
Emma Jane Hogbin Westby

 Git for
Teams
A USER-CENTERED APPROACH TO CREATING EFFICIENT
WORKFLOWS IN GIT

www.allitebooks.com

http://www.allitebooks.org

PROGR AMMING

Git for Teams

ISBN: 978-1-491-91118-1

US $49.99 CAN $57.99

“	By	focusing	on	
workflows	and	
interactions	between	
roles,	Git for Teams	
guides	you,	the	reader,	to	
understand	your	exact	
needs	within	your	
particular	projects.	
Equipped	with	this	
knowledge,	you	will	then	
learn	the	fun	part:	how	to	
use	Git	to	best	support	
your	needs.”

—Dr. Johannes Schindelin
Git for Windows maintainer

Twitter: @oreillymedia
facebook.com/oreilly

You can do more with Git than just build software. This practical guide
delivers a unique people-first approach to version control that also explains
how using Git as a focal point can help your team work better together.
You’ll learn how to plan and pursue a Git workflow that not only ensures
that you accomplish project goals, but also fits the immediate needs and
future growth of your team.

The first part of the book on structuring workflow is useful for project
managers, technical team leads, and CTOs. The second part provides hands-
on exercises to help developers gain a better understanding of Git commands.

 ■ Explore the dynamics of team building

 ■ Walk through the process of creating and deploying software
with Git

 ■ Structure workflow to influence the way your team
collaborates

 ■ Learn a useful process for conducting code reviews

 ■ Set up a shared repository and identify specific team members
as contributors, consumers, or maintainers

 ■ Know the why behind the Git commands your teammates use

 ■ Use branching strategies to separate different approaches to
your project

 ■ Examine popular collaboration platforms: GitHub, Bitbucket,
and GitLab

Emma Jane Hogbin Westby has been developing websites since 1996, initially as a
developer and later as a team leader. She’s been teaching web-related technologies
since 2002 and has delivered over 100 conference presentations, courses, and work-
shops around the world.

www.allitebooks.com

http://www.allitebooks.org

Emma Jane Hogbin Westby

Boston

Git for Teams

www.allitebooks.com

http://www.allitebooks.org

978-1-491-91118-1

LSI

Git for Teams
by Emma Jane Hogbin Westby

Copyright © 2015 Emma Jane Hogbin Westby. All rights reserved.

Foreword text by Mark Atwood, Copyright © 2015 Hewlett-Packard Company. All rights reserved.

Foreword text by Johannes Shindelin, Copyright © 2015 Johannes Shindelin. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis
Production Editor: Colleen Lobner
Copyeditor: Kim Cofer
Proofreader: Jasmine Kwityn

Indexer: WordCo Indexing Services
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Emma Jane Hogbin Westby

September 2015: First Edition

Revision History for the First Edition
2015-08-17: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491911181 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Git for Teams, the cover image of wag‐
tails, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491911181
http://www.allitebooks.org

To Joe Shindelar. Thanks, eh?

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Foreword. xi

Foreword. xiii

Preface. xv

Introduction. xix

Part I. Defining Your Workflow

1. Working in Teams. 1
The People on Your Team 2
Thinking Strategies 3
Meeting as a Team 7

Kickoff 8
Tracking Progress 8
Cultivating Empathy 10
Wrap-Up and Retrospectives 11

Teamwork in Terms of Git 12
Summary 13

2. Command and Control. 15
Project Governance 16

Copyright and Contributor Agreements 16
Distribution Licenses 18
Leadership Models 19
Code of Conduct 19

v

www.allitebooks.com

http://www.allitebooks.org

Access Models 20
Dispersed Contributor Model 22
Collocated Contributor Repositories Model 25
Shared Maintenance Model 28
Custom Access Models 30

Summary 31

3. Branching Strategies. 33
Understanding Branches 34
Choosing a Convention 35
Conventions 36

Mainline Branch Development 36
Branch-Per-Feature Deployment 39
State Branching 42
Scheduled Deployment 45

Updating Branches 51
Summary 55

4. Workflows That Work. 57
Evolving Workflows 57

Documenting Your Process 58
Documenting Encoded Decisions 59

Ticket Progression 60
A Basic Workflow 62

Trusted Developers with Peer Review 64
Untrusted Developers with QA Gatekeepers 66

Releasing Software According to Schedule 67
Publishing a Stable Release 67
Ongoing Development 68
Post-Launch Hotfix 69

Collaborating on Nonsoftware Projects 69
Summary 71

Part II. Applying the Commands to Your Workflow

5. Teams of One. 75
Issue-Based Version Control 76
Creating Local Repositories 78

Cloning an Existing Project 80
Converting an Existing Project to Git 81
Initializing an Empty Project 83

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Reviewing History 84
Working with Branches 85

Listing Branches 86
Updating the List of Remote Branches 87
Using a Different Branch 87
Creating New Branches 88

Adding Changes to a Repository 90
Adding Partial File Changes to a Repository 93
Committing Partial Changes 94
Removing a File from the Stage 94
Writing Extended Commit Messages 95
Ignoring Files 96

Working with Tags 97
Connecting to Remote Repositories 99

Creating a New Project 100
Adding a Second Remote Connection 100
Pushing Your Changes 102
Branch Maintenance 103

Command Reference 103
Summary 105

6. Rollbacks, Reverts, Resets, and Rebasing. 107
Best Practices 108

Describing Your Problem 108
Using Branches for Experimental Work 110

Rebasing Step by Step 113
Begin Rebasing 114
Mid-Rebase Conflict from a Deleted File 115
Mid-Rebase Conflict from a Single File Merge Conflict 118

An Overview of Locating Lost Work 120
Restoring Files 124
Working with Commits 126

Amending Commits 126
Combining Commits with Reset 127
Altering Commits with Interactive Rebasing 130
Unmerging a Branch 135

Undoing Shared History 137
Reverting a Previous Commit 137
Unmerging a Shared Branch 138

Really Removing History 144
Command Reference 146
Summary 148

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

7. Teams of More than One. 149
Setting Up the Project 150

Creating a New Project 150
Establishing Permissions 151
Uploading the Project Repository 152
Document the Project in a README 156

Setting Up the Developers 157
Consumers 158
Contributors 160
Maintainers 161

Participating in Development 163
Constructing the Perfect Commit 163
Keeping Branches Up to Date 167
Reviewing Work 170
Merging Completed Work 173
Resolving Merge and Rebase Conflicts 174
Publishing Work 176

Sample Workflows 177
Sprint-Based Workflow 177
Trusted Developers with No Peer Review 181
Untrusted Developers with Independent Quality Assurance 183

Summary 183

8. Ready for Review. 185
Types of Reviews 186
Types of Reviewers 186
Software for Code Reviews 187
Reviewing the Issue 188
Applying the Proposed Changes 189

Shared Repository Setup 189
Forked Repository Setup 190
Checking Out the Proposed Branch 191

Reviewing the Proposed Changes 192
Preparing Your Feedback 194
Submitting Your Evaluation 194
Completing the Review 195
Summary 196

9. Finding and Fixing Bugs. 197
Using stash to Work on an Emergency Bug Fix 198
Comparative Studies of Historical Records 201
Investigating File Ancestry with blame 203

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Historical Reenactment with bisect 206
Summary 208

Part III. Git Hosting

10. Open Source Projects on GitHub. 211
Getting Started on GitHub 212

Creating an Account 212
Creating an Organization 215
Personal Repositories 216

Using Public Projects on GitHub 224
Downloading Repository Snapshots 225
Working Locally 226

Contributing to Projects 230
Tracking Changes with Issues 230
Forking a Project 230
Initiating a Pull Request 232

Running Your Own Project 234
Creating a Project Repository 234
Granting Co-Maintainership 235
Reviewing and Accepting Pull Requests 236
Pull Requests with Merge Conflicts 237

Summary 238

11. Private Team Work on Bitbucket. 241
Project Governance for Nonpublic Projects 241
Getting Started 242

Creating an Account 242
Creating a Private Project from the Welcome Screen 245
Creating a Private Project from the Dashboard 246
Configuring Your New Repository 247
Exploring Your Project 249
Editing Files in Your Repository 251

Project Setup 254
Project Documentation in Wiki Pages 255
Tracking Your Changes with Issues 258

Access Control 262
Shared Access 263
Per-Developer Forks 264
Limiting Access with Protected Branches 264

Pull Requests 266

Table of Contents | ix

Submitting a Pull Request 266
Accepting a Pull Request 268

Extending Bitbucket with Atlassian Connect 268
Summary 269

12. Self-Hosted Collaboration with GitLab. 271
Getting Started 271

Installing GitLab 272
Configuring the Administrative Account 274
Administrative Dashboard 275

Projects 279
Creating a Project 279

User Accounts 280
Creating User Accounts 281
Adding People to Projects 284

Groups 284
Adding People to Groups 286
Adding Projects to Groups 287

Access Control 289
Project Visibility 289
Limiting Activities with Project Roles 290
Limiting Access with Protected Branches 292

Milestones 293
Summary 295

A. Butter Tarts. 297

B. Installing the Latest Version of Git. 301

C. Configuring Git. 307

D. SSH Keys. 313

Index. 317

x | Table of Contents

Foreword

At the time of Git’s inception, the Linux kernel development had used the proprietary
version control system BitKeeper for several years, with great success. But there was
one problem: some Linux developers took exception with the proprietary nature of
their version control system and what ensued was an epic flame war. Out of this con‐
flict, the free BitKeeper license for Linux developers was revoked, and Git was born.
Linus Torvalds himself took two weeks off from working on Linux, originally to
search for a replacement for BitKeeper. Failing to find any that met his criteria, he
instead wrote the first, very rudimentary version of what we now call Git: tiny pro‐
grams cobbled together with shell scripts, Unix style. An ironic twist is that the dis‐
tributed nature of Git was implemented using rsync, a tool which in turn had been
developed by the very Linux developer who triggered the fallout with BitKeeper.

As to myself, I was fascinated by the simplicity of Git’s data structures and got drawn
in early on, first by working on Git’s portability, then on more and more general
improvements, including the invention of the “interactive rebase” (sorry for the
name!), and ultimately maintaining the Windows port of Git. For the past 10 years, I
used Git almost daily as a life science researcher, as part of different teams ranging
from being the designated coder in interdisciplinary projects to leading highly dis‐
tributed Open Source projects.

My first contact with Emma was at the Git Merge conference in Paris celebrating Git’s
10th birthday, where she gave a compelling talk titled “Teaching People Git”. This talk
left quite the impression on me, reflecting Emma’s broad skill set and experience in
teaching and project management.

Reading Git for Teams, I learned a lot from its unique perspective that emphasizes
how Git can facilitate teamwork. It sounds so simple, but all those years, I had been
focusing on technical details, and I had been teaching Git in what must be one of the
most frustrating ways: from the ground up. By focusing on workflows and interac‐
tions between roles, Git for Teams guides you, the reader, to understand your exact

xi

http://bit.ly/teaching-people-git

needs within your particular projects. Equipped with this knowledge, you will then
learn the fun part: how to use Git to best support your needs.

Just like her talk, Emma’s writing style is very enjoyable, making this book both edu‐
cative and fun to read. It gave me valuable insights into my daily work. Whatever
your role in your daily work, let this book be more than just a manual. Explore the
different ways teams can work together, the ways a modern version control system
can help moving projects forward, and let it inspire you to unleash the full power of
Git to support you in what you want to do.

—Dr. Johannes Schindelin
Git for Windows maintainer

August 2015
Cologne, Germany

xii | Foreword

Foreword

It is difficult to overstate the importance of version control.

I believe that it is as important as the inventions of the chalkboard and of the book for
multiplying the power of people to create together.

Over my career, I have watched the approach to version control systems in software
development advance from resistance to ubiquity, and have watched the underlying
technology make quantum jumps, each jump accelerating the value of the work we
create together and the speed at which we create it. We are doing more, faster, with
more people.

The latest jump, exemplified by Git, imposes almost no arbitrary constraints on a
workflow. Thus, we have to discover and share the workflows that suit our people and
our organizations, instead of living with past awkward workflows that suited our
machines. Some of those workflows are explored in this book. I’m sure that more will
be discovered in the future.

It is also difficult to overstate the importance and difficulty of education. Not merely
memorizing facts or merely training tasks, but the deeper kind of education: how to
think a certain way, to understand why to think that way, and how to share those
thoughts with someone else.

Using a version control system properly is a way to think: to structure, remember,
and share thoughts, at the level of depth and rigor demanded by the exhausting craft
of writing software. Without that understanding, using Git will be, at best, “magical
incantations”, used by rote, and full of unknown dangers. With that understanding,
Git can become almost invisible, leaving instead the patterns of working up the intri‐
cate spells of symbols that are the magic of software.

xiii

This book will help you to educate yourself, to gain that understanding, and to do
that work.

—Mark Atwood
Director of Open Source Engagement,

Hewlett-Packard Company
August 2015
Seattle, WA

xiv | Foreword

Preface

For nearly two decades, I’ve been working on teams of one or more in a distributed
fashion. My first paid job as a web developer was in the mid-’90s. At the time, I main‐
tained versions of my files by simply changing the names to denote a new version. My
workspace was littered with files that had unusual extensions; v4.old-er.bak was an all
too common sight. I wasn’t able to easily track my work. On one project, which was a
particularly challenging one for me, I resorted to the copyediting techniques I used
for my essays: I’d print out the Perl scripts I was working on, and put the pages into a
ring binder. I’d then mark up my scripts with different colors of pen and transcribe
the changes back into my text editor. (I wish I had photos to share.) I tracked versions
by flipping through the binder to find previous versions of the script. I had no idea
how to set up an actual version control system (VCS), but I was obsessive about not
losing good work if a refactoring failed.

When I started working with other developers, either for open source projects or cli‐
ent work, I was never the first developer on the scene and there was always some kind
of version control in place by the time I got there—typically Concurrent Versions
System (CVS). It wasn’t the easiest thing to use, but compared to my ring binder of
changes, it was definitely more scalable for the distributed teams that I worked with.
Very quickly I came to value the commit messages, and the ease of being able to
review the work others were doing. It motivated me to watch others commit their
work to the repository. I didn’t want others to think I was slacking off!

Meanwhile, I’d been teaching web development at a couple of different community
colleges. In 2004, I had my first opportunity to teach version control in a year-long
program designed by Bernie Monette, at Humber College. The class was split into
several groups. In the first semester, the students sketched out a development plan for
a website. In the second semester, the teams were mixed up, and the new teams were
asked to build the site described by the previous team. In the third and final semester,
the groups were shuffled again, and the final task was to do bug fixing and quality
assurance on the built site. Each team was forced to use version control to track their
work. The students, who had no prior programming experience, weren’t thrilled with

xv

having to use version control because they felt it got in the way of doing work. But it
also made it easier because they never accidentally overwrote their classmates’ work.
It taught me a lot about how to motivate people to use a tool that didn’t feel like it was
core to the job at hand.

In the decade since that class, I’ve learned a lot about how to teach version control,
and a lot about best practices in adult education. This book is the culmination of what
I’ve learned about how to work efficiently with others when using version control. I
encourage you throughout the book to do whatever is best for your team. There are
no Git police who will show up at your door and tell you “you’re doing it wrong.”
That said, wherever I can, I explain to you “the Git way” of doing things so that you
have some guidance on where you might want to start with your team, or what you
might want to grow into. Using “common” ways of working will help you onboard
others who’ve previously used similar techniques.

This book won’t be for everyone. This book is for people who love to plan a route,
and then follow the clearly defined road ahead. My hope is that, if nothing else, this
book helps to fill the gaps that have been missing in Git resources to date. It’s not so
much a manual for the software as a manual for how teams collaborate. If your team
of one (or more) finds bits of this book confusing, I hope you’ll let me know
(emma@gitforteams.com); and if you find it useful, I hope you’ll let the world know.

Acknowledgments
Several years ago, in a little bar off the side of a graveyard in Prague, Carl Wiedemann
indulged my questions about Git. Thank you, Carl. Your enthusiasm motivated me to
convert my frustration with Git into resources to help others avoid the painful pro‐
cess I’d experienced when learning Git.

I had the wonderful fortune to work with Joe Shindelar at my first job-job after a dec‐
ade of self-employment. Joe, your passion for excellence has raised the bar for my
own work. I am grateful for your patience and leadership. This book was born out of
the conversations we had about leadership, team structures, and the Git documenta‐
tion we created for the Drupalize.Me team. Thank you.

O’Reilly found the excellent Christophe Portneuve to serve as one of my tech review‐
ers. Christophe, thank you for your patience as I worked through the first few chap‐
ters. Your feedback was invaluable. I am grateful for the conversation we had at Git
Merge, which helped me to clarify the concepts I use in this book—I had lofty goals
of transforming the way people learn Git. I hope this book has become a resource you
will be proud to have been a part of.

Bernie Monette, Martin Poole, Drew McLelland: you gave me a platform to refine my
understanding of version control through your own projects.

xvi | Preface

mailto:emma@gitforteams.com

Lorna Jane Mitchell, your cheerleading is tireless. Thank you for sharing your own
work on Git. It has inspired me to raise the bar even higher.

Much of this book was fueled by 200 Degrees Coffee, a Nottingham-based roaster. My
beverage of choice is a flat white served from 200 Degrees Café, or Divine Coffee at
the Galleries of Justice. Thanks for providing an escape and letting me stay as long as
I needed to.

To the O’Reilly family: you have been superb at handling all of my requests
(and missed deadlines). Thank you Rachel, Heather, Robert, Colleen, Brian, Josh,
Rebecca, Kim, and the countless others who worked behind the scenes to make this
book happen.

To the core Git community: thank you for welcoming me with open arms at Git
Merge in 2015. You embraced my rant from the stage about exploring new ways of
teaching Git. You took my suggestions to heart, and made improvements to the Git
experience. I am looking forward to participating more in the wonderful community
you have been quietly nurturing.

Thank you also to my community of reviewers: Diane Tani, Novella Chiechi, Amy
Brown, Blake Winton, Stuart Langridge, Stewart Russell, Dave Hammond, John Wyn‐
stra, Chris Tankersley, Mike Anello, Piotr Sipika, Nancy Deschenes, Robert Day, Dave
Hammond, Sébastien Simard, Tobias Hiep, Nick Gard, Christopher Maneu, Johannes
Schindelin, Edward Thomson, matt j. sorenson, Douwe Maan, Sytse Sijbrandij, Rob
Allen, Steven Pears, Laura Lemay. Your feedback was invaluable.

To my partner, James Westby: thank you for patiently waiting as I finish just one last
thing. This book would not exist without your support and encouragement.

Preface | xvii

www.allitebooks.com

http://www.allitebooks.org

Introduction

The book takes a people-first approach to version control. I don’t start with a history
of Git; instead, I begin with a 10,000-foot view of how teams can work together. Then
we will circle our way into the commands, ensuring you always know the why behind
the command you’re about to type. Sometimes you can save your future self time
(and confusion) by adopting specific routines or workflows. These explanations give
you a holistic understanding of how your work today affects your work tomorrow—
and hopefully make sense out of the near-religious insistence by some people on why
they use Git the way they do.

Part I will be most useful to managers, technical team leads, chief technology officers,
project managers, and technical project managers who need to outline a workflow for
their team.

Good technology comes from great teams. In Chapter 1, you will learn about the
dynamics of creating a great team. By the end of this chapter, you will be able to iden‐
tify roles within a team; plan highly effective meetings; recognize key phrases from
people who are out of sync with what your team needs; and apply strategies that will
help you to cultivate empathy and trust within your team.

Set the expectations early for the type of project you are running. In Chapter 2, you
will learn about different permissions strategies used to grant and deny access to a Git
repository. Should team members be allowed to save their work to the repository
without a review, or is it more of a trust and be trusted scenario? Both systems have
their merits, and you’ll learn about them in this chapter.

Make the intentions of your work clear. In Git, you will separate streams of work
with branches. Chapter 3 shows you how to separate each of the ideas your team is
working on through the use of these branches. Of course, you will also need to know
how to bring these disparate pieces of work into a unified piece of software. This
chapter covers some of the more common branching strategies, including GitFlow.

xix

Write the documentation today that will help you work more efficiently tomorrow.
Chapter 4 is the culmination of all the ideas in Part I. You will learn how to create
your own documentation and walk through the process of creating and deploying a
simple software product.

Part II will be most useful for developers. This is where (finally!) you will get to learn
how all those Git commands are actually supposed to work. If you’re impatient and
want to get your hands on code, you’ll do well to skip ahead to Part II and then once
you’ve completed it, go back and read Part I.

Ground yourself in practical skills. Chapter 5 covers the basics of distributed ver‐
sion control. In this chapter you will learn how to create repositories, and track your
changes to files locally through commits, branches, and tags.

Learn to recover from your mistakes. Chapter 6 allows you to explore history revi‐
sionism. This chapter covers how to amend commits, remove commits from your
time line, and rebase your work.

Expand your team to be inclusive of others. Now that you’re a master of history in
your own repository, it’s time to begin collaborating with others. Chapter 7 will show
you how to track remote changes, upload your code to a shared repository, and
update your local repository with the updates from others.

Through peer review, share the glory and the responsibility of a job well done. In
Chapter 8, you will learn about the process for conducting code reviews with your
team. We’ll also cover the commands for a common reviewing methodology, along
with suggestions on how to customize it for your team.

Investigate history; it holds the answer to the problem you’re facing. In Chapter 9,
you will learn some advanced methods to track down bugs using Git. Don’t be scared,
though! The commands we’ll be using are no more difficult than anything else you’ve
done to date.

Finally, Part III gives the how-to for a few of the popular code hosting systems on the
market today. It is aimed at both managers and developers.

Through open collaboration we grow our community. Chapter 10 covers the
mechanics of starting and maintaining an open source project on GitHub.

A team must have a repository of their own if they are to write good code. In
Chapter 11, you will learn how to collaborate on private repositories. This chapter
will be especially useful for those who want to set up a private repository but have
extremely limited funds to pay for private teams on GitHub.

Good fences sometimes do make better neighbors. In Chapter 12, you will learn
how to host your own instance of GitLab, and run projects through it. This is particu‐
larly useful for developers who are inside a firewall and cannot access public reposito‐
ries on the Internet.

xx | Introduction

This book won’t be for everyone. It will be especially frustrating for people who learn
by poking at things and tinkering and exploring. This book, rather, is written for peo‐
ple who are a little afraid of things that go bump in the night.

Additional resources and larger versions of several of the flowcharts are available
from the book’s companion site.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Introduction | xxi

http://gitforteams.com

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://gitforteams.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Git for Teams by Emma Jane Hogbin
Westby (O’Reilly). Copyright 2015 Emma Jane Hogbin Westby, 978-1-491-91118-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

xxii | Introduction

http://gitforteams.com
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/git-for-teams.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Introduction | xxiii

http://bit.ly/git-for-teams
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART I

Defining Your Workflow

It is common to start teaching programming by writing a trivial program that dem‐
onstrates the output of a specific set of commands. This can often leave adult learners
thinking “so what?”, unsure of how to apply the commands to their particular sce‐
nario. This book begins with a 10,000-foot view of how structuring your workflow in
specific ways will impact how your team collaborates. If you prefer to tinker with the
commands, skip this part and start reading at Part II. Then, as you begin to ask your‐
self “so what?”, return to the chapters in this part so that you can see how your day-to-
day tasks with Git will affect future collaborations.

This part of the book will be of most use to those overseeing how work gets done.
These folks are primarily in management roles and may include technical team lead‐
ers, CTOs, managers, project managers, and technical project managers.

CHAPTER 1

Working in Teams

I’ve been teaching version control for more than a decade. The largest percentage of
the folks who attend my in-person workshops are dealing with political issues, not
technical ones. The issues vary, of course. Perhaps they are struggling to get their
coworkers to see the light on how important version control is; perhaps they want to
force accountability; or perhaps they have been nominated by the team to go figure
out how to make sense of the mess that’s become the team’s workflow. No matter what
the issue, understanding and dealing with the underlying social problems first can
make learning and using Git a lot easier.

By the end of this chapter, you will be able to:

• Identify roles within a complete team
• Structure meetings so they have useful outcomes
• Recognize key phrases from people who are working in an opposing state from

what the team should be working on
• Apply strategies to cultivate empathy and trust within your team

You must begin by understanding your team and the requirements for your software.
By beginning from a place of trust and compassion, you will almost always find it eas‐
ier to map out the Git commands necessary to accomplish your goals. By working
with a trusting team, you’ll be able to help one another out when people get stuck
with commands (and people will be more honest when they need help). And when
people feel supported, and they understand the reasons why they need to use specific
commands in Git, they will be that much more likely to make Git work for them,
rather than simply committing a few commands to memory and hoping they’re all
right.

1

The People on Your Team
On small teams you may have one person who performs many roles. It’s relatively
easy to stay in touch with all of the daily activities of everyone on a small team. On
large teams, however, you may have roles segregated into different departments.
Those performing the user acceptance testing for your code base might never talk to
the designers and developers who designed and built the product that’s being tested.
Both types of teams can have their own challenges: someone who’s being asked to do
too much without the right amount of context is definitely going to miss something,
eventually. Having artificial barriers between teams will always increase tension
between them. Fences do not make good neighbors in the development of code.

Have you heard the expression “begin with the end in mind”? When I build software,
I am always building it for someone. Even if I think really hard, I can’t think of a
product I’ve built that was just me tinkering. I’m not a hacker by nature. I was drawn
to software because of what it could do for others. Every time I sit down to work on a
problem, I want to be making a better experience for the user. I want to avoid regres‐
sions, and I want to keep my users safe. I want them to feel clever, and not stupid. If
there are clients between myself and the users, I sometimes need to help shape how
they think about the problem in order to accomplish their business goals, while
maintaining the integrity of the experience for the end user. Each time we sit down to
work, we should be starting with a description of a problem we want to solve for a
user—literally a user story.

Next, in test-driven development, you will write the acceptance test so that you have a
definition of how you will know the problem has been solved. Depending on how
these statements are written, they may be used by an automated testing suite, a qual‐
ity assurance (QA) team, or a peer reviewer. Working with the testing team ahead of
time to determine the acceptance test makes it much easier for developers to know
what the outcome of their work should be. Usually the test should be descriptive of
the problem to be solved, not prescriptive of the technology that should be used.

Part of your testing process should include a security review. Larger organizations are
very lucky to have dedicated security specialists. Bring these experts on as early as you
can in the process and get them to teach you how to write secure code. If you have
segregated QA, security, and development teams, bringing the teams together at the
beginning can make the testing process that much more fun as the developers strive
to provide perfect code, and the testing teams strive to break it.

If you are not responsible for your deployments, bring the operations team on board
as early as you can as well. Ensure your development environment is as close as it can
be to the final production environment. Ideally, you will have build scripts that can be
used to automatically duplicate as much as possible. You may even choose to work
with Docker and/or Vagrant to create an exact replica of your environment. Work

2 | Chapter 1: Working in Teams

www.allitebooks.com

http://www.docker.com
http://vagrantup.com
http://www.allitebooks.org

with your operations team to create a configuration management infrastructure with
something like Chef, Puppet, or Ansible.

Moving along the development stack, if you are using open source software, get to
know the community that built the products you will be working with. We rarely
encounter new problems. Someone, somewhere, has probably seen what you’re deal‐
ing with at this moment. Find mentors from within your code community, and offer
to mentor others. Extending your team beyond the walls of your office building can
make scary problems a lot less stressful.

Wherever you can increase collaboration between departments that have been iso‐
lated in larger corporations, you can reduce the time code spends sitting around
doing nothing. Idle code costs you money in several ways: it may be preventing you
from earning more money if it’s a new feature, or it may be preventing you from not
losing money if it’s a bug fix. It’s also getting stale. The longer code has to wait for a
review, the more likely it has deviated from the main branch of work. To bring the
work up to date so that it can be released is an increasingly difficult task the more it
deviates.

Finally, we look inward to our own team. A technical architect will be responsible for
planning how a solution will be implemented. The architecture decisions should be
documented, and shared wherever possible. The architect may also be part of your
coding team. The coding team may be comprised of frontend and backend develop‐
ers, a designer, and a project manager. I’ve occasionally worked with business analysts
as well. If you are working in an Agile environment, you may also have a ScrumMas‐
ter and a Product Owner.

I prefer working in an environment where everyone is willing to roll up their sleeves
and pitch in where necessary. Self-managing teams are often filled with trust and
respect for one another. It’s a state that you need to build toward, though. Consensus-
driven development works best for smaller, internal projects, but that doesn’t mean
you can’t do your best to collaborate where possible. When I’m managing projects, I
like for developers to choose the tickets they’re going to work on. It increases the
sense of autonomy, and lets the developers take a break from specific tasks if they
need to. I’ve also found, however, that some people actually prefer to have their tick‐
ets picked for them.

There is no single right way to structure every team or manage every project. The
trick to a motivated, cohesive team is to respect each of the individuals on the team
and, where possible, to optimize the process to suit their preferences.

Thinking Strategies
Everyone on your team will have a preferred way to work. Different ways of working
can be perfect for different situations. There’s no right way to do things, and being

Thinking Strategies | 3

https://www.chef.io/chef/
https://puppetlabs.com/
http://www.ansible.com/home

able to accommodate differences will actually make your team more robust, if you
can share the strategies of what makes each person productive. I know I’m always
looking for little ways to work in a more efficient manner, and I love to hear about
what makes people able to really sink their teeth into a problem.

Several years ago, I was exposed to a leadership training program, Lead and Succeed
in 4 Dimensions, by Bob Wiele, which described a series of thinking strategies. This
program helped me to identify why I enjoyed some types of activities so much, while
others left me drained. It also taught me a lot about how to structure meetings and
interactions to get what I needed to proceed with my own work. The system works
best if everyone on the team is aware of the language, but it’s something you can take
advantage of without having to convince others to participate. It breaks thinking into
three dimensions: creative thinking, understanding thinking, and decision thinking.
A fourth dimension, personal spirit, is used to indicate how likely a person is to
engage—I think of it as a volume control, or modifier for those of you who are into
role-playing games.

Individual preferences for different thinking strategies can derail teams quickly. If I’m
trying to brainstorm how to solve a merge conflict in Git, and you tell me I shouldn’t
have used rebase, we’re at odds in the conversation. I’m trying to use my “green”
thinking to go through a problem, and you’ve just used your “red” thinking to stop
the conversation. Being aware of these preferences can help us to have stronger col‐
laboration while building new features, more productive code reviews, and overall, a
healthier, happier team.

One of the easiest places to introduce the concept of playing into and setting aside
preferences is in meetings that explicitly take advantage of these three dimensions.
Focusing on the outcomes of the meeting can help identify to people which thinking
strategies to employ during the meeting, which can then carry over into code reviews,
and supporting teammates who have procedural questions about how to use Git, or
more general implementation questions about the product you’re working on
together.

Let’s review each of these thinking strategies in a little more detail.

A creative thinker’s greatest asset is the ability to find unpredictable solutions to prob‐
lems. Left unchecked, a creative thinker can sometimes spend too much time think‐
ing about different ways to do something, instead of just committing to one idea and
getting the work done. Creative thinkers:

Envision
To see an alternative future (whether it’s good or bad). This is useful for long-
term strategy work.

4 | Chapter 1: Working in Teams

http://onesmartworld.com
http://onesmartworld.com

Reframe
To pivot a little bit away from the current situation, or to see the current situation
from a different perspective.

Brainstorm
This is useful for muscling through a problem. Brainstorming is almost the abil‐
ity to doodle through a problem. It includes a constant action without self-
censorship.

Employ flash of insight
Where brainstorming takes “muscle,” flash of insight thinking happens when
you’re not thinking about the problem. It happens when you’re out for a walk, or
in the shower.

Challenge
To question the status quo. The rebel; the child who points out that the king is
not wearing clothes.

Flow
To ignore distractions and focus wholly on a given task. From this uninterrupted
flow, you are able to get deeper into a problem and understand it more fully.

You can recognize creative thinkers from their key phrases:

• “Can we try …”
• “I know we’re done, but what about …?”
• “OMG! I just had this great idea …”
• “Have you thought about doing it like this instead?”

By developing creative thinking on your team, you can generate entirely new ways of
approaching problems, allowing you to improve your workflow and solve bigger
problems.

The next type of thinking is understanding thinking. It can be broken into two sub-
categories: understanding information (analytic), and understanding people (com‐
passion). The analytic thinker’s greatest asset is the ability to see patterns and bring
clarity to a situation. The tech industry tends to attract people who enjoy working
with these thinking strategies. Analytic thinkers:

Scan the situation
Survey the environment to gather as much information as possible.

Clarify
Sharpen the understanding of a situation by gathering information and asking
questions.

Thinking Strategies | 5

Structure
Organize data, people, resources, and processes in meaningful and systematic
ways.

Tune-in
Sense and connect with the emotional dimensions in a situation.

Empathize*
Show compassion for another’s thoughts, emotions, and situations.

Express
Select the appropriate emotional and verbal language to get the true message
across to the receiver.

You can recognize analytic thinkers from their key phrases:

• “So what you’re saying is …?”
• “Just to clarify …”
• “Can you tell me how …?”
• “Is this related to …?”
• “So I made this spreadsheet …”
• “That must feel horrible!”

Finally, we have the “buck stops here” thinking strategy: decision thinking. Someone
who favors “red” thinking hates talking around in circles forever. They want a quick
decision so they can move on to the action! Decision-making skills help teams get to
the real root of the problem, and then decide how to proceed. A decision thinker’s
weakest point is lack of patience. They often want to jump ahead before the creative
thinkers have had the necessary time to suggest the best possible solution, or before a
careful analysis has been completed. Decision thinkers can often be misinterpreted as
being negative. They aren’t. Using their ability to cut through the weeds to find the
best solution is invaluable. Decision thinkers:

Get to the crux
Determine the essence, or most critical part, of a problem.

Conclude
Reach a logical decision, or resolution, about the best way to proceed.

Validate the conclusion
Pose questions to eliminate inferior options and poor quality information in
order to critically assess and ensure the best decision.

Experience
Rely on experience to guide decision making and problem solving.

6 | Chapter 1: Working in Teams

Values-drive
Rely on personal core beliefs about what is good or bad, right or wrong.

Gut instinct
Rely, not on information, but on a hunch and deep instincts as a guide.

You can recognize decision thinkers from their key phrases:

• “I’m ready to move on to …”
• “No. We’ve already made a decision …”
• “I don’t know why I think this, but …”
• “Last time we tried this …”
• “So I think the real problem is …”
• “My gut tells me …”

Meeting as a Team
Nearly my entire career has been spent working on a distributed team where my co-
workers were not in the same office as me. It is a rare treat when people are at least in
the same time zone as me. This has given me some excellent communication habits
that I often take for granted. If you are already working with a prescribed methodol‐
ogy, you may have an established pattern of meetings that you use to move your
project forward.

Your project, and each of the component parts within the project, should have an
opening sequence, the bulk of the activity, and a wrap-up. This open-engage-close
sequence is also described in great detail in the excellent book Gamestorming by Dave
Gray, Sunni Brown, and James Macanufo (O’Reilly). It’s also used by teachers in the
classroom: a teacher will first tell you what you’re going to learn, engage you in the
learning, and then provide you with a summary of what you’ve learned.

All the way down to the planning of meetings, you should have this pattern in mind:
start, engage, conclude. This becomes most apparent in meetings. Too often I see
meetings with a general outline of topics, but not the intended outcome for the
meeting. For example, if you are at the beginning of your project, the team might
engage in ideation meetings, where your creative thinkers will be most engaged and
productive:

Agenda: Ideation Total time: 45 minutes

• Identify the crux of the problem (10 minutes)
• Brainstorm solutions (25 minutes)

Meeting as a Team | 7

http://bit.ly/orm-gamestorming

• Structure ideas (5 minutes)
• Identify top three ideas to test (5 minutes)

Identifying the outcome for a meeting ahead of time can be as simple as needing
some free-flow time to discuss a problem.

Kickoff
The beginning of a project is a chaotic time, especially if you are bringing together a
new group of people who wouldn’t normally work together. If at all possible, have a
collocated kickoff meeting with everyone present. This can be incredibly expensive
from both a time and money perspective if you are a distributed team.

Face-to-Face is Best

Ideally a kickoff meeting is conducted face-to-face. If this is not
possible, try to have people in as few places as possible, and con‐
nected through a video call.

By having everyone in the same place at the same time, you can take advantage of a
shared experience. You can engage in kinetic (motion-based) processing of the infor‐
mation through whiteboards, flip charts, and sticky notes. There’s something really
gratifying about being able to see your collective decisions, which helps motivate the
team into working on the project.

Tracking Progress
Once the project has begun, you will want to continue meeting with your team regu‐
larly. It is very easy to hide when you are working on a distributed team. Falling
behind can be an embarrassing and often compounding problem. Over-
communicating is a great habit to get into, but that doesn’t mean wasting all of your
time in meetings. A successful team will only meet to achieve very specific outcomes.
I like working in very tiny increments of one-week sprints. It’s very hard to hide
problems with such a small unit of time. It’s not about micromanaging, though. It’s
about trying to achieve a consistent velocity—or flow. Each of these meetings has a
specific project-focused outcome:

Sprint planning
As a project manager, I’ve found there are two types of workers: those who are
ready to jump in and take accountability for the work that is being done, and
those who prefer to have work assigned to them. Those who prefer having work
assigned to them are often looking for help in identifying which tasks they can
succeed at, and which tasks have the highest business value to be completed in
the context of the project as a whole. You may choose to do your sprint planning

8 | Chapter 1: Working in Teams

as a group, or you may find that sprint planning is less time wasteful if it is done
among a smaller group of client-facing team members and senior developers.

Commitment
These meetings should happen several times a week at the same time each day.
The outcome of this meeting is a list of “promises” that team members are mak‐
ing regarding their work. People should not just answer “what are you working
on today?” but “what are you expecting to hand in before the next time we
meet?” This should be a “no shame; no blame” round robin with each person tak‐
ing not longer than three minutes for their update. Larger, specific problems can
be discussed in a follow-up meeting. In Scrum parlance, these commitment
meetings are referred to as “stand-ups” and are conducted with the participants
physically standing up. I find the term “stand up” doesn’t push enough accounta‐
bility onto a team that isn’t trained in Scrum. Use whatever term works for your
team, but make sure you are extracting valuable information from the meeting.

Project deep dives
Any problems that need further discussion than the commitment meeting will
allow should have a follow-up deep dive. Ideally your team will use a calendaring
system, such as Google Calendar, where people who need help can review the
schedules of their coworkers and simply book an available time to have a follow-
up conversation. Generally I have blocked off one or two deep dive time slots of
45 minutes each week immediately following two of the 15 minute commitment
meetings. Only the affected people need to attend to the deep dives, although
everyone is welcome.

Sprint demos
Once a week, the team should get together to show off their work. During the
demo, each person who completed work should list the ticket number he or she
was working on, and show the outcome of that work. Having this demo once a
week encourages an “always be finishing” culture, which breaks work into small,
doable chunks. This meeting can also be a great opportunity to see the site with
fresh ideas and identify bugs that might need to be documented for fixing later, as
well as discuss any necessary refinements to the process for the upcoming work
sprint. Depending on the cohesion of the team, and the level of communication
throughout the week, you may find these meetings to be unnecessary. If, how‐
ever, you are seeing an increase in incomplete features passing through code
review, or you find great work going unrecognized, or you find your team isn’t
reaching out for help often enough, it may be appropriate to introduce weekly
demos to your team. Google Hangouts and GoToMeeting work well for this type
of meeting.

Meeting as a Team | 9

http://google.com/calendar
http://www.google.com/+/learnmore/hangouts
http://gotomeeting.com

Sprint retrospectives
At the end of each sprint, you should assemble with your team to discuss the pro‐
cess of working together. Identify things that are working well, and parts of the
process that could be improved. One set of questions I have seen used effectively
has each participant answer the following prompts about the project: I wish; I
want; I wonder. This meeting should be restricted to the core team. Its length
may vary, but plan to spend about an hour for a small team.

If you are a distributed team, you may also want to have a few scheduled social calls.
Lullabot, a wholly distributed company of approximately 50 people, adds the follow‐
ing nonproject calls to its schedule. The aim of these additional meetings is to
develop a greater empathy between staff members:

Company-wide stand-ups
A weekly one-hour call where a lottery of staff members are given up to two
minutes each to talk about what’s happening in their personal and work life.
When the company was smaller, each person was asked to speak on this call. As
the company grew in size, the lottery system was implemented and the one-on-
one calls were added.

One-on-one
A lottery system where two to three company members are given the time to talk,
in a facilitated space, about the life, the universe, and everything.

For the most part, these calls are conducted over a voice-only line, which also allows
staff to use the call time to multitask (loading the dishwasher; or even time outdoors
for those with good cell phone service).

Cultivating Empathy
When you are working in a distributed team, it becomes much easier to think of peo‐
ple on your code team as “resources” and not as human beings. It takes a very con‐
scious effort to cultivate relationships and to develop trust among the team. A team
that is able to trust one another, that is not fearful, is a team that will be able to play
more with ideas, and will have greater capacity for finding appropriate and creative
solutions to tough problems.

The first step to improving the empathy on your team is to care just enough about the
people you work with. You don’t need to become everyone’s therapist, but taking the
time to talk to people about nonwork things is a good investment of your time. If you
are perceived as being a caring person, people will also like you more, which will
improve the trust between you and the other person. As a technical project manager,
I’ve often been asked to lend an ear to someone as they talk through a problem. My
naive understanding of the problem as they bring me up to speed can force the focus
back onto the basics, where the solution often lies. But those conversations are rare

10 | Chapter 1: Working in Teams

http://lullabot.com

with a new team—I must first earn the trust of the individuals on the team (that I
won’t judge if they don’t know the answer; and that I can help to focus attention
instead of just typing while they talk).

There are a few key tips to caring “just enough”:

Collect stories
Ask people questions about what’s happening in their life; about interesting chal‐
lenges they’re working on; about what they’re enjoying (or hating) about the
project you’re working on together. This isn’t a gossip session! This is about con‐
necting with the people you’re speaking with about their lives.

Listen with intention
When you talk with people, listen wholly. Do not multitask. Listen to what the
person is saying, and listen completely. Do not cut in, unless you are confused
and need to clarify. Some people are natural storytellers and have the capacity to
go on. And on. For these folks, you might want to schedule a time so that you
have a predetermined finishing point.

Refer back
If someone tells you about their life, circle back with them to see how that story
has progressed. Is their daughter still teething? How’s that cold doing; feeling bet‐
ter today?

I like to think of this list as “Empathy for Beginners”. Everyone can, and should, man‐
age this small amount of connection with the people they’re working with.

Wrap-Up and Retrospectives
These meetings can be a prime time to talk about what worked, and what can be
refined. They should also be used to clean up any templates that have been used dur‐
ing the project to make them reusable in future projects. The closing activity for a
period of work should always be a no-shame, no-blame event where people are able
to talk about things that didn’t go well. Only very rarely do I regret my decisions as a
project manager. I rely on my team to help me to make the best possible decision with
the available information. So in retrospect, I find it quite easy to avoid the “shoulda
coulda” temptation. What I do try to do, though, is to identify the patterns to watch
out for in the future. In other words, to discover ways we could have altered what we
asked in meetings to get a different set of information available to us (which might
have caused us to make better decisions for that type of project in the future).

From a version control perspective, the end of the project is also a great opportunity
to find your favorite tickets and document the characteristics of what made them
excellent. Perhaps there was a new way of structuring the information that you’d like
to be able to reuse. Take a peek in your Git repository as well, and look for especially

Meeting as a Team | 11

http://gitforteams.com/resources/cultivating-empathy.html

good commit messages that you can have as examples in your documentation for
future projects.

Teamwork in Terms of Git
If you are absolutely brand new to distributed version control, there is a set of terms
you will see throughout the rest of the book. These terms are easiest to understand in
the context of a simple developer workflow.

Each developer has a local copy of a repository. This is, at its core, a standalone copy
of the history of changes made in the project. In order to share changes, developers
will typically publish a copy of the repository to a centralized code hosting system,
such as GitHub. Although, as you will see later in this chapter, there are other ways to
share code.

From the central copy of the repository, developers will create a copy of the reposi‐
tory that they can make changes to. In Git parlance, this process is referred to as cre‐
ating a clone, although this process can also be referred to as forking.

When cloning a repository, software developers may choose to make their copy of the
project private or public. A private repository makes a quiet decision to not encour‐
age people to look directly at this copy of the repository, and instead only look to the
main project for officially accepted changes. A public copy of a developer’s repository,
on the other hand, is available for individuals to contribute to directly. This is a more
open approach to software development, but may cause confusion about which copy
of a repository ought to be the starting point.

It’s only through project governance that one repository for a project is decided to be
the most important version. This is because every repository can accept changes, and
share its changes with others. The relationships between projects are not fixed in
stone. You can create a web of relationships between different copies of the reposito‐
ries, or a more linear chain. Generally, though, the official version of a software prod‐
uct is referred to as being upstream of the current repository. For example, my blog is
created with Sculpin. I cloned the official release of the software and make changes
directly to the repository to write blog posts. If I wanted to incorporate the latest
changes to the software, I would be incorporating the upstream changes.

12 | Chapter 1: Working in Teams

www.allitebooks.com

https://getsculpin.com
http://www.allitebooks.org

The Butter Tart Recipe was Forked

For long-time open source software developers, the term fork is
loaded with the frustrations of a split community where a group of
developers decided to “fork the project” and take it in a different
direction. Forks are simply a divergence, like a path in the woods,
or like my Great Granny Austin’s butter tart recipe. Each branch on
a forked path leads in a different direction. Or, in the case of the
butter tarts, the addition or omission of currants. You can read my
family’s version of a forked recipe in Appendix A.

Within a single repository, I can store different versions of the project. These in-
repository changes are tracked via branches. To switch from my current branch to
another one, I will check out the branch I want to switch to. (In my head I say, “This is
really cool! Check! It! Out!”) Before switching, Git will force me to deal with the
uncommitted changes by either committing them, stashing them, or discarding
them. The commit process will permanently store my changes to the repository,
whereas stash will temporarily shelve the changes, allowing me to pull them off the
shelf and reapply them later.

A Crafter’s Stash

Knitters, quilters, and other fiber artists will often refer to having a
stash of yarn or fabric. When starting a new project, we might
“shop the stash” instead of going to the store. Those of us who have
a lot of stashed supplies may talk about having “achieved SABLE”
(Stash Amassed Beyond Life Expectancy). I think this analogy
works well for Git’s stash, and just like in crafting, I recommend
pruning the stash regularly to look for moth damage. If you are a
knitter, you may enjoy Git for Knitters.

The process of incorporating and publishing changes uses the following set of
commands. I pull my changes from the remote repository to automatically incorpo‐
rate them into the repository. This procedure fetches the new changes and then
merges them into the tracked copy of the local branch. At any given time, I work on a
local branch within my repository. If I want to share my changes with other develop‐
ers, I commit my work to the repository, and then push my branch to the remote
repository.

Summary
One of my favorite things to do is to work with a broken-down, burnt-out team, to
help them find a new way of working together in a fun and creative way. It’s not

Summary | 13

https://github.com/gitforknitters/gitforknitters

always easy, because broken teams always have at least some degree of mistrust.
Sometimes there are tears. But the rewards are huge when it can come together:

• A trusting, empathetic team is more likely to help its coworkers with the specific
Git commands necessary to get the job done.

• Preferences for different thinking strategies can derail progress. Ensuring the
right strategies are being used at the right time can reduce friction, and make
work faster and more fun.

• By having transparency around your work, and by including relevant stakehold‐
ers at key points, you may be able to gain faster deployments by reducing the
time needed to test code, and by reducing the number of bugs found.

In the next chapter, you will begin to sketch out the governance for your project
repositories.

14 | Chapter 1: Working in Teams

CHAPTER 2

Command and Control

By its very definition, distributed version control eschews centralized control. There
are no fixed rules built into Git that will help you to control access to your code—Git
is, after all, just a simple content tracker. This can be a real turnoff for some people
who are accustomed to version control systems that double as gatekeepers and access
control managers. This lack of centralized access controls doesn’t mean your project
suddenly turns into anarchy.

In “Project Governance” on page 16, you will learn about:

• Authorship, copyright, and distribution licenses
• Leadership models, which can set the tone for how contributions are made to

your project
• Codes of Conduct, which establish firm guidelines for expected and acceptable

behavior of contributors

Then, in “Access Models” on page 20, you will learn how to structure access to your
project. Three models are described:

• Dispersed contributors
• Collocated contributor repositories
• Shared maintenance

By the end of this chapter, you will be able to confidently establish an access model
for your team that keeps contributors happy, and ensures you are still able to comply
with any reporting requirements from regulatory bodies.

15

Project Governance
If I were the betting type, I’d wager you picked up this book with the intention of
learning Git. This section talks about legal mumbo jumbo. If you are the impatient
type, you may wonder exactly why I have wasted valuable time on this esoteric topic.
Think of this information as a primer that outlines your rights as an author, and also
your responsiblities as a steward of a project repository. The content outlined in this
section will be slightly more relevant to public, open source projects. Increasingly,
though, government and large enterprises are working with publicly available code,
and choosing to make their own code open. (Even Microsoft has many open source
libraries available today! Go, Microsoft!)

Producing Open Source Software

In this chapter I cover the highlights for running a project. Software
developers and managers who are considering running their
project as an open source project should also read Karl Fogel’s Pro‐
ducing Open Source Software. This free book covers everything
from publicitly and handling growth to legal matters and political
infrastructure.

In this section, you will learn about the assignment of authorship for a given piece of
code. Later, when you are working with Git, you will see that Git allows you to track
who injected each tiny piece of code into your repository. In addition to tracking
authorship, you can even use Git to “sign off ” on new code that is added to a reposi‐
tory.

Copyright and Contributor Agreements
Copyright is the exclusive, assignable, legal right to use and distribute a piece of work.
Around the world, the details of copyright legislation vary; however, the general rule
is that the person who created a work owns the right to copy and distribute the work.
In open source software, the copyright holders agree to license their work to a wider
community. Popular Free Libre Open Source Software (FLOSS) distribution licenses
are covered in the next section.

If the author was compensated for his or her work product, the copyright will often
be granted to the payer or patron. In the United States, this is referred to as a work for
hire and is almost always the case in employer–employee relationships, and is typi‐
cally the case for contract workers. If you’re not sure if you own the copyright to your
work, check your agreement; and if there isn’t a clause, check your local jurisdiction
to see if there is an established precedent. In the United States, contractors and free‐
lancers don’t fall under the definition supplied by the Supreme Court, so it isn’t work

16 | Chapter 2: Command and Control

http://producingoss.com/
http://producingoss.com/
http://copyright.gov/circs/circ09.pdf

for hire. The terms are broad, though. Ideally, update your contract so that it explic‐
itly states who owns the copyright to your work.

Copyright only covers the specific implementation of a work. You cannot copyright
an idea. You may have heard of reverse engineering, which is one way of getting
around a specific author’s moral claim to a piece of work. Some jurisdictions around
the world also have a restraint of trade clause. This language prohibits an employee
(or contractor) from engaging in similar work elsewhere for a period of time. Effec‐
tively, this clause prevents employees from starting at a new job and reverse engineer‐
ing or creating an equivalent piece of work from the one they developed for their
former employer. It must be deemed by the courts as a “reasonable” restraint—limited
to an industry or specifics about the job; and cannot be so broadly interpreted that
the worker is essentially prevented from working at any job.

Patents, in some jurisdictions, do cover the idea behind an invention. Software pat‐
ents are extremely contentious because they are perceived in many cases to stifle
innovation. Patents are never automatically granted and always involve an application
within a specific jurisdiction.

If you are participating on an open source project on behalf of your employer, the
assignment of copyright might be a bit more complicated. This is especially true if the
project has a policy to only accept work from individuals, and your place of employ‐
ment retains all copyright on the work you produce; it may also be true if your place
of employment has rules about what you are allowed to work on in your free time. (I
can name specific examples of both open source projects and companies with these
restrictions.) I am not a lawyer and cannot give you legal advice. Only you can choose
if you want to ask permission or beg forgiveness. I can, however, highlight the issue of
copyright and encourage you to consider what is most appropriate for everyone in
the long term. It would be a shame if your work had to be removed from an open
source project for any reason. Radical transparency is risky, but I think it’s worth it in
the end.

To increase their future powers, some corporations have opted to put a contributor
agreement on their public projects. Canonical, Chef, Puppet, Google, and .NET all
have a variation on a contributor license agreement. The agreement varies per com‐
pany, but the gist of most of them is “if you choose to submit a contribution, you
agree to reassign your copyright to the project.” Just as there is a Creative Commons
license for content, there is now a Harmony Agreements template for contribution
agreements. The biggest rationale I’ve seen for a contributor agreement is that it
allows the project to change the distribution license of a project without explicit con‐
sent from individual contributors. In open source software, these contributor agree‐
ments are often perceived as being against the spirit of open source. On the other
hand, it can make it difficult for corporations to make legal decisions regarding that
software in the future if they don’t own the copyright.

Project Governance | 17

http://bit.ly/ubuntu-cla
http://bit.ly/chef-cla
https://cla.puppetlabs.com/
http://bit.ly/google-cla
https://cla.dotnetfoundation.org
http://harmonyagreements.org/
http://harmonyagreements.org/

Distribution Licenses
Once you have determined copyright for your project, the next piece you need to
establish is the distribution license. This will clarify how you want others to use, or
not use, your project.

GitHub has put together an excellent primer for the more popular open source licen‐
ses it recommends. The primer includes the following licenses:

• The MIT License allows people to do anything they want with your code as long
as they provide attribution back to the original authors of the work, and do not
hold you liable for the software. jQuery and Rails both use an MIT license.

• The Apache License is similar to the MIT License, but it also explicitly grants pat‐
ent rights from contributing authors to users, and requires a change notice that
describes how the derivative work changes from the previous version. Apache,
Subversion, and NuGet use an Apache license.

• The GNU General Public License (GPL), V2 or V3, is a sharing-friendly copyleft
license that requires anyone who distributes your code or a derivative work to
make the source available under the same terms. V3 is similar to V2, but further
restricts use in hardware that forbids software alterations. Linux, Git, and Word‐
Press use this type of license.

• If your content isn’t code, a Creative Commons license may be more appropriate
for your work. This license allows you to grant redistribution rights, with or
without modification, for commercial or noncommercial use.

You are also welcome to not choose a distribution license; however, this effectively
signals to people that you are not interested in others using your work without seek‐
ing explicit permission.

When to Not Use a Distribution License

Using a distribution license on a public project is almost always a
good idea. That said, I sometimes choose to omit a distribution
license on my public repositories. Typically this happens if I think I
may incorporate the work into a full-length book with a traditional
publisher. Some publishers require you to reassign copyright to
them and will protect the work on your behalf. (O’Reilly leaves all
copyright with the original author.) If I have accepted contribu‐
tions from others under an open license, it may impact my ability
to reassign copyright later.

If you encounter a public project that does not have an explicit license, and you want
to incorporate the work into your own, get in touch with the project maintainers first
and ask them to add a license to their work.

18 | Chapter 2: Command and Control

http://choosealicense.com/
http://choosealicense.com/
http://opensource.org/licenses/MIT
http://bit.ly/apache-v2
http://bit.ly/gpl-v2
http://bit.ly/gpl-v3
http://creativecommons.org/

Leadership Models
Open source software allows people to collaborate on building systems that are more
powerful, more secure, more feature-rich, and more sustainable when the burden of
maintenance is shared among many. If you are a project of one, it might not make
sense to create a governance document, but if you are anticipating others contribu‐
ting as well, you should consider outlining how you want the project to be run.

A few of the governance models I participated in include:

Benevolent Dictator for Life (BDFL)
In this model, the leader of the project has final say over every decision about
every aspect of the code base. The BDFL may not actively participate in every
code review, but ultimately retains the control to reject or reverse any decision
made. The community exists at the whim of the dictator. Sounds horrible, right?
Well, it can be if the dictator isn’t benevolent. This model has been successfully
used by the Ubuntu project, and others.

Consensus-driven, leader-approved
The Drupal community works on a consensus model where the community most
active on a given part of the system is encouraged to find solutions that are
appropriate. When the community is happy with the solution, they mark an issue
as Reviewed and Tested by the Community (RTBC, which is a backronym for
Ready to be Committed). Drupal has additional working groups for content,
licensing, and security issues.

Technical review board or Project Management Committee
A fork of the Drupal project, Backdrop, distinguished itself early in the project by
adopting an explicit governance model, which is based on the Apache project
Project Management Committee (PMC) model.

If you would like more guidance on setting up a governance plan for your project, I
recommend resources by Lisa Welchman, including her book Managing Chaos (Rose‐
nfeld Media).

Code of Conduct
Some communities have made the difficult decision to reject code from community
members who refused to behave in a friendly manner toward others in the commu‐
nity. Other communities, however, are notorious for their unfriendly, intolerant
behavior. You may be able to think of several communities you enjoy participating in,
and want to emulate in your own project.

Community culture is the consistent reinforcement of behavioral standards.
Although you may wish to simply cross your fingers and hope that people are excel‐
lent to each other, there may come a day when you wish you had a rule book you

Project Governance | 19

http://bit.ly/wiki-bdfl
https://www.drupal.org/governance
https://www.drupal.org/governance
https://backdropcms.org/leadership
http://bit.ly/apache-pmc
http://rosenfeldmedia.com/books/managing-chaos/

could point to. A community code of conduct allows you to explicitly detail what is
expected of those who participate in your project. There are several established codes
of conduct that have been community vetted. You may wish to begin with one of
these as your starting point.

Flickr is the first community code of conduct that I was aware of using, and which
made a point to ensure its members knew there were guidelines in place. I’m sure it
has changed since I first read the document; you can read the current version at
Flickr Community Guidelines.

The Drupal Code of Conduct is the one I’m most familiar with. It was derived from
an early version of the Ubuntu Code of Conduct (a newer version is now available),
and has even been used as inspiration for the Humanitarian ID Code of Conduct, a
project by the United Nations Office for the Coordination of Humanitarian Affairs.

It is appropriate to add your Code of Conduct (CoC) document to the project’s sup‐
porting website. If you do not have a separate website for your project, you could add
your CoC as a wiki page within GitHub. Links to wiki pages are available in the right‐
hand sidebar from the home page for the project.

Access Models
If you have been using version control for a long time, you may remember systems
like CVS or Subversion with a centralized repository. Figure 2-1 demonstrates how
changes were made in Subversion’s centralized system. In this system, each time you
wanted to save a snapshot of your work to the repository, you were potentially saving
to the same place as someone else. Just when you thought you were ready to share
your work, or request a code review, you would sometimes be prevented from doing
so if someone else had recently updated the same branch with their own work.

Figure 2-1. Working with files in Subversion

20 | Chapter 2: Command and Control

https://www.flickr.com/help/guidelines
https://www.drupal.org/dcoc
https://launchpad.net/codeofconduct/1.0.1
http://bit.ly/ubuntu-conduct
http://humanitarian.id/code-of-conduct/

Git, on the other hand, is a distributed version control system. This means instead of
having one central place that everyone must use if they want to have their changes
recorded, each person works independently from the centralized code hosting sys‐
tem, and is responsible for making commits to his or her local copy of the repository.
This means changes from other developers are never forced into your work; instead,
it is your decision of when to incorporate outside work, and when to share your own.

Establishing Connections to Others

Although people love to talk about coding from airplanes that don’t
have an Internet connection when working with Git, I think the
real advantage is that you can do more of your thinking in private.
You can make new branches, think about new ideas in code and—
only when you’re ready—establish a connection with others.
If you subscribe to Myers-Briggs, Git might be INTP, and Subver‐
sion might perhaps be ESFJ.

Every time you sit down to work with Git, you are sort of working in a centralized
fashion as far as your computer is concerned; your repository of changes is entirely
self-contained on your local machine, as shown in Figure 2-2. You do some work, and
then save that work to your local repository. Then, when you’re ready to share your
work with others, you make a connection to a remote repository and push your copy
of a specific branch to it.

Figure 2-2. Working with files in Git

Access Models | 21

http://bit.ly/wiki-mbti

Keeping your work entirely local would be very limiting! Instead, we make connec‐
tions to other systems, and share our code through the remote repositories.

Git does not have the ability to control access—instead, it allows any developer full
read/write access to the repository. At the most coarse level, you limit this control
through login controls. I develop on my machine, to which you don’t have access, and
therefore you cannot change my repository. As soon as we put the repository in a
shared location, such as a centralized code hosting server, we need to agree on how
we will govern our access to the repository.

Some Git hosting systems, such as Bitbucket, allow fine-grained, per-branch access
controls; however, most force you to limit control on a per-repository basis. In other
words, you either are a committer for any branch on the repository, or you are limi‐
ted to making your contributions through pull requests.

In this section, we cover the three most popular models:

• Single Repository; Shared Maintenance, wherein everyone on the team is consid‐
ered a maintainer and is granted access to upload changes to the project reposi‐
tory.

• Collocated Contributor Repositories, wherein contributing developers create a
remote copy of a project, and have their changes accepted by project maintainers.

• Dispersed Contributor Repositories, wherein code is shared via a text-based
patch file.

At the end of the section, you will learn how to chain these methods together to cre‐
ate a custom access model that is perfect for your team.

Dispersed Contributor Model
When Git was originally conceived, conversations about changes to the code base of
an open source software project commonly happened on public mailing lists, not on
centralized web hubs. This model is still used today by the Git development team. It is
almost certainly not appropriate for your team to use this model for its development;
however, understanding the model has implications for some of the more advanced
concepts required to use the commands rebase (Chapter 6) and bisect (Chapter 9).

To share their work with the community, developers would create a patch file using
the program diff. They would then write an email to the discussion group, and
attach their patch file as shown in Figure 2-3. To investigate the proposed changes,
members of the mailing list would download the attached patch file, and apply it to
their local code base, using their system’s patch command.

By sharing the patch files via a mailing list, developers were able to encapsulate and
share their work—while efficiently limiting what was shared to that patch file so that

22 | Chapter 2: Command and Control

www.allitebooks.com

http://www.allitebooks.org

the people evaluating the work could easily see what had changed between two spe‐
cific points in time within a shared code base.

Form Follows Function

To make the process of working with emailed patch files easier, Git
added the ability to deal with patches that were sent via a mailing
list through the command am.

This model is still used by the Git project today—it is still using a mailing list to share
patches, and have conversations about what features should be added to Git and what
bugs should be removed.

Although the model might seem archaic, it does have some advantages:

• You don’t need to use a specific version control system locally because the patch
file doesn’t require specific version control software to be installed locally.

• Developers can easily review the proposed changes from the comfort of their
email application.

• This model encourages whole idea thinking. If you have to email a group of peo‐
ple each time you make a change, you are more likely to ensure everything is
right so you can avoid the embarrassment of “just one more thing.”

• Uploading your proposed changes to a system that is not the code hosting system
enforces a review procedure among the participants in the software project. In
other words, as a developer, I can’t just upload my changes to the main reposi‐
tory; I have to announce my completed work and wait for someone else to merge
it in.

Access Models | 23

Figure 2-3. The community review process for patches

Having dispersed repositories isn’t specific to projects that communicate via mailing
lists. At the time of this writing, the Drupal project was using a variant of this model.
Instead of using a mailing list to share patches, though, it was using a self-hosted,
centralized code hosting and ticket issue system. Figure 2-4 shows a screenshot of an
issue with an attached patch file.

24 | Chapter 2: Command and Control

Figure 2-4. A Drupal issue queue with attached patch file

In this model, you can sign the individual commits before sharing them; however,
this makes it more difficult to unpack the history of who made which changes if mul‐
tiple people were involved. The team will need to, instead, adhere to a patch format‐
ting policy (signed or not), and a commit message style. Drupal has strict formatting
guidelines for its commit messages to ensure everyone receives credit for their work.

For most projects starting today, this model is not appropriate. It does, however, help
to understand some of the more advanced commands, such as bisect, if you are able
to think about commits as whole ideas. A more modern approach to this model is to
use fork, or clone, repositories on a single code hosting system.

Collocated Contributor Repositories Model
These days, software developers are unlikely to trade patch files—instead, they are
much more likely to use a central code hosting system that manages the patch process
for them. Using a single code hosting system makes it easier to programmatically
create and submit patches between repositories. The method for how these patches
are managed is the secret sauce that makes up any code hosting system. The restric‐
tions are presumably handled via Git’s pre-commit hooks to ensure access control is
respected.

On a collocated system, the “upstream” project retains complete control over who is
allowed to write to the primary project repository. Individual contributors make a
clone, or fork, of the project to their own repository on the code hosting system. The
contributors make changes to the copy, and then submit their requested changes in
the form of a merge request or pull request, as shown in Figure 2-5. If you are working
on an open source project with a lot of contributors, you are most likely using
this model.

Access Models | 25

http://bit.ly/drupal-commit
http://bit.ly/drupal-commit

Figure 2-5. Creating a chain of cloned repositories

GitHub has popularized this model for development for contemporary open source
projects. I’ve also seen this model used for internal projects with strict walls between
departments. For example, if the quality assurance team is solely responsible for the
final merging of code into the stable release branch, the team is likely using some var‐
iation on this model. Another reason for this separation would be if you were using
extra contractors and you wanted to limit their ability to accidentally add something
to the repository that hadn’t first undergone a review of some kind.

26 | Chapter 2: Command and Control

Git Versus GitHub Terms

It can be difficult to know which terms to use because the GitHub
terms, which have become commonplace, don’t always match their
corresponding Git commands. For example, the GitHub term fork
uses the Git command clone to create a copy of a repository.
Because the focus of this book is on the Git software, and not just
the implementation on GitHub, the Git commands will be used.
Occasionally both terms will be used because the GitHub terminol‐
ogy is sometimes more familiar than the individual commands.

When GitHub creates a fork of a repository, it is the same as using the Git command
clone to make a copy of a repository. Once you have created a fork, you can use the
GitHub web interface to make your changes directly to your repository, but this isn’t
great for more than a very minor typo fix. Instead, you will likely create a second
clone of the repository—this time from the forked repository to your local worksta‐
tion. This effectively creates a chain of clones from one copy to another. Keeping all
of the repositories in sync takes a little bit of work; however, it’s a lot fewer commands
to memorize than working directly with patches. You win some, you lose some.

Working with repositories that share the same infrastructure should be easier than
the dispersed repositories because it allows you to more easily use wrapper software.
In addition to it being a little easier to keep the work updated, the wrapper software
can also give you more control over who is able to commit work and receive credit
for their work.

Typically, the first repository in the chain can only be altered by a handful of core
committers who can add new commits to the repository, or merge branches. Most of
the people working on the project will, instead, be working from a local clone of the
repository. In this local, cloned repository, each person will have infinite control over
what happens. They can add new branches, add new code, and share their proposed
changes with others by pushing their work to their public clone of the main reposi‐
tory. Once the work has been pushed to the public clone, coders can solicit feedback
on their work to date. Once the work has been fully reviewed and tested by the com‐
munity, the coders can make a merge request or pull request from their public clone to
the main repository.

If someone doesn’t have the intention of contributing their work back to the main
project, they can skip creating a public clone, and instead create a clone from the
main project directly to their local environment. Things can get a little tangled if you
realize you do have changes you want to submit back to the project, and you’ve also
done your own work, which shouldn’t be shared.

It isn’t always easy to know that you’re going to do something that might be useful to
others, though. For example, I was working on my slide deck for OSCON with an

Access Models | 27

open source presentation framework, reveal.js. Your equivalent example might be
with a WordPress theme, or a frontend framework, or some other project that gives
you a basic starter kit as part of the initial package.

Previously while working on my slides with reveal.js, I decided I probably wouldn’t
need to upgrade the reveal.js software I was running and stopped worrying about
keeping a Git connection to the upstream project. I shuffled all of the folders around
in my repository to make it work for what I was doing. A custom theme was created.
Tweaks were made. It had truly become a forked project, disconnected from where it
began. (Developers with even a little bit of open source experience will be groaning at
this point because they’re already jumping ahead to the inevitable realization that I’m
about to reveal.) But as I started working on things, I realized I couldn’t get the slides
to format properly for the handout. I wanted my speaker notes to appear alongside
the slide, instead of having them tucked below it. I opened a bug report for the
project on GitHub, and continued working. A few people gave me suggestions on
how I might want to reformat things. Aha! I had some ideas on how to solve the
problem. I considered my own issue closed, but there were others who were also
interested in my solution. Now I was truly stuck. I had created my project without the
intention of sharing my work.

If you are submitting a patch, you might have been able to cheat and share only snip‐
pet of your work, but when you are working with collocated contributors, you need a
chain of repositories in place to be able to share your work back. My own project
didn’t have a branch for the upstream work because I never had the intention of shar‐
ing my work back to the presentation framework. So I started by creating a new chain
of repositories. Figure 2-6 shows the sequence of what I did next. On GitHub, I cre‐
ated a fork of the main reveal.js project. Then I made a local clone of this forked
repository. To my local clone I created a new branch for my changes. Then I copied
the changes from my OSCON slide deck (there were only a few, so I didn’t bother
creating a patch, I just used my trusty copy-and-paste tools) into my cloned reposi‐
tory of the presentation framework. With the changes in place, I pushed my changes
back to my remote repository on GitHub, and created a pull request to ask to have my
changes incorporated back into the project.

The public clone of the reveal.js repository was required because I do not have write
permission for the reveal.js repository. If I did have write access, I could have skipped
making the public clone and just created a local clone.

Shared Maintenance Model
Finally, we have arrived at what is likely the most typical permission model for inter‐
nal teams (and teams of one): shared maintenance. In this model, there is an inherent
trust among team members. It is assumed that code will be checked and verified
before it is committed to the main project branch, and that, generally, the developers

28 | Chapter 2: Command and Control

https://github.com/hakimel/reveal.js
https://github.com/hakimel/reveal.js/pull/963
https://github.com/hakimel/reveal.js/pull/963
https://github.com/emmajane/reveal.js
https://github.com/emmajane/reveal.js

are trusted. In this model, work is done locally by all developers before it is pushed
into the shared repository for the project. When working with an internal team, as
shown in Figure 2-7, this is often where we start: with a single shared repository that
everyone has shared write access into.

Figure 2-6. Suggesting changes to a project from collocated repositories

Git does not accommodate permissions and instead relies on other systems to grant
or deny write access to a repository. If you do need to prevent people from uploading
their code to a shared repository, you need to use the host system’s access control to
do so. If you are not using a Git hosting platform, this access control might be con‐
trolled via SSH accounts.

In addition, Git further does not allow you to be locked out of only some branches, as
you might find in Subversion. Without additional software in place, it is by conven‐
tion that teams agree not to commit changes to specific branches without the prereq‐
uisite testing. Per-branch access restrictions are available through Bitbucket
(Chapter 11) and GitLab (Chapter 12). If you prefer a more lightweight system, take a
look at Gitolite.

Access Models | 29

http://gitolite.com/gitolite/index.html

Figure 2-7. Everyone on the team has write access to the central repository from their
local repository

Custom Access Models
In addition to these individual strategies, teams may also choose to use multiple
access models for a given project. This would be particularly useful for projects with
very strict regulations on who could commit code to the canonical repository. Indeed,
most open source projects will have different levels of access for different contribu‐
tors.

A common workflow is as follows:

• An official project repository, to which only a very few people are able to commit
code. In an open source project, it would be the project maintainers; and in a
closed source, or corporate, project, it could be the quality assurance team.

• A less restricted, internal copy of the repository, which is used for integration by
each of the contributors and project teams. This repository might follow a shared
maintenance model, where everyone is allowed to merge their branches into the
repository as part of a code review process, or even on an ad hoc basis.

30 | Chapter 2: Command and Control

• Individually created personal repositories, locked to the individual contributors.
These are typically hosted on the same code hosting system as the official reposi‐
tory, because most modern code hosting systems have easy-to-integrate function‐
ality (usually called a “pull request” or “merge request”).

This split would commonly be seen in teams that employ junior developers, quality
assurance teams, or perhaps external contractors.

Chapter 4 covers common workflows in more depth.

Summary
In this chapter, you learned about different ways to grant and restrict access to your
project repository:

• Clearly defining a project governance model will help ensure ownership is
understood by all contributors.

• Copyright of code is typically assigned to the author, unless the right has been
reassigned to another legal entity as a work for hire or through a contributor
agreement.

• The rules restricting distribution, and derivative works of a code base are defined
by its software license.

• Git is just a simple content tracker; it does not include access control mecha‐
nisms out of the box. Some code hosting systems have incorporated pre-commit
hooks that can be used to limit access per-branch.

• Access can be limited or open for any given repository. Changes submitted to a
repository are made via a patch. On code hosting systems, a programmed graphi‐
cal interface is used to manage the patch submission process.

With your permission structure in place for your repository, we will next look at how
you can divide your repository so that both work in progress and finished work can
be shared among team members.

Summary | 31

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3

Branching Strategies

In version control, a branch is a way to separate parallel thinking about how a piece
of code might evolve. A branch always begins from a specific point in the code base.
In Chapter 2 we talked about forking and cloning a repository. A branch is like an in-
repository split where new work begins. A branch might be created with the intention
of contributing work back, or it might be created with the intention of keeping work
separate. Branches don’t care what changes they’re tracking! They just are.

The branching strategy that you use depends on your release management process.
Branches allow you to change the files that are visible in the working directory for
your project, and only one branch can be active at a time. Most branching strategies
separate the work in your project by coarse ideas. An idea could be the version of
your software—for example, version 1, version 2, version 3. And spawning from
those software versions you might have ideas that are in progress. These ideas are
generally separated into branches according to the name of the feature they represent.
They might be a bug fix or a new feature, but they also represent whole ideas on a
smaller scale.

This chapter outlines:

• How to choose a branching convention for your team
• Mainline development
• Branch-per-feature deployment
• State branching
• Scheduled deployment

33

There are no limits to the ways you can use branches. This can be a good thing and a
bad thing. A few artificial constraints (conventions) will help you consider the possi‐
bilities for your team.

Understanding Branches
Without getting into the internals of how Git works, having a basic understanding of
what a branch is will help you to choose and apply the strategies outlined in this
chapter.

Each Git repository contains a pool of commits. These commits are linked to one-
another through their metadata—each commit contains a reference to its parent. In
the case of a merge commit, there may be more than one parent commit referenced. I
like to think of a branch as a string of beads, with each commit represented as a bead
on the string. The analogy isn’t technically correct, but it works quite well as a mental
model for our purposes. Branches in Git are actually a named pointer to a specific
commit. (Give yourself a magic wand, and tap on a specific bead while saying a name.
You have just created a named branch.) When you check out a branch you are copy‐
ing the data stored in the commit object (identified by the pointer) to your working
directory. Once the work has been copied into the working directory, you can make
as many changes as you like (add, edit, delete files), and save the changes as a new
commit object to your local repository. The named pointer will be automatically
updated to point to the new commit object you have just created and your branch
will be updated.

Any commit objects you create are local and exclusively yours until you choose to
explicitly share them with a remote repository. This is radically different than the
centralized model of version control where committing a change automatically
uploads the work. For some foreshadowing of conflicts to come, just remember that
each developer has a magic wand for his or her own repository.

To avoid conflict, developers have created conventions for the naming and use of
branches. These conventions help developers to choose when to allow work to
diverge (create new branch), and when to merge (combine commit objects from two
or more branches). Generally there are two types of branches used in a convention: a
long-running public branch; and a short-lived private branch. The function of a long-
running branch is to act as a mediator for code which is contributed by lots of devel‐
opers. The function of a short-lived branch is to sandbox the development of a new
idea. These new ideas could be bug fixes, feature additions, or experimental refactor‐
ing. It’s up to you!

When you share a branch with others, you may continue adding commit objects to
your copy of the branch; however, now that the branch has been shared, someone else
could also be adding commit objects to their copy of the branch. The next time you

34 | Chapter 3: Branching Strategies

try synchronize the two copies of the branch Git, as a simple content tracker, will
defer to your expertise in combining the two sets of commit objects into a single
shared history. This pause in the automated process is refered to as a merge conflict
which sounds scary, I’ll admit. Your job is to engage in conflict resolution and choose
the best shared history for the work in question.

You will learn about strategies to keep your branches up to date in “Updating
Branches” on page 51, and practical commands in Chapter 7. Conflict resolution is
also covered in Chapter 7. First, though, let’s take a look at some of the most common
branch naming strategies developers use for maintaining their work in Git.

Choosing a Convention
A convention is an agreed-upon standard for how things are usually done. As devel‐
opers, conventions allow us to quickly pick up the patterns of how a software project
runs and integrate our work without disrupting the flow for others on the team.
A documented convention makes onboarding easier for both the newcomer and oth‐
ers on the team who now need to take less time away from their work to help the new
person.

Choosing an appropriate branching strategy for your team requires a conversation
with your teammates about how you want to release your work. (From now on, I’ll
use “software” to mean your project, even though Git can be used for other things as
well, such as writing books!) You might want to use a daily release schedule for a web‐
site, but a monthly, quarterly, or biannual release schedule for a downloadable soft‐
ware product. You may even have to comply with auditing or compliance regulations
that have their own requirements. Once you know how you will release your soft‐
ware, and whether you have auditing or tracking requirements, you can choose the
best branching strategy for your needs.

If you already know how you’ll be working, take a few minutes to sketch out your
requirements before diving into the details and choosing the branching strategy that
best matches your needs. If you’re not really sure what your system will look like,
Chapter 4 will give you ideas about how you might want to structure your team inter‐
actions.

As long as your team documents what they’re doing, there are no hard rules. Indeed,
if you look at the repositories for several open source projects, you’ll see that there’s
no standard way of doing things. I recommend using the GitHub mirrors to easily
compare the branching strategies used by Drupal, Git, and Sass. These three very
popular projects all use very different branching strategies.

There are no version control police who will show up at your door and tell you if
you’re doing things wrong, and you’re almost guaranteed to find at least one other
team who’s making software in a similar fashion to you. But if you are new to work‐

Choosing a Convention | 35

https://github.com/drupal/drupal
https://github.com/git/git
https://github.com/sass/sass

ing with version control, or your team has been struggling to figure out how to make
things a little smoother, using one of the conventions described in this chapter might
help.

Conventions
When working with software projects, there are generally two different approaches
teams can take: they can either use an “always be integrating” approach, or they can
collate the work that’s being done and release a collection of work all at once.
In between these two opposites there are many different variations on how work can
be done.

This section outlines several of the most common strategies used by development
teams today. You may choose to adopt one of these strategies wholesale, or adapt it
for your needs. No matter what you choose, remember to document your decisions.

Mainline Branch Development
The easiest branching strategy to understand is the mainline branch method. In this
strategy, there are fewer branches to work with. The developers are constantly com‐
mitting their work into a single, central branch—which is always in a deployment-
ready state. In other words, the main branch for the project should only contain
tested work, and should never be broken.

As a team of one, I often work on tiny side projects that only just barely warrant hav‐
ing version control, such as writing an article for a magazine. In these cases, I commit
all of my work in the default branch (named master by Git) as is shown in Figure 3-1.
If I have two unrelated ideas that I am working on, I might be lazy and choose to
commit everything, or I might stash some of the work to save it for later. For these
simple projects, it doesn’t warrant separating thinking into different branches in
order to work efficiently.

Reading Ball-and-Chain Diagrams

Each circle on the diagram represents a commit of work stored in
the Git repository that can be reversed. The proper name for these
“ball-and-chain” commit diagrams is a directed acyclic graph
(DAG). There’s no quiz where you need to remember this. Promise.
But it is a useful term if you’re looking for keywords for future
research.

36 | Chapter 3: Branching Strategies

Figure 3-1. Mainline branch development: storing all commits to a single branch

As the project matures, there will be more and more to think about, and it will get
harder to keep track of ideas. I’ll start adding new branches as I think about new
directions I might want to take my project in, but that aren’t as fully thought out as
some of the other pieces I’m working on. Perhaps I’ll even expand my team and have
a reviewer or two with their own, independent branches, as shown in Figure 3-2. As
the project grows in complexity (and team members), so will the number of branches.
But they won’t all be active all the time. Like in the story of Goldilocks and the Three
Bears, your team will likely settle on a number of branch types that feel “just right.”
Each unit of work (or sprint) may have an accordion effect on the number of
branches. At first, the developers are all working on their own pieces, and the number
of branches expands. Then, as each of the developers finishes his or her work and
integrates it with the others’, the accordion compresses back down again.

At scale, this approach of having a single working branch is used by teams working
with automated build procedures.

Terms for Teams Who Are Always Deploying

Continuous integration is the practice of having all developers
incorporate their work into the mainline of the project several
times a day. Continuous delivery is the practice of automating the
steps from a developer’s local workstation up to the server (but not
deploying through an automated process). And finally, continuous
deployment is the most complete definition of automation, with all
code passing through a series of test gates directly to the produc‐
tion server.

Conventions | 37

Figure 3-2. Mainline development with branching: branches separate the work being
contributed by multiple people

Perhaps it makes sense for your team to integrate their work into a central branch
regularly, but only deploy work occasionally. As soon as you start collecting your
work, you need to make a distinction between what you have locally, and what is
being used on your production server. If all code is ready for deployment, it shouldn’t
be too big of a deal to add a little fix and roll everything out. But what if you have
changes committed in your repository that are only mostly finished? This is where we
start to move away from a purely continuous deployment strategy, and toward multi‐
ple branches in a scheduled deployment strategy.

There are several advantages to using a branching strategy that encourages regular
integration of your work:

• There aren’t very many branches across the entire project. This results in less
confusion about where a change disappeared into.

38 | Chapter 3: Branching Strategies

• Commits that are being made into the code base are relatively small. If there is a
problem, it should be relatively quick to undo the mistake.

• There are fewer emergency fixes, because any code that is saved into the main
branch is ready to be deployed. Deployments can often be stressful for developers
as they hold their breath while code goes live in production and wait to hear back
from the code’s users. With tiny frequent updates, this procedure becomes prac‐
ticed, and finally automated to the point where it should be almost invisible to
the end user.

There are disadvantages to using this strategy as well:

• The assumption is that the main branch contains deployment-ready code. If your
team doesn’t have a testing infrastructure, it can be risky to assume that new code
won’t break anything, especially as the project becomes more complex over time.

• The notion of a deployment is more appropriate for code that is automatically
loaded onto a user’s device (for example, a website). It is less appropriate for soft‐
ware that must be downloaded and installed. While updates that fix problems are
welcomed, even I would get annoyed if I had to download and reinstall an appli‐
cation on my phone on a daily basis.

• One of the ways developers can verify code on production is to hide the feature
behind a flag or a flipper. Facebook, Flickr, and Etsy are all rumored to use this
technique. The potential risk here is that code can be abandoned behind the flags,
resulting in a large technical debt for code that isn’t removed because it is hidden.

Unfortunately, it is out of the book’s scope to describe how to set up the infrastructure
for continuous deployment because it will be somewhat dependent on the language
you are writing in (each language has its own testing libraries) and your deployment
tools. If you would like to read more about the philosophy, the book Continuous
Delivery: Reliable Software Releases Through Build, Test, and Deployment Automation
by Jez Humble and David Farley (Addison-Wesley Professional) is a good starting
place.

Branch-Per-Feature Deployment
To overcome some of the limitations of the single branch strategy just described, you
can introduce two additional types of branches: feature branches and integration
branches. Technically, they aren’t different kinds of branches; it’s just the convention
of what type of work is committed to the branch that differs.

In the branch-per-feature deployment strategy, all new work is done in a feature
branch, which is as small as it can be to contain a whole idea. These branches are kept
up to date with the work being done by other developers via an integration branch.
When it is time to release software, the build master can selectively choose which fea‐

Conventions | 39

http://bit.ly/aw-continuous-delivery
http://bit.ly/aw-continuous-delivery

tures to include in the build and create a new integration branch for deployment. As
Figure 3-3 shows, a build does not necessarily include all of the work completed since
the last build.

Figure 3-3. Branch-per-feature: feature branches are kept up to date via an integration
branch

By adding feature branches and an integration branch, you can continue to have
deployment-ready code, but also a pause before deploying the code. The most popu‐
lar description of this model is by Adam Dymitruk. A slightly earlier description of
this model was by Scott Chacon and is named the GitHub Flow. With a few minor
updates, this process is still used by GitHub today.

In the GitHub Flow branching model, anything in the master branch is deployable.
When working on new code, GitHub Flow has the developers create a descriptively
named feature branch and commit their work regularly to this branch. This branch is
kept up to date with master and is regularly pushed to a branch on the shared reposi‐
tory, allowing others to see which features are actively being worked on. When devel‐
opers think their work is complete, or when they need help with their work, they will
issue a pull request to the master branch. In the ticketing system, there will then be a
conversation about the work that is being proposed.

Up to this point, the GitHub Flow is virtually the same as the Dymitruk model.
Where they differ is in how the deployment happens. In the Dymitruk model, a build
is made by selecting which features are ready to be incorporated. In the GitHub Flow

40 | Chapter 3: Branching Strategies

http://bit.ly/branch-per-feature
http://bit.ly/chacon-git-flow
http://bit.ly/ejhw-git-flow
http://bit.ly/ejhw-git-flow

model, once a pull request is accepted, the work is immediately ready to be deployed
from its feature branch. This makes the strategy closer to mainline development.
Originally, GitHub merged its feature branches into the master branch and then
deployed the master branch. Nowadays, the feature branch is deployed and if there
are no errors, it is merged into master as shown in Figure 3-4. This means that if there
are problems with a feature branch, master can immediately be redeployed because it
is proven to be in a working state.

Figure 3-4. GitHub Flow: feature branches are deployed after a review and then merged
into master

There are several advantages to using a branch-per-feature deployment strategy:

• Much like mainline development, the focus is on rapid deployment of code.
• Unlike the mainline development, there is an optional build step. When the build

step is used, there is the option to select which features should be incorporated
into the master branch for deployment.

Conventions | 41

There are disadvantages to using a branch-per-feature deployment branching strategy
as well:

• If code is kept on a feature branch, but it is not immediately rolled into master,
there is an extra maintenance requirement for developers who need to keep their
features up to date while waiting to be rolled into the deployed branch.

• The semantic naming of the branches helps those who are familiar with the sys‐
tem, but it also represents an insider language that can make onboarding more
difficult if there are a lot of open features.

• There is now a housekeeping requirement for developers to remove old branches
as they are rolled into master. This isn’t a large burden, but it is more than would
be required from working out of a single master branch.

The branch-per-feature strategy offers a nice middle ground between mainline devel‐
opment and scheduled deployment. In some ways, scheduled deployment extends the
branch-per-feature strategy, but with specific naming conventions.

State Branching
Unlike the strategies up to this point, state branching introduces the idea of a location
or snapshot for some of the branches. Often our deployment diagrams are overly sim‐
plified and suggest that code moves between environments (Figure 3-5), but generally
this isn’t really how it happens. Instead, Figure 3-6 shows the code is merged from
one branch to another, and each of the branches is deployed to a specific environ‐
ment. (Yes, we’ll talk about tagged releases later. Patience, grasshopper.) As Figure 3-6
shows, there’s often a mismatch between the branch names that are used and the
name of the environment we are deploying to. (What does master mean? Is it for pro‐
duction? For development? Are you sure?) This strategy was described as the GitLab
Flow model.

Figure 3-5. Deployment lies: code doesn’t really walk from the local server to the produc‐
tion server

42 | Chapter 3: Branching Strategies

www.allitebooks.com

http://bit.ly/gitlab-flow
http://bit.ly/gitlab-flow
http://www.allitebooks.org

Figure 3-6. The real deployment process uses a centralized code hosting system

Through branch naming conventions, GitLab Flow makes it clear what code is going
to be used in what environment, and therefore what conditions might need to be met
before merging in commits. For example, you would clearly not merge untested code
into a branch named production. Alternatively, if you are shipping code to “the out‐
side world,” GitLab Flow suggests having release branches. Ideally, these release
branches should follow semantic versioning conventions, although GitLab Flow does
not explicitly require it.

Know When to Increment with Semantic Versioning

In semantic versioning, a release should always be numbered as fol‐
lows: MAJOR.MINOR.PATCH. The first number (MAJOR) should
be incremented when you make API-level changes that are not
backward compatible. The second number (MINOR) should be
incremented when you add new functionality that does not break
existing functionality (it is backward compatible). The third number
(PATCH) should be incremented when you make backward-
compatible bug fixes.

Conventions | 43

http://semver.org/

An interesting variation on the state branching strategy is the branch naming conven‐
tion that the Git project uses. It has four named integration branches:

maint
This branch contains code from the most recent stable release of Git as well as
additional commits for point releases (maintenance).

master
This branch contains the commits that should go into the next release.

next
This branch is intended to test topics that are being considered for stability in the
master branch.

pu
The proposed updates branch contains commits that are not quite ready for inclu‐
sion.

The branches work much like a stacked pyramid. Each of the “lower” branches con‐
tain commits that are not present in the “higher” branches. As is shown in Figure 3-7,
maint has the fewest commits, and pu has the most commits. Once code has passed
through the review process, it is incorporated into the next integration branch, get‐
ting closer to being incorporated into an official release.

Figure 3-7. Integration branches used by the Git project

There are several advantages to using a state branching strategy:

44 | Chapter 3: Branching Strategies

http://bit.ly/gitworkflows-docs
http://bit.ly/gitworkflows-docs

• Branch names are context specific and completely relevant to the work at hand.
• There is no guessing about the purpose of each branch, making it easier for peo‐

ple to select the right branch when merging their work.

There are also disadvantages to using a state branching strategy:

• It’s not always obvious where to start a branch from without guidance.
• Because the branch names are extremely specific to the context of that team,

it can be harder to get consistency across projects, making onboarding more dif‐
ficult.

Left to my own devices, I typically end up with this style of branching for my own
projects. I like using words that mean something to me instead of terms that meant
something to someone else on some other team. Pedants, unite! Unless you prefer
your own word. ;)

Scheduled Deployment
Scheduled deployment branching is the most appropriate strategy to use if you do not
have a completely automated test suite, and in any situation where you must schedule
a deployment. This may be because you have deployment windows (for example,
never after 4PM, and never on a Friday); or an additional regulatory gate you need to
pass through (for example, iOS applications being deployed to the App Store). As
soon as you involve humans in a review process, or someone else’s arbitrary con‐
straints on your deployment process, there will inevitably be delays somewhere, and
you will need a way to suspend your work while you wait for the humans.

Through the different types of branching strategies, we have been adding an increas‐
ing amount of complexity to the branching that takes place in a repository. We started
with just one branch, and then we added features and an integration branch. In a
scheduled deployment, we add to this again. However, scheduled deployments can
get quite complex in their branching patterns. They should be built up over time, and
only as the complexity is warranted.

In this section, I will walk you through the progression of how the GitFlow branching
strategy can be implemented by a team. GitFlow, the most popular implementation of
this strategy, was first described by Vincent Driessen. It has been used by countless
teams around the world to structure software projects. It can look very complex when
it is presented in its final form. Fortunately, though, software projects build up to this
point; they don’t start out this way. If there are any parts of the GitFlow that which are
not relevant for your team, you can omit them from your project.

Let’s walk through the model together.

Conventions | 45

http://bit.ly/nvie-branching-model

At first your software project has a single branch, develop. From this branch, your
programmers create a diverging branch and add their features. Figure 3-8 shows that
at this point, the diagram of GitFlow looks very similar to the previous models
described in this chapter. In this case I will use the term “features” very broadly. A
feature could actually be a bug fix, a refactoring, or indeed a completely new feature.
Ideally when you’re working with a team, a feature will be described in a ticket before
you start your work, and the branch name will resemble the ticket name. For exam‐
ple, if you had a ticket “1234” that was a bug report to fix a broken link, and you were
using the convention [ticket_id]-[terse_title], your branch name would be
1234-fixing_links.

Figure 3-8. Development and feature branches used in GitFlow

Your team works and works and works and then you get to a point where you say
“No new features!” We’ll often refer to this as feature freeze. At this point, a new
branch is created from the development branch, as shown in Figure 3-9, and the only

46 | Chapter 3: Branching Strategies

things that can be committed to this branch are bug fixes. These bugs may include
regressions in performance, security flaws, and other general bits and bobs that are
now broken. In more traditional Waterfall team structures, this bug-fixing period
would be led by a quality assurance team. In a more Agile team, a developer would
follow the issues through the series of branches to deployment, and would even be
responsible for testing the work of others. We’ll talk more about the review process in
Chapter 8.

Figure 3-9. Feature freeze in GitFlow; only bug fixes are allowed

Perhaps not all features were completed when the feature freeze happened, so there is
still work being committed to the develop branch. And if bugs are reported, these
bugs need to be incorporated “backward” into the develop branch as well.
Figure 3-10 shows our first view of a branching diagram with code being merged in
two different directions. The longer your quality assurance period, the more likely
you are going to have work happening both on the develop branch and also on the
release branch.

Conventions | 47

Figure 3-10. Development continues, but is not incorporated into the release branch

After an amount of time in testing, it will be declared that all bugs have been found,
and what remains is ready to be deployed. Congratulations! At this point, all code
that has passed quality assurance testing is committed to a new branch, master,
which is then tagged (like a bookmark) with the version of the software at that point.
The software is then deployed as shown in Figure 3-11. Your project manager gives
you a heart-shaped candy, or maybe an animated GIF, and you get the rest of the day
off. Good job, team! (If your project manager is not doing this, kindly send them my
way and I’ll have a little chat with them on your behalf. We’re all friends here,
it’s cool.)

Of course, reality dictates that sometimes bugs that need to be immediately fixed will
sneak into the software. These hotfixes are so critical that a programmer should not
go home for the evening before they are fixed. They are generally made by initiating a
branch from the production branch, and when the hotfixes are released, they do not
contain any additional work that has been happening since the last official release, as
shown in Figure 3-12.

48 | Chapter 3: Branching Strategies

Figure 3-11. Software is released by merging onto a new branch, master, with a tag

Define “Urgent” with Your Team

A developer I used to work with once told me that a bug could only
be marked as a hotfix if he wasn’t allowed to go to the pub for a pint
of beer before it was fixed. This radically changed my perception of
what it meant for a problem to be marked as urgent. We recalibra‐
ted our definition of “urgent” and had fewer late nights as a result.
In the same vein, I once worked with a client who was willing to
mark tickets as “super very important, for later.” Have fun with
your naming conventions where you can but make sure you docu‐
ment what they mean so you can avoid frustration of things not
being completed in a timely manner.

We’ve slowly built up these branches as we needed different places for work to
continue happening. You don’t need to create all of these branches to start. In fact, it’s
better if you don’t, because it ends up being more code to maintain. Once you’ve got
code in production, and code in development, you end up having a lot of wheels
turning on your branching graph, as shown in Figure 3-12. This can be overwhelm‐
ing for a newcomer, but it will be a natural progression for any developer who has

Conventions | 49

worked on the project from the beginning. And if you choose to use this convention,
it will also feel familiar to any new developer who has worked with this model previ‐
ously.

Figure 3-12. A hotfix is made, rolled into master, and our release tag is now 1.0.1

There are several advantages to using a scheduled deployment strategy:

• Scheduled deployment does not require an extensive testing infrastructure to
start using.

• The process of building software, with phases for development, quality assur‐
ance, and production, is very common. This means GitFlow conventions will feel
very familiar to software developers once they understand the process of how
and where their typical tasks happen in the branching convention.

• By adhering to conventions, developers should always be able to determine from
which branch they should begin their work.

• This is also a good model for versioned software, such as a product that you’d
download from an app store where it is not appropriate to be deploying a new
version every few days.

50 | Chapter 3: Branching Strategies

There are disadvantages to using a scheduled deployment branching strategy as well:

• There is a lot of cognitive overhead for developers who are new to software
deployment and haven’t experienced the process of walking a product through
each phase of development.

• If developers start their work from the wrong branch, it can be squirrelly to get
everything back in sync.

• It’s not as trendy as continuous deployment.

The scheduled deployment strategy offers the most rigid conventions about how code
should be moved through the review gates. It is typically used when there is little to
no automation for code review, and it is always present in some form for projects that
are not using an automatic deployment scheme. Any time work is collated before
being released, you will have at least some of the characteristics described in this
section.

Updating Branches
This chapter has focused on common strategies used to isolate and merge streams of
work. The strategies have focused on a single best-path scenario where branches of
work are magically kept up to date with all relevant work happening elsewhere. In a
distributed version control system the way you incorporate external work is inde‐
pendent of the branching strategy that you’ve chosen. When updating a branch, you
can choose from one of two strategies: merging or rebasing. Before diving into the
differences in these two strategies, let’s take a quick look at how connections are
maintained between multiple repositories.

Every Git repository is an autonomous record of changes. Connections can be made
between repositories by establishing a remote reference. This reference allows a
developer to copy a record of all commit objects made in the remote repository to his
or her local repository. Remote connections are typically made to repositories with at
least a partially shared history. For example, the initial download of a repository
using the command clone would result in a duplicate copy of the remote repository
and its commit objects.

Let’s say, for example, you wanted to add your work to your coworker’s branch. You
make a connection to their remote repository, fetch their branch, and try to add your
work. But you can’t! If it were a local branch, you could add a few new commit
objects to the tip of the branch. However, because it is a remote branch you want to
update, you cannot assign a new commit object as the tip of the branch in your repos‐
itory because this can only be done by the owner of the remote repository. Instead,
you must first create a new tracking branch to store your changes.

Updating Branches | 51

Some Tracking Branches are Automatic

By default the command clone will create a tracking branch named
master that is identical to the remote branch of the same name.

So now you have a local copy of a branch which you can add new commits to, a refer‐
ence copy of the branch which you cannot add commits to, and the original branch
still exists in the remote repository. Inevitably these branches will get out of sync as
you and your coworker make changes to your respective repositories. Remember
when you update your local repository you have two branches you need to update.
On its own the command fetch will update the reference copy of the branch, down‐
loading any new commits. Your mutable tracking copy of the branch, however, can be
updated in more than one way. The is because you are now merging two branches
into one, an action for which there are multiple strategies in Git. And where there is
choice, there is potential for disagreement on which method should be used.

The process of updating your tracking branch from its remote reference will typically
be achieved by using the command pull. However, pull is a combination of two dis‐
crete steps: fetch and merge or fetch and rebase. By default the command pull uses
the merge strategy to update the local branch; however, by adding the parameter
--rebase, a developer can opt to bring his or her local branch up to date using a
rebase strategy instead.

All Your Rebase Are Belong to Us

Rebasing can be used to update a sequence of commits in one of
two ways. First, as an alternate method to merging when incorpo‐
rate new work from a related branch (bringing a branch up to date).
Second, to alter history on the existing branch by adding, chang‐
ing, or removing individual commits in the branch’s history of
commits to make it a more concise history. This section refers to
the former use of the term.

Rebasing has earned its reputation for being complicated and frustrating. But from a
graphing perspective, rebasing is actually the easiest strategy to read. Figure 3-13
shows two branches before and after rebasing one branch onto another. Typically, we
explain rebasing as replaying existing commits onto an existing time line. This anal‐
ogy, although technically incorrect, works extremely well as a mental model for
understanding the difference between merge and rebase.

While the command rebase is used to bring a branch up to date, the command merge
is used to introduce completely new work. When the command merge is used with
the fast-forward strategy the resulting graph is virtually identical to the output of a
rebased branch. This fast-forward merging only works if the branch receiving the

52 | Chapter 3: Branching Strategies

merge contains only commits that are included in the incoming branch. As
Figure 3-14 shows, the graph for a fast-forward merge is as clean as rebasing.

Figure 3-13. Rebasing two branches changes the history of one branch so that it appears
as though the other branch was always in place

When there is new work on both branches, and you want to combine the work, you
will need to store the combined work in a new commit. Several different merge
strategies can be applied, and Git will choose the best one for your particular situa‐
tion. If you’re really curious about the different merge strategies, the Git help pages
for merging can tell you how an octopus and a recursive merge are different. To read
the documentation, run the command git help merge.

Need Help Choosing Between Merge and Rebase?

The graphed output is virtually identical for two branches which
have been combined using either merge with fast forward or
rebase. This can make it confusing to know which one should be
used at what point. So confusing, in fact, that some teams choose to
use the commands interchangeably! If you invest a little time in
understanding when to use which strategy you will have agility in
using different branching strategies for different projects you may
work on. Merge or Rebase? includes a decision tree diagram to help
you identify when you should be using each of the two strategies.

Updating Branches | 53

http://gitforteams.com/resources/merge-rebase.html

Figure 3-14. Merging two branches using the fast-forward strategy is as clean as rebasing

If you are merging to bring your work up to date, the graphed history can get quite
difficult to read as the connections become bidirectional. In other words, history
swerves between the two branches as the code is brought up to date and new features
are published into the main branch. Figure 3-15 shows how a merge keeps a histori‐
cal record of where something came from. This is great if you’re incorporating a fea‐
ture branch into the main development branch for your project, but it can be quite
confusing if you’re trying to read the history of only the current features because the
main development branch will now be spaghettied into your history graph, with
merged connections being drawn from both the feature branch and the integration
branch.

As a result of this synchronization issue, developers using Git typically don’t work on
the tracking branch when they are planning to submit their work back to a project.
Instead, a developer will make a fourth copy of the branch (a copy of the tracking
branch which is a copy of the reference branch which is a copy of the remote branch).
Regardless of the branching strategy, a tracking branch generally maps onto any long-
running branch (e.g., master, or a release branch), and the working branch is a fea‐
ture, ticket, or hotfix branch.

Rebasing a branch to bring it up to date makes history easier to read by simplifying
the graph. Rebasing does, however, come at a cost especially if your copy of the
branch contains commit objects you have created. In order to rebase a branch that
has its own unique commits, you must replay each of your commits onto the new
branch tip—assigning each commit a completely new identifier in Git as it is assigned

54 | Chapter 3: Branching Strategies

a new parent. This can cause confusion if the commit that is assigned a new parent
was one that had previously be shared in other remote repositories. In addition to the
new identifiers, each time you replay a commit, there is a potential for a merge con‐
flict, and conflicts are time consuming to deal with. It’s a little like keeping timesheets:
so long as you invest a little time each day to keep your timesheets up to date, they’re
no big deal. But if you’re really bad at remembering to make entries on your time‐
sheets each day, it can be time consuming to try and catch up. The reward for main‐
taining an up to date branch through a rebasing strategy is an easy-to-read branch
history. But is it worth it? It can cost novice Git users a fair amount of confidence if
they are not entirely comfortable resolving merge conflicts.

Your homework is to talk with your team about which is more important: ease of use
(choose merging to bring branches up to date), or an easier-to-read historical graph
(choose rebasing to bring branches up to date).

Figure 3-15. Merging two branches without the fast-forward strategy

Summary
If you are working with a Git hosting system, such as GitHub, Bitbucket, or GitLab, a
branch might be used to separate the work being done for a particular bug or feature
ticket. Depending on your branching strategy, your goal may be to keep the branches
separate indefinitely, or you may want to merge the branches every so often to com‐

Summary | 55

bine the work that has been done separately into one deployable branch. Even though
all of the information is stored in the repository, only one branch is ever visible at a
time. The checked-out branch is visible in the working directory. So if you have two
ideas that you’ve been working on and you want them both to be present on your
server, you’ll need to merge the two branches into a common branch so that they can
both appear at once.

This chapter covered several branching strategies that you can use with Git, along
with variations within these strategies that have been used by some teams:

• Mainline development
• Branch-per-feature deployment
• State branching
• Scheduled deployment

In addition to these strategies, you will also need to decide how your team will incor‐
porate new work into shared branches; and keep branches up to date. For very novice
teams, there is not always an obvious answer to how branches should be kept up to
date. Two strategies were offered: rebasing or merging. A rebasing strategy can be
more difficult especially if it is not performed regularly; however, it does give your
history a cleaner graph that is easier to review. By using merges to keep your branch
up to date, the history of your project will be more difficult to review. So if the origin
of how your work came to be doesn’t matter, you can choose either strategy, but if you
will be reviewing the history often, rebasing will make future work easier (even
though it can be more time consuming in the moment).

56 | Chapter 3: Branching Strategies

CHAPTER 4

Workflows That Work

I love working with teams of people to hash out a plan of action—the more sticky
notes and whiteboards the better. Throughout the process, there may be a bit of argu‐
ing, and some compromises made, but eventually you get to a point where people can
agree on a basic process. Everyone gets back to their desks, clear about the direction
they need to go in and suddenly, one by one, people start asking, “But how do I
start?” The more cues you can give your team to get working, the more they can
focus on the hard bits. Version control should never be the hard part.

By the end of this chapter, you will be able to create step-by-step documentation
covering:

• Basic workflow
• Integration branches
• Release schedules
• Post-launch hotfixes

This chapter is essentially a set of abstracted case studies on how I have effectively
used Git while working in teams. You will notice my strong preference for Agile
methodologies, in particular Scrum, in this chapter. This process for collaboration
works well with the popular workflow model, GitFlow. If you are already very famil‐
iar with GitFlow, you should still read the first section in this chapter on establishing
and documenting your team’s procedures.

Evolving Workflows
In Chapter 2, you learned about governance models, and in Chapter 3, you learned
about branching strategies. The way we work together through Git can get quite com‐

57

http://bit.ly/nvie-branching-model

plicated very quickly, and the greater the complexity, the harder it is to remember
how it all works. Establishing conventions with your team will help to maintain con‐
sistency, which will help you to quickly decipher the history of your code.

In this section you will discover:

• Basic tools to document your team’s process
• Where documentation should be placed
• What types of things need to be documented
• Sample states for your ticketing system

It is never too late to talk to your team about how they want to work together, and it’s
never too late to improve on the processes you have in place. If you are using Agile
methodologies, you may already have dedicated time for retrospective meetings, or
Kaizens, to review your development process.

Documenting Your Process
Git, as an inanimate piece of software, doesn’t actually care how you set things up.
Rest easy, because Git won’t suddenly reach out from your computer and wag its fin‐
ger at you crossly if you use the wrong branch name or use merge when you should
have rebased (although sometimes I think it would be nice if it did). It’s up to you to
decide how you want to use Git.

The easiest way to be consistent is to follow a set of rules, or a checklist. Each time
you begin working on a new site you should document the workflow. By starting
from a template (Example 4-1), you will ensure “obvious” details are still obvious
when you onboard new people, or even better, in a moment of crisis.

Example 4-1. Template workflow

Product Manager: Name
Dev site: URL
Branch deployed on dev site: name of branch
Live site: URL
Branch deployed on live site: name of branch
When starting a dev ticket, branch from: name of branch
When starting a hotfix ticket, branch from: name of branch
When updating your work, use: git command
When merging your work post review, use: git command

The more details you include in your documentation, the more consistency you will
have among your teammates, and the easier it will be to unpack the historical record
of your repository.

58 | Chapter 4: Workflows That Work

If you are collocated, sit down and sketch out the diagram of where the permission
divisions should be made in your code. If you’re a distributed team, that doesn’t mean
you can’t still sketch things out. And you don’t need to be an illustrator. There are lots
of decent diagram programs out there to help you sketch out your ideas. I’m a fan of
Balsamiq for very basic diagrams. Others have also recommended Pencil, Omni‐
Graffle, Dia, and Inkscape. The diagrams from Chapter 2 will be a useful starting
point for many teams. All of the diagrams from this book are also available as both
SVG files and Balsamiq files. You can download them from the Git for Teams Dia‐
grams repository.

Documenting Encoded Decisions
Throughout this book, I will talk about working on tickets, or issues. The rigor of
open source software projects has enforced more than a few good work habits, one of
which is the use of a bug tracker to capture all requirements. For open source
projects, I’ve used product-specific trackers, such as the Drupal Project module
(affectionately referred to as The Issue Queue); and generic solutions, such as GitHub.
For internal projects, I’ve also used Pivotal Tracker, JIRA, Redmine, and Unfuddle,
among others.

Each of these systems has positive and negative aspects. I don’t have any one favorite
product. At their core, these systems allow you to document and track the discussion
of the work to be done, the tasks that need to be completed, and a summary of any
follow-up issues that may have been discovered during quality assurance testing. I
cannot imagine working with a team where there wasn’t a centralized ticket tracker
capturing the information about the work being done.

Collocated teams may choose to use a whiteboard and sticky notes to show what is
currently being worked on. Some teams also use very simple spreadsheets to track
who is currently working on what task. Perhaps the conversations and related assets
(e.g., diagrams, design assets, wireframes) are stored in a wiki so that whiteboards can
be wiped down and used for the next conversation. No matter which system you use,
I encourage you to track at least the rationale for the decisions that are made about
why features are being built in an easy-to-read and searchable system. If you don’t
capture this information in writing somewhere, you may have to resort to guessing
about why decisions were made in the past.

Using ticketing systems, however, can make teams dependent on sticking with that
particular system if the decisions aren’t also captured in the commit messages for
each change to the repository. Your team may choose to think of the conversation as
ephemeral, tracking conclusions in commit messages and allowing themselves to
move on from the conversation itself.

It’s a balance. The trick is to anticipate future conversations and ensure your tracking
system has a way to easily answer questions. Perhaps you want to prevent a future

Evolving Workflows | 59

https://balsamiq.com/
http://pencil.evolus.vn/
https://www.omnigroup.com/omnigraffle
https://www.omnigroup.com/omnigraffle
http://dia-installer.de/
http://www.inkscape.org/en/
https://github.com/gitforteams/diagrams
https://github.com/gitforteams/diagrams
https://drupal.org/project/project
https://github.com/
http://www.pivotaltracker.com/
https://www.atlassian.com/software/jira
http://www.redmine.org/
https://unfuddle.com/

developer from forcing you to rehash a conversation after a decision is made. In this
case, you’ll want a ticketing system that shows the progression of arguments from
both sides (as comments) as well as the final conclusion, and a link to the commit
where the decision was solidified as code. Perhaps you are creating software that is
subject to industry regulations and you are required to prove that software has been
through a specific review process. In this case, it may be sufficient for your software
repository to have signed commits from individual quality assurance testers.

I don’t think there is any one system that is better at tracking software development.
Many have strengths, and they all have their limitations. If you are using a specific
process management philosophy that advocates a specific task workflow, you may
find it easier to use software products that have been optimized for this process. For
example, a Kanban board is a very specific way of dealing with tasks.

Most of the Git hosting platforms also have a basic ticket tracker to help you coordi‐
nate the development of your project. Part III covers three of these systems (Bit‐
bucket, GitHub, and GitLab) in greater detail.

Ticket Progression
Even if you are working on an internal project without fixed deadlines, I recommend
finding a small unit of time to iterate through. My personal preference is for one-
week sprints. For internal projects, these sprints can act as arbitrary deadlines to keep
the team motivated and moving forward. At the end of each sprint, I recommend
hosting an internal demo so that the team can show off their work. This public dis‐
play of work keeps developers accountable. If your team is distributed, you can host
these demos over Google Hangout, or GoToMeeting for larger teams.

Project methodologies that track the work of people will all have some variation of
these basic ideas:

Not Now
In Scrum terms, this would be referred to as the product backlog, Essentially,
though, it’s anything that has not been deemed relevant for this work effort (or
sprint). Developers should not pick from this list of tickets. The backlog should
be prioritized to give hints to the team on what should be worked on in the next
work sprint. Recently, a team that I worked with referred to this as the “super
very important for later” pile.

Ready for Work
Prioritized tickets for this work iteration. These tickets might be blockers for
tickets in the backlog, or simply be the next piece the team has chosen to work
on. Your team may want to subdivide this stage into separate subcategories, such
as: Ready for Development, Ready for Code Review, Ready for Testing, Ready for
Client Approval, and Ready for Deployment.

60 | Chapter 4: Workflows That Work

http://www.google.com/+/learnmore/hangouts/
http://www.gotomeeting.com/

In Progress
A developer is currently working on this ticket, or a quality assurance review is
being done. With larger teams, you may want to break this category down further
as well. For example: In Definition, In Development, and In Testing.

Completed
The work has been finished, or has been canceled. Perhaps there were follow-up
tickets, but only very rarely should a ticket be reopened after it has passed a code
review, quality assurance review, and a client review.

Do Not Allow Your Project Managers to Overcategorize!

Allow your team to grow into states as needed. I have worked on
too many projects where a team of project managers had decided
on a range of categories that described every possible state. The
system was always cumbersome to use. (And I am a category loving
manager!) The developers never liked trying to remember to
micro-shift their tickets, and, more often than not, the tickets
weren’t in the right state unless a project manager was the one
moving the tickets through the progression of states. Have compas‐
sion for developers who want to develop, not spend their day
updating timesheets and micromanaging ticket updates. Start sim‐
ple. Make as few categories as possible. As the team of developers
asks for new states, add them.

As an example of a variation, the team I worked with in the fall of 2014 had nine peo‐
ple working in the ticket tracker on the tickets throughout the project (a relatively
small project, but a typical team size for Agile projects). The ticket tracker had sum‐
mary columns for the following statuses:

On Deck
This ticket is ready to be worked on, and should be completed during this week’s
work.

In Progress
This ticket is actively being worked on.

Pull Request
The code has been written, and is ready to be reviewed and merged into the main
branch.

Needs Testing
The code has been reviewed, and rolled into the development branch. It is ready
to be reviewed on the quality assurance server by a team member.

Ticket Progression | 61

Done
The ticket is completed. This state is also used for tickets that are closed without
being completed (duplicate task, feature no longer needed).

The backlog was simply a collection of tickets without a status assigned.

If a developer was ever blocked, he or she would reassign the ticket to the person
most likely to “unstick” the issue. Getting into the habit of trading tickets to commu‐
nicate with others is a cultural piece that won’t work for all teams—but it does seem
to work well for distributed teams where you can’t just tap someone on the shoulder
to get your questions answered.

I love a categorization system more than the average developer; however, adding
complexity has consequences. Complexity increases the time it takes people to decide
which variation their ticket currently belongs to (“is this Needs Testing or Pull
Request?”). It also increases the number of times developers have to open the ticket‐
ing system, instead of their code editor. This has the potential of both improving
communication with other developers and slowing down the actual doing of the
work. You’ll need to monitor this closely to see where you can make refinements to
improve your own process.

Pick Your Own Battles

Teams I’ve worked on have responded well to developers being able
to self-assign at least a few of their own tickets. Sure, there may be
some tickets that require the specialized knowledge of one person,
but it’s amazing how much of a difference it can make when it’s that
one person who identifies he or she needs to work on that ticket
instead of being told what to do.

It is near impossible to over-communicate with your team members. I don’t mean fill‐
ing your time with unstructured meetings; I mean truly communicating what you are
working on, and what is preventing you from getting your tasks completed. The
ticket status helps you to standardize the communication—so make it easy to keep up
to date, and ensure everyone on the team gets into the habit of confirming their ticket
status once a day.

A Basic Workflow
This basic workflow is appropriate for small teams of one or two trusted developers.
As was mentioned in the introduction, it is a stripped down version of GitFlow; but
without the extra levels of complexity, it also resembles a branch-per-feature work‐
flow. As such, you may find it also works well for teams of developers with a testing
infrastructure, who are aiming for rapid deployment of code.

62 | Chapter 4: Workflows That Work

Key characteristics include:

• Governance model: contributors with shared maintenance
• Integration merge: performed by original developer
• Integration branch: develop

My personal preference for this workflow is closer to a Kanban-style system, which
allows tickets to flow through a work board; however, I find it much easier to com‐
municate plans to outside stakeholders by using the Scrum approach to time-boxed
sprints. In Scrum, a specific set of tickets is loaded into a sprint and the goal is to get
the number of outstanding tickets down to zero by the deadline. For internal projects,
Scrum-style sprinting can act as arbitrary deadlines to keep teams motivated and
moving forward.

At the end of each sprint, I recommend hosting an internal demo so that the team can
show off their work and ask for help from the wider group if they are stuck on a spe‐
cific piece.

The workflow is as follows:

1. As you begin a ticket, update the status in the ticket tracker to say the ticket is In
Progress. This will notify your team about what you are currently working on,
and will give you the number for the branch you will create to work on your
ticket.

2. From the branch develop, create a new branch whose name includes the ticket
ID and a terse description of the work. If you are working on tickets that have
subtasks, ensure the branch name uses the most relevant ticket number. For a
bigger feature, this ticket might be referred to in your ticketing system as a Meta
ticket or Epic ticket. If you are working on only part of the larger feature, you
should use the smallest relevant ticket number. Your ticket system might refer to
this as a user story, an issue, or bug ticket.

3. Work on your ticket, ensuring you keep the ticket branch up to date with any
changes that might have been incorporated into the branch master since you
started your work. Begin each commit message with the ticket number enclosed
in square brackets: [#1234].

4. Run relevant tests for your code to ensure typos and basic errors are caught. This
may include a spellcheck, and a language syntax check (linting). If you are work‐
ing in a test driven environment you will definitely have additional tests to run.

5. When you have completed your work (or think you have!), make a final commit
with the keyword “Resolves” and then the ticket number: Resolves #1234.

A Basic Workflow | 63

6. Optionally, push your ticket branch to the code hosting repository. With the key‐
word in place in your commit message, this will move your ticket tracker for‐
ward to the next step.

7. In your ticket tracker add a comment to the ticket to include a note about the
rationale for the approach you took and some kind of proof that the work was
been completed. For example, a screenshot of how the ticket changes the display
on your local development environment. This acts as a sanity check later if, sud‐
denly, things stop working.

8. Ensure the ticket branch is up-to-date and then merge your work in the branch
develop, and, assuming there are no merge conflicts, push the updated branch to
the central repository.

9. Assuming there were no new problems introduced by the new work (regressions),
the ticket can be closed.

10. Finally, delete your local ticket branch and the remote copy of the ticket branch.

In some ticketing systems, adding a pound sign (#) will automati‐
cally link the commit message to the ticket number. Adding square
brackets around the ticket number will ensure that commit mes‐
sages aren’t omitted if you choose to rebase your work because lines
beginning with a # are ignored when commit messages are auto‐
matically composed for the new commit objects. In many systems,
including the keyword “resolves” will automatically move a ticket
from In Progress to the next state (for example, Needs Testing or
Closed); this will vary depending on the ticketing system you’re
using. Check the documentation for whatever system you are
using.

This pattern works extremely well for small teams with no peer review requirements.
As your team starts to grow, or if you have a specific quality assurance process you
need to undergo, you may find this pattern is not rigorous enough for your needs.

Trusted Developers with Peer Review
This expands the basic team workflow by adding a peer review process. Now, every
ticket is reviewed by someone on the team from a code perspective. The rationale for
peer review testing, and not just automated testing (or test-driven development), is
covered in Chapter 8.

Key characteristics include:

• Governance model: contributors with shared maintenance
• Integration merge: performed by the reviewer

64 | Chapter 4: Workflows That Work

• Integration branch: develop

The workflow is as follows:

1. As you begin a ticket, update the status in the ticket tracker to say the ticket is In
Progress.

2. From your local copy of the branch develop, create a new branch.
3. Work on your ticket, ensuring your branch is kept up to date with rebasing.

Begin each commit message with the ticket number enclosed in square brackets
([#1234]), or with the keyword “Resolves” and then the ticket number: Resolves
#1234.

4. Run relevant tests for your code to ensure typos and basic errors are caught. This
may include a spellcheck, and a language syntax check (linting). If you are work‐
ing in a test driven environment you will definitely have additional tests to run.

5. Push your branch to the code hosting repository. This acts as your backup, so
don’t skimp on this step!

6. When you’ve finished working on your ticket, ensure the branch is up to date
with develop, and uploaded to the code hosting system. Mark your ticket as
Needs Testing in the ticket tracker.

Assuming a manual review is necessary, and there isn’t a series of automated tests, the
reviewer will finish off the remaining steps:

1. Perform a review of the work according to the original ticket description. It is the
coder’s responsibility to ensure his or her work is clear, and that the steps to test
the work are coherent. If necessary, send the ticket back to the developer with any
necessary changes, or to bring the branch up to date if it has gotten out of sync
with develop.

2. Merge the ticket branch into the branch develop, and, assuming there are no
merge conflicts, push the updated branch to the central repository.

3. Assuming there were no regressions, the reviewer will now close the ticket and
notify the developer that his or her work has been merged into the main branch.
Both the developer and the reviewer can now delete their local copies of the
ticket branch. Because they are currently in cleanup mode, the reviewer should
delete the remote copy of the ticket branch; the developer might have to break
focus in the current task to do the cleanup. Wherever possible, we should protect
the focus, and flow, of our teammates.

Once your team is large enough to have a review process, it makes sense to also have
a shared development server from which the team can conduct regular demos of
their work. This development server can also double as a quality assurance machine

A Basic Workflow | 65

during the development process. To reduce the overhead for team members needing
to check out the latest version of the develop branch and build the software, you may
choose to set up a Jenkins instance to automate the process.

Untrusted Developers with QA Gatekeepers
This process is a minor variation on the previous section “Trusted Developers with
Peer Review” on page 64. This time the process assumes an untrusted developer, who
is not allowed to merge anyone’s work into the main branch. Instead, a trusted quality
assurance (QA) team performs the final merge.

Key characteristics include:

• Governance model: contributors with collocated repositories
• Integration merge: performed by the reviewer
• Integration branch: develop

Developers begin by creating a fork of the project on the code hosting system, and
then creating a local clone from this forked copy of the repository. This step is only
performed once.

The workflow is as follows:

1. To begin a ticket, update the status in the ticket tracker to say the ticket is In Pro‐
gress.

2. From your local copy of the branch develop, create a new branch.
3. Work on your ticket, ensuring your branch is kept up to date with rebasing. Push

your ticket branch to your fork of the project as a backup of your work in pro‐
gress.

4. Run relevant tests for your code to ensure typos and basic errors are caught. This
may include a spellcheck, and a language syntax check (linting). If you are work‐
ing in a test driven environment you will definitely have additional tests to run.

5. When you’ve finished working on your ticket, ensure the branch is up to date
with develop, and push your work to your forked repository. Open a pull request
(in some ticketing systems, this might be called a merge request) for your work.

The reviewer will finish off the remaining steps:

1. Perform a review of the work according to the original ticket description.
2. On the main copy of the repository, accept the pull request. Depending on

the ticketing system, this might be done via a web UI, or in a local clone of the
repository.

66 | Chapter 4: Workflows That Work

http://jenkins-ci.org

3. Assuming there were no regressions, close the ticket. Because the work was com‐
pleted in a fork of the main project, there is no additional cleanup in the main
repository.

This approach also works well if your team is mostly trusted developers, but you have
a few contractors as well. You might want to have your contractors working in a fork
of the repository, instead of giving them write access to the main project. For some
types of software, this split might even be a requirement for your own staff. For
example, if you were working on firmware for a medical device, you might have very
strict government regulations you need to follow on who is allowed to check in work,
and how that work must be reviewed before it is added to a repository.

Releasing Software According to Schedule
The vast majority of the projects I have worked on have used a release schedule to
expose new versions of the software to its users. The process described in this section
is based almost entirely on the very popular workflow, GitFlow. If you are deploying
continuously, and do not collate multiple tickets worth of work into a specific release,
this section will not be relevant to you.

Publishing a Stable Release
Up to this point, all of the examples have been working from the branch, develop.
Eventually, though, you’ll want to release the product you’ve been working on. When
you’re ready to do this, you will need to split your repository into a public-facing
stable version of the product, and a developer-facing “no guarantees” version of the
product.

When the first version of your software is launched, a development manager will pre‐
pare the repository for a code release. Generally this work is done locally, and then
pushed up to the main copy of the repository.

The workflow is as follows:

1. From an agreed-upon commit, create a new branch named master.
2. Tag the agreed-upon commit with a version number with an easy-to-remember

naming convention. For example, v1.0.
3. Push the updated repository to the central code hosting system. If an automated

build process is not being used, update the relevant servers with the new code.

Once the first release has been published, you will now split your work into stable,
public-facing work and ongoing development.

Releasing Software According to Schedule | 67

http://bit.ly/nvie-branching-model

Ongoing Development
Once an official release of a product has happened, your team will effectively be
forced to think in two separate spaces at once: monitoring the health of the live code,
and continuing the development process to add new features or improve those that
already exist.

My preference, again, is for short work sprints. Developers are motivated to see their
work in action. The longer the sprint, the longer people have to wait to see others
engaging with their work.

The one-week release schedule I commonly use has the following routine. The days
vary a little from team to team, but the generalized procedure is a good starting point
for many teams.

Setup (Mondays):

• All work in the develop branch is merged into the testing branch, qa. Any work
that isn’t completed and peer reviewed by Monday simply remains in its ticket
branches.

• The testing server is updated with the latest version of the qa branch.
• A QA checklist should be created for each of the user stories completed in the last

week of work. A standardized ticket format will make this list easy to compile.

You may want to compile your QA checklist in a separate document, such as a Google
Doc, or an internal wiki. I’ve also used saved queries in JIRA to look for tickets
resolved in the last week, or which have been tagged for a specific release. This will
depend entirely on how you choose to track progress in your ticketing system.

Testing (Mondays and Tuesdays):

• Automated tests are run to ensure no new business-critical interactions have
suffered regressions (site visitors and members can still use all expected function‐
ality).

• Team members responsible for testing complete the checklist and update the
tickets according to a PASS or FAIL grade.

• Any bugs that are found have new tickets opened and are addressed before
launch day by either a new fix, or by removing the relevant commits from the qa
branch.

Launch Day (Wednesday):

• The qa branch is merged into the master branch and tagged with the release
version.

68 | Chapter 4: Workflows That Work

• The live site is brought up to date by checking out the commit on the master
branch, which has been designated as the newest release for the project. Using an
explicit tag ensures you can easily roll back to a previous known state.

Announcements about the latest features and fixes are posted to the development
blog. Many teams choose to wait a day or two after Launch Day before publishing
the blog post. This allows the team to ensure the release is stable and does not need to
be reversed.

Post-Launch Hotfix
Sometimes deployed code has mistakes in it. If a bug needs to be fixed quickly before
the next batch of software is ready, an out-of-cycle fix might need to be made. These
deployments are referred to as a hotfix.

In a hotfix, the work begins not from the develop branch, but from the master
branch. This ensures the changes only introduce a fix that addresses the problem
identified in the deployed code.

The workflow is as follows:

1. To create a hotfix branch, start by checking out the master branch, not the
develop branch. This will ensure that no additional features accidentally sneak
into the fix.

2. Generate a list of tag names, and locate the latest tagged release.
3. From the latest tagged release on the master branch, create a new branch, using

the branch name hotfix- <ticket_number>-<description>. For example,
hotfix-1234-fixing_three_seat_issue.

4. Complete the same review steps as you would for a development ticket.
5. Merge the tested hotfix branch into the master branch.
6. Tag the new commit on the master branch with the latest release version. For

example, v1.0.1.
7. Merge the tested hotfix branch into the development branch so that the changes

are not lost in the next official release of the software.

Collaborating on Nonsoftware Projects
Git isn’t just for software developers! As a technical author, I’ve used Git a lot to track
changes to files that weren’t software—for example, configuration files, articles I’m
writing, and even this book! Some people even use Git to maintain a personal journal.

Collaborating on Nonsoftware Projects | 69

To illustrate the importance of matching the Git commands to the team’s process, let
me explain how I structured the repository for this book.

While writing this book, I worked with the O’Reilly automated build tool, Atlas. This
system also has a web-based GUI, which allows editors to work on book files directly,
and saved files are immediately committed to the master branch. Due to the GUI,
there is no peer review process because anyone on my team is able to make edits
directly to a file. My preference, however, is to work locally, and not through a web
GUI. Initially, I had been keeping the branch overhead low locally and had just been
working in master as well. It only took me one merge conflict to alter the way I was
working locally.

When I wanted to update my work, I would use the command fetch to see if any
changes had been made by my editors. With the fetch completed, I would compare
my copy of the master branch with their copy of the master branch (origin/
master). Assuming I agreed with all the editors’ changes, I would merge in the edi‐
tors’ copy of the branch; if I disagreed, I would merge in their branch with the strat‐
egy --strategy-option=ours, effectively throwing out their changes but letting Git
think that the two branches were merged.

This can be done on a per-commit basis, or if there is a merge conflict, it can be done
on a very granular line-by-line basis with a merge tool. (It feels a bit passive-
aggressive to be throwing stuff out, but really it’s just the limitation of a single branch
system where you don’t have the ability to talk about the proposed changes in a sepa‐
rate branch.) Depending on the granularity of the commits, I might also choose to
cherry-pick some commits (and keep them), but discard other commits.

Then I started getting reviews as marked-up PDFs and realized, once again, I had
another way that I wanted to separate work. I wanted to be able to write a chapter and
keep those commits nice and tidy, but sometimes I was mid-chapter when an edit
came in that I wanted to address immediately. Instead of intermingling these com‐
mits, I set up the following structure for my branches: master, drafts, and one
branch per chapter.

The branch drafts gave me a place to integrate all of the work that I’d been doing. It
was kept up to date by merging in chapters as they were completed, or rebasing the
master branch if changes had been made by one of my editors. When I was first writ‐
ing chapters on my own, without others contributing, multiple branches would have
been a lot of overhead to maintain, but as more contributors started offering different
kinds of contributions, more granularity in branches allowed me to pick and choose
how I wanted the manuscript to progress.

As you can see, my process differed wildly from the workflows used for software
projects, but it’s still Git that I’m working with! Your work may have its own idiosyn‐
crasies that justify nonstandard branches. Don’t be afraid to experiment, but when

70 | Chapter 4: Workflows That Work

https://atlas.oreilly.com/

you do, document your process well so that others can understand what is expected
of them.

Summary
The workflows described in this chapter have been successfully implemented in
teams I have worked with. Your own team might want to make adjustments, but
starting from something will be a lot easier than starting from nothing.

• The workflow you use may change before and after the launch of your product.
• Before launch, you will likely have fewer integration branches, because the con‐

cept of a hotfix is unlikely to be an issue.
• By using your documentation to complete your work, you ensure your documen‐

tation is always up to date, which makes it faster to onboard others if you need
help.

In Part II, you will learn the commands necessary to implement the processes
described in this part.

Summary | 71

PART II

Applying the Commands to Your
Workflow

This part of the book approaches the commands in Git from a very practical point of
view. You will be presented with a scenario first, and then given the commands you
would need to get yourself into (or out of) trouble.

Hands-on activities are sprinkled throughout the chapters. Where possible, you
should do these activities because it will help you gain a greater understanding of the
commands (and will make the messages feel more natural when working with your
own software projects). Where there are diagrams provided, you should redraw them
because every motion that you make when learning a new activity will help to
develop the neural pathways needed to cement the information into your mind.

Before reading the chapters that follow, you should make sure you have the latest ver‐
sion of Git installed (see Appendix B) and that your system is correctly configured
(see Appendix C).

CHAPTER 5

Teams of One

Although this book is aimed at teams of more than one, there are often times when
we are working as a team of one—a solo developer. This might be a personal side
project, or you might actually be the only developer on your team. Working solo with
no team constraints can be intimidating because there’s no one available to walk you
through what you should do, or help you if you get stuck. In this chapter, I’ll show
you how I do my work when I’m working on my own projects. Of course there are
places where I get tempted to cut corners as a solo developer (after all, no one is
watching over my shoulder, so who would know if I took a little shortcut here or
there?). Where I can, I will show you the implications of those shortcuts.

By the end of this chapter, you will be able to:

• Create a local copy of a remote repository
• Initialize version control for an existing set of files
• Create a new repository from an empty project directory
• Examine the history of a repository via its commit messages
• Work with branches to isolate different streams of work
• Make commits to a local repository
• Use tags to highlight individual commits
• Connect your project to a remote code hosting system

If you are a creator (as opposed to a reviewer or manager), the majority of your time
will likely be spent using the commands outlined in this chapter. Being able to work
effectively with all of the tools outlined here should be considered a prerequisite to
the remaining chapters in this part.

75

Those who learn best by following along with video tutorials will benefit from Col‐
laborating with Git (O’Reilly), the companion video series for this book.

Issue-Based Version Control
Someone once told me that the person who can best describe a problem is the most
likely to solve it. In writing this book, I’ve found that to be entirely too true. When I
write myself a TODO item that is vague, such as “finish chapter 4,” I rarely feel moti‐
vated to work on the book. But when I write the task as “write-up sample workflow
for small teams like Mai’s,” I become way more motivated to dive into the writing.
This isn’t unique to writing books, though. As a team of one, you might not feel
entirely motivated to work on your code. If you’re like me, though, if the work is re-
framed as a way to help a person, you’re more likely to get it done.

If you’ve never thought about what motivates you as a developer,
you may enjoy Joe Shindelar’s presentation “A Developer’s Primer
to Managing Developers”.

You might be asking yourself, “what does this have to do with Git?” Each time you sit
down to work on a project in source control, you should have an idea about what
you’re trying to do. It doesn’t matter if you’re developing a new feature, fixing a bug,
refactoring old code, or just trying out a new idea; you should still have some kind of
motivation for tinkering. There are a lot of different ways to write down what you
want to work on, but the following works nicely and can be more rewarding than just
working on tickets.

The ticket has three main parts:

Problem
A terse description of what you’re trying to do

Rationale
The reason why you’d want to do this (who will it help if this problem is solved?)

Quality assurance test
How will I know that this problem has been solved?

This format is quite similar to another that I’ve seen used for Agile projects:

Card
A terse description of the problem, written from the perspective of the user

76 | Chapter 5: Teams of One

http://bit.ly/collaborating-with-git
http://bit.ly/collaborating-with-git
http://bit.ly/managing-developers
http://bit.ly/managing-developers

Conversation
Details about the problem you’re trying to solve; where possible, it should avoid
prescribing solutions

Confirmation
The steps a user (from the first part) will be able to take to verify the problem has
been solved

In a team of one, you might feel that the overhead of a ticketing system is a bit much
for you. Perhaps your paper notebook is sufficient. I often think this is true, but then
as I get working on my project, I start to lose track of all the little ideas I had. Some‐
times I start a new branch for each idea, but then end up getting buried under an ava‐
lanche of out-of-date branches. If this sounds like you, take a moment now to find
the ticket tracking options in whatever code hosting system you use, and start to get
into the habit of writing yourself love notes for what you plan to do with your soft‐
ware. At the very least, it will give you arbitrary numbers that you can use to create
branches and help you keep track of your code.

If you don’t have a code hosting system yet, I recommend GitLab,
or its free online offering, GitLab.com. It will allow you to create
private repositories with unlimited collaborators for free, and it can
be installed on a local network if you are learning Git behind a fire‐
wall. The advantage of a private repository is that you can hide
your work while you learn. If your work is hidden, you won’t be
able to take advantage of community support, but I understand if
you’re a bit shy right now. It happens to the best of us.

Once you have a way of tracking your ideas, the process for doing work should follow
these steps:

1. Create a new ticket in your issue tracking system; note the number on the issue.
2. In your local repository, create a new branch using the format issuenumber-

description.
3. Do the work described in the ticket (and only the work described in the ticket).
4. Test your work and make sure it is complete and correct. Ensure it passes your

QA test from the ticket you wrote in the development environment.
5. You now have a “dirty” working directory that contains new and/or modified

files. Add your changes to the staging area of your local repository.
6. Commit your staged changes to the repository.
7. Push your changes to a backup server. In many cases, this will also be where your

tickets are being tracked, such as GitLab, Bitbucket, or GitHub. Depending on

Issue-Based Version Control | 77

your ticketing system, the ticket may now be marked as resolved but not neces‐
sarily closed.

8. When you are completely satisfied with your work, merge your ticket branch into
your main branch (usually master) and push the revised branches to the code
hosting system.

9. Test your work again to ensure there are no follow-up issues.
10. Update your ticket as appropriate to close it out.

Depending on the type of code you’re writing, these steps may vary slightly. Rewrite
this list, in full, and include any steps that are different for the way you work. For
example, you may practice test-driven development, or have build scripts that you use
to deploy your code. Commit to following your own process. If you’re not really
motivated by words, draw out your process instead (Figure 5-1).

However you choose to do it, make sure you capture your process. You may choose to
tuck it into the repository as a README file, or print it out and paste it to your Kan‐
ban board. By practicing consistency now, it will become infinitely easier to work
with your coworkers to establish a process that everyone can follow.

In the remainder of the chapter, you will learn the commands needed to use the pro‐
cess I described. We’ll start by creating a new repository where you can store your
work.

Creating Local Repositories
When you create a new repository in Git, you generally begin from one of three start‐
ing points:

• From a clone of an existing repository
• From an existing folder of untracked files
• From an empty directory

In this section, you will learn how to create a new repository using each of these three
methods.

Begin by creating a folder that will store all of your sample repositories
(Example 5-1). You may choose to put this folder on your desktop, or in your home
directory, or somewhere else. Git won’t care, so long as you remember where the
folder is.

78 | Chapter 5: Teams of One

Figure 5-1. Sketch a diagram of your workflow

Creating Local Repositories | 79

Example 5-1. Create a project directory in your home directory

$ mkdir learning-git-for-teams
$ cd learning-git-for-teams

Unless otherwise stated, each of the exercises in this book will assume you have navi‐
gated to a sample repository within this folder. If it matters which repository you use,
I will specify it in the instructions. Generally, however, it will not matter.

Cloning an Existing Project
On code hosting systems, such as GitLab or BitHub, when you navigate to a project
page, you are typically given the option to download a .zip package of all the files or
create a clone of the repository. Often these options are close together, but not always.
Figure 5-2 shows the location of the repository URL in GitLab.

Figure 5-2. Locating the URL to clone a repository

Practice What You Will Do Most Often

By starting with a repository, you will also have an easier time of
learning the commands without having to invent problems to fix as
you learn Git.

To download a copy of a project, you will use the command clone, as shown in
Example 5-2. Unlike downloading a zipped set of files, creating a clone of a project

80 | Chapter 5: Teams of One

will download a copy of all the files in the repository—along with the commit history
—and it will remember where you downloaded the code from by setting up the
remote code hosting server as a tracked repository. Don’t worry, it doesn’t keep a per‐
sistent connection, but rather it bookmarks the location in case you want to check for
updates and download them to your local repository at a later date.

You will only clone a project once. Once the project is downloaded, you will use a
different set of commands to keep it up to date. In Chapter 7, you will learn different
ways to work with the command clone; in this chapter, we’re just going to use it to
grab a snapshot of a project so that you have something to work with.

Example 5-2. Create a clone of the Git for Teams repository

$ git clone https://gitlab.com/gitforteams/gitforteams.git

The following should appear in the output of your terminal window:

Cloning into 'gitforteams'...
remote: Counting objects: 1040, done.
remote: Compressing objects: 100% (449/449), done.
remote: Total 1040 (delta 603), reused 915 (delta 538)
Receiving objects: 100% (1040/1040), 9.49 MiB | 1.68 MiB/s, done.
Resolving deltas: 100% (603/603), done.
Checking connectivity... done.

Congratulations! You have just cloned your first Git repository. You can muck about
in this directory as much as you like. If you mess things up beyond recognition,
delete the folder and run the clone command again.

Now that you have this directory, you also have all of the support material for this
book. You can explore the supporting files, look for hidden Easter eggs, and generally
have something to start with as you learn the more advanced commands without
needing to worry about inventing weird scenarios, or destroying your own work.

Converting an Existing Project to Git
If I am working with software for the very first time, I tend to download a zipped
package of files and begin versioning with an initial import of the software at that
specific point. I’ll rip things out, move things around, and generally give myself a
trial-by-fire introduction of how (and why) I might want to keep things exactly the
way the original developers intended things to be.

In order to compare the effect of the commands you’re running, download a second
instance of the Git for Teams repository, but this time grab a zipped package of the
same repository you just cloned:

1. Navigate to https://gitlab.com/gitforteams/gitforteams.

Creating Local Repositories | 81

https://gitlab.com/gitforteams/gitforteams

2. Locate and download the zipped package for the project.
3. Unpack the project, and place it into your project directory for this book.

Because there is already a cloned copy of the files in this directory, you should
name this new folder gitforteams-zip.

You can start with any folder of files and create a Git repository from it using the ini‐
tialization command, init, as shown in Example 5-3. Git will be aware of all files in
this directory, including subfolders, so make sure you run the command init from
the root folder for your project.

Example 5-3. Initialize a directory for version control

$ git init

You will see a message similar to the following:

Initialized empty Git repository in /Users/emmajane/gitforteams/gitforteams-zip/.git/

Files are not immediately added to the repository. This is a feature because Git allows
you to ignore files as well, and so it is waiting for you to tell it exactly which files you’d
like to track. If there is a logical next step, Git will almost always have a useful sugges‐
tion in its status message. You should get into the habit of using the command status
as frequently as you would use Save in a word processing program. This command
does not save your work, but rather it lets you know what’s happening at this moment
in your repository—and knowing what’s happening is key to understanding Git. Go
ahead and check the status of your repository now (Example 5-4).

Example 5-4. Check the status of your repository

$ git status

Git lets you know the next step is to add the files you would like to track because you
have just initialized the repository:

On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 [lots of files listed here ...]

nothing added to commit but untracked files present (use "git add" to track)

Getting your files into Git is a two-step process. Although it feels a little tedious when
you’re first getting started, this is a feature because it allows you to make multiple

82 | Chapter 5: Teams of One

unrelated changes at once in your working directory. Changes can be staged into
groups of commits in the index—each group getting a different commit message. We
want to add everything that is in our working directory because this is the initial
import of files (Example 5-5).

Example 5-5. Add all files to the staging area of your repository

$ git add --all

Once again use the command status to check the status. The output will let you
know the files have been staged and are ready to be committed:

On branch master

Initial commit

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: [lots of files listed ...]

Now that your files are added, you can save their current state into the repository
with the command commit (Example 5-6).

Example 5-6. Commit all staged files to your repository

$ git commit -m "Initial import of all project files."

A lengthy commit confirmation message will be printed to the screen, notifying you
that the files have been added to your repository. Your project files are now under
version control.

Initializing an Empty Project
When we teach Git, it’s generally easiest to start with a completely empty directory,
void of any files. This is because it’s easiest for the instructor and the student to begin
from the same point. This exercise allows you to introduce yourself to Git without
worry:

1. Create a new, empty folder:
$ mkdir empty-repository

2. Change into your new folder:
$ cd empty-repository

3. Run the Git initialization command:
$ git init

Creating Local Repositories | 83

4. Verify the hidden repository folder was added:
$ ls -al

On Windows:
dir

If you see a new hidden folder, .git, your repository has been created. This folder will
contain the record of all the changes to your repository. There’s nothing scary con‐
tained in this folder, but if you remove it, your project will no longer be tracked. This
means you will not be able to recover previous versions of any of the files in your
repository, you will lose all commit messages for your repository, and whatever state
the files are currently in will be immutable.

At this point, you can follow the additional steps from the previous section to add
files (Example 5-5), and commit them to your repository (Example 5-6).

Reviewing History
Once you have made your first commit into a repository, you are ready to start
reviewing history. Of course, the history of your project is a combination of the work
you have done, as well as the work done by others you have collaborated with. It may
not feel like collaboration if you’ve merely downloaded an open source project, but it
is. Collaboration can be as simple as adding your changes to someone else’s work.

To review the changes that have been made in a repository, use the command log
(Example 5-7). By default, this command allows you to review the commit message
and author information for every commit in the branch that is currently checked out
of your local repository.

Example 5-7. Reviewing a repository’s history with log

$ git log

The command log will output a full history of your repository’s commit messages in
reverse chronological order.

Ensure Your Details are Configured

If your name and email address aren’t displayed, refer to Appen‐
dix C for tips on how to configure Git.

If you’ve only made one commit message, the initial import, there will only be one
message displayed:

84 | Chapter 5: Teams of One

commit fa04c309e3bb8de33f77c54c1f6cc46dc520c2ca
Author: emmajane <emma@emmajane.net>
Date: Sat Oct 25 12:44:39 2014 +0100

 Initial import of all project files.

If, however, you are working with a more established code base, there will be a lot of
messages. This can be quite overwhelming and difficult to scan. You can shorten the
messages to just the first line of the message by adding the parameter --oneline as
shown in Example 5-8. To exit, press q.

Example 5-8. Viewing a condensed history of your project

$ git log --oneline

To get a sense of how the same files can have a different history, run the commands
from Examples 5-7 and 5-8 from both the cloned repository and from the repository
you created from a downloaded .zip package. Even though the files are identical, their
history is different (this will come up again when we talk about rebasing in Chap‐
ter 6).

Other branches will have different commits, and different copies of
the repository will have commits made by different developers. It’s
basically anarchy, but limited to each little repository. The conven‐
tions we establish as software teams are what bring order to the
chaos and allow us to share our work in a sane manner. (Remem‐
ber the branching strategies we learned in Chapter 3? They’ll keep
the work sorted into logical thought streams. Remember the per‐
mission strategies from Chapter 2? They’ll keep people locked into
the right place, and unable to make changes to the “blessed” reposi‐
tory without the community gatekeeper’s consent.)

If you have completed all of the steps in this section, you will now have three separate
repositories to work from for the remaining activities. For the section on branching, I
recommend you work with the cloned repository because it has more to look at. For
the other sections, you may choose any of the three.

Working with Branches
In version control, branches are a way of separating different ideas. They are used in a
lot of different ways. You can use branches to denote different versions of software.
You might use very short-term branches to work on a bug fix, or you might use a
longer-term branch to test out a new idea.

Working with Branches | 85

Listing Branches
To get a list of all branches (Example 5-9), you can use either the branch command
on its own, or add the parameter --list. At the beginning of this chapter, you cloned
a repository; use that repository for this section because it already has branches for
you to look at.

Example 5-9. Listing local branches

$ git branch --list

A list of the local branches will be printed:

master

By default, the master branch is copied into your local repository and you can begin
working directly on it. In addition to this branch, you have also downloaded all other
branches that were available in the remote repository. They are available for reference
purposes, but they are not available to be worked on until you have set up a working
copy of the remote branch. To list all branches in your repository, use the parameter
--all (Example 5-10).

Example 5-10. List all branches

$ git branch --all

If you use this command in your local copy of the cloned repository, you should see
both your local branches and a list of remote branches. The * denotes which branch
you are currently viewing (or have “checked out”). The remainder of these lines all
begin with remotes/origin: remotes just means “not here,” and origin is the default
convention used for “my copy is cloned from here.” The final piece is the name of the
branch (master, sandbox, and video-lessons are all branches):

* master
 remotes/origin/master
 remotes/origin/sandbox
 remotes/origin/video-lessons

The list can be a bit misleading, though. The remote branch names do not actually
include the word remotes. This is just a piece of information about what type of
branch it is. To get a usable list of the names of the remote branches, use the parame‐
ter --remotes (or -r for short) instead (Example 5-11).

Example 5-11. List remote branches

$ git branch --remotes

86 | Chapter 5: Teams of One

This will give a list of only the remote branches (using their real names):

origin/master
origin/sandbox
origin/video-lessons

These branches are all accessible to you, although you’ll need to make your own copy
before committing changes to them.

Updating the List of Remote Branches
The list of remote branches does not stay up to date automatically, so the list will
become out of date over time. To update the list, use the command fetch
(Example 5-12).

Example 5-12. Fetch a revised list and the contents of all remote branches

$ git fetch

You will learn more about working with remotes in Chapter 7.

Using a Different Branch
When you check out a branch, you are updating the visible files on your system (the
working tree) to match the version stored in the repository. This switch is completed
with the command checkout (Example 5-13). The checkout process is a little differ‐
ent from a centralized version control system (VCS), such as Subversion. In a central‐
ized VCS, you would need an Internet connection to use the checkout command
because the branches are not stored locally, and must be downloaded in order to use.

Example 5-13. Switching branches with the command checkout

$ git checkout --track origin/video-lessons

Branch video-lessons set up to track remote branch video-lessons from origin.
Switched to a new branch 'video-lessons'

This command works differently in older versions of Git. If the previous command
gave you an error, you may choose to upgrade (see Appendix B), or run the following
variant:

$ git checkout --track -b video-lessons origin/video-lessons

This command (checkout -b) creates a new branch named video-lessons with
tracking enabled (--track) from the branch video-lessons stored on the remote
repository, origin. The local copy of the remote branch is available at origin/video-
lessons, and your copy of the branch is available at video-lessons.

Working with Branches | 87

You should now have a local copy of the remote branch video-lessons (Figure 5-3).

Figure 5-3. A local copy of a remote branch has been created

In your list of branches, it will look like the branch exists twice, except one includes
the reference information for the remote repository:

$ git branch -a

 master
* video-lessons
 remotes/origin/master
 remotes/origin/sandbox
 remotes/origin/video-lessons

From this new branch, you can review history using Example 5-22 or Example 5-23.
Note the commit history is not the same between the two branches.

Creating New Branches
For very tiny projects, I happily putter along in the master branch with each commit
acting as a resolution to a problem; however, the bigger the team gets, the more it will
benefit from having some structure in how people collaborate on the work. Chapter 3
covered the strategies you may want to adopt with your team for branching strategies.
As a solo developer it can be more difficult to know if you should be working on a
different branch. To help you decide, ask yourself a few questions:

• Is it possible I will want to completely abandon this idea if things don’t work out?
• Am I creating something that is a significant deviation from the current pub‐

lished version of the software?
• Does my work need to undergo a review before it’s published or accepted into the

published version of the software?
• Is it possible I will need to switch tasks before I’ve completed this work?

88 | Chapter 5: Teams of One

If you answered “yes” to any of these questions, you should consider creating a new
branch for your work. Teaching yourself good habits now is like buying insurance.
You hope you never have to use it, but you buy it just in case.

The best way to decide what goes into a branch is to start with the issue tracker. By
creating a written description of what you’re about to do, you will have a clear sense
of when to start and finish with your branch. Yes, this will often feel like overhead,
but it is a really good habit to get into, especially when you’re working in larger teams.

When you start a new branch, it will contain the identical history as the place you are
branching from at the moment you create it (Figure 5-4). When you review the his‐
tory of a new branch with the command log, it will also show the commits from its
ancestor branch.

Figure 5-4. New branches contain the same commits as their ancestor

Seeing as you are working on issue-based version control, your branch name should
reflect the ticket you are working on. For example, if the issue was “1: Add process
notes to README,” then the branch would be named 1-process_notes. The history
for the new branch will include all of the commits up to the point of departure, so
make sure you begin your new branch from the correct starting point. You can do
this by either using the command checkout to situate yourself in the correct branch
first (Example 5-14), or you can add the desired parent branch to your command
(Example 5-15).

Working with Branches | 89

Example 5-14. Creating a new development branch

First checkout the branch you want to use as the starting point:

$ git checkout master

Switched to branch 'master'

Next, create a new branch:

$ git branch 1-process_notes
[no message displayed]

Finally, check out the new branch:

$ git checkout 1-process_notes

Switched to branch '1-process_notes'

Although it’s a little more to remember, Example 5-15 does have the advantage of cre‐
ating a branch explicitly from the right base branch, meaning you don’t need to
remember the extra checkout step from the previous instructions.

Example 5-15. Creating a new development branch from the master branch

$ git checkout -b 1-process_notes master

Switched to a new branch '1-process_notes'

Once you are in your new branch, you can go ahead and do your work. As an exer‐
cise, I encourage you to try adding your notes on how your process works to one of
the three repositories you’ve created in this chapter. Once you’ve made all of your
edits, it’s time to commit the changes to your local repository.

Adding Changes to a Repository
Each time you make a change to your working directory, you will need to explicitly
save the changes to your Git repository. This is a two-part process. Figure 5-5 shows
how changes must be explicitly staged in the index, and then saved to your repository.

Figure 5-5. Changes in Git must be staged, and then saved to the repository

90 | Chapter 5: Teams of One

When you previously created a new repository, you imported a series of files all at
once (Example 5-5). You don’t have to add all the files at once, though. This can be
especially helpful if you have been working on unrelated edits that should be captured
in separate commits. If you do want to separate the changes into multiple commits,
you need to change the parameter --all that you used previously for the filename
you want to stage (Example 5-16). You can add one or more filenames at a time; the
filenames do not need to be the same type.

Example 5-16. Add selected changed files to your Git repository

$ git add README.md process-diagram.png

$ git add branch-naming-rules.png

For the most part, I add files to the staging area one at a time. I find this prevents me
from accidentally adding more than I meant to. At the command line, I can type the
first few letters of the filename and then press the Tab key, and the remainder of the
filename will be automatically typed out (this is known as tab completion and it’s one
of my favorite things to use). If, however, you have a lot of files you need to add, and
they’re all contained in the same directory, you may want to use a wildcard to match
files with a subdirectory (Example 5-17), or that all have a similar name
(Example 5-18).

Example 5-17. Add all files, recursively, from a given path

$ git add <directory_name>/*

Example 5-18. Add all files with the file extension .svg

$ git add *.svg

You can also completely omit the filenames, and instead stage files according to
whether or not they are known to Git. By using the parameter --update you can
stage all files that are known to Git, and that have been edited (or updated) since the
last commit:

$ git add --update

If you want to be even more outrageous, you can stage all changed files in the work‐
ing directory by adding the parameter --all. This will restage any files that have been
modified since they were first staged (ensuring all new edits are captured in the com‐
mit); stage any files that are known to Git, but not already staged; and stage any files
that are not currently being tracked by Git. It is a very greedy command! Before using
it, you should check the list of files that will be added:

Adding Changes to a Repository | 91

$ git status
$ git add --all

Once a change has been added to the staging area, it must be committed. If you con‐
tinue to work in any of the files you’ve added to the index, only the previously staged
changes will be added when you next run the command commit (Figure 5-6). If you
keep working on the file, and want to include these changes in your commit, you will
need to repeat the previous command where you added your files to the staging area.

Figure 5-6. A commit will only save the work that has been added to the index

You can commit your staged changes to the repository by running commit

(Example 5-6).

If this feels frustrating at first, you’re not alone! It took me a while to get used to this
behavior and I felt it was broken when it didn’t automatically notice I’d changed the

92 | Chapter 5: Teams of One

file and stage the new changes. It wasn’t until I started playing around with partial
staging of files that I realized how powerful it was to not have my changes automati‐
cally staged.

Adding Partial File Changes to a Repository
If you want even more granularity over your commits, you can choose to add partial
changes within a saved file by using the parameter --patch. One of my favorite rea‐
sons for committing files in this way is to record several unrelated edits into multiple
smaller commits.

Adding files via the --patch process is a multistep approach (Example 5-19). You will
first initialize the procedure, and then choose from a list of options on how you want
to create your patches. You will be prompted to add the change to the staging area (y),
or leave this hunk unchanged (n). Changed lines will begin either with a - (line
removed) or a + (line added). If a line has been changed, it will display as both
removed and added.

To separate the hunks into smaller units, you can use the option s to split the hunk.
This will only work if there is at least one line of unchanged work between the two
hunks. If you want to separate two adjacent lines for staging separately, you can edit
(e) the hunk.

Example 5-19. Add selected changes to your Git repository interactively

$ git add --patch filename

By adding the optional filename, you will not need to cycle through each file. If you
know exactly which file you need to split up, and you have a lot of files that need stag‐
ing, it can save you time to work with specific files. After running the command, you
will begin the process of walking through the files, looking for changes to stage:

diff --git a/ch05.asciidoc b/ch05.asciidoc
index 8f82732..e7be9ce 100644
--- a/ch05.asciidoc
+++ b/ch05.asciidoc
@@ -6,7 +6,6 @@ changed significantly in the last few years; however, a few of
the commands we'l easier to remember. Chances are very good that you have Git
installed if you are using Linux or OSX. If you are using Windows, however,
the changes are very good that Git is not installed unless you've explicitly
installed it already.

-. Open a terminal window.
 . Enter the command: +git --version+

 The version of Git you are running should be printed to the screen.

Stage this hunk [y,n,q,a,d,/,j,J,g,e,?]?

Adding Changes to a Repository | 93

In the output displayed, we can see that Git is asking if we want to stage this one line
change (. Open a terminal window), which is a proposed deletion as indicated by
the -. Additional options for what to do with this hunk are available by pressing ?.

Committing Partial Changes
Assuming you’ve only added some changes from a given file to the staging area, when
you check the status of your repository, you will see that a file is both ready to be
committed, and has unstaged changes:

On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 modified: ch05.asciidoc

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: ch05.asciidoc

This is the same message that is displayed if you add a file to the staging area and then
continue to edit the file before committing it to the repository, or if you only choose
to stage some hunks while while adding files interactively to the index with the
parameter patch.

Removing a File from the Stage
If you accidentally add too many files from the staging area, and want to break your
changes into smaller commits, you can unstage your proposed changes
(Example 5-20). Removing a file from the stage doesn’t mean you’ll be undoing the
edits you’ve made; it notifies Git that you’re not ready for these changes to be com‐
mitted to the repository yet.

Example 5-20. Remove proposed file changes from the staging area

$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 modified: ch05.asciidoc

$ git reset HEAD ch05.asciidoc
Unstaged changes after reset:
M ch05.asciidoc

94 | Chapter 5: Teams of One

Optionally, you can also use the --patch parameter with the command reset if you
only want to unstage some of the changes you’ve made to a file.

Undoing your work will be covered in greater detail in Chapter 6.

Writing Extended Commit Messages
Up to this point it’s possible you have been writing terse, one-line commit messages.
While this is fine if you’re just practicing version control commands, it’s not going to
make your future self very happy if you need to figure out what the commit message
“Oops. Trying again.” means.

It took me quite a while to get out of the habit of thinking of Git as a place where I
saved my work and instead as a place where I recorded my results. When I first
started working with version control the commits I was making were granular to take
advantage of the advanced tools available to me (you’ll learn more about these in
Chapter 6). This is because I was coming the mindset of saving work and undoing
mistakes. When in the save mindset, I would think of clicking the save button, or
using control-Z to undo the last few things I typed. When the commits are this small,
the commit messages tend to be nearly useless (“stopped for lunch”; “tried some‐
thing”; “didn’t work”; “oops”; “testing”). If I wanted to roll back history, how the heck
would I use those commit messages to find the spot where the code was working after
something broke? It make take you a while to find your stride as well.

Your commit messages should always include the rationale for why you made a
change, as well as a quick summary of the changes you made. In order to write a
detailed commit message, you will need more than one line the one line short mes‐
sage style you have been using up to now. I typically write my commit messages with
a two-step procedure (Example 5-21):

1. Use a terse, one-line message to commit the changes to the repository.
2. Amend the commit to include a full description of what I was thinking when I

made the change.

Example 5-21. Writing a detailed commit message

$ git add --all
$ git commit -m "CH05: Adding technical edits."
$ git commit --amend

You don’t need to do this two-step process; you can jump straight into the message
editor by omitting the parameter -m when first making your commit:

$ git commit

Adding Changes to a Repository | 95

Your default editor will open, and you will be prompted to add a new commit mes‐
sage. The first line of the message will be used for the --oneline display, and all lines
beginning with # will be removed from the final message. Once you’ve crafted your
commit message, you will need to save it and then quit the editor to complete the
commit.

Working with the Default Editor, Vim
By default, the commit editor is Vim. This works for me because I like Vim, but if you
don’t, there’s information on changing the editor in Appendix C. You’ll need a few key
commands to navigate Vim:

• i takes you from visual mode to insert mode. You’ll need to do this so that you
can begin typing your commit message.

• esc returns you to visual mode. From here you can navigate using the arrow keys
to a different line.

• :w saves the file by writing it to disk.
• :q quits the editor, returning you back to the command line.

You can also chain these commands together. For example, after writing your commit
message, you can save and quit the editor with esc :wq.

In Chapter 6 you will learn how to squash granular commits into whole ideas with
interactive rebasing.

Ignoring Files
Eventually, you may run into a situation where Git keeps adding files to the reposi‐
tory that you actually never want to add. If you’re on a Mac, this might include the
pesky .DS_Store files. If you’re on Linux, maybe it’s your text editor’s .swp files. If
you’re working on a web project, this may include the compiled CSS files created
from Sass.

If you know that your favorite text editor, or IDE, creates temporary files, which are
not project specific, you should create a global setting to ignore these files.

First, run the following command to let Git know which file you would like to store
your list of “ignored” files in:

$ git config --global core.excludesfile ~/.gitignore

You can now update this file using one filename per line. You can use exact filenames,
or wildcards (for example: *.swp will match any file ending in .swp). For a useful
starting point of files to ignore, check out gitignore.io.

96 | Chapter 5: Teams of One

https://www.gitignore.io/

Additionally, you may want specific repositories to ignore specific files or file exten‐
sions. In this case, your best option is to add an extra .gitignore file to the repository.
This has the added benefit of ensuring your teammates don’t accidentally sneak in
their build files.

Complete the following steps to customize which files should be ignored for a specific
repository:

1. Create a file in the root level of your project named .gitignore.
2. Using one filename per line, add all of the files you never want Git to add to the

repository. You can use exact filenames, or wildcards (for example, *.swp).
3. Add the file .gitignore to your repository by using the commands add and commit.

Files with these extensions will no longer be added to your repository, even if you are
using the parameter --all.

Working with Tags
Tags are used to pinpoint specific commits. You can think of them like a bookmark. I
don’t use tags nearly as much as I should. As a result, I rely on my commit messages
to find specific points in the repository. You may find working with tags is a good
habit to get into because they will allow you to easily reference points in your time
line.

Tags for Teams of More Than One

In this chapter, we are referring to private repositories with no
branches that are shared with other teammates. When your
branches aren’t shared, there are no reasons to limit how and when
you use tags. Use them as often as you’d like! The tags you use on
shared branches, however, are typically used for deployment pur‐
poses and should follow a convention that is useful to the whole
team.

Tags can only be added to specific commits. To know which commit you want to add
your tag to, you’ll probably want to use a combination of log and show. The com‐
mand log will give you a list of all commits in your repository (Example 5-22), and
the command show will display the detailed information for any single commit.

Example 5-22. Quick list of recent commits

$ git log --oneline

fa04c30 Initial import

Working with Tags | 97

Once you think you have found a commit that you would like to investigate a little
further, you can get the detailed commit message beginning at that commit by adding
the commit ID (Example 5-23). To limit the output to only that commit, add the
optional parameter --max-depth= along with the number of log entries you would
like to show.

Example 5-23. Log details for a single commit

$ git log fa04c30 --max-depth=1

commit fa04c309e3bb8de33f77c54c1f6cc46dc520c2ca
Author: emmajane <emma@emmajane.net>
Date: Sat Oct 25 12:44:39 2014 +0100

 Initial import

If you want even more details about the commit object, you can use the command
show (Example 5-24) to list the changes that happened in that commit as text (of
course, this will be less useful for binary files, such as images).

Example 5-24. Use show to display the log message and textual diff for a single commit

$ git show fa04c30

commit fa04c309e3bb8de33f77c54c1f6cc46dc520c2ca
Author: emmajane <emma@emmajane.net>
Date: Sat Oct 25 12:44:39 2014 +0100

 Initial import

diff --git a/ch05.asciidoc b/ch05.asciidoc
new file mode 100644
index 0000000..8f82732
--- /dev/null
+++ b/ch05.asciidoc
@@ -0,0 +1,867 @@
+
+=== Verifying Git
+
+Before we dive into using Git, you'll want to check and see which version is
installed. For our purposes, Gi

[etc]

Once you have identified a commit that you want to bookmark, you can do so by
using the command tag. In Example 5-25, a new tag, import, is created for the com‐
mit hash fa04c30.

98 | Chapter 5: Teams of One

Example 5-25. Adding a new tag, import, to a commit object

$ git tag import fa04c30

You can now list the available tags by using the command tag without any parame‐
ters (Example 5-26).

Example 5-26. Listing all tags

$ git tag

A list of tags will be printed to the screen. At this point, only one tag has been added,
so the list is very short:

import

Once a tag is made, you can investigate the commit where the tag was added
(Example 5-27).

Example 5-27. Reviewing a tagged commit

$ git show import

As you have seen previously, the command show will display the log message and tex‐
tual diff for that commit.

Connecting to Remote Repositories
In a centralized version control system, like Subversion, there is one master copy of
the repository and all work is written into that copy. When you commit, the informa‐
tion is immediately uploaded to that central repository and available to others. In a
decentralized version control system, like Git, there is no single repository that every‐
one works with. It is merely a convention that declares one copy of the repository to
be privileged (and considered to be the official source for the code).

When you’re a team of one, a remote repository is really more of a backup to your
local repository because there won’t be any changes happening on the remote unless
you put them there. This remote repository can also be used to transfer code between
your different local development environments. For example, you may use both a lap‐
top and a desktop for your projects. The remote repository can be an effective way to
bounce your work from one place to the next so that you can continue working even
when switching machines.

If you’ve been following along in this chapter, you should now have three local repo‐
sitories: one created from a clone of a repository on GitLab, one created from a
downloaded .zip package, and a third repository created from an empty folder. They

Connecting to Remote Repositories | 99

are all local, however, and you don’t have the option to share your work with others
because they either don’t have a remote associated with them (repository from the
zipped package, and the repository that was initialized locally) or you don’t have write
access to the remote repository (repository that you cloned).

In order to upload your work, you will need to create a new project on GitLab and
associate it with one of your existing repositories.

Creating a New Project
If you haven’t already, you will need to create an account on GitLab.com (it’s free) and
sign into your account. You can also sign in via GitHub, Twitter, or Google. Although
you can also complete these steps on another code hosting system, such as GitHub,
GitLab is an open source product that you can host yourself for free if you need to
practice source control from behind a firewall:

1. Log in to your GitLab account and navigate to your dashboard.
2. From the project summary tab, click the button New project.
3. Enter a Project path, such as gitforteams. All remaining fields can be left as

their defaults.
4. Click Create project. You will be redirected to the instruction page on how to

upload your repository.

Adding a Second Remote Connection
GitLab gives you the copy/paste instructions you need to upload your repository to
its platform; however, you don’t necessarily want to complete all of the steps. From
your new project page, take a look at the second section, Create a new repository
(Example 5-28).

Example 5-28. Create a new repository on GitLab

mkdir my-git-for-teams
cd my-git-for-teams
git init
touch README.md
git add README.md
git commit -m "first commit"
git remote add origin git@gitlab.com:emmajane/my-git-for-teams.git
git push -u origin master

Can you see where your starting point would be if you had already created a reposi‐
tory locally? (Hint: compare it with the section labeled Push an existing Git reposi‐
tory.) You’ve already done all of the steps up to the line git remote add origin. If

100 | Chapter 5: Teams of One

https://gitlab.com
https://gitlab.com

you want to create a new repository from scratch, you would follow all of these
instructions, but you already have three local repositories! So instead of creating a
new one (again), you are going to add the remote connection so that you can upload
one of the three repositories to this new project on GitLab. It doesn’t matter which of
the three you choose, but you can only choose one because each project presents a
single repository.

When you add a remote to your repository, you must also assign it a nickname
(Example 5-29). By default, the nickname is origin. You could name it anything you
like, though--pickles, peanutbutter, kittens--Git wouldn’t care. The advantage of
using origin is that more tutorials online will be as easy as copy and paste; the disad‐
vantage is that origin doesn’t really explain very much, especially if your repository
actually started locally. In addition to this, origin is already in use if you created your
repository by cloning it from a remote repository. To connect the project you created
to any of the three repositories you have locally, use the nickname my_gitlab.

Example 5-29. Adding a remote to a local repository with a custom name

$ git remote add my_gitlab git@gitlab.com:emmajane/my-git-for-teams.git

It wasn’t until I finally started taking control over the names of things in Git that I
really started to understand how all the pieces fit together. For example, I will often
nickname my remote according to the name of the code hosting system. My local
copy of the Git for Teams repository has the following remotes: github, gitlab, and
bitbucket (Example 5-30).

Confirm the remote was correctly added with the command remote, as shown in
Example 5-30.

Example 5-30. List remote repositories connected to your current repository

$ git remote --verbose

If you have assigned the remote to the repository you cloned, you will see two pairs of
remotes listed:

my_gitlab git@gitlab.com:emmajane/my-git-for-teams.git (fetch)
my_gitlab git@gitlab.com:emmajane/my-git-for-teams.git (push)
origin git@gitlab.com:emmajane/gitforteams.git (fetch)
origin git@gitlab.com:emmajane/gitforteams.git (push)

You are now ready to push your work from any branch to your remote repository.

Connecting to Remote Repositories | 101

Pushing Your Changes
To upload your changes, you need to have a connection to the remote repository, per‐
mission to publish to the repository, and the name of the branch to which you want
to upload your changes. The first time you push your branch, you will need to explic‐
itly tell Git where to put things. If you start by using the command push, it will tell
you what to do next.

Avoid the Hassle of Typing Your Password

If you haven’t added your SSH keys to the code hosting system (see
Appendix D), you will need to enter your username and password
each time you want to push your changes.

For example, if you’re currently using the branch 1-process_notes, and you try to
push it to the remote repository (Example 5-31), you will get an error message
(Example 5-32).

Example 5-31. Upload a branch using the command push

$ git push

Example 5-32. Without an upstream branch, you will get an error message

fatal: The current branch 1-process_notes has no upstream branch.
To push the current branch and set the remote as upstream, use

 git push --set-upstream origin 1-process_notes

This error message provides us with very useful information, but it’s not quite right.
Instead of uploading the branch to the remote origin, we actually want to use our
new remote, my_gitlab (Example 5-33).

Example 5-33. Set the upstream branch while uploading your local branch

$ git push --set-upstream my_gitlab 1-process_notes

This will upload your branch and set it up for future use. Now whenever you are
using this branch, you can issue the much shorter command git push to upload
your work. By setting the upstream connection, you are building a relationship
between your local copy of the branch and the remote repository. This has the same
effect as when you used --track to check out a remote branch, except in that case
you were starting with the remote copy and adding a tracked local copy.

102 | Chapter 5: Teams of One

Branch Maintenance
Once the code has been fully tested, you will want to merge the ticket branch into the
master branch (Example 5-34), and delete the local (Example 5-35) and remote
copies of the ticket branch (Example 5-36). As a team of one, it’s unlikely you’ll need
to deal with merge conflicts. Merge conflicts will be covered in Chapter 7.

Example 5-34. Merging a ticket branch into your main branch

$ git checkout master
$ git merge 1-process_notes

If a true merge needs to be performed, as opposed to just a fast-forwarding of history,
you may be presented with the editor for a commit message. Generally I leave the
default message in place. Once the work has been merged into the master branch,
you should push the master branch to the remote repository as well:

$ git push --set-upstream my_gitlab master

Now that the changes have been merged into the master branch, there’s not a lot of
reason to keep the ticket branch open. To keep your repository tidy, you can go ahead
and delete the ticket branch now (Example 5-35).

Example 5-35. Delete your local copy of the branch

$ git branch --delete 1-process_notes

Git will complain wildly if there are changes that haven’t been merged into another
branch, so you don’t need to worry (too much) about losing unsaved work.

Finally, you need to do a bit of housekeeping for the remote repository as well. You
should also delete remote branches whose changes have been merged into master
(Example 5-36).

Example 5-36. Delete remote branches that are no longer needed

$ git push --delete my_gitlab 1-process_notes

With your housekeeping finished, it’s time to repeat this process for your next new
idea.

Command Reference
Table 5-1 lists the commands used in this chapter. These commands are shell com‐
mands and should be used as written.

Command Reference | 103

Table 5-1. Basic shell commands

Command Use

cd ~ Change to your home directory

mkdir Make a new directory

cd directory_name Change to a specified directory

ls -a List hidden files for OS X and Linux-based systems

dir List files on Windows

touch file_name Create a new, empty file with the specified name

Table 5-2 lists the subcommands for the Git application. They will always be precee‐
ded by the command git when used at the command line.

Table 5-2. Basic Git commands

Command Use

git clone URL Download a copy of a remote repository

git init Convert the current directory into a new Git repository

git status Get a status report for your repository

git add --all Add all changed and new files to the staging area of your repository

git commit -m "message" Commit all staged files to your repository

git log Review a repository’s history

git log --oneline View a condensed history of your project

git branch --list List all local branches

git branch --all List local and remote branches

git branch --remotes List all remote branches

git checkout --track

remote_name/branch

Create a copy of a remote branch for local use

git checkout branch Switch to a different local branch

104 | Chapter 5: Teams of One

Command Use

git checkout -b branch
branch_parent

Create a new branch from a specified branch

git add filename(s) Stage only the specified file so that it is ready to be committed

git add --patch filename Stage only portions of a file so that they are ready to be committed

git reset HEAD filename Remove proposed file changes from the staging area

git commit --amend Update the previous commit with changes currently staged, and supply a
new commit message

git show commit Log details for a single commit

git tag tag commit Add a tag to a commit object

git tag List all tags

git show tag Log details for the commit where the tag was applied

git remote add remote_name URL Create a new reference to a new remote repository

git push Upload changes for the current branch to a remote repository

git remote --verbose List the fetch and push URLs for all available remotes

git push --set-upstream

remote_name branch_local

branch_remote

Push a copy of your local branch to the remote server

git merge branch Incorporate the commits currently stored in another branch into the current
one

git push --delete remote_name
branch_remote

Remove named branch from the remote server

Summary
Throughout this chapter you have learned how to work with Git as a team of one.
The following is a guide to the best practices outlined in this chapter:

• Always begin your work by defining the problem you want to work on. This defi‐
nition will help you determine the name of the branch, and which piece of work
you want to branch away from to start your work.

Summary | 105

• As you are making changes in your branch, you can choose to add some or all of
the changes you’ve made through the staging area. This will help you to craft
commits with related work.

• Regardless of whether you start your repository locally or via a clone, you can
always start a new project on a code hosting system and upload your work by
adding a new remote to your local repository.

• Housekeeping tasks should be performed as you wrap up each line of work. You
can do this by merging your ticket branches into your main branch, and then
deleting the local and remote copies of your branch.

In the next chapter, you will learn how to go back in time in the Git time machine to
undo your work and change your commit history.

106 | Chapter 5: Teams of One

CHAPTER 6

Rollbacks, Reverts, Resets, and Rebasing

This is otherwise known as the “Rrrrgh!” chapter. Bad things happen to good people.
Fortunately, Git can help you undo some of those past mistakes by traveling back in
time. There are several commands in Git that vary in their degree of severity—mak‐
ing minor adjustments of a commit message all the way through to obliterating his‐
tory. Mistakes are typically committed and removed from a personal repository, but
the way you deal with them can impact how others interact with the code base.
Ensuring you are always dealing with problems in the most polite way possible will
help your team work more efficiently.

By the end of this chapter, you will be able to:

• Amend a commit to add new work
• Restore a file to a previous state
• Restore your working directory to a previously committed state
• Revert previously made changes
• Reshape your commit history using rebase
• Remove a file from your repository
• Remove commits added to a branch from an incorrect merge

Throughout the chapter you will be learning techniques that feel invisible, but have
huge implications. Take the time to slow down, and draw a diagram of how you want
things to appear after you have run the sequence of commands. This will help you to
select the right subcommand and the right parameters. It will also help you to recall
information the next time you need to perform the same task again.

Those who learn best by following along with video tutorials will benefit from Col‐
laborating with Git (O’Reilly), the companion video series for this book.

107

http://bit.ly/collaborating-with-git
http://bit.ly/collaborating-with-git

Best Practices
In this chapter you are going to be learning to manipulate the history of your reposi‐
tory. While the exercises in this book are easy to follow, there will come a time when
you are a little under pressure and a little unpracticed and you will panic and think
you’ve lost your work. Take a deep breath. It will be okay. If you’ve committed some‐
thing into the repository, it will (almost) always be there if you are willing to do some
digging. It’s very difficult to completely remove work from a repository in Git; it is,
however, relatively easy to lose work and not be able to find it again. So before you
learn how to muck about with history, let’s make sure you’ve got some good recovery
tools to help you MacGyver your way out of difficult situations.

Describing Your Problem
There are a lot of ways to undo work in Git, and each method is exactly right some of
the time. In order to choose the correct method, you need to know exactly what you
want to change—and how it should be different after you are finished. When I was
first learning version control, I would often draw a quick sketch of what I was trying
to accomplish to ensure I was using the right command for the job. Figure 6-1 shows
the three concepts you need to be aware of: the working directory (the files currently
visible on your filesystem); the staging area (the index of changes that will be written
to the repository after the next commit); and the repository (which stores files and
records the changes made to the files over time).

Figure 6-1. The working directory, staging area, and repository each contain different
information about your files

The Staging Area is Not Automatically Updated

Figure 6-1 is a bit of a lie, as you need to explicitly place things into
the staging area using the command add, but it’s a decent working
model to start from.

108 | Chapter 6: Rollbacks, Reverts, Resets, and Rebasing

Whenever you can separate your problem into the discrete places where Git is storing
its information, you have a better chance of choosing the correct command sequence
to return your work to the state you want it to be in. Table 6-1 contains a series of
scenarios might encounter while working with Git.

Table 6-1. Choosing the correct undo method

You want to… Notes Solution

Discard changes you’ve made to a file in your
working directory

Changed file is not staged, or
committed

checkout -- filename

Discard all unsaved changes in the working
directory

File is staged, but not
committed

reset --hard

Combine several commits up to, but not
including, a specific commit

reset commit

Remove all unsaved changes, including untracked
files

Changed files are not
committed

clean -fd

Remove all staged changes and previously
committed work up to a specific commit, but do
not remove new files from the working directory

reset --hard commit

Remove previous work, but keep the commit
history intact (“roll forward”)

Branch has been published;
working directory is clean

revert commit

Remove a single commit from a branch’s history Changed files are committed;
working directory is clean;
branch has not been
published

rebase --interactive commit

Keep previous work, but combine it with another
commit

Select the squash option rebase --interactive commit

Figure 6-2 shows one diagram for the first scenario. Additional answers are available
on the Git for Teams website.

Best Practices | 109

http://gitforteams.com

Figure 6-2. You want to discard changes you’ve made to a file in your working directory;
the incorrect copy of the file is not staged or committed

As you can see in the examples outlined in Table 6-1, some commands have two dif‐
ferent outcomes depending on the parameters used. Figure 6-3 contains a flowchart
of the scenarios you may find yourself in. Redraw this chart digitally, or on paper. The
act of re-creating the chart will reinforce the options you will be forced to deal with in
Git, and it will give you a personal reference point, which is often easier to remember
than a page in a book.

You may have your own types of changes you need to recover from as well. Create a
list of all the problem scenarios you may want to recover from. The better you are
able to describe what’s wrong, the more likely you are to find the correct solution. As
you work through this chapter, you may choose to expand on the flowchart in
Figure 6-3 or create your own diagrams. Please share your work on Twitter by using
#gitforteams. I’d love to see what you come up with!

Using Branches for Experimental Work
On a tree, a branch is independent from its sibling branches. Although they may have
a common ancestor, you can (typically) saw a branch off a tree without impacting the
other branches. In Git, the commits you add to your repository are connected to one
or more branches. If you check out a different branch and manipulate the commit
objects in that new branch, they are assigned a new identifier, leaving the original
commit objects tied to the original branch unchanged. This means it is always safer to
do your work in a new private branch, and when you are happy with the results,
merge your branch back into the main branch (Figure 6-4).

110 | Chapter 6: Rollbacks, Reverts, Resets, and Rebasing

http://bit.ly/hashgitforteams

Figure 6-3. Create a flowchart to help you select the appropriate command

Best Practices | 111

Figure 6-4. Working in a branch protects you from unintended changes; merge your
work back into the main branch only when it is correct and complete

Previously we’ve created and deleted branches using the ticket as a starting point. But
what if you were working on a ticket, and you weren’t sure which of two approaches
you should take? In this case you could create a branch off of your ticket branch,
make your experimental changes (Example 6-1), and then merge your experimental
branch into your ticket branch (Example 6-2) if you want to save the changes.

Example 6-1. Use an experimental branch to test changes

$ git checkout -b experimental_idea
 (do work)
$ git add --all
$ git commit

You may have one or more commits in your experimental branch. When you merge
the two branches, you can optionally combine all of those commits into a single one
at the time of the merge with the parameter --squash. If you use this parameter, you
will still need to run the command commit separately to save the changes from the
other branch. By merging the branch in this way, you will be unable to unmerge the
branch later. As such, it’s appropriate to use --squash only when merging branches
you wish had never been separate to begin with.

Example 6-2. Merge your experimental branch back into the main branch

$ git checkout master
$ git merge experimental_idea --squash

Squash commit -- not updating HEAD
Automatic merge went well; stopped before committing as requested

112 | Chapter 6: Rollbacks, Reverts, Resets, and Rebasing

$ git commit

After merging your experimental branch, you can delete it (Example 6-3).

Example 6-3. Delete your experimental branch

$ git branch --delete experimental_idea

If you want to discard your experimental ideas, complete the preceding steps, but
omit the step where you merge your work into your main ticket branch. To delete an
unmerged branch, you will need to use the parameter -D instead of --delete.

Subsequent sections of this chapter cover removing commits you made in a branch
before you realized they were just experiments.

Rebasing Step by Step
Out of the three commands rebase, reset, and revert, rebase is the only command
which is not exclusively focused on undoing work. Generally when we talk about
about rebasing, we are referring to the process of bringing a branch up to date with
commits that have been made on its parent branch. This is typically a very straight‐
forward process: from the branch you want to update, you run the command rebase
along with the name of the parent branch. Git removes your commits from the child
branch you have been working on, adds the new commits that were made on the par‐
ent branch to the tip of your branch, and then adds an updated copy of your commits
to your branch. This makes it seem as though your commits were added after the new
changes from the parent branch. It’s the Git equivalent to whistling innocently and
pretending nothing happened when actually it has snuck a vase with flowers onto the
table while you weren’t looking.

Although we often talk about rebasing as “replaying your history,” rebasing is perhaps
more correctly defined as traveling back in time and then attempting to re-enact his‐
tory. If you have seen Back to the Future (or a modern time travel equivalent) you
know that history is never quite the same the second time around. This is the case
with rebase as well. Although it appears as though the commits are simply dropped
back onto a new branch tip, they are actually completely new commits with their own
reference ID. As these new commits are applied to the time line, problems can arise if
the new history conflicts with the work you are trying to apply. This will result in
errors about being in a detached HEAD state. Mind blown? Here is another way to
think of it: Git allows us to retell history, inserting new facts as it pleases us. It does
not, however, actually allow us to change anything that has happened in the past.
What’s done is done all we can do is change the stories we tell about it.

Rebasing Step by Step | 113

Most of the time, when bringing a branch up-to-date with command rebase, it is vir‐
tually instant and happens automatically. If, however, during the rebasing process
there are conflicting changes in the work you have done and the work that you are
trying to sneak onto the parent branch, the process will stop and Git will ask you to
resolve the conflicts by hand before it proceeds. This can be in-file changes, and
deleted files (where one deletes a file that the other has edited). Git is, after all, just a
simple content tracker. A mediated conflict resolution by you, the expert, always
results in a better end product. Even if you would rather that Git just figured it out, it
is good that it stops and asks for help. Think of it as a valuable life lesson: asking for
help is okay.

The second cause of frustration is when rebase is used to force updates into a public
branch. In this case a timeline will end up with the same code represented by two (or
more) commit objects with distinct IDs. To help you choose whether you should be
rebasing, or merging, please use the rebase or merge decision tree.

The remainder of this section describes the process of dealing with mid-rebase con‐
flicts when bringing a branch up-to-date. In our example, the parent (or source)
branch is named master and the branch we are attempting to bring up-to-date (the
child branch) is named feature.

Begin Rebasing
Ensure your local copy of the parent branch is up to date with the most recent com‐
mits available from the main project repository:

$ git checkout master
$ git pull --rebase=preserve remote_nickname master

If It Helps, Be Explicit

When updating a local copy of a branch with the command pull,
the parameters for the name of the remote, and name of the remote
branch are typically optional. Occasionally, if I have more than one
remote for a given repository, Git sometimes seems to miss if there
are updates available. Adding the two additional parameters seems
to help.

Change into the branch that is currently out of date from the main project, but which
contains new work that hasn’t been introduced yet:

$ git checkout feature

Begin the rebasing process:

$ git rebase master

114 | Chapter 6: Rollbacks, Reverts, Resets, and Rebasing

http://gitforteams.com/resources/merge-rebase.html

If there are no conflicts, Git will skip merrily through the process and spit you out the
other end with no additional action required from you. See? Rebasing is easy! You
should try it! However, sometimes there are conflicts…

Mid-Rebase Conflict from a Deleted File
A conflict in the rebasing process occurs when the changes you have made occur on
the same line as the changes which are stored in one of the new commits on the par‐
ent branch. As a simple content tracker, Git doesn’t feel qualified to know whether
our changes should be kept, or theirs. Instead of making guesses, Git stops and asks
for your help. I think that’s actually quite considerate that Git perceives me to be
more of an expert on the content than it is! Unfortunately the process isn’t called
“asking you, the expert, for help”; it’s called “resolving conflict while in a detached
HEAD state.” This is very scary language for process that is actually quite respectful.

To resolve a conflict you will need to put on your content expert hat, and help Git
make some decisions about what to do next.

This section covers an example of a mid-rebase conflict. The file ch10.asciidoc has
been deleted in the source branch, master, but I’ve been making updates to it in fea
ture. This is a problem Git doesn’t know how to resolve. Do I want to keep the file?
Should it be deleted? Git has put me into a detached HEAD state so that I can explain to
Git how I want to proceed:

First, rewinding head to replay your work on top of it...
Applying: CH10: Stub file added with notes copied from video recording lessons.
Using index info to reconstruct a base tree...
A ch10.asciidoc
Falling back to patching base and 3-way merge...
CONFLICT (modify/delete): ch10.asciidoc deleted in HEAD and modified in CH10:
Stub file added with notes copied from video recording lessons.. Version CH10:
Stub file added with notes copied from video recording lessons. of ch10.asciidoc
left in tree.
Failed to merge in the changes.
Patch failed at 0001 CH10: Stub file added with notes copied from video
recording lessons.
The copy of the patch that failed is found in:
 /Users/emmajane/Git/1234000002182/.git/rebase-apply/patch

When you have resolved this problem, run "git rebase --continue".
If you prefer to skip this patch, run "git rebase --skip" instead.
To check out the original branch and stop rebasing, run "git rebase --abort".

The relevant piece of information from this output is:

When you have resolved this problem, run "git rebase --continue".

Rebasing Step by Step | 115

This tells me that I need to:

1. Resolve the merge conflict.
2. Once I think the merge conflict is resolved, run the command:

git rebase --continue

I accomplish step 1 by opening the file in question in my designated file compari‐
son tool:

$ git mergetool ch10.asciidoc

There are no merge conflict markers displayed in the file, so I quit the merge tool and
proceed to the next step Git had identified:

$ git rebase --continue

The following message is returned from Git:

ch10.asciidoc: needs merge
You must edit all merge conflicts and then
mark them as resolved using git add

That’s not very helpful! I just looked at that file and there were no merge conflicts. I’ll
ask Git what the problem is using the command status:

$ git status

The output from Git is as follows:

rebase in progress; onto 6ef4edb
You are currently rebasing branch 'ch10' on '6ef4edb'.
 (fix conflicts and then run "git rebase --continue")
 (use "git rebase --skip" to skip this patch)
 (use "git rebase --abort" to check out the original branch)

Unmerged paths:
 (use "git reset HEAD <file>..." to unstage)
 (use "git add/rm <file>..." as appropriate to mark resolution)

 deleted by us: ch10.asciidoc

no changes added to commit (use "git add" and/or "git commit -a")

Aha! There are two clues here for me. The text: Unmerged paths and then a little later
on the text: deleted by us: ch10.asciidoc. Well, I don’t want the file to be deleted.
This is useful because Git has told me deleted by us and I know I don’t want to
delete the file; therefore I need to unstage Git’s change. Unstaging a change is effec‐
tively saying to Git, “That thing you were planning to do? Don’t do it. In fact, forget
you were even thinking about doing anything with that file. Reset your HEAD, Git.”

116 | Chapter 6: Rollbacks, Reverts, Resets, and Rebasing

Git tells me how to prevent this change from happening with the following text:

(use "git reset HEAD <file>..." to unstage)

Using this message as a guide, I run the following command:

$ git reset HEAD ch10.asciidoc

Now, what this command is actually doing is clearing out the staging area, and
moving the pointer back to the most recent known commit. Because I am knee-deep
in a rebase, and in a detached HEAD state as opposed to in a branch, reset clears away
the staging area and puts me in the most recent state from the rebasing process. In
my case, this leaves me with the older version of the file, which is fine. As I proceed
through the rebase, I will replace the contents of the file with the latest version from
the branch feature. If I wanted to preserve their deletion of the file, I would skip this
step and proceed with the instructions, adding the file to the staging area as described
later.

With my chapter file replaced, let’s see what clues Git is giving me on how I should
proceed:

$ git status

The output from Git is as follows:

rebase in progress; onto 6ef4edb
You are currently rebasing branch 'ch10' on '6ef4edb'.
 (all conflicts fixed: run "git rebase --continue")

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 ch10.asciidoc

nothing added to commit but untracked files present (use "git add" to track)

So I’ve still got the file (great!), but Git is still confused about what to do, because as
far as it’s concerned, that file should have been deleted. I need to explicitly add the file
back into the repository, which Git tells me to do by giving me the message:

Untracked files: (use "git add <file>..." to include in what will be
committed) ch10.asciidoc

The formatting is awkward if there is only one affected file but in the case of a longer
list of files, the formatting is lovely.

Per Git’s request, I will now add the file ch10.asciidoc to the staging area:

$ git add ch10.asciidoc

Rebasing Step by Step | 117

Now at this point, I know that the command add is just the beginning of a process,
and that I’m going to need to commit the file as well, but this is rebasing and the rules
are different. I’m going to ask Git what to do next by checking the output of the com‐
mand status again:

$ git status

The output from Git is as follows:

rebase in progress; onto 6ef4edb
You are currently rebasing branch 'ch10' on '6ef4edb'.
 (all conflicts fixed: run "git rebase --continue")

Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 new file: ch10.asciidoc

Okay, it’s saying there are changes to be committed (yup, already knew that), but it
doesn’t tell me to commit them! Instead it tells me to continue with the rebasing with
the message:

all conflicts fixed: run "git rebase --continue"

I proceed with this command even though add is normally paired with commit to save
changes:

$ git rebase --continue

Mid-Rebase Conflict from a Single File Merge Conflict
After restarting the rebasing process, Git has run into another conflict as it replays
the commits. The output is as follows:

Applying: CH10: Stub file added with notes copied from video recording lessons.
Applying: TOC: Adding Chapter 10 to the book build.
Using index info to reconstruct a base tree...
M book.asciidoc
Falling back to patching base and 3-way merge...
Auto-merging book.asciidoc
CONFLICT (content): Merge conflict in book.asciidoc
Recorded preimage for 'book.asciidoc'
Failed to merge in the changes.
Patch failed at 0002 TOC: Adding Chapter 10 to the book build.
The copy of the patch that failed is found in:
 /Users/emmajane/Git/1234000002182/.git/rebase-apply/patch

When you have resolved this problem, run "git rebase --continue".
If you prefer to skip this patch, run "git rebase --skip" instead.
To check out the original branch and stop rebasing, run "git rebase --abort".

118 | Chapter 6: Rollbacks, Reverts, Resets, and Rebasing

Another conflict. You’re being high maintenance, Git! No wonder people
complain about rebasing! Okay, okay, at least it’s a different file this time (CONFLICT
(content): Merge conflict in book.asciidoc). I take a closer look at the output
of the command status again to see if Git gives me additional clues:

$ git status

The output from Git is as follows:

rebase in progress; onto 6ef4edb
You are currently rebasing branch 'ch10' on '6ef4edb'.
 (fix conflicts and then run "git rebase --continue")
 (use "git rebase --skip" to skip this patch)
 (use "git rebase --abort" to check out the original branch)

Unmerged paths:
 (use "git reset HEAD <file>..." to unstage)
 (use "git add <file>..." to mark resolution)

 both modified: book.asciidoc

no changes added to commit (use "git add" and/or "git commit -a")

Long sigh. Alright, Git. Let’s see what the conflict is in this file:

$ git mergetool book.asciidoc

Opening up the file in my favorite merge tool, I see there is indeed a merge conflict in
this file. The merge conflict markers are displayed as three columns. One column for
each of the two branches being merged, and one column displaying how the merge
conflict should be resolved. I choose the hunk of text I want to keep, which resolves
the conflict. I save the file, close the merge tool, and ask Git if it’s happy by using the
command status, again:

$ git status

The output from Git is as follows:

rebase in progress; onto 6ef4edb
You are currently rebasing branch 'ch10' on '6ef4edb'.
 (fix conflicts and then run "git rebase --continue")
 (use "git rebase --skip" to skip this patch)
 (use "git rebase --abort" to check out the original branch)

Unmerged paths:
 (use "git reset HEAD <file>..." to unstage)
 (use "git add <file>..." to mark resolution)

 both modified: book.asciidoc

no changes added to commit (use "git add" and/or "git commit -a")

Rebasing Step by Step | 119

The message is a little misleading because I have fixed the conflicts. At this point, I
open the file to double check. Nope, no conflicts there. So now I move on to the
next group of instructions: unmerged paths: use "git add <file> …" to mark
resolution and then both modified: book.asciidoc:

$ git add book.asciidoc

And check the status again:

$ git status

The output from Git is as follows:

rebase in progress; onto 6ef4edb
You are currently rebasing branch 'ch10' on '6ef4edb'.
 (all conflicts fixed: run "git rebase --continue")

Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 modified: book.asciidoc

As before, I don’t pair the command add with the command commit. Instead, Git
instructs me as follows: all conflicts fixed: run "git rebase --continue", so I
proceed with the rebasing process:

$ git rebase --continue

The output from Git is as follows:

Applying: TOC: Adding Chapter 10 to the book build.
Recorded resolution for 'book.asciidoc'.
Applying: CH10: Outline of GitHub topics

The rebasing procedure has been completed. My copy of the branch feature is now
up to date with all changes that had been previously committed to the branch master.

There are a few different ways that rebasing can kick up a conflict. Take your time,
read the instructions carefully, and if you aren’t getting useful information, try using
the command status to see if there’s something more helpful that Git can offer. If
you are really in a panic about what’s happening, you can always abort the process
with the command git rebase --abort. This will return you the state your branch
was in right before you started the rebase.

An Overview of Locating Lost Work
It is very difficult to completely remove committed work in Git. It is, however, pretty
easy to misplace your work with the same frequency that I misplace my keys, my
glasses, my wallet, and my family’s patience. If you think you have lost some work, the
first thing you will need to do is locate the commit where the work was stored. The

120 | Chapter 6: Rollbacks, Reverts, Resets, and Rebasing

command log displays commits that have been made to a particular branch; the com‐
mand reflog lists a history of everything that has happened in your local copy of the
repository. This means that if you are working with a repository you cloned from a
remote server, the reflog history will begin at the point where you cloned the reposi‐
tory to your local environment—whereas the log history will display all of the commit
messages since the command init was used to create the repository.

If you haven’t already, get a copy of the project repository for this book, and compare
the output of the two commands reflog and log (Example 6-4).

Example 6-4. Compare the output of log and reflog

$ git clone https://gitlab.com/gitforteams/gitforteams.git

Cloning into 'gitforteams'...
remote: Counting objects: 1084, done.
remote: Total 1084 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (1084/1084), 12.07 MiB | 813.00 KiB/s, done.
Resolving deltas: 100% (628/628), done.
Checking connectivity... done.

$ git log --oneline

e8d6aff Updating diagram: Adding commit ID reference to rebase.
ae56a1f Adding workflow diagram for: reset, revert, rebase, checkout.
2480520 Merge pull request #5 from xrmxrm/1-markdown_fixes
ee46470 Fix some markdown Issue #1

$ git reflog

2f17715 HEAD@{1}: clone: from https://gitlab.com/gitforteams/gitforteams.git

If the only thing you have done is clone the repository, you will only see one line of
history in the reflog. As you do more things, the reflog will start to grow. Following is
a sample of the output from this book’s repository:

fdd19dc HEAD@{157}: merge drafts: Fast-forward
af9e2c8 HEAD@{158}: checkout: moving from drafts to master
fdd19dc HEAD@{159}: merge ch04: Merge made by the 'recursive' strategy.
af9e2c8 HEAD@{160}: checkout: moving from ch04 to drafts
e296faa HEAD@{161}: commit (amend): CH04: first draft complete
dd87941 HEAD@{162}: commit: CH04: first draft complete

This is a private history. Only you can see it, thank goodness! It will contain every‐
thing that you have done including things that have no impact on the code, such as
checking out a branch.

Both of the commands log and reflog show you the commit ID for a particular state
that is stored in the repository. So long as you can find this commit ID, you can check

An Overview of Locating Lost Work | 121

it out (Example 6-5), temporarily restoring the state of the code base at that point in
time.

Example 6-5. Check out a specific commit in your repository

$ git checkout commit

Checking out files: 100% (2979/2979), done.
Note: checking out 'a94b4c4'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:

 git checkout -b new_branch_name

HEAD is now at a94b4c4... Fixing broken URL to the slides from the main README file.
Was missing the end round bracket.

When you check out a commit, you will be detaching from the connected history for
a particular branch. It’s not really as scary as it sounds, though. Normally when we
work in Git we are working in a linear representation of history. When we check out
a single commit, we are working in a suspended state (Figure 6-5).

Figure 6-5. In a detached HEAD state, you are temporarily disconnected from the linear
history of a branch

This is typically where people start to freak out a bit—understandably—your HEAD
is DETACHED! Following the instructions Git provides will set you right. If you want
to save the state you are in, check out a new branch and your state will be recorded in
that new branch:

122 | Chapter 6: Rollbacks, Reverts, Resets, and Rebasing

$ git checkout -b restoring_old_commit

At this point you can continue to add a few fix-ups in the new branch if there’s any‐
thing missing you want to add (or old work that is no longer relevant and that you
want to remove). Once you are finished, you will need to decide how you want to
incorporate the new branch back into your working branch. You could choose to
merge the new branch into an existing branch, or just cherry-pick a few commit(s)
that you want to keep. Let’s start with a merge, because this is something you should
already be familiar with from Chapter 5:

$ git checkout working_branch
$ git merge restoring_old_commit

With the merge complete, you should now tidy up your local repository by deleting
the temporary branch:

$ git branch --delete restoring_old_commit

If you have published the temporary branch and wish to delete it from the remote
repository, you will need to do that explicitly:

$ git push --delete restoring_old_commit

This method has the potential to make an absolute mess of things if the temporary
branch contains a lot of unrelated work. In this case, it may be more appropriate to
use the command cherry-pick (Example 6-6). It can be used in a number of different
ways—check the documentation for this command with git help cherry-pick. I
tend to use the commit ID that I want to copy into my current branch. The optional
parameter -x appends a line to the commit message letting you know this commit
was cherry-picked from somewhere else, as opposed to having been originally created
on this branch at this point in history. This addition makes it easier to identify the
commit later.

Example 6-6. Copying commits onto a new branch with cherry-pick

$ git cherry-pick -x commit

Assuming the commit was cleanly applied to your current branch, you will see a mes‐
sage such as the following:

[master 6b60f9c] Adding office hours reminder.
 Date: Tue Jul 22 08:36:54 2014 -0700
 1 file changed, 2 insertions(+)

If things don’t go well, you may need to resolve a merge conflict. The output for that
would be as follows:

error: could not apply 9d7fbf3... Lesson 9: Removing lesson stubs from
subsequent lessons.
hint: after resolving the conflicts, mark the corrected paths

An Overview of Locating Lost Work | 123

hint: with 'git add <paths>' or 'git rm <paths>'
hint: and commit the result with 'git commit'

Merge conflicts are covered in more detail in Chapter 7. Skip ahead to that chapter if
you encounter a conflict while cherry-picking a commit.

Another output you may encounter is when the commit you want to incorporate is
actually a merge commit. You will need to select the parent branch in this case. You
can recognize this case by the following output from Git when you attempt to cherry-
pick a commit:

error: Commit 0075f7eda6 is a merge but no -m option was given.
fatal: cherry-pick failed

Confirm the parent branch you want to keep is the first branch lanes on the graphed
output of your log (counting from left to right):

$ git log --oneline --graph

Then, run the command cherry-pick again, this time identifying the parent branch
to keep with the parameter --mainline:

$ git cherry-pick -x commit --mainline 1

Finally, if you decide you don’t want to keep the recovered work, you can obliterate
the changes:

$ git reset --merge ORIG_HEAD

Published History Should Not Be Altered

The command reset should not be used on a shared branch to
remove commits that have already been published. Undoing
changes on shared branches is covered later in this chapter.

If you have worked on each of the examples in this section, you should now be able to
check out a single commit, create a new branch to recover from a detached HEAD state,
merge changes from one branch into another, cherry-pick commits into a branch,
and delete local branches.

Restoring Files
You are working along and you just deleted the wrong file. You actually wanted to
keep the file. Or perhaps you edited a file that shouldn’t have been edited. Before the
changes are locked into place (or committed), you can check out the files. This will
restore the contents of the file to what was stored in the last known commit for the
branch you are on:

$ rm README.md

124 | Chapter 6: Rollbacks, Reverts, Resets, and Rebasing

$ git status

On branch master
Changes not staged for commit:
 (use "git add/rm <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 deleted: README.md

no changes added to commit (use "git add" and/or "git commit -a")

The status message explains how to reverse the changes and recover your deleted file:

$ git checkout -- README.md

If you have already staged the file, you will need to unstage it before you can restore
the file by using the command reset. To try this, you will need to first delete a file,
then use the command add to add the changes to the staging area, and finally use the
command status to verify your next action:

$ rm README.md
$ git add README.md

$ git status

On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 deleted: README.md

At this point, the command you used previously, checkout, will not work. Instead,
follow the instructions Git provides to unstage the file you want to restore. Instead of
selecting a specific commit, use the Git short form HEAD, which refers to the most
recent commit on the current branch:

$ git reset HEAD README.md

Once the file is unstaged, you can use the command checkout as you did previously
to restore the deleted file:

$ git checkout -- README.md

If you prefer, you can combine these two commands into one:

$ git reset --hard HEAD -- README.md

If you want to undo all of the changes in your working directory, restoring the ver‐
sion of the files that was saved in the previous commit, you don’t need to make the
changes one at a time. You can do it in bulk:

$ git reset --hard HEAD

You should now be able to restore a deleted file in the working directory.

Restoring Files | 125

Working with Commits
A commit is a snapshot within your repository that contains the state of all of the files
at that point in time. Each of these commits can be manipulated within your history.
You can remove the commit entirely with the command reset, you can reverse the
effects of a commit (but maintain it in your history) with the command revert, and
you can change the order of the commits with the command rebase. Altering the
history of your repository is a big no-no if you’ve already published the commits.
This is because even the slightest change will result in a new commit SHA being
stored in the repository—even if the code itself is exactly the same at the tip of the
branch. This is because Git assumes that all new commit IDs contain new informa‐
tion that must be incorporated, regardless of the contents of the files stored in those
commits.

In this section, it is assumed you are working with commits that have not been shared
with others yet (i.e., you haven’t pushed your branch). Tips for working on changing
history for shared branches are covered separately.

Amending Commits
If you realize a commit you’ve just made is just missing one little fix, you can amend
the commit to include additional files, or update the message that was used for the
commit. I use this command frequently to convert my terse one-line commit mes‐
sages into well-formed summaries of the work I’ve completed.

Do Not Change Shared History

If you have already pushed the work, it is considered bad form to
go back and “fix” shared history.

If you have made any changes to the files in your working directory, you will need to
add the files to the staging area before amending your commit (Example 6-7). If you
are just updating the commit message, and there are no new, or modified files, you
can omit the command add, and jump straight to the command commit.

Example 6-7. Updating the previous commit with --amend

$ git add --all
$ git commit --amend

Your new changes will be added to the previous commit, and a new ID will be
assigned to the revised commit object.

126 | Chapter 6: Rollbacks, Reverts, Resets, and Rebasing

Even More Commit Options Are Available

There are even more ways to construct your commit object. I’ve
outlined the options I use most frequently. You may find additional
gems by reading the relevant manual page for commit. This infor‐
mation is accessible by running the command: git help commit.

If you want to amend more than just the previous commit, though, you will need to
use either reset or rebase.

Combining Commits with Reset
The command reset appears in many different forms during the undo process. In
this example, we will use it to mimic the effects of squash in rebasing. The most basic
explanation of what reset does is essentially a pointing game. Wherever you point
your finger is what Git is going to treat as the current HEAD (or tip) of your branch.

Reset Alters Your Logged History

This is going to alter history because it removes references to com‐
mits. If someone were to merge their old copy of the branch, they
would reintroduce the commits you had tried to remove. As a
result, it’s best to only use reset to alter the history of branches
that are not shared with others (this means you created the branch
locally, and you haven’t pushed it to the server yet).

Previously you used the command reset to unstage work before making a commit.
This time you are using reset to remove commit objects from your branch’s history.
Think of a string of beads. Let’s say the string is 20 beads long. Holding the fourth
bead, allow the first three beads to slide off the string. You now have a shorter string
of beads as well as three loose beads. The parameters you use when issuing the reset
command are part of what determines the fate of those beads.

If you want to discard the content contained in the commit objects you removed, you
need to use reset with the mode hard. This mode is enabled by using the parameter
--hard. When you use the mode hard, the commit objects will be removed, and the
working directory will be updated so that all content stored in those commit objects
are also removed. If you do not use --hard when you reset your work, Git keeps the
content of the working directory the same, but throws away the commit objects back
to the reference point. It will be as if you typed all of the changes from the previous
commits into one giant piece of work. It’s now waiting to be added and committed.

Working with Commits | 127

Reset Reestablishes the Tip of a Branch

Somewhere along the way, I got it stuck in my head that reset
ought to reverse the action applied in a given commit. This defini‐
tion is correct for the command revert, but not reset. The com‐
mand reset resets the tip of the branch to the specified commit.
Perhaps if it were named “restore” or “promote” or even just “set”
my brain would have made a better separation between the two
commands. Remember: the target for reset is on what’s being
kept, and the target of revert is what is lost.

Using our previous bead example, let’s say you wanted to reset your string of beads so
that the most recent three beads were replaced by a single big bead. You would use
the command reset to point the new end for your string to the fourth bead from the
end. You would then slide the three beads off the end of the string. (If you used the
parameter --hard, these beads would be discarded.) Instead, we’re going to remold
these beads, and put them back on the string as a new commit.

Commits Must Be Consecutive, and End with the Most Recent Commit

For this operation to work, you need to be compressing consecu‐
tive commits leading up to your most recent commit. What we are
doing is essentially a stepping stone to interactive rebasing. With
this use of reset you will be limited to the most recent commits.
With rebasing, you will be able to select any range of commits.

Using the command log, identify the most recent commit that you want to keep. This
will become the new tip for your branch:

$ git log --oneline

699d8e0 More editing second file
eabb4cc Editing the second file
d955e17 Adding second file
eppb98c Editing the first file
ee3e63c Adding first file

Sticking with the three-bead analogy, the bead that I want to have as the new tip of
my necklace is eppb98c. (This is the fourth bead from the end—not entirely intuitive
if you are completely focused on removing three beads.) We’re going to put our finger
on the bead we want to keep, and slide the rest off of the string:

$ git reset eppb98c

The are now three loose beads rattling around. These beads will appear as untracked
changes in our repository. The content of the files will not have changed.

128 | Chapter 6: Rollbacks, Reverts, Resets, and Rebasing

You can view what will be in your new commit by using the command diff:

$ git diff

To combine all of the edits that were made in those three commits into a single com‐
mit, use the command add to capture the changes in the staging area:

$ git add --all

Ensure the files are now staged and ready to be saved:

$ git status

Now that the files have been staged, the command diff will no longer show you what
you are about to commit to your repository. Instead, you will need to examine the
staged version of the changes:

$ git diff --staged

Staging Is Also Caching

The parameter --staged is an alias of --cached. I choose to use the
aliased version because it more closely matches the terms I use
when talking about staging changes. If you are searching for more
documentation about this parameter, be sure to also look for the
original parameter name.

Once you are satisfied with the contents of your new commit, you can go ahead and
complete the commit process:

$ git commit -m "Replacing three small beads with this single, giant bead."

The three commits will now be combined into one single commit.

If you are having a hard time with the word reset and having to go one past the com‐
mit you are looking for, I encourage you to use relative history instead of commit
IDs. For example, if you wanted to compress three commits from your branch into
one, you would use the following command:

$ git reset HEAD~3

This version of the command puts your repository into the same state as the previous
example, but it’s as if the pointer was using another language. Either approach is fine.
Use whichever one makes more sense to you. I personally find if there are more than
a handful of commits that I want to reset, using the commit ID is a lot easier than
counting backward.

If you’ve been following along with the examples in this section, you should now be
able to restore a file that was deleted, and combine several smaller commits into one.

Working with Commits | 129

Altering Commits with Interactive Rebasing
Rebasing is one of those topics that has gained a strong positive following—and
strong opponents. While I have no technical problems using the command, I openly
admit that I don’t like what it does. Rebasing is primarily used to change the way his‐
tory is recorded, often without changing the content of the files in your working
directory. Used incorrectly, this can cause chaos on shared branches as new commit
objects with different IDs are used to store work identical work. But my complaints
are more to do with the idea that it’s okay to rewrite history to suit your fancy. In the
nonsoftware world historical revisionism is wrong.

Complaints aside, rebasing is simply the model Git has decided on and so it fits quite
well into many workflows. (I use it when it is appropriate to do so—even for my solo
projects where its use is not being enforced by an outside team.) One of the times it is
appropriate to use rebasing is when bringing a branch up-to-date (as was discussed in
“Rebasing Step by Step” on page 113 and in Chapter 3); the second is before publish‐
ing your work—interactive rebasing allows you to curate the commits into an easier-
to-read history. In this section you will learn about the latter of these two methods.

Interactive rebasing can be especially useful if you’ve been committing micro
thoughts—leaving you with commits in your history that only capture partial ideas.
Interactive rebasing is also useful if you have a number of commits that, due to a peer
review or sober second thought, you’ve decided were not the correct approach.
Cleaning up your history so there are only good, intentional commits will make it
easier to use the command bisect in Chapter 9. To help explain the concept, I cre‐
ated a simple animation showing the basic principles of squashing several small com‐
mits into one whole idea.

The first thing you need to do is select a commit in your history that you want to
have as your starting point (I often choose one commit older than what I think I’ll
need—just in case). Let’s say your branch’s history has the following commits:

d1dc647 Revert "Adding office hours reminder."
50605a1 Correcting joke about horses and baths.
eed5023 Joke: What goes 'ha ha bonk'?
77c00e2 Adding an Easter egg of bad jokes.
0f187d8 Added information about additional people to be thanked.
c546720 Adding office hours reminder.
3184b5d Switching back to BADCamp version of the deck.
bd5c178 Added feedback request; formatting updates to pro-con lists
876e951 Removing feedback request; added Twitter handle.

You have decided that the three commits about jokes should be collapsed into a single
commit. Looking to the commit previous to this, you select 0f187d8 as your starting
point. You are now ready to begin the rebasing process:

$ git rebase --interactive 0f187d8

130 | Chapter 6: Rollbacks, Reverts, Resets, and Rebasing

http://bit.ly/historical-revisionism
http://bit.ly/interactive-rebasing

pick 77c00e2 Adding an Easter egg of bad jokes.
pick eed5023 Joke: What goes 'ha ha bonk'?
pick 50605a1 Correcting joke about horses and baths.
pick d1dc647 Revert "Adding office hours reminder."

Rebase 0f187d8..d1dc647 onto 0f187d8
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
x, exec = run command (the rest of the line) using shell
#
These lines can be re-ordered; they are executed from top to bottom.
#
If you remove a line here THAT COMMIT WILL BE LOST.
#
However, if you remove everything, the rebase will be aborted.
#
Note that empty commits are commented out

The list of commits has been reversed and the oldest commit is now at the top of the
list. Edit the list and replace the second and third use of the word squash to pick. In
my case, the edited list would appear as follows:

pick 77c00e2 Adding an Easter egg of bad jokes.
squash eed5023 Joke: What goes 'ha ha bonk'?
squash 50605a1 Correcting joke about horses and baths.
pick d1dc647 Revert "Adding office hours reminder."

Save and quit your editor to proceed. A new window commit message editor will
open. You will now need to craft a new commit message that represents all of the
commits you are combining. The current messages are provided as a starting point:

This is a combination of 3 commits.
The first commit's message is:
Adding an Easter egg of bad jokes.

You should add your bad jokes too.

This is the 2nd commit message:

Joke: What goes 'ha ha bonk'?

This is the 3rd commit message:

Correcting joke about horses and baths.

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
#

Working with Commits | 131

Date: Wed Sep 10 06:12:01 2014 -0400
#
rebase in progress; onto 0f187d8
You are currently editing a commit while rebasing branch 'practice_rebasing'
on '0f187d8'.
#
Changes to be committed:
new file: badjokes.md
#

In this case, it is appropriate to update the commit message as follows:

Adding an Easter egg of bad jokes.

- New Joke: What goes 'ha ha bonk'?

You don’t need to remove lines starting with #. I have done this to make it a little eas‐
ier to read.

When you are happy with the new commit message, save and quit the editor to pro‐
ceed:

[detached HEAD 1c10178] Adding an Easter egg of bad jokes.
 Date: Wed Sep 10 06:12:01 2014 -0400
 1 file changed, 7 insertions(+)
 create mode 100644 badjokes.md
Successfully rebased and updated refs/heads/practice_rebasing.

The rebasing procedure is now complete. Your revised log will appear as follows:

$ git log --oneline

ef4409f Revert "Adding office hours reminder."
1c10178 Adding an Easter egg of bad jokes.
0f187d8 Added information about additional people to be thanked.
c546720 Adding office hours reminder.
3184b5d Switching back to BADCamp version of the deck.

In the second example, we are going to separate changes that were made in a single
commit so they are available as two commits instead. This would be useful if you
added made several changes to a single file and commited all of those changes as a
single commit but they should have have actually been saved as two separate com‐
mits.

To separate a commit into several, begin the same way as you did before. This time
when presented with the list of options, change pick to edit for one of the commits.
When you save and close the editor this time, you will be presented with the option
to amend your commit (you know how to do this! yay!), and then proceed with the
rebase process:

Stopped at 0f187d831260b8e93d37bad11be1f41aaeca835e... Added information
about additional people to be thanked.
You can amend the commit now, with

132 | Chapter 6: Rollbacks, Reverts, Resets, and Rebasing

 git commit --amend

Once you are satisfied with your changes, run

 git rebase --continue

At this point you are in a detached HEAD state (you’ve been here before! it’s okay!), but
the files are all committed. You need to reset the working directory so that it has
uncommitted files that you can work with. Do you remember the command we used
previously to accomplish this? It’s reset! Instead of selecting a specific commit, it’s
okay to use the shorthand for “one commit ago,” which is HEAD~1:

$ git reset HEAD~1

Unstaged changes after reset:
M README.md

Now you have an uncommitted file in your working directory that needs to be added
before you can continue the rebasing.

At this point, you can stage your files interactively by adding the parameter --patch
when you add your files. This allows you to separate changes saved into one file into
two (or more) commits. You do this by adding one hunk of the change to the staging
area, committing the change, and then adding a new hunk to the staging area:

$ git add --patch README.md

You will be asked if you want to stage each of the hunks in the file:

diff --git a/README.md b/README.md
index 291915b..2eceb48 100644
--- a/README.md
+++ b/README.md
@@ -49,3 +49,5 @@ Emma is grateful for the support she received while employed at
 Drupalize.Me (Lullabot) for the development of this material.
 The first version of the reveal.js slides for this work were posted at
 [workflow-git-workshop](https://github.com/DrupalizeMe/workflow-git-workshop).
+
+Emma is also grateful to you for watching her git tutorials!
Stage this hunk [y,n,q,a,d,/,e,?]?

If you want to include the hunk, choose y; otherwise, choose n. If it’s a big hunk and
you want to only include some of it, choose s (this option isn’t available if the hunk is
too small). Proceed through each of the changes in the file and select the appropriate
option. When you get to the end of the list of changes, you will be returned to the
prompt. Use the command git status, and assuming there was more than one hunk
to change, you will see your file is ready to be committed and not staged for commit:

$ git status

Working with Commits | 133

rebase in progress; onto bd5c178
You are currently splitting a commit while rebasing branch 'practice_rebasing'
on 'bd5c178'.
 (Once your working directory is clean, run "git rebase --continue")

Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 modified: README.md

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: README.md

Proceed by committing your staged changes:

$ git commit

If the remainder of the changes can all be included in the same commit, you can omit
the parameter --patch and add and commit the file to the repository:

$ git add README.md
$ git commit

With all of your changes committed, you are ready to proceed with the rebase. It
seems like there aren’t any hints, but if you check the status, Git will remind you you
are not done yet:

$ git status

rebase in progress; onto bd5c178
You are currently editing a commit while rebasing branch 'practice_rebasing'
on 'bd5c178'.
 (use "git commit --amend" to amend the current commit)
 (use "git rebase --continue" once you are satisfied with your changes)

nothing to commit, working directory clean

To complete the rebase, follow the command as Git has described in the status mes‐
sage:

$ git rebase --continue

Successfully rebased and updated refs/heads/practice_rebasing.

Phew! You did it! That was a lot of steps, but they were all concepts you have previ‐
ously tried; this time they were chained together. Well done, you.

If you have followed each of the examples in this section, you should now be able to
amend commits, and alter the history of a branch using interactive rebasing.

134 | Chapter 6: Rollbacks, Reverts, Resets, and Rebasing

Unmerging a Branch
Mistakes can happen when you are merging branches. Maybe you had the wrong
branch checked out when you performed the merge; or maybe you were supposed to
use the --no-ff parameter when merging, but you forgot. So long as you haven’t
published the branch, it can be quite easy to “unmerge” your branches.

There Is No Such Thing as an Unmerge

“Inconceivable!” he cried. “I do not think that word means what
you think it means,” the other replied. With apologies to The Prin‐
cess Bride, it’s true; there’s no six-fingered man in Git, and there’s
not really a way to “unmerge” something. You can, however,
reverse the effects of a merge by resetting the tip of your branch to
the point immediately before you used the command merge..
Hopefully this doesn’t happen to you often, because it’s possible it
will take years off your life just like The Machine does to our hero,
Westley.

Ideally, you will notice you have incorrectly merged a branch immediately after doing
it. This is the easiest scenario to reverse. Git knows some of its commands are more
dangerous than others, so it stores a pointer to the most recent commit right before it
performs the dangerous maneuver. Git considers a merge to be dangerous, and so
you can easily undo a merge right after it occurs by running reset, and pointing the
tip of your branch back to the commit right before the merge took place:

$ git reset --merge ORIG_HEAD

If you did not notice your mistake right away, you will need to ask yourself a few
more questions before proceeding. Figure 6-6 summarizes the considerations you
will need to make in order to select the correct commands to unmerge your work.

You will need to think carefully about what work you may want to retain, and what
work can be thrown out, before proceeding. If you have deleted the branch you are
removing, you may wish to create a backup copy of the commits in a separate branch.
This will save you from having to dig through the reflog to find the lost commits.

Let’s say the branch you are working on is named master, and you want to create a
backup branch named preservation_branch:

$ git checkout master

$ git checkout -b preservation_branch

Working with Commits | 135

Figure 6-6. Before unmerging your branch, consider what may happen to the lost
commits

You now have a branch with the good commits and the bad commits, and you can
proceed with removing the bad commits. This assumes there are no additional com‐
mits you want to save on the branch that needs cleaning:

$ git checkout master
$ git reset --merge ORIG_HEAD

If you do want to save some of the commits, you can now cherry-pick them back
from the backup branch you created.

$ git cherry-pick commit_to_restore

The method of using ORIG_HEAD as a reference point will only work if you notice right
away that you need to unmerge the bad branch. If you have been working on other

136 | Chapter 6: Rollbacks, Reverts, Resets, and Rebasing

things, it’s possible that Git will have already established a new ORIG_HEAD. In this
case, you will need to select the specific commit ID you want to return to:

$ git reset last_correct_commit

As Figure 6-6 shows, there are a few different scenarios for unmerging branches. Take
your time and remember, the reflog keeps track of everything, so if something disap‐
pears, you can always go back and check out a specific commit to center yourself and
figure out what to do without losing any of your work.

Undoing Shared History
This chapter has been focused on altering the unpublished history of your repository.
As soon as you start publishing your work you will eventually publish something that
needs to be fixed up. There are lots of reasons why this can happen—new require‐
ments from a client; you notice a bug; someone else notices a bug. There is nothing to
be ashamed of if you need to make a change and share it with others, and you almost
certainly don’t need to hide your learning! Sometimes, however, it’s appropriate to
clean up a commit history that has already been shared. For example, lots of minor
fixes can make debugging tools, such as bisect, less efficient; and a clean commit
history is easier to read. The most polite way to modify shared history is to not mod‐
ify it at all. Instead of a “roll back” to recover a past working state, think of your
actions as “rolling forward” to a future working state. You can do this by adding new
commits, or by using the command revert. In this section you will learn how to fix
up a shared history without frustrating your teammates.

Reverting a Previous Commit
If there was a commit in the past that was incorrect, it is possible to apply a new com‐
mit that is the exact opposite of what you had previously using the command revert.
If you are into physics, revert is kind of like noise-canceling headphones. The com‐
mand applies the exact opposite sound as the background noise, and the net effect to
your ears is a silent nothingness.

When you use the command revert, you will notice that your history is not altered.
Commits are not removed; rather, a new commit is applied to the tip of your branch.
For example, if the commit you are reverting applied three new lines, and removed
one line, the revert will remove the three new lines and add back the deleted line.

For example, you have the following history for your branch:

50605a1 Correcting joke about horses and baths.
eed5023 Joke: What goes 'ha ha bonk'?
77c00e2 Adding an Easter egg of bad jokes.
0f187d8 Added information about additional people to be thanked.
c546720 Adding office hours reminder.

Undoing Shared History | 137

3184b5d Switching back to BADCamp version of the deck.
bd5c178 Added feedback request; formatting updates to pro-con lists

You decide that you want to remove the commit made about the reminder for the
office hours, because that message was only relevant for that particular point in time.
This message was added at c546720:

$ git revert c546720

The commit message editor will open. A default message is provided, so you can save
and quit to proceed:

[master d1dc647] Revert "Adding office hours reminder."
 1 file changed, 2 deletions(-)

Your logged history now includes a new commit to undo the changes that were added
in c546720:

d1dc647 Revert "Adding office hours reminder."
50605a1 Correcting joke about horses and baths.
eed5023 Joke: What goes 'ha ha bonk'?
77c00e2 Adding an Easter egg of bad jokes.
0f187d8 Added information about additional people to be thanked.
c546720 Adding office hours reminder.
3184b5d Switching back to BADCamp version of the deck.

Repeat for each commit that you want to revert.

If you have followed along with each of the examples in this section, you should now
be able to reverse the changes that were implemented in a previous commit.

Unmerging a Shared Branch
Previously in this chapter you learned how unmerge two branches using the com‐
mand reset. This command deletes commits from a branch’s history. As a result, Git
will treat them as new commits if it encounters them again. This happens if people
merge their (now out of date) branch into the main repository.

To know which commands to use, you will first need to determine what kind of
merge it is. Figure 6-7 compares a fast-forward merge and a true merge. A fast-
forward merge is aligned with the commits from the branch it was merged into; a
true merge, however, is displayed as a hump on the graph and includes a commit
where the merge was performed.

Using the command log, look for the point where the incorrect branch was merged
in (Example 6-8). If there is a merge commit, you’re in luck! If there is no merge com‐
mit, you are going to have to do a lot more work to get the branch unmerged.

138 | Chapter 6: Rollbacks, Reverts, Resets, and Rebasing

Figure 6-7. When graphed, a fast-forward merge loses the visual of a branch; a true
merge maintains it.

Example 6-8. The graphed log of your commit history will show you if it’s a true merge

$ git log --oneline --graph

* 4f2eaa4 Merge branch 'ch07' into drafts
|\
| * c10fbdd CH07: snapshot after editing draft in LibreOffice
| * 9716e7b CH07: snapshot before LibreOffice editing
| * 8373ad7 App01: moving version check to the appendix from CH07

Undoing Shared History | 139

| * d602e51 CH7: Stub file added with notes copied from video recording lessons.
* | 1ae7de0 CH08: Incorrect heading formatting was creating new chapter
* | 7907650 CH08: Draft chapter. Based on ALA article.
* | ad6c422 CH8: Stub file added with notes copied from video recording lessons.

You may also want to look at a single commit to confirm if it is a true merge using the
command show. This will list SHA1 for the branches that were merged:

$ git show 90249389

commit 902493896b794d7bc6b19a1130240302efb1757f
Merge: 54a4fdf c077a62
Author: Joe Shindelar <redacted@gmail.com>
Date: Mon Jan 26 18:30:55 2015 -0700

 Merge branch 'dev' into qa

Thanks, Joe, for this tip!

Being Consistent Makes It Easier to Search Successfully

The default commit message for a merge commit is “Merge branch
incoming into current,” which makes it easier to spot when reading
through the output from the log command. Your team might
choose to use a different commit message template; however, you
can add the optional parameters --merges and --no-merges to fur‐
ther filter the logged history.

Once you know if there is a merge commit present, you can choose the appropriate
set of commands. Figure 6-8 summarizes these options as a flowchart.

If the branch was merged using a true merge, and not a fast-forward merge, the undo
process is as follows: use the command revert to reverse the effects of the merge
commit (Example 6-9). This command takes one additional parameter, --mainline.
This parameter tells Git which of the branches it should keep while undoing the
merge. Take a look at your graphed log and count the lanes from left to right. The
first lane is 1. You almost always want to keep the leftmost lane, and so the number to
use is almost always 1.

Example 6-9. Reversing a merge commit

$ git checkout branch_to_clean_up
$ git log --graph --oneline
$ git revert --mainline 1 4f2eaa4

The commit message editor will open. A default commit message is provided indicat‐
ing a revert is being performed, and including the commit message from the commit
it is reversing (Example 6-10). I generally leave this message in place due to sheer

140 | Chapter 6: Rollbacks, Reverts, Resets, and Rebasing

laziness; however, the upside is that it is quite easy to search through my recorded
history and find any commits where I’ve reverted a merge.

Figure 6-8. Depending on how your branch was merged, you will use different com‐
mands to unmerge the shared branch

Example 6-10. Sample commit message for a revert of a merge commit

Revert "Merge branch 'video-lessons' into integration_test"

This reverts commit 0075f7eda67326f174623eca9ec09fd54d7f4b74, reversing
changes made to 0f187d831260b8e93d37bad11be1f41aaeca835e.

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
On branch master
Your branch and 'origin/master' have diverged,
and have 23 and 2 different commits each, respectively.
(use "git pull" to merge the remote branch into yours)
#
Changes to be committed:
deleted: lessons/01-intro/README.md
deleted: lessons/02-getting-started/README.md
deleted: lessons/03-clone-remote/README.md

Undoing Shared History | 141

deleted: lessons/04-config/README.md
(etc)
#

Occasionally you will run into conflicts when running a revert. No reason to panic.
Simply treat it as any other merge conflict and follow Git’s on-screen instructions:

$ git revert --mainline 1 a1173fd

error: could not revert a1173fd... Merge branch 'unmerging'
hint: after resolving the conflicts, mark the corrected paths
hint: with 'git add <paths>' or 'git rm <paths>'
hint: and commit the result with 'git commit'
Resolved 'README.md' using previous resolution.

Something went wrong—check the status message to see which files need reviewing:

$ git status

On branch master
Your branch and 'origin/master' have diverged,
and have 20 and 2 different commits each, respectively.
 (use "git pull" to merge the remote branch into yours)
You are currently reverting commit a1173fd.
 (fix conflicts and run "git revert --continue")
 (use "git revert --abort" to cancel the revert operation)

Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)

 deleted: badjokes.md
 modified: slides/slides/session-oscon.html

Unmerged paths:
 (use "git reset HEAD <file>..." to unstage)
 (use "git add <file>..." to mark resolution)

 both modified: README.md

The messages about the repository being out of sync with origin is unrelated to this
issue. Skip that, and keep reading. The first useful bit of information starts at: You
are currently reverting. You are given the options on how to proceed, and on
how to abort the process. Don’t give up! Keep reading. The next bit looks like a regu‐
lar ol’ dirty working directory with some files that are staged, and some that aren’t. If
you were just making edits to your files, you would know how to deal with this. First
you add your changes to the staging area, and then you commit them:

$ git add README.md
$ git commit -m "Reversing the merge commit a1173fd."

[master 291dabe] Reversing the merge commit a1173fd.
 2 files changed, 2 insertions(+), 7 deletions(-)
 delete mode 100644 badjokes.md

142 | Chapter 6: Rollbacks, Reverts, Resets, and Rebasing

If there is no merge commit, you will need to deal with each of the commits you want
to undo individually. This is going to be especially frustrating because a fast-forward
merge does not have any visual clues in the graphed log about which commits were in
the offending branch. (After the first time unpicking an incorrect merge, you’ll begin
to see the logic in using a --no-ff strategy when merging branches.)

Consider Your Options by Talking to Your Team

Before unpicking the commits one at a time, you may want to
check if there is anyone on the team with an unpublished, unsullied
version of the branch they can share. Sometimes it is easier to
break history with a well-placed push --force.

The first thing you need to do is get a sense of where the bad commits are. If you are
not entirely sure how things went wrong, you can get a list of all the branches a com‐
mit is contained within by using the command branch with the parameter
--contains:

$ git branch --contains commit

Assuming the merged-in branch hasn’t been deleted, you should be able to use the
information to figure out which branch you are trying to unmerge, and what com‐
mits were applied to that branch that you might want to remove. Remember, though,
the commits are going to be in both branches, so you won’t be able to run a compari‐
son to find which commits are different. This step isn’t necessary if you already know
which commits you are targeting.

If the commits you need to revert are sequential, you’re in luck! The command
revert can accept a single commit, or a series of commits. Remember, though, that a
revert is going to make a new commit for each commit it is reversing. This could get
very noisy in your commit history, so instead of reversing each commit individually,
you can group them into a single reversal by opting to save your commit message to
the very end:

$ git revert --no-commit last_commit_to_keep..newest_commit_to_reject

After running this command you will end up with a dirty working directory with all
of the files reverted back. Review the changes. Then, complete the revert process:

$ git revert --continue

Review the commit message and make any necessary updates to improve the clarity
of the message. By default the message will be “Revert” followed by the quoted text of
what was in the newest of the commits you are reversing. Often this will be sufficient,
but you may want to be more descriptive if the original message was subpar.

Undoing Shared History | 143

If the commits are not sequential, you will need to revert the offending commits one
at a time. Send me a tweet at @emmajanehw and I will commiserate and cheerlead.

$ git revert commit

Unmerging a merged branch is not something Git is designed to do unless a very spe‐
cific workflow has been followed. Your team may never need to unmerge a branch. I
have definitely had the occasional bad merge on a personal project where I was a solo
developer and opted to swear a bit, and then shrug and move on. Sometimes history
doesn’t really matter all that much; sometimes it does. With experience and hindsight,
you know for sure which commands you should have been using.

Really Removing History
In this chapter, you’ve learned about updating the history of your repository, and
especially retrieving information you thought was lost. There may be times when you
actually do want to lose part of your history—for example, if you accidentally commit
a very large data file or a configuration file that contains a password. Hopefully you
never need to use this section, but just in case your “friend” ever needs help, I’ve
included the instructions. You know, just in case.

Published History Is Public History

If you have published content to a publicly available remote reposi‐
tory, you should make the assumption that someone out there
cloned a copy of your repository and has access to the secrets you
did not mean to publish. Update any passwords and API keys that
were published in the repository immediately.

If you need to do your cleanup on a published branch, you should notify your team
members as soon as you realize you need to clean the repository. You should let them
know you are going to be doing the cleanup, and will be “force pushing” a new his‐
tory into the repository. Developers will need to evaluate their local repository and
decide which state it is in. Have each of the developers search for the offending file to
see if their repository is tainted:

• If the file you are trying to remove is not in their local repository, they will not be
affected by your cleanup.

• If their repository does have the file, in any of their local branches, it is tainted.
However, if they have not done any of their own work since the file was intro‐
duced, they will not be affected by your cleanup. This may be true for QA manag‐
ers who are not also local developers. In this case, have them remove their local
copy of the repository and re-clone the repository once the cleanup is done.

144 | Chapter 6: Rollbacks, Reverts, Resets, and Rebasing

• If their repository is tainted, and they do have local work that was built from a
branch that includes the tainted history, they will need to bring these branch(es)
up-to-date through rebasing. If they use merge to bring their branches up-to-
date, they will reintroduce the problem files back into the repository and your
work will have been for naught. This can be a little scary for people if they are not
familiar with rebasing, so you may want to suggest that they push any branches
that have work they need to keep so that you can clean it up for them. (Have
them clone a new repository once the cleanup is done.)

While you are working on the cleanup, your coworkers could have a sword fight or
something.

With everyone on the team notified, and with a plan of what will happen before, dur‐
ing, and after the cleanup on everyone else’s repositories, you are ready to proceed.

For this procedure, you will use the command filter-branch. This command allows
you to rewrite branch histories and tags. The examples provided in the Git documen‐
tation are interesting, and worth reading. You can, for example, use this command to
permanently remove any code submitted by a specific author. I cannot think of an
instance when I would choose to remove everything from someone without review‐
ing the implications, but it’s interesting that the command can be used in this way.
(Perhaps you know exactly how it would be useful, though?)

Assuming the file you want to remove is named SECRET.md, the command would be
as follows (this is a single command, but it’s long; the \ allows you to wrap onto two
lines):

$ git filter-branch --index-filter \
 'git rm --cached --ignore-unmatch SECRET.md' HEAD

With the file completely removed from the repository, add it to your .gitignore file so
that it doesn’t accidentally sneak in again. Instructions on working with .gitignore are
available in Appendix C.

Unlike the other methods in this chapter, we are aiming to permanently remove the
offending content from your repository. For a brief period of time the commits will
still be available by using the command reflog. When you are sure you do not need
the commits anymore, you can obliterate them from your system by cleaning out the
local history as well and doing a little garbage collection (gc):

$ git reflog expire --expire=now --all
$ git gc --prune=now

Your repository is now cleaned, and you are ready to push the new version to your
remote repositories:

$ git push origin --force --all --tags

Really Removing History | 145

https://xkcd.com/303/

Once the new version of history is available from the shared repository, you can tell
your coworkers to update their work. Depending on the conversation you’ve had pre‐
viously, they will incorporate your sanitized changes into their work by one of the fol‐
lowing methods:

• Cloning the repository again from scratch. This method is better for teams that
are not currently using rebasing and are intimidated by it.

• Updating their branches with rebase. This method is better for teams that are
already comfortable with rebasing because it is faster than starting a new clone,
and allows them to keep any work they have locally:

$ git pull --rebase=preserve

Both GitHub and Bitbucket offer articles on how to do this cleanup for repositories
stored on their sites. Both are worth reading because they cover slightly different sce‐
narios.

Now that you know Git’s built-in way of sanitizing a repository, check out this stand-
alone package, BFG Repo Cleaner. It delivers the same outcome as filter-branch,
but it is much faster to use, and once it is installed, it’s much easier, too. If you are
dismayed by the amount of time a cleanup is taking with filter-branch, you should
definitely try using BFG.

Command Reference
Table 6-2 lists the commands covered in this chapter.

Table 6-2. Git commands for undoing work

Command Use

git checkout -b branch Create a new branch with the name branch

git add filename(s) Stage files in preparation for committing them to the repository

git commit Save the staged changes to the repository

git checkout branch Switch to the specified branch

git merge branch Incorporate the commits from the branch branch into the current
branch

git branch --delete Remove a local branch

git branch -D Remove a local branch whose commits are not incorporated elsewhere

146 | Chapter 6: Rollbacks, Reverts, Resets, and Rebasing

http://bit.ly/sensitive-data
http://bit.ly/atlassian-git-repo
http://bit.ly/bfg-cleaner

Command Use

git clone URL Create a local copy of a remote repository

git log Read the commit history for this branch

git reflog Read the extended history for this branch

git checkout commit Check out a specific commit; puts you into a detached HEAD state

git cherry-pick commit Copy a commit from one branch to another

git reset --merge ORIG_HEAD Remove from the current branch all commits applied during a recent
merge

git checkout -- filename Restore a file that was changed, but has not yet been committed

git reset HEAD filename Unstage a file that is currently staged so that its changes are not saved
during the next commit

git reset --hard HEAD Restore all changed files to the previously stored state

git reset commit Unstage all of the changes that were previously committed up to the
commit right before this point

git rebase --interactive commit Edit, or squash commits since commit

git rebase --continue After resolving a merge conflict, continue with the rebasing process

git revert commit Unapply changes stored in the identified commit; this creates a sharing-
friendly reversal of history

git log --oneline --graph Display the graphed history for this branch

git revert --mainline 1 commit Reverse a merge commit

git branch --contains commit List all branches that contain a specific commit object

git revert --no-commit last_com
mit_to_keep..newest_com
mit_to_reject

Reverse a group of commits in a single commit, instead of creating an
object for every commit that is being undone

git filter-branch Remove files from your repository permanently

git reflog expire Forget about extended history, and use only the stored commit
messages

Command Reference | 147

Command Use

git gc --prune=now Run the garbage collector and ensure all noncommitted changes are
removed from local memory

Summary
Throughout this chapter you learned how to work with the history of your Git repos‐
itory. We covered common scenarios for some of the commands in Git which are
often considered “advanced” by new Git users. By drawing diagrams summarizing
the state of your repository, and the changes you wanted to make, you were able to
efficiently choose the correct Git command to run for each of the scenarios outlined.
You learned how to use the three “R"s of Git:

Reset
Moves the tip of your branch to a previous commit. This command does not
require a commit message and it may return a dirty working directory if the
parameter --hard is not used.

Rebase
Allows you to alter the way the commits are stored in the history of a branch.
Commonly used to squash multiple commits into a single commit to clean up a
branch; and to bring a branch up-to-date with another.

Revert
Reverses the changes made in a particular commit on a branch that has been
shared with others. This command is paired with a commit and it returns a clean
working directory.

In the next chapter, you will take the lessons you’ve been working on in your local
repository and start integrating them with the rest of the team’s work.

148 | Chapter 6: Rollbacks, Reverts, Resets, and Rebasing

CHAPTER 7

Teams of More than One

The first few times you work with others on a project will shape how you approach
version control. If your collaborators are patient and empathetic, you are more likely
to use version control with confidence. Empathetic teammates will document the
procedure they want you to use, and support you with questions (updating the docu‐
mentation as necessary). If you are responsible for starting a project, think of that
scene when Jerry Maguire says to his star player, “help me help you.” As a project
lead, this should be your mantra. Find the sticking points and remove them. Where
you want consistency, provide detailed instructions, templates, and automated scripts.
When something comes in that is not up to your standard, consider it a process prob‐
lem that is yours to solve.

In this chapter, we have the culmination of everything covered in this book so far. In
Part I, you learned about the different considerations for setting up a project. Now
you will learn how to implement those decisions. In Chapters 5 and 6, you learned
how to run the commands you’ll use on a daily basis as a developer. In this chapter,
you will learn how to set up a connection to a remote project, and share your work
with others.

By the end of this chapter, you will be able to:

• Set up a new project on a code hosting system
• Download a remote repository with clone
• Upload your changes to a project with push
• Refresh the list of branches available from the remote repository with fetch
• Incorporate changes from the remote repository with pull
• Explain the implications of updating your branches with pull, rebase, and merge

149

Where possible, this chapter includes templates you can use to help onboard new
developers. The easier it is for people to contribute usable work, the more likely they
are to enjoy working on your project. Even if it’s just a job, there’s no reason we
shouldn’t all have a little more delight in our lives.

Those who learn best by following along with video tutorials will benefit from Col‐
laborating with Git (O’Reilly), the companion video series for this book.

Setting Up the Project
The context for your project will dictate a lot of how the repository will be set up. A
super-secret internal-only covert code base will be set up so as to ensure privacy; a
free and open source code library will be set up for transparency and probably partic‐
ipation. Once the project is established, the commands the developers use daily will
likely be quite similar.

This section covers the basic process for creating a new project on a code hosting sys‐
tem. The specifics for GitHub, Bitbucket, and GitLab are covered in Part III (Chap‐
ters 10, 11, and 12, respectively).

Creating a New Project
In order to share your work with your team, you will need to establish a new project
in your code hosting system of choice. These days most code hosting systems offer
more than a place to dump a shared repository. They also include ticketing systems,
basic workflow enhancements, project documentation repositories, and more! In the
communities and teams I participate in, one of the following three services are gener‐
ally used: GitHub (typically used by open source projects), Bitbucket (typically used
by internal teams and small teams who need free hosting for private projects), and
GitLab (typically used by medium-sized companies that need to host their code in
house for security reasons).

No matter which system you choose, the basics of setting up a project are going to be
the same. The first question you’ll need to ask yourself is: which account should you
use to create the repository? The standard format for project URLs on a web-based
system is as follows: https://<hosting-url.com>/<project-owner’s-name>/<project-
name>. If the project is really and truly yours—for example, the repository for your
personal blog—it’s appropriate for the URL to include your username. If, however,
the project belongs to an agency of developers, it would be more appropriate for the
project owner’s name to be the name of the agency. And finally, if the project belongs
to a number of agencies, such as an open source software project, the most appropri‐
ate project owner name would be the name of the software project.

The decisions you choose here may also affect who is able to write directly to the
project, and may be dependent on the code hosting system you’re using. For example,

150 | Chapter 7: Teams of More than One

http://bit.ly/collaborating-with-git
http://bit.ly/collaborating-with-git
https://<hosting-url.com>/<project-owner’s-name>/<project-name>
https://<hosting-url.com>/<project-owner’s-name>/<project-name>

if you choose to start the project under your personal name, you might not want to
allow “just anyone” to write to the project without a review from you—especially so
for public projects where others could be evaluating the body of work under the
assumption it was yours.

What’s in a Name?

The support repository for this book has existed in a number of
different places over the years, including my personal account, a
team account, and three different code hosting systems (for a total
of six different repositories that need to be maintained). Although
the work has been developed by me, it becomes a question of
branding on which URL I want to distribute. If I want others to
think of the repository as theirs (such as in a set of abstract learning
materials where people don’t have direct access to me), I might use
the project URL; but when I want people to think of me as the
author because it’s also a promotional piece, I might give people my
personal URL. It’s quite possible I overthink this, but you should
give the naming of things at least a little consideration.

You are probably reading this book as a member of a team (even if it’s a very tiny
team of one!), and so you’ll want to select the name of your company, agency, or team
as the project owner, or the name of the project if you are working on an open source
project. Fortunately, you can move the code base to a new name or even a new code
hosting platform very easily, so it’s not absolutely critical to get it right from the
beginning. It is, however, more difficult to transfer any of the metadata for your
project from one account to another. Metadata could include the history of tickets for
your project, and any documentation stored outside of the repository.

With the project owner selected, go ahead and create a new empty project under this
account. Don’t worry about uploading files just yet.

Establishing Permissions
There are two types of permissions you will need to set for your project: who can see
the project (“read”); and who can commit to the project (“write”)—this was discussed
in greater detail in Chapter 2. If you are an ultra-transparent team, the project should
be visible to the world. Otherwise, create a private project.

Setting Up the Project | 151

The Cost of a Free Service

Some code hosting services will charge a small fee for private repo‐
sitories, and some provide this service for free. If your code and its
history are important, consider paying for hosting. You might
choose to pay with your time and self-host the code internally, or
you may choose to pay a small monthly fee to a third-party service.
The advantage of paying is that the hosting company is more likely
to be accountable to you as a customer, and you are more likely to
keep them in business by helping to pay their expenses. Of course,
if you can’t afford to pay the fee, there are plenty of free options
available—and there’s no sense feeling guilty if a company has
chosen to offer a free service. Do what you can.

Additionally, some hosting systems will allow you to set per-branch restrictions. At
this time Bitbucket and GitLab offer this functionality. Configuration options are
described in Chapters 11 and 12, respectively.

As a distributed version control system, Git is inherently good at dealing with incom‐
ing requests for changes to a repository. Generally, team projects will have a single
repository that is considered The Project, and many spin-off projects that contain the
work of the individual developers for the project. If your project is internal, you may
choose to have everyone working directly in The Project repository; but if you prefer
to maintain a cleaner central repository, you may choose to have each of your devel‐
opers work in a fork of The Project.

The Project

Throughout this chapter, you will see reference made to “The
Project.” I use this shorthand to refer to the canonical, or official,
repository for a software project. This is the repository that the
community has agreed to use for official releases of the software.
Git itself has no internal hierarchy that forces one repository to be
more important than another—only the declaration by the com‐
munity makes a repository the official one.

Based on the decisions you made about your team structure in Chapter 2, assign the
appropriate permissions for any contributors who should be allowed write access to
The Project—additional contributions can be accepted from non-authorized develop‐
ers via pull requests (these are also referred to as merge requests by some services).

Uploading the Project Repository
As a distributed version control system, Git is a bit of a social butterfly. It loves to
connect with all kinds of repositories. It loves sharing stories, and making new

152 | Chapter 7: Teams of More than One

friends along the way. Git maintains its connections with its faraway friends through
a stored connection referred to as a remote. A local repository may have zero, one, or
many remote connections. It is typical for Git repositories to have only one remote
connection—the origin. You’ve probably seen this term used before. It’s the nickname
assigned to the remote repository from which you downloaded, or cloned, your local
copy. It’s just a nickname, though. You can use whatever names you like for your
remote connections.

When you first start a new project, you may have no code written, or some code writ‐
ten. (Seems obvious, right?) If you have no code written, you may choose to start
your project by following the instructions from your code hosting system and cloning
the empty project to your local development environment. If, however, you already
have some code locally, you will want to upload what you’ve already got. To do this,
you will need to make a new connection from your local repository to the project
hosting service.

From your local copy of the project repository, take a look to see if you already have a
remote connection set up:

$ git remote --verbose

If you started locally, you won’t see any remotes listed, so it’s okay if nothing shows up
at this point. If you do a have a remote set up for this repository, you will see some‐
thing like the following:

origin https://github.com:emmajane/gitforteams.git (fetch)
origin https://github.com:emmajane/gitforteams.git (push)

Each line begins with the nickname for the remote connection (origin), as well as
the source for the remote repository. These lines will always appear in pairs: the first
line of the pair indicates where you will retrieve new work from (fetch), and the sec‐
ond indicates where you will upload new work to (push).

Project owners will need to have a connection to the official copy of a project; they
may also have a connection to a fork of a project if they require themselves to go
through a peer review process before incorporating their own work (peer reviews are
covered in Chapter 8). As soon as you start adding multiple remote repositories for a
project, the default nickname (origin) can get a bit confusing. As a result, I tend to
name my remotes according to their purpose; for example, official and personal,
which have meaning to me. When I upload work, I then decide between these two
options. The standard Git terms for my nicknames are upstream and origin,
although origin is assigned to the source of a cloned repository by default, regardless
of whether or not you can write to it.

Setting Up the Project | 153

Name It to Claim It

I’ve been working with Git a very long time, and I still screw up the
command git remote show origin on an embarrassingly regular
basis. Four words. It shouldn’t be that hard for me to remember the
order, right? I can never seem to get the order of show and origin
right. By assigning my own names to the remote repositories, I am
more likely to make more sense of the command, and thus get the
order right. git remote show official just seems to make better
sense to my brain. You may never have this problem, but if you
struggle to remember this command, you might want to personal‐
ize your remote names and change the name origin to something
that resonates.

To add a new remote connection, you will first need to know the URL for the project.
The structure is generally https://<hosting-url.com>/<project-owner’s-name>/<project-
name>.git. In newer versions of Git, the protocol https will be available to you, but in
older documentation the first block may be replaced with something like git@hosting-
url.com. Once you know the URL for the remote repository, you can make a connec‐
tion to it (Example 7-1).

Example 7-1. Add a connection to a remote repository

$ git remote add nickname project-url

After a connection is made to a remote, you should see two new lines when you list
your remote connections. If you want to use Git’s terminology, you would use the
nickname upstream for the official project repository; if you are using my naming
convention, you would use official. This name will never be published, and there
are no Git police so you can use whatever you want and no one will ever know. (You
could even call it cookies or coffee if that made you happy. It really doesn’t matter.)

For example, if I was a participant in a project named Mounties, and it was run by the
agency Oh, Canada, I might have a series of remotes as follows:

$ git remote --verbose

official https://github.com:ohcanada/mounties.git (fetch)
official https://github.com:ohcanada/mounties.git (push)
personal https://github.com:emmajane/mounties.git (fetch)
personal https://github.com:emmajane/mounties.git (push)

You can easily hook up as many new remote connections as you like. For example,
you might have remote connections for devserver, staging, and production; or you
may log directly in to those machines and pull code from The Project repository,
instead of pushing code directly to those locations.

154 | Chapter 7: Teams of More than One

https://<hosting-url.com>/<project-owner's-name>/<project-name>.git
https://<hosting-url.com>/<project-owner's-name>/<project-name>.git

If you already have a remote connection set up in your local repository that you no
longer need, you can easily delete it (Example 7-2).

Example 7-2. Remove a remote connection

$ git remote remove nickname

You can easily rename remotes, and even set up default remotes for
each of the branches in your local repository. Git’s built-in docu‐
mentation for this command is easy to understand. You should
read through the documentation if you want to personalize your
list of remotes even further.

With the remote connection established for your project, you can now upload your
local copy of the repository to the remote server:

$ git push nickname branch_name

If you want to share all local branches with others, you can update this command as
follows:

$ git push --all nickname

Once you have uploaded your work, navigate to the project page to ensure the reposi‐
tory was uploaded as expected. By default, most code hosting systems will display the
branch master if there is more than one branch present in the repository. If your
local repository uses nonstandard branch names, check to see if your code hosting
system allows you to assign the default branch for the repository. This branch is typi‐
cally the most stable version of the project, with experimental work existing in other
branches. Every project is a little different, though. Your project may use the master
branch as the fire hose of new work and it might not be the most stable version of
your software. Be explicit in your documentation.

To upload a local name under a new name on the remote server, use the following
syntax:

$ git push nickname branch_local:branch_remote

For example, if you wanted to upload your branch main to the remote repository offi
cial and rename it to master in the remote repository, you would use the following
command:

$ git push official main:master

Your local repository should now be uploaded to the remote project repository and
with the desired branch names.

Setting Up the Project | 155

Document the Project in a README
When you navigate to your project page, you will notice most code hosting systems
will display the contents of the file README if one is present in your project. This file
should be used to give people an overview of the project. If it is a development project
with dependencies, those should be listed here. If there are installation instructions,
those should be listed here as well (or a link should be provided to a more complete
installation guide). If you would like people to contribute to the project, or report
bugs to the project, those instructions should be listed here, too.

The following projects have excellent README files that clearly explain what the
repository is about, how you can use the code within it, and how you can contribute
to it:

• Sculpin
• Sass
• Rails

Apply a License to Your Project

There is no single international copyright law. As a result, any
project that does not include an explicit license is assumed to be
fully copyrighted, and not intended for reuse. I openly admit that a
number of my projects do not include licenses. This is usually
because I simply haven’t made the decision of how I want others to
use my work. (I’m typically producing training materials in envi‐
ronments where copyright ownership is more restricted than in
code communities where open licensing is more prevalent.) The
license for a given repository is typically located in the file
LICENSE or LICENSE.txt file.

If your local repository didn’t already have a README file, now would be a good time
to add one! Today, new projects tend to use Markdown format for the README
file, and therefore rename the file to README.md to ensure the file is correctly for‐
matted.

With the project uploaded and the instructions established, it is now time to start on-
boarding contributors to your project. The process you use in the remainder of this
chapter should be added to your project repository as documentation. This will allow
developers to have a copy locally, and will allow them easier access to the information
instead of having to refer to an external wiki page.

Now that your project is in place, it’s time to flip the tables and look at things from a
contributor’s perspective.

156 | Chapter 7: Teams of More than One

https://github.com/sculpin/sculpin
https://github.com/sass/sass
https://github.com/rails/rails

Setting Up the Developers
When you think about projects from a developer’s perspective, it’s not always entirely
clear what the participation level is going to be. When it comes to publicly available
projects, a developer might engage in three levels of participation:

• Download a zipped package of the project, never to return to the project page
again. This might be seen in true forks of a project where the downstream devel‐
opers have no intention of checking back to see how the code has progressed. It
might also be used for projects that are designed to be a starting point—where
the intention is to hack up the code and modify the source significantly.

• Clone the project repository with the intention of keeping the code up to date
locally, but without the intention of making modifications. This could be true of
any developer who is incorporating an open source library into his or her project.
The developers might extend the library, and perhaps make little changes to the
cloned library, but for the most part they are using the project code as is, relying
on upstream developers for enhancements and security updates.

• Clone the project repository with the intention of contributing work back. This
will be true for open source project volunteers and staff, in-house developers on a
software project, as well as staff at an agency who are contributing to a build for a
particular project.

The main distinction between the latter two options is that a noncontributor will typ‐
ically clone The Project directly, whereas a contributor will likely have a personal
remote repository in addition to the project repository. The rationale for these
choices was described in greater detail in Chapter 2.

Consumers Versus Contributors

Forward-thinking (intermediate to advanced) developers will
always assume they are going to contribute back to a project at
some point and create their own intermediate remote repository.
Most novice developers, however, will aim to streamline their
workflow where possible and omit the intermediate step of creating
their own remote repository. This also means they are perceiving of
themselves only as a consumer, rather than a potential contributor,
to your project.

Once developers identify themselves as consumers or contributors (including pri‐
mary maintainers), they will be ready to choose a method to download your project
repository.

Setting Up the Developers | 157

Consumers
Consumers have no intention to contribute back to a project. They don’t expect to
have write access to the code base, and they can’t imagine a possible future where they
would want to upload their changes to a project. This type of developer might down‐
load your repository in one of two ways:

• As a zipped package.
• As a clone of the repository directly from The Project page.

A zipped package has no connection back to The Project, and contains no history of
the changes that have happened over time. A clone, on the other hand, maintains a
connection to the project, and can be updated to the latest version by running a few
Git commands. The structure to clone a remote repository is as follows:

$ git clone https://<hosting-url.com>/<project-owner's-name>/<project-name>.git

For example, if you wanted to download a copy of the project repository for the Git
for Teams workshop, you would issue the following command:

$ git clone https://github.com/gitforteams/gitforteams.git

To update your local copy of the repository, first you would need to fetch the latest
changes to The Project (for now, we’ll assume you have only one remote connection):

$ git fetch --all

Once you’ve fetched the changes, you can compare what’s changed in the latest ver‐
sion to what you have locally before choosing to update your local copy.

First, get a list of all branches in your repository:

$ git branch --all

You will see two groups of branches: your local branches and the remote tracking
branches. The currently checked-out branch will be marked with *. My personal copy
of the project repository cloned previously is as follows:

 gh-pages
* master
 video-lessons
 remotes/personal/gh-pages
 remotes/personal/master
 remotes/personal/video-lessons

This list shows three local branches as well as three branches connected to a remote
that has been nicknamed personal.

For even more detail for each branch, use the parameter --verbose:

$ git branch --all --verbose

158 | Chapter 7: Teams of More than One

The output includes the commit message as well as the status for each branch com‐
pared to its remote repository:

 gh-pages 629b54f Resolving merge conflict; ...
* master 2db982d Changes to "Undo" graphic: ...
 video-lessons 7798eb1 [ahead 11] Lesson 00: ...
 remotes/personal/gh-pages 629b54f Resolving merge conflict; ...
 remotes/personal/master 2db982d Changes to "Undo" graphic ...
 remotes/personal/video-lessons 653f875 Lesson 7: Added intro on ...

To see a history of the changes that have been added to the repository on the branch
master, you can use the command log:

$ git log personal/master

To compare your local copy of a branch to what was just downloaded, you can add
the parameter --patch to see the per-commit changes, or use the command diff to
see a summary of all changes:

$ git log --patch personal/master
$ git diff master personal/master

This will show you all of the changes in patch format. Look for lines that have been
added (marked with +), or deleted (marked with -). If you prefer to check out the
code base as a whole, you can check out the branch tip:

$ git checkout personal/master

This will put you into a detached HEAD state. To return to the local copy of the master
branch, check it out:

$ git checkout master

Once you’ve reviewed the changes, you can update your local copy of the master
branch by rebasing to add the new changes:

$ git rebase personal/master

Using the command rebase provides a cleaner graphed history; however, if your
team has opted to use merging, you can use the command merge to bring your local
branch up to date:

$ git merge personal/master

If you have multiple local branches that you want to update, you will need to check
out each one individually and then use this same procedure to incorporate the
changes. This needs to be done one branch at a time because if there are conflicts
between the two copies of the branch, Git needs to give you a working directory to
resolve the conflicts.

These few commands are the only ones that a consumer of a project will need to use.
If, however, the developer makes a little change to her copy of the repository locally,

Setting Up the Developers | 159

and wants to contribute that change back to the project, she will be limited to submit‐
ting a patch, or requesting access as a developer (which is probably not appropriate to
grant for one-off contributors). Although it is possible to submit patches, it is not
preferred. (Yes, there are some projects that still use patches, including Git itself!)
Instead, many projects have come to prefer pull requests. Originally used by GitHub,
this term has become popular on other systems as well. A pull request is a meta fea‐
ture—it is not something built into Git itself, but rather it is a feature of software that
sits alongside Git. It provides a visual prompt for a project maintainer to incorporate
a branch of work from a remote repository. The connection between the two reposi‐
tories exists only for that one particular request; it is not a persistent connection like a
developer would set from his or her local workstation to a remote repository.

Contributors
So you think you’re interested in contributing to a software project. Cool! (This is
where, as the author of this book, I let out a huge sigh of relief. If you’ve made it this
far into the book and weren’t interested in working on a software project, I’d feel really
bad.) As a distributed version control system, Git is focused on what you can do
locally. The built-in tools for direct collaboration on shared repositories are extremely
coarse—either you have full write access to a project, or you have none. There are
no per-branch permissions, and indeed, without the support of SSH, there’s no
authentication system at all in Git. Git relies on wrapper software to provide the
access control.

In order for wrapper software to make the connection between two repositories, it
needs them to both be accessible from the same place. The easiest way to design for
this is to have developers upload their changes to the same system that hosts The
Project repository. GitHub, as well as every other web-based system, does this by hav‐
ing you create a clone, or a fork, of The Project, and upload your changes to the
copied repository. Then, you use the wrapper software to request that your changes
be pulled into The Project repository.

Using GitHub terms:

1. An aspiring contributing developer (The Developer) forks The Project reposi‐
tory.

2. The Developer then makes her proposed changes in her copy of The Project.
3. When finished, The Developer initiates a pull request from a branch in her copy

of the project to a branch in The Project repository.
4. Using comments in GitHub’s web interface, a conversation will take place

between The Developer and The Maintainer. Sometimes additional updates will
be required by The Developer before The Maintainer is ready to accept the pro‐
posed changes into The Project.

160 | Chapter 7: Teams of More than One

5. When the proposed changes are deemed worthy, The Maintainer will incorporate
the pull request into The Project.

GitHub Does Not Require a Local Clone of The Project

GitHub now allows developers to make minor edits directly to files
through a web interface; however, many developers will choose to
clone their copy of The Project so they can work on it locally. Then,
when they have completed their work, they will push their updates
to their own copy of the project and initiate a pull request from
their copy of the project to the main project repository.

The process for submitting a pull request will vary slightly depending on the wrapper
software being used (e.g., GitHub, Bitbucket, GitLab, etc.); however, the basic process
is covered in Part III.

Maintainers
A developer who has direct commit access to The Project repository is a special kind
of developer, known as The Maintainer. Depending on how your team is structured,
The Maintainers might be only those on the quality assurance team, or they may be
handpicked developers from the community. For smaller internal projects, The Main‐
tainers may be everyone who is working on the project.

In Chapter 2, you learned a little bit about project governance models. The way The
Maintainer will interact with the project is a political, not technical, decision. Git
doesn’t actually care how you structure your project, and so you will need to develop
a system that works best for you. Defining the workflow for Consumers and Contrib‐
utors is relatively easy because you aren’t really working with Git, but rather the
workflow defined by the wrapper software (in the case of Consumers, they’re not
even really working with Git at all).

If everyone on your team is a Maintainer (i.e., they are allowed to commit directly
into the repository), it’s your choice as to whether you require developers to create a
separate clone of the repository. The only limitation would be if your code hosting
system does not have the capacity to accept incoming branches for merging from
within a single repository. Check with your system of choice to see if it has a recom‐
mended workflow.

Generally I work with teams of fewer than 10 developers. Some of these teams I’ve
worked with have opted for separate remote repositories for each developer, and
some have allowed developers to commit their in-progress work directly to The
Project repository. In the Drupal project, where there are thousands of developers,
only a handful of people can commit into the main project repository; however, there

Setting Up the Developers | 161

are an additional 30,000 contributed modules, each with its own maintainers who
have direct access to the project repository.

The Only Rules Are the Ones You Document

If there are no documented rules, your project will become anar‐
chic so write down the exact steps you would like people to follow
when contributing to the project.

Project maintainers will need to have at least a clone of The Project repository locally.
If you were the developer who started the project, you already have a local clone of
this repository. If you aren’t, you will need to clone the repository using the following:

$ git clone https://<hosting-url.com>/<project-owner's-name>/<project-name>.git

You learned how to create a clone of a project repository as a team of one in Chap‐
ter 6 with the following command:

$ git clone https://gitlab.com/gitforteams/gitforteams.git

This will create a local copy of the repository, with the remote nickname origin.

If your project requires it, you may also need to create a clone of The Project on the
code hosting system. This is covered in the previous section, or you may wish to fol‐
low the more detailed instructions available in Part III. Once you’ve created the
remote clone, you can add this remote connection to your local repository. This will
allow you to switch between the two from within the same directory. If you prefer,
you can keep two local directories, but I personally enjoy the efficiency of not having
to jump around as much. You are welcome to use your own naming conventions for
the remotes. The syntax for adding a new remote is as follows:

$ git remote add nickname https://<hosting-url.com>/<your-name>/<project>.git

If I were to add my personal clone from GitLab, to follow the previous example, I
would use the following command. Because this connection was being made to my
personal copy of the repository, I would choose to use the nickname personal here:

$ git remote add personal https://gitlab.com/emmajane/gitforteams.git

To avoid confusion, I might also choose to rename the nickname for The Project
remote from origin to official:

$ git remote rename origin official

These nicknames are completely arbitrary and are personal to your system. They will
not be shared with others, so use whatever names make sense to you. Generally the
convention is to use origin for the remote copy that most closely resembles your
local work, and upstream for the copy of the repository that has the most new fea‐

162 | Chapter 7: Teams of More than One

tures being added by other developers that you might want to incorporate into your
own work.

Once you’ve set up the remote connections to the project, and to your own personal
copy of the repository, you should verify the names and URLs are what you are
expecting:

$ git remote --verbose

In my case, the output is as follows:

official git@gitlab.com:gitforteams/gitforteams.git (fetch)
official git@gitlab.com:gitforteams/gitforteams.git (push)
personal git@gitlab.com:emmajane/gitforteams.git (fetch)
personal git@gitlab.com:emmajane/gitforteams.git (push)

You are now ready to work on your project as both a Contributor and a Maintainer.

Participating in Development
There are four main activities you will engage in when working with Git: working on
new proposed changes, keeping your branches up to date, reviewing proposed
changes, and publishing completed worked. Inevitably, you will also need to work on
resolving conflicts when you update your branches, or when you attempt to incorpo‐
rate proposed changes into The Project.

Constructing the Perfect Commit
There are two basic approaches to commits: demonstrate the thinking process and
present the final solution. When I’m programming in a language I’m not very famil‐
iar with, I think in small increments focusing on little pieces of the system at a time.
As I work, I commit snapshots of my work as I get to critical points. These snapshots
act as lifelines, allowing me to track how I thought through a problem. If you were to
read my commit messages when I code, you would be able to easily unpack my think‐
ing. Commits might represent units of work in increments as small as 15–30 minutes
of effort. The commit messages are unlikely to explain why I’ve done something. The
initial commit might include a docblock of code comments which outline what I’m
about to do, the next commit might have the scaffolding for what I was about to
build, and it would proceed from there. The commit messages would add very little
value above and beyond what is shown in the diff for each commit.

When I’m working in on a task I feel more confident about, I’m more likely to make
radical changes to the working directory without those tiny lifeline commits. Then,
when my work is finished, I’ll take a look at the overall changes, and shape smaller,
relevant commits. This might be done by committing single changed files at a time,
or perhaps I might make an even more granular commit using the --patch mode to
add hunks of each file at a time to the staging area in preparation for a commit. These

Participating in Development | 163

curated commits will be much more useful to me later if I need to dig through history
using the command bisect. For example, in order to use a function, it must already
be created somewhere, so I might choose to separate the creation, and use of a func‐
tion into two separate commits even if I wrote them at the same time.

I hesitate to refer to these two approaches as novice and advanced, but that phrasing
does ring true. Different source control management systems will have different ways
of presenting commits in the history of your project. Git is very granular in how it
shows you the commit history, and as a result, thinking in tiny commit increments
gets messy and frustrating to work with. This is why we say that as you mature with
Git, you will be more likely to adopt the second approach.

You don’t need to give up your tiny commits though. You can use rebase to combine
many little unpublished commits into a history that is more like the second version.
Work the way you want to work, then reshape history so that it stores information in
a useful way.

Rewriting History

Yes, I hate with a screaming passion that Git allows you to rewrite
history, and then tells you how dangerous it is. To me it feels too
much like arrogant history revisionism. But that’s the model that
Git uses. To work effectively with Git, I set aside my frustrations
and adopt the techniques that the original software set out as best
practices. I’m not afraid of rebasing; I just don’t like that it exists to
begin with. I give you permission not to like it either; however, not
liking what it represents isn’t a valid reason for not using it. It’s
deeply ingrained in the philosophy of how Git stores metadata
about code’s history. Have a cookie, it’ll be okay.

If you accidentally do too much work between commits, you don’t need to forgo a
granular commit history. Previously you learned to add individual files to the staging
area. You can get even more granular, assigning edits within a single file to multiple
commits. To add a partial change within a file, instead of the whole file, use the com‐
mand git add --patch filename. This command will walk through your file, line by
line, and ask you if you would like to include each changed line in the commit you
are building.

164 | Chapter 7: Teams of More than One

Rewriting History as It Happens

If you have a culture of showing work in progress on a centralized
server, you will need to be careful in how you rebase your work.
When a commit is rebased, the metadata for any commit object
that is altered is assigned a new identifier. For example, if you are
bringing a branch up to date, your local commits now have new
parents and get a new ID. If you are trying to clean up the history
of a branch, and you squash two commits, a new ID will be
assigned to the resulting commit object even though the content is
identical! This dual timeline can confuse Git and cause conflicts. To
avoid these conflicts, limit your use of interactive rebasing to short-
lived branches, such as ticket branches.

Excellent commit objects have the following characteristics:

• Contains only related code. No scope creep, no “just fixing white space issues
too.”

• Conforms to coding standards for your project, including in-code documenta‐
tion.

• Are just the right size. Perhaps this is 100 lines of code. Or perhaps it’s a mega
refactoring where a function name changed and 1,000 lines of code were affected.

• Work is described in the best-ever commit message (see the next section).

The best rule of thumb I’ve heard for commit messages is “Whatever it takes to make
future me not get pissed off at past me for being lazy.”

Your commit messages should include:

• A terse description (fewer than 60 characters) in a standard format to make it
easy to scan logs.

• A longer explanation of why the current code is problematic, and the rationale
for why the change is important.

• A high-level description of how the change addresses the issue at hand.
• An outline of the potential side effects the change may have.
• A summary of the changes made, so that reading the diff of the code confirms

the commit message, but reading the diff is not guesswork on what/why some‐
thing has changed.

• A ticket number, or other reference to sources where discussion about the pro‐
posed change can/has/will happen.

• Who will be affected by the change (e.g., an optimization for developers; a speed
improvement for users).

Participating in Development | 165

• A list of places where the documentation will need to be updated.

A bad commit message would be as follows:

git commit -am "rewrote entire site in angular.js - it's faster now, I'm sure"

This commit is insufficient for the following reasons:

• By using the -a parameter, all files will be committed as part of this commit en
masse, and without consideration of whether or not they should be included.

• By using the -m flag, the tendency will always be to write only a terse message that
does not describe why the change is necessary, and how the change addresses this
necessary change.

• The commit message does not reference a ticket number, so it’s impossible to
know which issue(s) are now resolved and can be closed in the ticket tracker.

To compare, a good commit message would be as follows:

$ git commit

[#321] Stop clipping trainer meta-data on video nodes at small screen size.

- Removes an unnecessary overflow: hidden that was causing some clipping.

Resolves #321

This is a good message for the following reasons:

• It includes the ticket number, in square brackets, at the beginning of the terse
commit message, making it easier to read the logs later.

• The terse description (for the short log view) explains the symptom that was seen
by site visitors.

• A detailed explanation explains the technical implementation that was used to
resolve the problem.

• The final line of the commit message (Resolves #321) will be captured by the
ticketing system and move the ticket from open to needs review.

When making a proposed change, you should keep the proposal small, and focused
on solving a single problem. This will make it easier for The Maintainer of the project
to review your submission, and accept your work. For example, if you are fixing a
specific bug in one part of the code base, don’t also fix an extra line ending you found
elsewhere in the code. While projects likely have naming conventions for their
branches, if you are donating a drive-by fix that doesn’t already have an identified
issue in The Project repository, name your branch using a terse description of the

166 | Chapter 7: Teams of More than One

problem you are solving—perhaps, for example, css_button_padding or
improved_test_coverage (Example 7-3).

Example 7-3. Make a change to the code base

$ git checkout -b terse_description
(edit files)

$ git add filename(s)
$ git commit

At this point, the commit message editor will open and you will need to provide the
best commit message you’ve ever written.

With the proposed change in place, you can now publish it to your copy of the repos‐
itory using the command push:

$ git push

Your personal branch has been uploaded, so it is now time to work with a team mem‐
ber to have your changes incorporated into the main branch for the project.

Keeping Branches Up to Date
Branches stored in Git can generally be thought of as one of two things: official
project branches or short-lived suggestion branches. Shared project branches are
used to integrate reviewed and approved code from multiple developers and contain
the official history of a project’s code. Your local copy of these branches should always
be up to date and should always be used as the base branch for your ticket branches.
By convention, it is not appropriate to write new commits to the local copy of an offi‐
cial branch. Instead, you would create a new branch, complete your work, and then
merge that branch back into the official branch. Several branching strategies are dis‐
cussed in Chapter 3—you may want to go back and review that chapter if your team
doesn’t already have a branching strategy. The second type of branch is essentially a
developer’s sandbox. This is where you test out new ideas and get your code ready for
review. These short-lived work branches must also be kept up to date, but they need a
slightly different approach.

Participating in Development | 167

Rebase Versus Merge…Again

There are still no rebasing police who are going to show up at your
team meetings. You’ll need to figure out, as a team, how you’re
going to tackle bringing branches up to date. (I still think you need
to do whatever is best for your team, but I’m going to show you the
instructions for rebasing where it so that you can see it’s not signifi‐
cantly more difficult to use this method.) Regardless of what you
choose, document your solution carefully, and support those who
are new to Git to ensure they are able to perform the commands
consistently. The easiest way I’ve found to ensure consistency this is
to provide copy/paste-friendly documentation, and have people
work at the command line. Additionally, flowcharts can be quite
effective.

To reduce the number of conflicts you need to deal with when bringing short-lived
branches together, you should keep your working branch up to date with the project
branch you will eventually be merging into. How often is “regularly”? I recommend
updating your branches at least as often as you drink coffee. If you don’t drink coffee,
I would recommend you update your working branches at least daily using the com‐
mands in Example 7-4. Yes, this is going to seem tedious, but it can save you a lot of
time in the long run to keep your work as up to date as possible.

Example 7-4. Update your local copy of this project’s branches

$ git checkout master
$ git pull --rebase=preserve

Git will update your local copy of the master repository to incorporate the changes
from the upstream repository.

Once the project branches are up to date, you can now update your work branches.
When you are bringing your work branches up to date, however, there will not be an
upstream branch that you can pull your changes from like you used for the shared
project branches. So how do you know if you should be merging or rebasing at this
point? The rule of thumb is as follows: if you started your work right now would the
change you’re about to incorporate into your work branch already be in place? If it’s a
feature you wrote, it wouldn’t already be in the branch you’re bringing up to date and
therefore you should merge the branch to incorporate the new work. If it’s a feature
someone else wrote, you almost definitely want to rebase (if you are on Team
Rebase). Another helpful tip is to match the names. If the changes you want to incor‐
porate are coming from a branch with the same name, but on a different remote, you
almost definitely want to rebase.

168 | Chapter 7: Teams of More than One

http://gitforteams.com/resources/merge-rebase.html
http://gitforteams.com/resources/merge-rebase.html

In Git, rebasing and fast-forward merges both result in a linear timeline, as they
replay your commits onto the work that was done in a different branch. As each com‐
mit is replayed, there is the potential for a merge conflict, which needs to be resolved.
As a result, developers who are less confident in their ability to deal with a merge
conflict will opt to simplify the process, and use the merge command to bring their
work up to date. Using merge does make your historical record more difficult to read;
it is, however, also technically less complicated because it generally involves fewer
merge conflicts.

If you are working with a complicated code base and it is important to be able to run
debugging tools quickly, you should spend the time to get a clean history by using the
command rebase to bring your work branches up to date. If, however, it is more
important for contributions to be as easy as possible, you may want to allow your
developers to use the merge command to bring their work up to date. (The Gittiest of
Git readers just gritted their teeth while reading that last bit. But you know what?
There are no Git police who will show up at your door if your team decides they just
want things to be easier. Promise. Insert picture of a honey badger not caring here,
and let’s move on.)

The first thing you need to do when bringing your work branches up to date is to
ensure your project branches are up to date. Keeping a shared branch up to date is
typically done with the command pull (which uses the optional parameter
--rebase). To bring your personal work branch up to date, you will need to remember
the source branch where you initially branched from and copy the changes made to
this branch over to your work branch. If you are following the GitFlow model
described in Chapter 3, this will likely be the branch dev or development.

For example, if your work branch was named 2378-add-test and your source branch
was named development, the commands would be as follows:

$ git checkout development
$ git pull --rebase=preserve
$ git checkout 2378-add-test
$ git rebase development

Each of the commits you have made in your work branch will now be reapplied as if
the new commits from the branch development had always been in place. These
commits may apply cleanly, or you may need to deal with merge conflicts. Because
rebasing is the preferred method in Git for keeping a branch up to date, I will passive-
aggressively omit giving you the commands for how to merge a branch. I am hopeful
you will forgive me.

In addition to keeping your branches up to date, you should also remember to update
your personal repositories whenever your own work is incorporated into The Project
because its main branch will now contain new commits. This will be helpful when

Participating in Development | 169

you are responsible for reviewing someone else’s work and merging it into the master
branch. The commands you run are exactly as they were described previously:

$ git checkout master
$ git pull --rebase=preserve

Regardless of how you choose to keep your branches up to date, I hope you’ll at least
try to incorporate rebasing into your workflow. As frustrating as it can be, it will help
you to have a cleaner history if you need to use the debugging techniques described
in Chapter 9.

Reviewing Work
In order to review someone else’s work, you must first get a local copy of that work
into your own repository. This might be work that has already been incorporated into
the official project branches, or it might be a new feature, or a bug fix that a colleague
has asked you to review and merge into the main project.

Peer reviewing new work is a multistep process and is covered in greater detail in
Chapter 8. The basic process is as follows:

1. Add a remote connection to the relevant repository.
2. Fetch the available branches for that repository.
3. Create a local copy of any branch you want to examine in depth.
4. Incorporate any changes from the other branch that you would like to adopt into

your own work.
5. Push the revised branch back to the relevant remote repository.

The first thing you will need to do is find the repository that holds the work you want
to incorporate. To list each of the remote repositories, use the remote subcommand
show (Example 7-5). Just like listing branches, all available remotes will be listed as
the output to the command. In Example 7-5, the two remotes I added in the previous
section are displayed. This gives me a quick reminder of which repository I want to
look at in more depth.

Example 7-5. A terse list of remote repositories

$ git remote show

official
personal

170 | Chapter 7: Teams of More than One

Once you have the name of the repository, you can get a full listing for the remote by
adding the name of the nickname to the previous command (Example 7-6).

Example 7-6. Full details about the remote repository, personal

$ git remote show personal

* remote personal
 Fetch URL: git@gitlab.com:emmajane/gitforteams.git
 Push URL: git@gitlab.com:emmajane/gitforteams.git
 HEAD branch: master
 Remote branches:
 2-bad_jokes tracked
 master tracked
 sandbox tracked
 video-lessons tracked
 Local branch configured for 'git pull':
 master merges with remote master
 Local ref configured for 'git push':
 master pushes to master (up to date)

Here I can see there are four branches stored in the remote repository, all of which I
have a copy of locally (this is indicated by the word tracked).

Update Your Local List of Branches

If you already have a connection to the remote repository, and you
don’t see the branch your partner has asked you to review, ensure
the list of remote branches is up to date by first running the com‐
mand git fetch.

If you don’t want the extra overhead of getting all the information about the remote
repository, you can choose to show only remote branches by using the command
branch and adding the parameter --remotes (Example 7-7). This will allow you to
locate the branch with the work you need to review. I like using this variation for
branch instead of the --all parameter because it gives the actual name of the branch,
instead of adding on the reference information of remotes.

Example 7-7. Listing remote branches

$ git branch --remotes

Participating in Development | 171

Branches Group Commits

A branch is a line of development that links individual commit
objects. Different instances of a branch may have commits made by
different developers, and therefore repositories are not identical
until they are synced. It’s basically anarchy, but limited to each little
repository. The conventions we establish as software teams are
what bring order to the chaos and allow us to share our work in a
sane manner. Remember the branching strategies we learned in
Chapter 3? They’ll keep the work sorted into logical thought
streams. Remember the permission strategies from Chapter 2?
They’ll keep people locked into the right repository, unable to
make changes without the community gatekeeper’s help.

If you add the parameter --verbose to branch, the one-line commit message for the
tip of the branch will be included in the output. For example, I had several active
work branches, an integration branch, and the official branch for the project
(Example 7-8). Although I uploaded my commits occasionally to the remote server,
mostly I just worked in the chapter branches, incorporating my work into the inte‐
gration branch, drafts, and then the main branch, master.

Example 7-8. Selected output from git branch --verbose while working on this chapter

 ch02 7313755 CH02: Adding patching workflow diagram.
 ch04 69a3ded CH4: Stub file added with notes copied from Drupalize.Me.
* ch05 80b5200 [official/ch05: ahead 2] CH05: Fixing URL for image 05fig01.
 drafts 80b5200 CH05: Fixing URL for image 05fig01.
 master 319bb53 [official/master] Merge branch 'drafts'. Updates for CH05.

The first column contains the branch name, the second column contains the commit
ID, and the third column contains the first line of the most recent commit message. If
the branch is tracked remotely, the name of the remote branch is included in square
brackets between the commit ID and the commit message.

Once you’ve located the remote branch that contains the work you want to review,
you can either copy the branch into your local repository (Example 7-9), or examine
the reference to it with the commands log and diff (Example 7-10).

Example 7-9. Copy a remote branch into your local repository

$ git checkout --tracking remote_nickname/branch

Example 7-10. Examine a remote branch without creating a working copy

$ git log --oneline remote_nickname/branch
$ git diff current_branch...remote_nickname/branch

172 | Chapter 7: Teams of More than One

Assuming the work passes review, it’s time to merge it into the main project branch.

Merging Completed Work
Before merging the new work into your project branch, you will need to first ensure
all branches are up to date. This is necessary because Git won’t allow you to push
your copy of a remote repository if the destination branch (on the remote) contains
commits which are not in your local copy.

When uploading new work to a remote server, Git will only accept work as a fast for‐
ward merge. This means you don’t have to worry about having a merge conflict when
you push your work. Because of this restriction, your local branch needs to contain
all of the remote commits before you can push your branch. To update your work,
you will need to use the command pull to retrieve the changes from the remote
server and incorporate any new work into your local branches.

First, update your local copy of the destination branch (Example 7-11) by using the
command pull with the parameter --rebase.

Example 7-11. Incorporate updates from a project branch

$ git checkout master
$ git pull --rebase=preserve

Once the public branch is up to date, you will need to bring the feature branch up to
date as well (Example 7-12).

Example 7-12. Merge a completed ticket branch into a public project branch

$ git checkout 2378-add-test
$ git rebase master

Finally, you can merge the ticket branch into the main project branch
(Example 7-13).

Example 7-13. Merge the completed ticket branch into the public project branch.

$ git checkout master
$ git merge --no-ff 2378-add-test

If the changes that were being introduced were unique from previous work that had
been completed, the merge will now be completed; however, if there was overlapping
work in the same area, Git will not know how to complete the merge and ask for your
guidance. The language is a little scary as asking for help in Git terminology is better
known as a merge conflict.

Participating in Development | 173

Resolving Merge and Rebase Conflicts
Conflict sounds hard and scary, but in Git, a merge conflict is actually a very small
problem and you won’t need to spend a lot of money on a mediator or a therapist to
resolve it. Any time a file is changed in exactly the same place, Git can be unsure of
which version is the correct version, so it will ask you to make that decision. Git
refers to this uncertainty as a conflict.

When you bring together two branches, there is always a chance that you will have
changes in both our and their version of the code on the exact same lines within a file.

Git will add three lines into any file that has lines with conflicting information at
exactly the same point:

<<<<<<<
=======
>>>>>>>

This represents the our code, and their code separated by a dividing row of =. To
resolve a conflict you will need to edit the files, select the appropriate content to keep,
and remove the markers. When you open the file to examine the conflict, look at the
surrounding areas as well. Sometimes Git will have misjudged where to put the mark‐
ers, so you shouldn’t just delete one whole section, or the other whole section. Read
carefully, and you may find you need to take a little bit from each when you look at
the surrounding code:

<<<<<<< HEAD
 $p++;
}
=======
}

>>>>>>> 2378-add-test

We don’t have enough information to resolve this merge conflict without understand‐
ing what the code update is trying to accomplish. Probably the end brace should be
kept because it’s in both sides of the conflict, but what about the new line? And what
about the increment of the variable? If you run into merge conflicts you are not sure
how to resolve, you should talk to the author of the original code if you cannot figure
it out just from reading the code itself. Misunderstanding the code and deleting too
much (or too little) may end up unintentionally adding new bugs to the code if you
resolve the conflict incorrectly.

174 | Chapter 7: Teams of More than One

Resolving Merges Step by Step from Very Divergent Branches

There is a complementary program, git-imerge, which works to
merge the commits leading up to the tip of the two branches you
are attempting to merge. Working with the incremental commits
can make it easier to see how the conflict should be resolved
because there is less to compare at each point. This is not part of
Git core, and you will need to download and install the software
separately. Check your favorite package manager if you want to
reduce the install hassle. I installed my copy via OS X’s Brew.

When your edits are complete, you can remove the markers Git placed into the file
and continue using the on-screen instructions which Git provides in its status mes‐
sage:

$ git status

If you were completing a merge, you will need to add the updated files and commit
them to your repository:

$ git add filename(s)

By adding the files one at a time, you can use the status command as a TODO list of
files with outstanding merge conflicts that need to be resolved:

$ git status

Once all the merge conflicts have been cleaned up in each of the files, you can com‐
mit your staged changes:

$ git commit

At this point, the default text editor for Git will open with additional information
about the commit you are completing. When you have finished writing your message,
save the changes and quit the editor to resume.

If you were attempting a rebase when the merge conflict occurred, you may be in the
middle of a multistep process. In this case, you’ll need to proceed with the rebasing
procedure:

$ git rebase --continue

If, before starting the merge, you know without a doubt that you will always want to
use either the incoming work (theirs) or your own work (ours), you can preemp‐
tively instruct Git on how you want to address the proposed changes from the two
branches. For example, if you wanted to merge in a branch that you knew contained
fixes for the problem you were having, you could force Git to use the other branch
when making its updates to your own branch:

$ git checkout branch_to_update
$ git merge --strategy-option=theirs incoming_branch

Participating in Development | 175

https://github.com/mhagger/git-imerge
https://brew.sh

Publishing Work
The first time you upload your changes for a given branch, you will need to specify
the remote repository that you want to use, as well as the branch name. The conven‐
tion is to keep the branch names the same on the local and remote repositories. You
will need to include the nickname for the remote repository. In Example 7-14, it is
assumed the name of the remote is origin.

Example 7-14. Upload your branch with the proposed changes to your remote repository

$ git push --set-upstream origin branch

Once you’ve set up the branch for the remote repository, you can upload your work
to the same remote again using the command push:

$ git push

If you have multiple remotes set for your repository, you will need to explicitly push
to each of the remote repositories separately. By default, origin is used:

$ git push remote_nickname

The next part of the procedure will depend on the hosting system you’re using. Gen‐
erally, though, you navigate to The Project page where you will locate a link for pull
requests (the language may be slightly different on your system of choice). From this
link you should be able to initiate a request to have your proposed updates included
in the project. The system should already know which of your repositories was cloned
from The Project, and it should include a list of all the branches you’ve worked on in
your copy that might include proposed changes for The Project. You’ll select the
branch you want to submit for inclusion and walk through any additional steps nec‐
essary. This process is covered in depth in Part III.

Once your pull request has been submitted, The Maintainer will review your pro‐
posed update. He may accept your work as is, or request changes and ask you to
resubmit your work. If additional changes are needed, repeat the steps outlined in
this section until the pull request is accepted.

To publish new work into a shared branch, the first thing you should do is check that
the branch you are going to be merging into is up to date. This will ensure you can
push your work after merging your changes. If the branch isn’t up to date, you will
not be able to upload the revised copy of the shared branch until you have downloa‐
ded the new updates and incorporated them into the branch:

$ git checkout master
$ git pull --rebase=preserve

Once your local copy of the main project branch is up to date, you should ensure
these changes are also copied into the feature branch you have been working on so

176 | Chapter 7: Teams of More than One

that there is the smallest amount of difference between the two branches before the
merge is performed:

$ git checkout 2378-add-test

$ git rebase master

Once the working branch is up to date, you are ready to merge in the reviewed and
accepted changes:

$ git merge --no-ff 2378-add-test

$ git push

The work branch can now be deleted from your local repository and any remote
repositories you have write access to:

$ git branch --delete 2378-add-test
$ git push remote_nickname --delete 2378-add-test

Your branches should now be up-to-date and ready for your teammates to download.

What happens next will vary greatly depending on the type of software you are build‐
ing. Web developers who want to connect Git with a continuous integration build
server may benefit from watching Lorna Mitchell’s videos Git Fundamentals for Web
Developers (O’Reilly).

Sample Workflows
The remainder of this chapter serves as a template for working with teams. You
should discuss with your team how they would like to work, and write down the
commands each contributor and maintainer will need to use during the project.

Sprint-Based Workflow
This process is more or less what I’ve used for several teams working in a sprint-
based release cycle. It is a variation on GitFlow and it works well for weekly website
deployments. The schedule for the sprint follows a weekly routine (as opposed to the
more “traditional” two-week sprint). This encourages granular tickets and helps the
developers see their work in production as fast as possible. Some tickets will take sev‐
eral “sprints” to complete if they are larger in scope.

The repository is set up with five different types of branches: development, ticket, qa,
master, and hotfix (Table 7-1). These branches are used either as single-issue develop‐
ment branches, or as integration branches.

Sample Workflows | 177

http://bit.ly/git-fundamentals
http://bit.ly/git-fundamentals

Table 7-1. Branch types in a weekly deployment workflow

Branch name / convention Type of branch Description Branched
from

dev Integration Used to collate peer reviewed code ticket
branches

ticket#-descriptive-name Development Used to complete work identified in
tickets

dev

qa Integration Used for quality assurance testing at
the end of each sprint; code that
does not pass QA testing is removed
from the branch

dev

master Integration Used to deploy fully tested code qa

hotfix- ticket#-description Development Used to develop solutions for urgent
problems identified on production

latest release
tag on
master

For the developers, every day is a development day. In addition, there are three days
in the week when all team members rally toward the same goal.

The workflow is not overly complex (Example 7-15) for developers: all work begins
on a fresh ticket branch from the parent branch dev. Once completed, the work in a
ticket branch is pushed up to the shared project repository. Branches are kept up-to-
date through rebasing, which allows for a cleaner branch history than merging.

Example 7-15. Git commands to work on tickets

In this example, substitute origin for the name of your remote, and 1234-
new_ticket_branch for the name of your ticket branch:

$ git checkout dev
$ git pull --rebase=preserve origin dev
$ git checkout -b 1234-new_ticket_branch
// do work
$ git add --all
$ git commit

Before sharing the work, ensure the branch contains any new commits:

$ git checkout dev
$ git pull --rebase=preserve
$ git checkout 1234-new_ticket_branch
$ git rebase dev

178 | Chapter 7: Teams of More than One

Finally, share the new work with others:

$ git push origin 1234-new_ticket_branch

Once completed, a ticket branch is reviewed by another person on the team
(Example 7-16). If the code passes review, the reviewer merges the ticket branch into
the development branch and removes the ticket branch from the main repository.
The review process is covered in depth in Chapter 8.

Example 7-16. Git commands to complete a peer review

$ git checkout dev
$ git pull --rebase=preserve
$ git checkout 1234-new_ticket_branch
// review process goes here
$ git merge --no-ff 1234-new_ticket_branch master
$ git branch --delete 1234-new_ticket_branch
$ git push --delete origin 1234-new_ticket_branch

Quality Assurance (Monday–Tuesday):

• Automated test suite is run on dev to catch any regressions that may have snuck
in while feature branches were being added up to this point.

• All work in the branch dev is merged into the branch qa for testing
(Example 7-17). Development work continues in the branch dev.

• A sprint checklist is created in a shared document, such as Google Docs, by copy‐
ing and pasting the user stories from the tickets that were merged into the qa
branch. Typically, this is the first line of the ticket description—a convention that
should be adopted to make the QA process faster.

• All team members are responsible for running through the list of tickets to be
tested in the shared document. In addition to the weekly tickets, there may be
rolling tests that need to be completed by a person.

• Anything that fails quality assurance has a new ticket created so that it can be
fixed, or reverted, prior to release (Example 7-18).

Example 7-17. Commands to set up the qa branch

$ git checkout dev
$ git pull --rebase=preserve
$ git checkout qa
$ git merge --no-ff dev
$ git push

Sample Workflows | 179

Example 7-18. Commands to remove tickets that have failed to pass QA in time for
release

$ git log --oneline --grep ticket-number
(locate the commits that need to be reversed)

$ git revert commit

$ git revert --mainline 1 merge_commit
(ideally, however, you are merging work branches with --no-ff, which forces a commit ID
that can be easily undone)

Release Day (Wednesday):

• The branch qa is merged into the branch master and tagged (Example 7-19).
• From the live site, the repository is updated to use the tagged commit for release.
• The work for the next week is prioritized with the development team.

Example 7-19. Commands to prepare for deployment

$ git checkout master
$ git merge qa
$ git tag
(locate the latest tag so that you can determine the next tag's number)

$ git tag --annotate -m tag_name
$ git push --tags

When the tag is added, it is signed with the --annotate parameter, and a message is
added with the -m parameter. This ensures the tag will not be ignored.

Announcement Day (Thursday):

• A public announcement is made to the community of users about the changes
that were launched on the previous day. The extra day gives the team a chance to
deal with any unexpected regressions, or bugs, when the code was moved to the
production environment.

• Development continues on the new list of priorities established on the previous
day.

In the unlikely event that a serious bug or regression is introduced to the production
environment, a hotfix is completed. Serious is, of course, a relative term. In this sys‐
tem, deployments are made weekly, so a hotfix, generally speaking, is an update that
cannot wait a week to be deployed.

180 | Chapter 7: Teams of More than One

Each deployment is tagged as such, so the first step is to get a list of all tags and locate
the current live version of the code base (Example 7-20). A new branch is created
from this point, the updated code is applied, and then uploaded for review before
deployment.

Example 7-20. Commands to create a hotfix branch

$ git checkout master
$ git tag
(review list of tags to determine the currently live tag)

$ git checkout -b hotfix-issue-description tag_name

The hotfix branch would then be worked on as if it were a regular development
branch, undergoing a peer review and quality assurance test. When it passes testing,
it would then be immediately incorporated back into the master branch and tagged
for deployment (Example 7-21).

Example 7-21. Commands to prepare a hotfix for deployment

$ git checkout master
$ git merge --no-ff hotfix-issue-description
$ git tag --annotate -m new_tag_name
$ git push --tags

In this system, semantic versioning is not used. Instead, tag names are incremented
using the format <launch_version>.<sprint_week>.<hotfix>. For example, 1.4.3
would be used to represent the third hotfix on the fourth week of development (in
other words: a bad week for the team!).

Trusted Developers with No Peer Review
While writing this book, I worked with the O’Reilly automated build tool, Atlas. This
system also has a web-based GUI that allows editors to work on book files directly.
Saved files are immediately committed to the master branch. Due to the GUI, there is
no peer review process because anyone on my team is able to make edits directly to a
file. My preference, however, is to work locally, and not through a web GUI. I had
been keeping the branch overhead low locally and had just been working in master as
well. It only took me one local merge conflict to alter the way I was working locally.

When I wanted to update my work, I would use the command fetch to see if any
changes had been made by my editors. With the fetch completed, I would compare
my copy of the master branch with their copy of the master branch (origin/
master). Assuming I agreed with all their edits, I would merge in their copy of the
branch. If I disagreed, I would merge in their branch with the strategy ours, effec‐

Sample Workflows | 181

https://atlas.oreilly.com/

tively throwing out their changes but letting Git think that the two branches were up
to date:

$ git checkout master
$ git fetch origin
$ git diff origin/master

Depending on whether or not I wanted to keep the changes, I would merge the work
in one of three ways: combine all work, overwrite their work with mine, or overwrite
my work with theirs.

To combine all work (true merge):

$ git merge origin/master

To keep my own work:

$ git merge -X ours origin/master

To discard my own work in favor of the reviewer’s:

$ git merge -X theirs origin/master

This can be done on a per-commit basis, or if there is a merge conflict, it can be done
on a very granular change-by-change basis with a merge tool. (It feels a bit passive-
aggressive to be throwing stuff out, but really it’s just the limitation of a single branch
system where you don’t have the ability to talk about the proposed changes in a sepa‐
rate branch.) Depending on the granularity of the commits, I might also choose to
cherry-pick some commits to keep them, while discarding other commits. Cherry-
picking commits was covered in Chapter 6.

Finally, I would upload the new version of the book to the repository, and update my
local working branch drafts:

$ git push origin master
$ git checkout drafts
$ git rebase master

Then I started getting reviews as marked-up PDFs and realized, once again, I had
another way that I wanted to separate work. I wanted to be able to write a chapter and
keep those commits nice and tidy, but sometimes I was mid-chapter when an edit
came in that I wanted to address immediately. Instead of intermingling these com‐
mits I set up the following structure for my branches: master, drafts, and one
branch per chapter:

$ git checkout ch04
// write chapter
$ git add ch04.asciidoc
$ git commit
$ git checkout drafts
$ git merge ch04

182 | Chapter 7: Teams of More than One

The branch drafts gave me a place to integrate all of the work that I’d been doing. It
was kept up to date by merging in chapters as they were completed, or rebasing the
master branch if changes had been made by one of my editors. When I was first writ‐
ing chapters on my own, without others contributing, multiple branches would have
been a lot of overhead to maintain, but as more contributors started offering different
kinds of contributions, more granularity in branches allowed me to pick and choose
how I wanted the manuscript to progress.

Untrusted Developers with Independent Quality Assurance
If your team is mostly trusted developers, but you have a few contractors as well, you
might want to have your contractors working in a fork of the repository, instead of
giving them write access to the main project. For some types of software, this split
might even be a requirement for your own staff. For example, if you were working on
firmware for a medical device, you might have very strict government regulations you
need to follow on who is allowed to check in work, and how that work must be
reviewed before it is added to a repository.

This model is the same as what was described for Contributors (as opposed to Main‐
tainers) earlier in this chapter.

A second example was given in the description of the forking strategy in Chapter 2.
Here I included a description of how I offered a patch back to the reveal.js project. To
do this, I made a fork of the project, and then cloned the project so that I could edit
the files at my workstation. I then reversed the chaining to push my changes back to
the original project through a push to upload my work, and then a pull request to
submit my work for review.

Based on your reading to date, put together the commands that would be necessary
for these workflows. Hint: there’s nothing here that you haven’t read about already in
this chapter. Start by drawing yourself a diagram, then add arrows to show the pro‐
gression of work through the process, and finally, add the Git commands for each of
the arrows.

Summary
To work on a new project, you must first decide on the governance structure for the
project. This will inform whether or not developers need to create a remote clone of
the project, or just a local clone of the project. The way Consumers, Contributors,
and Maintainers set up their access to the project may prevent them from doing some
tasks; however, by adding remote repository connections, you can easily promote a
Developer into a Maintainer.

Summary | 183

CHAPTER 8

Ready for Review

Growing up I learned there were two kinds of reviews I could seek out from my
parents. My parents were predictable in their responses. One of my parents gave
reviews in the form of a shower of praise. The other parent, the one with a degree
from the Royal College of Art, would put me through a design crit. I’ll be honest and
tell you that to this day I both dread and crave the review process.

Unfortunately, developers are rarely exposed to the peer review process in schools.
The typical review process is the final submission of work to the instructor—with no
room for discussion on how to improve. This methodology doesn’t teach students to
iterate based on feedback. Graduates released into the workforce may quietly scoff at
shoddy workmanship they find around them, passing silent judgment when it’s too
late to make changes.

Completing a peer review is time consuming. At the last project where I introduced
mandatory peer reviews, we estimated that it doubled the time to complete each
ticket. It introduced more context switching to the developers, and was the source of
increased frustration when it came to keeping the branches up to date while waiting
for a code review. The benefits, however, were huge. Junior coders were exposed to a
wider amount of the code base than just the portion they were working on, senior
developers had better opportunities to ask why decisions were being made in the
code base that could potentially affect future work, and by adopting an as-you-go
peer review process we reduced the amount of time needed for human quality assur‐
ance testing at the end of each sprint. We felt the benefits were worth the time
invested.

185

Types of Reviews
During the life cycle of a project, several types of reviews should be undertaken.
While the majority of this chapter focuses on peer code reviews, you should be aware
of the other types of reviews to ensure you’re not commenting too early (or too late)
on various aspects of the project:

Design critique
Typically developers are not involved at this stage of the project; however, includ‐
ing a developer’s input may result in minor user interface enhancements that rad‐
ically simplify the build.

Technical architecture review
A peer review of the underlying foundation for the code that is about to be built.
At this stage, developers should be ensuring the data model is complete and can
easily accommodate all parts of the build, and perhaps future features as well.

Automated self-check
Like spell-check, but for code; an automated self-check allows developers to
ensure their code is following coding standards for the project. You may have
additional testing suites that you want to run. The purpose of this type of review
is to automate any type of review that could easily be caught by a machine check,
instead of wasting time performing human checks.

Ticket-based peer code review
The majority of this chapter will be spent discussing this type of review.

Quality assurance/user acceptance testing
After the code review, the new feature will be merged into the development
branch and make it available for testing by human testers. This user interface
review is typically conducted on a special, nonproduction server.

Types of Reviewers
Depending on the size of your project, you probably have a variation on one of the
following types of review processes (or maybe a combination of several):

Peer Review
We are all equals and equally able to review code and accept it to the project. We
learn from one another and do our best work when we know our peers will be
judging it later.

186 | Chapter 8: Ready for Review

Automated Gatekeeper
Our code has test coverage. We trust our tests and only submit work we know
will pass a comprehensive test suite. Typically we ask for a second opinion before
the code is pushed into the test suite (for automated deployment).

Consensus Shepherd
Our community of coders is vigilant, and opinionated. We require consensus
from interested parties before code can be marked as reviewed by the community.
We may also have a testbot that is part of our community, making it easier for
human coders to know when a suggested change meets minimum standards.

Benevolent Dictator
My code, my way. You are welcome to submit your suggestions, but I will review
or have my lieutenants review your work with a fine-tooth comb. I enjoy finding
your mistakes and rejecting your work. Only perfection is good enough.

Peer reviews should not be limited to those who are of equal stature on a team. The
benefits will vary, but they can be extended to any combination of skill levels
(Table 8-1).

Table 8-1. Benefits to junior and senior reviewers and developers

Junior Developer Senior Developer

Junior Reviewer Find bugs; compliance with
standards

Learn to read good code; suggest simplifications;
exposure to the whole code base

Senior Reviewer Suggest new techniques;
improve architecture

Improve architecture; cross-functional team
(exposure to more code)

Software for Code Reviews
The commands outlined in this chapter can be used with any Git hosting system.
Detailed instructions for code hosting systems are outlined in Part III—including
instructions on using GitHub (Chapter 10), Bitbucket (Chapter 11), and GitLab
(Chapter 12). The code review capabilities of these systems are managed by pull
requests or merge requests, and they are relatively lightweight, making them easy to
use and integrate into most workflows.

If your reporting requirements are more explicit due to industry regulations, you may
need to consider using a more formal code review and sign-off process. The follow‐
ing software packages focus explicitly on code review and sign-off. They are appro‐
priate for the code review of extremely large software projects, and are likely more
software than the typical project needs:

Software for Code Reviews | 187

Gerrit
Used by Android, OpenStack, and Typo3, this review system is best for very large
projects. There is a nice video presentation about its design (and limitations) by
Dave Borowitz.

Review Board
Used by LinkedIn, the Apache Software Foundation, and Yelp, this software
includes additional information about when lines of code were moved within the
code base.

In addition to manual, peer review of code, it can also help developers to have auto‐
mated tests to check their work against before requesting a peer review. Some open
source projects, such as Drupal, have tools that can be used to verify that code con‐
forms to coding standards (Coder). There are also for-pay services, such as PullRe‐
view for Ruby and bitHound for JavaScript, which are language specific but project
agnostic.

Although we will be focusing on technical code reviews, increasingly non-technical
reviewers are being included as part of the review process through customizable, on-
demand build servers. A public example of this is the SimplyTest.Me service for Dru‐
pal. This platform allows people to deploy a test machine for 30 minutes at a time
with a specific patch applied to the code so that they can review the changes proposed
in the Drupal issue queue. These build servers can also benefit developers. Instead of
conducting reviews sequentially, a reviewer can initiate the build process for a num‐
ber of reviews all at once. Now the reviewer can avoid the (sometimes lengthy) proce‐
dure of building a local environment for each code review he or she is completing, by
running the build process in parallel for all reviews that need to be completed. If this
sounds appealing, you should read the Lullabot article on working with its pull
request builder. Assuming your technology stack is a little different than theirs, a web
search for “pull request builder” should get you pointed in the right direction.

Reviewing the Issue
Before beginning the local code review process, you should read through the descrip‐
tion of the proposed changes in your team’s issue tracker to discover why the change
was proposed. Is it a bug fix? How was the software broken? Is it adding a new fea‐
ture? Who (and how) does the feature help? Understanding the problem before you
look at the code will help you to answer “is this code the best way to solve this prob‐
lem?” when the time comes.

188 | Chapter 8: Ready for Review

https://www.gerritcodereview.com
http://bit.ly/git-at-google
https://www.reviewboard.org/
http://drupal.org/project/coder
https://www.pullreview.com/
https://www.pullreview.com/
https://www.bithound.io/
https://simplytest.me/
https://simplytest.me/
http://bit.ly/lullabot-pull-request
http://bit.ly/lullabot-pull-request

Investigate Your Code Hosting Platform

Most code hosting systems also have a web interface that allows
you to easily review the proposed changes online. Use this interface
to quickly review the code before setting up your local environ‐
ment. If, for example, the proposed change is just adding a missing
code comment, or fixing a spelling mistake, you might be able to
review the proposed changes online without the hassle of down‐
loading everything to your local environment.

Once you have a good understanding of what the code is supposed to be doing, it is
time to set up your local environment so that you can replicate the “before” state. In
other words, if it’s a bug, you should make sure you can replicate the bug in your test‐
ing environment. If it’s a new feature, you should make sure the feature doesn’t
already exist (to be fair, it is pretty unlikely that two people will implement the exact
same new feature).

The first step in reviewing someone else’s work is to verify how the code works cur‐
rently. If you are testing a fix to a specific bug, that means you should start by repli‐
cating the bug. This is the only way you’ll know for sure that the new code fixes the
problem, and it isn’t just a difference of environments making things appear to work.
When you apply the new code, you also want to be able to catch any regressions, or
problems, it might introduce. You can only do this if you know for sure that the prob‐
lems were introduced in the code you just applied.

Once you’ve got your environment set up and you have confirmed the current state of
the code, you can now check out a copy of the code you need to review.

Applying the Proposed Changes
In Chapter 2 you learned about several different access control models for Git. Your
project might be setup such that the proposed review branch is in the main project
repository (“Shared Repository Setup” on page 189), or it might be in a forked copy
of the project repository (“Forked Repository Setup” on page 190). The instructions
for the initial setup are different, so skip ahead to the section which is relevant to you.

Shared Repository Setup
If you are working from a shared repository, you have a very easy setup. Simply
update your local list of branches:

$ git fetch

Applying the Proposed Changes | 189

If you have more than one remote, you may need to explicitly name the remote you
would like to update. Assuming the name of the remote you want to update is named
origin, the command is as follows:

$ git fetch origin

If you are working in an automated build environment you may need to explicitly
fetch the branch you want to review if you don’t have the complete history for the
remote repository locally. Replace origin with the name of your remote and 61524-
broken-link with the name of the branch you want to review:

$ git fetch origin 61524-broken-link:61524-broken-link

The third parameter, 61524-broken-link:61524-broken-link is a refspec which
maps the name of the remote branch to a local branch name
([remote_branch_name]:[local_branch_name]). Convention leaves the branch
name the same because it is easier to remember, but it does make for a complicated-
looking command to have things doubled up.

You are now ready to proceed to “Checking Out the Proposed Branch” on page 191.

Forked Repository Setup
There are two ways to approach a forked repository scenario. The first method is to
clone a new copy of the remote repository which contains the proposed branch. This
method is appropriate if we are just conducting a review, and we will not be responsi‐
ble for incorporating the proposed changes back into the main project repository.
The second method is to add a new remote repository to our own local repository
and pull the changes into a new branch within our own repository. This second
method will also allow us to merge the approved work back into the main project
repository. You should proceed with the method that is appropriate for your situa‐
tion. If you aren’t sure, choose the second method and add the remote repository ref‐
erence to your own local repository.

For both methods we will need to know the URL for the remote repository which
holds the changes you want to review. It may be in the format of https://
example.com/username/project.git or git@example.com:username/project.git.
Once you have the remote URL, you are ready to proceed.

If you are using the first method of creating a new clone, navigate away from your
own copy of the project repository, perhaps to your desktop folder. Then, create a
clone of the repository you want to review with the following command:

$ git clone https://example.com/<username>/<project>.git

Navigate into the new repository you have just cloned:

$ cd project

190 | Chapter 8: Ready for Review

You are now ready to proceed to “Checking Out the Proposed Branch” on page 191.

If you are using the second method of adding a remote repository to your own copy
of the project repository, you will need to begin from within your project repository.
At the command line, navigate to that directory now.

Once situated in your project folder, add a new remote repository for the fork that
contains the branch you need to review. For the name of the remote, use the
username of the person whose work you are reviewing. For example, if you are
reviewing Donna’s work and her repository is available at https://example.com/
donna/likesgin, the command would be as follows:

$ git add remote donna https://example.com/donna/likesgin

Update the list of branches available to you now that you have a new connection to a
new remote repository:

$ get fetch donna

You are now ready to proceed to “Checking Out the Proposed Branch” on page 191.

Checking Out the Proposed Branch
You should now be situated inside a project repository which contains the branch you
need to review. The next step is to check out a copy of the branch you need.

List all branches for your repository:

$ git branch --all

A list of branches will be returned. It may appear something like this:

* master
 remotes/origin/master
 remotes/origin/HEAD -> origin/master
 remotes/origin/61524-broken-link

The code we need to review is located within the last branch on that list. If you have
added an additional remote to download the branch you want to review, the word
origin may be something like donna instead. Simply substitute the word origin in
the instructions that follow with the nickname you have assigned the remote which
contains the branch you are reviewing.

$ git checkout --track origin/61524-broken-link

We now have our own copy of the proposed changes in a local branch. This new local
copy of the branch will be named 61524-broken-link. By adding the parameter
--track, we made an explicit connection as we switched to the new branch. This
means if we need to run the command push to upload our changes, Git will know
which repository we want to upload our changes to.

Applying the Proposed Changes | 191

https://example.com/donna/likesgin
https://example.com/donna/likesgin

We can now begin our review.

Reviewing the Proposed Changes
First, let’s take a look at the commit history for this branch with the command log:

$ git log master..

This gives us the full log message of all the commits (starting with the most recent)
that differ from the branch you’re comparing yours to. If there are not descriptive com‐
mit messages, return the work to the developer and ask her to add commit messages.
There are instructions in Chapter 8 on how to write a great commit message, and
instructions in Chapter 6 on how to reshape history (including adding new commit
messages to previous commits with interactive rebasing).

To get a terse, but more complete history, examine only the current branch with the
command log, but in graph form. By using the parameter --graph, you will get a
sense of how this branch fits into the recent historical context of the project:

$ git log --oneline --graph

And finally, use the command diff. This command shows the difference between
two points in your repository. These points can include commit objects, branch tips,
and the staging area. We want to compare the current work to where you’ll merge the
branch “to”—by convention, this is the master branch:

$ git diff master

When you run the command to output the difference, the information will be presen‐
ted as a patch file. Patch files are ugly to read. You’re looking for lines beginning with
+ and -. These are lines that have been added or removed, respectively. You can scroll
through the changes using the up and down arrows. When you have finished review‐
ing the patch, press q to quit. If you need an even briefer comparison of what’s hap‐
pened in the patch, consider listing only the files, and then looking at the changed
files one at a time:

$ git diff master --stat
$ git diff master filename

Let’s take a look at the format of a patch file:

diff --git a/jokes.txt b/jokes.txt
index a3aa100..a660181 100644
 --- a/jokes.txt
 +++ b/jokes.txt
@@ -4,5 +4,5 @@ an investigator.
 The Past, The Present and The Future walked into a bar.
 It was tense.

-What did one hat say to another's

192 | Chapter 8: Ready for Review

-You stay here, I'll go on a head!
+What's the difference between a poorly dressed man on a tricycle and a
well dressed man on a bicycle?
+Attire.

The first five lines tell us we are looking at the difference between two files, with the
line number of where the files begin to differ. There are a few lines of context pro‐
vided leading up to the changes. These lines are indented by one space each. The
changed lines of code are then displayed with a preceding - (line removed), or + (line
added).

You can also get a slightly better visual summary of the same information we’ve
looked at to date by starting a Git repository browser. I use gitk, which ships with the
brew-installed version of Git (but not the version Apple provides). Any repository
browser will suffice and many GUI clients are available on the Git website:

$ gitk

When you run the command, gitk, a graphical tool will launch from the command
line. Click each commit to get more information about it. Many ticket systems will
also allow you to look at the changes in a merge proposal side by side. Even if you
love the command line as I do, I highly recommend getting an additional graphical
tool to compare changes. For OS X, I like Kaleidoscope App because it also allows me
to spot differences in images as well as code.

Now that you’ve had a good look at the code, jot down your answers to the following
questions:

• Does the code comply with your project’s identified coding standards?
• Does the code limit itself to the scope identified in the ticket?
• Does the code follow industry best practices in the most efficient way possible?
• Has the code been implemented in the best possible way according to all of your

internal bug-a-boos? It’s important to separate your preferences and stylistic dif‐
ferences from actual problems with the code.

With a sense of what the code changes are, you should go ahead and apply the
changes to your local environment. In other words, display the rendered code how‐
ever is appropriate for your project. Assuming it’s a website, now is the time to launch
your browser and view the proposed change. How does it look? Does your solution
match what the coder thinks he’s built? If it doesn’t look right, do you need to clear
the cache, perhaps rebuild the Sass output to update the CSS for the project based on
the changes you’re reviewing?

Reviewing the Proposed Changes | 193

http://bit.ly/git-guis
http://www.kaleidoscopeapp.com/

Now is the time to also test the code against whatever test suite you use:

• Does the code introduce any regressions?
• Is the new code as performant as the old code? Does it still fall within your proj‐

ect’s performance budget for download and page rendering times?
• Are the words all spelled correctly, and do they follow any brand-specific guide‐

lines you have (e.g., sentence case versus title case for headings)?

Depending on the nature of the original problem for this particular code change,
there may be other obvious questions you need to address as part of your code
review. Ideally, your team will develop its own checklist of things to look for as part of
a review.

Preparing Your Feedback
Do your best to create the most comprehensive list of everything you can find wrong
(and right) with the code. It’s annoying to get dribbles of feedback from someone as
part of the review process, so we’ll try to avoid “just one more thing” wherever
we can.

Let’s assume you’ve now got a big juicy list of feedback. Maybe you have no feedback,
but I doubt it. Release your inner critique and let’s get your review structured in a
usable manner for your teammates. For all the notes you’ve assembled to date, sepa‐
rate them into the following categories:

The code is broken
It doesn’t compile, introduces a regression, it doesn’t pass the testing suite, or in
some way actually fails demonstrably. These are problems that absolutely must be
fixed.

The code does not follow best practices
You have some conventions, the web industry has some guidelines. These fixes
are pretty important to make, but they may have some nuances the developer
might not be aware of.

The code isn’t how you would have written it
You’re a developer with battle-tested opinions; but you can’t actually prove you’re
right without getting out your rocking chair and launching into story time.

Submitting Your Evaluation
Based on this new categorization, you are ready to engage in passive-aggressive cod‐
ing. If the problem is clearly a typo and falls into one of the first two categories, go
ahead and fix it. You’ll increase the efficiency of the team by reducing the number of

194 | Chapter 8: Ready for Review

round trips the code needs to take between the developer and the reviewer. Obvious
typos don’t really need to go back to the original author, do they? Sure, your team‐
mates will be a little embarrassed, but they’ll appreciate you having saved them a bit
of time. Hopefully the next time they won’t be so sloppy. However, if it’s the fourth or
fifth time, do not fix the mistake. Your time is also valuable and your teammates need
to check their own code before it gets to you.

If the change you are itching to make falls into the third category: stop right now. Do
not touch the code. Instead, update the ticket where the problem was first identified
and find out why your teammate took that particular approach. Asking “Why did you
use this function here?” might lead to a really interesting conversation about the mer‐
its of the approach taken. It might also reveal limitations of the approach to the origi‐
nal developer. By starting a conversation, reviews can increase the institutional level
of knowledge. By starting the conversation you’re also leaving yourself open to the
possibility that, just maybe, your way of doing things isn’t the only viable solution.

If you “needed” to make any changes to the code they should be absolutely tiny and
minor. You should not be making substantive edits in a peer review process. Make the
tiny edits and then add the changes to your local repository as follows:

$ git add --all
$ git commit -m "Correcting <list problem> identified in peer review."

You can keep it brief because your changes should be minor. At this point, you should
push the reviewed code back up to the server for the original developer to test and
review. Assuming you’ve set up the branch as a tracking branch, it should just be a
matter of running the command as follows:

$ git push

Update the issue queue as is appropriate for your review. Perhaps the code needs
more work, or perhaps it was good as written and it is now time to close the issue
queue.

Repeat the steps in this section until the proposed change is complete, and ready to be
merged into the main branch.

Completing the Review
Up to this point, we’ve been comparing a ticket branch to the master branch in the
repository. The final step in the review process will be to merge the ticket branch into
the designated main branch (master) for the repository, and clean up the corre‐
sponding ticket branches.

Let’s start by updating our master branch to ensure we can publish our changes after
the merge:

Completing the Review | 195

$ git checkout master
$ git pull --rebase=preserve origin master

Take a deep breath, and merge your ticket branch back into the main branch for your
project’s repository. As written, this command will create a new commit in your
repository history, which can be used to unmerge a public copy of the branch using
the command revert if necessary:

$ git merge --no-ff 61524-broken-link

The merge will either fail, or it will succeed. If the merge fails, the original coders are
often better equipped to figure out how to fix the merge errors, and you may need to
ask them to resolve the conflicts for you. Tips on dealing with merge errors are cov‐
ered in Chapter 6.

Which Branching Strategy is Your Team Using?

Those who are using a streamlined mainline branching strategy
(Chapter 3) should ensure they bring their working branch (61524-
broken-link) up to date with the destination branch (master)
using the command rebase. After checking out the destination
branch, the new work should be merged in using the parameter --
ff-only instead of --no-ff. This will omit the merge commit,
remove the trace of the ticket branch, and leave a bump-free
graphed history. Check with your team to see which branching
strategy you are using, and therefore which convention you should
use to merge in your work.

Once the branch is merged, you are ready to share the revised master branch by
uploading it to the central repository:

$ git push

Once the new commits have been successfully integrated into the master branch, you
can delete the old copies of the ticket branches both from your local repository and
the central repository. It’s just basic housekeeping at this point:

$ git branch --delete 61524-broken-link
$ git push origin --delete 61524-broken-link

Summary
The peer review process can help your team. I have found it improves communica‐
tion before ideas are committed to code. It fosters a mentoring attitude among team
members. As a side benefit, it often encourages developers to start looking for ways to
automate the process of testing to improve the efficiency of the reviews. Yes, it will
take more time, but if you factor in the improvements I believe it’s time well spent.

196 | Chapter 8: Ready for Review

CHAPTER 9

Finding and Fixing Bugs

Even the best review processes will sometimes allow a bug into production. Perhaps
the bug was introduced by a bad merge, or a scenario your tests didn’t cover.
Whatever the cause of the problem, Git will be able to help you uncover at what
point, and by whom, the offending code was introduced. This will allow you to
understand the context of how the code ended up in the system, and tell you who the
best person is to help you unpack a problem in an area of the code base you might
not be familiar with.

There are two main ways to apply your forensic investigating skills: use the existing
code to locate the problem and use the history of the code to locate the problem. You
will be most effective when you use both of these techniques. When I’m debugging
code, for example, I almost always start by looking at the code itself. This is left over
from all of the frontend web development I’ve done, where it’s easiest to use a tool
like Firebug to pick apart a web page to find the offending CSS. It’s definitely not the
only way to debug code—and for many projects it will not be a viable strategy.

In this chapter, you will learn how to:

• Set aside your current work with stash so you can check out another branch
• Find the history of a file with blame
• Find the last working commit with bisect

By the end of this chapter, you will also have a better understanding of how you store
history in Git now will affect how you can recover from mistakes tomorrow. You will
hopefully have a new appreciation for how useful a really great commit message can
be, and see how a rebasing workflow can help you create a history that is easier to
decipher with bisect. This chapter does not include instructions on how you undo
mistakes you find, because that was covered in Chapter 6.

197

Those who learn best by following along with video tutorials will benefit from Col‐
laborating with Git (O’Reilly), the companion video series for this book.

Using stash to Work on an Emergency Bug Fix
In Chapter 6, you learned how to adjust commit messages, but in cases of emergency,
it may actually be more appropriate to put your work on hold temporarily. This can
be accomplished with the command stash. This command allows you to temporarily
put aside something you are in the middle of, and which you want to return to at
some point in the future.

Real-World Git Applications

One of my favorite Git-related one-liners was dropped by a friend,
Jeff Eaton, at DrupalCon Prague. He made a comment, at exactly
the right moment, about “having a git stash for morality.” I wish I
could remember the context now (horror movies? beer gardens?),
but the one-liner itself has stuck with me.

In the code sense of the command, stash allows you to avoid useless commits that
need to be undone later. These useless commits are often introduced if you are cur‐
rently working on a problem, but need to switch to a different branch temporarily
because you can only switch branches when you have a clean working directory.
Unlike a branch, or an individual commit, a stash cannot be shared; it is specific to
your local repository.

To create a new stash that holds the changes currently in your working directory, you
need to issue the command stash. If you prefer the clarity, you can include the
parameter save. It is implied, though, so you don’t need to include it if you want to
save a few keystrokes:

$ git stash save

Saved working directory and index state WIP on master: \
 d7fe997 [9387] Adding test: check user exists
HEAD is now at d7fe997 [9387] Adding test: check user exists

You’ll notice this command will only stash files Git already knows about. If you have
new files that have not been committed previously, these files will not be incorporated
into the stash as the other changes are tucked into a stash—making it impossible for
you to switch to a different branch until all untracked changes have been cleaned up.
To include untracked files, add the parameter --include-untracked:

$ git stash save --include-untracked

198 | Chapter 9: Finding and Fixing Bugs

http://bit.ly/collaborating-with-git
http://bit.ly/collaborating-with-git

Alternatively, if you want to throw out those new files instead of putting them into
your stash, you can run the commands as follows:

$ git stash save
$ git clean -d

Each time you issue the command stash in a dirty working directory, a new stash
will be created. You can see a list of your saved stashes by adding the parameter list:

$ git stash list

stash@{0}: WIP on master: d7fe997 [9387] Adding test: check user exists

If you only need to remember one stash, and only for a few minutes, this is probably
okay. Your short-term memory may be able to retain exactly what happened to you a
minute ago, but the longer you need to hold this memory, and the more memories
you need to recall, the harder it’s going to be to remember what is in each stash.

To see the contents of a stash, use the command show. The patch for the selected stash
will be displayed including meta data and the stashed changes from your working
directory:

$ git show stash@{0}

If you don’t think you will remember what you were working on from looking at the
code, you can replace the commit message with a terse description of what you were
working on when you stashed your working directory.

Adding a Description

If you want to include a description, you will need to explicitly
include the parameter save.

Git allows you to store multiple stashes, so it can be especially helpful to name your
stashes if you are working on a large problem and end up creating a stash multiple
times from the same branch:

$ git stash save --include-untracked "terse description of the stashed work"

Now if you check your list of stashes again, you will see your previous stash as well as
the new stash:

$ git stash list

stash@{0}: On master: terse description of the stashed work
stash@{1}: WIP on master: d79e997 Revert "Merge branch 'video-lessons' ...

The newest stash will appear at the top of the list. Notice how the numbers used to
refer to the stashes change as you create more stashes—it’s a variable assignment, not
a permanent reference number. This can be a little confusing if you create multiple

Using stash to Work on an Emergency Bug Fix | 199

stashes in the same branch—but if you give each stash a terse description, it can be
easier to recall which stash you want to apply when you’re ready to get back to work,
and which stashes are now old and ready to be deleted.

Stashed Work Can Be Applied to Any Branch

This command can also be used if you realize you are working in
the wrong branch, but have not made any commits yet. You can
stash your work, switch branches, and then reapply the work you
brought with you in your stash.

Once you’re ready to return to work, you determine which stash you’d like to use, and
then apply it:

$ git stash list
$ git stash apply stash@{0}

If you use the command apply, the stash will persist. This can be a little confusing if
you start hoarding stashes. To remove a stash, use the command drop to delete it:

$ git stash drop stash@{0}

If you know you’re a bit of a hoarder, and you think you might not be very good at
cleaning up old stashes, you should use apply and drop the stash with the single com‐
mand, pop. Assuming you have only one stash, the command is as follows:

$ git stash pop

You can also pop off specific stashes using the same structure as apply and drop:

$ git stash pop stash@{0}

When in Doubt, Git Assumes You Meant the Latest Stash

If you have only one stash stored, you don’t need to list the stash
you want to work with. If you omit the name of the stash, and there
is more than one, Git will use the most recent stash (the top one on
the list; it will be named stash@{0}).

You should now be able to put your work on hold temporarily using the command
stash. Although you can stash your work whenever you’d like, you should only use
this command if you are truly interrupted. If you have a coherent unit of work com‐
pleted, use commit instead. If you decide to add more work later, you can always
choose to rebase your branch and combine the commits you’d made previously.

200 | Chapter 9: Finding and Fixing Bugs

Comparative Studies of Historical Records
One of the most basic tools you can use to start the search for why code isn’t working
is to compare the broken code to another instance of the code. You can do this easily
by working with relative history. Instead of reading through the log for a particular
branch, you can compare a branch to another branch, or to another point in time.

Most of these commands have appeared previously, but this time, look at them with
specific questions in mind. Consider the commit history graph in Figure 9-1. There
are two branches with a common history: one with a known bug and one that is
known to be working. The branch with the non-working code has four commits that
differ from the branch branch with the code that works. The working branch only has
two new commits, which are not included in the broken branch.

Figure 9-1. Two branches diverged from a common ancestor with an unequal number of
commits

Need a Sample Repository to Practice On?

If you want to try the following exercises, download a copy of the
repository from the Git for Teams website. This repository has the
necessary branches set up so that you don’t need to replicate the
scenario.

Using the command log, you can isolate many pieces of history. Draw the diagram in
a notebook, and create circles around commits each of the commands are showing.
You can also try each of these commands with diff instead of log for a variation on
the output.

Comparative Studies of Historical Records | 201

http://gitforteams.com

On the current branch, this is how I would view everything except the most recently
committed work:

$ git log HEAD^

On the current branch, this is how I would view everything except the three most
recent commits:

$ git log HEAD~3

You can also make comparisons as if you were standing at different vantage points.
You’re standing at the window of a tall building, looking out onto the street. You can
see the rooftops of other, shorter buildings. Now imagine you’re standing on the
street looking up at the tall building. You can see people sitting under the café
umbrellas. In the context of Git, this means you can make comparisons using either
branch as the vantage point:

$ git log since_last_merge_to..what's_been_added_here --oneline

For example, this is how I would see what’s in the working branch; but not on the
broken branch:

$ git log working..broken

What about the opposite? How would I show which commits are in the broken
branch, but missing from the working branch? Like this:

$ git log working..broken

If I wanted to see the code that was included in the broken branch, but missing in the
working branch, I would do this:

$ git difftool working..broken

You can also make these comparisons with remote branches. Don’t forget to down‐
load the latest versions with fetch before making the comparisons:

$ git fetch
$ git log working..remote_nickname/broken

If you aren’t able to uncover sufficient information, you can use log with the parame‐
ter -S to search for a specific string of text with the commit message, or the text that
was applied (or removed) as part of that commited change. Searching through your
repository in this way is made significantly more useful if you use controlled vocabu‐
laries for your commit messages. For example, I always try to include the name of the
file, or an equivalent shorthand, in the commit message so that I can easily filter on it
later (when this file is added to the repository for the book, it will get a commit mes‐
sage which includes the text CH09):

$ git log -S foo

202 | Chapter 9: Finding and Fixing Bugs

If you were excited by the parameter -S, have I got news for you! There is also the
ability to search based on regular expressions. Use the parameter -G.

Using these commands should help you to isolate which files might be causing the
problems. Once you have the filenames, you can investigate them more closely.

Investigating File Ancestry with blame
When working with teams, it can be very useful to see who has worked on a file over
time. The people working on files are the ones best equipped to walk through the his‐
tory of why something was changed—especially if the commit messages aren’t giving
any additional clues. Normally we use the command log to reveal how a repository
has changed over time, but this doesn’t give a very good overview of how all of those
changes have come together to make the file you are currently looking at.

The command blame allows you to look at a file line by line, showing the last time
each line was changed, by whom, and in which commit it was changed (Figure 9-2).

Figure 9-2. blame allows you to list when each line was introduced into a file, by its com‐
mit ID and author

To examine the file README.md, use the blame command as shown in Example 9-1.

Example 9-1. Output of the command blame

$ git blame README.md

3e9dd558 (emmajane 2014-04-23 22:11:40 -0400 1) Git for Teams of One...
^00de359 (Emma Jane 2014-04-23 18:54:03 -0700 2) =====================
^00de359 (Emma Jane 2014-04-23 18:54:03 -0700 3)
3e9dd558 (emmajane 2014-04-23 22:11:40 -0400 4) Supporting files for ...
7874193c (emmajane 2014-06-26 00:37:41 -0400 5) developer work flow for ...

Investigating File Ancestry with blame | 203

3e9dd558 (emmajane 2014-04-23 22:11:40 -0400 6) version control system, git
3e9dd558 (emmajane 2014-04-23 22:11:40 -0400 7)
00000000 (Not Committed Yet 2015-01-15 21:08:09 +0000 8) Test edit!
00000000 (Not Committed Yet 2015-01-15 21:08:09 +0000 9)
3e9dd558 (emmajane 2014-04-23 22:11:40 -0400 10) ## Contents
3e9dd558 (emmajane 2014-04-23 22:11:40 -0400 11)
5cc35764 (emmajane 2014-06-25 17:45:38 -0400 12) */slides*
3e9dd558 (emmajane 2014-04-23 22:11:40 -0400 13)

From left to right, the columns show:

• Commit hash ID
• Author name
• Date
• Line number
• Content for that particular line within the file

In Example 9-1, you may have noticed there were three authors listed: Not Commit‐
ted Yet, emmajane, and Emma Jane. Hopefully the first is self-explanatory: these are
changes that are in my working directory but that are not yet committed. The two
variations of my name are a simple inconsistency in how I’ve configured Git over
time. You can read more about how to customize your attributed name in Appen‐
dix C.

Two of the lines begin with ^. These lines have not been edited since the initial com‐
mit.

Beware! The Word “blame” May Condition You into Negative Thinking

The command blame is poorly named. It immediately, and unnec‐
essarily, creates an antagonistic view of the code. I much prefer the
commands used in one of Git’s competitors, Bazaar: annotate, also
available under the alias praise. (Full disclosure, Bazaar also has
an alias of blame for annotate.) Git does have an annotate com‐
mand, but the documentation for this command states that it is
only for compatibility reasons. It is not a true alias and the output
of blame and annotate differs slightly.
The last person who changed a line of code is often the person
most qualified to explain what they were trying to accomplish;
coming to them with a fight on your hands is going to decrease the
likelihood they’ll come to you for help in the future, which increa‐
ses the chance of you needing to deal with their future mistakes as
well. Check your attitude when using this command, and see if you
can shift from blame thinking to simple annotation.

204 | Chapter 9: Finding and Fixing Bugs

Once you’ve located the line in the file that looks interesting, you can investigate fur‐
ther using the commit ID along with the commands log, diff, and show. Table 9-1
outlines what each of the commands can help you to isolate.

Table 9-1. Reason to use log, diff, and show

Description Command

Show the metadata for a particular commit log commit

Show the code changed in a particular commit show commit

Show the code changed since a particular commit diff commit

Start by using the command log to look at the commit message:

$ git show <commit>

If the commit message was well written, it should give you an explanation for why the
changes were made in this particular commit. If the detailed commit message
includes a reference back to a ticket number in your project management system, you
may even be able to read a discussion for the changes made—giving you even more
insight into what the developers were thinking when they created the fix. In the track‐
ing system, you may also see other developers who were involved, and anyone who
was on the review team for this particular change.

To see the same amount of detail, but in all commits since that point, use the com‐
mand log as follows:

$ git log --patch <commit>

The parameter --patch in this context shows you the changes between each of the
commits, as opposed to the command diff, which shows you the difference between
the referenced commit, and the files in the working directory.

blame Only Tells You About What Is Visible

blame is not perfect. If the bug was introduced in a line that is not
present in the version of the file you are looking at, blame will not
be able to notify you about who last edited the file. So it is a good
tool to use, but it is not magic.

Using a combination of blame, log, and diff, you should now be able to review the
history of a single file in the context of the total combined history of that file, and in
the context of other changes made at the same time. Using the commit message, you
may also be able to trace the rationale of why the changes were made. With a little bit

Investigating File Ancestry with blame | 205

of forensic investigation, you can turn your questioning of the author of the code into
a productive conversation—instead of a Columbo-style interrogation.

Historical Reenactment with bisect
Often it can be difficult to figure out exactly when a bug was introduced in your code
if you don’t know which file is the problem. If the error message you are looking for is
printed to the screen, it can be relatively easy to search through the files in your code
base to locate the right file. Sometimes the error message will include the filename
and line number where the problem occurred. In any of these cases, you can use the
commands diff, log, and blame to gain a better understanding of what has gone
wrong. Sometimes the problem code does not leave sufficient clues in the error mes‐
sages to use these tools. Introducing bisect!

bisect performs a binary search through past commits to help you find the commit
where the code went from a known working state to a known broken state. Unlike a
regular checkout of a commit, bisect continues to wander through your history (in
a very methodical way!) until you have given it enough clues to identify which com‐
mit introduced the dysfunctional code. It’s sort of like a historical reenactment of
what the developers have done in a code base. At each point in the bisect process, you
can launch the product (compile the code; load it in a browser; install the app on your
phone; whatever is appropriate for your code base) and determine whether the code
at this moment in history was right, or wrong. Once you find the point where things
went wrong, you can fix history at that exact moment. It’s like Back to the Future—
and Git is your DeLorean.

To begin, you need to be in the top-level directory of your repository. This is the
folder where the hidden .git folder resides. Begin the bisect process, and notify Git of
one commit ID where the code is known to be good and one commit ID where the
code is known to be bad (Example 9-2).

Example 9-2. Identify good and bad commits to bisect

$ git bisect start
$ git bisect good <commit-id>
$ git bisect bad <commit-id>

Git will now proceed to check out a series of commits one at a time, looking for the
commit where the code went from bad to good:

$ git bisect start
$ git bisect bad c04f374
$ git bisect good 93b64fc

Bisecting: 10 revisions left to test after this (roughly 4 steps)
[0075f7eda67326f1746] Merge branch 'video-lessons' into integration_test

206 | Chapter 9: Finding and Fixing Bugs

The repository is now in a detached HEAD state. At this point, you need to confirm if
the code is good or bad and report back your findings:

$ git bisect bad

Bisecting: 5 revisions left to test after this (roughly 3 steps)
[ed8056eb4b2aaf00e6d] Lesson 4: Adding details on using git config

$ git bisect bad

Bisecting: 2 revisions left to test after this (roughly 1 step)
[c88a02babc42bb00a83] Lesson 4: Adding new lesson on configuring Git

$ git bisect good

Bisecting: 0 revisions left to test after this (roughly 1 step)
[f1fa8e7e382f68c0558] Lesson 3: Extended descriptions for cloning a ...

$ git bisect good

ed8056eb4b2aaf00e6d is the first bad commit
commit ed8056eb4b2aaf00e6d9d183f974ed612d6f10e6
Author: emmajane <emma@emmajane.net>
Date: Sun Sep 7 12:50:58 2014 +0100

 Lesson 4: Adding details on using git config

 Added commands to customize the following:

 - username (or real name, as you prefer)
 - email address
 - enable color helpers within the git messages

 Added a self-study piece on customizing your command prompt to include
 additional color and branch information.

:040000 040000 e927a1263e6e23eb5237a363a20640f62349b27d
31bc6c57d6acd8de214a63a47914b32d6809a866 M lessons

The problem commit has been located. At this point, you are in a detached HEAD state,
but you also know which commit you need to come back to. To return to the tip of
your branch, with the new information, use the subcommand reset. This command
can also be used at any point during the bisect process to abandon the search and
return to the most recent commit on your branch:

$ git bisect reset

If you have not done a lot of programming, the binary search process can feel a bit
like magic. (Really freaking cool magic, mind you.) If you want to remove some of

Historical Reenactment with bisect | 207

the mystery, you can use the subcommand visualize to show you the current status
of the bisect process (Figure 9-3). The outer good and bad commits will be identified
in the GUI you have configured for gitk.

Figure 9-3. Running git bisect visualize shows you the current status of the bisect process

Bisect Assumes Bad Things Have Happened

It is assumed that the current work is bad. So, you can’t go back and
find when something is fixed—you need to go back and find where
something broke. It can be very confusing if you try to find where a
fix was introduced, although it is possible. You just need to remem‐
ber to reverse the definitions of good and bad.

Summary
I will happily admit that I am a crime drama TV junkie, so the chapter on using Git
for forensic investigation appeals to me greatly. In this chapter, you have been
exposed to a few of the commands I include in my detective toolkit:

• stash allows you to set aside your current work so you can check out another
branch.

• blame allows you to find the line-by-line history of a file.
• bisect allows you to search methodically through history to find the spot where

things went wrong.

These tools, when paired with the information in Chapter 6 on recovering from mis‐
takes, will help you dig into, and recover from, just about any crime scene you may
end up investigating.

208 | Chapter 9: Finding and Fixing Bugs

PART III

Git Hosting

The first two parts of the book included commands specific to Git, not any one par‐
ticular code hosting platform. In Part III, you will learn about three popular collabo‐
ration platforms: GitHub, Bitbucket, and GitLab. In the many projects I’ve worked
on, I find that my work often falls into these divisions: open source projects are often
hosted on GitHub; private, client work is often hosted on Bitbucket; and projects that
are concerned with autonomy are often hosted internally on GitLab.

There are no formal restrictions that say you must use these systems in this way.
Indeed, there is an enterprise version of GitHub, which allows you to purchase a
“locally hosted” instance of GitHub; and there is a community edition of GitLab,
which offers free hosting of private and public Git repositories.

Entire books have been written on how to use each of these three platforms. Instead
of trying to replicate these works, each of the subsequent chapters is designed as a
“Getting Started” guide for the ways I most commonly see these platforms used.
Chapter 10 covers using GitHub for public, open source projects; Chapter 11 covers
using Bitbucket for private, closed source projects; and Chapter 12 covers using
GitLab to host private, internal repositories.

CHAPTER 10

Open Source Projects on GitHub

With more than nine million users, GitHub is the largest code hosting platform in the
world today. If you are a web developer, or involved in open source software develop‐
ment, chances are good you have at least visited the GitHub website to download
some code, if not created an account and participated in a development community.
Those who are working on proprietary code development may know less about Git‐
Hub, but that doesn’t make it less relevant as a code hosting platform, because GitHub
also allows you to create private repositories if you don’t want to share your code.

The focus of this chapter will be using GitHub for open project development, because
this tends to be how most newcomers will first be exposed to the system. By the end
of this chapter, you will be able to complete the following on GitHub:

• Create a new account
• Create an organization
• Create a new project
• Solicit contributions from new collaborators
• Accept pull requests from collaborators

Up to this point, the repository examples you’ve been working with were hosted on
GitLab. Unlike GitLab, GitHub’s platform is not based on open source software. Git‐
Hub can definitely improve your experience with Git, but has several of its own
GitHub-isms that can make it difficult to know when you’re working with Git terms,
and when you’re working with GitHub terms.

GitHub has a few great features that I have been able to take advantage of as a web
builder. I have used GitHub to publish simple, static websites, and even HTML-based
slide decks. Taking the same approach as we have previously in this book, you will

211

first learn to use GitHub as a team of one, and then you will learn how to use its fea‐
tures to collaborate with others. Of course, if you are already working on a team, I
encourage you to skip to the section of this chapter that is most relevant to you.

Those who learn best by following along with video tutorials will benefit from Col‐
laborating with Git (O’Reilly), the companion video series for this book.

Getting Started on GitHub
In this section, you will learn how to create an account on GitHub, and publish a
repository to your own GitHub account. The goal is to get yourself familiarized with
GitHub as a team of one, so that some of the actions feel a little more natural when
you start participating in larger teams.

Creating an Account
You don’t need an account on GitHub to access public repositories. If you want to
upload code, or participate in conversations about the code, you will need to create an
account. It is, fortunately, very straightforward to set up an account; and for public
repositories, it is free. A free account is sufficient for everything covered in this
chapter.

Step 1: Create your account

1. Navigate to https://github.com (Figure 10-1).
2. Enter a unique username. GitHub will let you know if the name has already been

selected.
3. Enter a valid email address.
4. Enter a secure password.
5. Click the button Sign up for GitHub to proceed.

After passing the validation tests for a unique username, a valid email, and a secure
password, you will be directed to the next screen.

Step 2: Select a plan

At this point, you may choose to financially support GitHub by paying for a plan.
There is absolutely no requirement to pay for this code hosting service. By default,
GitHub chooses the free plan for you (Figure 10-2). You’ll need to follow these steps:

1. Confirm the plan type you would like to enable. By default, the free plan is
selected.

2. Complete the account creation process by clicking Finish sign up.

212 | Chapter 10: Open Source Projects on GitHub

http://bit.ly/collaborating-with-git
http://bit.ly/collaborating-with-git
https://github.com

Figure 10-1. Sign up for a GitHub account

Supporting Businesses so They Stay in Business

If you would like to help ensure GitHub stays in business, you may
want to pay for a plan at some point in the future. One of the bene‐
fits of a paid plan is that you can create private repositories that are
only available to the developers you choose to include in your
project.

After you have created your account, you will receive an email from GitHub asking
you to confirm your email. You will need to click the link in this email to complete
the account creation process. If you do not verify your email, you will not be able to
complete some tasks.

You are now ready to use your account to perform a range of tasks, including creating
new repositories, and contributing code to your own and other repositories.

SSH Keys
If you use a very secure password, you may be using a password generator and have a
password that is 45 characters including letters, numbers, and special characters. No
one wants to retype this kind of password, but in order to authorize uploads, you will
be prompted for your password when you try to push code up to GitHub. By upload‐
ing your SSH key, you can avoid retyping your password each time you want to pub‐
lish code.

Getting Started on GitHub | 213

Figure 10-2. Select a plan for your GitHub account

Appendix D includes instructions on how to create and retrieve SSH keys. Once you
have the public key copied to your clipboard, you are ready to proceed to GitHub:

1. Navigate to https://github.com/settings/ssh. You can also access this screen by log‐
ging in to your account, clicking the configuration cog (top right), and then
clicking SSH Keys from the set of navigation options for your account.

2. On the SSH Keys summary screen, click Add SSH key.
3. Optionally, add a title for your SSH keys. For example, you might have a personal

set of SSH keys, rather than the keys you generated for your work computer.
4. Paste the public key that you copied previously into the Key field.

214 | Chapter 10: Open Source Projects on GitHub

https://github.com/settings/ssh

5. Click the button Add key.

SSH Keys Must Be Unique

GitHub will only allow key pairs to be added once on its system. If
you have already use these keys on a different account, you will get
an error message when you try to save the keys.

You will now be able to perform actions from your local computer that require
authentication without typing your GitHub password.

Creating an Organization
Assuming you will be working on an open source project, you may want to create an
organization at this point as well. An organization is able to own projects. Multiple
people are able to join (or be assigned to) an organization. This allows you to manage
a project without having to create a second GitHub account. Organizations are free to
create, so you may as well take advantage of them.

Naming Your Organization

Generally you will create an organization name that is the same as
the main project repository. So, for example, if your library is cur‐
rently available in the repository named evilrooster, the name you
would aim to secure for the new project account would also be evil‐
rooster. Once the new organization is created, you can reassign
ownership from your personal account to the organization for the
repository. This will allow you to maintain the project history for
the repository.

To create an organization, complete the following steps:

1. From the top menu, click the + symbol next to your avatar.
2. Click New organization. You will be redirected to the setup form for new organi‐

zations.
3. On the form Create an organization, enter the following:

• Organization Name: This will be the URL for your organization.
• Billing email: This is a required field even if you are selecting the free plan.
• Plan: Open source is selected by default.

4. Click Create organization to proceed.

Getting Started on GitHub | 215

On the next screen you can add team members to your organization. Your own
account is added by default. To add additional accounts, complete the following steps:

1. In the search field, enter the name or username of the person you want to add.
2. To the right of the person’s name, click the + symbol.
3. Repeat steps 1 and 2 for each person you would like to add.
4. Click Finish to send the invitations.

Your organization has been created, and it has been assigned new members as you
designated while setting up the organization.

Personal Repositories
This section is a brief overview of putting your own repositories on GitHub. You will
use your personal account to create a new repository, which is appropriate for
projects you do not intend to have others contributing to on a regular basis, because
they are essentially yours. For example, when I deliver conference presentations with
HTML slides, I often publish them to a GitHub repository to share them.

Creating a project
A repository on Git is so much more than what you get locally on your computer
when you run the command init in a directory. It has an issue tracker, the ability to
convert Markdown files into web pages, supplemental wiki pages, charts, graphs, and
more. GitHub, however, still refers to the process as creating a repository.

To begin the process of creating a new repository, locate and click the + icon in the
top-right corner of the screen, and then select New repository (Figure 10-3).

Figure 10-3. Create a new repository

Alternatively, you can log in and then navigate to the home page of GitHub; then
locate and click the button Create new repository.

216 | Chapter 10: Open Source Projects on GitHub

Once you’ve initialized the process, you will be redirected to a screen where you are
asked to fill out the details for this project (Figure 10-4). The information you will
need is also summarized in Table 10-1.

Figure 10-4. Enter the details for your new repository

Table 10-1. Details needed to create a new GitHub repository

Field Notes Use if
importing?

Repository name Your new project will be available at the URL https://github.com/<usern
ame>/<repo-name>. Choose something short, but descriptive.

Yes

Repository description This text will appear at the top of the repository home page, above the
list of files.

Yes

Visibility Choose public (selected by default) or private (requires a paid account). Yes

Initialize this repository with a
README

Add an empty file that can be used for details about your project. This
file will be rendered as HTML on the home page for your repository, but
can be written in Markdown.

No

Add .gitignore Many programming languages will generate compiled files during the
build process that should not be included in the repository. You can
generate a .gitignore file now, which has typical file extensions for your
language already included.

No

Getting Started on GitHub | 217

https://github.com/<username>/<repo-name>
https://github.com/<username>/<repo-name>

Field Notes Use if
importing?

Add license Without a license file, you do not give people permission to download
and use your code. You retain full copyright, and do not grant
permission for others to use your work. Ideally, your project will have a
license. If you would like to include a license, but aren’t sure which one
to choose, Choose a License may help.

Maybe

If you have already started a repository locally, you may choose to upload it to this
new project; however, if you have created files during the initialization process, you
will need to first download these changes, incorporate them into your local reposi‐
tory, and then push them back up to GitHub. To avoid this extra step, if I already have
a repository locally, I will omit the creation of the files for README, .gitignore, and
the license.

Once you have selected values for each of the items in Table 10-1, locate and click the
button Create repository. Your new repository will be created, and you will be redi‐
rected to a summary page with suggestions on what to do next (Figure 10-5).

Figure 10-5. Your new repository is ready for use

Because there were not any files initialized during the repository creation process,
you have only two options at this point: upload a repository from your local com‐
puter, or import a project from a publicly available URL. If, for example, you wanted

218 | Chapter 10: Open Source Projects on GitHub

http://choosealicense.com/

to copy your GitLab project from earlier in the book, you could. These options will be
covered next.

Importing a repository
If you have been following along from the beginning of this book, you will have cre‐
ated a repository on GitLab that was a clone of the workshop files for the Git for
Teams workshop. You can easily import this repository into GitHub. This process can
only be completed if there are no files in your GitHub repository:

1. Navigate to your project home page.
2. If the repository is empty, you will be able to locate and click the button Import

code. Clicking on this button will redirect you to the GitHub importer.
3. Enter the URL for the repository you want to import. This must be a public

project, but it does not need to be a Git repository. You can also import Subver‐
sion and Mercurial repositories. If you are importing a Git project, ensure you
get the full URL, including the .git extension—this is the same URL structure that
you would use to clone a repository locally. Figure 10-6 shows a valid URL for a
project (https://gitlab.com/gitforteams/gitforteams.git).

Figure 10-6. Enter a valid URL for a Git repository to import it to GitHub

Getting Started on GitHub | 219

https://gitlab.com/gitforteams/gitforteams.git

4. Click Begin import. The import process will begin.
5. When the import process has completed, click Continue to repository. Your files

will have been imported from the remote repository (Figure 10-7).

Figure 10-7. The repository files and history have been successfully imported from
GitLab into GitHub

Connecting a local repository
In Chapter 7, you learned how to connect a local repository to a new remote reposi‐
tory on GitLab. We’ll repeat those steps here for our new GitHub repository. GitHub
gives you copy/paste–friendly commands to complete these steps from the project
home page if there were no files created during the initialization process. The struc‐
ture for the remote repository is https://github.com/<username>/<repo-name>.git.
For example, I created a new repository using the sample name given to me by Git‐
Hub (glowing-octo-dangerzone) with the account gitforteams. If I then wanted to con‐
nect a repository on my own computer to this repository, I would complete steps
outlined in Example 10-1.

220 | Chapter 10: Open Source Projects on GitHub

https://github.com/<username>/<repo-name>.git

Example 10-1. Cloning a repository

$ git remote add origin https://github.com/gitforteams/glowing-octo-dangerzone.git

Once you have completed these steps, navigate to the project page, and you should
see all of your files uploaded. You are now ready to start working with your reposi‐
tory as a GitHub project.

Publishing changes to your GitHub repository
Once you’ve connected your local repository to your GitHub repository, you can
upload committed changes to any tracked branch using the command push. To pub‐
lish a new branch to GitHub, you will need to explicitly tell Git which remote you
want to use as the upstream for your branch (Example 10-2).

Example 10-2. Set the upstream branch for a remote repository

$ git push --set-upstream origin master

After setting the upstream connection, you do not need to add the parameter --set-
upstream again. If you want to publish your changes to more than one remote reposi‐
tory, you will need to continue specifying which remote.

Making Commits via the Web
One of the nice things about using a code hosting system such as GitHub, and not
just working at the command line, are the tiny enhancements that are built into the
system. For example, GitHub allows you to edit any of the files in your repository
through a web user interface. While I recommend you do not use this as your regular
code editor, it can be really handy if you just want to fix a typo as a fly-by commit.

To make an edit via the web editor, complete the following steps:

1. Navigate to the specific instance of the file you want to edit. The URL for this file
will include the branch name. For example, https://github.com/gitforteams/
freezing-batman/blob/master/README.md.

2. Locate and click the pencil icon to edit this file (Figure 10-8); alternatively, press
e on your keyboard.

You will be redirected to a browser-based text editor (Figure 10-9). You are now ready
to make changes to the file in your repository.

After making edits you can click the button Preview changes. New lines have a green
bar to the left of the changed text (wrapped in the HTML element ins); lines that
have been removed have a red bar to the left (wrapped in the HTML element is del).
In Figure 10-10, the first paragraph with a bar has been removed; the second para‐

Getting Started on GitHub | 221

https://github.com/gitforteams/freezing-batman/blob/master/README.md
https://github.com/gitforteams/freezing-batman/blob/master/README.md

graph is new. Apart from color and the HTML elements, there does not currently
appear to be a way to perceive the difference in what’s been added or removed.

Figure 10-8. You can edit any text file by clicking the pencil icon

Figure 10-9. The browser-based text editor includes an optional preview

222 | Chapter 10: Open Source Projects on GitHub

Once the edits have been made to the file, you are ready to commit your changes
back to your repository (Figure 10-11). A default value is provided for a short com‐
mit message, which states which file is being updated. You should provide a more
descriptive description of the edits being made. An optional extended message can
also be added. You will need to decide if you want to just commit the changes to the
current branch, or if you want to create a new pull request from this change. By
default, GitHub assumes you would like to commit this change directly to the reposi‐
tory, and on the same branch.

Because you are working with your own project at this point, it’s fine to commit the
change back to the master branch; leave the default option selected and click the but‐
ton Commit changes.

Figure 10-10. The preview shows which lines have been changed (the first line has been
removed; the second has been added)

Figure 10-11. Committing your changes back to the repository

Getting Started on GitHub | 223

Why You Might Want to Submit Yourself a Pull Request

If you are the sole editor for your project, you probably don’t need
to create a pull request for your changes. Pull requests, however,
are merged back into the master branch with the parameter --no-
ff. This means it will show up in your graphed history as a blip
outside of the straight line of the master branch. If you don’t mind
if this commit appears exclusively on the main branch, it’s fine to
omit the pull request step. The step-by-step instructions for creat‐
ing and closing pull requests are covered later in this chapter.

Once you’ve committed your changes to the repository, you will need to update your
local repository to reflect these changes.

Updating Your Local Repository
If you do use the web-based editor to update your branch, your local repository will
become out of date. (Don’t try to redo the same edits in your local branch; Git needs
to have exactly the same commit at exactly the same time to understand the two com‐
mits are the same.) You will need to download these changes and integrate them into
your local repository before GitHub will allow you to upload new changes. This can
be completed with the following sequence.

You should begin from within your local project repository directory. Next, ensure
you are using the same branch as the remote edits. This is likely the branch master:

$ git checkout master

Next, incorporate the remote changes into your local work. Because the changes are
being copied into the same branch, and because these are minor updates and not new
features, I will use the option --rebase to incorporate the changes, instead of merge.
This will keep my graphed history cleaner to read:

$ git pull --rebase=preserve

Your local branch should now be up to date and ready for new work.

Using Public Projects on GitHub
When working with projects, you can choose to download a zipped package of files,
or you can maintain a connection to the remote repository, downloading new
changes when they are available, and potentially contributing your own changes back
to the project. In this section you will learn how to consume projects from GitHub,
but not contribute to them. This will be covered in the next section.

224 | Chapter 10: Open Source Projects on GitHub

Downloading Repository Snapshots
As your Git superpowers continue to grow, you will be less likely to download a pack‐
age from GitHub. This option does exist if you want to share the code with someone
who just wants a .zip package (perhaps even for your own project).

To download the .zip package for a project, complete the following steps:

1. Navigate to the project page you want to download the code for.
2. Locate and click the button Download ZIP. This button (Figure 10-12) is conven‐

iently located near the URL for cloning the project locally, or through the GitHub
desktop application (which is available for Windows and OS X).

The downloaded package of files will be named according to the project and branch
you downloaded. To change which branch you download, complete the following
steps:

1. Locate and click the branch drop-down button near the top left of the repository
home page (Figure 10-13).

2. Select the branch you would like to download. Wait a moment for the page to
refresh.

3. Locate and click the button Download ZIP.

There will not be an indication in the user interface that you are downloading a dif‐
ferent branch; however, the filename will reflect the name of the branch
(repository_name-branch_name.zip).

Figure 10-12. Download a snapshot of the repository

Using Public Projects on GitHub | 225

Figure 10-13. Change the branch you download by first selecting a different branch

Working Locally
Connecting to someone else’s project on GitHub is almost the same process as using
your own, except you won’t have write access to the project (unless you are added to
the project team, of course). In this section, you will learn how to create a local clone.
I use this technique for the Git for Teams website, which uses Sculpin, a static site gen‐
erator.

226 | Chapter 10: Open Source Projects on GitHub

http://gitforteams.com

Get Started with Sculpin

Sculpin is a static site generator built in PHP. The instructions in
this section aren’t enough to get you up and running. If you’re
interested in trying Sculpin, start at the Get Started guide.

In this case, I want a local copy of the Sculpin templates for my site. Although I’m
also a volunteer on the Sculpin project, this repository is just for my website. I’m
unlikely to have contributions back to the project in the local copy. I do, however,
want to maintain a connection to the main project so that I can incorporate the latest
updates into my website easily. Although the commands are specific to the Sculpin
project, you can substitute the URLs for your project of choice.

The first step is to create a local clone of the project (Example 10-3):

1. Navigate to the project page for the repository you want to download.
2. Locate and click the copy-to-clipboard icon (Figure 10-14) to get the URL for the

repository.
3. Open a terminal window (or Git Bash window on Windows) and navigate to the

directory where you’d like to download the project to.
4. Create a local copy of the project repository using the command clone and the

URL you copied in step 2. Optionally, add the directory name to the end of this
command.

5. Change the name of the directory to a name that is relevant to your project. You
can optionally do this as part of the previous step by adding the new directory
name to the end of the command.

6. Navigate into the local repository.

Example 10-3. Create a clone of the repository

$ git clone https://github.com/sculpin/sculpin-blog-skeleton.git
$ mv sculpin-blog-skeleton gitforteams.com
$ cd gitforteams.com

The second step (Example 10-4) is to create an upstream, or “vendor branch” that will
be kept free from changes relevant only to your project. You will be able to keep this
branch up to date with any changes to the main project. For the project I’m working
with, the default branch is master. You can choose whatever name makes sense for
you; sometimes I use the project name, sometimes I use the generic nickname
upstream. I don’t think there’s an advantage of one over the other (although Shake‐
speare might have said something about my naming whimsies). By moving the
branch instead of creating a new one, I maintain the relationship between my local

Using Public Projects on GitHub | 227

https://sculspin.io/getstarted/

branch and the remote repository. Optionally, if you prefer to work on the master
branch, you may recreate the branch master branch.

Figure 10-14. The copy-to-clipboard icon is located immediately above the download
button

Example 10-4. Create an upstream branch

$ git branch --move master upstream
$ git checkout -b master

The final step is to add a remote repository for your working copy of the project
(Example 10-5). This new remote repository will hold all of the changes that you are
making for your instance of the project. The Sculpin project shouldn’t keep a record
of all the changes I’m implementing for the Git for Teams website, but I need to keep
track of them. In real life, I keep the Git for Teams repository on Bitbucket as a private
repository. I don’t use the issue tracker, I just toodle away in the repository and
upload it after commits, almost like a backup plan. It’s not taking advantage of the
features Bitbucket offers, but it does give me peace of mind.

When the project was first cloned, the remote name origin was assigned to the
remote repository. We’re going to swap that nickname for upstream, because the con‐
vention is to use origin for the repository that most closely mimics our own.

To prepare for adding the new remote, you will need to determine its URL. If you
don’t already have a remote repository set up, follow the steps for creating a project
earlier in this chapter and ensure the repository does not have any files added during
the initialization process. Once you’ve created the new project, follow the on-screen
instructions to add the remote information to your repository and then upload the
changes. For example, if your GitHub username was gitforteams and your new reposi‐
tory was named superhero-freda, you would add the remote repository as shown in
Example 10-5.

228 | Chapter 10: Open Source Projects on GitHub

Example 10-5. Add a remote repository for the working copy

$ git remote rename origin upstream
$ git remote add origin https://github.com/gitforteams/superhero-freda.git
$ git push -u origin master

You now have both a branch named upstream and a remote named upstream.

Check the upstream repository regularly for updates (Example 10-6). You do this by
checking out the branch you designated as the upstream for the project, and pulling
in changes.

Example 10-6. Check the upstream project for updates

$ git checkout upstream
$ git pull --rebase=preserve

Assuming there have been updates to the main project, you can read the changes to
see if you want to incorporate them into your own project (Example 10-7).

Example 10-7. Compare the changes in upstream to your local work

$ git diff master upstream

Or you can just look for a summary of the specific commits with these fancy parame‐
ters added to the command log:

$ git log --cherry-mark --left-right --oneline master...upstream

We’ve seen variations on this command before; the only real new piece is --cherry-
mark --left-right. These parameters add a symbol to the beginning of the commit
that indicates whether the change was introduced by the first branch on the list
(points left), or the second (points right).

Once you have an understanding of the changes, you can bring your own branch up
to date with the upstream changes (Example 10-8). This should be completed as if the
changes were already in place and your own work was starting fresh today. In other
words, you should bring your working branch up to date by rebasing the changes
from upstream repository onto your own branch. (As I’ve mentioned previously, if
you are working alone, you can also merge the changes in if you find this easier than
using rebase. I won’t judge you.)

Example 10-8. Incorporate upstream changes

$ git checkout master
$ git rebase upstream

Using Public Projects on GitHub | 229

If conflicts arise, take them one at a time. There are additional tips for dealing with
rebase conflicts in Chapter 6.

Contributing to Projects
You have decided to make the leap and submit a contribution to a project. Huzzah!
Congratulations! This is not significantly different than what you’ve done previously.
The main difference is that you will be submitting a pull request, which will be
reviewed by someone else before it is incorporated into the main project.

Tracking Changes with Issues
On public projects, issues are generally opened by users who have uncovered a bug. A
much smaller set of contributors will create issues for new features they are interested
in contributing, or design changes they are interested in developing.

Issues Are Disabled by Default for Forks

Issues are disabled by default for repository forks. If you want to
track issues for your fork, you can enable the feature from the Set‐
tings screen.

To create an issue, complete the following steps:

1. Navigate to the project page.
2. Locate and click the tab labeled Issues. It appears on the right sidebar

(Figure 10-15). You will be redirected to the issues page.
3. Locate and click the button New issue. It appears on the right side of the screen

(Figure 10-16). You will be redirected to an issue creation form.
4. Enter a title, a description of the problem that you want solved (Figure 10-17),

and the ticket number of the issue that this pull request is being submitted to
solve. The more descriptive you can be about the problem, the more likely it is to
be solved.

5. When you are satisfied with your issue description, locate and click the button
Submit new issue.

With the issue created, you can now go about creating the pull request that solves the
issue.

Forking a Project
If you want to contribute your changes back, complete the following steps:

230 | Chapter 10: Open Source Projects on GitHub

1. Navigate to the project page.
2. Locate and click the button Fork. The repository will be forked, and you will

receive a copy of the repository set up under your own account.

Figure 10-15. Navigation icon for Issues

Figure 10-16. Navigation button to create new issue

You can now clone this copy of the project to your local computer, just as you did in
“Personal Repositories” on page 216. Once the repository is downloaded, you can
make changes to the project, commit them to your repository, and then push them
back up to your forked copy of the remote repository.

Contributing to Projects | 231

Once the changes you’d like to incorporate into the main project have been pushed
back to GitHub, you are now ready to initiate a pull request.

Figure 10-17. Creating a new issue

Initiating a Pull Request
When you make a fork of a project, GitHub maintains a connection to the upstream
project. This allows you to easily send your changes from your forked repository back
to the main project.

Complete the following steps to initiate a pull request:

1. Navigate to the project page for your forked repository.
2. Locate and click the button pull request (Figure 10-18). It is located near the top

left of the project description, below the title. You will be redirected to a sum‐
mary of branches that can be used for a pull request. If there are not four drop-
down menus displayed, click the link compare across forks before proceeding.

3. From the list of branches, select the branch you want to submit to the upstream
project from the final drop-down menu (Figure 10-19). The differences between
your branch and the upstream branch will be displayed.

Figure 10-18. The pull request button is located below the project title

232 | Chapter 10: Open Source Projects on GitHub

Figure 10-19. Choose the branch you want to submit to the upstream project in your pull
request

4. Locate and click the button Create pull request (Figure 10-20). A new form will
open.

5. Enter a title, and a description for why you are submitting this change to the
project (Figure 10-21).

6. Locate and click the button Create pull request to complete your request to have
your changes included in the upstream project.

Once you have completed your pull request, the maintainers of the project will be
notified through their GitHub interface for the project, and also via email if they have
notifications enabled.

Figure 10-20. To initiate the pull request process, locate and click button Create pull
request

Contributing to Projects | 233

Figure 10-21. Enter a title and summary that explain the reason for your proposed
change

Running Your Own Project
The technical part of running a project on GitHub is very easy. GitHub provides you
with an issue queue, supplementary documentation pages (wiki), support for incom‐
ing code changes via pull requests, and the ability to grant write access to the reposi‐
tory. The difficult part, therefore, is the social part of creating a community of
consumers and contributors around your software project. You should refer back to
Chapter 2 to refresh your memory on how to run a good project.

Creating a Project Repository
Most of my public GitHub projects are very tiny—slide decks for various conference
presentations and the like. I do not expect to have regular contributors, although I
happily accept contributions if people are interested in submitting a new fix. If you
are working on a software package, chances are better that others will be interested in
contributing to your project. If you are creating a library or software package that you
think will be of interest to a larger group, you should not set it up under your per‐
sonal account, but instead use an organization. By not using your personal account, it
will allow other developers to feel a greater sense of ownership over the project, and
be more committed to contributing to it.

To create a new project, complete the following steps:

1. From the top menu, click the + symbol.
2. Click on New repository. You will be redirected to the new project form.

234 | Chapter 10: Open Source Projects on GitHub

3. Beneath the label Owner, click your account and change it to your organization.
4. Enter a repository name. Generally this is the same name as the organization for

single repository projects.
5. Enter a terse description for your project.
6. Click Create repository.

Your new repository has been created and you are now ready to begin using it as if it
were one of your personal GitHub repositories.

If the project already exists under your personal account, you can reassign it using
the following steps:

1. Navigate to the project page under your personal account.
2. Locate and click the link labeled Settings.
3. Locate and click the button labeled Transfer. A modal window will appear.
4. Enter the name of the repository; and the organization, or account name, for the

new owner.
5. Click I understand, transfer this repo.

Your project will be reassigned to the new account holder.

Based on your rules of governance, you will now need to decide if you are going to
submit yourself to pull requests, or if you will continue to submit your work directly
to the project. Both have advantages, but they also follow different leadership models
(it is faster to commit directly; but more equal for all contributors if you also submit
pull requests, which undergo a review).

Granting Co-Maintainership
To share the burden of maintenance, you can grant write access for the repository to
others. This is a big responsibility. You should decide ahead of time how you will deal
with the thorny issues, such as disagreement on the direction the code should take;
and other types of bad behavior, such as being rude to other contributors. Assuming
you have worked through all of those difficult decisions, you can add contributors to
your project as follows:

1. Navigate to the project page.
2. From the utility links in the top right of the page, click the + and then choose

New collaborator (Figure 10-22).
3. You will be prompted to add your password. Do this and then click Continue.

Running Your Own Project | 235

4. Enter the GitHub username of the person you would like to assign co-
maintainership to (Figure 10-23).

Figure 10-22. Navigating to the Collaborators page for your project

Figure 10-23. Adding a collaborator to your project

The person you’ve designated as being a co-maintainer will now have all the same
authoring powers as yourself. You may wish to put together a maintenance cheat
sheet to ensure you make decisions consistently for all community members.

To remove a collaborator, follow the instructions as outlined previously. Next to the
collaborator’s name, click the symbol x (Figure 10-24). The collaborator will no
longer have commit access to the repository.

Reviewing and Accepting Pull Requests
Congratulations! You’ve received your first pull request to a project. GitHub provides
you with an easy-to-use interface to review incoming pull requests. From here you

236 | Chapter 10: Open Source Projects on GitHub

can add comments to the request, reject the pull request outright, or accept the pull
request.

Figure 10-24. Remove contributors from your project

GitHub will notify you if accepting the pull request will result in a merge conflict, and
in this case will disable the button to accept the incoming request.

Test It Out by Submitting Yourself a Pull Request

You can also test this out by making a fork of your own work and
then submitting yourself pull requests.

Pull Requests with Merge Conflicts
If the pull request cannot be accepted without a merge conflict, you will be unable to
accept the pull request through the Web interface. Instead, you will need to download
the branch, resolve the conflict locally, and then push the new branch to the project
repository.

The first step is to check out the branch where you want to receive the incoming pull
request. For example, you may want to land this into the main branch for your
project:

$ git checkout master

Currently your branch doesn’t know anything about the contributor’s repository. You
will need to add it as a remote repository before you can download the proposed
changes. Instead of using a generic nickname as we have in the past (e.g., origin or
upstream), be optimistic and use the contributor’s GitHub username. This will ensure
you are ready to accept more changes from them in the future.

In the following example, replace <username> and <repository-name> with the
appropriate values for the incoming pull request branch:

$ git remote add username git://github.com/<username>/<repository_name>

Running Your Own Project | 237

With the remote repository added, you must now download the contributor’s work:

$ git fetch username

The branch will now be downloaded and available for local review. You should use
the guidelines from Chapter 7 on how to conduct a peer review. You may need to
provide feedback to the reviewer and request he or she submit a new pull request if
the code isn’t quite right. Refer back to your governance model to see if it’s appropri‐
ate for you to make the updates yourself, or if you are required to reopen the issue for
further development. A good rule of thumb is this: if the contributors will learn
something by doing the work, give them the opportunity to learn. If it’s a silly mistake
(a typo, or a coding standard violation), it might make more sense to make the
change yourself (still crediting the original author) instead of rejecting a pull request
for a trivial fix. Where possible, reduce round-trips the code needs to make, and be
respectful of the intentions of the contributor.

When you are satisfied with the proposed change, you can merge it into the main
branch for your project:

$ git merge --no-ff username/branch_name

If, however, you would like to make a few cleanup changes for minor whitespace
issues, or to fix a typo, you can optionally add the parameter --no-commit. Using this
option may not be appropriate for your project if you’ve decided every change must
go through the pull request process:

$ git merge --no-ff --no-commit username/branch_name

Regardless of which method you choose, once the branch is merged, you may push
the updated master branch up to the server:

$ git push origin master

The change will now appear in the main repository for the project.

If you find you are working with pull requests a lot for your project, and frequently
have to deal with merge conflicts, you may find Hub useful. It is a command-line
wrapper that allows you to perform more tasks from the comfort of the command
line instead of having to switch between GitHub’s web interface, and Git.

Summary
Throughout this chapter, you learned how to use GitHub as a team of one, as a con‐
sumer of other projects, as a contributor to projects, and finally, as a project lead:

• As the owner of the repository, you can choose to contribute directly to it.

238 | Chapter 10: Open Source Projects on GitHub

https://hub.github.com/

• As the leader of a project, you can choose to commit directly to the project, or
pass your own contributions through a personal repository to maintain the illu‐
sion of fairness.

• Issues to your project can be used to track new features, or bugs. Issues are con‐
versations and may result in a pull request being initiated.

• A pull request is a request to merge a branch from either an outside repository or
the nonmain branch. It can be completed by anyone with write access to the
repository.

• If a pull request will not result in a merge conflict, it can be completed through
the web-based user interface; otherwise, you will need to download the relevant
branch, merge the request locally, and push the resulting change back to the
main project repository.

Although this chapter focused on public repositories, you can also apply the techni‐
ques you learned in this chapter to private repositories.

For even more information on using GitHub, you may enjoy the title Introducing Git‐
Hub by Peter Bell and Brent Beer (O’Reilly).

Summary | 239

http://bit.ly/intro-github
http://bit.ly/intro-github

CHAPTER 11

Private Team Work on Bitbucket

Bitbucket is a popular code hosting system by the same folks who built JIRA. With
approximately three million users, it may have a smaller user base than GitHub, but
for small teams it has two very big advantages: free private repositories and per-
branch access control. In addition to these features, I generally find Bitbucket’s inter‐
face intuitive, and its documentation comprehensive. This commitment to usability
will go a long way to keep internal teams running smoothly.

By the end of this chapter, you will be able to complete the following on Bitbucket:

• Get set up as a solo developer
• Share your repository with other developers
• Limit access control per-branch for a given project

This chapter is not meant to be a comprehensive guide to Bitbucket. Rather, it is an
up and running overview of several important features that you may want to use with
your team.

Those who learn best by following along with video tutorials will benefit from Col‐
laborating with Git (O’Reilly), the companion video series for this book.

Project Governance for Nonpublic Projects
The default options for Bitbucket repositories have interesting implications when
compared to GitHub’s. Depending on your point of view, you may think of them as
“discreet” or “antisocial.” By default, Bitbucket assumes the repository you are about
to create is a private repository, and that forks of the repository should also be pri‐
vate. This is the opposite to what GitHub chooses (public repository, and public
forks). Where GitHub coined the term “social coding,” Bitbucket takes a very differ‐

241

http://bit.ly/collaborating-with-git
http://bit.ly/collaborating-with-git

ent approach, but it’s not just the opposite of social. That is to say, it does not mean
that Bitbucket is anti-social. Instead, it is chooses discretion by default.

While private and public projects may have similarities in the commands you use to
move code from one place to another, they often have a very different political feeling
to them when everyone who is involved on the project is there by invitation. Open
source projects tend to follow whole-repository access controls. A very small number
of maintainers may update any part of the code. The conventions of how code is
accepted into the project will vary, of course, but generally there is a submission
made, some kind of review period, and then the code is adopted into the main reposi‐
tory for the project. Private projects, on the other hand, tend to have very specific
governance requirements. Sometimes these requirements are outlined by a regulatory
body, such as Payment Card Industry (PCI) compliance for those handling financial
transactions, or regulations for those building biomedical devices. In some cases,
these regulations have strict requirements around auditing and accepting contribu‐
tions into a code base.

Currently, Bitbucket offers much finer-grained access control than GitHub. On Bit‐
bucket, you are able to prevent individuals, or groups of individuals, from pushing to
specific branches and whole repositories. If you are accustomed to per-branch access
in Subversion, your team will find this feature quite useful. Some of these features are
also available in GitLab, which is covered in Chapter 12.

Getting Started
In this section, you will learn how to create an account on Bitbucket and your own,
private repository. All developers on your team should be able to complete the steps
included in this section before they begin collaborating on projects with you.

Creating an Account
The signup process for Bitbucket is straightforward:

1. Navigate to https://bitbucket.org.
2. Locate and click the button labeled Get started (Figure 11-1). (There may be

more than one. Either is fine.)

242 | Chapter 11: Private Team Work on Bitbucket

https://bitbucket.org

Figure 11-1. From the home page, locate and click one of the Get started buttons

You will be presented with the option to create a new account, or to sign up with your
Google account:

1. Enter your first name and last name. These two fields are optional.
2. Enter your preferred username. Bitbucket will let you know if the name has

already been selected.
3. Enter a secure password.
4. Enter a valid email address.
5. Select a plan. By default the free personal account plan is selected, which is

appropriate for solo developers and very small teams.
6. Enable the checkbox confirming you are not a robot. You may also be presented

with a CAPTCHA challenge if Bitbucket isn’t convinced you’re human.
7. Enable the checkbox for the privacy policy and customer agreement. Obviously,

you should also click the links and read the agreements you’re signing.
8. When you have completed all of the fields, click Sign up to proceed

(Figure 11-2).
9. You will be sent an email asking you to confirm your email address. Click the

button Confirm this email address.

Getting Started | 243

Figure 11-2. Complete each of the fields in the registration form and click Sign up

Your account is now set up and ready to use; however, to save some time later on, you
should also add your SSH keys so that you can work with private repositories without
having to re-authenticate yourself each time:

Complete the following steps to add your SSH key to your account:

1. Using the instructions in Appendix D, locate and copy your SSH public key.
2. Navigate to the dashboard for your Bitbucket account.
3. In the top-right corner of the Bitbucket website, locate and click the user icon.
4. From the drop-down list, click Manage account.
5. From the sidebar navigation, locate and click SSH keys.
6. Click on Add key. A modal window will appear.
7. Into the form field, Key, paste your public SSH key.
8. Click Add key.

244 | Chapter 11: Private Team Work on Bitbucket

https://bitbucket.org/

Your SSH keys have been added to your Bitbucket account.

Creating a Private Project from the Welcome Screen
Immediately after creating your account, Bitbucket will redirect you to a welcome
screen (Figure 11-3). This screen is always available at https://bitbucket.org/welcome.

Figure 11-3. After completing the registration form, you will be redirected to a Get
started welcome screen

Create a new repository by completing the following steps:

1. Click on the bucket icon with the dashed outline which is labeled Empty.
2. Enter a name for this repository. For example, johannes.
3. Leave the checkbox This is a private repository selected.
4. Click Create. Your new repository has been created.

Getting Started | 245

https://bitbucket.org/welcome

5. Click Done. You will be redirected to the repository setup configuration screen.

Once you have completed these steps, proceed to Configuring Your New Repository.

Creating a Private Project from the Dashboard
When you log into your Bitbucket account, you will be redirected to a dashboard
summarizing your projects (Figure 11-4). From this dashboard you can get an over‐
view of what is happening in each of your projects, and create a new repository.

Figure 11-4. The dashboard also gives a clear indication of how to create a new reposi‐
tory

If you are starting from the dashboard (this is also the home page when you are
authenticated), create a new repository by completing the following instructions:

1. Locate and click the link to Create a repository. You will be redirected to the form
shown in Figure 11-5.

2. Enter a name for this repository. For example, junio.
3. Optionally, enter a description for the repository.
4. Leave the default settings in place for the following:

• Access level (checkbox should be enabled for this is a private repository)
• Forking (drop-down menu should be set to Allow only private forks)

246 | Chapter 11: Private Team Work on Bitbucket

• Repository type (radio button should be set to Git)

5. Optionally turn on Issue tracking, or Wiki pages. For personal projects I rarely
turn these on because I’m typically just using Bitbucket as a remote backup for
my code, and not as a project management tool.

6. Finally, locate and click Create repository.

Figure 11-5. The form to create a new repository also has some configuration options for
sharing

Your new repository has been created, and you have been redirected to the repository
setup configuration screen. Proceed to Configuring Your New Repository.

Configuring Your New Repository
You will be redirected to a setup page (Figure 11-6).

Getting Started | 247

Figure 11-6. Setup instructions are available for GUI, and command-line (new projects,
or existing projects).

Assuming you have been following along in this book, you likely already have a local
repository, or you know how to create one! I find the final set of instructions
(Figure 11-7) most useful when setting up new repositories on Bitbucket.

To connect your local repository to the new repository on Bitbucket, complete the
following steps:

1. Locate and click on the link I have an existing project. A set of additional instruc‐
tions will appear on-screen

2. At the command line, navigate to a local Git repository. It’s okay if it is already
connected to a different hosting system, you are allowed to have multiple con‐
nections to remote repositories.

3. Copy and paste the commands beginning with git from the instructions
(Example 11-1).

Example 11-1. Sample instructions from Bitbucket to add newly created repository as a
remote to a local repository

If the repository is already connected to a remote, you may need to substitute origin
for bitbucket.

248 | Chapter 11: Private Team Work on Bitbucket

git remote add origin https://gitforteams@bitbucket.org/gitforteams/junio.git
git push -u origin --all # pushes up the repo and its refs for the first time
git push -u origin --tags # pushes up any tags

Use Your Instructions, Not Mine

Do not simply copy the instructions in the preceding snippet.
Instead, copy the instructions provided by Bitbucket on the sum‐
mary page for the repository you just created.

Figure 11-7. Setup instructions to connect existing projects to Bitbucket.

You are now set up to work as a solo developer with a private repository. You can
push your code changes to Bitbucket as frequently as you like. And, because it’s a pri‐
vate repository, you never have to worry about corrupting public history! If you do
rebase a branch and Bitbucket stamps its feet and refuses to accept the new version of
the branch, add the parameter --force to the command you were attempting:

$ git push --force

Working with a team? A more polite version is as follows:

$ git push --force-with-lease

We will be exploring the web interface in subsequent sections. In the meantime, you
may find some value in looking at the options that are available to you. If you have
already been working within GitHub or GitLab from the previous sections in the
book, I think you will find a lot of the options are quite familiar.

Exploring Your Project
Once your repository has been pushed to Bitbucket, the project page will update itself
from a set of instructions to a project browser.

If your repository has a file named README, this file will be displayed on the project
home page. Figure 11-8 shows my project home page for the Git for Teams website.

Getting Started | 249

http://gitforteams.com

Figure 11-8. The project home page displays a summary of the status of your site, as well
as the contents of the file README

The following summaries are available from the project home page:

• Last updated date
• Language, if one is set
• Access level (will be set to Admin if the repository is yours)
• Branches (click on the number above Branch for a list of all branches)
• Tags (click on the number above Tags for a list of all tags)
• Forks (click on the number above Fork for a list of all public forks)
• Watchers (click on the number above Watcher for a summary of accounts who

are following this repository)
• Recent activity (visible in the right sidebar; includes recent commits, and merged

branches)

The left sidebar has the following icons (from top to bottom):

• Link to the project home page
• Quick actions (includes clone, create branch, create pull request)

250 | Chapter 11: Private Team Work on Bitbucket

• Overview (appears to be the same content as the project home page)
• Source (a list of all files in the repository)
• Commits (the logged history for this repository)
• Branches (only available if you have pushed more than one branch to the project)
• Pull requests (irrelevant for personal projects)
• Downloads (provides a list of zipped packages of the current branch; you may

also add untracked binaries for your project here)
• Settings (includes access details, repository name, integrations)

At the bottom of the screen there is also the option to expand the icons to display a
text label for each of the icons. Once you’ve expanded the sidebar, you can collapse it
again by clicking the double arrows (Figure 11-9).

Editing Files in Your Repository
Bitbucket allows you to edit text-only files from within its web-based text editor:

1. Click on the sidebar link Source.
2. Navigate to the page you want to edit.
3. Locate and click the button Edit. A text editor will appear (Figure 11-10, or

Figure 11-11 for the project README file).
4. Across the bottom of the editor, confirm the Syntax mode, Indent mode, and

Number of spaces (not available for all file types) are correctly set.
5. Edit the file to make the necessary changes.
6. Locate and click the button View diff.
7. Confirm the changes made are complete, correct, and do not introduce unwan‐

ted spaces.
8. Locate and click the button Commit. A modal window will appear

(Figure 11-12).
9. Enter a commit message. You will need to add your own formatting. The first line

should be a terse description not longer than 80 characters. Subsequent lines
should provide more detail.

10. Locate and click the button Commit.

Your changes have been saved to the repository on Bitbucket.

Getting Started | 251

Figure 11-9. Project sidebar expanded

252 | Chapter 11: Private Team Work on Bitbucket

Figure 11-10. In-repository text editor

Figure 11-11. Project home page editor

Getting Started | 253

Figure 11-12. Add a message that describes the changes you have made to the project
home page

With your changes saved to Bitbucket, your local repository will now be out of date.
You will need to update your local repository. Because the respository is entirely your
own, it is appropriate to pull the changes into your local copy without review
(Example 11-2). Assuming you have followed the instructions outlined in this sec‐
tion, the work has been completed in the main branch for the project, which is most
likely to be master.

Example 11-2. Pull changes made in Bitbucket into your local repository

$ git checkout master
$ git pull --rebase

The changes should apply cleanly. If, however, you end up with a conflict, refer back
to Chapter 6.

Your local repository is now up to date.

Project Setup
You’ve been reading this book for a while. Maybe you even started at the beginning.
So, you know I like to write about Git. I also know that a lot of people find documen‐
tation tedious to write, and a complete pain to maintain, so I know that when I say
this next part, your inner Clay Davis is going to pipe up and say, “well
sheeeeeeeeeeeeit.” Ready for it? I think process documentation is one of the most
important things a team can do to ensure happy, healthy relationships. Now you go
ahead and give me your best Clay Davis and then we’ll move on.

Documenting your process:

• Makes it easier for people to participate in your team.

254 | Chapter 11: Private Team Work on Bitbucket

• Sets the expectations for how the work should get done.
• Serves as a starting point for conversations about why certain methodologies and

commands are preferred.

Good documentation puts up guard rails on the bowling alley that is your project. It
makes it virtually impossible for developers to throw a gutter ball, and it makes it
more likely they’ll succeed in knocking down all the pins when it’s their turn. While
the most experienced people on your team might have the loudest opinions about
how something should be done, they may not write the best instructions. Pair the
team’s lead with a new developer and have them co-create the documentation. Then,
make sure the entire team can consistently follow the documentation without outside
support.

Getting people into consistent habits will make it easier during high-pressure times to
ensure no steps are missed. This documentation may also extend beyond the com‐
mands a developer needs to run to clone a repository and submit a pull request. Once
you see how valuable documentation can be for the mundane tasks, you may even
start to look at other processes that could use some proactive documentation (inci‐
dent response plan, anyone?).

In addition to the amazing commit messages you’re already in the habit of writing,
Bitbucket offers two tools that will help you to document your work: wiki pages and
issues. In the remainder of this section, you will learn how to enable each of these
tools.

Project Documentation in Wiki Pages
To begin collaborating with others, it can be as simple as granting repository access to
another Bitbucket account. Hold up, though! Before you go jumping into a new rela‐
tionship with a new developer, you should invest some time into stating how you
would like to work. These steps should be documented, and they should be steps you
yourself are willing to use. Fortunately, wiki pages on Bitbucket are much easier to
edit than stone tablets, so you should consider your documentation to be a starting
point, not the final word.

To enable wiki pages for your project:

1. Locate and click the settings cog for your project.
2. Locate and click the link Wiki settings.
3. Change the settings from No wiki to Private wiki (Figure 11-13).
4. Locate and click Save.

Wiki pages are now enabled for your project. A new icon will appear in the sidebar
(Figure 11-14).

Project Setup | 255

http://bit.ly/drupalizeme-irp
http://bit.ly/drupalizeme-irp

In Bitbucket, wiki pages are also repositories which you can download and edit
locally. Documentation is included on the welcome page for your wiki (Figure 11-15).
At the top of each wiki page is a breadcrumb trail. By clicking on the name of the
project, you will be redirected to a list of all wiki pages for this project.

The editor for the wiki pages is a typical toolbar for Markdown files (Figure 11-16).

Figure 11-13. Enable a private wiki for your project

At a minimum, you should document the following for your project:

• Branch conventions
• Step-by-step instructions for submitting new work to the project
• Step-by-step instructions for peer reviews
• Deployment instructions, including who to email, and copy/paste email tem‐

plates

256 | Chapter 11: Private Team Work on Bitbucket

Figure 11-14. The Wiki icon appears in the project sidebar

Figure 11-15. The default page provided for a Bitbucket wiki

Whenever you think there is a possibility for people to have different opinions, or
where there’s a possibility a person could forget a step, you should have documenta‐
tion. It doesn’t need to be long, but it does need to be correct. Check it regularly if
your team likes process hacking. It’s possible the team has found an even more effi‐
cient way to do something that is not recorded in the documentation.

Project Setup | 257

Figure 11-16. The Markdown editor for wiki pages

Tracking Your Changes with Issues
Issue tracking is another form of documentation. Although issues are much more
ephemeral than wiki pages, capturing the information in a ticket provides the direct
link from the business value, or rationale for building a feature, to the development
tasks that are happening in code.

To enable the issue tracker, complete the following steps:

1. Navigate to your project repository.
2. Locate and click on the Settings icon.
3. Locate and click on the link Issue tracker settings.
4. Change the form option from No issue tracker to Private issue tracker.
5. Optionally, enter a new issue message.
6. Locate and click the button Save.

As you can see in Figure 11-17, I have added a default message for all new issues in
the field New issue message.

The message reminds people to follow the Agile convention of Card, Conversation,
Confirmation. This text will appear above the new issue form. Your team may have a

258 | Chapter 11: Private Team Work on Bitbucket

different format they prefer to follow. Another format I’ve worked with and quite
liked uses the headings: QA Test; Rationale; Details.

Figure 11-17. Enabling the issue tracker, and adding a default message for new issues

Creating Great Issues

Make sure the card clearly defines who benefits and how from this
feature being built — in other words: what is the business value?
This will allow people who are working on the task to ask questions
with the stakeholder about the implementation detail. Understand‐
ing the context of how this issue fits into the larger project will
ensure the right scaffolding gets built and that the entire project
isn’t held together with duct tape.
Not all issues begin as new features. Occasionally bugs will sneak
into your software. Excellent bug reports include: the steps to
repeat the problem; the desired outcome; the actual outcome of the
steps, including a screen shot, or movie of the result.
More information on creating great issues is available from Creat‐
ing Tickets and Reporting Issues.

Issue tracking will now be enabled for your project (Figure 11-18).

To create a new issue, complete the following steps:

Project Setup | 259

http://gitforteams.com/resources/great-issues.html
http://gitforteams.com/resources/great-issues.html

1. In the project sidebar, locate and click the icon Issues.
2. If this is your first time accessing the issue tracker, you will be directed to a wel‐

come screen. Click Create your first issue to continue. If it is not your first time,
you will be redirected to the summary page for all issues. From this screen, locate
and click the button Create Issue. You will be redirected to an issue creation
form.

3. On the new issue creation form (Figure 11-19), add a title and a description
for your issue. The default values for Assignee, Kind, and Priority may be appro‐
priate.

4. When you have described your new issue as best as possible, click the button
Create issue.

Figure 11-18. The Issues icon now appears in the project sidebar

Your issue has been created (Figure 11-20), and is available from the Issues icon in
the sidebar of the project. You are now ready for someone to begin work on this issue.
First, though, you will need to grant access to the project so that you don’t need to
complete every ticket yourself.

260 | Chapter 11: Private Team Work on Bitbucket

Figure 11-19. New issue creation form

Figure 11-20. Issue summary page

Project Setup | 261

Access Control
Although I don’t have statistics to say this is the most popular way to use Bitbucket,
the most common way I’ve seen teams use Bitbucket is to keep the defaults: a private
repository with private forks allowed. The workflow I have most commonly seen for
small teams then has developers creating their own forks, and submitting their pull
requests from their personal version of the repository (Figure 11-21). Teams of only
one or two people, however, will generally omit the step of creating individual reposi‐
tories for each person on the team and, instead, essentially collaborate directly into
the main repository (Figure 11-22).

Figure 11-21. Multiperson teams often use an intermediate repository within Bitbucket

Having a separate repository for each developer does not prohibit people from con‐
tributing to the main project repository. If you are conducting peer reviews, this is, in
fact, exactly what you will want: every developer is able to commit to the main project
repository, but the convention will dictate they do not commit their own work
without a review first. If, however, you are working with a quality assurance team,
you may want to restrict write-access to the main project repository to only the QA

262 | Chapter 11: Private Team Work on Bitbucket

team. In this case, each developer will need to create a fork of the project to be able to
submit their work.

Figure 11-22. Teams of one or two often work directly in a shared repository

Shared Access
If you are working with a team of very trusted developers, you may choose to have
them all commit into the same repository, and maintain a convention of which
branches should be used for what purpose.

To grant a developer access to your repository, complete the following steps:

1. Navigate to Settings → Access management.
2. In the field labeled Users add the Bitbucket username or email address for the

developer you want to add.
3. Change the access level from read to write.
4. Click Add.

Access Control | 263

Repeat these steps for each developer you would like to share this repository with.
Developers will be able to do everything except administer the project. You’ve got
your documentation in place, right? Because the only things holding this project
together right now are the social conventions you’ve documented and have agreed to
follow rigorously yourself.

Per-Developer Forks
As your team grows, you may want to prevent some parts of the team from having
direct write access to the repository. Perhaps you would prefer if only the QA team
were allowed to write to the main repository. In this case, developers will need to cre‐
ate a fork of the project first, and submit their work through a pull request.

Complete the following steps to create a fork of the project:

1. Locate and click the Actions icon in the project sidebar. These are the three dots
directly below the logo.

2. Click on the link labeled Fork.
3. You will be redirected to a repository creation screen that very closely matches

the one you saw when you were first creating your own Bitbucket repository. On
this form it is acceptable to leave all of the defaults in place.

4. Optionally disable the Wiki and Issues options. You should use the main project
repository to track this information.

5. To complete the process, click Fork repository.

You are now ready to create a local clone and begin your work:

1. Click the Actions icon in the project sidebar.
2. Select Clone. A modal window will appear.
3. From the pop-up window, select and copy the command line instructions.
4. At the command-line, navigate to the directory where you would like to place

your copy of the cloned repository.
5. Paste the command provided by Bitbucket. The repository will begin download‐

ing.

Once the repository has downloaded, you are ready to create a new branch and begin
working on your ticket.

Limiting Access with Protected Branches
If you have worked with Subversion, you may have been quite surprised when you
came to Git and found virtually no access controls. Instead of building in this func‐

264 | Chapter 11: Private Team Work on Bitbucket

tionality, Git has built in the ability for you to build your own access controls through
hooks. These hooks allow you to script a response before or after a commit takes
place, or before or after a push to a remote repository takes place. If you are hosting
your own Git repository, you might think to take advantage of these hooks, but if you
have become accustomed to using code hosting systems, you may not have known
about this functionality. (And even if you did, it’s not necessarily something that you
would have thought to script if you were just learning the basics of Git.)

Fortunately, Bitbucket has done the work for you. Through the web interface, you are
able to grant write access per-person or per-team. In Chapters 2 and 3, you worked
through your governance strategy with your team, and perhaps also your branching
strategy. I won’t cover that again here. You should go back and review those chapters
if you aren’t sure how you might want to take advantage of these access control
options.

Previously you learned how to grant access to an entire repository. In this section,
you will learn how to refine this access per-branch. Before proceeding with this sec‐
tion, ensure you’ve given repository access to the developers you want to work with.

To limit branch access, complete the following steps:

1. Navigate to Settings → Branch management.
2. In the first field under the heading limit pushes to specific users and groups,

enter the name of the branch you want to limit control to; in the second field,
enter the name of the person who should be allowed to update files in this
branch.

3. Click the button Add.

The ability to push code to this branch has now been limited from all people except
the person listed. Figure 11-23 shows that once you have added a person, you are wel‐
come to add more.

Figure 11-23. Prevent others from pushing code to a branch

From the same configuration screen, Bitbucket also gives you the option to prevent
the deletion of any branch, or prevent history rewrites on any branch. Although these
two options are of less interest to you now that your team knows how to safely work

Access Control | 265

with Git, you might need them “for a friend.” (It’s okay, I understand. And so does
Atlassian, which is why it built you these two nifty features.)

Once implemented, an error will be returned if someone tries to perform a restricted
action. Example 11-3 shows an example of what happens when I tried to delete a pro‐
tected branch named master.

Example 11-3. Error when deleting a locked branch

$ git push bitbucket master --delete
remote: permission denied to delete branch master
To git@bitbucket.org:emmajane/gitforteams.git
 ! [remote rejected] locked (pre-receive hook declined)
error: failed to push some refs to 'git@bitbucket.org:emmajane/gitforteams.git'

If you do decide to implement access controls, make sure you clearly communicate
these restrictions to your team. This will help to avoid absolute frustration by devel‐
opers who cannot figure out why they can’t push their code to the project repository.
You don’t need to provide lengthy tomes no one will read, but you do need to give
people the rationale for why decisions were made, and any gotchas that make your
system a unique and special snowflake to work with.

More information about Branch management is available from Bitbucket. You may
also be interested to read Atlassian’s overview of working with Git’s hooks.

Pull Requests
For your developers to add their work back into the project, they need to have access.
If this access is not available (either through a social convention of completing a peer
review, or through an enforced access control), the developers will need to create a
pull request to have their work considered for inclusion in the main project.

The official documentation from Atlassian on working with Bitbucket is exceptional.
Work with pull requests covers a few extra features, and will be up to date if the
instructions I’ve covered in this section ever go stale.

Submitting a Pull Request
After completing your issue-specific work in your ticket branch, and pushing your
code to the server, you are ready to issue a pull request to have your work incorpora‐
ted into the main project repository. The interface options will vary slightly depend‐
ing on which access control method you’ve chosen. The basic process, however, is as
follows:

1. Locate and click the sidebar icon Pull requests.

266 | Chapter 11: Private Team Work on Bitbucket

https://www.atlassian.com
http://bit.ly/bitbucket-branch-mgmt
http://bit.ly/gits-hooks/
http://bit.ly/bitbucket-pull-requests

2. Locate and click the link Create pull request. A new form will appear for your
request (Figure 11-24).

3. Your current repository will be located on the left. From this option, select the
branch that has the change you would like to have incorporated into the main
project.

4. The destination branch is located on the right. If your repository is a fork, you
will be able to choose the destination repository as well as the destination branch.

5. Add a title, and description for your pull request. Ideally, your description should
reference the issue you are aiming to close.

6. If you would like someone specific to review your work, you can enter his or her
name into the pull request.

7. You can optionally have Bitbucket do a little maintenance for you and delete the
ticket branch after the pull request has been accepted and the ticket is closed.

8. Finally, when the form is complete, click the button Create pull request.

Figure 11-24. The pull request creation form

As a developer, you must now wait for your work to be reviewed and accepted into
the project, or kicked back with requested updates.

Pull Requests | 267

Accepting a Pull Request
Once a pull request has been submitted, it’s up to a reviewer to decide if the proposed
changes are worthy of inclusion in the main branch. Chapter 8 covered the review
process in detail. The pull request summary page allows reviewers to comment on the
work that is being proposed. The conversation may result in the pull request being
updated, or it may confirm the work is complete, correct, and ready to be incorpora‐
ted into the project.

Assuming there are no conflicts, you will be able to accept a pull request by clicking
the button Merge from the request itself.

If, however, there are going to be merge conflicts, the process is a bit more compli‐
cated. Often the best person to resolve a conflict is the developer of the new code that
is being added. Typically what happens is that the code has become stale while wait‐
ing for its review. Have the developer update her ticket branch so that it includes the
latest changes from its parent (or source) branch:

$ git pull --rebase=preserve

If the person who submitted the pull request is not available to resolve the merge
conflicts, you may need to complete this step yourself. Fortunately, Bitbucket gives
you some copy-paste commands for downloading the ticket branch and resolving the
conflict.

Extending Bitbucket with Atlassian Connect
In addition to all of the functions Bitbucket offers out of the box, there is also Atlas‐
sian Connect, an API for add-ons that includes a marketplace of free and paid add-
ons.

To find relevant add-ons for your project, complete the following steps:

1. Navigate to your account management page by clicking your user icon in the top-
right corner of the page, then selecting Manage account.

2. From the left sidebar of your account, locate and click Find new add-ons. A list
of all add-ons will appear in the main content area (Figure 11-25).

You can filter this list further by category. For example: Code analytics, Code quality,
Collaboration, Deployment. This is a new service, so by the time you are reading this
book, there will be a lot more add-ons to explore. A few to investigate include:

bitHound
Rates your Javascript projects based on code quality, maintainability, and stabil‐
ity. Paid service for closed source projects; free for open source projects.

268 | Chapter 11: Private Team Work on Bitbucket

https://www.bithound.io/

Aerobatic Hosting
Allows you to deploy static websites, much like GitHub Pages, except from a pri‐
vate Bitbucket repositories.

Pull Request Auto Reviewers
Allows you to automatically assign reviewers to specific types of pull requests.

Figure 11-25. A list of available add-ons available through Atlassian Connect

In addition to the Connect add-ons, you can also install add-ons you’ve created from
a custom URL. You can learn more about developing for Connect on the Atlassian
Developers’ portal. Chances are good that if your extension is useful to your team, it
will be useful to other teams as well. As you are building it, consider making it
abstract so that it can be shared with (or sold to) others in the marketplace.

Summary
Throughout this chapter, you learned how to use Atlassian’s popular code hosting sys‐
tem, Bitbucket. You learned how to set up a personal repository, and share your repo‐
sitories with others. To work successfully with a team on a private project, there are
several points you learned about in this chapter, and which you should keep in mind:

• Get to know your tools by creating a personal, private repository first.

Summary | 269

http://bit.ly/aerobatic
http://bit.ly/atlassian-bb-add-on
http://bit.ly/atlassian-bb

• Prepare for new people to be added to your team by creating excellent onboard‐
ing documentation that is easily accessible from the project repository.

• Use issue-based updates to your repository, describing all proposed changes in
issues before creating new branches in the repository.

• Make decisions around access control clear and transparent. If you are limiting
access, document the rationale for the decisions you’ve made.

Over the years I have been been repeatedly impressed by Atlassian as a company. It
consistently provides a positive experience with easy-to-understand, organized docu‐
mentation, and helpful staff. On the rare occassion when it has slipped up, it has
taken ownership of the problem in a mature and respectful way. A++, Atlassian!

270 | Chapter 11: Private Team Work on Bitbucket

CHAPTER 12

Self-Hosted Collaboration with GitLab

GitLab is an open source code hosting system for repository management. It allows
you to track issues for your Git repository, conduct code reviews, and create supple‐
mentary project documentation on wiki pages—in other words, it’s much the same as
GitHub and Bitbucket. GitLab’s unique advantage is that as an open source product,
you are able to install the software wherever you’d like, without paying licensing fees;
and you are welcome to extend the software directly, instead of being restricted to
creating add-ons via APIs, and other hooks.

By the end of this chapter, you will be able to:

• Locate relevant install instructions for your setup
• Create new projects, users, and groups
• Configure access control for projects
• Establish cross-project milestones

This chapter focuses on some of the unique tasks you can perform as an administra‐
tor of a GitLab instance, as opposed to just using the software as a mere project lead.

Getting Started
If you have followed the activities in this book from the beginning, you will have
already created an account, and played around with a GitLab repository on the pub‐
licly available instance of GitLab at GitLab.com. (If you need a refresher, the instruc‐
tions on using GitLab as a team of one are covered in Chapter 5.)

271

Installing GitLab
To take advantage of the administrative functions covered in the remainder of this
chapter, you should create a local instance of GitLab so that you can log in as the
Administrative account holder. This chapter covers the Community Edition, not the
Enterprise Edition of GitLab. The Enterprise Edition is available for a fee and
includes additional functionality, such as JIRA integration. You can read about the
differences at the feature comparison list.

The recommended way to install GitLab is through one of its Omnibus installer
packages. These packages can be downloaded directly and placed onto a Linux server,
or can be deployed via a one-click install on some provisioning services.

DigitalOcean offers a one-click install package for GitLab. This package uses the
Omnibus installer for GitLab, which means you will be able to upgrade GitLab easily
if there are new features or security releases. At the time this was written,
DigitalOcean was the only service offering a one-click installer for the Omnibus
package. Bitnami and the AWS marketplace only offered deployments from source
packages, which cannot be upgraded once deployed. Read the descriptions carefully
to ensure you are not getting trapped into installing only a specific version.

To avoid the hosting fees while evaluating GitLab, you can also install it locally using
the power of virtual machines. (It’s not as scary as it sounds.) Virtualbox and Vagrant
are the easiest way that I have found to set up a Linux server on my Windows and OS
X computers. The written documentation for Vagrant is phenomenal; however, if you
prefer hands-on videos, I did put together a video series for a slightly older version of
Vagrant. The basics haven’t changed.

Loosely, the steps are as follows:

1. Install Virtalbox.
2. Install Vagrant.

If you are on OS X, there is already a brew recipe for Virtualbox and Vagrant; it is
appropriate to use it.

With those two packages installed, you now have the capacity to have an Ubuntu
server running on your local machine. The virtual machine will not have GitLab
installed, though. At this point, you could install GitLab using the Omnibus package
referenced previously, but I found the following GitLab Installer really straightfor‐
ward to use.

At the command line, complete the following steps:

1. Clone the installer project from GitHub:

272 | Chapter 12: Self-Hosted Collaboration with GitLab

http://bit.ly/gitlab-compare
https://about.gitlab.com/downloads/
https://about.gitlab.com/downloads/
http://bit.ly/digitalocean-gitlab
https://drupalize.me/videos/why-vagrant
https://drupalize.me/videos/why-vagrant
https://www.virtualbox.org/wiki/Downloads
http://www.vagrantup.com/downloads
https://github.com/tuminoid/gitlab-installer

$ git clone https://github.com/tuminoid/gitlab-installer.git

2. Inside the project repository, change the name of the Ruby configuration file
from gitlab.rb.example to gitlab.rb.

3. Start the virtual machine:

$ vagrant up

The new virtual machine will be provisioned. The username and password will be
printed at the end of the startup message from Vagrant. If you can’t remember it, or
have closed the window, the information is also available at the end of the install
script.

Installing from Source

If you really prefer to install GitLab from source, there are instruc‐
tions on how to proceed in the installation guide. This is strongly
discouraged because GitLab releases a new version of its software
every month on the 22nd. Using packages will make it a lot easier
to keep your instance of GitLab up to date.

Regardless of the installation method you choose, you will need to be able to log in as
an administrator on your new GitLab instance to take advantage of the remainder of
this chapter. Once you have logged in, you should be redirected to the welcome
screen shown in Figure 12-1.

Figure 12-1. The welcome screen for GitLab

Getting Started | 273

http://bit.ly/gitlab-installer
http://bit.ly/gitlab-installer
https://about.gitlab.com/installation/

If you aren’t able to complete the installation, I encourage you to skim through the
rest of the chapter to see what would have been available to you so that you can verify
if it’s worth the effort to get it figured out.

Configuring the Administrative Account
You may choose to keep the admin account generic, or use it as your own account
when developing software with your team. Out of habit, I tend to create an account
with fewer privileges for daily use and maintain the root account for tasks such as
installing new add-ons, upgrading the software, and other administrative tasks.

To configure your account, complete the following steps:

1. From the top menu, locate and click the icon profile settings (head and shoulders
of a person).

2. From the left sidebar, review each of the profile settings pages:

Profile
Name, and public details about yourself, such as Skype or Twitter.

Account
Private token, Two Factor Authentication, Username, and the ability to
delete your account.

Applications
Manage applications that can use GitLab as an OAuth provider, and applica‐
tions that you’ve authorized to use your account.

Emails
Primary email (avatar, commit credits), notification email, public email (dis‐
played email). Any of these addresses can be used to connect a commit to
you.

Password
Reset your password.

Notifications
Your notification email as well as your notification level. By default, you will
only receive emails for related resources (your commits, your assets, etc).
You may also choose from Watch (all notifications for a given project); Men‐
tion (only when you are @referenced on an issue or comment); or Disabled
(never receive a notification).

274 | Chapter 12: Self-Hosted Collaboration with GitLab

SSH Keys
Note: you will not be able to work with repositories over SSH unless you are
logged in to an account with SSH keys. A reminder will appear until it is dis‐
missed, or your SSH keys are uploaded.

Design
Color settings for the sidebar, and code syntax highlighting.

History
All events created by this account. Includes actions you’ve taken such as
commits, creating new projects, etc.

Once you’ve configured the administrative account, you are ready to proceed. If you
decide to set up a secondary account immediately, jump ahead to “User Accounts” on
page 280.

Administrative Dashboard
When logged in as the administrative user, you will have access to some additional
screens, and functions that are not available to nonadministrators on the public
GitLab.com site. Most of these are available from the Admin area.

From the top menu, click the gear icon labeled Admin area. You will be redirected to
the page shown in Figure 12-2.

Figure 12-2. The administrative dashboard includes a summary of site details, and a sta‐
tus report showing which version of GitLab is installed

Getting Started | 275

This screen gives a summary of the components installed for this instance of GitLab,
including the software version you have installed for GitLab, GitLab shell, GitLab
API, Ruby, and Rails. There is also a list of all available features, with a status indica‐
tor showing which ones are enabled. In Figure 12-2, you can see that Sign up and
Gravatar are enabled; LDAP and OmniAuth are disabled. Gloriously, they do not rely
on color alone. The closed circle is green to indicate “on”; the “off ” symbol is the icon
for standby. Unfortunately these symbols are provided by CSS alone, and there does
not currently appear to be a text equivalent.

Each of the options down the left sidebar are fairly self-explanatory:

Overview
This is the screen you see in Figure 12-2. Provides a quick overview of stats for
the site, along with quick links to create new users, projects, and groups.

Projects
Search for projects within the site, including filters for per-user, in-active (no
activity in the last 6 months), and visibility level (private, internal, or public).

Users
Search for accounts within the site. Includes fitlers for administrators, blocked
accounts, and people without projects.

Groups
Search by name for groups or add a new group. There are no filters available for
this screen.

Deploy keys
A list of all keys that are being used for deployments; you can also add new ones
from this screen.

Logs
The last 2,000 lines for each of githost.log, application.log, production.log, and side‐
kiq.log.

Messages
The ability to add a timed broadcast message to all system accounts. Useful for
scheduled maintenance, recent upgrades, and more.

System hooks
A list of all existing system hooks. From the list of hooks, you can test a hook or
remove it. You can also add new hooks (URLs) at this screen.

Background jobs
A summary of background jobs running in sidekiq.

276 | Chapter 12: Self-Hosted Collaboration with GitLab

http://sidekiq.org/

System OAuth applications
A list of existing applications, and the ability to add new ones (fields for a title,
and redirect URIs).

Service templates
Service templates allow you to set default values for project services. Depending
on the service, different configuration options are available. For example, exter‐
nal services such as Asana and Buildkite have fields for API keys. Some services,
such as JIRA and Redmine also have configuration fields (Project URL, Issues
URL, New Issue URL). Some services, such as Emails on push, also have toggles
for the triggers (push events versus tag push events). This is a good screen to
skim through if you want to integrate with third-party services.

Application settings
Includes settings for default project settings and site-wide configuration options.

To lock down your instance of GitLab, you will need to use several of the options on
the Application settings screen. The settings on GitLab are fairly liberal. By default,
the application is open to new registrants, who are restricted to 10 repositories, but
the default setting for a new repository is private.

The Features section includes the following settings (all are enabled by default):

Signup
Allow people to create accounts.

Signin
Allow people to authenticate themselves. If you wanted a read-only public reposi‐
tory, it would be appropriate to use this option.

Gravatar
Integration for user profile pictures—needs a connection to the Internet.

Twitter
Show users a button to share their newly created public or internal projects on
Twitter.

Version check enabled
Checks to see if a newer version of GitLab is available.

Visibility and access control includes the following settings:

Default branch protection
Options are:

• Not protected (developers and “masters” can push commits; delete branches;
and force push new commits to a branch)

Getting Started | 277

• Partially protected (developers can only push new commits; masters can
make any changes)

• Fully protected (only “masters” can make changes to the repository).
By default, Fully Protected is selected.

Default project visibility
Options are:

• Private (project access must be granted explicitly for each user.)
• Internal (the project can be cloned by any logged-in user.)
• Public (the project can be cloned without any authentication).

Private is selected by default.

Default snippet visibility
Options are Private, Internal, or Public. Private is selected by default.

Restricted visibility levels
Selected levels cannot be used by nonadmin users for projects or snippets.

Restricted domains for sign-ups
Only allow accounts to be created by those who hold email accounts for the
selected domain names. Wildcards are allowed.

There are limit settings:

Default projects limit
By default, each account is only permitted to have 10 repositories; this includes
the private forks a developer may need to submit a merge request to a project. If
developers are working on several internal projects at once, this number might
need to be increased.

Maximum attachment size (MB)
By default, this is set to 10MB. This should be sufficient for most screenshots, but
may not be high enough if you are also attaching design assets to issues.

And finally, sign-in restrictions:

Home page URL
The URL people should be redirected to when they visit any page other than the
sign-in page as a nonauthenticated user. If left unset, people will be redirected to
the sign-in page.

Sign in text
This text appears on the sign-in page, below the description of GitLab. You
should begin with a heading to separate your text from the GitLab description.

278 | Chapter 12: Self-Hosted Collaboration with GitLab

By configuring each of these settings, you can create an appropriate starting point for
your instance of GitLab. For example, if you wanted to make it for official work only
by approved individuals, you might adjust the settings as follows:

• Disable the signup feature.
• Disable the Twitter feature (removes the button from the interface that encour‐

ages tweeting about projects).
• Set the Restricted visibility levels so that public repositories and snippets are dis‐

abled (sign-in will be required to view all repositories).

If you wanted to make your instance a bit more open, you might adjust the settings as
follows:

• Enable the signup feature.
• Disable the Twitter feature.
• Disable public repositories for nonadmins.
• Restrict domains for signups to your organization.

In addition to these settings, you can further customize the setup of each project to
suit your needs.

Projects
Your organization probably already has a number of code projects, which may or may
not be versioned using Git. To begin your setup process within GitLab, you may wish
to begin with people, or with projects. The advantage of starting with projects is that
there’s something in place for people to engage with when they first log in. If you are
working with experienced Git users, you may want to grant access to a few early
adopters first to set up the projects.

Creating a Project
A project is effectively a repository with the accompanying support tools such as issue
queues and wiki pages. When creating a new project in GitLab, you will have the
option to import from GitHub, Bitbucket, Gitorious, Google Code, or any other
repository that is available to your GitLab instance via a URL.

To create a new project, complete the following steps:

1. From the top menu, locate and click the icon New repository. This is a +. You will
be redirected to the project creation form.

2. Complete each of the fields for the new project as shown in Figure 12-3:

Projects | 279

Project path
This will be the URL for your project page. Use lowercase letters and
hyphens only.

Namespace
The name of the account, or group, this project should belong to. By default,
your own account is selected.

Import project from
If the project already exists, you can import it from one of the listed services.
GitLab must have access to the service in order to complete the import—in
other words, you can’t be behind a firewall without access to the Internet;
and you will need to enable OAuth access to the project. The instructions in
the pop-up window (Figure 12-4) will take you to the relevant documenta‐
tion page for the service you want to connect to.

Description
Information about your project to be used in listings. This is not a complete
README.

Visibility Level
Choose between Private (only visible to authorized users), Internal (visible to
all logged in users), or Public (visible to anyone visiting the site).

3. Locate and click the button Create project.

Your new project will be created. If you have selected the option to import from an
external service, the repository, issues, and wiki pages will be imported if supported.
You will be redirected to the new project page.

With the project imported, you are now able to add administrators and developers to
the project.

User Accounts
GitLab allows you to create users with specific roles. These roles can be used to adjust
read/write access to projects. If you are accustomed to Subversion’s branch locking,
these access restrictions will feel familiar to you. In this section, you will learn how to
set up individual user accounts and add people to projects.

280 | Chapter 12: Self-Hosted Collaboration with GitLab

Figure 12-3. New project creation form

Figure 12-4. After clicking the button GitHub, this pop-up window appears letting you
know GitLab does not have access to import from GitHub

Creating User Accounts
To create a new user account, you can begin from a number of different places. The
easiest to access is via the Admin area overview:

1. From the top right, click the gear icon labeled Admin area. You will be redirected
to the admin area overview page.

2. Locate and click the button New user. You will be redirected to the new user cre‐
ation form.

The form, as shown in Figure 12-5, is divided into three sections: Account, Access,
and Profile.

User Accounts | 281

The fields in the Account section are all required:

Name
Display name for this account.

Username
Login name for the account.

Email
The email address for this account.

The default values for the Access details fields are typically appropriate:

Project limit
The default quantity is whatever you have previously set site-wide. GitLab ships
with a default of 10.

Can create group
The ability to cluster projects. This functionality is referred to as a team or orga‐
nization in other systems. This is enabled by default.

Admin
Allow this person to administer the GitLab software. This is disabled by default.

Finally, there is the Profile section, which includes a field to upload a photo and social
media links:

• Avatar—if Gravatar is enabled, it may not be necessary to include a separate user
profile picture

• Skype
• LinkedIn
• Twitter
• Website

Although you can take the time to fill in the Profile details, not all employees will
want to link their social media accounts to a work system. It may be more appropriate
to leave them blank.

To create a user account, complete the following steps:

1. Fill in the Account details as described previously.
2. Confirm the Access details are correct.
3. Review the Profile details to ensure they should be left blank. Fill in any details

that are appropriate to add now.

282 | Chapter 12: Self-Hosted Collaboration with GitLab

4. Locate and click the button Create user.

Figure 12-5. The new user account creation form is divided into three sections: Account
(required fields), Access, and Profile

The new user account has been created; and a notification email has been sent to the
person with a one-time login link she can use to set up her password.

In addition to this manual account creation, GitLab also offers LDAP and OmniAuth
integration. Setting up this type of access is covered in the GitLab documentation. As

User Accounts | 283

http://bit.ly/gitlab-ldap
http://bit.ly/gitlab-omniauth

of the time of this writing, supported OmniAuth providers included GitHub, Twitter,
and Google.

Adding People to Projects
To add people to a project, complete the following steps:

1. Navigate to the project page.
2. From the sidebar, locate and click Settings.
3. From the left sidebar, locate and click Members.
4. Locate and click Add members. A new form will open (Figure 12-6).
5. In the field labeled People, enter the username or email of the person you want to

add to this project.
6. Adjust the field labeled Project Access to one of the following:

Guest
Able to view the project, create issues, leave comments

Reporter
Able to clone the repository, create code snippets

Developer
Able to commit code to approved branches

Master
Project administrator

Owner
Able to remove the project

7. Locate and click Add users to project.

The accounts have been granted appropriate access to your new project. If the email
was not already registered in this instance of GitLab, an invitation will have been sent,
asking that person to register.

Groups
To collect projects, you can use groups. You may choose to think of a Group as a
Division, Team, Organization, or Software Project (with subprojects). By default,
Groups are private, and only members of that group may view projects in the group.

284 | Chapter 12: Self-Hosted Collaboration with GitLab

Anyone Can Create Groups

By default, anyone with an account on GitLab is permitted to create
a group. You can disable this per-account when the account is cre‐
ated, or from the account’s settings screen.

Figure 12-6. Adding users to projects; search for a person, and set the appropriate access
level

To create a new group, complete the following steps:

1. From the top menu bar, click the gear icon for Admin area.
2. Locate and click New group. You will be redirected to the Group creation form

(Figure 12-7).
3. Enter the details for each of the form fields:

Group path
The URL fragment used for this group. You are limited to lowercase letters
and hyphens. In URLs, this will be used in the same way as the usernames.

Details
A short description of your team, organization, software project—essentially
“about” or “bio” field.

Group avatar
The display logo for this group.

Groups | 285

4. Locate and click Create group. You will be redirected to the administration screen
for the group.

Figure 12-7. Creating a new group

Your new group has been created. You can now add people and projects to your
group.

Adding People to Groups
Permissions are set primarily on the projects, not the groups. There are, however,
some additional actions that users can take if they are granted group-specific roles:

• Everyone is able to browse the group.
• Only the Owner is allowed to edit the group, manage the group’s members, and

remove the group.
• Group Masters are also able to create projects within group.

To add a person to a group and assign a role to the person, complete the following
steps:

1. From the top menu, click the gear icon for the Admin area.
2. From the left sidebar, click the menu link Groups. You will be redirected to the

Group administrative page.
3. Locate the form to add a user to the group (Figure 12-8).

286 | Chapter 12: Self-Hosted Collaboration with GitLab

4. Enter the details for each user you want to add to the group:

Username
You can add multiple people with the same role (Figure 12-9).

Role
Choose one of Guest, Reporter, Developer, Master, or Owner.

5. Click Add users to group.

Figure 12-8. Add a user to a group

The group will not be visible until there is at least one project added to it.

Adding Projects to Groups
Adding a project to a group is a simple matter of adjusting the namespace to be a
group, instead of an individual account.

To create a new project within a group, complete the following steps:

1. From the top menu, click the icon + with the label New project.
2. Enter a Project path, using only lowercase letters and hyphens.
3. Next to the label Namespace, click the down arrow and select the appropriate

group (Figure 12-10).
4. Complete each of the fields as you did previously to create a new project.
5. Click Create project.

The new project has been created and is available for development.

Groups | 287

Figure 12-9. You can add multiple people to a group at the same time as long as they
have the same role

Figure 12-10. The project Sea of Possibilities has been added to the group Neverending
Story

If the project already existed, and you want to move it to a different namespace (indi‐
vidual account, or group), complete the following steps:

1. In the top menu, click gear icon for the Admin area.
2. From the left sidebar, click Projects.
3. Locate the project you want to reassign and click its name. You will be redirected

to an admin summary for the project.
4. Locate the transfer form (Figure 12-11).

288 | Chapter 12: Self-Hosted Collaboration with GitLab

5. In the transfer form, click the down arrow on the drop-down box. A list of
groups and users will appear. Select the group you want to transfer this project to.

6. Click Transfer.

Figure 12-11. The project transfer form allowing you to move a project to a different
namespace

The project has been transfered to the new group. Previous group members will no
longer have access to the project. Anyone with a local clone of the project will need to
update the URL to use the new namespace for the project. (See Chapter 5 for details
on working with remotes.)

Access Control
To limit access to projects, there are both project visibility settings and per-account
roles. With these two options, you have a fair degree of flexibility over how a project
is managed. In Chapter 2, you learned about a number of different ways to chain
together repositories so that people had the correct level of access. With GitLab’s
finer-grained controls, you can ensure everyone has only exactly the access you
would like them to have.

Project Visibility
Within a given project, you can control the level of access per-project and per-role:

Private
Project access must be granted explicitly for each user.

Internal
The project can be cloned by any logged-in user.

Public
The project can be cloned without any authentication.

Access Control | 289

To adjust the project visibility settings, complete the following steps:

1. From the top menu, click the gear icon for Admin area.
2. From the left sidebar, click Projects.
3. Locate the project you wish to adjust and click its title.
4. From the project admin summary page, locate and click the button edit.
5. Locate the section of the form Visibility Level (Figure 12-12) and adjust the set‐

tings as appropriate for the access level you wish people to have (Private, Inter‐
nal, or Public).

6. Locate and click Save changes.

Figure 12-12. Update the project visibility to one of Public, Internal, or Private

The visibility settings for your project have been adjusted.

Limiting Activities with Project Roles
Once users are able to see a project, you can further control the activities they can
perform within the repository by assigning each person a specific role. A comprehen‐
sive checklist of all permissions is available from within your GitLab installation from
help/permissions/permissions.

A quick summary of the functionality available to each role is as follows:

Guest
Able to create new issues and leave comments, and that’s it! This role may be
appropriate for stakeholders who do not need access to the code, but should be
involved in the development of the project.

Reporter
In addition to the Guest permissions, a Reporter is able to clone the project and
create code snippets. You may want to grant CTOs this role because they should
not be working on code anymore. (I’m mostly joking. I do think it’s great when

290 | Chapter 12: Self-Hosted Collaboration with GitLab

managers are able to jump in and help out; I also think that managers should be
focusing on the outward-facing tasks only they can accomplish.)

Developer
In addition to all of the previous permissions, Developers can also create new
branches, create merge requests, push to nonprotected branches, add tags, write
wiki pages, manage the issue tracker, and more! Most people on the team will
likely be assigned this role. You can still limit their access to specific branches, so
it’s okay to be generous with permissions at this point.

Master
In addition to the previous permissions, Masters are also able to create mile‐
stones, add new team members, push to protected branches, add deploy keys to
the product, and edit the project itself. This role is appropriate for team leaders,
and possibly savvy project managers who might need to change the team compo‐
sition/access from time to time.

Owner
The final role is also able to change the project visibility, transfer the project to
another namespace, and remove the project altogether. It is appropriate for non‐
team administrators to have this role.

To update a person’s role within a group, complete the following steps:

1. From the top menu, click the gear icon for Admin area.
2. From the left sidebar, click Projects.
3. Locate the name of the project you want to update. Next to the name of the

project there is a button labeled edit. Click this button. You will be redirected
from the admin area to the project.

4. From the left sidebar, click Members.
5. Locate and click Edit group members. The list of members will be converted into

a configuration list.
6. Locate the person whose role you want to change, and click the pencil icon. A

new drop-down box will appear (Figure 12-13).
7. Update the drop-down box so that it contains the appropriate role for this per‐

son.
8. Click Save.

Access Control | 291

Figure 12-13. Update the role for a given team member

The new role has been applied.

Limiting Access with Protected Branches
The final level of access that GitLab offers is a per-branch setting. By default, the
branch master is protected, and people with the role Developer cannot push to this
branch. Instead, they are required to use the Merge Request process to have their
work incorporated into the branch master for the repository. If you prefer having a
shared access model, you can remove this protection.

To update which branches are protected within a given project, the branch must
already exist. Once it exists within the repository, you can open or close the access.
(Remember that when you first created the project you selected the default access set‐
ting for new branches.)

To set up access control for a given branch, complete the following steps:

1. From the top menu, click the gear icon for Admin area.
2. From the left sidebar, click Projects.
3. Locate the project you wish to adjust, and click the button labeled edit next to its

name. This will take you to the project page, instead of the admin page.
4. From the left sidebar, click Settings, then Protected branches.
5. From the drop-down menu, select the branch you would like to protect

(Figure 12-14).
6. Locate and click the button Protect.

292 | Chapter 12: Self-Hosted Collaboration with GitLab

Figure 12-14. Lock a branch so that it can only receive updates from accounts with the
Role “Master” or “Owner” for this project or team

The branch can no longer be updated by the role Developer.

To remove this restriction, complete the following steps from the same screen:

1. Locate the section titled Already Protected (Figure 12-15).
2. Locate the branch you would like to update.
3. Click the button Unprotect.

Figure 12-15. Branches that have already been protected can be unprotected

Now people with the role Developer will be able to push commits to the branch you
just updated.

Milestones
Within each project, you are able to create milestones. These can be used to collect
issues, participants, and deadlines. If you are working in a Scrum fashion, you may
find them useful for sprint loading. Milestones for projects that are shared by a group
can also be seen from a single report page. This can make it easier to coordinate
between projects; however, it is still per-repository so it is not as flexible as a full-
featured project management tool, which allows you to collect all issues for different
code bases into a single project for management purposes. If you use the same names
within a group across all of the projects, you can cheat a little and collate related
items.

Milestones | 293

To create a new milestone for your project, complete the following steps:

1. Navigate to the project page.
2. From the left sidebar, click Milestones.
3. Locate and click the button New milestone.
4. Complete the form fields for your new milestone (Figure 12-16):

• Title
• Description, with optional files attached
• Date

5. Locate and click the button Create milestone.

Figure 12-16. You can create date-based milestones for your project

Your new milestone has been created.

To see a list of all milestones for one of your groups, complete the following steps:

1. In the top-right corner on the screen, click your user avatar.
2. From the left sidebar, click Groups.
3. From the list of groups, click the name of the group you want to see the mile‐

stones for.

294 | Chapter 12: Self-Hosted Collaboration with GitLab

4. From the left sidebar, click Milestones.

You will be redirected to a list of all milestones for this group (Figure 12-17).

Figure 12-17. A list of all milestones for a given group

Summary
GitLab is a robust, open source code hosting system that rivals the functionality
offered by GitHub and Bitbucket. It is available for you to install on your own net‐
work free of charge.

• Access control can be customized per repository (visibility settings), per account
(with role settings), and per branch (with branch protection).

• You can collect both Projects (repositories) and Users (people) into Groups for
easier management.

• If you do not want the responsibility of maintaining your own software, GitLab
also offers a free cloud hosting service at GitLab.com.

Summary | 295

APPENDIX A

Butter Tarts

In Git, branches can be used to maintain variations in code. These variations might
be a work in progress, or they may be a completely different direction. These
branches can feel similiar to variations of family recipes. This appendix contains two
variations of a recipe from my family of a classic Canadian dessert: butter tarts. (For
the non-Canadians reading this, the inclusions are what make this dessert controver‐
sial. It’s like rebasing; but worse.)

Austin Butter Tarts
This is my mother’s recipe, passed down to her from her grandmother, Granny Aus‐
tin. It is always made with currants, and never anything else.

Pastry

• 2-½ cups flour
• 1 cup shortening
• Pinch salt
• Ice water (enough to bind)

1. Cut shortening into flour.
2. Add ice water (approximately ½ cup).
3. Mix with fork.
4. Roll out.
5. Prick and bake in a muffin tin, unfilled, at 450° F for 12 minutes.

297

http://bit.ly/butter-tart

Filling

• 1 cup sugar
• ½ cup soft butter
• 3 eggs
• 1 cup currants
• 2 tablespoons sweet or sour cream

1. Mix together the filling ingredients.
2. Bake in the pastry-filled muffin tin at 400° F for about 25 minutes.

van der Heyden Butter Tarts
This is my aunt’s recipe, passed down to her from her mother, Pat van der Heyden. It
is usually without additions, but can have roasted nuts, chocolate chips, or raisins.

Filling

• ⅔ cup softened butter
• 3 cups brown sugar
• 3 cups corn syrup
• 12 eggs

Cream together butter and sugar. Add corn syrup, then eggs. Mix well together. Using
your favorite pastry recipe, roll out and cut into suitable size for your tart, like a muf‐
fin tin. Using a fork, prick holes into the bottom of each pastry. Ladle in butter tart
filling. Bake at 400° F for 21 minutes (or thereabouts).

Options:

• Roasted nuts
• Chocolate chips
• Raisins

298 | Appendix A: Butter Tarts

Pastry

• 6 cups all-purpose flour
• 3 cups shortening (Karin uses Crisco; her mother used lard)
• 2 eggs
• Splash of vinegar plus 2 cups cold water

Mix flour with shortening, leave it somewhat lumpy. Whisk eggs, add vinegar and
water. Add wet to dry until you get a workable consistency. Freeze any unused pastry
in plastic for next time.

Butter Tarts | 299

APPENDIX B

Installing the Latest Version of Git

This book primarily covers the basics in Git, so there aren’t a lot of new features that
you’ll be missing out on if you don’t upgrade. In general, I find newer versions of the
software to be increasingly more friendly to use. The error messages are clearer, and
provide better “next action” suggestions. The syntax of some tricky commands has
improved, making the commands easier to remember. (For example, the ability to
delete a remote branch using the parameter --delete, and not some weird syntax
involving a colon.)

So you think you have Git installed. Sweet!

But the version that ships with your operating system is 90% likely to be 100% old.
“It’s all Git to me!” I hear you saying. I know, I know. I used to think the same thing:
Git is old and complicated and hasn’t changed in a million Internet years. And then I
went to a Git developer conference. At the conference, I met wonderful developers
who were friendly and welcoming and patient and funny and very much actively
engaged in making Git better. At the time, the maintainer of Git was Junio Hamano,
and the Windows maintainer was Johannes Schindelin. They were both at the confer‐
ence and were genuinely interested in making Git easier for you to use. You won’t see
what the community has been up to if you don’t install the latest version!

You should always try to use the latest stable version of software, and you definitely
owe it to yourself to ensure you are using at least version 2.5 of Git. As of this version
of Git, the command git help is much more useful. I’m very excited about this
change as it was one of the things that bugged me about Git from the very first time I
used it. Then, at the Git developer conference, I made passing comment, which
turned into an unofficial bug report…and a few months later Sébastien Guimmara
and Eric Sunshine made my wish into the command you use today. Incredible!

301

I’m often a few patches out of date (e.g. if the latest version is 2.5.2, I might be on
2.5.0), but I do make a careful effort to stay relatively current. If you don’t remember
having installed Git in the last few months, you will almost definitely want to
upgrade. You may also need to install Git if it’s not already on your system (it’s not
hard! there are installers you can use!).

Installing Git and Upgrading
There are human-friendly Git installers available for Windows and OS X. The instal‐
ler will generally attempt to keep your settings in place when you upgrade Git.

These installers are available from:

http://git-scm.com/downloads

If you are on Linux or Unix, you probably already have Git installed, but you should
upgrade to the latest version. Use your package manager to do this (tips in “Upgrad‐
ing on *nix Systems” on page 303). OS X users may also want to use a package man‐
ager to install Git and keep it up to date.

Finding the Command Line
This book is focused on using Git from the command line. I make no apologies about
this. There are two critical reasons I think you should give it a try:

1. It’s easier to copy and paste documentation that works on all operating systems
when everyone is working from the command line.

2. You get better error messages when you’re working from the command line. In a
graphical interface it’s harder to copy and paste the sequence of commands you
ran right before getting into the pickle you’re now in. By working from the com‐
mand line, you will be able to get help faster from others when things go wrong.

As you gain comfort with the concepts in this book, I encourage you to transfer that
knowledge to graphical interfaces if you prefer.

OS X
1. Open Spotlight. Spotlight is available from the magnifying glass in the top-right

corner of the menu bar, or by pressing Control + Space.
2. Into the Spotlight search window, type terminal and press Return. A new termi‐

nal window will appear.

302 | Appendix B: Installing the Latest Version of Git

http://git-scm.com/downloads

Linux
The location of a terminal window will vary depending on which distribution of
Linux you are using, and the window manager you are using. If you don’t know how
to open a terminal window for your version of Linux, a quick search with your favor‐
ite search engine should be able to help out.

Windows
The method you use will vary slightly depending on the version of Windows you are
running.

Windows 7:

1. Click the button labeled “Start.”
2. Select Program Files → Accessories → Command Prompt. A terminal window

will open.

Windows 8:

1. Navigate to the Apps screen (swipe up; or use a mouse and click the down arrow
at the bottom of the screen).

2. Locate the section heading Windows System by swiping or scrolling to the right.
3. Under Windows System, press or click Command Prompt.

Upgrading on *nix Systems
Package managers are a great way to ensure you are using an up-to-date version of
Git on your system. On Linux and Unix-variants, you will upgrade Git using the same
package manager that you used to install Git previously (well, Git was probably
already installed, and you might have needed to upgrade).

Homebrew Is a Package Manager for OS X.

If you are using OS X, and already have Homebrew installed, you
should use this package manager to keep Git up to date.

When working with a package manager, you need to remember to keep your list of
packages up to date. Generally this is with the subcommand update for your package
manager. For example, on Ubuntu I would use apt-get update, on Fedora I would
use yum check-update, and on OS X, I would use brew update.

Installing the Latest Version of Git | 303

http://brew.sh/

Once the list of packages is up to date, you can install the latest packaged version of
the software for your system. This is typically done with the subcommand install or
upgrade.

OS X:

$ brew install git

Ubuntu, and Linux distributions using the package manager apt:

$ apt-get install git

Fedora, and Linux distributions using the package manager yum:

$ yum install git

To ensure your packages are kept up to date, you can upgrade them individually or
on demand (Example B-1). This is typically done with the subcommand upgrade,
although running the install command again will generally also work to upgrade
the software if a newer package is available.

Upgrade with Caution.

Careful! Package managers are only mostly awesome, and some‐
times upgrading everything isn’t the smartest thing when you’re
running towards a deadline.

Example B-1. Update packages with Brew

OS X upgrade only Git:

$ brew upgrade git

OS X upgrade all packages installed via Homebrew:

$ brew upgrade

OS X Gotchas
When I started getting more involved in the Git community, I began working with
custom builds instead of using installers so that I could test out neat new features and
upgraded documentation. When I tried to push code to remote repositories, I some‐
times ran into the following error:

git: 'credential-osxkeychain' is not a git command. See 'git --help'.

For some reason, my environment variable for $PATH wasn’t behaving quite the way I
anticipated. After getting tired of trying to sort it out, I downloaded another copy of
the keychain helper and put it in a known location on my hard drive.

304 | Appendix B: Installing the Latest Version of Git

It is Unlikely You’ve Lost Your Keychain.

I very, very highly doubt you will ever need to take advantage of
this section. It’s mostly a love note to my future self on how I solved
this problem previously. (Yes, I use my own books as reference. I
write down the important stuff so that I don’t have to store it all in
my own head.)

First, verify that you have the correct authentication tool set up in your global Git
configuration file. This file is located at ~/.gitconfig and should contain the following
settings:

[credential]
 helper = osxkeychain
 useHttpPath = true

If this is not visible in the configuration file, set it up now by running the following
command:

$ git config --global credential.helper osxkeychain

Check to see if this solved the problem by running the following command:

$ git credential-osxkeychain

You should not receive the error message you had been receiving previously.

If you do receive the error message again, proceed with the following instructions.
You will download and “install” a copy of the helper application osxkeychain:

$ curl -s -O http://github-media-downloads.s3.amazonaws.com/
 osx/git-credential-osxkeychain

Adjust the permissions so that you are able to run the program:

$ chmod u+x git-credential-osxkeychain

Move the helper program to the application folder for Unix-y programs. This pro‐
gram is run as root, so you will need to enter your OS X login password to run the
command:

$ sudo mv git-credential-osxkeychain /usr/local/git/bin

Now when you run the following command, you shouldn’t get the error you received
previously about a missing command:

$ git credential-osxkeychain

This documentation is adapted from the instructions at “Beginner’s Setup Guide for
Git & Github on Mac OS X”. Chris Chernoff, if you ever read this, thank you! Your
tips saved me from having to enter the 42-character random password I’d set up each
time I wanted to push updated branches for this book to the Atlas build server while
running custom builds of Git.

Installing the Latest Version of Git | 305

http://bit.ly/git-setup-osx
http://bit.ly/git-setup-osx

Accessing Git Help at the Command Line
Git includes built-in documentation from the command line. This information is
accessible by running the following command:

$ git help

You can read all of the available documentation for a given topic by specifying the
topic name:

$ git help topic

To navigate the help page, you can can use your keyboard’s arrow keys to scroll up
and down. When you are finished reading the documentation page, press q to exit.

For a list of all topics, use the following command:

$ git help --all

A handy glossary of Git terms is also available:

$ git help glossary

306 | Appendix B: Installing the Latest Version of Git

APPENDIX C

Configuring Git

Over time, you will find little shortcuts that help you use Git at the command line.
Personally I’ve found those who are the most frustrated with it are the ones with the
least amount of customization. There are two types of configuration settings you will
be making when working with Git: global settings, which apply to all repositories that
you work on; and local settings, which only apply to the current repository. An exam‐
ple of a global setting might be your name, whereas your email might be customized
based on personal projects and work projects.

Global settings are stored in the file ~/.gitconfig, and local settings are stored in the
file .git/config for the specific repository you are working in. You will always be able to
go back and edit your settings if you want to.

You can check to see what value is set. For example, Example C-1 shows you how to
check what your name is set to.

Example C-1. Display a configured value

$ git config --get user.name

You can also get list of all values currently set (Example C-2).

Example C-2. Display all configuration values currently set

$ git config --list

A list of all variables is available from the command page for config. This is also avail‐
able by running the command:

$ git help config

307

http://bit.ly/git-config-options

Identifying Yourself
In order to get credit for your work, you will need to tell Git who you are. We will
store your name (Example C-3) and email (Example C-4) globally. Because it’s a
global setting, you don’t need to be in a specific repository to make the change.

Example C-3. Configure your name

$ git config --global user.name 'Your Name'

Example C-4. Configure your email address

$ git config --global user.email 'me@example.com'

It might be appropriate to use specific email addresses for some repositories (for
example, if you are working on a work versus personal project). You can specify the
changes should only be applied to a specific repository by completing the following
steps:

1. Navigate to the directory that holds the repository you want to configure.
2. Apply the configuration command, substituting --global for --local.

For example:

$ git config --local user.email 'me@work.com'

Changing the Commit Message Editor
By default, Git will use the system editor. On OS X and Linux, this is typically Vim. I
really like Vim, so that’s what I use. It is a bit hardcore though, so you might want to
change your editor to something else.

Check to see which editor Git will use by running the following command:

$ git config --get core.editor

You Must Quit to Commit

The commit will only be stored in Git when you quit the editor, not
just save the commit message. This may affect your choice of text
editors.

308 | Appendix C: Configuring Git

If you would like to use Textmate, use the following command:

$ git config --global core.editor mate -w

If you would prefer to use Sublime, use the following command:

$ git config --global core.editor subl -n -w

If you want to change the editor for Windows, you will need to include the full path
to the application file. As applications are typically installed in the folder C:\Program
Files, you will need to wrap the path in quotes. Additionally, when you use Bash to
call git config, you must quote the value, resulting in a double quoted string:

$ git config --global core.editor '"C:\Program Files\Vim\gvim.exe" --nofork'

For additional editors, check the configuration instructions for your editor of choice.

Adding Color
Reading huge walls of text can be difficult. Add some color helpers to your command
line to make it easier to see what Git is doing:

$ git config --global color.ui true
$ git config --global diff.ui auto

Customize Your Command Prompt
If you are working from the command line, you get zero clues about what is going on
with your files, until you explicitly ask Git about them. This is tedious to keep having
to ask. It’s like when you were eight and sat in the back of the car whining at the
driver saying, “Are we almost there yet?”

Instead of having to explicitly ask, I’ve modified my command-line prompt to tell me
which branch I currently have checked out and whether or not I’ve made changes to
any of the files in my repository. This is a fairly common hack, but every developer
will have their own little quirks on how they implement it. Searching the Web for
“bash prompt git status” will yield lots of results. My own prompt is fairly simple, but
others have added a lot more details to their prompt. For example: Show your git sta‐
tus and branch (in color) at the command prompt or local file status. As with all
things technical, the more you add initially, the more you will need to debug if it does
not work right away.

I have found the fancy prompts to be quite fussy to set up, and ended up giving up on
the really detailed ones. I recommend starting with something really simple and then
adding to it if you really need more information. The simple change in color, along
with the name of the branch, actually suits me just fine and is less distracting without
all the extra information.

Configuring Git | 309

http://bit.ly/git-config-options
http://bit.ly/git-config-options
http://bit.ly/bash-git-prompt

Ignoring System Files
We have all done it: accidentally added one of OS X’s .DS_Store system files, or a tem‐
porary .swp text editor file. You can save yourself a little embarrassment by setting up
a global ignore file so that Git prevents these files from being committed to any local
repository you create or work on. A comprehensive list of files to ignore is available.
Pick and choose the most appropriate for your system and your projects.

Once you have a list of the files you want to ignore, complete the following steps:

1. Create a new text file named .gitignore_global and place it in your home direc‐
tory.

2. Notify Git of the configuration file to use by running the following command:

$ git config --global core.excludesfile ~/.gitignore_global

You may also have project-specific files, or even output directories (such as build
directories), that you don’t want to commit to your repository. For each repository,
you can have a custom “ignore” file that will further limit which files can be tracked
by Git:

1. Create a new text file named .gitignore and place it in the root directory for your
repository.

2. To this file add the names of the files you want Git to never add to the repository.
Each filename should have its own line. You can use pattern matching as well,
such as *.swp for temporary editor files.

This change will need a new commit in your Git repository:

$ git add .gitignore
$ git commit -m "Adding list of files to be ignored."

Line Endings
This section is especially important if you work on a cross-platform team with devel‐
opers on OS X, Linux, and Windows.

You should set the line endings globally, but adding the setting to each repository as
well will ensure greater success for those who may not have explicitly set line endings:

$ git config --global core.autocrlf input

To explicitly have all contributors use the right line endings, you will need to add
a .gitattributes file to your repository that identifies the correct line ending, text files
that should be corrected, and binary files that should never be modified.

310 | Appendix C: Configuring Git

https://github.com/github/gitignore

Create a new text file named .gitattributes in the root directory of your repository (the
same directory the .git folder is in). An example of a new file is as follows:

Set the default behavior for all files.
* text=auto

List text files that should have system-specific line endings on checkout.
*.php text
*.html text
*.css text

List files that should have CRLF line endings on checkout, and not
be converted to the local operating system.
*.sln text eol=crlf

List all binary files which should not be modified.
*.png binary
*.jpg binary
*.gif binary
*.ico binary

Add the file to the staging index:

$ git add .gitattributes

Commit the file to the repository:

$ git commit -m "Require the right line endings for everyone, forever."

Fixing Line Endings
If you are in the unfortunate position of having to standardize line endings mid-
project, you will need to complete the following steps:

1. Decide on the “official” line ending for your repository with your team.
2. Edit each of the affected files to reset the line endings. When this happened to my

“friend,” she used Vim and the setting :set ff=unix. You may prefer to reset the
line endings by simply opening each of the files with your text editor and re-
saving each file; or use a command line utility such as dos2unix.

3. Add and commit the updated files to the repository.
4. Add the file .gitattributes to your repository as described in the previous section.
5. Push the changes to the code hosting server.
6. Ask everyone else on your team to update their work using the command rebase

so that the “bad” line endings are not reintroduced into the repository acciden‐
tally.

7. Pour yourself a hot chocolate or whisky. You’ve earned it.

Configuring Git | 311

APPENDIX D

SSH Keys

SSH keys allow you to make a connection to a remote machine without having to
enter a password every time. The keys themselves come in pairs: a public-facing key
and a private key. The private key should be treated like a password, and never shared
with anyone. The public-facing key will be “installed” elsewhere, such as a code host‐
ing system.

Create Your Own SSH Keys
To create an SSH key, you will need to run a program, which will save a pair of files.
The necessary software is already installed on *nix-based systems, but Windows users
will need to download additional (free) software.

Linux, OS X, and Unix-variants
To generate a key pair, run the following command:

$ ssh-keygen -t rsa -b 4096 -C "your_email@example.com"

You will be prompted for the following information:

File location
Accept the default location by pressing Return to continue.

Password
It’s optional, but you really should have one. Make it memorable or store it in a
very secure password keeper that you use regularly.

The fingerprint for your key will be printed to the screen, and the key pair will be
saved to the appropriate location in ~/.ssh/.

You will now need to register this key with your system so that you can begin using it.

313

This is where things get a little secret agent. You need to register your keys with the
local “agent” (using OS X? think “keychain,” but different). Begin the ssh-agent appli‐
cation and redirect it to use a Bourne shell:

$ eval "$(ssh-agent -s)"

Register your SSH key with the agent:

$ ssh-add ~/.ssh/id_rsa

Your key has been registered.

If you need to use the key immediately, skip ahead to “Retrieving Your Public SSH
Key” on page 315.

Windows
To generate an SSH key-pair on Windows you will need to use the software, PuTTY‐
gen:

1. Locate the latest binary for PuTTY from the PuTTY Download Page. The file is
named puttygen.exe.

2. Right-click the link puttygen.exe and choose “Save link as.” The text may vary
slightly depending on your browser.

3. When prompted, select a folder that you can find easily (for example, your desk‐
top folder).

4. Locate the PuTTYgen application on your desktop. Double-click the icon to run
the program.

5. At the bottom of the window, below “Type of key to generate,” select SSH-2 RSA.
6. Locate and click the button “Generate.”
7. Wiggle your mouse. Seriously. You’ll be making random data (noise), which

helps with the key-generation process. Continue doing so until the progress bar
is full.

8. You will be prompted for a passphrase. It’s optional, but you should add one.
9. Locate and click the button “Save private key.”

10. Locate and click the button “Save public key.”

This should save the keys to the appropriate location in ~/.ssh/.

If you are ready to use the SSH key immediately, complete the following steps as well:

1. Locate the heading “Public key for pasting into OpenSSH authorized_keys file.”
2. Right-click the random string below the heading.

314 | Appendix D: SSH Keys

http://bitly.com/putty-dl-page

3. Choose “Select all,” and then “Copy.”

Your public key has been copied to the clipboard. You are ready to proceed.

Retrieving Your Public SSH Key
When your code hosting system asks for your “Public SSH Key,” it needs the contents
of the file id_rsa.pub. This file is usually stored in a hidden folder of your home direc‐
tory: .ssh. To locate this file, and copy its contents to your clipboard, complete the
commands outlined next as is relevant for your operating system. By working from
the command line, you can avoid trying to find an editor that recognizes a .pub file.
It’s just text, but the text editors you have installed probably don’t know that.

OS X:

1. Open a terminal window.
2. Run the following command: cat ~/.ssh/id_rsa.pub | pbcopy

Linux:

1. Open a terminal window.
2. Run the following command: cat ~/.ssh/id_rsa.pub. You should have a very

long string of characters printed to the screen. It should stretch the entire width
of the terminal, and it should not include the words “PRIVATE KEY.” If the file is
not found, you will need to create an SSH key first.

3. Copy all of the text that was printed to the screen.

Windows:

1. Open a Git Bash window.
2. Run the following command: clip < ~/.ssh/id_rsa.pub. This will copy your

public SSH key to the clipboard.

Your public SSH key is now copied to the clipboard and you are ready to paste it into
the configuration screen for your code hosting system of choice.

SSH Keys | 315

Index

Symbols
*nix systems

SSH key creation on, 313
upgrading Git on, 303

.NET, 17

A
access control

Bitbucket, 262-266
GitLab, 289-293
per-developer forks, 264
protected branches, 264

access models, 20-31
collocated contributor repositories, 25-28
custom, 30
dispersed contributor, 22-25
shared maintenance, 28

account creation
Bitbucket, 242-245
GitHub, 212-215

add command, 105, 146
--patch [filename], 105
add files, 104

Aerobatic Hosting, 269
Agile environment, 3, 58
Android, 188
Ansible, 3
antisocial coding, 241
Apache, 18, 19
Apache License, 18
Apache Software Foundation, 188
Asana, 277
Atlas, 70, 181
Atlassian, 265

Atlassian Connect, 268
automated gatekeepers, 187
automated self-check, 186

B
backward compatibility (see semantic version‐

ing)
ball-and-chain diagrams, 36
Balsamiq, 59
Benevolent Dictator For Life (BDFL) gover‐

nance model, 19
benevolent dictators, 187
BFG Repo Cleaner, 146
bisect command, 206-208
bisect inefficiencies, 137
Bitbucket, 146

access control in, 262-266
account creation for, 242-245
and Atlassian Connect, 268
creating private project with, 245-249
editing files in repository, 251-254
exploring your project on, 249-251
getting started with, 242-254
per-developer forks, 264
private team work on, 241-270
project documentation in wiki pages,

255-257
project governance for nonpublic projects

on, 241
project setup with, 254-260
protected branches, 264
pull requests, 266-268
shared access, 263
tracking changes with issues, 258-260

317

bitHound, 188, 268
blame command, 203-206
branch command, 13

--contains, 148
delete branches, 146
delete branches, -D, 146
list all branches, 104
list branches, 104
list remote branches, 104

branch deployment
advantages, 38
disadvantages, 39

branch types, 177
branch, create (see checkout command)
branch-per-feature deployment, 39-42

advantages, 41
disadvantages, 42

branches
butter tart recipe example, 13, 297-299
creating new, 88-90
defined, 33
for experimental work, 110
for teams of one, 85-90
keeping up to date, 167-170
listing, 86
unmerging, 135-137, 138-144
updating list of remote branches, 87
using different, 87
working with, 85-90

branching strategies, 33-56
and review process, 196
branch-per-feature deployment, 39-42
conventions for, 35
mainline branch development, 36-39
scheduled deployment, 45-51
state branching, 42-45
updating branches, 51-55

Brew, 175
broken branches, 201
Brown, Sunni, 7
browser-based text editor

for Bitbucket files, 251-254
for quick commits, 221-224

bugs, finding and fixing (see debugging)
Buildkite, 277
butter tart recipes (forking/branching exam‐

ple), 13, 297-299

C
cached parameter, 129
Canonical, 17
cd shell command, 104
cd [directory name] shell command, 104
Chacon, Scott, 40
changes, proposed

applying, 189-194
reviewing, 189

checkout command, 146
checkout branch, 104
checkout [commit], 146
create branch, -b, 105, 146
tracking branch, 104

Chef, 3, 17
Chernoff, Chris, 305
cherry-pick command, 123

cherry-pick [commit], 146
clone command, 158, 162

clone [URL], 104, 146
clones, zipped packages vs., 158
cloning (see git clone [URL] command)
cloning repositories, 12
co-maintainership, 235-236
Code of Conduct (CoC) document, 20
code reviews, software for, 187
Coder, 188
codes of conduct, 19
coding teams, 3
collaboration, 3
collocated contributor repositories access

model, 22, 25-28
color, adding to Git, 309
command and control, 15-31

access models, 20-31
project governance, 16-20

command prompt customization, 309
commands (see individual command names)
commit command, 146

--amend, 105
-m, 104

commit messages
changing editor for, 308
detailed, 95

commit process, 13
commitment meetings, 9
commits

altering with interactive rebasing, 130-134
amending, 126

318 | Index

and rollbacks, 126-137
combining with reset, 127-129
publishing perfect, 163-167
reverting, 137
unmerging a branch, 135-137
via Web, 221-224

company-wide stand-up meetings, 10
configuration, Git, 307-311

adding color, 309
command prompt customization, 309
ignoring system files, 310
line endings, 310
user name/email configuration, 308

consensus shepherds, 187
consensus-driven development, 3
consensus-driven, leader-approved governance

model, 19
consumers

contributors vs., 157-163
developers as, 158-160

continuous delivery, 37
Continuous Delivery (Humble and Farley), 39
continuous deployment, 37
continuous integration, 37
contractors

copyright and, 16
untrusted developers with independent

quality assurance, 183
contributors

consumers vs., 157-163
developers as, 160

conventions, branching strategy, 35
copyright agreements, 16
creating clones, 12
Creative Commons license, 17, 18
creative thinking, 4
custom access models, 30
CVS, 20

D
debugging, 197-208

comparative studies of historical records,
201-203

file ancestry with blame command, 203-206
historical reenactment with bisect com‐

mand, 206-208
stash command for emergency fixes,

198-200
decision thinking, 6

default branches, 36
deleted file, mid-rebase conflict from, 115-118
deployment, 39
design critique, 186
detached HEAD state, 52
developers

as consumers, 158-160
as contributors, 160
as maintainers, 161-163
setup for multi-person teams, 157-163
trusted, with no peer review, 181-183
trusted, with peer review, 64
untrusted, with independent quality assur‐

ance, 183
untrusted, with QA gatekeepers, 66

development
by teams of more than one, 163-177
keeping branches up to date, 167-170
publishing perfect commits, 163-167
publishing work, 176
resolving merge conflicts, 174-175
reviewing work, 170-173
sprint-based workflow, 177-181
untrusted developers with independent

quality assurance, 183
with trusted developers with no peer review,

181-183
Dia, 59
diff command, 192
diff program, 22
DigitalOcean, 272
dir shell command, 104
directed acyclic graph (DAG), 36
discreet repositories, 241
dispersed contributor access model, 22-25
distributed version control, 15
distribution licenses, 18
Docker, 2
documentation

in Bitbucket wiki pages, 255-257
of encoded decisions, 59
of workflow process, 58
README file for, 156

Driessen, Vincent, 45
Drupal, 19
Drupal Code of Conduct, 20
Drupal Project module, 59
Dymitruk, Adam, 40

Index | 319

E
Eaton, Jeff, 198
empathy, cultivating, 10
encoded decisions, documentation of, 59
Etsy, 39
experimental work, branches for, 110

F
Facebook, 39
Farley, David, 39
Fedora, upgrading Git on, 303
feedback (review process), 194
fetch command, 13, 70, 153, 158, 171, 181
files, restoring, 124
filter-branch command, 145, 148
Flickr, 20, 39
forks/forking, 12

butter tart recipe example, 13, 297-299
for public projects on GitHub, 230
Git vs. GitHub terminology, 27
issue tracking, 230
per-developer (Bitbucket), 264

Free Libre Open Source Software (FLOSS), 16
freelancers, copyright and, 16

G
Gamestorming (Gray, Brown, Macanufo), 7
gc command

--prune, 148
Gerrit, 188
Git

adding color to, 309
command prompt customization, 309
commit message editor changes, 308
configuring, 307-311
configuring to ignore system files, 310
converting an existing project to, 81-83
finding command line for, 302
GitHub terminology vs., 27
installers for, 302
installing latest version of, 301-305
line ending configuration, 310
OS X installation issues, 304
teamwork in terms of, 12-14
upgrading on *nix systems, 303
user name/email configuration, 308

git command (see individual command names)
git commands, summary, 104, 146

Git for Knitters, 13
Git for Teams, 226
Git Fundamentals for Web Developers (Mitch‐

ell), 177
Git hosting

open source projects on GitHub, 211-239
private team work with Bitbucket, 241-270
self-hosted collaboration with GitLab,

271-295
git-imerge, 175
GitFlow

and sprint-based workflow, 177
for release schedule workflow, 67
scheduled deployment branching with,

45-51
GitHub

account creation on, 212-215
contributing to projects, 230-233
downloading repository snapshots, 225
forking, 230
getting started on, 212-224
Git terminology vs., 27
granting co-maintainership, 235-236
open source projects on, 211-239
organization creating on, 215
personal repositories on, 216-224
public projects on, 224-230
pull request initiation, 232-233
pull requests with merge conflicts, 237
repository creation for, 234
reviewing/accepting pull requests, 236
running your own project, 234-238
SSH keys for, 213
tracking changes with issues, 230-230
working locally, 226-230

GitHub Flow, 40
gitk command, 193
GitLab, 77

access control, 289-293
adding people to groups, 286-287
adding people to projects, 284-284
adding projects to groups, 287-289
administrative account configuration, 274
administrative dashboard, 275-279
creating a project with, 279
creating user accounts, 281-284
getting started with, 271-279
groups, 284-289
installing, 272-274

320 | Index

limiting access with protected branches, 292
limiting activities with project roles, 290
milestones, 293
project visibility, 289
projects, 279
self-hosted collaboration with, 271-295
user accounts for, 280-284

GitLab Flow, 42
Gitorious, 279
Google, 100, 283
Google Calendar, 9, 17
Google Code, 279
Google Docs, 179
Google Hangouts, 9
GoToMeeting, 9
governance (see project governance)
governance models, 19
GPL, 18
Gravatar, 277
Gray, Dave, 7

H
Hamano, Junio, 301
Harmony Agreements, 17
history

comparative studies of historical records,
201-203

file ancestry with blame command, 203-206
reenactment with bisect command, 206-208
removing completely, 144-146
reviewing, 84-85
rewriting, 164

history undoing shared (see shared history,
undoing)

Homebrew, 303
hotfixes

branch creation for, 181
post-launch, 69
prioritizing, 48, 180

Humanitarian ID Code of Conduct, 20
Humble, Jez, 39

I
ideation meetings, 7
init command, 104
Inkscape, 59
integration branches, 44
interactive rebasing, 130-134
issue tracking

Bitbucket, 258-260
GitHub, 230-230

issue-based version control, 76-78

J
Jenkins instance, 65
JIRA, 59, 241, 277
jQuery, 18
junior developers, benefits to, 187
junior reviewers, benefits to, 187

K
Kaizens, 58
Kaleidoscope, 193
kickoff meetings, 8

L
LDAP, 283
Lead and Succeed in 4 Different Dimensions

(program), 4
leadership models, 19
leadership training programs, 4
licensing, 156
line endings, Git configuration for, 310
LinkedIn, 188
Linux, 18

finding Git command line with, 303
SSH key creation on, 313
SSH key retrieval on, 315
upgrading Git on, 303

list parameter, 86
local repositories

connecting to personal GitHub repository,
220

converting an existing project to Git, 81-83
creating, for teams of one, 78-85
downloading an existing project to, 80
initializing an empty project on, 83
reviewing project history, 84-85

log command, 104, 146
--graph, 148
--oneline, 104, 148

ls -a shell command, 104
Lullabot, 10

M
Macanufo

James, 7

Index | 321

mainline branch method, 36-39
maint (maintenance) integration branch, 44
maintainers

developers as, 161-163
granting co-maintainership, 235-236

Managing Chaos (Welchman), 19
master integration branch, 44
meetings

and empathy, 10
for teams, 7-12
for tracking progress, 8
kickoff, 8
wrap-up/retrospective, 11

mentoring, 3
merge command, 13, 105, 146
merge conflicts

mid-rebase conflict, 118-120
pull requests with, 237
resolving, 174-175

merge requests, 25, 27
merge, rebase vs., 168
Microsoft, 16
mistakes, undoing (see rollbacks)
MIT License, 18
Mitchell, Lorna, 177
mkdir shell command, 104

N
next integration branch, 44
nonpublic projects (Bitbucket), 241
NuGet, 18

O
OmniAuth, 283
Omnibus, 272
OmniGraffle, 59
one-on-one meetings, 10
open source projects, GitHub, 211-239

account creation on, 212-215
and personal repositories, 216-224
contributing to projects, 230-233
downloading repository snapshots, 225
forking, 230
getting started on, 212-224
granting co-maintainership, 235-236
organization creating on, 215
public projects on, 224-230
pull request initiation, 232-233
pull requests with merge conflicts, 237

repository creation for, 234
reviewing/accepting pull requests, 236
running your own project, 234-238
SSH keys for, 213
tracking changes with issues, 230-230
working locally, 226-230

OpenStack, 188
operations teams, 2
organizations (GitHub), 215
origin command, 153
OS X

finding Git command line with, 302
SSH key creation on, 313
SSH key retrieval on, 315
upgrading Git on, 303

overcategorization, avoiding, 61

P
patch files, 22
patch parameter, 93
Payment Card Industry (PCI), 242
peer reviews, 2

defined, 186
trusted developers, 64

Pencil, 59
permissions, establishing, 151
personal repositories, GitHub, 216-224

connecting a local repository, 220
creating project on, 216-219
importing a repository, 219
making quick commits via the Web,

221-224
publishing changes to, 221
updating local repository, 224

Pivotal Tracker, 59
private projects (see nonpublic projects)
private teams (Bitbucket), 241-270
product backlog, 60
Product Owner (see team composition)
progress, tracking, 8
project deep dive meetings, 9
project governance, 16-20

codes of conduct, 19
copyright and contributor agreements, 16
distribution licenses, 18
for nonpublic projects on Bitbucket, 241
leadership models, 19

Project Management Committee
PMC, 19

322 | Index

project setup
creating new project, 150
developer setup, 157-163
documentation in README, 156
establishing permissions, 151
for teams of more than one, 150-156
uploading project repository, 152-155
with Bitbucket, 254-260

protected branches, 264
pu integration branch, 44
public projects, GitHub, 224-230

contributing to projects, 230-233
downloading repository snapshots, 225
forking, 230
granting co-maintainership, 235-236
pull request initiation, 232-233
pull requests with merge conflicts, 237
repository creation for, 234
reviewing/accepting pull requests, 236
running your own project, 234-238
tracking changes with issues, 230-230
working locally, 226-230

public SSH key, retrieving, 315
pull command, 13, 169
pull request auto reviewers, 269
pull requests

accepting (Bitbucket), 268
Bitbucket, 266-268, 266
for public projects on GitHub, 232-233
GitHub and, 160
reviewing and accepting, 236
with collocated contributor repositories

model, 25, 27
with merge conflicts, 237

PullReview, 188
Puppet, 3, 17
push

delete branch, --delete, 105
push command, 13, 105, 153

--set-upstream, 105

Q
quality assurance (QA) teams, 2
quality assurance testing, 186

R
Rails, 18
README files, 156
reasonable restraint, 17

rebase command, 114, 126, 168
--abort, 120
--continue, 115, 146
--interactive, 130, 146

rebasing, 52, 113-120
altering commits with interactive rebasing,

130-134
beginning, 114
mid-rebase conflict from deleted file,

115-118
mid-rebase conflict from single file merge

conflict, 118-120
Redmine, 59, 277
reflog command, 146

expire, 148
release schedules

and ongoing development, 68
and post-launch hotfix, 69
stable release publication, 67
workflow for, 67-69

remote branches, updating list of, 87
remote command

--verbose, 105
add, 105

remote repositories
branch maintenance, 103
connecting to, 99-103
creating new projects, 100
pushing changes to, 102
second remote connection for, 100

repositories, 12-13
adding changes to, 90-97
adding partial file changes to, 93
branch maintenance, 103
cloning, 12
collocated contributor model, 25-28
committing partial changes to, 94
connecting to remote, 99-103
creating, 234
creating new projects, 100
detailed commit messages, 95
downloading snapshots of, 225
ignoring files, 96
local, for teams of one, 78-85
personal, 216-224
pushing changes to, 102
removing file from stage, 94
removing history of, 144-146
second remote connection for, 100

Index | 323

reset command, 124, 127-129, 146
--hard HEAD, 146
--merge, 146
HEAD, 105, 146

restoring files, 124
restraint of trade clause, 17
retrospective meetings, 11
reverse engineering, 17
revert command, 126, 137, 148

--mainline, 148
--no-commit, 148

Review Board (software), 188
review process, 185-196

applying proposed changes, 189-194
completion of, 195
evaluation submission, 194
feedback preparation, 194
reviews of proposed changes, 189
software for code reviews, 187
types of reviewers, 186
types of reviews, 186

rollbacks, 107-148
altering commits with interactive rebasing,

130-134
amending commits, 126
best practices for, 108-113
combining commits with reset, 127-129
command reference for, 146-148
commits and, 126-137
describing your problem, 108-110
locating lost work, 120-124
removing history completely, 144-146
restoring files, 124
undoing shared history, 137-144
unmerging a branch, 135-137
unmerging a shared branch, 138-144
using branches for experimental work, 110

S
scheduled deployment branching, 45-51

advantages, 50
disadvantages, 51

Schindelin, Johannes, 301
Scrum, 60
ScrumMaster (see team composition)
Sculpin, 12, 226
security reviews, 2
self-managing teams, 3
semantic versioning, 43

senior developers, benefits to, 187
senior reviewers, benefits to, 187
shared branches, unmerging, 138-144
shared history, undoing, 137-144

reverting a previous commit, 137
unmerging a shared branch, 138-144

shared maintenance access model, 22, 28
shell commands, 104
show command

[commit], 105
[tag], 105

sidekiq, 276
single repository, shared access model, 22
Skype, 274
social coding, 241
solo developers (see teams (one member))
sprint demo meetings, 9
sprint planning meetings, 8
sprint-based workflow, 177-181
sprints, 37
SSH keys, 213, 313-315

creating your own, 313-315
retrieving your public key, 315

staged parameter, 129
staging changes, 129
stand-ups (see commitment meetings)
stash

about, 13
crafter analogy for, 13
for emergency bug fixes, 198-200
for side projects, 36

state branching, 42-45
advantages, 45
disadvantages, 45

status command, 104
Subversion, 18, 20, 264
system files, ignoring, 310

T
tab completion, 91
tag command, 105
tags

for teams of more than one, 97
for teams of one, 97-99
working with, 97-99

team composition
architects, 3
backend developers, 3
business analysts, 3

324 | Index

designers, 3
frontend developers, 3
Product Owner, 3
project managers, 3
ScrumMaster, 3

teams (multiple-member), 149-183
and empathy, 10
creating new project, 150
developer setup for, 157-163
establishing permissions, 151
for nonsoftware projects, 69
kickoff meetings, 8
meetings for, 7-12
members of, 2
participating in development, 163-177
progress-tracking meetings, 8
project setup, 150-156
sample workflows for, 177-183
teamwork in terms of Git, 12-14
thinking strategies for, 3-7
trusted developers with no peer review,

181-183
uploading project repository, 152-155
working in, 1-14
wrap-up/retrospective meetings, 11

teams (one-member), 75-106
adding changes to a repository, 90-97
commands for, 103-105
connecting to remote repositories, 99-103
creating local repositories for, 78-85
issue-based version control, 76-78
tags for, 97-99

technical architecture review, 186
technical review board governance model, 19
testing process, 2
testing teams, 2
text editor, browser-based

for Bitbucket files, 251-254
for quick commits, 221-224

thinking strategies, 3-7
ticket progression, 59
ticket-based peer code review, 186
ticketing systems, 59
touch shell command, 104
track command, 13
tracking progress, meetings for, 8
true merges, 103
trusted developers

with no peer review, 181-183

with peer review, 64
Twitter, 100, 274, 277
Typo3, 188

U
Ubuntu

Git upgrades with, 303
GitLab and, 272

Ubuntu Code of Conduct, 20
understanding thinking, 5
undo methods, 109
undoing (see rollbacks)
Unfuddle, 59
Unix

SSH key creation on, 313
upgrading Git on, 303

unmerging a branch, 135-137
untracked changes, 128
untrusted developers

with independent quality assurance, 183
with QA gatekeepers, 66

updating branches, 51-55
upstream branch, 227
upstream project, 25
urgent (term), 49
user acceptance testing, 186

V
Vagrant, 2, 272
vendor branch, 227
Vim

alternatives to, 308
key commands for, 96

Virtalbox, 272

W
web editor

for Bitbucket files, 251-254
for quick commits, 221-224

Welchman, Lisa, 19
Wiele, Bob, 4
wiki pages, Bitbucket, 255-257
Windows

finding Git command line with, 303
SSH key creation on, 314
SSH key retrieval on, 315

WordPress, 18, 28
work for hire copyright arrangements, 16

Index | 325

work, reviewing, 170-173
workflow

and teamwork in terms of Git, 12-14
basic example, 62-67
branching strategies, 33-56
command and control, 15-31
debugging, 197-208
effective styles, 57-71
encoded decision documentation, 59
evolving, 57-60
for ongoing development, 68
for releasing software according to schedule,

67-69
for teams of more than one, 1-14, 149-183
for teams of one, 75-106
nonsoftware projects, 69
ongoing development, 68
post-launch hotfix, 69
process documentation, 58

review process, 185-196
rollbacks, 107-148
sprint-based, 177-181
stable release publication, 67
ticket progression, 59
trusted developers with peer review, 64
untrusted developers with QA gatekeepers,

66
working branches, 201
wrap-up meetings, 11
write access, 27

Y
Yelp, 188

Z
zipped packages, clones vs., 158

326 | Index

About the Author
Emma Jane Hogbin Westby has been developing websites since 1996—initially as a
developer, and now as a team leader. She has been teaching web-related technologies
since 2002 and has delivered over 100 conference presentations, courses, and work‐
shops around the world on frontend web development, accessibility standards, dis‐
tributed version control, virtualization, and change management. She has previously
authored two books on web development.

Emma encourages nontraditional participation in technology through craft, and is an
amateur beekeeper. You can follow her on Twitter at @emmajanehw.

Colophon
The animals on the cover of Git for Teams are the pied wagtail (Motacilla alba), the
grey wagtail (Motacilla cinerea), and the yellow wagtail (Motacilla flava).

The genus name Motacilla means “moving tail,” and as their common name suggests,
these small, energetic birds are known for fanning their long tails up and down,
though the reasons for this behavior are not certain. On average, these birds measure
6 inches long and weigh up to .8 ounces.

The wagtail feeds on small insects and occasionally forages near groups of cattle in
order to capture the insects they disturb. It also nests on the ground, laying 4–7 eggs
at a time.

Wagtails are widely distributed, breeding throughout Europe and Asia and some‐
times migrating to tropical areas of Africa. They favor open country, such as farm‐
lands and grasslands. However, all three species have suffered severe declines in
recent years, possibly due to changes in agriculture.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Wood’s Illustrated Natural History. The cover fonts are URW
Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

https://twitter.com/emmajanehw
http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Foreword
	Foreword
	Preface
	Acknowledgments

	Introduction
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Part I. Defining Your Workflow
	Chapter 1. Working in Teams
	The People on Your Team
	Thinking Strategies
	Meeting as a Team
	Kickoff
	Tracking Progress
	Cultivating Empathy
	Wrap-Up and Retrospectives

	Teamwork in Terms of Git
	Summary

	Chapter 2. Command and Control
	Project Governance
	Copyright and Contributor Agreements
	Distribution Licenses
	Leadership Models
	Code of Conduct

	Access Models
	Dispersed Contributor Model
	Collocated Contributor Repositories Model
	Shared Maintenance Model
	Custom Access Models

	Summary

	Chapter 3. Branching Strategies
	Understanding Branches
	Choosing a Convention
	Conventions
	Mainline Branch Development
	Branch-Per-Feature Deployment
	State Branching
	Scheduled Deployment

	Updating Branches
	Summary

	Chapter 4. Workflows That Work
	Evolving Workflows
	Documenting Your Process
	Documenting Encoded Decisions

	Ticket Progression
	A Basic Workflow
	Trusted Developers with Peer Review
	Untrusted Developers with QA Gatekeepers

	Releasing Software According to Schedule
	Publishing a Stable Release
	Ongoing Development
	Post-Launch Hotfix

	Collaborating on Nonsoftware Projects
	Summary

	Part II. Applying the Commands to Your Workflow
	Chapter 5. Teams of One
	Issue-Based Version Control
	Creating Local Repositories
	Cloning an Existing Project
	Converting an Existing Project to Git
	Initializing an Empty Project
	Reviewing History

	Working with Branches
	Listing Branches
	Updating the List of Remote Branches
	Using a Different Branch
	Creating New Branches

	Adding Changes to a Repository
	Adding Partial File Changes to a Repository
	Committing Partial Changes
	Removing a File from the Stage
	Writing Extended Commit Messages
	Ignoring Files

	Working with Tags
	Connecting to Remote Repositories
	Creating a New Project
	Adding a Second Remote Connection
	Pushing Your Changes
	Branch Maintenance

	Command Reference
	Summary

	Chapter 6. Rollbacks, Reverts, Resets, and Rebasing
	Best Practices
	Describing Your Problem
	Using Branches for Experimental Work

	Rebasing Step by Step
	Begin Rebasing
	Mid-Rebase Conflict from a Deleted File
	Mid-Rebase Conflict from a Single File Merge Conflict

	An Overview of Locating Lost Work
	Restoring Files
	Working with Commits
	Amending Commits
	Combining Commits with Reset
	Altering Commits with Interactive Rebasing
	Unmerging a Branch

	Undoing Shared History
	Reverting a Previous Commit
	Unmerging a Shared Branch

	Really Removing History
	Command Reference
	Summary

	Chapter 7. Teams of More than One
	Setting Up the Project
	Creating a New Project
	Establishing Permissions
	Uploading the Project Repository
	Document the Project in a README

	Setting Up the Developers
	Consumers
	Contributors
	Maintainers

	Participating in Development
	Constructing the Perfect Commit
	Keeping Branches Up to Date
	Reviewing Work
	Merging Completed Work
	Resolving Merge and Rebase Conflicts
	Publishing Work

	Sample Workflows
	Sprint-Based Workflow
	Trusted Developers with No Peer Review
	Untrusted Developers with Independent Quality Assurance

	Summary

	Chapter 8. Ready for Review
	Types of Reviews
	Types of Reviewers
	Software for Code Reviews
	Reviewing the Issue
	Applying the Proposed Changes
	Shared Repository Setup
	Forked Repository Setup
	Checking Out the Proposed Branch

	Reviewing the Proposed Changes
	Preparing Your Feedback
	Submitting Your Evaluation
	Completing the Review
	Summary

	Chapter 9. Finding and Fixing Bugs
	Using stash to Work on an Emergency Bug Fix
	Comparative Studies of Historical Records
	Investigating File Ancestry with blame
	Historical Reenactment with bisect
	Summary

	Part III. Git Hosting
	Chapter 10. Open Source Projects on GitHub
	Getting Started on GitHub
	Creating an Account
	Creating an Organization
	Personal Repositories

	Using Public Projects on GitHub
	Downloading Repository Snapshots
	Working Locally

	Contributing to Projects
	Tracking Changes with Issues
	Forking a Project
	Initiating a Pull Request

	Running Your Own Project
	Creating a Project Repository
	Granting Co-Maintainership
	Reviewing and Accepting Pull Requests
	Pull Requests with Merge Conflicts

	Summary

	Chapter 11. Private Team Work on Bitbucket
	Project Governance for Nonpublic Projects
	Getting Started
	Creating an Account
	Creating a Private Project from the Welcome Screen
	Creating a Private Project from the Dashboard
	Configuring Your New Repository
	Exploring Your Project
	Editing Files in Your Repository

	Project Setup
	Project Documentation in Wiki Pages
	Tracking Your Changes with Issues

	Access Control
	Shared Access
	Per-Developer Forks
	Limiting Access with Protected Branches

	Pull Requests
	Submitting a Pull Request
	Accepting a Pull Request

	Extending Bitbucket with Atlassian Connect
	Summary

	Chapter 12. Self-Hosted Collaboration with GitLab
	Getting Started
	Installing GitLab
	Configuring the Administrative Account
	Administrative Dashboard

	Projects
	Creating a Project

	User Accounts
	Creating User Accounts
	Adding People to Projects

	Groups
	Adding People to Groups
	Adding Projects to Groups

	Access Control
	Project Visibility
	Limiting Activities with Project Roles
	Limiting Access with Protected Branches

	Milestones
	Summary

	Appendix A. Butter Tarts
	Austin Butter Tarts
	van der Heyden Butter Tarts

	Appendix B. Installing the Latest Version of Git
	Installing Git and Upgrading
	Finding the Command Line
	OS X
	Linux
	Windows

	Upgrading on *nix Systems
	OS X Gotchas
	Accessing Git Help at the Command Line

	Appendix C. Configuring Git
	Identifying Yourself
	Changing the Commit Message Editor
	Adding Color
	Customize Your Command Prompt
	Ignoring System Files
	Line Endings
	Fixing Line Endings

	Appendix D. SSH Keys
	Create Your Own SSH Keys
	Linux, OS X, and Unix-variants
	Windows

	Retrieving Your Public SSH Key

	Index
	About the Author

