ git config --global alias.st status

Now, try to run git st in the jgit repository as follows:

$ git st

On branch master

nothing to commit, working directory clean

Chapter 2

45

The alias method is also good to create the Git commands you think are missing in Git. One of
the common Git aliases is unstage, which is used to move a file out of the staging area, as
shown in the following command:

$ git config --global alias.unstage 'reset HEAD --'

Try to edit the README.md file in the root of the jgit repository and add it in the root.
Now, git status/git st should display something like the following:

$ git st

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: README.md

#

Let's try to unstage README.md and then look at git st as follows:

$ git unstage README.md

Unstaged changes after reset:

M README.md

$ git st

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working
directory)

#

modified: README.md

#

no changes added to commit (use "git add" and/or "git commit -a")

A common use case for aliases is to format the history of Git in specific ways. Let's say you
want the number of lines added and deleted for each file in the commit displayed along with
some common commit data. For this, we can create the following alias so we don't have to
type everything each time:

$ git config --global alias.ll "log --pretty=format:\"%C(yellow)%h%Cred%d
%Creset%s %Cgreen(%cr) %C(bold blue)<%an>%Creset\" --numstat"

Configuration

46

Now, we can execute git ll in the terminal and get a nice stat output, as shown in the
following command:

$ git ll

b14a939 (HEAD, master) Prepare 3.3.0-SNAPSHOT builds (8 days ago)
<Matthias Sohn>

6 6 org.eclipse.jgit.ant.test/META-INF/MANIFEST.MF

1 1 org.eclipse.jgit.ant.test/pom.xml

3 3 org.eclipse.jgit.ant/META-INF/MANIFEST.MF

1 1 org.eclipse.jgit.ant/pom.xml

4 4 org.eclipse.jgit.archive/META-INF/MANIFEST.MF

2 2 org.eclipse.jgit.archive/META-INF/SOURCE-MANIFEST.MF

1 1 org.eclipse.jgit.archive/pom.xml

6 6 org.eclipse.jgit.console/META-INF/MANIFEST.MF

1 1 org.eclipse.jgit.console/pom.xml

12 12 org.eclipse.jgit.http.server/META-INF/MANIFEST.MF

...

It is also possible to use an external command instead of a Git command. So, small shell
scripts and so on can be embedded. To create an alias with an external command, the alias
must start with an exclamation mark !. The examples can be used when resolving conflicts
from a rebase or merge. In your ~/.gitconfig file under [alias], add the following:

editconflicted = "!f() {git ls-files --unmerged | cut -f2 | sort -u ; };
$EDITOR 'f'"

This will bring up your configured $EDITOR with all the files that are in the conflict state
due to the merge/rebase. This quickly allows you to fix the conflicts and get on with the
merge/rebase.

In the jgit repository, we can create two branches at an earlier point in time and merge
these two branches:

$ git branch A 03f78fc

$ git branch B 9891497

$ git checkout A

Switched to branch 'A'

$ git merge B

Chapter 2

47

Now, you'll see that this fails to perform the merge, and you can run git st to check the
status ses of a lot of files that are in a conflicted state, both modified. To open and edit
all the conflicted files, we can now run git editconflicted. This brings up $EDITOR with
the files. If your environment variable isn't set, use EDITOR=<you-favorite-editor>
export to set it.

For this example, we don't actually resolve the conflicts. Just check that the alias works
and you're ready for the next alias.

Now that we have solved all the merge conflicts, it is time to add all of those files before we
conclude the merge. Luckily, we can create an alias that can help us with that, as follows:

addconflicted = "!f() { git ls-files --unmerged | cut -f2 | sort -u ; };
git add 'f'"

Now, we can run git addconflicted. Later, git status will tell us that all the
conflicted files are added:

$ git st

On branch A

All conflicts fixed but you are still merging.

 (use "git commit" to conclude merge)

Changes to be committed:

 modified: org.eclipse.jgit.console/META-INF/MANIFEST.MF

 modified: org.eclipse.jgit.console/pom.xml

 modified: org.eclipse.jgit.http.server/META-INF/MANIFEST.MF

 modified: org.eclipse.jgit.http.server/pom.xml

 modified: org.eclipse.jgit.http.test/META-INF/MANIFEST.MF

 modified: org.eclipse.jgit.http.test/pom.xml

...

Now we can conclude the merge with git commit:

$ git commit

[A 94344ae] Merge branch 'B' into A

How it works...
Git simply runs the command the alias is short for. It is very convenient for long Git
commands, or Git commands that are hard to remember exactly how to write. Now, all
you have to remember is the alias and you can always look in the configuration file for it.

www.allitebooks.com

http://www.allitebooks.org

Configuration

48

There's more...
Another way to create a kind of Git alias is to make a shell script and save the file with the
name git-<your-alias-name>. Make the file executable and place it somewhere in
your $PATH. You can now run that file simply by running git <your-alias-name> from
the command line.

The refspec exemplified
Though the refspec isn't the first thing that comes to mind when thinking about the Git
configuration, it is actually quite close. In a lot of the Git commands the refspec is used, but
often implicitly, that is, the refspec is taken from the configuration file. If you don't remember
setting a refspec configuration, you are probably right, but if you cloned the repository or
added a remote, you'll have a section in .git/config, which looks something like the
following (this is for the Jgit repository):

[remote "origin"]

 url = https://git.eclipse.org/r/jgit/jgit

 fetch = +refs/heads/*:refs/remotes/origin/*

The fetch line contains the configured refspec to fetch for this repository.

Getting ready
In this example, we'll be using the jgit repository as our server repository, but we have to
make a clone of it to a bare repository so we can push it. You can't push to the checked out
branch on a non-bare repository as this can overwrite the work area and index.

Create a bare repository from the jgit repository and create a new Git repository where
we can play with the refspec as follows:

$ git clone --bare https://git.eclipse.org/r/jgit/jgit jgit-bare.git

$ git init refspec-tests

$ cd refspec-tests

$ git remote add origin ../jgit-bare.git

We also need to change the branch names on some of the branches to match the example
for name spacing; the following will rename the stable-xxx branches to stable/xxx:

$ for br in $(git branch -a | grep "stable-"); do new=$(echo $br| sed
's/-/\//'); git branch $new $br; done

Chapter 2

49

In the previous shell scripting, the $new and $br variables aren't placed in double quotes
(") as good practice for shell scripting would otherwise suggest. This is okay as the variables
reflect the names of the branches in the repository and branch names cannot contain spaces.

How to do it...
Let us set up our new repository to only fetch the master branch. We do this by changing the
fetch line under [remote "origin"] in the configuration file (.git/config), as follows:

[remote "origin"]

 url = ../jgit-bare.git

 fetch = +refs/heads/master:refs/remotes/origin/master

Now, we will only fetch the master branch and not all the other branches when executing a
git fetch, git pull, or a git remote update origin, as follows:

$ git pull

remote: Counting objects: 44033, done.

remote: Compressing objects: 100% (6927/6927), done.

remote: Total 44033 (delta 24063), reused 44033 (delta 24063)

Receiving objects: 100% (44033/44033), 9.45 MiB | 5.70 MiB/s, done.

Resolving deltas: 100% (24063/24063), done.

From ../jgit-bare

 * [new branch] master -> origin/master

From ../jgit-bare

 * [new tag] v0.10.1 -> v0.10.1

 * [new tag] v0.11.1 -> v0.11.1

 * [new tag] v0.11.3 -> v0.11.3

...

$ git branch –a

* master

 remotes/origin/master

Let's also set up a separate refspec to fetch all the stable/* branches to the local
repository as follows:

[remote "origin"]

 url = ../jgit-bare.git

 fetch = +refs/heads/master:refs/remotes/origin/master

 fetch = +refs/heads/stable/*:refs/remotes/origin/stable/*

Configuration

50

Now, fetch the branches locally, as shown in the following command:

$ git fetch

From ../jgit-bare

 * [new branch] stable/0.10 -> origin/stable/0.10

 * [new branch] stable/0.11 -> origin/stable/0.11

 * [new branch] stable/0.12 -> origin/stable/0.12

 * [new branch] stable/0.7 -> origin/stable/0.7

 * [new branch] stable/0.8 -> origin/stable/0.8

 * [new branch] stable/0.9 -> origin/stable/0.9

 * [new branch] stable/1.0 -> origin/stable/1.0

 * [new branch] stable/1.1 -> origin/stable/1.1

 * [new branch] stable/1.2 -> origin/stable/1.2

 * [new branch] stable/1.3 -> origin/stable/1.3

 * [new branch] stable/2.0 -> origin/stable/2.0

 * [new branch] stable/2.1 -> origin/stable/2.1

 * [new branch] stable/2.2 -> origin/stable/2.2

 * [new branch] stable/2.3 -> origin/stable/2.3

 * [new branch] stable/3.0 -> origin/stable/3.0

 * [new branch] stable/3.1 -> origin/stable/3.1

 * [new branch] stable/3.2 -> origin/stable/3.2

We can also set up push refspecs that specify where branches are pushed to by
default. Let's create a branch called develop and create one commit, as shown in
the following commands:

$ git checkout -b develop

Switched to a new branch 'develop'

$ echo "This is the developer setup, read carefully" > readme-dev.txt

$ git add readme-dev.txt

$ git commit -m "adds readme file for developers"

[develop ccb2f08] adds readme file for developers

1 file changed, 1 insertion(+)

 create mode 100644 readme-dev.txt

Chapter 2

51

Now, let's create a push refspec that will send the contents of the develop branch to
integration/master on origin:

[remote "origin"]

 url = ../jgit-bare.git

 fetch = +refs/heads/master:refs/remotes/origin/master

 fetch = +refs/heads/stable/*:refs/remotes/origin/stable/*

 push = refs/heads/develop:refs/remotes/origin/integration/master

Let us push our commit on develop as follows:

$ git push

Counting objects: 4, done.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 345 bytes | 0 bytes/s, done.

Total 3 (delta 1), reused 0 (delta 0)

To ../jgit-bare.git

 * [new branch] develop -> origin/integration/master

As the integration/master branch didn't exist on the remote side, it was created for us.

How it works...
The format of the refspec is in the form of <source>:<destination>. For a fetch refspec,
this means that <source> is the source on the remote side and <destination> is local.
For a push refspec, <source> is local and <destination> is remote. The refspec
can be prefixed by a + to indicate that the ref pattern can be updated even though it isn't a
fast-forward update. It is not possible to use partial globs in the refspec pattern, as shown
in the following line:

fetch = +refs/heads/stable*:refs/remotes/origin/stable*

But it is possible to use namespacing. That's why we had to rewrite the stable-xxx
branches to stable/xxx to fit as a namespace pattern:

fetch = +refs/heads/stable/*:refs/remotes/origin/stable/*

3
Branching, Merging,

and Options

In this chapter, we will cover the following recipes:

 f Managing your local branches

 f Branches with remotes

 f Forcing a merge commit

 f Using git rerere to merge Git conflicts

 f The difference between branches

Introduction
If you are developing a small application in a big corporation as a developer, or you are trying
to wrap your head around an open source project from GitHub, you have already been using
branches with Git.

Most of the time, you may just be working on a local develop or master branch and didn't
care so much about other branches.

In this chapter, we will show you different branch types and how to work with them.

Branching, Merging, and Options

54

Managing your local branches
Suppose you are just having your local Git repository, and you have no intentions at the
moment to share the code with others; however, you can easily share this knowledge
while working with a repository with one or more remotes. Local branches with no remotes
work exactly in this fashion. As you can see in the examples, we are cloning a repository,
thus we have a remote.

Let's start by creating a few local branches.

Getting ready
Use the following command to clone the jgit repository to match:

$ git clone https://git.eclipse.org/r/jgit/jgit

$ cd jgit

How to do it…
Perform the following steps to manage your local branches:

1. Whenever you start working on a bug fix or a new feature in your project, you should
create a branch. You can do so using the following code:
$ git branch newBugFix

$ git branch

* master

 newBugFix

2. The newBugFix branch points to the current HEAD I was on at the time of the
creation. You can see the HEAD with git log -1:
$ git log -1 newBugFix --format=format:%H

25fe20b2dbb20cac8aa43c5ad64494ef8ea64ffc

3. If you want to add a description to the branch, you can do it with the
--edit-description option for the git branch command:
$ git branch --edit-description newBugFix

4. The previous command will open an editor where you can type in a description:
Refactoring the Hydro controller

The hydro controller code is currently horrible needs to be
refactored.

5. Close the editor and the message will be saved.

Chapter 3

55

How it works…
Git stores the information in the local git config file; this also means that you cannot push
this information to a remote repository.

To retrieve the description for the branch, you can use the --get flag for the git config
command:

$ git config --get branch.newBugFix.description

Refactoring the Hydro controller

The hydro controller code is currently horrible needs to be refactored.

This will be beneficial when we automate some tasks in Chapter 7, Enhancing Your Daily Work
with Git Hooks, Aliases, and Scripts.

Remember to perform a checkout of newBugFix before you start
working on it. This must be done with the Git checkout of newBugFix.

The branch information is stored as a file in .git/refs/heads/newBugFix:

$ cat .git/refs/heads/newBugFix

25fe20b2dbb20cac8aa43c5ad64494ef8ea64ffc

Note that it is the same commit hash we retrieved with the git log command

There's more...
Maybe you want to create specific branches from specific commit hashes. The first thought
might be to check out the commit, and then create a branch; however, it is much easier to
use the git branch command to create the branches without checking out the commits:

1. If you need a branch from a specific commit hash, you can create it with the git
branch command as follows:
$ git branch anotherBugFix 979e346

$ git log -1 anotherBugFix --format=format:%h

979e346

$ git log -1 anotherBugFix --format=format:%H

979e3467112618cc787e161097986212eaaa4533

Branching, Merging, and Options

56

2. As you can see, the abbreviated commit hash is shown when you use h, and the full
commit hash is shown when you use H. You can see the abbreviated commit hash is
the same as the one used to create the branch. Most of the time, you want to create
and start working on the branch immediately:
$ git checkout -b lastBugFix 979e346

Switched to a new branch 'lastBugFix'

3. Git switches to the new branch immediately after it creates the branch. Verify with
Gitk to see whether the lastBugFix branch is checked out and another BugFix
branch is at the same commit hash:
$ gitk

4. Instead of using Gitk, you can also add -v to the git branch command or
even another v.
$ git branch -v

 anotherBugFix 979e346 Interactive Rebase: Do actions if

* lastBugFix 979e346 Interactive Rebase: Do actions if

 master 25fe20b Add missing package import for jg

 newBugFix 25fe20b Add missing package import for jg

Chapter 3

57

5. With -v, you can see the abbreviated commit hash for each branch and with -vv,
you can also see that the master branch tracks the origin/master branch:
$ git branch -vv

 anotherBugFix 979e346 Interactive Rebase: Do actions if e

* lastBugFix 979e346 Interactive Rebase: Do actions if e

 master 25fe20b [origin/master] Add missing package

 newBugFix 25fe20b Add missing package import for g

Branches with remotes
At some point, it is very likely that you have cloned somebody's repository. This means
you have an associated remote. The remote is usually called origin because it is where
the source originated from.

While working with Git and remotes, you will get some benefits from Git.

We can start with git status and see what we get while working with the remote.

Getting ready
1. We will start by checking out a local branch that tracks a remote branch:

$ git checkout -b remoteBugFix --track origin/stable-3.2

Branch remoteBugFix set up to track remote branch stable-3.2 from
origin.

Switched to a new branch 'remoteBugFix'

2. The previous command creates and checks out the remoteBugFix branch that will
track the origin/stable-3.2 branch. So, for instance, executing git status
will automatically show how different your branch is from origin/stable-3.2, and
it will also show whether your branch's HEAD can be fast forwarded to the HEAD of the
remote branch or not.

3. To provide an example of how the previous step works, we need to do some manual
work that will simulate this situation. First, we find a commit:
$ git log -10 origin/stable-3.2 --oneline

f839d38 Prepare post 3.2.0 builds

699900c JGit v3.2.0.201312181205-r

0ff691c Revert "Fix for core.autocrlf=input resulting in modified
fil

www.allitebooks.com

http://www.allitebooks.org

Branching, Merging, and Options

58

1def0a1 Fix for core.autocrlf=input resulting in modified file and
un

0ce61ca Canonicalize worktree path in BaseRepositoryBuilder if set
vi

be7942f Add missing @since tags for new public methods in Config

ea04d23 Don't use API exception in RebaseTodoLine

3a063a0 Merge "Fix aborting rebase with detached head" into
stable-3.

e90438c Fix aborting rebase with detached head

2e0d178 Add recursive variant of Config.getNames() methods

4. The command will list the last 10 commits on the stable-3.2 branch from the
remote origin. The --oneline option will show the abbreviated commit hash and
the commit subject. For this recipe, we will be using the following commit:
$ git reset --hard 2e0d178

HEAD is now at 2e0d178 Add recursive variant of Config.getNames()
m

5. This will reset the remoteBugFix branch to the 2e0d178 commit hash.
We are now ready to continue using the free benefits of Git when we have
a remote tracking branch.

We are resetting to a commit that is accessible from the origin/stable-3.2 remote
tracking branch; this is done to simulate that we have performed a Git fetch and new
commits were downloaded for the origin/stable-3.2 branch.

How to do it…
Here, we will try a few commands that assist you when you have a remote tracking branch:

1. Start by executing git status:
$ git status

On branch remoteBugFix

Your branch is behind 'origin/stable-3.2' by 9 commits, and can be
fast-forwarded.

 (use "git pull" to update your local branch)

 nothing to commit, working directory clean

Chapter 3

59

Git is very descriptive when you have a tracking branch and you use git status.
As you can see from the message, you can use git pull to update your local
branch, which we will try in the next example. Now, we will just perform the merge:

The git pull command is just a git fetch command and then
a git merge command with the remote tracking branch.

$ git merge origin/stable-3.2

Updating 2e0d178..f839d38

Fast-forward

 .../org/eclipse/jgit/api/RebaseCommandTest.java | 213
+++++++++++

 .../src/org/eclipse/jgit/api/RebaseCommand.java | 31 +--

 .../jgit/errors/IllegalTodoFileModification.java | 59 ++++++

 .../eclipse/jgit/lib/BaseRepositoryBuilder.java | 2 +-

 .../src/org/eclipse/jgit/lib/Config.java | 2 +
 .../src/org/eclipse/jgit/lib/RebaseTodoLine.java | 16 +-

 6 files changed, 266 insertions(+), 57 deletions(-)

 create mode 100644 org.eclipse.jgit/src/org/eclipse/jgit/errors/
Ille

2. From the output, you can see it is a fast-forward merge, as Git predicted in the
output of git status.

There's more...
You can also add a remote to an existing branch, which is very handy when you realize that
you actually wanted a remote tracking branch but forgot to add the tracking information
while creating the branch:

1. Start by creating a local branch at the 2e0d17 commit:
$ git checkout -b remoteBugFix2 2e0d17

Switched to a new branch 'remoteBugFix2'

Branching, Merging, and Options

60

2. The remoteBugFix2 branch is just a local branch at the moment with no tracking
information; to set the tracking branch, we need to use --set-upstream-to or –u
as a flag to the git branch command:
$ git branch --set-upstream-to origin/stable-3.2

Branch remoteBugFix2 set up to track remote branch stable-3.2 from
origin.

3. As you can see from the Git output, we are now tracking the stable-3.2 branch
from the origin:
$ git status

On branch remoteBugFix2

Your branch is behind 'origin/stable-3.2' by 9 commits, and can be
fast-forwarded.

 (use "git pull" to update your local branch)

nothing to commit, working directory clean

4. You can see from the Git output that you are nine commits ahead, and you can use
git pull to update the branch. Remember that a git pull command is just a
git fetch command, and then a git merge command with the upstream branch,
which we also call the remote tracking branch:
$ git pull

remote: Counting objects: 1657, done

remote: Finding sources: 100% (102/102)

remote: Total 102 (delta 32), reused 98 (delta 32)

Receiving objects: 100% (102/102), 65.44 KiB | 0 bytes/s, done.

Resolving deltas: 100% (32/32), completed with 19 local objects.

From https://git.eclipse.org/r/jgit/jgit

 25fe20b..50a830f master -> origin/master

First, rewinding head to replay your work on top of it...

Fast-forwarded remoteBugFix2 to
f839d383e6fbbda26729db7fd57fc917fa47db44.

5. From the output, you can see the branch has been fast forwarded to the
f839d383e6fbbda26729db7fd57fc917fa47db44 commit hash, which is
equivalent to origin/stable-3.2. You can verify this with git log:

$ git log -1 origin/stable-3.2 --format=format:%H

f839d383e6fbbda26729db7fd57fc917fa47db44

Chapter 3

61

Forcing a merge commit
If you are reading this book, you might have seen a lot of basic examples of software
delivery chains and branching models. It is very likely that you have been trying to use
different strategies and found that none of them completely supports your scenario,
which is perfectly fine as long as the tool can support your specific workflow.

Git supports almost any workflow. I have often encountered a situation that requires a
merge commit while merging a feature, even though it can be done with a fast-forward
merge. Those who requested it often use it to indicate that you have actually merged
in a feature and want to store the information in the repository.

Git has fast and easy access to all the commit messages, so the repository
should be used as a journal, not just a backup of the source code.

Getting ready
Start by checking out a local branch remoteOldbugFix that tracks origin/stable-3.1:

$ git checkout -b remoteOldBugFix --track origin/stable-3.1

Branch remoteOldBugFix set up to track remote branch stable-3.1
from Switched to a new branch 'remoteOldBugFix'

How to do it...
The following steps will show you how to force a merge commit:

1. To force a merge commit, you need to use the --no-ff flag, no-ff is no fast
forward. We will also use --quiet for minimizing the output and --edit to allow
us to edit the commit message. Unless you have a merge conflict, Git will create the
merge commit for you automatically:
$ git merge origin/stable-3.2 --no-ff --edit --quiet

Auto-merging

org.eclipse.jgit.test/tst/org/eclipse/jgit/test/resources/
SampleDat

Removing org.eclipse.jgit.test/tst/org/eclipse/jgit/internal/
storage/file/GCTe

Auto-merging org.eclipse.jgit.packaging/org.eclipse.jgit.target/
jgit-4.3.target

Branching, Merging, and Options

62

2. The commit message editor will open, and you can write a commit message.
Closing the editor creates the merge commit and we are done.

3. To verify this, you can reset back to origin/stable-3.1 and perform the
merge without the --no-ff flag:
$ git reset --hard remotes/origin/stable-3.1

HEAD is now at da6e87b Prepare post 3.1.0 builds

4. Now, perform the merge with the following command:
$ git merge origin/stable-3.2 --quiet

5. You can see the difference using Gitk. The following screenshot shows the
fast forward merge, as you can see our remoteOldBugFix branch points
to origin/stable-3.2:

Chapter 3

63

6. The following screenshot shows the merge commit we forced Git to create.
My branch remoteOldBugFix is ahead of remotes/origin/stable-3.2,
and the I performed the commit:

There's more…
Although most branching scenarios expect you to completely merge branches, there
are situations when while working in a real environment, you only need to merge specific
pieces of one branch into another branch. Using the --no-commit option, Git will make
the merge and stop before committing, allowing you to modify and add files to the merge
commit before committing.

Branching, Merging, and Options

64

As in example, I have been working with projects where versions of strings have been updated
in the feature branch but not in the master branch. So, an automatic merge into master
would replace the current version string used on the master branch, which in my case was
not the intention:

1. Start by checking out a local remotePartlyMerge branch that tracks origin/
stable-2.3:
$ git checkout -b remotePartlyMerge --track origin/stable-2.3

Branch remotePartlyMerge set up to track remote branch stable-2.3
from origin.

Switched to a new branch 'remotePartlyMerge'

2. Then, to create the merge and allow you to decide what will be part of the commit,
you can use --no-commit:
$ git merge origin/stable-3.1 --no-ff --no-commit

 a lot of output….

 Automatic merge went well; stopped before committing as
requested

3. Again, Git is very informative; you can see from the output that everything went well
and Git stopped before committing as requested. To continue, let's pretend we didn't
want the org.eclipse.jgit.test directory to be part of the merge commit.
To achieve this, we reset the directory using the git reset <path> command:
$ git reset ./org.eclipse.jgit.test

Unstaged changes after reset:

M org.eclipse.jgit.test/.gitignore

 A lot of output

M org.eclipse.jgit.test/tst/org/eclipse/jgit/util/io/
AutoCRLFOutputStreamTest.java

4. You can see from the output that you have unstaged changes after the reset; this is
exactly what we want. You can check which unstaged changes you have by running
git status. Now, we will just finish the merge:
$ git commit -m "Merging stable-3.1 without org.eclipse.jgit.test"

[remotePartlyMerge 396f32a] Merging stable-3.1 without

5. The merge commit is complete. If you run a git status command now, you will
still have the unstaged changes in you work area. To verify whether the result is as
expected, we can use diff for this with git diff to show that the file is as it is on
the origin/stable-2.3 branch:
$ git diff origin/stable-2.3 ./org.eclipse.jgit.test

Chapter 3

65

6. There is no output from diff; this is the expected result. We are telling the diff
command to diff our current HEAD commit and branch origin/stable-2.3,
and we only care about the diffs in ./org.eclipse.jgit.test:

If you don't specify HEAD, you will diff with your current WA,
and the diff command will have a lot of output as you have
unstaged changes.

Using git rerere to merge known conflicts
While working on a feature branch, you probably like to merge daily or maybe more often,
but often when you work on long-living feature branches, you end up in a situation where
you have the same conflict occurring repeatedly.

Here, you can use git rerere which stands for reuse recorded resolution. Git rerere is
not enabled by default but can be enabled with the following command:

$ git config rerere.enabled true

You can configure it globally by adding --global to the
git config command.

How to do it…
Perform the following steps to merge the known conflicts:

1. In the jgit repository folder, start by checking out a branch that tracks
origin/stable-2.2:
git checkout -b rerereExample --track origin/stable-2.2

2. Now, change the maven-compiler-plugin version to something personalized such
as 2.5.2 like this is in line 211. If you run git diff, you should get a result very
similar to the following:
$ git diff

diff --git a/pom.xml b/pom.xml

index 085e00f..d5aec17 100644

--- a/pom.xml

+++ b/pom.xml

Branching, Merging, and Options

66

@@ -208,7 +208,7 @@

 <plugin>

 <artifactId>maven-compiler-plugin</artifactId>

- <version>2.5.1</version>

+ <version>2.5.2</version>

 </plugin>

 <plugin>

3. Now add the file and create a commit:
$ git add pom.xml

$ git commit -m "Update maven-compiler-plugin to 2.5.2"

[rerereExample d474848] Update maven-compiler-plugin to 2.5.2

 1 file changed, 1 insertion(+), 1 deletion(-)

4. Store you current commit in a backup branch named rerereExample2:
$ git branch rerereExample2

Here, git branch rerereExample2 is just storing the current commit as a
branch, as we need to use that for rerere example number 2.

5. Now, we need to perform the first merge that will fail on auto merge. Then, we can
solve that. After solving it, we can reuse the merge resolution to solve the same
problem in the future:
$ git merge --no-ff v3.0.2.201309041250-rc2

A lot of output …

Automatic merge failed; fix conflicts and then commit the result.

6. As we have git rerere enabled, we can use git rerere status to see which
files or paths will be recorded:
$ git rerere status

pom.xml

Chapter 3

67

7. Edit the pom.xml file and solve the merge conflict so that you can get the diff output
shown as follows. You have to remove the line with 2.5.1 and the merge markers:

Merge markers are lines that begin with <<<<<<, >>>>>>, or ======;
these lines indicate the points where Git could not perform an auto merge.

$ git diff v3.0.2.201309041250-rc2 pom.xml

diff --git a/pom.xml b/pom.xml

index 60cb0c8..faa7618 100644

--- a/pom.xml

+++ b/pom.xml

@@ -226,7 +226,7 @@

 <plugin>

 <artifactId>maven-compiler-plugin</artifactId>

- <version>3.1</version>

+ <version>2.5.2</version>

 </plugin>

 <plugin>

8. Mark the merge as complete by adding pom.xml to the staging area and run git
commit to finish the merge:
$ git commit

Recorded resolution for 'pom.xml'.

[rerereExample 9b8725f] Merge tag 'v3.0.2.201309041250-rc2' into
rerereExample

9. Note the recorded resolution for the pom.xml output from Git; this will not be here
without enabling git rerere. Git has recorded this resolution to this particular
merge conflict and will also record how to solve this. Now, we can try and rebase
the change to another branch.

Branching, Merging, and Options

68

10. Start by checking out the rerereExample2 branch from our repository:
$ git checkout rerereExample2

Switched to branch 'rerereExample2'

11. Try to rebase your change on top of the origin/stable-3.2 branch:
$ git rebase origin/stable-3.2

First, rewinding head to replay your work on top of it...

Applying: Update maven-compiler-plugin to 2.5.2

Using index info to reconstruct a base tree...

M pom.xml

Falling back to patching base and 3-way merge...

Auto-merging pom.xml

CONFLICT (content): Merge conflict in pom.xml

Resolved 'pom.xml' using previous resolution.

Failed to merge in the changes.

Patch failed at 0001 Update maven-compiler-plugin to 2.5.2

The copy of the patch that failed is found in:

 c:/Users/Rasmus/repos/jgit/.git/rebase-apply/patch

When you have resolved this problem, run "git rebase --continue".

If you prefer to skip this patch, run "git rebase --skip" instead.

To check out the original branch and stop rebasing, run "git
rebase --abort".

12. You should notice the following output:
CONFLICT (content): Merge conflict in pom.xml

Resolved 'pom.xml' using previous resolution

13. As the merge conflict is the same in pom.xml, Git can solve the conflict in the file
for you. This is very clear when you open the file and see there are no merge markers,
as the resolution Git had recorded has been applied. Finish the merge by adding
pom.xml and continue the rebase:
$ git add pom.xml

$ git rebase --continue

Applying: Update maven-compiler-plugin to 2.5.2

Chapter 3

69

14. Start Gitk to see that the commit has been rebased on top of the origin/
stable-3.2 branch:

You can try the same scenario with merging and it would merge the file automatically for you.

There's more...
When you merge different branches often and you are not sure which branch a specific
error fix is a part of, it is actually quite easy to find out.

1. You need to find a commit you are interested in getting this information for.
Then, use the --contains flag for the git branch command:
$ git branch --contains 06ddee1

 anotherBugFix

 lastBugFix

 master

 newBugFix

 remoteBugFix

 remoteBugFix2

 remoteOldbugFix

* rerereExample2

Branching, Merging, and Options

70

2. The previous command lists all the branches that have the specific commit.
If you leave out the <commit> option, Git will check HEAD. So, for instance,
checking out the rerereExample2 branch and executing the following command,
you will see the commit is present only on that branch:
$ git checkout rerereExample2

Switched to branch 'rerereExample2'

$ git branch -a --contains

* rerereExample2

The -a option indicates that you wish to check all the remote
branches as well. If you leave this out, it will check only local branches.

However, as you can see, our commit is not on any remote branch as the commit
has just been created locally and has not been pushed to any remotes yet.

You can use tags, branch names, or commit hashes while using the
git branch -a --contains command.

3. Let's try to see the branches where the v2.3.0.201302130906 tag is present:
$ git branch -a --contains v2.3.0.201302130906

 anotherBugFix

 lastBugFix

 master

 newBugFix

 remoteBugFix

 remoteBugFix2

 remoteOldbugFix

 remotePartlyMerge

* rerereExample2

 remotes/origin/HEAD -> origin/master

 remotes/origin/master

 remotes/origin/stable-2.3

 remotes/origin/stable-3.0

 remotes/origin/stable-3.1

 remotes/origin/stable-3.2

That tag is in quite a lot of branches.

Chapter 3

71

The difference between branches
Checking the difference between branches can show valuable information before merging.

A regular Git diff between two branches will show you all the information, but it can be rather
exhausting to sit and look at; maybe you are only interested in one file. Thus, you don't need
the long unified diff.

Getting ready
To start with, we decide on two branches, tags, or commits we want to see the diff
between. Then, to list files that have changed between these branches, you can use
the --name-only flag.

How to do it…
Perform the following steps to see the difference between the branches:

1. Diff the origin/stable-3.1 with origin/stable-3.2 branch:
$ git diff --name-only origin/stable-3.1 origin/stable-3.2 org.
eclipse.jgit/src/org/eclipse/jgit/transport/org.eclipse.jgit/src/
org/eclipse/jgit/transport/BasePackFetch

More output..

2. We are building the command in this pattern, that is, git diff [options]
<commit> <commit> <path>. Then, we can diff what we care about while looking
into the differences between branches. This is very useful if you are responsible for a
subset of the source code, and you wish to diff that area only.

3. Let's try the same diff between branches, but this time we will diff the entire
branches, not just a subdirectory; however, we only want to show the deleted or
added files between the branches. This is done by using the --diff-filter=DA
and --name-status options. The --name-status option will only show the
filenames and the type of change. The --diff-filter=DA option will only
show the deleted and added files:
$ git diff --name-status --diff-filter=DA origin/stable-3.1
origin/stable-3.2

D org.eclipse.jgit.junit/src/org/eclipse/jgit/junit/Sam

A org.eclipse.jgit.packaging/org.eclipse.jgit.target/jg

 More output..

Branching, Merging, and Options

72

4. This shows the files that have been added and deleted while moving from
origin/stable-3.1 to origin/stable-3.2:

5. If we switch the branches around like in the following command, we will get the
opposite result.

$ git diff --name-status --diff-filter=DA origin/stable-3.2
origin/stable-3.1

A org.eclipse.jgit.junit/src/org/eclipse/jgit/junit/Sam

D org.eclipse.jgit.packaging/org.eclipse.jgit.target/jg

 More output..

Note that the indication letters A and D switched places because now we want to know
what happens if we move from origin/stable-3.2 to origin/stable-3.1.

There's more…
There are more options in the help files for Git. Just run git merge --help or git branch
--help to see what other options you have. The option I have used and the examples shown
are all examples that have given me the edge while working with Git as a release manager
and Git mentor at Nokia.

4
Rebase Regularly and

Interactively, and Other
Use Cases

In this chapter, we will cover the following topics:

 f Rebasing commits to another branch

 f Continuing a rebase with merge conflicts

 f Rebasing selective commits interactively

 f Squashing commits using an interactive rebase

 f Changing the author of commits using a rebase

 f Auto-squashing commits

Introduction
Rebase is an incredibly strong feature of Git. Hopefully, you have used it before; if not,
you might have heard about it. Rebasing is exactly what the word implies. So, if you have
a certain commit A that is based on commit B, then rebasing A to C would result in
commit A being based on commit C.

As you will see in the different examples in this chapter, it is not always as simple as that.

Rebase Regularly and Interactively, and Other Use Cases

74

Rebasing commits to another branch
To start with, we are going to perform a very simple rebase where we will introduce a
new file, commit this file, make a change to it, and then commit it again so that we end
up with 2 new commits.

Getting ready
Before we start, we need a repository to work in. You can use a previous clone of jgit,
but to get a close to identical output from the example, you can clone the jgit repository.

The jgit repository can be cloned as follows:

$ git clone https://git.eclipse.org/r/jgit/jgit chapter4

$ cd chapter4

How to do it…
We start by creating a local branch and then make two commits by performing the following
steps; these are the commits that we want to rebase onto another branch:

1. Check out a new branch, rebaseExample, that tracks origin/stable-3.1:
 $ git checkout -b rebaseExample --track origin/stable-3.1

Branch rebaseExample set up to track remote branch stable- 3.1
from origin.

Switched to a new branch 'rebaseExample'

2. Make two commits on the rebaseExample branch as follows:
$ echo "My Fishtank

Gravel, water, plants

Fish, pump, skeleton" > fishtank.txt

$ git add fishtank.txt

$ git commit -m "My brand new fishtank"

[rebaseExample 4b2c2ec] My brand new fishtank

 1 file changed, 4 insertions(+)

 create mode 100644 fishtank.txt

$ echo "mosquitos" >> fishtank.txt

$ git add fishtank.txt

Chapter 4

75

$ git commit -m "Feeding my fish"

[rebaseExample 2132d88] Feeding my fish

 1 file changed, 1 insertion(+)

3. Then, we rebase the change on top of the origin/stable-3.2 branch instead.

$ git rebase origin/stable-3.2

First, rewinding head to replay your work on top of it...

Applying: My brand new fishtank

Applying: Feed the fish

How it works
When you execute git rebase, Git starts by finding the common ancestor of the current
HEAD branch and the branch you want to rebase to. When Git finds merge-base, it will find
the commits that are not available on the branch you are rebasing onto. Git will simply try to
apply those commits one by one.

Continuing a rebase with merge conflicts
When you rebase a commit or a branch on top of a different HEAD, you will eventually
see a conflict.

If there is a conflict, you will be asked to solve the merge conflict and continue with the
rebase using git rebase --continue.

How to do it
We will be creating a commit that adds the same fishtank.txt file on top of the
origin/stable-3.1 branch; then, we will try to rebase this on top of the rebaseExample
branch we created in the Rebasing commits to another branch section:

1. Check out a branch named rebaseExample2 that tracks origin/stable-3.1:
$ git checkout -b rebaseExample2 --track origin/stable-3.1

Checking out files: 100% (212/212), done.

Branch rebaseExample2 set up to track remote branch stable-3.1
from origin.

Switched to a new branch 'rebaseExample2'

Rebase Regularly and Interactively, and Other Use Cases

76

2. Make a commit on the branch.
$ echo "My Fishtank

Pirateship, Oister shell

Coconut shell

">fishtank.txt

$ git add fishtank.txt

$ git commit -m "My brand new fishtank"

[rebaseExample2 39811d6] My brand new fishtank

 1 file changed, 5 insertions(+)

 create mode 100644 fishtank.txt

3. Try to rebase the branch on top of the rebaseExample branch.
$ git rebase rebaseExample

First, rewinding head to replay your work on top of it...

Applying: My brand new fishtank

Using index info to reconstruct a base tree...

<stdin>:12: new blank line at EOF.

+

warning: 1 line adds whitespace errors.

Falling back to patching base and 3-way merge...

Auto-merging fishtank.txt

CONFLICT (add/add): Merge conflict in fishtank.txt

Failed to merge in the changes.

Patch failed at 0001 My brand new fishtank

The copy of the patch that failed is found in:

 c:/Users/Rasmus/repos/chapter4/.git/rebase-apply/patch

When you have resolved this problem, run "git rebase --continue".

If you prefer to skip this patch, run "git rebase --skip" instead.

To check out the original branch and stop rebasing, run "git
rebase --abort".

Chapter 4

77

4. As predicted, we have a conflict. Solve the conflict in your preferred editor.
Then, add the file to the index using git add and continue with the rebase.
$ git add fishtank.txt

$ git rebase --continue

Applying: My brand new fishtank

5. We can now check with gitk to see whether our change is rebased on top of
the rebaseExample branch, as shown in the following screenshot:

How it works
As we learned from the first example, Git will apply the commits that are not available on
the branch you are rebasing to. In our example, it is only our commit, as we made it, that is
available on the rebaseExample2 branch.

There's more…
You might have noticed in the output of the failing rebase that you have two extra options
for the commit.

When you have resolved this problem, run git rebase --continue. If you prefer to skip
this patch, run git rebase --skip instead. To check out the original branch and stop
rebasing, run git rebase --abort.

The first extra option we have is to totally ignore this patch by skipping it; you can do this
using git rebase --skip. In our example, this will cause our branch to be fast-forwarded
to the rebaseExample branch. So, both our branches will point to the same commit hash.

The second option is to abort the rebasing. If we choose to do this, then we will go
back to the branch as it was prior to starting the rebase. This can be done using
git rebase --abort.

Rebase Regularly and Interactively, and Other Use Cases

78

Rebasing selective commits interactively
When you are working on a new feature and have branched from an old release into a feature
branch, you might want to rebase this branch onto the latest release. When looking into the
list of commits on the feature branch, you realize that some of the commits are not suitable
for the new release. So, when you want to rebase the branch onto a new release, you will need
to remove some commits. This can be achieved with interactive rebasing, where Git gives you
the option to pick the commits you wish to rebase.

Getting ready
To get started with this example, you need to check the previously created branch,
rebaseExample; if you don't have this branch, follow the steps from the Rebasing
a few commits section and use the following command:

$ git checkout rebaseExample

Switched to branch 'rebaseExample'

Your branch is ahead of 'origin/stable-3.1' by 109 commits.

 (use "git push" to publish your local commits)

Notice that because we are tracking origin/stable-3.1, the Git checkout will tell us
how far ahead we are in comparison with that branch.

How to do it
We will try to rebase our current branch, rebaseExample, on top of the origin/
stable-3.1 branch by performing the following steps. Remember that Git will apply
the commits that are not available on the branch we are rebasing to; so, in this case,
there will be a lot of commits:

1. Rebase the branch onto origin/stable-3.1 by using the following command:
$ git rebase --interactive origin/stable-3.1

2. What you will see now is a list of all the commits you will be rebasing onto the
origin/stable-3.1 branch. These commits are all the commits between the
origin/stable-3.1 and rebaseExample branches. The commits will be applied
from top to bottom, so the commits will be listed in reverse order, at least compared
to what you would normally see in Git. This actually makes good sense. The commits
have the keyword pick to the left and then the abbreviated commit hash, and finally
the title of the commit subject.

Chapter 4

79

If you scroll down to the bottom, you will see a list like the following one:

pick 43405e6 My brand new fishtank

pick 08d0906 Feed the fish

Rebase da6e87b..08d0906 onto da6e87b

#

Commands:

p, pick = use commit

r, reword = use commit, but edit the commit message

e, edit = use commit, but stop for amending

s, squash = use commit, but meld into previous commit

f, fixup = like "squash", but discard this commit's log message

x, exec = run command (the rest of the line) using shell

#

These lines can be re-ordered; they are executed from top to
bottom.

#

If you remove a line here THAT COMMIT WILL BE LOST.

#

However, if you remove everything, the rebase will be aborted.

#

Note that empty commits are commented out

So, if we only want our fishtank commits to be based on top of the origin/
stable-3.1 branch, we should remove all the commits except for our two commits.

3. Remove all the lines except for the two commits at the bottom; for now, leave pick
as the keyword. Save the file and close the editor, and you will get the following
message from Git:
Successfully rebased and updated refs/heads/rebaseExample.

4. Now, with gitk, try to check whether we accomplished what we predicted. The next
screenshot shows our two fishtank commits on top of the origin/stable-3.1
branch. The following screenshot is what we expected:

Rebase Regularly and Interactively, and Other Use Cases

80

There's more…
The same thing could actually be achieved with a single small Git command. We have been
rebasing commits from the origin/stable-3.2 branch to the rebaseExample branch
onto the origin/stable-3.2 branch. This can also be achieved in the following manner:

$ git rebase --onto origin/stable-3.1 origin/stable-3.2 rebaseExample

First, rewinding head to replay your work on top of it...

Applying: My brand new fishtank

Applying: Feed the fish

The --onto origin/stable-3.2 flag tells Git to rebase onto origin/stable-3.2,
and it has to be from origin/stable-3.1 to the rebaseExample branch. So, we end
up having rebaseExample branch to the branch of the origin/stable-3.1 and the like.
The next diagram shows before the rebase example where we have our two commits on top
of origin/stable-3.2, then after the rebase where our commits are on top of origin/stable-3.1
as we wanted:

Chapter 4

81

Squashing commits using an interactive
rebase

When I work on a local branch, I prefer to commit in small increments with a few comments
on what I did in the commits; however, as these commits do not build or pass any test
requirements, I cannot submit them for review and verification one by one. I have to merge
them in my branch, and still, cherry picking my fix would require me to cherry-pick twice the
number of commits, which is not very handy.

What we can do is rebase and squash the commits into a single commit or at least a smaller
number of commits.

Getting ready
To get started with this example, we need a new branch, namely rebaseExample3,
that tracks origin/stable-3.1. Create the branch with the following command:

$ git checkout -b rebaseExample3 --track origin/stable-3.1

Branch rebaseExample3 set up to track remote branch stable-3.1 from
origin.

Switched to a new branch 'rebaseExample3'

How to do it...
To really showcase this feature of Git, we will start by being six commits ahead of the
origin/stable-3.1 branch. This is to simulate the fact that we have just created six
commits on top of the rebaseExample3 branch; to do this, perform the following steps:

1. Find a commit that is between origin/stable-3.1 and origin/stable-3.2
and list the commits in reverse order. If you don't list them in reverse order, you can
scroll down to the bottom of the output and find the commit we will use, as shown in
the following snippet:
$ git log origin/stable-3.1..origin/stable-3.2 --oneline --reverse

8a51c44 Do not close ArchiveOutputStream on error

3467e86 Revert "Close unfinished archive entries on error"

f045a68 Added the git-describe implementation

0be59ab Merge "Added the git-describe implementation"

fdc80f7 Merge branch 'stable-3.1'

7995d87 Prepare 3.2.0-SNAPSHOT builds

5218f7b Propagate IOException where possible when getting refs.

Rebase Regularly and Interactively, and Other Use Cases

82

2. Reset the rebaseExample3 branch to the 5218f7b commit; this will simulate that
we have six commits on top of the origin/stable-3.1 branch. This can be tested
by running the status of Git as follows:
$ git reset --hard 5218f7b

HEAD is now at 5218f7b Propagate IOException where possible when
getting refs.

$ git status

On branch rebaseExample3

Your branch is ahead of 'origin/stable-3.1' by 6 commits.

 (use "git push" to publish your local commits)

nothing to commit, working directory clean

3. Now we have these six commits on top of the origin/stable-3.1 branch, and
we want to squash these commits into two different commits instead of six commits.
This can be done by simply running git rebase --interactive. Notice that we
are not specifying which branch we want to rebase to since we have already set up
a tracking branch when we created the branch using --track. To continue, let's
execute the rebase command as follows:
$ git rebase --interactive

pick 8a51c44 Do not close ArchiveOutputStream on error

pick f045a68 Added the git-describe implementation

pick 7995d87 Prepare 3.2.0-SNAPSHOT builds

pick 5218f7b Propagate IOException where possible when getting
refs.

4. The editor will open, and you will see four commits and not six as you would expect.
This is because the rebase in general refuses to take merge commits as part of the
rebase scenario. You can use the --preserve-merges flag. As per the Help section
of Git, this is not recommended.

According to the Help section in Git --preserve-merges instead of
ignoring merges, tries to recreate them.
The --preserve-merges flag uses the --interactive machinery
internally, but combining it with the --interactive option explicitly is
generally not a good idea unless you know what you are doing (see the
BUGS in the following snippet).

Chapter 4

83

5. Edit the file so it looks as follows:
pick 8a51c44 Do not close ArchiveOutputStream on error

squash f045a68 Added the git-describe implementation

pick 7995d87 Prepare 3.2.0-SNAPSHOT builds

squash 5218f7b Propagate IOException where possible when getting
refs.

6. Remember that commits are listed in reverse order as compared to the Git log.
So, while squashing, we squash up into the commits we have marked with the pick.
When you close the editor, Git will start the rebase from top to bottom. First, apply
8a51c44 and then squash f045a68 into the commit 8a51c44. This will open the
commit message editor that contains both the commit messages. You can edit the
commit messages, but for now, let us just close the editor to finish with the rebase
and the squashing of these two commits. The editor will open one more time to
complete the squashing of 5218f7b into 7995d87. Use gitk to verify the result.

The following screenshot is as expected; now, we only have two commits on top of
the origin/stable3-1 branch:

7. If you check the commit message of the HEAD commit, you will see that it has the
information of two commits, as shown in the following command. This is because
we decided not to change the commit message when we made the change:
$ git log -1

commit 9c96a651ff881c7d7c5a3974fa7a19a9c264d0a0

Author: Matthias Sohn <matthias.sohn@sap.com>

Date: Thu Oct 3 17:40:22 2013 +0200

 Prepare 3.2.0-SNAPSHOT builds

Rebase Regularly and Interactively, and Other Use Cases

84

 Change-Id: Iac6cf7a5bb6146ee3fe38abe8020fc3fc4217584

 Signed-off-by: Matthias Sohn <matthias.sohn@sap.com>

 Propagate IOException where possible when getting refs.

 Currently, Repository.getAllRefs() and Repository.getTags()
silently

 ignores an IOException and instead returns an empty map.
Repository

 is a public API and as such cannot be changed until the next
major

 revision change. Where possible, update the internal jgit APIs
to

 use the RefDatabase directly, since it propagates the error.

 Change-Id: I4e4537d8bd0fa772f388262684c5c4ca1929dc4c

There's more…
Now we have squashed two commits, but we could have used other keywords when editing
the rebase's to-do list.

We will try the fixup functionality, which works like the squash functionality, by performing
the following steps; the exception is that Git will select the commit message of the commits
with the pick keyword:

1. Start by resetting back to our starting point.
$ git reset --hard 5218f7b

HEAD is now at 5218f7b Propagate IOException where possible when
getting refs.

$ git status

On branch rebaseExample3

Your branch is ahead of 'origin/stable-3.1' by 6 commits.

 (use "git push" to publish your local commits)

nothing to commit, working directory clean

Chapter 4

85

2. As you can see, we are back at the starting point, that is, we're six commits ahead
of the origin/stable-3.1 branch. Now, we can try the fixup functionality. Start
the interactive rebase and change the file according to the following output. Notice
that you can use f instead of fixup.
$ git rebase --interactive

pick 8a51c44 Do not close ArchiveOutputStream on error

f f045a68 Added the git-describe implementation

pick 7995d87 Prepare 3.2.0-SNAPSHOT builds

f 5218f7b Propagate IOException where possible when getting refs.

3. Once you close the editor, you will see rebase's progress through Git. As predicted,
the commit message editor will not open; Git will just rebase the changes into two
commits on top of the orgin/stable-3.1 branch.
$ git rebase --interactive

[detached HEAD 70b4eb7] Do not close ArchiveOutputStream on error

 Author: Jonathan Nieder <jrn@google.com>

 6 files changed, 537 insertions(+), 2 deletions(-)

 create mode 100644 org.eclipse.jgit.test/tst/org/eclipse/jgit/
api/DescribeComma

ndTest.java

 create mode 100644 org.eclipse.jgit/src/org/eclipse/jgit/api/
DescribeCommand.ja

va

[detached HEAD c5bc5cc] Prepare 3.2.0-SNAPSHOT builds

 Author: Matthias Sohn <matthias.sohn@sap.com>

 67 files changed, 422 insertions(+), 372 deletions(-)

 rewrite org.eclipse.jgit.http.server/META-INF/MANIFEST.MF (61%)

 rewrite org.eclipse.jgit.java7.test/META-INF/MANIFEST.MF (66%)

 rewrite org.eclipse.jgit.junit/META-INF/MANIFEST.MF (73%)

 rewrite org.eclipse.jgit.pgm.test/META-INF/MANIFEST.MF (61%)

 rewrite org.eclipse.jgit.pgm/META-INF/MANIFEST.MF (63%)

 rewrite org.eclipse.jgit.test/META-INF/MANIFEST.MF (77%)

 rewrite org.eclipse.jgit.ui/META-INF/MANIFEST.MF (67%)

 rewrite org.eclipse.jgit/META-INF/MANIFEST.MF (64%)

Successfully rebased and updated refs/heads/rebaseExample3.

Rebase Regularly and Interactively, and Other Use Cases

86

4. Another difference is that the commit message from the two commits we marked
with fixup has disappeared. So, if you compare this with the previous example,
it is very clear what the difference is; it is shown in the following command:
commit c5bc5cc9e0956575cc3c30c3be4aecab19980e4d

Author: Matthias Sohn <matthias.sohn@sap.com>

Date: Thu Oct 3 17:40:22 2013 +0200

 Prepare 3.2.0-SNAPSHOT builds

 Change-Id: Iac6cf7a5bb6146ee3fe38abe8020fc3fc4217584

 Signed-off-by: Matthias Sohn matthias.sohn@sap.com

5. Finally, we can also confirm that we still have the same source code, but with
different commits. This can be done by comparing this commit with the commit
we created via 9c96a65, using the following command:

$ git diff 9c96a65

As predicted, there is no output from git diff, so we still have the same source code.

This check can also be performed on the previous example.

Changing the author of commits using a
rebase

When I start working on a new project, I often forget to set my author name and author e-mail
address for the specified project; therefore, I often have commits in my local branch that have
been committed with the wrong username and/or e-mail ID. Unfortunately, I can't use the
same account everywhere as some work with regards to my cooperate account still needs to
be done; however, for most other parts, I can use my private account.

Getting ready
Before we begin this exercise, we need a branch, as always with Git. Name the branch
resetAuthorRebase and make it track origin/master. Use the following command
to achieve this:

$ git checkout -b resetAuthorRebase -t origin/master

Branch resetAuthorRebase set up to track remote branch master from
origin.

Switched to a new branch 'resetAuthorRebase'

Chapter 4

87

How to do it...
Now, we want to change the author of all the commits from origin/stable-3.2 to our
HEAD, which is master. This is just an example; you will rarely have to change the author
of commits that have already been published to a remote repository.

You can change the author of the HEAD commit by using git commit --amend --reset-
author; however, this will only change the author of HEAD and leave the rest of the commits
as they were. We will start by changing the author of the HEAD commit and then verifying why
that is wrong by performing the following steps:

1. Change the author of the HEAD commit as follows:
$ git commit --amend --reset-author

[resetAuthorRebase b0b2836] Update Kepler target platform to use
Kepler SR2 orbi

t R-build

 1 file changed, 1 insertion(+), 1 deletion(-)

2. Verify that you have changed it with the Git log command:
$ git log --format='format:%h %an <%ae>' origin/stable-3.2..HEAD

b0b2836 Rasmus Voss <rasmus.voss@live.dk>

b9a0621 Matthias Sohn <matthias.sohn@sap.com>

ba15d82 Matthias Sohn matthias.sohn@sap.com

3. We will list all the commits from origin/stable-3.2 to HEAD and we will define
a format with %h as the abbreviated commit hash, %an for the author's name, and
%ae for the author's e-mail address. From the output, you can see that I am now the
author of the HEAD commit, but what we really wanted was to change the author of
all the commits. To do this, we will rebase onto the origin/stable-3.2 branch;
then, for each commit, we will stop to amend and reset the author. Git can do most
of that work with --exec option for the git rebase, as follows:
git rebase --interactive --exec "git commit --amend --reset-
author" origin/stable-3.2

pick b14a939 Prepare 3.3.0-SNAPSHOT builds

exec git commit --amend --reset-author

pick f2abbd0 archive: Prepend a specified prefix to all entry
filenames

exec git commit --amend --reset-author

Rebase Regularly and Interactively, and Other Use Cases

88

4. As you can see, Git has opened the rebase's to-do list for you, and between every
commit, you have the exec keyword and the command we specified on the command
line. You can have more exec lines between commits if you have a use case for
them. Closing the editor will start the rebase.

5. As you will see, this process is not very good as the commit message editor opens
every time and you have to close the editor to allow Git to continue with the rebase.
To stop the rebase, clear the commit message editor and Git will return to the
command line; then, you can use git rebase --abort as follows:
Executing: git commit --amend --reset-author

Aborting commit due to empty commit message.

Execution failed: git commit --amend --reset-author

You can fix the problem, and then run

 git rebase --continue

$ git rebase --abort

To achieve what we really want, you can add the --reuse-message option for git
commit; this will reuse the commit message for the commit you will specify. We want
to use the message of HEAD as we are going to amend it to the HEAD commit. So, try
again as shown in the following command:

git rebase --interactive --exec "git commit --amend --reset-author
--reuse-message=HEAD" origin/stable-3.2

Executing: git commit --amend --reset-author --reuse-message=HEAD

[detached HEAD 0cd3e87] Prepare 3.3.0-SNAPSHOT builds

 51 files changed, 291 insertions(+), 291 deletions(-)

 rewrite org.eclipse.jgit.java7.test/META-INF/MANIFEST.MF (62%)

 rewrite org.eclipse.jgit.junit/META-INF/MANIFEST.MF (73%)

 rewrite org.eclipse.jgit.pgm.test/META-INF/MANIFEST.MF (61%)

 rewrite org.eclipse.jgit.test/META-INF/MANIFEST.MF (76%)

 rewrite org.eclipse.jgit.ui/META-INF/MANIFEST.MF (67%)

Executing: git commit --amend --reset-author --reuse-message=HEAD

[detached HEAD faaf25e] archive: Prepend a specified prefix to all
entry filenam

es

 5 files changed, 115 insertions(+), 1 deletion(-)

Executing: git commit --amend --reset-author --reuse-message=HEAD

[detached HEAD cfd743e] [CLI] Add option --millis / -m to debug-
show-dir-cache c

Ommand

Successfully rebased and updated refs/heads/resetAuthorRebase.

Chapter 4

89

6. Git provides an output indicating that the action was a success; however, to verify,
you can execute the previous Git log command and you should see the e-mail
address has changed on all the commits, as shown in the following command:

$ git log --format='format:%h %an <%ae>' origin/stable-3.2..HEAD

9b10ff9 Rasmus Voss <rasmus.voss@live.dk>

d8f0ada Rasmus Voss <rasmus.voss@live.dk>

53df2b7 Rasmus Voss rasmus.voss@live.dk

How it works...
It works as you would expect! There is one thing to remember: when using the exec
option, Git will check the work area for unstaged and staged changes. Consider the
following command line:

exec echo rainy_day > weather_main.txt
exec echo sunny_day > weather_california.txt

If you have a line as illustrated in the preceding command, the first exec would be executed
and you will then have an unstaged change in your work area. Git would complain and you
have to solve that before continuing with the next exec. So, if you want to do something like
this, you must create a single exec line that executes all the things you want. Besides this,
the rebase functionality is fairly simple, as it just tries to apply the changes in the order that is
specified in the rebase's to-do list. Git will only apply the changes specified in the list, so if you
remove some of them, they will not be applied. This is a way to clean up a feature branch for
unwanted commits, for instance, commits that enable you to debug.

Auto-squashing commits
When I work with Git, I often create a lot of commits for a single bug fix, but when making
the delivery to the remote repository, I prefer and recommend to deliver the bug fix as
one commit. This can be achieved with an interactive rebase, but since this should be a
common workflow, Git has a built-in feature called autosquash that will help you squash
the commits together.

Getting ready
Before we begin with this exercise, we will create a branch from origin/master so we are
ready to add commits to our fix.

Rebase Regularly and Interactively, and Other Use Cases

90

Let's start with something like this:

$ git checkout -b readme_update_developer --track origin/master

Branch readme_update_developer set up to track remote branch master from
origin.

Switched to a new branch 'readme_update_developer'

How to do it...
After checking the branch, we will create the first commit that we want to squash other
commits to. We need to use the abbreviated commit hash from this commit to automatically
create other commits that will squash to this commit by performing the following steps:

1. Start by echoing some text into README.md:
$ echo "More information for developers" >> README.md

2. This will append more information to README.md for developers; verify that the file
has changed using the git status as follows:
$ git status

On branch readme_update_developer

Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working
directory)

 modified: README.md

no changes added to commit (use "git add" and/or "git commit -a")

3. Now, we want to add and commit this; we can do this with the commit command
with the -a flag, which will add any unstaged changes to the commit, as shown in
the following command:
$ git commit -a -m "Updating information for developers"

[readme_update_developer d539645] Updating information for
developers

 1 file changed, 1 insertion(+)

Chapter 4

91

4. After you create the commit, remember the abbreviated commit hash; I have
highlighted it in bold in the command output. The abbreviation will be different in your
environment, and you must have your own abbreviation once you finish the exercise.

5. To continue, we will add three commits to the branch, and we would like to squash
two of these with the first commit, as shown in the following command:
$ echo "even More information for developers" >> README.md

$ git commit -a --squash=d539645 --no-edit

[readme_update_developer d62922d] squash! Updating information for
developers

 1 file changed, 1 insertion(+)

6. This is the first commit. Notice why we needed to store the abbreviated hash of the
first commit; we used it with the --squash option for git commit. This option
will create the commit with the subject of the commit specified. It will also add
"squash!" to the start of the subject. This is to indicate that Git should squash this
commit when performing a rebase. Now, create the second commit, as shown in the
following command:
$ echo "even More information for developers" >> README.md

$ git commit -a --squash=d539645 --no-edit

[readme_update_developer 7d6194d] squash! Updating information for
developers

 1 file changed, 1 insertion(+)

7. We have added two commits that we would like to squash with the first commit.
When committing, I also used the --no-edit option; this will skip the opening of the
commit's message editor. If you leave the flag out, the editor will open as it usually
does when committing. The difference is that the commit subject has already been
set, and you only need to write the commit message. Now, we will create the last
commit; we don't want to squash this commit:
$ echo "Adding configuration information" >> README.md

$ git commit -a -m "Updating information on configuration"

[readme_update_developer fd07857] Updating information on
configuration

 1 file changed, 1 insertion(+)

8. Now, we add the final commit that does not have anything to do with the first
three commits we added. This is why we did not use the --squash option.
We can now squash the commits together using git rebase -i:
$ git rebase -i

Rebase Regularly and Interactively, and Other Use Cases

92

9. You will get the rebase's to-do list up in the configured commit editor. What we would
have expected was to have Git configure a squash for the commits we wanted to
squash, as shown in the following command:
pick d539645 Updating information for developers

pick d62922d squash! Updating information for developers

pick 7d6194d squash! Updating information for developers

pick fd07857 Updating information on configuration

10. What you can see is that Git inserted squash to the subject of two of the commits,
but besides this, we did not get what we had expected. Git requires that you specify
--autosquash to the git rebase -i command. Close the editor and Git will just
perform the rebase and will give the following output:
Successfully rebased and updated

refs/heads/readme_update_developer.

11. Let's try again with --autosquash and see what happens with the rebase's
to-do list:
$ git rebase -i --autosquash

pick d539645 Updating information for developers

squash d62922d squash! Updating information for developers

squash 7d6194d squash! Updating information for developers

pick fd07857 Updating information on configuration

12. Now the rebase's to-do list looks much more like what we expected it to look like.
Git has preconfigured the to-do list to show which commits it will squash and which
commits it will keep.

13. Closing the to-do list now will start the rebase, and we don't want that. This is
because if you clear the to-do list and close the editor, the rebase will be aborted,
which is what we want now. The output will be as follows:
Nothing to do

14. What we really want to do is just run git rebase -i and Git will use
--autosquash as a default. This can be achieved with git config rebase.
autosquash true; try it and then run git rebase –i:
$ git config rebase.autosquash true

$ git rebase -i

15. The rebase's to-do list pops up, and we have the expected result as follows:
pick d539645 Updating information for developers

squash d62922d squash! Updating information for developers

squash 7d6194d squash! Updating information for developers

pick fd07857 Updating information on configuration

Chapter 4

93

16. Now close the editor and allow the rebase to start. The editor opens and you
can change the commit message for the combined message as shown in the
following command:
This is a combination of 3 commits.

The first commit's message is:

Updating information for developers

This is the 2nd commit message:

squash! Updating information for developers

This is the 3rd commit message:

squash! Updating information for developers

17. Modify the message and close the editor; Git continues with the rebase and
completes with the following message:
 [detached HEAD baadd53] Updating information for developers

 1 file changed, 3 insertions(+)

Successfully rebased and updated refs/heads/readme_update_
developer.

Verify the commit log with git log -3

$ git log -3

commit 6d83d44645e330d0081d3679aca49cd9bc20c891

Author: Rasmus Voss <rasmus.voss@schneider-electric.com>

Date: Wed May 21 10:52:03 2014 +0200

 Updating information on configuration

commit baadd53018df2f6f3cdf88d024c3b9db16e526cf

Author: Rasmus Voss <rasmus.voss@schneider-electric.com>

Date: Wed May 21 10:25:43 2014 +0200

 Updating information for developers

Rebase Regularly and Interactively, and Other Use Cases

94

commit 6d724dcd3355f09e3450e417cf173fcafaee9e08

Author: Shawn Pearce <spearce@spearce.org>

Date: Sat Apr 26 10:40:30 2014 -0700

18. As expected, we now have two commits on top of the origin/master commit.

Hopefully, this can assist you when you are just committing away but want to deliver the
code as one commit.

There's more…
If you want to avoid opening the commit message editor like in step 17 of the Auto-squashing
commits recipe, you can use --fixup= d539645. This will instead use the commit message
from the first commit and totally disregard any message written in the commits.

5
Storing Additional

Information in Your
Repository

In this chapter, we will cover the following topics:

 f Adding your first Git note

 f Separating notes by category

 f Retrieving notes from the remote repository

 f Pushing Git notes to a remote repository

 f Tagging commits in the repository

Introduction
Git is powerful in many ways. One of the most powerful features of Git is that it has immutable
history. This is powerful because nobody can squeeze something into the history of Git
without it being noticed by the people who have cloned the repository. This also causes some
challenges for developers as some developers would like to change the commit messages
after a commit has been released. This is a feature that is possible in many other version
control systems but because of the immutable history with Git, it has Git notes, which is
essentially an extra refs/notes/commits reference in Git. Here, you add additional
information to the commits that can be listed when running a git log command. You
can also release the notes into a remote repository so that people can fetch the notes.

Storing Additional Information in Your Repository

96

Adding your first Git note
We will add some extra information to the already released code. If we were doing it in the
actual commits, we would see the commit hashes change.

Getting ready
Before we start, we need a repository to work in; you can use the previous clone of jgit,
but to get an output from the example that's almost identical, you can clone the jgit
repository as follows:

$ git clone https://git.eclipse.org/r/jgit/jgit chapter5

$ cd chapter5

How to do it…
We start by creating a local branch notesMessage tracking origin/stable-3.2.
Then, we will try and change the commit message and see that the commit hash changes:

1. Checkout the branch notesMessage tracking origin/stable-3.2:
$ git checkout -b notesMessage --track origin/stable-3.2

Branch notesMessage set up to track remote branch stable-3.2 from
origin.

Switched to a new branch 'notesMessage'

2. List the commit hash of HEAD of your branch:
$ git log -1

commit f839d383e6fbbda26729db7fd57fc917fa47db44

Author: Matthias Sohn <matthias.sohn@sap.com>

Date: Wed Dec 18 21:16:13 2013 +0100

 Prepare post 3.2.0 builds

 Change-Id: Ie2bfdee0c492e3d61d92acb04c5bef641f5f132f

 Signed-off-by: Matthias Sohn <matthias.sohn@sap.com>

3. Change the commit message by amending the commit using git commit --amend.
Add a line above the Change-Id: line with "Update MANIFEST files":
$ git commit --amend

Chapter 5

97

4. Now, we list the commit again and see that the commit hash has changed:
$ git log -1

commit 5ccc9c90d29badb1bd860d29860715e0becd3d7b

Author: Matthias Sohn <matthias.sohn@sap.com>

Date: Wed Dec 18 21:16:13 2013 +0100

 Prepare post 3.2.0 builds

 Update MANIFEST files

 Change-Id: Ie2bfdee0c492e3d61d92acb04c5bef641f5f132f

 Signed-off-by: Matthias Sohn matthias.sohn@sap.com

5. Notice that the commit parts have changed from
f839d383e6fbbda26729db7fd57fc917fa47db44 to
5ccc9c90d29badb1bd860d29860715e0becd3d7b, as the commit is derived from
the content in the commit, the parents of the commit, and the commit message. So,
the commit hash will change when updating the commit message. Since we have
changed the content of the HEAD commit, we are no longer based on the HEAD commit
of the origin/stable-3.2 branch. This becomes visible in gitk and git status:
$ git status

On branch notesMessage

Your branch and 'origin/stable-3.2' have diverged,

and have 1 and 1 different commit each, respectively.

 (use "git pull" to merge the remote branch into yours)

nothing to commit, working directory clean

6. As you can see from the output, our branch has diverged from origin/stable-3.2;
this is also visible from Gitk. Notice that I specified which branches and commits I want
to see with gitk. In this case, I want to see origin/stable-3.2 and HEAD:
$ gitk origin/stable-3.2 HEAD

Storing Additional Information in Your Repository

98

7. To prevent the this result, we can add a note to the commit message.
Let's start by resetting the branch to origin/stable-3.2 and then
adding a note to the commit:
$ git reset --hard origin/stable-3.2

HEAD is now at f839d38 Prepare post 3.2.0 builds

8. Now, add the same message as the previous one but just as a note:
$ git notes add -m "Update MANIFEST files"

9. We have added the note directly from the command line without invoking the
editor by using the -m flag and then a message. The log will now be visible
when running git log:
$ git log -1

commit f839d383e6fbbda26729db7fd57fc917fa47db44

Author: Matthias Sohn <matthias.sohn@sap.com>

Date: Wed Dec 18 21:16:13 2013 +0100

 Prepare post 3.2.0 builds

 Change-Id: Ie2bfdee0c492e3d61d92acb04c5bef641f5f132f

 Signed-off-by: Matthias Sohn <matthias.sohn@sap.com>

Notes:

 Update MANIFEST files

10. As you can see from the log output, we have a Notes: section with our note.
Although it does not add the note directly in the commit message as the --amend
option does, we still have our important addition to the commit message. We can
verify with git status that we have no longer diverged:

$ git status

On branch notesMessage

Your branch is up-to-date with 'origin/stable-3.2'.

nothing to commit, working directory clean

Chapter 5

99

There's more...
So, you have your notes for your commit and now you want to add to them. You will perhaps
expect that you just add the note again with more information. This is not the case. You have
the option to append, edit, or force the note to be created:

1. Start by trying to add the note again with additional information:
$ git notes add -m "Update MANIFESTS files for next version"

error: Cannot add notes. Found existing notes for object
f839d383e6fbbda26729db7

fd57fc917fa47db44. Use '-f' to overwrite existing notes

2. As predicted, we cannot add the note but we can do it with the -f flag:
$ git notes add -f -m "Update MANIFESTS files for next version"

Overwriting existing notes for object
f839d383e6fbbda26729db7fd57fc917fa47db44

3. Git overwrites the existing notes due to the -f flag. You can also use --force,
which is the same. Verify it with git log:
$ git log -1

commit f839d383e6fbbda26729db7fd57fc917fa47db44

Author: Matthias Sohn <matthias.sohn@sap.com>

Date: Wed Dec 18 21:16:13 2013 +0100

 Prepare post 3.2.0 builds

 Change-Id: Ie2bfdee0c492e3d61d92acb04c5bef641f5f132f

 Signed-off-by: Matthias Sohn <matthias.sohn@sap.com>

Notes:

 Update MANIFESTS files for next version

4. You can also append a current note with git notes append:
$ git notes append -m "Verified by Rasmus Voss"

Storing Additional Information in Your Repository

100

5. There is no output from this unless something goes wrong, but you can verify this by
using git log again. To keep the output to a minimum, we are using --oneline.
This will show a minimum output of the commit. But to show the note, we have to add
--notes, which will show the notes for the commits in the output:
$ git log -1 --notes --oneline

f839d38 Prepare post 3.2.0 builds

Notes:

 Update MANIFESTS files for next version

 Verified by Rasmus Voss

6. As we can see from the output, we have the line appended to the note. If you try to
use the edit option, you will see that you can only use this with the -m flag. This
makes good sense as you should edit the note and not overwrite or append an
already created note:
$ git notes edit -m "Rasmus Voss"

The -m/-F/-c/-C options have been deprecated for the 'edit'
subcommand.

Please use 'git notes add -f -m/-F/-c/-C' instead.

7. As you can see, Git rejects doing and mentions other ways of doing it.

The git notes add and git notes edit commands without any
arguments will do exactly the same, that is, open the configured editor
and allow you to write a note to the commit.

Separating notes by category
As we saw in the previous example, we can add notes to the commits, but in some cases, it
makes sense to store the information sorted by categories, such as featureImplemented,
defect, and alsoCherryPick. As briefly explained at the beginning of the chapter, notes
are stored in refs/notes/commits but we can add multiple references so that we can
easily sort and list the different scopes of the notes.

Chapter 5

101

Getting ready
To start this example, we need a new branch that tracks the origin/stable-3.1 branch;
we name the branch notesReferences, and create and checkout the branch with the
following command:

$ git checkout -b notesReferences --track origin/stable-3.1

Branch notesReferences set up to track remote branch stable-3.1 from
origin.

Switched to a new branch 'notesReferences'

How to do it...
Imagine a situation where we have corrected a defect and did everything we could to ensure
the quality of the commit before releasing it. Nonetheless, we had to make another fix for the
same defect.

So, we want to add a note to the reference refs/notes/alsoCherryPick, which should
indicate that if you cherry pick this commit, you should also cherry pick the other commits
as they fix the same defect.

In this example, we will find a commit and add some extra information to the commit in
multiple notes' reference specifications:

1. Start by listing the top ten commits on the branch so we have something to copy
and paste from:
$ git log -10 --oneline

da6e87b Prepare post 3.1.0 builds

16ca725 JGit v3.1.0.201310021548-r

c6aba99 Fix order of commits in rebase todo file header

5a2a222 Prepare post 3.1.0 RC1 builds

6f0681e JGit v3.1.0.201309270735-rc1

a065a06 Attempt to fix graph layout when new heads are introduced

b4f07df Prepare re-signing pgm's ueberjar to avoid
SecurityException

aa4bbc6 Use full branch name when getting ref in
BranchTrackingStatus

570bba5 Ignore bitmap indexes that do not match the pack checksum

801aac5 Merge branch 'stable-3.0'

Storing Additional Information in Your Repository

102

2. Now, to add a note for the b4f07df commit in the ref alsoCherryPick, we must
use the --ref option for git notes. This has to be specified before the add option:
$ git notes --ref alsoCherryPick add -m "570bba5" b4f07df

3. No output means success when adding notes. Now that we have a note, we should
be able to list it with a single git log -1 command. However, this is not the case.
You actually need to specify that you want to list the notes from the specific ref. This
can be done with the --notes=alsoCherryPick option for git log:
$ git log -1 b4f07df357fccdff891df2a4fa5c5bd9e83b4a4a
--notes=alsoCherryPick

commit b4f07df357fccdff891df2a4fa5c5bd9e83b4a4a

Author: Matthias Sohn <matthias.sohn@sap.com>

Date: Tue Sep 24 09:11:47 2013 +0200

 Prepare re-signing pgm's ueberjar to avoid SecurityException

More output...

 Change-Id: Ia302e68a4b2a9399cb18025274574e31d3d3e407

 Signed-off-by: Matthias Sohn <matthias.sohn@sap.com>

Notes (alsoCherryPick):

 570bba5

4. As you can see from the output, Git shows the alsoCherryPick notes. The reason
for not showing is that Git defaults to adding notes into refs/notes/commits.
It would be nice if you could just show the alsoCherryPick notes' reference by
default. This can be done by configuring Git as follows:
$ git config notes.displayRef "refs/notes/alsoCherryPick"

5. By configuring this option, you are telling Git to always list these notes. But what
about the default notes? Have we overwritten the configuration to list the default
refs/notes/commits notes? We can check this with git log -1 to see if we
still have the test note displayed:
$ git log -1

commit da6e87bc373c54c1cda8ed563f41f65df52bacbf

Author: Matthias Sohn <matthias.sohn@sap.com>

Date: Thu Oct 3 17:22:08 2013 +0200

 Prepare post 3.1.0 builds

Chapter 5

103

 Change-Id: I306a3d40c6ddb88a16d17f09a60e3d19b0716962

 Signed-off-by: Matthias Sohn <matthias.sohn@sap.com>

Notes:

 test note

6. No, we did not overwrite the setting to list notes in the default refs. Knowing that we
can have as many notes.displayRef configurations as we want, we should add
all the refs we want to use in our repo. In some situations, it is even better to just add
refs/notes/*. This will configure Git to show all the notes:
$ git config notes.displayRef 'refs/notes/*'

7. If we add another note in refs/notes/defect now, we should be able to list it
without specifying which notes' reference we want to list when using git log. We
are adding to the commit that already has a note in the alsoCherryPick reference:
$ git notes --ref defect add -m "Bug:24435"
b4f07df357fccdff891df2a4fa5c5bd9e83b4a4a

8. Now, list the commit with git log:
$ git log -1 b4f07df357fccdff891df2a4fa5c5bd9e83b4a4a

commit b4f07df357fccdff891df2a4fa5c5bd9e83b4a4a

Author: Matthias Sohn <matthias.sohn@sap.com>

Date: Tue Sep 24 09:11:47 2013 +0200

 Prepare re-signing pgm's ueberjar to avoid SecurityException

 See http://dev.eclipse.org/mhonarc/lists/jgit-dev/msg02277.
html

 Change-Id: Ia302e68a4b2a9399cb18025274574e31d3d3e407

 Signed-off-by: Matthias Sohn <matthias.sohn@sap.com>

Notes (alsoCherryPick):

 570bba5

Notes (defect):

 Bug:24435

9. Git shows both notes, which is what we would expect.

Storing Additional Information in Your Repository

104

How it works...
I have been writing about the refs/notes/alsoCherryPick reference and so on.
As you know, we refer to the remote branches as references such as refs/remotes/
origin/stable-3.2, but the local branches are also references such as refs/heads/
develop for instance.

Since you can create a branch that starts at a specific reference, you should be able to create
a branch that starts at the refs/notes/alsoCherrypick reference:

1. Create a branch that starts from refs/notes/alsoCherryPick. Also, checkout
the branch:
$ git checkout -b myNotes notes/alsoCherryPick

Switched to a new branch 'myNotes'

2. The myNotes branch now points to HEAD on refs/notes/alsoCherryPick.
Listing the files on the branch will show a file with the commit hash of the commit
we have added the notes to:
$ ls

b4f07df357fccdff891df2a4fa5c5bd9e83b4a4a

3. Showing the file content will show the text we used as note text:
$ cat b4f07df357fccdff891df2a4fa5c5bd9e83b4a4a

570bba5

4. As you can see, the abbreviated commit hash 570bba5 we added as a note for
b4f07df357fccdff891df2a4fa5c5bd9e83b4a4a is in the file. If we had a
longer message, that message would also be shown here.

Retrieving notes from the remote repository
So far, we have been creating notes in our own local repository, which is okay. But if we
want to share those notes, we have to be sure to be able to push them. We would also like to
be able to retrieve other people's notes from the remote repository. Unfortunately, this is not
so plain and simple.

Getting ready
Before we can start, we need another clone from the local clone we already have. This is to
show the push and fetch mechanism of Git with git notes:

1. Start by checking out the master branch:
$ git checkout master

Chapter 5

105

Checking out files: 100% (1529/1529), done.

Switched to branch 'master'

Your branch is up-to-date with 'origin/master'.

2. Now, create local branches of all the stable-3.x branches:
$ git branch stable-3.0 origin/stable-3.0

Branch stable-3.0 set up to track remote branch stable-3.0 from
origin.

$ git branch stable-3.1 origin/stable-3.1

Branch stable-3.1 set up to track remote branch stable-3.1 from
origin.

$ git branch stable-3.2 origin/stable-3.2

Branch stable-3.2 set up to track remote branch stable-3.2 from
origin.

3. We are checking out all these branches because we want to clone this repository and
by default all the refs/heads/* branches will be cloned. So, when we clone the
chapter5 directory, you will see that we only get the branches we see if you execute
git branch:
$ git branch

* master

 myNotes

 notesMessage

 notesReference

 stable-3.0

 stable-3.1

 stable-3.2

4. Now, go one directory up so you can create your new clone from the chapter5
directory:
cd ..

$ git clone ./chapter5 shareNotes

Cloning into 'shareNotes'...

done.

5. Now, enter the shareNotes directory and run git branch -a to see that the only
remote branches we have are the branches we had checked out as local branches in
the chapter5 directory. After this, we are ready to fetch some notes:
cd shareNotes

$ git branch -a

Storing Additional Information in Your Repository

106

* master

 remotes/origin/HEAD -> origin/master

 remotes/origin/master

 remotes/origin/myNotes

 remotes/origin/notesMessage

 remotes/origin/notesReference

 remotes/origin/stable-3.0

 remotes/origin/stable-3.1

 remotes/origin/stable-3.2

6. As predicted, the list matches the Git branch output from the chapter5 directory.

How to do it...
We have now prepared the setup to push and fetch notes. The challenge is that Git is not a
default setup to retrieve and push notes, so you won't usually see other people's notes:

1. We start by showing that we did not receive the notes during the clone:
$ git log -1 b4f07df357fccdff891df2a4fa5c5bd9e83b4a4a
--notes=alsoCherryPick

warning: notes ref refs/notes/alsoCherryPick is invalid

commit b4f07df357fccdff891df2a4fa5c5bd9e83b4a4a

Author: Matthias Sohn <matthias.sohn@sap.com>

Date: Tue Sep 24 09:11:47 2013 +0200

 Prepare re-signing pgm's ueberjar to avoid SecurityException

2. As expected, the output does not show the note. In the chapter5 directory, we will
see the note. To enable the notes to be fetched, we need to create a new fetch rule
configuration; it needs to be similar to the fetch rule for refs/heads. Take a look at
the configuration from git config:
$ git config --get remote.origin.fetch

+refs/heads/*:refs/remotes/origin/*

3. This shows that we are fetching refs/heads into the refs/remotes/origin
reference, but what we also want to do is fetch refs/notes/* into refs/notes/*:
$ git config --add remote.origin.fetch '+refs/notes/*:refs/
notes/*'

Chapter 5

107

4. You should now have it configured. If you leave out the --add option from your
command, you will overwrite your current settings. Verify that the rule now exists:
$ git config --get-all remote.origin.fetch

+refs/heads/*:refs/remotes/origin/*

+refs/notes/*:refs/notes/*

5. Now, try and fetch the notes:
$ git fetch

From c:/Users/Rasmus/repos/./chapter5

 * branch master -> FETCH_HEAD

 * [new ref] refs/notes/alsoCherryPick -> refs/notes/
alsoCherryPick

 * [new ref] refs/notes/commits -> refs/notes/commits

 * [new ref] refs/notes/defect -> refs/notes/defect

 * [new ref] refs/notes/defects -> refs/notes/defects

6. As the Git output indicates, we have received some new refs. So, let us check
whether we have the note on the commit now:
$ git log -1 b4f07df357fccdff891df2a4fa5c5bd9e83b4a4a
--notes=alsoCherryPick

commit b4f07df357fccdff891df2a4fa5c5bd9e83b4a4a

Author: Matthias Sohn <matthias.sohn@sap.com>

Date: Tue Sep 24 09:11:47 2013 +0200

 Prepare re-signing pgm's ueberjar to avoid SecurityException

More output...

 Signed-off-by: Matthias Sohn <matthias.sohn@sap.com>

Notes (alsoCherryPick):

 570bba5

7. We now have the notes in our repository, which is what we expected.

How it works...
We fetched the notes. The reason why it works is because of the way we fetched. By default,
Git is configured to fetch refs/heads/* into refs/remotes/origin/*. This way, we can
easily keep track of what is remote and what is local. The branches in our local repo are in
refs/heads/*. These branches are also listed when you execute git branch.

For notes, we need to fetch refs/notes/* into refs/notes/* since we want to get the notes
from the server and use them with the git show, git log, and git notes Git commands.

Storing Additional Information in Your Repository

108

Pushing notes to a remote repository
We have tried and succeeded in retrieving the notes from the remote repository, but what
about your notes? How can you push them to the server? This has to be done with the push
command just as with any other references, such as branches and commits, when you want
to publish them to a remote repository.

How to do it...
Before we can push the notes from the shareNotes repository, we have to create a note to
be pushed, as the notes we have now are all available on the remote repository. The remote
repository in this case is the chapter5 directory:

1. I have found a commit I would like to add a note to, and I want to add the note in the
verified reference:
$ git notes --ref verified add -m "Verified by rasmus.voss@live.
dk" 871ee53b52a

2. Now that we have added the note, we can list it with the git log command:
$ git log --notes=verified -1 871ee53b52a

commit 871ee53b52a7e7f6a0fe600a054ec78f8e4bff5a

Author: Robin Rosenberg <robin.rosenberg@dewire.com>

Date: Sun Feb 2 23:26:34 2014 +0100

 Reset internal state canonical length in WorkingTreeIterator
when moving

 Bug: 426514

 Change-Id: Ifb75a4fa12291aeeece3dda129a65f0c1fd5e0eb

 Signed-off-by: Matthias Sohn <matthias.sohn@sap.com>

Notes (verified):

 Verified by rasmus.voss@live.dk

3. As expected, we can see the note. If you cannot see the note, you probably
missed --notes=verified for the git log command, since we have not
configured verified as notes.displayRef. To push the note, we must use
the git push command, because the default push rule in Git is to push branches
to refs/heads/<branchname>. So, if we just try to push the note to the remote,
nothing happens:
$ git push

Everything up-to-date

Chapter 5

109

4. You will probably see a warning about git push.default not being configured;
you can safely ignore this for these examples. The important part is that Git shows
that everything is up-to-date. But we know we have created a Git note for a commit.
So to push these notes, we need to push our note references to the remote notes
references. This can be done as follows:
$ git push origin refs/notes/*

Counting objects: 15, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (5/5), 583 bytes | 0 bytes/s, done.

Total 5 (delta 0), reused 0 (delta 0)

To c:/Users/Rasmus/repos/./chapter5/

 * [new branch] refs/notes/verified -> refs/notes/verified

5. Now something happened; we have a new branch on the remote named
refs/notes/verified. This is because we have pushed the notes to the
remote. What we can do to verify it is go to the chapter5 directory and check
if the 871ee53b52a commit has a Git note:
$ cd ../chapter5/

$ git log --notes=verified -1 871ee53b52a

commit 871ee53b52a7e7f6a0fe600a054ec78f8e4bff5a

Author: Robin Rosenberg <robin.rosenberg@dewire.com>

Date: Sun Feb 2 23:26:34 2014 +0100

 Reset internal state canonical length in WorkingTreeIterator
when moving

 Bug: 426514

 Change-Id: Ifb75a4fa12291aeeece3dda129a65f0c1fd5e0eb

 Signed-off-by: Matthias Sohn <matthias.sohn@sap.com>

Notes (verified):

 Verified by rasmus.voss@live.dk

6. As predicted, we can see the note in this directory.

Storing Additional Information in Your Repository

110

There's more...
Since Git notes do not work as normal branches, it can be a little difficult to push them back and
forth to a repository when you are trying to collaborate on them. Since you cannot just fetch and
merge the Git notes branches as easily with other branches, a clear recommendation is to build
some tools to add these notes so you only have one server adding the notes.

A very simple but value adding note could be the Jenkins build and test information that
published notes about which tests have passed on a commit hash; this is very valid when
you have to reopen a defect. You can then actually see in the repository which test has been
executed on the commit hash.

Tagging commits in the repository
If you are releasing software with Git, you are bound to deal with tags as the tag describes
the different software releases in the repository. There are two types of tags, a lightweight
tag and an annotated tag. The lightweight tag is very similar to a branch, since it is just a
named reference like refs/tags/version123, which points to the commit hash of the
commit you are tagging; whereas if it were a branch, it would be refs/heads/version123.
The difference is the branch moves forward when you work and commit to it. The tag should
always point to the same commit hash.

Getting ready
Before we start, you must go to the chapter5 directory, where we made the original clone
for this chapter.

We should start by tagging the commit that is ten commits behind origin/stable-2.3
and is not a merge. In order to find that commit, we will use the git log command.

For the git log command, we are using the --no-merges option, which will show commits
that only have one parent. The --oneline option we have used before tells Git to limit the
output to one line per commit.

Find the commit as follows:

$ git log -11 --no-merges --oneline origin/stable-2.3

49ec6c1 Prepare 2.3.2-SNAPSHOT builds

63dcece JGit v2.3.1.201302201838-r

3b41fcb Accept Change-Id even if footer contains not well-formed entries

5d7b722 Fix false positives in hashing used by PathFilterGroup

Chapter 5

111

9a5f4b4 Prepare post 2.3.0.201302130906 builds

19d6cad JGit v2.3.0.201302130906

3f8ac55 Replace explicit version by property where possible

1c4ee41 Add better documentation to DirCacheCheckout

e9cf705 Prepare post 2.3rc1 builds

ea060dd JGit v2.3.0.201302060400-rc1

60d538f Add getConflictingNames to RefDatabase

How to do it...
Now that we have found the 60d538f commit, we should make it a lightweight tag:

1. Use the git tag command to give a meaningful release name:
$ git tag 'v2.3.0.201302061315rc1' ea060dd

2. Since there is no output, it is a success; to see whether the tag is available, use the
git tag command:
$ git tag -l "v2.3.0.2*"

v2.3.0.201302061315rc1

v2.3.0.201302130906

3. We are using the git tag command with -l as a flag, since we want to list the
tags and not tag the current HEAD. Some repositories have a lot of tags, so to
prevent the list from being too long, you can specify which tags you want to list and
use a * wildcard as I have used. Our tag is available, but all it really says is that we
have a tag in the repository with the name v2.3.0.201302061315rc1, and if you
are using git show v2.3.0.201302061315rc1, you will see that the output is
the same as git show ea060dd:
$ git show v2.3.0.201302061315rc1

commit ea060dd8e74ab588ca55a4fb3ff15dd17343aa88

Author: Matthias Sohn <matthias.sohn@sap.com>

Date: Wed Feb 6 13:15:01 2013 +0100

 JGit v2.3.0.201302060400-rc1

 Change-Id: Id1f1d174375f7399cee4c2eb23368d4dbb4c384a

 Signed-off-by: Matthias Sohn <matthias.sohn@sap.com>

Storing Additional Information in Your Repository

112

diff --git a/org.eclipse.jgit.ant.test/META-INF/MANIFEST.MF b/org.
eclipse.jgit.a

$ git show ea060dd

commit ea060dd8e74ab588ca55a4fb3ff15dd17343aa88

Author: Matthias Sohn <matthias.sohn@sap.com>

Date: Wed Feb 6 13:15:01 2013 +0100

 JGit v2.3.0.201302060400-rc1

 Change-Id: Id1f1d174375f7399cee4c2eb23368d4dbb4c384a

 Signed-off-by: Matthias Sohn <matthias.sohn@sap.com>

diff --git a/org.eclipse.jgit.ant.test/META-INF/MANIFEST.MF b/org.
eclipse.jgit.a

4. There will also be a lot of file diff information in the output but it is exactly the same
output. So, in order to add more information, we should use an annotated tag. An
annotated tag is a tag where you have to add some information to the tag. To create
an annotated tag, we use the --annotate tag for the git tag command:
git tag --annotate -m "Release Maturity rate 97%"
'v2.3.0.201409022257rc2' 1c4ee41

5. The -m flag is the same as --message, as I wanted to give the tag a message.
If you leave out the -m flag, Git will open the configured editor and you can write
a full release note into the annotation of the tag. We can check the tag information
with git show:
$ git show 'v2.3.0.201409022257rc2'

tag v2.3.0.201409022257rc2

Tagger: Rasmus Voss <rasmus.voss@live.dk>

Date: Sun Feb 9 22:58:28 2014 +0100

Release Maturity rate 97%

commit 1c4ee41dc093266c19d4452879afe5c0f7f387f4

Author: Christian Halstrick christian.halstrick@sap.com

6. We can actually see the tag name and information we added with the -m flag. With
the lightweight tag, we don't see anything about the tag from the output. We actually
don't even see the tag name when using Git show on a lightweight tag.

Chapter 5

113

There's more...
Tags are very powerful as they can add valuable information to the repository, and since tags
should be considered official releases in the repository, we should be very careful with them.

Naturally, you can push the tags to a remote area, and contributors to the repository would
fetch those tags. This is where you have to be careful. With a legacy version control system,
you can go back in time and just change the release, and since these legacy systems are all
based on a centralized server where you have to be connected in order to work, changing a
release is not that bad, since not so many people use the release or have even downloaded
the release. But it is different in Git. If you change a tag that you have already pushed to point
to another commit hash, then those developers who have already fetched the tag will not get
the new tag unless the delete the tag locally.

1. To prove the dangers of not getting new tag, we will try to delete a tag and recreate
it to point to another commit hash:
$ git tag -d v1.3.0.201202121842-rc4

Deleted tag 'v1.3.0.201202121842-rc4' (was d1e8804)

2. Now that we have deleted the tag, we are ready to recreate the tag again to
point to HEAD:
$ git tag -a -m "Local created tag" v1.3.0.201202121842-rc4

3. We have recreated the tag and it points to HEAD because we did not specify a commit
hash at the end of the command. Now, execute git fetch to see whether you can
get the tag overwritten from the remote repository:
$ git fetch

4. Since there is no output, the tag was probably not overwritten. Let us verify with
git show:
$ git show v1.3.0.201202121842-rc4

tag v1.3.0.201202121842-rc4

Tagger: Rasmus Voss <rasmus.voss@live.dk>

Date: Sun Feb 9 23:17:18 2014 +0100

Local created tag

commit 1c4ee41dc093266c19d4452879afe5c0f7f387f4

5. As you can see from the output, it is still our locally created tag. To get the tag from
the remote again, we need to delete the local tag and do a Git fetch. To delete a tag,
you need to apply the -d flag:
$ git tag -d v1.3.0.201202121842-rc4

Deleted tag 'v1.3.0.201202121842-rc4' (was 28be24b)

Storing Additional Information in Your Repository

114

$ git fetch

From https://git.eclipse.org/r/jgit/jgit

* [new tag] v1.3.0.201202121842-rc4 ->
v1.3.0.201202121842-rc4

6. As you can see, Git has fetched the tag from the server again. We can verify
with git show:
$ git show v1.3.0.201202121842-rc4

tag v1.3.0.201202121842-rc4

Tagger: Matthias Sohn <matthias.sohn@sap.com>

Date: Mon Feb 13 00:57:56 2012 +0100

JGit 1.3.0.201202121842-rc4

-----BEGIN PGP SIGNATURE-----

Version: GnuPG/MacGPG2 v2.0.14 (Darwin)

iF4EABEIAAYFAk84UhMACgkQWwXM3hQMKHbwewD/VD62MWCVfLCYUIEz20C4Iywx

4OOl5TedaLFwIOS55HcA/ipDh6NWFvJdWK3Enm2krjegUNmd9zXT+0pNjtlJ+Pyi

=LRoe

-----END PGP SIGNATURE-----

commit 53917539f822afa12caaa55db8f57c29570532f3

7. So, as you can see, we have the correct tag again, but it should also be a warning
that once you push a tag to a remote repository, you should never change it, since
the developers who are fetching from the repository may never know unless they
clone again or delete the tags locally and fetch them again.

In this chapter, we learned how you can tag your commits and add notes to them. This is a
powerful method to store additional information after the commit has been committed and
published to a shared repository. But before you actually publish your commit, you have the
chance to add the most valuable information for a commit. The commit message is where you
must specify what you are doing and sometimes why you are doing it.

If you are solving a bug, you should list the bug ID; if you are using a special method to solve
the problem, it is recommended that you describe why you have used this awesome technique
to solve the problem. So when people look back on your commits, they can also learn a few
things on why different decisions were made.

6
Extracting Data from

the Repository

In this chapter, we will cover the following topics:

 f Extracting the top contributor

 f Finding bottlenecks in the source tree

 f Grepping the commit messages

 f The contents of the releases

Introduction
Whether you work in big or small organizations, safeguarding and maintaining data is always
important and it keeps track of a fair amount for you, it is just a matter of extracting the data.
Some of the data is included in the system by you or any other developer when you fill in the
commit message with proper information; for instance, details of the bug you are fixing from
the bug tracking system.

The data is not only valid for management, but can also be used to add more time to refactor
the .c files, where almost all bugs are fixed.

Extracting the top contributor
Git has a few built-in stats you can get instantaneously. The git log command has different
options, such as --numstat, that will show the number of files added and lines deleted for
each file since each commit. However, for finding the top committer in the repository, we can
just use the git shortlog command.

Extracting Data from the Repository

116

Getting ready
As with all the examples throughout the book, we are using the jgit repository;
you can either clone it or go to one of the clones you might already have.

Clone the jgit repository as follows:

$ git clone https://git.eclipse.org/r/jgit/jgit chapter6

$ cd chapter6

How to do it...
The shortlog Git command is very simple and does not leave a lot of options or flags to use
with it. It can show the log but in a boiled-down version, and then it can summarize it for us:

1. Start by showing the last five commits with shortlog. We can use -5 to limit the
amount of output:
$ git shortlog -5

Jonathan Nieder (1):

 Update commons-compress to 1.6

Matthias Sohn (2):

 Update com.jcraft.jsch to 0.1.50 in Kepler target platform

 Update target platforms to use latest orbit build

SATO taichi (1):

 Add git checkout --orphan implementation

Stefan Lay (1):

 Fix fast forward rebase with rebase.autostash=true

2. As you can see, the output is very different from the git log output. You can try
it for yourself with git log -5. The numbers in parentheses are the number of
commits by that committer. Below the name and number are the commit titles of the
commits. Note that no commit hashes are shown. To find the top committer with just
those five commits is easy, but when you try running git shortlog without -5, it
is hard to find that person. To sort and find the top committer, we can use the -n or
--numbered option to sort the output. The top committer is on top:
$ git shortlog -5 --numbered

Matthias Sohn (2):

Chapter 6

117

 Update com.jcraft.jsch to 0.1.50 in Kepler target platform

 Update target platforms to use latest orbit build

Jonathan Nieder (1):

 Update commons-compress to 1.6

SATO taichi (1):

 Add git checkout --orphan implementation

Stefan Lay (1):

 Fix fast forward rebase with rebase.autostash=true

3. As you can see, the output is nicely sorted. If we don't care about the
commit subjects, we can use -s or --summary to only show the commit
count for each developer:
$ git shortlog -5 --numbered --summary

 2 Matthias Sohn

 1 Jonathan Nieder

 1 SATO taichi

 1 Stefan Lay

4. Finally, we have what we want, except we don't have the e-mail addresses of the
committers; this option is also available with -e or --email. This will also show
the e-mail addresses of the committers in the list. This time, we will try it on the
entire repository. Currently, we have only listed it for the HEAD commit. To list it
for the repository, we need to add --all at the end of the command so as to
execute the command for all branches:
$ git shortlog --numbered --summary --email --all

 765 Shawn O. Pearce <spearce@spearce.org>

 399 Matthias Sohn <matthias.sohn@sap.com>

 360 Robin Rosenberg <robin.rosenberg@dewire.com>

 181 Chris Aniszczyk <caniszczyk@gmail.com>

 172 Shawn Pearce <spearce@spearce.org>

 160 Christian Halstrick <christian.halstrick@sap.com>

 114 Robin Stocker robin@nibor.org

Extracting Data from the Repository

118

5. So, this is the list now; we know who contributed with the most commits, but this
picture can be a little skewed as the top committer may just happen to be the creator
of the project and may not actively contribute to the repository. So, to list the top
committers for the last six months, we can add --since="6 months ago" to the
git shortlog command:
$ git shortlog --numbered --summary --email --all --since="6
months ago"

 73 Matthias Sohn <matthias.sohn@sap.com>

 15 Robin Stocker <robin@nibor.org>

 14 Robin Rosenberg <robin.rosenberg@dewire.com>

 13 Shawn Pearce <sop@google.com>

 12 Stefan Lay <stefan.lay@sap.com>

 8 Christian Halstrick <christian.halstrick@sap.com>

 7 Colby Ranger cranger@google.com

6. As you can see, the picture has changed since the start of the repository.

You can use "n weeks ago", "n days ago", "n months ago", "
n hours ago", and so on for specifying time periods. You can also use
specific dates such as "1 october 2013".

You can also list the top committer for a specific month using the --until option,
where you can specify the date you wish to list the commit until. This can be done
as follows:

$ git shortlog --numbered --summary --email --all --since="30
september" --until="1 november 2013"

 15 Matthias Sohn <matthias.sohn@sap.com>

 4 Kaloyan Raev <kaloyan.r@zend.com>

 4 Robin Rosenberg <robin.rosenberg@dewire.com>

 3 Colby Ranger <cranger@google.com>

 2 Robin Stocker <robin@nibor.org>

 1 Christian Halstrick <christian.halstrick@sap.com>

 1 Michael Nelson <michael.nelson@tasktop.com>

 1 Rüdiger Herrmann <ruediger.herrmann@gmx.de>

 1 Tobias Pfeifer <to.pfeifer@web.de>

 1 Tomasz Zarna tomasz.zarna@tasktop.com

Chapter 6

119

7. As you can see, we get another list, and it seems like Matthias is the main
contributor, at least compared to the initial result. These types of data can also be
used to visualize the shift of responsibility in a repository by collecting the data for
each month since the repository's initialization.

There's more...
While working with code, it is often useful to know who to go to when you need to perform a
fix in the software, especially in an area where you are inexperienced. So, it would be nice to
figure out who is the code owner of the file or the files you are changing. The obvious reason
is to get some input on the code, but also to know who to go to for a code review. You can
again use git shortlog to figure this out. You can use the command on the files as well:

1. To do this, we simply add the file to the end of the git shortlog command:
$ git shortlog --numbered --summary --email ./pom.xml

 86 Matthias Sohn <matthias.sohn@sap.com>

 21 Shawn O. Pearce <spearce@spearce.org>

 4 Chris Aniszczyk <caniszczyk@gmail.com>

 4 Jonathan Nieder <jrn@google.com>

 3 Igor Fedorenko <igor@ifedorenko.com>

 3 Kevin Sawicki <kevin@github.com>

 2 Colby Ranger cranger@google.com

2. As for pom.xml, we also have a top committer. As all the options you have for git
log are available for shortlog, we can also do this on a directory.
$ git shortlog --numbered --summary --email ./org.eclipse.jgit.
console/

 57 Matthias Sohn <matthias.sohn@sap.com>

 11 Shawn O. Pearce <spearce@spearce.org>

 9 Robin Rosenberg <robin.rosenberg@dewire.com>

 2 Chris Aniszczyk <caniszczyk@gmail.com>

 1 Robin Stocker robin@nibor.org

3. As you can see, it is fairly simple to get some indication on who to go to for the
different files or directories in Git.

Extracting Data from the Repository

120

Finding bottlenecks in the source tree
Often, the development teams know where the bottleneck in the source tree is, but it can
be challenging to convince the management that you need resources to rewrite some code.
However, with Git, it is fairly simple to extract that type of data from the repository.

Getting ready
Start by checking out the stable-3.1 release:

$ git checkout stable-3.1

Branch stable-3.1 set up to track remote branch stable-3.1 from origin.

Switched to a new branch 'stable-3.1'

How to do it...
We want to start by listing some stats for one commit, and then we can extend the examples
to larger chunks of commits:

1. The first option we will be using is --dirstat for git log:
$ git log -1 --dirstat

commit da6e87bc373c54c1cda8ed563f41f65df52bacbf

Author: Matthias Sohn <matthias.sohn@sap.com>

Date: Thu Oct 3 17:22:08 2013 +0200

 Prepare post 3.1.0 builds

 Change-Id: I306a3d40c6ddb88a16d17f09a60e3d19b0716962

 Signed-off-by: Matthias Sohn <matthias.sohn@sap.com>

 5.0% org.eclipse.jgit.http.server/META-INF/

 6.9% org.eclipse.jgit.http.test/META-INF/

 3.3% org.eclipse.jgit.java7.test/META-INF/

 4.3% org.eclipse.jgit.junit.http/META-INF/

 6.6% org.eclipse.jgit.junit/META-INF/

 5.5% org.eclipse.jgit.packaging/

Chapter 6

121

 5.9% org.eclipse.jgit.pgm.test/META-INF/

 13.7% org.eclipse.jgit.pgm/META-INF/

 15.4% org.eclipse.jgit.test/META-INF/

 3.7% org.eclipse.jgit.ui/META-INF/

 13.1% org.eclipse.jgit/META-INF/

2. The --dirstat option shows which directories have changed in the commit
and how much they have changed compared to each other. The default setting is to
count the number of lines added to or removed from the commit. So, rearranging the
code potentially does not count for any change as the line count might be the same.
You can compensate for this slightly by using --dirstat=lines. This option will
look at each file line by line and see whether they have changed compared to the
previous version:
$ git log -1 --dirstat=lines

commit da6e87bc373c54c1cda8ed563f41f65df52bacbf

Author: Matthias Sohn <matthias.sohn@sap.com>

Date: Thu Oct 3 17:22:08 2013 +0200

 Prepare post 3.1.0 builds

 Change-Id: I306a3d40c6ddb88a16d17f09a60e3d19b0716962

 Signed-off-by: Matthias Sohn <matthias.sohn@sap.com>

 4.8% org.eclipse.jgit.http.server/META-INF/

 6.5% org.eclipse.jgit.http.test/META-INF/

 3.2% org.eclipse.jgit.java7.test/META-INF/

 4.0% org.eclipse.jgit.junit.http/META-INF/

 6.1% org.eclipse.jgit.junit/META-INF/

 6.9% org.eclipse.jgit.packaging/

 5.7% org.eclipse.jgit.pgm.test/META-INF/

 13.0% org.eclipse.jgit.pgm/META-INF/

 14.6% org.eclipse.jgit.test/META-INF/

 3.6% org.eclipse.jgit.ui/META-INF/

 13.8% org.eclipse.jgit/META-INF/

Extracting Data from the Repository

122

3. This also gives a slightly different result. If you would like to limit the output to
only show directories with a certain percentage or higher, we can limit the output
as follows:
$ git log -1 --dirstat=lines,10

commit da6e87bc373c54c1cda8ed563f41f65df52bacbf

Author: Matthias Sohn <matthias.sohn@sap.com>

Date: Thu Oct 3 17:22:08 2013 +0200

 Prepare post 3.1.0 builds

 Change-Id: I306a3d40c6ddb88a16d17f09a60e3d19b0716962

 Signed-off-by: Matthias Sohn <matthias.sohn@sap.com>

 13.0% org.eclipse.jgit.pgm/META-INF/

 14.6% org.eclipse.jgit.test/META-INF/

 13.8% org.eclipse.jgit/META-INF/

4. By adding 10 to the --dirstat=lines command, we are asking Git to only show
the directories that have 10 percent or higher changes; you can use any number you
like here. By default, Git does not count the changes in the subdirectories, but only
the files in the directory. So, in this diagram, only changes in File A1 are counted
as changes. For the Dir A1 directory and the File B1 file, it is counted as a
change in Dir A2:

Chapter 6

123

5. To cumulate this, we can add cumulative to the --dirstat=lines,10
command, and this will cumulate the changes and calculate a percentage.
Be aware that the percentage can go beyond 100 due to the way it is calculated:
$ git log -1 --dirstat=files,10,cumulative

commit da6e87bc373c54c1cda8ed563f41f65df52bacbf

Author: Matthias Sohn <matthias.sohn@sap.com>

Date: Thu Oct 3 17:22:08 2013 +0200

 Prepare post 3.1.0 builds

 Change-Id: I306a3d40c6ddb88a16d17f09a60e3d19b0716962

 Signed-off-by: Matthias Sohn <matthias.sohn@sap.com>

 31.3% org.eclipse.jgit.packaging/

6. As you can see, the output is slightly different from what we have seen earlier.
By using git log --dirstat, you can get some information about what goes on
in the repository. Obviously, you can also do this for all the commits between two
releases or two commit hashes. Let's try this, but instead of using git log, we will
be using git diff, as Git will show the accumulated diff between the two releases,
and git log will show the dirstat for each commit between the releases:
$ git diff origin/stable-3.1..origin/stable-3.2 --dirstat

 4.0% org.eclipse.jgit.packaging/org.eclipse.jgit.target/

 3.9% org.eclipse.jgit.pgm.test/tst/org/eclipse/jgit/pgm/

 4.1% org.eclipse.jgit.pgm/

 20.7% org.eclipse.jgit.test/tst/org/eclipse/jgit/api/

 21.3% org.eclipse.jgit.test/tst/org/eclipse/jgit/internal/
storage/file/

 5.2% org.eclipse.jgit.test/tst/org/eclipse/jgit/

 14.5% org.eclipse.jgit/src/org/eclipse/jgit/api/

 6.5% org.eclipse.jgit/src/org/eclipse/jgit/lib/

 3.9% org.eclipse.jgit/src/org/eclipse/jgit/transport/

 4.6% org.eclipse.jgit/src/org/eclipse/jgit/

Extracting Data from the Repository

124

7. So, between the origin/stable-3.1 and origin/stable-3.2 branches,
we can see which directories have the highest percentage of changes. We can then
dig a little deeper using --stat or --numstat for the directory, and again use git
diff. We will also use --relative="org.eclipse.jgit.test/tst/org/
eclipse/", which will show the relative path of the files from org.eclipse.jgit.
test/tst/org/eclipse/. This will look better in the console. Feel free to try this
without using the following option:
$ git diff --pretty origin/stable-3.1..origin/stable-3.2
--numstat --relative

="org.eclipse.jgit.test/tst/org/eclipse/jgit/internal/" org.
eclipse.jgit.test/

tst/org/eclipse/jgit/internal/

4 2 storage/file/FileRepositoryBuilderTest.java

8 1 storage/file/FileSnapshotTest.java

0 741 storage/file/GCTest.java

162 0 storage/file/GcBasicPackingTest.java

119 0 storage/file/GcBranchPrunedTest.java

119 0 storage/file/GcConcurrentTest.java

85 0 storage/file/GcDirCacheSavesObjectsTest.jav

104 0 storage/file/GcKeepFilesTest.java

180 0 storage/file/GcPackRefsTest.java

120 0 storage/file/GcPruneNonReferencedTest.java

146 0 storage/file/GcReflogTest.java

78 0 storage/file/GcTagTest.java

113 0 storage/file/GcTestCase.java

8. The first number is the number of lines added, and the second number is the lines
removed from the files between the two branches.

There's more...
We have used git log, git diff, and git shortlog to find information about the
repository, but there are so many options for those commands on how to find bottlenecks
in the source code.

Chapter 6

125

If we want to find the files with the most commits, and these are not necessarily the files with
the most line additions or deletions, we can use git log:

1. We can use git log between the origin/stable-3.1 and origin/
stable-3.2 branches and list all the files changed in each commit.
Then, we just need to sort and accumulate the result with some bash tools:
$ git log origin/stable-3.1..origin/stable-3.2 --format=format:
--name-only

org.eclipse.jgit.ant.test/META-INF/MANIFEST.MF

org.eclipse.jgit.ant.test/pom.xml

2. First, we are just executing the command without the use of the bash tools. You can
see from the extensive output that you only see file names and nothing else. This is
due to the options used. The --format=format: option tells Git to not display any
commit-message-related information, and --name-only tells Git to list the files for
each commit. Now all we have to do is count them:
$ git log origin/stable-3.1..origin/stable-3.2 --format=format:
--name-only | sed '/^$/d' | sort | uniq -c | sort -r | head -10

 12 se.jgit/src/org/eclipse/jgit/api/RebaseCommand.java

 12 est/tst/org/eclipse/jgit/api/RebaseCommandTest.java

 9 org.eclipse.jgit/META-INF/MANIFEST.MF

 7 org.eclipse.jgit.pgm.test/META-INF/MANIFEST.MF

 7 org.eclipse.jgit.packaging/pom.xml

 6 pom.xml

 6 pse.jgit/src/org/eclipse/jgit/api/RebaseResult.java

 6 org.eclipse.jgit.test/META-INF/MANIFEST.MF

 6 org/eclipse/jgit/pgm/internal/CLIText.properties

 6 org.eclipse.jgit.pgm/META-INF/MANIFEST.MF

3. Now we have a list of the top ten files between the two releases, but before we
proceed further, let's just go through what we did. We got the list of files, and we
used sed '/^$/d' to remove empty lines from the output. After this, we used
sort to sort the list of files. Then, we used uniq -c, which counts the occurrences
of each item in the files and adds the number from the output. Finally, we sorted in
reverse order using sort -r and displayed only the top ten results using head 10.
To proceed from here, we should list all the commits between the branches that are
changing the top file:
$ git log origin/stable-3.1..origin/stable-3.2 org.eclipse.jgit/
src/org/eclipse

/jgit/api/RebaseCommand.java

Extracting Data from the Repository

126

commit e90438c0e867bd105334b75df3a6d640ef8dab01

Author: Stefan Lay <stefan.lay@sap.com>

Date: Tue Dec 10 15:54:48 2013 +0100

 Fix aborting rebase with detached head

 Bug: 423670

 Change-Id: Ia6052867f85d4974c4f60ee5a6c820501e8d2427

commit f86a488e32906593903acb31a93a82bed8d87915

4. By adding the file to the end of the git log command, we will see the commits
between the two branches. Now all we have to do is to grep commits that have the
bug, so we can tell our manager the number of bugs we fixed in this file.

Grepping the commit messages
Now we know how to list and sort files that we make frequent changes to and vice versa, but
we are also interested in finding out the bugs we are fixing, the features we are implementing,
and perhaps who is signing the code. All this information is usually available in the commit
message. Some companies have a policy that you need to have a referral to a bug, a feature,
or some other reference in the commit message. By having this information in the commit
message, it is a lot easier to produce a nice release note as well.

Getting ready
As we will mostly be grepping the Git database in these examples, we really don't need to
check something out or be at a specific commit for this example. So, if you are still lurking
around in the chapter6 folder, we can continue.

How to do it...
Let's see how many commits in the repository are referring to a bug:

1. First of all, we need to know the pattern for bugs referred to in the commit messages.
I did this by looking in the commits, and the pattern for Jgit is to use Bug: 6
digits; so, to find all of these commits, we use the --grep option for git log,
and we can grep for "[Bb][Uu][gG]: [0-9]\+":
$ git log --all --grep="^[bB][uU][gG]: [0-9]"

commit 3db6e05e52b24e16fbe93376d3fd8935e5f4fc9b

Author: Stefan Lay <stefan.lay@sap.com>

Chapter 6

127

Date: Wed Jan 15 13:23:49 2014 +0100

 Fix fast forward rebase with rebase.autostash=true

 The folder .git/rebase-merge was not removed in this case. The

 repository was then still in rebase state, but neither abort
nor

 continue worked.

 Bug: 425742

 Change-Id: I43cea6c9e5f3cef9d6b15643722fddecb40632d9

2. You should get a lot of commits as output, but you should notice all the commits
have a referral to a bug ID. So what was the grep doing? The ^[Bb][Uu][gG]: part
matches any combination of lowercase and uppercase bugs. The ^ character
means from the beginning of the line. The : character is matching :. Then, we have
[0-9]\+, which will match any number between zero and nine, and the \+ part
means one or more occurrences. But enough with regular expressions for grep.
We have a lot of output (which is valuable), but for now, we just want to count the
commits. We can do this by piping it to wc -l (wordcount -l is to count the lines):
$ git log --all --oneline --grep="^[bB][uU][gG]: [0-9]\+" | wc -l

 366

3. Before piping it to wc, remember to use --oneline to limit the output to one line
for each commit. As you can see, when I was writing this, Jgit has reference to 366
bugs that have all been fixed and released into the repository. If you are used to using
regular expressions in another scripting or programming language, you will see that
using --grep does not support everything. You can enable a more extensive regular
expression support using the --extended-regexp option for git log; however,
the pattern still has to be used with --grep:
$ git log --all --oneline --extended-regexp --grep="^[bB][uU]
[gG]: [0-9]{6}"

3db6e05 Fix fast forward rebase with rebase.autostash=true

c6194c7 Update com.jcraft.jsch to 0.1.50 in Kepler target platform

1def0a1 Fix for core.autocrlf=input resulting in modified file and
unsmudge

0ce61ca Canonicalize worktree path in BaseRepositoryBuilder if set
via config

e90438c Fix aborting rebase with detached head

2e0d178 Add recursive variant of Config.getNames() methods

Extracting Data from the Repository

128

4. I have used it in the preceding example, and you can see we are getting the same
commits. I have used a slightly different expression, and have now added {6}
instead of \+ the {6}, which searches for six occurrences of the associated
pattern; in our case, it is six digits as it is next to the [0-9] pattern. We can verify
by counting the lines or commits again with wc -l:
$ git log --all --oneline --extended-regexp --grep="^[bB][uU]
[gG]: [0-9]{6}" | wc -l

 366

5. We get the same number. To shrink the regular expression even more, we can
use --regexp-ignore-case, which will ignore the case for the pattern:
$ git log --all --oneline --regexp-ignore-case --extended-regexp
--grep="^bug: [0-9]{6}"

3db6e05 Fix fast forward rebase with rebase.autostash=true

c6194c7 Update com.jcraft.jsch to 0.1.50 in Kepler target platform

1def0a1 Fix for core.autocrlf=input resulting in modified file and
unsmudge

0ce61ca Canonicalize worktree path in BaseRepositoryBuilder if set
via config

e90438c Fix aborting rebase with detached head

2e0d178 Add recursive variant of Config.getNames() methods

6. Now we have the exact same output, and we no longer have [bB][uU][Gg]
but just bug.

Now you know how to grep the commit messages for information, and you can grep
for anything in the commit message and list all the commits where the regular
expression matches.

The contents of the releases
While extracting information from Git, one of the natural things to do is to generate release
notes. To generate a release note, you need all the valid information from the repository
between this release and the previous release.

We can utilize some of the methods we have used earlier to generate the data we want.

Chapter 6

129

How to do it...
We start by listing the commits between two tags, v2.3.1.201302201838-r and
v3.0.0.201305080800-m7, and then we build on that information:

1. By using git log with v3.0.0.201305080800-m7..
v3.0.0.201305080800-m7, we will get the commits between the tags:
$ git log --oneline v2.3.1.201302201838-r..v3.0.0.201305080800-m7

00108d0 JGit v3.0.0.201305080800-m7

e27993f Add missing @since tags

d7cc6eb Move org.eclipse.jgit.pgm's resource bundle to internal
package

75e1bdb Merge "URIish: Allow multiple slashes in paths"

b032623 Remove unused repository field from RevWalk

a626f9f Merge "Require a DiffConfig when creating a FollowFilter"

2. As we have a lot of commits between these two tags, let's count them using wc -l:
$ git log --oneline v2.3.1.201302201838-r..v3.0.0.201305080800-m7
| wc -l

 211

3. There are 211 commits between the tags. Now, we will show the most modified files
between the releases:
$ git log v2.3.1.201302201838-r..v3.0.0.201305080800-m7
--format=format: --name-only | sed '/^$/d' | sort | uniq -c |
sort -r | head -10

 11 org.eclipse.jgit/src/org/eclipse/jgit/internal/st

 10 org.eclipse.jgit/src/org/eclipse/jgit/internal/sto

 10 org.eclipse.jgit.pgm/resources/org/eclipse/jgit/p

 9 org.eclipse.jgit.test/META-INF/MANIFEST.MF

 8 pom.xml

 8 org.eclipse.jgit/src/org/eclipse/jgit/storage/pac

 8 org.eclipse.jgit/src/org/eclipse/jgit/internal/sto

 8 org.eclipse.jgit.pgm/src/org/eclipse/jgit/pgm/CLI

 7 org.eclipse.jgit/src/org/eclipse/jgit/storage/dfs/D

 7 org.eclipse.jgit/src/org/eclipse/jgit/storage/dfs/D

Extracting Data from the Repository

130

4. This information is valid as we now have an overview of where the majority of the
changes are. Then, we can find the commit that refers to bugs so we can list the
bug IDs:
$ git log --format=format:%h --regexp-ignore-case --extended-
regexp --grep="bug: [0-9]{6}" v2.3.1.201302201838-r..
v3.0.0.201305080800-m7 | xargs -n1 git log -1 | grep --ignore-case
-E "commit [0-9a-f]{40}|bug:"

commit e8f720335f86198d4dc99af10ffb6f52e40ba06f

 Bug: 406722

commit f448d62d29acc996a97ffbbdec955d14fde5c254

 Bug: 388095

commit 68b378a4b5e08b80c35e6ad91df25b1034c379a3

 Bug: 388095

commit 8bd1e86bb74da17f18272a7f2e8b6857c800a2cc

 Bug: 405558

commit 37f0e324b5e82f55371ef8adc195d35f7a196c58

 Bug: 406722

commit 1080cc5a0d67012c0ef08d9468fbbc9d90b0c238

 Bug: 403697

commit 7a42b7fb95ecd2c132b2588e5ede0f1251772b30

 Bug: 403282

commit 78fca8a099bd2efc88eb44a0b491dd8aecc222b0

 Bug: 405672

commit 4c638be79fde7c34ca0fcaad13d7c4f1d9c5ddd2

 Bug: 405672

5. So, what we have here is a nice list of the bugs being fixed and their corresponding
commit hashes.

Chapter 6

131

How it works...
We are using some bash tools to get this list of fixed bugs. I will briefly explain what they are
doing in this section:

 f The xargs -n1 git log -1 part will execute git log -1 on each commit
coming from the first git log command, git log --format=format:%h
--regexp-ignore-case --extended-regexp --grep="bug: [0-9]{6}"
v2.3.1.201302201838-r..v3.0.0.201305080800-m7.

 f The grep --ignore-case -E "commit [0-9a-f]{40}|bug:" grep will ignore
the case in the regular expression and -E will enable an extended regular expression.
You might see that a lot of these options for the tool grep are the same options we
have for git log. The regular expression is matching commit and 40 characters
with the [0-9a-f] range or bug:. The | character means or. Remember we are in
the out from git log -1.

All of this information we have extracted is the basis for a good, solid release note,
with information on what has changed from one release to another.

The next natural step would be to look into the bug tracking system and also list the titles
for each error being fixed in the commits. However, that is not something we will go through
here as it all depends on the system you are using.

7
Enhancing Your Daily
Work with Git Hooks,

Aliases, and Scripts

In this chapter, we will cover the following topics:

 f Using a branch description in the commit message

 f Creating a dynamic commit message

 f Using external information in the commit message

 f Preventing the push of specific commits

 f Configuring and using Git aliases

 f Configuring and using Git scripts

 f Setting up and using a commit template

Introduction
In order to function in a corporate environment, there should be certain prerequisites to the
code that is produced. It should be able to compile and pass specific sets of unit tests. There
should also be certain documentation in the commit messages, such as references to a bug
fix ID or an instance. Most of these are just scripts that are executed, so why not put these
items in to the process? In this chapter, you will see some examples of how to transfer data
from one location to the commit message before you see the message. You will also learn
how you can verify whether you are pushing your code to the right location. Finally, you will
see how you can add scripts to Git.

Enhancing Your Daily Work with Git Hooks, Aliases, and Scripts

134

A hook in Git is a script that will be executed on different events, such as pushing, committing,
or rebasing. These scripts, if they exit with a non-zero value, cancel the current Git operation.
You can find these hook scripts in the .git/hooks folder in any Git clone. If they have
the .sample file extension, then they are not active.

Using a branch description in the
commit message

In Chapter 3, Branching, Merging, and Options, we mentioned that you can set a description
to your branch, and this information can be retrieved from a script using the git config
--get branch.<branchname> description command. In this example, we will take
this information and use it for the commit message.

We will be using the prepare-commit-msg hook. The prepare-commit-msg hook is executed
every time you want to commit, and the hook can be set to anything you wish to check for
before you actually see the commit message editor.

Getting ready
We need a clone and a branch to get started on this exercise, so we will clone jgit again
to the chapter7.5 folder:

$ git clone https://git.eclipse.org/r/jgit/jgit chapter7.5

Cloning into 'chapter7.5'...

remote: Counting objects: 2170, done

remote: Finding sources: 100% (364/364)

remote: Total 45977 (delta 87), reused 45906 (delta 87)

Receiving objects: 100% (45977/45977), 10.60 MiB | 1.74 MiB/s, done.

Resolving deltas: 100% (24651/24651), done.

Checking connectivity... done.

Checking out files: 100% (1577/1577), done.

Checkout a local descriptioInCommit branch that tracks the origin/stable-3.2
branch:

$ cd chapter7.5

$ git checkout -b descriptioInCommit --track origin/stable-3.2

Branch descriptioInCommit set up to track remote branch stable-3.2 from
origin.

Switched to a new branch 'descriptioInCommit'

Chapter 7

135

How to do it...
We will start by setting the description for our local branch. Then, we will create the hook that
can extract this information and put it in the commit message.

We have our local descriptioInCommit branch for which we need to set a description. We
will use the --edit-description Git branch to add a description to our local branch. This
opens the description editor, and you can type in a message by performing the following steps:

1. When you execute the command, the description editor will open and you can type in
a message:
 $ git branch --edit-description descriptioInCommit

2. Now, type in the following message:
Remote agent not connection to server

When the remote agent is trying to connect

it will fail as network services are not up

and running when remote agent tries the first time

3. You should write your branch description just as you write your commit messages.
It makes more sense only then to reuse the description in the commit. Now, we will
verify whether we have a message with the following description:
$ git config --get branch.descriptioInCommit.description

Remote agent not connection to server

When the remote agent is trying to connect

it will fail as network services are not up

and running when remote agent tries the first time

4. As expected, we have the desired output. Now, we can continue with creating the
hook that will take the description and use it.

Next, we will check if we have a description for the hook, and if we do, we will use
that description as the commit message.

5. First, we will ensure that we can get the information into the commit message at our
desired position. There are many ways to do this, and I have settled on the following
one: open the prepare-commit-msg hook file and type in the following script:
#!/bin/bash

BRANCH=$(git branch | grep '*'| sed 's/*//g'| sed 's/ //g')

DESCRIPTION=$(git config --get branch.${BRANCH}.description)

Enhancing Your Daily Work with Git Hooks, Aliases, and Scripts

136

echo $BRANCH

#echo "$DESCRIPTION"

if [-z "$DESCRIPTION"]; then

 echo "No desc for branch using default template"

else

 # using tr to convert newlines to #

 # else sed will have a problem.

 DESCRIPTION=$(echo "$DESCRIPTION" | tr -s '\n' '#')

 # replacing # with \n

 DESCRIPTION=$(echo "$DESCRIPTION" | sed 's/#/\\n/g')

 # replacing the first \n with \n\n

 DESCRIPTION=$(echo "$DESCRIPTION" | sed 's/\\n/\\n\\n/')

 echo "$DESCRIPTION"

 using

 sed -i "1 i$DESCRIPTION" $1

fi

6. Now, we can try to create a commit and see whether the message is being displayed
as predicted. Use git commit --allow-empty to generate an empty commit but
also to trigger the prepare-commit-msg hook:
$ git commit --allow-empty

7. You should get the message editor with our branch description as the commit
message as follows:
Remote agent not connection to server

When the remote agent is trying to connect

it will fail as network services are not up

and running when remote agent tries the first time

Please enter the commit message for your changes. Lines starting

with '#' will be ignored, and an empty message aborts the
commit.

On branch descriptioInCommit

Your branch is up-to-date with 'origin/stable-3.2'.

#

Chapter 7

137

Untracked files:

hen the remote agent is trying to connect

#

8. This is as we expected. Save the commit message and close the editor.
Try using the git log -1 command to verify whether we have the following
message in our commit:
$ git log -1

commit 92447c6aac2f6d675f8aa4cb88e5abdfa46c90b0

Author: Rasmus Voss <rasmus.voss@live.dk>

Date: Sat Mar 15 00:19:35 2014 +0100

 Remote agent not connection to server

 When the remote agent is trying to connect

 it will fail as network services are not up

 and running when remote agent tries the first time

9. You should get something similar to a commit message that is the same as
our branch description. However, what about an empty branch description?
How will our hook handle that? We can try again with a new branch named
noDescriptionBranch, use git checkout to create it, and check it,
as shown in the following command:
$ git checkout -b noDescriptionBranch

Switched to a new branch 'noDescriptionBranch'

10. Now, we will make yet another empty commit to see whether the commit
message will be as follows:
$ git commit --allow-empty

11. You should get the commit message editor with the default commit message text
as follows:

Please enter the commit message for your changes. Lines starting

with '#' will be ignored, and an empty message aborts the
commit.

On branch noDescriptionBranch

Untracked files:

hen the remote agent is trying to connect

#

This is all as we expected. This script can be combined with the next exercise that will take
content from a defect system as well.

Enhancing Your Daily Work with Git Hooks, Aliases, and Scripts

138

Creating a dynamic commit message
template

Developers can be encouraged to do the right thing, or developers can be forced to do the
right thing; however, in the end, developers need to spend time coding. So, if a good commit
message is required, we can use the prepare-commit-msg hook to assist the developer.

In this example, we will create a commit message for developers that contains information
about the state of the work area. It will also insert some information from a web page;
this could just as well be defect information from Bugzilla for instance.

Getting ready
To start with this exercise, we will not be cloning a repository, but we will be creating one.
For doing this, we will be using git init, as shown in the following code. You can use
git init <directory> to create a new repository somewhere, or you can also go to
a directory and execute git init, and Git will create a repository for you.

$ git init chapter7

Initialized empty Git repository in c:/Users/Rasmus/repos/chapter7/.git/

$ cd chapter7

How to do it...
We have our chapter7 directory where we just initialized our repository. In this directory,
the hooks are already available. Just look into the .git/hooks directory. We will be using
the prepare-commit-msg hook. Perform the following steps:

1. Start by looking into the folder with the following hooks:
$ ls .git/hooks/

applypatch-msg.sample pre-applypatch.sample

pre-rebase.sample commit-msg.sample

pre-commit.sample prepare-commit-msg.sample

post-update.sample pre-push.sample

update.sample

Chapter 7

139

2. As you can see, there are plenty of hooks in each of the hook files. There is an
example script and a small explanation to what the hook does and when it is
executed. To enable prepare-commit-msg, rename the file as shown in the
following code:
$ cd .git/hooks/

$ mv prepare-commit-msg.sample prepare-commit-msg

$ cd ../..

3. Open the prepare-commit-msg file in you preferred editor; I prefer gVim.

4. You can read the information in the file, but for our examples, we will clear the file
so that we can include the script.

5. Now include the following command in the file:
#!/bin/bash

echo "I refuse to commit"

exit 1

6. Save the file.

7. Finally, try to commit something or nothing. Usually, you cannot make a commit
that is empty, but with the --allow-empty option, you can create an empty
commit as follows:
$ git commit --allow-empty

I refuse to commit

8. As you can see, we get the message we put in the prepare-commit-msg script file.
You can check whether we don't have a commit by using git log -1 as follows:
$ git log -1

fatal: bad default revision 'HEAD'

There is no commit, and we get an error message that we have not seen before. The
message has to be there because there is no commit so far in this repository. Before
we make further changes to the script, we should know that the prepare commit
message hook takes some arguments depending on the situation. The first argument
is always .git/COMMIT_EDITMSG, and the second argument can be merge, commit,
squash, or template, depending on the situation. We can use these in the script.

Enhancing Your Daily Work with Git Hooks, Aliases, and Scripts

140

9. Change the script so that we can reject amending commits as follows:
#!/bin/bash

if ["$2" == "commit"]; then

 echo "Not allowed to amend"

 exit 1

fi

10. Now that we have changed the script, let's create a commit and try to amend
it as follows:
$ echo "alot of fish" > fishtank.txt

$ git add fishtank.txt

$ git commit -m "All my fishes are belong to us"

[master (root-commit) f605886] All my fishes are belong to us

 1 file changed, 1 insertion(+)

 create mode 100644 fishtank.txt

11. Now that we have a commit, let's try to amend it using git commit --amend:
$ git commit --amend

Not allowed to amend

12. As we expected, we were not allowed to amend the commit. If we wish to extract
some information, for instance, from a bug handling system, we will have to put
this information in to the file before opening the editor. So, again, we will change
the script as follows:
#!/bin/bash

if ["$2" == "commit"]; then

 echo "Not allowed to amend"

 exit 1

fi

MESSAGE=$(curl http://whatthecommit.com | grep "<p>" | sed
's/<p>//')

sed -i -r "s/# Please/$MESSAGE\n&/" $1:

13. This script downloads a commit message from http://www.whatthecommit.com/
and inserts it into the commit message; so, every time you commit, you will get a new
message from the web page. Let's give it a try by using the following command:
$ echo "gravel, plants, and food" >>fishtank.txt

$ git add fishtank.txt

$ git commit

http://www.whatthecommit.com/

Chapter 7

141

14. When the commit message editor opens, you should see a message from
whatthecommit.com. Close the editor, and using git log -1, verify
whether we have the commit as follows:
git log -1

commit c087f75665bf516af2fe30ef7d8ed1b775bcb97d

Author: Rasmus Voss <rasmus.voss@live.dk>

Date: Wed Mar 5 21:12:13 2014 +0100

 640K ought to be enough for anybody

15. As expected, we have succeeded with the commit. Obviously, this is not the best
message to have for the committer. However, what I have done for my current employer
is listed the bugs assigned to the developer as follows in the commit message:
You have the following artifacts assigned

Remove the # to add the artifact ID to the commit message

#[artf23456] Error 02 when using update handler on wlan

#[artf43567] Enable Unicode characters for usernames

#[artf23451] Use stars instead of & when keying pword

16. This way, the developer can easily select the correct bug ID, or the artefact ID from
team Forge in this case, using the correct format for the other systems that will look
into the commit messages.

There's more...
You can extend the functionalities of the prepare commit message hook very easily, but you
should bear in mind that the waiting time for fetching some information should be worth the
benefits. One thing that is usually easy to check is a dirty work area.

Here, we need to use the git status command in the prepare commit message hook,
and we need to predict whether we will have modified files after the commit:

1. To check this, we need to have something staged for committing and some unstaged
changes as follows:
$ git status

On branch master

nothing to commit, working directory clean

whatthecommit.com

Enhancing Your Daily Work with Git Hooks, Aliases, and Scripts

142

2. Now, modify the fishtank.txt file:
$ echo "saltwater" >>fishtank.txt

3. Use git status --porcelain to check the work area:
$ git status --porcelain

 M fishtank.txt

4. Add the file to the staging area using git add:
$ git add fishtank.txt

5. Now try git status –porcelain:
$ git status --porcelain

M fishtank.txt

6. What you should note is the space before M the first time we use the --porcelain
option for git status. The porcelain option provides a machine-friendly output
that shows the state of the files for git status. The first character is the status in the
staging area, whereas the second character is the status in the work area. So, MM
fishtank.txt would mean the file is modified in the work area and in the staging
area. So, if you modify fishtank.txt again, the following is the result you can expect:
$ echo "sharks and oysters" >> fishtank.txt

$ git status --porcelain

MM fishtank.txt

7. As expected, the output from git status is MM fishtank.txt. We can use this
in the hook to tell whether the work area will have uncommitted changes after we
commit. Add the following command to the prepare-commit-msg file:
for file in $(git status --porcelain)

do

 if [${file:1:1}]; then

 DIRTY=1

 fi

done

if ["${DIRTY}"]; then

 sed -i -r "s/# Please/You have a dirty workarea are you sure you
wish to commit \?\n&/" $1

fi

Chapter 7

143

8. First, we list all the files that have changed with git status --porcelain.
Then, for each of these, we check whether there is a second character. If this is
true, we will have a dirty work area after the commit. In the end, we just insert the
message in the commit message so that it is available for the developer to see.
Let's try and commit the change by using the following command:
$ git commit

9. Note that you have a message like the following one. The first line might be different
as we still have the message from http://www.whatthecommit.com/:
somebody keeps erasing my changes.

You have a dirty workarea are you sure you wish to commit ?

Please enter the commit message for your changes. Lines starting

with '#' will be ignored, and an empty message aborts the
commit.

On branch master

Changes to be committed:

modified: fishtank.txt

Changes not staged for commit:

modified: fishtank.txt

#

10. Saving the file and closing the editor will create the commit. Verify with git log -1
as follows:
$ git log -1

commit 70cad5f7a2c3f6a8a4781da9c7bb21b87886b462

Author: Rasmus Voss <rasmus.voss@schneider-electric.com>

Date: Thu Mar 6 08:25:21 2014 +0100

 somebody keeps erasing my changes.

 You have a dirty workarea are you sure you wish to commit ?

11. We have the information we expected. The text about the dirty work area is in the
commit message .To clean up nicely before the next exercise, we should reset our
work area to HEAD as follows:

$ git reset --hard HEAD

HEAD is now at 70cad5f somebody keeps erasing my changes.

http://www.whatthecommit.com/

Enhancing Your Daily Work with Git Hooks, Aliases, and Scripts

144

Now, it is just a matter of finding out what suits you. Is there any information you would like
to check before you commit and potentially push the code to a remote? I can think of the
following options:

 f Style checks in code

 f Pylint to check your Python scripts

 f Check for files that you are not allowed to add to Git

There are several other items, probably one for every organization or development team in the
world. However, this clearly is one way of taking tedious manual work away from the developer
so that he or she can focus on coding.

Using external information in the commit
message

The commit hook is executed when you close the commit message editor. It can, among
other things, be used to manipulate the commit message or review the commit message
by machine to check whether it has a specific format.

In this recipe, we will be manipulating and checking the content of a commit message.

Getting ready
To start this exercise, we just need to create a branch and check it out. We need to disable the
current prepare-commit-msg hook; we can do this by simply renaming it. Now, we can start
working on the commit-msg hook by using the following command:

git checkout -b commit-msg-example

Switched to a new branch 'commit-msg-example'

$ mv .git/hooks/prepare-commit-msg .git/hooks/prepare-commit-msg.example

How to do it...
What we want to do in the first example is to check whether the defect information is correct.
There is no need to release a commit that refers to a defect that does not exist:

1. We will start by testing the commit-msg hook. First, make a copy of the current hook,
then we will force the hook to exit with a non-zero value that will abort the creation of
the commit:
$ cp .git/hooks/commit-msg.sample .git/hooks/commit-msg

Chapter 7

145

2. Now, open the file in your preferred editor and add the following lines to the file:
#!/bin/bash

echo "you are not allowed to commit"

exit 1

3. Now, we will try to make a commit and see what happens as follows:
$ echo "Frogs, scallops, and coco shell" >> fishtank.txt

$ git add fishtank.txt

$ git commit

4. The editor will open and you can write a small commit message. Then, close the
editor. You should see the you are not allowed to commit message, and
if you check with git log -1, you will see that you don't have a commit with the
message you just used, as follows:
you are not allowed to commit

$ git log -1

commit 70cad5f7a2c3f6a8a4781da9c7bb21b87886b462

Author: Rasmus Voss <rasmus.voss@schneider-electric.com>

Date: Thu Mar 6 08:25:21 2014 +0100

 somebody keeps erasing my changes.

 You have a dirty workarea are you sure you wish to commit ?

5. As you can see, the commit message hook is executed after you close the message
editor, whereas the prepare-commit-msg hook is executed before the message editor.
To validate, if we have a proper reference to the hook in our commit message, we will
be checking whether a specific error is available for the Jenkins-CI project. Replace
the lines in the commit-msg hook so that it looks like the following command:
#!/bin/bash

JIRA_ID=$(cat $1 | grep jenkins | sed 's/jenkins //g')

ISSUE_INFO=$(curl https://issues.jenkins-ci.org/browse/JENKINS-
${JIRA_ID} | grep "The issue you are trying to view does not
exist.")

if ["${ISSUE_INFO}"]; then

 echo "Jenkins issue ${JIRA_ID} does not exist"

 echo "Please try again"

 exit 1

else

Enhancing Your Daily Work with Git Hooks, Aliases, and Scripts

146

 TITLE=$(curl https://issues.jenkins-ci.org/browse/JENKINS-$JIRA_
ID} | grep -E "<title>.*<\/title>")

 echo "Jenkins issue ${JIRA_ID}"

 echo "${TITLE}"

 exit 0

fi

6. We are using Curl to retrieve the web page, and we are using grep to find a line
with The issue you are trying to view does not exist; if we find this
text, we know that the ID does not exist. Now we should create a commit and see
what happens if we put in the wrong ID, jenkins 384895, or an ID that exists as
jenkins 3157. To check this, we will create a commit as follows:
$ echo "more water" >> fishtank.txt

$ git add fishtank.txt

$ git commit

7. In the commit message, write something such as Feature cascading… as a
commit message subject. Then, in the body of the commit message, insert jenkins
384895. This is the important part as the hook will use that number to look it up on
the Jenkins issue tracker:
Feature: Cascading...

jenkins 384895

8. You should end up with the following output:
Jenkins issue 384895 does not exist

Please try again

9. This is what we expected. Now, verify with git status whether the change has not
been committed:
$ git status

On branch commit-msg-example

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: fishtank.txt

10. Now we will try to commit again; this time, we will be using the correct JIRA ID:
$ git commit

Chapter 7

147

11. Key in a commit message like the previous one; this time make sure the Jenkins
issue ID is one that exists. You can use 3157:
Feature: Cascading...

jenkins 3157

12. Saving the commit message should result in an output as follows. We can clean it
some more by removing the title HTML tags:
<title>[#JENKINS-3157] Feature request: cascading project settings
- Jenkins JIRA</title>

[commit-msg-example 3d39ca3] Feature: Cascading...

1 file changed, 2 insertions(+)

13. As you can see, we can get information to output. We could also add this information
to the commit message itself. Then, we can change and insert this as the else
clause in the script:
TITLE=$(curl https://issues.jenkins-ci.org/browse/JENKINS-${JIRA_
ID} | grep -E "<title>.*<\/title>")

TITLE=$(echo ${TITLE} | sed 's/^<title>//' |sed 's/<\/title>$//')

echo "${TITLE}" >> $1

echo "Jenkins issue ${JIRA_ID}"

echo "${TITLE}"

 exit 0

14. To test, we will create a commit again, and in the message, we need to specify the
JIRA ID that exists:
$ echo "Shrimps and mosquitos" >> fishtank.txt

$ git add fishtank.txt

$ git commit

After saving the commit message editor you will get an output
similar like this.

Jenkins issue 3157

[#JENKINS-3157] Feat

[commit-msg-example 6fa2cb4] More cascading

1 file changed, 1 insertion(+)

Enhancing Your Daily Work with Git Hooks, Aliases, and Scripts

148

15. To verify whether we got the information in the message, we will use
git log -1 again:

$ git log -1

commit 6fa2cb47989e12b05cd2689aa92244cb244426fc

Author: Rasmus Voss <rasmus.voss@schneider-electric.com>

Date: Thu Mar 6 09:46:18 2014 +0100

 More cascading

 jenkins 3157

 [#JENKINS-3157] Feature request: cascading project settings -
Jenkins JIRA

As expected, we have the information at the end of the commit. In these examples, we are
just discarding the commit message if the JIRA ID does not exist; this is a little harsh on the
developer. So, you can combine this with the prepare-commit-msg hook. So, if commit-msg
halts the commit process, then save the message temporarily so that the prepare-commit-msg
hook can use that message when the developer tries again.

Preventing the push of specific commits
The pre-push hooks are triggered whenever you use the push command and the script execution
happens before the push; so, we can prevent a push if we find a reason to reject the push.
One reason could be you have a commit that has the nopush text in the commit message.

Getting ready
To use the Git pre-push, we need to have a remote repository for which we will be cloning
jgit again as follows:

$ git clone https://git.eclipse.org/r/jgit/jgit chapter7.1

Cloning into 'chapter7.1'...

remote: Counting objects: 2429, done

remote: Finding sources: 100% (534/534)

remote: Total 45639 (delta 145), reused 45578 (delta 145)

Receiving objects: 100% (45639/45639), 10.44 MiB | 2.07 MiB/s, done.

Resolving deltas: 100% (24528/24528), done.

Checking connectivity... done.

Checking out files: 100% (1576/1576), done.

Chapter 7

149

How to do it...
We want to be able to push to a remote, but unfortunately, Git will try to authenticate through
HTTPS for the jgit repository before the hooks are executed. Because of this, we will create
a local clone from the chapter7.1 directory. This will make our remote a local folder.

$ git clone --branch master ./chapter7.1/ chapter7.2

Cloning into ' chapter7.2'...

done.

Checking out files: 100% (1576/1576), done.

$ cd chapter7.2

We are cloning the chapter7.1 directory in a folder named chapter7.2, and checking
the master branch when the clone has finished. Now, we can go back to the chapter7.1
directory and continue with the exercise.

What we now want to do is to create a commit with a commit message that has nopush as
part of it. By adding this word to the commit message, the code in the hook will automatically
stop the push. We will be doing this on top of a branch. So, to start with, you should check out
a prepushHook branch that tracks the origin/master branch and then creates a commit.
We will try to push it for the remote when we have the pre-push commit in place, as follows:

1. Start by creating a new branch named prepushHook that tracks origin/master:
$ git checkout -b prepushHook --track origin/master

Branch prepushHook set up to track remote branch master from
origin.

Switched to a new branch 'prepushHook'

2. Now, we reset back in time; it is not so important how far back we do this.
So, I have just selected a random commit as follows:
$ git reset --hard 2e0d178

HEAD is now at 2e0d178 Add recursive variant of Config.getNames()
methods

3. Now we can create a commit. We will do a simple inline replace with sed and then
add pom.xml and commit it:
$ sed -i -r 's/2.9.1/3.0.0/g' pom.xml

$ git add pom.xml

$ git commit -m "Please nopush"

[prepushHook 69d571e] Please nopush

1 file changed, 1 insertion(+), 1 deletion(-)

Enhancing Your Daily Work with Git Hooks, Aliases, and Scripts

150

4. To verify whether we have the commit with the text, run git log -1:
$ git log -1

commit 1269d14fe0c32971ea33c95126a69ba6c0d52bbf

Author: Rasmus Voss <rasmus.voss@live.dk>

Date: Thu Mar 6 23:07:54 2014 +0100

 Please nopush

5. We have what we want in the commit message. Now, we just need to prep the hook.
We will start by copying the sample hook to the real name so that it will be executed
on push:
cp .git/hooks/pre-push.sample .git/hooks/pre-push

6. Edit the hook so that it has the code as shown in the following snippet:
#!/bin/bash

echo "You are not allowed to push"

exit 1

7. Now, we are ready to push. We will be pushing our current branch HEAD to the
master branch in the remote:
$ git push origin HEAD:refs/heads/master

You are not allowed to push

error: failed to push some refs to '../chapter7.1/'

8. As expected, the hook is being executed, and the push is being denied by the hook.
Now we can implement the check we want. We want to exit if we have the word
nopush in any commit message. We can use git log --grep to search for
commits with the keyword nopush in the commit message, as shown in the
following command:
$ git log --grep "nopush"

commit 51201284a618c2def690c9358a07c1c27bba22d5

Author: Rasmus Voss <rasmus.voss@live.dk>

Date: Thu Mar 6 23:07:54 2014 +0100

 Please nopush

Chapter 7

151

9. We have our newly created commit with the keyword nopush. Now, we will make
a simple check for this in the hook and edit the pre-push hook so that it has the
following text:
#!/bin/bash

COMMITS=$(git log --grep "nopush")

if ["$COMMITS"]; then

 echo "You have commit(s) with nopush message"

 echo "aborting push"

 exit 1

fi

10. Now we can try to push again to see what the result will be. We will try to push
our HEAD to the master branch on the remote origin:

$ git push origin HEAD:refs/heads/master

You have commit(s) with nopush message

aborting push

error: failed to push some refs to 'c:/Users/Rasmus/repos/./
chapter7.1/'

As expected, we are not allowed to push as we have the nopush message in the commit.

There's more...
Having a hook that can prevent you from pushing commits that you don't want to push is
very handy. You can specify any keywords you want. Words such as reword, temp, nopush,
temporary, or hack can all be things you want to stop, but sometimes you want to get them
through anyway.

What you can do is have a small checker that will check for specific words and then list the
commits and ask if you want to push anyway.

If you change the script to the following snippet, the hook will try to find commits with the
keyword nopush and list them. If you wish to push them anyway, then you can find an answer
to the question and Git will push anyway.

#!/bin/bash

COMMITS=$(git log --grep "nopush" --format=format:%H)

if [$COMMITS]; then

 exitmaybe=1

Enhancing Your Daily Work with Git Hooks, Aliases, and Scripts

152

fi

if [$exitmaybe -eq 1]; then

while true

do

 'clear'

 for commit in "$COMMITS"

 do

 echo "$commit has no push in the message"

 done

 echo "Are you sure you want to push the commit(s) "

 read REPLY <&1

 case $REPLY in

 [Yy]*) break;;

 [Nn]*) exit 1;;

 *) echo "Please answer yes or no.";;

 esac

done

fi

Try it with the git push command again as shown in the following snippet:

$ git push origin HEAD:refs/heads/master

Commit 70fea355bac0c65fd51f4874d75e65b4a29ad763 has nopush in message

Are you sure you want to push the commit(s)

Type n and press enter. Then, expect the push to be aborted with the following message:

error: failed to push some refs to 'c:/Users/Rasmus/repos/./chapter7.1/'

As predicted, it will not push. However, on the other hand, if you press y, Git will push to the
remote. Try it now using the following command:

$ git push origin HEAD:refs/heads/master

054c5f78fdc82141e9d73e6b6955c38ff79c8b2e has no push in the message

Are you sure you want to push the commit(s)

y

To c:/Users/Rasmus/repos/./chapter7.1/

 ! [rejected] HEAD -> master (non-fast-forward)

Chapter 7

153

error: failed to push some refs to 'c:/Users/Rasmus/repos/./chapter7.1/'

hint: Updates were rejected because a pushed branch tip is behind its
remote

hint: counterpart. Check out this branch and integrate the remote changes

hint: (e.g. 'git pull ...') before pushing again.

hint: See the 'Note about fast-forwards' in 'git push --help' for
details.

As predicted, the push will be tried, but as you can see from the output, we are rejected
by the remote. This is because we diverged, and the push was not working at the tip of
the master branch.

So, with this hook, you can make your life a little easier by having the hook prevent you from
accidentally pushing something you are not interested in getting pushed. This example also
considers commits that have been released; so, if you select a different keyword, then other
commits, not only the locally created ones, will be taken into consideration by the script.

Configuring and using Git aliases
Git aliases, like Unix aliases, are short commands that can be configured on a global level or
for each repository. It is a simple way of renaming some Git commands to short abbreviations,
for example, git checkout could be git co and so on.

How to do it...
It is very simple and straightforward to create an alias. You simply need to configure it with
git config.

What we will do is check a branch and then create its aliases one by one and execute them
to view their output by performing the following steps:

1. So, we will start by checking a branch named gitAlias that tracks the
origin/stable-3.2 branch:
$ git checkout -b gitAlias --track origin/stable-3.2

Branch gitAlias set up to track remote branch stable-3.2 from
origin.

Switched to a new branch 'gitAlias'

2. After this, we can start creating some aliases. We will start with the following one
that will simply just amend your commit:
$ git config alias.amm 'commit --amend'

Enhancing Your Daily Work with Git Hooks, Aliases, and Scripts

154

3. Executing this alias will open the commit message editor with the following message
from the HEAD commit:
$ git amm

Prepare post 3.2.0 builds

Change-Id: Ie2bfdee0c492e3d61d92acb04c5bef641f5f132f

Signed-off-by: Matthias Sohn matthias.sohn@sap.com

4. As you can see, it can be very simple to speed up the process of your daily workflow
with Git aliases. The following command will just work on the last 10 commits using
--oneline as an option for git log:
$ git config alias.lline 'log --oneline -10'

5. Using the alias will give you the following output:
$ git lline

314a19a Prepare post 3.2.0 builds

699900c JGit v3.2.0.201312181205-r

0ff691c Revert "Fix for core.autocrlf=input resulting in mo

1def0a1 Fix for core.autocrlf=input resulting in modified f

0ce61ca Canonicalize worktree path in BaseRepositoryBuilder

be7942f Add missing @since tags for new public methods ig

ea04d23 Don't use API exception in RebaseTodoLine

3a063a0 Merge "Fix aborting rebase with detached head" into

e90438c Fix aborting rebase with detached head

2e0d178 Add recursive variant of Config.getNames() methods

6. You can also perform a simple checkout. Thus, instead of using the Git checkout,
you can just as well use git co <branch>. Configure it as follows:
$ git config alias.co checkout

7. You will see that the aliases take arguments just as the regular Git command does.
Let's try the alias using the following command:
$ git co master

Switched to branch 'master'

Your branch is up-to-date with 'origin/master'.

$ git co gitAlias

Switched to branch 'gitAlias'

Your branch and 'origin/stable-3.2' have diverged,

and have 1 and 1 different commit each, respectively.

 (use "git pull" to merge the remote branch into yours)

Chapter 7

155

8. The command works as expected. You may wonder why we diverged after checking
out the gitAlias branch again. Then, we diverged when we amended the HEAD
commit. This is because the next alias is creating a commit with everything that
has not been committed in the work area, except for the untracked files:
$ git config alias.ca 'commit -a -m "Quick commit"'

9. Before we can test the alias, we should create a file and modify it to show what it
actually does. So, create a file as shown in the following command:
$ echo "Sharks" > aquarium

$ echo "New HEADERTEXT" >pom.xml

10. To verify what you want, run git status:
Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working
directory)

 modified: pom.xml

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 aquarium

no changes added to commit (use "git add" and/or "git commit -a")

11. Now we can test the alias using the following command:
$ git ca

[gitAlias ef9739d] Quick commit

 1 file changed, 1 insertion(+), 606 deletions(-)

 rewrite pom.xml (100%)

12. To verify whether the aquarium file was not a part of the commit, use git status:
Untracked files:

 (use "git add <file>..." to include in what will be committed)

 aquarium

nothing added to commit but untracked files present (use "git add"
to track)

Enhancing Your Daily Work with Git Hooks, Aliases, and Scripts

156

13. You can also use git log -1 --name-status to see the commit we just created:
$ git log -1

commit ef9739d0bffe354c75b82f3b785780f5e3832776

Author: Rasmus Voss <rasmus.voss@live.dk>

Date: Thu Mar 13 00:01:49 2014 +0100

 Quick commit

14. The output is just as we expected. The next alias is a little different as it will count the
number of commits in the repository, and this can be done with the wc (wordcount)
tool. However, since this is not a built-in Git tool, we have to use the exclamation mark
and also specify Git:
$ git config alias.count '!git log --all --oneline | wc -l'

15. Let's try it with the following command:
$ git count

 3008

16. So, currently, I have 3008 commits in the repository. This also means you can
execute external tools as if they were Git tools just by creating a Git alias; for instance,
if you are using Windows, you can create an alias as follows:
$ git config alias.wa '!explorer .'

17. This alias will open up an explorer window at the path you are currently at. The next
one shows what changed in the HEAD commit. It executes this with the --name-
status option for git log:
$ git config alias.gl1 'log -1 --name-status'

18. Now try it using the following command:
$ git gl1

commit ef9739d0bffe354c75b82f3b785780f5e3832776

Author: Rasmus Voss <rasmus.voss@live.dk>

Date: Thu Mar 13 00:01:49 2014 +0100

 Quick commit

M pom.xml

Chapter 7

157

19. As you can see, it simply lists the commit and the files including what happened
to the files in the commit. As the aliases take arguments, we can actually reuse
this functionality to list the information for another branch. Let's try it with the
following command:

$ git gl1 origin/stable-2.1

commit 54c4eb69acf700fdf80304e9d0827d3ea13cbc6d

Author: Matthias Sohn <matthias.sohn@sap.com>

Date: Wed Sep 19 09:00:33 2012 +0200

 Prepare for 2.1 maintenance changes

 Change-Id: I436f36a7c6dc86916eb4cde038b27f9fb183465a

 Signed-off-by: Matthias Sohn <matthias.sohn@sap.com>

M org.eclipse.jgit.ant.test/META-INF/MANIFEST.MF

M org.eclipse.jgit.ant.test/pom.xml

M org.eclipse.jgit.ant/META-INF/MANIFEST.MF

M org.eclipse.jgit.ant/pom.xml

M org.eclipse.jgit.console/META-INF/MANIFEST.MF

M org.eclipse.jgit.console/pom.xml

M org.eclipse.jgit.http.server/META-INF/MANIFEST.MF

M org.eclipse.jgit.http.server/pom.xml

As you can see, we get the expected output. So, for instance, if you have been using a specific
set of options for git diff, then you can just as well make it an alias to use it with ease.

How it works...
It is as simple as inserting text in the config file. So, you can try and open the .git/config
configuration file, or you can list the configuration with git config –list:

$ git config --list | grep alias

alias.amm=commit --amend

alias.lline=log --oneline -10

alias.co=checkout

alias.ca=commit -a -m "Quick commit"

alias.count=!git log --all --oneline | wc -l

Enhancing Your Daily Work with Git Hooks, Aliases, and Scripts

158

This alias feature is very strong, and the idea behind it is that you should use it to shorten
those long one-liners that you use otherwise. You can also use this feature to cut down
those one-liners to small aliases so that you can use the command frequently and with more
precision. If you have it as an alias, you will run it the same way every time, where keying a
long command is bound to fail once in a while.

Configuring and using Git scripts
Yes, we have aliases, and aliases do what they do best—take small one-liners and convert
them into small useful Git commands. However, when it comes to larger scripts that are also
a part of your process, and you would like to incorporate them into Git, you can simply name
the script git-scriptname, and then use it as git scriptname.

How to do it...
There are a few things to remember. The script has to be in your path so that Git can use the
script. Besides this, only imagination sets the boundary:

1. Open your favorite editor and insert the following lines in the file:
#!/bin/bash

NUMBEROFCOMMITS=$(git log --all --oneline | wc -l)

while :

 WHICHCOMMIT=$(((RANDOM % ${NUMBEROFCOMMITS}) + 1))

 COMMITSUBJECT=$(git log --oneline --all -${WHICHCOMMIT} | tail
-n1)

 COMMITSUBJECT_=$(echo $COMMITSUBJECT | cut -b0-60)

do

 if [$RANDOM -lt 14000]; then

 printf "\e[1m%-60s \e[32m%-10s\e[m\n" "${COMMITSUBJECT_}" '
PASSED'

 elif [$RANDOM -gt 15000]; then

 printf "\e[1m%-60s \e[31m%-10s\e[m\n" "${COMMITSUBJECT_}" '
FAILED'

 fi

Done

2. Save the file with the name git-likeaboss. This is a very simple script that will
list random commit subjects with either passed or failed as the result. It will not stop
until you press Ctrl + c.
$ git likeaboss

5ec4977 Create a MergeResult for deleted/modified PASSED

fcc3349 Add reflog message to TagCommand PASSED

Chapter 7

159

591998c Do not allow non-ff-rebase if there are ed PASSED

0d7dd66 Make sure not to overwrite untracked notfil PASSED

5218f7b Propagate IOException where possible where FAILED

f5fe2dc Teach PackWriter how to reuse an existing s FAILED

3. Note you can also tab complete these commands, and Git will take them into
consideration when you slightly misspell commands as follows:

$ git likeboss

git: 'likeboss' is not a git command. See 'git --help'.

Did you mean this?

 likeaboss

I know this script in itself is not so useful in a day-to-day environment, but I hope you get the
point I am trying to make. All scripts revolve around the software delivery chain and you can
just as well name them Git as they are part of Git. This makes it much easier to remember
which scripts you have are available for your job.

Both Git aliases and Git scripts will show up as Git commands while
using tab completion. Type in git <tab> <tab> to see the list of
possible Git commands.

Setting up and using a commit template
In this chapter, we have been using dynamic templates, but Git also has the option of a static
commit template, which essentially is just a text file configured as a template. Using the
template is very easy and straightforward.

Getting ready
First of all, we need a template. This has to be a text file whose location you should know.
Create a file with the following content:

#subject no more than 74 characters please

#BugFix id in the following formats

#artf [123456]

#PCP [AN12354365478]

#Bug: 123456

Enhancing Your Daily Work with Git Hooks, Aliases, and Scripts

160

#Descriptive text about what you have done

#Also why you have chosen to do in that way as

#this will make it easier for reviewers and other

#developers.

This is my take on a simple commit message template. You might find that there are other
templates out there that prefer to have the bug in the title or at the bottom of the commit
message. The reason for having this at the top is that people often tend not to read the
important parts of the text! The important part here is the formatting of the references to
systems outside Git. If we get these references correct, we can automatically update the
defect system as well. Save the files as ~/committemplate.

How to do it...
We will configure our newly created template, and then we will make a commit that will utilize
the template.

To configure the template, we need to use git config commit.template <pathtofile>
to set I,t, and as soon as it is set, we can try to create a commit and see how it works:

1. Start by configuring the template as follows:
$ git config commit.template ~/committemplate

2. Now list the config file to see that it has been set:
$ git config --list | grep template

commit.template=c:/Users/Rasmus/committemplate

3. As we predicted, the configuration was a success. The template, just as any other
configuration, can be set at a global level using git config --global, or it can
be set at a local repository level by leaving out the --global option. We configured
our commit template for this repository only. Let's try and make a commit:
$ git commit --allow-empty

4. Now the commit message editor should open, and you should see our template in the
commit message editor:
#subject no more than 74 characters please

#BugFix id in the following formats

#artf [123456]

#PCP [AN12354365478]

#Bug: 123456

Chapter 7

161

#Descriptive text about what you have done

#Also why you have chosen to do in that way as

#this will make it easier for reviewers and other

#developers.

It is really as simple as that.

So, in this chapter, we have seen how we can prevent pushing when we have special words
in our commit messages. We have also seen how you can dynamically create a commit
message with valid information for you or another developer when you are committing.
We have also seen how we can build functionality into your own Git by adding small scripts
or aliases that all are executed using the Git way. I hope this information will help you to
work smarter instead of harder.

8
Recovering from

Mistakes

In this chapter, we will cover the following topics:

 f Undo – remove a commit completely

 f Undo – remove a commit and retain the changes to files

 f Undo – remove a commit and retain the changes in the staging area

 f Undo – working with a dirty area

 f Redo – recreate the latest commit with new changes

 f Revert – undo the changes introduced by a commit

 f Reverting a merge

 f Viewing past Git actions with git reflog

 f Finding lost changes with git fsck

Introduction
It is possible to correct mistakes made in Git the with git push context (without exposing
them if the mistake is found before sharing or publishing the change). If the mistake is
already pushed, it is still possible to undo the changes made to the commit that introduced
the mistake.

We'll also look at the reflog command and how we can use that and git fsck to
recover lost information.

Recovering from Mistakes

164

There is no git undo command in core Git. One of the reasons being ambiguity on what
needs to be undone, for example, the last commit, the added file, and so on. If you want
to undo the last commit, how should that be done? Should the changes introduced to the
files by the commit be deleted? For instance, just roll back to the last known good commit,
or should they be kept so that could be changed for a better commit or should the commit
message simply be reworded?. In this chapter, we'll explore the possibilities to undo a
commit in several ways depending on what we want to achieve. We'll explore four ways
to undo a commit:

 f Undo everything; just remove the last commit like it never happened

 f Undo the commit and unstage the files; this takes us back to where we were
before we started to add the files

 f Undo the commit, but keep the files in the index or staging area so we can just
perform some minor modifications and then complete the commit

 f Undo the commit with the dirty work area

The undo and redo commands in this chapter are performed on commits
that are already published in the example repository. You should usually not
perform the undo and redo commands on commits that are already published
in a public repository, as you will be rewriting history. However, in the following
recipes, we'll use an example repository and execute the operations on
published commits so that everyone can have the same experience.

Undo – remove a commit completely
In this example, we'll learn how we can undo a commit as if it had never happened. We'll learn
how we can use the reset command to effectively discard the commit and thereby reset our
branch to the desired state.

Getting ready
In this example, we'll use the example of the hello world repository, clone the repository,
and change your working directory to the cloned one:

$ git clone https://github.com/dvaske/hello_world_cookbook.git

$ cd hello_world_cookbook

Chapter 8

165

How to do it...
First, we'll try to undo the latest commit in the repository as though it never happened:

1. We'll make sure our working directory is clean, no files are in the modified state,
and nothing is added to the index:
$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

nothing to commit, working directory clean

2. Also, check what is in our working tree:
$ ls

HelloWorld.java Makefile hello_world.c

3. If all works well, we'll check the log to see the history of the repository. We'll use the
--oneline switch to limit the output:
$ git log --oneline

3061dc6 Adds Java version of 'hello world'

9c7532f Fixes compiler warnings

5b5d692 Initial commit, K&R hello world

4. The most recent commit is the 3061dc6 Adds Java version of 'hello
world' commit. We will now undo the commit as though it never happened and
the history won't show it:
$ git reset --hard HEAD^

HEAD is now at 9c7532f Fixes compiler warnings

5. Check the log, status, and filesystem so that you can see what actually happened:
$ git log --oneline

9c7532f Fixes compiler warnings

5b5d692 Initial commit, K&R hello world

$ git status

On branch master

Recovering from Mistakes

166

Your branch is behind 'origin/master' by 1 commit, and can be
fast-forwarded.

 (use "git pull" to update your local branch)

nothing to commit, working directory clean

$ ls

hello_world.c

6. The commit is now gone along with all the changes it introduced
(Makefile and HelloWorld.java).

In the last output of git status, you can see that our master branch
is one behind origin/master. This is similar to what we mentioned
at the beginning of the chapter because we are removing and undoing
commits that are already published. Also, as mentioned, you should only
perform the undo and redo (git reset) operations on commits that
are not shared yet. Here, we only show it on the published commits to
make the example easy to reproduce.

How it works…
Effectively, we are just changing the pointer of the master branch to point to the previous
commit HEAD, which means the first parent of HEAD. Now the branch will point to 9c7532f,
instead of the commit we removed, 35b29ae. This is shown in the following figure:

Chapter 8

167

The figure also shows that the original 3061dc6 commit is still present in the repository,
but new commits on the master branch will start from 9c7532f; the 3061dc6 commit is
called a dangling commit.

You should only do this undo operation to commits you haven't shared
(pushed) yet, as when you create new commits after undo or reset,
those commits form a new history that will diverge from the original
history of the repository.

When the reset command is executed, Git looks at the commit pointed to by HEAD and
finds the parent commit from this. The current branch, master, and the HEAD pointer are
then reset to the parent commit and so are the staging area and working tree.

Undo – remove a commit and retain
the changes to files

Instead of performing the hard reset and thereby losing all the changes the commit introduced,
the reset can be performed so that the changes are retained in the working directory.

Getting ready
We'll again use the example of the hello world repository. Make a fresh clone of the
repository, or reset the master branch if you have already cloned one.

You can make a fresh clone as follows:

$ git clone https://github.com/dvaske/hello_world_cookbook.git

$ cd hello_world_cookbook

You can reset the existing clone as follows:

$ cd hello_world_cookbook

$ git checkout master

$ git reset --hard origin master

HEAD is now at 3061dc6 Adds Java version of 'hello world'

Recovering from Mistakes

168

How to do it...
1. First, we'll check whether we have made no changes to files in the working tree

(just for the clarity of the example) and the history of the repository:
$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

nothing to commit, working directory clean

$ git log --oneline

3061dc6 Adds Java version of 'hello world'

9c7532f Fixes compiler warnings

5b5d692 Initial commit, K&R hello world

2. Now, we'll undo the commit and retain the changes introduced in the working tree:

$ git reset --mixed HEAD^

$ git log --oneline

9c7532f Fixes compiler warnings

5b5d692 Initial commit, K&R hello world

$ git status

On branch master

Your branch is behind 'origin/master' by 1 commit, and can be
fast-forwarded.

 (use "git pull" to update your local branch)

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 HelloWorld.java

 Makefile

nothing added to commit but untracked files present (use "git add"
to track)

We can see that our commit is undone, but the changes to the file are preserved in the
working tree, so more work can be done in order to create a proper commit.

Chapter 8

169

How it works…
From the parent commit pointed to by the commit at HEAD, Git resets the branch pointer and
HEAD to point to the parent commit. The staging area is reset, but the working tree is kept
as it was before the reset, so the files affected by the undone commit will be in the modified
state. The following figure depicts this:

The --mixed option is the default behavior of git reset, so it can
be omitted:
git reset HEAD^

Undo – remove a commit and retain
the changes in the staging area

Of course, it is also possible to undo the commit, but keep the changes to the files in the
index or the staging area so that you are ready to recreate the commit with, for example,
some minor modifications.

Getting ready
We'll still use the example of the hello world repository. Make a fresh clone of the
repository, or reset the master branch if you have already cloned one.

Create a fresh clone as follows:

$ git clone https://github.com/dvaske/hello_world_cookbook.git

$ cd hello_world_cookbook

Recovering from Mistakes

170

We can reset the existing clone as follows:

$ cd hello_world_cookbook

$ git checkout master

$ git reset --hard origin master

HEAD is now at 3061dc6 Adds Java version of 'hello world'

How to do it...
1. Check whether we have no files in the modified state and check the log:

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

nothing to commit, working directory clean

$ git log --oneline

3061dc6 Adds Java version of 'hello world'

9c7532f Fixes compiler warnings

5b5d692 Initial commit, K&R hello world

2. Now, we can undo the commit, while retaining the changes in the index:

$ git reset --soft HEAD^

$ git log --oneline

9c7532f Fixes compiler warnings

5b5d692 Initial commit, K&R hello world

$ git status

On branch master

Your branch is behind 'origin/master' by 1 commit, and can be
fast-forwarded.

 (use "git pull" to update your local branch)

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: HelloWorld.java

 new file: Makefile

Chapter 8

171

You can now do minor (or major) changes to the files you need, add them to the staging area,
and create a new commit.

How it works…
Again, Git will reset the branch pointer and HEAD to point to the previous commit. However,
with the --soft option, the index and working directories are not reset, that is, they have
the same state just as they had before we created the now undone commit.

The following figure shows the Git state before and after the undo:

Undo – working with a dirty area
In the previous examples, we assumed that the working tree was clean, that is, no tracked
files are in the modified state. However, this is not always the case, and if a hard reset is done,
the changes to the modified files will be lost. Fortunately, Git provides a smart way to quickly
put stuff away so that it can be retrieved later using the git stash command.

Getting ready
Again, we'll use the example of the hello world repository. Make a fresh clone of the
repository, or reset the master branch if you have already cloned.

We can create the fresh clone as follows:

$ git clone https://github.com/dvaske/hello_world_cookbook.git

$ cd hello_world_cookbook

Recovering from Mistakes

172

We can reset the existing clone as follows:

$ cd hello_world_cookbook

$ git checkout master

$ git reset --hard origin master

HEAD is now at 3061dc6 Adds Java version of 'hello world'

We'll also need to have some files in the working condition, so we'll change hello_world.c
to the following:

#include <stdio.h>

void say_hello(void) {

 printf("hello, world\n");

}

int main(void){

 say_hello();

 return 0;

}

How to do it...
In order not to accidently delete any changes you have in your working tree when you are
about to undo a commit, you can have a look at the current state of your working directory
with git status (as we already saw). If you have changes and you want to keep them, you
can stash them away before undoing the commit and retrieve them afterwards. Git provides
a stash command that can put unfinished changes away so it is easy to make quick context
switches without losing work. The stash functionality is described further in Chapter 12, Tips
and Tricks. For now, you can think of the stash command like a stack where you can put your
changes away and pop them later.

With the hello_world.c file in the working directory modified to the preceding state, we can
try to do a hard reset on the HEAD commit, keeping our changes to the file by stashing them
away before the reset and applying them back later:

1. First, check the history:
$ git log --oneline

3061dc6 Adds Java version of 'hello world'

9c7532f Fixes compiler warnings

5b5d692 Initial commit, K&R hello world

Chapter 8

173

2. Then, check the status:
$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working
directory)

 modified: hello_world.c

no changes added to commit (use "git add" and/or "git commit -a")

3. As expected, hello_world.c was in the modified state; so, stash it away, check
the status, and perform the reset:
$ git stash

aved working directory and index state WIP on master: 3061dc6 Adds
Java version of 'hello world'

HEAD is now at 3061dc6 Adds Java version of 'hello world'

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

nothing to commit, working directory clean

$ git reset --hard HEAD^

HEAD is now at 9c7532f Fixes compiler warnings

$ git log --oneline

9c7532f Fixes compiler warnings

5b5d692 Initial commit, K&R hello world

4. The reset is done, and we got rid of the commit we wanted. Let's resurrect the
changes we stashed away and check the file:

$ git stash pop

On branch master

Recovering from Mistakes

174

Your branch is behind 'origin/master' by 1 commit, and can be
fast-forwarded.

 (use "git pull" to update your local branch)

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working
directory)

modified: hello_world.c

no changes added to commit (use "git add" and/or "git commit -a")

Dropped refs/stash@{0} (e56b68a1f5a0f72afcfd064ec13eefcda7a175ca)

$ cat hello_world.c

#include <stdio.h>

void say_hello(void) {

 printf("hello, world\n");

}

int main(void){

 say_hello();

 return 0;

}

So, the file is back to the state before the reset, and we got rid of the unwanted commit.

How it works…
The reset command works as explained in the previous examples, but combined with
the stash command, it forms a very useful tool that corrects mistakes even though you
have already starting working on something else. The stash command works by saving the
current state of your working directory and the staging area. Then, it reverts your working
directory to a clean state.

See also
 f Refer to Chapter 12, Tips and Tricks, for more details on the git stash command

Chapter 8

175

Redo – recreate the latest commit with
new changes

As with undo, redo can mean a lot of things. In this context, redoing a commit will mean
creating almost the same commit again with the same parent(s) as the previous commit,
but with different content and/or different commit messages. This is quite useful if you've
just created a commit but perhaps have forgotten to add a necessary file to the staging
area before you committed, or if you need to reword the commit message.

Getting ready
Again, we'll use the hello world repository. Make a fresh clone of the repository,
or reset the master branch if you have already cloned.

We can create a fresh clone as follows:

$ git clone https://github.com/dvaske/hello_world_cookbook.git

$ cd hello_world_cookbook

We can reset an existing clone as follows:

$ cd hello_world_cookbook

$ git checkout master

$ git reset --hard origin master

HEAD is now at 3061dc6 Adds Java version of 'hello world'

How to do it...
Let's pretend we need to redo the latest commit because we need to reword the commit
message to include a reference to the issue tracker.

1. Let's first take a look at the latest commit and make sure the working directory is clean:
$ git log -1

commit 3061dc6cf7aeb2f8cb3dee651290bfea85cb4392

Author: Aske Olsson <aske.olsson@switch-gears.dk>

Date: Sun Mar 9 14:12:45 2014 +0100

 Adds Java version of 'hello world'

 Also includes a makefile

Recovering from Mistakes

176

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

nothing to commit, working directory clean

2. Now, we can redo the commit and update the commit message with the git
commit --amend command. This will bring up the default editor, and we can add
a reference to the issue tracker in the commit message (Fixes: RD-31415):
$ git commit --amend

Adds Java version of 'hello world'

Also includes a makefile

Fixes: RD-31415

Please enter the commit message for your changes. Lines starting

with '#' will be ignored, and an empty message aborts the
commit.

#

Author: Aske Olsson <aske.olsson@switch-gears.dk>

#

On branch master

Your branch is up-to-date with 'origin/master'.

#

Changes to be committed:

new file: HelloWorld.java

new file: Makefile

#

~

~

[master 75a41a2] Adds Java version of 'hello world'

 Author: Aske Olsson <aske.olsson@switch-gears.dk>

 2 files changed, 19 insertions(+)

 create mode 100644 HelloWorld.java

 create mode 100644 Makefile

Chapter 8

177

3. Now let's check the log again to see whether everything worked:
$ git log -1

commit 75a41a2f550325234a2f5f3ba41d35867910c09c

Author: Aske Olsson <aske.olsson@switch-gears.dk>

Date: Sun Mar 9 14:12:45 2014 +0100

 Adds Java version of 'hello world'

 Also includes a makefile

 Fixes: RD-31415

4. We can see that the commit message has changed, but we can't verify from the
log output that the parent of the commit is the same as in the original commit,
and so on, as we saw in the first commit we did. To check this, we can use the
git cat-file command we learned about in Chapter 1, Navigating Git.
First, let's see how the original commit looked:
$ git cat-file -p 3061dc6

tree d3abe70c50450a4d6d70f391fcbda1a4609d151f

parent 9c7532f5e788b8805ffd419fcf2a071c78493b23

author Aske Olsson <aske.olsson@switch-gears.dk> 1394370765 +0100

committer Aske Olsson <aske@schantz.com> 1394569447 +0100

Adds Java version of 'hello world'

Also includes a makefile

The parent commit is b8c39bb35c4c0b00b6cfb4e0f27354279fb28866 and the
root tree is d3abe70c50450a4d6d70f391fcbda1a4609d151f.

5. Let's check the data from the new commit:

$ git cat-file -p HEAD

tree d3abe70c50450a4d6d70f391fcbda1a4609d151f

parent 9c7532f5e788b8805ffd419fcf2a071c78493b23

author Aske Olsson <aske.olsson@switch-gears.dk> 1394370765 +0100

committer Aske Olsson <aske@schantz.com> 1394655225 +0100

Adds Java version of 'hello world'

Recovering from Mistakes

178

Also includes a makefile

Fixes: RD-31415

The parent is the same, that is, 9c7532f5e788b8805ffd419fcf2a071c78493b23
and the root tree is also the same, that is,
d3abe70c50450a4d6d70f391fcbda1a4609d151f. This is what we expected
as we only changed the commit message. If we had added some changes to the
staging area and executed git commit--amend, we would have included those
changes in the commit and the root-tree SHA1 ID would have been different,
but the parent commit ID still the same.

How it works...
The --amend option to git commit is roughly equivalent to performing git reset –soft
HEAD^, followed by fixing the files needed and adding those to the staging area. Then, we will
run git commit reusing the commit message from the previous commit (git commit –c
ORIG_HEAD).

There is more…
We can also use the --amend method to add missing files to our latest commit. Let's say you
needed to add the README.md file to your latest commit in order to get the documentation
up to date, but you have already created the commit though you have not pushed it yet.

You then add the file to the index as you would while starting to craft a new commit. You can
check with git status that only the README.md file is added:

$ git add README.md

$ git status

On branch master

Your branch and 'origin/master' have diverged,

and have 1 and 1 different commit each, respectively.

 (use "git pull" to merge the remote branch into yours)

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: README.md

Chapter 8

179

Now you can amend the latest commit with git commit --amend. The command will
include files in the index in the new commit and you can, as with the last example, reword the
commit message if needed. It is not needed in this example, so we'll pass the --no-edit
option to the command:

$ git commit --amend --no-edit

[master f09457e] Adds Java version of 'hello world'

 Author: Aske Olsson <aske.olsson@switch-gears.dk>

 3 files changed, 20 insertions(+)

 create mode 100644 HelloWorld.java

 create mode 100644 Makefile

 create mode 100644 README.md

You can see from the output of the commit command that three files were changed and
README.md was one of them.

You can also reset the author information (name, e-mail, and timestamp)
with the commit --amend command. Just pass along the --reset-
author option and Git will create a new timestamp and read author
information from the configuration or environment, instead of the using
the information from the old commit object.

Revert – undo the changes introduced by
a commit

Revert can be used to undo a commit in history that has already been published (pushed),
whereas this can't be done with the amend or reset options without rewriting history.

Revert works by applying the anti-patch introduced by the commit in question. A revert will,
by default, create a new commit in history with a commit message that describes which
commit has been reverted.

Getting ready
Again, we'll use the hello world repository. Make a fresh clone of the repository,
or reset the master branch if you have already cloned.

We can create a fresh clone as follows:

$ git clone https://github.com/dvaske/hello_world_cookbook.git

$ cd hello_world_cookbook

Recovering from Mistakes

180

We can reset the existing clone as follows:

$ cd hello_world_cookbook

$ git checkout master

$ git reset --hard origin master

HEAD is now at 3061dc6 Adds Java version of 'hello world'

How to do it...
1. First, we'll list the commits in the repository:

$ git log --oneline

3061dc6 Adds Java version of 'hello world'

9c7532f Fixes compiler warnings

5b5d692 Initial commit, K&R hello world

2. We'll revert the second commit, b8c39bb:
$ git revert 9c7532f

Revert "Fixes compiler wanings"

This reverts commit 9c7532f5e788b8805ffd419fcf2a071c78493b23.

Please enter the commit message for your changes. Lines starting

with '#' will be ignored, and an empty message aborts the
commit.

On branch master

Your branch is up-to-date with 'origin/master'.

#

Changes to be committed:

modified: hello_world.c

#

~

~

~

"~/aske/packt/repos/hello_world_cookbook/.git/COMMIT_EDITMSG" 12L,
359C

[master 9b94515] Revert "Fixes compiler warnings"

 1 file changed, 1 insertion(+), 5 deletions(-)

3. When we check the log, we can see that a new commit has been made:

$ git log --oneline

9b94515 Revert "Fixes compiler warnings"

3061dc6 Adds Java version of 'hello world'

Chapter 8

181

9c7532f Fixes compiler warnings

5b5d692 Initial commit, K&R hello world

We can take a closer look at the two commits with git show if we want a closer
investigation of what happened.

How it works...
Git revert applies the anti-patch of the commit in question to the current HEAD pointer.
It will generate a new commit with the "anti-patch" and a commit message that describes
the reverted commit(s).

There's more...
It's possible to revert more than one commit in a single revert, for example, git revert
master~6..master~2 will revert the commits from the sixth commit from the bottom in
master to the third commit from the bottom in master (both included).

It is also possible not to create a commit while reverting; passing the -n option to git
revert will apply the needed patched but only to the working tree and the staging area.

Reverting a merge
Merge commits are a special case when it comes to revert. In order to be able to revert
a merge commit, you'll have to specify which parent side of the merge you want to keep.
However, when you revert a merge commit, you should keep in mind that though reverting
will undo the changes to files, it doesn't undo history. This means that when you revert a
merge commit, you declare that you will not have any of the changes introduced by the merge
in the target branch. The effect of this is that the subsequent merges from the other branch
will only bring in changes of commits that are not ancestors of the reverted merge commit.

Recovering from Mistakes

182

In this example, we will learn how to revert a merge commit, and we'll learn how we can merge
the branch again, getting all the changes merged by reverting the reverted merge commit.

Getting ready
Again, we'll use the hello world repository. Make a fresh clone of the repository,
or reset the master branch if you have already cloned.

We can create a fresh clone as follows:

$ git clone https://github.com/dvaske/hello_world_cookbook.git

$ cd hello_world_cookbook

We can reset the existing clone as follows:

$ cd hello_world_cookbook

$ git checkout master

$ git reset --hard origin master

HEAD is now at 3061dc6 Adds Java version of 'hello world'

In this example, we also need to use some of the other branches in the repository, so we
need to create them locally:

$ git branch -f feature/p-lang origin/feature/p-lang

Branch feature/p-lang set up to track remote branch feature/p-lang from
origin.

$ git checkout develop

Switched to branch 'develop'

Your branch is up-to-date with 'origin/develop'.

$ git reset --hard origin/develop

HEAD is now at a95abc6 Adds Groovy hello world

How to do it...
On the develop branch, we have just checked out that there is a merge commit
that introduces "hello world" programs from languages that start with P. Unfortunately,
the Perl version doesn't run:

$ perl hello_world.pl

Can't find string terminator '"' anywhere before EOF at hello_world.pl
line 3.

Chapter 8

183

The following steps will help you revert a merge:

1. Let's take a look at history, the latest five commits, and find the merge commit:
$ git log --oneline --graph -5

* a95abc6 Adds Groovy hello world

* 5ae3beb Merge branch 'feature/p-lang' into develop

|\

| * 7b29bc3 php version added

| * 9944417 Adds perl hello_world script

* | ed9af38 Hello world shell script

|/

The commit we are looking for is 5ae3beb Merge branch 'feature/p-lang'
into develop; this adds the commits for "hello world" in Perl and PHP to the
develop branch. We would like the fix of the Perl version to happen on the feature
branch, and then merge it to develop when ready. In order to keep develop stable,
we need to revert the merge commit that introduced the faulty Perl version. Before we
perform the merge, let's just have a look at the contents of HEAD:

$ git ls-tree --abbrev HEAD

100644 blob 28f40d8 helloWorld.groovy

100644 blob 881ef55 hello_world.c

100644 blob 5dd01c1 hello_world.php

100755 blob ae06973 hello_world.pl

100755 blob f3d7a14 hello_world.py

100755 blob 9f3f770 hello_world.sh

2. Revert the merge, keeping the history of the first parent:
$ git revert -m 1 5ae3beb

[develop e043b95] Revert "Merge branch 'feature/p-lang' into
develop"

 2 files changed, 4 deletions(-)

 delete mode 100644 hello_world.php

 delete mode 100755 hello_world.pl

3. Let's have a look at the contents of our new HEAD state:

$ git ls-tree --abbrev HEAD

100644 blob 28f40d8 helloWorld.groovy

100644 blob 881ef55 hello_world.c

100755 blob f3d7a14 hello_world.py

100755 blob 9f3f770 hello_world.sh

The Perl and PHP files introduced in the merge are gone, so the revert did its job.

Recovering from Mistakes

184

How it works...
The revert command will take the patches introduced by the commit you want to revert and
apply the reverse/anti patch to the working tree. If all goes well, that is, there are no conflicts,
a new commit will be made. While reverting a merge commit, only the changes introduced in
the mainline (the -m option) will be kept, and all the changes introduced in the other side of
the merge will be reverted.

There is more...
Though it is easy to revert a merge commit, you might run into issues if you later want to the
branch again because the issues on the merge have not been fixed. When revert of the merge
commit is performed, you actually tell Git that you do not want any of the changes that the
other branch introduced in this branch. So, when you try to merge in the branch again, you will
only get the changes from the commits that are not ancestors of the reverted merge commit.

We will see this in action by trying to merge the feature/p-lang branch with the develop
branch again:

$ git merge --no-edit feature/p-lang

CONFLICT (modify/delete): hello_world.pl deleted in HEAD and modified in
feature/p-lang. Version feature/p-lang of hello_world.pl left in tree.

Automatic merge failed; fix conflicts and then commit the result.

We can solve the conflict just by adding hello_world.pl:

$ git add hello_world.pl

$ git commit

[develop 2804731] Merge branch 'feature/p-lang' into develop

Let's check the tree if everything seems right:

$ git ls-tree --abbrev HEAD

100644 blob 28f40d8 helloWorld.groovy

100644 blob 881ef55 hello_world.c

100755 blob 6611b8e hello_world.pl

100755 blob f3d7a14 hello_world.py

100755 blob 9f3f770 hello_world.sh

The hello_world.php file is missing, but this makes sense as the change that introduced
it was reverted in the reverted merge commit.

Chapter 8

185

To perform a proper re-merge, we first have to revert the reverting merge commit; this can
seem a bit weird, but it is the way to get the changes from before the revert back into our
tree. Then, we can perform another merge of the branch, and we'll end up with all the
changes introduced by the branch we're merging in. However, we first we have to discard
the merge commit we just made with a hard reset:

$ git reset --hard HEAD^

HEAD is now at c46deed Revert "Merge branch 'feature/p-lang' into
develop"

Now, we can revert the reverting merge and re-merge the branch:

$ git revert HEAD

[develop 9950c9e] Revert "Revert "Merge branch 'feature/p-lang' into
develop""

 2 files changed, 4 insertions(+)

 create mode 100644 hello_world.php

 create mode 100755 hello_world.pl

$ git merge feature/p-lang

Merge made by the 'recursive' strategy.

 hello_world.pl | 2 +-

 1 file changed, 1 insertion(+), 1 deletion(-)

Let's check the tree for the Perl and PHP files, and see whether the Perl file has been fixed:

$ git ls-tree --abbrev HEAD

100644 blob 28f40d8 helloWorld.groovy

100644 blob 881ef55 hello_world.c

100644 blob 5dd01c1 hello_world.php

100755 blob 6611b8e hello_world.pl

100755 blob f3d7a14 hello_world.py

100755 blob 9f3f770 hello_world.sh

$ perl hello_world.pl

Hello, world!

Recovering from Mistakes

186

See also
For more information on reverting merges, refer to the following articles:

 f The How To Revert a Faulty Merge article at https://www.kernel.org/pub/
software/scm/git/docs/howto/revert-a-faulty-merge.html

 f The Undoing Merges article at http://git-scm.com/blog/2010/03/02/
undoing-merges.html

Viewing past Git actions with git reflog
The reflog command stores information on updates to the tip of the branches in Git,
where the normal git log command shows the ancestry chain from HEAD, and the
reflog command shows what HEAD has pointed to in the repository. This is your history in
the repository that tells how you have moved between branches, created your commits and
resets, and so on. Basically, anything that makes HEAD point to something new is recorded in
the reflog. This means that by going through reflog command, you can find lost commits
that none of your branches nor other commits point to. This makes the reflog command a
good starting point for trying to find a lost commit.

Getting ready
Again, we'll use the hello world repository. If you make a fresh clone, make sure to run
the scripts for this chapter so that there will be some entries in the reflog command.
The scripts can be found on the book's homepage. If you just reset the master branch to
origin/master after performing the recipes in this chapter, everything is ready.

We can create a fresh clone as follows:

$ git clone https://github.com/dvaske/hello_world_cookbook.git

$ cd hello_world_cookbook

We can reset an existing clone as follows:

$ cd hello_world_cookbook

$ git checkout master

$ git reset --hard origin master

HEAD is now at 3061dc6 Adds Java version of 'hello world'

https://www.kernel.org/pub/software/scm/git/docs/howto/revert-a-faulty-merge.html
https://www.kernel.org/pub/software/scm/git/docs/howto/revert-a-faulty-merge.html
http://git-scm.com/blog/2010/03/02/undoing-merges.html
http://git-scm.com/blog/2010/03/02/undoing-merges.html

Chapter 8

187

How to do it...
1. Let's try to run the reflog command and limit ourselves to just the latest

seven entries:
$ git reflog -7

3061dc6 HEAD@{0}: checkout: moving from develop to master

d557284 HEAD@{1}: merge feature/p-lang: Merge made by the
'recursive' strategy.

9950c9e HEAD@{2}: revert: Revert "Revert "Merge branch 'feature/p-
lang' into develop""

c46deed HEAD@{3}: reset: moving to HEAD^

2804731 HEAD@{4}: commit (merge): Merge branch 'feature/p-lang'
into develop

c46deed HEAD@{5}: revert: Revert "Merge branch 'feature/p-lang'
into develop"

a95abc6 HEAD@{6}: checkout: moving from master to develop

In your repository, the commits will have different SHA-1 hashes due to
the fact that the commits generated in the examples will have slightly
different content, specifically your user name and e-mail address, but
the order should be approximately the same.

We can see the movements we did in the last example by reverting, committing,
and resetting. We can see the merge commit, 2804731, that we abandoned. It didn't
merge in all the changes we wanted it to due to the previous merge and its revert.

2. We can take a closer look at the commit with git show:

$ git show 2804731

commit 2804731c3abc4824cdab66dc7567bed4cddde0d3

Merge: c46deed 32fa2cd

Author: Aske Olsson <aske@schantz.com>

Date: Thu Mar 13 23:20:21 2014 +0100

 Merge branch 'feature/p-lang' into develop

 Conflicts:

 hello_world.pl

Recovering from Mistakes

188

Indeed, this was the commit we chose to abandon in the previous example. We can
also look at the tree of the commit, just as we did in the previous example, and check
whether they are the same:
git ls-tree --abbrev 2804731

100644 blob 28f40d8 helloWorld.groovy

100644 blob 881ef55 hello_world.c

100755 blob 6611b8e hello_world.pl

100755 blob f3d7a14 hello_world.py

100755 blob 9f3f770 hello_world.sh

From here, there are various ways to resurrect the changes. You can either checkout
the commit and create a branch; then, you'll have a pointer so you can easily find
it again. You can also checkout specific files from the commit with git checkout
– path/to/file SHA-1, or you can use the git show or git cat-file
commands to view the files.

How it works...
For every movement of the HEAD pointer in the repository, Git stores the commit pointed to
and the action for getting there. This can be commit, checkout, reset, revert, merge, rebase,
and so on. The information is local to the repository and is not shared on pushes, fetches,
and clones. Using the reflog command to find the lost commits is fairly easy if you know
what you are searching for and the approximate time when you created the commit you are
searching for. If you have a lot of reflog history, many commits, switching branches, and so
on, it can be hard to search through the reflog command due to the amount of noise from
the many updates to HEAD. The output of the reflog command can be a lot of options, and
among them, there are options you can also pass on to the normal git log command.

Finding lost changes with git fsck
Another tool exists in Git that can help you find and recover lost commits and even blobs
(files), which is git fsck. The fsck command tests the object database and verifies the
SHA-1 ID of the objects and the connections they make. The command can also be used to
find objects that are not reachable from any named reference, as it tests all the objects found
in the database, which are under the .git/objects folder.

Chapter 8

189

Getting ready
Again, we'll use the hello world repository. If you make a fresh clone, make sure to run the
scripts for this chapter (04_undo_dirty.sh), so there will be some objects for git fsck
to consider. The scripts can be found on the book's homepage. If you just reset the master
branch after performing the other recipes in the chapter, everything is ready.

We can create the fresh clone as follows:

$ git clone https://github.com/dvaske/hello_world_cookbook.git

$ cd hello_world_cookbook

We can reset an existing clone as follows:

$ cd hello_world_cookbook

$ git checkout master

$ git reset --hard origin master

HEAD is now at 3061dc6 Adds Java version of 'hello world'

How to do it...
1. Let's look for the unreachable objects in the database:

$ git fsck --unreachable

Checking object directories: 100% (256/256), done.

unreachable commit 147240ad0297f85c9ca3ed513906d4b75209e83d

unreachable blob b16cf63ab66605f9505c17c5affd88b34c9150ce

unreachable commit 4c3b1e10d8876cd507bcf2072c85cc474f7fb93b

The object's ID, the SHA-1 hash, will not be the same if you perform the
example on your computer, as the committer, author, and timestamp will
be different.

2. We found two commits and one blob. Let's take a closer look at each of them; the
blob first:
git show b16cf63ab66605f9505c17c5affd88b34c9150ce

#include <stdio.h>

Recovering from Mistakes

190

void say_hello(void) {

 printf("hello, world\n");

}

int main(void){

 say_hello();

 return 0;

}

So the blob is the hello_world.c file from the example which stashing away your
changes before resetting a commit. Here we stashed away the file, performed a reset,
and resurrected the file from the stash, but we never actually performed a commit.
The stash command, however, did add the file to the database, so it could find it
again, and the file will continue to be there until the garbage collection kicks in or
forever if it is referenced by a commit in the general history.

3. Let's look closer at the two commits:

$ git show 147240ad0297f85c9ca3ed513906d4b75209e83d

commit 147240ad0297f85c9ca3ed513906d4b75209e83d

Merge: 3061dc6 4c3b1e1

Author: Aske Olsson <aske@schantz.com>

Date: Thu Mar 13 23:19:37 2014 +0100

 WIP on master: 3061dc6 Adds Java version of 'hello world'

diff --cc hello_world.c

index 881ef55,881ef55..b16cf63

--- a/hello_world.c

+++ b/hello_world.c

@@@ -1,7 -1,7 +1,10 @@@

 #include <stdio.h>

--int main(void){

++void say_hello(void) {

 printf("hello, world\n");

++}

Chapter 8

191

++int main(void){

++ say_hello();

 return 0;

--}

++}

$ git show 4c3b1e10d8876cd507bcf2072c85cc474f7fb93b

commit 4c3b1e10d8876cd507bcf2072c85cc474f7fb93b

Author: Aske Olsson <aske@schantz.com>

Date: Thu Mar 13 23:19:37 2014 +0100

 index on master: 3061dc6 Adds Java version of 'hello world'

Both the commits are actually commits we made when we stashed away our changes
in the previous example. The stash command creates a commit object with the
contents of the staging area, and a merge commit merging HEAD and the commit
with the index with the content of the working directory (tracked files only). As we
resurrected our stashed changes in the previous example, we no longer have any
reference pointing at the preceding commits; therefore, they are found by git fsck.

How it works...
The git fsck command will test all the objects found under the .git/objects folder.
When the --unreachable option is given, it will report the objects found that can't be
reached from another reference; the reference can be a branch, a tag, a commit, a tree,
the reflog, or stashed away changes.

See also
 f Refer to Chapter 12, Tips and Tricks, for more information on the

git stash command

9
Repository

Maintenance

In this chapter, we will cover the following topics:

 f Pruning remote branches

 f Running garbage collection manually

 f Turning off automatic garbage collection

 f Splitting a repository

 f Rewriting history – changing a single file

 f Creating a backup of your repositories as mirror repositories

 f A quick submodule how-to

 f Subtree merging

 f Submodule versus subtree merging

Introduction
In this chapter, we'll take a look at the various tools for repository maintenance. We will look
at how we can easily delete branches in the local repository that have been deleted from the
remote repository. We'll also see how we can trigger garbage collection and how to turn it off.
We will take a look at how a repository can be split with the filter-branch command and
how the filter-branch command can be used to rewrite the history of a repository.
Finally, we'll take a quick look on how to integrate other git projects as subprojects in a git
repository with either the submodule functionallity or the subtree strategy.

Repository Maintenance

194

Pruning remote branches
Often, development in a software project tracked with Git happens on feature branches, and as
time goes by, an increasing number of feature branches are merged to the mainline. Usually,
these feature branches are deleted in the main repository (origin). However, the branches are
not automatically deleted from all the clones while fetching and pulling. Git must explicitly be
told to delete the branches from the local repository that have been deleted on origin.

Getting ready
First, we'll set up two repositories and use one of them as a remote for the other. We will
use the hello_world_flow_model repository, but first we'll clone a repository to a local
bare repository:

$ git clone --bare

https://github.com/dvaske/hello_world_flow_model.git

hello_world_flow_model_remote

Next, we'll clone the newly cloned repository to a local one with a working directory:

$ git clone hello_world_flow_model_remote hello_world_flow_model

Now, let's delete a couple of merged feature branches in the bare repository:

$ cd hello_world_flow_model_remote

$ git branch -D feature/continents

$ git branch -D feature/printing

$ git branch -D release/1.0

$ cd ..

Finally, change the directory to your working copy and make sure develop is checked out:

$ cd hello_world_flow_model

$ git checkout develop

$ git reset --hard origin/develop

How to do it...
1. Start by listing all branches using the following command:

$ git branch -a

* develop

Chapter 9

195

 remotes/origin/HEAD -> origin/develop

 remotes/origin/develop

 remotes/origin/feature/cities

 remotes/origin/feature/continents

 remotes/origin/feature/printing

 remotes/origin/master

 remotes/origin/release/1.0

2. Let's try to fetch or pull and see whether anything happens using the
following command:
$ git fetch

$ git pull

Current branch develop is up to date.

$ git branch -a

* develop

 remotes/origin/HEAD -> origin/develop

 remotes/origin/develop

 remotes/origin/feature/cities

 remotes/origin/feature/continents

 remotes/origin/feature/printing

 remotes/origin/master

 remotes/origin/release/1.0

3. The branches are still there even if they are deleted in the remote repository.
We need to tell Git explicitly to delete the branches that are also deleted from
the remote repository using the following command:
$ git fetch --prune

 x [deleted] (none) -> origin/feature/continents

 x [deleted] (none) -> origin/feature/printing

 x [deleted] (none) -> origin/release/1.0

$ git branch -a

* develop

 remotes/origin/HEAD -> origin/develop

 remotes/origin/develop

 remotes/origin/feature/cities

 remotes/origin/master

The branches are now also deleted from our local repository.

Repository Maintenance

196

How it works…
Git simply checks the remote-tracking branches under the remotes or origin namespace
and removes branches that are not found on the remote any more.

There's more…
There are several ways to remove the branches in Git that have been deleted on the master.
It can be done while updating the local repository, as we saw with git fetch --prune,
and also with git pull --prune. It can even be performed with the git remote prune
origin command. This will also remove the branches from Git that are no longer available on
the remote, but it will not update remote-tracking branches in the repository.

Running garbage collection manually
When using Git on a regular basis, you might notice that some commands sometimes trigger
Git to perform garbage collection and pack loose objects into a pack file (Git's objects storage).
The garbage collection and packing of loose objects can also be triggered manually by executing
the git gc command. Triggering git gc is useful if you have a lot of loose objects. A loose
object can, for example, be a blob or a tree or a commit. As we saw in Chapter 1, Navigating Git,
blob-, tree-, and commit objects are added to Git's database when we add files and create
commits. These objects will first be stored as loose objects in Git's object storage as single files
inside the .git/objects folder. Eventually, or by manual request, Git packs the loose objects
into pack files that can reduce disk usage. A lot of loose objects can happen after adding a lot
of files to Git, for example, when starting a new project or after frequent adds and commits.
Running the garbage collection will make sure loose objects are being packed, and objects
not referred to by any reference or object will be deleted. The latter is useful when you have
deleted some branches/commits and want to make sure the objects referenced by these
are also deleted.

Let's see how we can trigger garbage collection and remove some objects from the database.

Getting ready
First, we need a repository to perform the garbage collection on. We'll use the same repository
as the previous example:

$ git clone https://github.com/dvaske/hello_world_flow_model.git

$ cd hello_world_flow_model

$ git checkout develop

$ git reset --hard origin/develop

Chapter 9

197

How to do it...
1. First, we'll check the repository for loose objects; we can do this with the

count-objects command:
$ git count-objects

51 objects, 204 kilobytes

2. We'll also check for unreachable objects, which are objects that can't be reached
from any reference (tag, branch, or other object). The unreachable objects will
be deleted when the garbage collect runs. We also check the size of the
.git directory using the following command:
$ git fsck --unreachable

Checking object directories: 100% (256/256), done.

$ du -sh .git

292K .git

3. There are no unreachable objects. This is because we just cloned and haven't
actually worked in the repository. If we delete the origin remote, the remote
branches (remotes/origin/*) will be deleted, and we'll lose the reference to
some of the objects in the repository; they'll be displayed as unreachable while
running fsck and can be garbage collected:
$ git remote rm origin

$ git fsck --unreachable

Checking object directories: 100% (256/256), done.

unreachable commit 127c621039928c5d99e4221564091a5bf317dc27

unreachable commit 472a3dd2fda0c15c9f7998a98f6140c4a3ce4816

unreachable blob e26174ff5c0a3436454d0833f921943f0fc78070

unreachable commit f336166c7812337b83f4e62c269deca8ccfa3675

4. We can see that we have some unreachable objects due to the deletion of the
remote. Let's try to trigger garbage collection manually:
$ git gc

Counting objects: 46, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (44/44), done.

Writing objects: 100% (46/46), done.

Total 46 (delta 18), reused 0 (delta 0)

Repository Maintenance

198

5. If we investigate the repository now, we can see the following:
$ git count-objects

5 objects, 20 kilobytes

$ git fsck --unreachable

Checking object directories: 100% (256/256), done.

Checking objects: 100% (46/46), done.

unreachable commit 127c621039928c5d99e4221564091a5bf317dc27

unreachable commit 472a3dd2fda0c15c9f7998a98f6140c4a3ce4816

unreachable blob e26174ff5c0a3436454d0833f921943f0fc78070

unreachable commit f336166c7812337b83f4e62c269deca8ccfa3675

$ du -sh .git

120K .git

6. The object count is smaller; Git packed the objects to the pack-file stored in the
.git/objects/pack folder. The size of the repository is also smaller as Git
compresses and optimizes the objects in the pack-file. However, there are still some
unreachable objects left. This is because the objects will only be deleted if they
are older than what is specified in the gc.pruneexpire configuration option that
defaults to two weeks (config value: 2.weeks.ago). We can override the
default or configured option by running the --prune=now option:
$ git gc --prune=now

Counting objects: 46, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (26/26), done.

Writing objects: 100% (46/46), done.

Total 46 (delta 18), reused 46 (delta 18)

7. Investigating the repository gives the following output:

$ git count-objects

0 objects, 0 kilobytes

$ git fsck --unreachable

Checking object directories: 100% (256/256), done.

Checking objects: 100% (46/46), done.

$ du -sh .git

100K .git

The unreachable objects have been deleted, there are no loose objects, and the repository
size is smaller now that the objects have been deleted.

Chapter 9

199

How it works…
The git gc command optimizes the repository by compressing file revisions and deleting
objects that are no longer referred to. The objects can be commits and so on. On an abandoned
(deleted) branch, blobs from invocations of git add, commits discarded/redone with git
commit –amend, or other commands that can leave objects behind. Objects are, by default,
already compressed with zlib when they are created, and when moved into the pack-file, Git
makes sure only to store the necessary change. If, for example, you change only a single line in a
large file, it would waste a bit of space while storing the entire file in the pack-file again. Instead,
Git stores the newest file as a whole in the pack-file and only the delta for the older version. This
is pretty smart as you are more likely to require the newest version of the file, and Git doesn't
have to do delta calculations for this. This might seem like a contradiction to the information
from Chapter 1, Navigating Git, where we learned that Git stores snapshots and not deltas.
However, remember how the snapshot is made. Git hashes all the files content in blobs, makes
tree and commit objects, and the commit object describes the full tree state with the root-tree
sha-1 hash. The storing of the objects inside the pack-files have no effect on the computation
of the tree state. When you checkout an earlier version or commit, Git makes sure the sha-1
hashes match the branch or commit or tag you requested.

Turning off automatic garbage collection
The automatic triggering of garbage collection can be turned off so it will not run
unless manually triggered. This can be useful if you are searching the repository for
a lost commit/file and want to make sure that it is not being garbage collected while
searching (running Git commands).

Getting ready
We'll use the hello_world_flow_model repository again for this example:

$ git clone https://github.com/dvaske/hello_world_flow_model.git

Cloning into 'hello_world_flow_model'...

remote: Reusing existing pack: 51, done.

remote: Total 51 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (51/51), done.

Checking connectivity... done.

$ cd hello_world_flow_model

$ git checkout develop

Already on 'develop'

Your branch is up-to-date with 'origin/develop'.

$ git reset --hard origin/develop

HEAD is now at 2269dcf Merge branch 'release/1.0' into develop

Repository Maintenance

200

How to do it...
1. To switch off the automatic garbage collection triggering, we need to set the gc.auto

configuration to 0. First, we'll check the existing setting, and then we can set it and
verify the configuration using the following commands:
$ git config gc.auto

$ git config gc.auto 0

$ git config gc.auto

0

2. Now we can try to run git gc with the --auto option, as it will be called when
normally triggered from other command:
$ git gc --auto

3. As expected, nothing happens as the configuration disables automatic garbage
collection. We can still trigger it manually though (without the --auto flag):
$ git gc

Counting objects: 51, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (49/49), done.

Writing objects: 100% (51/51), done.

Total 51 (delta 23), reused 0 (delta 0)

Splitting a repository
Sometimes a project tracked with Git is not one logical project but several projects. This may
be fully intentional and there is nothing wrong with it, but there can also be cases where the
projects tracked in the same Git repository really should belong to two different repositories.
You can imagine a project where the code base grows and at some point in time, one of the
subprojects could have value as an independent project. This can be achieved by splitting the
subfolders and/or files that contain the project that should have its own repository with the
full history of commits touching the files and/or folders.

Getting ready
In this example, we'll use the JGit repository so we'll have some history to filter through. The
subfolders we split out to are not really projects, but serve well as an example for this exercise.

1. First, clone the Jgit repository and create local branches of the remote ones using the
following command:
git clone https://git.eclipse.org/r/jgit/jgit

Cloning into 'jgit'...

Chapter 9

201

remote: Counting objects: 1757, done

remote: Finding sources: 100% (148/148)

remote: Total 46381 (delta 4), reused 46317 (delta 4)

Receiving objects: 100% (46381/46381), 10.86 MiB | 411.00 KiB/s,
done.

Resolving deltas: 100% (24829/24829), done.

Checking connectivity... done.

$ cd jgit

$ git checkout master

Already on 'master'

Your branch is up-to-date with 'origin/master'.

2. Save the name of the current branch in the current variable:
$ current=$(git rev-parse --symbolic-full-name --abbrev-ref HEAD)

3. In the following step, we create local branches from all the remote branches in
the repository:
$ for br in $(git branch -a | grep -v $current | grep remotes |
grep -v HEAD);

 do

 git branch ${br##*/} $br;

 done

Branch stable-0.10 set up to track remote branch stable-0.10 from
origin.

Branch stable-0.11 set up to track remote branch stable-0.11 from
origin.

Branch stable-0.12 set up to track remote branch stable-0.12 from
origin.

...

First, we filtered the branches. From all the git branch -a branches, we exclude
branches that match the $current variable somewhere in the name, grep -v
$current. Then, we include only the branches that match remote with grep
remotes. Finally, we exclude all branches with HEAD in grep -v HEAD. For each
of the branches, $br we create a local branch with the name given after the last
"/" in the full name of the branch: git branch ${br##*/} $br. For example,
remotes/origin/stable-0.10 becomes the local branch stable-0.10.

Repository Maintenance

202

4. Now we'll prepare a small script that will delete everything but the input to the shell
script from the Git index. Save the following to the file clean-tree in the folder that
contains the Jgit repository (not the repository itself):
#!/bin/bash

Clean the tree for unwanted dirs and files

$1 Files and dirs to keep

clean-tree () {

 # Remove everything but $1 from the git index/staging area

 for f in $(git ls-files | grep -E -v "$1" | grep -o -E
"^[^/\"]+" | sort -u); do

 git rm -rq --cached --ignore-unmatch $f

 done

}

clean-tree $1

The small script filters all the files currently in the staging area, git ls-files,
excluding the ones that match the input $1, grep -E -v "$1". It lists only the first
part of their name/path up to the first "/", grep -o -E "^[^/\"]+", and finally
sorts them by unique entries using sort -u. The entries in the remaining list, $f,
removed from the staging are of Git, git rm -rq --cached --ignore-unmatch
$f. The --cached option tells Git to remove from the staging area and --ignore-
unmatched tells Git not to fail if the file does not exist in the staging area.
The -rq option is recursive and quiet respectively.

The staging area contains all the files tracked by Git in the last snapshot
(commit) and files (modified or new) you have added with git add.
However, you only see changes between the latest commit and the
staging area when you run git status, and changes between the
working tree and the staging area.

5. Make the file executable using the following command:
$ chmod +x clean-tree

6. Now we are ready to split out a subpart of the repository.

Chapter 9

203

How to do it...
1. First, we'll decide which folders and files to keep in the new repository; we'll delete

everything from the repository except those files. We'll store the files and folders to be
kept in a string separated by | so that we can feed it to grep as a regular expression,
as shown in the following command:
keep="org.eclipse.jgit.http|LICENSE|.gitignore|README.md|.
gitattributes"

2. Now we are ready to start the conversion of the repository. We'll use the git
filter-branch command that can rewrite the entire history of the repository;
just what we need for this task.

Always remember to make sure you have a backup of the repository
you are about to run git filter-branch on in case something
goes wrong.

3. We'll use the --index-filter option to filter the branch. The option allows us
to rewrite the index or staging area just before each commit is recorded, and we'll
do this with the clean-tree script we created previously. We'll also preserve tags
using cat as tag-name-filter. We will perform the rewrite on all branches.
And remember to use the absolute path to the clean-tree script:
$ git filter-branch --prune-empty --index-filter "\"path/to/
clean-tree\" \"$keep\"" --tag-name-filter cat -- --all

Rewrite 720734983bae056955bec3b36cc7e3847a0bb46a (13/3051)

Rewrite 6e1571d5b9269ec79eadad0dbd5916508a4fee82 (23/3051)

Rewrite 2bfe561f269afdd7f4772f8ebf34e5e25884942b (37/3051)

Rewrite 2086fdaedd5e71621470865c34ad075d2668af99 (60/3051)

...

4. The rewrite takes a bit of time as all commits need to be processed, and once the
rewrite is done we can see that everything, except the files and folders we wanted
to keep, is deleted.
git ls-tree --abbrev HEAD

100644 blob f57840b .gitattributes

100644 blob ea8c4bf .gitignore

100644 blob 1b85c64 LICENSE

100644 blob 6e6c0c7 README.md

040000 tree 8bb062e org.eclipse.jgit.http.apache

040000 tree 2dff82d org.eclipse.jgit.http.server

040000 tree 91a9a3e org.eclipse.jgit.http.test

Repository Maintenance

204

5. The cleanup isn't done just yet; Git filter-branch saves all the original references,
branches and tags, under the refs/original namespace in the repository. After
verifying, the new history looks good, and we can get rid of the original refs as these
point to objects that are not in our current history, and take up a lot of disk space.
We'll delete all the original refs and run the garbage collector to clean the repository
for old objects:
$ du -sh .git

 17M .git

6. Delete original references, refs/original, and remove old objects with git gc,
as shown in the following command:
$ git for-each-ref --format="%(refname)" refs/original/ |\
xargs -n 1 git update-ref -d

$ git reflog expire --expire=now --all

$ git gc --prune=now

Counting objects: 3092, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (1579/1579), done.

Writing objects: 100% (3092/3092), done.

Total 3092 (delta 1238), reused 1721 (delta 796)

7. Check the size of the repository after garbage collection:
$ du -sh .git

796K .git

8. The repository is now clean of all old objects, the size is greatly reduced, and the
history is preserved for the files and directories we listed to keep.

How it works…
The git filter-branch command has different filter options depending on what needs to
be done when rewriting the repository. In this example, where we are only removing files and
folders from the repository; the index-filter is highly useable as it allows us to rewrite the index
just before recording a commit in the database without actually checking out the tree on disk,
saving a lot of disk I/O. The clean-tree script we prepared previously is then used to remove
the unwanted files and folders from the index. First, we list the contents of the index and filter
the files and folders we want to keep. Then, we remove the remaining files and folders ($f)
from the index with the following command:

git rm -rq --cached --ignore-unmatch $f

The --cached option tells Git to remove from files the index, and the -rq option tells to
remove recursive (r) and be quiet (q). Finally, the --ignore-unmatch option is used so
git rm will not exit with an error if it tries to remove a file that is not in the index.

Chapter 9

205

There's more…
There are many more filters for git filter-branch; the most common ones and their
use cases are:

 f env-filter: This filter is used to modify the environment where commits are
recorded. This is particularly useful when rewriting author and committer information.

 f tree-filter: The tree-filter is used to rewrite the tree. This is useful if you
need to add or modify files in the tree, for example, to remove sensitive data
from a repository.

 f msg-filter: This filter is used to update the commit message.

 f subdirectory-filter: This filter can be used if you want to extract a single
subdirectory to a new repository and keep the history of that subdirectory.
The subdirectory will be the root of the new repository.

Rewriting history – changing a single file
In this example, we'll see how we can use Git filter-branch to remove sensitive data from a file
throughout the repository history.

Getting ready
For simplicity, we'll use a very simple example repository. It contains a few files. One among
them is .credentials, which contains a username and password. Start by cloning the
repository and changing the directory, as shown in the following command:

$ git clone https://github.com/dvaske/remove-credentials.git

$ cd remove-credentials

How to do it...
1. As we need to modify a file when rewriting the history of this repository, we'll use the

tree-filter option to filter branch. The .credentials file looks as follows:
username = foobar

password = verysecret

2. All we need to do is to remove everything after the equals sign on each line of the file.
We can use the following sed command to do this:
sed -i '' 's/^\(.*=\).*$/\1/'

Repository Maintenance

206

3. We can now run the filter branch with the following command:
$ git filter-branch --prune-empty --tree-filter "test -f
.credentials && sed -i '' 's/^\(.*=\).*$/\1/' .credentials ||
true" -- --all

4. If we look at the file now, we can see the username and password are gone:
$ cat .credentials

username =

password =

5. As we saw in the last example, we still need to clean up after the filter-branch, by
deleting original references, expiring the reflog, and triggering garbage collection.

How it works…
For each commit in the repository, Git will check the contents of that commit and run
tree-filter. If the filter fails, non zero the exit code, filter-branch will fail. Therefore,
it is important to remember to handle the cases where tree-filter might fail. This is
why the previous tree-filter checks whether the .credentials file exists, runs the
sed command if it does, and otherwise returns true to continue the filter-branch.

Back up your repositories as mirror
repositories

Though Git is distributed and every clone essentially is a backup, there are some tricks
that can be useful when backing up Git repositories. A normal Git repository has a working
copy of the files it tracks and the full history of the repository in the .git folder of that
repository. The repositories on the server, the one you push to and pull from, will usually be
bare repositories. A bare repository is a repository without a working copy. Roughly, it is just
the .git folder of a normal repository. A mirror repository is almost the same as a bare
repository, except it fetches all the references under refs/*, where a bare only fetches the
references that fall under refs/heads/*. We'll now take a closer look at a normal, a bare,
and a mirror clone of the Jgit repository.

Getting ready
We'll start by creating three clones of the Jgit repository, a normal, a bare, and a mirror clone.
When we create the first clone, we can use that as a reference repository for the other clones.
In this way, we can share the objects in the database, and we don't have to transfer the same
data three times:

$ git clone https://git.eclipse.org/r/jgit/jgit

Chapter 9

207

$ git clone --reference jgit --bare https://git.eclipse.org/r/jgit/jgit

$ git clone --mirror --reference jgit https://git.eclipse.org/r/jgit/jgit
jgit.mirror

How to do it...
1. One of the differences between a normal repository and a bare/mirror one is that

there are no remote branches in a bare repository; all the branches are created
locally. We can see this in the three repositories by listing the branches with the
git branch as follows:
$ cd jgit

$ git branch

* master

$ cd ../jgit.git # or cd ../jgit.mirror

$ git branch

* master

 stable-0.10

 stable-0.11

 stable-0.12

...

2. To see the difference between the bare and mirror repositories, we need to list
the different refspecs fetch and the different refs namespaces. List the fetch
refspec for origin in the mirror repository (jgit.mirror):
$ git config remote.origin.fetch

+refs/*:refs/*

3. List the different refs namespaces in the mirror repository:
$ git show-ref | cut -f2 -d " " | cut -f1,2 -d / | sort -u

refs/cache-automerge

refs/changes

refs/heads

refs/meta

refs/notes

refs/tags

Repository Maintenance

208

4. There is no explicit refspec fetch in the configuration for origin in the bare
repository (jgit.git). When no configuration entry is found, Git uses the default
refspec fetch, as it does in a normal repository. We can check the remote URL of
origin using the following command:
$ git config remote.origin.url

https://git.eclipse.org/r/jgit/jgit

5. List the different refs namespaces in the bare repository using the following
command:
$ git show-ref | cut -f2 -d " " | cut -f1,2 -d / | sort -u

refs/heads

refs/tags

6. Finally, we can list the refspec fetch and refs namespaces for the normal
repository (jgit):
$ git config remote.origin.fetch

+refs/heads/*:refs/remotes/origin/*

$ git show-ref | cut -f2 -d " " | cut -f1,2 -d / | sort -u

refs/heads

refs/remotes

refs/tags

7. The mirror repository has four ref namespaces not found in the normal or the bare
repositories, refs- cache-automerge, changes, meta, and notes. The normal
repository is the only one that has the refs/remote namespace.

How it works…
The normal and bare repositories are pretty similar, only the mirror sticks out. This is due
to the refspec fetch on the mirror repository, +refs/*:refs/*, which will fetch all refs
from the remote and not just refs/heads/* and refs/tags/* as a normal repository
(and bare) does. The many different ref namespaces on the Jgit repository is because the
Jgit repository is managed by Gerrit Code Review that uses different namespaces for some
repository specific content, such as changes branches for all commits submitted for code
review, metadata on code review score, and so on.

The mirror repositories are good to know when you would like a quick way to back up a
Git repository, and make sure you have everything included without needing more access
than the Git access to the machine that hosts the Git repository.

Chapter 9

209

There's more…
The repositories on GitHub store extra information in some refs namespaces. If a repository
has had a pull request made, the pull request will be recorded in the refs/pull/*
namespace. Let's look at it in the following code:

$ git clone --mirror git@github.com:jenkinsci/extreme-feedback-plugin.git

$ cd extreme-feedback-plugin.git

$ git show-ref | cut -f2 -d " " | cut -f1,2 -d / | sort -u

refs/heads

refs/meta

refs/pull

refs/tags

A quick submodule how-to
When developing a software project, you sometimes find yourself in a situation where
you need to use another project as a subpart of your project. This other project can be
anything from the another project you are developing to a third-party library. You want to
keep the projects separate even though you need to use one project from the other. Git has
a mechanism for this kind of project dependency called submodules. The basic idea is that
you can clone another Git repository into your project as a subdirectory, but keep the commits
from the two repositories separate, as shown in the following diagram:

Repository Maintenance

210

Getting ready
We'll start by cloning an example repository to be used as the super project:

$ git clone https://github.com/dvaske/super.git

$ cd super

How to do it...
1. We'll add a subproject, lib_a, to the super project as a Git submodule:

$ git submodule add git://github.com/dvaske/lib_a.git lib_a

Cloning into 'lib_a'...

remote: Counting objects: 18, done.

remote: Compressing objects: 100% (14/14), done.

remote: Total 18 (delta 4), reused 17 (delta 3)

Receiving objects: 100% (18/18), done.

Resolving deltas: 100% (4/4), done.

Checking connectivity... done.

2. Let's check git status using the following command:
$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: .gitmodules

 new file: lib_a

3. We can take a closer look at the two files in the Git index; .gitmodules is a regular
file, so we can use cat:
$ cat .gitmodules

[submodule "lib_a"]

 path = lib_a

 url = git://github.com/dvaske/lib_a.git

$ git diff --cached lib_a

diff --git a/lib_a b/lib_a

new file mode 160000

Chapter 9

211

index 0000000..0d96e7c

--- /dev/null

+++ b/lib_a

@@ -0,0 +1 @@

+Subproject commit 0d96e7cfc4d4db64002e63af0f7325d33bdaf84f

The .gitmodules files contains information about all the submodules registered in
the repository. The lib_a file stores which commit the submodule's HEAD is pointing
to when added to the super project. Whenever the submodule is updated with new
commits (created locally or fetched), the super project will state the submodule
as changed while running git status. If the changes to the submodule can be
accepted, the submodule revision in the super project is updated by adding the
submodule file and committing this to the super project.

4. We'll update the submodule, lib_a, to the latest change on the develop branch
using the following command:
$ cd lib_a

$ git checkout develop

Branch develop set up to track remote branch develop from origin
by rebasing.

Switched to a new branch 'develop'

$ cd ..

$ git status

On branch master

Your branch is ahead of 'origin/master' by 1 commit.

 (use "git push" to publish your local commits)

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working
directory)

 modified: lib_a (new commits)

no changes added to commit (use "git add" and/or "git commit -a")

5. Let's just check whether there are any updates to the submodule:
$ git submodule update

Submodule path 'lib_a': checked out
'0d96e7cfc4d4db64002e63af0f7325d33bdaf84f'

Repository Maintenance

212

6. Oops! Now we actually reset our submodule to the state as described in the file for
that submodule. We need to switch to the submodule again, check develop, and
create a commit in the super project this time:
$ cd lib_a

$ git status

HEAD detached at 0d96e7c

nothing to commit, working directory clean

$ git checkout develop

Previous HEAD position was 0d96e7c... Fixes book title in README

Switched to branch 'develop'

Your branch is up-to-date with 'origin/develop'.

$ cd ..

$ git status

On branch master

Your branch is ahead of 'origin/master' by 1 commit.

 (use "git push" to publish your local commits)

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working
directory)

 modified: lib_a (new commits)

no changes added to commit (use "git add" and/or "git commit -a")

$ git add lib_a

$ git commit -m 'Updated lib_a to newest version'

[master 4d371bb] Updated lib_a to newest version

 1 file changed, 1 insertion(+), 1 deletion(-)

Notice that the submodule is on default in a detached head state, which means
that HEAD is pointing directly to a commit instead of a branch. You can still edit
the submodule and record commits. However, if you perform a submodule update
in the super repository without first committing a new submodule state, your changes
can be hard to find. So, always remember to checkout or create a branch while
switching to a submodule to work, then you can just checkout the branch again
and get your changes back. Since Git Version 1.8.2, it has been possible to make
submodules track a branch rather than a single commit. Git 1.8.2 was released on
the March 13, 2013, and you can check your version by running git --version.

Chapter 9

213

7. To make Git track the branch of a submodule rather than a specific commit, we need
to write the name of the branch we want to track in the .gitmodules file for the
submodule; here we'll use the stable branch:
$ git config -f .gitmodules submodule.lib_a.branch stable

$ cat .gitmodules

[submodule "lib_a"]

 path = lib_a

 url = git://github.com/dvaske/lib_a.git

 branch = stable

8. We can now add and commit the submodule, and then try to update it using the
following command:
$ git add .gitmodules

$ git commit -m 'Make lib_a module track its stable branch'

[master bf9b9ba] Make lib_a module track its stable branch

 1 file changed, 1 insertion(+)

$ git submodule update --remote

Submodule path 'lib_a': checked out
'8176a16db21a48a0969e18a51f2c2fb1869418fb'

$ git status

On branch master

Your branch is ahead of 'origin/master' by 3 commits.

 (use "git push" to publish your local commits)

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working
directory)

 modified: lib_a (new commits)

no changes added to commit (use "git add" and/or "git commit -a")

The submodule is still in the detached HEAD state. However, when updating the submodule
with git submodule update --remote, changes from the submodule's remote
repository will be fetched and the submodule will be updated to the latest commit on the
branch it is tracking. We still need to record a commit to the super repository, specifying the
state of the submodule.

Repository Maintenance

214

There's more…
When you are cloning a repository that contains one or more submodules, you need to explicitly
fetch them after the clone. We can try this with our newly created submodule repository:

$ git clone super super_clone

Cloning into 'super_clone'...

done.

Now, initialize and update the submodules:

$ cd super_clone

$ git submodule init

Submodule 'lib_a' (git://github.com/dvaske/lib_a.git) registered for path
'lib_a'

$ git submodule update --remote

Cloning into 'lib_a'...

remote: Counting objects: 18, done.

remote: Compressing objects: 100% (14/14), done.

remote: Total 18 (delta 4), reused 17 (delta 3)

Receiving objects: 100% (18/18), done.

Resolving deltas: 100% (4/4), done.

Checking connectivity... done.

Submodule path 'lib_a': checked out
'8176a16db21a48a0969e18a51f2c2fb1869418fb'

The repository is ready for development!

When cloning the repository, the submodules can be initialized and updated
directly after the clone if the --recursive or --recurse-submodules
option is given.

Subtree merging
An alternative to submodules is subtree merging. Subtree merging is a strategy that can be
used while performing merges with Git. The subtree merge strategy is useful when merging
a branch (or as we'll see in this recipe another project) into a subdirectory of a Git repository
instead of the root directory. When using the subtree merge strategy, the history of the
subproject is joined with the history of the super project, while the subproject's history
can be kept clean except for commits indented to go upstream.

Chapter 9

215

Getting ready
We'll use the same repositories as in the last recipe, and we'll reclone the super project
to get rid of the submodule setup:

$ git clone https://github.com/dvaske/super.git

$ cd super

How to do it...
We'll add the subproject as a new remote and fetch the history:

$ git remote add lib_a git://github.com/dvaske/lib_a.git

$ git fetch lib_a

warning: no common commits

remote: Reusing existing pack: 18, done.

remote: Total 18 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (18/18), done.

From git://github.com/dvaske/lib_a

 * [new branch] develop -> lib_a/develop

 * [new branch] master -> lib_a/master

 * [new branch] stable -> lib_a/stable

We can now create a local branch, lib_a_master, which points to the same commit as the
master branch in lib a (lib_a/master):

$ git checkout -b lib_a_master lib_a/master

Branch lib_a_master set up to track remote branch master from lib_a by
rebasing.

Switched to a new branch 'lib_a_master'

We can check the content of our working tree using the following command:

$ ls

README.md a.txt

If we switch back to the master branch, we should see the content of the super repository
in our directory:

$ git checkout master

Switched to branch 'master'

Your branch is up-to-date with 'origin/master'.

$ ls

README.md super.txt

Repository Maintenance

216

Git changes branches and populates the working directory as normal even though the
branches are originally from two different repositories. Now, we want to merge the history
from lib_a into a subdirectory. First, we prepare a merge commit by merging with the ours
strategy and make sure the commit isn't completed (we need to bring in all the files).

$ git merge -s ours --no-commit lib_a_master

Automatic merge went well; stopped before committing as requested

In short what the ours strategy tells Git to do the following: Merge in this branch, but keep
the resulting tree the same as the tree on the tip of this branch. So, the branch is merged, but
all the changes it introduced are discarded. In our previous command line, we also passed
the --no-commit option. This option stops Git from completing the merge, but leaves the
repository in a merging state. We can now add the content of the lib_a repository to the
lib_a folder in the repository root. We do this with git read-tree to make sure the two
trees are exactly the same as follows:

$ git read-tree --prefix=lib_a/ -u lib_a_master

Our current directory structure looks as follows:

$ tree

.

|-- README.md

|-- lib_a

| |-- README.md

| '-- a.txt

'-- super.txt

It is time to conclude the merge commit we started using the following command:

$ git commit -m 'Initial add of lib_a project'

[master 5066b7b] Initial add of lib_a project

Now the subproject is added. Next, we'll see how we can update the super project with
new commits from the subproject and how to copy commits made in the super project
to the subproject.

We need to add and commit some changes to the super project using the following command:

$ echo "Lib_a included\!" >> super.txt

$ git add super.txt

$ git commit -m "Update super.txt"

[master 83ef9a4] Update super.txt

 1 file changed, 1 insertion(+)

Chapter 9

217

Some changes are made to the subproject committed in the super project:

$ echo "The b file in lib_a" >> lib_a/b.txt

$ git add lib_a/b.txt

$ git commit -m "[LIB_A] Enhance lib_a with b.txt"

[master debe836] [LIB_A] Enhance lib_a with b.txt

 1 file changed, 1 insertion(+)

 create mode 100644 lib_a/b.txt

The current history looks like the following screenshot:

The merge can be seen in the previous screenshot and the two root commits of the repository,
the original root commit and the root from lib_a.

Now, we will learn to integrate new commits into the super repository made in the subproject,
lib_a. Normally, we would do this by checking out the lib_a_master branch and
performing pull on this to get the latest commit from the remote repository. However, as we
are working with example repositories in this recipe, no new commits are available on the
master branch. Instead, we'll use the develop and stable branches from lib_a. We'll now
integrate commits from the develop branch on lib_a. We do this directly using the lib_a/
develop reference in the repository as follows:

$ git merge -m '[LIB_A] Update lib_a project to latest state' -s \
subtree lib_a/develop

Merge made by the 'subtree' strategy.

 lib_a/a.txt | 2 ++

 1 file changed, 2 insertions(+)

Repository Maintenance

218

Our master branch has now been updated with the commits from lib_a/develop
as shown in the following screenshot:

Now, it is time to add the commits we made in the lib_a directory back to the lib_a project.
First, we'll change the lib_a_master branch and merge that with lib_a/develop to
be as up to date as possible:

$ git checkout lib_a_master

$ git merge lib_a/develop

Updating 0d96e7c..ab47aca

Fast-forward

 a.txt | 2 ++

 1 file changed, 2 insertions(+)

Now we are ready to merge changes from the super project to the subproject. In order not
to merge the history of the super project to the subproject, we'll use the --squash option.
This option stops Git from completing the merge, and unlike the previous case where we
also stopped a merge from recording a commit, it does not leave the repository in a merging
state. The state of the working directory and staging area are, however, set as though a real
merge has happened.

$ git merge --squash -s subtree --no-commit master

Squash commit -- not updating HEAD

Automatic merge went well; stopped before committing as requested

Chapter 9

219

Now, we can record a commit with all the changes done in lib_a from the super project:

$ git commit -m 'Enhance lib_a with b.txt'

[lib_a_master 01e45f7] Enhance lib_a with b.txt

 1 file changed, 1 insertion(+)

 create mode 100644 b.txt

The history for the lib_a repository is seen in the following screenshot:

We can integrate more changes from lib_a/stable into the super project, but first we'll
update the lib_a_master branch so we can integrate them from here:

$ git merge lib_a/stable

Merge made by the 'recursive' strategy.

 a.txt | 2 ++

 1 file changed, 2 insertions(+)

A new commit was added to the subproject, as shown in the following screenshot:

Repository Maintenance

220

The last task is to integrate the new commit on lib_a_master to the master branch
in the super repository. This is done as in the previous case with the subtree strategy
option to git merge:

$ git checkout master

$ git merge -s subtree -m '[LIB_A] Update to latest state of lib_a'
lib_a_master

Merge made by the 'subtree' strategy.

 lib_a/a.txt | 2 ++

 1 file changed, 2 insertions(+)

The resulting history is shown in the following screenshot:

How it works…
When using the subtree strategy, Git finds out which subtree in your repository, the branch you
are trying to merge fits in. This is why we added the content of the lib_a repository with the
read-tree command to make sure we got the exact same SHA-1 ID for the lib_a directory
in the super project as the root tree in the lib_a project.

We can verify this by finding the SHA-1 of the lib_a tree in the super project in the commit
where we merged in the subproject:

$ git ls-tree a3662eb94abf0105a25309653b5d2ce67a4028d2

100644 blob 456a5df638694a699fff7a7ff31a496630b12d01 README.md

Chapter 9

221

040000 tree 7d66ad11cb22c6d101c7ac9c309f7dce25231394 lib_a

100644 blob c552dead26fdba634c91d35708f1cfc2c4b2a100 super.txt

The ID of the root tree at lib_a/master can be found out by using the following command:

$ git cat-file -p lib_a/master

tree 7d66ad11cb22c6d101c7ac9c309f7dce25231394

parent a7d76d9114941b9d35dd58e42f33ed7e32a9c134

author Aske Olsson <aske.olsson@switch-gears.dk> 1396553189 +0200

committer Aske Olsson <aske.olsson@switch-gears.dk> 1396553189 +0200

Fixes book title in README

See also
Another way of using subtree merging is with the git subtree command. This is not
enabled by default in Git installations, but is distributed with Git since 1.7.11. You can see how
to install and use it at the following links:

 f For installation, go to https://github.com/git/git/blob/master/contrib/
subtree/INSTALL

 f To understand how to use a subtree, go to https://github.com/git/git/
blob/master/contrib/subtree/git-subtree.txt

Submodule versus subtree merging
There is no easy answer to the question of whether or not to use submodules or subtree
merging for a project. When choosing submodule, a lot of extra pressure is put on the
developers working on the project as they need to make sure they keep the submodule and
the super project in sync. When choosing to add a project by subtree merging, no or little
extra complexity is added for developers. The repository maintainer, however, needs to make
sure the subproject is up to date and that commits are added back to the subproject. Both
methods work and are in use, and it is probably just a matter of getting used to either method
before finding it natural to use. A completely different solution is to use the build system of the
super project to fetch the necessary dependencies, as for example, Maven or Gradle does.

https://github.com/git/git/blob/master/contrib/subtree/INSTALL
https://github.com/git/git/blob/master/contrib/subtree/INSTALL
https://github.com/git/git/blob/master/contrib/subtree/git-subtree.txt
https://github.com/git/git/blob/master/contrib/subtree/git-subtree.txt

10
Patching and Offline

Sharing

In this chapter, we will cover the following topics:

 f Creating patches

 f Creating patches from branches

 f Applying patches

 f Sending patches

 f Creating Git bundles

 f Using a Git bundle

 f Creating archives from a tree

Introduction
With the distributed nature of Git and the many existing hosting options available for Git,
it is very easy to share the history between machines when they are connected through a
network. In cases where the machines that need to share history are not connected or can't
use the transport mechanisms supported, Git provides other methods to share the history.
Git provides an easy way to format patches from the existing history, sending those with an
e-mail and applying them to another repository. Git also has a bundle concept, where a bundle
that contains only part of the history of a repository can be used as a remote for another
repository. Finally, Git provides a simple and easy way to create an archive for a snapshot of
the folder/subfolder structure for a given reference.

With these different methods provided by Git, it becomes easy to share the history between
repositories, especially where the normal push/pull methods are not available.

Patching and Offline Sharing

224

Creating patches
In this recipe, we'll learn how to make patches out of commits. Patches can be sent via e-mails
for quick sharing or copied to sneakernet devices (USB sticks, memory cards, external hard disk
drives, and so on) if they need to be applied on an offline computer or the like. Patches can be
useful methods to review code as the reviewer can apply the patch on his repository, investigate
the diff, and check the program. If the reviewer decides the patch is good, he can publish (push)
it to a public repository, given the reviewer is the maintainer of the repository. If the reviewer
rejects the patch, he can simply reset his branch to the original state and inform the author of
the patch that more work is needed before the patch can be accepted.

Getting ready
In this example, we'll clone and use a new repository. The repository is just an example
repository for the Git commands and only contains some example commits:

$ git clone https://github.com/dvaske/offline-sharing.git

$ cd offline-sharing

$ git checkout master

How to do it...
Let's see the history of the repository as shown by Gitk:

$ gitk –-all

The history of the repository can be seen in the following screenshot:

Chapter 10

225

There are three branches in the repository: master, develop, and doc. All of them differ
by one or more commits to the others. On the master branch, we can now create a patch
file for the latest commit on the master branch and store it in the latest-commit folder,
as shown in the following command:

$ git format-patch -1 -o latest-commit

latest-commit/0001-Calculate-pi-with-more-digits.patch

If we look at the file created by the patch command, we will see the following command:

$ cat latest-commit/0001-Calculate-pi-with-more-digits.patch

From 1e42a2dfa3a377d412efd27a77b973c75935c62a Mon Sep 17 00:00:00 2001

From: Aske Olsson <aske.olsson@switch-gears.dk>

Date: Thu, 10 Apr 2014 09:19:29 +0200

Subject: [PATCH] Calculate pi with more digits

Dik T. Winter style

Build: gcc -Wall another_pi.c -o pi

Run: ./pi

 another_pi.c | 21 +++++++++++++++++++++

 1 file changed, 21 insertions(+)

 create mode 100644 another_pi.c

diff --git a/another_pi.c b/another_pi.c

new file mode 100644

index 0000000..86df41b

--- /dev/null

+++ b/another_pi.c

@@ -0,0 +1,21 @@

+/* Pi with 800 digits

+ * Dik T. Winter style, but modified sligthly

+ * https://crypto.stanford.edu/pbc/notes/pi/code.html

+ */

+ #include <stdio.h>

+

Patching and Offline Sharing

226

+void another_pi (void) {

+ printf("800 digits of pi:\n");

+ int a=10000, b=0, c=2800, d=0, e=0, f[2801], g=0;

+ for (;b-c;)f[b++]=a/5;

+ for (;d=0,g=c*2;c-=14,printf("%.4d",e+d/a),e=d%a)

+ for (b=c; d+=f[b]*a, f[b]=d%--g,d/=g--,--b; d*=b);

+

+ printf("\n");

+}

+

+int main (void){

+ another_pi();

+

+ return 0;

+}

--

1.9.1

The previous snippet is the content of the patch file produced. It contains a header much like
an e-mail with the From, Date, and Subject fields, a body with the commit message and
after the 3 dashes (---), the actual patch, and finally ending with 2 dashes (--), and the
Git version used to generate the patch. The patch generated by git format-patch is in
the UNIX mailbox format but with a magic fixed timestamp to identify that it comes from git
format-patch rather than a real mailbox. You can see the time stamp in the first line after
the sha-1 ID Mon Sep 17 00:00:00 2001.

How it works…
When generating the patch, Git will diff the commit at HEAD with its parent commit and use
this diff as the patch. The -1 option tells Git only to generate patches for the last commit and
-o latest-commit tells Git to store the patch in the folder latest-commit. The folder will
be created if it does not exist.

There's more…
If you want to create patches for several commits, say the last 3 commits, you just pass
on -3 to git format-patch instead of the -1.

Chapter 10

227

Format the latest three commits as patches in the latest-commits folder:

$ git format-patch -3 -o latest-commits

latest-commits/0001-Adds-math-pi-calculation.patch

latest-commits/0002-Adds-checker-for-prime-number.patch

latest-commits/0003-Calculate-pi-with-more-digits.patch

$ ls -la latest-commits

total 24

drwxr-xr-x 5 aske staff 170 Apr 11 21:55 .

drwxr-xr-x 8 aske staff 272 Apr 11 21:55 ..

-rw-r--r-- 1 aske staff 676 Apr 11 21:55 0001-Adds-math-pi-
calculation.patch

-rw-r--r-- 1 aske staff 1062 Apr 11 21:55 0002-Adds-checker-for-prime-
number.patch

-rw-r--r-- 1 aske staff 1041 Apr 11 21:55 0003-Calculate-pi-with-more-
digits.patch

Creating patches from branches
Instead of counting the number of commits you need to make patches for, you can create the
patches by specifying the target branch when running the format-patch command.

Getting ready
We'll use the same repository as in the previous example:

$ git clone https://github.com/dvaske/offline-sharing.git

$ cd offline-sharing

Create the master branch locally without checking out:

$ git branch master origin/master

Make sure we have develop checked out:

$ git checkout develop

How to do it...
We'll pretend that we have been working on the develop branch and have made some
commits. Now, we need to format patches for all these commits so we can send them to
the repository maintainer or carry them to another machine.

Patching and Offline Sharing

228

Let's see the commits on develop not on master:

$ git log --oneline master..develop

c131c8b Adds functionality to prime-test a range of numbers

274a7a8 Adds Makefile for easy building

88798da Move print functionality of is_prime

Now, instead of running git format-patch -3 to get patches made for these 3 commits,
we'll tell Git to create patches for all the commits that are not on the master branch:

$ git format-patch -o not-on-master master

not-on-master/0001-Move-print-functionality-of-is_prime.patch

not-on-master/0002-Adds-Makefile-for-easy-building.patch

not-on-master/0003-Adds-functionality-to-prime-test-a-range-of-numbers.
patch

How it works…
Git makes a list of commits from develop that are not on the master branch, much like we
did before creating the patches, and makes patches for these. We can check the content of
the folder not-on-master, which we specified as the output folder (-o) and verify that it
contains the patches as expected:

$ ls -1 not-on-master

0001-Move-print-functionality-of-is_prime.patch

0002-Adds-Makefile-for-easy-building.patch

0003-Adds-functionality-to-prime-test-a-range-of-numbers.patch

There's more…
The git format-patch command has many options and besides the -<n> option to
specify the number of commits in order to create patches for and the -o <dir> for the
target directory, some useful options are as follows:

 f -s, --signoff: Adds a Signed-off-by line to the commit message in the patch
file with the name of the committer. This is often required when mailing patches to
the repository maintainers. This line is required for patches to be accepted when they
are sent to the Linux kernel mailing list and the Git mailing list.

 f -n, --numbered: Numbers the patch in the subject line as [PATCH n/m].

 f --suffix=.<sfx>: Sets the suffix of the patch; it can be empty and does not have
to start with a dot.

 f -q, --quiet: Suppresses the printing of patch filenames when generating patches.

 f --stdout: Prints all commits to the standard output instead of creating files.

Chapter 10

229

Applying patches
Now we know how to create patches from commits. It is time to learn to apply them.

Getting ready
We'll use the repository from the previous examples along with the generated patches
as follows:

$ cd offline-sharing

$ git checkout master

$ ls -1a

.

..

.git

Makefile

README.md

another_pi.c

latest-commit

math.c

not-on-master

How to do it...
First, we'll checkout the develop branch and apply the patch generated from the master
branch (0001-Calculate-pi-with-more-digits.patch) in the first example.
We use the Git command am to apply the patches; am is short for apply from mailbox:

$ git checkout develop

Your branch is up-to-date with 'origin/develop'.

$ git am latest-commit/0001-Calculate-pi-with-more-digits.patch

Applying: Calculate pi with more digits

We can also apply the master branch to the series of patches that was generated from the
develop branch as follows:

$ git checkout master

Switched to branch 'master'

Your branch is up-to-date with 'origin/master'.

Patching and Offline Sharing

230

$ git am not-on-master/*

Applying: Move print functionality of is_prime

Applying: Adds Makefile for easy building

Applying: Adds functionality to prime-test a range of numbers

How it works…
The git am command takes the mailbox file specified in the input and applies the patch
in the file to the files needed. Then, a commit is recorded using the commit message and
author information from the patch. The committer identity of the commit will be the identity
of the person performing the git am command. We can see the author and committer
information with git log, but we need to pass the --pretty=fuller option to also
view the committer information:

$ git log -1 --pretty=fuller

commit 5af5ee2746b67893b0550d8a63110c48fd1b667c

Author: Aske Olsson <aske.olsson@switch-gears.dk>

AuthorDate: Wed Apr 9 21:50:18 2014 +0200

Commit: Aske Olsson <aske.olsson@switch-gears.dk>

CommitDate: Fri Jun 13 22:50:45 2014 +0200

 Adds functionality to prime-test a range of numbers

There's more…
The git am command applies the patches in the files specified and records the commits
in the repository. However, if you only want to apply the patch to the working tree or the
staging area and not record a commit, you can use the git apply command.

We can try to apply the patch from the master branch to the develop branch once again;
we just need to reset the develop branch first:

$ git checkout develop

Switched to branch 'develop'

Your branch is ahead of 'origin/develop' by 1 commit.

 (use "git push" to publish your local commits)

$ git reset --hard origin/develop

Chapter 10

231

HEAD is now at c131c8b Adds functionality to prime-test a range of
numbers

$ git apply latest-commit/0001-Calculate-pi-with-more-digits.patch

Now, we can check the state of the repository with the status command:

$ git status

On branch develop

Your branch is up-to-date with 'origin/develop'.

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 another_pi.c

 latest-commit/

 not-on-master/

nothing added to commit but untracked files present (use "git add" to
track)

We successfully applied the patch to the working tree. We can also apply it to the staging
area and the working tree using the --index option, or only to the staging area using the
--cached option.

Sending patches
In the previous example, you saw how to create and apply patches. You can, of course,
attach these patch files directly to an e-mail, but Git provides a way to send the patches
directly as e-mails with the git send-email command. The command requires some
setting up, but how you do that is heavily dependent on your general mail and SMTP
configuration. A general guide can be found in the Git help pages or visit http://git-scm.
com/docs/git-send-email.

Getting ready
We'll set up the same repository as in the previous example:

$ git clone https://github.com/dvaske/offline-sharing.git

Cloning into 'offline-sharing'...

http://git-scm.com/docs/git-send-email
http://git-scm.com/docs/git-send-email

Patching and Offline Sharing

232

remote: Counting objects: 32, done.

remote: Compressing objects: 100% (25/25), done.

remote: Total 32 (delta 7), reused 30 (delta 6)

Unpacking objects: 100% (32/32), done.

Checking connectivity... done.

$ cd offline-sharing

How to do it...
First, we'll send the same patch as the one we created in the first example. We'll send it to
ourselves using the e-mail address we specified in our Git configuration. Let's create the patch
again with git format-patch and send it with git send-email:

$ git format-patch -1 -o latest-commit

latest-commit/0001-Calculate-pi-with-more-digits.patch

Save the e-mail address from the Git configuration to a variable as follows:

$ emailaddr=$(git config user.email)

Send the patch using the e-mail address in both the to and from fields:

$ git send-email --to $emailaddr --from $emailaddr latest-commit/0001-
Calculate-pi-with-more-digits.patch

latest-commit/0001-Calculate-pi-with-more-digits.patch

(mbox) Adding cc: Aske Olsson <aske.olsson@switch-gears.dk> from line
'From: Aske Olsson <aske.olsson@switch-gears.dk>'

OK. Log says:

Server: smtp.gmail.com

MAIL FROM:<aske.olsson@switch-gears.dk>

RCPT TO:<aske.olsson@switch-gears.dk>

From: aske.olsson@switch-gears.dk

To: aske.olsson@switch-gears.dk

Subject: [PATCH] Calculate pi with more digits

Date: Mon, 14 Apr 2014 09:00:11 +0200

Message-Id: <1397458811-13755-1-git-send-email-aske.olsson@switch-gears.
dk>

X-Mailer: git-send-email 1.9.1

Chapter 10

233

An e-mail check will reveal an e-mail in the inbox, as shown in the following screenshot:

Patching and Offline Sharing

234

How it works…
As we saw in the previous examples, git format-patch creates the patch files in the Unix
mbox format, so only a little extra effort is required to allow Git to send the patch as an e-mail.
When sending e-mails with git send-email, make sure your MUA (Mail User Agent) does
not break the lines in the patch files, replace tabs with spaces, and so on. You can test this
easily by sending a patch to yourself and checking whether it can be applied cleanly to
your repository.

There's more…
The send-email command can of course be used to send more than one patch at a time.
If a directory is specified instead of a single patch file, all the patches in that directory will be
sent. We don't even have to generate the patch files before sending them; we can just specify
the same range of revisions we want to send as we would have specified for the format-patch
command. Then, Git will create the patches on the fly and send them. When we send a series
of patches this way, it is good practice to create a cover letter with a bit of explanation about
the patch series that follows. The cover letter can be created by passing --cover-letter to
the send-email command. We'll try sending patches for the commits on develop since it is
branched from master (the same patches as in the second example) as follows:

$ git checkout develop

Switched to branch 'develop'

Your branch is up-to-date with 'origin/develop'.

$ git send-email --to aske.olsson@switch-gears.dk --from \
aske.olsson@switch-gears.dk --cover-letter --annotate origin/master

/tmp/path/for/patches/0000-cover-letter.patch

/tmp/path/for/patches/0001-Move-print-functionality-of-is_prime.patch

/tmp/path/for/patches/0002-Adds-Makefile-for-easy-building.patch

/tmp/path/for/patches/0003-Adds-functionality-to-prime-test-a-range-of-
numbers.patch

(mbox) Adding cc: Aske Olsson <aske.olsson@switch-gears.dk> from line
'From: Aske Olsson <aske.olsson@switch-gears.dk>'

OK. Log says:

Server: smtp.gmail.com

MAIL FROM:<aske.olsson@switch-gears.dk>

RCPT TO:<aske.olsson@switch-gears.dk>

From: aske.olsson@switch-gears.dk

To: aske.olsson@switch-gears.dk

Chapter 10

235

Subject: [PATCH 0/3] Cover Letter describing the patch series

Date: Sat, 14 Jun 2014 23:35:14 +0200

Message-Id: <1397459884-13953-1-git-send-email-aske.olsson@switch-gears.
dk>

X-Mailer: git-send-email 1.9.1

...

We can check our e-mail inbox and see the four mails we sent: the cover letter and the
3 patches, as shown in the following screenshot:

Before sending the patches, the cover letter is filled out and by default has [PATCH 0/3]
(if sending 3 patches) in the subject line. A cover letter with only the default template subject
and body won't be sent as default. In the scripts that come with this chapter, the git send-
email command invokes the --force and --confirm=never options. This was done for
script automation to force Git to send the mails even though the cover letter has not been
changed from the default. You can try to remove these options, put in the --annotate
option, and run the scripts again. You should then be able to edit the cover letter and e-mails
that contain the patches before sending.

Creating Git bundles
Another method to share the repository history between repositories is to use the
git bundle command. A Git bundle is a series of commits that can work as a remote
repository, but without having the full history of a repository included in the bundle.

Getting ready
We'll use a fresh clone of the offline-sharing repository as follows:

$ git clone https://github.com/dvaske/offline-sharing.git

$ cd offline-sharing

$ git checkout master

Patching and Offline Sharing

236

How to do it...
First, we'll create a root bundle, as shown in the following command, so that the history in
the bundle forms a complete history and the initial commit is also included:

$ git bundle create myrepo.bundle master

Counting objects: 12, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (11/11), done.

Writing objects: 100% (12/12), 1.88 KiB | 0 bytes/s, done.

Total 12 (delta 1), reused 0 (delta 0)

We can verify the bundle content with git bundle verify:

$ git bundle verify myrepo.bundle

The bundle contains this ref:

1e42a2dfa3a377d412efd27a77b973c75935c62a refs/heads/master

The bundle records a complete history.

myrepo.bundle is okay

To make it easy to remember which commit we included as the latest commit in the
bundle, we create a tag that points to this commit; the commit is also pointed to by the
master branch:

$ git tag bundleForOtherRepo master

We have created the root bundle that contains the initial commits of the repository history.
We can now create a second bundle that contains the history from the tag we just created to
the tip of the develop branch. Note that in the following command, we use the same name
for the bundle file, myrepo.bundle, and this will overwrite the old bundle file:

$ git bundle create myrepo.bundle bundleForOtherRepo..develop

Counting objects: 12, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (9/9), done.

Writing objects: 100% (9/9), 1.47 KiB | 0 bytes/s, done.

Total 9 (delta 2), reused 0 (delta 0)

Chapter 10

237

It might seem strange to overwrite the bundle file just after creating it,
but there is some sense in naming the bundle files by the same name.
As you will also see in the next recipe, when using a bundle file, you
add it to your repository as a remote, the URL being the file path of the
bundle. The first time you do this is with the root bundle file and the URL.
The file path of the bundle file will be stored as the URL of the remote
repository. So, the next time you need to update the repository, you just
overwrite the bundle file and perform fetch from the repository.

If we verify the bundle, we can see which commit needs to exist in the target repository
before the bundle can be used:

$ git bundle verify myrepo.bundle

The bundle contains this ref:

c131c8bb2bf8254e46c013bfb33f4a61f9d4b40e refs/heads/develop

The bundle requires this ref:

ead7de45a504ee19cece26daf45d0184296f3fec

myrepo.bundle is okay

We can check the history and see that the ead7de4 commit is where develop is branched
off so it makes sense that this commit is the basis for the bundle we have just created:

$ gitk master develop

The previous command gives the following output:

How it works…
The bundle command creates a binary file with the history of the specified commit range
included. When creating the bundle as a range of commits that does not include the initial
commit in the repository (for example, bundleForOtherRepo..develop), it is important to
make sure the range matches the history in the repository where the bundle is going to be used.

Patching and Offline Sharing

238

Using a Git bundle
In the last example, we saw how we could create bundles from the existing history that
contains a specified range of history. Now, we'll learn to use these bundles either to create
a new repository or to add the history to an existing one.

Getting ready
We'll use the same repository and methods as in the last example to create bundles, but we'll
recreate them in this example to be able to use them one at a time. First, we'll prepare the
repository and the first bundle, as shown in the following commands:

$ rm -rf offline-sharing

$ git clone https://github.com/dvaske/offline-sharing.git

Cloning into 'offline-sharing'...

remote: Counting objects: 32, done.

remote: Compressing objects: 100% (25/25), done.

remote: Total 32 (delta 7), reused 30 (delta 6)

Unpacking objects: 100% (32/32), done.

Checking connectivity... done.

$ cd offline-sharing

$ git checkout master

Branch master set up to track remote branch master from origin by
rebasing.

Switched to a new branch 'master'

$ git bundle create myrepo.bundle master

Counting objects: 12, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (11/11), done.

Writing objects: 100% (12/12), 1.88 KiB | 0 bytes/s, done.

Total 12 (delta 1), reused 0 (delta 0)

$ git tag bundleForOtherRepo master

Chapter 10

239

How to do it…
Now, let's create a new repository from the bundle file we just created. We can do that with
the git clone command and by specifying the URL to the remote repository as the path to
the bundle. We'll see how to do that in the following code snippet:

$ cd ..

$ git clone -b master offline-sharing/myrepo.bundle offline-other

Cloning into 'offline-other'...

Receiving objects: 100% (12/12), done.

Resolving deltas: 100% (1/1), done.

Checking connectivity... done.

The new repository is created in the offline-other folder. Let's check the history of that
repository by using the following command:

$ cd offline-other

$ git log --oneline --decorate --all

1e42a2d (HEAD, origin/master, master) Calculate pi with more digits

ead7de4 Adds checker for prime number

337bfd0 Adds math, pi calculation

7229805 Offline sharing, patch, bundle and archive

The repository contains, as expected, all the history of the master branch in the original
repository. We can now create a second bundle, the same as in the previous example,
that contains history from the tag we created (bundleForOtherRepo) to the tip of the
develop branch:

$ cd ..

$ cd offline-sharing

$ git bundle create myrepo.bundle bundleForOtherRepo..develop

Counting objects: 12, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (9/9), done.

Writing objects: 100% (9/9), 1.47 KiB | 0 bytes/s, done.

Total 9 (delta 2), reused 0 (delta 0)

$ git bundle verify myrepo.bundle

The bundle contains this ref:

c131c8bb2bf8254e46c013bfb33f4a61f9d4b40e refs/heads/develop

The bundle requires this ref:

ead7de45a504ee19cece26daf45d0184296f3fec

myrepo.bundle is okay

Patching and Offline Sharing

240

As we also saw in the previous example, the bundle requires that the
ead7de45a504ee19cece26daf45d0184296f3fec commit exists in the repository we'll
use with the bundle. Let's check the repository we created from the first bundle for this
commit by using the following command:

$ cd ..

$ cd offline-other

$ git show -s ead7de45a504ee19cece26daf45d0184296f3fec

commit ead7de45a504ee19cece26daf45d0184296f3fec

Author: Aske Olsson <aske.olsson@switch-gears.dk>

Date: Wed Apr 9 21:28:51 2014 +0200

 Adds checker for prime number

The commit exists. Now we can use the new bundle file as it has the same filename and
path as the first bundle we created. We can just use git fetch in the offline-other
repository as follows:

$ git fetch

Receiving objects: 100% (9/9), done.

Resolving deltas: 100% (2/2), done.

From /path/to/repo/offline-sharing/myrepo.bundle

 * [new branch] develop -> origin/develop

We can now checkout, develop, and verify that the history for the develop and master
branch matches the one in the original repository:

$ git checkout develop

Branch develop set up to track remote branch develop from origin by
rebasing.

Switched to a new branch 'develop'

$ gitk --all

The previous command gives the following output:

Chapter 10

241

There's more…
The bundle is useful to update the history for repositories on machines where the normal
transport mechanisms can't be used due to missing network connections between the
machines, firewall rules, and so on. There are, of course, other methods than the Git bundle to
transport the history to remote machines. A bare repository on a USB stick could also be used,
or even plain patches can be applied to the repository. The advantage of the Git bundle is that
you don't have to write the entire history to a bare repository each time you need to update a
remote, but only the part of history that is missing.

Creating archives from a tree
Sometimes, it is useful to have a snapshot of the directory structure as specified by a
particular commit, but without the corresponding history. This can, of course, be done by
checking the particular commit followed by deleting/omitting the .git folder when creating
an archive. But with Git, there is a better way to do this, which is built in so it is possible
to create an archive from a particular commit or reference. When using Git to create the
archive, you also make sure that the archive only contains the files tracked by Git and not
any untracked files or folders you might have in your working directory.

Getting ready
We'll use the same offline-sharing repository as used in the previous examples in
this chapter:

$ git clone https://github.com/dvaske/offline-sharing.git

Cloning into 'offline-sharing'...

remote: Counting objects: 32, done.

remote: Compressing objects: 100% (25/25), done.

remote: Total 32 (delta 7), reused 30 (delta 6)

Unpacking objects: 100% (32/32), done.

Checking connectivity... done.

$ cd offline-sharing

How to do it...
We'll start by creating an archive of the directory structure on the latest commit on the
master branch. The offline-sharing repository is checked out on the develop branch
by default, so we'll use the reference origin/master to specify the ref for the archive:

$ git archive --prefix=offline/ -o offline.zip origin/master

Patching and Offline Sharing

242

The --prefix option prepends the specified prefix to each file in the archive,
effectively adding an offline directory as a root directory for the files in the repository,
 and the -o option tells Git to create the archive in the offline.zip file which of course,
is compressed in the zip format. We can investigate the zip archive to check whether the
files contain the following:

$ unzip -l offline.zip

Archive: offline.zip

1e42a2dfa3a377d412efd27a77b973c75935c62a

 Length Date Time Name

 -------- ---- ---- ----

 0 04-10-14 09:19 offline/

 162 04-10-14 09:19 offline/README.md

 485 04-10-14 09:19 offline/another_pi.c

 672 04-10-14 09:19 offline/math.c

 -------- -------

 1319 4 files

If we look in the Git repository in the origin/master commit, we can see that the files
are the same; the -l option tells Git to specify each file's size as follows:

$ git ls-tree -l origin/master

100644 blob c79cad47938a25888a699142ab3cdf764dc99193 162 README.md

100644 blob 86df41b3a8bbfb588e57c7b27742cf312ab3a12a 485 another_pi.c

100644 blob d393b41eb14561e583f1b049db716e35cef326c3 672 math.c

There's more…
The archive command can also be used to create an archive for a subdirectory of the
repository. We can use this on the doc branch of the repository to zip the content of the
Documentation folder:

$ git archive --prefix=docs/ -o docs.zip origin/doc:Documentation

Again, we can list the contents of the zip file and the Documentation tree at origin/doc
as follows:

$ unzip -l docs.zip

Archive: docs.zip

 Length Date Time Name

 -------- ---- ---- ----

Chapter 10

243

 0 04-13-14 21:14 docs/

 99 04-13-14 21:14 docs/README.md

 152 04-13-14 21:14 docs/build.md

 -------- -------

 251 3 files

$ git ls-tree -l origin/doc:Documentation

100644 blob b65b4fc78c0e39b3ff8ea549b7430654d413159f 99 README.md

100644 blob f91777f3e600db73c3ee7b05ea1b7d42efde8881 152 build.md

There are other format options besides the zip format for the archive, for example, tar, tar.gz,
and so on. The format can be specified with the --format=<format> option or as a suffix to
the output file name with the -o option. The following two commands will produce the same
output file:

$ git archive --format=tar.gz HEAD > offline.tar.gz

$ git archive -o offline.tar.gz HEAD

The Git archive command behaves a bit differently if a commit/tag ID or a tree ID is passed
as an identifier. If a commit or tag ID is given, the ID will be stored in a global extended pax
header for the tar format and as a file comment for the zip format. If only the tree ID is given,
no extra information will be stored. You can actually see this in the previous examples where
the first ID was given a branch as a reference. As the branch points to a commit, the ID of this
commit was written as a comment to the file and we can actually see it in the output of the
archive listing:

$ unzip -l offline.zip

Archive: offline.zip

1e42a2dfa3a377d412efd27a77b973c75935c62a

 Length Date Time Name

 -------- ---- ---- ----

 0 04-10-14 09:19 offline/

 162 04-10-14 09:19 offline/README.md

 485 04-10-14 09:19 offline/another_pi.c

 672 04-10-14 09:19 offline/math.c

 -------- -------

 1319 4 files

In the second example, we also passed a branch as a reference, but furthermore we
specified the Documentation folder as the subfolder we wanted to create an archive from.
This corresponds to passing the ID of the tree to the archive command; hence, no extra
information will be stored in the archive.

11
Git Plumbing and

Attributes

In this chapter, we will cover the following topics:

 f Displaying the repository information

 f Displaying the tree information

 f Displaying the file information

 f Writing a blob object to the database

 f Writing a tree object to the database

 f Writing a commit object to the database

 f Keyword expansion with attribute filters

 f Metadata diff of binary files

 f Storing binaries elsewhere

 f Checking the attributes of a file

 f Attributes for exporting an archive

Introduction
Git distinguishes between porcelain commands and plumbing commands. Porcelain
commands are the ones you will normally use as add, commit, checkout, rebase, merge, and
so on. Plumbing commands are all the helper functions that execute the low-level work. If
you run git help in a terminal, you'll get a list of approximately 20 commands—the normal
porcelain commands. You can also list all the Git commands with the -a, --all option; this
results in about 150 commands.

Git Plumbing and Attributes

246

In the previous chapters of the book, we already used some Git plumbing commands, but
without much explanation. In this chapter, we'll take a closer look at some of the more useful
commands to display information about files and trees in the repository. We'll also learn
how we can create history without the use of the add and commit Git porcelain commands.
Finally, we'll look into another area of Git: attributes. We'll see how we can replace keywords
or strings in files on add or checkout, how we can diff binary files using textual metadata,
and how we can transparently store binary files outside the repository, though added with
git add. We'll see how to check the attributes of files in the repository and how we can use
attributes while exporting our repository with git archive.

Displaying the repository information
It is fairly common to have some scripts that use repository information, for example, builds
or release note generation. This small example will show some examples of the rev-parse
command that can be very useful for scripting.

Getting ready
Clone the data-model repository from Chapter 1, Navigating Git:

$ git clone https://github.com/dvaske/data-model.git

$ cd data-model

How to do it...
First, let's figure out the ID of the commit at HEAD:

$ git rev-parse HEAD

34acc370b4d6ae53f051255680feaefaf7f7850d

This can, of course, also be obtained by git log -1 --format=%H, but with the
rev-parse command, you don't need all the options. We can also get the current
branch from the rev-parse command:

$ git rev-parse --symbolic-full-name HEAD

refs/heads/master

We can also just get the abbreviated name:

$ git rev-parse --symbolic-full-name --abbrev-ref HEAD

master

Chapter 11

247

We can also get the ID of other refs:

$ git rev-parse origin/feature/2

82cd5662900a50063ff4bb790539fe4a6d470d56

There's more…
The rev-parse command can also be used to give some information about the repository,
especially the directory structure relative to the current working directory.

We can find the top-level directory from a subdirectory using the following snippet:

$ cd a_sub_directory

$ pwd

/path/to/repo/data-model/a_sub_directory

$ git rev-parse --show-toplevel

/path/to/repo/data-model

We can also get the number of cd .. we need to get to the root directory using the
following command:

$ git rev-parse --show-cdup

../

And we can get the relative path from the root directory to the current working directory
using the following command:

$ git rev-parse --show-prefix

a_sub_directory/

Finally, we can get Git to show the path to the .git directory:

$ git rev-parse --git-dir

/path/to/repo/data-model/.git

We can check whether the current repository is a bare repository using the
following command:

$ git rev-parse --is-bare-repository

false

Git Plumbing and Attributes

248

Displaying the tree information
It can sometimes be useful to show or find information on certain trees and files in Git.
Here, the ls-tree and diff-tree commands come in handy. Essentially, these are
plumbing commands, and they can sometimes be very useful when scripting or browsing.

Getting ready
We'll use the same repository as the previous example:

$ git clone https://github.com/dvaske/data-model.git

We also need a bare repository for some examples; it will by default, with the --bare option,
be cloned to data-model.git, so remember which repository you are currently working on:

$ git clone --bare https://github.com/dvaske/data-model.git

$ cd data-model

How to do it...
To show the content of the current tree in the Git context, we can use the ls-tree
command. We'll pass --abbrev to the command to limit the SHA-1 ID to its abbreviated form.
This is usually seven characters:

$ git ls-tree --abbrev HEAD

100644 blob f21dc28 README.md

040000 tree abc267d a_sub_directory

100644 blob b50f80a another-file.txt

100644 blob 92f046f cat-me.txt

100644 blob bb2fe94 hello_world.c

The columns in the output are as follows:

 f Mode: In mode, tree is 040000, a regular file is 100644, and an executable
file is 100755

 f Type: This is the object type tree or blob

 f SHA-1 ID: This is the object identifier, that is, the SHA-1 of the object

 f Path: This is the file or the directory name

Chapter 11

249

It's also possible to print the sizes of blobs in a column between the ID and the filename
using the -l, --long option as follows:

$ git ls-tree --abbrev -l HEAD

100644 blob f21dc28 312 README.md

040000 tree abc267d - a_sub_directory

100644 blob b50f80a 26 another-file.txt

100644 blob 92f046f 78 cat-me.txt

100644 blob bb2fe94 101 hello_world.c

It is also possible to recursively list all the files with the ls-tree command:

$ git ls-tree --abbrev -r HEAD

100644 blob f21dc28 README.md

100644 blob 6dc3bfb a_sub_directory/readme

100644 blob b50f80a another-file.txt

100644 blob 92f046f cat-me.txt

100644 blob bb2fe94 hello_world.c

By default, the recursive option for ls-tree doesn't print tree objects, only blobs. To get
this information as well while recursively listing the contents, pass the -t option as shown
in the following command:

$ git ls-tree --abbrev -r -t HEAD

100644 blob f21dc28 README.md

040000 tree abc267d a_sub_directory

100644 blob 6dc3bfb a_sub_directory/readme

100644 blob b50f80a another-file.txt

100644 blob 92f046f cat-me.txt

100644 blob bb2fe94 hello_world.c

The ls-tree command makes it easy to find a file in a repository, normal or bare. If for
example, you need a single file in a bare repository and don't want to clone it, you can run
ls-tree on the project and grep for the filename you need, or supply the path for the file
if you know it. With the SHA-1 ID of the file, you can display the contents of the file, with
either cat-file or show, and redirect the output to a file. Let's see an example of this;
we're looking for the readme file in the a_sub_directory directory. We'll use the bare
repository, data-model.git, we created in the Getting started section of this recipe:

$ cd data-model.git

$ git ls-tree -r HEAD a_sub_directory/readme

Git Plumbing and Attributes

250

100644 blob 6dc3bfbc6db8253b7789af1dee44caf8ec6ffb6e a_sub_directory/
readme

$ git cat-file -p 6dc3bfbc6db8253b7789af1dee44caf8ec6ffb6e

A file in a sub directory

We can also perform diffs of trees and see the result in the same type of view as the
ls-tree command. Switch back to the normal repository, and we'll investigate the
diff-tree command:

$ cd ..

$ cd data-model

Start by performing a diff of the HEAD commit with the feature/2 branch in the
data-model repo:

$ git diff-tree --abbrev HEAD origin/feature/2

:000000 100644 0000000... 07ec769... A HelloWorld.java

:100644 100644 f21dc28... c4e7c18... M README.md

:040000 000000 abc267d... 0000000... D a_sub_directory

:100644 000000 b50f80a... 0000000... D another-file.txt

:100644 000000 92f046f... 0000000... D cat-me.txt

:100644 000000 bb2fe94... 0000000... D hello_world.c

:000000 100755 0000000... cf5edaa... A hello_world.pl

:000000 100755 0000000... 2bec0da... A hello_world.py

The output here differs from the output of ls-tree. There are two columns for
mode and ID, one for each side of the diff. In this case, the branches are master and
origin/feature/2. The second last column describes the state of the file in diff,
A = added, D = deleted, M = modified, and R = renamed. If we just want to see the diff in files,
without the mode and ID, we can specify the --name-status or the --name-only option:

$ git diff-tree --name-status HEAD origin/feature/2

A HelloWorld.java

M README.md

D a_sub_directory

D another-file.txt

D cat-me.txt

D hello_world.c

A hello_world.pl

A hello_world.py

Chapter 11

251

$ git diff-tree --name-only HEAD origin/feature/2

HelloWorld.java

README.md

a_sub_directory

another-file.txt

cat-me.txt

hello_world.c

hello_world.pl

hello_world.py

The specific output format of the ls-tree and diff-tree commands makes them very
useful for scripting in the cases where the file or tree information is needed.

Displaying the file information
While git ls-tree can give information about tree objects in the repository, it can't be used
to display information about the index and working area. The git ls-files command can
do this, and we will explore this next.

Getting ready
Again, we'll use the data-model repository from the previous example.

How to do it...
For specific file information, we can use the ls-files command to get information about
files in the working tree and the staging area. By default, git ls-files will show the files
in the staging area, as shown in the following command:

$ git ls-files

README.md

a_sub_directory/readme

another-file.txt

cat-me.txt

hello_world.c

Git Plumbing and Attributes

252

Note this includes all files in the staging area (the tree state at the latest commit, HEAD) and
files added since. The status command shows the changes between HEAD and staging area
and the staging area and working tree. We can try to create a new file and see what happens
using the following command:

$ echo 'Just testing...' > test.txt

$ git ls-files

README.md

a_sub_directory/readme

another-file.txt

cat-me.txt

hello_world.c

If we add the test.txt file to the staging area, we get the following output:

$ git add test.txt

$ git ls-files

README.md

a_sub_directory/readme

another-file.txt

cat-me.txt

hello_world.c

test.txt

By default, ls-files shows only the current content of the staging area, but let's see some
other options. We can filter the output to only show modified files with the -m, --modified
option, as shown in the following command:

$ echo "Another fine line" >> another-file.txt # Update tracked file

$ git ls-files –m

another-file.txt

The ls-files command can also show files not tracked by Git but that exist in the work
area. If we can remove the test.txt file from the staging area, the file is untracked and
we can see that it shows up in the ls-files output with the -o, --others option:

$ git reset HEAD test.txt

$ git ls-files --others

test.txt

Chapter 11

253

The ls-files command can also be used to show which files are ignored by Git with the -i,
--ignored option. So, we'll add an exclude pattern on .txt files to .gitignore and check
the output of ls-files with the standard exclude patterns (.gitignore in each directory,
.git/info/exclude, and ~/.gitignore):

$ echo '*.txt' >> .gitignore

$ git ls-files -i --exclude-standard

another-file.txt

cat-me.txt

This showed two files already tracked by Git that match the exclude pattern,
probably not really what we wanted. Let's try it again but this time on untracked files
with the -o, --others option:

$ git ls-files -o -i --exclude-standard

test.txt

This matches, as expected, the untracked files in the working directory, which are ignored
in the .gitignore file.

Let's clean up for the next example:

$ git reset --hard origin/master

$ git clean -xfd

There's more…
The ls-files command can also come in handy when performing merges that result
in conflicts. With the --unmerged option, the output will only show files that have merge
conflicts that haven't been fixed (added). To explore this, we can merge the feature/2
branch into master:

$ git merge origin/feature/2

Auto-merging README.md

CONFLICT (content): Merge conflict in README.md

Recorded preimage for 'README.md'

Automatic merge failed; fix conflicts and then commit the result.

We can check git status to see which files have conflicts:

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Git Plumbing and Attributes

254

You have unmerged paths.

 (fix conflicts and run "git commit")

Changes to be committed:

 new file: HelloWorld.java

 new file: hello_world.pl

 new file: hello_world.py

Unmerged paths:

 (use "git add <file>..." to mark resolution)

 both modified: README.md

Let's see what the --unmerged option gives in the output:

$ git ls-files --unmerged

100644 23493f6b1edfafbee958d6dacaa863b1156850b7 1 README.md

100644 f21dc2804e888fee6014d7e5b1ceee533b222c15 2 README.md

100644 c4e7c18f3b31cd1d6fabeda4d7b009e3b4f12edb 3 README.md

As expected, the output only shows the conflicted file, README.md, but in three versions.
The output is pretty similar to that of ls-tree, which we saw earlier; the first column and
second column represent the file mode and the SHA-1 ID, respectively. The third column is
different though and is the stage number of the object. Here stage 0 represents the current
working tree (not shown previously), but when a conflict arises, the stage number is used
to distinguish between the different versions. Stage 1 represents the file where the other
differences derive from, that is, the merge-base for that file. Stage 2 and 3 represent the
same files, but with different revisions, as they were in their respective branches before the
merge. If we want, we can check the revisions of the file with the cat-file or the show
command. The --unmerged option also makes it easy to get a list of unmerged files when
filtered a bit:

$ git ls-files --unmerged | cut -f 2 | sort -u

README.md

The output is much cleaner than git status, which also shows possible content in the
staging area and untracked files.

Chapter 11

255

Writing a blob object to the database
In this example, we'll see how we can use plumbing commands to add blob objects to the
database. This is, of course, used internally by the git add command; however, this can also
be useful if you, for example, need to add the public part of your GPG key to the Git repository
so that signed tags can be verified. You can then, after you've added the key, tag the blob ID
so that the other committers can find it.

Getting ready
We'll create and use a new repository for this example and the next couple of examples.
Let's create a new repository in the myplumbing folder:

$ git init myplumbing

Initialized empty Git repository in /path/to/myplumbing/.git/

$ cd myplumbing

$ git status

On branch master

Initial commit

nothing to commit (create/copy files and use "git add" to track)

How to do it...
Git uses the hash-object plumbing command to write objects to its database. We can use
it to update the database with the content of files, or pass the content directly on stdin.
First, let's just see what is currently stored in the database (.git/objects) using the
following command:

$ find .git/objects

.git/objects

.git/objects/info

.git/objects/pack

$ find .git/objects -type f

The database is empty as expected when we have just created the repository. Now, we can
write an object to the database:

echo 'This is the content of my file' | git hash-object -w --stdin

70bacd9f51c26d602f474bbdc9f60644aa449e97

Git Plumbing and Attributes

256

We can also try to use the hash-object command on a regular file:

$ echo 'This content is good' > mytest.txt

$ git hash-object -w mytest.txt

926e8ffd3258ed6edd1e254438f02fd24e417acc

We can update the file and write the new content to the database:

$ echo 'This content is better' > mytest.txt

$ git hash-object -w mytest.txt

6b3da706d14c3820597ec7109f163bc144dcbb22

How it works…
The hash-object function will create a SHA-1 hash of the input given and if the -w switch
is used, write it to the database. The command defaults to blob objects. We can investigate
the contents of the database using the following command:

find .git/objects -type f

.git/objects/6b/3da706d14c3820597ec7109f163bc144dcbb22

.git/objects/70/bacd9f51c26d602f474bbdc9f60644aa449e97

.git/objects/92/6e8ffd3258ed6edd1e254438f02fd24e417acc

We can see that the database contains the three objects we just created. As you can see, Git
stores each object as a file where the two first digits of the SHA-1 are used as a subdirectory
and the remaining 38 objects as the filename. To check the object in Git's database, we can
use the cat-file command, just like we did in Chapter 1, Navigating Git. To check
the contents of an object, we use the -p (pretty print) switch:

git cat-file -p 70bacd9f51c26d602f474bbdc9f60644aa449e97

This is the content of my file

We can also use the cat-file command to check the type of an object:

git cat-file -t 926e8ffd3258ed6edd1e254438f02fd24e417acc

blob

There's more…
We can use the cat-file command to update files in our working directory, so to revert
mytest.txt to the first version, use the following command:

$ git cat-file –p 926e8ffd3258ed6edd1e254438f02fd24e417acc > mytest.txt

$ cat mytest.txt

This content is good

Chapter 11

257

Writing a tree object to the database
Now, we have manually created objects in the Git database, but as nothing point
to these objects, we have to remember them by their SHA-1 identifier. Furthermore,
only the content of the files is stored in the database, so we learn to create a tree object
that will refer to the blobs created.

Getting ready
We'll use the same repository of the last examples with the objects we created in
the database.

How to do it...
We'll start by adding the first version of mytest.txt as follows:

$ git update-index --add --cacheinfo 100644 \

926e8ffd3258ed6edd1e254438f02fd24e417acc mytest.txt

Now we can write the content of the staging area to the database:

$ git write-tree

4c4493f8029d491d280695e263e24772ab6962ce

We can update and write a tree for the second version of mytest.txt as follows:

$ git update-index --cacheinfo 100644 \

6b3da706d14c3820597ec7109f163bc144dcbb22 mytest.txt

$ git write-tree

2b9697438318f3a62a5e85d14a3b52d69b962907

Finally, we can use the object we created from stdin and we'll put it in a subdirectory,
sub, with the name other.txt:

$ git update-index --add --cacheinfo 100644 \

70bacd9f51c26d602f474bbdc9f60644aa449e97 sub/other.txt

$ git write-tree

9387b1a7619c6d899d83fe8d1437864bcd88736c

Git Plumbing and Attributes

258

How it works…
The update-index command updates the staging area with the files or content specified. The
--add command tells Git to add a new file to the index, and the --cacheinfo switch is used to
tell the command to use an existing object from the database. The 100644 command is used to
create a normal file. Other types are 100755 (the executable file) and 040000 (a subdirectory),
and so on. We could also have used a file directly for the update-index command, and then
just provided the filename and omitted --cacheinfo, filetype, and identifier.

We can check the objects created with the cat-file command and verify their types,
as shown in the following snippet:

$ git cat-file -p 4c4493f8029d491d280695e263e24772ab6962ce

100644 blob 926e8ffd3258ed6edd1e254438f02fd24e417acc mytest.txt

$ git cat-file -t 4c4493f8029d491d280695e263e24772ab6962ce

tree

$ git cat-file -p 2b9697438318f3a62a5e85d14a3b52d69b962907

100644 blob 6b3da706d14c3820597ec7109f163bc144dcbb22 mytest.txt

$ git cat-file -t 2b9697438318f3a62a5e85d14a3b52d69b962907

tree

$ git cat-file -p 9387b1a7619c6d899d83fe8d1437864bcd88736c

100644 blob 6b3da706d14c3820597ec7109f163bc144dcbb22 mytest.txt

040000 tree 4cbaf806ece93e483f2515a7cc7326e194844797 sub

$ git cat-file -t 9387b1a7619c6d899d83fe8d1437864bcd88736c

tree

Writing a commit object to the database
Now that we have created both blob and tree objects, the next step in the data model is to
create the actual commit object.

Getting ready
Again, we'll use the repository created in the previous examples with the different objects
written to the database.

Chapter 11

259

How to do it...
As we saw in Chapter 1, Navigating Git, a commit object consists of the author and committer
information, a root tree object, a parent commit (except for the first commit), and a commit
message. We have the root tree object generated in the last example, and Git will pick up the
author and committer information from the configuration. So, all we need to do is create a
commit message and write the commit object. We can do this for each of the tree objects
we created previously:

$ echo 'Initial commit - Good contents' | git commit-tree 4c4493f8

40f4783c37e7cb9d07a4a71100acf4c474a376b0

$ echo 'Second commit - Better contents' | git commit-tree -p \

40f4783 2b969743

991ad244c6fdc84a983543cd8f2e89deca0eff29

$ echo 'Adds a subdirectory' | git commit-tree -p 991ad244 9387b1a7

e89518224a971df09a00242355b62278964d6811

How it works…
Three commit objects are created. The -p switch in the latter two commands tells Git to use
the commit specified as a parent commit for the one to be created. Git will use the author and
committer information it can find through the configuration options. We can verify that the
commits were created with the cat-file command, just like we did with the blobs and trees:

$ git cat-file -p 40f4783c37e7cb9d07a4a71100acf4c474a376b0

tree 4c4493f8029d491d280695e263e24772ab6962ce

author Aske Olsson <aske.olsson@switch-gears.dk> 1398270736 +0200

committer Aske Olsson <aske.olsson@switch-gears.dk> 1398270736 +0200

Initial commit - Good contents

$ git cat-file -t 40f4783c37e7cb9d07a4a71100acf4c474a376b0

commit

$ git cat-file -p 991ad244c6fdc84a983543cd8f2e89deca0eff29

tree 2b9697438318f3a62a5e85d14a3b52d69b962907

parent 40f4783c37e7cb9d07a4a71100acf4c474a376b0

author Aske Olsson <aske.olsson@switch-gears.dk> 1398270736 +0200

Git Plumbing and Attributes

260

committer Aske Olsson <aske.olsson@switch-gears.dk> 1398270736 +0200

Second commit - Better contents

$ git cat-file -t 991ad244c6fdc84a983543cd8f2e89deca0eff29

commit

$ git cat-file -p e89518224a971df09a00242355b62278964d6811

tree 5c23c103aeaa360342f36fe13a673fa473f665b8

parent 991ad244c6fdc84a983543cd8f2e89deca0eff29

author Aske Olsson <aske.olsson@switch-gears.dk> 1398270736 +0200

committer Aske Olsson <aske.olsson@switch-gears.dk> 1398270736 +0200

Adds a subdirectory

$ git cat-file -t e89518224a971df09a00242355b62278964d6811

commit

As we specified, parent commits for the last two commit objects we made we actually
created Git's history in the repository, which we can view with the log command. We'll need
to tell the log command to show the history from the latest commit, as we haven't updated any
branches to point to it:

$ git log e89518224a971df09a00242355b62278964d6811

commit e89518224a971df09a00242355b62278964d6811

Author: Aske Olsson <aske.olsson@switch-gears.dk>

Date: Wed Apr 23 18:32:16 2014 +0200

 Adds a subdirectory

commit 991ad244c6fdc84a983543cd8f2e89deca0eff29

Author: Aske Olsson <aske.olsson@switch-gears.dk>

Date: Wed Apr 23 18:32:16 2014 +0200

 Second commit - Better contents

commit 40f4783c37e7cb9d07a4a71100acf4c474a376b0

Author: Aske Olsson <aske.olsson@switch-gears.dk>

Date: Wed Apr 23 18:32:16 2014 +0200

 Initial commit - Good contents

Chapter 11

261

Keyword expansion with attribute filters
With version control systems such as Subversion, RCS, and so on, it is possible to insert a
number of keywords in a file, and these will then be expanded/collapsed on checkout/add.
The same functionality can be achieved with Git, though a bit of setting up is required, as it
is not built into Git's core. The attributes functionality of Git can be used to create filters for
the keyword substitution. In the following example, we'll see how we can easily exchange the
$Date$ keyword with a string such as $Date: Sun Apr 27 14:17:24 2014 +0200$
on checkout.

Getting ready
In this example, we'll use the repository located at https://github.com/dvaske/
attributes_example.git. Take a look at the keyword branch using the
following command:

$ git clone https://github.com/dvaske/attributes_example.git

$ cd attributes_example

$ git checkout keyword

How to do it...
First, let's create the filters needed to substitute the keyword on add and checkout.
The filters are in Git called clean and smudge. The clean filter runs on add (check-in) to
make sure whatever is added to Git is cleaned. The smudge filter runs on checkout and
can expand all the keywords in the file, smudging the file. Configure the clean filter for Git
(local to this repository):

git config filter.date-keyword.clean 'perl -pe \

"s/\\\$Date[^\\\$]*\\\$/\\\$Date\\\$/"'

Configure the clean filter for Git (local to this repository):

git config filter.date-keyword.smudge 'perl -pe \

"s/\\\$Date[^\\\$]*\\\$/\\\$Date: 'git log -1 --all --format=%ad \

-- $1'\\\$/"'

With the filters configured, we now need to tell Git which files to run those filters on. We will
write this information in the .gitattributes file in the root of the repository. We'll add
any c or java file affected by these filters:

echo "*.c filter=date-keyword" > .gitattributes

echo "*.java filter=date-keyword" >> .gitattributes

Now the content of any c or java file will be passed through the filters on add and checkout.

https://github.com/dvaske/attributes_example.git
https://github.com/dvaske/attributes_example.git

Git Plumbing and Attributes

262

How it works…
We can check how it works by investigating the files in the workspace. Let's take a closer
look at HelloWorld.java:

$ cat HelloWorld.java

/* $Date$ */

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello, world!");

 }

}

Nothing has happened to the file, though the filters are in place, as the filters only run on
add/checkout. We can delete the file and check it out again to see the filters in action:

$ rm HelloWorld.java

$ git checkout HelloWorld.java

$ cat HelloWorld.java

/* $Date: Sun Apr 27 14:32:49 2014 +0200$ */

public class HelloWorld {

 public static void main(String[] args) {

 System.out.println("Hello, world!");

 }

}

If we change Helloworld in the two files and add them to the staging area, we can verify
that the java file has been cleaned when added using the following command:

$ git add HelloWorld.java

$ git diff -U5 --cached

index 233cc49..3905c75 100644

--- a/HelloWorld.java

+++ b/HelloWorld.java

@@ -1,7 +1,7 @@

 /* $Date$ */

Chapter 11

263

 public class HelloWorld {

 public static void main(String[] args) {

- System.out.println("Hello, world!");

+ System.out.println("Hello again, world!");

 }

 }

As expected, we can see that when added, the file has been cleaned of the date information.

There's more…
We can continue to change hello world in the c file, also to: hello again world and
add the c file and the .gitattributes file to the staging area. Then, we can create a
commit as follows:

$ git add hello_world.c

$ git add .gitattributes

$ git commit -m 'Add date-keyword filter for *.c and *.java files'

[keyword 28a0009] Add date-keyword filter for *.c and *.java files

 3 files changed, 4 insertions(+), 2 deletions(-)

 create mode 100644 .gitattributes

How does the hello_world.c file look in the working tree now? As we only changed a line
in the file and added it afterwards, the file was never put through a checkout cycle, so we
shouldn't expect the $Date$ string to be expanded.

$ cat hello_world.c

/* $Date$ */

#include <stdio.h>

int main(void)

{

 printf("hello, world\n");

 return 0;

}

Git Plumbing and Attributes

264

If we switch branch to master and then back to keyword, the files will have been through the
checkout filter:

$ git checkout master

Switched to branch 'master'

Your branch is up-to-date with 'origin/master'.

$ git checkout keyword

Switched to branch 'keyword'

Your branch is ahead of 'origin/keyword' by 1 commit.

 (use "git push" to publish your local commits)

$ head -1 hello_world.c

/* $Date: Thu May 1 22:59:21 2014 +0200$ */

$ head -1 HelloWorld.java

/* $Date: Thu May 1 22:59:21 2014 +0200$ */

From the previous output, you can now see the Date keyword expanded to a timestamp.

Metadata diff of binary files
Binary files can be hard to diff, depending on the type of the file. Often, the only option
is to load two instances of the program to show the files and check the differences visually.
In this recipe we'll see how we can use EXIF metadata to diff images in the repository.

Getting ready
We'll use the same repository as we did in the last example and either re-clone it or checkout
the exif branch:

$ git clone https://github.com/dvaske/attributes_example.git

$ cd attributes_example

$ git checkout exif

How to do it...
In order to use the EXIF data while diffing binary files, we need to set up a filter to tell Git what
to do when a file of *.jpg is to be diffed. EXIF data is metadata embedded in images and is
often used by digital cameras to record timestamps, the size of an image, and so on.

We'll write the following line to .gitattributes:

*.jpg diff=exif-diff

Chapter 11

265

This only tells Git that JPG files should use the exif-diff filter; we still need to set it up.
To extract the EXIF metadata, there are different programs such as exiftool, jhead, and so
on. In this example, we're using exiftool, so make sure you have it installed and available
on your PATH. To set up the exiftool diff filter, we create the following Git config:

git config diff.exif-diff.textconv exiftool

From now on, every time jpg is to be diffed, you'll just see a comparison of exifdata.
To see the actual change in the image, you still have to show the two images and visually
compare them.

How it works…
Now that the filter is set up, we can try to check the output of it. The last two commits in the
repository on the exif branch contain pictures that have had their size changed; let's see
how they looks with the exif-diff filter. First, check log for the last two commits:

$ git log --name-status -2

commit 0beb82c65d8cd667e1ffe61860a42a106be3c1a6

Author: Aske Olsson <aske.olsson@switch-gears.dk>

Date: Sat May 3 14:55:50 2014 +0200

 Changes sizes of images

M europe_needles.jpg

M hello_world.jpg

M pic_credits.txt

commit a25d0defc70b9a1842463c1e9894a88dfb897cd8

Author: Aske Olsson <aske.olsson@switch-gears.dk>

Date: Sun Apr 27 16:02:51 2014 +0200

 Adds pictures to repository

 Picture credits found in pic_credits.txt

M README.md

A europe_needles.jpg

A hello_world.jpg

A pic_credits.txt

Git Plumbing and Attributes

266

Let's look at the diff between the two commits (the output you get might not match the
following output 1:1 and depends on the exiftool version, OS, and so on. The following
output is generated with exiftool 9.61 on OS X 10.9.3):

$ git diff HEAD^..HEAD

diff --git a/europe_needles.jpg b/europe_needles.jpg

index 7291028..44e98e3 100644

--- a/europe_needles.jpg

+++ b/europe_needles.jpg

@@ -1,11 +1,11 @@

 ExifTool Version Number : 9.54

-File Name : Gnepvw_europe_needles.jpg

-Directory : /var/folders/3r/6f35b4t11rv2nmbrx5x32t
4w0000gn/T

-File Size : 813 kB

+File Name : europe_needles.jpg

+Directory : .

+File Size : 328 kB

 File Modification Date/Time : 2014:05:03 22:08:05+02:00

-File Access Date/Time : 2014:05:03 22:08:05+02:00

+File Access Date/Time : 2014:05:03 22:08:06+02:00

 File Inode Change Date/Time : 2014:05:03 22:08:05+02:00

-File Permissions : rw-------

+File Permissions : rw-r--r--

 File Type : JPEG

 MIME Type : image/jpeg

 JFIF Version : 1.01

@@ -79,8 +79,8 @@ Sub Sec Time Original : 00

 Sub Sec Time Digitized : 00

 Flashpix Version : 0100

 Color Space : sRGB

-Exif Image Width : 1620

-Exif Image Height : 1080

+Exif Image Width : 1024

+Exif Image Height : 683

...

Chapter 11

267

There's more…
It is also possible to set up diffing of binary files for other types than images. As long as some
useful data from the file type can be extracted, it's possible to create a custom diff filter for
that file type. With the catdoc program, Microsoft Word files can, for example, be translated
from the .doc format to plain text, which makes it easy to diff the text content in two files,
but not their formatting.

Storing binaries elsewhere
Though binaries can't easily be diffed, there is nothing to prevent them from being stored in a Git
repository, and there are no issues in doing so. However, if one or more binaries in a repository
are updated frequently, it can cause the repository to grow quickly in size, making clones and
updates slow as a lot of data needs to be transferred. By using the clean and smudge filters for
the binaries, it is possible to move them to another location while adding them to Git and fetch
them from that location while checking out the specific version of the file.

Getting ready
We'll use the same repositories as in the previous example, but the no_binaries branch:

$ git clone https://github.com/dvaske/attributes_example.git

$ cd attributes_example

$ git checkout no_binaries

How to do it...
First, we need to set up the clean and smudge filters for the files. Then, we are only going to
run the filter on jpg files in this example, so let's set it up and create the configuration:

$ echo '*.jpg filter=binstore' > .gitattributes

Create configuration

$ git config filter.binstore.clean "./put-bin"

$ git config filter.binstore.smudge "./get-bin"

We also need to create the actual filter logic, the put-bin and get-bin files, to handle the
binary files on add and checkout. For this example, the implementation is very simple
(no error handling, retries, and so on, is implemented).

Git Plumbing and Attributes

268

The clean filter (to store the binaries somewhere else) is a simple bash script that stores
the binary it receives on stdin to a directory called binstore at the same level as the
Git repository. Git's own hash-object function is used to create a SHA-1 ID for the binary.
The ID is used as filename for the binary in the binstore folder and is written as the output
of the filer, as the content of the binary file when stored in Git.

The filter logic for the put-bin file can be created as follows:

#!/bin/bash

dest=$(git rev-parse --show-toplevel)/../binstore

mkdir -p $dest

tmpfile=$(git rev-parse --show-toplevel)/tmp

cat > $tmpfile

sha=$(git hash-object --no-filters $tmpfile)

mv $tmpfile $dest/$sha

echo $sha

The smudge filter fetches the binaries from the binstore storage on the same level as
the Git repository. The content of the file stored in Git, the SHA-1 ID, is received on stdin
and is used to output the content of the file by that name in the binstore folder:

The filter logic for the get-bin file can be created as follows:

#!/bin/bash

source=$(git rev-parse --show-toplevel)/../binstore

tmpfile=$(git rev-parse --show-toplevel)/tmp

cat > $tmpfile

sha=$(cat $tmpfile)

cat $source/$sha

rm $tmpfile

Create these two files and put them in the root of the Git repository.

Now, we are ready to add a JPG image to our repository and see that it is stored somewhere
else. We can use the hello_world.jpg image from the exif branch. We can create the file
here by querying Git. Find the SHA-1 ID of hello_world.jpg at the tip of the exif branch:

$ git ls-tree --abbrev exif | grep hello_world

100644 blob 5aac2df hello_world.jpg

Create the file by reading the content from Git to a new file:

$ git cat-file -p 5aac2df > hello_world.jpg

Chapter 11

269

Now, we can add the file, commit the file, and check the external storage, which is placed
relative to the current repository at ../binstore, and see the commit content:

Add hello_world.jpg using the following command:

$ git add hello_world.jpg

Commit the contents of the staging area, the hello_world.jpg file:

$ git commit -m 'Added binary'

[no_binaries 19e359d] Added binary

 1 file changed, 1 insertion(+)

 create mode 100644 hello_world.jpg

Check the content of the binstore directory:

$ ls -l ../binstore

total 536

-rw-r--r-- 1 aske staff 272509 May 3 23:24
5aac2dff477eebb3da3cb68843b5cc39745d6447

Finally, we can check the content of the commit with the -p option to display the patch
of the commit:

$ git log -1 -p

commit 19e359d774c880fa4f37a3f41a874ba632a31c65

Author: Aske Olsson <aske@schantz.com>

Date: Sat May 3 22:56:46 2014 +0200

 Added binary

diff --git a/hello_world.jpg b/hello_world.jpg

new file mode 100644

index 0000000..19680e5

--- /dev/null

+++ b/hello_world.jpg

@@ -0,0 +1 @@

+5aac2dff477eebb3da3cb68843b5cc39745d6447

hello_world.jpg is a new file with 5aac2dff477eebb3da3cb68843b5cc39745d6447
content that is similar, as expected, to the name of the file in the binstore directory.

Git Plumbing and Attributes

270

How it works…
Each time a .jpg file is added, the put-bin filter runs. The filter receives the content of the
added file on stdin, and it has to output the result of the filter (what needs to go into Git)
on stdout. The following is the filter explained in detail:

dest=$(git rev-parse --show-toplevel)/../binstore

mkdir -p "$dest"

The previous two lines create the binstore directory if it doesn't exist. The directory is
created at the same level as the Git repository:

tmpfile=$(git rev-parse --show-toplevel)/tmp

cat > $tmpfile

The tmpfile variable is just a path to a temporary file, tmp, located in the root of the
repository. The input received on stdin is written to this file.

sha=$(git hash-object --no-filters $tmpfile)

mv $tmpfile $dest/$sha

The previous lines use Git's hashing function to generate a hash for the content of the binary
file. We'll use the hash of the file as an identifier when we move it to the binstore folder
where the SHA-1 will function as the filename of the binary.

echo $sha

Finally, we output the hash of the file to stdout, and this will be what Git stores as the
content of the file in the Git database.

The smudge filter to populate our working tree with the correct file contents also receives the
content (from Git) on stdin. The filter needs to find the file in the binstore directory and
write the content to stdout for Git to pick it up as the smudged file.

src=$(git rev-parse --show-toplevel)/../binstore

tmpfile=$(git rev-parse --show-toplevel)/tmp

cat > $tmpfile

The first three lines define the path to the binstore folder and a temporary file to which the
content received from Git is written.

sha=$(cat $tmpfile)

Chapter 11

271

The hash of the file we need to get is extracted in the previous line.

cat $src/$sha

rm $tmpfile

Finally, we can output the real contents of the file to stdout and remove the temporary file.

There's more…
The previous filters work transparently with Git on add and checkout, but there are some
caveats when using Git attributes, and especially filters like the previous ones, which are:

 f Even though the .gitattributes file can be added and distributed inside the
repository, the configuration of the filters can't. The configuration of the filters was the
first step of the example, which tells Git which command to run for clean and smudge
when the filter is used:
$ git config filter.binstore.clean "./put-bin"

$ git config filter.binstore.smudge "./get-bin"

 f The configuration can be either local to the repository, global for the user, or global
for the system, as we saw in Chapter 2, Configuration. However, none of these
configurations can be distributed along with the repository, so it is very important that
the configuration is set up just after clone. Otherwise, the risk of adding a file without
running through the filters is too high.

 f In this example, the storage location of the binaries is just a local directory next to the
repository. A better way of doing this could be to copy the binaries to a central storage
location either with, for example, scp or through a web service. This, however, limits
the user from adding and committing when offline as the binaries cannot be stored
in the central repository. A solution to this could be a pre-push hook that could
transfer all the binaries to a binary database before a push happens.

 f Finally, there is no error handling in the previous two filters. If one of them fails,
it might make sense to abort the add or checkout and warn the user.

See also
There are also other ways of handling binaries in a repository that might be worth considering.
These usually introduce extra commands to add and retrieve the binaries. The following are
the examples of binary handlers:

 f git-annex handler at https://git-annex.branchable.com/

 f git-media handler at https://github.com/schacon/git-media

 f git-bin handler at https://github.com/Mighty-M/git-bin

https://git-annex.branchable.com/
https://github.com/schacon/git-media
https://github.com/Mighty-M/git-bin

Git Plumbing and Attributes

272

Checking the attributes of a file
Checking the .gitattributes file (or other places where attributes can be defined) to see
whether a specific file is affected by an attribute can be quite cumbersome, especially if there
are many entries in these files. Git has a built-in method that can be used to tell whether a file
has any attribute associated.

Getting ready
We'll use the attributes_example repository:

$ git clone https://github.com/dvaske/attributes_example.git

$ cd attributes_example

How to do it...
We'll start by setting up all the attributes we had in the last example:

$ echo '*.jpg filter=binstore' > .gitattributes

$ echo '*.jpg diff=exif-diff' >> .gitattributes

$ echo "*.c filter=date-keyword" >> .gitattributes

$ echo "*.java filter=date-keyword" >> .gitattributes

Now we are ready to check different files. We'll start on the keyword branch and check the
two code files using the following command:

$ git checkout keyword

Branch keyword set up to track remote branch keyword from origin by
rebasing.

Switched to a new branch 'keyword'

$ git check-attr -a hello_world.c HelloWorld.java

hello_world.c: filter: date-keyword

HelloWorld.java: filter: date-keyword

Let's also see the jpg files on the exif branch:

$ git checkout exif

Branch exif set up to track remote branch exif from origin by rebasing.

Switched to a new branch 'exif'

$ git check-attr -a hello_world.jpg europe_needles.jpg

hello_world.jpg: diff: exif-diff

Chapter 11

273

hello_world.jpg: filter: binstore

europe_needles.jpg: diff: exif-diff

europe_needles.jpg: filter: binstore

It is also possible to check a file against a specific attribute with the following command:

$ git check-attr diff hello_world.jpg

hello_world.jpg: diff: exif-diff

$ git check-attr filter hello_world.jpg

hello_world.jpg: filter: binstore

If we check a file without attributes or against an attribute not associated with the file,
the output is empty:

$ git check-attr -a README.md

$

Attributes to export an archive
While exporting a snapshot of a Git repository with the archive command (refer to Chapter 10,
Patching and Offline Sharing), it is possible to change the way the archive is made.

Getting ready
We'll use the attributes_example repository:

$ git clone https://github.com/dvaske/attributes_example.git

$ cd attributes_example

How to do it...
First, we'll set up the attributes needed in .gitattributes and commit the file on
the exif branch:

$ git checkout exif

Branch exif set up to track remote branch exif from origin by rebasing.

Switched to a new branch 'exif'

$ echo 'europe_needles.jpg export-ignore' >> .gitattributes

$ git add .gitattributes

$ git commit -m 'Add .gitattributes'

[exif 783b7f7] Add .gitattributes

 1 file changed, 1 insertion(+)

 create mode 100644 .gitattributes

Git Plumbing and Attributes

274

Now, we can create an archive from the tip of the exif branch, and the europe_needles.
jpg file shouldn't be included, as shown in the following snippet:

$ git archive -o attr.zip exif

$ unzip -l attr.zip

Archive: attr.zip

783b7f73110e23f56675f0014ab3f1d0aba21d7f

 Length Date Time Name

 -------- ---- ---- ----

 33 05-06-14 21:33 .gitattributes

 325 05-06-14 21:33 README.md

 272509 05-06-14 21:33 hello_world.jpg

 543 05-06-14 21:33 pic_credits.txt

 -------- -------

 273410 4 files

The europe_needles.jpg file isn't there! This is very useful when creating archives of the
source code without including test, the proprietary code, IPR, and so on.

There's more…
We can also do keyword substitution while exporting an archive. We need to use the
export-subst attribute. We can set it up on the README.md file in the following way:

$ echo "README.md export-subst" >> .gitattributes

$ echo "Last commit: \$Format:%H$" >> README.md

$ echo "Last commit date: \$Format:%cd$" >> README.md

$ git add .gitattributes README.md

$ git commit -m "Commit info for git archive"

[exif 8c01a48] Commit info for git archive

 2 files changed, 3 insertions(+)

Create the archive. Check the content of the README.md file in the archive and the last
commit on the exif branch using the following command:

$ git archive -o attr.zip exif

$ unzip -p attr.zip README.md

Chapter 11

275

Git Attributes

==============

A few examples on using git attributes.

Pictures used found on flickr.com,

check pic_credits.txt for details.

Pictures only changes in size, not altered

only exif data is used as examples of diff'ing

pictures based on exif data.

Example repository for the book: Git Version Control Cookbook

Last commit: d3dda23601a3cc16295bdd7f4f9812544ea69d53

Last commit date: Tue May 6 21:52:25 2014 +0200 $

$

$ git log -1 --format=Commit: %H%nDate: %cd

Commit: d3dda23601a3cc16295bdd7f4f9812544ea69d53

Date: Tue May 6 21:52:25 2014 +0200

Recording the commit ID in the archive is very useful. This is especially the case if you are
using the archive for testing so you know which revision or ID of the repository you are using,
and you can report issues against this revision or ID.

12
Tips and Tricks

In this chapter, we will cover the following topics:

 f Using git stash

 f Saving and applying stashes

 f Debugging with git bisect

 f Using the blame command

 f Color UI in the prompt

 f Autocompletion

 f Bash prompt with status information

 f More aliases

 f Interactive add

 f Interactive add with Git GUI

 f Ignoring files

 f Showing and cleaning ignored files

Introduction
In this chapter, you will find some tips and tricks that can be useful in everyday Git work. From
stashing away your changes when you get interrupted with an important task over efficient
bug hunting with bisect and blame, to color and status information in your prompt. We'll
also look at aliases, how you can create clean commits by selecting which lines should be
included in the commit, and finally how you can ignore files.

Tips and Tricks

278

Using git stash
In this example, we explore the git stash command and learn how we can use it to quickly
put away uncommitted changes and retrieve these again. This can be useful when being
interrupted with an urgent task and you are not yet ready to commit the work you currently have
in your working directory. With the git stash command, you save the state of your current
working directory with/without a staging area and restore a clean state of the working tree.

Getting ready
In this example, we'll use the cookbook-tips-tricks repository. We'll use the master
branch, but before we are ready to try the stash command, we need to create some changes
in the working directory and the staging area:

$ git clone https://github.com/dvaske/cookbook-tips-tricks.git

$ cd cookbook-tips-tricks

$ git checkout master

Make some changes to foo and add them to the staging area:

$ echo "Just another unfinished line" >> foo

$ git add foo

Make some changes to bar and create a new file:

$ echo "Another line" >> bar

$ echo "Some content" > new_file

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: foo

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

Chapter 12

279

 (use "git checkout -- <file>..." to discard changes in working
directory)

 modified: bar

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 new_file

We can see that we have one file added to the staging area, foo, one modified file, bar,
and an untracked file in the work area as well, new_file.

How to do it...
With the preceding state of our repository, we can stash away the changes so that we can
work on something else. The basic command will put away changes from the staging area
and changes made to the tracked files; it leaves untracked files in the working directory:

$ git stash

Saved working directory and index state WIP on master: d611f06 Update foo
and bar

HEAD is now at d611f06 Update foo and bar

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 new_file

nothing added to commit but untracked files present (use "git add" to
track)

Now we can work on something else and create and commit this. We'll change the first
line of the foo file and create a commit with this change:

$ sed -i '' 's/First line/This is the very first line of the foo file/'
foo

Tips and Tricks

280

$ git add foo

$ git commit -m "Update foo"

[master fa4b595] Update foo

 1 file changed, 1 insertion(+), 1 deletion(-)

We can see the current work we have stashed away with the git stash list command:

$ git stash list

stash@{0}: WIP on master: 09156a4 Update foo and bar

To get back the changes we stashed away, we can pop them from the stash stack:

$ git status

On branch master

Your branch is ahead of 'origin/master' by 1 commit.

 (use "git push" to publish your local commits)

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 new_file

nothing added to commit but untracked files present (use "git add" to
track)

$ git stash pop

Auto-merging foo

On branch master

Your branch is ahead of 'origin/master' by 1 commit.

 (use "git push" to publish your local commits)

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working
directory)

 modified: bar

 modified: foo

Chapter 12

281

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 new_file

no changes added to commit (use "git add" and/or "git commit -a")

Dropped refs/stash@{0} (91b68271c8968fed01032ad02322292f35be8830)

Now, the stashed changes are available again in the working repository and the stash entry
is deleted. Note that the changes are applied only to the working directory, though one of the
files was staged when we created the stash.

How it works…
We have created two commits: one for the index and one for the work area. In Gitk, we can
see the commits that stash creates to put the changes away:

We can also see the state of the branches after we created the commit, as shown in the
following screenshot:

Git actually creates two commits under the refs/stash namespace. One commit contains
the content of the staging area. This commit is called index on master. The other commit
is the work in progress in the working directory, WIP on master. When Git puts away the
changes by creating commits, it can use its normal resolution methods to apply the stashed
changes back to the working directory. This means that if a conflict arises when applying the
stash, it needs to be solved in the usual way.

Tips and Tricks

282

There's more…
In the preceding example, we saw only the very basic usage of the stash command, putting
away changes to untracked files and changes added to the staging area. It is also possible
to include untracked files in the stash command. This can be done with the --include-
untracked option. We can add foo to the staging area; firstly, to have the same state as
when we created the stash earlier and then to create a stash that includes untracked files:

$ git add foo

$ git stash --include-untracked

Saved working directory and index state WIP on master: 691808e Update foo

HEAD is now at 691808e Update foo

$ git status

On branch master

Your branch is ahead of 'origin/master' by 1 commit.

 (use "git push" to publish your local commits)

nothing to commit, working directory clean

Now, we can see that new_file has disappeared from the working directory. It is
included in the stash and we can check this with Gitk. It will show up as another commit
of untracked files:

$ gitk master stash

We can also make sure that the changes we added to the staging area are added back to the
staging area after we apply the stash, so we end up with the exact same state as before we
stashed away our changes:

$ git stash pop --index

On branch master

Chapter 12

283

Your branch is ahead of 'origin/master' by 1 commit.

 (use "git push" to publish your local commits)

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: foo

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working
directory)

 modified: bar

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 new_file

Dropped refs/stash@{0} (ff331af57406948619b0671dab8b4f39da1e8fa2)

It is also possible to only put away the changes in the working directory, keeping the changes
in the staging area. We can do this either for only the tracked files or by stashing away
untracked files (--include-untracked) as follows:

$ git stash --keep-index --include-untracked

Saved working directory and index state WIP on master: 00dd8f8 Update foo

HEAD is now at 00dd8f8 Update foo

$ git status

On branch master

Your branch is ahead of 'origin/master' by 1 commit.

 (use "git push" to publish your local commits)

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: foo

Tips and Tricks

284

Saving and applying stashes
When stashing away work, we can easily have more than one state of work stashed away
at a time. However, the default names for the stashed away changes aren't always helpful.
In this example, we'll see how we can save stashes and name them so that it is easy to
identify them again when listing the content of the stash. We'll also learn how to apply a
stash without deleting it from the stash list.

Getting ready
We'll use the same repository as in the previous example, continuing from the state we
left it in:

$ cd cookbook-tips-tricks

$ git status

On branch master

Your branch is ahead of 'origin/master' by 1 commit.

 (use "git push" to publish your local commits)

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: foo

$ git stash list

stash@{0}: WIP on master: 4447f69 Update foo

How to do it...
To save the current state to a stash with a description we can remember a later point in time,
use the following command:

$ git stash save 'Updates to foo'

Saved working directory and index state On master: Updates to foo

HEAD is now at 4447f69 Update foo

Our stash list now looks like the following:

$ git stash list

stash@{0}: On master: Updates to foo

stash@{1}: WIP on master: 2302181 Update foo

Chapter 12

285

We can change bar and create a new stash:

echo "Another change" >> bar

$ git stash save 'Made another change to bar'

Saved working directory and index state On master: Made another change to
bar

HEAD is now at 2302181 Update foo

$ git stash list

stash@{0}: On master: Made another change to bar

stash@{1}: On master: Updates to foo

stash@{2}: WIP on master: 2302181 Update foo

We can apply the stashes back to the working tree (and staging area with the --index
option) without deleting them from the stash list:

$ git stash apply 'stash@{1}'

On branch master

Your branch is ahead of 'origin/master' by 1 commit.

 (use "git push" to publish your local commits)

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working
directory)

 modified: foo

no changes added to commit (use "git add" and/or "git commit -a")

$ git stash apply --quiet 'stash@{0}'

$ git stash list

stash@{0}: On master: Made another change to bar

stash@{1}: On master: Updates to foo

stash@{2}: WIP on master: 2302181 Update foo

The stashes are still in the stash list, and they can be applied in any order and referred to with
the stash@{stash-no} syntax. The --quiet option suppresses the status output after the
stashes have been applied.

Tips and Tricks

286

There's more…
For the stashes applied with git stash apply, the stash needs to be deleted with git
stash drop:

$ git stash drop 'stash@{1}'

Dropped stash@{1} (e634b347d04c13fc0a0d155a3c5893a1d3841fcd)

$ git stash list

stash@{0}: On master: Made another change to bar

stash@{1}: WIP on master: 1676cdb Update foo

Keeping the stashes in the stash list by using stash apply and explicitly deleting them with
git stash drop has some advantage over just using stash pop. When using the pop
option, the stashes in the list are automatically deleted if they can be successfully applied,
but if it fails and triggers the conflict resolution mode, the stash applied is not dropped from
the list and continues to exist on the stash stack. This might later lead to accidentally using
the wrong stash because it was thought to be gone. By consistently using git stash apply
and git stash drop, you can avoid this scenario when done.

The git stash command can also be used to apply debug
information to an application. Let's pretend you have been bug
hunting and have added a lot of debug statements to your code
in order to track down the bug. Instead of deleting all those debug
statements, you can save them as a Git stash:
git stash save "Debug info stash"

Then, if you later need debug statements, you can just apply the
stash and you are ready to debug.

Debugging with git bisect
The git bisect command is an excellent tool to find which commit caused a bug in the
repository. The tool is particularly useful if you are looking at a long list of commits that may
contain the bug. The bisect command performs a binary search through the commit history
to find the commit that introduced the bug as fast as possible. The binary search method, or
bisection method as it is also called, is a search method where an algorithm finds the position
of a key in a sorted array. In each step of the algorithm, the key is compared to the middle
value of the array and if they match, the position is returned. Otherwise, the algorithm repeats
its search in the subarray to the right or left of the middle value, depending on whether the
middle value was greater or lower than the key. In the Git context, the list of commits in the
history makes up for the array of values to be tested, and the key can be a test if the code can
be complied successfully at the given commit. The binary search algorithm has a performance
of .

Chapter 12

287

Getting ready
We'll use the same repository as seen in the last example, but from a clean state:

$ git clone https://github.com/dvaske/cookbook-tips-tricks.git

$ cd cookbook-tips-tricks

$ git checkout bug_hunting

The bug_hunting branch contains 23 commits since it branched off from the master
branch. We know that the tip of the bug_hunting branch contains the bug and it was
introduced in some commit since it branched off from master. The bug was introduced
in the following commit:

commit 83c22a39955ec10ac1a2a5e7e69fe7ca354129af

Author: HAL 9000 <aske.olsson@switch-gears.dk>

Date: Tue May 13 09:53:45 2014 +0200

 Bugs...

The bug is easily seen in the map.txt file in the middle of Australia. The following snippet of
the file shows the bug:

 _,__ .:

 Darwin <* / | \

 .-./ |. : :,

 / '-._/ _

 / ' \

 .' __/ *: Brisbane

 .-' (oo) ;

 | //||\\ |

 \ /

 | /

 Perth * __.--._ /

 \ _.' \:. |

 >__,-' _/*_.-'

 Melbourne

 snd :--,

 '/

Tips and Tricks

288

Now, all we need is some way to reproduce/detect the bug so we can test the different
commits. This could, for example, simply be to compile the code, run tests, and so on.
For this example, we'll create a test script to check for bugs in the code (a simple grep for
oo should do it in this example; see for yourself if you can find the bug in the map.txt file):

echo "! grep -q oo map.txt" > ../test.sh

chmod +x ../test.sh

It is best to create this test script outside the repository to prevent interactions between
checkouts, compilation, and so on in the repository.

How to do it...
To begin bisecting, we simply type:

$ git bisect start

To mark the current commit (HEAD -> bug_hunting) as bad, we type:

$ git bisect bad

We also want to mark the last known good commit (master) as good:

$ git bisect good master

Bisecting: 11 revisions left to test after this (roughly 4 steps)

[9d2cd13d4574429dd0dcfeeb90c47a2d43a9b6ef] Build map part 11

This time, something happened. Git did a checkout of 9d2cd13, which it wants us to test
and mark as good or bad. It also tells us there are 11 revisions to test after this and it can
be done in approximately four steps. This is how the bisecting algorithm works; every time a
commit is marked as good or bad, Git will checkout the middle one between the just marked
one and the current one of opposite value. In this way, Git quickly narrows down the number
of commits to check. It also knows that there are approximately four steps, and this makes
sense since with 11 revisions left, the maximum number of tries is before the
faulty commit is found.

We can test with the test.sh script we created previously, and based on the return value,
mark the commit as good or bad:

$../test.sh; test $? -eq 0 && git bisect good || git bisect bad

git bisect good

Bisecting: 5 revisions left to test after this (roughly 3 steps)

[c45cb51752a4fe41f52d40e0b2873350b95a9d7c] Build map part 16

Chapter 12

289

The test marks the commit as good and Git checks out the next commit to be marked,
until we hit the commit that introduces the bug:

$../test.sh; test $? -eq 0 && git bisect good || git bisect bad

git bisect bad

Bisecting: 2 revisions left to test after this (roughly 2 steps)

[83c22a39955ec10ac1a2a5e7e69fe7ca354129af] Bugs...

$../test.sh; test $? -eq 0 && git bisect good || git bisect bad

git bisect bad

Bisecting: 0 revisions left to test after this (roughly 1 step)

[670ab8c42a6cb1c730c7c4aa0cc26e5cc31c9254] Build map part 13

$../test.sh; test $? -eq 0 && git bisect good || git bisect bad

git bisect good

83c22a39955ec10ac1a2a5e7e69fe7ca354129afis the first bad commit

commit 83c22a39955ec10ac1a2a5e7e69fe7ca354129af

Author: HAL 9000 <aske.olsson@switch-gears.dk>

Date: Tue May 13 09:53:45 2014 +0200

 Bugs...

:100644 100644 8a13f6bd858aefb70ea0a7d8f601701339c28bb0
1afeaaa370a2e4656551a6d44053ee0ce5c3a237 M map.txt

After four steps, Git has identified the 1981eac1 commit as the first bad commit. We can end
the bisect session and take a closer look at the commit:

$ git bisect reset

Previous HEAD position was 670ab8c... Build map part 13

Switched to branch 'bug_hunting'

Your branch is up-to-date with 'origin/bug_hunting'.

$ git show 83c22a39955ec10ac1a2a5e7e69fe7ca354129af

commit 83c22a39955ec10ac1a2a5e7e69fe7ca354129af

Author: HAL 9000 <aske.olsson@switch-gears.dk>

Date: Tue May 13 09:53:45 2014 +0200

 Bugs...

diff --git a/map.txt b/map.txt

Tips and Tricks

290

index 8a13f6b..1afeaaa 100644

--- a/map.txt

+++ b/map.txt

@@ -34,6 +34,6 @@ Australia:

 .-./ |. : :,

 / '-._/ _

 / ' \

- .' *: Brisbane

- .-' ;

- | |

+ .' __/ *: Brisbane

+ .-' (oo) ;

+ | //||\\ |

Clearly, there is a bug introduced with this commit.

The following annotated screenshot shows the steps taken by the bisect session:

Note that the bisection algorithm actually hits the faulty commit in the third step, but it needs
to look further to make sure that the commit isn't just a child commit of the faulty commit,
and in fact is the commit that introduced the bug.

Chapter 12

291

There's more…
Instead of running all the bisecting steps manually, it is possible to do it automatically by
passing Git a script, makefile, or test to run on each commit. The script needs to exit with a
zero-status to mark a commit as good and a non-zero status to mark it as bad. We can use
the test.sh script we created at the beginning of this chapter for this. First, we set up the
good and bad commits:

$ git bisect start HEAD master

Bisecting: 11 revisions left to test after this (roughly 4 steps)

[9d2cd13d4574429dd0dcfeeb90c47a2d43a9b6ef] Build map part 11

Then we tell Git to run the test.sh script and automatically mark the
commits:

$ git bisect run ../test.sh

running ../test.sh

Bisecting: 5 revisions left to test after this (roughly 3 steps)

[c45cb51752a4fe41f52d40e0b2873350b95a9d7c] Build map part 16

running ../test.sh

Bisecting: 2 revisions left to test after this (roughly 2 steps)

[83c22a39955ec10ac1a2a5e7e69fe7ca354129af] Bugs...

running ../test.sh

Bisecting: 0 revisions left to test after this (roughly 1 step)

[670ab8c42a6cb1c730c7c4aa0cc26e5cc31c9254] Build map part 13

running ../test.sh

83c22a39955ec10ac1a2a5e7e69fe7ca354129afis the first bad commit

commit 83c22a39955ec10ac1a2a5e7e69fe7ca354129af

Author: HAL 9000 <aske.olsson@switch-gears.dk>

Date: Tue May 13 09:53:45 2014 +0200

 Bugs...

:100644 100644 8a13f6bd858aefb70ea0a7d8f601701339c28bb0
1afeaaa370a2e4656551a6d44053ee0ce5c3a237 M map.txt

bisect run success

Git found the same commit and we can now exit the bisecting session:

$ git bisect reset

Previous HEAD position was 670ab8c... Build map part 13

Switched to branch 'bug_hunting'

Tips and Tricks

292

Using the blame command
The bisect command is good when you don't know where in your code there is a bug, but
you can test for it and thereby find the commit that introduced it. If you already know where in
the code the bug is but want to find the commit that introduced it, you can use git blame.
The blame command will annotate every line in the file with the latest commit that touched
that line, making it easy to find the commit ID and then the full context of the commit.

Getting ready
We'll use the same repository and branch as in the bisect example:

$ git clone https://github.com/dvaske/cookbook-tips-tricks.git

$ cd cookbook-tips-tricks

$ git checkout bug_hunting

How to do it...
We know that the bug is in map.txt on lines 37-39. To annotate each line in the file with the
commit ID and author, we'll run git blame on the file. We can further limit the search to
specific lines with the -L <from>,<to> option:

From the output, it can be clearly seen that the commit with the ID 83c22a39 by HAL 9000
introduced the bug.

Chapter 12

293

There's more…
The blame command can be used even if the file has been refactored and the code has
been moved around. With the -M option, the blame command can detect lines that have
been moved around in the file and with the -C option, Git can detect lines that were moved
or copied from other files in the same commit. If the -C option is used three times -CCC, the
blame command will find lines that were copied from other files in any commit.

Color UI in the prompt
By default, Git has no colors when displaying information in the terminal. However, displaying
colors is a feature of Git that is only a configuration away.

Getting ready
We'll use the cookbook-tips-tricks repository:

$ git clone https://github.com/dvaske/cookbook-tips-tricks.git

$ cd cookbook-tips-tricks

How to do it...
First, we'll edit and add foo:

$ echo "And another line" >> foo

$ git add foo

Change foo some more, but don't add it to the staging area:

$ echo "Last line ...so far" >> foo

Create a new file called test:

$ touch test

The git status command will show us the status:

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

Tips and Tricks

294

 (use "git reset HEAD <file>..." to unstage)

 modified: foo

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working
directory)

 modified: foo

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 test

We can set the color.ui configuration to auto or true to get color in the UI when required:

$ git config --global color.ui true

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: foo

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working
directory)

 modified: foo

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 test

Chapter 12

295

There's more…
The color.ui configuration works with a long range of Git commands diff, log, and
branch included. The following is an example of git log when setting color.ui to true:

$ git log --oneline --decorate --graph

* c111003 (HEAD, origin/master, origin/HEAD, master) Update foo and bar

* 270e97b Add bar

* 43fd490 Initial commit, adds foo

Autocompletion
Git comes with built-in support for auto-completion of Git commands for the bash and zsh
shells. So if you use either of these shells, you can enable the auto-completion feature and
let the <tab> option help you complete commands.

Getting ready
Generally, the auto-completion feature is distributed with the Git installation, but it is
not enabled by default on all platforms or distributions. To enable it, we need to find the
git-completion.bash file distributed/installed with the Git installation.

Linux
For Linux users, the location may vary depending on the distribution. Generally, the file can be
found at /etc/bash_completion.d/git-completion.bash.

Mac
For mac users, it can generally be found at /Library/Developer/CommandLineTools/
usr/share/git-core/git-completion.bash.

If you installed Git from Homebrew, it can be found at /usr/local/Cellar/git/1.9.1/
etc/bash_completion.d/git-completion.bash.

Windows
With the Msysgit installation on Windows, the completion functions are already enabled
in the Git bash shell it bundles.

If you can't find the file on your system, you can grab the latest version from
https://github.com/git/git/blob/master/contrib/completion/git-
completion.bash and install it in your home directory.

https://github.com/git/git/blob/master/contrib/completion/git-completion.bash
https://github.com/git/git/blob/master/contrib/completion/git-completion.bash

Tips and Tricks

296

How to do it...
To enable the completion feature, you need to run the source command on the completion
file, which you can do by adding the following lines to your .bashrc or .zshrc file depending
on your shell and the location of the Git completion file:

if [-f /etc/bash_completion.d/git-completion.bash]; then

 source /etc/bash_completion.d/git-completion.bash

fi

How it works…
Now, you are ready to try. Switch to an existing Git repository, for example, cookbook-tips-
tricks and type the following commands:

$ git che<tab><tab>

checkout cherry cherry-pick

You can add another c<tab> and the command will autocomplete to checkout. But the
autocompletion feature doesn't only complete commands, it can also help you complete
branch names, and so on, so you can continue with the checkout and write mas<tab>.
You should be able to see the output completed to the master branch unless you are in a
repository where there are several branches starting with mas.

There's more…
The completion feature also works with options; this is quite useful if you can't remember the
exact option but you may remember some of it, for example, when using git branch:

git branch --<tab><tab>

--abbrev= --merged --set-upstream-to=

--color --no-abbrev --track

--contains --no-color --unset-upstream

--edit-description --no-merged --verbose

--list --no-track

Chapter 12

297

Bash prompt with status information
Another cool feature Git provides is to have the prompt display status information if the
current working directory is a Git repository.

Getting ready
For the status information prompt to work, we also need to source another file,
git-prompt.sh, which is usually distributed with the Git installation and located
in the same directory as the completion file.

How to do it...
In your .bashrc or .zshrc file, add the following code snippet, again depending on your
shell and the location of the git-prompt.sh file:

if [-f /etc/bash_completion.d/git-prompt.sh]; then

 source /etc/bash_completion.d/git-prompt.sh

fi

How it works…
To make use of the command prompt, we must change the PS1 variable; usually this is set to
something like this:

PS1='\u@\h:\w\$ '

The preceding command shows the current user, an @ sign, the host name, the current
working directory relative to the user's home directory, and finally a $ character:

aske@yggdrasil:~/cookbook-tips-tricks$

We can change this to add a branch name after the working directory by adding $(__git_
ps1 " (%s)") to the PS1 variable:

PS1='\u@\h:\w$(__git_ps1 " (%s)") \$ '

Our prompt will now look like this:

aske@yggdrasil:~/cookbook-tips-tricks (master) $

It is also possible to show the state of the working tree, index, and so on. We can enable these
features by exporting some environment variables in the .bashrc file that git-prompt.sh
picks up.

Tips and Tricks

298

The following environment variables can be set:

Variable Value Effect

GIT_PS1_SHOWDIRTYSTATE
Nonempty Shows * for unstaged changes and + for

staged changes

GIT_PS1_SHOWSTASHSTATE
Nonempty Shows a $ character if something is

stashed
GIT_PS1_
SHOWUNTRACKEDFILES

Nonempty Shows a % character if there are
untracked files in the repository

GIT_PS1_SHOWUPSTREAM

auto

verbose

name

Legacy

Git

svn

Auto shows whether you are behind (<)
or ahead (>) of the upstream branch.
A <> value is displayed if the branch is
diverged and = if it is up to date. Verbose
shows the number of commits behind/
ahead. Name shows the upstream
name. Legacy is verbose for old
versions of Git. Git compares HEAD to @
{upstream}. SVN compares HEAD to
svn upstream.

GIT_PS1_DESCRIBE_STYLE

contains

branch

describe

default

Displays extra information when on a
detached HEAD. Contains is relative to a
newer annotated tag (v1.6.3.2~35).
Branch is relative to a newer tag or
branch (master~4). Describe is relative
to an older annotated tag (v1.6.3.1-
13-gdd42c2f). Default is the tag that
matches exactly.

Let's try to set some of the variables in the ~/.bashrc file:

export GIT_PS1_SHOWUPSTREAM=auto

export GIT_PS1_SHOWDIRTYSTATE=enabled

PS1='\u@\h:\w$(__git_ps1 " (%s)") \$ '

Let us see the ~/.bashrc file in action:

aske@yggdrasil:~ $ cd cookbook-tips-tricks/

aske@yggdrasil:~/cookbook-tips-tricks (master=) $ touch test

aske@yggdrasil:~/cookbook-tips-tricks (master=) $ git add test

aske@yggdrasil:~/cookbook-tips-tricks (master +=) $ echo "Testing" > test

Chapter 12

299

aske@yggdrasil:~/cookbook-tips-tricks (master *+=) $ git commit -m "test"

[master 5c66d65] test

 1 file changed, 0 insertions(+), 0 deletions(-)

 create mode 100644 test

aske@yggdrasil:~/cookbook-tips-tricks (master *>) $

When using the __git_ps1 option, Git will also display information when merging, rebasing,
bisecting, and so on. This is very useful and a lot of git status commands suddenly
become unnecessary as you have the information right there in the prompt.

There's more…
What is a terminal these days without some colors? The git-prompt.sh script also supports
this. All we need to do is set the GIT_PS1_SHOWCOLORHINTS variable to a nonempty value
and instead of using PS1, we need to use PROMPT_COMMAND. Let's change ~/.bashrc:

export GIT_PS1_SHOWUPSTREAM=auto

export GIT_PS1_SHOWDIRTYSTATE=enabled

export GIT_PS1_SHOWCOLORHINTS=enabled

PROMPT_COMMAND='__git_ps1 "\u@\h:\w" "\\\$ "'

If we redo the same scenario as the previous one, we get the following:

aske@yggdrasil:~$ cd cookbook-tips-tricks/

aske@yggdrasil:~/cookbook-tips-tricks (master=)$ touch test

aske@yggdrasil:~/cookbook-tips-tricks (master=)$ git add test

aske@yggdrasil:~/cookbook-tips-tricks (master +=)$ echo "Testing" > test

aske@yggdrasil:~/cookbook-tips-tricks (master *+=)$ git commit -m "test"

[master 0cb59ca] test

 1 file changed, 0 insertions(+), 0 deletions(-)

 create mode 100644 test

aske@yggdrasil:~/cookbook-tips-tricks (master *>)$

See also
If you are using zsh or just want to try something new with many features, such as
completion, Git support, and so on, you should take a look at the oh-my-zsh framework
available for zsh at https://github.com/robbyrussell/oh-my-zsh.

https://github.com/robbyrussell/oh-my-zsh

Tips and Tricks

300

More aliases
In Chapter 2, Configuration, we saw how we can create aliases and a few examples of them.
In this example, we will see some more examples of the useful aliases.

Getting ready
Clone the cookbook-tips-tricks repository and checkout the aliases branch:

$ git clone https://github.com/dvaske/cookbook-tips-tricks.git

$ cd cookbook-tips-tricks

$ git checkout aliases

How to do it...
Here, we'll see some examples of aliases with a short description of each of them and
an example of how to use them. The aliases are just made for the local repository; use
--global to make them available for all the repositories.

 f Show the current branch only:
$ git config alias.b "rev-parse --abbrev-ref HEAD"

$ git b

aliases

 f Show a compact graph history view with colors:
git config alias.graph "log --graph --pretty=format:'%Cred%h%Creset
-%C(yellow)%d%Creset %s %Cgreen(%cr) %C(bold blue)<%an>%Creset'
--abbrev-commit --date=relative"

git graph origin/conflict aliases

 f When resolving a conflicted merge, get a list of the conflicted/unmerged files:
$ git config alias.unmerged '!git ls-files --unmerged | cut -f2 |
sort -u'

Chapter 12

301

We can see the previous command in action by merging the origin/conflict
branch:
$ git merge origin/conflict

Auto-merging spaceship.txt

CONFLICT (content): Merge conflict in spaceship.txt

Automatic merge failed; fix conflicts and then commit the result.

Check the output of git status first:
$ git status

On branch aliases

Your branch is up-to-date with 'origin/aliases'.

You have unmerged paths.

 (fix conflicts and run "git commit")

Unmerged paths:

 (use "git add <file>..." to mark resolution)

 both modified: spaceship.txt

no changes added to commit (use "git add" and/or "git commit -a")

Let's see what the unmerged alias does:
$ git unmerged

spaceship.txt

Abort the merge:

$ git merge --abort

 f Shorthand status as follows:
git config alias.st "status"

git st

On branch aliases

Your branch is up-to-date with 'origin/aliases'.

nothing to commit, working directory clean

Tips and Tricks

302

 f A shorter status with branch and file information:
$ git config alias.s 'status -sb'

Modify foo and create an untracked file test:
$ touch test

$ echo testing >> foo

Try the s alias:

$ git s

aliases...origin/aliases

 M foo

?? test

 f Show the latest commit with some stats:
$ git config alias.l1 "log -1 --shortstat"

$ git l1

commit a43eaa9b461e811eeb0f18cce67e4465888da333

Author: Aske Olsson <aske.olsson@switch-gears.dk>

Date: Wed May 14 22:46:32 2014 +0200

 Better spaceship design

 1 file changed, 9 insertions(+), 9 deletions(-)

 f This gives the same view as the previous but for the five latest commits
(the output is not shown):
$ git config alias.l5 "log -5 --decorate --shortstat"

 f A commit listing with statistics on the changed files in colors can be displayed
using the following command:
$ git config alias.ll "log --pretty=format:\"%C(yellow)%h%Cres
et %s %Cgreen(%cr) %C(bold blue)<%an>%Creset %Cred%d%Creset\"
--numstat"

$ git ll -5

Chapter 12

303

 f Show the upstream/tracking branch:
$ git config alias.upstream "rev-parse --symbolic-full-name
--abbrev-ref=strict HEAD@{u}"

$ git upstream

origin/aliases

 f Show details of ID/SHA-1 (commit, tag, tree, blob):
git config alias.details "cat-file -p"

git details HEAD

tree bdfdaacbb29934b239db814e599342159c4390dd

parent 8fc1819f157f2c3c25eb973c2a2a412ef3d5517a

author Aske Olsson <aske.olsson@switch-gears.dk> 1400100392 +0200

committer Aske Olsson <aske.olsson@switch-gears.dk> 1400100392
+0200

Better spaceship design

 f Show the numbers of "cd-ups", ../, needed to go to the repository root using
following command:
$ git config alias.root "rev-parse --show-cdup"

$ cd sub/directory/example

$ pwd

/path/to/cookbook-tips-tricks/sub/directory/example

$ git root

../../../

$ cd $(git root)

$ pwd

/path/to/cookbook-tips-tricks

Tips and Tricks

304

 f The path of the repository on the filesystem:
$ git config alias.path "rev-parse --show-toplevel"

$ git path

/path/to/cookbook-tips-tricks

 f Abandon whatever changes we have in the index, working tree, and possibly also the
commits and reset the working tree to a known state (commit ID). Do not touch the
untracked files. We need a ref as an argument for the state of the repository to be
restored, for example, HEAD:

$ git config alias.abandon "reset --hard"

$ echo "new stuff" >> foo

$ git add foo

$ echo "other stuff" >> bar

$ git s

aliases...origin/aliases

 M bar

M foo

?? test

$ git abandon HEAD

$ git s

aliases...origin/aliases

?? test

Interactive add
The exposed staging area Git offers sometimes lead to confusion, especially when
adding a file, changing it a bit, and then adding the file again to be able to commit the
changes made after the first add. While this can seem a bit cumbersome to add the file after
every little change, it is also a big advantage that you can stage and unstage changes. With
the git add command, it is even possible to only add some changes to a file in the staging
area. This comes in handy especially if you make a lot of changes to a file and for example,
want to split the changes into bug fixes, refactoring, and features. This example will show how
you can easily do this.

Chapter 12

305

Getting ready
Again, we'll use the cookbook-tips-tricks repository. Clone it and check out the
interactive branch:

$ git clone https://github.com/dvaske/cookbook-tips-tricks.git

$ cd cookbook-tips-tricks

$ git checkout interactive

How to do it...
First, we need some changes to be added; we do this by a resetting the latest commit:

$ git reset 'HEAD^'

Unstaged changes after reset:

M liberty.txt

Now, we have a modified file. To start the interactive add, we can either run the git add -i
or git add -p filename. The -i option brings up an interface where all the different files in
the modified state can be added interactively one at a time. The add -p/--patch option is
simpler and just gives you the option to add parts of the file specified:

$ git add -p liberty.txt

diff --git a/liberty.txt b/liberty.txt

index 8350a2c..9638930 100644

--- a/liberty.txt

+++ b/liberty.txt

@@ -8,6 +8,13 @@

 WW) ,WWW)

 7W),WWWW'

 'WWWWWW'

+ 9---W)

+ ,,--WPL=YXW===

+ (P),CY:,I/X'F9P

+ WUT===---/===9)

+ -HP+----Y(C=9W)

Tips and Tricks

306

+ '9Y3'-'-OWPT-

+ 'WWLUIECW

 (:7L7C7'

 ,P--=YWFL

 Y-=:9)UW:L

Stage this hunk [y,n,q,a,d,/,j,J,g,e,?]?

Git asks you whether you want to stage the previous change (the hunk), but also shows quite
a lot of options, which can expand a little bit if you type ?:

Stage this hunk [y,n,q,a,d,/,j,J,g,e,?]?

y - stage this hunk

n - do not stage this hunk

q - quit; do not stage this hunk nor any of the remaining ones

a - stage this hunk and all later hunks in the file

d - do not stage this hunk nor any of the later hunks in the file

g - select a hunk to go to

/ - search for a hunk matching the given regex

j - leave this hunk undecided, see next undecided hunk

J - leave this hunk undecided, see next hunk

k - leave this hunk undecided, see previous undecided hunk

K - leave this hunk undecided, see previous hunk

s - split the current hunk into smaller hunks

e - manually edit the current hunk

? - print help

There are a lot of options, but with the help text, they are quite self-explanatory. Let's add the
current hunk, y, and look at the next one:

Stage this hunk [y,n,q,a,d,/,j,J,g,e,?]? y

@@ -17,16 +24,17 @@

 7WYW))PW W

 7WH)),WC)

 7L--/XY)

+DEBUG: Don't include this line...

 9+-,KY7)

 W9-Y3+7)

 W'=9WI7)

Chapter 12

307

 ,W '-YY)

- W ::W

- ,T :X)

- () '9W 'L. ,-

- (C =:9 '9L ,T

- () ,,-7) 7WL ,F'

- () , T9) '9WL ,YF

+ W ::W ,

+ ,T :X) ()

+ () '9W 'L. () ,-

+ (C =:9 '9L () ,T

+ () ,,-7) 7WL WW ,F'

+ () , T9) '9WL -- ,YF

 () '-/(W -==+PE9P7===O) -,

 'W, , T+/WX=L-. ,WP+()+3L3,),=WL --==-T-

 7) -,YW '-=9WPL+PT-- ':--L/=9WP=-'

Stage this hunk [y,n,q,a,d,/,K,j,J,g,s,e,?]?

Whoa! It looks like there is a debug line there that we should not add. Let's split the hunk, s:

Stage this hunk [y,n,q,a,d,/,K,j,J,g,s,e,?]? s

Split into 2 hunks.

@@ -17,7 +24,8 @@

 7WYW))PW W

 7WH)),WC)

 7L--/XY)

+DEBUG: Don't include this line...

 9+-,KY7)

 W9-Y3+7)

 W'=9WI7)

 ,W '-YY)

Stage this hunk [y,n,q,a,d,/,K,j,J,g,e,?]?

We don't want the output to be staged, use n, but we'll stage the next hunk and all the hunks
later in the a file:

Stage this hunk [y,n,q,a,d,/,K,j,J,g,e,?]? n

 @@ -20,13 +28,13 @@

Tips and Tricks

308

 9+-,KY7)

 W9-Y3+7)

 W'=9WI7)

 ,W '-YY)

- W ::W

- ,T :X)

- () '9W 'L. ,-

- (C =:9 '9L ,T

- () ,,-7) 7WL ,F'

- () , T9) '9WL ,YF

+ W ::W ,

+ ,T :X) ()

+ () '9W 'L. () ,-

+ (C =:9 '9L () ,T

+ () ,,-7) 7WL WW ,F'

+ () , T9) '9WL -- ,YF

 () '-/(W -==+PE9P7===O) -,

 'W, , T+/WX=L-. ,WP+()+3L3,),=WL --==-T-

 7) -,YW '-=9WPL+PT-- ':--L/=9WP=-'

Stage this hunk [y,n,q,a,d,/,K,j,J,g,e,?]? a

Let's see the current status and difference between the working directory and staging area:

$ git status

On branch interactive

Your branch is behind 'origin/interactive' by 1 commit, and can be fast-
forwarded.

 (use "git pull" to update your local branch)

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 modified: liberty.txt

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

Chapter 12

309

 (use "git checkout -- <file>..." to discard changes in working
directory)

 modified: liberty.txt

$ git diff

diff --git a/liberty.txt b/liberty.txt

index 035083e..9638930 100644

--- a/liberty.txt

+++ b/liberty.txt

@@ -24,6 +24,7 @@

 7WYW))PW W

 7WH)),WC)

 7L--/XY)

+DEBUG: Don't include this line...

 9+-,KY7)

 W9-Y3+7)

 W'=9WI7)

Perfect! We got all the changes staged except the debug line, so the result can be committed:

$ git commit -m 'Statue of liberty completed'

[interactive 1ccb885] Statue of liberty completed

 1 file changed, 36 insertions(+), 29 deletions(-)

There's more…
As mentioned earlier, it is also possible to use git add -i to interactively add files. If we do
this after resetting our branch, we would get the following menu:

$ git add -i

 staged unstaged path

 1: unchanged +37/-29 liberty.txt

*** Commands ***

 1: status 2: update 3: revert 4: add untracked

 5: patch 6: diff 7: quit 8: help

What now>

Tips and Tricks

310

The eight options pretty much do what they say. We can choose the patch option to get
into the patch menu as we saw previously, but first we have to choose which file to add
patches for:

What now> p

 staged unstaged path

 1: unchanged +37/-29 liberty.txt

Patch update>> 1

 staged unstaged path

* 1: unchanged +37/-29 liberty.txt

Patch update>>

diff --git a/liberty.txt b/liberty.txt

index 8350a2c..9638930 100644

--- a/liberty.txt

+++ b/liberty.txt

...

Once we have chosen the files, we want to add patches so they get a * character in the menu.
To begin the patching, just click on <return>. When you're done, you'll return to the menu
and can quit, review, revert, and so on.

Interactive add with Git GUI
The interactive features of git add are really powerful in order to create clean commits
that only contain a single logical change even though it was coded as a mix of feature adding
and bug fixing. The downside of the interactive git add feature is that it is hard to get
an overview of all the changes that exist in the file when only being showed one hunk at a
time. To get a better overview of the changes and still be able to only add selected hunks
(and even single lines), we can use git gui. Git GUI is normally distributed with the Git
installation (MsysGit on Windows) and can be launched from the command line: git gui. If
your distribution doesn't have Git GUI available, you can probably install it from the package
manager named git-gui.

Getting ready
We'll use the same repository as in the last example and reset it to the same state so we can
perform the same adds with Git GUI:

$ git clone https://github.com/dvaske/cookbook-tips-tricks.git

$ cd cookbook-tips-tricks

$ git checkout interactive

$ git reset HEAD^

Chapter 12

311

How to do it...
Load up Git GUI in the cookbook-tips-tricks repository. Here, you can see the unstaged
changes (files) in the top-left side and the staged changes (files) under it. The main window
will display the unstaged changes in the current marked file. You can right-click on a hunk
and see a context menu with options for staging and so on. The first hunk shown by Git GUI is
much larger than what we saw before with git add -p. Choose Show Less Context to split
the hunk, as shown in the following screenshot:

Tips and Tricks

312

Now, we get a smaller hunk like before, as shown in the following screenshot:

The first hunk we just choose to add, Stage Hunk For Commit, and the next hunk moves to
the top of the screen:

Chapter 12

313

Here, we can select the lines we want to add, instead of performing another split, and stage
those lines: Stage Lines For Commit. We can add the rest of the hunks except the one with
the debug line. Now, we are ready to create a commit and we can do so from the Git GUI. We
can just write the commit message in the field at the bottom of the screen and hit Commit:

Ignoring files
For every repository, there are usually certain types of files you don't want tracked in the
repository. The files can be configuration files, build output, or just backup files created by the
editor when editing the file. To avoid these files showing up in the untracked files section of
the git status output, it is possible to add them to a file called .gitignore. Entries in
this file that match files in the working directory will not be considered by git status.

Getting ready
Clone the cookbook-tips-tricks repository and check out the ignore branch:

$ git clone https://github.com/dvaske/cookbook-tips-tricks.git

$ cd cookbook-tips-tricks

$ git checkout ignore

Tips and Tricks

314

How to do it...
First, we'll create some files and directories:

$ echo "Testing" > test.txt

$ echo "Testing" > test.txt.bak

$ mkdir bin

$ touch bin/foobar

$ touch bin/frotz

Let's see the output of git status:

$ git status

On branch ignore

Your branch is up-to-date with 'origin/ignore'.

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 test.txt

nothing added to commit but untracked files present (use "git add" to
track)

Only the test.txt file showed up in the output. This is because the rest of the files are
ignored by Git. We can check the content of .gitignore to see how this happened:

cat .gitignore

*.config

*.bak

Java files

*.class

bin/

This means that *.bak, *.class, *.config, and everything in the bin directory are being
ignored by Git.

Chapter 12

315

If we try to add files in a path ignored by Git, for example bin, it will complain:

$ git add bin/frotz

The following paths are ignored by one of your .gitignore files:

bin/frotz

Use -f if you really want to add them.

But, it also tells us an option to use if we really want to add it, -f:

$ git add -f bin/frotz

$ git status

On branch ignore

Your branch is up-to-date with 'origin/ignore'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: bin/frotz

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 test.txt

If we ignore the foo file, which is already tracked, and modify it, it still shows up in the
status since tracked files are not ignored:

$ echo "foo" >> .gitignore

$ echo "more testing" >> foo

$ git status

On branch ignore

Your branch is up-to-date with 'origin/ignore'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: bin/frotz

Tips and Tricks

316

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working
directory)

 modified: .gitignore

 modified: foo

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 test.txt

Let's add and commit foo, .gitignore and the content of the current staging area:

$ git add foo .gitignore

$ git commit -m 'Add bin/frotz with force, foo & .gitignore'

[ignore fc60b44] Add bin/frotz with force, foo & .gitignore

 3 files changed, 2 insertions(+)

 create mode 100644 bin/frotz

There's more…
It is also possible to ignore files of a repository without the .gitignore files. You
can put your ignored files in a global ignore file, for example ~/.gitignore_global,
and globally configure Git to also consider entries in this file to be ignored:

$ git config --global core.excludesfile ~/.gitignore_global

You can also do it per repository in the .git/info/exclude file. If you use either of
these options, you won't be able to easily share the ignored file; they can't be added to
the repository as they are stored outside it. Sharing the .gitignore files is much easier;
you just add and commit it to Git. But, let's see how the other options work:

$ echo "*.test" > .git/info/exclude

$ touch test.test

$ git status

Chapter 12

317

On branch ignore

Your branch is ahead of 'origin/ignore' by 1 commit.

 (use "git push" to publish your local commits)

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 test.txt

nothing added to commit but untracked files present (use "git add" to
track)

$ ls

bar bin foo

test.test test.txt test.txt.bak

We can see that the .test file didn't show up in the status output and that the ignored
files exists in the working directory.

See also…
There is a wide range of files ignored commonly, for example, to avoid accidentally adding text
editor backup files, *.swp, *~. and *.bak are commonly ignored. If you are working on a
Java project, you might add *.class, *.jar, *.war to your .gitignore and *.o, *.elf,
*.lib if you are working on a C project. Github has a repository dedicated to collect Git
ignore files for different programming languages and editors/IDEs. You can find it at
https://github.com/github/gitignore.

Showing and cleaning ignored files
Ignoring files is useful to filter noise from the output of git status. But, sometimes it is
required to check which files are ignored. This example will show you how to do that.

Getting ready
We'll continue in the repository from the last example.

https://github.com/github/gitignore

Tips and Tricks

318

How to do it...
To show the files we have ignored, we can use the clean command. Normally, the clean
command will remove the untracked files from the working directory but it is possible to run
this in a dry-run mode, -n, where it just shows what will happen.

$ git clean -Xnd

Would remove bin/foobar

Would remove test.test

Would remove test.txt.bak

The options used in the preceding command specify the following:

 f -n, --dry-run: Only lists that will be removed

 f -X: Removes only the files ignored by Git

 f -d: Removes the untracked directories in addition to the untracked files

The ignored files can also be listed with the ls-files command:

$ git ls-files -o -i --exclude-standard

bin/foobar

test.test

test.txt.bak

Where the option -o, --others shows the untracked files, the option -i, --ignored shows
only the ignored files, and --exclude-standard, use the standard exclusion files .git/
info/exclude and .gitignore in each directory, and the user's global exclusion file.

There's more…
If we need to remove the ignored files, we can of course use git clean to do this; instead of
the dry-run option, we pass the force option, -f:

$ git clean -Xfd

Removing bin/foobar

Removing test.test

Removing test.txt.bak

To remove all the untracked files and not just the ignored files, use git clean -xfd.
The lower case x means we don't use the ignore rules, we just remove everything that is
not tracked by Git.

Index
Symbols
-1 option 226
--allow-empty option

used, for creating empty commit 139
--auto option 200
--cached option 204, 231
-C option 293
--diff-filter=DA option 71
--format=<format> option 243
.gitignore 313
--global 300
--ignore-unmatch option 204
--include-untracked option 282
--index-filter option 203
--index option 231
-i option 305
-l option 242
-M option 293
--name-status option 71
-n, --numbered option 228
--no-commit option 216
-<n> option 228
-o <dir> option 228
-o latest-commit option 226
-o option 243
--prefix option 242
--preserve-merges flag 82
--pretty=fuller option 230
-q, --quiet option 228
--quiet option 285
-rq option 204
--squash option 218
-s, --signoff option 228
--stdout option 228
--suffix=.<sfx> option 228

A
add -p/--patch option 305
aliases

about 44-47
configuring, with git config

command 153-157
examples 300-304
using 154-157

annotated tag 110
archives

creating, from tree 241-243
attributes

setting up, for exporting archive 273-275
autocompletion feature

enabling 295, 296
for Linux users 295
for Mac users 295
on Windows 295

autocorrect, Git configuration 43, 44
automatic garbage collection

switching off 199, 200
autosquash feature, Git 89
auto squashing

commits 89-94

B
bare repository

about 206
versus mirror repository 207, 208

bash prompt
with status information 297-299

binaries
storing, to another location 267-270

320

binary files
metadata, diffing 264-266

binary handlers
git-annex handler 271
git-bin handler 271
git-media handler 271

bisect command 286
blame command

about 292, 293
using 292

blob object
about 10
writing, to database 255, 256

branch.autosetuprebase configuration 41
branch description

using, in commit message 134-137
branches

differentiating 71, 72
local branches, managing 54-56
merging, git rerere used 65-70
merging, with merge commit 61-65
patches, creating from 227, 228
remote branches 57-60

branch.<name>.rebase configuration 42
branch object 10, 11
bundle command 237

C
cat cat-me.txt command 10
cat-file command

about 8, 15
using 256

changed files
list, obtaining of 23

clean command 318
clean filter 261
clone command 239
commit

author changing, rebase used 86-89
auto squashing 89-94
changes, reverting 179-181
finding, in history 26, 27
push, preventing 148-152
rebasing, to another branch 74, 75
redo 175-177
resetting 167, 168

squashing, interactive rebase used 81-86
tagging, in repository 110-114
undoing 164-167
undoing, while retaining changes in staging

area 169-171
commit message

branch description, using in 134-137
external information, using 144-148
grepping 126-128
template, creating 138-144

commit object
about 8
creating, stages 13-15
writing, to database 258-260

commit template
setting up 159, 160
using 160, 161

configuration, Git
autocorrect 43, 44
object expiry 42
querying 34-36
rebase and merge setup 41

configuration, GLOBAL layer 31-34
configuration, LOCAL layer 31-34
configuration, SYSTEM layer 31-33
current variable 201

D
DAG

about 17
viewing 18-20

dangling commit 167
database

blob object, writing to 255, 256
commit object, writing to 258-260
tree object, writing to 257, 258

data model, Git 5-7
descriptioInCommit branch 134
diff command 65
diff-tree command 250

E
env-filter 205
exif-diff filter 265

321

exiftool diff filter
setting up 265

external information
using, in commit message 144-148

F
file

adding 304-310
attributes, checking 272, 273
ignoring 313-317
sensitive data, removing from 205, 206

file information
displaying 251-254

filter-branch command 193
fixed issues

extracting 20-22
fsck command

about 188
used, for searching lost changes 188-191

G
garbage collection

manually running 196-199
gc.pruneexpire 42
gc.reflogexpire 42
gc.reflogexpireunreachable 42
Gerrit Code Review 208
Git

alias 44-47
clean filter 261
data model 5-7
existing configuration, querying 34-36
objects 7, 8
smudge filter 261
three stages, for creating commit

object 13-15
Git actions

viewing, with git reflog 186-188
git add command 13, 304
git am command 230
git-annex handler

URL 271
git apply command 230
git-bin handler

URL 271

git bisect command
about 286
debugging with 286-291

git branch command 55
Git bundle

creating 235-237
using 238-241

git bundle command 235
git cat-file -p command 12
git command 231
git commit --amend --reset-author 87
git config command

about 55
used, for configuring Git aliases 153, 154

git config file 55
git config rebase.autosquash true 92
git describe command 21
git diff command 23
git fetch command 113
git filter-branch command

about 204
env-filter 205
msg-filter 205
subdirectory-filter 205
tree-filter 205

git format-patch command 228
git gc command 196, 199
Git GUI

interactive add, using with 310-313
Gitk

history, viewing with 24, 25
git log command 17, 28, 100, 115
git ls-tree command 12
git-media handler

URL 271
GIT_PS1_DESCRIBE_STYLE variable 298
GIT_PS1_SHOWDIRTYSTATE variable 298
GIT_PS1_SHOWSTASHSTATE variable 298
GIT_PS1_SHOWUNTRACKEDFILES

variable 298
GIT_PS1_SHOWUPSTREAM variable 298
git rebase -continue

used, for continuing rebase 75-77
git rebase -i command 92
git rebase --interactive

running 82

322

git rerere
about 65
used, for merging branches 65-70

Git scripts
configuring 158, 159
using 158, 159

git send-email command 231, 235
git show command 12, 113
git stash command

about 278, 286
using 278-283

git stash list command 280
git status command 64
git subtree command 221
git tag command 111
GLOBAL layer

configuring 31-34
Gradle 221

H
hard reset 171
hash-object command

using 255, 256
history

commits, finding in 26, 27
viewing, with Gitk 24, 25

history code
searching through, for commit 28, 29

I
ignored files

cleaning 317, 318
displaying 317, 318

index on master 281
interactive add

starting 304-310
with Git GUI 310-313

interactive rebase
used, for squashing commits 81-86

J
JGit project 20
JGit repository

cloning 20, 74
splitting 200-205

K
keyword expansion

filters, creating with attribute
functionality 261-263

L
layers

GLOBAL layer 31
LOCAL layer 31
SYSTEM layer 31

lib_a file 211
lib_a_master branch 218
lightweight tag 110
list

obtaining, of changed files 23
local branches

managing 54-56
LOCAL layer

configuring 31-34
lost changes

searching, with git fsck 188-191
ls-files command

using 251-254
ls-tree command

using 248, 249

M
master branch 218, 225
Maven 221
merge commit

forcing 61-65
reverting 181-185

merging, branches
with git rerere 65-70
with merge commit 61-65

mirror repository
about 206
versus bare repository 207, 208

msg-filter 205
Msysgit installation 295
MUA (Mail User Agent) 234

323

N
notes

about 95
adding 96-99
pushing, to repository 108-110
retrieving, from remote repository 104-107
sorting, by category 100-104

O
object expiry, Git configuration

about 42
gc.pruneexpire 42
gc.reflogexpire 42
gc.reflogexpireunreachable 42

objects, Git
about 7
blob 10
branch 10, 11
commit 8
tag 11
tree 9

oh-my-zsh
URL 299

P
patches

applying 229-231
creating 224-226
creating, from branches 227, 228
sending 231-235

porcelain option 142
preceding command

options 318
prepare-commit-msg hook

about 134-136
used, for creating commit message 138-144

prepushHook branch 149
pull.rebase configuration 41

R
rebase

about 73
continuing, git rebase -continue used 75-77
used, for changing author of commits 86-89

rebase and merge setup, Git configuration
about 41
branch.autosetuprebase 41
branch.<name>.rebase 42
pull.rebase 41

reflog command
about 186
used, for viewing Git actions 186-188

refs namespaces 207
refspec

about 48
format 51
using 48-51

refspec fetch 208
release note

generating 128-131
remote branches

about 57-60
pruning 194-196

repository
backing up, as mirror repositories 206-209
commit, tagging in 110-114
history, rewriting 205, 206
information, displaying 246, 247
notes, pushing to 108-110
notes, retrieving from 104-107
splitting 200-204

reset command 174
reuse recorded resolution. See git rerere
revert command 184
rev-parse command

about 247
examples 246

S
selective commits

rebasing 78-80
send-email command 234
shortlog git command 116
smudge filter 261
source command 296
source tree

bottlenecks, searching 120-126
staging area 202
stash command 174, 282

324

stashes
applying 284-286
saving 284-286

status command 231
status information

bash prompt, used with 297-299
subdirectory-filter 205
submodule

about 209
repository, cloning 214
versus subtree merging 221
working 210-214

subtree
using, URL 221

subtree merging
about 214-221
versus submodule 221

super project
recloning 215, 216

SYSTEM layer
configuring 31-34

T
tagging, commit

in repository 110-114
tag object 11
tags

about 110
annotated tag 110
lightweight tag 110

template
creating 36, 37

template directory
creating 38-40

top contributor
extracting 115-119

tree
archives, creating from 241, 243

tree-filter 205
tree information

displaying 248-250
tree object

about 9
writing, to database 257, 258

U
UI

coloring, in prompt 293, 294
update-index command

using 258

V
version control system (VCS) 6

W
working directory

reverting, to clean state 171-174

Z
zero-status 291

Thank you for buying

Git Version Control Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

GitLab Repository
Management
ISBN: 978-1-78328-179-4 Paperback: 88 pages

Delve into managing your projects with GitLab, while
tailoring it to fit your environment

1. Understand how to efficiently track and
manage projects.

2. Establish teams with a fast software
developing tool.

3. Employ teams constructively in a
GitLab environment.

Git: Version Control for
Everyone Beginner's Guide
ISBN: 978-1-84951-752-2 Paperback: 180 pages

The non-coder's guide to everyday version control for
increased efficiency and productivity

1. A complete beginner's workflow for version control
of common documents and content.

2. Examples used are from non-techie, day to day
computing activities we all engage in.

3. Learn through multiple modes – readers learn
theory to understand the concept and reinforce
it by practical tutorials.

Please check www.PacktPub.com for information on our titles

Learning Gerrit Code Review
ISBN: 978-1-78328-947-9 Paperback: 144 pages

Leverage the power of Gerrit Code Review to make
software development more cooperative and social

1. Understand the concepts of collective code review
using Gerrit through a set of simple examples.

2. Integrate code review functionality into Continuous
Integration with Jenkins.

3. Experiment with the code review lifecycle in
real-life scenarios.

Bazaar Version Control
ISBN: 978-1-84951-356-2 Paperback: 402 pages

A fast-paced practical guide to version control
using Bazaar

1. Gain an understanding of what version control is,
and how you can benefit and effectively use it to
collaborate with other people.

2. Place any project under version control and track
the history of changes easily.

3. Understand all the core operations and the most
common workflows through practical examples
and clear explanations.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Navigating Git
	Introduction
	Git's objects
	The three stages
	Viewing the DAG
	Extracting fixed issues
	Getting a list of the changed files
	Viewing history with Gitk
	Finding commits in history
	Searching through history code

	Chapter 2: Configuration
	Configuration targets
	Querying the existing configuration
	Templates
	A .git directory template
	A few configuration examples
	Git aliases
	The refspec exemplified

	Chapter 3: Branching, Merging, and Options
	Introduction
	Managing your local branches
	Branches with remotes
	Forcing a merge commit
	Using git rerere to merge known conflicts
	The difference between branches

	Chapter 4: Rebase Regularly and Interactively, and Other Use Cases
	Introduction
	Rebasing commits to another branch
	Continuing a rebase with merge conflicts
	Rebasing selective commits interactively
	Squashing commits using an interactive rebase
	Changing the author of commits using a rebase
	Auto-squashing commits

	Chapter 5: Storing Additional Information in Your Repository
	Introduction
	Adding your first Git note
	Separating notes by category
	Retrieving notes from the remote repository
	Pushing notes to a remote repository
	Tagging commits in the repository

	Chapter 6: Extracting Data from the Repository
	Introduction
	Extracting the top contributor
	Finding bottlenecks in the source tree
	Grepping the commit messages
	The contents of the releases

	Chapter 7: Enhancing Your Daily Work with Git Hooks, Aliases, and Scripts
	Introduction
	Using a branch description in the commit message
	Creating a dynamic commit message template
	Using external information in the commit message
	Preventing the push of specific commits
	Configuring and using Git aliases
	Configuring and using Git scripts
	Setting up and using a commit template

	Chapter 8: Recovering from Mistakes
	Introduction
	Undo – remove a commit completely
	Undo – remove a commit and retain changes to files
	Undo – remove a commit and retain changes in staging area
	Undo – working with a dirty area
	Redo – recreate the latest commit with new changes
	Revert – undo the changes introduced by a commit
	Reverting a merge
	Viewing past Git actions with git reflog
	Finding lost changes with git fsck

	Chapter 9: Repository Maintenance
	Introduction
	Pruning remote branches
	Running garbage collection manually
	Turning off automatic garbage collection
	Splitting a repository
	Rewriting history – changing a single file
	Back up your repositories as mirror repositories
	A quick submodule how-to
	Subtree merging
	Submodule versus subtree merging

	Chapter 10: Patching and Offline Sharing
	Introduction
	Creating patches
	Creating patches from branches
	Applying patches
	Sending patches
	Creating Git bundles
	Using a Git bundle
	Creating archives from a tree

	Chapter 11: Git Plumbing and Attributes
	Introduction
	Displaying the repository information
	Displaying the tree information
	Displaying the file information
	Writing a blob object to the database
	Writing a tree object to the database
	Writing a commit object to the database
	Keyword expansion with attribute filters
	Metadata diff of binary files
	Storing binaries elsewhere
	Checking the attributes of a file
	Attributes to export an archive

	Chapter 12: Tips and Tricks
	Introduction
	Using git stash
	Saving and applying stashes
	Debugging with git bisect
	Using the blame command
	Color UI in the prompt
	Autocompletion
	Bash prompt with status information
	More aliases
	Interactive add
	Interactive add with Git GUI
	Ignoring files
	Showing and cleaning ignored files

	Index

