
M A N N I N G

Glen Smith
Peter Ledbrook

FOREWORD BY Dierk König

SECOND EDITION

www.allitebooks.com

http://www.allitebooks.org

Grails in Action, Second Edition

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Grails in Action
Second Edition

GLEN SMITH
PETER LEDBROOK

M A N N I N G
SHELTER ISLAND
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964
Email: orders@manning.com

©2014 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Copyeditors: Katie Petito, Lianna Wlasiuk
PO Box 261 Proofreader: Elizabeth Martin
Shelter Island, NY 11964 Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617290961
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 19 18 17 16 15 14
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

www.manning.com
http://www.allitebooks.org

 To Kylie, who sacrifices daily to let me chase such crazy dreams.
Love you so much, matie!

 —G.S.

 To my parents, for always being there.
 —P.L.
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

brief contents
PART 1 INTRODUCING GRAILS...1

1 ■ Grails in a hurry . . . 3

2 ■ The Groovy essentials 33

PART 2 CORE GRAILS..61

3 ■ Modeling the domain 63

4 ■ Creating the initial UI 91

5 ■ Retrieving the data you need 110

6 ■ Controlling application flow 136

7 ■ Services and data binding 155

8 ■ Developing tasty forms, views, and layouts 189

PART 3 EVERYDAY GRAILS ...227

9 ■ Building reliable applications 229

10 ■ Using plugins: just add water 261

11 ■ Protecting your application 297

12 ■ Exposing your app to other programs 328
vii

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

BRIEF CONTENTSviii
13 ■ Single-page web applications (and other UI stuff) 357

14 ■ Understanding Spring and transactions 380

PART 4 ADVANCED GRAILS ..399

15 ■ Understanding events, messaging, and scheduling 401

16 ■ NoSQL and Grails 432

17 ■ Beyond compile, test, run 467

18 ■ Grails in the cloud 496
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

contents
foreword xix
preface xx
acknowledgments xxii
about this book xxiv
about the title xxix
about the cover illustration xxx

PART 1 INTRODUCING GRAILS1

1 Grails in a hurry . . . 3
1.1 Introducing Grails 4

Why Grails changed the game 4 ■ Seven big ideas 5

1.2 Getting set up 8
1.3 QOTD: your sample program 10

Writing a controller 11 ■ Generating an HTML page:
the view 14 ■ Adding style with Grails layouts 15

1.4 Creating the domain model 18
Configuring the data source 19
Exploring database operations 20
ix

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
1.5 Adding UI actions 21
Scaffolding: adding rocket fuel 23 ■ Surviving the
worst-case scenario 24

1.6 Improving the architecture 25
Your Grails test case 27 ■ Going Web 2.0: Ajaxing the view 29
Bundling the final product: creating a WAR file 31
And 80 lines of code later 31

1.7 Summary and best practices 32

2 The Groovy essentials 33
2.1 Writing your first script 34

Using lists, loops, and methods 34 ■ Working with strings 38

2.2 Creating a quote analyzer class 40
Introducing Spock properly 41 ■ Creating the initial class 44
Working with maps 47 ■ Taking the analyzer for a spin 48

2.3 Going to the next level 53
Discovering closures 53 ■ Programming dynamically 55
To type or not to type 57

2.4 Summary and best practices 59

PART 2 CORE GRAILS ..61

3 Modeling the domain 63
3.1 Introducing the Hubbub sample application 64

Domain-driven design 65 ■ Hubbub kick-start: from
0 to first hit 66 ■ Introducing GORM 67

3.2 Your first domain class object 68
Saving and retrieving users via tests 69 ■ Updating user
properties 71 ■ Deleting users 72

3.3 Validation: stopping garbage in and out 73
Standard validators 76 ■ Custom validation with
regular expressions 77 ■ Cross-field validation tricks 78
Keeping validation DRY by importing constraints 78

3.4 Defining the data model—1:1, 1:m, m:n 79
One-to-one relationships 80 ■ One-to-many relationships 82
Many-to-many relationships 86 ■ Self-referencing
relationships 89

3.5 Summary and best practices 90
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xi
4 Creating the initial UI 91
4.1 Creating instant UIs with scaffolding 92

Scaffolding Hubbub’s domain classes 92
Improving the validation 93

4.2 Restyling the scaffolding 96
Changing the skin you’re in 97 ■ Branding your pages 98

4.3 Working with the scaffolding code directly 100
Customizing the dynamic scaffolding 100 ■ Scaffolding as
a starting point 106

4.4 Summary and best practices 108

5 Retrieving the data you need 110
5.1 Setting up the data and search form 111

Loading sample data 111 ■ Implementing the search 115

5.2 Writing Where queries 119
The query syntax 119 ■ Exploring Where queries 122

5.3 When Where queries aren’t suitable 128
Cheap and cheerful listing and counting 128
Introducing Criteria queries 129 ■ Dynamic queries
with criteria 130 ■ Creating a tag cloud using report-style
query projections 131 ■ Using HQL directly 133

5.4 Summary and best practices 135

6 Controlling application flow 136
6.1 Controller essentials 137
6.2 Implementing a timeline for Hubbub 138
6.3 Testing controller actions: an introduction

to mocking 139
About unit tests 139 ■ @TestFor and @Mock mixins 139
Applying @TestFor and @Mock 140

6.4 From controller to view 141
Creating the view 141 ■ Adding new posts 143

6.5 Exploring scopes 148
Request scope 149 ■ Flash scope 149 ■ Session scope 150
servletContext (application) scope 150
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxii
6.6 Handling default actions 151
One test, two use cases 151 ■ Working with redirects 153

6.7 Summary and best practices 154

7 Services and data binding 155
7.1 Services: making apps robust and maintainable 156

Implementing a PostService 156 ■ Wiring PostService
to PostController 159

7.2 Data binding 162
Action argument binding 162 ■ Binding to an
existing object 163 ■ Working with blacklist and whitelist
bind params 163 ■ Complex forms: binding multiple objects 164
Error handling 168

7.3 Command objects 170
Handling custom user registration forms 170
Participating in injection 173

7.4 Working with images 174
Handling file uploads 174 ■ Uploading to the filesystem 176
Rendering photos from the database 177

7.5 Intercepting requests with filters 178
Writing your first filter 178 ■ Testing filters 181
Filter URL options 182

7.6 Creating custom URL mappings 182
myHubbub: rolling your own permalinks 183
Optional variables and constraints 185 ■ Handling response
codes and exceptions 185 ■ Mapping directly to the view 186
Wildcard support 186 ■ Named URL mappings 186

7.7 Summary and best practices 187

8 Developing tasty forms, views, and layouts 189
8.1 Understanding the core form tags 190

A handful of essential tags 190 ■ A pocketful of link tags 191
A tour of the form tags 192 ■ Adding pagination to
the timeline 199

8.2 Extending views with your own tags 200
Simple tags 200 ■ Testing taglibs 202 ■ Logical tags 203
Iteration tags 204 ■ Calling one tag from another 205
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xiii
8.3 Adding delicious layouts 206
Introducing SiteMesh 206 ■ Standardizing page layouts 209
Markup fragments with templates 211 ■ Adding skinning 212
Implementing navigation tabs 214

8.4 Applying Ajax tags 216
Choosing a JavaScript library 216 ■ Essential Ajax form
remoting 217 ■ Adding sizzle: animation and effects 220

8.5 Summary and best practices 224

PART 3 EVERYDAY GRAILS ...227

9 Building reliable applications 229
9.1 Running tests 230

Mastering test execution 230 ■ Choosing a test phase 233

9.2 Understanding Grails unit tests and mocks 236
Mocking core Grails artifacts 237 ■ Mocking normal
collaborators with Spock 241

9.3 Testing the application as a whole 244
Introducing browser-based testing with Geb 244
Understanding how Geb works 248 ■ Using page objects
for maintainability 252

9.4 Summary and best practices 259

10 Using plugins: just add water 261
10.1 Taking advantage of others’ hard work 262

Finding plugins 262 ■ Installing plugins via the (deprecated)
install-plugin command 265 ■ Installing plugins via
BuildConfig.groovy 265 ■ Plugin dependencies 266
Applying your knowledge: the Hubbub extreme
makeover begins 267

10.2 Adding mail support 267
Sending mail inline 269 ■ Using a view as your mail body 270
Testing mail operation 271

10.3 Caching for performance: making
everything snappy 273
The core caching annotations 273 ■ Working with the
CacheManager API 275 ■ Leveraging other members of
the Cache plugin family 275 ■ The cache taglibs: caching
in the view 276
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxiv
10.4 Database migrations: evolving a schema 278
Installing and configuring the plugin 278 ■ Establishing
a baseline 279 ■ Implementing common migrations 281
Groovy-based migrations 283

10.5 Full-text search: rolling your own search 285
Making objects searchable 286 ■ Highlighting hit terms 289
Implementing pagination 291 ■ Customizing what gets
indexed 292 ■ Query suggestions: did you mean “Grails”? 293
Searching across relationships 294

10.6 Summary and best practices 296

11 Protecting your application 297
11.1 Dealing with untrusted data and networks 298

Validating user input 298 ■ Data binding 300
Escaping output 301 ■ CSRF and form tokens 304
Protecting your data in transit 305

11.2 Access control 308
What is it and what can we use? 308 ■ Getting started with
Spring Security 309 ■ Protecting URLs 313 ■ Getting hold
of the current user 315 ■ Using a custom login page 318
Testing access control 319

11.3 Further exploration of Spring Security 320
Tightening restrictions on access 320
Social authentication 323

11.4 Summary and best practices 326

12 Exposing your app to other programs 328
12.1 Creating a REST interface 329

What is REST? 329 ■ Implementing a quick API 331

12.2 Improving the API 336
Handling data representations 336 ■ Customizing the
controller 341 ■ Reporting errors 343

12.3 Securing and maintaining the API 346
Configuring API security 346 ■ Versioning the API 350
Implementing functional testing 353

12.4 Summary and best practices 355
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xv
13 Single-page web applications (and other UI stuff) 357
13.1 Revisiting Grails web resource management 358

Defining your resources 359 ■ Using resource modules
in your view tier 361

13.2 RESTful clients with AngularJS 363
Configuring your Grails app for AngularJS 364 ■ Your first
AngularJS controller: pulling in a RESTful timeline 365
Creating a new post via REST 367 ■ Communicating between
controllers 369 ■ Better posting with live UI feedback 371

13.3 Advanced RESTful CRUD: implementing
in-place editing 373
Implementing UI switching 374 ■ Introducing an
update feature 375 ■ Finalizing lifecycles with delete 377

13.4 Summary and best practices 378

14 Understanding Spring and transactions 380
14.1 Spring fundamentals 381

What is dependency injection? 381 ■ Beans by convention 382
Customizing an application at runtime 385

14.2 Using transactions with GORM 388
Easy transactions with services 389 ■ Transactions, the session,
and me 392 ■ Fine-grained transactions 395

14.3 Summary and best practices 397

PART 4 ADVANCED GRAILS...399

15 Understanding events, messaging, and scheduling 401
15.1 Lightweight messaging with Platform Core 402

Installing Platform Core 403 ■ Sending off an event 403
Listening for an event 405 ■ Using namespaces to integrate
GORM and events 405 ■ Aggressive listening: using
wildcards 407 ■ Integrating Spring Security using the
grailsEvents bean 407

15.2 A hitchhiker’s guide to JMS messaging 408
Learning to think in async: identifying messaging candidates 409
Messaging terminology: of producers, consumers, queues, and
topics 409 ■ Installing and configuring the JMS plugin 411
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxvi
15.3 Using the Grails JMS plugin 413
Our killer Hubbub feature: IM integration with Jabber 413
Sending JMS messages 414 ■ Reading the queue 417

15.4 Scheduling tasks with Grails 421
Writing a daily digest job 421 ■ Fine-grained scheduling
with cron 423

15.5 Advanced scheduling 424
Dealing with re-entrance and stateful jobs 425 ■ Pausing and
resuming stateful jobs programmatically 427 ■ Job persistence with
JDBS storage 429

15.6 Summary and best practices 430

16 NoSQL and Grails 432
16.1 The problem with PostgreSQL (or when to

choose NoSQL) 432
16.2 Types of NoSQL databases (and typical use

cases table) 433
16.3 Using Redis to work with key-value stores 434

Installing your own Redis server 434 ■ Using Redis
operations 435 ■ Installing the Redis plugin (including pooling
configuration) 436 ■ Simple, expiring key/value caching: what
is all this @Memoize stuff? 437 ■ Working with the Redis
taglib 438 ■ Beyond the basics: working with the Redis service
object directly 439 ■ Top posters with Redis sorted sets 440

16.4 Using MongoDB to work with document-oriented data 443
Learning MongoDB terminology 445 ■ Getting set up: installing
a MongoDB server 445 ■ Creating your first database 445
Installing the MongoDB plugin 448 ■ Polyglot persistence:
Hibernate and MongoDB working together 448 ■ Stepping outside
the schema with embeddables 450 ■ Dynamic attributes: making
up properties as you go along 454 ■ Querying MongoDB
via standard GORM 455 ■ Working with low-level
MongoDB querying 455

16.5 Using Neo4j to work with graph-oriented data 457
Installing and configuring the Neo4j plugin 458
Neo4j domain classes: combining with Hibernate 459
Populating Hubbub’s social graph 459 ■ Walking and
visualizing the graph with Cypher 460 ■ Walking the
entire graph 463

16.6 Summary and best practices 465
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xvii
17 Beyond compile, test, run 467
17.1 Getting to deployment 468

Managing your dependencies 468
Continuous integration and deployment 474

17.2 Integrating Grails with Maven 481
Creating a single-project POM 482
Multiproject Maven builds 485

17.3 Grails with Gradle 489
Building a standalone app 489
Building a multiproject app 492

17.4 Summary and best practices 495

18 Grails in the cloud 496
18.1 Getting to know the cloud 497

What is the cloud? 497 ■ The new kids on the
block—PaaS providers 500

18.2 Running in the cloud 503
Choosing a cloud provider and assessing Hubbub 504
Getting familiar with the platform 505 ■ Adding cache
support 509 ■ Sending emails 511 ■ Messaging in the
cloud with RabbitMQ 512 ■ Other features to consider 514

18.3 Summary and best practices 517

19 Advanced GORM kung fu
available online at www.manning.com/gsmith2

20 Developing plugins
available online at www.manning.com/gsmith2

appendix A Groovy reference 519
appendix B GORM query reference 522
appendix C XML and Spring builders 525

index 529
Licensed to Mark Watson <nordickan@gmail.com>

www.manning.com/gsmith2
www.manning.com/gsmith2

Licensed to Mark Watson <nordickan@gmail.com>

foreword
No matter how powerful your web framework, or how well-documented it may be, and
independent of all of those tutorials, tips, and blog posts you find on the web, there is
no replacement for a book that thoroughly introduces you to the topic. For many
years Grails in Action has been the guide for the growing number of Grails developers.

 Whenever I visit a team that uses Grails I look around to see what books they have
available, and I’m always delighted to see Grails in Action, since I can rely on the solid
foundation they got from the book, and I can easily refer to it for best practices and
background knowledge.

 But the world is ever-changing and the Groovy and Grails worlds particularly so.
Web technologies rise and fall quickly these days and Grails adapts mostly through its
immense plugin community, but also by carefully evolving the framework itself.

 All these changes called for a second edition of our beloved Grails book, and I am
so glad to finally have it in my hands!

 Glen and Peter have managed to bring in all the new while retaining the charac-
teristics of the first edition: it’s very approachable for the beginner, short and clear for
the impatient, covers all bases for the practitioner, and drives the ball deep for the
expert—all this with their special touch of humor for an enjoyable read.

 Have fun using Grails in action with Grails in Action, Second Edition!

 DIERK KÖNIG

 AUTHOR, GROOVY IN ACTION
xix

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

preface
“Hey, Peter. I think we should throw together a second edition. What do you think?”

 “Are you serious? You know how much work we put into the first edition, it nearly
killed us both.”

 “No, come on. Don’t be thinking major rewrite; be thinking a light-touch iteration
just to refresh a few things. It’ll be a snap, done in a couple of months.”

 “I’m tired already.”
 And so began our journey toward this volume you now hold. It was as far from a

light-touch rewrite as any second edition could be. Experts recommend a second edi-
tion should have at least 20% new content; I think ours is more like 50%, with a
refresh of the rest. So we’re very tired right now!

 So much has happened since the first edition. Grails is now owned and backed by
an industrial heavyweight, forms a core part of the Spring portfolio, and has seam-
lessly embraced diverse technologies such as single page web apps, NoSQL, and the
Cloud (all of which get special chapters in this new edition). Various plugins have
come and gone, having been embraced into the core—and excised from it. Through
it all, Grails has remained on the cutting edge of all things web development, and has
now developed a loyal following among the larger Java web crowd. This little hipster
framework has now become relatively mainstream. And that’s exciting to see.

 I remember a military leadership guy once saying to me at a business function,
“Glen, great things don’t just happen. They are brought about.” I think that’s proba-
bly true. And everything great about this second edition has been brought about by
Peter Ledbrook. He carried this idea through to completion, rewrote vast sections of
xx

Licensed to Mark Watson <nordickan@gmail.com>

PREFACE xxi
many chapters, and fixed so many source code errors he should have unlocked a spe-
cial GitHub badge. He sustained this project on the days I was totally over it. And he
carried the responsibility for this effort being a worthy second edition. Anything good
here is his fault. So if you see him at a conference, make sure to buy him a drink!

 We really hope you enjoy this much expanded and updated second edition of
Grails in Action. We’re confident you will find it even more pragmatic and brimming
with the many best practices we’ve learned from a bunch more years of experience
working in the field.

 GLEN SMITH
Licensed to Mark Watson <nordickan@gmail.com>

acknowledgments
Last time we were here, it was a new undertaking and we didn’t know what we were
getting ourselves into. This time we were supposed to know better, and yet the support
shown from the team at Manning was once again vital to this endeavor. We would like
to thank everyone involved in the publication of this book. Particular thanks go to our
development editor, Cynthia Kane, who put up with some rather sleepy authors dur-
ing the conference calls and kept our motivation high. The production team also did
a marvelous job of tightening up our prose and clearing up all those ambiguities and
inconsistencies that inevitably appear even with just one author.

 No technical book is worth a penny unless it’s accurate. There is a lot of detail
inside Grails in Action, Second Edition with plenty of scope for error. It is thanks to the
persistence of our technical proofreader, Doug Warren, and his attention to detail,
that the code we present in this book works. Many thanks to him.

 We’d also like to thank our reviewers for sending detailed feedback on the manu-
script at various stages in its development: Aiden Mark Humphreys, Alvin Scudder,
Antonio Mas Rodriguez, Cynthia Pepper, Daniel Miller, David Madouros, Debra
Miller, Ivan Todorović, Jack Frosch, Jeffrey Yustman, Jerry Gaines, Koray Güclü, Marc
Weidner, Michael A. Angelo, Mike Spencer, Phillip Warner, Pratap Chatterjee, Shiloh
Morris, and Toby Hobson.

 The early MEAP subscribers also did a sterling job of pointing out typos, grammati-
cal errors, confusing explanations, and other issues. If you’re interested, you can find
much of that feedback on GitHub in the book’s repository there. Equally important
for us was all the positive feedback we received. That was a great motivator to com-
plete the book and ensure it was as good as we could make it.
xxii

Licensed to Mark Watson <nordickan@gmail.com>

ACKNOWLEDGMENTS xxiii
 Thanks also to Dierk König for his encouragement and for agreeing to write the
foreword to our book. And last, but not least, we would like to thank Graeme Rocher
and the rest of the Grails team and contributors for producing such a wonderful
framework that has made software development fun again.

Glen Smith

When I was a kid, one of my mentors, Paul Le Lievre, said to me, “Glen, there’s no
such thing as a free lunch. It’s only free because someone else pays.” That’s good
advice. Someone always pays. And the main person who paid for this book to happen
was my amazing and long-suffering wife, Kylie. This time, the project took more than
18 months, which is a long time to endure an absentee author husband. Thanks for
putting up with my grumpy and stressed manner as Grails in Action, Second Edition was
reworked, rewritten, reshaped, and endlessly edited into an almost completely differ-
ent book. Matie, you are the best! Consider this book a voucher for unlimited child-
care-free weekends redeemable at your leisure. Bubble bath will be supplied.

 My beautiful children, Isaac and Zoe, also paid a hefty price for this tome. Love
you guys so much. Daddy is home, and months of extended bike rides and endless
cuddles await!

 My parents, Alby and Jan Smith, and parents-in-law, Steve and Joy Salter, have been
a great encouragement for this second edition project and a great help with childcare.
Thanks again for your support!

 Once again, Peter Ledbrook, my coauthor, was a calm voice of encouragement
when I was drowning in an ever-growing to-do list. He’s a very humble and low-profile
guy who is always willing to help without any kind of bravado or drama. He knows
more about Grails than any non-Graeme person and has written all the technically
challenging stuff in this book. Our friendship has now survived two major book proj-
ects, and the books have been significantly better for his partnership.

Peter Ledbrook

No one warned us how much work a second edition would involve. And yet once
again, my coauthor, Glen Smith, brought energy and enthusiasm to the project despite
getting up at 5 a.m. for our calls. Together, we somehow pulled through and the result
lies before you. We hope you like it!

 I’d also like to thank Graeme Rocher, the Grails project lead, for responding
quickly to my many questions about the framework’s internals, while continuing to
push the boundaries on the project. The framework has changed a lot since the first
edition, even while we were writing the book, so those insights were invaluable in
keeping the content up to date.

 Last, but definitely not least, many thinks to all our early adopters who provided
both valuable feedback and encouragement at all stages. They were vital to keeping
our spirits up.
Licensed to Mark Watson <nordickan@gmail.com>

about this book
Grails in Action, Second Edition is a comprehensive introduction to the Grails framework
covering the nuts and bolts of all core Grails components: controllers, views, services,
taglibs, and plugins. But much more than an introduction, Grails in Action, Second Edi-
tion is jam-packed with skills, techniques, and insights from the trenches: solving the
challenges you’re likely to face developing your next killer web app.

Roadmap
Grails in Action, Second Edition gives you a fast-paced and accessible introduction to the
world of agile web development.

 The book is divided into four parts:

■ Part 1: Introducing Grails
■ Part 2: Core Grails
■ Part 3: Everyday Grails
■ Part 4: Advanced Grails

Part 1 will introduce you to Grails by taking you through building your first Grails
application—a simple Quote of the Day application. You’ll get a taste for all the parts
of the Grails ecosystem and for how all the parts hang together to create a complete
application. But in order to make any sophisticated use of Grails, you’ll need an
appreciation for Groovy—the dynamic language that forms the foundation of your
Grails coding. So we’ll spend some time training you on all the basics in chapter 2.

 Part 2 begins our deeper exploration of the core Grails artifacts. You’ll learn how
models, views, and controllers interact, and you’ll gain a deep understanding of all
xxiv

Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THIS BOOK xxv
the core features that make up the heart of Grails applications. We’ll introduce you to
Hubbub, our sample social-networking application, and implement all the features
that you’ll commonly find in Grails applications: domain modeling, querying, skins
and layout, form handling, and more. By the end of part 2, you’ll be confidently devel-
oping your own basic applications.

 Because real-world web applications involve a lot more than just forms and data-
bases, part 3 will tackle the skills you’ll need to take your application to the world.
We’ll explore testing strategies to ensure your code is implemented correctly, and
we’ll show how to give your application that Web 2.0 feel through time-saving third-
party plugins. Few applications can face the outside world without some kind of secu-
rity model, so we’ll explore the security implications of taking your Grails application
online. Finally, we’ll look at strategies for designing RESTful APIs and conclude with a
survey of the asynchronous technologies that are becoming increasingly popular in
developing scalable applications.

 In part 4, we conclude our tour of Grails with the most advanced features of the
framework. We’ll look deep inside Grails’ underlying technologies, Spring and Hiber-
nate. We’ll also show you how to integrate Grails with your existing build processes
and run your applications in the cloud.

 Three appendixes address reference issues and XML and Spring builders. Two
bonus chapters, “Advanced GORM kung fu” and “Developing plugins,” are available
online from the publisher’s website at www.manning.com/gsmith2 or www.manning
.com/GrailsinActionSecondEdition.

Who should read this book
Whether you’re a seasoned Java developer ready to dip your toes in the waters of
dynamic web frameworks, or a hardcore web developer making the switch to the latest
Convention over Configuration paradigm, Grails in Action, Second Edition will give you
the tools to get productive quickly and the deep knowledge to handle the corner cases
when you get stuck.

 Some experience with web development (in particular CSS, HTML, and JavaScript)
is assumed, along with a basic knowledge of programming. Previous experience with
Java web development is an advantage, but we take the time to explain core Java web
concepts in sidebars where applicable. If you’re coming from another language back-
ground (such as Ruby, Perl, or PHP), you should find the move to Grails quite natural.

Code conventions
This book provides copious examples that show how you can make use of each of the
topics covered. Source code in listings or in text appears in a fixed-width font like
this to separate it from ordinary text. In addition, class and method names, object
properties, and other code-related terms and content in text are presented using the
same fixed-width font.

 Code and command-line input can be verbose. In many cases, the original source
code (available online) has been reformatted; we’ve added line breaks and reworked
Licensed to Mark Watson <nordickan@gmail.com>

www.manning.com/gsmith2
www.manning.com/GrailsinActionSecondEdition
www.manning.com/GrailsinActionSecondEdition

ABOUT THIS BOOKxxvi
indentation to accommodate the page space available in the book. In rare cases, when
even this was not enough, line-continuation markers were added to show where lon-
ger lines had to be broken.

 Code annotations accompany many of the listings, highlighting important con-
cepts. In some cases, numbered cueballs link to additional explanations that follow
the listing. We also use italics to highlight new code that has been added or changed
from an earlier listing.

Getting the source code
You can access the source code for all of the examples in the book from the pub-
lisher’s website at www.manning.com/GrailsinActionSecondEditon. All source code
for the project is hosted at GitHub (github.com)—a commercial Git hosting firm. We
will maintain the current URL via the publisher’s website. The source is maintained by
chapter, so, for example, you can download /source-code/ch06 and you will have a
full copy of the source up to that point in the book.

Keeping up to date
The Grails world moves very quickly. There have been substantial changes in Grails in
the time it took us to develop Grails in Action, Second Edition. Even moving from Grails 2.2
to 2.3 caused us to make significant changes!

 Although the book targets Grails 2.3, a new version of Grails (2.4) is already avail-
able. Fortunately, everything in here is still valid for the new version. You may notice a
difference in the initial state of files such as grails-app/conf/BuildConfig.groovy, but
the code we add will still work.

 Speaking of Grails 2.4, you will find some interesting changes.

■ It now comes with Spring Framework 4 rather than 3.2.
■ Hibernate 4 is now the default, although you can switch to the older Hibernate 3

plugin, which has the dependency name hibernate.
■ You can enable static compilation of your controllers, services, and other arti-

facts via the new @GrailsCompileStatic annotation.
■ New Grails projects use the Asset Pipeline plugin instead of Resources, but you

can easily switch back to Resources.
■ The Maven plugin now works much better for multiproject builds and you can

use it with any 2.x Grails version.
■ Where queries (chapter 5) have improved support for subqueries and projections.

Of these, the only one that has an immediate impact is the Asset Pipeline plugin. We
recommend you remove those dependencies and replace them with the appropriate
Resources plugins while you work through the book. That said, we recommend you
use Asset Pipeline for real projects. The Grails user guide has good coverage of it.

 If there are portions of source code needing modification for a future release,
you’ll be able to find information on the Grails in Action, Second Edition Author Online
forum (www.manning.com/GrailsinActionSecondEdition).
Licensed to Mark Watson <nordickan@gmail.com>

www.manning.com/GrailsinActionSecondEdition
www.manning.com/GrailsinActionSecondEditon

ABOUT THIS BOOK xxvii
Author Online
Purchase of Grails in Action, Second Edition includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the authors and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/
GrailsinActionSecondEdition. This page provides information on how to get on the
forum once you are registered, what kind of help is available, and the rules of conduct
on the forum. It also provides links to the source code for the examples in the book,
errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the Author Online remains voluntary (and
unpaid). We suggest you try asking the authors some challenging questions lest their
interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the authors
GLEN SMITH started “stunt programming” the day his school took delivery of its first
set of Hitachi Peach computers (in the early ’80s) and has been doing it ever since.
He’s worked as a Unix/C systems programmer, Perl hacker, and even Visual Basic
dude (but he tells everyone it was just a phase). When Java came along, he lost interest
in everything else. These days, he spends most of his time consulting in Java EE tech-
nologies to the Australian government.

 He has been involved in the Grails community since Grails 0.1 and launched the first
public-facing Grails app (an SMS gateway) on Grails 0.2. He is a regular on the Groovy
and Grails speaking circuit, the cohost of the Grails podcast (http://grailspodcast.com),
and the man behind groovyblogs.org.

 Glen lives in Canberra, Australia, with his wife, two children, and an exuberant
labradoodle. He blogs at http://blogs.bytecode.com.au/glen and twitters at http://
twitter.com/glen_a_smith.

PETER LEDBROOK started his software development career as a teenager learning to
program in the comfort of his bedroom. After surviving the trials and tribulations of C
and C++, he switched to Java during his first job and has stayed with it ever since.

 An avid fan of open source software since those early days, he has always looked to
that community for innovative and useful solutions. He discovered Grails while investi-
gating Ruby on Rails and was astonished at how easy it was to write web applications
using the framework. The love affair began.

 He wrote several popular plugins (Remoting, Shiro, and GWT) and then became a
core Grails committer when he joined G2One as a consultant at the end of 2007. He
Licensed to Mark Watson <nordickan@gmail.com>

http://grailspodcast.com
http://blogs.bytecode.com.au/glen
http://twitter.com/glen_a_smith
http://twitter.com/glen_a_smith
www.manning.com/GrailsinActionSecondEdition
www.manning.com/GrailsinActionSecondEdition

ABOUT THIS BOOKxxviii
also has plenty of battle scars from actively working on several public-facing applica-
tions and helping teams make the most of Grails.

About the technical editor
DOUG WARREN is a consultant, architect, and developer specializing in Java, Spring,
Grails, Ruby, and open source technologies. He was leader of both a Java and a Web
Services user group for many years. Over the past 14 years, he has also been a very
active technical proofreader and reviewer for Manning Publications.
Licensed to Mark Watson <nordickan@gmail.com>

about the title
By combining introductions, overviews, and how-to examples, Manning’s In Action
books are designed to help learning and remembering. According to research in
cognitive science, the things people remember are things they discover during self-
motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent, it must pass through stages of exploration, play, and,
interestingly, retelling of what is being learned. People understand and remember
new things, which is to say they master them, only after actively exploring them.
Humans learn in action. An essential part of an In Action guide is that it is example-
driven. It encourages the reader to try things out, play with new code, and explore
new ideas.

 There is another, more mundane, reason for the title of this book: our readers are
busy. They use books to do a job or solve a problem. They need books that allow them
to jump in and jump out easily and learn just what they want, just when they want it.
They need books that aid them in action. The books in this series are designed for
such readers.
xxix

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

about the cover illustration
The figure on the cover of Grails in Action, Second Edition is a “Jeune Fille de Plouneour-
Trez,” or a young woman from a town in the province of Bretagne in northern France.
The illustration is taken from a French book of dress customs, Encyclopedie des Voyages,
by J. G. St. Saveur, published in 1796. Travel for pleasure was a relatively new phenom-
enon at the time and illustrated guides such as this one were popular, introducing
both the tourist as well as the armchair traveler to the inhabitants of other countries
of the world, as well as to the regional costumes of France.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and regions just 200 years ago. This
was a time when the dress codes of two regions separated by a few dozen miles identi-
fied people uniquely as belonging to one or the other, and when members of a social
class or trade or profession could be easily distinguished by what they were wearing.

 Dress codes have changed since then, and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a world of cultural
and visual diversity for a more varied personal life…or a more varied and interesting
intellectual and technical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative—and the fun—of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by the pictures from this collection.
xxx

Licensed to Mark Watson <nordickan@gmail.com>

Part 1

Introducing Grails

The field of Java-based web application frameworks has made great strides
in usability, but creating an application with them is still hard work. Grails’s core
strength is developing web applications quickly, so you’ll jump into writing your
first application right away.

 In chapter 1, we expose you to the core parts of Grails by developing a simple
Quote of the Day (QOTD) application from scratch. You’ll store to and query
from the database, develop business logic, write tests, and add Ajax functionality.
By the end of it, you’ll have a feel for the parts of Grails.

 To develop serious Grails applications, you need a firm grasp of Groovy—the
underlying dynamic language that makes Grails tick. In chapter 2, we take you
on a whirlwind tour of core Groovy concepts and introduce the syntax.

 By the end of part 1, you’ll understand the power of Groovy and Grails and
be ready to take on the world. Feel free to do so—Grails encourages experimen-
tation. But you might want to stick around for part 2, where we take you deeper
into the core parts of Grails.
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Grails in a hurry . . .
“Help, I’ve lost my Mojo!” That statement is a concise summary of what developers
feel when working with any of the plethora of Java web frameworks. Each change
requires time spent editing configuration files, customizing web.xml files, writing
injection definitions, tweaking build scripts, modifying page layouts, and restarting
apps. Aaaahhhh! “Where has all the fun gone? Why is everything so tedious? I
wanted to whip up a quick app to track our customer signups! There must be a bet-
ter way . . . ” We hear you.

 Grails is a next-generation Java web development framework that draws on best-
of-breed web development tooling, techniques, and technologies from existing Java
frameworks, and combines them with the power and innovation of dynamic lan-
guage development. The result is a framework that offers the stability of technologies

This chapter covers
■ What is Grails?
■ Core Grails philosophy
■ Grails installation
■ Key components of a Grails application
■ Your first Grails application—developing

and deploying it
3

Licensed to Mark Watson <nordickan@gmail.com>

4 CHAPTER 1 Grails in a hurry . . .
you know and love, but shields you from the noisy configuration, design complexity, and
boilerplate code that make existing Java web development tedious. Grails allows you to
spend your time implementing features, not editing XML.

 But Grails isn’t the first player to make such claims. You’re thinking, “Please don’t
let this be YAJWF (Yet Another Java Web Framework)!” Because if the Java develop-
ment world is famous for one thing, it’s having an unbelievably large number of web
frameworks. Struts, WebWork, JavaServer Faces (JSF), Spring MVC, Seam, Wicket, Tap-
estry, Stripes, Google Web Toolkit (GWT), and the list goes on and on—all with their
own config files, idioms, templating languages, and gotchas. And now we’re introduc-
ing a new one?

 The good news is that this ain’t your grandma’s web framework. We’re about to
take you on a journey to a whole new level of getting stuff done—and getting it done
painlessly. We’re excited about Grails because we think it’s time that Java web app
development was fun again! It’s time for you to sit down for an afternoon and crank
out something you’d be happy demoing to your boss, client, or the rest of the inter-
net. Grails is that good.

 In this chapter, we take you through developing your first Grails app. Not a toy,
either. Something you can deploy and show your friends. An app that’s data-driven
and Ajax-powered that has full CRUD (create, read, update, delete) implementation, a
template-driven layout, and even unit tests. All in the time it takes to eat your lunch,
with less than 100 lines of code. Seriously.

 But before you fire up your IDE and get your hands dirty writing code, you may
need more convincing about why Grails is such a game-changer and should be on
your radar.

1.1 Introducing Grails
Grails is a next-generation Java web development framework that generates developer
productivity gains through the confluence of a dynamic language, a convention over
configuration philosophy, powerfully pragmatic supporting tools, and an agile per-
spective drawn from the best emerging web development paradigms.

1.1.1 Why Grails changed the game

Grails entered the Java Web Application landscape in 2006 and has grown steadily in
adoption since. Taking full advantage of Groovy as the underlying dynamic language,
Grails made it possible to create a Book object and query it with dynamic methods
such as Book.findByTitle("Grails in Action") or Book.findAllBy-DatePublished-
GreaterThanAndTitleLike(myDate, "Grails"), even though none of those methods
existed on the Book object.

 Even better, you could access any Java code or libraries you were already using, and
the language syntax was similar enough to Java to make the learning curve painless. But
best of all, at the end of the day you had a WAR file to deploy to your existing Java app
server—no special infrastructure required, and no management awareness needed.
Licensed to Mark Watson <nordickan@gmail.com>

5Introducing Grails
 The icing on the cake was that Grails was built on Spring, Hibernate, and other
libraries already popular and used by enterprise Java developers. It was like turbocharg-
ing existing development practices without sacrificing reliability or proven technologies.

 Grails’s popularity exploded. Finally, Java web developers had a way to take all the
cool ideas that Rails had brought to the table and apply them to robust enterprise-
strength web application development, without leaving behind any of their existing
skills, libraries, or infrastructure.

1.1.2 Seven big ideas

That’s enough history about how Grails came to be such a popular Java web frame-
work. But if you (or your manager) need further convincing that Grails is an outstand-
ing option for your next big web app project, the following subsections discuss seven
of the big ideas (shown in figure 1.1) that drove Grails to such a dominant position in
the emerging next-gen Java web frameworks market.

BIG IDEA #1: CONVENTION OVER CONFIGURATION

One of the things you’ll notice about developing with Grails is how few configuration
files exist. Grails makes most of its decisions based on sensible defaults drawn from
your source code:

■ Add a controller class called ShopController with an action called order, and
Grails will expose it as a URL of /yourapp/shop/order.

■ Place your view files in a directory called /views/shop/order, and Grails will
link everything for you without a single line of configuration.

■ Create a new domain class called Customer, and Grails will automatically create
a table called customer in your database.

■ Add fields to your Customer object, and Grails will automatically create the nec-
essary fields in your customer table on the fly (including the right data types
based on the validation constraints you place on them). No SQL required.

Scaffoding
and

templating Java
integration

Incredible
community

Productivity
ethos

Rock-solid
foundations

Agile
philosophy

Conventions
over

configuration
Grails

Figure 1.1 The
Grails ecosystem is a
powerful confluence
of people, ideas, and
technology.
Licensed to Mark Watson <nordickan@gmail.com>

6 CHAPTER 1 Grails in a hurry . . .
Grails is about convention over configuration, not convention instead of configuration.
If you need to tweak the defaults, the power is there. Grails makes overriding the
defaults easy, and you won’t need any XML. But if you want to use your existing Hiber-
nate configuration XML files in all their complex glory, Grails won’t stand in your way.

BIG IDEA #2: AGILE PHILOSOPHY

Grails makes a big deal about being an agile web framework, and by the time you
finish this chapter, you’ll understand why. By making use of a dynamic language
(Groovy), Grails makes things that were a real pain in Java a complete joy. Whether it’s
processing form posts, implementing tag libraries, or writing test cases, Grails offers a
conciseness and expressiveness to the framework that make these operations easier
and more maintainable at the same time.

 The Grails infrastructure adds to the pleasure by keeping you iterating without
getting in the way. Imagine starting up a local copy of your application and adding
controllers, views, and taglib features while it’s running—without restarting it! Then
imagine testing those features, making tweaks, and clicking refresh in your browser to
view the updates. It’s a joy.

 Grails brings a whole new level of agility to Java web application development, and
when you’ve developed your first complete application, which you’ll do over the next
30 minutes or so, you’ll start to appreciate some of the unique power Grails provides.

BIG IDEA #3: ROCK-SOLID FOUNDATIONS

Even though Grails itself is full of innovation and cutting-edge ideas, the core is built
on rock-solid proven technologies: Spring and Hibernate. These are the technologies
that many Java shops use today, and for good reason: they’re reliable and battle-tested.

 Building on Spring and Hibernate also means there’s no new magic going on
under the hood if you need to tweak things in the configuration (by customizing a Hiber-
nate configuration class) or at runtime (by getting a handle to a Spring Application-
Context). None of your learning time on Spring and Hibernate is wasted.

 It doesn’t matter if you’re new to Grails and don’t have a background in Spring or
Hibernate. Few Grails development cases fall back to that level, but know it’s there if
you need it.

 This same philosophy of using best-of-breed components has translated to other
areas of the Grails ecosystem—particularly third-party plugins. The scheduling plugin
is built on Quartz, the search plugin is built on Lucene and Compass, and the layout
engine is built on SiteMesh. Wherever you go in the ecosystem, you see popular Java
libraries wrapped in an easy-to-use instantly productive plugin. Peace of mind plus
amazing productivity!

 Another important part of the foundation for enterprise developers is having the for-
mal backing of a professional services, training, and support organization. When Spring-
Source acquired G2One in November 2008, Groovy and Grails inherited the backing of a
large company with deep expertise in the entire Groovy and Grails stack. In recent times,
SpringSource was acquired by VMware and spun off into a dedicated big data and Spring-
related development and support organization called Pivotal (http://gopivotal.com/).
Licensed to Mark Watson <nordickan@gmail.com>

http://gopivotal.com/

7Introducing Grails
This has also introduced a range of support options to the platform that are useful to
organizations looking for 24/7 Groovy and Grails support backup.

BIG IDEA #4: SCAFFOLDING AND TEMPLATING

If you’ve ever tried bootstrapping a Spring MVC application by hand, you know it isn’t
pretty. You need a directory of JAR files, bean definition files, web.xml customizations,
annotated POJOs (plain old Java objects), Hibernate configuration files, database-
creation script, and a build system to turn it all into a running application. It’s hard
work, and you may burn a day in the process.

 By contrast, building a running Grails application is a one-liner: grails create-
app myapp, and you can follow it up with grails run-app to see it run in your browser.
All the same stuff happens behind the scenes, but based on conventions and sensible
defaults rather than on hand-coding and configuration.

 If you need a new controller class, grails create-controller will generate a skel-
eton for you (along with a skeleton test case). The same goes for views, services, domain
classes, and all the other artifacts in your application. This template-driven approach
bootstraps you into a fantastic level of productivity, where you spend your time solving
problems, not writing boilerplate code.

 Grails also offers an amazing feature called scaffolding. Based on the fields in your
database model classes, Grails can generate a set of views and controllers on the fly to
handle CRUD operations without a single line of code.

BIG IDEA #5: JAVA INTEGRATION

One of the unique aspects of the Groovy and Grails community is that, unlike some
other Java virtual machine (JVM) languages, we love Java! We appreciate that prob-
lems and design solutions are better implemented in a statically typed language, so we
have no problem writing our web form processing classes in Groovy and our high-
performance payroll calculations in Java. It’s all about using the right tool for the job.

 We’re also in love with the Java ecosystem and don’t want to leave behind the
amazing selection of Java libraries we know and love. Whether that’s in-house data
transfer objects (DTO), JARs for the payroll system, or a great new Java library for
interfacing with Facebook, moving to Grails means you don’t have to leave anything
behind—except verbose XML configuration files. And as we’ve said before, you can
reuse your Hibernate mappings and Spring resource files if you’re so inclined!

BIG IDEA #6: INCREDIBLE COMMUNITY

One of the most compelling parts of the Grails ecosystem is the fantastic and helpful
user community. The Groovy and Grails mailing list is a hive of activity where both die-
hard veterans and new users are equally welcome. The Grails.org site hosts a Grails-
powered wiki full of Grails-related information and documentation.

 A wealth of third-party community websites has also sprung up around Grails:

■ Groovyblogs.org aggregates what’s happening in the Groovy and Grails blogo-
sphere and is full of interesting articles.

■ Sites such as Facebook and LinkedIn host Grails social networking options.
Licensed to Mark Watson <nordickan@gmail.com>

8 CHAPTER 1 Grails in a hurry . . .
■ A Groovy podcast (search for groovypodcast on YouTube) runs every so often to
keep you up to date with news, interviews, and discussions in the Groovy and
Grails world.

But one of the coolest parts of the community is the amazing ever-growing list of third-
party plugins for Grails. Whether it’s a plugin to implement full-text search, Ajax
widgets, reporting, instant messaging, or RSS feeds, or to manage log files, profile
performance, or integrate with Twitter, there’s something for everyone. You’ll find lit-
erally hundreds of time-saving plugins. (We introduce you to the most popular ones in
chapter 10.)

BIG IDEA #7: PRODUCTIVITY ETHOS

Grails is about more than building web applications. It’s about executing your vision
quickly so that you can get on to more important “life stuff”: hanging out with your
family, walking your dog, learning rock guitar, or getting your veggie patch growing
big zucchinis. Web apps come and go; zucchinis are forever. Grails productivity gives
you that sort of sage-like perspective.

 For us, productivity is the new black, and developing in Grails is about getting your
life back one feature at a time. When you realize that you can deliver in one day work
that used to take two weeks, you start to feel good about going home early. Working with
such a productive framework even makes your hobby time more fun. You can complete
all those Web 2.0 startup website ideas you’ve dreamed about, but that ended up as half-
written Struts or Spring MVC apps. Through the course of this chapter, we’ll give you a
taste of the kind of productivity you can expect when moving to Grails.

 Most programmers we know are the impatient type, so in this chapter we’ll take 30
minutes to develop a data-driven, Ajax-powered, unit-tested, deployable Web 2.0 web-
site. Along the way, you’ll get a taste of the core parts of a Grails application: models,
views, controllers, taglibs, and services. Buckle up—it’s time to hack.

1.2 Getting set up
To get Grails up and running, review the installation process shown in figure 1.2.

1 Install a Java Development Kit (JDK) (version 1.6 or later).
Run javac -version from your command prompt to verify the version you
have. Most PCs come with Java preinstalled, so you may not need this step.

2 After your JDK is installed, download the latest Grails distro from grails.org and
unzip it to your favorite installation area.

3 Set the GRAILS_HOME environment variable, which points to your Grails installa-
tion directory, and add GRAILS_HOME/bin to your path.
On Mac OS X and Linux, edit the ~/.profile script to contain lines such as these:

export GRAILS_HOME=/opt/grails
export PATH=$PATH:$GRAILS_HOME/bin

On Windows, go into System Properties to define GRAILS_HOME and update your
PATH setting.
Licensed to Mark Watson <nordickan@gmail.com>

9Getting set up
4 Set the JAVA_HOME environment variable to the location of your JDK, in the same
way as you did for GRAILS_HOME in the previous step.

5 To verify that Grails is installed correctly, run grails help from the command line.
This will give you a handy list of Grails commands and confirm that everything
is running as expected.

As your Grails applications become more sophisticated, you’ll want to take advantage
of the fantastic IDE support available for Grails projects. You can find Grails plugin
support for your preferred IDE—IntelliJ, NetBeans, or Eclipse—or you can use the
dedicated Groovy/Grails Tool Suite1 from Pivotal. We won’t develop much code in

Note on Grails versions
The book is based on Grails 2.3.7, but the latest version of Grails may be different
by the time you read this. The best way to ensure that you’re running the correct ver-
sion of Grails with all our sample code is via the Grails wrapper:

./grailsw <command>

You don’t need the starting ./ on Windows, it’s only for Unix-like systems. The wrap-
per is a script that downloads and caches the appropriate version of Grails for the
current project. Projects based on the same version of Grails use the same cached
version, so don’t worry about losing lots of disk space!

New projects created by Grails 2.3 and above already contain the wrapper, but for
Grails 2.1 and 2.2 you need to explicitly run grails wrapper if you want it for your
own projects.

1 Download the tool suite from https://spring.io/tools/ggts.

http://www.oracle.com/technetwork/java/javase/downloads/

Install JDK

Install Grails

Customize environment

Add Grails to your PATH

Test your installation

http://www.grails.org/

GRAILS_HOME=/opt/grails

PATH=$GRAILS_HOME/bin;$PATH

grails help
Figure 1.2 The Grails
installation process
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

https://spring.io/tools/ggts
http://www.allitebooks.org

10 CHAPTER 1 Grails in a hurry . . .
this chapter, so a text editor is all you need. Fire up your favorite editor, and let’s talk
about your sample application.

1.3 QOTD: your sample program
If you’re writing a small application, you may as well have fun. This example is a
Quote-of-the-Day web application in which you’ll capture and display famous pro-
gramming quotes from development rock stars throughout time. You’ll let the user
add, edit, and cycle through programming quotes, and add a dash of Ajax sizzle to
give it a modern feel. You’ll want a short URL for your application, so make qotd your
application’s working title.

NOTE You can download the sample apps for this book, including CSS and
associated graphics, from the book’s site (www.manning.com/gsmith2). To
view the latest issues and check out the latest sources, see the GitHub project
(https://github.com/GrailsInAction/graina2) for details.

It’s time to start your world-changing quotation app, and all Grails projects begin the
same way. First, find a directory to work in. Then create the application:

grails create-app qotd
cd qotd

Well done. You’ve created your first Grails application. You’ll see that Grails created a
qotd subdirectory to hold your application files. Change to that directory now, which
is where you’ll stay for the rest of the chapter.

 Because you’ve done the hard work of building the application, it would be a
shame not to enjoy the fruit of your labor. To run the app, enter:

grails run-app

Grails ships with a Tomcat plugin used to host your application during the develop-
ment and testing lifecycle. When you run the grails run-app command, Grails com-
piles and starts your web application. When everything is ready to go, you’ll see a
message like this on the console:

Server running. Browse to http://localhost:8080/qotd

This means it’s time to fire up your favorite browser and take your application for a
spin: http://localhost:8080/qotd/. Figure 1.3 shows your QOTD application running
in a browser.

 After you’ve taken in the home page, you can stop the application by pressing Ctrl-C
or running grails stop-app from another terminal/command prompt. Alternatively,
you can leave the application running and issue Grails commands from a separate ter-
minal/command prompt in your OS.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/GrailsInAction/graina2
http://localhost:8080/qotd/
www.manning.com/gsmith2

11QOTD: your sample program
1.3.1 Writing a controller

You have your application built and deployed, but you’re short on an engaging user
experience. Now is a good time to learn that Grails handles interaction with users via
a controller.

 Controllers are at the heart of every Grails application. They take input from
your user’s web browser, interact with your business logic and data model, and route
the user to the correct page to display. Without controllers, your web app would be
static pages.

Running on a custom port (not 8080)
If port 8080 isn’t for you (because you have another process, such as Tomcat, run-
ning), you can customize the port that the Grails embedded application server runs
on using the -Dserver.port command-line argument. If you want to run Grails on
port 9090, for instance, you could run your application like this:

grails -Dserver.port=9090 run-app

If you decide to always run a particular application on a custom port, you can create
a custom /grails-app/conf/BuildConfig.groovy file with an entry for grails.server.
port.http=9090 to make your custom port the default. Or make a system-wide
change by editing the global $HOME/.grails/settings.groovy file. You’ll learn more
about these files in chapter 15.

Figure 1.3 Your app is up and running.
Licensed to Mark Watson <nordickan@gmail.com>

12 CHAPTER 1 Grails in a hurry . . .
 Like most parts of a Grails application, you can let Grails generate a skeleton
controller by using the Grails command line. Let’s create a simple controller for han-
dling quotes:

grails create-controller quote

Grails will respond with a list of the artifacts it generated:

| Created file grails-app/controllers/qotd/QuoteController.groovy
| Created file grails-app/views/quote
| Created file test/unit/qotd/QuoteControllerSpec.groovy

Grails creates this skeleton controller in /grails-app/controllers/qotd/Quote-
Controller.groovy. You’ll notice that Grails sorted out the capitalization for you. Here
is the skeleton:

package qotd

class QuoteController {
 def index() { }
}

Not so exciting, is it? The previous index entry is a Grails action, which we’ll return to
in a moment. For now, let’s add a home action that sends text back to the browser:

package qotd

class QuoteController {
 def index() { }

 def home() {
 render "<h1>Real Programmers do not eat Quiche</h1>"
 }
}

A word on package naming
If you omit the package name for a Grails artifact, it will default to the name of the
app (in the previous example, if you do a grails create-controller quote, it cre-
ates an artifact called /grails-app/qotd/QuoteController.groovy).

For production code, the Grails community has settled on the standard Java-based
convention where your artifacts should be created with your org domain name.
Grails lets you change the default package name for your app in /grails-app/conf/
Config.groovy. For this chapter’s example, you might choose to change the setting
in that file to read:

grails.project.groupId = "com.grailsinaction.qotd"

With such a setting in play, when you do grails create-controller quote it will
create the class in /grails-app/controller/com/grailsinaction/qotd/QuoteController
.groovy. It’s a great key saver change to make at the start of a new Grails project. To
prevent surprises for people picking up this chapter halfway through, we’re going to
stick with the default package name of qotd for now.
Licensed to Mark Watson <nordickan@gmail.com>

13QOTD: your sample program
Grails provides the render() method to send content directly back to the browser.
This will become more important when you dip your toes into Ajax waters, but for
now let’s use it to deliver your “Real Programmers” heading.

 How do you invoke your action in a browser? If this were a Java web application,
the URL to get to it would be declared in a configuration file, but not in Grails. This is
where the convention over configuration pattern comes in.

 Ruby on Rails introduced the idea that XML configu-
ration (or configuration of any sort) can be avoided if the
framework makes opinionated choices for you about how
things fit together. Grails embraces the same philosophy.
Because your controller is called QuoteController, Grails
will expose its actions over the URL /qotd/quote/your-
action. Figure 1.4 gives a visual breakdown of how URLs
translate to Grails objects.

 In the case of our hello action, we need to navigate to: http://localhost:8080/
qotd/quote/home.

 Figure 1.5 shows your brand-new application running without a single line of XML.
 If you’re wondering about that index() routine in the skeleton controller code,

that’s the method called when the user omits the action name. If you decide all refer-
ences to /qotd/quote/ should end up at /qotd/quote/home, you need to tell Grails
about that with a default action such as the one in the following listing.

package qotd

class QuoteController {

 static defaultAction = "home"

 def home() {
 render "<h1>Real Programmers do not eat Quiche</h1>"
 }
}

Listing 1.1 Handling redirects

/qotd/quote/home

Application
name

Controller
name

Action
name

Figure 1.4 How URLs
translate to Grails objects

Figure 1.5 Adding your functionality
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:8080/qotd/quote/home
http://localhost:8080/qotd/quote/home

14 CHAPTER 1 Grails in a hurry . . .
The app looks good so far, but having that HTML embedded in your source is nasty.
Now that you’ve learned about controllers, it’s time to get acquainted with views.

1.3.2 Generating an HTML page: the view

Embedding HTML inside your code is always a bad idea. Not only is it difficult to read
and maintain, but your graphic designer will need access to your source code to
design the pages. The solution is to move your display logic to a separate file known as
the view. Grails makes it simple.

 If you’ve done any work with Java web applications, you’ll be familiar with Java-
Server Pages (JSP). JSPs render HTML to the user of your web application. Grails appli-
cations make use of Groovy Server Pages (GSP). The concepts are similar.

 We’ve already discussed the convention over configuration pattern, and views take
advantage of the same stylistic mindset. If you create your view files in the right place,
everything will hook up without a single line of configuration.

 Begin by implementing your random action as shown in the following code. We’ll
handle the view next.

def random() {
 def staticAuthor = "Anonymous"
 def staticContent = "Real Programmers don't eat much quiche"
 [author: staticAuthor, content: staticContent]
}

What’s with those square brackets? That’s how the controller action passes informa-
tion to the view. If you’re an old-school servlet programmer, think of it as request-
scoped data. The [:] operator in Groovy creates a Map, so you’re passing a series of
key/value pairs through to your view.

 Where does your view fit into this, and where will you put your GSP file so that Grails
can find it? Use the naming conventions you used for the controller, coupled with the
name of your action, and place the GSP in /grails-app/views/quote/random.gsp. If you
follow that pattern, no configuration is required.

 Let’s create a GSP file that references your Map data, as shown in the follow-
ing code:

<html>
<head>
 <title>Random Quote</title>
</head>
<body>
 <q>${content}</q>
 <p>${author}</p>
</body>
</html>

The ${content} and ${author} format is known as the GSP expression language, and
if you’ve worked with JSPs, it will be old news to you. If you haven’t worked with JSPs,
you can think of those ${} tags as a way of displaying the contents of a variable. Let’s
fire up the browser and give it a whirl. Figure 1.6 shows your new markup in action.
Licensed to Mark Watson <nordickan@gmail.com>

15QOTD: your sample program
1.3.3 Adding style with Grails layouts
You’ve now written your piece of backend functionality, but the output isn’t engag-
ing—no gradients, no giant text, no rounded corners. Everything looks mid-90s.

 You think it’s time for CSS, but let’s plan ahead. If you mark up random.gsp with
CSS, you’re going to have to add those links to the header of every page in the app.
Grails has a better way: layouts.

 Layouts give you a way to specify layout templates for certain parts of your applica-
tion. For example, you may want all of the quote pages (random, by author, by date)
styled with a common masthead and navigation links; only the body content should
change. To do this, let’s mark up your target page with IDs you can use for your CSS:

<html>
<head>
 <title>Random Quote</title>
</head>
<body>
 <div id="quote">
 <q>${content}</q>
 <p>${author}</p>
 </div>
</body>
</html>

Now, how do you apply those layout templates (masthead and navigation) we dis-
cussed earlier? Like everything else in Grails, layouts follow a convention over configu-
ration style. To have all your QuoteController actions share the same layout, create a
file called /grails-app/views/layouts/quote.gsp. Grails doesn’t have shortcuts for lay-
out creation, so you’ve got to roll this one by hand. The following listing shows your
attempt at writing a layout.

<html>
 <head>
 <title>QOTD » <g:layoutTitle/></title>

Listing 1.2 Adding a layout

Figure 1.6 Your view in action

Merges title from
target page

 b
Licensed to Mark Watson <nordickan@gmail.com>

16 CHAPTER 1 Grails in a hurry . . .
 <g:external dir="css" file="snazzy.css"/>
 <g:layoutHead />
 <r:layoutResources />
 </head>
 <body>
 <div id="header">
 <g:img dir="images" file="logo.png" alt="logo"/>
 </div>
 <g:layoutBody />
 </body>
</html>

Let’s break down the use of angle brackets. Because this is a template page, the
contents of your target page (random.gsp) will be merged with this template
before you send any content back to the browser. Under the hood, Grails uses Site-
Mesh, the popular Java layout engine, to do the merging for you. Figure 1.7 shows
the merge process.

 To make your layout template in listing 1.2 work, it needs a way to access elements
of the target page (when you merge the title of the target page with the template, for
example). It’s time to introduce you to taglibs because access is achieved through
Grails’s template taglibs.

 If you’ve never seen a tag library (taglib) before, think of them as groups of cus-
tom HTML tags that can execute code. In listing 1.2, you took advantage of the
<g:external>, <g:layoutHead>, and <g:layoutBody> tags. When the client’s browser
requests the page, Grails replaces those tag calls with real HTML, and the contents of
the HTML will depend on what the individual tag generates. For instance, that
<g:external> tag c will generate an HTML <link> element that points to the URL
for snazzy.css.

 In the title block of the page, you include your QOTD title and follow it with chev-
rons (>>) represented by the HTML character code », and add the title of the
target page itself B.

Creates relative
link to CSS file c

Merges head elements
from target page d

Merges in JavaScript, CSS,
and other resources e

Merges body elements
from target page f

/g
ra

ils
-a

p
p

/v
ie

w
s
/q

u
o

te
/r

a
n

d
o

m
.g

s
p

/g
ra

ils
-a

p
p

/v
ie

w
s
/l
a

y
o

u
t/

q
u

o
te

.g
s
p

h
tt

p
:/

/m
y
a

p
p

/q
u

o
te

/r
a

n
d

o
m

Raw .gsp
file

Apply
decorator

Render
page in
browser

Figure 1.7 SiteMesh decorates a raw GSP file with a standard set of titles
and sidebars.
Licensed to Mark Watson <nordickan@gmail.com>

17QOTD: your sample program
After the rest of the head tags, you use a <g:layoutHead> tag to merge the contents of
the HEAD section of any target page d. This can be important for search engine opti-
mization (SEO) techniques, where individual target pages might contain their own
META tags to increase their Google-ability.

 With your head metadata in place, it’s time to lay out any other HEAD-bound
resources that your page might need in the head section with a <g:layoutResources>
tag e. This is any other CSS or JavaScript that the Grails resources infrastructure
requires in the HEAD section of this page. More on this magic in the Advanced UI chapter!

 Finally, you get to the body of the page. You output your common masthead <div>
to get your Web 2.0 gradient and cute icons, and then you call <g:layoutBody> to ren-
der the BODY section of the target page f.

 Refresh your browser to see how you’re doing. Figure 1.8 shows your styled page.

Your app is looking good. Notice how you’ve made no changes to your relatively
bland random.gsp file. Keeping view pages free of cosmetic markup significantly
reduces your maintenance overhead. And if you need to change your masthead, add
more JavaScript includes, or incorporate a few additional CSS files, do it all in one
place: the template.

 Fantastic. You’re up and running with a controller, view, and template. But things
are still static in the data department. You’re overdue to learn how Grails handles

Getting the CSS and artwork
If you’re following along step-by-step at your workstation, you’ll be keen to grab the
CSS and image files that go along with the styling shown previously (so your local app
can look the same). You can grab the few files you need (/web-app/css/snazzy.css
and /web-app/images/) directly from the chapter 1 source code available for down-
load from www.manning.com/gsmith2 or directly from the current source code on
GitHub (https://github.com/GrailsInAction/graina2).

Figure 1.8 QOTD with some funky CSS skinning
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/GrailsInAction/graina2
www.manning.com/gsmith2

18 CHAPTER 1 Grails in a hurry . . .
information in the database. When you have that under your belt, you can circle back
and implement a real random action.

1.4 Creating the domain model
You’ve begun your application, and you can deploy it to your testing web container.
But let’s not overstate your progress—Google isn’t about to buy you yet. Your app
lacks a certain pizzazz. It’s time to add interactivity allowing users to add new quota-
tions to the database. To store those quotations, you’ll need to learn how Grails han-
dles the data model.

 Grails uses the term “domain class” to describe objects that can be persisted to the
database. In your QOTD app, you’re going to need a few domain classes, but let’s start
with the absolute minimum: a domain class to hold your quotations.

 Let’s create a Quote domain class:

grails create-domain-class quote

You’ll see that Grails responds by creating a fresh domain class. Here’s a matching
unit test to get you started:

| Created file grails-app/domain/qotd/Quote.groovy
| Created file test/unit/qotd/QuoteSpec.groovy

In your Grails application, domain classes always appear under the /grails-app/
domain. Look at the skeleton class Grails created in /grails-app/domain/qotd/
Quote.groovy:

package qotd

class Quote {

 static constraints = {
 }
}

That’s uninspiring as it appears now. You’ll need fields in your data model to hold
the various elements for each quote. Let’s beef up your class to hold the content of the
quote, the name of the author, and the date the entry was added:

package qotd

class Quote {
 String content
 String author
 Date created = new Date()

 static constraints = {
 }

}

Now that you’ve got your data model, you need to create your database schema, right?
Wrong. Grails does all that hard work for you behind the scenes. Based on the defini-
tions of the types in the previous code sample, and by applying simple conventions,
Licensed to Mark Watson <nordickan@gmail.com>

19Creating the domain model
Grails creates a quote table, with varchar fields for the strings, and Date fields for the
date. The next time you run grails run-app, your data model will be created on the fly.

 But how will it know which database to create the tables in? It’s time to configure a
data source.

1.4.1 Configuring the data source
Grails ships with an in-memory database out of the box, so if you do nothing, your
data will be safe and sound in volatile RAM. The idea of that makes most programmers
a little nervous, so let’s look at how to set up a more persistent database.

 In your /grails-app/conf/ directory, you’ll find a file named DataSource.groovy.
This is where you define the data source (database) that your application will use.
You can define different databases for your development, test, and production envi-
ronments. When you run grails run-app to start the local web server, it uses your
development data source. The following code shows an extract from the standard
DataSource.groovy file, which shows the default data source.

...
environments {
 development {
 dataSource {
 dbCreate = "create-drop"
 ➥ url = " jdbc:h2:mem:devDb;MVCC=TRUE;LOCK_TIMEOUT=10000;
;DB_CLOSE_ON_EXIT=FALSE"
 }
 }
 ...
}

You have two issues here. The dbCreate strategy tells Grails to drop and recreate your
database on each run. This is probably not what you want, so let’s change that to
update. This change lets Grails know to leave your database table contents alone
between runs (but we give it permission to add columns if it needs to).

 The second issue relates to the URL—it’s using an H22 in-memory database. That’s
fine for test scripts, but not for product development. Let’s change it to a file-based
version of H2 so that you have real persistence.

 The updated code is shown here:

...
environments {
 development {
 dataSource {
 dbCreate = "update"
 url = "jdbc:h2:devDb;MVCC=TRUE;LOCK_TIMEOUT=10000;

➥ DB_CLOSE_ON_EXIT=FALSE"
 }
 }
 ...
}

2 H2 (the Java SQL database) database engine, www.h2database.com.

Recreates database
on every run

Specifies an in-memory
database

Preserves tables
between runs

Specifies file-based
database
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.h2database.com
http://www.allitebooks.org

20 CHAPTER 1 Grails in a hurry . . .
Now that you have a database that persists your data, let’s populate it with sample data.

1.4.2 Exploring database operations

You haven’t done any work on your UI yet, but it would be great to save and query
entries in your quotes table. To do this for now you’ll use the Grails console—a small
GUI application that starts your application outside a web server and gives you a con-
sole to issue Groovy commands.

 You can use the grails console command to tinker with your data model before
your app is ready to roll. When you issue this command, your QOTD Grails application is
bootstrapped, and the console GUI appears, waiting for you to enter code. Figure 1.9
shows the process of saving a new quote to the database via the console.

 For your exploration of the data model, it would be nice to create and save those
Quote objects. Type the following into the console window, then click the Run button
(at the far right of the toolbar):

new qotd.Quote(author: 'Larry Wall',
 content: 'There is more than one method to our madness.').save()

The bottom half of the console will let you know you’re on track:

Result: qotd.Quote : 1

Where did that save() routine come from? Grails automatically endows domains with
certain methods. Let’s add two more entries to get a taste of querying:

Figure 1.9 The Grails console lets you run commands from a GUI.
Licensed to Mark Watson <nordickan@gmail.com>

21Adding UI actions
new qotd.Quote(author: 'Chuck Norris Facts',

➥ content: 'Chuck Norris always uses his own design patterns,

➥ and his favorite is the Roundhouse Kick.').save()

new qotd.Quote(author: 'Eric Raymond',

➥ content: 'Being a social outcast helps you stay concentrated

➥ on the really important things, like thinking and hacking.').save()

Let’s use another dynamic method, count(), to make sure that your data was saved to
the database correctly (we show the script output after >>>):

println qotd.Quote.count()
>>> 3

Looks good so far. It’s getting tedious typing in that qotd package name before each
command, so let’s put an import into your script to cut down on the boilerplate and
get on with business:

import qotd.*
println Quote.count()
>>> 3

Much clearer. Next it’s time to roll up your sleeves and query your Quote database. To
simplify database searches, Grails introduces special query methods on your domain
class called dynamic finders. These special methods use the names of fields in your
domain model to make querying as simple as this:

import qotd.*
def quote = Quote.findByAuthor("Larry Wall")
println quote.content
>>> There is more than one method to our madness.

Now that you know how to save and query, it’s time to get your web application run-
ning. Exit the Grails console, and you’ll learn how to get those quotes onto the web.

1.5 Adding UI actions
Let’s get something on the web. To begin, you’ll need an action on your Quote-
Controller to return a random quote from our database. You’ll work out the random
selection later—for now, let’s cut corners and fudge your sample data:

def random() {
 def staticQuote = new Quote(author: "Anonymous",
 content: "Real Programmers don't eat much Quiche")
 [quote : staticQuote]
}

You’ll also need to update your /grails-app/views/quote/random.gsp file to use your
new Quote object:

<q>${quote.content}</q>
<p>${quote.author}</p>
Licensed to Mark Watson <nordickan@gmail.com>

22 CHAPTER 1 Grails in a hurry . . .
You’ve got a nicer data model, but nothing else is new. This is a good time to refresh
your browser and see your static quote passing through to the view. Give it a try to con-
vince yourself it’s working.

 Now that you have a feel for passing model objects to the view, and now that you
know enough querying to be dangerous, let’s rework your action in the following list-
ing to implement a real random database query.

def random() {
 def allQuotes = Quote.list()
 def randomQuote
 if (allQuotes.size() > 0) {
 def randomIdx = new Random().nextInt(allQuotes.size())
 randomQuote = allQuotes[randomIdx]
 } else {
 randomQuote = new Quote(author: "Anonymous",
 content: "Real Programmers Don't eat much Quiche")
 }
 [quote : randomQuote]
}

With your reworked random action, you’re starting to take advantage of real database
data. The list() method B returns the complete set of Quote objects from the quote
table in the database and populates your allQuotes collection. If the collection has
entries, select a random one c based on an index into the collection; otherwise, use a
static quote d. With the heavy lifting done, return a randomQuote object to the view in
a variable called quote e, which you can access in the GSP file.

 Now that you’ve got your QOTD random feature implemented, let’s head back to
http://localhost:8080/qotd/quote/random to see it in action. Figure 1.10 shows your
random feature in action.

Listing 1.3 A database-driven random

Obtains list
of quotes

 b

Selects
random
quote

 c

Generates
default quote

 d

Passes quote
to the view e

Figure 1.10 Your random
quote feature in action
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:8080/qotd/quote/random

23Adding UI actions
1.5.1 Scaffolding: adding rocket fuel

You’ve done all the hard work of creating your data model. Now you need to enhance
your controller to handle all the CRUD actions to let users put their own quotes in
the database.

 That’s if you want to do a slick job of it. If you want to get up and running quickly,
Grails offers a fantastic shortcut called scaffolding. Scaffolds dynamically implement
controller actions and views for the common things you’ll want to do when adding
CRUD actions to your data model.

 How do you scaffold your screens for adding and updating quote-related data? It’s
a one-liner for the QuoteController, as shown in following code.

class QuoteController {
 static scaffold = true
 // our other stuff here...
}

That’s it. When Grails sees a controller marked as scaffold = true, it creates control-
ler actions and GSP views on the fly. If you’d like to see it in action, head to http://
localhost:8080/qotd/quote/index and you’ll find something like the edit page shown
in figure 1.11. (Note that this used to be called in the list() action if you come across
code written in Grails 2.2 and earlier.)

 Click the New Quote button, and you’re up and running. You can add your new
quote as shown in figure 1.12.

 See how much power you get for free? The generated scaffolds aren’t tidy enough
for your public-facing sites, but they’re absolutely fantastic for your admin screens and

Figure 1.11 The index() scaffold in action
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:8080/qotd/quote/index
http://localhost:8080/qotd/quote/index

24 CHAPTER 1 Grails in a hurry . . .
perfect for tinkering with your database during development (where you don’t want
the overhead of mocking together multiple CRUD screens).

1.5.2 Surviving the worst-case scenario

Your model looks good and your scaffolds are great, but you’re still missing pieces to
make things more robust. You don’t want users putting dodgy stuff in your database,
so let’s explore validation.

 Validation is declared in your Quote object, so you need to populate the constraints
closure with all the rules you’d like to apply. For starters, make sure that users always
provide a value for the author and content fields, as shown in the following code:

package qotd

class Quote {
 String content
 String author
 Date created = new Date()

 static constraints = {
 author(blank:false)
 content(maxSize:1000, blank:false)
 }
}

These constraints tell Grails that neither author nor content can be blank (neither
null nor 0 length). If you don’t specify a size for String fields, they’ll be defined
VARCHAR(255) in your database. That’s probably fine for author fields, but your con-
tent may expand on that. That’s why you added a maxSize constraint.

Figure 1.12 Adding a quote has never been easier.

Enforces data
validation
Licensed to Mark Watson <nordickan@gmail.com>

25Improving the architecture
Entries in the constraints closure also affect the generated scaffolds. (The ordering
of entries in the constraints closure also affects the order of the fields in generated
pages.) Fields with constraint sizes greater than 255 characters are rendered as HTML
<textarea> elements rather than <input> fields. Figure 1.13 shows how error mes-
sages display when constraints are violated.

1.6 Improving the architecture
Spreading logic across your controller actions is all well and good. It’s easy to track
down what goes where in your small app, and maintenance isn’t a concern right
now. But as your quotation app grows, you’ll find that your structure gets more com-
plex. You’ll want to reuse logic in different controller actions and even across con-
trollers. It’s time to tidy up your business logic, and the best way to do that in Grails
is via a service.

 Let’s create your service and learn by doing:

grails create-service quote

which echoes back the familiar Grails artifact creation messages to let you know
it’s done:

| Created file grails-app/services/qotd/QuoteService.groovy
| Created file test/unit/qotd/QuoteServiceSpec.groovy

Figure 1.13 When constraints are violated, error messages appear in red.
Licensed to Mark Watson <nordickan@gmail.com>

26 CHAPTER 1 Grails in a hurry . . .
This command creates a skeleton quote service in /grails-app/services/qotd/Quote-
Service.groovy:

package qotd

import grails.transaction.Transactional

@Transactional
class QuoteService {
 def serviceMethod() {
 }
}

With your service created, let’s rehome your random quote business logic into its own
service method, as shown in the following listing.

package qotd

import grails.transaction.Transactional

@Transactional
class QuoteService {

 def getStaticQuote() {
 return new Quote(author: "Anonymous",
 content: "Real Programmers Don't eat much quicheQuiche")
 }

 def getRandomQuote() {
 def allQuotes = Quote.list()
 def randomQuote = null
 if (allQuotes.size() > 0) {
 def randomIdx = new Random().nextInt(allQuotes.size())
 randomQuote = allQuotes[randomIdx]
 } else {
 randomQuote = getStaticQuote()
 }
 return randomQuote
 }
}

Now that your service is implemented, how do you use it in your controller? Again,
conventions come into play. You’ll add a new field to your controller called quote-
Service, and Grails will inject the service into the controller:

class QuoteController {
 static scaffold = true
 def quoteService
 // other code omitted
 def random = {
 def randomQuote = quoteService.getRandomQuote()
 [quote : randomQuote]
 }
}

Listing 1.4 Beefing up service
Licensed to Mark Watson <nordickan@gmail.com>

27Improving the architecture
Doesn’t that feel much tidier? Your QuoteService looks after all the business logic
related to quotes, and your QuoteController helps itself to the methods it needs. If
you have experience with Inversion of Control (IoC) containers, such as Spring or
Google Guice, you’ll recognize this pattern of application design as dependency injec-
tion (DI). Grails takes DI to a new level by using the convention of variable names to
determine what gets injected. But you have yet to write a test for your business logic,
so now’s the time to explore Grails’s support for testing.

1.6.1 Your Grails test case

Testing is a core part of today’s agile approach to development, and Grails’s support
for testing is wired right into the framework. Grails is so insistent about testing that
when you created your QuoteService, Grails automatically created a skeleton unit-test
case in /test/unit/qotd/QuoteServiceSpec.groovy to encourage you to test.

 Grails tests are written in a testing framework called Spock. You’ll learn the basics
of Spock testing in chapter 2, where we give you a proper introduction to the frame-
work. For now, just consider Spock a “JUnit-like” testing framework where tests follow
a more formal given/when/then structure.

Let’s look at the skeleton test case that Grails generated.

package qotd

import grails.test.mixin.TestFor
import spock.lang.Specification

/**
 * See the API for {@link grails.test.mixin.services.ServiceUnitTestMixin}

for usage instructions
 */
@TestFor(QuoteService)
class QuoteServiceSpec extends Specification {

 def setup() {
 }

 def cleanup() {
 }

Services pre-Grails 2.3
The @Transactional annotation is new to Grails 2.3. In earlier versions, services were
transactional by default. Don’t try to add the annotation to your services if you are
using one of those earlier versions.

Tests pre-Grails 2.3
Versions of Grails prior to 2.3 created standard JUnit tests rather than Spock ones.
Chapter 2 shows you how to use Spock with those earlier versions.
Licensed to Mark Watson <nordickan@gmail.com>

28 CHAPTER 1 Grails in a hurry . . .
 void "test something"() {
 }
}

It’s not much, but it’s enough to get started. The same convention over configuration
rules apply to tests, so let’s beef up your QuoteServiceSpec case to inject the service
that’s under test as shown in the following listing.

}
package qotd

import grails.test.mixin.TestFor
import spock.lang.Specification

@TestFor(QuoteService)
class QuoteServiceSpec extends Specification {

 void "static quote service always returns quiche quote"() {

 when:
 Quote staticQuote = service.getStaticQuote()

 then:
 staticQuote.author == "Anonymous"
 staticQuote.content == "Real Programmers Don't eat much quicheQuiche"

 }
}

Not much can go wrong with the getStaticQuote() routine, but let’s give it a work-
out for completeness.

 The Grails testing framework makes heavy use of Groovy Mixins at runtime (you’ll
learn about these in chapter 2) to decorate your test class with magic handles. In this
example we’ve declared this test a @TestFor(QuoteService) B. This c tells Grails to
automatically inject a service object to the test scope that points to an instance of a
real QuoteService object.

 To run your tests, execute grails test-app QuoteServiceSpec. If you omit the test
name, test-app runs all the tests, but in this case you’re after only your newly minted
test case. You should see something like the following results:

| Tests PASSED - view reports in target\test-reports

This code shows that your tests run fine. Grails also generates an HTML version of your
test results, which you can view by opening /target/test-reports/html/index.html in a
web browser. From there you can visually browse the entire project’s test results and
drill down to individual tests to see what failed and why, as shown in figure 1.14.

 You’ll learn how to amp up your test coverage in chapter 9, but for now you have a
test up and running, and you know how to view the output.

Listing 1.5 Adding real tests

Type of service
to inject

 b

Injects service
dynamically at runtime c
Licensed to Mark Watson <nordickan@gmail.com>

29Improving the architecture
1.6.2 Going Web 2.0: Ajaxing the view

Our sample application wouldn’t be complete without adding a little Ajax (Asynchro-
nous JavaScript and XML) secret sauce to spice things up. If you don’t know Ajax, it’s
a way of updating portions of a web page using JavaScript. Use Ajax to make your
web application more responsive by updating the quote without having to reload
the masthead banners and other page content. It also gives you a chance to look at
Grails tag libraries.

 Let’s Ajaxify your random.gsp view:

■ Add the Ajax library to the <head> element.
You’ll use jQuery, but Grails also lets you use Yahoo! Interface Library (YUI),
Dojo, or others:

<head>
 <title>Random Quote</title>
 <g:javascript library="jquery" />
</head>

■ In the page body of random.gsp, add a menu section that allows the user to dis-
play a new quote or navigate to the admin screens.
You’ll use Grails’s taglibs to create both your Ajax link for refreshing quotes
and your standard link for the admin interface. The following code shows
your new menu HTML. Add this snippet before the <div> tag that hosts the
body of the page:

<ul id="menu">

 <g:remoteLink action="ajaxRandom" update="quote">
 Next Quote
 </g:remoteLink>

Figure 1.14 HTML reports from the unit test run
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

30 CHAPTER 1 Grails in a hurry . . .

 <g:link action="index">
 Admin
 </g:link>

You saw these tag library calls in section 1.3.3, where you used them to generate a stan-
dardized layout for your application. In this example, you introduce a g:remoteLink,
which is Grails’s name for an Ajax hyperlink, and g:link, which is the tag for generat-
ing a standard hyperlink.

 When you click the Next Quote link, Grails calls the ajaxRandom action on the con-
troller that sent it here—in this case, the QuoteController—and places the returned
HTML inside the <div> that has an ID of quote. But you haven’t written your ajaxRandom
action, so let’s get to work. The following code shows the updated fragment of Quote-
Controller.groovy with the new action:

def ajaxRandom() {
 def randomQuote = quoteService.getRandomQuote()
 render {
 q(randomQuote.content)
 p(randomQuote.author)
 }
}

You’ve already done the heavy lifting in your quote service, so you can reuse that here.
Because you don’t want your Grails template to decorate your output, you’re going to
write your response directly to the browser (we’ll talk about more elegant ways of
doing this in later chapters).

 We take advantage of Grails’s HTML Builder to generate an HTML fragment on
the fly. To satisfy your curiosity about the markup this code generates, go to http://
localhost:8080/qotd/quote/ajaxRandom and see the generated HTML, which should
look like this:

<q>Chuck Norris always uses his own design patterns, and his favorite is the
Roundhouse Kick. </q><p>Chuck Norris Facts</p>

Let’s take your new Ajax app for a spin, as shown in figure 1.15.

Whoa, there! What’s with the embedded HTML?
In the previous sample, your render method call takes advantage of a Grails builder—
a dynamic way of constructing objects of various sorts including XML, HTML, and
JSON (more on these in chapter 2).

Grails also offers several other methods to achieve the same result here, including
partial templates, which provide a more elegant and externalized way of achieving
reusable HTML fragments. We’ll talk more about this approach in chapter 8 when we
discuss fragment layouts in detail.
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:8080/qotd/quote/ajaxRandom
http://localhost:8080/qotd/quote/ajaxRandom

31Improving the architecture
To convince yourself that all the Ajax snazziness is in play, click the Next Quote menu
item several times. Did you notice there’s no annoying repaint of the page? You’re liv-
ing the Web 2.0 dream.

1.6.3 Bundling the final product: creating a WAR file
Look how much you’ve achieved in half an hour! But it’s no good running the app on
your laptop—you need to set it free and deploy it to a real server on the cloud. For
that, you’ll need a WAR file, and Grails makes its creation a one-liner:

grails war

Watch the output, and you’ll see Grails bundling up all the JARs it needs, along with
your Grails application files, and creating the WAR file in your project’s root directory:

| Done creating WAR target\qotd-0.1.war

Now you’re ready to deploy.

1.6.4 And 80 lines of code later
You’ve learned about Grails. And you’ve created plenty of code, too. But don’t take my
word for it; let’s have Grails crunch the numbers with a grails stats command.
Table 1.1 shows the grails stats command in action.

Table 1.1 Crunching numbers: the grails stats command in action

grails stats

 +----------------------+-------+-------+
 | Name | Files | LOC |
 +----------------------+-------+-------+
 | Controllers | 1 | 20 |
 | Domain Classes | 1 | 10 |
 | Services | 1 | 21 |
 | Unit Tests | 3 | 39 |
 +----------------------+-------+-------+
 | Totals | 6 | 90 |
 +----------------------+-------+-------+

Figure 1.15 Your Ajax
view in action
Licensed to Mark Watson <nordickan@gmail.com>

32 CHAPTER 1 Grails in a hurry . . .
Only 90 lines of code (LOC)! Not too shabby for an Ajax-powered, user-editable, ran-
dom quote web application with unit tests. If you removed the empty skeleton test
cases that Grails created for your domain, controller, and service classes, you would
trim it down to 51 lines.

 This Grails introduction has given you a taste of models, views, controllers, ser-
vices, taglibs, layouts, and unit tests. And you’ve got more to explore. But before you
go further, let’s explore Groovy.

1.7 Summary and best practices
Congratulations, you’ve written and deployed your Grails app, and now you have a feel
for working from scratch to completed project. The productivity rush can be addictive.

 Here are a few key tips you should take away from this chapter:

■ Rapid iterations are key. The most important takeaway for this chapter is that
Grails fosters rapid iterations to get your application up and running in record
time, and you’ll have fun along the way.

■ Noise reduction fosters maintenance and increases velocity. By embracing convention
over configuration, Grails eliminates XML configuration that used to kill Java
web frameworks.

■ Bootstrapping saves time. For the few cases where you do need scaffolding code
(for example, in UI design), Grails generates all the skeleton boilerplate code
to get you up and running—another way Grails saves time.

■ Testing is inherent. Grails makes writing test cases easy. It even creates skeleton arti-
facts for your test cases. Take the time to learn Grails’s testing philosophy (which
we’ll look at in depth in chapter 7), and practice it in your daily development.

We’ll spend the rest of the book taking you through the nuts and bolts of developing
full-featured, robust, and maintainable web apps using Grails, and we’ll point out the
tips, tricks, and pitfalls along the way.
Licensed to Mark Watson <nordickan@gmail.com>

The Groovy essentials
As you saw in chapter 1, you can get a Grails application running in no time. You
can even take the principles you learned in that chapter to add extra features.
But if you want to develop something more complex, such as the Twitter-clone we
use as the example project in this book, you’ll need to have a good grasp of the
Groovy language.

 Groovy is a dynamic, object-oriented language with a Java-like syntax. Further-
more, it integrates well with Java and the Java ecosystem: it runs on the JVM and
uses JAR files for libraries. Java classes can depend on Groovy classes and vice versa.
It’s also fun! This chapter is an introduction to the language based on a couple of
worked examples. We do assume that you already know at least one object-oriented
language such as Java, Ruby, or PHP.

 The aim of this chapter is to prepare you for the examples throughout the rest of
the book, but the information contained in the chapter is practical enough that you
can start using Groovy day-to-day for other projects or as a portable language for

This chapter covers
■ Basics of the Groovy language
■ Differences between Java and Groovy
■ Groovy’s power features
33

Licensed to Mark Watson <nordickan@gmail.com>

34 CHAPTER 2 The Groovy essentials
writing scripts. We’re sure you’ll find plenty of uses for it! We also introduce the Spock
testing framework, which we use throughout the book. If you know Groovy but not
Spock, we recommend that you read section 2.2 before moving on to the next chapter.

2.1 Writing your first script
Practical examples are one of the best ways to learn a new language, so we’re going to
take our Quote of the Day application from chapter 1 and add features that a devel-
oper or app administrator would likely find useful.

 One problem you may have noticed while coding the QOTD app is that it’s short of
data. We’re going to show you a technique for setting up sample data in chapter 5, but
you still have to manually define the data or generate it somehow. We’re feeling lazy,
so we’re going to write an automatic quote generator.

2.1.1 Using lists, loops, and methods

Remember the Grails console UI from the previous chapter? We used it to try out the
persistence features of Grails, saving to and querying the database. This console UI
can also be used to write plain Groovy scripts, which is what we’re going to do now.

 The idea behind your first script is to take a set of quote parts (a subject, a verb,
and an object) and randomly combine them into distinct quotes. You then attribute
each quote to a randomly selected author. The initial iteration of this script prints the
generated quotes.

 Fire up the console UI with the command

grails console

then type the code from the following listing into the upper window. You can find this
example as dataGenerator.groovy in the chapter source code on GitHub.

def authors = [
 "Peter Ledbrook",
 "Glen Smith"
]

def quoteParts = [
 ["Time", "waits", "for no man"],
 ["The roundhouse kick", "solves", "all problems"],
 ["Groovy", "is", "the bees knees"]
]

for (int i in 0..<10) {
 def quote = createQuote(quoteParts, authors)
 println quote
}

String createQuote(List quoteParts, List authors) {
 def rand = new Random()
 def n = quoteParts.size()
 def m = authors.size()

Listing 2.1 Writing a Groovy script to generate quotes

Declares an untyped local
variable, authors, and
initializes it with a list of strings.

You can nest lists (and
maps). This is a list of lists.

Loops over the numbers 0 to
9 inclusive. 0..<10 is a literal
of type groovy.lang.Range.

A simple method call.

Defines a reusable method
in the script, with the
method body bounded by
curly braces, {}.
Licensed to Mark Watson <nordickan@gmail.com>

35Writing your first script
 return quoteParts[rand.nextInt(n)][0] + ' ' +
 quoteParts[rand.nextInt(n)][1] + ' ' +
 quoteParts[rand.nextInt(n)][2] + ' by ' +
 authors[rand.nextInt(m)]
}

When you run this script, you’ll see random quotes and awful grammar. That’s the price
of laziness. Fortunately, your English teacher will almost certainly never see them.

We’ve highlighted the most important elements of the example application in the
code sample itself, but a few of the things we’ve introduced deserve more attention.
What else should you take away from this first iteration?

OPTIONAL TYPES

Unlike almost any other language, Groovy has the concept of optional types. That
means you can declare variables, arguments, and method returns as having a spe-
cific type, or you can leave types out. It’s up to you. It’s a powerful feature but can
lead to confusion.

 Let’s take another look at the createQuote() method from the example. We
declared that it takes two List arguments:

String createQuote(List quoteParts, List authors) { … }

What happens if we try to pass an argument that’s not a list? Try replacing the line

def quote = createQuote(quoteParts, authors)

with

def quote = createQuote(quoteParts, "test")

and running the script again. What you’ll see is the result of an exception:

groovy.lang.MissingMethodException: No signature of method:
ConsoleScript1.createQuote() is applicable for argument types:
(java.util.ArrayList, java.lang.String) values: [[[Time, waits, for no
man], [The roundhouse kick, ...], ...], ...]

The two consoles
Grails occasionally leaves ambiguity in its naming. One instance of this is the name
“console”. It can refer to either the console UI for writing scripts (started with the
grails console command) or the interactive console for speedy execution of Grails
commands (started with grails). We use the terms “console UI” for the former and
“interactive console” for the latter to differentiate them.

If you have Groovy installed separately, you can use its groovyConsole command to
start a similar console UI. The main difference is that it doesn’t give you access
to the classes in your Grails application, though it’s great for trying out standalone
Groovy code.

Accesses list elements
by index using square
brackets, [].
Licensed to Mark Watson <nordickan@gmail.com>

36 CHAPTER 2 The Groovy essentials
Possible solutions: createQuote(java.util.List, java.util.List)
at ConsoleScript1.run(ConsoleScript1:13)
at
org.springsource.loaded.ri.ReflectiveInterceptor.jlrMethodInvoke(ReflectiveIn

terceptor.java:1254)

That’s not a pretty sight, but the key here is that you get a runtime exception not a
compiler error (even Groovy scripts are compiled before they’re run, but you don’t
see the compilation step). If that’s the case, why bother with explicitly declaring
types? Well, the types are still enforced at runtime, which can lead to errors that are
easier to diagnose. On top of that, it acts as helpful documentation for the user of
the method or API.

 This is an important topic that we come back to later in this chapter when we dis-
cuss compiler type-checking and best practice. In the meantime, we strongly recom-
mend that you read fully the error messages from MissingMethodExceptions and the
related MissingPropertyExceptions. They usually provide all the information you
need to understand why they occurred.

THE FOR LOOP

If you don’t come from a Java background, you may wonder why we want to discuss
the humble for loop. It’s because the most common Groovy for loop doesn’t match
the syntax of the standard Java versions. You can use the Java syntax if you wish, but we
encourage you to use the in keyword instead:

for (int i in 0..<10) { … }

The Java-style counting loop (typically used for iterating numbers) can be handy if
you want a step size of anything other than one, but it doesn’t offer performance ben-
efits and is plain ugly. On top of that, you can’t include other variables in the for dec-
laration. This is completely invalid Groovy, even though it’s valid Java:

for (int i = 0, n = someList.size(); i < n; i++) { … }

Put simply, stick to the idiomatic Groovy for loop.
 There’s one last thing we want to mention before moving on. We talked about

Groovy’s optional types, so it’s a good time to mention that this feature also applies to
for loops. You can write

for (i in 0..<10) { … }

and get exactly the same behavior as before. But if you declare an incompatible type
for the variable i, such as Date, you get a GroovyClassCastException.

 You’ll see more example loops in this chapter, so you’ll quickly pick up how to
use them.

Licensed to Mark Watson <nordickan@gmail.com>

37Writing your first script
VARIABLE SCOPE IN SCRIPT METHODS

Defining methods in scripts is convenient for introducing reuse without going the
whole nine yards and creating custom classes. It also helps keep scripts understand-
able. One little issue that you need to be aware of is that methods can’t see local vari-
ables defined in the script.

 To demonstrate the issue, change the signature of the createQuote() method to

String createQuote() { … }

and replace the line that calls the createQuote() method with

def quote = createQuote()

You might expect that createQuote() will still work because it looks like the script’s
quoteParts and authors variables are visible to the method, but when you run the
script with the changes, you’ll see a MissingPropertyException for quoteParts.

 A full explanation for this behavior is too advanced for this chapter. Instead, we’ll
leave it as an exercise for the keen among you to investigate how scripts are turned
into instances of groovy.lang.Script. For everyone else, all you need to know is that
methods inside scripts don’t have access to local variables declared outside of them.

USE OF JAVA CLASSES

Most major languages have their own class library geared toward that language.
Groovy is different in that it piggybacks on the standard Java class library. Your strings
are of type java.lang.String, your dates of type java.util.Date, and so on. That
means when you develop in Groovy, you should always keep the Java API docs1 open.

 You might think that this limits the language somewhat. Don’t worry. Not only
does Groovy add its own classes into the mix, such as the groovy.lang.Range type
we mention in our example, but it also enhances the standard Java classes, as you’ll
see shortly.

 While we’re on the topic of the standard Java classes, it’s useful to note that you
don’t have to explicitly import them. In Java, the only classes you don’t have to explic-
itly import are in the java.lang package. Groovy automatically imports those classes

The autocoercion minefield
In certain circumstances, Groovy will automatically coerce values of one type to
another. We mention this now because you may try code like this:

for (String i in 0..<10) { … }

expecting a GroovyClassCastException. But in fact, i takes the values "0", "1",
"2", and so on. You’ll only ever see auto-coercion between different number types or
when String is the target. Even then, it’s rarely a problem except when you’re trying
to demonstrate enforcement of types to readers or students.

1 Java Platform, Standard Edition 7 API Specification, http://docs.oracle.com/javase/7/docs/api/.
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.oracle.com/javase/7/docs/api/

38 CHAPTER 2 The Groovy essentials
and everything in java.util, java.net, java.io, and groovy.lang as well (among
others). This explains why you didn’t have to import java.util.List in the example.

 That’s enough about the first example. We’ve gone into detail about several of the
features it presents, and you’ve learned useful nuggets of information, such as how
the types work. Let’s get back to the fun stuff by introducing string manipulation.

2.1.2 Working with strings

The next iteration of our example sees us converting the generated quotes into a
form of Pig Latin. This is a fun little word game that involves simple manipulation of
words, turning them into something unrecognizable to the average English speaker.
The rules for modifying words vary, but in this case we’re going to use Wikipedia2 as
our source.

 For words that begin with consonant sounds, the initial consonant or consonant clus-
ter is moved to the end of the word, and “ay” is added, as in the following examples:

■ “happy” becomes appyhay
■ “duck” becomes uckday
■ “glove” becomes oveglay

For words that begin with vowel sounds or silent letter, “way” is added at the end of
the word:

■ “egg” becomes eggway
■ “inbox” becomes inboxway
■ “eight” becomes eightway

It’s difficult to deal with the silent letter requirement, so we treat those words as if they
start with a consonant group. Otherwise that’s it. You can easily implement the nice
and straightforward logic with a few distinct methods. Add the code in the following
listing to the previous example (new code is in italics).

. . .
for (int i in 0..<10) {
 def quote = createQuote(quoteParts, authors)
 println quote

 def pigLatinWords = []
 for (String word in quote.split(/\s+/)) {
 pigLatinWords << pigLatinize(word)
 }

 println pigLatinWords.join(' ')
}

2 Learn to speak Pig Latin: http://en.wikipedia.org/wiki/Pig_Latin.

Listing 2.2 Converting quotes into Pig Latin

Creates new,
empty list

Splits quotes into words and
turns each word into Pig Latin
Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Pig_Latin

39Writing your first script
String createQuote(List quoteParts, List authors) {
 . . .
}

def pigLatinize(String word) {
 if (isVowel(word[0])) {
 return word + "way"
 }
 else {
 def pos = firstVowel(word)
 return word[pos..-1] + word[0..<pos] + "ay"
 }
}

def firstVowel(String word) {
 for (int i in 0..<word.size()) {
 if (isVowel(word[i])) return i
 }

 return -1
}

boolean isVowel(String ch) {
 return ch.toLowerCase() in ["a", "e", "i", "o", "u"]
}

This extended example demonstrates a couple of points about strings in Groovy: first,
manipulating them is easy; and second, they’re treated as sequences of characters.
The latter means you get a uniform API for working with arrays, lists, and strings so
you don’t have to exercise your memory so hard. As an example, the syntax for
extracting a substring, word[pos-1], can also be used to get a slice of a list or an array.

 Before we talk a bit more about strings, we want to satisfy your curiosity about the
new for loop we added:

def pigLatinWords = []
for (String word in quote.split(/\s+/)) {
 pigLatinWords << pigLatinize(word)
}

This is the first for loop that iterates over an array or collection rather than a range,
yet you’ll see the syntax is the same. Of more interest are the new Groovy features that
you’ll become gradually more familiar with as we go through the book:

■ Slashy strings
■ The Groovy JDK
■ Operator overloading

Slashy strings are string literals that have a unique property: you don’t need to escape
the backslash (\) character. If you were to use double-quotes instead of slashes, you’d
end up with "\\s+" as the argument to split() in the example. This makes slashy
strings particularly useful for regular expressions, which tend to have plenty of back-
slashes in them.

Extracts a character through
the array-style accessor

Extracts substrings using a
range; a negative index
applies from the end of the
string, where -1 is the last
character of the string

Uses the result of a
method as the upper
bound of a range

Uses the in keyword
as a Boolean condition
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

40 CHAPTER 2 The Groovy essentials
 The split() method is part of the standard Java class library, and you’ll find it in
the Java API docs, but the left-shift operator (<<) and the join() method are differ-
ent: they apply to Java lists and arrays, but they aren’t provided by the Java runtime.
These are examples of Groovy enhancing the Java class library to provide useful extra
features. If you’re a Java developer, you’ll soon wonder how you lived without them!
These extensions to the Java class library are listed and described in the Groovy JDK
documentation.3

 When you look for << in the documentation, though, you won’t find it. That’s
because its implementation is in the method leftShift(). The Groovy JDK docs for
Collection tell you this method adds an item to the collection. But you’ll also see the
method defined on StringBuilder, File, and OutputStream, among others. The <<
operator generally has the semantics of appending, whether that’s adding an item to a
collection, appending text to a StringBuilder, or writing data to a stream.

 The relationship between << and the leftShift() method is important because it
underpins Groovy’s operator overloading. If a class implements a method that has the
right name and signature, you can also use the corresponding operator with objects of
that class. Imagine you have a class representing a matrix: you could add a plus()
method to it that would then allow you to use the + operator for adding matrices
together. We provide a list of operator-to-method mappings in appendix A.

 Be careful with adding operator support to your own classes. It can be a recipe for
confusion and result in users always referring to your API docs. You have to be sure
that your class closely matches the standard semantics of the operators you want to
use. For example, don’t use << to send an email. The concept of sending something
doesn’t match the standard semantics of adding or appending data. The mail server
isn’t aggregating the emails but routing them to a destination. An explicit send()
method is much better in this case. When in doubt, avoid operator overloading.

 We covered many of the basics of Groovy with this one example and had fun with
Pig Latin, too. As you can see, Groovy makes a great cross-platform language for writ-
ing scripts—as long as you have a JDK installed. It’s also a nice language for developing
more structured applications, such as a Grails app! In the next section we’ll look at the
building blocks of such applications: classes. We’ll also introduce you to even more
Groovy goodness.

2.2 Creating a quote analyzer class
Our Quote of the Day application contains several quotes now, and it might be inter-
esting to get statistics from those quotes. How many quotes are there? What’s the aver-
age number of words per quote? How many quotes are there for each author? This
information could be useful in the QOTD app itself, in another web application shar-
ing the same database, or in a system admin’s script. It makes sense to encapsulate the
required analysis and data in a reusable class.

3 “Groovy JDK API Specification Version 2.2.1, describing methods added to the JDK to make it more groovy,”
http://groovy.codehaus.org/groovy-jdk/.
Licensed to Mark Watson <nordickan@gmail.com>

http://groovy.codehaus.org/groovy-jdk/

41Creating a quote analyzer class
 We could start coding the analysis engine straightaway, but one of our primary
goals for the second edition of this book is to hardwire testing into every chapter.
We’re not test-driven development (TDD) snobs, nor are we “one true way” advocates,
but we do think you’ll see great benefits from writing tests.

 Seeing your tests pass is a great confidence booster, and when you constantly run
tests, you feel as if your app is making progress. You also gain confidence when refac-
toring, because if you introduce any errors, the tests tell you what you’ve broken long
before a user does! Finally, writing tests helps you focus on what the behavior of the
code should be before you’ve written it, and your classes become easy to test because
the test case already exists.

 Your first step is writing the QuoteAnalyzer test case. You could use JUnit for this,
but we recommend Spock. We use it throughout the book, so now is a good time to
learn about it. Due to its high readability, it’s also a great tool for teaching you about
all the features of Grails.

2.2.1 Introducing Spock properly

As you discovered in chapter 1, Grails 2.3 creates unit tests based on a framework
called Spock. If you come from a Java background you’re likely comfortable with the
JUnit style of testing. After all, JUnit is the granddaddy of Java unit testing tools. The
Grails community has largely moved to Spock (www.spockframework.org), which we
consider more powerful, concise, and expressive than JUnit. Spock marries behav-
ior-driven development (BDD) techniques with JUnit mechanics and adds plenty of
extra sauce.

Spock in Grails 2.2 and earlier
If you’re using a pre-2.3 version of Grails, you need to install a plugin in order to use
Spock. We’ll cover Grails plugins in more detail in chapter 10, but for now you need
to add some dependencies to your project’s grails-app/conf/BuildConfig.groovy file.
The exact syntax depends on your Grails version. For 2.0.x and 2.1.x use

plugins {
 . . .
 test ":spock:0.7"
}

The syntax for Grails 2.2.x is more involved:

dependencies {
 test "org.spockframework:spock-grails-support:0.7-groovy-2.0"
}

plugins {
 . . .
 test(":spock:0.7") {
 exclude "spock-grails-support"
 }
}

Licensed to Mark Watson <nordickan@gmail.com>

www.spockframework.org

42 CHAPTER 2 The Groovy essentials
CREATING YOUR FIRST SPECIFICATION

In this section, you’ll create a simple class that performs analysis on a set of quotes.
The class doesn’t need access to the database because you’ll pass in the quotes as
method arguments, so a simple unit test will suffice. All it does is process quotes and
determine things such as the average character length of the quotes and the number
of quotes per author.

 To get started, run the command

grails create-unit-test qotd.QuoteAnalyzer

to create a skeleton Spock specification in the file QuoteAnalyzerSpec.groovy under
the directory test/unit/qotd. This file includes an @TestMixin annotation, but you
don’t need it in this case because QuoteAnalyzer is a plain, standalone class. It’s not a
Grails artifact, like a domain class or a controller. We’ll talk in more depth about the
test mixins in chapter 9, so don’t worry about it right now.

After you open the specification file in an editor, replace its content with listing 2.3.
The code includes a single test, which allows us to focus on the structure of Spock
specifications.

package qotd

import spock.lang.*

(continued)

Spock has different JARs for different versions of Groovy, hence the different syn-
taxes (Grails 2.2.x was the first Grails version to use Groovy 2). When you next exe-
cute grails compile or grails refresh-dependencies, Grails will download and
install the Spock plugin and all the dependencies it needs.

Packages and file paths
Packages are the namespace mechanism for Java and Groovy. The combination of
class name and package must be unique within a project, but it’s a good idea to have
unique class names even across packages to avoid confusion and make it easier to
work with the project in an IDE.

You’ve probably noticed by now that Grails commands create files in a directory struc-
ture that matches a class’s package; for example, qotd/QuoteAnalyzer.groovy for the
class qotd.QuoteAnalyzer. That’s intentional. Although Groovy doesn’t require
them to match, Grails makes that assumption when determining whether the source
file for a class has been modified. If files in your project are constantly being recom-
piled even if they haven’t been modified, you probably have a mismatch between the
source file’s path and the name of the package or class.

Listing 2.3 Your first Spock specification
Licensed to Mark Watson <nordickan@gmail.com>

43Creating a quote analyzer class

met
a

class QuoteAnalyzerSpec extends Specification {
 @Shared quotes = [
 new Quote(author: "Peter Ledbrook",
 content: "Time waits for no man"),
 new Quote(author: "Glen Smith",
 content: "Groovy solves all problems")]

 def "Total number of quotes"() {
 given: "An analyzer initialized with known quotes"
 def analyzer = new QuoteAnalyzer(quotes)

 when: "I ask for the quote count"
 def quoteCount = analyzer.quoteCount

 then: "The number of quotes in the test list is returned"
 quoteCount == 2
 }
}

The key point to take away from this example is that Spock feature methods (the
methods that test a single feature each) have an inherent structure based on these
given, when, and then blocks. You set up the test’s initial conditions in given, call the
method or property you’re testing in when, and verify that the result is what you expect
in then.

 The order of the blocks is fixed—given -> when -> then—but otherwise you can
write code as you like. In particular you can create local variables as you would in any
other Groovy method, and those variables can be accessed from subsequent blocks.

 Note that the string literals after each block label are documentation and have no
impact on the test code. The only requirement is that they must be on the same line as
their corresponding label.

 This approach may take a little while to get used to, and you may wonder why this
structure is important, but we believe you’ll soon discover that formulating test cases
using this structure is much easier. On top of that, Spock has genuine power features
that will undoubtedly delight you, such as parameterized feature methods.

TESTING MULTIPLE DATA SETS

Whenever you test code, you want to make sure you’re exercising it with a variety of
inputs. What happens if the quote analyzer is created with an empty list of quotes? Or
what if the list is null? More complex code often has additional special cases that you
need to test. Copying and pasting the test code with the different inputs and expected
outputs isn’t uncommon, but it’s a maintenance nightmare and guarantees tests that
are hard to read.

 What you need is a way to parameterize the inputs and outputs so that the test-
ing tool reruns the same code with the different data. Spock has exactly what you
need: data-driven feature methods. The best way to explain these is through exam-
ple, so let’s see in the following listing how to add extra data sets to the existing
test case.

Spock tests extend
spock.lang.Specification.Variables

shared
between
feature

hods are
nnotated
this way.

Feature method
names are plain
English—with
spaces!

Initial conditions.

Execution.

Result verification. This
is an implicit assert.
Licensed to Mark Watson <nordickan@gmail.com>

44 CHAPTER 2 The Groovy essentials
package qotd

import spock.lang.*

class QuoteAnalyzerSpec extends Specification {
 @Shared quotes = [
 new Quote(author: "Peter Ledbrook",
 content: "Time waits for no man"),
 new Quote(author: "Glen Smith",
 content: "Groovy solves all problems")]

 @Unroll
 def "Total number of quotes"() {
 given: "An analyzer initialized with known quotes"
 def analyzer = new QuoteAnalyzer(inputQuotes)

 when: "I ask for the quote count"
 def quoteCount = analyzer.quoteCount

 then: "The number of quotes in the test list is returned"
 quoteCount == expected

 where:
 inputQuotes | expected
 [] | 0
 quotes | 2

 }
}

How good is that? You can add as many data sets as you like by adding extra rows to
the table, and you can add more parameterized variables in extra columns (separated
by the vertical bar, “|”). The test is incredibly readable and even developers who don’t
know Spock will be able to work out what’s going on.

 Spock tests give us a consistent structure for the specifications and allow you to
document them through the feature method names and the string literals attached
to each block. Even if you exclude the power features, these basic attributes of Spock
tests make it far easier to write and read test cases. That’s why we strongly recommend
you use Spock yourself and why we think it serves as a great base for explaining fea-
tures of both Groovy and Grails. You can still run Spock specifications as JUnit test
cases in your IDE, so you’re not losing any convenience!

 For now, run the test case using the command

grails test-app unit:

The test will fail, but we fix that next.

2.2.2 Creating the initial class

The current specification will fail because it tries to instantiate a class that doesn’t
exist. You need to create the class. The question is, where? You saw several different
classes in chapter 1, but they were all Grails artifacts, that is, classes with a special role

Listing 2.4 Adding multiple data sets to a test

Reports each data
set as a separate
test (highly
recommended)

Initialize using
an undeclared
variable,
inputQuotes

Compare against
another undeclared
variable, expected

Tabulate the data with the
header row containing the
parameterized variable names
Licensed to Mark Watson <nordickan@gmail.com>

45Creating a quote analyzer class
understood by Grails. Our quote analyzer has no special role, so there’s no command
to run or artifact directory to put it in.

 Such classes do have a home in a Grails project: either src/groovy or src/java
depending on what language you write them in. We prefer to write Groovy, so create
the file QuoteAnalyzer.groovy in the directory src/groovy/qotd and put this code in
it, as shown in the following listing.

package qotd

class QuoteAnalyzer {
 private final List<Quote> quotes

 QuoteAnalyzer(List<Quote> quotes) {
 this.quotes = new ArrayList(quotes)
 }

 int getQuoteCount() {
 return this.quotes.size()
 }
}

Note that this class is in the same package as the specification class. That’s not required,
but it’s common practice, and we recommend you follow the convention.

 This short bit of code, which satisfies the requirements of our specification, intro-
duces a couple of important concepts in Groovy: classifiers and properties. Let’s look
at them in turn.

CLASSIFIERS

The quotes field (we’ll explain why it’s a field and not a property next) has two special
keywords attached to its declaration: final and private. These keywords are known
as classifiers, which aren’t required for the declaration of a field but allow you to con-
trol certain elements of behavior. What do they do? Table 2.1 describes them and
other common classifiers.

Listing 2.5 Implementing the quote analyzer

Table 2.1 Classifiers for classes, fields, properties, and methods

Keyword Description

final Declares either that a property can’t be modified once initialized or that a
method can’t be overridden. Often combined with static to define constants.

private Property or method is accessible only in the class.

protected Property or method is accessible only in the class, from subclasses, or from
classes in the same package.

public Default scope; property or method is globally accessible from any code.

static Property or method can be accessed without a corresponding instance of the
class. Another way to look at it (in the case of properties) is that the state is
shared between all instances of the class.

Declares a field (not a property)
that’s accessible only to the
methods in the class.

Adds custom constructor
(or object initializer).

The getter method is treated
as a read-only property.
Licensed to Mark Watson <nordickan@gmail.com>

46 CHAPTER 2 The Groovy essentials
The only tricky concept in the table is perhaps the meaning of static, but PHP and
Ruby, for example, both have the same idea, PHP with its own static keyword and
Ruby with class variables and methods.

That leaves the question of whether fields and properties are the same thing.

PROPERTIES

Fields are the repositories of state for objects, and so are properties. The syntax for
accessing fields is the same as for properties. Here’s how the quote analyzer specifica-
tion gets the quote count:

def quoteCount = analyzer.quoteCount

From the perspective of the caller, quoteCount could be a field or a property. In this
case it’s a property. In fact, it’s a read-only property. You may have already worked out
why: properties are defined by getter and setter methods, such as getQuoteCount().
You can only change the value of a property if it has a setter method. Otherwise it’s
read-only.

 Most of the time, you don’t bother to create getter and setter methods unless you
want to do something special, such as calculate a property’s value on demand. You’re
more likely to declare the property like a field:

class Person {
 String name
 int age
}

These are properties because they lack an explicit classifier, such as public or private.
And unlike a field, you can call the getter and setter methods even though they’re not
explicitly defined:

def person = new Person(name: "Peter Ledbrook", age: 38)
println person.getName()

Try it out in the Grails or Groovy console to be sure.
 That last fragment of code introduces a complementary feature of properties: the

GroovyBeans constructor. It allows you to initialize an object on creation without
explicitly declaring any constructors. You provide a comma-separated list of property-
Name: initialValue pairs. Note that this works only with properties, not fields! If you
try it with a field, you’ll get a MissingMethodException for the corresponding getter
or setter method.

Honoring classifiers
Groovy is lax in enforcing the behavior you specify through classifiers. For example,
private fields and methods can still be accessed from other classes. Enforcement
of final is also a touch patchy. Still, it’s worth using classifiers if only for document-
ing the intended behavior.
Licensed to Mark Watson <nordickan@gmail.com>

47Creating a quote analyzer class
 The structure of classes and properties is important, but it’s hardly interesting. Let’s
instead move on to problem-solving code by calculating other quote statistics. You’ll get
the hang of classes and properties from the numerous examples in the book!

2.2.3 Working with maps

Much of programming is about data structures and algorithms. Our first example in
this chapter made use of lists, which are instances of an important data structure that
crops up time and again in Grails code. An equally important structure is the map,
sometimes known as an associative array in other languages. Our next example dem-
onstrates how handy maps are and how easy they are to work with in Groovy.

 Your analyzer already calculates the total number of quotes (not a particularly
hard job), so why not extend that to calculate the number of quotes per author? Your
method can return a map containing pairs of authors and quote count. Let’s first
describe how it should work by adding an extra feature method called getQuote-
CountPerAuthor()to the analyzer’s specification, as shown in the following listing.

. . .
class QuoteAnalyzerSpec extends Specification {
 @Shared quotes = […]
 . . .
 @Unroll
 def "Number of quotes per author"() {
 given: "An analyzer initialized with known quotes"
 def analyzer = new QuoteAnalyzer(quoteList)

 expect: "The per-author quote count is correct"
 expected == analyzer.quoteCountPerAuthor

 where:
 quoteList | expected
 [] | [:]
 quotes | ["Peter Ledbrook": 1, "Glen Smith": 1]
 }
}

You can implement the getQuoteCountPerAuthor() method (remember it can be
accessed as the read-only property quoteCountPerAuthor) any number of ways, but
we’ll stick to a simple loop that iterates over the quotes and updates a map containing
the quote counts. The following listing shows the implementation we propose.

. . .
class QuoteAnalyzer {
 . . .
 Map<String, Integer> getQuoteCountPerAuthor() {
 def result = [:]

Listing 2.6 Adding a test method for the getQuoteCountPerAuthor() method

Listing 2.7 Implementing getQuotePerAuthor()

expect allows you to
combine when and
then in one block.

Source data
contains only
two authors with
one quote each.

Integer must be used
instead of int in
parameterized types.

Creates new, empty map.
Licensed to Mark Watson <nordickan@gmail.com>

48 CHAPTER 2 The Groovy essentials
 for (Quote quote in quotes) {
 if (result.containsKey(quote.author)) {
 result[quote.author] = result[quote.author] + 1
 }
 else {
 result[quote.author] = 1
 }
 }
 return result
 }
}

Just as lists in Groovy are instances of java.util.List, maps are instances of
java.util.Map. Yet creating and working with maps in Groovy is far nicer than in
Java. Not only do you get useful syntax sugar, but Groovy also adds a host of useful
methods to maps that aren’t provided by the JDK class itself.

 One oddity that crops up in this example is the use of the type Integer in the
parameterized return type. This occurs because Java’s generics don’t support primi-
tive types, such as int and double, and Groovy inherits this restriction. Otherwise,
Groovy is flexible because you can treat even primitive types as objects. Try this in the
Grails or Groovy console UI:

int i = -101
i = i.abs()
println i

When you declare integer properties or method arguments, you can safely choose
either int or Integer. For all practical purposes, the only difference between them
(in Groovy) is that Integer variables can be null.

 Before we look at some of the advanced features of Groovy, we’ll round out this
section with an example of error handling and file manipulation. If you come from a
Java background, we’re sure to impress you with how easy it is!

2.2.4 Taking the analyzer for a spin

The QuoteAnalyzer class isn’t much use unless you use it. We’re going to write another
script that analyzes the quotes in the database, produces a report from the statistics, and
writes that report to a file. It’s straightforward and plays to Groovy’s strengths.

 Enter the content shown in the following listing into the Grails console UI and run
the script.

import qotd.QuoteAnalyzer
import qotd.Quote

new Quote(
 author: "Peter Ledbrook",
 content: "Time waits for no man").save()

Listing 2.8 Creating the quoteStatistics.groovy script

Uses square-
bracket array-
like access to
get and put
key values.

You can call methods even on
instances of primitive types.
Licensed to Mark Watson <nordickan@gmail.com>

49Creating a quote analyzer class

new Quote(
 author: "Glen Smith",
 content: "Groovy solves all problems").save(flush: true)

def analyzer = new QuoteAnalyzer(Quote.list())
try {
 def reportFile = new File("report.txt")
 reportFile.withPrintWriter { w ->
 w.println """\
Quote report

Total: ${analyzer.quoteCount}

Number of quotes by author:
"""
 for (entry in analyzer.quoteCountPerAuthor) {
 w.println " " + entry.key.padRight(20) + entry.value
 }

 }

 println reportFile.text
}
catch (IOException ex) {
 println "Unable to write to the 'report.txt' file!"
}

This example has so much to talk about—where should we start? Let’s begin with run-
ning the script, because you can’t run it with the groovy command or in the Groovy
console UI. That’s for two reasons:

1 The Quote and QuoteAnalyzer classes must be on the classpath of the script,
otherwise they won’t be found.

2 The script uses Grails Object-Relational Mapping (GORM) to retrieve the
quotes from the database. We dive into GORM properly in chapter 3.

The Grails console UI solves both these problems by including all the project’s classes
on the classpath and enabling GORM.

RUNNING THE SCRIPT

What if you want to run this script regularly? You definitely don’t want to type it out each
time. Instead, you can save it to a file from the console UI. We typically save such scripts
into files in the root of the project with camel-case names, such as quoteStatistics.groovy.
You can load the script into the console UI at a later date and run it from there.

 When you run the script, it should print a simple report to the console indicating
two quotes, one for each author. You can then readily view the saved report by open-
ing the generated report.txt file in an editor.

 One thing to note is that we suggested you save the script in the root of the project
directory. So then what’s the “scripts” directory for? It has a special role in that any
scripts inside it are treated as part of the Grails build system. This means you can write
your own Grails commands. We talk more about the build system in chapter 17.

Loads all quotes
from the database.

Triple-quotes allow for
multiline strings: “\” is the
line-continuation character.

Embeds a Groovy expression
in a double-quote string.

Each map
entry’s key
is the author
name; the
value is the
quote count.

try/catch/finally blocks
are the main mechanism
for error handling.
Licensed to Mark Watson <nordickan@gmail.com>

50 CHAPTER 2 The Groovy essentials
What about the script code itself? We’ll discuss saving and querying domain classes
more fully in chapters 3 and 5, so we’ll skip straight to exception handling.

ERROR HANDLING WITH EXCEPTIONS

Exceptions are de rigeur in object-oriented languages, and Groovy is no exception
(pardon the pun). In the example, we handle only instances of IOException or its
subclasses—all other exceptions bubble up to the Java runtime, which stops execution
and dumps the exception stack trace to the console. You can also add a finally block
after all of your catch clauses to do something regardless of whether or not an excep-
tion was thrown.

 You have flexibility in what exceptions you catch and handle. With Groovy 2 (and
hence Grails 2.2+), you can even declare multiple exceptions in a single catch. Ulti-
mately, all exceptions and errors must inherit from the class java.lang.Throwable, as
shown in figure 2.1.

 On the whole, you don’t need to worry about the difference between Exception
and RuntimeException in Groovy. You’re not required to catch checked exceptions
(unlike in Java) or runtime (unchecked) ones. The only time it becomes important is
when you integrate with Java libraries, such as Spring and its transaction processing
(as you’ll see in chapter 14). We do recommend that you extend RuntimeException
whenever you create your own exceptions, though. It makes for the smoothest integra-
tion with Java and Java libraries.

The run-script command
You can also run plain Groovy scripts directly from their files by using the run-script
command:

grails run-script quoteStatistics.groovy

This is broken in early Grails 2.3 versions but works fine in 2.3.4 and above and
Grails 2.2.x and earlier.

Throwable

Error Exception

RuntimeException Figure 2.1 The base Groovy
exception class hierarchy
Licensed to Mark Watson <nordickan@gmail.com>

51Creating a quote analyzer class
Speaking of creating your own exceptions, how do you raise your own errors? With
the throw statement:

throw new IllegalArgumentException("<error message>")

As you can see, you have to pass an instance of an exception to throw. Here we use a
standard exception class provided by the Java class library, but you can throw your own
custom exceptions too.

 Next up is more on string literals, as this is the first example in the chapter that
introduces embedded Groovy expressions as well as multiline strings.

MORE ON STRING LITERALS

You’ve already seen three different types of string literals, although we only brought
attention to one: the slashy string. Double quotes and single quotes are also valid
string delimiters, with double-quote string literals allowing you to embed Groovy
expressions inside ${}.

 Groovy evaluates these expressions, converting the results into strings before
inserting them into the final string. Instead of code like this:

String greeting = "Hello " + name

you can use

String greeting = "Hello ${name}"

In fact, for simple variable expansion like this, you can drop the curly braces:

String greeting = "Hello $name"

Single-quote strings don’t do anything special, so they’re useful if you want to include
the dollar symbol without having to escape it. Otherwise, we tend to prefer the double-
quote version in day-to-day Groovy coding.

 You can also use single- or double-quotes for multiline strings, and they behave the
same way. Use three quotes instead of one as we do in the previous simple example,
but remember that any newline inside the quotes will result in a newline in the result-
ing string. That’s why the backslash is particularly handy: it allows you to split lines in
the source code without splitting them in the actual string. Hence its name: the line-
continuation character. To see what we mean, try executing the following code in the
console UI:

def msg = """Hi,

Welcome to \
the jungle!
"""

println msg

You’ll see that the printed message looks like this:

Hi,

Welcome to the jungle!

Triple quotes start a
multiline string.

The backslash joins the
next line to this one.
Licensed to Mark Watson <nordickan@gmail.com>

52 CHAPTER 2 The Groovy essentials
We’ll finish off this section with a quick word about the file manipulation work the
example does because it sets you up nicely for the discussion about closures in the next
section on advanced Groovy.

FILE MANIPULATION

We’ll admit it: the file manipulation we perform in our latest script will likely impress
only Java developers, but that’s mainly because of the lack of richness in the Java class
library. The Groovy JDK provides the following methods and properties that we use in
the example to make our lives easier:

■ File.withPrintWriter—Opens the file for writing and automatically closes
it afterward.

■ File.text—Returns or sets the entire contents of a file as or from a string.
■ String.padRight—Adds spaces to the end of a string up to a fixed width; use-

ful for tabulation and alignment.

Of these, the most interesting is File.withPrintWriter because it uses a powerful
feature of Groovy that we haven’t yet encountered: closures. We’ll explain closures in
the next section, but for now we want to show one example of why they’re so useful.

 The usual paradigm in Java for working with a file looks like this:

def reportFile = new File("report.txt")
def output
try {
 output = new FileOutputStream(reportFile)
 // Write to the output stream
 ...
}
finally {
 if (output) output.close()
}

This is horribly verbose and requires you to declare an uninitialized variable, output,
all so the file stream is closed properly whether or not an exception is thrown. It’s boil-
erplate that helps obfuscate the real code.

 In Groovy, we can pass a block of code to withPrintWriter(). The method opens
the stream, executes the block of code we pass to it, and closes the stream safely, regard-
less of whether or not the block of code throws an exception. That block of code we pass
to withPrintWriter() is the closure. And withPrintWriter() passes the open stream/
writer into the closure so the encapsulated code can write to that stream.

 After you get comfortable with Groovy, you’ll use closures and the associated
Groovy JDK methods on a daily basis. Closures add an extra dimension to the way you
solve problems in code and make it much easier to express certain concepts. That’s
why Java 8 has its own variant in the form of lambda expressions.

 You’ve done useful work in this chapter, from learning how to incorporate scripts
into a Grails project to using the core features of Groovy. Rather than teach you how
to program in Groovy, the aim of this chapter is to familiarize you with the syntax and
Licensed to Mark Watson <nordickan@gmail.com>

53Going to the next level
discuss the most useful features while showing practical uses of the language. If you
plan to do significant Groovy and/or Grails development, it’s worth learning the lan-
guage properly, perhaps through a book such as Groovy in Action by Dierk Koenig et al.,
(Manning, 2007). Book details are at http://www.manning.com/koenig2/.

 We’ll finish the chapter with a theoretical section that introduces advanced con-
cepts of the language. We’ll also discuss when and how you should incorporate these
concepts into your applications.

2.3 Going to the next level
Thus far, you’ve seen a language that isn’t dissimilar to Java. That’s for good reason:
the creators of Groovy wanted it to be as close to Java as possible. As a result, you can
already code anything you need using the syntax and techniques we’ve shown you. But
you’re missing out on the real power and expressiveness of the language.

 In this section, we’ll look at the more advanced parts of Groovy that distinguish it
from Java and make it a more productive (in our biased opinion) language. And if
there’s one feature that enhances the developer experience, it’s closures. They make
it easier to focus on what you want to do rather than how to do it.

2.3.1 Discovering closures

One of the greatest limitations of Java is the lack of what is known as first-class func-
tions. You can’t have a function without a class wrapping it. This leads to single-
method interfaces and classes, such as java.util.Comparator. Is the interface neces-
sary? Couldn’t we treat a function as an object defined by its signature (arguments and
return type)? This is what closures do for us.

 At the simplest level, closures represent anonymous functions that can be passed as
arguments to other functions, assigned to variables, and called with arguments. You
saw an example closure with File.withPrintWriter(), but let’s use another one to
reinforce how they’re used. Imagine that you want your quote analyzer to report the
average number of characters per quote. As a first attempt you may try

 def getAverageQuoteLength() {
 if (!quotes) return 0.0

 def totalSize = 0
 for (Quote q in quotes) {
 totalSize += q.content.size()
 }

 return totalSize / quotes.size()
 }

Sure, this works, but you must read several lines of code together to understand what’s
going on. What are you trying to achieve here? You want to sum together the number
of characters in each quote and then divide the result by the number of quotes. In
effect, the code has two parts: the summing and the evaluation of the number of char-
acters in a quote.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.manning.com/koenig2/

54 CHAPTER 2 The Groovy essentials
 The algorithm for summing is always the same: add a bunch of numbers together.
The only variation is where the numbers come from. That’s why Groovy adds a sum()
method to collections that allows you to specify which value you want to sum for each
element of a collection. Without further ado, here’s our preferred implementation of
the previous method:

 def getAverageQuoteLength() {
 return quotes.sum { it.content.size() } / quotes.size()
 }

Not only is this much more succinct, but the intention of the code is much more obvi-
ous. In this case you’re summing content.size() for each of the quotes, with it rep-
resenting each element of the quotes list.

 Understandably, the collections probably have the highest density of methods that
use closures. Another classic example is the findAll() method, which returns a new
collection containing only the elements that match a particular condition—specified
as a closure that returns a Boolean. If you want only the quotes from Peter Ledbrook,
you can use the code

def peterQuotes = quotes.findAll { it.author == "Peter Ledbrook" }

The method findAll() executes the closure for every element in the list of quotes
and passes in the current element as the closure argument (remember, a closure is
like an anonymous function and hence can have arguments). In this case, the argu-
ment is implicitly available as the variable it. You can also explicitly declare the clo-
sure arguments, as you saw with the iteration over a map in the quoteStatistics
.groovy example:

analyzer.quoteCountPerAuthor.each { String author, int count ->
 w.println " " + author.padRight(20) + count
}

The arguments can be either typed or untyped, and you must demarcate the end of
the argument list with -> if you do declare them.

 It may help you to understand the syntax of methods with closures if you see the
signature method. Let’s take findAll() as an example:

List findAll(Closure conditionFunction)

As you can tell from the signature, these closures have their own type and are, in fact,
objects. That’s why they can be used as arguments and assigned to variables.

 Those are the basics of closures. For those of you with Ruby experience, they corre-
spond to Ruby’s code blocks. They aren’t a complicated concept, but it can be hard to
move away from the “use a loop” mentality if you’ve never used a language with a sim-
ilar construct (we’re looking at you, Java). Once you get the hang of them, you’ll won-
der how you ever lived without them!

 There’s certainly more to closures than we can possibly cover here, but with these
basics you’ll be able to learn the rest as you work with the language, and you’ll see
Licensed to Mark Watson <nordickan@gmail.com>

55Going to the next level
them pop up in examples throughout the book. Before we move on, there’s one trap
we want to warn you about that newcomers fall into.

 In an effort to be as Groovy as possible, some developers always use the each()
method for iterating over collections. The trouble with this approach is that neither
break nor continue work in this context, even though they work fine in for and
while loops, and it’s not obvious why the code isn’t working.

 The solution is either to use a for loop or an appropriate Groovy JDK method. The
break keyword is often used to break out of a loop once an item is found. In such sce-
narios, the Groovy JDK find() method is a much better approach.

 You can find several other methods in the Groovy JDK that work for different use
cases. Appendix A has descriptions of the most useful ones, and we recommend you
try them out because they make for much more succinct and understandable code.

 We’re nearly done with this introduction to Groovy. You’ve seen all the important
constructs of the language, enough to begin coding. There are only two things left to
discuss: the dynamic nature of Groovy and when to use explicit types. The first of
these is targeted at Java developers rather than Rubyists, Pythonistas, PHP developers,
or others that have a dynamic language background. That’s because Java developers
sometimes struggle with the dynamic nature of Groovy, particularly when explicit
types don’t behave as expected.

2.3.2 Programming dynamically

Dynamic languages sound exciting, don’t they? It’s built into their name: “dynamic.”
But what do we mean by that term? The definition comes in two parts:

■ Properties, variables, and arguments don’t need to have explicit types.
■ Behavior can be modified at runtime.

Let’s take a look at examples that illustrate these points.

CHANGING THE BEHAVIOR OF EXISTING CLASSES AT RUNTIME
In section 2.1.1 we highlighted that the method call

def quote = createQuote(quoteParts, "test")

doesn’t result in a compiler error but in a runtime MissingMethodException. Why?
Because you can add behavior at runtime, so the method may exist by the time it’s called.

 To demonstrate the impact this has, we’ll modify the previous script that we wrote
to generate data (listing 2.1) by adding a new method to the List class at runtime.
The method randomly selects one of its elements. The following listing shows the
required code changes to the script.

List.metaClass.random = {->
 delegate[new Random().nextInt(delegate.size())]
}
. . .

Listing 2.9 Implementing a method at runtime

Adds a zero-argument
random() method to
instances of List
Licensed to Mark Watson <nordickan@gmail.com>

56 CHAPTER 2 The Groovy essentials
String createQuote(List quoteParts, List authors) {
 return quoteParts.random()[0] + ' ' +
 quoteParts.random()[1] + ' ' +
 quoteParts.random()[2] + ' by ' +
 authors.random()
}
. . .

At this point we’re not interested in the mechanics of how the random() method is
added to the List class. The key point to take away is that it’s possible to add methods
and properties at runtime, so Groovy can’t raise errors about unknown properties and
methods at compile time.

 This behavior of resolving properties and methods at runtime has its advantages.
Here are some of the ones we particularly like:

■ Correct selection of overloaded methods—When you call an overloaded method,
Groovy selects the appropriate one based on the actual types of the arguments
at runtime. This is far more useful than selecting based on declared type.

■ Generating data from code—Writing data as code is powerful, particularly as you
can incorporate conditions, loops, and other bits of flow logic. The classic
Groovy example is the MarkupBuilder class, which allows you to generate XML
incredibly easily. We show an example after this list.

■ Duck typing—Duck typing is particularly useful for testing as it allows you to pass
any type of object as an argument as long as it implements the required proper-
ties and methods. For this to work, the method arguments must be untyped
because Groovy does enforce types at runtime. The name comes from the
phrase “if it walks like a duck and quacks like a duck, it’s a duck.” See figure 2.2
for a diagrammatic view of duck typing.

Other advantages include loading and instantiating classes at runtime; you don’t
need their types on your classpath when you compile your application, allowing for

Calls the new random()
method as if it were a
method on the List class

Can use either class as they

both implement the same methods
Doesn’t implement or extend Duck!

obj.quack(3)

obj.waddle()

Duck client

class Duck{

void quack(int count){...}

void waddle(){...}

}

class LikeADuck{

void quack(int count){...}

void waddle(){...}

}

Figure 2.2 An example of duck typing
Licensed to Mark Watson <nordickan@gmail.com>

57Going to the next level
easier modularization. But the advantages mentioned previously are definitely our
favorites.

 Given the freedom that comes with dynamic languages, you need to be careful not
to abuse that flexibility. Adding dynamic behavior everywhere guarantees confusion
and hard-to-diagnose errors.

 Let’s finish off this section with the example XML generation we promised.

GENERATING DATA FROM CODE

Type this code into the Grails console UI:

def mkp = new groovy.xml.MarkupBuilder()
def items = ["Oranges", "Bananas", "Cereal", "Milk"]

mkp.shoppingList {
 for (itm in items) {
 item(itm)
 }
}

When you run it, you’ll see the following in the output:

<shoppingList>
 <item>Oranges</item>
 <item>Bananas</item>
 <item>Cereal</item>
 <item>Milk</item>
</shoppingList>

You can probably guess what’s happening: the calls to the methods shoppingList()
and item() are turning into XML elements of the same name. Those methods don’t
exist on the MarkupBuilder class, though. They’re only evaluated at runtime. Groovy
also has a JSONBuilder class for generating JavaScript Object Notation (JSON).

 Hopefully it’s clear that Groovy is a dynamic language, because this point is impor-
tant for understanding the discussion over whether or not to use explicit types. There’s
no right answer to the question, but you can make an informed decision as to when
and when not to use types based on what we present next.

2.3.3 To type or not to type

Should I declare my properties with explicit types? What about method arguments?
What are the implications of each? Newcomers to Groovy often find themselves asking
questions such as these when they start coding. In most languages you don’t have a
choice: you’re stuck with explicit types everywhere or nowhere.

 What do explicit types buy you in Groovy? They neither result in compiler errors,
as we explained in the previous section, nor do they make the code run faster. Maybe
we should just ignore them.

 Not so fast! Despite the lack of compilation errors, explicit types do have their uses:

■ They document your code, making it easier for other developers to follow and use.
■ APIs are easier to use when they include type information because you know, at

a glance, what argument types are required.
Licensed to Mark Watson <nordickan@gmail.com>

58 CHAPTER 2 The Groovy essentials
■ Runtime errors due to type mismatches are easier to diagnose than the alterna-
tive MissingPropertyExceptions and MissingMethodExceptions.

■ Code can use the type information to do clever things. For example, GORM relies
on explicit types to map properties to database column types.

The first three of these points argue for using explicit types for method signatures and
public properties, and in general, that’s what we recommend. But be aware that
explicit types break duck typing: Groovy enforces the types at runtime. This can make
testing harder with concrete types such as File.

 As for local variables, we don’t use explicit types because they offer little advantage.
As long as methods are a sensible size (say less than 15 lines or so), it’s clear what type
local variables are without the noise of an explicit type. With all that in mind, here’s
our general guideline for explicit types. Note “guideline,” not rule!

This guideline will cause disagreements, and that’s fine. Go with whatever you or your
team chooses. This guideline is more for those who have no strong opinions and want
a “safe” option based on others’ experience.

As you can see from this section, Groovy is a powerful and flexible language that
happens to be more accessible than Java. Closures allow for a new approach to solv-
ing problems and can make your code more expressive than it would be otherwise.
Combine them with the Groovy JDK methods and you have an entire chest of toys to
play with.

 The language also provides flexibility in the way that you use types. Hopefully
we’ve given you useful guidance on when to use explicit types and when not, but as we

Guideline on using explicit types
For method signatures and properties, we recommend that you use explicit types
unless doing so makes testing significantly harder or your code relies on duck typing
in another way. We recommend that you leave local variables untyped.

Static type checking
With the advent of Groovy 2, it’s possible to add compile-time type checking to your
classes via the @groovy.transform.TypeChecked annotation. This doesn’t change
the way the code behaves at runtime, but at compile time Groovy generates errors
for variables, methods, and properties it can’t resolve.

We haven’t heard of it being used much, but if you’re a Java developer you may find
it easier to work with Groovy when using the annotation. A companion annotation,
@groovy.transform.CompileStatic, exists, but don’t use this in Grails applica-
tions at the moment because it doesn’t work for several types of artifacts. It’s fine,
though, for standalone, nonartifact Groovy classes.
Licensed to Mark Watson <nordickan@gmail.com>

59Summary and best practices
said, you’ll find your own preferences as you gain experience. Or you may be forced
to use your team’s style guidelines!

 With that, we’re done with this Groovy primer. Remember, you can always refer to
this chapter at any time to refresh your memory on specific points of syntax or Groovy
feature we discussed. All that’s left to do now is wrap up.

2.4 Summary and best practices
We covered Groovy at a rapid pace, so let’s stop and take stock. From the early sections
and examples in this chapter, you should feel confident and excited about program-
ming in Groovy. We covered the basic syntax and the most common constructs that
you’ll use for Grails development. A single chapter is never going to be exhaustive, but
anything that isn’t covered here will be explained in later chapters.

 Before we move on to the Grails fundamentals, here are some general guidelines
to make your Groovy experience as enjoyable and productive as possible:

■ Learn more about the language. Your Grails expertise will be only as good as your
Groovy chops. For a comprehensive look at the language itself, check out Groovy in
Action, by Dierk Koenig et al. (Manning, 2013), at http://manning.com/koenig2/.

■ Become familiar with the Groovy JDK and the Java class library, particularly the classes
under java.lang, java.io, and java.math. As you become more experienced,
it’s worth getting to know the Groovy API too, which includes things such as
groovy.xml.MarkupBuilder, groovy.sql.Sql, groovy.lang.Range, groovy.lang
.Closure, and more.

■ Practice, practice, practice! The more you use any language, the better you become
with it. Consider installing Groovy and using it to write scripts. You can also
include it in other Java projects, for example, for the unit tests.

■ Don’t overuse closures. If a standard Groovy method suffices, use that. Closures
should be used where they add value, such as arguments to other methods.

■ Embrace a test-first philosophy. This approach quickly picks up logic errors as well
as typos, while also helping you to produce reliable software. We give this area
thorough coverage in chapter 9.

■ Use a Groovy-aware IDE. Tools such as Eclipse, Intellij IDEA, and NetBeans offer
many features, such as underlining unknown properties and methods (to catch
typos) and debugging support.

Groovy is a flexible language with powerful constructs that allow you to write solutions
the way you want. It also has a relatively simple syntax, so the learning curve isn’t that
great. One of the great strengths of developing with Grails is that you code in Groovy.

 With this small diversion out of the way, it’s time to get back to dedicated Grails
work and start exploring the fundamentals of the framework that we touched on in
chapter 1.
Licensed to Mark Watson <nordickan@gmail.com>

http://manning.com/koenig2/

Licensed to Mark Watson <nordickan@gmail.com>

Part 2

Core Grails

In part 1, we gave you a whirlwind introduction to both the core parts of
Grails and the underlying Groovy language that powers it. In part 2, we’ll start a
more thorough exploration of the three core parts of the Grails ecosystem: mod-
els, controllers, and views.

 In chapter 3, we’ll look at domain modeling—the heart of any Grails appli-
cation. You’ll learn about saving and updating domain classes, explore the
many facets of validation, and cover all basic relationships for domain classes
(1:1, 1:m, m:n).

 Chapter 4 will put your modeling skills to work by taking you through the
numerous query mechanisms that Grails offers for searching your domain
model. We’ll also investigate Grails’s fantastic scaffolding features, which allow
you to build a functional UI in record time.

 Chapter 5 introduces ways to query a database in Grails without using SQL.
You’ll learn how to generate sample data and explore advanced querying tech-
niques by building a basic search form for Hubbub that provides a basis for try-
ing different types of query.

 In chapter 6, you’ll be ready to explore some of the web-oriented features of
Grails. In particular, how you can route a user around the different features in
your application using Grails controllers. We’ll also cover binding data from web
forms, writing a request filter, and even creating custom URL mappings to add
user-friendly permalinks to your application.

 Chapter 7 builds on your knowledge of controllers by introducing the Grails
Service object, which helps free controllers from the heavy lifting of application
logic, and lets controllers do what they do best—control the flow of the user
Licensed to Mark Watson <nordickan@gmail.com>

through the application. We’ll also discuss data binding, error handling, URL map-
pings, and filters.

 In chapter 8, we’ll turn our attention to the user interface components of a Grails
application, exploring Grails tags for UI construction. We’ll show you how to quickly
add a consistent and sophisticated look and feel to your applications, and even how to
build custom skins for your application. Finally, we’ll introduce Grails’s Ajax support,
and show you how to add slick animations to your applications.

 Once you’ve finished this part of the book, you’ll have a comprehensive under-
standing of all the basics of Grails and be well on your way to becoming a productive
Grails developer. In part 3, we’ll introduce more sophisticated Grails features that will
really make your application ready for production.
Licensed to Mark Watson <nordickan@gmail.com>

Modeling the domain
In this chapter, we explore Grails’s support for the data model portion of your
applications (getting stuff into the database and querying to get it back), and if
you’re worried we’ll dig deep into complex outer joins, you’ll be pleasantly sur-
prised how straightforward Grails makes data access. We won’t write a line of SQL,
and you won’t find any Hibernate XML mappings here either. We’ll take full advan-
tage of the convention over configuration paradigm we introduced in chapter 1,
which means less time configuring and more time getting work done.

 We’ll spend most of our time exploring how Grails persists domain model classes
to your data store of choice (be it a relational database or a shiny new NoSQL store)
using GORM, mentioned briefly in chapter 2. You’ll also learn how GORM models
various relationships (one to many, many to many, and so on.)

This chapter covers
■ What GORM is and how it works
■ How domain classes are saved

and updated
■ Techniques for validating and

constraining fields
■ Domain class relationships (1:1, 1:m, m:n)
63

Licensed to Mark Watson <nordickan@gmail.com>

64 CHAPTER 3 Modeling the domain
 But we’re practitioners, not theorists, so we’ll discuss these topics while building
the heart of the sample application you’ll use throughout this book: Hubbub. You
won’t spend much time on the UI in this chapter, but the concepts we’ll cover are fun-
damental for building the rock-solid data models that back our applications.

 Without further ado, let’s look at your sample application.

3.1 Introducing the Hubbub sample application
Our goal in this book is to take you to the stage where you could work as a productive
Grails developer. We’ll mentor you in the skills you need to produce world-class appli-
cations in record time by showing you how to develop a real application. Our plan is
that everything you learn while developing Hubbub you can apply in your workplace
developing the next Facebook (or other world-beating web app).

 The example we’ll use for the rest of the book is Hubbub, a simple microblogging
application similar to Twitter. Think of it as a system that lets you write short posts about
what you’re hacking on right now. Friends can follow your posts to see what you’re geek-
ing out on and get motivated to check things out for themselves. You can follow your
friends’ posts, too. Figure 3.1 shows a complete version of Hubbub in action.

TIP No doubt you’re already well-versed in how common social network apps
work, but if you need friends to follow, check out @glen_a_smith and @pled-
brook on Twitter. Our tweets may be geeky, but we’re mostly harmless.

Figure 3.1 The Hubbub we’re heading toward
Licensed to Mark Watson <nordickan@gmail.com>

65Introducing the Hubbub sample application
The domain model for Hubbub is simple. Figure 3.2 shows the Hubbub entity rela-
tionship (ER) model in all its glory.

 The User class holds the user’s authentication details (user ID and password),
but all good social networking applications let you associate bio information with
each user (profile pic, email, blog, time zone, and favorite rock star, for example).
We model that in a Profile class (which is an optional 1:1 relationship—each User
may optionally have one Profile and each created Profile relates to one, and only
one, User).

 Hubbub’s purpose is to let users create posts—one-line blog entries that describe
what they’re hacking on right now. A user can write many posts, and each post has a
single author, so that’s a classic 1:m (one-to-many) relationship.

 But what’s a social networking application without hashtags? Applications such as
Twitter make great use of #hashtags to see what topics are “trending” or “so hot right
now” among users. Each time a user creates a Post, he can apply hashtags to it, and a
given Post can have many tags. But that means the reverse is also true. Each Tag can
also relate to many Posts. We have an m:n (many-to-many) relationship. You can also
link the Tag back to the User object, because it’s handy to see all the tags a user has
available without searching all their posts.

 We’ve saved the trickiest part until last: the User object has self-references. A User
can follow many other Users (which we call a “following” relationship). That sounds
as if it would be exhausting to implement, but it turns out to be straightforward.

 Don’t worry about getting it straight in your head yet. We’ll spend plenty of time
with these classes over the next few chapters. You’ll get a feel for the function of the
main objects and be on your way.

3.1.1 Domain-driven design

If you’re as impatient as we are, you probably wonder why we’re starting with all this
domain-model design stuff here. Why not something a little sexier, such as an auto-
completing Ajax-powered search gizmo? Don’t worry, we’ll get to that.

 Grails is designed to be an interactive agile development framework. That means
you can start anywhere you like, refactor, make changes, and still end up with a fantas-
tic app. You can start with the UI, domain modeling, service classes, or even the test
cases, if you like.

 When we work on Grails apps, the first thing we usually do is sketch out screen
designs on graph paper, as shown in figure 3.3. This gives us a good feel for how the

User

following

Post

Profile

Tag

Figure 3.2 The basic Hubbub data
model demonstrates the most used
relationship types.
Licensed to Mark Watson <nordickan@gmail.com>

66 CHAPTER 3 Modeling the domain
user will interact with the system, and a sense of how the finished product may look.
This gets us in the headspace of the application and gives us ideas about the user
experience. Peter likes to do this kind of stuff on his iPad, but I’m a little more low-
tech, so I’ll scratch out something on paper.

 When developing any kind of web app, the UI is only part of the story. Once we
have our UI sketches mocked up, we move on and define the domain model: how all
the persistent data in the system fits together. This gives us a good feel for how the
core parts of the system will collaborate, and it helps us flesh out our thinking. Grails
makes domain modeling so easy that we usually do this bit directly in code without any
real data model on paper. In fact, that’s why this chapter is the first to cover its topic in
greater depth: domain modeling is a great place to start your Grails application devel-
opment journey.

 During this section you’ll start defining your data model, then you’ll use Grails to
generate a quick-and-dirty scaffold UI (we introduced you to these autogenerated UI
artifacts in chapter 1, and we’ll look more closely at them in the next chapter). With
the autogenerated UI, you’ll feel like you’re making progress because you’ll have an app
that runs and persists to a database. This will motivate you to move to the app’s next
level of functionality and start implementing graph paper scratchings as a real UI.

 You may be more disciplined than we are and not need the carrot of seeing things
up and running, but you’re stuck with us for this chapter, so let’s get Hubbub to the
point where you can see it running in a browser.

3.1.2 Hubbub kick-start: from 0 to first hit

You’ve completed the rough version of your screens on paper, and you have a “nap-
kin-level” data model to work from, so it’s time to generate the application. Let’s cre-
ate the app:

grails create-app hubbub

We find it’s good encouragement to do a cd hubbub followed by an initial grails run-
app to start a newly created application. Point your browser at http://localhost:8080/
hubbub/ to see things up and running, as shown in figure 3.4.

Figure 3.3 Early screen designs
for the Hubbub UI
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:8080/hubbub/
http://localhost:8080/hubbub/

67Introducing the Hubbub sample application
With the shell of Hubbub in place, it’s time to put meat on the bones. The next sec-
tion explains how to generate your first domain class.

3.1.3 Introducing GORM

Before we generate our first domain class, let’s take a quick look at the GORM
implementation.

 Object-relational mapping (ORM) is the process of getting objects into and out of a
persistent data source (you may use a relational database, an object database, or one
of the new NoSQL databases—but Grails abstracts most of these details for you). Hav-
ing an ORM layer such as GORM means you can be (mostly) oblivious to the SQL/
NoSQL that happens behind the scenes and get on with coding. For example, if you
call user.firstName = "Glen", the ORM may create the SQL UPDATE statement to
ensure that the object’s firstName field is persisted in your relational database, or it
might generate the JSON to send it to a NoSQL store. In Java applications, that role is
usually handled by an ORM such as Hibernate or the Java Persistence API (JPA); in
Grails, it’s done by GORM, which takes full advantage of Groovy’s dynamic typing to
make data access simple.

 If you’ve used Hibernate, EclipseLink, or another Java ORM library, you know that
configuration is required. Often, you have to write XML mapping files or add annota-
tions to each persistent class, and you may have to configure transactional behavior,
too. GORM, like most of Grails, is based on convention over configuration to get you
up and running without a single line of XML.

Figure 3.4 The newly created Hubbub application
Licensed to Mark Watson <nordickan@gmail.com>

68 CHAPTER 3 Modeling the domain
 Now that you know a bit about GORM, it’s time to define your first domain model
object and see things in action.

3.2 Your first domain class object
We outlined the preliminary domain model at the beginning of this chapter, and you
have your application shell in place, so it’s time to define your domain model classes.
One of the first things you need to define is a User object so your users can sign up
and start using the system.

 The first step is to ask Grails to create a skeleton of your domain class:

grails create-domain-class com.grailsinaction.User

This creates a new class file in /grails-app/domain/com/grailsinaction/User.groovy
(and a corresponding unit test in /test/unit/com/grailsinaction/UserTests.groovy).
As we discussed in chapter 1, it’s good practice to store classes in packages rather than
in the default scope, so you’ll keep all source in a package called com.grailsin-
action. Now it’s time to think about the fields you want to define for new User
accounts. You don’t want the signup process to be onerous, but you need a few basics
from your users:

package com.grailsinaction

class User {
 String loginId
 String password
 String homepage
 Date dateCreated
}

Now you can store a user’s details. You don’t have a UI to enter anything into yet, but
you do have the skeleton of a test case that Grails created, which should make it easier
to begin writing tests for your code. Before you write your first real test, let’s discuss
the amazing world of Grails testing.

Types that can be used in domain classes
We’ve used Strings and Dates in our User object so far, but you can use an exten-
sive range of Java types: Integer, Long, Float, Boolean (and their corresponding
primitive types), Date, Calendar, URL, and byte[] are all in the list of supported
types. Grails will also make sensible choices about an appropriate database type
to map what you’re storing. See the Hibernate documentation for a full set of sup-
ported types.

Grails provides special support for date fields named dateCreated and last-
Updated. If you have fields with such names, Grails automatically sets the current
timestamp value on first save to dateCreated or on every save to lastUpdated. We
take advantage of dateCreated to preserve the user’s registration time.
Licensed to Mark Watson <nordickan@gmail.com>

69Your first domain class object
3.2.1 Saving and retrieving users via tests

The whole testing infrastructure (and particularly unit testing) had a massive overhaul
in Grails 2.0. If you’ve been around the Grails block, you know that unit testing sup-
port in Grails 1.x was clunky, tedious, and often incomplete, creating friction when
writing solid tests for your app. Unit testing was rewritten completely in Grails 2.0, so
even if you’re a Grails 1.x veteran burned by Grails testing, it’s worth following along
the next few sections to start your transition to Spock and Grails 2.0 and find a reason
to get excited about testing again.

 We first introduced you to the idea of Grails automated testing in chapter 1,
when you created tests for QuoteService. Tests are useful across your application—
so useful, in fact, that chapter 9 discusses testing strategies for all development life-
cycle phases.

 For now, though, tests give us a chance to show how GORM saves your objects to
the database and how you get them back. Let’s write the first test case.

As we discussed previously, Grails creates a unit test case skeleton in /test/unit/com/
grailsinaction/UserSpec.groovy. But you want an integration test, because you want to
run it against your database. Recall from chapter 1 that you create integration tests
with this command:

grails create-integration-test com.grailsinaction.UserIntegration

This command generates /test/integration/com/grailsinaction/UserIntegration-
Spec.groovy.

Unit versus integration tests?
When you create any artifact from the command line, Grails automatically gener-
ates a corresponding unit test in /grails-app/test/unit/YourArtifactSpec.groovy.
Unit tests run in isolation and rely on fairly sophisticated mocking techniques using
Groovy mixins (which we introduce in the next few chapters and deep dive into in
chapter 7). For most of your everyday Grails hacking, you’ll work with unit tests. Why
didn’t we start there?

Given that we’re testing database-related logic, integration tests are the "right way to
do it," and you may as well learn the right way! Yes, Grails does provide mocking sup-
port for the data tier, but in this chapter we want to test the data tier, not mock it out!
Grails calls this integration testing.

For integration tests, Grails bootstraps the real database and wires up all compo-
nents as it would for a running application. That means you can see what happens
when you create, save, and delete domain objects into a real database, and you don’t
have to mess with any tricky mocking features yet. Integration tests are much slower
to run, but they’re fantastic for the learning and experimenting you’ll do in chapter 9.
They’re also the right way to test transactional code, because no one deploys to a
mock database!
Licensed to Mark Watson <nordickan@gmail.com>

70 CHAPTER 3 Modeling the domain
 Next, create and save a User object in the database (for the user joe). Then see if
you can query the database to find the user based on the user ID. The following listing
introduces your first saving test.

package com.grailsinaction
import spock.lang.*
class UserIntegrationSpec extends Specification {

 def "Saving our first user to the database"() {

 given: "A brand new user"
 def joe = new User(loginId: 'joe', password: 'secret',
 homepage: 'http://www.grailsinaction.com')

 when: "the user is saved"
 joe.save()

 then: "it saved successfully and can be found in the database"
 joe.errors.errorCount == 0
 joe.id != null
 User.get(joe.id).loginId == joe.loginId
 }

}

The process of creating a new domain object instance normally consists of construct-
ing the object, then invoking the save()method B. When you invoke save(), GORM
generates the SQL code to insert your User object into the database. GORM returns
the saved User object (or null if save() fails, which we’ll talk about later) and sets an
errors object to hold any validation errors c. Once the User is saved to the database,
it’s assigned an id field in the database d. We can then use this id with the get()
method e to query for the object (you can also use the read() method if you want a
read-only copy of the object).

 Much snazzier ways exist for querying for objects than get() and read(), and we
cover them when we get to dynamic finders in the next chapter, but get()works for now.

 It’s time to confirm that your test case works, so let’s ask Grails to execute your
test case:

grails test-app integration:

You can use grails test-app if you want to run both unit and integration tests, but
we’re only interested in integration tests for now. Normally you’d follow the colon
with the particular test name you wish to run, but you can leave it blank to run all inte-
gration tests. You get brief output in the console that gives you the good news you’ve
been looking for:

| Completed 1 spock test, 0 failed in 24ms
| Tests PASSED - view reports in C:\TEMP\hubbub\target\test-reports

And you’re all green (that’s what people say when tests pass because most IDEs display
passing tests with a green bar). That “PASSED” tells us your Spock assertions passed, as

Listing 3.1 Saving and retrieving a domain object from the database

Calls save() to
persist object

 b

Ensures save()
was error free c

Confirms save()
set database ID dRetrieves User

object by ID e
Licensed to Mark Watson <nordickan@gmail.com>

71Your first domain class object
expected. Grails also writes a nicely formatted HTML report in target/test-reports/
html/index.html. Figure 3.5 shows the output from your previous test run.

3.2.2 Updating user properties

You’ve completed your first save, so try implementing an update routine. Update is a
special case of saving, so let’s try updating joe’s password programmatically.

NOTE You have to create your “joe” user every time you run a test cycle,
because integration tests always return the database to the way they found it.
Your changes execute in a transaction that’s rolled back at the end of each
test to ensure that the database is clean for each test.

Start with save()and get()as in your previous test, and then you’ll modify user fields
and repeat the save() and get() to make sure the update worked. The following list-
ing takes you through the save-and-update test cycle.

def "Updating a saved user changes its properties"() {

 given: "An existing user"
 def existingUser = new User(loginId: 'joe', password: 'secret',
 homepage: 'http://www.grailsinaction.com')
 existingUser.save(failOnError: true)

What does save() do behind the scenes?
Behind the scenes, save() uses the Hibernate session that Spring puts on the cur-
rent thread, then adds your User object to that session. In Hibernate lingo, this
means the User object moves from being a transient to a persistent object.

The flush to the database (the real SQL inserts) from the Hibernate session occurs
at the end of the thread’s lifetime, but if you want to force your object to persist imme-
diately, you can do an explicit user.save(flush: true).

But we’re getting ahead of ourselves. We’ll cover this in more detail in chapter 12.

Listing 3.2 Updating users by changing field values and calling save()

Figure 3.5 You can open the test report in your browser.
Licensed to Mark Watson <nordickan@gmail.com>

72 CHAPTER 3 Modeling the domain
 when: "A property is changed"
 def foundUser = User.get(existingUser.id)
 foundUser.password = 'sesame'
 foundUser.save(failOnError: true)

 then: "The change is reflected in the database"
 User.get(existingUser.id).password == 'sesame'

}

You’re used to the save() and get() cycle from your previous test. But notice how
executing an update is a matter of changing property values B and invoking save() c
to persist the change to the database. Setting the failOnError:true option to save()
means Grails will throw an exception if the object fails any validation tests. An excep-
tion causes the test to fail instantly, so using this option means you don’t have to look
at the errors property later in your test results. Save your updated object, then requery
the database to confirm that the password change was applied d.

 To confirm that your change is working as you expect, invoke another grails
test-app integration:

| Completed 2 spock tests, 0 failed in 292ms
| Tests PASSED - view reports in C:\TEMP\hubbub\target\test-reports

You can now see that your two tests are running successfully with no failures! With
your updates running successfully, it’s time to turn your attention to deleting users.

3.2.3 Deleting users

You now have a feel for loading and saving, but those pesky bots will soon fill your
database with dodgy user registrations, so you need to delete User objects, too.

 It’s time for your third and final test case. The following listing shows how to use
the delete() method to remove an object from the database.

def "Deleting an existing user removes it from the database"() {

 given: "An existing user"
 def user = new User(loginId: 'joe', password: 'secret',
 homepage: 'http://www.grailsinaction.com')
 user.save(failOnError: true)

 when: "The user is deleted"
 def foundUser = User.get(user.id)
 foundUser.delete(flush: true)

 then: "The user is removed from the database"
 !User.exists(foundUser.id)
}

Deleting gives us a chance to introduce two new domain class methods: delete()
and exists(). You can call delete() on any domain class that you fetch from the

Listing 3.3 Deleting objects from the database is a one-liner

Modifies retrieved
User object directly

 b
Updates
database

 c

Checks that password
has been persisted d

Removes the user
immediately

 b

Checks for object
ID in database

 c
Licensed to Mark Watson <nordickan@gmail.com>

73Validation: stopping garbage in and out
database B. We use the flush:true option because we want your test to delete it
from the database immediately and not batch up the change.

 Even though flush:true removes the object from the database, your instance han-
dle won’t nullify, which is why you can reference foundUser.id in the later exists()
call, even after foundUser is deleted from the database.

 You can check for the existence of any domain instance with the exists()
method c. As you would expect, exists() returns true if that ID exists in the data-
base. Spock lets you specify “then:” block assertions as Booleans, so you don’t need
the full form of User.exists(foundUser.id) == false.

 Before you move on, you can confirm nothing is broken with a grails test-app
integration:

| Completed 3 spock tests, 0 failed in 99ms
| Tests PASSED - view reports in C:\TEMP\hubbub\target\test-reports

You now have a good handle on saving, updating, and deleting your User objects. But
although you tested that your save() calls work correctly, we haven’t encountered any
reason for a save() call to fail! The main reason for such failure is a domain class field
constraint-validation failure (such as not providing a value for a field that’s non-
nullable, or providing an invalid email address for an email type field). Now it’s time
to introduce you to the features Grails offers for validation.

3.3 Validation: stopping garbage in and out
You created your new User object and successfully tested saving it to the database, so
you may already think a little defensively: “What keeps clients from putting all sorts of
junk (including nulls and blanks) into my domain object and saving them?” The
answer is, nothing yet. That’s our cue to talk about validation.

 Grails goes out of its way to make all the common validations easy, and when things
don’t match your validation needs, it’s not hard to customize them. Say you want to
make sure that all passwords have at least six characters but not more than eight. You
can apply this sort of constraint through a special constraints closure that uses a
comprehensive domain-specific language (DSL) to specify constraints. You can use a val-
idator to limit the size of fields, enforce non-nullability, or check (via patterns)
whether a field contains a URL, email address, credit card number, or other data.

 Let’s add basic constraints to your User object. We’ll make sure the loginId and
password fields have size limits and that the homepage contains a valid URL. The fol-
lowing listing shows your updated domain class with the new constraints.

package com.grailsinaction
class User {
 String loginId
 String password
 String homepage
 Date dateCreated

Listing 3.4 Adding constraints in Grails
Licensed to Mark Watson <nordickan@gmail.com>

74 CHAPTER 3 Modeling the domain
 static constraints = {
 loginId size: 3..20, unique: true, nullable: false
 password size: 6..8, nullable: false
 homepage url: true, nullable: true
 }
}

The size constraint B makes sure the loginId field is between 3 and 20 characters
(inclusive). When applied to a String field, size checks the length of the string.
But if you apply it to a numeric field, it ensures the number entered is within the
range. For example, an Integer field called quantity could be constrained to
ensure the user doesn’t order more than 10 items with quantity (size: 0..10).
You also specified a unique constraint on the User to ensure that two users don’t
have the same loginId.

You don’t have to list all fields in your constraints block—only those you want to sup-
ply specific validations for. One thing to note is that fields aren’t nullable by default,
so if you want a field to be optional, you have to specify the nullable constraint
explicitly. You allow the homepage field c to be optional (nullable), but if it’s sup-
plied, you force it to match a URL pattern. This kind of combination gives you more
power to specify validations concisely yet expressively.

 What happens if the user tries to save an object that doesn’t satisfy the constraints on
an object? Let’s write a test case and see. It’s time to introduce you to the validate()
method that’s available on every domain class. When you call validate(), Grails
checks whether or not the constraints have been satisfied and provides an errors
object that you can interrogate to see which fields failed.

 The following listing augments your UserIntegrationSpec.groovy file with a new
test that attempts to save an instance that doesn’t satisfy the constraints.

def "Saving a user with invalid properties causes an error"() {

 given: "A user which fails several field validations"
 def user = new User(loginId: 'joe',
 password: 'tiny', homepage: 'not-a-url')

The one true style of constraints
Grails constraints can be specified in two different styles. Optionally, you can put
parentheses around the list such as:

loginId(size:3..20, unique: true)

Or drop the parentheses entirely and use the style in listing 3.4. We like using the
style without the parentheses because it means less visual clutter, but you might see
either style in production code. Previous versions of Grails required the parentheses,
so we thought we’d warn you about it here.

Listing 3.5 Interrogating the results of a failed validation

Specifies min and
max field lengths b

Checks against a URL
pattern, which may be null c
Licensed to Mark Watson <nordickan@gmail.com>

75Validation: stopping garbage in and out

de

 when: "The user is validated"
 user.validate()

 then:
 user.hasErrors()

 "size.toosmall" == user.errors.getFieldError("password").code
 "tiny" == user.errors.getFieldError("password").rejectedValue
 "url.invalid" == user.errors.getFieldError("homepage").code
 "not-a-url" == user.errors.getFieldError("homepage").rejectedValue
 !user.errors.getFieldError("loginId")

}

As we mentioned, validate() B checks the constraints on the domain class to see if
they’ve been satisfied, and it returns true or false. As a result, this is a common
idiom you see in Grails controllers:

if (user.validate()) {
 user.save()
 redirect action: "show", id: user.id
} else {
 // go and give them another crack at it in the original page
 render view: "edit", model: [user:user]
}

After you check for validation, you can access the domain object’s errors property to see
what went wrong. The returned errors object holds a collection of fieldError objects,
each representing a different field in your domain object. Each fieldError object has a
code c describing the type of validation that failed and a rejectedValue d containing
the data the user entered. If the field has no errors, its fieldError object is null, which
is the case for loginId e.

 In case you want to know more about those error codes, we give you a full set of
them in table 3.1. But for now, know that you can find out exactly what’s failing the
validators. In chapter 7, we’ll show you how to do all these checks in a unit test, which
makes things more concise.

 Now that you know how to cause an error (by violating a constraint), write a test
case that repairs the damage after a bad save attempt. This isn’t something you’d typi-
cally do when processing a web request, but it helps demonstrate how these valida-
tions work. The following listing shows a test case that first attempts a save() with
invalid data and then repairs the damage and performs a valid save().

def "Recovering from a failed save by fixing invalid properties"() {

 given: "A user that has invalid properties"
 def chuck = new User(loginId: 'chuck',
 password: 'tiny', homepage: 'not-a-url')
 assert chuck.save() == null
 assert chuck.hasErrors()

Listing 3.6 Recovering from a failed validation

Validates
constraints.

 b Errors
collection
contains co
describing
failure.

 c

Errors collection
holds failing value. dChecks that valid fields are

not in errors collection. e

Uses invalid URL
and password

 b

Returns true c
Licensed to Mark Watson <nordickan@gmail.com>

76 CHAPTER 3 Modeling the domain
 when: "We fix the invalid properties"
 chuck.password = "fistfist"
 chuck.homepage = "http://www.chucknorrisfacts.com"
 chuck.validate()

 then: "The user saves and validates fine"
 !chuck.hasErrors()
 chuck.save()

}

Our original User object had an invalid URL and password B, which caused the
object to fail validation c. After correcting the troublesome fields, validate() is
happy again and the errors object resets d. Once the user is in a valid state, save()
returns the saved object e.

 You’ve now exercised constraints, and you’ve gained confidence that your database
fields will persist consistently. Until now, we’ve exposed you to size and URL con-
straints only, but we’ll explore additional Grails validators next.

3.3.1 Standard validators

Now that you know how the basic constraint mechanism works, you may wonder what
Grails validators are available out of the box. Plenty exist, and table 3.1 lists the most
common ones.

Table 3.1 Grails validators available out of the box

Name Description Example Error properties

blank Ensures string
isn’t blank
(or null).

password(blank:false) blank

email Ensures field is
a well-formed
email address.

userEmail(email:true) email.invalid

inList Ensures value
appears in sup-
plied range or
collection.

country(inList:['Australia',
'England'])

not.inList

matches Ensures field
matches the
supplied regular
expression.

loginId(matches:
'[0-9]{7}[A-Za-z]')

matches.invalid

maxSize Ensures size of
field in database
doesn’t exceed
supplied value.

orderQuantity(maxSize:100) maxSize.exceeded

minSize Ensures size of
field in database
always exceeds
supplied value.

orderQuantity(minSize:10) minSize.notmet

Removes
errors

 d

Returns the saved
object on success e
Licensed to Mark Watson <nordickan@gmail.com>

77Validation: stopping garbage in and out
You can find a complete set of validators in the Grails reference documentation at
http://grails.org/doc/latest/guide. To find the names of the codes, click Constraints
from the Quick Reference list, then click a specific constraint type.

3.3.2 Custom validation with regular expressions

What if your validation rules are different, and you need to customize them?
 If your validation is a variation on a regular expression pattern, the matches con-

straint will probably do. Say you’re writing a student system for your local university,

nullable Specifies
whether the prop-
erty is allowed to
be null.

password(nullable: false) nullable

size Specifies a
range for min
and max length
of a string or
size of an int
or collection.

loginId(size:3..20) size.toosmall or
size.toobig

unique Specifies
whether the
property must
be unique.

loginId(unique:true) unique

url Ensures that the
field contains a
valid URL.

homepage(url:true) url.invalid

validator Allows custom
validation by
supplying a
closure.

See section 3.3.3 validator.invalid

bindable Affects whether a
property will bind
via automatic
data binding.

See chapter 11 on security N/A

Blank isn’t null?
You may have noticed in table 3.1 the separate validators for nullable and blank.
This is important, because when you submit HTML forms with empty fields, they’re pre-
sented to Grails as “blank” fields that would pass a nullable:true validation. The
rule of thumb is that if you always want the user to supply a value, use blank:false.
If you don’t mind if a user provides a value or not, use nullable:true.

Table 3.1 Grails validators available out of the box (continued)

Name Description Example Error properties
Licensed to Mark Watson <nordickan@gmail.com>

http://grails.org/doc/latest/guide

78 CHAPTER 3 Modeling the domain
and all student IDs are seven numbers followed by a letter. You may implement that
with a straight regular expression:

static constraints = {
 loginId matches: '[0-9]{7}[A-Za-z]'
}

Regular expressions unlock power, but they may not be powerful enough in certain
situations.

3.3.3 Cross-field validation tricks

Regular expressions can take you a certain distance, but won’t help if you need to do
cross-field validations. Take the business rule that a user’s password must not match
their loginId. For these sorts of situations, you need the validator closure con-
straint. It’s a little trickier to understand, but it gives you the power to do anything!

 When you specify the validator constraint, you supply a closure with one or two
parameters. The first parameter is the value that the user tried to place in the field,
and the second, if you supply one, references the instance of the domain class itself.
The closure should return true if the data entered is valid for that field.

 In our case, we need the two-argument version because you want to confirm that
what the user typed in their password field doesn’t match their loginId:

static constraints = {
 ...
 password size: 6..8, blank: false, validator: { passwd, user ->
 passwd != user.loginId
 }
 homepage url: true, nullable: true
}

Things are getting tricky. When you save the domain class, the password validators
now ensure that the password is between six and eight characters inclusive and that
the supplied password doesn’t match the user’s loginId. You can get as creative as you
like with custom validators, because they give you the power to check programmati-
cally nearly anything.

TIP Several of the constraints (such as size, maxSize, and nullable) have a
direct impact on how Grails generates the fields in your database. If you spec-
ify a maxSize of eight, Grails generates a database field with a column size of
eight. Check out the reference guide for specific advice on how certain con-
straints affect database generation.

3.3.4 Keeping validation DRY by importing constraints

Constraints are a powerful way to specify declaratively the business rules that relate to
your domain objects. But what if you need to use the same set of constraints across sev-
eral objects? What if you decide that passwords need to have the same rules across all
objects that have a password?
Licensed to Mark Watson <nordickan@gmail.com>

79Defining the data model—1:1, 1:m, m:n
You could copy and paste, but that violates the DRY (don’t repeat yourself) principle
and gives you many points of update. Grails 2.0 introduced a constraints-sharing
mechanism that lets you import constraints between objects. Suppose you want an
external application to consume Hubbub API services. We’ll create an Application-
User domain class to model that role, but we want to preserve the same password busi-
ness rules for passwords as our standard User. With that scenario in mind, let’s
examine the following listing, which shares constraints between two domain objects:
User and ApplicationUser.

package com.grailsinaction

class ApplicationUser {

 String applicationName
 String password
 String apiKey

 static constraints = {

 importFrom User, include: ['password']

 applicationName blank: false, unique: true
 apiKey blank: false

 }
}

In this example you import the rules related to the password property to the new
ApplicationUser object B. You use the include: style, which lets you whitelist the
properties to import. Grails also supports an exclude: style, which blacklists property
constraints that you don’t want to import. For ultimate flexibility, it also supports a
regular expression style importer that matches wildcards on imported names. To
round out the import options, it offers a fourth “no args” style that imports all prop-
erty constraints from the target object that have names matching the current object.
Because your User and ApplicationUser objects share the same name for their pass-
word field, you can use the more terse importFrom User version.

3.4 Defining the data model—1:1, 1:m, m:n
You now know how CRUD operations work, how to apply validations to your domain
class fields, and even how to generate a quick-and-dirty UI. But Hubbub needs more
than a User class to get work done, so it’s time to learn about modeling relationships
in the data model.

New in 2.0: Sharing constraints between objects
In Grails 1.x there was no clean way of sharing constraints between objects, leading
to a great deal of workaround hackery. Grails 2.0 restores DRYness with the new
importFrom statement.

Listing 3.7 Sharing constraints between objects

Shares constraints
between classes

 b
Licensed to Mark Watson <nordickan@gmail.com>

80 CHAPTER 3 Modeling the domain
Using an ORM doesn’t mean you have to compromise on how you model domain
classes. Grails gives you the flexibility to use whatever relationships make sense for you:
one-to-one (1:1), one-to-many (1:m), or many-to-many (m:n). Even better, GORM looks
after creating the appropriate table structures using sensible naming conventions.

3.4.1 One-to-one relationships

You’ll first model a one-to-one relationship. This is probably the easiest relationship to
understand.

 In the Hubbub example, it’s time to refactor out the user’s authentication fields
(loginId, password) and profile information (homepage, email, photo, and whatever
else comes along). You’re moving toward your original Hubbub data model (shown in
figure 3.2), which includes a Profile object. The relevant section of the data model is
shown in figure 3.6.

 Start by creating a Profile domain class:

grails create-domain-class com.grailsinaction.Profile

Next, update your newly created object to handle the Profile-related features of the
existing User class. You pull out the homepage field and add entries for email and even
a photo. The following listing shows the refactored Profile class.

package com.grailsinaction
class Profile {
 User user
 byte[] photo
 String fullName
 String bio
 String homepage
 String email
 String timezone
 String country
 String jabberAddress
 static constraints = {
 fullName blank: false
 bio nullable: true, maxSize: 1000
 homepage url: true, nullable: true
 email email: true, blank: false
 photo nullable: true, maxSize: 2 * 1024 * 1024
 country nullable: true
 timezone nullable: true
 jabberAddress email: true, nullable: true
 }
}

Listing 3.8 Refactored Profile class with a 1:1 relationship with the User class

User Profile Figure 3.6 Each User object has
an optional Profile object.

Declares Profile is attached
to a User object.

 b

Models binary
data in a byte[] c

Photo can be up to
2 MB in file size.
Licensed to Mark Watson <nordickan@gmail.com>

81Defining the data model—1:1, 1:m, m:n
The most obvious new feature in this domain class is the addition of a user field B. This
field tells GORM that Profile has a relationship to the User domain class (meaning
GORM stores the User’s id value against the corresponding profile in the database).

You introduced several new fields and constraints on the Profile object, and added
placeholders for fullName (which is a required field), bio, country, and timezone.
You added fields for homepage and email and used the built-in validators to make sure
they conform. Because most of these fields are optional (except for email and full-
Name), you marked them nullable right from the get-go. Jabber addresses have the
same form as email addresses, so you can apply a validator to that field, too.

 You also want to store the user’s photo with their profile as a BLOB (binary large
object). In this case, marking the photo field as a byte array (byte[]) tells GORM to
store it as a BLOB c.

 Now that you set up the Profile class, it’s time to link it to your User class. The
next listing shows the code to create a hasOne link to Profile in your User class and
specify constraints for how the relationship works.

package com.grailsinaction
class User {
 String loginId
 String password
 Date dateCreated
 static hasOne = [profile : Profile]
 static constraints = {
 loginId size: 3..20, unique: true, blank: false
 password size: 6..8, blank: false, validator: { passwd, user ->
 passwd != user.loginId
 }
 profile nullable: true
 }
}

You introduce new features to your User class in the 1:1 refactoring. First, you added a
hasOne relationship to your Profile field for the User, so Grails knows the link is 1:1 B.
It needs to be a set (or list) of Profiles to be 1:m.

 You also added a constraint to make the profile nullable c. If you don’t specify
this, Grails forces you to create a Profile instance every time you create a User object,
which is overhead you can avoid for now.

Refactoring homepage and breaking tests
With your homepage property moved from the User class to Profile, several of your
tests will now fail. That’s a good thing—it’s your safety net to make sure your logic still
works how you expect. To fix things, make sure you update any references to user
.homepage (which is now user.profile.homepage), including User() constructors!

Listing 3.9 Adding a 1:1 relationship from User to Profile

Declares Profile
part of User

 b

Marks Profile
as optional c
Licensed to Mark Watson <nordickan@gmail.com>

82 CHAPTER 3 Modeling the domain
Now that you have experience with 1:1 mappings, it’s time to turn to the more com-
mon one-to-many (1:m) modeling scenario.

3.4.2 One-to-many relationships
In our Hubbub example, each user is capable of making many posts or entries, and
each post belongs to one (and only one) user, as shown in figure 3.7. That’s a classic
one-to-many (1:m) relationship.

First, create the relationship, and then we’ll look at how you can apply sorting to the
many sides of the relationship.

CREATING THE ONE-TO-MANY RELATIONSHIP

You need to create a new domain class for Post:

grails create-domain-class com.grailsinaction.Post

Grails introduces two domain class property types to model the relationship: hasMany
(on the “one” side of the relationship) and belongsTo (on the “many” side of the rela-
tionship). Implement the Post side first, because it needs only a content field and the
date it was created. The following listing shows the class.

package com.grailsinaction
class Post {
 String content
 Date dateCreated
 static constraints = {
 content blank: false
 }
 static belongsTo = [user : User]
}

Eager and lazy fetching strategies
By default, GORM uses a lazy fetching strategy to retrieve attached collections as
they’re accessed. Most of the time, that’s exactly what you want. But in the case
of hasOne mapping, if your access strategy involves accessing the linked object
immediately (as you do with your Profile object), it makes sense to have Hiber-
nate retrieve the Profile at the same time as the related User. This is an eager
fetching strategy, and Hibernate defaults to eager loading in hasOne scenarios to
improve performance.

If you use a 1:1 relationship with eager fetching, it may make sense to use Grails’s
composition feature instead. This allows you to embed the Profile object into the
same table as the User object (but still use different object references to talk to
each). We’ll talk more about this in online chapter 19 on advanced GORM use.

Listing 3.10 Post class models all posts for a given User

User Post Figure 3.7 Each User can have
zero to many Post objects.

Points to the
owning object

 b
Licensed to Mark Watson <nordickan@gmail.com>

83Defining the data model—1:1, 1:m, m:n
In our Post example, you see the belongsTo property B for the first time. This prop-
erty is vitally important in both 1:m and m:n relationships because it tells GORM how
to implement cascading operations. In particular, when the User is deleted, all their
matching Post objects are deleted, too.

You told Grails that Post belongs to a User, so now you need a way to tell it that your
User object should link to many Post objects. That’s done with a hasMany property:

class User {
 // existing code here
 static hasMany = [posts : Post]
}

With hasMany and belongsTo in place, you have all the basics of the one-to-many rela-
tionship. But how do we tell Grails to add new Posts for a given User? With more
GORM magic.

 Once you have a one-to-many relationship between User and Post, Grails automat-
ically adds two new methods to your User class: User.addToPosts() and User.remove-
FromPosts(). You need to create an integration test for Post so you can exercise these
new capabilities. Start with the usual process:

grails create-integration-test com.grailsinaction.PostIntegration

With the shell of our test case in place, write code to create a user and add new posts
to their account. In the following listing, you’ll take full advantage of the new addTo-
Posts() method to make your User more prolific.

package com.grailsinaction

import spock.lang.*

class PostIntegrationSpec extends Specification {

 def "Adding posts to user links post to user"() {

BelongsTo and cascading
GORM cascades only to objects marked with belongsTo. In listing 3.10, Post
belongsTo User, so if any User is deleted, the matching Post object is also deleted.
belongsTo has a special meaning in m:n relationships, where addTo*() methods
can be persisted only from the owning side. But more on that later.

In listing 3.10, you used the map style of belongsTo, where you created a bidirec-
tional link between User and Post classes. This creates a new field on Post called
user that’s the bidirectional mapping back to the owning User. This lets you move
backward to post.user.loginId, for example. This is handy later, when you query
for posts and want to show the associated user’s ID.

Listing 3.11 The User.addToPosts() method makes 1:m relationships easy
Licensed to Mark Watson <nordickan@gmail.com>

84 CHAPTER 3 Modeling the domain

t
o
 given: "A brand new user"
 def user = new User(loginId: 'joe', password: 'secret')
 user.save(failOnError: true)

 when: "Several posts are added to the user"
 user.addToPosts(new Post(content: "First post... W00t!"))
 user.addToPosts(new Post(content: "Second post..."))
 user.addToPosts(new Post(content: "Third post..."))

 then: "The user has a list of posts attached"
 3 == User.get(user.id).posts.size()
 }

}

Notice that you have to call save() on the User object to persist it in the database B.
Once the User is attached to the database, though, any additions you make to its
object graph (such as adding new Post objects via addToPosts() c) are automatically
persisted. For this reason, you don’t need to call save() on each Post you create. If
you feel skeptical, rerun your test cases to make sure everything works as you expect:

grails test-app integration:

By taking advantage of GORM’s magic dynamic properties, you added your user and a
few posts. But how do you retrieve those posts when you want to work? A typical
approach is to get a handle to the User object and iterate through their posts. The fol-
lowing listing shows a test case that accesses all posts for a given user.

def "Ensure posts linked to a user can be retrieved"() {

 given: "A user with several posts"
 def user = new User(loginId: 'joe', password: 'secret')
 user.addToPosts(new Post(content: "First"))
 user.addToPosts(new Post(content: "Second"))
 user.addToPosts(new Post(content: "Third"))
 user.save(failOnError: true)

 when: "The user is retrieved by their id"
 def foundUser = User.get(user.id)
 def sortedPostContent = foundUser.posts.collect {
 it.content
 }.sort()

 then: "The posts appear on the retrieved user"
 sortedPostContent == ['First', 'Second', 'Third']

}

In this example, you load the user via id B, then use the Groovy collect() method c
to iterate through each post, retrieving the content. The collect() returns a list of
Post content, which we compare to ensure the list value matches your known values.

Listing 3.12 Accessing a User’s posts by walking the object graph

Creates User
to hold Posts

 b

Persists Pos
by adding t
a User c

Adds posts
to User

Loads User
via ID

 b

Iterates through
User’s posts c

Sorts posts
alphabetically d
Licensed to Mark Watson <nordickan@gmail.com>

85Defining the data model—1:1, 1:m, m:n
By default, you won’t know the ordering of 1:m collections (because they’re mapped
as Sets), so for this test case, we sort them alphabetically to make the comparison
meaningful d.

 To present the user’s posting history, you typically want to sort their posts by
descending creation date, but sorting by hand every time gets old quickly. In the next
section, we look at a way to return posts already sorted.

KEEPING THE MANY SIDE SORTED

When using one-to-many relationships, you often won’t care about the ordering on
the many side, such as for items on an invoice. For these situations, it makes sense to
use the default Grails ordering. When you do need to apply ordering, take advantage
of Grails’s more sophisticated search options (such as Where and Criteria queries,
which we cover in chapter 5) to do the ordering at the same time.

 Sometimes you want to access the many side of a relationship in a prescribed
order. In a blog application you likely want to keep entries in descending date order
(so your front page displays the most recent entries). For these situations, Grails lets
you specify your own ordering mechanism using the mapping closure (which you
used in our Profile example in listing 3.10).

 To implement this type of sorting, let Grails know that your Posts need to be
returned in a sorted order based on the date they were created. Do this by adding a
new mapping block to your Post domain class, as shown in the following listing.

package com.grailsinaction
class Post {
 String content
 Date dateCreated
 static constraints = {
 content blank: false
 }
 static belongsTo = [user : User]
 static mapping = {
 sort dateCreated:"desc"
 }
}

You can specify the sort order as either ascending or descending. In this example, all
queries to the Post object return in a descending order.

 But what if you want the posts sorted when accessing them via the User object
(such as when iterating over user.posts.each)? For those scenarios, Grails lets you
specify the sort on the relationship itself, rather than on the Post object. You can
update your User class (instead of the Post class) with a mapping block like this:

static mapping = {
 posts sort:'dateCreated'
}

Listing 3.13 Sorting Posts by creation date

Specifies sort
order for Post
Licensed to Mark Watson <nordickan@gmail.com>

86 CHAPTER 3 Modeling the domain
This form of the mapping tells Grails that you want to sort by dateCreated when
accessing the posts collection via a user.

 Now that we’ve looked at sorting, it’s time to move on to the trickiest relationship
of them all: many-to-many.

3.4.3 Many-to-many relationships
Where would your social networking application be without tags? Tags give users the
chance to group and cluster their posts, browse posts associated with particular tags, and
generally categorize their posts. Let’s make a provision in the domain model for tagging.

 It’s also time to consider how you may want to use tags. Let’s imagine these are
your requirements:

■ Generate a tag cloud for the user on their home page
■ Provide an RSS feed for all posts with a given tag
■ See all tags for a given post

To include those requirements in your domain model, you need to model two
relationships:

■ A User creates many Tags, so each Tag relates to one User (1:m)
■ A Post has many Tags, and each Tag may relate to many Posts (m:n)

That’s a mouthful, but the model in figure 3.8 may make things clearer.
 The good news about many-to-many relationships is there’s little new syntax to

learn. If two objects are in a many-to-many relationship, they both have a hasMany
clause pointing to the other object. The following listing updates your Post class to
add the new hasMany relationship with your Tag class.

class Post {
 String content
 Date dateCreated
 static constraints = {
 content blank: false
 }
 static belongsTo = [user : User]
 static hasMany = [tags : Tag]

 static mapping = {
 sort dateCreated:"desc"
 }
}

Listing 3.14 Modeling a Post that can have many Tags

User

Post Tag

Figure 3.8 A tricky many-to-many
scenario between Users, Posts,
and Tags

Models a Post
with many Tags
Licensed to Mark Watson <nordickan@gmail.com>

87Defining the data model—1:1, 1:m, m:n
We’ve seen hasMany before in one-to-many scenarios, and this is the same beast. The
[tags : Tag] map tells us that a Post relates to many Tag objects and that the rela-
tionship is stored in a property named tags.

 Let’s introduce the Tag domain model, which you can link back to our Post object.
In the following listing you’ll specify that a Tag hasMany Posts.

class Tag {
 String name
 User user
 static constraints = {
 name blank: false
 }
 static hasMany = [posts : Post]
 static belongsTo = [User, Post]
}

You can see the hasMany relationship in listing 3.15 this time linking back to the Post
class. The other important difference in this class is that the Tag belongsTo both User
and Post. This belongsTo relationship is important in the many-to-many context: it
affects how addTo*() methods work (see the following sidebar for more information).

The last change that we need to make relates to the User object, which now needs to
be updated to reference the Post and Tag classes. The following listing updates the
hasMany clause.

package com.grailsinaction
class User {
 // .. existing code
 static hasMany = [posts : Post, tags : Tag]
}

You referenced both Post and Tag in the User class’s hasMany clause. With all the
pieces of the many-to-many relationship in place, let’s write a test case to make sure
that your assumptions still hold true. The following listing presents a test case for a
post with one or more tags, which you can add to PostIntegrationSpec.

Listing 3.15 The Tag object models relationships to both Post and User

How belongsTo affects many-to-many relationships
The belongsTo field controls where the dynamic addTo*() methods can be used
from. In listing 3.15, we can call User.addToTags() because Tag belongsTo User.
We can also call Post.addToTags() because Tag belongsTo Post. But Post
doesn’t belongTo Tag, so we can’t call Tag.addToPosts().

Listing 3.16 User now hasMany Posts and Tags

Affects the side objects
that can be added from

Specifies User has
many Posts and Tags
Licensed to Mark Watson <nordickan@gmail.com>

88 CHAPTER 3 Modeling the domain
def "Exercise tagging several posts with various tags"() {

 given: "A user with a set of tags"
 def user = new User(loginId: 'joe', password: 'secret')
 def tagGroovy = new Tag(name: 'groovy')
 def tagGrails = new Tag(name: 'grails')
 user.addToTags(tagGroovy)
 user.addToTags(tagGrails)
 user.save(failOnError: true)

 when: "The user tags two fresh posts"
 def groovyPost = new Post(content: "A groovy post")
 user.addToPosts(groovyPost)
 groovyPost.addToTags(tagGroovy)

 def bothPost = new Post(content: "A groovy and grails post")
 user.addToPosts(bothPost)
 bothPost.addToTags(tagGroovy)
 bothPost.addToTags(tagGrails)

 then:
 user.tags*.name.sort() == ['grails', 'groovy']
 1 == groovyPost.tags.size()
 2 == bothPost.tags.size()

}

Because your Tag class is 1:m to User and m:n to Post, you have to add the tag to the
user and the tag to the post. Behind the scenes, Grails manages both the users and
posts properties on the newly added Tag object, ensuring that all the relationships
are kept bidirectional.

 In listing 3.17, you have a groovyPost B with one tag (“groovy”) and a bothPost c
with two tags (“groovy” and “grails”). By making numerous calls to post.addToTags(),
you can add as many tags to each post as the user wants.

 As you can see, many-to-many relationships are the trickiest of the standard relation-
ships, so you need to get a good handle on how the addTo*() methods work. List-
ing 3.17 gets you started, but we encourage you to experiment with your own use cases.

Listing 3.17 A complex many-to-many scenario for posts and tags

Cascading: the rules for deletes and updates
GORM works behind the scenes to make all those 1:m and m:n relationships work
smoothly. We’ve explored the addTo*() methods, but we haven’t looked into how
GORM handles the cascading.

The rules around 1:m relationships are straightforward. In our Hubbub example, if you
delete a User, GORM automatically deletes all associated Post objects.

But let’s take the trickier situation of Tags. A Post may have many Tags, and each
Tag may relate to more than one Post. In this case, GORM settles things by looking
at the belongsTo clause. If there’s no belongsTo clause defined on the object, no
cascades will happen in either direction, and you’re on your own.

Sets up tags, adds
them to user

Adds post to
user, tag to post

 b

Adds
multiple
tags to
post

 c
Licensed to Mark Watson <nordickan@gmail.com>

89Defining the data model—1:1, 1:m, m:n
3.4.4 Self-referencing relationships

The final part of the Hubbub data model models the “follows” pro-
cess—how a User can follow other Users. The data model includes
it as a self-referencing relationship, as shown in figure 3.9.

 There’s nothing special about the self-referencing part. It’s a
specialized version of the one-to-many relationship you’ve already
seen. You can update the User class’s hasMany reference to model
the relationship, as shown here:

class User {
 //... other code omitted
 static hasMany = [posts : Post, tags : Tag, following : User]
}

As usual, write a test case to make sure you know how things will work. The test in the
following listing adds people the user is following. It goes in UserIntegrationSpec.

def "Ensure a user can follow other users"() {

 given: "A set of baseline users"
 def joe = new User(loginId: 'joe', password:'password').save()
 def jane = new User(loginId: 'jane', password:'password').save()
 def jill = new User(loginId: 'jill', password:'password').save()

 when: "Joe follows Jane & Jill, and Jill follows Jane"
 joe.addToFollowing(jane)
 joe.addToFollowing(jill)
 jill.addToFollowing(jane)

 then: "Follower counts should match following people"
 2 == joe.following.size()
 1 == jill.following.size()

}

As you can see, addToFollowing()works the same way for self-references as in the pre-
vious one-to-many scenario.

 You explored relationship types in Grails, and you have a full set of integration
tests to prove it. Grails has been busy also, generating the tables and fields behind
the scenes (including the foreign key relationships). If you look inside the Hubbub
database, you’ll see that it now consists of five tables that hold all the data and rela-
tionships in our application. Figure 3.10 shows the full layout of the database,
which makes sense when you match it up with the domain model fields you created
to date.

Listing 3.18 A simple test case for adding followers

User

following

Figure 3.9 Model-
ing the “follows”
relationship

Works on self-references, too
Licensed to Mark Watson <nordickan@gmail.com>

90 CHAPTER 3 Modeling the domain
3.5 Summary and best practices
We covered an immense amount of material in this chapter. Many of the concepts we
introduced are foundational and are reinforced in the next few chapters where we
cover controllers and views.

 We introduced the domain model class, including the common domain model
relationships. You learned about validation and how to create custom constraints.

 Best practices covered in this chapter:

■ Use domain-driven design. Create your basic domain model classes as the first step
in your application, and use scaffolding to get them online. This helps you stay
motivated and understand your domain better.

■ Learn the basic modeling options. You’ll spend time setting up Grails models in
your future development work. Take the time to learn all the basic relationship
types presented in this chapter. The test cases give you valuable experimenta-
tion fodder.

■ Use tests to experiment. Domain model test cases provide a great way of experi-
menting with tricky save() scenarios and testing your validations.

■ Don’t trust users—validate. Make use of validators to keep your domain objects in
order. Custom validators aren’t hard to implement, so don’t be afraid to roll
your own if the situation demands. It’s better to encapsulate the validation logic
in your domain class than to use dodgy controller hacks.

Armed with those basics, you need to develop a little more UI kung fu to be ready for
your first fully functional version of Hubbub, which is only a few short chapters away.

user_following_id
user_id

bigint

bigint
bigint

bigint

bigint

bigint

bigint

bigint

bigint
bigint

bigint
bigint

bigint
bigint

bigint

public.post public.user

public.profile

public.tag
public.post_tags

id
id

id

id

version
version

version

version

content
date_created

date_created

user_id

varchar(255)

varchar(255)

varchar(255)
varchar(200)

varchar(255)
varchar(255)
varchar(255)
varchar(255)

varchar(255)

varchar(8)

varchar(20)

timestamp

timestamp

tag_id
post_id

password
profile_id
user_id

user_id

timezone
photo varbinary
jabber_address
homepage
full_name
email
country
bio

name

public.user_user

Figure 3.10 The final Hubbub data model after all changes
Licensed to Mark Watson <nordickan@gmail.com>

Creating the initial UI
We spent most of the last chapter on domain modeling. It’s time to reward that
effort with an instant working web application based on the scaffolding you first saw
in chapter 1. In this chapter, you’ll create that UI and take a closer look at how it
works and how to customize its look.

 Do you need scaffolding? No. Few live web applications are based on such UIs
because they aren’t particularly user-friendly. Why not start working on a fancy UI
for Hubbub? We have several reasons.

 First, it’s nice to have a working web application quickly. It allows you to experi-
ment with the domain model and show off progress to your boss, and it works bril-
liantly with a release early, release often approach. Getting to the same stage with a
custom UI requires more of an investment in HTML, CSS, and back-end implemen-
tation. And the larger the domain model, the longer it takes to get to that point!

 Second, scaffolding isn’t exclusive. You can develop a custom UI side by side
with the scaffolding and even integrate the two. In the case of Hubbub, this allows

This chapter covers
■ Generating UIs instantly with scaffolding
■ Restyling the scaffolding
■ Customizing the scaffolding for your project
91

Licensed to Mark Watson <nordickan@gmail.com>

92 CHAPTER 4 Creating the initial UI
you to create posts, add tags, and edit the content of posts, all while still developing
the main timeline page. That makes it easier to test features and debug problems with-
out inspecting the database directly.

 Finally, this approach introduces you to the main components of a Grails applica-
tion and illustrates how they interact without code getting in the way. So let’s get
started and scaffold the domain classes you created in chapter 3.

4.1 Creating instant UIs with scaffolding
In chapter 3, you created a User class and explored CRUD operations and querying by
hand. That’s important stuff that you’ll use soon, but scaffolding allows you to create,
edit, and delete user instances from your browsers without any need to work with the
domain classes directly. These first steps require a single Grails command (create-
scaffold-controller), refinement of the domain class constraints, and judicious
changes to a properties file.

4.1.1 Scaffolding Hubbub’s domain classes

We introduced Grails’s scaffolding in chapter 1, but that time we created the control-
ler and then edited it to enable scaffolding. This time, we need to scaffold four
domain classes, so we’ll take a shortcut and create a scaffolding-enabled controller in
one step. Start the Grails interactive console and execute this series of commands:

create-scaffold-controller com.grailsinaction.User
create-scaffold-controller com.grailsinaction.Profile
create-scaffold-controller com.grailsinaction.Post
create-scaffold-controller com.grailsinaction.Tag

These commands create a corresponding controller file for each domain class, such as
grails-app/controllers/com/grailsinaction/UserController.groovy, that looks like this:

package com.grailsinaction

class UserController {
 static scaffold = true
}

Now start the Grails application to see the scaffolding in action. Execute run-app from
the interactive console and point your browser at http://localhost:8080/hubbub. Click-
ing on the UserController link on the home page brings up an empty list of users
(there’s no data in the database yet), but you can follow the Create User link to add a
user to the system. You’ll see an editing screen that allows you to populate the user’s
details, as shown in figure 4.1.

 You may ask how does Grails determine the order in which to display the domain
class fields in the show, create, and edit views? Perhaps it’s the order in which the
fields are declared in the class itself? In fact, the order is random unless you declare
constraints.

 Fields in random order often look weird because data typically has a logical order
to it, so controlling the order in which they appear is a useful feature. Fortunately, the

You can use tab completion
on the command name and
domain class.

Scaffolds by convention
(UserController -> User domain class)
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:8080/hubbub

93Creating instant UIs with scaffolding
scaffolding displays the fields in the order in which they’re declared in the constraints
block. Recall the user constraints from chapter 3:

static constraints = {
 loginId size: 3..20, unique: true
 password size: 6..8, validator: {
 passwd, user -> passwd != user.userId
 }
 profile nullable: true
}

Compare the ordering of these constraints with the generated form in figure 4.1. The
order of the form fields in that figure matches the ordering of the constraints shown
in the previous code. You can even control the ordering of fields that have no valida-
tion constraints (new code in italics):

static constraints = {
 loginId size: 3..20, unique: true
 password size: 6..8, validator: { passwd, user ->
 passwd != user.loginId
 }
 tags()
 posts()
 profile nullable: true
}

Of course, constraints aren’t for decoration. In the previous chapter, we mentioned
how they can affect the schema generated in the database. They’re also an integral
part of Grails’s validation mechanism, which is fully incorporated into the scaffolding.

4.1.2 Improving the validation

In the coming sections, you’re going to need a valid profile in the system. This will
give you an ideal opportunity to explore how the scaffolding handles validation

Assign a Profile
instance to this
user.

Figure 4.1 Scaffolding
also includes relationships
to other domain classes.

Controls ordering of associated fields
without any validation constraints
Licensed to Mark Watson <nordickan@gmail.com>

94 CHAPTER 4 Creating the initial UI
failures. Let’s start by looking at how validation errors manifest themselves in the
scaffolding pages.

USING THE DEFAULT VALIDATION BEHAVIOR

Figure 4.2 contains the results of trying to submit the Create Profile form with an
invalid home page URL and invalid email address.

 The most striking thing to note in this figure is that Chrome and Safari behave dif-
ferently. The form fields use new HTML5 types, such as email and url, which the
browsers know how to validate, and it’s up to the browser how it deals with validation
failures on those fields. Safari always submits the form to the server, whereas Chrome
won’t. Such browser differences are something you should get used to.

 One immediate area of improvement is in the server-side generated errors, as seen
with Safari. If the form is submitted, the Create Profile page displays again with these
error messages at the top:

■ Property [homepage] of class [class com.grailsinaction.Profile] with value
[not a URL] is not a valid URL

■ Property [email] of class [class com.grailsinaction.Profile] with value
[invalid email] is not a valid e-mail address

These are far too geeky for the average user, so let’s change them into something
closer to plain English.

HTML5 client-side validation error.
Chrome won’t submit the form while
it knows the data is invalid.

Server-side validation
errors generated
by the scaffolding.

Figure 4.2 How validation errors look in the scaffolding; shown in Chrome (at left) and in Safari
(at right).
Licensed to Mark Watson <nordickan@gmail.com>

95Creating instant UIs with scaffolding
CUSTOMIZING ERROR MESSAGES

Validation error messages are one example of text that’s visible to the user but should
be easy to find and modify in your project. You don’t want text embedded in your
code, and in these days of globalization, it makes sense to localize such text as well.
That’s easily done in Grails using properties files known as resource bundles.

 Our exploration starts in the grails-app/i18n/messages.properties file. You’ll see
many entries in this file, but the following are those we’re interested in currently:

default.invalid.url.message=Property [{0}] of class [{1}] with value [{2}] is
not a valid URL

default.invalid.email.message=Property [{0}] of class [{1}] with value [{2}]
is not a valid e-mail address

Recognize from figure 4.2 that these are the error messages displayed for the Home-
page and Email fields. They apply to any property that fails to validate against the url
and email constraints. As is, they’re fine for development, but context is required to
clearly communicate the problem to end users. Your users shouldn’t need to know
about class names and properties.

 To make the messages more relevant, create an entry in messages.properties
specifically for them:

profile.homepage.url.invalid=You must provide a valid web address for your
homepage. [{2}] simply does not cut it.

profile.email.email.invalid=You must provide a valid email address. [{2}] is
just not the business.

That’s all you have to do—Grails automatically selects these messages for your profile
fields based on conventions. To leverage those conventions, use message keys (the text
to the left of the =) of the form shown in figure 4.3.

That was easy, but how did we know that the invalid value substitutes the parameter {2}
in the message text? It can be inferred from the default validation messages, but it isn’t
documented in the Grails user guide. That isn’t particularly helpful for people learning
the framework, so here are the parameter numbers and what those parameters contain:

■ {0}—The name of the domain class property.
■ {1}—The name of the domain class.
■ {2}—The invalid value.

profile.homepage.url.invalid={2} is not a valid URL for the home page.

Name of

domain class

Name of domain

class property

Error code

3rd message

parameter

Figure 4.3 Declaring custom messages in resource bundles
Licensed to Mark Watson <nordickan@gmail.com>

96 CHAPTER 4 Creating the initial UI
■ {3}—The limiting value in the constraint, such as a maximum value or a match-
ing pattern. Applies to match, max, min, maxSize, minSize, inList, and equals
constraints.

■ {4}—The upper bound for a constraint ({3} is the lower bound). Applies to
range and size constraints.

This mechanism extends beyond the error messages to the scaffolding labels. If you
look at messages.properties again, you’ll see message keys such as the following:

default.home.label=Home
default.list.label={0} List

You can, for example, change the text for the Home link on the top navigation bar by
modifying the default.home.label value.

 Customizing error messages is one of the first things you should do if you plan to
have users interact with the scaffolding UI. It’s a small change, but it improves the
user experience.

With the scaffolding in place and useful error messages for failed validation, you
could feasibly move on and start building Hubbub’s proper UI. If the application
developers are the only ones who’ll see and use the scaffolding, why invest more time
and effort?

 Now imagine that you retain the scaffolding as an administrative UI or that you
make the application available to end users early to get feedback. In these cases, you
want the scaffolding to fit with the look of the final application and with the company
branding. In the next section, we dive into customizing the look of the scaffolding UI.

4.2 Restyling the scaffolding
Although the default scaffolding is powerful, the generic Grails look begs to be
tweaked. You might want to do it to show off progress to your managers, who’d
appreciate a unique look with the company branding. Alternatively, you may want to
make the scaffolding UI available to end users, in which case it must look like a com-
pany product. Looks do count as part of the user experience and brand identity.

 Grails gives you several options for customizing the look of the scaffolding UI, from
simple changes to colors, images, fonts, etc., to completely changing the underlying

Localization
You’ll see many properties files under grails-app/i18n. You can provide language-
specific custom messages to your application by adding them to the appropriate
messages_<lang>.properties file. Messages in French would go in messages_fr
.properties, messages_fr_FR.properties, or messages_fr_CA.properties. These prop-
erties files use UTF-8 for the encoding, so you can use non-Latin characters. For more
in-depth information, research Java resource bundles.
Licensed to Mark Watson <nordickan@gmail.com>

97Restyling the scaffolding
HTML markup. Start with the simplest approach: updating the style of the pages using
Cascading Style Sheets (CSS).

4.2.1 Changing the skin you’re in

Once upon a time, HTML markup not only determined the structure of content but
also the look of the resulting page. You’d use the tag to display things in bold or
 to change the typeface. If you were really hip, you’d throw in the <blink> text
(which has, thankfully, been consigned to the dustbin of history). Life was simple, that
is, unless you needed to change the look of the footer across a whole set of pages, or
change the color of level 2 headings. Then life became hard quickly.

 Wise people decided that the inability to customize pages easily was holding back the
web as a presentation platform, so they introduced a transformative technology called CSS.
As shown in figure 4.4, the idea is simple: keep the semantic meaning of a document in the
markup where it belongs, but move styling into style sheets that can be applied to multiple
documents. Changing the look of a particular category of heading across multiple pages
is now a simple case of modifying a single CSS rule in a separate file: the style sheet.

 Many readers are already aware of CSS and comfortable working with it. If you
aren’t one of those people, don’t worry. We’ll introduce examples to get you started.

Markup CSS

<html>
<head>

<title>Style me good!</title>
<link rel="stylesheet" href="simple.css">

</head>
<body>

<h1>Style me good!</h1>
<p class="one">First paragraph</p>
<p>Second paragraph</p>

</body>
</html>

body{
font-family: sans-serif;

}

h1{
font-size: 1.4em;

}

p{color: blue;}

p.one{font-style: italic;}

'p' maps to the element,
'one' to the class attribute.

Markup & CSS are combined
into a styled page.

Figure 4.4 HTML + CSS = good-looking pages
Licensed to Mark Watson <nordickan@gmail.com>

98 CHAPTER 4 Creating the initial UI
You may not even need to work on CSS if your team has dedicated front-end develop-
ers, but it’s still useful to understand how it works in case you need to fix something
urgently, and those front-end developers aren’t around.

 As for the scaffolding, you can find all the styles for it in the web-app/css/
main.css file in your Grails project. All you have to do is edit that file to add your
own flair. Let’s say you want to change all the major headings, <h1> elements, to
appear in bright red and italic bold. Find the h1 rule in main.css and update it to look
like this:

h1 {
 color: red;
 font-style: italic;
 font-weight: bold;
 font-size: 1.25em;
 margin: 0.8em 0 0.3em 0;
}

The CSS attributes we’ve changed are fairly easy to work with, but main.css does con-
tain attributes that are more complex. One of the best ways to learn is to make
changes to existing rules and see what happens! It’s also worth trying out the
browser’s developer tools, such as Firebug for Firefox and Developer Tools for
Chrome and Safari. Even Internet Explorer has decent developer tools these days.
They allow you to see what styles are active on particular elements of the markup as
well as change CSS values on the fly. They even provide autocompletion for colors,
font styles, and many other CSS attributes. Such tools are invaluable when working on
browser-based UIs.

 We’ve touched on CSS here, but it’s an amazingly powerful technology that
enables you to change the look of the scaffolding beyond recognition. Beyond mod-
ifying fonts and colors, you can also affect the way parts of the page are laid out with
CSS. Still, it does have limitations. You can’t, for example, add extra links and images
to the header and footer of the pages, because those additions require markup. And
if you want to add branding to your pages, you’ll almost certainly want custom links
and images.

4.2.2 Branding your pages

Say you want to add your company logo and slogan to the application pages, and per-
haps your legal department asked you to add a disclaimer and copyright message to
the bottom of each page. For all its power, you can’t do this with CSS. You should use a
layout, and in this section, we’ll show you how to add custom headers and footers to
the scaffolding with a minimum of fuss. In chapter 8 you’ll learn more about the
details of layouts.

 As it happens, the scaffolding already uses a layout: grails-app/views/layouts/
main.gsp, which you can modify to add your own banner. You can see the result in the
following listing.

Modifies the text color from green to red,
the font from normal to italic, and the
font weight from normal to bold.
Licensed to Mark Watson <nordickan@gmail.com>

99Restyling the scaffolding

ple
oter
<html>
<head>
 <title>Hubbub » <g:layoutTitle default="Welcome" /></title>
 <g:external dir="css" file="hubbub.css"/>
 <g:external dir="css" file="main.css"/>
 <g:layoutHead />
</head>
<body>
 <div>
 <div id="hd">
 <g:link uri="/">
 <g:img id="logo" uri="/images/headerlogo.png"

➥ alt="hubbub logo"/>
 </g:link>
 </div>
 <div id="bd"><!-- start body -->
 <g:layoutBody/>
 </div> <!-- end body -->
 <div id="ft">
 <div id="footerText">Hubbub - Social Networking on Grails</div>
 </div>
 </div>
</body>
</html>

With this modified layout file and the hubbub.css style sheet (which you can find on
GitHub), you end up with scaffolding that looks like figure 4.5.

 Using this technique, you can quickly change the layout for your entire site. Even
better, once you learn more about how layouts work, you can override the layouts on a
per-controller or even per-action basis. This allows you to fine-tune the look of differ-
ent sections of the site. Let’s say you want to include text in the banner that identifies
whether the current page is related to posts, users, or profiles. You could add these lay-
out files:

■ grails-app/views/layouts/post.gsp—This would contain a banner labeled Posts that
would be displayed on all pages implemented by PostController.

■ grails-app/views/layouts/user.gsp—The banner would be labeled Users.
■ grails-app/views/layouts/profile.gsp—The banner would be labeled Profiles.

For the layouts to take effect for the pages of a particular controller, the name of the
layout file must match the logical property name of the controller, that is, Post-
Controller becomes post.gsp.

 You’ve gotten rid of that default feel to the scaffolding for the Hubbub applica-
tion, and you haven’t had to do much work to get there. You could leave the scaffold-
ing UI as is and go straight to developing that user-friendly UI we talked about;
however, if the scaffolding works well for your situation, but you need more control
over the individual screens, you have more customization options that we’ll discuss in
the next section.

Listing 4.1 Changing the standard layout decorator for Hubbub

Adds a custom CSS file

Uses custom
masthead image

Adds a sim
custom fo
Licensed to Mark Watson <nordickan@gmail.com>

100 CHAPTER 4 Creating the initial UI
4.3 Working with the scaffolding code directly
Until now, we’ve looked at only dynamic scaffolding and how to influence the look
and feel through changes to the domain class constraints, error messages, styles, and
layouts. You haven’t in any way changed the hidden code that underpins the scaffold-
ing. Can you do that? If you can, you’ll have greater flexibility in customizing not only
the look of the UI but also the behavior.

 Grails provides two options to reveal that hidden code and modify it:

■ Expose the scaffolding templates
■ Generate the physical code for all your scaffolding controllers

Both approaches have advantages and disadvantages, so we’ll look at them in turn and
then discuss which to use and when in the best practice section of the chapter.

4.3.1 Customizing the dynamic scaffolding

There’s only one way to customize the HTML markup used by the dynamic scaffold-
ing: modifying the scaffolding templates. To demonstrate how to do this, consider a
simple change that you want to make to the scaffolding UI. It’s currently difficult for
a user to select the appropriate profile for a new Hubbub user, as you can see in fig-
ure 4.6.

Figure 4.5 You can change the scaffolding to use your own layouts and style sheets.
Licensed to Mark Watson <nordickan@gmail.com>

101Working with the scaffolding code directly
Unless you know which profile has a particular instance ID, you have to guess which
one to pick! Ideally the drop-down list should display identifying information such as
the fullName field of the profile, as shown in figure 4.7.

 As you can see, that’s much more user friendly. The simplest way to implement this is
to add a toString() method in the Profile domain class that returns the full name:

class Profile {
 String fullName
 . . .

 String toString() { return fullName }
}

Default text for an
association is not
helpful.

Figure 4.6 The
default scaffolding
page for creating a
new user.

We can change
it to display the
user’s name.

Figure 4.7 The
improved Create User
page lets you select a
Profile by its full name.
Licensed to Mark Watson <nordickan@gmail.com>

102 CHAPTER 4 Creating the initial UI

That will fix the Create User page right away. So why wouldn’t you want to do this? After
all, it certainly fits the principle of Keep It Simple, Stupid (KISS). The problem is that
toString() is used in many other circumstances as well, such as in logging, inside
debuggers, and in simple println() statements. In those situations, you typically want
information that’s more useful for diagnostics, which conflicts with the needs of the UI.

 We’ll take a different, more involved, approach that relies on modifying the under-
lying scaffolding code. The idea is to use a special displayString property that the
scaffolding uses when displaying an association. All you have to do then is add
the property to every domain class involved in scaffolding, as we show here for the
Profile class:

class Profile {
 String fullName
 . . .

 String toString() { return "Profile of $fullName (id: $id)" }

 String getDisplayString() { return fullName }
}

Before you can modify the scaffolding templates, you must first install the template
files into the project. The scaffolding uses these files to generate the UI on the fly.

INSTALLING THE TEMPLATE FILES

Run the command

grails install-templates

and look in the newly created src/templates directory. You’ll see a set of directories
and files matching those shown in figure 4.8.

Returns a diagnostic string for
log messages and debugging

Creates a read-only displayString
property for the scaffolding

grails install-templates

src/templates/

artifacts/...

scaffolding/

_form.gsp

Controller.groovy

edit.gsp

list.gsp

show.gsp

testing/...

war/web.xml

Test.groovy

create.gsp

renderEditor.template

Templates for the
create-* commands

Contains the HTML edit form for
the corresponding domain class

The template controller

The template unit test for the
scaffolding-enabled controller

The CRUD views

Groovy code to render the appropriate
input type for a given field; for example,
a date picker for a Date property

Unit test templates for each artifact type

The template web descriptor, web.xml

Figure 4.8 The files
added to your project
via the install-
templates
command
Licensed to Mark Watson <nordickan@gmail.com>

103Working with the scaffolding code directly

d
for s

a

Once you have those template files in your project, you can start customizing them.

NOTE Customization of the scaffolding templates is a fairly advanced topic
for this early in the book, so feel free to skip to the next section and come
back when you’re more comfortable with Grails.

For those who want to stay for the ride, let’s make the scaffolding use the display-
String property. The key initial question is which files need changing. To answer that,
you need to understand each template file’s role. We show the relationships in fig-
ure 4.9. As you can see, they aren’t complicated.

 Which files do you need to modify? The controller has nothing to do with how
associations are rendered, so you can ignore that. The list and show views do render
the values of associations, so they require tweaking. You may think the create and edit
files also need changes because they display drop-down lists and list boxes for associa-
tions, but hopefully you can see from figures 4.8 and 4.9 that the actual rendering of
those widgets happens in renderEditor.template, which means you can safely ignore
the create and edit views as well as the_form.gsp partial template.

MODIFYING THE TEMPLATES

The three files you need to modify—list.gsp, show.gsp, and renderEditor.template—
are all fairly long, so we show only enough in the code samples to identify what code
you add and where. Let’s start with the list view in the following listing, in which the
extra code is marked in italics.

. . .
<tbody>
 <g:each in="\${${propertyName}List}" status="i" var="${propertyName}">
 <tr class="\${(i % 2) == 0 ? 'even' : 'odd'}">
 <% props.eachWithIndex { p, i ->
 if (i == 0) { %>
 . . .
 <% } else if (p.manyToOne || p.oneToOne) { %>
 <td>\${${propertyName}?.${p.name}?.displayString?.encodeAsHTML()}</td>
 <% } else { %>
 <td>\${fieldValue(bean: ${propertyName}, field: "${p.name}")}</td>
 <% } } } %>

Listing 4.2 Required changes to the template list.gsp

renders

embeds

Controller.groovy

_form.gsp renderEditor.template
uses

list.gsp

show.gsp

create.gsp

edit.gsp

Figure 4.9 How the different scaffolding templates fit together

Renders
isplayString
ingle-ended
ssociations
Licensed to Mark Watson <nordickan@gmail.com>

104 CHAPTER 4 Creating the initial UI
 </tr>
 </g:each>
</tbody>
. . .

The code you need to add may look a little arcane, but it helps to understand this is a
template file that’s first converted to a GSP file, which is then used by the standard
Grails view renderer. During the conversion of the template to a valid GSP file, only
code inside <% %> markers and ${} expressions are resolved and executed. That’s why
a few of the dollar signs are escaped with a backslash: to ensure they end up in the GSP
as is and not evaluated.

 With that knowledge in hand, you should be able to tell that the propertyName
and p variables exist only during the parsing of the template. They don’t exist in the
generated GSP. The first of them, propertyName, resolves to the logical property
name of the domain class that this view is for. The second one, p, resolves to a prop-
erty of that domain class and comes from the props.eachWithIndex() loop at line 5
of the listing.

 The change to the show view is similar, as shown in the following listing.

…
<% } else if (p.oneToMany || p.manyToMany) { %>
 <g:each in="\${${propertyName}.${p.name}}" var="${p.name[0]}">

 <g:link controller="${p.referencedDomainClass?.propertyName}"
 action="show" id="\${${p.name[0]}.id}">
 \${${p.name[0]}?.displayString?.encodeAsHTML()}
 </g:link>

 </g:each>
<% } else if (p.manyToOne || p.oneToOne) { %>

 <g:link controller="${p.referencedDomainClass?.propertyName}"
 action="show" id="\${${propertyName}?.${p.name}?.id}">
 \${${propertyName}?.${p.name}?.displayString?.encodeAsHTML()}
 </g:link>

<% } else if (p.type == Boolean || p.type == boolean) { %>

 <g:formatBoolean boolean="\${${propertyName}?.${p.name}}" />

…

We’ve dealt with the views, so we’re now left with the form fields:

■ Drop-down lists for many-to-one and one-to-one associations
■ List boxes for one-to-many and many-to-many associations

As we mentioned earlier, the code for generating these fields resides in render-
Editor.template. This file contains a set of Groovy functions used by the_form.gsp
partial template.

Listing 4.3 Using the displayString property in the show view

Adds a
link for
*-to-many
associations

Adds a link
for *-to-one
associations
Licensed to Mark Watson <nordickan@gmail.com>

105Working with the scaffolding code directly
 The bits of renderEditor.template we’re interested in are the render*() meth-
ods. There’s a method for Boolean fields, one for enums, and several for associations
of different types: renderOneToMany(), renderManyToOne(), and renderManyToMany().
The first of these renders a list of links with an Add link at the end. The other two ren-
der HTML <select> elements.

 Remembering that you want to use the displayString property for the user-visible
text, what do you do next? For the <select> elements, you add an extra line so that
the generated <g:select> tag uses the displayString property for the content of the
<option> elements, as shown in the following listing.

. . .
private renderManyToOne(domainClass,property) {
 if (property.association) {
 def sb = new StringBuilder()
 sb << '<g:select'
 sb << ' id="' << property.name << '"'
 sb << ' name="' << property.name << '.id"'
 sb << ' from="${' << property.type.name << '.list()}"'
 sb << ' optionKey="id"'
 sb << ' optionValue="displayString"'
 if (isRequired()) sb << ' required=""'
 sb << ' value="${' << "${domainInstance}?.${property.name}" <<

'?.id}"'
 sb << ' class="many-to-one"'
 sb << renderNoSelection(property)
 sb << '/>'
 sb as String
 }
}

You can do something similar for renderOneToMany() and renderManyToMany() to
get the result you want, but we won’t go into the details here. Once you’re comfort-
able with Grails and all its parts, this example should give you an idea of what you can
achieve with such customizations.

 Changing the way associations are displayed in the scaffolding is a small yet practi-
cal example of customizing the scaffolding templates to your needs. You can take this
further and rewrite the scaffolding completely to generate a rich UI based on HTML/
JavaScript tools such as AngularJS. In fact, someone has already done this.1

 Whether you should invest energy in the scaffolding depends on the size of your
domain model and how usable you want to make the generated UI. The larger the
model, the greater the return on the investment. And if people use the scaffolding UI
regularly, making them more productive through improvements to the scaffolding
can be cost-effective. In the end, it’s a decision to make on a project-by-project basis.

Listing 4.4 Using the displayString property

1 A Grails plugin for scaffolding views using Angular.js, https://github.com/robfletcher/grails-angular-scaffolding.

Renders a <g:select>
GSP tag

Sets the property to use for
the <option> content
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/robfletcher/grails-angular-scaffolding

106 CHAPTER 4 Creating the initial UI
We dived deep into the internals of the scaffolding, and you may need a break. Don’t
worry if it’s a little overwhelming right now. By the end of the book, it’ll make more
sense. We recommend you come back then and experiment with changing the tem-
plates to see what effect those changes have. It’s a great way to learn.

 The templates we worked on also form the basis of another type of scaffolding that
Grails calls static scaffolding. The technique serves a completely different purpose that
we’ll look at next.

4.3.2 Scaffolding as a starting point

Dynamic scaffolding creates a UI on the fly that’s responsive to changes in your
domain model. This is effective while you’re developing the domain model, but it also
hides the code from you. You can’t fiddle with the code to see how it works if the code
isn’t there. It’s a shame, because that was one of the ways that we, the authors, learned
how to use Grails. Fortunately, Grails gives us static scaffolding to satisfy this use case.

 The idea is that the scaffolding templates are generated as files in your project for
whichever domain classes you want. Figure 4.10 shows exactly what files are created
for Hubbub’s User domain class. To generate these files, execute this command:

grails generate-all com.grailsinaction.User

You can also generate the controller and views independently through the generate-
controller and generate-views commands, but those are much less common.

 Play with these generated files to your heart’s content. The files are easier to
understand than the scaffolding templates you saw in the previous section, but be
aware that once you generate these files, you have to update them manually if the cor-
responding domain class changes.

Scaffolding and bidirectional relationships
Unfortunately, default scaffolding can’t handle bidirectional one-to-one relationships
that require both sides. If User requires a Profile and Profile requires a User,
you end up with a classic catch-22: to create a profile you need a user, but to create
a user you need a profile. You can work around this by modifying the template Create
User page to submit both the user and profile information together.

grails generate-all com.grailsinaction.User

grails-app/

controllers/com/grailsinaction/UserController.groovy

views/user/

_form.gsp

create.gsp

edit.gsp

list.gsp

show.gsp

grails-app/

controllers/com/grailsinaction/UserController.groovy

views/user/

_form.gsp

create.gsp

edit.gsp

list.gsp

show.gsp
Figure 4.10 The generated
files from static scaffolding
Licensed to Mark Watson <nordickan@gmail.com>

107Working with the scaffolding code directly
The views make a good starting point for experimenting with the code because markup
is fairly easy to understand, and even small changes typically have an immediate, visi-
ble effect on the UI.

 As for the generated controller, we listed all its actions in table 4.1 so that you can
see their roles and how they interact with the corresponding views.

We won’t go any further into static scaffolding, because you won’t be using it as the
basis for Hubbub’s UI, but don’t be afraid to use it as a starting point for your own
projects. It’s particularly useful for those who are new to web development. That said,
scaffolding takes shortcuts in the code that aren’t appropriate for normal application
development, leading to the following warning.

The last thing we want to warn you about is switching between dynamic and static scaf-
folding. If you use one of the generate-* commands and then want to switch back to
dynamic scaffolding, be sure to delete all the generated views! The generated views

Table 4.1 Scaffolding controller methods

Action name Function Rendered view

index Shows paginated list of domain class instances. Prior to
Grails 2.3, this action redirected to a list action, which no
longer exists.

N/A

show Shows the properties for one instance of the domain class. show.gsp

create Shows a blank editing form for a new domain class instance,
and submits it to save.

create.gsp

save Saves new instances of domain classes. Redirects to list if
the data is valid or renders the create view.

N/A or create.gsp

edit Displays an editing form for a domain instance, and submits it
to update.

edit.gsp

update Updates a given instance of a domain class with new values.
Redirects to list if the submitted data is valid, otherwise it
renders the edit view.

N/A or edit.gsp

delete Deletes a given ID, then redirects to list. N/A

Scaffolding isn’t best practice
The scaffolding code isn’t an example of best practice in terms of structuring an appli-
cation—it doesn’t use services, for one thing—and we don’t encourage you to blindly
use scaffolding code in your production applications. Don’t worry, we’ll teach you best
practice in the rest of the book!
Licensed to Mark Watson <nordickan@gmail.com>

108 CHAPTER 4 Creating the initial UI
override the views provided by the dynamic scaffolding, leading to changes in your
domain classes not appearing in the UI. It’s easily done.

 With that, we end our coverage of scaffolding. As you’ve seen, working with the
underlying code for the scaffolding, whether it’s via the templates or the generated
files, gives you flexibility in customizing the UI. A scaffolding UI is never ideal in terms
of user experience, but that experience can be improved dramatically while still get-
ting a cheap-to-build UI for a large domain model.

4.4 Summary and best practices
In this chapter, we explored Grails scaffolding and you saw how to use scaffolding to
create an instant UI for an application. You also saw how to skin the application with
your own CSS and layouts, customize the error messages, and change the look com-
pletely by modifying the scaffolding templates.

 Scaffolding is a cheap way to get a web UI, so there’s a temptation to use it for the
final product, particularly when the domain model is large. We normally discourage
this, because we think a UI should be tailored to the user and not the domain model.
But we recognize that it’s sometimes more beneficial to get a UI in the users’ hands
quickly than invest the time in a custom UI. Dynamic scaffolding also has the key ben-
efit that it automatically keeps in sync with the domain model—a huge win if your
domain model changes frequently.

 What do we recommend?

■ Use scaffolding to get going quickly and to stay motivated. Scaffolding gives you a feel-
ing of progress and keeps you focused on getting your app out the door. It’s
also a great support while building a custom UI, because it allows you to interact
fully with the data, making it easier to test the new UI.

■ Use scaffolding for administration screens. It’s difficult to anticipate everything that
might happen in your running application, so having access to all the produc-
tion data through a web UI can make your life much easier. Rather than dispos-
ing of the dynamic scaffolding once your web UI is done, why not keep it and
make sure that only administrators can access it? See chapter 11 for how to add
access control to your app.

■ Customize the scaffolding if it’s the final product. If you do decide to base your
application on scaffolding, be sure to customize the look and update the
templates to ensure they can handle all of your relationships. Remember
that the default scaffolding can’t handle certain types of relationships. And
you definitely don’t want your application looking like an out-of-the-box
Grails app.

■ Use static scaffolding appropriately. Static scaffolding isn’t currently an example
of best practice for Grails applications, so you shouldn’t use it as such. If
you’re new to web application development, using the generate-* commands
and playing with the resulting code is a great way to learn. But you should
make sure your code follows best practice at a later point. Experienced web
Licensed to Mark Watson <nordickan@gmail.com>

109Summary and best practices
developers probably shouldn’t generate the static scaffolding. Instead, keep
the dynamic scaffolding to support development of a custom UI developed
from scratch.

In the next chapter, you will return to the domain model and learn how to interact
with it through database queries. You’ll also start on that custom UI we kept talking
about in this chapter. This is where the real fun begins!
Licensed to Mark Watson <nordickan@gmail.com>

Retrieving
the data you need
After a few chapters you have a fully working web application that stores and
retrieves data in a relational database. This forms a great base for further develop-
ment, because you can fully interact with the data model before the real applica-
tion is ready. You can, for example, make changes to the data via the scaffolding UI
to test a feature that you’re developing, such as a search form.

 Where do you go next? You don’t want to expose users to the scaffolding UI
because it doesn’t exactly provide a great user experience. You need to build a friend-
lier UI. Let’s start with a simple home page. What should go on that page? A good
starting point is a list of Hubbub posts, and for that you need to query the database.

 This chapter introduces various ways of querying a database in Grails. Once
you’ve finished it, you’ll know how to fetch posts from the last 24 hours submitted
by people whom the current user is following! You’ll also develop a basic search
form for Hubbub that provides a basis for exploring the different types of queries.

This chapter covers
■ Generating sample data
■ Querying the database without SQL
■ Unlocking the power of advanced querying

features
110

Licensed to Mark Watson <nordickan@gmail.com>

111Setting up the data and search form
 Before we begin, it’s useful to have data in the database so that your queries can
return results. A convenient way to do that is to populate the database on applica-
tion startup.

5.1 Setting up the data and search form
Testing a data-dependent application that has no data is painful. If you don’t have data,
most pages will be empty and you’ll be unable to test the features you’ve implemented.
You could manually add test data every time you start the server, but it won’t take long
before you try to automate the process. That’s why the first step in implementing your
search form is to create sample data automatically when the application starts.

5.1.1 Loading sample data

The most convenient way to initialize such sample data in a Grails application is via
the BootStrap class in grails-app/conf because its init closure is executed every time
the application starts. This happens regardless of whether the application is started via
the run-app command, run-war, or when it’s deployed to a separate servlet container
as a WAR file. The best thing about this approach is that you can use standard GORM
to generate the data—so you still don’t need any SQL!

 Before you code the sample data, you need to consider under what circumstances
this code is going to run. Three factors are involved:

■ Whether you’re using an in-memory database
■ What dbCreate setting you’re using
■ What environment is active

We’ll start by looking at the first two factors, then incorporate the active environ-
ment afterward.

HANDLING DATA DURABILITY

Understanding the relationship between the durability of the database (whether the
data persists between server restarts) and the dbCreate setting in DataSource.groovy is
crucial to knowing how you should set up your sample data; otherwise, you may end
up with no data, duplicate data, or errors on startup. Figure 5.1 explains how this rela-
tionship affects the longevity of your data.

 As you can see, data longevity boils down to two scenarios: the data is wiped
between server restarts or it’s preserved. We don’t want to recreate the data if it’s
already there, because that results in either duplicate records (if the domain class con-
straints allow duplicates) or failed saves. To avoid that, you first do a quick check to see
whether the data exists, as shown in listing 5.1. We’ve left out sample data from the
listing because the code is long, repetitive, and not particularly educational. You can
find the complete code on GitHub.1 You’ll need to copy it if you’re building Hubbub
yourself locally.

1 The example BootStrap code on GitHub, https://github.com/GrailsInAction/graina2/blob/master/ch05/
hubbub/grails-app/conf/BootStrap.groovy.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/GrailsInAction/graina2/blob/master/ch05/hubbub/grails-app/conf/BootStrap.groovy
https://github.com/GrailsInAction/graina2/blob/master/ch05/hubbub/grails-app/conf/BootStrap.groovy

112 CHAPTER 5 Retrieving the data you need
import com.grailsinaction.*

class BootStrap {
 def init = { servletContext ->
 if (!Post.count()) {
 createSampleData()
 }
 }

 private createSampleData() {
 …
 }
}

In this case, checking the number of posts is a good test for whether the sample data is
already loaded in the database. You could feasibly do the check on any of the domain
classes in the model because the sample data is either there or it’s not.

 Another consideration when creating sample data is how you’ll deal with valida-
tion errors. You don’t expect them, but that doesn’t stop validation errors from hap-
pening and ruining your sample data set.

THROWING EXCEPTIONS ON SAVE()
If you look at the source code on GitHub, you’ll see code that calls the save() method:

phil.save(failOnError: true)

What’s that failOnError argument about? By default, the save() method quietly
fails and returns null if the domain instance does not satisfy the class’s validation
constraints. It won’t be until the application is running and you test your features
that you’ll notice the missing data. It may even take a few hours to debug what the
problem is!

 The failOnError argument solves this issue by throwing an exception if the valida-
tion fails. That means you’ll see right on application startup whether any data has

Listing 5.1 Initial attempt at generating sample data

create-drop

update

<none>

validate

create

In-memory
DB

Persistent
DB

No data

<all>

dbCreate
setting

Database
type

On startup

Data persists

Figure 5.1 How database
type and the dbCreate
setting affect data
persistence

Makes domain classes available;
BootStrap is not in a package.

Checks for Posts
in database.

Doesn’t need destroy property, which
is called on application shutdown.
Licensed to Mark Watson <nordickan@gmail.com>

113Setting up the data and search form
failed to save to the database. It’s well worth using this argument whenever you save a
domain instance in BootStrap.

USING ENVIRONMENT BLOCKS
The last factor we mentioned when contemplating the sample data was the active envi-
ronment. The sample data makes sense for development, but what about for produc-
tion? Your users probably wouldn’t appreciate seeing dummy posts from dummy
users. It makes sense to load the sample data only for the development environment.

 You can achieve this in one of two ways. The first is via environment blocks, which
are special demarcated blocks of code that are executed only for a particular environ-
ment. The following code loads the sample data only if the application is running in
the development environment:

import com.grailsinaction.*

class BootStrap {
 def init = { servletContext ->
 environments {
 development {
 if (!Post.count()) createSampleData()
 }
 }
 }
 …
}

The syntax is simple: you declare an environments block as shown and nest as many
named environments as you want inside it. Each named environment is another block
inside which you put the code you want to execute. Grails defines standard environ-
ments—development, test, and production—but you can also add custom ones.

 Imagine that you have a set of staging servers that you deploy the application to
before it goes into production. You want to ensure your reference sample data is set
up so any tests that run against the staging servers work properly. Simply add a nested
staging block inside the environments block like so:

environments {
 staging {
 …
 }
}

To then activate this staging environment when you package the application as a WAR
file, you pass the -Dgrails.env option on the command line:

grails -Dgrails.env=staging war

No other configuration is needed. You don’t have to declare the environment any-
where or specify the name on the command line. If any code is conditional on that
environment, it’ll be executed. The downside is that if you mistype the environment
name, you won’t get a warning. Instead, Grails quietly loads the default configuration.

Starts environment
blocks

Creates sample data
in the development
environment
Licensed to Mark Watson <nordickan@gmail.com>

114 CHAPTER 5 Retrieving the data you need

t
t
t
It’s important to note that every Grails command has a particular environment that it
defaults to. Usually this is development, but the test-app command defaults to the
test environment (unsurprisingly), and the war command defaults to production.
You’ll see in the next subsection how to activate specific standard environments from
the command line.

USING THE ENVIRONMENT CLASS FOR MORE COMPLEX SCENARIOS

The second way to conditionally create data is by a straightforward if statement that
checks the current environment via the Grails Environment class:

import grails.util.Environment

class BootStrap {
 def init = { servletContext ->
 if (Environment.current != Environment.DEVELOPMENT) {
 // Set up reference data for
 // non-development environments
 . . .
 }
 else if (Environment.current.name == "staging") {
 . . .
 }
 }
}

Although this isn’t as elegant as the environment blocks, it’s useful in many scenarios.
The previous code sample shows how you can execute code for any environment except
the specified one, something that you can’t properly achieve with environment blocks.

 One ugly spot in Grails that can confuse newcomers is an inconsistency in how you
activate environments and reference them within your code. The previous example
even showed two different ways to test the current environment! To help you get a
handle on environments, we’ve listed their different forms in table 5.1.

Execution order
You have no guarantees when the code in the environments block will be executed
relative to other code in BootStrap. It seems that, at present, the block is executed
after everything else in the init closure. But that may change in the future as this
behavior isn’t documented anywhere.

Table 5.1 The different faces of environments

Name Constant Command line activation

development Environment.DEVELOPMENT grails dev . . .

test Environment.TEST grails test . . .

production Environment.PRODUCTION grails prod . . .

<user-defined>, for
example, myEnv

Environment.CUSTOM grails -Dgrails.env=myEnv . . .

Checks the curren
active environmen
using Environmen
instances

Compares
environments by
name (required for
custom environments)
Licensed to Mark Watson <nordickan@gmail.com>

115Setting up the data and search form
The environment name is the string you use in environment blocks and when you
want to check for a particular custom environment. The constants are instances of
Environment that you can use instead of the names when checking for the stan-
dard environments.

 With these techniques, you can easily control which data is loaded under what cir-
cumstances. Now you have your sample data loading on startup, you can send queries
and get back useful results. It’s time to set up that search form.

5.1.2 Implementing the search

The search feature you’re going to implement has three parts:

■ The search form that allows users to enter a search string in the UI
■ The code to execute the search
■ The results page

Only the second part involves executing a database query, but the corresponding
HTML page provides the context for that query. Don’t worry if you can’t follow the
logic of the page generation because you’ll dive into that side of things in the follow-
ing chapters. For now, focus on the relationship between the search form and the
database query.

CREATING THE SEARCH FORM

The search form is a web page that contains a text box for the search string and a but-
ton to execute the search. The aim is to end up with a form like the one in figure 5.2.
As you saw in chapter 1, you can implement pages like this with GSP views.

 First, create the file grails-app/views/user/search.gsp and add the code shown in
the following listing, which contains the HTML form that’s displayed to the user.

<html>
<head>
 <title>Search Hubbub</title>
 <meta name="layout" content="main"/>
</head>

Listing 5.2 A search form for Hubbub

Figure 5.2 Hubbub search form

Uses the same layout as the
scaffolding for consistency.
Licensed to Mark Watson <nordickan@gmail.com>

116 CHAPTER 5 Retrieving the data you need
<body>
 <formset>
 <legend>Search for Friends</legend>
 <g:form action="results">
 <label for="loginId">Login ID</label>
 <g:textField name="loginId" />
 <g:submitButton name="search" value="Search"/>
 </g:form>
 </formset>
</body>
</html>

A few special <g:> tags exist in the listing that you’re probably not familiar with unless
you’ve used something such as JSP tags in the past. These tags generate HTML based
on their attributes, and you can see what impact each tag has in figure 5.3. It’s worth
getting used to looking at the generated HTML because it’s useful in debugging ren-
dering issues and seeing exactly what the GSP tags do.

 With this search form in place you can add an empty search action to User-
Controller, which renders the search.gsp page by convention (see listing 5.3).
Once that action is in place, you’ll be able to point your browser at /hubbub/user/
search, enter any search criteria, and submit the form. The next step is to process
the form submission.

 When the user enters a user ID, or part of a user ID to search for, and clicks Submit,
what happens? As you’ll learn in the next few chapters, the data is submitted to the URL
specified in the action attribute of the <form> element. That URL is handled (at the
moment) by the results action on UserController, which needs implementing.

IMPLEMENTING THE RESULTS PAGE

To deal with the form submission, you need your results action to perform the nec-
essary database query and render the results of that query back to the browser. For the
query, you’re going to use the where() method that’s added to all domain classes. You
can see it in action in the following listing.

Submits form to the results
action of UserController.

Lets the user enter the
ID to search for; value
available in controller as
“loginId” parameter.

Whole box is the <formset> element.

<g:textField> becomes a text input.

Figure 5.3 The basic Hubbub user search page and its underlying HTML
Licensed to Mark Watson <nordickan@gmail.com>

117Setting up the data and search form
package com.grailsinsaction

class UserController {
 static scaffold = true

 def search() {}

 def results(String loginId) {
 def users = User.where {
 loginId =~ loginId
 }.list()
 return [users: users,
 term: params.loginId,
 totalUsers: User.count()]
 }
}

The first thing that strikes you is the lack of any SQL, or even any SQL-like, terms.
Don’t worry, it’s still sending a SQL query to the database, but you can express that
query in terms of the language constructs you’re used to in Groovy. That’s convenient
if you haven’t yet learned SQL.

 A second interesting aspect of this bit of code is how it appears to compare the
loginId variable with itself. In fact, the loginId on the left-hand side refers to the prop-
erty of that name on the User class, whereas the one on the right-hand side refers to the
action’s argument. This will be clearer once we dissect the behavior of such queries.

 How does this query work? It breaks down into the three parts shown in figure 5.4.
You should see that the criteria go inside a closure—that’s the argument to the
where() method. The content of that closure does need more discussion, so we’ll
come back to Where queries (the name for this type of query) in the next section. For
now, let’s finish off this search form.

Listing 5.3 Adding the search logic to UserController

Adding to the scaffolding
Notice how you’ve kept the scaffolding in UserController but augmented it with
your new search operation? The scaffolding pages for CRUD remain, so you can still
manipulate the data. You have additional custom pages now for the search form and
its results. Eventually you can remove the scaffolding or use it later as an adminis-
trative UI once the application is ready.

The action for the
“search” form page

Argument name matches name
of the text field in the form

Queries the DB for all users
with a loginId that’s like the
search string

<domainClass>.where { <criteria> }.<execution>()

Domain class to

query for

One of list(), get() or a

dynamic finder to execute the query

A conditional expression that determines

which domain instance to return

Figure 5.4 Breakdown of
a Where query
Licensed to Mark Watson <nordickan@gmail.com>

118 CHAPTER 5 Retrieving the data you need
At the moment, users must include the SQL wildcard character, %, in the search string
if they want wildcard matching. It’s impractical to force users to do this in their
searches because few people know what SQL is, let alone a SQL wildcard. Instead, let’s
incorporate the wildcards directly in the query:

def users = User.where { loginId =~ "%${loginId}%" }.list()

Any login ID that includes the search term will be returned in the results. For those
who know SQL, the =~ operator represents a SQL ILIKE comparison, meaning that it’s
case insensitive.

 The last step in implementing the search form is to create the page that displays the
search results. Listing 5.4 implements a results.gsp view for this purpose. The file goes
into the same directory as the search view (grails-app/views/user) and it’s rendered by
convention—the name of the view matches the name of the controller action.

<html>
<head>
 <title>Search Results</title>
 <meta name="layout" content="main"/>
</head>
<body>
 <h1>Results</h1>
 <p>
 Searched ${totalUsers} records
 for items matching ${term}.
 Found ${users.size()} hits.
 </p>

 <g:each var="user" in="${users}">
 ${user.loginId}
 </g:each>

 <g:link action='search'>Search Again</g:link>
</body>
</html>

Now when you search for a user you’ll see all the matching results. That’s another useful
feature implemented with a minimum of fuss. You can try other queries in the results
action because you’ll see the results in the browser without restarting the server! It’s a
great way to experiment.

 We could continue demonstrating how queries work through adding more fea-
tures to the app, but that’s a pretty inefficient approach—all the extra controller and
view code would swamp the chapter! Instead, we’re going to explore a greater range
of queries through focused integration tests.

Listing 5.4 A results screen for the search

Displays total number
of users in the system

Iterates over all
matched users
Licensed to Mark Watson <nordickan@gmail.com>

119Writing Where queries
5.2 Writing Where queries
Where queries—those executed via the where() method—are particularly approach-
able for Groovy developers because they’re based on Groovy operators. They’re also
powerful, enabling you to query on associations, use aggregate functions such as
avg(), and more. That’s why we see them as your first port of call when you need to
query the database.

 We’ll start by explaining the syntax of the where() method and criteria closure with
an extensive set of examples. You’ll soon get a feel for how to write your own queries.
We’ll then delve deeper and show you how to interpret errors and find out what SQL the
Where queries are sending to the database. This information is invaluable when you
write queries that don’t behave as you expect—something that happens to the best of us!

5.2.1 The query syntax

You saw the overall syntax for Where queries previously when you created the results
page for the user search, but we didn’t explain at the time what form the individual
conditions should take. To recap, figure 5.5 shows that structure again.

 The criteria block is probably the most important and flexible part of a Where query,
so let’s take an in-depth look at it. We start with the example from the previous section:

User.where { loginId =~ loginId }.list()

Why isn’t Grails confused about which loginId we mean? If you remember, we said
that the one on the left-hand side of the operator refers to the property on User,
whereas the other one refers to the action’s argument. That’s an implicit assumption
made by Grails for all Where criteria expressions and criteria expressions aren’t com-
mutative. Swapping the left-hand side with the right-hand side changes the behavior
of the query, as explained in figure 5.6.

 Fortunately, as long as you stick to the following rule, you’ll find most criteria work
as you’d expect.

The Where criterion rule
The domain class properties that you want to compare against must be declared on
the left-hand side of the criteria.

<domainClass>.where { <criteria> }.<execution>()

Domain class to

query for

One of list(), get() or a

dynamic finder to execute the query

A conditional expression that determines

which domain instance to return

Figure 5.5 Breakdown of
a Where query
Licensed to Mark Watson <nordickan@gmail.com>

120 CHAPTER 5 Retrieving the data you need
You can see examples in listing 5.5 that follow the basic rule, demonstrating different
types of conditions. You can see how to query associations, perform the equivalent of
SQL’s BETWEEN constraint, and return a single instance.

 To test the examples, first create an integration test

grails create-integration-test com.grailsinaction.QueryIntegration

then replace the content of your newly created test (QueryIntegrationSpec.groovy in
the test/integration/com/grailsinaction directory) with the code from the following
listing. All the queries run against a real database, because this is an integration test.
Note that this test will only pass if you’re using the BootStrap.groovy file from the
chapter source on GitHub.

package com.grailsinaction

import spock.lang.*

class QueryIntegrationSpec extends Specification {

 void "Simple property comparison"() {
 when: "Users are selected by a simple password match"
 def users = User.where {
 password == "testing"
 }.list(sort: "loginId")

 then: "The users with that password are returned"
 users*.loginId == ["frankie"]
 }

 void "Multiple criteria"() {
 when: "A user is selected by loginId or password"
 def users = User.where {
 loginId == "frankie" || password == "crikey"
 }.list(sort: "loginId")

Listing 5.5 Where queries in action

User.where { loginId == myVar }.list()

A property of the domain class (User).

This must be on the left-hand side.

A value or local variable

to compare against.

User.where { myVar == loginId }.list()

Results in compilation error:

User property.domain class does not have a 'myVar'

Working

Broken

Figure 5.6 The placement
of variables in Where
criteria is important

Combines
conditions with
logical operators.
Licensed to Mark Watson <nordickan@gmail.com>

121Writing Where queries
 then: "The matching loginIds are returned"
 users*.loginId == ["dillon", "frankie", "sara"]
 }

 void "Query on association"() {
 when: "The 'following' collection is queried"
 def users = User.where {
 following.loginId == "sara"
 }.list(sort: "loginId")

 then: "A list of the followers of the given user is returned"
 users*.loginId == ["phil"]
 }

 void "Query against a range value"() {
 given: "The current date & time"
 def now = new Date()

 when: "The 'dateCreated' property is queried"
 def users = User.where {
 dateCreated in (now - 1)..now
 }.list(sort: "loginId", order: "desc")

 then: "The users created within the specified date range

➥ are returned"
 users*.loginId == ["phil", "peter", "glen", "frankie",

➥ "chuck_norris", "admin"]
 }

 void "Retrieve a single instance"() {
 when: "A specific user is queried with get()"
 def user = User.where {
 loginId == "phil"
 }.get()

 then: "A single instance is returned"
 user.password == "thomas"
 }
}

Any simple database query can be written using Groovy syntax with the where()
method. Listing 5.5 shows a few operators you can use in conditions, but you can also
use !=, <, >, <=, and >=. You can even use ==~ for case-sensitive pattern matching (=~ is
the case-insensitive form). You can also combine these with logical operators such as !
(negation), && (logical AND), and || (logical OR), all in a form that’s highly readable to
any developer.

 Writing queries such as these in code, as opposed to writing SQL directly, brings
other benefits. What happens when you mistype loginId on the left-hand side of any
of the criteria in listing 5.5? You get a compilation error rather than an exception when
you run the tests! This is useful early feedback. The only slight downside is that you
can’t use Where queries if you don’t know at compile time what properties you want
to query. It can be useful occasionally to determine those properties at runtime, per-
haps based on user input, and you’ll see an example of such dynamic queries in sec-
tion 5.3.3.

Queries on single- and
multi-ended associations
via standard “.” Syntax.

Uses in operator plus
a range to do a SQL
BETWEEN query.

Returns a single instance
rather than list via get().
Throws an exception if
there’s more than one
matching result.
Licensed to Mark Watson <nordickan@gmail.com>

122 CHAPTER 5 Retrieving the data you need
 Another big advantage of Where queries is the ability to have optional criteria. Con-
sider the user search discussed previously and imagine that a user can optionally
choose to limit the results to only those users who were added to the system after a
specified date. This is completely doable with two separate queries inside a condition
block, as we demonstrate inside this sample method:

def fetchUsers(String loginIdPart, Date fromDate = null) {
 def users
 if (fromDate) {
 users = User.where {
 loginId =~ "%${loginIdPart}%" && dateCreated >= fromDate
 }.list()
 }
 else {
 users = User.where { loginId =~ "${loginIdPart}" }.list()
 }
}

However, part of the query is duplicated and the overall code is too verbose. More to
the point, you now have two separate queries to maintain. What if you want to make
the query case-sensitive? You’d have to update both instances of the query. It’s much
better to do this instead:

def fetchUsers(String loginIdPart, Date fromDate = null) {
 def users = User.where {
 loginId =~ "%${loginIdPart}%"
 if (fromDate) {
 dateCreated >= fromDate
 }
 }.list()
}

You now only have a single query to maintain! You’re also not limited to two expres-
sions as multiple expressions on separate lines are implicitly ANDed together. That’s why
you can include if statements, loops, or any other bit of flow control logic you want.
There’s also a related method, whereAny(), that behaves exactly the same except it
implicitly ORs expressions on separate lines.

 You’ll use plenty of Where queries as you build up Hubbub, so you’ll see more
examples later in the book. Where queries even extend to nonrelational data stores,
as you’ll see in chapter 16. For the moment, it’s a good time to try different queries
with different domain properties. Gaining familiarity with the syntax and learning
what is or isn’t possible is important; a large number of Grails applications are driven
by data stored in a database. That’s why you’ll experiment with more queries next.

5.2.2 Exploring Where queries

Writing test cases as you did in the last section is a great way to ensure that your code is
working as you expect. But there’s a delay in feedback between making changes and
seeing the results. That’s not ideal when you want to play with code and see what’s pos-
sible. The quickest and simplest way to try out different queries is to take advantage of

This criterion is included
only if the fromDate
parameter has a value.
Licensed to Mark Watson <nordickan@gmail.com>

123Writing Where queries
the Grails GUI console that we introduced in chapter 1. From within the project direc-
tory, run

grails –reloading console

The –reloading argument is important because it ensures that any changes you make
to your application code take effect in the console!

GET ME DATA

You’re now ready to go. All you need is data to query—queries that return no data
aren’t much fun and aren’t useful. If you remember, you set up sample data at the
beginning of the chapter, so it makes sense to use that. At the time of writing, the con-
sole UI doesn’t automatically execute BootStrap.init on startup, but it’s easy to load
it once the console is running. Enter the following code in the upper window of the
console and run the script (Script > Run from the menu):

import com.grailsinaction.Post
import grails.util.Environment

Environment.executeForCurrentEnvironment(new BootStrap().init)
println "There are ${Post.count()} posts in the database"

The last line is there so you can check that the data was loaded correctly. If it states
a non-zero number of posts, you’re all set. If it’s reporting no posts, there’s proba-
bly something wrong with your BootStrap class: verify it against the sample code
from online.

 As init is an instance property, the previous code first instantiates BootStrap,
then passes the init closure to the executeForCurrentEnvironment() method. You
do this because the init closure has environment blocks that won’t work correctly
otherwise. In fact, the power user can take advantage of this technique to execute any
closure that includes environment blocks.

TYPES OF ERRORS

Now that you have data loaded into the in-memory database, you can start experi-
menting with your own queries. At some point, one of your queries will fail. What
happens then? Learning to recognize and diagnose issues with Where queries saves
head scratching.

 What kinds of problems are you likely to encounter? Let’s start with compilation
errors, which we mentioned briefly in the previous section. Clear out or comment out
whatever code is in the upper window of the console UI and add

import com.grailsinaction.Post

Post.where {
 contnt =~ /%BBQ%/
}.list()

When you run the script again, you’ll see a compilation error:

Cannot query on property "contnt" - no such property on class
com.grailsinaction.Post exists

A typo on the property name
results in a compilation error.
Licensed to Mark Watson <nordickan@gmail.com>

124 CHAPTER 5 Retrieving the data you need
This is expected as the property name is content, not contnt. The type-checking even
works across associations, as you can see if you try this example:

import com.grailsinaction.Post

Post.where {
 user.lognId == "peter"
}.list()

The compilation error this time is that no property lognId exists on User, because
that’s the type of the user association you’re querying on.

Compilation errors are straightforward to deal with, so what else could you encounter
when dealing with Where queries? Try this query in the console:

Post.where {
 user.dateCreated > "2 weeks ago"
}.list()

This time you’ll see a ConversionFailedException explaining that you can’t convert
a String to a Date. This is because dateCreated is a date property, meaning you can
only compare it to another date. Most type mismatches between the domain class
property and the value you’re comparing it against result in such an exception.

NOTE If the property on the left-hand side is a string, the right-hand side will
always be converted based on the result of its toString() method. This can
introduce subtle bugs if you’re not careful.

The other exception that may result from type mismatches is ConverterNotFound-
Exception. This one appears when you’re comparing a property whose type is a domain
class against a value with a different type. For example:

Post.where {
 user == 12
}.list()

How do they work?
Where queries happen through a powerful feature of Groovy called AST transforma-
tions. The code inside the braces is transformed at compilation time into the equiva-
lent Criteria syntax (see section 5.3.2). Because this happens at compilation time,
the transforms can check property names and throw compilation errors, even though
Groovy is a dynamic language. It’s cool, but can lead to interesting error messages.

If you’re interested and not scared of low-level stuff, the Grails console offers a
menu option for an AST browser: Script > Inspect Ast. This allows you to see exactly
what syntax the Where query transformation generates. A side benefit is that it
shows any compilation errors clearly, so you can use it to work around the problem
of the console not displaying the compilation error messages in Grails versions
prior to 2.3.
Licensed to Mark Watson <nordickan@gmail.com>

125Writing Where queries
results in the error

No converter found capable of converting from type java.lang.Integer
to type com.grailsinaction.User

Finally, you may occasionally see references to the DetachedCriteria class in excep-
tions resulting from your query. If this is the case, it generally means that you’re trying
to do something that can’t be achieved through Where queries. It’s a good indicator
that you need to try one of the other query types we introduce in section 5.3.

CONTROLLING THE NUMBER OF RESULTS

It’s rarely a good idea to ask for results from the database without putting a limit on
what comes back, otherwise you might find yourself inundated with tens or hundreds
of thousands of domain instances—and a crashed application. To mitigate the risk of
such a catastrophe, you can pass in extra parameters to the list() method, such as
max and offset. We provide a comprehensive list of options in table 5.2.

These options are particularly useful when you want to implement paging functional-
ity. For example, let’s say you want posts 6 to 10 for the user “phil” ordered by most
recent first. The corresponding query is

def posts = Post.where {
 user.loginId == "phil"
}.list(max: 5, offset: 5, sort: "dateCreated", order: "desc")

println posts

Simple. This can even be extended to single instance results. Let’s say this time you want
Phil’s most recent post. You could use the list() method, but then you’d get a list back
as a result. We know in this case that you’re going to get at most one post back, so you
can use an alternative method, get(), that returns the domain instance directly:

def latestPost = Post.where {
 user.loginId == "phil"
}.get(max: 1, sort: "dateCreated", order: "desc")

println latestPost

Table 5.2 Named arguments supported by list()

Option Description

max Specifies the maximum number of rows to return

offset Specifies the number of elements into the ResultSet to start at when returning
values (useful for pagination)

sort Specifies the field to sort on in the returned list

order Specifies the order of the sort: “asc“ or “desc“ (default is “asc“)

ignoreCase Sets sorting to ignore case (true by default)

fetch Specifies eager/lazy fetch strategy as a Map of options

max value of 1 ensures
the query only returns
one or zero objects
Licensed to Mark Watson <nordickan@gmail.com>

126 CHAPTER 5 Retrieving the data you need
Note that if the query returns more than one instance, get()throws a great big Non-
UniqueResultException, which explains why you use a value of 1 for max.

You’ve now seen the important parts of the Where query syntax and certainly know
enough to cover 80% or more of your requirements. To round off that knowledge, it’s
worth knowing how to diagnose and debug your queries through the generated SQL.

SHOW ME THE SQL
Even though Grails and GORM successfully hide the underlying SQL used for querying
and updating domain classes, ultimately you’ll need to know what’s happening so you
can tune queries, debug queries that aren’t working as expected, and so on. And if
you’re not familiar with SQL at this point, seeing what Grails generates for queries and
updates is a great way to learn it.

 How do you get to see the SQL? You have a couple of options. The one mentioned
in the user guide and often suggested in mailing lists and forums is to add a logSql =
true line to your DataSource.groovy file:

dataSource {
 pooled = true
 driverClassName = "org.h2.Driver"
 username = "sa"
 password = ""
 logSql = true
}

This is a straightforward way to get what you want, and you can see it in action simply
by rerunning the Grails console UI and executing queries. Every time you run a
query, the corresponding SQL is displayed in the output pane. You’ll even see a whole
load of SQL insert statements when you run the BootStrap initialization code. But if
you look closely at the printed SQL statements, you’ll notice something missing: the
values that are inserted into the database or used in criteria. All you see instead are
question marks.

 Whether or not the values are important to you depends on what you’re doing. If
you simply want to see whether you’re executing too many queries, for example, to
check for the classic N + 1 select problem (we’ll show an example of that at the end of
the section), then the values are irrelevant. But if you want to investigate data corrup-
tion, the values are critical. Fortunately, it’s easy to display the values as well by adding
these lines to your logging configuration in Config.groovy:

Session is closed!
You might see an exception in the console UI when executing queries that says “Ses-
sion is closed!” It happens with the list query you’ve just seen if you don’t have the
println() statement after the query. For this reason, we recommend that you never
have a query as the last statement of the script. A simple println() at the end will
ensure that you’re never disturbed by this exception.

Enables SQL logging for
queries and updates
Licensed to Mark Watson <nordickan@gmail.com>

127Writing Where queries
log4j = {
 . . .
 debug "org.hibernate.SQL"
 trace "org.hibernate.type.descriptor.sql.BasicBinder"
}

This ensures that all your database updates are logged with the values. If you do use
these two log settings, we recommend you remove the logSql = true setting, other-
wise you end up with duplicate entries in your log.

 You can also make the SQL statements more readable by adding these extra set-
tings to DataSource.groovy in the hibernate block:

hibernate {
 . . .
 format_sql = true
 use_sql_comments = true
}

You’re all set to diagnose any issues you have with persistence. You can try this out with
the following example in the console UI:

def posts = Post.list()

for (p in posts) {
 println p.user.profile.fullName
}

Assuming that you’ve already loaded the sample data in the console UI, you should
see several queries executed even though there appears to be only one query in the
code. This is an example of the N + 1 select problem. The +1 is the initial query for
the posts, while the N represents the extra queries to get the users for each post. In
fact, this example also has N queries to fetch the profiles!

Everything we’ve covered so far sets you up nicely to use Where queries when they
make sense, which is for the majority of your data access needs. In fact, you can safely
skip the rest of the chapter if you want to get on with developing Hubbub and come
back when you’re ready to digest more advanced querying options. For those of you
that are ready, we look in the next section at the scenarios in which Where queries
don’t work or aren’t the best mechanism.

Source for logging information
Before we move on, we’d like to take this opportunity to give credit to the source of
these tidbits of information about logging: Burt Beckwith, our technical reviewer from
the first edition. His blog at http://burtbeckwith.com/blog is well worth following, par-
ticularly for its content about Hibernate and its use with Grails.
Licensed to Mark Watson <nordickan@gmail.com>

http://burtbeckwith.com/blog

128 CHAPTER 5 Retrieving the data you need
5.3 When Where queries aren’t suitable
Where queries are concise, powerful, and easy to read for us developers, making
them a good first port of call for your query needs. Still, that doesn’t mean they’re
suitable for all occasions, so it’s good to know that Grails gives you other options.
These range from the simple count() method to the ultra-powerful Hibernate Query
Language (HQL).

 The later parts of this section take advantage of advanced query skills in Grails, so
don’t get discouraged if it seems tricky the first few times. The primary aim of this sec-
tion is to give you an overview of what’s available. The Grails user guide has much of
the necessary detail. You can come back to this section at any time, particularly if you
encounter situations in which Where queries don’t do what you need. We start,
though, with several simple query methods that have great utility.

5.3.1 Cheap and cheerful listing and counting

On many occasions, you’ll want information from the database without any criteria
whatsoever. Perhaps you want all the Hubbub posts in the system (with constraints on
how many are returned). Or perhaps you need to know how many exist. Two static
methods on domain classes that work well for these use cases are list(), which
returns all instances of a domain class, and count(), which returns the total number
of instances in the database.

 Returning all the records from a database table is a quick way to bring your appli-
cation to a grinding halt, so it’s no surprise you can fine-tune this. In fact, the stand-
alone list() method supports exactly the same options as the list() method you
saw for Where queries. Imagine you want to see the first five users ordered by ascend-
ing loginId. You’ll also access the associated posts for each user, so you want to
eagerly fetch those posts at the same time. The required query is simple:

def users = User.list(sort: 'loginId',
 order: 'asc',
 max: 5,
 fetch: [posts: 'eager'])

Even the no-nonsense count() method has a bigger brother with additional flexibility.
For example, let’s say you want to find out how many users have a particular poor pass-
word in your application. The ideal solution is the countBy() method:

def poorPasswordCount = User.countByPassword("password")

It’s a rather contrived example, but it demonstrates how countBy() works. The name
of the method determines what criteria are used in the query. In this case, “Password”
in the method name tells Grails to count all users with a password property that
matches the given value.

 You can also find other magic methods in the Grails user guide: findBy() and
findAllBy(). These behave in a similar fashion to countBy(), returning the first

Sorts the users
Limits results to 5

Fetches each user’s
posts eagerly
Licensed to Mark Watson <nordickan@gmail.com>

129When Where queries aren’t suitable
matching domain instance and all matching instances respectively. Taking an example
from earlier, you can return all users whose login IDs match a particular pattern using

def users = User.findAllByLoginIdIlike("%${loginId}%")

As you can see, the comparators as well as property names are included in the method
name. These dynamic finders (as they’re called) have been superseded by Where que-
ries, so we won’t delve further here. If you prefer this approach to Where queries, the
Grails user guide covers them nicely. You can also see examples of all the query types
in this subsection in this chapter’s source code on GitHub (see the SimpleQueries-
IntegrationSpec class).

5.3.2 Introducing Criteria queries

You get good bang for your buck with Where queries, but situations exist where they
don’t fit the bill. Perhaps you’re building a query dynamically from user input in a
search form, such that you don’t know ahead of time what properties to query on. Or
you may need to group results or perform other more advanced operations. To make
sure you’re ready for such occasions, it’s time to experience the power of GORM Crite-
ria queries.

 You’ll start with an example that does the same as a previous Where query: return
all users whose login IDs match a given string, and optionally were created in the sys-
tem after a given date. Here’s the Criteria version of the query:

def fetchUsers(String loginIdPart, Date fromDate = null) {
 def users = User.createCriteria().list {
 and {
 ilike "loginId", "%${loginIdPart}%"
 if (fromDate) {
 ge "dateCreated", fromDate
 }
 }
 }
}

The syntax is similar to that of Where queries, but significant differences exist:

■ Combining criteria is done through and() and or() methods that group
together all the criteria in their blocks.

■ The criteria are based on methods rather than operators, where the first argu-
ment is the name of the property you want to query on. See appendix B for a
full list of Where query operators and Criteria query methods.

As with Where queries, you can also include conditions, loops, or other standard
Groovy structures.

 To finish off this introduction to Criteria queries, we’d like to point out a couple
of useful variants. First, you can replace the list() with either get() (if you want a
single result) or count() (if you want the number of records selected by the query).

Creates query object and
executes it with list()

Defines criteria via
named methods, such
as ilike() and ge()
Licensed to Mark Watson <nordickan@gmail.com>

130 CHAPTER 5 Retrieving the data you need
Second, there’s a special withCriteria() method you can use in place of create-
Criteria().list():

def fetchUsers(String loginIdPart, Date fromDate = null) {
 def users = User.withCriteria {
 and {
 ilike "loginId", "%${loginIdPart}%"
 if (fromDate) {
 ge "dateCreated", fromDate
 }
 }
 }
}

Why would you want to use a Criteria query in place of a Where query? The examples
we’ve shown so far can easily be done with the latter. The answer lies in two special
types of query: dynamic and report-style. Let’s start with dynamic queries.

5.3.3 Dynamic queries with criteria
Criteria queries allow you to construct complex criteria without using SQL. One of the
situations where it shines is when you want to query on properties that are determined
at runtime.

 Imagine that you want to generate a basic search form for Hubbub profiles. You’ll
provide the user with input fields for a set of profile properties (maybe their full
name, email, and homepage), and a radio group allowing them to apply the AND, OR,
or NOT logical operators to their criteria. Figure 5.7 shows an example HTML form.

You can take the values submitted with this form and use them to build a Criteria query
on the fly. Here’s what such a dynamic query might look like inside a controller action:

def advResults() {
 def profileProps = Profile.metaClass.properties*.name

A shortcut for
createCriteria().list()

User can specify values
for one or more fields.
Fields without a value
are not included
in the query.

User can choose how
to combine the criteria
at runtime.

Figure 5.7 A more advanced search screen with Boolean operators

Works out what
properties Profile has
Licensed to Mark Watson <nordickan@gmail.com>

131When Where queries aren’t suitable
 def profiles = Profile.withCriteria {
 "${params.queryType}" {

 params.each { field, value ->
 if (profileProps.contains(field) && value) {
 ilike field, "%${value}%"
 }
 }
 }
 }
 return [profiles : profiles]
}

This example uses advanced techniques, such as evaluating the properties that exist
on a class. But it’s not important for you to understand these techniques. The key
point is that you can use the values from the form (queryType, field, and value) to
build the criteria for the query at runtime. If you’d like to experiment with this code,
you can find it in the chapter source code on GitHub. The advanced search form is in
the grails-app/views/user/advSearch.gsp file and the advResults action is in User-
Controller.groovy.

 Before moving on, we’d like to clarify one aspect of the previous Criteria query.
Groovy allows you to invoke any method at runtime using a GString. The GString is
evaluated first and then Groovy uses the result as the name of the method you want to
invoke. So in the example

"${params.queryType}" { … }

becomes

and { … }

if the queryType parameter has the value "and".
 Grails has even more powerful features for creating report-style Criteria queries.

These allow you to aggregate query results, producing information that would be use-
ful in a business report. It’s time to explore groupBy functionality.

5.3.4 Creating a tag cloud using report-style query projections

Most of the time when you’re querying, all you want back is a set of records that
matches the criteria you specify. You’ve seen several ways of doing this, and we’ve
stated our preference for Where queries in such cases. But sometimes you want to
extract more information from the data in your database, such as how many posts con-
tain the text “BBQ” on a per-user basis. You could do this with multiple queries, but it’s
usually better to use as few queries as possible as database access is often a bottleneck
in application performance. The solution is to use projections.

 Projections are aggregating, reporting, and filtering functions that can be applied
after the query has finished. A common use case is to summarize data from a normal
query. To demonstrate what projections can do, you’re going to build a tag cloud for a

Applies the conjunction from the
queryType form field: and, or, or not

Adds an ilike criterion for each
submitted field, as long as it
matches a property on Profile
Licensed to Mark Watson <nordickan@gmail.com>

132 CHAPTER 5 Retrieving the data you need
user. In this case, you’re not only interested in the tags they have used, but how many
posts are linked to each tag. You don’t care about which posts, only the total number.

 Where queries usually aren’t an option for this kind of reporting because they don’t
give you access to the full range of projections. In this case, you can’t retrieve the num-
ber of tags for a given post as part of the query. So use a Criteria query instead:

def tagList = Post.withCriteria {
 createAlias "tags", "t"

 user { eq "loginId", "phil" }

 projections {
 groupProperty "t.name"
 count "t.id"
 }
}

This is power querying and we’re introducing a couple of new concepts to you, so
don’t worry if you can’t get this in one go. As you become familiar with querying in
general, reading and understanding such code becomes second nature.

 What’s happening here? At first glance, you’re querying for Posts that match a
simple criterion: loginId matches "phil". But what are the createAlias() declara-
tion and projections block for? An alias is required if you want to reference the prop-
erties of associations (in this case, the name and id properties on the Tag instances in
the tags collection) from projections. If you were to replace t with tags in the projec-
tions, you’d see this exception message:

could not resolve property: tags.name of: com.grailsinaction.Post

The projections block is required when declaring your query projections. For this
query, the groupProperty projection collects all posts that have a tag with the same
name. The count projection then produces the number of posts collected for each
tag. You can see how the projections relate to the domain classes and how they affect
the query results in figure 5.8. It’s important to note how the results take the form of a
list of lists rather than a list of domain instances.

 All you need to do now is convert that list of tag names and counts into a map of the
same. It’s time to dust off those Groovy skills and use a new Groovy JDK method for lists:

def tagcloudMap = tagList.collectEntries { pair -> pair as List }

This little piece of magic converts a list of pairs into a map of key-value entries, where
the first element of each pair is the key, and the second is the value.

 More projections are available in GORM. In addition to count(), you can use
max(), min(), avg(), sum(), and other statistical methods. The GORM projections are
merely enhancements to the standard Hibernate projections. Check out the Hiber-
nate Javadocs2 on the Projections class to see a full list.

2 Details of Hibernate projections, http://docs.jboss.org/hibernate/orm/3.6/javadocs/org/hibernate/crite-
rion/Projections.html.

Define aliases for associations so
you can use them in projections

Group the results by tag name and
calculate how many posts have each tag
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.jboss.org/hibernate/orm/3.6/javadocs/org/hibernate/criterion/Projections.html
http://docs.jboss.org/hibernate/orm/3.6/javadocs/org/hibernate/criterion/Projections.html

133When Where queries aren’t suitable
Criteria queries are a powerful tool that abstracts you away from the underlying SQL,
while still providing access to the power features. This is good if you’re not a SQL afi-
cionado, but as we’ve mentioned before, it is still SQL under the hood. If you prefer
one less layer of abstraction, or are simply more comfortable with SQL, then you’ve
got one final option for writing your queries.

5.3.5 Using HQL directly

If you’ve come from a Hibernate background, you’re probably used to expressing
complex Hibernate queries using HQL, Hibernate’s SQL-like query language. Even if
you don’t know Hibernate but are familiar with SQL, you’ll feel comfortable with HQL.
It’s for those cases where none of the other options suffice or where HQL is simply eas-
ier to write. Be aware though that if you go down this route, you’ll tie yourself to
Hibernate. You can’t use the queries with a different data store, such as MongoDB.

 You can take full advantage of HQL directly from the static find(), findAll(),
executeQuery(), and executeUpdate() methods on domain classes. A basic HQL query
looks like figure 5.9:

id
name
...

Tag

Post *1

Group posts by the

name of the tag

Count the number of tag instances

(representing different posts) with

the same name

[<tag name> , <tag count>]

.

.

.

Result:

groupProperty "t.name" count "t.id"

A listtwo-element

Figure 5.8 How projections affect query results

User.findAll("from User u where u.userId = ?", ["joe"])

Domain class

to query for.

Repeating the domain class

in the HQL is required.

One of the GORM methods

to execute HQL.

The domain class

property to search on.

A positional parameter—

autoescapes values.

List of values for

positional parameters.

Figure 5.9 Basic HQL query
Licensed to Mark Watson <nordickan@gmail.com>

134 CHAPTER 5 Retrieving the data you need
In figure 5.9, we’ve supplied "joe" as a positional parameter value, but in a real appli-
cation you’d be more likely to supply a dynamic value, such as params.loginId.

The main difference between HQL and SQL is the use of domain class names and
domain properties instead of table names and column names. Otherwise they’re
closely aligned. You can even do projections:

Post.executeQuery("select t.name, count(t.id) from Post p " +
 "join p.tags as t where p.user.loginId = ? group by t.name", ['phil'])

This is the HQL version of the projections-based Criteria query from the previous sec-
tion. It’s more succinct and more readable. Whether you should use Criteria queries
or HQL comes down to personal preference, but you should also consider whether
you want the queries to be portable to other datastores, such as MongoDB. Remember
that HQL doesn’t work with nonrelational databases. That said, many of the advanced
features available to Criteria queries aren’t supported by nonrelational databases,
such as projections! We’ll talk more on this in chapter 16.

 Why does the first example in this section use findAll() and the second one use
executeQuery()? The find() and findAll() methods return instances of the corre-
sponding domain class, whereas executeQuery() allows you to specify which proper-
ties or aggregates you want in your result set. Where you’d use projections in a Criteria
query you’d use executeQuery() with HQL. And if you want to insert, update, or
delete records via HQL, you must use executeUpdate().

 Full coverage of HQL would probably take the rest of the book, and it’s time you
got back on track with your Hubbub application. Fortunately the Hibernate user
guide3 is pretty good on HQL, so we refer you to that for more about this powerful
query syntax.

 That concludes your whirlwind journey through Grails query options. We’ve
focused heavily on Where queries because we think those are the ones you should be
using most. But we’ve also introduced the other query options because Where queries
don’t work in all situations. Those options have much more depth to them than we’ve
covered here, but we’ve laid out the path for you to get started and learn more. This

Mitigating against SQL injection attacks
One of the most common web security vulnerabilities is the SQL injection attack. In this
type of attack, the user passes in malicious query parameters to alter the queries sent
to the database (for example, ...?loginId=abc123;delete+from+users;). This is
why you should never do your own concatenations of HQL query strings. If you use the
property placeholder (?) form of HQL queries, you’ll always be protected from these
sorts of attacks.

3 “HQL: The Hibernate Query Language,” http://docs.jboss.org/hibernate/orm/3.6/reference/en-US/
html/queryhql.html.
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.jboss.org/hibernate/orm/3.6/reference/en-US/html/queryhql.html
http://docs.jboss.org/hibernate/orm/3.6/reference/en-US/html/queryhql.html

135Summary and best practices
last section may have been heavy going, but sit safe in the knowledge that you can still
progress with the rest of the book without fully understanding how Criteria or HQL
queries work. You have time later to become familiar with those options.

5.4 Summary and best practices
In this chapter, you’ve explored the options that Grails offers for querying the data-
base. These range from the simple list() and count() methods, through to the flex-
ible Where queries, up to the all-powerful Criteria and HQL queries. As we’ve said
throughout the chapter, we think Where queries, with their programmer-friendly syn-
tax and basic type checking, are the go-to syntax for most of your querying needs, but
they don’t work in all cases. That’s why you have the other options.

 You also looked at getting data into the system via the BootStrap class. This is
important because most applications are difficult to use without data in them. That
said, sample data usually only makes sense in the context of testing and development,
so it’s good to know that you can conditionally load data based on the currently active
environment.

 Let’s revisit the key ideas from this chapter, which you can take away and apply to
your own Grails apps:

■ Use Where queries by default. Where queries are easy to understand by program-
mers of all abilities and backgrounds. No knowledge of SQL is necessary to read
and understand the code. They also allow for if statements!

■ Use the Grails console UI. The Grails console UI is ideal for prototyping tricky que-
ries and it lets you try options without recompiling.

■ Use the most appropriate query type for the job. Knowing which query type to use in any
given situation takes experience, but if you find yourself struggling with a Where
query, don’t be afraid to switch to Criteria queries or HQL. Remember that com-
plex projections or dynamic queries require you to use one of the other query types.
Also, try to be consistent: use either Criteria queries or HQL for the advanced stuff.
Using both requires more effort on the part of you and your teammates.

■ Use bootstraps conditionally. Grails lets you perform different bootstrap operations
in each environment, so use that. Don’t assume that your user’s development
database is an in-memory one and always check whether your sample data exists
before re-creating it.

In the next chapter, you’ll take your domain modeling skills and apply them to work-
ing with forms and controllers in the UI layer. It’ll be a refreshing break from all this
heavy-duty database work.
Licensed to Mark Watson <nordickan@gmail.com>

Controlling
application flow
In chapters 3 and 5, you learned how Grails handles domain objects as you went
about creating, updating, saving, deleting, and querying all kinds of domain
classes. Along the way, you used scaffolding controllers to route the user around
the application, and you implemented a few GSP views to host your forms. But,
for the most part, you ignored how controllers do their work. It’s time to set
that right.

 In this chapter, we’ll focus exclusively on controllers—and all the important
roles they play in dealing with data from the web tier, routing it to services, and
shipping off results to the view. And all those Spock testing skills you’ve been
learning along the way? Well, you’ll extend those into the controller space, learn-
ing a whole swag of new techniques for controller-specific testing to make sure all
the new code you write is rock solid. By the end of the chapter, you’ll be ready to

This chapter covers
■ Introducing mocking
■ Unit testing your view code
■ Exploring scopes
■ Working with redirects
136

Licensed to Mark Watson <nordickan@gmail.com>

137Controller essentials
implement all the common controller use cases in your own applications as well as
many of the edge cases.

 We’ll get the chapter underway by pulling together all you’ve learned so far about
controllers, forms, and domain classes. Then we’ll show you how to modify Hubbub to
add and display user posts on a Twitter-style timeline.

6.1 Controller essentials
In our exploration of the Grails ecosystem so far, we’ve been focused more on the
model (saving and querying domain objects) and passed over the gritty details of how
controllers, views, and taglibs work together. Let’s take a detailed look at form-controller
interactions with a focus on the controllers.

 Imagine that you want to display a timeline of a user’s recent posts. You’d need
to implement a controller action (perhaps timeline in the Post controller) to
retrieve the posts for a user, then pass them to a view (/views/post/timeline.gsp) to
display them in the browser. As you discovered in chapter 1, Grails exposes control-
ler actions as URLs using conventions. Here’s how Grails translates controller action
names into URLs:

When the user points the browser at http://localhost:8080/hubbub/post/timeline/
chuck_norris, Grails will fire the timeline action on the Post controller, passing
chuck_norris as the id. Typically, that action will retrieve data from the database
and pass it to the view to display. Under Grails conventions, the view name matches
the action name (but with a .gsp extension), so the timeline action will retrieve the
data and pass it to /views/post/timeline.gsp to be rendered. Figure 6.1 demon-
strates this flow.

 You saw this flow in action in chapter 1 and in the search form examples in chap-
ter 4. Let’s apply our knowledge of controllers to add a timeline to Hubbub.

/hubbub/post/timeline/id

Application
name

Controller name

Action
name

params.id

Point browser to...

/views/post/timeline.gsp

My first post

My second post

class PostController{

def timeline={
//some code here

}
}

/hubbub/post/timeline/chuck_norris

Figure 6.1 From URL to controller to view
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:8080/hubbub/post/timeline/chuck_norris
http://localhost:8080/hubbub/post/timeline/chuck_norris

138 CHAPTER 6 Controlling application flow
6.2 Implementing a timeline for Hubbub
A timeline for a user should display a list of posts for the user mixed with posts by
everyone they follow. But let’s start small and implement the capability to display all
the posts for one user.

 You’ll start by updating your PostController to implement a timeline() action.
The following listing shows your first implementation of a user timeline.

package com.grailsinaction
class PostController {
 static scaffold = true

 def timeline() {
 def user = User.findByLoginId(params.id)
 if (!user) {
 response.sendError(404)
 } else {
 [user : user]
 }
 }
}

As you’ve seen in earlier chapters, actions typically process form parameters and use
them to interact with the data model. In this case, we’re using the optional id param-
eter to hold the user’s ID, and we use it to retrieve the entire User object from the
database B. For now, if we can’t find the user c, we’re going to send an HTTP 404
status message back to the browser (which the browser will render as a “Not Found”
message). We’ll add fancier error handling later in the chapter.

 Once you’ve successfully retrieved the User object, the action’s result gets placed
into a map that’s returned to the view d, which is typically a GSP file. The view can
access any objects in the map to display them to the user. You could use an explicit
return statement at the end of your action, but there’s no need. Groovy always consid-
ers the last line of a closure or method as the return value, and it’s common for Grails
programmers to omit return in controller actions.

Listing 6.1 Adding the timeline action to your PostController

The optional id param
You may not have seen the id field in action yet. As illustrated at the beginning of
section 6.1, the conventional URL-to-controller mapping is /controller/action/id,
where the id portion is passed into the params.id field. Because the format of the
field is free-form, it gives you cool options for permalinks.

For example, /user/profile/chuck_norris would fire the profile() action on the
User controller, passing in chuck_norris to the params.id. This was how people
commonly did permalinking before Grails implemented custom URL mappings, which
we’ll get to later.

Retrieves user based
on id parameter

 b

Sends error code for
nonexistent users c

Passes matched
user to view d
Licensed to Mark Watson <nordickan@gmail.com>

139Testing controller actions: an introduction to mocking
6.3 Testing controller actions: an introduction to mocking
You’ve now written your first serious bit of controller logic, and you may be tempted to
launch a browser and test things by typing in URLs, but that’s going to quickly become
tedious. You’d have to populate your User objects in the database, get a user id out of
the database to look up, and spend more time doing busywork. And even after you’ve
done all that, you still haven’t written any view code to display the timeline, so you’d
have to wait even longer to get feedback that your new code is working nicely.

 Let’s work a bit smarter and write a Spock test that will exercise your new code
immediately, so you’ll know you’re making good progress, while it provides a regres-
sion test suite for making bold changes later in the chapter.

 Up to this point you’ve learned only about integration tests—tests that spark up
the whole Grails infrastructure, including the database, but it’s time to introduce you
to unit tests, which are much faster to run and perfect for testing controller actions.

6.3.1 About unit tests

Unit tests mock out the database layer of your Grails application by using an in-mem-
ory GORM database layer. That means no transactions, at least for now, but it also
means a super-fast start time, and in situations where the goal of the tests isn’t the per-
sistence layer itself, it’s the ideal way to go.

 Unit tests are generated automatically for any Grails artifacts you create using the
Grails shell commands (grails create-controller for example). If you create an
artifact by hand in a text editor or by copy/paste, you can create a shell test using the
grails create-unit-test command.

6.3.2 @TestFor and @Mock mixins

Groovy Mixins, which you learned about in chapter 2, handle Grails unit testing sup-
port. Using abstract syntax tree (AST) transformation magic (low-level class compila-
tion fiddling), mixins take code from another class and import it into your current
class (without changing your class hierarchy).

 The two most important mixins you need to learn about for Grails unit testing are
the @TestFor and @Mock mixins:

■ @TestFor—Tells your unit test what kind of Grails artifact you’re testing. In our
case, it’s a controller.

■ @Mock—Tells your test which domain (database) objects you need to save and
query in your test.

(continued)

Grails scaffolds use the id field to represent the database ID, so you’ll often see
URLs such as /user/show/57 used to display the user with id 57 from the data-
base. It’s practical, but it sure ain’t pretty.
Licensed to Mark Watson <nordickan@gmail.com>

140 CHAPTER 6 Controlling application flow
6.3.3 Applying @TestFor and @Mock

Let’s look at a real PostController test case in the following listing, then we’ll debrief
on what magic those mixins are doing.

package com.grailsinaction

import grails.test.mixin.Mock
import grails.test.mixin.TestFor
import spock.lang.Specification

@TestFor(PostController)
@Mock([User,Post])
class PostControllerSpec extends Specification {

 def "Get a users timeline given their id"() {
 given: "A user with posts in the db"
 User chuck = new User(
 loginId: "chuck_norris",
 password: "password")
 chuck.addToPosts(new Post(content: "A first post"))
 chuck.addToPosts(new Post(content: "A second post"))
 chuck.save(failOnError: true)

 and: "A loginId parameter"
 params.id = chuck.loginId

 when: "the timeline is invoked"
 def model = controller.timeline()

 then: "the user is in the returned model"
 model.user.loginId == "chuck_norris"
 model.user.posts.size() == 2
 }

}

Congratulations! You’ve written your first Grails unit test. What’s so different from the
integration tests you know and love? Less than you might think:

■ You mark this test as an @TestFor a controller B, meaning Grails will create
and insert a params object e and wire up a controller object f that points to
an instance of your PostController class.

■ You mark the class with an @Mock annotation c, which automatically creates
the GORM dynamic query and save() methods on your User domain class d
and performs all save/update/query operations against an in-memory hash-
map rather than a real database. You also mock the Post class because you add
instances of it to the posts collection. In fact, you should mock any domain
class that’s in any way used from the test case or the method under test.

Listing 6.2 A basic controller unit test

Imports controller
test artifacts

 b

Adds mock save() and
find() methods to User c

save() method
now available
on object

 d

params property
introduced by @TestFor e

controller property
introduced by @TestFor f
Licensed to Mark Watson <nordickan@gmail.com>

141From controller to view
For completeness, we should also show you how to test for the nonexistent user—
remember you were sending a 404 (Not Found) status to the browser? For that test
you’ll need to use the implicit response object to get a handle to the returned status.
Here’s how you’d express that in a Spock test:

def "Check that non-existent users are handled with an error"() {

 given: "the id of a non-existent user"
 params.id = "this-user-id-does-not-exist"

 when: "the timeline is invoked"
 controller.timeline()

 then: "a 404 is sent to the browser"
 response.status == 404

}

In this case you’re using the mock response object B to confirm that your 404 status
property is correctly returned.

6.4 From controller to view
Because you’ve now written the code to retrieve the user from the database, and
you’ve written the tests to make sure that code is working, it makes sense to imple-
ment a view to display the information in a browser.

6.4.1 Creating the view

Following Grails conventions, you’ll implement your view in a file that has the same
name as your controller and action. In this case, the view will be named /grails-app/
views/post/timeline.gsp. The following listing shows your first effort to display the
user’s timeline.

New in Grails 2.0: Actions as functions (not closures)
In the old Grails 1.x days, all controller actions had to be defined as closures. This
means you’ll see code like this:

 def timeline = {
 }

This approach caused problems with serialization, and also meant extra class gener-
ation, putting pressure on JVM permanent generation (permgen) memory. The new
Grail 2.x action parameter work, which you’ll read about presently, introduced a new
method-based approach to controller actions (though closures are still supported for
backward compatibility). Using methods gave the opportunity to do more complex
action-based binding, which we'll introduce you to shortly.

An invalid user id

Confirm a 404
error code

 b
Licensed to Mark Watson <nordickan@gmail.com>

142 CHAPTER 6 Controlling application flow

A

<html>
 <head>
 <title>
 Timeline for ${ user.profile ? user.profile.fullName :

user.loginId }
 </title>
 <meta name="layout" content="main"/>
 </head>
 <body>
 <h1>Timeline for ${ user.profile ? user.profile.fullName :

user.loginId }</h1>
 <div id="allPosts">
 <g:each in="${user.posts}" var="post">
 <div class="postEntry">
 <div class="postText">
 ${post.content}
 </div>
 <div class="postDate">
 ${post.dateCreated}
 </div>
 </div>
 </g:each>
 </div>
 </body>
</html>

By using the User object that the controller placed into your request scope, you can
read the User’s fields and display the data in the browser. In this example, you check if
the User has a Profile object, and if they do, you display the full name, otherwise you
display their loginId B.

 You can reference objects in request scope by enclosing the name in Groovy’s
interpolation syntax, ${}. If you pass complex objects to your view (such as a domain
object with relationships to other domain objects), you can access them as you would
in any other setting. In listing 6.3, you render ${user.profile.fullName} B.

 You also iterate over each of the User’s Post objects c, displaying the content and
dateCreated of each post d.

 Figure 6.2 shows your new timeline view in action. You’ve worked hard, and it’s
time to see something running in the browser, so feel free to issue a grails run-app
and get this party started.

Listing 6.3 Displaying a user’s timeline

What about unit testing your view code?
You’ve written unit tests for your controller, but what about your GSP code in the
view? At the time of writing, Grails’ support for testing GSPs is fairly clumsy, but sup-
port for unit testing taglibs is excellent. Taglibs should be the artifact that you’re
using to encapsulate any complex view-tier logic. The rest of your GSP code is prob-
ably presentation concerns that are better tested in a real browser. But how do you
automate that?

ccesses
nested

domain
objects

 b

Iterates through
user’s posts

 c

Displays
each post

 d
Licensed to Mark Watson <nordickan@gmail.com>

143From controller to view
With the timeline in place to show all the user’s posts, you can now work on adding
new posts to the timeline. This gives you a chance to create and save domain objects.

6.4.2 Adding new posts

In chapter 3, you learned how to create and save Post objects from a unit test, but it’ll
be more fun when you can create them through a browser. Now that you know a little
about how controllers work, let’s apply your knowledge to the UI to give you a way to
create posts from the app.

(continued)

Most people approach the problem of automated exercising of their views by writing
functional tests in Geb (a Groovy-based functional testing tool we’ll take you through
in detail in chapter 9). Functional tests exercise your running Grails application end-
to-end using a real web browser and are probably what you’re looking for in testing
your view tier.

Breaking view name conventions
If you don’t want your view name to match your action name, you can use the render()
method. For instance, if you want to use user_timeline.gsp to generate the output for
your timeline action, you can use the view argument to render():

render(view: "user_timeline",
 model: [user: user])

Notice that you omit the .gsp extension when referring to the view.

Figure 6.2 Your
first timeline in
action
Licensed to Mark Watson <nordickan@gmail.com>

144 CHAPTER 6 Controlling application flow
First, let’s enhance your view to give your user the ability to add new posts. You want to
end up with the capability shown in figure 6.3.

 For this to work, you need to add a form to timeline.gsp to capture the new con-
tent for the post.

ADDING A FORM

You’ll need a textArea component so the user can enter the body of the post. Italics
in the following listing show the div you’ll add to your timeline.gsp file to handle the
new input.

...
<body>
 <h1>Timeline for ...</h1>
 <div id="newPost">
 <h3>
 What is ${user.profile.fullName} hacking on right now?
 </h3>
 <p>
 <g:form action="addPost" id="${params.id}">
 <g:textArea id='postContent' name="content"
 rows="3" cols="50"/>

 <g:submitButton name="post" value="Post"/>
 </g:form>
 </p>
</div>

<div id="allPosts">
...

Listing 6.4 Adding a form for new posts

Figure 6.3
Adding posting
capabilities to
Hubbub

Retains id from
current URL

 b

 c
Provides textArea
to enter post
Licensed to Mark Watson <nordickan@gmail.com>

145From controller to view
In the listing you added a new form to the page using the <g:form> tag, with the tar-
get of the form being the addPost action B.

 You pass through the current id field to the form submission so that the addPost
action knows which user ID it’s being invoked for. For example, the form submission
URL for the chuck_norris user ID is /post /addPost/chuck_norris.

 You’ve also added the <g:textArea> tag to let the user enter their post contents c.
Because the control is named content, you can expect params.content to turn up in
your controller logic somewhere.

UPDATING THE CONTROLLER

The following listing shows your updated PostController code, which now handles
adding new posts to the user’s timeline.

package com.grailsinaction
class PostController {
 static scaffold = true

 def timeline() {
 ...
 }

 def addPost() {
 def user = User.findByLoginId(params.id)
 if (user) {
 def post = new Post(params)
 user.addToPosts(post)
 if (user.save()) {
 flash.message = "Successfully created Post"
 } else {
 flash.message = "Invalid or empty post"
 }
 } else {
 flash.message = "Invalid User Id"
 }
 redirect(action: 'timeline', id: params.id)
 }
}

When you saved domain models in chapter 3, you wrote integration tests. Now you’re
doing it for real from the UI. Like your timeline action, addPost starts by retrieving
the User object based on its ID B, but here you’ve added error handling to test
whether the user exists.

 If the User exists in the database, you create a new Post object, passing in the
params map c. When you pass a map into the constructor of a domain class, Grails
binds the properties of the map to fields on the object, skipping the ones that don’t
match. In this case, params.content will be mapped to the Post’s content field. Fig-
ure 6.4 shows how the content field of the params object maps to the Post object.
Grails refers to this process as data binding.

Listing 6.5 The updated PostController handles new Post objects

Finds user based
on id param

 b

Binds params data
to new Post object

 c

Links new post
to existing user

 d

Returns
false if Post

validation
fails e

Informs
user of
success or
failure

 f

Returns user
to timeline g
Licensed to Mark Watson <nordickan@gmail.com>

146 CHAPTER 6 Controlling application flow
With the form data bound to your new Post object, the new Post is added to the User
object d. Finally, you can attempt a save() to ensure that constraints on the Post
object are satisfied e. We’ll introduce more advanced data binding techniques in
chapter 7 that allow you to perform all these operations in a single line, but for now
let’s use the basic data binding mechanism.

 Whether things go well or fail dismally, you keep the user informed by providing
feedback with flash.message f. We’ll discuss flash scope in the next section, but, in
short, it’s a way to communicate information to the user. Later in the chapter, we’ll
show you a more robust way of handling validation errors, but flash.message is fine
for now.

 When everything is done, you redirect the user back to the timeline action g,
which will rerender the timeline with the new post. Notice that the redirect includes
the id param. This is important because the timeline action relies on having the user’s
ID, and when you redirect programmatically (rather than typing in a browser URL),
you need to explicitly provide the value. You now need to update your timeline.gsp
file to output those error or success messages to the user.

UPDATING THE VIEW

The following code fragment shows the updated div for your flash message:

...
<h1>Timeline for ...</h1>
<g:if test="${flash.message}">
 <div class="flash">
 ${flash.message}
 </div>
</g:if>
<div id="newPost">
...

TIP You’ll need to style the div with CSS so it stands out as a warning mes-
sage. To view the CSS styling that matches the screen shots that follow, down-
load the source for this chapter. You’ll find the relevant CSS rule for .flash in
web-app/css/hubbub.css.

With error handling in place, it’s time to experiment with adding an invalid post so
you can see what happens in the UI tier when you add an invalid post.

TESTING THE NEW FUNCTIONALITY

Figure 6.5 shows the result of attempting to add a blank post.
 Great work! Your validation is firing, your error message is displaying correctly, and

you’ve implemented the capability to add new posts to Hubbub. But you’ve skipped a
step. Where’s the matching unit test for your new feature?

params Post

content

postButton

otherSturf

dateCreated

content Figure 6.4 Binding a params map
to a Post object
Licensed to Mark Watson <nordickan@gmail.com>

147From controller to view
ADDING A TEST CASE

Because you already include the Post class in the @Mock annotation, you can begin
work on a new test case right away, as shown in the following listing. A mock save()
method is already added to the Post class.

...
class PostControllerSpec extends Specification {
 ...
 def "Adding a valid new post to the timeline"() {
 given: "A user with posts in the db"
 User chuck = new User(
 loginId: "chuck_norris",
 password: "password").save(failOnError: true)

 and: "A loginId parameter"
 params.id = chuck.loginId

 and: "Some content for the post"
 params.content = "Chuck Norris can unit test entire

➥ applications with a single assert."

 when: "addPost is invoked"
 def model = controller.addPost()

 then: "our flash message and redirect confirms the success"
 flash.message == "Successfully created Post"
 response.redirectedUrl == "/post/timeline/${chuck.loginId}"
 Post.countByUser(chuck) == 1

 }
}

Listing 6.6 Test case for a successful post

Figure 6.5 Adding a blank
post generates an error.

Ensure the post
ended up in the DB
Licensed to Mark Watson <nordickan@gmail.com>

148 CHAPTER 6 Controlling application flow
For an exercise to do on your own, it would be great to write a test for the case when
no content is provided and an error is generated (or even when an invalid user ID is
provided). We’ve included a sample in the source code that comes with the book, but
why not try writing one yourself?

 You’ve now implemented two of Hubbub’s major features: displaying the user’s
timeline and adding posts. You’ve also applied your knowledge of creating domain
objects (from chapter 3) and used dynamic finders to query them (from chapter 4).

 But a few things are still unexplained. Where did all these flash objects come
from, and what do they do? And why aren’t we using the standard validation messages
we saw in chapter 4? Fear not. By the end of the chapter, you’ll understand all these
essential controller issues.

 We’ll start with the flash object, which relates to how Grails handles scope.

6.5 Exploring scopes
You’ve seen how controller actions can return a map that gets passed through to the
view, and you’ve seen the flash object also passing data from the controller to the view.
This passing of information, and the lifetime of the variables that you pass, is known as
variable scope.

 Grails supports different scopes to store information in, and each of them lasts a
different length of time. When you passed data in a map from a controller to a view,
you implicitly used request scope. But Grails lets you reference the different scopes
explicitly so you can store data for as long as you need it. In particular, Grails offers
four special map-like storage scopes that you can reference by name in every control-
ler action (see table 6.1).

NOTE The request, flash, session, and servletContext scope variables aren’t
Java Maps. For example, request is a Java HttpServletRequest object. But the
underlying objects have been enhanced by advanced Grails metaclass opera-
tions to expose map-like storage, making things easier for the programmer.

If you’ve worked with Java web applications before, you’ve probably seen request,
session, and servlet context scopes. If you’ve dabbled in the latest Java Enterprise
Edition spec (JEE6 and above), you may have even bumped into the new flash scope.
Flash scope has been in Grails since the beginning and is used heavily in most Grails

Table 6.1 Grails supports four storage contexts for passing content between controllers and forms

Scope variable Survival time for entries in this scope

request Survive until the target GSP finishes rendering.

flash Survive to the next page, and the one after that.

session Survive until the current user closes the browser.

servletContext Survive until the application is restarted (this map is shared by all users).
Licensed to Mark Watson <nordickan@gmail.com>

149Exploring scopes
applications, because it’s a real lifesaver. Figure 6.6 shows the relative lifespans of
the different scopes.

 Next, we’ll look at each scope individually.

6.5.1 Request scope

Request scope is great when you want to store data that’s shared only between your
controller and the view (normally a GSP page). In this case, the server is said to “for-
ward” the request to the page (meaning that the browser location doesn’t change—
it’s all handled within the server itself). Even though you weren’t aware of it, you’ve
used request scope every time you returned a Map from your controller actions.
Request scope is used to hold that data until the view finishes rendering it.

 But what about your addPost action? You do the heavy lifting of adding a post, but
then you want to redirect the browser to the user’s timeline to display a Successfully
added message. That means the browser is involved, which means your request scope
is gone.

 For these scenarios, Grails offers flash scope.

6.5.2 Flash scope

Entries in the flash map survive one (and only one) redirect, after that they’re removed.
That’s exactly what you need for your addPost action. You can safely place a Success-
fully added message into your flash map and know that it’ll survive the redirect back
to your timeline action.

 Like all of these scope maps, flash is a general-purpose map, but convention dic-
tates that you put these kinds of UI messages in an attribute called flash.message.
You’ll commonly see flash scope referenced in GSP files wrapped in a condition to
keep things tidy, as in our earlier Post example. Here’s a sample of the kind of code
you’ll commonly encounter in a GSP:

<g:if test="${flash.message}">
 <div class="flash">${flash.message}</div>
</g:if>

servletContext

session

flash

request
Figure 6.6 Request scope
is the shortest lived, and
servletContext the longest.
Licensed to Mark Watson <nordickan@gmail.com>

150 CHAPTER 6 Controlling application flow
For objects that you want to survive longer than a single redirect, you’ll need to explore
session scope.

6.5.3 Session scope

The next longest-lived scope is session scope. Objects that you place in session scope
remain until the user closes their browser. Internally, servers use a session cookie
called JSESSIONID to map a user to their session, and the cookie expires when they
close their browser (or when the server times out the session due to inactivity).

 Sessions are replicated in a clustered environment, so it’s best to keep their contents
to a minimum. A common use case is putting a logged-in User object into the session, so
be sure you understand how detached domain objects work (see the sidebar).

6.5.4 servletContext (application) scope

The final scope available is servletContext scope, sometimes called application scope.
This map is shared across your whole application, and it’s handy for storing state that’s
not dependent on any particular user, such as the number of logins since the applica-
tion was started. This scope is also useful for loading resources from within your web
application itself, for example through code like this:

servletContext.getResourceAsStream("/images/my-logo.gif")

Consult the standard servletContext Javadoc for details.

NOTE More niche controller scopes exist, such as flow and conversation
scopes (specific to Webflow) and the instance-affecting prototype and single-
ton. Check out the Grails user guide for details of the common ones (we
rarely use any of these).

You now have a handle on how scopes work, and we’ve explained the mystery of that
flash object. In summary, choose a scope based on the type of data you want to store:

■ Request scope—For rendering in the view
■ Flash scope—For surviving a redirect

Session gotchas: the mystery of the detached object
If you’re storing a domain object in the session (such as the logged-in User object),
the object will become detached from your Hibernate session. That means you can’t
access any uninitialized lazy-loaded relationships the object holds. For example, you
can’t call session.user.following.each {}. To reattach the object (so you can
walk its object graph of relationships, for instance), use the attach() method that
is available on all domain classes. For our User example, it would look like this:

def user = session.user
if (!user.isAttached()) {
 user.attach()
}
user.following.each { nextFollowing -> /* do stuff */ }
Licensed to Mark Watson <nordickan@gmail.com>

151Handling default actions
■ Session scope—For long-lived user-specific data
■ Application scope—For long-lived application-specific data

Now that you’ve learned the underpinnings of the mysterious flash scope, it’s time to
turn your attention to other aspects of controller interaction, in particular, exploring
how controllers can talk to other controllers to route the user around the application.
When we introduced the addPost action, we called redirect() methods, so it’s time
to learn about controller redirects and flows.

6.6 Handling default actions
Grails lets you supply a default index action for each controller that you implement.
When the user accesses the controller without specifying an action name, such as
when accessing /hubbub/post, the index action handles the request, typically redi-
recting the user to another action.

 Let’s retrofit an index action to your PostController, so that when users navigate
to /hubbub/post, they’re immediately redirected to the timeline action. The follow-
ing listing shows the updated PostController code.

package com.grailsinaction
class PostController {
 static scaffold = true
 def index() {
 if (!params.id) {
 params.id = "chuck_norris"
 }
 redirect(action: 'timeline', params: params)
 }
 ...
}

One of the gotchas when redirecting is that you lose your params map if you don’t
explicitly pass it through to your redirected action. If you hadn’t passed params
from the index action to the timeline action, the incoming params map would have
been null.

 Let’s write a test for your new index logic.

6.6.1 One test, two use cases

You need a way to test the use case in which a params.id is supplied and also the case
in which no params.id is supplied. Previously you’d have written two tests to cover
both scenarios, but Spock offers a great time-saving feature for parameterized testing
using the where: clause.

 In listing 6.8, you set up a where: clause with a table that lists the suppliedId and
the expectedUrl. Spock runs this test twice, once for each of the lines in the where:
clause below the heading row, substituting the line’s value into the relevant variables

Listing 6.7 Catching the index action and redirecting the user

Passes params
when redirecting
Licensed to Mark Watson <nordickan@gmail.com>

152 CHAPTER 6 Controlling application flow
inside the body of the test. On the first run of given/when/then, Spock substitutes
joe_cool for suppliedId, and /post/timeline/joe_cool for the expectedUrl. If the
tests pass, Spock then moves on to the next combination.

@spock.lang.Unroll
def "Testing id of #suppliedId redirects to #expectedUrl"() {

 given:
 params.id = suppliedId

 when: "Controller is invoked"
 controller.index()

 then:
 response.redirectedUrl == expectedUrl

 where:
 suppliedId | expectedUrl
 'joe_cool' | '/post/timeline/joe_cool'
 null | '/post/timeline/chuck_norris'

}

Because you now have this same test running twice, once for each combination, you
might get yourself into a state where one of the tests passes (for example, the
joe_cool line), but the other fails (for example, the null line). It would be handy to
customize the output so the test appears as two different test cases. Enter the Spock
@Unroll annotation. You can even use parameters from your where: clause in the
name of the test itself, so the output is easy to distinguish. Look at figure 6.7, which
shows the output of running the test in IntelliJ to see how the @Unroll annotation
affected the final two lines of test output.

 One major disadvantage of implementing your own index action in this case is that
it overrides the one provided by the scaffolding. You’ll lose access to the scaffolding view
that displays a list of the posts! For that reason, the chapter source code on GitHub
renames index to home and explicitly sets the default action as described in the sidebar.
We updated the unit test specification as well, which now calls the home action.

Listing 6.8 Testing the index action with various parameter combinations

Figure 6.7 Results of running the test with the @Unroll annotation
Licensed to Mark Watson <nordickan@gmail.com>

153Handling default actions
The typical role of an index action is redirecting, but we haven’t explained the options
for handling redirects. It’s time to get acquainted with the many redirect options.

6.6.2 Working with redirects

We’ve used redirect() calls throughout our code. For example, we redirect back to
the timeline at the end of the addPost action. When a default index action is called,
we redirect to another one.

 All our redirect() uses so far have followed a particular pattern, like this:

redirect(action:'timeline')

For this form of redirect, the target action name must exist on the current controller.
 But what if you want to refer to an action on a different controller? Perhaps after

registering a user on the User controller, you want to send them to the timeline on the
Post controller. For those situations, you can use the extended version of redirect():

redirect(controller: 'post', action:'timeline', id: newUser.loginId)

The id field is optional, as is the action name. If you don’t specify an action, it will go
to the default action on the controller (as discussed in the previous section).

 If you need to pass parameters during the redirect, you can pass in a map of
parameters to be sent:

redirect(controller: 'post', action:'timeline',
 params: [fullName: newUser.profile.fullName,
 email: newUser.profile.email]
)

Finally, you can also redirect using the uri: or url: params to redirect to relative or
absolute addresses. For example, instead of this:

redirect(controller: 'post', action:'timeline')

A world of default-action alternatives
We’ve discussed using the index action to perform default actions when hitting the
base controller URL, but you can handle default actions many other ways.

If your controller has only one action on it, that will be interpreted as the default
action. In listing 6.5, if timeline were the only action in the controller, you
could have omitted the index action and the controller would handle requests
for /hubbub/post.

If your controller has multiple actions, you can explicitly declare your default action at
the top of your controller:

static defaultAction = 'timeline'

Using an index action is common, so we showed you that technique first. But in most
of these sorts of scenarios, using defaultAction makes more sense, because you
don’t have to repackage your params, and there’s no client redirect involved.
Licensed to Mark Watson <nordickan@gmail.com>

154 CHAPTER 6 Controlling application flow
you can use the URI option:

redirect(uri: '/post/timeline')

And if you need to go to an external address, use the URL version:

redirect(url: 'http://www.google.com?q=hubbub')

That’s about all you need to know about redirects. We’ll use them frequently, so it’s
good to be familiar with their many flavors.

 Our next step is to take what we’ve implemented in this chapter, and move it to a
more maintainable application architecture. One of the most powerful tools Grails
offers for doing that is the Grails service. We’ll look at services in the next chapter,
along with a deep dive into the many ways you can transport data between forms, con-
trollers, and services.

 But for now, let’s review what we’ve learned about controllers.

6.7 Summary and best practices
In this chapter, you’ve explored a mountain of skills and techniques related to controllers.

 You started by implementing a timeline page with a feature for adding new posts
to Hubbub. You also saw three different ways an action can behave: returning a model
for a view, rendering some content directly, and redirecting.

 Let’s pull out some of the key practices to take away from the chapter:

■ If it might break, test it. You don’t need to test everything, but test everything that
can break. Experience will help you work out the low-hanging fruit, but while
you’re getting to know Grails it’s good practice to test everything.

■ Mock out your data layer with @Mock. Unit tests run so much faster than integra-
tion tests, and when working with controllers, it’s the controller that you want
to test, not the data layer.

■ Use Spock where: clauses to test edge cases. The Spock where: clause gives you a
concise way of testing all the edge cases of your dataset while still keeping tests
maintainable. Make use of them for any controller flows that branch based on
incoming data. Don’t forget to use the @Unroll feature to make sure you have
nice named tests for each condition.

■ Use flash scope. Flash scope is ideal for passing messages to the user (when a redi-
rect is involved).

■ Get to know redirects. Using redirect() with flash scope gives you flexibility for
passing data to your view and having it cleaned up automatically.
Licensed to Mark Watson <nordickan@gmail.com>

Services and data binding
In the previous chapter you learned the basics about what controllers do, how to
extend them with your own logic, and how to test them. We haven’t yet introduced
you to the best way to use controllers in building larger Grails applications.

 In this chapter we examine the controller’s best friend: the Grails service. Ser-
vices help free controllers from the heavy lifting of application logic, and let con-
trollers do what they do best—control the flow of the user through the application.
In this chapter we’ll take you through all the basics of Grails services, and provide
insights to grow your application in a maintainable and testable way.

 And if we free controllers from the tyranny of heavy business logic and return
them to their flow controlling core business, it’ll give us a reason to discuss taking

This chapter covers
■ Using services for more maintainable

architecture
■ Data binding and error handling
■ Using command objects for tricky form

validations
■ Uploading and rendering images
■ Working with URL mappings and filters
155

Licensed to Mark Watson <nordickan@gmail.com>

156 CHAPTER 7 Services and data binding
data from an HTML form and binding it into variables and objects that you can pro-
cess more conveniently in your application. Grails calls this operation data binding
because you’re binding form data to real Grails objects. In this chapter we’ll take you
through the various mechanisms for Grails data binding and show you when it’s best
to use each one.

 Let’s get this chapter underway by refactoring your post logic out of the controller
and into a service; then we can start reusing post service throughout your application.

7.1 Services: making apps robust and maintainable
You learned about powerful controller techniques in the previous chapter: basic forms
of data binding, params processing, controller routing, and even redirect magic. But
before things get unmaintainable, and they will if you keep piling logic into your con-
trollers, you’d better learn techniques to keep a clean application architecture for the
long haul. In this section, we’ll explore how services can dramatically simplify your
controllers by moving all your business logic into a single place.

 In PostController, you implemented an addPost action to handle the creation of
new Posts. But later you’ll want to create Posts from many different entry points—
specifically from a Representational State Transfer (REST) service. As a result, you’ll
need to repeat your Post logic at each entry point, but because we’re DRY people, that
repetition sounds like a bad thing.

 In this section, you’ll extract all your functionality for creating new posts into a
Grails service that you can call from anywhere you like. This approach makes things
tidier and more maintainable.

7.1.1 Implementing a PostService

Services offer a simple, maintainable, and testable way of encapsulating reusable busi-
ness logic. Services can participate in transactions, be injected almost anywhere in
your application, and are easy to develop. It’s time to abstract your Post operations
into a PostService that you can access from anywhere in your application. You first
saw services in chapter 1, where you wrote a simple QuoteService class to abstract the
lookup process for quote generation.

 Let’s create a PostService for Hubbub. It won’t surprise you that the process starts
on the command line:

grails create-service com.grailsinaction.Post

This command creates a starter PostService.groovy file in /grails-app/services/com/
grails-inaction.

 In the following listing, you’ll add logic to your service so you can add posts by sup-
plying the loginId and content of the post.

package com.grailsinaction
import grails.transaction.Transactional

Listing 7.1 PostService.groovy defines PostService and a related exception class
Licensed to Mark Watson <nordickan@gmail.com>

157Services: making apps robust and maintainable

ur

class PostException extends RuntimeException {
 String message
 Post post
}

@Transactional
class PostService {

 Post createPost(String loginId, String content) {
 def user = User.findByLoginId(loginId)
 if (user) {
 def post = new Post(content: content)
 user.addToPosts(post)
 if (post.validate() && user.save()) {
 return post
 } else {
 throw new PostException(
 message: "Invalid or empty post", post: post)
 }
 }
 throw new PostException(message: "Invalid User Id")
 }
}

First, to handle any errors that you encounter with the save B, you define a new
exception class, PostException. You’ll use this exception to store an error message
and any Post objects that fail validation. Groovy lets you define more than one class in
a .groovy file, so you do that here to keep the exception with the service.

Next, you define your service, which, following Grails conventions, always ends with
the word Service d, and you mark it transactional c. The createPost() method
takes a loginId and the post’s content e and returns a Post object or throws a
PostException if things go bad.

NOTE Because PostException extends RuntimeException in listing 7.1,
Grails will automatically roll back any database transactions that happen
inside the createPost() method. You’ll learn more about how this works in
chapter 14.

Services before Grails 2.3
If you use an older version of Grails than 2.3, your service won’t have an annotation
on the class, because services are by default transactional (even in Grails 2.3 with-
out the annotation). You can disable the transactional behavior by adding this prop-
erty to your service class:

static transactional = false

We recommend that for Grails 2.2 and older, you include the property in transactional
services and simply set its value to true. This makes it clear the service is transactional.

Forces transactions to roll
back if exceptions occur b

Places Post-related logic
into reusable service

 c

Rolls back database
changes if errors occ d

Wraps Post-creation
logic in method e

Validates Post
object during save f

Throws
exception if
validation
fails g
Licensed to Mark Watson <nordickan@gmail.com>

158 CHAPTER 7 Services and data binding
This is a transactional service, so you can attempt the validate() f, which fails if val-
idation errors occur, triggering your invalid-post exception g. With the exception,
you pass back the Post object itself, because clients may want to inspect and display
the exact validation errors. If the save() goes well, you return the persisted Post
object. The theory looks sound, but let’s exercise it in the following listing with a new
unit test.

package com.grailsinaction

import spock.lang.*
import grails.test.mixin.TestFor
import grails.test.mixin.Mock

@TestFor(PostService)
@Mock([User,Post])
class PostServiceSpec extends Specification {

 def "Valid posts get saved and added to the user"() {

 given: "A new user in the db"
 new User(loginId: "chuck_norris",
 ➥ password: "password").save(failOnError: true)

 when: "a new post is created by the service"
 def newPost = service.createPost("chuck_norris", "First Post!")

 then: "the post returned and added to the user"
 newPost.content == "First Post!"
 User.findByLoginId("chuck_norris").posts.size() == 1

 }
}

This is all well and good when things go swimmingly, but what happens when your
post is invalid and an exception is thrown? Now is a good time to introduce you to
Spock’s thrown() construct. Let’s update your PostServiceSpec with a test for the
exception in the following listing.

def "Invalid posts generate exceptional outcomes"() {

 given: "A new user in the db"
 new User(loginId: "chuck_norris",
 ➥ password: "password").save(failOnError: true)

 when: "an invalid post is attempted"
 def newPost = service.createPost("chuck_norris", null)

 then: "an exception is thrown and no post is saved"
 thrown(PostException)

}

Listing 7.2 Exercising your new PostService (PostServiceSpec)

Listing 7.3 Testing exceptional outcomes to PostServiceSpec
Licensed to Mark Watson <nordickan@gmail.com>

159Services: making apps robust and maintainable
When exceptions are thrown that are part of your anticipated business logic, it’d be
handy to reason about those exceptions. Spock provides the thrown() construct for
such scenarios. If the code in listing 7.3 fails to throw a PostException, your create-
Post() logic is broken, and Spock will rightly fail the test; if everything is working cor-
rectly, your createPost() method will throw a PostException rightly complaining
about the null content, and your Spock test will catch that exception so that the test
completes normally.

 With your PostService in place, you need to wire it up to the PostController.

7.1.2 Wiring PostService to PostController

As you saw in chapter 1, Grails injects or wires the service into the controller
through a process called dependency injection (DI). You tell Grails that you want
this injection to happen by declaring a property in the controller with the same
name as the service (but with a lowercase first letter). In the following listing, you’ll
declare a postService property that Grails identifies as a place to inject your Post-
Service class. The updated PostController code shows that all posting is now done
through the injected PostService.

package com.grailsinaction
class PostController {
 static scaffold = true
 static defaultAction = "home"

 def postService

 def home() { ... }

 def timeline(String id) {
 def user = User.findByLoginId(id)
 if (!user) {
 response.sendError(404)
 } else {
 [user : user]
 }
 }

 def addPost(String id, String content) {
 try {
 def newPost = postService.createPost(id, content)
 flash.message = "Added new post: ${newPost.content}"
 } catch (PostException pe) {
 flash.message = pe.message
 }
 redirect(action: 'timeline', id: id)
 }
}

Your controller has been updated to inject the PostService automatically B. With
your service in place, all you have to do is invoke the createPost() method d and

Listing 7.4 An updated PostController using PostService

Injects PostService instance
into the controller

 b

Use arguments to
bind form data as
discussed in
section 7.2.1

 c

Invokes
service
method

 d

Catches errors
for display in UI e
Licensed to Mark Watson <nordickan@gmail.com>

160 CHAPTER 7 Services and data binding
deal with any fallout from invalid posts e. One thing that may be new to you in the
updated controller is the use of action arguments to bind data from the HTML
form c. Grails 2.x introduces this new mechanism, which allows you to match the
names of HTML form fields to action arguments and automatically binds the data to
the appropriate types. You’ll learn more about the many faces of Grails data binding
in the next section, but the general rule of thumb for now is that if you have only a few
HTML fields to bind to, action arguments provide the best (simplest and cleanest) way
to get the job done.

 The controller can now use the service, but you need to make sure that the right
arguments get passed to the controller (your service tests will catch any errors that
exist in the service layer itself).

 It’s time to rewrite your PostControllerSpec and learn how to mock out the ser-
vice layer using Spock mocks. Using this approach allows you to test only the logic
within the class itself, which means less code and faster setup. Here’s how you can test
the controller in isolation:

 def "Adding a valid new post to the timeline"() {

 given: "a mock post service"
 def mockPostService = Mock(PostService)
 1 * mockPostService.createPost(_, _) >>
 ➥ new Post(content: "Mock Post")
 controller.postService = mockPostService

 when: "controller is invoked"
 def result = controller.addPost(
 "joe_cool",
 "Posting up a storm")

 then: "redirected to timeline, flash message tells us all is well"
 flash.message ==~ /Added new post: Mock.*/
 response.redirectedUrl == '/post/timeline/joe_cool'

 }

This testing sample introduces you to the Spock Mock() function B. Mock() lets you
create an object that sits in for the real target object, while letting you test the number
of times it’s invoked (classic mocking), and even control what values get returned
when it’s invoked (typically called stubbing rather than mocking).

 Once you create the mock, you can tell Spock to return a new Post object when-
ever the createPost() method is invoked c. That 1 * prefix tells Spock that this
mock object should be called only once from your code under test, so if it gets called 0
times, or more than once, Spock should throw an error. And those funny argument
types to createPost(_, _)? Those are Spock placeholders. They mean “whenever
createPost() is called with two arguments of any kind, return a new Post.” This is a
powerful operation because you can simulate a known return value that your mock
service will return and make sure that the controller invoked it the right way. It also
means you don’t need to invest any energy mocking out the data layer (because your
service tests will handle all that work).

Spock lets you mock
any existing class.

 b

Returns a given post
object when mock is
invoked.

 c

Injects the mock
into the controller.

Invokes controller
method with args.

Ensures flash
message is

correct.

Makes sure app
redirects correctly.
Licensed to Mark Watson <nordickan@gmail.com>

161Services: making apps robust and maintainable
 If you want to test argument invocation to the service, you could enforce the argu-
ment matching exactly with something such as

1 * mockPostService.createPost("joe_cool", "Posting up a storm")

➥ >> new Post(content: "Posting up a storm")

in which Spock could verify the mock was invoked with exactly those arguments. But
for now we’re keen to show you the more general case first.

 Creating the PostService involves significant refactoring, but the result is a tidy,
reusable service that you can use in later chapters for posting from REST services and
message queues, so it’s worth the effort. As part of that effort, you’ll need to update
the unit test for invalid post data if you have it, otherwise you’ll see a NullPointer-
Exception from the test.

 Services invite more exploration, such as whether they’re injected as singletons or
prototypes, how transactions are preserved, and how to test them, so we’ll come back
to them in chapter 14. We gave you a taste of services here because controllers are the
most common place to use them, and we’re planning to take advantage of them later
in the chapter.

With your posting functionality now tidily abstracted in its own service, it’s time to
explore other aspects of your controller that you can implement in more satisfying
and maintainable ways.

Logging: a special case of injection
One special case of injection is the Grails logger. We haven’t used it yet, but every
controller, service, and domain class is automatically injected with a Log4j log object
(which happens during compilation rather than through classic Spring injection, but
the result is the same).

You can use a log object wherever it makes sense:

log.debug "The value of user is: ${user}"

The log object can be particularly useful in exception scenarios. If you pass the
exception as the second parameter to the log method, you get a full stack trace in
your logs:

try {
 user.punchChuckNorris()
} catch (e) {
 log.error "Failed to punch Chuck Norris", e
}

Logging configuration is controlled by entries in your /grails-app/conf/Config.groovy
file. You can even use the Runtime Logging plugin to change log levels while your
application is running. Grails will also happily mock out your logging calls when run-
ning in a unit test, so you don’t need to use any of the old mockLogging() calls that
were required in Grails 1.x.
Licensed to Mark Watson <nordickan@gmail.com>

162 CHAPTER 7 Services and data binding
 The next vital area of controller operation that you need to be familiar with is data
binding—how form data is parsed and validated and ends up in the database. You’ve
used simple techniques so far, but it’s time to introduce you to more powerful features.

7.2 Data binding
Now that you understand how services work, it’s time to revisit the way you get form
parameters into domain objects. Until now you’ve manipulated data in the params map,
bound incoming parameters with a new Post(params) style constructor, and in the last
section you used action arguments to bind a subset of the incoming parameters. In
this section we’ll deep dive on all the options you have for getting data out of your forms
and into your objects (or another state that makes sense for your application).

 The process of marshaling incoming HTML data into objects or other strongly
typed parameters is known as data binding. We’ve given you a few tools for data bind-
ing, but it’s time you know all the ins and outs, and by the end of this section you’ll
know which mechanisms are the best for any given scenario.

7.2.1 Action argument binding

The simplest version of data binding, which is new in Grails 2.x, is action argument
data binding. This method of binding, which you’ve seen in listing 7.4, involves nam-
ing action arguments to match the names of the fields in your HTML forms. This
binding method is perfect when you have one or two incoming parameters that you
want to work with (such as an id to delete or a registration code to look up). Remem-
ber the latest implementation of the addPost action:

def addPost(String id, String content) {
 try {
 def newPost = postService.createPost(id, content)
 flash.message = "Added new post: ${newPost.content}"
 } catch (PostException pe) {
 flash.message = pe.message
 }
 redirect(action: 'timeline', id: id)
}

In this sample you bound the HTML elements id and content into string variables
that you passed on to the service. But what if you had constraints that forced you to
use different HTML field names (for example, if you have corporate standards around
form field naming)? Grails provides an annotation (grails.web.RequestParameter)
that lets you map your form field names onto your variable names. It’s verbose, but it
gets the job done:

import grails.web.RequestParameter

def addPost(@RequestParameter('frm_id') String id,
 @RequestParameter('frm_content') String content) {
 // your logic here…
}

Licensed to Mark Watson <nordickan@gmail.com>

163Data binding
In this example you map the incoming form field frm_id onto your id variable, and
the incoming frm_content field onto your content variable.

 What happens if errors occur in the binding? Say the user provides a string that
you want to marshal into an integer? The answer is the controller’s errors property.
You can inspect the errors property to find the fine-grained details on where any par-
ticular bindings failed.

7.2.2 Binding to an existing object

Most of our data-binding explorations have focused on creating new domain objects
from an incoming params object. But the update scenario is another common case—
perhaps you’re letting the user change their profile with an updated email address.

 Imagine you have an update action, such as the one in the following listing, that
updates the properties of an existing User based on the params data.

def update() {
 def user = session.user?.attach()
 if (user) {
 user.properties = params
 if (user.save()) {
 flash.message = "Successfully updated user"
 } else {
 flash.message = "Failed to update user"
 }
 [user : user]
 } else {
 response.sendError(404)
 }
}

In this example, you reattached a User object that you stored in session scope during
login B to the current thread’s Hibernate session. You then bound the params object
to the user’s properties c, so any parameter that matches the name of a user prop-
erty will be updated on the User object. Finally, you validated the object by calling
save() to make sure all your constraints still hold d.

 You now have a strategy for updating existing domain classes, but you haven’t looked
at how to exclude or include specific parameters in the binding. For that, we need to
introduce bindData().

7.2.3 Working with blacklist and whitelist bind params

The bindData() method available in controllers lets you blacklist certain parameters
from the marshaling process.

 The two-argument version of bindData() is equivalent to a standard property
assignment:

bindData(user, params)

Listing 7.5 Data binding with properties can be perilous

Attaches existing user
from session scope

 b

Updates
fields based on
matching params c

Validates user is
still current d
Licensed to Mark Watson <nordickan@gmail.com>

164 CHAPTER 7 Services and data binding
This has the same result as the more familiar assignment style of data binding that
you’ve already seen:

user.properties = params

But bindData()’s blacklisting power is introduced when using the three-argument
version of the command, which takes a list of properties to exclude from the binding
process. If you want to exclude your loginId and password parameters from the
update, you could do something like this:

bindData(user, params, ['loginId', 'password'])

That solves half the problem—the blacklisting of certain properties. What if you want to
specify certain parameters to be included in the bind? Since Grails 1.1, the properties
object supports a subscript operator that you can use in whitelist binding scenarios.

 For example, if you let the user update only their email and fullName values, you
can do this:

user.profile.properties['email', 'fullName'] = params

This will update only the email and fullName properties on the user’s Profile object,
discarding all other parameters that match User property names. 1

Now that you’ve explored data binding for single domain classes, let’s explore how
you can perform data binding on entire graphs of objects.

7.2.4 Complex forms: binding multiple objects

All of your examples so far have concentrated on binding a single domain class, but
Grails also gives you the option to handle form submissions for nested objects. Con-
sider user registration, for example. You need a User object (to handle the loginId
and password), and a Profile object (to handle the fullName, bio, homepage,
email, and other attributes).

Using bindData() outside controllers
bindData() offers powerful services for data binding; however, this method only
works inside a controller because the feature is bound via the controller’s meta-
Class. If you’re looking for a bindData() style binding for use in Grails services or
other artifacts, you can inject the grailsWebDataBinder1 bean and use its bind()
method. The Grails user guide has a simple example using it.

If you use a Grails version prior to 2.3, do a web search for workarounds using Grail’s
BindDynamicMethod object.

1 Jeff Brown, [Java] Interface DataBinder, http://grails.org/doc/latest/api/org/grails/databinding/Data-
Binder.html.
Licensed to Mark Watson <nordickan@gmail.com>

http://grails.org/doc/latest/api/org/grails/databinding/DataBinder.html
http://grails.org/doc/latest/api/org/grails/databinding/DataBinder.html

165Data binding
 In the following listing, you’ll implement a form that references fields on a User
object and its Profile in a null-safe way. Submitting a form like this will allow you to
create both the User and attached Profile in a single save. The code should go in the
grails-app/views/user/register.gsp file.

<html>
<head>
 <title>Register New User</title>
 <meta name="layout" content="main"/>
</head>
<body>
 <h1>Register New User</h1>
 <g:hasErrors>
 <div class="errors">
 <g:renderErrors bean="${user}" as="list" />
 </div>
 </g:hasErrors>
 <g:if test="${flash.message}">
 <div class="flash">${flash.message}</div>
 </g:if>
 <g:form action="register">
 <fieldset class="form">
 <div class="fieldcontain required">
 <label for="loginId">Login ID</label>
 <g:textField name="loginId" value="${user?.loginId}"/>
 </div>
 <div class="fieldcontain required">
 <label for="password">Password</label>
 <g:passwordField name="password"/>
 </div>
 <div class="fieldcontain required">
 <label for="profile.fullName">Full Name</label>
 <g:textField name="profile.fullName"
 value="${user?.profile?.fullName}"/>
 </div>
 <div class="fieldcontain required">
 <label for="profile.bio">Bio</label>
 <g:textArea name="profile.bio"
 value="${user?.profile?.bio}"/>
 </div>
 <div class="fieldcontain required">
 <label for="profile.email">Email</label>
 <g:textField name="profile.email"
 value="${user?.profile?.email}"/>
 </div>
 </fieldset>
 <fieldset class="buttons">
 <g:submitButton name="register" value="Register"/>
 </fieldset>
 </g:form>
</body>
</html>

Listing 7.6 A form that updates multiple domain objects in a single submit
Licensed to Mark Watson <nordickan@gmail.com>

166 CHAPTER 7 Services and data binding
The registration form in the listing contains a number of fields from both the User
and Profile objects. Notice that the profile-related fields are kept in form controls
with the prefix profile: profile.fullName, profile.bio, profile.email. Grails makes
use of this prefix when the form is submitted to bind the field to a relation on the
saved object. Figure 7.1 demonstrates how the single set of parameters is split off into
the User object and its nested Profile object.

 The next listing shows the new register action, which goes in the UserController
class. Creating and saving a User object based on the incoming params object binds all
those Profile fields as well.

def register() {
 if (request.method == "POST") {
 def user = new User(params)
 if (user.validate()) {
 user.save()
 flash.message = "Successfully Created User"
 redirect(uri: '/')
 } else {
 flash.message = "Error Registering User"
 return [user: user]
 }
 }
}

If user.validate() fails, you can return to the registration form, passing the failing
User object.

 You have one more thing to do for the action to work properly: make Profile
belong to User. In other words, change this line in Profile:

User user

to this:

static belongsTo = [user : User]

Listing 7.7 Implementing a register action for the UserController

params User

userld
password

profile.fullName
profile.bio
profile.email

userld
password
profile

Profile

fullName
bio
email
homepage
photo
etc…

Figure 7.1 Parameters
are split into bound objects
based on their prefix.

Form submitted as POST,
so create new user

GET request, so display
user registration page
Licensed to Mark Watson <nordickan@gmail.com>

167Data binding
The reason for this is that validation only cascades to belongsTo associations. Even though
the hasOne on User ensures that saves are cascaded, it doesn’t work for validation.

 If you have an object with validation errors, you can use the <g:hasErrors> and
<g:renderErrors> tags to display them. Recall the errors div in your registration
form (listing 7.6):

<g:hasErrors>
 <div class="errors">
 <g:renderErrors bean="${user}" as="list" />
 </div>
</g:hasErrors>

The <g:renderErrors> tag renders validation messages for the named bean as an
HTML unordered list (), which is convenient for informing the user about what’s
wrong. This is the same mechanism scaffolding uses to display validation errors, which
you saw in chapter 4. Figure 7.2 shows your new registration form in action, rendering
appropriate error messages.

TESTING MULTIPLE BINDING

Listing 7.7 gave us a sample of how multiple binding works in theory, but it would be
nice to test the operation. You can test it with the standard use of the params object, as
shown in the following listing.

Figure 7.2 You can bind multiple domain objects on a single form and include error handling.
Licensed to Mark Watson <nordickan@gmail.com>

168 CHAPTER 7 Services and data binding
package com.grailsinaction

import spock.lang.Specification

@TestFor(UserController)
@Mock([User, Profile])
class UserControllerSpec extends Specification {

 def "Registering a user with known good parameters"() {

 given: "a set of user parameters"
 params.with {
 loginId = "glen_a_smith"
 password = "winnning"
 homepage = "http://blogs.bytecode.com.au/glen"
 }

 and: "a set of profile parameters"
 params['profile.fullName'] = "Glen Smith"
 params['profile.email'] = "glen@bytecode.com.au"
 params['profile.homepage'] = "http://blogs.bytecode.com.au/glen"

 when: "the user is registered"
 request.method = "POST"
 controller.register()

 then: "the user is created, and browser redirected"
 response.redirectedUrl == '/'
 User.count() == 1
 Profile.count() == 1

 }
}

In this sample, you used the Groovy with() method B as a shorthand way of setting
up your form parameters for the user object. But what about your nested Profile
object? For setting up your nested profile, you used the params object in a map style,
effectively setting up form variables for user.profile.fullName, user.profile.email,
and user.profile.homepage c. With your params set up appropriately, you could
invoke your register action as a method d, then confirm that your User and Profile
objects were created in the database e.

 You’ve now implemented a basic registration process and even thrown in error
handling and unit testing to keep it tidy. But you may wonder how error handling
works behind the scenes. It’s important to understand how errors work, in case your
application needs custom layout and rendering of error messages for particular fields.
Let’s take a look.

7.2.5 Error handling

In the previous section, you passed a User object that failed validation through to the
view. The view then used the <g:hasErrors> and <g:renderErrors> tags to display

Listing 7.8 Unit testing the register action for the UserController

Using with() to shorthand
param creation

 b

Setting
nested

properties
on params

 c

Invoking your action
as a POST request

 d

Confirm objects
in the DB

 e
Licensed to Mark Watson <nordickan@gmail.com>

169Data binding

e
em
the error messages (as in figure 7.2). You may be curious how those tags know what
the failing validations are.

 In chapter 3 (section 3.3), you saw that calling user.validate() populates a
user.errors object with failing validations. The hasErrors() and renderErrors()
methods use this object to iterate through the errors.

 But what if you want to highlight the individual field values that are failing valida-
tion, rather than list them all at the top of the page? You can take advantage of a spe-
cial version of the hasErrors tag that specifies a domain object in request scope as
well as the field you’re rendering. The following listing shows an example of render-
ing the email validation errors next to the email field.

<dt>Email</dt>
<dd>
 <g:textField name="profile.email" value="${user?.profile?.email}"/>
 <g:hasErrors bean="${user}" field="profile.email">
 <g:eachError bean="${user}" field="profile.email">
 <p style="color: red;"><g:message error="${it}"/></p>
 </g:eachError>
 </g:hasErrors>
</dd>

You used the <g:hasErrors> tag to find any validation errors for the email field on
the user’s Profile object B. If any errors did exist, you used the <g:eachError> tag
to iterate through them c. Remember that a given field may fail more than one vali-
dation. Finally, you resolved the error message from your resource bundle using the
<g:message> tag d.

 After seeing that example, you probably feel that <g:renderErrors> is pretty
nice after all. But after seeing all that markup you must be thinking, “That’s an awful
lot of boilerplate code for displaying error messages against a single field! There
must be a better way!” We hear you! And Grails has an elegant answer to make that
markup go away by using the Fields plugin (http://grails.org/plugin/fields). For now,
it’s good to appreciate how errors are handled from first principles. Figure 7.3 shows
you the kind of markup generated by the techniques in listing 7.9. As you can see, you
can colocate the errors, but it’s work, and a red asterisk next to the failing field is
probably as effective.

 Now that you understand the power of Grails’s data binding, and you’ve learned
how errors work, it’s time to introduce you to one last technique for data binding that
makes the whole operation more maintainable: Grails’ command objects.

Listing 7.9 Implementing field-level errors is hard work at the moment

Displays block when
field is invalid

 b

Iterates
through
rrors on
ail field

 c

Displays error text d

Figure 7.3 Field-level markup of errors is difficult but achievable.
Licensed to Mark Watson <nordickan@gmail.com>

http://grails.org/plugin/fields

170 CHAPTER 7 Services and data binding
7.3 Command objects
All this data binding and manipulation is wonderful, but what happens when there
isn’t a one-to-one mapping between the form data and a domain object? For example,
a registration screen may have both password and confirmPassword fields that need
to match to ensure the user hasn’t made a mistake entering the password.

 For these sorts of scenarios, Grails offers the command object. The command
object’s purpose is to marshal data from form parameters into a nondomain class that
offers its own validation.

7.3.1 Handling custom user registration forms
User registration involves subtle validations that make sense only during the regis-
tration process (like the example of matching passwords). Let’s cook up a User-
RegistrationCommand object to see how you might capture both sets of data in a
single command object.

 Typically, command objects are single-use objects, so by convention they’re created
inside the same .groovy file as the controller that uses them. If you create them out-
side the controller that uses them, we recommend you mark the classes with a
@grails.validation.Validateable annotation. This also allows you to use them as
general validatable objects, not just as command objects.

 For our example, let’s enhance the UserController class to use this new com-
mand class, as shown in the following listing. Put this class definition in User-
Controller.groovy after the controller class (not inside it).

...
class UserController {
 ...
}

class UserRegistrationCommand {
 String loginId
 String password
 String passwordRepeat
 byte[] photo
 String fullName
 String bio
 String homepage
 String email
 String timezone
 String country
 String jabberAddress

 static constraints = {
 importFrom Profile
 importFrom User
 password(size: 6..8, blank: false,
 validator: { passwd, urc ->
 return passwd != urc.loginId
 })

Listing 7.10 A UserRegistrationCommand class

Introduces field for
password confirmation

Reuses the same business
constraints as our domain class
Licensed to Mark Watson <nordickan@gmail.com>

171Command objects

 Stan
Grails

field
 passwordRepeat(nullable: false,
 validator: { passwd2, urc ->
 return passwd2 == urc.password
 })
 }
}

Look at all the validation going on there! You incorporated all the validation from
both the User and Profile objects in a DRY manner using importFrom. You also
added a custom field and validation that are specific to the registration process (spe-
cifically, that password and passwordRepeat must match).

 Command objects are particularly useful in scenarios where you have different or
augmented validation rules firing for the form submission that aren’t in your domain
model. A password-confirmation field is a classic example.

 With our command object in place, it’s time to wire up a test case to exercise
your validations (particularly your tricky cross-field validation portions). Let’s use
Spock’s @Unroll annotation to create a data-driven test to exercise the corner-cases.
We’ll add this test to your existing UserControllerSpec because it relates to your
command class that lives inside UserController.groovy. Also be sure to import the
@Unroll annotation.

 @Unroll
 def "Registration command object for #loginId validate correctly"() {

 given: "a mocked command object"
 def urc = mockCommandObject(UserRegistrationCommand)

 and: "a set of initial values from the spock test"
 urc.loginId = loginId
 urc.password = password
 urc.passwordRepeat = passwordRepeat
 urc.fullName = "Your Name Here"
 urc.email = "someone@nowhere.net"

 when: "the validator is invoked"
 def isValidRegistration = urc.validate()

 then: "the appropriate fields are flagged as errors"
 isValidRegistration == anticipatedValid
 urc.errors.getFieldError(fieldInError)?.code == errorCode

 where:
 loginId | password | passwordRepeat | anticipatedValid
 ➥ | fieldInError | errorCode
 "glen" | "password" | "no-match" | false
 ➥ | "passwordRepeat" | "validator.invalid"
 "peter" | "password" | "password" | true
 ➥ | null | null
 "a" | "password" | "password" | false
 ➥ | "loginId" | "size.toosmall"

 }

Listing 7.11 Unit testing UserRegistrationCommand class with @Unroll

Checks confirmation field
matches first password

Grails special
support for
command
objects b

dard
error
s still
apply c
Licensed to Mark Watson <nordickan@gmail.com>

172 CHAPTER 7 Services and data binding

hasE
to c

valida
Most of this code will be familiar to you, the only variant invoked is mockCommand-
Object() B when you created the command. This invocation will tell Grails to deco-
rate your UserRegistrationCommand class with the standard validate() method and
errors property that are added to command classes when they’re invoked in the
Grails runtime environment.

 All of the standard error codes c that you learned about in chapter 3 still apply
when using command objects, so you don’t have new tricks to learn when inspecting
error conditions after validation fails.

 The neatest part of the command object process is writing a controller action to
consume the form submission. Reference the command as the first argument to the
action closure, and the binding occurs automatically. The following listing shows your
custom action register2 for handling your command object.

def register2(UserRegistrationCommand urc) {
 if (urc.hasErrors()) {
 render view: "register", model: [user : urc]
 } else {
 def user = new User(urc.properties)
 user.profile = new Profile(urc.properties)
 if (user.validate() && user.save()) {
 flash.message =
 "Welcome aboard, ${urc.fullName ?: urc.loginId}"
 redirect(uri: '/')
 } else {
 // maybe not unique loginId?
 return [user : urc]
 }
 }
}

In this code, the command object is passed in as the first argument to the action’s clo-
sure B, causing Grails to attempt to bind all incoming params entries to the com-
mand object’s fields. Validations are then applied, and you can check the results by
calling hasErrors() on the command object itself c.

 If the data looks good, you can bind the command object’s fields to the various
domain classes. In listing 7.12, you bind to both User and Profile d and then
attempt to save the new user.

 You have to confirm that the save() is successful e, because the constraints only
make sense in a domain class and not in a command object. For example, your User
class has a unique constraint on the loginId. Although you could attempt to simulate
a unique constraint on your command object with a custom validator, even then the
user isn’t guaranteed to be unique until the real save() is committed to the database.

 For the moment, you’ll use the existing form and register action. In the next chap-
ter, we’ll show you an extended user registration form that has fields matching the prop-
erties of UserRegistrationCommand. That form will submit to the register2 action.

Listing 7.12 A register action that uses command objects

Binds data from params
to command object bUses

rrors
heck
tions c Binds data to

new user object
 d

Saves and
validates
new user e
Licensed to Mark Watson <nordickan@gmail.com>

173Command objects
TESTING COMMAND OBJECTS WITH CONTROLLERS

You’ve been through the process of testing your command objects in isolation (con-
firming that your constraints and validators work), but now you need to turn your
attention to using command objects in conjunction with controllers. The most impor-
tant thing you need to know here is that you must call validate() before you invoke
the controller action! This listing is your test case in action.

def "Invoking the new register action via a command object"() {

 given: "A configured command object"
 def urc = mockCommandObject(UserRegistrationCommand)
 urc.with {
 loginId = "glen_a_smith"
 fullName = "Glen Smith"
 email = "glen@bytecode.com.au"
 password = "password"
 passwordRepeat = "password"
 }

 and: "which has been validated"
 urc.validate()

 when: "the register action is invoked"
 controller.register2(urc)

 then: "the user is registered and browser redirected"
 !urc.hasErrors()
 response.redirectedUrl == '/'
 User.count() == 1
 Profile.count() == 1

}

Apart from the manual calls to validate(), this should be a process you’re familiar with.
 You probably realized that command objects are great for this sort of form, where

you don’t have a one-to-one mapping with a domain class. But they also offer other
features. Command objects can participate in injection, for example.

7.3.2 Participating in injection

Command objects aren’t dumb value objects with a little validation. They’re subject to
the same bean-injection features as controllers, which means they can make fantastic
encapsulators of business logic.

 In the UserRegistrationCommand example, the user enters a clear-text password,
but imagine you want to store it encrypted in the database. If you’d defined a crypto-
Service, you could inject it directly into the command object. You could do some-
thing like this:

class UserRegistrationCommand {
 def cryptoService

Listing 7.13 Using controllers to test command objects

You must call validate()
manually when testing
with controllers.

Pass your command
object into your
controller.
Licensed to Mark Watson <nordickan@gmail.com>

174 CHAPTER 7 Services and data binding
 String getEncryptedPassword() {
 return cryptoService.getEncryptedPassword(password)
 }
// our other properties and validators
}

You could then use the cryptoService to ensure there’s only one class that knows
how password encryption is implemented. Adding a convenience routine such as
getEncryptedPassword() to your command class makes consuming the command
class in your controller code tidier.

 Now that we’ve covered data binding and controller logic, all that’s left for this
chapter is the sweet stuff. We’ll move on to handling photo uploads, creating a basic
security file, and customizing the site’s URLs.

 Let’s look at how to upload user profile photos.

7.4 Working with images
You’ve now seen nearly every controller trick that you’ll likely use in your next Grails
project. But a few outliers exist. You won’t need them in every application, but when
you need them, you really need them.

 In this section, we’ll explore how to handle file uploads (your user’s profile photo)
and how to render custom content types (image data, in your case). Although your
next application might not have much use for photos, the techniques are useful for
whatever kind of content you want to render.

7.4.1 Handling file uploads

What’s a social networking site without the ability to upload photos and avatars? If
you’ve ever added file-upload capabilities to a Java web application, you know the
complexities involved (not only the mess involved when handling byte streams, but
also handling security issues, such as limiting file sizes to prevent denial-of-service
attacks). Grails puts that complexity behind you. Let’s implement a photo-upload
capability for Hubbub.

 You’ll start by creating an ImageController to handle image uploading and rendering:

grails create-controller com.grailsinaction.Image

When to use which Grails binding method
We’ve introduced several methods of binding data to objects so far. You may wonder
which to use where. The basic rule of thumb is that if you’re creating a new domain
object, use the Constructor(params) variant. If you have a few params on which
you’d like to perform logic rather than data binding, use action arguments. If you have
several related validatable params, use command objects. If you’re updating an exist-
ing object with a subset of properties, use bindData() for white listing (or a straight
params assignment if you don’t care about white listing).
Licensed to Mark Watson <nordickan@gmail.com>

175Working with images
You have two ways to handle file uploads in a controller, and the one you select
depends on what you want to accomplish. If you want to store the image in a domain
class, your best option is to use a command object. The following listing shows how to
use a command object for photo uploads. We look at storing images on the filesystem
in the next subsection.

package com.grailsinaction
class PhotoUploadCommand {
 byte[] photo
 String loginId
}
class ImageController {
 def upload(PhotoUploadCommand puc) {
 def user = User.findByLoginId(puc.loginId)
 user.profile.photo = puc.photo
 redirect controller: "user", action: "profile", id: puc.loginId
 }

 def form() {
 // pass through to upload form
 [userList : User.list()]
 }
}

The upload process for images using a command object binds the uploaded image
data to a byte array.

 To select a photo for upload in our browser window, you need a view with an
upload control. Let’s create /grails-app/views/image/form.gsp to host your upload
form. The form also needs to be tagged to tell the browser that the form contains a
file upload, so use the <g:uploadForm> tag, as shown in the following listing.

<html>
<head>
 <title>Upload Image</title>
 <meta name="layout" content="main">
</head>
<body>
 <h1>Upload an image</h1>
 <g:uploadForm action="upload">
 User Id:
 <g:select name="loginId" from="${userList}"
 ➥ optionKey="loginId" optionValue="loginId" />
 <p/>
 Photo: <input name="photo" type="file" />
 <g:submitButton name="upload" value="Upload"/>
 </g:uploadForm>
</body>
</html>

Listing 7.14 Handling image uploading via a command object

Listing 7.15 An image-upload form

Holds uploaded
photo data

Passes list of
users to the view
Licensed to Mark Watson <nordickan@gmail.com>

176 CHAPTER 7 Services and data binding
Remember, the upload form needs to use <g:uploadForm> instead of <g:form>, and it
needs an input box with type="file" to hold the image-upload data.

 The browser will render the form in listing 7.15 with an upload box as shown in fig-
ure 7.4.

 With your command object backing the upload, users are only a click away from
getting their profile pictures into the database.

7.4.2 Uploading to the filesystem
If you want to store the uploaded image in the filesystem rather than in the database,
you need access to the implementation of Spring MultipartFile that backs the
upload process.

 For this case, you have more options for storing the byte array:

def rawUpload() {
 // a Spring MultipartFile
 def mpf = request.getFile('photo')
 if (!mpf?.empty && mpf.size < 1024*200) {
 mpf.transferTo(new File(
 "/hubbub/images/${params.loginId}/mugshot.gif"))
 }
}

The MultipartFile class has a transferTo() method for moving the picture data
directly to a file, which is convenient if you’re averse to storing BLOBs in your database.
For a detailed discussion of MultipartFile, consult the Spring API documentation.

Image formats and transferTo()
It’s important to remember that transferTo() doesn’t do any magic image conver-
sion—it copies bytes around. In the previous example we assumed the user is
uploading a .gif file when we should look inside that byte[] to determine the image
format. You can use the Burning Image plugin to perform these inspections. Check
http://grails.org/plugin/burning-image for details.

Figure 7.4 The image-upload
form in action

Ensures file size is
less than 200 KB
Licensed to Mark Watson <nordickan@gmail.com>

http://grails.org/plugin/burning-image

177Working with images
7.4.3 Rendering photos from the database

Now that photos can be uploaded to the database or filesystem, you need a way to dis-
play them. You’ll create tags in your application and have Grails retrieve your
profile photos and render them.

 First, create a new profile view, so the UserController can view a profile, and
include a link to the user’s profile picture. Let’s call the view /views/user/profile.gsp
and give it an HTML image tag:

<html>
...
<body>
 <div class="profilePic">
 <g:if test="${profile.photo}">
 <img src="${createLink(controller: 'image', action:

➥ 'renderImage', id: profile.user.loginId)}"/>
 </g:if>
 <p>Profile for ${profile.fullName}</p>
 <p>Bio: ${profile.bio}</p>
 </div>
</body>
</html>

This GSP page creates a link back to /image/renderImage/<id> based on the loginId
of the current user. Once you implement the renderImage action in ImageController,
you can link your image tags to /image/renderImage/chuck_norris or any other
user ID.

 We leave it as an exercise for you to implement the corresponding profile action
in UserController. Find the user for the given ID and add the user’s Profile object
to the view model under the variable name profile. You can find an example
implementation in the chapter source on GitHub, along with the full code for the
profile view (we’ve left out the <head> section in the code snippet as it’s not impor-
tant for the discussion).

 The following listing has the code for ImageController’s renderImage action,
showing you how to send image data to the client.

def renderImage(String id) {
 def user = User.findByLoginId(id)
 if (user?.profile?.photo) {
 response.setContentLength(user.profile.photo.size())
 response.outputStream.write(user.profile.photo)
 } else {
 response.sendError(404)
 }
}

As the code shows, you can send content to the browser by writing the bytes directly to
the response’s output stream. When you do this, also tell the browser the size of the data.

Listing 7.16 Sending image data to the browser

Creates link to
renderImage
action

Sends 404 error
if no photo
Licensed to Mark Watson <nordickan@gmail.com>

178 CHAPTER 7 Services and data binding
With your back-end rendering implemented, figure 7.5 shows the result for /user
/profile/chuck_norris.

 You now have a basic profile screen running, which completes your explorations of
image rendering and all the UI functionality you’ll do in this chapter. You’ll learn more UI
techniques in chapter 13, but for now you have two more important controller features
to learn about: filters and URL mappings. Both affect how a user navigates your applica-
tion, and it’s essential to understand when developing powerful Grails applications.

 Let’s start with exploring filters.

7.5 Intercepting requests with filters
In this chapter, we’ve looked at the front-end user experience, but important tech-
niques exist that you need to implement at the back end. In this section we’ll explore
the use of filters for augmenting the Grails request/response pipeline with your own
custom processing.

7.5.1 Writing your first filter

Grails filters give you a powerful tool for intercepting every request (or a subset of
requests) and for performing business logic before or after the controller action fires.
If you’ve worked with Java servlet filters, you might recognize that the Grails filters
provide similar functionality, although Grails filters only intercept controller requests,
not static file requests for JavaScript, CSS, image files, and the like.

 A classic example of where you might want this sort of approach is a security fil-
ter—you want to check that a user has access to a target resource (popular Grails secu-
rity plugins use Grails filters for this purpose). Let’s put a simple security filter together
as an example.

 First, you’ll create a shell for your filter:

grails create-filters com.grailsinaction.LameSecurity

Figure 7.5 Rendering
a profile picture
Licensed to Mark Watson <nordickan@gmail.com>

179Intercepting requests with filters
This command will write a starter template in /grails-app/conf/com/grailsinaction/
LameSecurityFilters.groovy. (Note the plural Filters; if you name it with the singular
form, it won’t fire.)

 Next you’ll modify your filter to perform simple checks, as shown in the follow-
ing listing.

package com.grailsinaction

class LameSecurityFilters {
 def filters = {
 secureActions(controller:'post',
 action:'(addPost|deletePost)') {
 before = {
 if (params.impersonateId) {
 session.user = User.findByLoginId(params.impersonateId)
 }
 if (!session.user) {
 redirect(controller: 'login', action: 'form')
 return false
 }
 }
 after = { model->
 }
 afterView = {
 log.debug "Finished running ${controllerName} –

➥ ${actionName}"
 }
 }
 }
}

You can name the filters that you put into the file (for documentation purposes only),
so it’s good to choose names that summarize your filter logic. You called your set of
rules secureActions B.

 You can put as many filters as you like in the file, and all matching rules will fire in
order from the top until one returns false from its before closure. As you’ll learn
soon, you can apply filters to wildcards (controller: '*', action: '*'), but in the pre-
vious listing, you want the filter to fire only for the addPost or deletePost actions c.
Using Boolean operators lets you fine-tune the application of the filter.

 We’ll leave it as an exercise for you to implement LoginController and its form
action. The HTML form needs fields for login ID and password. It should be submitted
to a separate action, say signIn. That action should then check the password against
the one stored in the database for the given user and, if they match, store the corre-
sponding User instance in the session under the key “user”. Otherwise signIn should
redirect back to the login form. You can find a sample implementation in the chapter
source code.

 Inside the body of the filter, you can provide closures for before, after, or after-
View. Table 7.1 outlines the filter lifecycle phases and their typical features.

Listing 7.17 A basic security filter implementation

Names
security rules

 b

Limits filter to
two actions

 c

Tests for
presence of

impersonateId
param d Tests for

existing
user in
session eStops subsequent

filters from firing f

Logs diagnostic data
after view completes g
Licensed to Mark Watson <nordickan@gmail.com>

180 CHAPTER 7 Services and data binding
Our before closure checks that the user provided an impersonateId parameter d
and, if so, and the corresponding user exists, it stores the User object in the session to
signify a login. Otherwise it redirects to the login screen e.

 If any before closure returns false, as happens at f, no other filters will fire and
the controller action won’t be invoked. This is typically done when you have a filter
(such as a security filter) that has redirected the request.

 You also added an afterView closure g to demonstrate diagnostic options, and to
show the variables that Grails provides in filters. Although filters don’t have all the
functionality of controllers, they expose the common controller variables that we cov-
ered earlier in the chapter (request, response, params, session, flash, and a few filter-
specific extras). They also have two methods: redirect() and render(). Table 7.2
shows additional filter variables that you haven’t used.

 Although you didn’t use it in listing 7.17, there’s also a special case for the after
closure that takes a model as an argument. That’s the model map the controller
returns from the action that handled the request. You can augment that model in
your filter, and modify it if necessary.

TIP Modifying existing model values in your filters is a bad idea—it makes your
code difficult to follow and inevitably introduces subtle bugs in your controller
logic. Augment them, by all means, but leave your existing model values alone,
lest you get support calls in the wee hours and have to debug things.

Table 7.1 Lifecycle phases and their usage

Closure Fires when? Useful for

before Before any controller logic is invoked Security, referrer headers

after After controller logic, but before the view
is rendered

Altering a model before presentation
to view

afterView After the view has finished rendering Performance metrics

Table 7.2 Variables exposed to filters

Variable Description

controllerName Name of the currently firing controller.

actionName Name of the currently firing action.

applicationContext The Spring application context—useful for looking up Spring beans, but
filters support dependency injection, which is much cleaner.

grailsApplication The current grailsApplication object—useful for finding out run-
time information, such as the Grails version or application name.
Licensed to Mark Watson <nordickan@gmail.com>

181Intercepting requests with filters
7.5.2 Testing filters
You’ve written your first filter; it’s time to exercise it with testing code. Because filters
fire in the process of executing a controller action, Grails unit-testing support for fil-
ters is all handled through controller unit tests, albeit with a little bit of hackery, as
shown in the following listing.

...
@TestFor(PostController)
@Mock([User,Post,LameSecurityFilters])
class PostControllerSpec extends Specification {

 /* other tests here */

 def "Exercising security filter for unauthenticated user"() {

 when:
 withFilters(action: "addPost") {
 controller.addPost("glen_a_smith", "A first post")
 }

 then:
 response.redirectedUrl == '/login/form'

 }
}

In this sample, you’re expanding your PostControllerSpec to exercise the addPost B
action when invoked through the security filter. The filter will catch that the user hasn’t
yet authenticated, and you can assert that they’re redirected to your login form.

Handling injection in filters
What if you need a service inside your filter? Filters have the same injection rules as
other Grails artifacts, so you can declare the service (or other artifact) as a property
in your filter and it’ll be injected for you. Here’s an example:

class SecurityFilters {
 def authService
 def filters = {
 // then somewhere inside one of your filters
 authService.checkAccess(params.loginId,
 controllerName, actionName)
 }
}

Listing 7.18 Testing your filter

Roll your own security: don't try this at home
We’re using the LameSecurityFilters example to introduce you to filter lifecycles
(because it’s a common example that you’ve probably implemented before). But we
need to stress that you shouldn’t roll your own security! Grails has several excellent
security plugins, including Spring Security and Apache Shiro. We’ll take you through
Spring Security in depth in chapter 11.

Adds the filter to
the list of mocks

Invokes
action via
withFilters b
Licensed to Mark Watson <nordickan@gmail.com>

182 CHAPTER 7 Services and data binding
7.5.3 Filter URL options

You’ve seen filters applied to controllers and actions, but you have more options for
both fine- and course-grained filtering. First, both controller and action names are
subject to wildcarding (and you can wildcard either or both). You can also use Bool-
ean operators to be selective about what you capture.

 Let’s look at a few common filtering use cases. This example filters for all actions
on all controllers:

myGreedyFilter(controller:'*', action:'*') {
}

This one filters for all actions on the User controller:

myControllerFilter(controller:'user', action:'*') {
}

And the following one filters for only a few actions on the User controller:

mySelectiveFilter(controller:'user', action:'(update|edit|delete)') {
}

But if thinking in terms of controllers and actions isn’t your bag (perhaps because
you’ve done URL mapping magic for permalinking), you can also use a URI style of
mapping in your filters:

myGreedyUriFilter(uri:'/**') {
}
mySelectiveUriFilter(uri:'/post/**') {
}
myParticularUriFilter(uri:'/post/supersecret/list') {
}

The URI-matching mechanism uses Ant-style wildcarding. If you’ve never seen those
double asterisks before, they mean “all subdirectories nested to unlimited levels.” One
thing to note is that URL mappings fire before filters, so if you were depending on a
filter to catch a nonexistent URL, think again. It’ll return a 404 error and not get to
your filter.

 That’s your arsenal of tools for selective filtering. You’ve learned the skills to create
all sorts of back end intercepting logic for your next application. Whether you imple-
ment a custom security mechanism or a stats-tracking filter, or you debug and profile,
filters give you power for fine-grained request interception.

 There’s one final feature of controllers that we need to cover: URL mappings.

7.6 Creating custom URL mappings
You’re following Grails convention with URLs translating to /controllerName/action-
Name/id. But even this convention is configurable through URL mappings.

 The /grails-app/conf/UrlMappings.groovy file is shown in the following listing.
You can configure rules in this file for routing incoming requests to particular control-
lers and actions.
Licensed to Mark Watson <nordickan@gmail.com>

183Creating custom URL mappings
class UrlMappings {
 static mappings = {
 "/$controller/$action?/$id?"{
 constraints {
 // apply constraints here
 }
 }
 "/"(view:"/index")
 "500"(view:'/error')
 }
}

The $ variables in the UrlMappings file can be confusing, so let’s add a static mapping
(permalink) to the file to see how things work:

"/timeline/chuck_norris" {
 controller = "post"
 action = "timeline"
 id = "chuck_norris"
}

With the permalink in place, you can now access the URL /hubbub/timeline/chuck
_norris, and it’ll route you to the PostController and fire the timeline action with
an id parameter of chuck_norris. Note that this isn’t a redirect: the browser’s URL
will stay the same, but the controller and action specified in the permalink will fire.

 You can also use a more concise version of the syntax:

"/timeline/chuck_norris"(controller:"post",
 action:"timeline", id:"chuck_norris")

We find the block-based version more readable, and it also gives you more flexibility
(as we’ll see shortly).

 Now that you’ve seen mapping blocks, it’s time to get back to those variables you
saw earlier.

7.6.1 myHubbub: rolling your own permalinks

You can define how custom variables in URL mappings are passed through as parameters
to the controller. For example, it’d be great to have a permalink on the Hubbub site to
give users a page for their recent posts. Maybe a URL such as /hubbub/users/glen could
map to all of Glen’s posts, and /hubbub/users/peter could send you off to Peter’s.

 One way to achieve this style of permalink is to create a URL mapping such as this:

"/users/$id" {
 controller = "post"
 action = "timeline"
}

This will still call the timeline action of the PostController, but with a params.id
value of “glen”, “peter”, or whatever forms the last part of the URL.

Listing 7.19 UrlMappings.groovy holds URL routing information
Licensed to Mark Watson <nordickan@gmail.com>

184 CHAPTER 7 Services and data binding
 In addition to this URL mapping, you should add one for My Timeline that displays
the timeline for the currently logged in user:

"/timeline" {
 controller = "post"
 action = "personal"
}

All you then need to do is add a personal action in PostController that displays
the current user’s timeline or redirects to the login page if no user is logged in. See the
chapter source on GitHub if you’re not sure how to implement this.

 Your new UrlMappings code will form a core part of your application’s operation,
so you need to think about testing again. You could fire up your web browser and test
all the combinations, but by now you know that we’re way too lazy to invest time in any
boring operation that we can automate. Let’s work smarter by writing testing code to
exercise your new mapping goodness.

NOTE You’ll need to update PostControllerSpec as well, because the cus-
tom URL mapping affects the redirect URLs. Where the tests check for /post/
timeline/<id>, check for /users/<id> instead.

First, you’ll create a UrlMappingsSpec in the root directory of our testing tree (create
the /test/unit/UrlMappingsSpec.groovy file manually). Then you can get busy exer-
cising your new mappings, as shown in the following listing.

import com.grailsinaction.*
import spock.lang.*

@TestFor(UrlMappings)
@Mock(PostController)
class UrlMappingsSpec extends Specification {

 def "Ensure basic mapping operations for user permalink"() {

 expect:
 assertForwardUrlMapping(url, controller: expectCtrl, action:

expectAction) {
 id = expectId
 }

 where:
 url | expectCtrl| expectAction | expectId
 '/users/glen' | 'post' | 'timeline' | 'glen'
 '/timeline/chuck_norris'| 'post' | 'timeline' | 'chuck_norris'
 }
}

The class in this code checks your forward URL mappings when you move from a URL
through to a given controller and action. You’ve also passed in a closure where you’re
testing that the parameters parsed out of the URL are working correctly. You can also
exercise the reverse URL mappings (moving from controller and action back to a

Listing 7.20 UrlMappingsSpec.groovy tests UrlMappings are working
Licensed to Mark Watson <nordickan@gmail.com>

185Creating custom URL mappings
URL). The reverse mapping can be handy when working with <g:link> taglib calls to
make sure you end up with the right-looking URLs.

7.6.2 Optional variables and constraints

When you define custom variables in your mapping string, you can provide con-
straints to make sure the value matches a particular string or list.

 Suppose you want to provide permalinks for a user’s RSS or Atom feeds. You can
implement a feed permalink with an entry like this:

"/users/$loginId/feed/$format?" {
 controller = "post"
 action = "feed"
 constraints {
 format(inList: ['rss', 'atom'])
 }
}

Notice two important things here. You’ve made the format portion of the URL
optional (by suffixing it with ?), so the user can omit it. If they do supply it, you’ve
added a constraints section to ensure that they can only specify “rss” or “atom” as
the format. This means /hubbub/users/glen/feed/atom is fine, as is /hubbub/users
/glen/feed, but /hubbub/users/glen/feed/sneaky will return a 404 page-not-found
error. You can use these constraints to define permalinks with fine-grained URLs.

 The rules in your UrlMapping file are applied in the order in which they appear,
so you can start with more specific rules and fall back to more general ones.

7.6.3 Handling response codes and exceptions

While we’re on the topic of 404 pages, UrlMappings also gives you great flexibility in
mapping response codes to custom pages. If you look in the default mapping file,
you’ll notice this entry:

"500"(view:'/error')

This maps the “Error 500: Internal Server Error” code to /views/error.gsp. You can
use this mechanism to map any of the HTTP response codes to one of your pages. For
example, you could map the standard 500 error to a page inspired by the classic
“tweet of death” Twitter 500 page:

"500"(view:'/failWhale')

If you want your errors handled by a controller action instead of directly by a GSP,
that’s supported, too. This might be convenient for keeping stats on which URLs keep
404ing on your site. Here’s how you could configure the 404 error code to be handled
by a dedicated errors controller:

"404"(controller: "errors", action: "notFound")
Licensed to Mark Watson <nordickan@gmail.com>

186 CHAPTER 7 Services and data binding
You’re not limited to catching response codes; you can also intercept exception condi-
tions directly and pass them through to an appropriate handler. For example:

"500"(controller: "errors", action: "internalError",
 exception: NullPointerException)

You can get a handle to the exception itself in the target controller by accessing the
request.exception property.

class ErrorController {
 def internalError() {
 log.error "Internal system error", request.exception
 // perhaps some stats action
 }
}

7.6.4 Mapping directly to the view

You’ll have situations where you want to map a URL directly to a view and bypass any
controller logic. The classic example is your application’s home page, which you may
implement like this:

"/"(view:"/homepage/index")

Notice that you don’t include the .gsp extension when you construct the mapping.

7.6.5 Wildcard support

URL mappings can also support greedy wildcards using Ant-style wildcards. This is par-
ticularly useful when you impersonate filenames in your back end.

 If you generate PDFs dynamically, but want to provide permalinks on your site, you
may do something like this:

"/documents/$docname**.pdf"(controller:"pdf", action:"render")

The wildcard option lets you match /documents/release-notes/myproject.pdf as well
as /document/manuals/myproject.pdf. In both cases, you’ll get a docname parameter
that you can use in the controller action. The docname will contain the relative path that
$docname matches (for example, release-notes/myproject and manuals/myproject).
This capability is convenient for developing content management systems (CMS)
where you generate the PDF based on dynamic data in a domain object.

 And that’s the end of your exploration of UrlMappings. We’ve finished all you
need to know about controllers. It’s time to review what you’ve taken in.

7.6.6 Named URL mappings

You’ve nearly completed your tour of Grails URL mapping features, but there’s one
more feature to discuss: Named UrlMappings. Grails gives you a handy way of naming
your URL mappings so they’re easier to reference in your views. We’ll talk more about
view-tier concerns in the next chapter, but for now, we wanted to introduce you to the
idea of naming mapping. Let’s show you how to name a mapping:
Licensed to Mark Watson <nordickan@gmail.com>

187Summary and best practices
name chuck: "/timeline/chuck_norris" {
 controller = "post"
 action = "timeline"
 id = "chuck_norris"
 }

Once you’ve named the UrlMapping as chuck, you can reference it later in your view
pages when you want to create links to that controller. For example:

<g:link mapping="chuck">A Link to Chuck's Page</g:link>

You’ll explore more link options in the next chapter, including how you can pass param-
eters to your link tags, but for now we want you to note that naming UrlMappings can
be a handy way to reduce clutter in your view pages.

 And that concludes your tour of URL mappings. When we explore RESTful archi-
tectures further in chapter 12, we’ll discuss several other UrlMapping capabilities
that pertain exclusively to RESTful operations. In particular, we’ll talk about the abil-
ity to route GET/POST/UPDATE/DELETE HTTP methods to different Grails control-
ler methods. But for now, let’s review what you’ve learned and give you some
practical takeaways.

7.7 Summary and best practices
In this chapter, you’ve explored a mountain of skills and techniques related to services.

 You started by implementing a timeline and addPost feature for Hubbub. You
then refactored your posting operations into a PostService that you’ll reuse later in
the book. After tidying up your posting logic, you looked at data-binding tech-
niques, including action arguments, whitelisting, blacklisting, error handling, and
command objects.

 You then had fun with custom controller content types while implementing your
profile page and handling photo uploads. Finally, you learned about back-end logic
and using filters and UrlMappings.

 Let’s look at the key practices from the chapter:

■ Business logic goes in services. Don’t use controllers to do any heavy lifting. They
are designed only for controlling application flow and doing data marshaling.
All your data access and business logic should happen in transactional services.

■ Use the errors object wisely. Make use of the errors object on your domain class to
display validation messages. Take advantage of resource bundles to make error
messages relevant to your application use cases.

■ Raw params is a last resort. You have many great data-binding tricks in your Grails
toolbox. Use them. If you’re binding a few fields, use action arguments. If you’re
binding a bunch of fields, use command objects. Using the params object and
doing magic is your last resort.

■ Learn to love command objects. Take advantage of command objects for form sub-
missions. Don’t use them only for validation—they can also be handy for encap-
sulating tricky business logic.
Licensed to Mark Watson <nordickan@gmail.com>

188 CHAPTER 7 Services and data binding
■ Understand data binding nuances. Data-binding options in Grails are plentiful and
subtle. Understand how data binding works for child objects when form param-
eters are prefixed. Use whitelisting to ensure that data binding doesn’t compro-
mise sensitive fields.

■ Be forgiving with URLs. Use default actions to make URLs more forgiving, and do
the same for custom URL mappings. Permalink-style URLs are much easier to
remember and not difficult to implement. Using UrlMappings can make your
life easier when you get to the View tier.

■ Apply filters. Employ filters when you need to selectively fire back-end logic
based on URLs or controller-actions combos.

You’ve learned how controllers and services fit together in this chapter, and in the
next chapter you’ll build on your knowledge by implementing fine-looking views to
give Hubbub visual sizzle.
Licensed to Mark Watson <nordickan@gmail.com>

Developing tasty forms,
views, and layouts
You’ve spent most of the book building the heart of Hubbub: processing incoming
requests; interacting with the data model; calling business logic; and creating posts,
users, and timelines. It’s been fun, but not visually satisfying. It’s time to leave the
core functionality behind and work on the UI of your web application.

 A great-looking UI has all sorts of subtle impacts on the user. People think that a
visually pleasing application is more robust, performs better, and is more produc-
tive than a bare-bones application, even though none of that may be true.

 In this chapter, you’ll focus on the front end. You’ll cover the basics of putting
forms together, and you’ll investigate how to support multiple browsers with reus-
able layouts. You’ll explore Grails’s handy new resources infrastructure which man-
ages all your visual assets. You’ll also turn your attention to visual effects and

This chapter covers
■ Rendering and processing forms
■ Writing custom tag libraries
■ Creating stunning layouts
■ Adding visual effects and animation
■ Exploring interactive Ajax tags and remoting
189

Licensed to Mark Watson <nordickan@gmail.com>

190 CHAPTER 8 Developing tasty forms, views, and layouts
implement slick animations and Ajax interactions. By the time you’re done, Hubbub
will sparkle.

 You first need to get a good grasp of Grails’s primary view technology, GSP, so your
UI adventure begins with a tour of the core GSP form tags.

8.1 Understanding the core form tags
You’ve used GSPs to handle your HTML output since chapter 1, but we haven’t given
you a solid introduction to them. GSP is an evolution of view technology from JSP. The
things that were difficult in JSP (particularly tag libraries) are simplified and accessible
in GSP. When you catch yourself developing custom taglibs while your application is
running (and not requiring a restart), you’ll fall in love.

 In this section, we’ll cover all the basic GSP tags you’ll use from day to day when
designing forms and user interactions. Whether it’s flow control, iteration, or com-
plex form management with error handling, you’ll find it all here. But it all starts with
the “if” tests.

8.1.1 A handful of essential tags

You’ll spend most of your time working with Grails views, using a few core GSP tags. It’s
time to learn a few of the most common tags.

 The first ones you need to learn are the logical and iteration tags. Every pro-
grammer loves a good if() test, so the following listing introduces <g:if> to test
usernames.

<g:if test="${user?.name == 'Chuck Norris'}">
 Roundhouse Kicks welcome here.
</g:if>
<g:elseif test="${user?.name == 'Jack Bauer'}">
 Lock up your Presidents.
</g:elseif>
<g:else>
 Take a number. We'll call you when we're ready.
</g:else>

The else and elseif blocks are optional. Use if, if ... else, or if ... elseif ...
else in whatever combinations you want.

A brief word on testing the view tier
Because testing UI functionality is tricky (and not that beneficial) from Grails unit
tests, you’ll take a short hiatus from unit testing for the next few sections. In chap-
ter 9, we’ll introduce you to testing Grails views in a real browser using a functional
testing tool called Geb. For now, get a feel for what these tags do when running in
a real browser.

Listing 8.1 The basic if tag
Licensed to Mark Watson <nordickan@gmail.com>

191Understanding the core form tags
 Another common tag is <g:each>, which iterates through a collection or array.
It’s often used when accessing a domain class member collection, such as iterating
through followers:

<g:each var="nextUser" in="${following}">
 ${nextUser.loginId}
</g:each>

The <g:if> and <g:each> tags are the bread and butter of select and iteration, and
you’ll use them often. But you’ll also need to combine them with basic link tags to
keep your user moving through the application. Let’s look at how to introduce work-
flow with the versatile <g:link> tag.

8.1.2 A pocketful of link tags

Another common set of tags is the linking tags. These give you convenient ways to
generate URLs that link to controller actions.

LINK

Here’s an example of the <g:link> tag:

<g:link controller="post" action="global" >Back to Hubbub</g:link>

You can omit the action attribute if you’re linking to the default action. Similarly, if
you’re linking to another action in the current controller, you can omit the controller
attribute. If the previous action was /post/edit, you could link back to the timeline
action (/post/timeline) with this link:

<g:link action="timeline" >Back to Timeline</g:link>

But sometimes you don’t want a full anchor tag—you want the target URL.

CREATELINK

Using target URLs can be handy for Ajax, which works in URL terms, but it’s also
handy for generating tags. For example, when generating thumbnail tags for
your followers, you could use something like this:

<img src="<g:createLink action="renderImage" controller="image"
 id="${nextUser.loginId}"/>" alt="${nextUser.loginId}"/>

This creates a URL such as /image/renderImage/glen. Remember that the last part of
the URL forms the params.id attribute in your controller. All the linking tags support
action, controller, and id attributes, so you have flexibility.

 Although <g:link> and <g:createLink> are the most common link tags, there’s
another one that you’ll use less frequently.

RESOURCE

The <g:resource> tag (which in older Grails versions was confusingly called create-
LinkTo) is handy for generating links to files within your application. Its most com-
mon use is with CSS and static images. It's also aware of the Resources plugin (which
Licensed to Mark Watson <nordickan@gmail.com>

192 CHAPTER 8 Developing tasty forms, views, and layouts
we discuss in chapter 13 when we talk about more advanced UI work), which makes
mapping links to resources DRY. Here’s a common example:

<link rel="stylesheet"
 href="${resource(dir:'css',file:'hubbub.css')}" />

That’s not a tag; that’s a method call!
 You can reference all tags using a method-style syntax—with attribute maps as an

argument—rather than using the more classic JSP-style invocation. The preceding
code line is equivalent to this:

<link rel="stylesheet" href="
 <g:resource dir='css' file='hubbub.css'/>
"/>

In fact, Grails provides a dedicated tag for this niche case of resource linking.

EXTERNAL

To handle the case of CSS, JavaScript, and favicon links, use the <g:external> tag:

<g:external dir='css' file='hubbub.css'/>

Some people find this method-style invocation easier to read when nesting tags within
other tags. In this example, it gets tricky to work out which /> belongs to which tag,
but a good IDE goes a long way to making this clear.

 The link tag names are similar, and this can be confusing. They’re summarized in
table 8.1.

TIP In chapter 7, we explored URL-mapping tricks with entries in Url-
Mappings.groovy. The good news is that the link tags are aware of your
rewrite rules and honor those mappings.

Our next core set of tags involves form handling. Let’s explore the flexibility available
with the Grails form tags.

8.1.3 A tour of the form tags

Forms are the bread and butter of web interactivity. You’ll spend time generating
forms in GSPs and processing their results in controller actions, so it’s important to

Table 8.1 Link-related tags

Tag Description

link Generates an <a href> around the enclosed content.

createLink Generates a URL for embedding in another tag.

resource Generates a URL to a local file.

external Used to create <link> tags for CSS, favicons, and JavaScript.
Licensed to Mark Watson <nordickan@gmail.com>

193Understanding the core form tags
understand how to use the HTML form-field tags in GSPs. You’re free to mix and
match regular by-hand HTML form fields with Grails tags, but you’ll find that the form
tags make things simpler and more maintainable.

 In chapter 7, we introduced a user registration form that used a few of the stan-
dard Grails form tags. The following listing shows a revised attempt at that form using
a greater variety of tags. It also submits the form to the register2 action, which uses a
command object with all the required properties. We’ve introduced a few fake fields
so we can demonstrate what’s available.

...
<g:uploadForm action="register2">
 <fieldset class="form">
 <div class="fieldcontain required">
 <label for="loginId">Login ID</label>
 <g:textField name="loginId"/>
 </div>
 <div class="fieldcontain required">
 <label for="password">Password</label>
 <g:passwordField name="password"/>
 </div>
 <div class="fieldcontain required">
 <label for="passwordRepeat">Password (repeat)</label>
 <g:passwordField name="passwordRepeat"/>
 </div>
 ...
 <div class="fieldcontain required">
 <label for="country">Country</label>
 <g:countrySelect name="country"
 noSelection="['':'Choose your country...']"/>
 </div>
 <div class="fieldcontain required">
 <label for="timezone">Timezone</label>
 <g:timeZoneSelect name="timezone"/>
 </div>
 <div class="fieldcontain required">
 <label for="photo">Photo</label>
 <input type="file" name="photo"/>
 </div>
 <div class="fieldcontain required">
 <label for="referrer">Who introduced you to Hubbub?</label>
 <g:select name="referrer"
 from="${com.grailsinaction.Profile.list()}"
 optionKey="id"
 optionValue="fullName"
 noSelection="${['null':'Please Choose...']}" />
 </div>
 <div class="fieldcontain required">
 <label for="spamMe">Spam me forever?</label>
 <g:checkBox name="spamMe" checked="true"/>
 </div>

Listing 8.2 New registration form demonstrating core form tags

Marks form to
support file uploads

Creates plain
text field

Creates obscured
password field

Other fields from
previous form

Creates country
selection box

Creates timezone
select box

Populates
select box
from database

Creates
check box
Licensed to Mark Watson <nordickan@gmail.com>

194 CHAPTER 8 Developing tasty forms, views, and layouts
 <div class="fieldcontain required">
 <label for="emailFormat">Email Format</label>
 <g:radioGroup name="emailFormat"
 labels="['Plain','HTML']"
 values="['P', 'H']"
 value="H">
 ${it.label} ${it.radio}
 </g:radioGroup>
 </div>
 </fieldset>
 <fieldset class="buttons">
 <g:submitButton name="register" value="Register"/>
 <g:link controller="post">Back to Hubbub</g:link>
 </fieldset>
</g:uploadForm>

Look at all those tags! We’ll spend the rest of this section discussing these core tags,
but this gives you a chance to see them in use first. Figure 8.1 shows how the form
is rendered.

 That’s a fairly comprehensive survey of all the basic form tags. Let’s take a look at
each of them in turn.

THE FORM TAG

All Grails forms start with a <g:form> or <g:uploadForm>, depending on whether
you’re supporting file uploads or not. You configure the form tags with an optional
action and controller name:

<g:form controller="user" action="register">

As with the <g:link> tag we discussed previously, you can usually rely on conventions.
For instance, if you’re inside another User action (such as /user/list), you can describe
your form in terms of the target action, and it’ll default to the current controller:

<g:form action="register">

If you want the form to submit to the current action, you can even omit the action name.

TEXTFIELDS, TEXTAREAS, AND PASSWORDFIELDS

The cornerstone of web form development is using text fields. The three basic vari-
ants include <g:textField> (single line), <g:textArea> (multiline), and <g:password-
Field> (single line with asterisk placeholders).

 Our registration form uses the single-line versions:

<g:textField name="loginId" value="${newuser?.loginId}"/>
<g:passwordField name="password" value="${newuser?.password}"/>

The name attribute refers to the name of the field in the params object being submitted
to the target action. In this example, you have params.loginId and params.password
holding the values.

 All form fields support a value element that represents the prepopulated value of
the form. In the preceding example, you use the safe dereference operator (?.) to
keep your values null-safe for the initial form display.

Creates group of
radio buttons

Navigates
around the app
Licensed to Mark Watson <nordickan@gmail.com>

195Understanding the core form tags
Although you didn’t use a textArea in listing 8.2, they follow the same basic format as
the other text-based fields:

<g:textArea name="bio" value="${newuser.bio}" rows="10" cols="60"/>

This renders a textArea with the specified size, prebound to the target value of
newuser.bio.

How can I pass custom HTML attributes to Grails taglibs?
The textArea tag only explicitly supports name and value attributes, but it passes
through unknown attributes to the generated HTML tag. This means you can use the
standard rows and cols attributes of HTML textAreas.

Figure 8.1 A registration form that uses the core form tags
Licensed to Mark Watson <nordickan@gmail.com>

196 CHAPTER 8 Developing tasty forms, views, and layouts
THE DROP-DOWN JOY OF SELECT

One of the most complex (and sophisticated) Grails form tags is <g:select>. The
select tag lets you generate drop-down boxes populated from back-end data sources or
embedded lists and ranges.

 The tag expects the from attribute to contain a list of objects (or a range, if you
prefer). You then supply an optionKey and optionValue that represent the property
on each object that should be used to generate the drop-down list.

 Let’s revisit the registration example from listing 8.2:

<g:select name="referrer"
 from="${com.grailsinaction.Profile.list()}"
 optionKey="id"
 optionValue="fullName"
 noSelection="${['null':'Please Choose...']}" />

The from attribute retrieves a list of profiles from a back-end domain class. The
optionKey attribute represents the Profile object’s id field, and it’s the value that will
be submitted for the referrer parameter. The optionValue attribute represents the
string that will be displayed in the drop-down list itself—it displays the Profile object’s
fullName field.

 The special case in which nothing is selected is handled by the noSelection attri-
bute, which takes a map with a key of null (the string, not the value).

 The from field is a piece of Groovy code, so you can use any sort of dynamic finder
you like to generate the list, or you can provide a static list if that makes sense:

<g:select from="['Groovy', 'Java', 'Python']" name="preferredLanguage"/>

If you don’t supply optionKey and optionValue, the tag does a toString() on each
element in the list for both the key and the value, which is perfect when you need a
static list.

CHECK BOXES AND RADIO BUTTONS

Check boxes are supported through a simple tag that consists of a name and a value
representing the checked status:

<g:checkBox name="spamMe" value="${newuser.spamMe}"/>

Radio buttons give you more flexibility. The most common way to work with radio but-
tons is via a radioGroup. In listing 8.2, you implemented emailFormat using the
radioGroup tag:

(continued)

This pass-through mechanism exists for all Grails tags, so if you want to render spe-
cific HTML attributes in the final tag output (perhaps a class attribute for CSS styling,
or some of the new HTML5 data-* tags), add them to the tag’s attributes and they’ll
be passed through.
Licensed to Mark Watson <nordickan@gmail.com>

197Understanding the core form tags
<g:radioGroup name="emailFormat"
 labels="['Plain','HTML']"
 values="['P', 'H']"
 value="H">
 ${it.label} ${it.radio}
</g:radioGroup>

Notice that you must supply both labels and values for the buttons.
 The radioGroup tag is also different from checkBox in that the tag iterates through

its contents once for each entry. That’s why you need to supply those ${it.label}
and ${it.radio} elements, which get rendered once for each radio button. This iter-
ating approach gives you flexibility in how the radio buttons are marked up, but it’s an
oddity among the Grails form taglibs.

 Grails also provides a <g:radio> tag for cases when you want to generate your radio
buttons without iteration, but you need to set the same name attribute for each button in
the group. For this reason, it’s often safer to go with the radioGroup approach.

HIDDEN FIELDS

Although we didn’t demonstrate hidden fields in listing 8.2, they’re a special case of a
<g:textField> that doesn’t display in the browser. Here’s an example:

<g:hiddenField name="dateRendered" value="${new Date()}" />

You’re free to put whatever text values you like in a hiddenField, and they’ll end up
in the params map when the form is submitted.

HANDLING DATE SELECTIONS

One of the least-documented Grails tags is the datePicker. This tag creates a series of
controls that allow the user to select a date value.

 The tag renders a series of combo boxes for the user to select the day of the
month, month name, and year (and optionally values for hours, minutes, and sec-
onds), making it ideal for applications that take care of things such as hotel booking
or flight dates. When the user submits the form, the Grails data binder turns the col-
lection of controls into a Java Date object, making date handling straightforward.

 Creating a datePicker is straightforward:

<g:datePicker name="arrivalDate"
 value="${myBooking.arrivalDate}"
 precision="day"/>

The precision field specifies which fields you want the user to enter. In the preced-
ing example, the value of day provides fields for the day, month, and year. Setting
the precision to minute would create additional fields for both hours and minutes
in the datePicker. See the Grails reference guide for a complete set of configura-
tion options.

 One common gotcha when working with the datePicker is that your controller must
use Grails’s data binding mechanism (either via bindData() or a properties assignment)
for the conversion of the datePicker controls to work. In practice, don’t use Groovy-style
property binding to do your initial save. For example, new Booking(params).save()
Licensed to Mark Watson <nordickan@gmail.com>

198 CHAPTER 8 Developing tasty forms, views, and layouts
won’t work when processing forms containing datePickers. Also, don’t expect
params.arrivalDate to return a date—the actual date is built up during data binding
from the several HTML controls that the datePicker tag generates.

TAG SUMMARY

We’ve covered new ground and introduced many of the common tags that you’re
likely to use. Tables 8.2 and 8.3 summarize both the common and less-common tags
that you’ll encounter when developing with Grails.

Table 8.2 Summary of common form tags

Tag Description

g:form Creates a standard HTML form element.

g:uploadForm Creates a form that supports nested file upload elements.

g:textField Creates a single-line text field.

g:passwordField Creates a single-line text field with opaque characters.

g:textArea Creates a multiline text field.

g:checkbox Creates a check box that returns a true or false value.

g:radio and
g:radioGroup

Creates a radio button that can be nested in a radio group for scenarios
where only one option can be selected.

g:select Creates a drop-down box with prepopulated elements.

g:hiddenField Creates a field that isn’t visible in the browser.

g:submitButton Creates a button for submitting the form to the server.

g:actionSubmit Creates a button that submits the form to a particular controller action.
This is not recommended. It’s best to use one submit button per form.
Use styled links for anything that doesn’t submit the form, such as
a cancel option.

Table 8.3 Less-common UI-related form tags

Tag Description

g:datePicker Creates a series of drop-down lists for current time and date selection.

g:currencySelect Displays a user-selectable list of currencies.

g:paginate Displays a series of page navigation links for multipage datasets.

g:timezoneSelect Displays a user-selectable list of Java time zones.

g:countrySelect Displays a user-selectable list of countries.

g:message Displays a message from a message-bundle.

g:hasErrors Tests whether an object has validation errors.
Licensed to Mark Watson <nordickan@gmail.com>

199Understanding the core form tags
TIP Grails lets you use legacy JSP taglibs in GSPs. If you use existing validation
or utility taglibs, there’s no need to rewrite them—add a <% @taglib %> direc-
tive to your GSP. Check out the Grails user guide for examples.

That completes your whirlwind tour of the core Grails form tags. You’ll spend the
rest of the book applying these tags, so don’t feel too overwhelmed—you’ll get
plenty of practice!

 One other tag deserves special consideration because it implements the tricky con-
cept of pagination—datasets that you can browse through over multiple pages. In the
next section you’ll use this tag to add pagination to Hubbub’s timeline feature.

8.1.4 Adding pagination to the timeline

One of the most unusual and useful core tags is <g:paginate>. It renders a series of
navigation links so you can move through multiple pages of results.

 To demonstrate this tag, you’ll create a global timeline in Hubbub, which will show all
the posts in the system. The list of posts is going to grow rapidly, so adding a <g:paginate>
tag allows you to add navigation links to older posts, as shown in figure 8.2.

 Provided that your controller has populated a count of the entries that can be pag-
inated, using the tag is as simple as passing on this total. You can also tell it how many
results you want displayed per page using the max parameter (max is optional, and it
defaults to 10).

<g:paginate action="global" total="${postCount}" max="25" />

The tag divides the total number of entries by the maximum per page and creates
links for each page. Each page link is sneakily marked up to point to the current con-
troller, but you should almost always specify the action for the links and any other
required parameters, such as id. The <g:paginate> tag also adds max and offset val-
ues (for example, max = 25, offset = 50) to the links. For example, when you click
the link for the third page in the timeline, you’ll navigate to /post/global?max=
25&offset=50.

g:renderErrors Renders all validation errors on an object as a list.

g:javascript Used to embed inline JavaScript code. Can also be used to link to an exter-
nal JavaScript file or library.

g:img Creates a Resource-aware link to an image.

Table 8.3 Less-common UI-related form tags (continued)

Tag Description

Figure 8.2 The <g:paginate>
tag in action
Licensed to Mark Watson <nordickan@gmail.com>

200 CHAPTER 8 Developing tasty forms, views, and layouts
Dynamic finders and Where queries know about the max and offset variables, so you
can pass the params map directly to them. The timeline action passes max and offset
values to Post.list(). The new global action looks like this:

def global() {
 [posts : Post.list(params), postCount : Post.count()]
}

The list()parameter honors those values in the query, offsetting the query result list
and returning the next page of posts. We’ll leave it as an exercise for you to create the
corresponding view so you can see the tag in action. The view should be the same as
timeline.gsp, except there is no user variable in the model. You need to display the
contents of the posts variable directly.

 You now have a good grasp of all the core Grails form UI elements. In situations for
which none of the standard tags works, you’ll need to write your own. That’s next.

8.2 Extending views with your own tags
You’ve used many of the standard Grails tags for form elements, conditional branch-
ing, error handling, and even iteration. But what about when the built-in options
aren’t specific enough? To give you an idea of the options for developing your own
tags, let’s write a few.

 Grails supports three different types of custom tags, as listed in table 8.4.

The good news is that you can write whatever simple, logical, and iterative tags you
need. You’ll write one of each type to give you some ideas.

8.2.1 Simple tags

The Hubbub timeline could use a date upgrade. Most Web 2.0 apps support those “5
minutes ago” dates, which look cool and solve time zone issues. Let’s implement a
dateFromNow tag that takes a date and outputs a nice format.

 It comes as no surprise that you start with a template:

grails create-tag-lib com.grailsinaction.Date

This command generates the shell of a taglib in /grails-app/taglib/DateTagLib.groovy.
Implementing simple tags involves processing the attrs parameter and rendering
HTML to the output stream.

Table 8.4 Types of custom tags supported by Grails

Type Description Example

Simple tags Outputs HTML <g:submitButton>

Logical tags Performs a conditional output based on a test <g:if test="">

Iterative tags Iterates through a collection, rendering content for each element <g:each in="">
Licensed to Mark Watson <nordickan@gmail.com>

201Extending views with your own tags
 You invoke the tag like this:

<g:dateFromNow date="${post.created}"/>

Implementing the dateFromNow tag in the DateTagLib class involves creating a closure
called dateFromNow and processing the date attribute. The following code snippet
shows a first draft of the implementation.

class DateTagLib {
 def dateFromNow = { attrs ->
 def date = attrs.date
 def niceDate = getNiceDate(date) // implement this somehow...
 out << niceDate
 }
}

NOTE Grails v2.3+ adds a static defaultEncodeAs property to new tag librar-
ies. We’ll explain encodings in chapter 11, but the tags in this section should
not be encoding their output. That’s why the property isn’t shown.

You access date using attrs.date, pass it to your getNiceDate() method to turn it
into the “x minutes ago” format, and then output the result to the stream. Groovy
overloads the << operator for streaming objects to perform a write(), so there’s noth-
ing more to do than implement your getNiceDate() business logic, which you add to
DateTagLib.groovy as shown in the following listing.

protected String getNiceDate(Date date) {
 def now = new Date()
 def diff = Math.abs(now.time - date.time)
 final long second = 1000
 final long minute = second * 60
 final long hour = minute * 60
 final long day = hour * 24
 def niceTime = ""
 long calc = 0;
 calc = Math.floor(diff / day)
 if (calc) {
 niceTime += calc + " day" + (calc > 1 ? "s " : " ")
 diff %= day
 }
 calc = Math.floor(diff / hour)
 if (calc) {
 niceTime += calc + " hour" + (calc > 1 ? "s " : " ")
 diff %= hour
 }
 calc = Math.floor(diff / minute)
 if (calc) {
 niceTime += calc + " minute" + (calc > 1 ? "s " : " ")
 diff %= minute
 }
 if (!niceTime) {
 niceTime = "Right now"

Listing 8.3 Implementing a much nicer date format for Hubbub

Accesses date attribute
from custom tag

Writes formatted
date to the page
Licensed to Mark Watson <nordickan@gmail.com>

202 CHAPTER 8 Developing tasty forms, views, and layouts
 } else {
 niceTime += (date.time > now.time) ? "from now" : "ago"
 }
 return niceTime
}

You now have a reusable tag to use wherever you need to render a date in “x minutes
ago” format. You used a single attribute (date) for this example, but your tags can
have multiple attributes.

With your trusty <hub:dateFromNow> in place, it’s time to enhance your timeline.gsp
to use your funky new dates. In the next listing, let’s refactor your timeline.gsp to use
the new tag.

<div id="allPosts">
 <g:each in="${user.posts}" var="post">
 <div class="postEntry">
 <div class="postText">${post.content}</div>
 <div class="postDate">
 <hub:dateFromNow date="${post.dateCreated}"/>
 </div>
 </div>
 </g:each>
</div>

It’s one thing to create taglib logic, it’s another thing to test it. Let’s take a short diver-
sion into testing taglibs

8.2.2 Testing taglibs

Grails provides support for taglib tests through use of the applyTemplate() method,
which invokes your tag and returns its output as a string. If your tag takes method

What’s the g:? Using custom namespaces
All your sample tags have taken the form <g:tagName>. The g: prefix is referred to
as the tag’s namespace. If you don’t specify a custom namespace for your taglibs,
they use the <g:> prefix. How do you customize this? Add a new declaration to your
DateTagLib.groovy file:

static namespace = "hub"

If you do this, you can refer to your tags as <hub:dateFromNow ...>. It’s best to use
short namespaces to reduce typing, but avoid single characters, which are informally
reserved for platform taglibs. Use a namespace of “hub” for Hubbub tags so you can
specify <hub:dateFromNow>.

You should always declare a namespace for your tags so they’re less likely to collide
with other tags—particularly with future Grails built-ins.

Listing 8.4 Invoking custom dateFromNow from timeline.gsp

Invokes custom
date taglib
Licensed to Mark Watson <nordickan@gmail.com>

203Extending views with your own tags
arguments, you can take advantage of applyTemplate()’s arguments to pass those in
as a map. If you want to test that an invocation of the dateFromNow tag with the cur-
rent time results in "Right now" returned, you could frame that assertion as:

applyTemplate('<hub:dateFromNow date="${date}" />',
 [date: new Date()]) == "Right now"

Let’s combine your knowledge of Spock’s parameterized @Unroll tests to pepper your
dateFromNow taglib with a few different inputs and make sure that your business
logic is implemented correctly. Add your new test to /test/unit/com/grailsinaction/
DateTagLibSpec.groovy as shown in this listing.

package com.grailsinaction
import grails.test.mixin.TestFor
import spock.lang.*

@TestFor(DateTagLib)
class DateTagLibSpec extends Specification {

 @Unroll
 void "Conversion of #testName matches #expectedNiceDate"() {

 expect:
 applyTemplate('<hub:dateFromNow date="${date}" />',
 [date: testDate]) == expectedNiceDate

 where:
 testName | testDate | expectedNiceDate
 "Current Time" | new Date() | "Right now"
 "Now - 1 day" | new Date().minus(1) | "1 day ago"
 "Now - 2 days" | new Date().minus(2) | "2 days ago"
 }

}

For completeness, it’s good to have parameterized assertions covering the “x minutes
ago” and “x seconds ago,” which we’ll leave as an exercise for you; it may be a good
opportunity to explore Groovy’s amazing TimeCategory1 DSL.

 Now that you’ve implemented a simple tag and seen how to test it, let’s explore
Grails’s support for building logical tags.

8.2.3 Logical tags

Sometimes you want to display a block of content conditionally. Let’s say you want to
display only certain content to Lynx browser users. You could do something like this:

<hub:certainBrowser userAgent="Lynx">
 <p>Best viewed in Internet Explorer. Just kidding, you hardcore Linux

user! Lynx rocks! </p>
</hub:certainBrowser>

Listing 8.5 DateTagLibSpec exercises taglib with numerous values

1 Class TimeCategory, http://groovy.codehaus.org/api/groovy/time/TimeCategory.html.

Mix in all TagLib
test helpers

Tells Spock to parameterize
this test in several runs

Invokes tag
with the
supplied date
Licensed to Mark Watson <nordickan@gmail.com>

http://groovy.codehaus.org/api/groovy/time/TimeCategory.html

204 CHAPTER 8 Developing tasty forms, views, and layouts
You want Linux users to see this message, but all other browsers will pass on by. Let’s
implement a UtilTagLib as shown in the following code snippet.

class UtilTagLib {
 static namespace = "hub"

 def certainBrowser = { attrs, body ->
 if (request.getHeader('User-Agent')
 ➥ =~ attrs.userAgent) {
 out << body()
 }
 }
}

Notice that logical tags take two arguments: attrs, which you’ve already seen, and
body, which contains the content block inside the tag. If the test evaluates to true,
you render the body() to the output stream; otherwise you send nothing.

 This sort of tag is common for security scenarios. For example, when using the
Apache Shiro security plugin, you’ll often employ convenience tags such as isLoggedIn
for conditional output:

<shiro:isLoggedIn>
 <div>Logged in as: <jsec:principal/>
 (<g:link controller="auth" action="signOut">
 sign out
 </g:link>)</div>
</shiro:isLoggedIn>

Notice that the contents of your logical tags may themselves be complex GSP frag-
ments that call other tags in other taglibs. As a tag implementor, you don’t need to
worry because the body() call seamlessly handles everything for you.

 With our exploration of logical tags complete, let’s turn to the last style of custom
tags Grails supports: iteration tags.

8.2.4 Iteration tags

The most complex of the custom tag types is the iteration tag. This type of tag per-
forms multiple invocations of its body() with different input values for each iteration.

 The Hubbub sidebar should contain images for the friends that you’re following.
You could implement it as a standard <g:each> tag, like this:

<!-- People I am following -->
<div id="friendsThumbnails">
 <g:each var="followUser" in="${following}">
 <img src="
 <g:createLink action="tiny" controller="image"
 id="${followUser.loginId}"/>
 "alt="${followUser.loginId}"/>
 </g:each>
</div>

Checks that User-Agent
header matches tag attribute

Displays any content that
was inside original tag
Licensed to Mark Watson <nordickan@gmail.com>

205Extending views with your own tags
An eachFollower tag would provide a more visually pleasing approach and let you do
something like this:

<hub:eachFollower in="${following}">
 <img src="
 <g:createLink action="tiny" controller="image"
 id="${followUser.loginId}"/>
 " alt="${followUser.loginId}"/>
</hub:eachFollower>

The eachFollower tag can be implemented with an iterating call to the body method:

def eachFollower = { attrs, body ->
 def followers = attrs.followers
 followers?.each { follower ->
 body(followUser: follower)
 }
}

But that’s work to replicate the standard behavior of <g:each>. To be honest, we can’t
think of many scenarios where you’re not better off using the more explicit semantics
of <g:each>. A smarter use of your time would be implementing a tag for user thumb-
nails, which you’ll explore next.

8.2.5 Calling one tag from another

When you’re developing your own custom tags, you often want to reuse standard
Grails tags from within your own implementation. If you were building a custom tag
that incorporated links to a standard controller action, you’d probably want to take
advantage of the existing createLink tag.

 Let’s apply that thinking to a new custom tag so you can see this reuse in action.
Take the example of generating URLs for those tiny follower images. As you saw in the
last section, you’re currently doing this in HTML with dynamic URL construction:

<img src="
 <g:createLink action="tiny" controller="image"
 id="${followUser.loginId}"/>
 " alt="${followUser.loginId}"/>

It would be much nicer to hide that in a custom tinyThumbnail tag, like this:

<hub:tinyThumbnail loginId="${followUser.loginId}"/>

When you implement your tinyThumbnail tag (which you'll do in /grails-app/taglib/
com/grailsinaction/UtilTagLib.groovy), you want to reuse the functionality built into
the standard g:createLink tag. And you can! Here’s your custom implementation:

def tinyThumbnail = { attrs ->
 def loginId = attrs.loginId
 out << "<img src='"
 out << g.createLink(action: "tiny",
 controller: "image", id: loginId)
 out << "' alt='${loginId}'"
}

Reuses existing
Grails tag
Licensed to Mark Watson <nordickan@gmail.com>

206 CHAPTER 8 Developing tasty forms, views, and layouts
As you saw previously, you can invoke an existing tag using method-style invocation.
The namespace must be used as the object of the method call (“g” for the standard
taglibs, as shown previously).

 Now that you’ve learned how to create your own custom tags, the next step is to
learn how to improve application layouts.

8.3 Adding delicious layouts
You’ve spent plenty of time implementing functionality for Hubbub, but you’ve spent
none on its appearance. Grails makes implementing features fast and enables you to
make your application look and feel good. At the heart of look-and-feel matters is
Grails’ support for layouts.

 You’ve used templates since chapter 4 (and we even touched on them in chapter 1),
but we never explained how they work. All the heavy lifting for layout functionality in
Grails is done via a popular Java layout library called SiteMesh (www.sitemesh.org/).
You may not have been exposed to SiteMesh before, so let’s take a look at it.

8.3.1 Introducing SiteMesh

SiteMesh operates as a page decorator. You render plain HTML for your page, and it’s
passed through a SiteMesh decorator (to add the header, footer, sidebars, and so on),
and the final merged page is rendered to the browser. Think of it like the example
shown in figure 8.3.

 One of the most powerful and sophisticated features of SiteMesh is merging ele-
ments from your target page into your decorator. This makes more sense with an
example, so let’s explore how SiteMesh is used to implement Hubbub’s common look
and feel.

/post/timeline

Hubbub logo

Timeline for
Chuck Norris

Sidebar

Hubbub footer

layout.gsp

Hubbub logo

(Merge content
page here) Sidebar

Hubbub footer

Timeline for
Chuck Norris

timeline.gsp

SiteMesh

Figure 8.3 SiteMesh in operation merging pages
Licensed to Mark Watson <nordickan@gmail.com>

http://www.sitemesh.org

207Adding delicious layouts
EXPLORING THE MERGING PROCESS

Let’s review your template from chapter 4—a simple layout that adds a title field and a
basic footer. You placed your layouts in /grails-app/views/layouts, but because you
want your template to apply to your scaffolding code too, you edited the standard tem-
plate, called /grails-app/views/layouts/main.gsp. The following listing reproduces
that template.

<html>
<head>
 <title>Hubbub » <g:layoutTitle default="Welcome" /></title>
 <g:external dir="css" file="hubbub.css"/>
 <g:external dir="css" file="main.css"/>
 <g:layoutHead />
</head>
<body>
 <div>
 <div id="hd">
 <g:link uri="/">
 <g:img id="logo" uri="/images/headerlogo.png" alt="hubbub logo"/>
 </g:link>
 </div>
 <div id="bd"><!-- start body -->
 <g:layoutBody/>
 </div> <!-- end body -->
 <div id="ft">
 <div id="footerText">Hubbub - Social Networking on Grails</div>
 </div>
 </div>
</body>
</html>

You start by laying out the title. You prefix all title elements with “Hubbub >>”, fol-
lowed by the title value from the target page B. If the target page doesn’t have a cus-
tom <title> element, you display “Welcome”. This gives you a convenient way to
change all the titles in one place.

 Use the SiteMesh <g:layoutHead> tag c to merge any content from your target
page’s <head> element and the <g:layoutBody> tag d to merge in the contents of
your target page’s <body> element.

 Once all those tags fire, your target view page will be merged with your layout
template to give a consistent layout throughout the application. This approach to
markup offers a double win. Your content pages become simple and uncluttered,
and your layout pages make it easy to change the look and feel of your application
with a single edit.

Listing 8.6 A basic custom template for Hubbub

Merges <title> element
from content page b

Merges <head> element
from content page c

Merges <body> element
from content page

 d
Licensed to Mark Watson <nordickan@gmail.com>

208 CHAPTER 8 Developing tasty forms, views, and layouts
APPLYING LAYOUTS BY CONVENTION

In chapter 1, we introduced a simple way of applying layouts by convention. It’s time
to review the options and applications of them.

 If you’re dealing with pages produced by PostController, you could control its
decoration with the techniques listed in table 8.5.

Using conventions eliminates the need to specify the <meta> tag and makes your
application more maintainable. When you open a GSP file and don’t see any meta
magic, you know exactly where to look for a decorator (/views/layouts/<controller-
Name>), which makes maintenance more straightforward.

Displaying application versions in footers
The <g:meta> tag gives you access to all the entries in your Grails application.properties
file in the root directory of your project. It’s often convenient to display the version of
your application in the footer, for reporting issues against, and to confirm that a new
version has deployed successfully. You might display your current application and
Grails version in a footer using code like this:

Version <g:meta name="app.version"/>
on Grails <g:meta name="app.grails.version"/>

You can change the version of your application at any time by using the grails
set-version command from the command line, or by editing the application.prop-
erties file directly. The version number of your application affects the naming of your
target WAR file, so it can be handy to bump the number with each deployed version
to allow you to keep old copies of WAR artifacts around for an immediate rollback
if things go bad. (This isn’t a substitute for version control, but it’s a cheap roll-
back option nonetheless.)

Table 8.5 Conventions for applying layout templates

Apply template to ... Example of convention or technique

All actions in a controller. Create layout in /layouts/post.gsp
(or create a static field on the controller called layout).
static layout = 'post'

A specific action in
a controller.

Create layout in /layouts/post/list.gsp.

A portion of a target
page.

Include tag in target page.
<g:applyLayout name="postFragment">Hi</g:applyLayout>

Override any conventions
explicitly for a single
page ...

Include tag in target page.
<meta name="layout" content="vanilla"/>

Or use a single default
layout as a fallback for
your entire application.

/layouts/application.gsp
(You can even customize its name using the Config element.)
grails.sitemesh.default.layout = 'base.gsp'
Licensed to Mark Watson <nordickan@gmail.com>

209Adding delicious layouts
 While we’re on the subject of real-world approaches to page layouts, it’s time to
explore other ways to make them simpler.

8.3.2 Standardizing page layouts
If you’ve done any work laying out multicolumn web applications, you already know
how complex a standard CSS layout can be. Browsers may not float the divs correctly to
give you the right gutter, it’s hard to get sections of your page to grow while others stay
static, you have to contend with font-size issues, and the page never looks good in
Internet Explorer.

 You need to address all these issues in your application layouts, and it’s time we
showed you the best way to go about it. First, sketch out how you want Hubbub to
look. Figure 8.4 shows a rough sketch for the app.

 You can see the top header followed by a tabbed area with a right sidebar, followed
by a full-width footer. If you were coding this by hand, you’d be in for a shock. This
kind of CSS layout involves a massive amount of work and is difficult to keep consistent
across browsers. In Grails, the smartest way to handle CSS layouts is with a gridding sys-
tem such as Bootstrap or the 960 Grid System (960.gs).

 Bootstrap gives you a simple CSS-based mechanism for fine-grained control of
browser layouts. It’s a small CSS (and optionally JavaScript) file that you can add to
your application to solve your cross-browser layout and formatting dramas for good.
Even on Internet Explorer.

 You can download the CSS file and view comprehensive documentation from the
Bootstrap page (http://getbootstrap.com/), where you’ll also find great samples of all
the different gridding, layout, and formatting components included in Bootstrap. You
can even use the online builder to generate your basic template layout for you. Fig-
ure 8.5 shows a sample of Jetstrap, a third-party Bootstrap GUI builder which you can
use directly from your browser to generate a basic template for your site. In this exam-
ple, you’re building your layout from the sketch in figure 8.4.

 Once you’ve got the layout you want, click the CSS/HTML button and you’ll be pre-
sented with your template ready to customize. The following listing shows the Boot-
strap code generated by Jetstrap from the layout in figure 8.5.

Figure 8.4 A mockup of
the Hubbub UI
Licensed to Mark Watson <nordickan@gmail.com>

http://getbootstrap.com/

210 CHAPTER 8 Developing tasty forms, views, and layouts
<div class="navbar navbar-fixed-top navbar-inverse">
 <div class="navbar-inner">
 <div class="container-fluid">

 Hubbub

 <ul class="nav">
 <ul class="nav nav-tabs">

 <li class="active">

 My Timeline

 Global Timeline

 Search

 <li class="">

 Advanced Search

Listing 8.7 The Bootstrap-generated code

Figure 8.5 The Jetstrap builder makes cross-browser CSS layouts easy.
Licensed to Mark Watson <nordickan@gmail.com>

211Adding delicious layouts

 <li class="">

 Register

 </div>
 </div>
</div>
<div class="container-fluid">
</div>
<div class="row-fluid">
 <div class="span12">
 <div class="control-group">
 <label for="textarea1">
 What is

 Chuck Norris

 hacking on right now?
 </label>
 </div>
 <textarea id="tweetContent" name="textarea1"></textarea>
 </div>
</div>

With a few tagged Bootstrap divs, you have a cross-browser, safely degrading CSS lay-
out that will look the same on any browser. All you need to do now is incorporate your
<g:layout*> tags to merge in the head and body, and add CSS styling to give you a
better idea of what it might look like.

 For the rest of the book, we’ll stick to the hand-coded layout in listing 8.6. It results
in a less flexible and useful layout, but helps keep things simple. We do recommend
using something such as Bootstrap on real projects.

 An important part of Grails is its philosophy of DRY. Layouts are one aspect of this,
because they allow you to decorate multiple pages with the same outline markup. But
what if you have pieces of markup repeated inside views? That’s where Grails tem-
plates come in.

8.3.3 Markup fragments with templates

When you want to reuse portions of your application layout throughout your applica-
tion, that content is a candidate for a template. Templates encapsulate fragments of
GSP functionality and can be incorporated in your pages using the <g:render> tag.

 Consider the timeline pages you have. All of them display a list of Hubbub mes-
sages in the same way. You should factor that message list out into a separate GSP tem-
plate. Create the file /grails-app/views/post/_postEntry.gsp (note the underscore)
and set its content to the following:
Licensed to Mark Watson <nordickan@gmail.com>

212 CHAPTER 8 Developing tasty forms, views, and layouts
<div class="postEntry">
 <div class="postText">${post.content}</div>
 <div class="postDate">
 <hub:dateFromNow date="${post.dateCreated}"/>
 </div>
</div>

As you can probably tell, this represents the markup for a single post. It’s trivial to get
a list of posts, though, by using this form of the <g:render> tag in the timeline views,
such as timeline.gsp:

...
<div id="allPosts">
 <g:render template="postEntry" collection="${user.posts}" var="post"/>
</div>
...

This will apply the markup fragment to all the posts in the user.posts collection,
ensuring that each post is made available to the template as the variable post. It’s also
worth noting that when you reference the name of a template, you leave out the
underscore and the .gsp suffix.

 The template can also be applied to a single post using either this syntax:

<g:render template="postEntry" bean="${singlePost}" var="post"/>

which is analogous to the collection-based variant we just showed, or:

<g:render template="postEntry" model="[post: singlePost]"/>

The advantage of this second form of the <g:render> tag is that you can pass multiple
variables into the template.

 What if you want to use the template form in a view that’s not associated with
PostController? You can still do that, but you have to specify an absolute path for
the template:

 <g:render template="/post/postEntry" bean="${singlePost}" var="post"/>

The leading slash marks the template name as a path relative to the views directory.
 Templates are great for self-contained pieces of view functionality. You can even use

them in controllers when rendering Ajax fragments—you’ll get into that in section 8.4.
If you want, have a go at moving the section of the page for posting a new message into
its own template. That’s everything inside the <div id="newPost"> element.

 With your standard layouts now in place, it’s time to let the user choose their own
look and feel for Hubbub. This is called skinning, and Grails makes it easy to implement.

8.3.4 Adding skinning

Hubbub looks great with its standard blue and gray design. But social-networking sites
generally let users skin their timelines. Let’s add skinning to Hubbub.
Licensed to Mark Watson <nordickan@gmail.com>

213Adding delicious layouts
 First, you’ll need a way to select a preferred skin, and for that you’ll need to add a
new optional field to the Profile object, as shown in the following listing.

package com.grailsinaction
class Profile {
 static belongsTo = User
 String fullName
 // ... other fields omitted
 String skin

 static constraints = {
 fullName(nullable: true)
 // ... other constraints omitted
 skin(nullable: true, blank: true, inList: ['blues', 'nighttime'])
 }

With the skin in place, you need to customize the user’s timeline page to take advan-
tage of it. If the user has a skin for their timeline, you’ll apply it using CSS. The follow-
ing code snippet shows an extract of the updated timeline.gsp view, with the new
markup in italics.

<html>
 <head>
 <title>Timeline for ...</title>
 <meta name="layout" content="main"/>
 <g:if test="${user.profile?.skin}">
 <g:external dir="css" file="${user.profile.skin}.css"/>
 </g:if>
 </head>
 <body>
 ...
</html>

The updated timeline checks to see if the user has a skin configured, and, if so, it
adds a link to the appropriate style sheet from the CSS directory. The CSS skin files
override the background colors of body elements and heading styles. For skinning
to work well, it’s important that you make good use of CSS classes and IDs to mark
up your view pages.

 You can find the CSS style sheets for the “blues” and “nighttime” in the chapter
source on GitHub. Have a look in the web-app/css directory. Figure 8.6 shows the
“nighttime” skin in action.

 If you need to support skinning site-wide rather than for individual pages, you’re
better off using filters, which we introduced in chapter 7. Set up your skin name in a
filter and pass it using a session-scoped variable. Then configure the CSS skin in your
main layout page, and you’re set.

Listing 8.8 Setting up to select a preferred skin

Adds support for
per-user skinning

Checks whether
user has a skin

Applies user’s
preferred skin
Licensed to Mark Watson <nordickan@gmail.com>

214 CHAPTER 8 Developing tasty forms, views, and layouts
8.3.5 Implementing navigation tabs

With the skinning in place, it’s time to turn your attention to navigation. Which UI ele-
ments will you provide to allow the user to navigate around the application? The most
recognizable option is to display a series of navigation tabs at the top of the page.

 In the early days of Grails, this tab-style navigation was done by hand. Typically
you’d write a tag to generate menu items and do the hard work of highlighting the
appropriate tab based on the current controller action. Things got messy quickly.

 Since Marc Palmer’s Navigation plugin came on the scene, generating navigation
tabs has become straightforward. We’re going to cover third-party plugins in depth in
chapter 10, but for now we’ll walk you through the basics of installing and using the
Navigation plugin.

 To install the plugin, update your /grails-app/conf/BuildConfig.groovy with the
required plugin co-ordinates:

plugins {
 ...
 runtime ":navigation:1.3.2"
}

Once the plugin is installed, you can mark your controller classes with a new navigation
property and tell the plugin which actions from your controller to display in your
menu. You want to generate a menu for Hubbub that looks something like figure 8.7.

Figure 8.6 The nighttime theme in action
Licensed to Mark Watson <nordickan@gmail.com>

215Adding delicious layouts
The Navigation plugin makes generating the menu straightforward. The following
listing shows extracts of the updated UserController and PostController with new
navigation blocks that specify what to include in the menu.

class PostController {
 static navigation = [
 [group:'tabs', action: 'personal', title: 'My Timeline', order: 0],
 [action: 'global', title: 'Global Timeline', order: 1]
]
 // ... other code omitted
}
class UserController {
 static navigation = [
 [group:'tabs', action:'search', order: 90],
 [action: 'advSearch', title: 'Advanced Search', order: 95],
 [action: 'register', order: 99, isVisible: { true }]
]
 // ... other code omitted
}

For each navigation block, you provide a series of maps, each representing one item
in the menu. In each map, you provide the action that fires when the menu is clicked,
along with an optional title. If you don’t specify a title, the plugin uses a nicely for-
matted name of the action (register becomes “Register” and advSearch defaults to
“Adv Search”).

 You can use the order property to control where in the menu your items are posi-
tioned. (In the future, third-party plugins may use this field to include their own items
in your menus automatically.) You can even supply an isVisible property that’s tested
when the menu is rendered. For example, you might configure the Register menu to
display only if the user isn’t logged in.

 Now that your menu blocks are defined, add two entries in your template to dis-
play the menu:

■ In the head element of your main layout, add a <nav:resources/> element.

<head>
 ...
 <nav:resources/>
</head>

This incorporates the menu CSS elements. (You can override default menu styl-
ing with your own styling, but the defaults look great.)

Listing 8.9 Defining menu options in your controller

Figure 8.7 The planned navigation menu
Licensed to Mark Watson <nordickan@gmail.com>

216 CHAPTER 8 Developing tasty forms, views, and layouts
■ In the body of your layout, position the menu on the page using a <nav:render/>
tag; specify the group attribute from your navigation block:

<div id="bd"><!-- start body -->
 <nav:render group="tabs"/>
 <g:layoutBody/>
</div>

With those two changes, your menu is ready to roll. Figure 8.8 shows the new menu
in operation.

 With your menu looking slick, it’s time to explore other ways to take your UI to the
next level. One obvious way is to use Ajax to update the user’s timeline in-place when
they add a new post. But before you get started, you need to learn how Grails inte-
grates Ajax.

8.4 Applying Ajax tags
We’ve saved the best UI work for last. In this section, you’ll use Ajax to take the Hub-
bub UI experience to a whole new level. You’ll get a taste for dynamically changing
your Hubbub page in-place using remote calls to back-end code. Then you’ll create
visual sizzle with JavaScript animation and effects.

 But first you need to lay the foundation by choosing a JavaScript library to do the
heavy lifting.

8.4.1 Choosing a JavaScript library

Grails implements its built-in Ajax functionality through adaptive tag libraries. All the
standard Ajax tags can be backed by whatever JavaScript library you prefer and still
expose the same API to the client and server. jQuery is supported out of the box, and
Dojo, YUI, and Prototype are supported using plugins. That means you’re free to start
with one library and change to a different one as your application fills out.

Figure 8.8 The Navigation plugin painlessly handles all your menu needs.
Licensed to Mark Watson <nordickan@gmail.com>

217Applying Ajax tags
Not all JavaScript libraries play nicely together, so if any of your GSPs use a particular
library, it makes sense to use that for your Ajax implementation, too. For instance, if
you’re planning any animation effects with Scriptaculous, it makes sense to choose
Prototype (because that’s what Scriptaculous uses under the hood). If you’re planning
to use YUI autocomplete, you may as well use YUI for your Ajax remoting, too, because
you’ve already burned the page-load time bootstrapping the YUI infrastructure.

 jQuery seems to be the most widely used by Grails developers (and because it
comes bundled with Grails, there’s low friction in getting up and running), so you’ll
use jQuery for the examples.

8.4.2 Essential Ajax form remoting

It’s time to apply Ajax style to your user’s timeline action. You’ll restyle your posting form
to submit post contents using Ajax, then update your timeline with the latest entries.

 The first step in using an Ajax call is importing your preferred library. You’ll start
by updating your timeline.gsp head element to tell Grails that you want to use jQuery
as your remoting library. Using the library attribute of the javascript tag generates
HTML tags for the multiple source JavaScript files that comprise the specified library.
The new markup is in italics:

<head>
 <title>Timeline for ${user.profile.fullName}</title>
 <meta name="layout" content="main"/>
 <g:javascript library="jquery"/>
</head>
...

At this point, you also need to update the layout because you’re using the Resources
plugin. If you don’t add the following lines (in italics) to main.gsp, the relevant
JavaScript code won’t appear in your pages and the Ajax won’t work!

<html>
<head>
 ...
 <g:layoutHead />
 <r:layoutResources />
 <nav:resources/>
</head>
<body>
 ...
 </div>
 <r:layoutResources />
</body>
</html>

With your library selected and the Resources plugin primed (we’ll talk more on this in
chapter 13), you can now update the posting form to submit the Post contents
remotely. Grails provides the <g:submitToRemote> tag to bundle the contents of a

Listing 8.10 Updating the layout

Resources plugin requires two
<r:layoutResources> tags
either in a view or its layout
Licensed to Mark Watson <nordickan@gmail.com>

218 CHAPTER 8 Developing tasty forms, views, and layouts

Cr
Aja
form and send it via Ajax to a back-end service. The following listing shows the
updated form definition.

<g:form>
 <g:textArea id="postContent" name="content" rows="3" cols="50"/>

 <g:submitToRemote value="Post"
 url="[controller: 'post', action: 'addPostAjax']"
 update="allPosts"
 onSuccess="clearPost(data)"
 onLoading="showSpinner(true)"
 onComplete="showSpinner(false)"/>
 <g:img id="spinner" style="display: none"
 uri="/images/spinner.gif"/>
</g:form>

The <g:form> and <g:textField> tags remain unchanged, other than the removal of
the action attribute from the former. Only a <g:submitToRemote> tag has been intro-
duced B. Its only required attribute is url, which is a map with controller and
action values c. You’ll add a new addPostAjax() action in the PostController to
handle the new submission.

 If the update attribute is specified d, it should be the id of the div to update
when the call is complete. In this case, the addPostAjax action returns the updated
HTML for the timeline, which is in a div with id allPosts.

 If the onSuccess attribute is specified e, it should contain the JavaScript function
to call after the form submission has finished successfully (no back-end 404s or other
errors). Whatever function you supply to onSuccess takes an argument (data) which
is the XMLHTTPResponse that represents the back-end call. In your case, use clear-
Post() to clear the textArea when the user has successfully posted the new item.

 Finally, onLoading and onComplete are called before and after the Ajax call, which
you take advantage of to show and hide an animated spinner image f.

 If you’re curious about those clearPost() and showSpinner() JavaScript calls,
there’s no magic in them—only a few lines of jQuery to keep the UI responsive. It’s
always good to show and hide an image when doing Ajax calls so that the user knows
that something is happening. Add the JavaScript shown in the following code snippet
to your timeline.gsp to keep the user up to date.

<g:javascript>
 function clearPost(e) {
 $('#postContent').val('');
 }
 function showSpinner(visible) {
 if (visible) $('#spinner').show();
 else $('#spinner').hide();
 }
</g:javascript>

Listing 8.11 Adding a new Post via Ajax

eates
x link

 b

Specifies
map of
params

to submit c

Sets id of
HTML element
to update

 d

Handles events
generated by
the tag

 e

Adds the
spinner image f
Licensed to Mark Watson <nordickan@gmail.com>

219Applying Ajax tags
With your client interface implemented, you need to implement the addPostAjax
action in PostController. The following listing shows the back-end code you need.

def addPostAjax(String content) {
 try {
 def newPost = postService.createPost(
 session.user.loginId, content)
 def recentPosts = Post.findAllByUser(
 session.user,
 [sort: 'dateCreated', order: 'desc', max: 20])
 render template: 'postEntry',
 collection: recentPosts,
 var: 'post'
 } catch (PostException pe) {
 render {
 div(class:"errors", pe.message)
 }
 }
}

Because you did the hard work of abstracting the PostService in chapter 7, you can
reuse it for your Ajax implementation here B. Note that we’ve assumed that your
makeshift security filter is populating the session.user object—you will have to add
the addPostAjax action to the filter definition to enable this. In the security chapter
you’ll revisit the login process to make this consistent. After you create your new Post,
you retrieve the latest posts to send back to the timeline c. Then it’s a matter of reus-
ing the postEntry template you developed previously and passing it your collection of
recent posts d. This sends the HTML of the timeline body back to the client for
updating the allPosts div.

 If an error happens in the process, you’ll use the markup builder (discussed in
chapter 2, section 2.4.4) version of render e to send back a div with the error mes-
sage (styled as an error, so the big pink warning box is displayed).

 Figure 8.9 shows your Ajax timeline in progress with your stylish Ajax spinner giv-
ing the user feedback to indicate things are under way.

 The submitToRemote tag you used in listing 8.9 has other options that you haven’t
explored yet, including the ability to handle server response codes such as on404 and
other event options. It can also handle JSON return values, which you’ll use later in
the chapter. For full coverage of its capabilities, check out the Grails user guide.

 With your basic Ajax functionality in place, it’s time to explore how to use anima-
tion libraries to make the entire app more visually stunning.

Listing 8.12 Implementing the addPostAjax() back end

Creates post
via service

 b

Queries 20 most
recent posts c

Renders postEntry template
for each query result d

Handles bad situations
with error message e

Figure 8.9 The Ajax
spinner in action
Licensed to Mark Watson <nordickan@gmail.com>

220 CHAPTER 8 Developing tasty forms, views, and layouts
8.4.3 Adding sizzle: animation and effects

You’ve already given Hubbub a makeover in this chapter, but it’s time to go the whole
nine yards and add animation effects for true Web 2.0 sizzle. If the last time you used
JavaScript effect libraries was doing marquees in the late 90s, there’s good news: things
have come a long way.

 Through libraries such as jQuery, YUI, and Scriptaculuous, visually stunning and cross-
browser JavaScript has become a reality. A new level of engineering has created reusable
libraries that degrade gracefully and integrate unobtrusively into your application.

 You’ll use jQuery for your visual effects. It comes with Grails, so there’s nothing to
install, and you can get straight to business. It also has many effects that can usually be
implemented as one-liners.

INTRODUCING JQUERY ANIMATIONS

jQuery is a JavaScript library for a wide range of DOM manipulation techniques
(including adding impressive visual effects to your application). Fading, appearing,
flashing, resizing, and animating are all common UI interactions that jQuery offers.

 If you haven’t used a JavaScript animation library, you might be intimidated by the
thought of complex animation code. Be comforted: jQuery provides good defaults for
an incredible amount of behavior, making everything look great, even for the artisti-
cally challenged.

 The first step in using the library is to include it in your page header (which you
applied previously):

<head>
 ...
 <g:javascript library="jquery" />
</head>

With the library imported, using animation effects is a simple matter of invoking one
of the numerous jQuery effect methods [for example, $('myDiv').fadeIn()]. Let’s
take it for a test drive by adding a TinyURL bar to Hubbub.

TIP If you're chasing a full list of jQuery animations, you can find them on
the jQuery website at http://api.jquery.com/category/effects/.

SLICK FADES ON TINYURLS

If you’ve ever used Twitter, you’ll notice that any URLs you place in your messages are
automatically compressed via URL shrinking sites such as TinyURL.com. Because URLs
can be long, this URL-shrinking process helps keep posts that incorporate URLs under
the 140-character limit that Twitter imposes. It’s high time you added a TinyURL fea-
ture to Hubbub. And while you’re at it, you’ll add JavaScript effect know-how to make
it look slick.

 To make it easy for users to add URLs to their posts, you’ll add a TinyURL entry box
to the posting form. But users need a TinyURL entry box onscreen only when they
want to include a URL in their post. So let’s make a div to hold the TinyURL entry
form on your timeline.gsp but have it fade in and dissolve out as required.
Licensed to Mark Watson <nordickan@gmail.com>

http://api.jquery.com/category/effects/

221Applying Ajax tags
 To make the div invisible by default, use a display:none; CSS tag:

...
<g:form>
 ...
</g:form>
<div id="tinyUrl" style="display:none;">
 <g:formRemote name="tinyUrlForm" url="[action: 'tinyUrl']"
 onSuccess="addTinyUrl(data);">
 TinyUrl: <g:textField name="fullUrl"/>
 <g:submitButton name="submit" value="Make Tiny"/>
 </g:formRemote>
</div>
...

You’ve also taken advantage of the Grails <g:formRemote> tag in this code. The form-
Remote tag takes the contents of the form, serializes all the fields, and submits them as
an Ajax request.

 With your Ajax form now submitting, add a JavaScript link on your form to fade
the div in and out as required. A simple link next to the Post button is fine:

...
<g:submitToRemote ... />

 Show TinyURL

...

Then you need a little JavaScript to implement the appearing and dissolving. The
code shown in the following listing can go almost anywhere in timeline.gsp, but it’s a
good idea to keep it close to the TinyURL form.

...
<div id="tinyUrl">
 ...
</div>
<r:script disposition="head">
function toggleTinyUrl() {
 var toggleText = $('#showHideUrl');
 if ($('#tinyUrl').is(':visible')) {
 $('#tinyUrl').slideUp(300);
 toggleText.innerText = 'Hide TinyURL';
 } else {
 $('#tinyUrl').slideDown(300);
 toggleText.innerText = 'Show TinyURL';
 }
}
</r:script>
...

Listing 8.13 Implementing appearing and dissolving
Licensed to Mark Watson <nordickan@gmail.com>

222 CHAPTER 8 Developing tasty forms, views, and layouts
You’ll dive deeper into that r:script tag in chapter 13, but for now note that the magic
disposition="head" call ensures that this piece of JavaScript is pushed to the top of the
page in the <head> section of the HTML, which means you can happily take advantage
of it later in the page knowing that it’s already been loaded into the browser.

 The jQuery animation calls are one-liners, $('myDiv').slideDown() and $('myDiv').
slideUp(), which pass the div id of your TinyURL form. This effect pair causes the
TinyURL bar to smoothly appear and disappear from the top down.

 You can also customize the time it takes for the effects to complete. We like to keep
effects fairly quick to ensure they don’t distract from the workflow. For example, we
tuned the slideDown() to take half the default time:

$('tinyUrl').slideDown(300)

Consult the jQuery documentation (http://api.jquery.com/category/effects/) for the
details of the effect parameters. Each API page on the jQuery side includes examples
at the bottom, so you can see the effect running in your browser.

 jQuery has shortcuts for most of the common UI features you’ll want to animate.
Now that you know how effects work, let’s refactor your example with a one-liner:

<a href="#" id="showHideUrl"
 onclick="$('tinyUrl').slideToggle(300); return false;">
 TinyURL Bar

$.slideToggle() does all the appear and fade work you implemented in your custom
JavaScript in a single call. Notice that we explicitly return false from onclick to
ensure the browser doesn’t follow the # link.

HANDLING JSON RETURN VALUES

It’s good to have your TinyURL bar fading in and out, but what about when the user
wants to use it? You’d like them to enter a URL, click the Make Tiny button, and have
the post field automatically append the tiny URL to the current post’s textArea.

 To implement that, you need a way to do the following:

1 Bundle up the current full URL from the text field and send it to the back end
via Ajax.

2 Calculate the TinyURL in some back-end controller action, and return the value.
3 Catch the return value in your view and append it to the textArea of the post.

You already have the code for the first step in the <g:formRemote> tag. The form sub-
mits the URL (as the fullUrl parameter) to the tinyUrl action on PostController.
When the remote call completes, the onSuccess attribute contains the JavaScript
function to be called on success.

 The gee-whiz aspect is that the onSuccess target gets passed the result of the
remote action. If your action returns text, XML, or JSON, you can use it in your client-
side JavaScript function.
Licensed to Mark Watson <nordickan@gmail.com>

http://api.jquery.com/category/effects/

223Applying Ajax tags
 Let’s implement your controller. The following code snippet shows your TinyURL
implementation, which you add to PostController. You’ll take the fullUrl the user
passes in, and hand it off to the TinyURL website for shrinking.

def tinyUrl(String fullUrl) {
 def origUrl = fullUrl?.encodeAsURL()
 def tinyUrl =
 new URL("http://tinyurl.com/api-create.php?url=${origUrl}").text
 render(contentType:"application/json") {
 urls(small: tinyUrl, full:fullUrl)
 }
}

A Groovy enhancement to the URL class lets you access the contents of a URL by call-
ing on the text property. In listing 8.14, you call the TinyURL endpoint, which returns a
compressed version of the incoming ${origUrl} value. Once you have the com-
pressed URL, you can take advantage of the versatile render() method to return a
small piece of JSON. The returned JSON contains properties for both large and small
versions of the URL. You’re only interested in the small version for display, but you
wanted to demonstrate how to return multiple values.

 Let’s complete the picture by implementing the client-side JavaScript to process
the returned JSON in your addTinyUrl(data) callback. The following listing, also
from /view/post/timeline.gsp, shows the JavaScript for our handler.

<head>
 ...
 <g:javascript>
 ...
 function addTinyUrl(data) {
 var tinyUrl = data.urls.small;
 var postBox = $("#postContent")
 postBox.val(postBox.val() + tinyUrl);
 toggleTinyUrl();
 $("#tinyUrl input[name='fullUrl']").val('');
 }
 </g:javascript>
</head>
...

When the back end returns a content type of application/JSON, Prototype automati-
cally evals() the return value into a native JavaScript object. From there, you can
access the small property value you returned from your controller in the previous
code snippet to display your tiny URL. Figure 8.10 shows the new feature in operation.

 You’ve now got a good handle on jQuery eye candy, and you’ve even combined it
with funky back-end Ajax and JSON magic.

Listing 8.14 Implementing JavaScript to process the returned JSON
Licensed to Mark Watson <nordickan@gmail.com>

224 CHAPTER 8 Developing tasty forms, views, and layouts
That completes your tour of Grails’s Ajax functionality. We’ve covered an incredible
amount about Grails UI features in this chapter, so let’s wrap up.

8.5 Summary and best practices
You started this chapter by touring the basic Grails form tags and learning about more
form tags than you’ll probably ever need to use in one application. You also looked at
how to develop your own custom tags for situations where the standard tags don’t pro-
vide enough flexibility.

 You then toured all the different options Grails gives you for layouts and templates,
and you even implemented your own skins and navigation menus.

 Finally, you explored advanced Grails Ajax concepts, implementing a dynamic
timeline and a TinyURL codec that uses JSON to communicate with back-end services.
Along the way, you picked up JavaScript animation skills to make it all sizzle.

 You’re learning and developing a few best practices:

■ Apply pagination. Paginating large datasets creates a much better user experi-
ence and it’s easy to implement.

■ Develop custom tags. Take the time to develop reusable tag components for com-
mon parts of your UI. It’ll save you time, simplify maintenance, and enable you
to reuse them in future projects.

■ Use convention-based layout. Favor convention-based layouts over explicit meta
tags. Often a specific layout for one particular action can make things much
more maintainable than doing meta-magic branching. Take advantage of meta
tag styles when you need to style a subset of pages for a controller, but use con-
vention layouts for the rest.

■ Lay out smarter. Handle basic flash message display in your layout rather than
repeating it for each view. Use templates for common HTML fragments, passing
in explicit model elements. Inside Ajax calls, resist the urge to render HTML
directly, and do any rendering via a template call.

■ Pick a JavaScript library. Gain an appreciation of the strengths and weaknesses
of the various JavaScript libraries. They all have different approaches and are

Figure 8.10 The TinyURL
feature in action
Licensed to Mark Watson <nordickan@gmail.com>

225Summary and best practices
worth exploring. Choose an Ajax library that makes sense for the rest of your
app. It takes time to download libraries, so minimize the number of libraries
in play.

■ Use a layout library. When developing complex CSS layouts, use Bootstrap. It’ll
save you time and look great on all browsers.

This section has taught you Grails’s core concepts, so we’ll move on to part 3, which
discusses how to apply all this information to build the necessary pieces of a real-world
application. Part 3 begins with chapter 9, which covers testing the view. You’ll dive
deep into Grails support for functional testing and make sure everything works great
when deployed to a real browser.
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Part 3

Everyday Grails

In part 2 of this book, you learned about the basic building blocks of Grails
applications, ending with chapter 8, which discussed developing tasty forms,
views, and layouts. In part 3, you apply your core knowledge to building all the
necessary pieces of a real-world application.

 In chapter 9, we’ll teach you how to build robust tests for your newly devel-
oped code so you can make sure everything works properly before your code is
deployed. We’ll start with unit tests for all the basic Grails artifacts you’ve devel-
oped so far. We’ll then build on those fine-grained testing skills with the broader
ideas of integration and functional testing. By the end of chapter 9, testing will
be your middle name.

 Chapter 10 introduces Grails plugins—ways of extending your applications
using third-party code modules. You’ll use plugins to give Hubbub important
functional enhancements such as email integration and full text search. You’ll
also solve performance and deployment pain points such as effective caching
and database schema migration.

 Security is a vital topic in deploying any kind of application on the internet, so
chapter 11 gives you a thorough grounding in web security issues. After learning
about the common vulnerabilities in web applications, you learn how to mitigate
them and keep everything secure. We’ll also take you on a tour of a popular Grails
security plugin that allows you to add all sorts of access-control features to Hubbub.

 Exposing your application to the world via a RESTful API has become stan-
dard practice for most successful modern web applications. In chapter 12, we
talk about the ideas behind RESTful APIs and give you the tools to quickly build
REST-style features into your application.
Licensed to Mark Watson <nordickan@gmail.com>

 With a comprehensive set of back-end architecture knowledge in place, we turn our
attention to the latest front-end techniques in chapter 13 and look at building Grails sin-
gle-page apps using the popular Angular.js JavaScript MVC library. You’ll wire up your
shiny new front end to the RESTful services you developed in chapter 12 to consolidate
all these technologies and see how they fit together in a Grails environment.

 Rounding out part 3 is chapter 14, which takes you into the heart of Spring inte-
gration in Grails. You learn different ways of defining and interacting with Spring-
managed beans in your application. Then you tour transactions—how they work and
what they’re useful for.

 Upon completing part 3, you’ll have all the knowledge required to deliver robust,
full-featured Grails web applications.
Licensed to Mark Watson <nordickan@gmail.com>

Building reliable
applications
You’ve made good progress with the Hubbub application, and you’ve seen all the
core elements that make up a standard Grails application. The question now is how
to further develop the application while ensuring that you don’t introduce bugs—
or at least as few as possible.

 The answer is through testing! Throughout the first part of the book we used
test cases to explain how bits of Grails work and to help you get into the testing
habit. It’s time to take stock and learn more about Grails’ support for writing vari-
ous tests so that your own projects can benefit from them. You’ll find out how the
unit test framework works and how to decide between different types of tests. And
throughout you’ll continue to use Spock, because it’s ideal for all levels of testing.

 Let’s begin by looking at the testing infrastructure.

This chapter covers
■ The mechanics of running tests in Grails
■ Test types and phases
■ How to write unit tests with mocks
■ Browser-based testing with Geb
229

Licensed to Mark Watson <nordickan@gmail.com>

230 CHAPTER 9 Building reliable applications
9.1 Running tests
When you run the tests for Hubbub, you see that Grails first executes the project’s
unit tests and then the integration tests. If the project were to have functional tests,
those would run as well (after the integration tests). This is great before you push to
production, because a simple call to grails test-app ensures that the application is
ready. But for day-to-day development, running all the tests every time you invoke
test-app slows your development cycle down to a crawl. That’s not what you want!

 Fortunately, the test-app command gives you control over what tests are run at
varying levels of granularity. If you want to run the unit tests, that’s easy. What about a
single test case? Again, you can do that. By exploring the mechanics of the test-app
command, you’ll understand the Grails view of the world when it comes to testing.

9.1.1 Mastering test execution
When Grails runs the unit tests and then the integration tests, what determines that
order? How does it know which test cases are unit tests and which ones are integration
tests? How does it handle both Spock and more traditional JUnit test cases? The answers
lie in the test execution framework, of which we’re only going to scratch the surface.

 Let’s start with the ordering of unit tests and integration tests. Both are examples
of what Grails calls test phases, and these phases have a specific ordering built into
the framework. Figure 9.1 shows you the four standard phases and the order in
which they run.

 We’ll discuss several of the phases in more depth in section 9.1.2 so that you can
make an informed choice about which type of test to use for each part of your applica-
tion. For the moment, let’s focus on the mechanics of test-app. Think of the phases
as one axis of choice: you can run any or all of the phases. Another axis provided by
the test framework is the test type.

 Type as a name is a bit generic, but in this context, type refers to the library that
underpins a particular test case. What do we mean by library? Spock is a library for
writing test cases, as are JUnit and TestNG. Hence Spock and JUnit are test types.

Unit

Integration

Functional

Other

Test

phases

run in

this order

Completely isolated test cases. No database, no Grails

environment. Can be run as normal unit tests in the IDE.

Bootstraps the Grails environment so that autowiring works

and GORM interacts with a real database. No servlet

container.

Application is started in a servlet container and test cases

interact with it via HTTP.

Rarely used phase that performs no setup at all. Typically

used to test build scripts.

Figure 9.1 The four standard test phases
Licensed to Mark Watson <nordickan@gmail.com>

231Running tests
Why this talk of axes? They’re one mechanism that allows you to choose what tests to
run. When you execute test-app without any arguments, all types of tests are run in
all phases. But to run only your Spock unit tests, you can use this simple incantation:

grails test-app unit:spock

The unit:spock argument is a directive of the form <phase>:<type> that tells test-
app to restrict the executed tests to those that match the given phase and type. Here
are more examples:

test-app unit:

test-app :spock

test-app unit:unit integration:spock

Do you see the flexibility there? You can specify any number of directives, mixing
phases and test types. And as you can probably infer from these examples, an empty
string before or after the colon (:) acts as an implicit match all wildcard.

 In reality, most projects stick to a single testing library the same way that Hubbub is
using Spock exclusively, so you’re unlikely to use the test type axis. But the first com-
mand shown previously for running the unit tests will likely become a regular fixture
in your day-to-day development.

The phase and test type axes are useful for controlling which tests are executed, but
sometimes you want to execute a particular test case. Or perhaps even a single test
method within a test case. For such fine levels of control, you need to pass an extra
argument to the test-app command.

 Let’s say you want to run the PostController unit tests, because that’s the class
you’re working on. You don’t care about the tests for other classes. Use this com-
mand line:

grails test-app com.grailsinaction.PostControllerSpec

Where are my reports?
Grails prints useful output about test failures to the console as you run your test
suite, but if you have many failures or you want more information about those fail-
ures, then more extensive reports are handy. You can find a beautifully presented
HTML report at target/test-reports/html/index.html, or you can readily open it from
the interactive console via the command

 open test-report

which opens the report in your default browser.

Run all tests in
unit phase

Run Spock tests
in all phases

Run JUnit unit tests and
Spock integration tests
Licensed to Mark Watson <nordickan@gmail.com>

232 CHAPTER 9 Building reliable applications
A quick look at the test reports confirms that PostControllerSpec is the only test case
run. That’s what you want, right? Yes, but two spots of ugliness are here: there’s too
much typing for the test case name (although autocomplete in the interactive console
helps) and Grails starts the integration tests, slowing down the overall execution.

 You may consider the long class name a minor inconvenience, but it doesn’t have
to be even that. If you don’t specify a package with the name, Grails will automatically
search for the class in all packages. And if your test cases have a conventional suffix
(“Tests” for JUnit tests and “Spec” for Spock tests), you can leave that out, too. Now
the command becomes

grails test-app PostController

Much better! As for the initialization of the integration tests when running the com-
mand, if you know the test case is a unit test you can add a phase directive:

grails test-app unit: PostController

Combined with the interactive console, command lines like this offer quick feedback
on test failures. The basic form of this last argument is

<package>.<class>.<testMethod>

where both the package and the method name are optional. You can also use the wild-
card “*” in place of the package or class. For example com.grailsinaction.* will
match any test case in the com.grailsinaction package. We’ve included more exam-
ples in table 9.1 to give you a clear idea of what you can do and how to use wildcards.
(Note that SomeTests and HelperTests don’t exist in the Hubbub project.)

These examples cover the most common use cases for patterns. Other combinations
are possible, but rarely useful. Note that you can even specify Spock test methods by
using quotes. For example, from the standard command line you can execute

grails test-app unit: PostService.\"Invalid posts generate exceptional

➥ outcomes\"

Alternatively, you can use this from the Grails interactive console:

grails> test-app unit: PostService."Invalid posts generate exceptional

➥ outcomes"

Table 9.1 Example test case patterns for the test-app command

Pattern Example matches

PostController com.grailsinaction.PostControllerSpec

SomeTests SomeTests
org.example.util.SomeTests

com.*.* com.grailsinaction.PostControllerSpec

com.**.* com.grailsinaction.PostControllerSpec
com.grailsinaction.util.HelperTests
Licensed to Mark Watson <nordickan@gmail.com>

233Running tests
In other words, you only need to escape the quotes when you aren’t using the interac-
tive console.

 Before moving on, we should clarify the difference between the “*” and “**” wild-
cards in package names. If you think of packages as hierarchical names, then “*” rep-
resents exactly one package level, whereas “**” represents zero or more levels. Hence,
using ** matches a wider result set (see table 9.2).

You now have full control over which test cases to run, allowing you to focus on the
ones appropriate to the job. Specifying a single test to run when developing a new
class is particularly useful. What phase should you target when writing a test—unit,
integration, functional, or something else—is covered next.

9.1.2 Choosing a test phase

Whether you conscientiously follow the test-driven development (TDD) philosophy or
not, it’s important to decide what types of tests you want to write for different parts of
the application. Your choices will determine how much test code you write, the length
of your development cycle, and how robust your tests are in the face of changing
application code. Don’t worry. We’ll guide you through the decision-making process.

 The first order of the day is to learn how each test phase behaves and the implica-
tions for your own tests.

UNIT TEST PHASE

The majority of tests you have seen so far have been unit tests. What differentiates
these is the speed with which they run because almost no setup is required by Grails to

Table 9.2 Example test case patterns for wildcard usage

Pattern Example matches

*.SomeTests util.SomeTests, but not util.other.SomeTests

**.SomeTests SomeTests
com.grailsinaction.SomeTests
com.grailsinaction.util.SomeTests

Class

Test case
Mock

collaborator

Mock

collaborator

Injected Injected App

classes

Test

classes

Figure 9.2 Structure of a unit test
Licensed to Mark Watson <nordickan@gmail.com>

234 CHAPTER 9 Building reliable applications
run them. Another advantage of unit tests is that they can be run using your IDE’s
standard unit test integration, so you don’t have to use the Grails test-app command.

 The downside is that the usual Grails DI (for services, for example), the in-memory
database, and the HTTP request/response handling aren’t available. As a result, you
often have to resort to mocking the collaborators of your class (see figure 9.2), some-
thing that we look at in more depth in section 9.2.

 In the best of cases, unit tests are black-box tests that have no knowledge of the inter-
nals of the class under test. This makes them robust to changes in the internals of the
method under test. Unfortunately most of your classes will have collaborators that
need to be mocked, which results in tests that need to change when the code under
test changes.

INTEGRATION TEST PHASE

Tests that run in the integration phase effectively run inside the application. GORM is
initialized and works against whatever data source(s) you configure for the test envi-
ronment (see figure 9.3). Your services are automatically injected into the controllers,
services, and domain classes that depend on them. And any plugins you’ve installed
are loaded. The only thing missing is the full HTTP request/response handling,
although mock versions of the request and response objects are available.

 Doing all this setup means that the tests have an initial startup cost that depends
on the size of the project and the number of plugins installed. Using the interactive
console helps reduce that initial hit after the first time you run the integration tests,
but they still don’t run as quickly as the unit tests.

 Integration tests ensure your components work together correctly in the back end
of the application. Those components may even be external to the application, per-
haps as RESTful web services.

FUNCTIONAL TEST PHASE

The functional phase of the tests starts your application in an embedded servlet
container using a method similar to the run-app command (see figure 9.4). Your test

Class

Test case

Real

collaborator

Real

collaborator

DB

Figure 9.3 Structure of
an integration test
Licensed to Mark Watson <nordickan@gmail.com>

235Running tests
cases no longer run inside the application—hence they
can’t call methods on the services directly, for exam-
ple, but interact with the application via the HTTP
protocol. Mostly they’re used to test the UI of the
application. If these pass and you have good coverage,
you can feel safe in the knowledge that the application
is going to work for your users.

 Such UI testing isn’t as simple as testing a bunch of
methods with defined arguments and return values,
but it’s a critical part of application testing. Functional
tests mimic what the user sees and does and are the
main way to test your views.

TESTING STRATEGY

All of these test phases raise a big question: which
phase should you use for any given test? No hard and
fast rules exist for this, so we’ll discuss what you should aim for as part of a testing
strategy. The strategy you develop will then inform what type of test you should use for
any given situation.

 First, you want feedback as early as possible in your
development cycle because that improves your produc-
tivity. As an extreme example, imagine that a bug can
only be reproduced in a User Acceptance Testing (UAT)
environment. Coding a fix may take only a matter of
seconds, but it could take 15 minutes or more to get the
app through to UAT to verify if it works. If the fix
doesn’t work, you have to go through another 15+ min-
ute cycle to verify another fix. And so on. You definitely
want to keep that code-test-verify cycle to a minimum.
See figure 9.5.

 Second, you don’t want to change your tests every
time the code under test changes. It’s not uncommon
for tests to depend heavily on the implementation of
the code under test, such that any non-trivial change
requires a fix to the corresponding test. After fixing a test for the umpteenth time,
you’ll be ready to throw it away completely!

 Unfortunately, these two aims often come into conflict. The faster-running unit
tests, particularly with mock collaborators, give quick feedback but break easily when
the code changes. Integration tests are more robust, but slower running. The differ-
ence is even starker when comparing unit tests to functional ones.

 Bearing all that in mind, we have guidelines to help you decide the best approach
for your project.

Create/update

test

Implement

feature or fix

Run test

If test
fails

Figure 9.5 Testing strategy

DB

Servlet container

App

Test case

HTTP

Figure 9.4 Structure of a
functional test
Licensed to Mark Watson <nordickan@gmail.com>

236 CHAPTER 9 Building reliable applications
1 Always have functional tests. These verify that the interface your users or clients
interact with works as expected, replicating the user experience. This is usually the
most important aspect of an application or system.

2 Prefer black-box unit tests. The more knowledge a test case has of the internals of
its associated class, the more likely it is to break when the code is refactored.
The most common manifestation of such knowledge is through mock objects.
Once the number of mocks in a test rises above 1, the disadvantages of unit test-
ing start outweighing the benefits.

3 Use the interactive console. It’s important to keep the code-test-verify cycle as short
as possible, so use the interactive console. All types of tests run significantly
faster from it!

Functional tests are typically orthogonal to the other two types, so the main decision
you need to make is what testing library to use (we’ll discuss this in section 9.3). If
you’re having trouble deciding whether to write a unit test or an integration test for a
particular class, the safest option is the integration test.

9.2 Understanding Grails unit tests and mocks
Imagine that your user registration controller action from chapter 7 not only saves a
new User instance to the database but also sends a confirmation email via a service. As
figure 9.6 demonstrates, both User and the email service are collaborators of the con-
troller handling the user registration. And both collaborators depend on resources
that are external to the application, such as the database and a mail server.

 If you want to test the register() action, you have two options:

1 Write an integration or functional test that has a database and mail server.
2 Write a unit test and mock the collaborators, replacing them with fakes.

UserController.register()

User.save()

emailService.sendEmail()

DB

Mail server

User emailServiceand are

collaborators of UserController External resources

Example user registration actions

Figure 9.6 The user registration flow, including the controller’s collaborators
Licensed to Mark Watson <nordickan@gmail.com>

237Understanding Grails unit tests and mocks
Functional tests are useful, and we’ll talk about them in the next major section of the
chapter. For the moment, we’ll focus on the unit test approach. You’ve already seen
several examples of unit tests that mock particular types of collaborators, even if you
didn’t realize it at the time. Now we’ll dive into the fundamentals of mocking in Grails
unit tests so that you can handle any situation you’ll face in the future.

 The way you mock a particular collaborator depends on its type. If you go back to
the user registration example, User is a domain class that Grails itself enhances to pro-
vide database persistence. Grails can mock that behavior because it knows what that
behavior should be. The email service, however, is either written by your team or
provided by a plugin. Either way, Grails has no knowledge of it and you must manually
mock the behavior yourself.

 Let’s start with the built-in artifact mocking, because that’s the form you’re most famil-
iar with from the many example unit test specifications you saw in previous chapters.

9.2.1 Mocking core Grails artifacts

Grails wires artifacts together and connects them to external systems. Domain classes are
linked to a database, controllers are bound to an HTTP request and response, and so on.
But when you’re testing those artifacts from a unit test, none of that magic happens and
the code doesn’t work. That’s where the Grails unit-testing framework comes in.

 The framework provides a set of annotations that allow you to mock the enhanced
behavior of selected Grails artifacts and use those artifacts as if they are in a running
application. The annotations also add state and utility methods to the test case to
make testing easier. As an example, let’s take a look at part of PostControllerSpec in
the following listing.

...
@TestFor(PostController)
@Mock(User)
class PostControllerSpec extends Specification {

 def "Get a users timeline given their id"() {
 given: "A user with posts in the db"
 User chuck = new User(
 loginId: "chuck_norris",
 password: "password")
 chuck.addToPosts(new Post(content: "A first post"))
 chuck.addToPosts(new Post(content: "A second post"))
 chuck.save(failOnError: true)

 and: "A loginId parameter"
 params.id = chuck.loginId

 when: "the timeline is invoked"
 def model = controller.timeline()

 then: "the user is in the returned model"
 model.user.loginId == "chuck_norris"

Listing 9.1 Using PostControllerSpec

Test annotations
add the special
Grails methods to
artifacts, such as
save() on domain
classes.

@TestFor also adds
params, controller,
and model properties
to the test case.
Licensed to Mark Watson <nordickan@gmail.com>

238 CHAPTER 9 Building reliable applications
 model.user.posts.size() == 2
 }
}

How does this work? Does it even matter? We think it does matter because you’ll
inevitably need to do things in your unit tests that aren’t explicitly shown in the
book’s examples or in the Grails user guide. We’re going to delve under the hood
and provide the glue between the book’s examples, the Grails user guide, and the
Grails API documentation.

 The first key question is how the annotations add state and behavior to the test
cases. You have to remember that these annotations need to work with different types
of testing libraries, such as JUnit and Spock, so inheritance won’t work without dupli-
cation. Instead, Grails uses a lesser-known Groovy feature: mixins.

MIXING EXTRA BEHAVIOR INTO CLASSES

Mixins are a feature borrowed from Ruby that allow you to mix the state and behavior
from one class into another, effectively providing something similar to multiple inher-
itance. For straight Groovy you can do this through the @Mixin annotation. You can
see it in action in the following listing by running the code in the Grails or Groovy
console UI.

class Greeter {
 String message

 void greet(String name) {
 println message + ' ' + name
 }
}

@Mixin(Greeter)
class Cowboy {
 Cowboy() {
 this.message = "Howdy"
 }
}

def cowboy = new Cowboy()
cowboy.greet("Peter")

You’ll also find that the this reference in Greeter refers to the object that it’s mixed
into. If you add the line

println "'this' class: ${this.getClass()}"

to the Greeter.greet() method, you’ll see

'this' class: class Cowboy

printed to the console.

Listing 9.2 Using the @Mixin annotation

Adds the state and
behavior of the Greeter
class into Cowboy

Accesses the
mixin’s properties

Calls a Greeter method
on the Cowboy instance
Licensed to Mark Watson <nordickan@gmail.com>

239Understanding Grails unit tests and mocks
 That’s all well and good, but none of your unit test specifications use the @Mixin
annotation. That’s because the @TestFor and @Mock annotations automatically mix
special classes into your test case. These mixin classes serve two purposes:

■ To enhance specific artifact classes so that they work standalone
■ To provide properties and methods to help with verifying the state of the tar-

get system

To put this into context, think about what happens when you use @TestFor to test a
controller class: the controller class magically gets the methods and properties it
expects, such as render() and session, while your test case gets direct access to
session, request, and other properties. Let’s find out exactly where these properties
and methods come from.

THE GRAILS UNIT TEST MIXINS

Each of the core artifact types has its own mixin class, all of which are shown in the class
diagram in figure 9.7 along with the main methods and properties that get mixed into

defineBeans()

mockCodec()

mockFor()

mockForConstraintsTests()

shouldFail()

GrailsUnitTestMixin

mockController()

mockCommandObject()

params

request

response

session

flash

model

view

ControllerUnitTestMixin

mockTagLib()

render()

applyTemplate()

assertOutputEquals()

assertOutputMatches()

GroovyPageUnitTestMixin

mockService()

ServiceUnitTestMixin

mockFilters()

withFilters()

compositeInterceptor

FiltersUnitTestMixin

mockUrlMappings()

mapURI()

assertController()

assertView()

assertUrlMapping()

assertForwardUrlMapping()

assertReverseUrlMapping()

urlMappingsHolder

UrlMappingsUnitTestMixin

mockDomain()

mockDomains()

DomainClassUnitTestMixin

Figure 9.7 The unit test mixin hierarchy
Licensed to Mark Watson <nordickan@gmail.com>

240 CHAPTER 9 Building reliable applications

y,

your test cases. When you give the @TestFor and @Mock annotations one or more classes,
the appropriate mixins for those classes are added to the test case.

 Mixing these classes into your test case is only half the story. The annotations also
ensure that the relevant mock*() methods are called so that each artifact class is cor-
rectly enhanced (save(), delete(), and so on, are added to domain classes).

 To help you better understand what’s going on, we reproduced PostController-
Spec, but this time we included the hidden, mixed-in code as italics in the following
listing. In reality, it’s not the real generated code, because that’s liable to change
between releases, but it does give you a good idea of what’s going on.

package com.grailsinaction

import ...

@TestFor(PostController)
@Mock(User)
@Mixin([ControllerUnitTestMixin, DomainClassUnitTestMixin])
class PostControllerSpec extends Specification {

 private PostController controller

 @Before
 void setupControllerUnderTest() {
 this.controller = mockController(PostController)
 mockDomains(User)
 }

 def "Get a users timeline given their id"() {
 given: "A user with posts in the db"
 User chuck = new User(
 loginId: "chuck_norris",
 password: "password")
 chuck.addToPosts(new Post(content: "A first post"))
 chuck.addToPosts(new Post(content: "A second post"))
 chuck.save(failOnError: true)

 and: "A loginId parameter"
 params.id = chuck.loginId

 when: "the timeline is invoked"
 def model = controller.timeline()

 then: "the user is in the returned model"
 model.user.loginId == "chuck_norris"
 model.user.posts.size() == 2
 }

}

As you can see, the Grails unit test mixins do most of the heavy lifting. The critical
code is inside those mock*() methods. Still, you must remember that these are unit
tests and the mock implementations won’t always behave exactly as the real ones do.
The mock GORM implementation, as an example, doesn’t support transactions or

Listing 9.3 Showing mixed-in code for PostControllerSpec

Mixins added by
both @TestFor
and @Mock.

@TestFor adds a propert
creates a new instance of
the type under test, and
enhances that instance.

@Mock mocks
its classes.

Added to
domain classes via
mockDomains().

Added to test case via
ControllerUnitTestMixin.
Licensed to Mark Watson <nordickan@gmail.com>

241Understanding Grails unit tests and mocks
optimistic locking. If a unit test isn’t behaving as you expect, use integration or func-
tional tests to verify the expected behavior. You may have hit a corner case where a
mock implementation doesn’t match the real one.

 The test mixins are the foundation for the built-in mocking of core Grails artifacts,
but they don’t help with the mocking of generic collaborators. What do you do when
you need to mock out behavior that’s added by a plugin at runtime? Or perhaps you
want to mock a service that’s tied to an external system, such as a mail server. In the
next section you’ll look at how Spock’s built-in mocks can help with these scenarios.

9.2.2 Mocking normal collaborators with Spock

Lightweight, in-memory objects are your friends in unit testing. Consider strings: do
you ever think about mocking them? No! You create them and pass them round. Diffi-
culties arise only when a class is in one of the following categories:

■ It depends on a tree of other collaborators
■ It’s expensive in memory or time to instantiate or use
■ It’s tied to external systems

Most Grails artifacts fall into at least the last of these categories, hence Grails comes
with out-of-the-box support for mocking them. But Grails applications often have or
depend on normal classes too, which can also fall into one of these categories.
When those classes are collaborators of classes you’re testing, you’ll want to mock
them out.

 Many articles and bits of documentation exist about using mocking libraries in
Java or Groovy libraries, all of which apply to Grails applications, too. There isn’t a
shortage of mocking libraries either. Our current preference is Spock’s built-in mock-
ing support, which we briefly introduced in chapter 7. We’ll take a more extensive
look at that while also investigating when and why you want to use mocks.

MOCKING SERVICES

In chapter 7 you used a mock object in place of a real PostService instance to test the
PostController class. In fact, it wasn’t strictly necessary to mock the service because
you already mocked the User and Post domain classes in the unit test, and those were
the only ties that PostService had to external systems. In addition, the service didn’t
have other collaborators. You could easily instantiate a new PostService instance
rather than creating a mock. But it makes a nice, simple example, and it often makes
sense to mock services as many of them have other collaborators or interact with other
types of external systems, such as mail servers.

 Let’s take another look at the test case in question, as shown in the following listing.

...
class PostControllerSpec extends Specification {
 ...
 def "Adding a valid new post to the timeline"() {

Listing 9.4 Mocking services using PostService
Licensed to Mark Watson <nordickan@gmail.com>

242 CHAPTER 9 Building reliable applications
 given: "a mock post service"
 def mockPostService = Mock(PostService)
 1 * mockPostService.createPost(_, _) >>
 new Post(content: "Mock Post")
 controller.postService = mockPostService

 when: "controller is invoked"
 def result = controller.addPost("joe_cool", "Posting up a storm")

 then: "redirected to timeline, flash message tells us all is well"
 flash.message ==~ /Added new post: Mock.*/
 response.redirectedUrl == '/users/joe_cool'
 }
}

What you should take away from this example is that you can readily mock classes (not
only interfaces), and that mock objects serve two purposes:

1 To provide data to the calling controller (a new Post instance in this case)
2 To verify that certain interactions (typically method calls) take place

Any mock object that performs only the first function is, in reality, a stub, a special
kind of mock. Used as test fixtures, these mock objects provide data as needed to the
object under test. If that’s what you need, you can use Spock’s Stub() method instead
of Mock() to make your intention clear, although it’s not necessary.

 In this example, are you interested only in providing data to the controller? Defi-
nitely not! The call to createPost() is critical to the correct behavior of the addPost
action because that’s how the new post gets persisted. There’s no question that you
want to verify that the service method is called exactly once and that its content argu-
ment is the same as the post text provided to the action.

 You need to ask yourself when using stubs or mocks whether or not you care about
a particular interaction. If you do, use a mock and give it a cardinality (the number
before the *). Otherwise, a stub is simpler to set up and more robust to change. The
problem with verifying interactions is that your tests become highly dependent on the
internal implementations of the classes under test. Add only the truly important inter-
actions to your specifications.

MOCKING DYNAMIC PROPERTIES AND METHODS

Services are mocked in much the same way as you mock collaborators in a normal Java
application. But Grails isn’t your run-of-the-mill Java web framework, so you might
think that it presents unusual challenges. You’re correct.

 One of the most common challenges comes from the use of plugins. You’ll see a
few of them in action in the next chapter, but for now, imagine that the Mail plugin
adds a dynamic sendMail() method to your controller classes that you then use, as
shown in the following listing.

class UserController {
 ...

Listing 9.5 Adding sendMail() to controller classes

Creates new
PostService double
(as in stunt double)Specifies

required
interaction
Licensed to Mark Watson <nordickan@gmail.com>

243Understanding Grails unit tests and mocks
 def register2(UserRegistrationCommand urc) {
 // Register the user
 ...
 sendMail {
 to urc.email
 subject "Registration complete"
 body """\
${urc.fullName},

You are now registered with Hubbub under the login ID '${urc.loginId}'.

Welcome to the conversation!
"""
 }
 }
}

The sendMail() method is similar to render() and redirect() in that it appears to
be part of the controller without explicitly being declared. As you saw previously, the
solution for render() and redirect() is to use the @TestFor annotation. But that
won’t work in the case of sendMail() because it’s being added by a plugin—it’s not a
core part of Grails.

 You can work around this by explicitly mocking the sendMail() method in the test
using a standard Groovy technique for adding behavior to classes at runtime. Let’s see
it in action in the following listing, which shows a theoretical test case for the code in
listing 9.5.

@TestFor(UserController)
@Mock([User, Profile])
class UserControllerSpec extends Specification {
 ...
 def "Registration command object for #loginId validate correctly"() {

 given: "a mocked command object"
 def urc = mockCommandObject(UserRegistrationCommand)

 and: "a set of initial values from the spock test"
 urc.loginId = loginId
 urc.password = password
 urc.passwordRepeat = passwordRepeat
 urc.fullName = "Your Name Here"
 urc.email = "someone@nowhere.net"
 urc.validate()

 and: "a mocked sendMail() method"
 def sendMailCalled = false
 UserController.metaClass.sendMail = { Map args ->
 assert args.to == "glen@bytecode.com.au"
 assert args.subject == "Registration complete"
 sendMailCalled = true
 }

 when: "the register action is invoked"
 controller.register2(urc)

Listing 9.6 Using a Groovy mock

Call to dynamic method added
by Mail plugin can’t be mocked
in the standard way.

Mail plugin adds
sendMail() to
controller, so you
mock that method.
Licensed to Mark Watson <nordickan@gmail.com>

244 CHAPTER 9 Building reliable applications
 then: "an email is sent"
 sendMailCalled
 ...
 }
 ...
}

This is an ugly solution to the problem, but it works. You have to manually insert asser-
tions into the mock method if you want to verify its arguments and you also have to
manually track whether the method is called. Generally speaking, it’s best if you don’t
call dynamic methods directly like this in controllers. If you can use something like a
service instead (the Mail plugin provides one), then do so.

 Despite Spock’s power, you need to understand the limitations of unit tests. If you
find that a test has more setup code than anything else, consider switching to integra-
tion tests. This is particularly true if the object under test has a high ratio of interac-
tions with collaborators compared to its own logic.

 Ultimately, unit tests help support day-to-day development and keep you focused
on small parts of the code base, but they don’t represent validation of what the end
user sees and interacts with. The only way to do that is through browser-based func-
tional tests, which you’ll spend the rest of the chapter looking at.

9.3 Testing the application as a whole
The main mechanism for interacting with user-facing Grails applications is via a
browser. That browser displays HTML in combination with CSS and JavaScript. If you
want your users to have a bug-free experience, you need to test the HTML generation
and the JavaScript code. That’s where functional tests come in.

 As we mentioned previously in the chapter, functional tests rely on running the
application within a servlet container and interacting with it using HTTP. But HTTP is
a low-level protocol, so dealing with your application at that level involves work. Fortu-
nately, many tools and libraries allow you to test at the level of HTML documents, mak-
ing your life easier. The question then is which tool should you use?

 Continuing our relatively opinionated approach to Grails development, you’ll use
only one tool in this chapter: Geb. The origins of the name are lost in the sands of
time, but it’s one of the most popular and actively developed functional testing tools
around. It also has Spock integration, which gives it bonus points in our book. Let’s
see how to incorporate it into a Grails project and use it for tests.

9.3.1 Introducing browser-based testing with Geb

Several different types of functional testing tools exist. Various tools allow you to
develop and run your test suite from within the browser itself (Selenium IDE, for exam-
ple), while others skip the browser entirely and run headless, without any visual com-
ponent (HtmlUnit and PhantomJS are examples of this type). Geb falls somewhere
between these two types. It’s a developer-focused tool, so you write code-based test cases.
But it can launch a browser and test its interaction with your application. It can even use

Verifies sendMail()
method is called.
Licensed to Mark Watson <nordickan@gmail.com>

245Testing the application as a whole

Uses F
functio
HtmlUnit and PhantomJS in place of a browser. We’ll discuss those options later. For
now, let’s see it in action so you can understand how it works and how to use it.

ADDING GEB TO YOUR PROJECT

Geb is a set of JAR dependencies and a Grails plugin. Adding it to a project means
putting the relevant entries into your BuildConfig.groovy file, as shown in the fol-
lowing listing.

grails.project.dependency.resolution = {
 ...
 def gebVersion = "0.9.2"
 def seleniumVersion = "2.41.0"

 dependencies {
 test "org.gebish:geb-spock:$gebVersion"

 test "org.seleniumhq.selenium:selenium-support:$seleniumVersion"
 test "org.seleniumhq.selenium:selenium-firefox-driver
 ➥ :$seleniumVersion"
 }

 plugins {
 ...
 test ":geb:$gebVersion"
 }
}

Once these dependencies are added, you can start writing test cases straightaway.

WRITING YOUR FIRST GEB TEST

As with unit and integration tests, the source files for functional tests get their own
home. In this case, that home (test/functional) isn’t created when you first create the
application. Nor is there a core Grails command to create a functional test case. You
need to create the directory structure and source files yourself.

 Let’s start with a simple Geb test that loads the timeline for the user “phil” and ver-
ifies that the page title is correct and that the expected number of posts is displayed.
The first step is to create the directory structure and source file for the test case: test/
functional/com/grailsinaction/TimelineFunctionalSpec.groovy. If you’re lucky, your
IDE can do this for you, as long as you add test/functional as a source folder.

 As you can see from listing 9.8, the initial test case looks like a normal Spock test
apart from funky syntax that looks a little like what you may have seen with jQuery or
another similar JavaScript library. The test case loads the timeline for a particular user,
“phil”, and checks that the level three heading (<h3>) above the “new post” text area
contains the expected text.

package com.grailsinaction

import geb.spock.GebReportingSpec

Listing 9.7 Using Geb

Listing 9.8 A basic Geb functional test case

Adds Geb/Spock
integration

irefox for
nal tests

Adds Geb
Grails plugin
Licensed to Mark Watson <nordickan@gmail.com>

246 CHAPTER 9 Building reliable applications
class TimelineFunctionalSpec extends GebReportingSpec {
 def "Check that timeline loads for user 'phil'"() {
 when: "we load phil's timeline"
 go "users/phil"

 then: "the page displays Phil's full name"
 $("#newPost h3").text() ==
 "What is Phil Potts hacking on right now?"
 }
}

When you run this via

grails test-app functional:

you’ll see a Firefox window pop up. That’s because Geb loads the requested URL in
Firefox before querying the browser about the HTML content returned by the server.
Best of all, the browser executes any JavaScript included by the HTML, so you can ver-
ify content that’s added dynamically as well as the static content returned by the
server. In an age when more and more applications are using techniques such as cli-
ent-side (JavaScript) templates, that’s important.

 Listing 9.8 is straightforward because all it does is verify the state of a page. What if
you want to model user interactions? Suppose you want to make sure that a user can
post a new message to Hubbub and that the message appears in the timeline right
away. Let’s see what a corresponding Geb test looks like.

MODELING USER INTERACTION

Geb allows you to interact with all types of HTML fields, buttons, and links so you can
mimic and test user interaction with your application. It’s all done through a similar
syntax to the previous example with CSS selectors identifying HTML elements that
you’re interested in and methods that interact with those elements.

 We’ll start by showing you how to test what happens when a user posts a new
message via the timeline page. Figure 9.8 has the page and the underlying markup.

Loads URL (relative
to your application’s
base URL)

Uses a CSS selector
to select nodes in
displayed HTML page

...as does $("#newPost textarea")

.$("#postContent") selects
this element in Geb...

This big edit box is the <textarea>.

Figure 9.8 The markup for posting a new message
Licensed to Mark Watson <nordickan@gmail.com>

247Testing the application as a whole
You can also see what selector you’re going to use to get hold of that all-important
<textarea> element.

 To verify that a user can post a message, you’re going to log in, load the My Time-
line page, enter text into the text area, and click on the Post button. That’s several
interactions you need to perform via Geb. Let’s add a new feature method to Timeline-
FunctionalSpec in the following listing to demonstrate that.

def "Submitting a new post"() {
 given: "I log in and start at my timeline page"
 login "frankie", "testing"
 go "users/phil"

 when: "I enter a new message and post it"
 $("#postContent").value("This is a test post from Geb")
 $("#newPost").find("input", type: "button").click()

 then: "I see the new post in the timeline"
 waitFor {
 $("div.postText", text: "This is a test post from Geb").present
 }

 private login(String username, String password) {
 go "login/form"
 $("input[name='loginId']").value(username)
 $("input[name='password']").value(password)
 $("input[type='submit']").click()
 }

}

The value() and click() methods you see in the example are two of the available
methods that simulate user actions, but they cover most of your needs. If you think
about it, the majority of user interaction with web applications is through setting the
values of form fields and clicking on buttons and links.

 Listing 9.9 also introduces a vital part of Geb that allows you to test Ajax requests. By
itself, Geb has no way to know when an Ajax request completes. If you want to verify the
page content after the request completes, you need to specify a waitFor condition. The
waitFor() method is similar to Groovy’s find() in that it takes a closure whose return
value is either true or false. In this case, the method continues waiting until either the
closure returns true or the timeout limit is reached (5 seconds by default).

 You kill two birds with one stone in listing 9.9 by making the content that you’re
interested in, the new post, part of the condition itself. If the new post fails to appear
in the timeline, the test fails due to a timeout exception. But there’s nothing stopping
you from adding extra assertions after the waitFor().

 That’s Geb in a nutshell. You should now be comfortable selecting nodes from an
HTML page and interacting with them or verifying their content. The next step is for
you to understand what’s happening under the hood so you can make effective use of
the tool and diagnose problems that you may encounter in the future.

Listing 9.9 Verifying a user can post a message

Needs to log in
before posting

Sets the content of
the text area (with
ID postContent)

Simulates pressing
the Post button

Waits for
the new
post to

appear in
the page

Factors out common
interactions into
methods
Licensed to Mark Watson <nordickan@gmail.com>

248 CHAPTER 9 Building reliable applications
9.3.2 Understanding how Geb works

It’s hard to use anything effectively without understanding how it works. To that end,
you’ll look briefly under the covers of Geb and we’ll explain its model of selectors and
actions in further detail.

LOOKING UNDER THE HOOD

Geb is a framework built on top of Selenium WebDriver, which combines an API for
interacting with a browser and a set of drivers that implement that API. Until now
you’ve only used the Firefox driver, but several others exist, including separate ones
for Chrome, iPhone, and Android. The basic structure is shown in figure 9.9 .

 Why mention WebDriver? Geb does hide most of the details of Selenium Web-
Driver behind its own API, but sometimes problems manifest at a lower level. When
that happens, it’s good to know that you can do a web search for Selenium WebDriver,
not Geb. It also helps explain the names of the dependencies you need to include for
the different drivers.

 One thing that stands out in figure 9.9 is that Selenium WebDriver can work
through a real browser or it can effectively access the application directly over HTTP
using HtmlUnit or PhantomJS. These are libraries that act as in-memory browsers and
make for fast tests because Selenium WebDriver doesn’t have to start a heavyweight
browser as an external process. On the downside, experience suggests that HtmlUnit
isn’t ready for rich web interfaces with JavaScript, resulting in test failures for pages
that work in other browsers. Some people have had success with PhantomJS, but there
isn’t enough data to support a recommendation.

 When deciding whether to use an in-memory browser, we recommend that you
compare its results to those obtained using a driver for a real browser. If the results
match, great! You can then confidently use it for the development phase. But be sure
to use one or more of the other drivers before your application goes off for user-
acceptance testing or production.

MASTERING THE GEB SELECTOR MODEL

The previous section introduced you to the Geb notation that consists of a special $()
function to select nodes from an HTML page. This is the only low-level API you’ll use

Geb Test WebDriver

Browser

HTTP (via HTML Unit

or PhantomJS)

App

HTTP

Different drivers

Figure 9.9 How Geb works
Licensed to Mark Watson <nordickan@gmail.com>

249Testing the application as a whole
in your Geb tests (you’ll look at the higher-level page object API in the next section). If
you understand the $() function and what to do with it, you’re well-placed to write
good, solid Geb tests.

 The $() function gives you a navigator object (in Geb parlance) that you can
then use to

■ Select subelements of the HTML
■ Perform user actions (such as clicking)
■ Extract data

Figure 9.10 shows the most useful properties and methods in each category.
 You’ll look at subselects, data extraction, and user actions in more detail shortly,

but first you need to learn how to use $() itself.

THE SELECTOR SYNTAX

The $() function has three main parts: a CSS selector string, an index, and con-
straints. Together, these provide a flexible mechanism for selecting the HTML ele-
ments that you’re interested in. Figure 9.11 is a quick example demonstrating all
three parts in unison.

 All three parts are optional—$() with no arguments represents the entire docu-
ment—but you’ll find yourself almost always specifying at least a CSS selector. We
won’t go into the details of CSS selectors here, but if you’re not familiar with them,

$("#allPosts")

Returns

navigator object

Subselects

find()

filter()

has()

not()

Data

@<attr>

displayed

tag()

text()

value()

Actions

<<

click()

value()
Figure 9.10 What you can do with the
navigator object returned by $().

$("#orderForm input", 0, type: "text")

CSS selector string Constraint based on attribute

values, in this case attribute "type"

with value "text"

An index into the list of matched elements

Figure 9.11 Example of the
selector syntax
Licensed to Mark Watson <nordickan@gmail.com>

250 CHAPTER 9 Building reliable applications
you should learn how to use them. It’s difficult to do web application development
these days without that knowledge, as CSS selectors are used in not only CSS but also
JavaScript libraries and testing libraries such as Geb.

 The named arguments of $() allow you to filter the matching elements further by
constraining them to having particular values for certain HTML attributes. In figure 9.11
the name of the attribute is type with a value of "text", which constrains the selector to
<input> elements of type “text”.

 Geb understands one special attribute in this syntax: "text" (not to be confused
with the attribute value you saw). This example only matches <h3> headings whose
content is the same as the given text:

$("h3", text: "Understanding how Geb works")

In other words, the left-hand side of the colon is either text or the name of an
HTML attribute.

 The last part, the index, allows you pick individual elements from the list of ele-
ments matched by the other two parts. If only one matching element exists, the index
is redundant. This does raise the question of whether there’s any guaranteed order in
which $() returns matching elements. The guarantee is that the order of the matched
elements is the same as the order in which they appear in the HTML page.

 Now that you know how to get hold of an initial list of nodes via the $() function,
let’s see what you can do with those nodes.

SELECTING SUBELEMENTS

Although the $() function is powerful for selecting nodes, you may want to further
refine the selection, or use it as the base for traversing HTML nodes. Table 9.3 describes
methods useful for such tasks. Check out the Geb user guide (www.gebish.org/manual/
current/) for more details and a complete list of the properties and methods on navi-
gator objects.

Table 9.3 Selection-focused navigator methods

Method Description

filter(cssSelector) Filters the element list for those elements that match the given CSS
selector. It removes items from the list that don’t match.

find(cssSelector) Finds all child elements that match the given CSS selector.

has(cssSelector) Similar to filter(), but only retains the items that have child ele-
ments matching the given CSS selector.

not(cssSelector) Similar to filter(), but retains the items that don’t match the given
CSS selector.

parent() Selects the immediate parent element of each item in the selected ele-
ment list.

previous()/next() Select the previous and next siblings of each item in the selected ele-
ment list.
Licensed to Mark Watson <nordickan@gmail.com>

www.gebish.org/manual/current/
www.gebish.org/manual/current/

251Testing the application as a whole
All these methods return another list of elements, or more specifically a navigator
object. Both find() and filter() also accept the same arguments as $(): a CSS selec-
tor, an index, and named arguments. not() and has() only accept a CSS selector string.

EXTRACTING DATA

Verifying that a page contains what you expect requires a way to access the page con-
tent. That’s where the properties and methods in table 9.4 come in. They give you
access to the textual content of elements, attribute values, and other useful data.

As you can tell from the descriptions of these properties and methods, they apply
only to the first matching element of the navigator object. This is convenient for the
many occasions when you expect a single element to match your criteria, but what
do you do if you want to extract information from all matching elements? No prob-
lem: you can use Groovy’s spread-dot (*.) operator. This returns a new list contain-
ing the information you want for each matching element in the navigator object.
The following:

$(".postEntry")*.tag()

returns a list of "div" strings, one for each <div class="postEntry"> element in
the page.

PERFORMING ACTIONS

The last category of navigator methods relates to mimicking user interaction with the
application. As the user interactions are fairly limited, you don’t have many methods
to learn. You saw two of them in action previously in the chapter. Table 9.5 summa-
rizes those and a couple of others.

Table 9.4 Data extraction properties and methods of the navigator object

Method/property Description

@<attr> Returns the value of the specified attribute on the first item in the element list.
<attr> refers to the attribute name. You could use $().@name to get the
value of the “name” attribute.

display Returns true if the first item in the element list is visible, otherwise false.

classes() Returns a list of the CSS classes for the first item in the element list.

tag() Returns the tag name of the first item in the element list, for example, “p” for
the <p> element.

text() Returns the text content of the first item in the element list.

value() Returns the value of a form element, such as a text field or text area. The value
depends on the type of the form element. For text fields, this returns the text
content (text() isn’t appropriate in this case because <input> tags are
empty HTML elements).
Licensed to Mark Watson <nordickan@gmail.com>

252 CHAPTER 9 Building reliable applications
All the properties and methods we’ve shown you in these three categories are part of
the low-level Geb API, and you can find out more information about those and others
in the Geb manual. With few exceptions, anything a user can do in a browser can be
simulated with Geb.

 Let’s shift our focus from the low-level API because although it’s essential, it’s not a
good idea to use it directly in test cases. We explain why and describe Geb’s built-in
solution next.

9.3.3 Using page objects for maintainability

Currently, you have one functional test class in Hubbub, and it performs checks on
the timeline page. At this scale, using the low-level Geb API is fine because you don’t
have many opportunities to reuse selectors or other bits of code. As you expand the
test suite, though, you need to think about how the test cases are likely to evolve and
what they test.

WHAT’S THE PROBLEM?
The first thing to understand is that functional tests are interested in verifying the
behavior of an application. Yes, part of that involves checking the state of different
pages, but you’re primarily interested in the user interactions that can take place
across several pages.

 Consider a user entering the URL for My Timeline into the address bar of a
browser so they can post a new message. You first want to make sure that the user is
redirected to the login page. Once the user enters the correct credentials, you want to
ensure that the My Timeline page is shown correctly. Then you want to simulate post-
ing a new message followed by verification that the My Timeline page is still displayed
but also includes the new message.

 Even in this one short sequence, you’ll check the state of a page twice. The time-
line page also features in many other functional tests, as does the login page. Do you
want to manually use the $() function each time you need to verify that a page is dis-
played correctly? No, because any time someone changes the markup for a page,
every test that checks the content of that page needs to be updated!

Table 9.5 Action-based methods on the navigator object

Method/property Description

<<(keysString) Sends key presses to the selected elements.

click() Simulates the user clicking an element, be it a button, a link, or any-
thing else that has a click handler.

value(newValue) Sets the value of a form field, such as a drop-down list or a text area.

<fieldname> = newValue This is a shortcut for value() that allows you to directly set the
value of the field with name fieldname. For example,
$("form").username = "chuck_norris" sets the value
of the form field named “username”.
Licensed to Mark Watson <nordickan@gmail.com>

253Testing the application as a whole

D
pa

usua
$()
 The Geb solution is based on something called page objects. These put the pages behind
an abstraction such that your functional tests deal with pages, while the page objects
handle the interactions with the markup. With this approach, only the page object
needs to be updated when the markup for a page changes. That makes for much more
maintainable tests.

 What does this page object mechanism look like?

INTRODUCING THE PAGE OBJECT

Conceptually, a page object is a model that represents a page of your application. When
you interact with a page object, you’re not dealing directly with HTML elements but with
logical parts of the page, such as a login form or a post entry in a Hubbub timeline. To
show you what we mean, the following listing shows a Geb page object for the Hubbub
timeline (located at test/functional/com/grailsinaction/pages/TimelinePage.groovy).

package com.grailsinaction.pages

import geb.Page

class TimelinePage extends Page {

 static url = "users"

 static content = {
 whatHeading { $("#newPost h3") }
 newPostContent { $("#postContent") }
 submitPostButton { $("#newPost").find("input", type: "button") }
 posts { content ->
 if (content) $("div.postText", text: content).parent()
 else $("div.postEntry")
 }
 }

 static at = {
 title.startsWith("Timeline for ")
 $("#allPosts")
 }
}

The three key parts of this definition are: the URL B (we’ll talk about the to() and
via() methods shortly), the page model defined by the content block c, and an at
checker that determines whether the current HTML document matches this page d.
The exact role of each part will become clearer as we demonstrate how to use the page.

Listing 9.10 Sample page object

Why not $("title")?
You might think you can select the <title> element using the $() function and grab
its content with text(). That’s not the case because text() only works for content
that’s visible to the user in the page. The title isn’t visible as part of the page.

Rather than use $("title"), you can take advantage of the title property that’s
available on all page objects.

All page objects must
extend geb.Page.

Specifies the URL for this page relative
to the application’s base URL.

 b

efines the
ge model,
lly via the
 function.

 c

Specifies the conditions that an
HTML page must satisfy to be
interpreted as this page.

 d
Licensed to Mark Watson <nordickan@gmail.com>

254 CHAPTER 9 Building reliable applications
Perhaps the most critical part of a page object is the content model. Figure 9.12
shows how the model acts as an abstraction between your test cases and the HTML
content of the pages being displayed. The idea is that you give important parts of
the page (the stuff you interact with in the tests) names that you reference in your
tests. You then bind those names to markup, usually with the $() function. Note that
the closures for each name aren’t required to return a navigator object—they can
return anything you want.

 Now that you have an idea what a page object is, let’s see how you can refactor your
timeline functional test to use the page object you just defined.

USING PAGE OBJECTS IN TESTS

On your first iteration of the timeline functional test, you used the go() method to
open a particular URL and then the $() function to interrogate the page to verify it
displayed the correct content. You now replace those functions with a new set geared
toward page objects. The following listing shows a new functional specification testing
the same thing as the previous one, but using page objects.

package com.grailsinaction

import com.grailsinaction.pages.*
import geb.spock.GebReportingSpec

class TimelinePageFunctionalSpec extends GebReportingSpec {
 def "Check that timeline loads for user 'phil'"() {
 when: "we load phil's timeline"
 to TimelinePage, "phil"

 then: "the page displays Phil's full name"
 whatHeading.text() == "What is Phil Potts hacking on right now?"
 }
}

Listing 9.11 Sample page object in a test

Test case

Page object

page.whatHeading

HTML document

<textarea id="postContent">

</textarea>
page.newPostContent

<div id="newPost">

…

<h3>What is …</h3>

…

</div>

Figure 9.12 A test case uses the defined model of a page, and the model provides the binding
to markup.

Imports page object classes so
you can reference them directly

Opens timeline page
for user “phil”

Verifies heading via the relevant model
element in TimelinePage (the current page)
Licensed to Mark Watson <nordickan@gmail.com>

255Testing the application as a whole
You can see from the listing that the test is more readable, because you’re now dealing
with names (TimelinePage, whatHeading) rather than URLs and CSS selectors. Using
names improves comprehension, which makes it easier not only to understand what’s
going on and how the application is supposed to behave, but also to maintain the code.

 The test introduces new syntax that we’ll look at more closely so you can use page
objects effectively in your own tests. We’ll start with how to load the pages.

NAVIGATING TO PAGES

The mechanism for navigating to URLs represented by page objects is simple. Your
page object declares a static url property (which can be either an absolute or relative
URL) and then in your tests you use the to() method and pass the page object’s class
as the argument:

to TimelinePage

This method is provided by the abstract Geb super class and effectively invokes go()
behind the scenes. It also performs an implicit verification on the resulting page to
make sure that it is the timeline page. Remember the at block in TimelinePage? It
looked like this:

static at = {
 title.text().startsWith("Timeline for ")
 $("#allPosts")
}

Geb turns each line of the closure into an assertion (like Spock does for the expres-
sions in a then: block) and executes them whenever an at check is performed, such
as at the end of the to() method. You can also force an at check at any time by calling
the at() method like so:

at TimelinePage

In both the implicit and explicit cases, the at check throws an assertion error if any of
the conditions are unsatisfied, which usually means the current page isn’t the one
you’re expecting.

 One issue with the to() method is that it can’t handle redirects. Imagine that you
want to navigate directly to Hubbub’s My Timeline page. If you use to(), it attempts
to verify that the timeline page is displayed. But what should happen is that the test
browser is redirected to the login page. In this case, to()throws an exception because
the current page is the login page, not My Timeline.

The current page
We refer to the “current page” several times in this section. Each time a new page
is loaded, either through the to() or via() methods, or after a link is clicked, that
page becomes the current page. All properties and methods in a Geb test then
resolve against that page object.
Licensed to Mark Watson <nordickan@gmail.com>

256 CHAPTER 9 Building reliable applications
The solution to this problem is the via() method. This behaves like to() but doesn’t
perform an implicit at check. To verify that you’re redirected to the login page, com-
bine via() with at():

via TimelinePage
at LoginPage

The basic usage of to() and via() is straightforward. Now consider a more awkward
scenario: the timeline page can display the timeline for different users, but each user
has a different URL of the form /users/<loginId>. This doesn’t fit the model of a sin-
gle static URL defined in the page class unless you want to tie the page object to a par-
ticular user. Fortunately, Geb has you covered.

 The to() and via() methods take additional arguments that are concatenated
with / and appended to the URL defined in the page object. Your TimelinePage has

static url = "users"

and when you invoke to() like this

to TimelinePage, "phil"

the test browser navigates to the URL /users/phil (relative to the application URL, for
example, http://localhost:8080/hubbub). If you want to add query parameters to the
URL, use named arguments. For example,

to TimelinePage, "phil", max: 10, offset: 0

navigates to /users/phil?max=10&offset=0. And as far as syntax goes, you have every-
thing you need to solve 98% of your page navigation needs. For the rare occasions
when you need more flexibility, Geb allows you to customize the way the to() argu-
ments are converted into a path.

TIP See the section “Advanced Page Navigation” in the “Pages” chapter of
the Geb manual1.

Once you’ve navigated to a page, you can interact with it either by picking out bits of
its content or filling out forms and clicking on things. How you do that depends on
how you define the content model of the page.

(continued)

It’s important to understand that the page object may not match the currently loaded
HTML document. That’s why at checkers are so important: they ensure that tests fail
fast when the HTML document doesn’t match the expected page

1 Advanced Page Navigation, http://www.gebish.org/manual/current/pages.html#advanced_page_navigation.
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:8080/hubbub
http://www.gebish.org/manual/current/pages.html#advanced_page_navigation

257Testing the application as a whole
CREATING A RICH CONTENT MODEL

As you saw previously, you define a content model through a DSL that binds a name to
content in an HTML page. In the example

static content = {
 whatHeading { $("#newPost h3") }
 ...
}

you’re binding the name whatHeading to a Geb navigator object that matches a partic-
ular level three heading. In this case, the closure associated with the name returns a
navigator object, but it can return anything. To access this returned value directly
from your Geb test case, treat it as a property:

then: "the page displays Phil's full name"
whatHeading.text() == "What is Phil Potts hacking on right now?"

As whatHeading is bound to a navigator object, we call text() on the property to get
the element content.

 Such content definitions are straightforward, because you effectively bind a name
to fixed markup on the page. It’s the same as when you declare a URL in a page object:
you have a one-to-one mapping between the two sides. And as with the URLs, this can
be limiting when markup can be different based on data provided to the page. That’s
where parameterization comes in.

 You’ve already seen a parameterized content definition in TimelinePage. Here it is
again to refresh your memory:

static content = {
 ...
 posts { content ->
 if (content) $("div.postText", text: content).parent()
 else $("div.postEntry")
 }
}

It looks similar to the other content definitions, but with an explicit argument on the
closure. This argument allows you to parameterize the definition. In this case, the posts
definition returns the Hubbub post that has the given content or all the posts if the
argument is empty. With this definition in place, you can fetch the markup for a spe-
cific post using this code in your test:

then: "the new post is displayed"
!posts("This is a test post from Geb").empty

Rather than referencing the content definition as a property as you did previously,
you use a method with arguments that match the parameters of the content definition
closure. In this case, the content argument of the closure gets the value "This is a
test post from Geb".
Licensed to Mark Watson <nordickan@gmail.com>

258 CHAPTER 9 Building reliable applications
 The content definition isn’t only about retrieving data from a page. Because it can
and often does return a navigator object, you can also use it to set form fields, click
on links, or perform any of the actions we discussed previously. Bringing this all
together, the second test for TimelinePageFunctionalSpec becomes what’s shown in
the following listing.

...
def "Submitting a new post"() {
 given: "I log in and start at my timeline page"
 login "frankie", "testing"
 to TimelinePage, "phil"

 when: "I enter a new message and post it"
 newPostContent.value("This is a test post from Geb")
 submitPostButton.click()

 then: "I see the new post in the timeline"
 waitFor { !posts("This is a test post from Geb").empty }
}

private login(String username, String password) {
 to LoginPage
 loginIdField = username
 passwordField = password
 signInButton.click()
}
...

No CSS selectors are in sight! And the content model can be used the same way in any
other functional test cases. If any markup changes in a page, update the content defi-
nitions of the page object and smile as your tests pass.

 We leave it as an exercise for you to create the LoginPage class (in the same pack-
age as TimelinePage). If you run into trouble, you can find an example implementa-
tion in the chapter source.

 Significant changes to a page may result in the content definition no longer
reflecting the structure correctly. When that happens, you may have to update the
content model in a breaking way, such as changing content definition names or what
they return. When that happens, your test cases will need to be fixed. But remember
that such changes to a UI happen much less frequently than simple tweaking of
markup. And page objects completely remove the trauma of the latter.

Listing 9.12 Submitting a new post

On modules
Geb modules are to page objects as Grails partial templates are to views. They have
content definitions like page objects but no URL. They represent parts of pages rather
than whole pages. They’re particularly useful when the same block of markup is used
on different pages.
Licensed to Mark Watson <nordickan@gmail.com>

259Summary and best practices
Geb is a rich framework for functional testing built on top of the well-established tool
Selenium WebDriver. At this point, not only can you write Geb tests for normal pages
and Ajax-based ones, but you can also more easily diagnose problems and use testing
techniques that are more advanced.

 Ultimately, end-to-end testing isn’t easy, but it rewards you with confidence in
releasing new versions of your application. The investment in time is well worth it, and
as with other things in life, the more you practice developing Geb tests, the easier it
becomes to write and maintain them.

9.4 Summary and best practices
Some people take to testing with a vengeance and vigorously follow TDD principles.
For others, it’s more of a chore. Grails can’t really change that, but it does reduce the
effort required to write, manage, and run the tests for your application. Spock is a big
help, too, by encouraging you to formulate your tests in a specific way.

 The key point to remember is that each test phase has its place. The unit tests exe-
cute quickly and are great for testing the logic in a class independently of everything
else in the application. Integration tests allow you to easily test services and everything
they depend on without worrying about HTTP requests and HTML. Functional tests
ensure that everything is working properly as a whole.

 The following guidelines will help you get the most out of your testing:

■ Always write functional tests. If you test at only one level, make sure it’s the func-
tional level. This is the best way to ensure your application works as a whole.
We still recommend that you write unit and integration tests where appropri-
ate because they will save you time in the long run by providing quicker feed-
back on errors.

■ Get in the habit. Practice makes perfect and the more tests you write, the easier it
becomes. Once testing becomes a habit, it won’t feel like a chore and you’ll
reap the benefits of a more reliable application.

■ Make testing easy. The testing tools we have mentioned in this chapter aim to
make testing easier. But you will always find that applications have their own dif-
ficulties, such as spawning external processes or integrating with web services.
It’s easy to avoid testing such things because they are difficult. Doing so will
leave big gaps in your test coverage. Invest the time to make things easy to test
so developers aren’t tempted to skip writing them.

■ Make use of other tools. We have only covered a few tools in this chapter. Other tools
can help improve your productivity and the reliability of your apps. For example,

(continued)

Modules are well covered in the Geb manual and are defined in a similar way to page
objects, so we don’t cover the detail here. One useful tip is to define a module for
each of your GSP partial templates.
Licensed to Mark Watson <nordickan@gmail.com>

260 CHAPTER 9 Building reliable applications
CodeNARC can pick up likely sources of bugs from static analysis of your code,
while the Code Coverage plugin and Clover can check your test coverage.

This ends our coverage of the core features of Grails, which form the basis of all Grails
applications. During this journey we’ve seen plenty of core features that are imple-
mented via plugins, such as the scaffolding and the database access. Plugins are such a
fundamental part of application development with Grails that we look at how the
plugin system works in the next chapter.
Licensed to Mark Watson <nordickan@gmail.com>

Using plugins:
just add water
Few things in life do exactly what you want, and unsurprisingly Grails is no differ-
ent. Fortunately, a wealth of Java tools and libraries are out there to help you imple-
ment almost any feature you could want. Because Grails is inherently a Java-based
framework, you can use almost any Java library out there. Many of them are robust
and mature, so why reinvent the wheel?

 You can use Java libraries as is, but there can be big benefits to having an
adapter between Grails and the library that makes it easier to use and quicker to set
up. This is the purpose of the Grails plugin system. The idea is that functionality is
bundled into modules that can be loaded by the framework and integrated into the
system. That functionality may be full-text search, tag clouds, or a fancy new UI
technology. In fact, many of the features of Grails are implemented as plugins
themselves, including GORM.

This chapter covers
■ Integrating email support
■ Taking advantage of caching
■ Migrating database structures
■ Adding full-text search
261

Licensed to Mark Watson <nordickan@gmail.com>

262 CHAPTER 10 Using plugins: just add water
You can see how the plugins relate to Grails and each other in figure 10.1. If you’re
familiar with Eclipse or any of the other Java-centric IDEs, their plugin systems are
analogous to Grails’s own.

 The upshot of all this is that anyone can provide extra functionality by writing a
plugin, and that’s what many people have done. You’ll see how easy it is to install these
plugins into your applications, effectively giving them a shot of steroids. From sec-
tion 10.2 to the end of the chapter, you’ll explore available popular and cool plugins.

10.1 Taking advantage of others’ hard work
When might you want to install a plugin? If you find yourself with a feature require-
ment that doesn’t sound specific to your application—one that’s not directly related
to your business logic—look for existing plugins that promise to do the job for you. If
you’d use a separate library or tool to do the job in a plain Java project, then a plugin
is probably the best solution in Grails. Remember, it’s rarely a good idea to reinvent
the wheel.

 Take Hubbub. You want to send emails from various parts of the application, such
as a user registration module or a daily email digest module, but emailing isn’t what
Hubbub is about. The feature is outside the core of Hubbub and is common to differ-
ent types of applications. That makes it an ideal plugin candidate, and you won’t be
surprised to learn that an Email plugin already exists.

 Once you’ve decided that there may be a plugin that does what you need, it’s time
to find the appropriate one.

10.1.1 Finding plugins

The two main sources of information about plugins are the Grails Central Plugin
Repository and the Grails website.

Controllers

Grails core

Plugin system

GORM

Tomcat

Core plugins User plugins

Searchable

Acegi

GWT

Figure 10.1 The plugin architecture
Licensed to Mark Watson <nordickan@gmail.com>

263Taking advantage of others’ hard work
THE GRAILS PLUGIN REPOSITORY

Grails has a couple of commands that can be used to query for plugin information,
both of which work against what’s known as the Grails Plugin repository. This is a cen-
tralized online storage area that hosts many of the available Grails plugins, making it
easy for Grails to query for, install, and upload them. As you’ll see in chapter 20 (avail-
able online as bonus content), you can even set up your own local repository.

 For now, we’re interested in the querying capabilities:

grails list-plugins

This command produces output similar to this:

Plugins available in the grailsCentral repository are listed below:

acegi <0.5.3.2> -- Acegi Plugin
activemq <0.4.1> -- Grails ActiveMQ Plugin
...

As the list-plugins name suggests, this command lists all the plugins in the reposi-
tory. For each one, it displays the name, latest version, and a short description. You
may notice that some plugins show both <> and an empty descriptions field. In many
cases, this is a sign that the plugin was added to the repository before Grails 1.0, and it
hasn’t been updated. Proceed with extreme caution since such plugins will almost cer-
tainly not work with modern Grails versions.

The list of plugins is long. If you run on a Unix-like system, such as Mac OS X or
Linux, we suggest that you pipe the output through grep, like so:

grails list-plugins | grep "mail"

This isn’t possible on Windows (unless you use Cygwin), but the plugins are listed
alphabetically, so you shouldn’t have much trouble browsing the list.

 Now that you have the list, what’s next? You want to find out whether there’s a
plugin that makes it easy to send emails from Hubbub, so look for anything to do with
“mail.” It shouldn’t take you long to find an entry in the list for the Mail plugin, which

Under the hood
The Grails plugin repository is implemented as a Maven repository accessible via
HTTP, so you need internet access. The structure of the directories and files in the
repository follows conventions that allow Grails to download specific versions of
a plugin.

If you need to configure an HTTP proxy, run this command:

grails set-proxy

Enter the details as requested. The list of plugins is cached locally in a file called plu-
gins-list-grailsCentral.xml, which is typically located in $HOME/.grails/2.x/.
Licensed to Mark Watson <nordickan@gmail.com>

264 CHAPTER 10 Using plugins: just add water
according to its description “provides mail support to a running Grails application.”
That looks like the ticket.

 Once you have the name of a plugin, you can find out more about it with this
plugin-info command:

grails plugin-info mail

You receive results similar to this:

--
Information about Grails plugin
--
Name: mail | Latest release: 1.0.1
--
Provides Mail support to a running Grails application
--
Author: Grails Plugin Collective
--
Author's e-mail: grails.plugin.collective@gmail.com
--
Find more info here: http://gpc.github.com/grails-mail/
--

This plug-in provides a MailService class as well as configuring the
necessary beans within the Spring ApplicationContext.

...

The important information here is the location of online documentation (http://
gpc.github.com/grails-mail/, in this example) and the long description, which should
provide enough information to decide whether or not the plugin is suitable. See the
“Don’t choose a dead (or dying) plugin” sidebar for more information.

 Although the Grails Plugin repository makes life easy for the user, not all plugins
are available through it. Those that aren’t can often be found via the Grails website.

THE GRAILS WEBSITE

Along with plenty of other useful information for the discerning Grails developer, the
main Grails website has a page that lists plugins by category. It also has documentation
for many of them, which means that searching for plugins on the website can be fruitful.
The downside to the website is that it relies on users and plugin authors to keep it up to
date, so its information may be out of date, incorrect, or nonexistent for some plugins.

 You can find the categorized list at http://grails.org/plugins/. Here you can search
for plugins and their reference information. You can even see usage stats and vote for
the plugins you think are the best.

 What should you do if you can’t find what you’re looking for either via the Grails
commands or the website? As a last resort, you can always ask your question on Stack-
Overflow (http://stackoverflow.com) and tag it as a Grails question. The community is
friendly and responsive.

 Once you find a plugin you want to use, you can install it into your application.
Licensed to Mark Watson <nordickan@gmail.com>

http://gpc.github.com/grails-mail/
http://gpc.github.com/grails-mail/
http://stackoverflow.com
http://grails.org/plugins/

265Taking advantage of others’ hard work
10.1.2 Installing plugins via the (deprecated) install-plugin command

As with almost any piece of software, you have to install a plugin before you can use it.
Back in the Grails 1.x days, Grails had a simple command that would do this for you:

grails install-plugin <plugin name>

Provide the name of the plugin you want, and Grails would fetch the latest version
from the Grails plugin repository and install it locally. Use the name displayed by the
list-plugins command—in our previous example, the name is mail.

 Although this feature was initially fantastic for productivity, as the Grails ecosystem
grew it ended up being a world of pain when different plugins included other plugins as
their dependencies. The feature was deprecated in Grails 2.0 and replaced with a more
comprehensive Maven-style dependency mechanism using /grails-app/conf/Build-
Config.groovy. You still see older tutorials reference the install-plugin mechanism, but
we take you through the best way to install plugins for maximum future compatibility.

10.1.3 Installing plugins via BuildConfig.groovy

Under Grails 2.x, the best way to install plugins is via /grails-app/conf/BuildConfig
.groovy. To install a plugin here, you need to know the name of the plugin along with
the version you want to install. You can get that information through the grails
plugin-info command that we introduced you to in the last section. If you run that
command for the Mail plugin using grails plugin-info mail you see a section
marked Dependency Definition:

Dependency Definition
--
 :mail:1.0.1

This section tells you the information you need for including the plugin in your project.
In the following listing, let’s edit the Hubbub /grails-app/conf/BuildConfig.groovy to
add the definition for the Mail plugin at the end of the plugins block:

 plugins {

 runtime ":hibernate:$grailsVersion"
 runtime ":jquery:1.8.3"
 runtime ":resources:1.1.6"
 runtime ":database-migration:1.3.2"

Don’t choose a dead (or dying) plugin
Many plugins in the Grails plugin system are no longer maintained by their original
author—such is life in an open source ecosystem. Always check how active a plugin
is before committing yourself to it. Look for date of last update, popularity within the
plugin portal, or even the date of recent commits on the project GitHub site before
you go banking your next world-beating application on dead code.

Listing 10.1 Adding the Mail plugin definition
Licensed to Mark Watson <nordickan@gmail.com>

266 CHAPTER 10 Using plugins: just add water
 build ":tomcat:$grailsVersion"

 compile ':cache:1.0.1'
 compile ':mail:1.0.1'

 }

We explain the different dependency scopes in detail in chapter 17, but for now, you
added the plugin in compile scope because you need the classes and services supplied
by the Mail plugin when you’re writing updates to Hubbub.

10.1.4 Plugin dependencies

Many plugins are self-contained, meaning that everything they require is either avail-
able through Grails or packaged in the plugin. Other plugins that are more complex
may require features provided by other plugins—they depend on those other plugins,
which may in turn depend on other plugins.

 Figure 10.2 shows a (rather contrived) example of plugin dependencies for a
Grails application. As you can see, managing the plugins and their dependencies your-
self would be labor-intensive, and that’s why Grails manages them for you. When you
install a plugin, Grails automatically checks what plugins it depends on and installs
those that haven’t been installed.

 Consider figure 10.2 and imagine you want to install Plugin A. When you compile
your application after adding a /grails-app/conf/BuildConfig.groovy entry for Plugin A,
Grails automatically fetches and installs Plugins D, E, F, and G because Plugin A depends
on them either directly or indirectly. Alternatively, if you have Plugin B installed, then
Grails installs only Plugins D, F, and G—Plugin E is already installed because of B.

 As a user of plugins, all of this is transparent to you. It’s okay if you don’t understand
what’s going on at this stage. One thing to be aware of is that if you install a plugin from

Where are my plugins?
You’ve installed a plugin or two, but where did Grails put them? Although you don’t
need to know where they are, they can be a great source of instruction and inspiration
when you decide to write your own plugins.

By default, Grails stores plugins in

$HOME/.grails/<grailsVersion>/projects/<project>/plugins

where $HOME represents the current user’s home directory, <grailsVersion> is the
version of Grails used to install the plugin, and <project> is the name of the project
you installed it into.

Global plugins go into a slightly different place because they aren’t associated with
a particular project:

$HOME/.grails/<grailsVersion>/global-plugins

In chapter 20 (available online) we show you how to control where Grails stores
project plugins.
Licensed to Mark Watson <nordickan@gmail.com>

267Adding mail support
a zip archive rather than a plugin repository, Grails still attempts to install its dependen-
cies from the repository. This may not be a problem for you, but it’s useful to know.

10.1.5 Applying your knowledge: the Hubbub extreme makeover begins

Now that you have a feel for how plugins are installed, uninstalled, and otherwise
managed, it’s time to apply all that theory to a real project. You’re going to spend the
rest of this chapter being introduced to several popular Grails plugins and giving
Hubbub an extreme makeover, adding popular features you’re likely to use in your
own applications, such as caching, email integration, and full-text search.

 Once you get a feel for how plugins can quickly add features to your application,
you’ll find yourself addicted to the near-instant gratification that this style of function-
ality reuse provides. Let’s start with using that Mail plugin in Hubbub.

10.2 Adding mail support
If your application offers any sort of user sign-up capability, it won’t be long before
you need to implement email support. Whether you need to send sign-up welcome
emails, respond to forgotten-password messages, or support a daily digest, having
email capability is now a standard requirement. Grails offers the Mail plugin to make
sending email simple. You can send mail from controllers or services and even use
complex GSP views to create fancy HTML emails.

 To refresh your memory, you installed the Mail plugin by adding it to /grails-app/
conf/BuildConfig.groovy:

plugins {

 compile ':mail:1.0.1'

}

After you install the plugin, you need to add two lines of configuration to tell the
plugin where to find your mail server and what the default From address should be.
Let’s update your /grails-app/conf/Config.groovy file:

grails.mail.host="mail.yourserver.com"
grails.mail.default.from="hubbub@grailsinaction.com"

Grails
project

Plugin A

Plugin B

Plugin C

Plugin D

Plugin E

Plugin F

Plugin G

Figure 10.2 Example plugin dependencies for a project
Licensed to Mark Watson <nordickan@gmail.com>

268 CHAPTER 10 Using plugins: just add water
The default From address is optional. You can always specify your own From address
each time you invoke the Mail plugin, but it makes sense to set it here because you’ll
have less maintenance later on if you need to change it.

 If you have different mail servers for different environments, you can nest this
value inside the development/test/production sections of Config.groovy so that you
have environment-specific values.

TIP You might worry whether the Mail plugin is up to supporting your mail
server setup. Fear not, ample configuration options are available for the
plugin, including custom ports and SSL connections. Consult the Mail plugin
page for the complete set of configuration options. A common configuration
choice for development is to use your Gmail for your SMTP server. If that’s
your plan, a configuration like this would suffice.

grails {
 mail {
 host = "smtp.gmail.com"
 port = 465
 username = "your_username@gmail.com"
 password = "your_password"
 props = ["mail.smtp.auth":"true",
 "mail.smtp.socketFactory.port":"465",
 "mail.smtp.socketFactory.class":
 "javax.net.ssl.SSLSocketFactory",
 "mail.smtp.socketFactory.fallback":"false"]
 }
}

With your configuration done, it’s time to send your first email.

Adding configuration properties for your own code
You might wonder how the Mail plugin reads values from Config.groovy and how you
can add your own property settings to your application.

Let’s imagine Hubbub has a setting for enabling a proxy server. In your Config.groovy
file, add a value for the property:

hubbub.proxy.enabled = true

If you need access to settings from a controller (or any artifact that supports DI), you
can declare a grailsApplication object on your controller and Grails will inject it
for you. Once you have that object, you can get to your setting with a line like this:

def grailsApplication

...

if (grailsApplication.config.hubbub.proxy.enabled) {
 /* do proxy stuff */
}

Licensed to Mark Watson <nordickan@gmail.com>

269Adding mail support
10.2.1 Sending mail inline

The Mail plugin gives you two basic options for invoking the mail service:

■ Via a sendMail() method dynamically added to each controller and service in
your application

■ By calling the mailService.sendMail() method from within a controller or
service that has mailService injected

TIP Both of these mechanisms call the same code, so the choice is about
which style of injection you prefer (and perhaps which method works better
with your mocking and testing strategy, but more on that later).

Let’s start with the service-based mechanism (since, as we demonstrated in chapter 9,
that will make things easier to mock for any unit tests we might write down the track).
For your first email, let’s send a “welcome aboard” sign-up message to your User-
Controller, as shown in the following listing.

def mailService

def welcomeEmail() {
 if (params.email) {
 mailService.sendMail {
 to params.email
 subject "Welcome to Hubbub!"
 text """
 Hi, ${params.email}. Great to have you on board.
 The Hubbub Team.
 """
 }
 flash.message = "Welcome aboard"
 }
 redirect(uri: "/")
}

Using the inline version of mail is a matter of passing in a closure with the appropri-
ate values for to, subject, and text (or html if you’re sending HTML email). You can
also provide cc and bcc fields, and you can comma-delimit a list of addresses. In list-
ing 10.2, you used a Groovy multiline string ("""), which laid out the email inline with
your controller code.

Listing 10.2 Sending a welcome email

Handling multipart MIME messages and attachments
We covered the text and HTML options for sending plain text or HTML emails. But
what if you want to send a multipart MIME email containing both text and HTML and
let the user’s email client decide the one to render? In this scenario you can provide
an email body for both text() and html(), but make sure you also set the multipart
property to true.

Defines an injection point
for the Mail service

Calls the sendMail
method on the
injected mailService
with mail params

Uses multiline string to
send mail body inline
Licensed to Mark Watson <nordickan@gmail.com>

270 CHAPTER 10 Using plugins: just add water
That’s fine for simple scenarios, but you don’t want layout logic embedded in a
controller. It’s time to move all your layout logic into a GSP to make things more
maintainable.

10.2.2 Using a view as your mail body

Having an embedded email layout in your controller classes means you can’t take
advantage of the HTML editor in your IDE. It’s also harder to get your graphic
designer’s input into the process. Fortunately the Mail plugin lets you delegate your
UI output to a view. Let’s take it for a spin.

 First, let’s create a standard Grails view to host your content (/grails-app/views/
user/welcomeEmail.gsp). You’ll include CSS styling too, because it’s available, and set
the content type to text/html so a rich HTML email is sent. The following listing
shows the email template.

<%@ page contentType="text/html"%>
<html>
<head>
 <title>Welcome Aboard</title>
 <style type="text/css">
 body {
 font-family: "Trebuchet MS"
 }
 </style>
</head>
<body>
 <h1>Howdy!</h1>
 <p>
 Hi, ${email}. Great to have you on board.
 </p>
 <p>
 The Hubbub Team.
 </p>
</body>
</html>

With your content in place, you need a way to wire it to your controller action. This is
handled by custom attributes on the sendMail tag. The following listing shows the
updated action.

(continued)

Similarly, you need to set the multipart property to true if you add attachments to
your emails, which you can do by invoking the attach() method and passing in a
File, InputStream, or byte[]. See the Mail plugin docs for further details.

Listing 10.3 A template view for your email, with CSS styling

Provides CSS
style for mail

Uses variables provided
by controller
Licensed to Mark Watson <nordickan@gmail.com>

271Adding mail support
def welcomeEmail(String email) {
 if (email) {
 mailService.sendMail {
 to params.email
 subject "Welcome to Hubbub!"
 html view: "/user/welcomeEmail", model: [email: email]
 }
 flash.message = "Welcome aboard"
 }
 redirect(uri: "/")
}

You passed the view name and the model attributes via the HTML (or text) tag. You’re
already inside the UserController, so you can use a relative view name for the corre-
sponding GSP (minus the .gsp extension). If you send email from a service or a Quartz
job, you need to specify the full path to the view (in this example, it would be /user/
welcome-Email) because Grails has no servlet request to work with.

 Figure 10.3 shows your welcome email in action, sending your rich HTML email to
the user’s inbox.

 Now that you implemented your mail-sending infrastructure, it would be nice to
test it. Fortunately Grails gives you several ways to get there.

10.2.3 Testing mail operation

You could always write a unit test with metaclass magic to mock out the sendMail call
on your controller, but you wouldn’t get your template rendered. A nicer solution is to
take advantage of one of the Grails SMTP mocking plugins that lets you mock out a
mail server entirely with an in-memory replacement. Several are available, but you’ll
use the Dumbster plugin (http://grails.org/plugin/dumbster) because it’s actively
maintained and has first-class support for integration with the Mail plugin.

 The Dumbster plugin works by sparking up a mock SMTP server on a known port
(using the standard Java Dumbster library), then directly injecting itself into the Mail

Listing 10.4 An updated welcome action that defers to the view for rendering

Figure 10.3 A new message arriving with suitable markup
Licensed to Mark Watson <nordickan@gmail.com>

http://grails.org/plugin/dumbster

272 CHAPTER 10 Using plugins: just add water
plugin’s Spring wiring to point to that mock mail server. Integrating the Dumbster
with your current setup is a one-line configuration setting for whatever environment
you’d like to enable it.

 Let’s add the plugin to our /grails-app/config/BuildConfig.groovy and start
implementing. You’ll add it to the test scope because you only need this plugin active
when running your tests, and you don’t want to inadvertently ship a mock SMTP server
with your final application!

plugins {

 // ... other plugins omitted
 test ':dumbster:0.2'

}

But pulling in the plugin is only part of the story. For sensible reasons, the plugin is dis-
abled by default. (You don’t want to accidentally enable a mock mail service in your pro-
duction deploys!) You need to enable it by changing /grails-app/conf/Config.groovy.
Let’s turn it on for the test environment:

environments {
 test {
 dumbster.enabled = true
 }
}

Once the plugin is installed and enabled, you have a new Dumbster Spring bean that
you can inject into your tests. Because you want your Spring beans in play for testing
(so you’re exercising your Mail plugin with Dumbster integration), you’ll write an
integration test rather than a unit test (remember that unit tests won’t spark up any
Spring infrastructure).

 Let’s refresh your /test/integration/com/grailsinaction/UserIntegrationSpec
with the new test code shown in the following listing.

class UserIntegrationSpec extends IntegrationSpec {

 def dumbster

 def "Welcome email is generated and sent"() {

 given: "An empty inbox"
 dumbster.reset()

 and: "a user controller"
 def userController = new UserController()

 when: "A welcome email is sent"
 userController.welcomeEmail("tester@email.com")

 then: "It appears in their inbox"
 dumbster.messageCount == 1

Listing 10.5 Testing mail sending using the Dumbster plugin

Injects Dumbster
Spring bean into test b

Clears existing mock
messages from Dumbster c

Sends email via
UserController action

 d

Confirms inbox
count rises to 1

 e
Licensed to Mark Watson <nordickan@gmail.com>

273Caching for performance: making everything snappy
 def msg = dumbster.getMessages().first()
 msg.subject == "Welcome to Hubbub!"
 msg.to == "tester@email.com"
 msg.body =~ /The Hubbub Team/

 }

}

In this example you inject your Dumbster instance into your integration test using
standard Spring injection B. With the Dumbster bean in play, you first clear any
cached messages c, then commence invoking your controller action to send the
mail d. Because that email ends up in the Dumbster object, you can now query it for
an increased message count e, and even pull off the message and check that the
To/Subject/Body fields are correct f.

 If you need convincing, run the test from the command line with grails test-app
UserIntegrationSpec and confirm that your message is delivered as promised. That
completes your tour of the Mail plugin. Next on the list is adding full-text search capa-
bility using the Cache plugin.

10.3 Caching for performance: making everything snappy
Since Grails 2.1, Grails has shipped with a built-in Cache plugin (which wraps the stan-
dard Spring caching infrastructure) that takes care of all those places where you have
expensive computed values that you like to keep for a while.

 If you’re running on Grails 2.0 and keen to take advantage of the new Cache
plugin, you need to add a new entry to your /grails-app/conf/BuildConfig.groovy,
but current versions of Grails already have the line you need:

plugins {
 // ... other plugins omitted
 compile ':cache:1.0.1'
}

Note that you want to have the plugin in compile scope because it exposes annota-
tions that you may want to employ on your controllers.

 The Cache plugin gives you the infrastructure to cache the outcome of controller
and service methods, and even provides a standard set of view-tier taglibs giving you
all the common caching infrastructure that your app may need.

 Even more importantly, the Cache plugin also provides the core caching API that
you can extend and customize. Using one of the other Grails caching plugins, such as
cache-ehcache, cache-redis, and cache-gemfire), builds on the core plugin. These
plugins give you the ability to switch the underlying caching implementation with no
source-level changes to your application.

10.3.1 The core caching annotations

The Cache plugin provides three easy-to-use annotations that make caching your method
calls straightforward: @Cacheable, @CachePut, and @CacheEvict. You supply the cache
name to the annotation (and optionally a cache key in certain circumstances).

Fetches first
message and
checks its details

 f
Licensed to Mark Watson <nordickan@gmail.com>

274 CHAPTER 10 Using plugins: just add water
 Let’s imagine you want to cache your global timeline (because you’re under so
much load) so that the method only gets refreshed periodically:

class PostController {

 import grails.plugin.cache.*

 @Cacheable('globalTimeline')
 def global() {

 // ...render the global timeline
 }

The global timeline is shared across all users, so you can use the @Cacheable annota-
tion and give it the name of the cache in which to store the outcome. You then config-
ure your globalTimeline cache to expire every minute or so and let the underlying
cache be refreshed with the most recent entries.

 But what about the scenario in which you want to cache a given user’s timeline and
refresh it every time they create a new post? Sounds like just the scenario to introduce
you to the @CachePut and @CacheEvict tags. Let’s start by getting your timeline into
a per-user cache:

@Cacheable('userTimeline')
def personal(String loginId) {

 // ...lookup personal timeline by loginId
}

In this scenario, when a request comes in for a personal timeline, you return the value
from a userTimeline cache using the parameter loginId as the cache key (you can
supply your own cache key if you like, but it will default to a concatenation of the
parameters to the method). You could rework the personal method with a custom
key to achieve the same result:

@CachePut(value='userTimeline',key='#loginId')
def personal(String loginId) {

 // ...lookup personal timeline by loginId
}

With your personal timelines now cached for high performance, it makes sense to think
about refreshing them only when the user posts new content. Enter the @CacheEvict
annotation that looks after evicting items from the existing cache:

@CacheEvict(value='userTimeline', key='#session.user.loginId')
def addPostAjax(String content) {
 // ...add new post to users timeline
}

In this example, you use the user’s account, which is stored in the session (so you
don’t let people invoke addPostAjax() on behalf of someone else). @CacheEvict also
offers a handy allEntries=true configuration option if you ever need to “go nuclear”
and clear out an entire cache as an admin function:
Licensed to Mark Watson <nordickan@gmail.com>

275Caching for performance: making everything snappy
@CacheEvict(value='userTimeline', allEntries = true)
def clearUserTimelineCache() {
 // ... other audit functions here
}

By combining @Cacheable, @CachePut, and @CacheEvict, you end up with a compre-
hensive configuration-based caching solution that’s super easy to maintain. But what if
you need to access fine-grained configuration data? If you need programmatic access,
you need to look at the CacheManager API.

10.3.2 Working with the CacheManager API

If you need to do fine-grained cache operations and wish to make calls on the under-
lying cache, the Cache plugin exposes a grailsCacheManager object for injection.
This object gives you methods such as getCache(name) and getCacheNames(), and
inspection methods such as cacheExists(cacheName) and destroyCache(cacheName).
The most common use case is to get access to the underlying cache instance program-
matically such as:

Cache myCache = grailsCacheManager.getCache("myCache")
myCache.evict("someKey")
myCache.put("someKey", "newValue")
myCache.clear()

Although you typically won’t need such low-level calls, it’s good to know that you can
get access to the underlying cache instances directly if your business logic requires it.

10.3.3 Leveraging other members of the Cache plugin family

Out of the box, the Grails-cache plugin provides in-memory caching with only manual
cache eviction. If this sounds a little minimalist for a Cache plugin, that’s by design.
For more sophisticated caching use cases, the core plugin was designed to be extended
by other caching plugins that let you configure all sorts of caching facilities without
changing your source code.

 A popular choice for more sophisticated caching configuration is to extend the
cache plugin with the Ehcache plugin that offers a dizzying array of caching configu-
ration use cases. First, let’s add the plugin to our BuildConfig.groovy:

plugins {
 compile ":cache-ehcache:1.0.0"
}

NOTE The Ehcache extension plugin declares a dependency on the version
of the cache-core plugin that it requires, so if you add Cache-ehcache to your
plugins, you can safely remove the standard cache plugin.

With your Ehcache plugin installed, you can configure how you want both your
named and global caches to operate. All the configuration work happens, as you might
expect, in /grails-app/conf/Config.groovy.
Licensed to Mark Watson <nordickan@gmail.com>

276 CHAPTER 10 Using plugins: just add water
 You can consult the Cache-ehcache documentation for a complete set of current
DSL configuration values, but the Ehcache plugin’s default cache config should give
you an idea of how the plugin hangs together (and how flexible the configuration
options are), as shown in the following listing.

grails.cache.config = {
 defaultCache {
 maxElementsInMemory 10000
 eternal false
 timeToIdleSeconds 120
 timeToLiveSeconds 120
 overflowToDisk true
 maxElementsOnDisk 10000000
 diskPersistent false
 diskExpiryThreadIntervalSeconds 120
 memoryStoreEvictionPolicy 'LRU'
 }

 cache {
 name 'myDailyCache'
 timeToLiveSeconds 60*60*24
 }
}

You can see from the listing the Cache-ehcache plugin gives you an amazing array of
configuration options, but perhaps the most critical ones are timeToLiveSeconds (how
long things will live in the cache before they’re automatically evicted), and diskPersist
(whether you want your cache to survive an app server restart). Consult the grails-cache-
ehcache online docs (http://grails-plugins.github.com/grails-cache-ehcache/) for a
comprehensive discussion of all the available options.

Also don’t forget that you can configure your caching on a per-environment basis
(like anything else in Config.groovy). You might want to use memory-only caching in
dev, but overflow to disk in your QA and production environments.

10.3.4 The cache taglibs: caching in the view

We’ve encouraged you to “think MVC” throughout your Grails journey: business logic
in the services, routing and marshaling in the controller, and rendering in the view.

Listing 10.6 Structure of a Cache plugin

Caching and serializable
For the standard in-memory cache, there’s no requirement for you to mark the cached
objects as serializable (because they’re stored in an in-memory HashMap). For cer-
tain configurations of the enhanced cached plugins (such as Ehcache with distrib-
uted caching), your objects will need to be marked serializable to be persisted across
the wire.
Licensed to Mark Watson <nordickan@gmail.com>

http://grails-plugins.github.com/grails-cache-ehcache/
http://grails-plugins.github.com/grails-cache-ehcache/

277Caching for performance: making everything snappy
With that style of architecture, you might wonder why would I need to even cache
anything in the view if all my logic is happening in services?

 Well, one great reason to cache in the view tier is to cache the output of your custom
taglibs to make sure the view renders snappily. Another useful case is when you need to
invoke view-layer templates (which might themselves be performing calls to other cus-
tom taglibs). The cache plugin provides two versatile taglibs to solve these particular
common cases: <cache:block> for caching arbitrary blocks of view-layer tags, and
<cache:render> for caching the invoking of view-layer templates. Let’s look at each.

 The simplest to understand is the <cache:block> tag, which globally caches what-
ever content appears inside the tag. For example:

<cache:block >
 Hubbub currently has ${ com.grailsinaction.User.count()} registered users.
</cache:block>

That’s fine for global data. What about the case where you want to cache on a per-user
basis? What if, for example, you had an <h:followers> taglib that displayed the list of
followers for the current user? It would be no use caching this data globally because it
changes for each user of the system. Let’s imagine you have an <h:followers> tag
that renders all the followers for a user in Hubbub. You want to render and cache the
list once per user. In that case, you can take advantage of the key attribute to simulate
a per-user cache:

<cache:block key="${session.id}">
 <h:followers for="${session.user}"/>
</cache:block>

Your list of followers will be calculated once and preserved for the life of the session.
These procedures generate in-memory cache action, so to avoid a different set of perfor-
mance problems you might want to think about where you apply any per-user caching.

 You had no trouble getting your caching up and running, but what about invali-
dating the cache when you want to change the values? As you saw in the previous
section, if you’re using one of the extensions to the core cache plugin (such as
Cache-ehcache), cache invalidation can be configured in Config.groovy at various
levels of granularity. To be honest, that’s certainly the best way to go, and it gives you
the most robust outcome. If, however, you’re using the Cache plugin on its own,
cache invalidation is handled through a Grails service that’s supplied by the Cache
plugin called GrailsCacheAdminService.

 To invalidate your caches, declare an instance of variable for injection, then invoke
either the clearBlocksCache() (to clear all your cache:block sections), or the
clearTemplatesCache() (to clear all your cache:render sections). If you’re inter-
ested in the internals, all these methods do is clear the named cache blocks that hold
the results of those taglibs. For example, the clearBlocksCache() method on the ser-
vice uses the @CacheEvict tag to wipe out the named cache used in the taglibs:

@CacheEvict(value="grailsBlocksCache", allEntries=true)
def clearBlocksCache() {}
Licensed to Mark Watson <nordickan@gmail.com>

278 CHAPTER 10 Using plugins: just add water
The same applies to clearTemplatesCache. If you need to configure a more robust
block and template caching solution, you now know the cache names to apply your
configuration to!

 Now that you explored a great set of practical Grails caching tools, it’s time to turn
your attention to keeping your domain model structure in sync with your database
table structure using the Database Migration plugin.

10.4 Database migrations: evolving a schema
In your sample application you haven’t yet learned how to evolve your database to cope
with changes (for example, introducing or refactoring domain objects and their fields).
You set your dbcreate option to update in /grails-app/conf/DataSource.groovy and
forgot about it:

production {
 dataSource {
 dbCreate = "update"
 // ... other settings
 }
}

That’s worked great so far. What’s to worry about?
 For one thing, the standard update mechanism doesn’t know anything about col-

umn renames, so if you ever decide to refactor your field names or types in your
domain objects, you’re in for manual work in your database console to keep your data
in sync.

 What you want is a database-agnostic way of describing your database change sets
so that you can always migrate your database from its current form to the latest
schema. Enter the Grails Database Migration plugin (http://grails.org/plugin/
database-migration)—purpose-built Grails integration of the popular Java Liquibase
library for database migrations (www.liquibase.org).

 Starting with Grails 2.1, the Grails database migration plugin now ships out of the
box with Grails, and is fast becoming the safest (and most popular) way to keep your
database in sync with your domain objects. Let’s install it and start experimenting.

10.4.1 Installing and configuring the plugin

If you run on a version previous to Grails 2.1, you need to install the plugin using the
standard /grails-app/conf/BuildConfig.groovy mechanism. For older versions of
Grails, the plugin can be installed manually via:

plugins {
 runtime ":database-migration:1.3.2"
}

Once you have the plugin installed, make sure you turn off Grails’s database schema-
syncing feature in your /grails-app/conf/DataSource.groovy. You may remove the
Licensed to Mark Watson <nordickan@gmail.com>

http://grails.org/plugin/database-migration
http://grails.org/plugin/database-migration
www.liquibase.org

279Database migrations: evolving a schema
dbCreate line entirely or set it to none explicitly to disable the feature. Here’s the
updated setting for Hubbub:

production {
 dataSource {
 dbCreate = "none"
 // ... other settings
 }
}

Our one final configuration change is to automatically run all new database migra-
tions when the application starts up. This is turned off by default (to ensure you don’t
accidentally clobber your production database), but it’s so convenient to use that you’re
going to turn it on right from the get-go through a small modification to /grails-app/
conf/Config.groovy:

grails.plugin.databasemigration.updateOnStart = true
grails.plugin.databasemigration.updateOnStartFileNames = ['changelog.groovy']

These two entries tell the plugin to automatically update all outstanding database
migrations mentioned in changelog.groovy as the application boots. You’ll dive into
the details of all those changes shortly!

 In fact, with the plugin installed and your configuration in place, it’s time to estab-
lish a baseline for your schema; later, you’ll generate changeSets from this baseline.

10.4.2 Establishing a baseline

The general workflow for the database migration plugin is to: (1) establish a baseline
schema for your first release, then (2) generate a changelog entry for each domain
class modification you make.

 All of the database migration commands are prefixed with dbm-; to create your ini-
tial migration changelog file, use the following command:

grails prod dbm-create-changelog

This file creates a skeleton changelog file in /grails-app/migrations/changelog.groovy.
This file is your parent file, loaded by the Dbmigration plugin on Grails startup. From
here, you can create new child changelog files to represent all of the database changes
you introduce in a particular release.

 Let’s start by creating a changelog file that represents your baseline database schema.

grails prod dbm-generate-changelog --add changelog-0.1.groovy

If you run this from the command line, you generate a new file in /grails-app/migra-
tions/changelog-0.1.groovy, and the plugin automatically updates your /grails-app/
migrations/changelog.groovy file to reference the new file. The following listing
shows an extract from the freshly minted changelog-0.1.groovy file.

Licensed to Mark Watson <nordickan@gmail.com>

280 CHAPTER 10 Using plugins: just add water

ch
com

p
d
c

changeSet(author: "Glen (generated)", id: "1383967582482-6") {
 createTable(tableName: "USER") {
 column(autoIncrement: "true", name: "ID", type`: "BIGINT") {
 constraints(nullable: "false", primaryKey: "true",

primaryKeyName: "CONSTRAINT_27")
 }

 column(name: "VERSION", type: "BIGINT") {
 constraints(nullable: "false")
 }

 column(name: "DATE_CREATED", type: "TIMESTAMP") {
 constraints(nullable: "false")
 }

 column(name: "LOGIN_ID", type: "VARCHAR(20)") {
 constraints(nullable: "false")
 }

 column(name: "PASSWORD", type: "VARCHAR(8)") {
 constraints(nullable: "false")
 }
 }
}

Notice from the changeSet that each entry has a unique ID and issues a database com-
mand (such as createTable, in this case). Expressing this information in a database-
agnostic format means you can express database refactoring operations (even com-
plex ones) without worrying about what kind of database the end user is configured to
use. This is useful when you have different databases in development and production
(not ideal, but a common reality in a commercial setting).1

But how does the Database Migration plugin know which migrations it has processed
and which ones are new? It knows through its own internal DATABASECHANGELOG
table. When the plugin processes changes, it creates new entries in that table to show
the migration ids it has processed.

Listing 10.7 changeSet files capture database schema changes in a given release

Should I use Groovy or XML migrations?
The Database Migration plugin supports two mechanisms for describing your migra-
tion: a Groovy DSL (as shown in listing 10.7) or the native Liquibase XML format. The
Groovy version is more commonly used in Grails circles, and supports a few more
complex migration options (such as embedded code in your migrations), so you’ll
stick with that version here. But if you have previous Liquibase experience, you might
find the XML more appealing. See the Database Migration manual for more details
about XML support.1

1 Bert Beckwith, “Database Migration Plugin—Reference Documentation,” version 1.4.0, http://grails-plugins
.github.io/grails-database-migration/docs/manual/.

changeSets have
unique IDs.

angeSet
mands
erform

atabase
hanges. All types and constraints

are expressed in DB-
agnostic terms.
Licensed to Mark Watson <nordickan@gmail.com>

http://grails-plugins.github.io/grails-database-migration/docs/manual/
http://grails-plugins.github.io/grails-database-migration/docs/manual/

281Database migrations: evolving a schema
 If you’re starting with a fresh, empty database and want to leave all table creating
to the plugin, you can run your baseline creation with:

grails prod dbm-update

This command processes all outstanding changeSets, writes entries in the DATA-
BASECHANGELOG, and gets everything in sync. In fact, you could issue a grails prod
run-app and get the same result because you automatically apply all fresh migrations
on application startups based on your settings in section 10.4.1. It’s probably better,
though, to first get a feel for what’s happening by running these commands manually.

 The dbm-update command is great if you start from a blank database, but what if
you already have your tables created in the database? How can you tell the Database
Migration plugin to sync its changes in its DATABASECHANGELOG table with your
existing structure? For that you need to run the following command:

grails prod dbm-changelog-sync

which marks all your migration scripts as successful in the DATABASECHANGELOG,
ensuring those migrations aren’t rerun on the current database.

 And with those few commands, you’ve learned how to establish your baseline
schema. But things get interesting when you start taking advantage of the handy
migration commands that ship out of the box. Let’s explore the common example of
creating new domain objects and refactoring existing ones.

10.4.3 Implementing common migrations
Imagine you enhance your Hubbub user profile domain class to keep a linked
twitterId field, perhaps via a change such as the following:

class Profile {
 // other fields omitted...
 String twitterId
}

To capture this change in your new workflow, you complete the following steps:

1 Make the domain class changes for the new addition.
2 Run grails prod dbm-gorm-diff --add changelog-0.2.groovy to add your

new migration to the changelog.
3 Either issue a run-app to apply the changes, or manually run grails prod dbm-

update to apply the changes from the command line.

First, let’s create the new changelog to see how things work. Run grails prod dbm-
gorm-diff --add changelog-0.2.groovy, and then look at the output in /grails-app/
migrations/changelog-0.2.groovy, as shown in the following listing.

databaseChangeLog = {

 changeSet(author: "Glen (generated)", id: "1383972018405-1") {
 addColumn(tableName: "profile") {

Listing 10.8 Creating a new domain class field (changelog-0.2.groovy)
Licensed to Mark Watson <nordickan@gmail.com>

282 CHAPTER 10 Using plugins: just add water

t,

rena
r

 column(name: "twitter_id", type: "varchar(255)") {
 constraints(nullable: "true")
 }
 }
 }
}

Here you can see your new column added to the changeSet. But what if you want to
rename the column? Let’s say you change your profile twitterId field to be twitterName.

 The plugin can’t keep track of a field’s old and new names, but it does provide a
rich set of database migration commands for writing your own changeSets by hand.
Here you’ve updated your changelog-0.2.groovy by hand to cope with the new
change, as shown in the following listing.

databaseChangeLog = {

 changeSet(author: "Glen (generated)", id: "1383972018405-1") {
 addColumn(tableName: "profile") {
 column(name: "twitter_id", type: "varchar(255)") {
 constraints(nullable: "true")
 }
 }
 }

 changeSet(author: "Glen (by hand)", id: "1383972018405-2") {
 renameColumn(tableName: "profile",
 oldColumnName: 'twitter_id', newColumnName: 'twitter_name')
 }
}

In the changelog in the example, you create a new changeSet and supply a unique id B.
Inside this new changeSet, you use the renameColumn refactoring c and supply the
old and new names for the column d. Using this method, you can preserve any exist-
ing data in the column while migrating the name to match your domain class. A quick
run of grails prod dbm-update and your database reflects the change.

 What about removing entries? This is a scenario where the plugin can keep track
of changes (because the column still appears in the database, but is missing from the
domain class). Let’s remove your twitterName field, and run a grails prod dbm-
gorm-diff --add changelog-0.3.groovy. In this case you see a new changeSet with
the dropColumn command invoked as shown in the following code.

databaseChangeLog = {

 changeSet(author: "Glen (generated)", id: "1383973002263-1") {
 dropColumn(columnName: "TWITTER_NAME", tableName: "PROFILE")
 }
}

You’ve seen how to create, rename, and remove fields from domain classes. But you
might wonder what other kinds of refactorings are available in the plugin (including

Listing 10.9 A changelog to renaming twitterId to twitterName (changelog-0.2.groovy)

Creates new
changeSe
gives it a
unique id

 b

Calls
meColumn
efactoring

 c

Provides old and new
names for column d
Licensed to Mark Watson <nordickan@gmail.com>

283Database migrations: evolving a schema

ation

ode
changing data types, renaming database objects, loading reference data, or even run-
ning arbitrary sql). The plugin exposes all the standard Liquibase refactorings, so the
best place to look is in the Liquibase reference documentation at www.liquibase.org/
documentation/changes.

10.4.4 Groovy-based migrations
One unique feature of the database migration plugin over standard Liquibase is the
ability to run arbitrary Groovy code as part of the migration. In fact, there’s even sup-
port for full GORM access from within the changeSet, which is powerful, but has
important gotchas (see the “Why shouldn’t I use GORM domain classes in my migra-
tions?” sidebar.)

 You can take advantage of Groovy-based migration by using the grailsChange
block inside your ever-familiar changeSet. To give you even finer-grained control,
the grailsChange block is further segregated into a range of lifecycle events (init,
validate, change, rollback, confirm, checksum), allowing you to do fine-grained
migration rollbacks and confirmations. You can consult the manual for details of each
of the event types, but you’re likely to spend 99% of your time in the change closure,
which is responsible for performing the migration, so let’s spend our energy there.

 Depending on the lifecycle event you chose to bind to, you’re given access to stan-
dard variables (typically backed by Spring beans), which you can use in performing
your migration magic. As we said, the most common event you’ll want to bind to is the
change event, and table 10.1 shows the most important objects that are injected and
available to you in your migration code.

There’s almost nothing you can’t do with all that power at your disposal! In listing 10.10,
you use the injected sql object (a groovy.sql.Sql object configured to use the cur-
rent data source connection) to perform arbitrary sql fiddling on your datasource.

 In this case, imagine you have to write a migration that resets all users’s passwords
to a random string. You iterate over all your users, using Groovy to generate the ran-
dom string password on the way.

changeSet(author: "Glen (hand-coded)", id: "1383973002263-2") {
 grailsChange {

Table 10.1 Objects available to migration code

Variable Description

ctx Spring ApplicationContext object (useful for grabbing other Spring beans)

sql A groovy.sql.Sql instance already configured to use the current connection

connection Current JDBC Connection instance

application GrailsApplication (useful for grabbing current environment and config settings)

Listing 10.10 Using a Groovy-based migration to change passwords

Marks this migr
as containing
Groovy/Grails c

 b
Licensed to Mark Watson <nordickan@gmail.com>

www.liquibase.org/documentation/changes
www.liquibase.org/documentation/changes

284 CHAPTER 10 Using plugins: just add water
 change {

 println "Resetting all passwords..."

 def allUsers = sql.rows("select * from user")
 println "Resetting passwords for ${allUsers.size} users"

 Random random = new Random(System.currentTimeMillis())
 def passwordChars = ['A'..'Z', 'a'..'z',

➥ '0'..'9'].flatten()

 allUsers.each { user ->
 StringBuilder randomPassword = new StringBuilder()
 1.upto(8) { randomPassword.append(
 passwordChars.get(random.nextInt
 (passwordChars.size())))
 }
 println "Random password is ${randomPassword} for

➥ user ${user.login_id}"
 sql.execute "update user set password = ? where id = ?",
 [randomPassword.toString(), user.id]

 }
 println "Done resetting passwords..."

 }
 }
 }

There’s a fair bit of custom code happening here, but if we break it down, you’ll soon
get the hang of it. First we mark this migration as a Grails change B to ensure that
our sql object gets injected. Then in the body of our change block, we create a col-
lection of existing users from rows in the User table c. We then iterate over those
users d, generating a new password for each user e. Finally, we update the User
table with the new password f, using the user id from the current user iteration.

Why you shouldn’t use Grails domain objects in your migrations
The GORM support in the database migration plugin is incredibly powerful. And the
temptation to use a few dynamic finders to sort reference data seems like a no-
brainer. Be warned!

If your migrations use Grails domain class properties, you’re making a contract with
the plugin that the properties you reference will be there for all time. (Because they
must exist at the time the migration runs, they can never be renamed or removed in
your application.) If you ever change any property’s references in the GORM migration
and then attempt to create your database from scratch on a new machine, the migra-
tion will fail because the object no longer has those fields.

Our advice is to avoid this feature. You can find other ways to rename and remove
fields using the standard Liquibase refactorings.

Creates
collection of
user rows
from db

 c

Iterates over
each user row

 d

Generates new
password of 8
random chars e

Updates user
table with new

passwords f
Licensed to Mark Watson <nordickan@gmail.com>

285Full-text search: rolling your own search
With your exploration of Groovy-based migration complete, it’s time to turn your
attention to our next major plugin effort—implementing full-text search with the
Grails Searchable plugin.

10.5 Full-text search: rolling your own search
With users flocking to its social networking goodness every day, Hubbub post volumes
are going to skyrocket. And users will want to search.

 In the good old days, people implemented website search logic using SQL queries
(such as post.content like %grails%), but that isn’t sufficient for today’s require-
ments. Using SQL like queries can be inefficient, and it’s increasingly complex as the
number of searched fields grows. For most full-text searches, the user wants to search
multiple fields, which effectively rules out SQL.

 Fortunately, clever folks have implemented full-text indexing and search engines
that handle indexing database contents and provide convenient ways to search. One
of the most popular Java full-text solutions is Lucene, and its higher-level abstraction
library Compass.

 The Grails Searchable plugin wraps these full-text search libraries to give you a sim-
ple and transparent way to implement searching. Whenever you save a domain object
(such as with post.save()), the plugin adds the object to the full-text index. When
you delete or update an instance, the plugin alters the index accordingly. When you
want to search, you call Post.search("your search terms"), and you have a list of
hits. There’s also a completely customizable domain-specific language (DSL) for speci-
fying the domain class properties that are indexed.

 Let’s kick things off by installing the plugin. Add the plugin (and its helpers for
spellchecking and hit highlighting) to your /grails-app/conf/BuildConfig.groovy:

plugins {
 compile ':searchable:0.6.6'
 compile 'org.apache.lucene:lucene-spellchecker:2.4.1'
 compile "org.apache.lucene:lucene-highlighter:2.4.1"
}

With the plugin installed, you can configure the objects you want to be searchable.
That requires thinking.

The state of search on Grails
Several full-text search plugins are available for Grails at the time of writing, includ-
ing Searchable, Elasticsearch and Apache Solr. Although (by far) the most popular
at this time is Searchable, the libraries underlying Searchable (Compass) have
been deprecated.

The author of Compass has gone on to implement the popular Elasticsearch distrib-
uted search engine, which also has a Grails plugin, but, unfortunately, the plugin isn’t
actively maintained. The company behind Elasticsearch now has a product roadmap
for Grails support, so the plugin may well find a fresh life by the time you read this.
Licensed to Mark Watson <nordickan@gmail.com>

286 CHAPTER 10 Using plugins: just add water
10.5.1 Making objects searchable

The first step in using the searchable plugin is determining the objects to index.
In the case of Hubbub, users want to search on Post object content (to see posts
matching a term) and also on the User object (does my friend “Joe Cool” have
an account?).

 The simplest way to add your Post and User objects to the searchable index is to
add a searchable property, like this:

class User {
 static searchable = true
 ...
}
class Post {
 static searchable = true
 ...
}

When a domain class is marked searchable, the plugin indexes its primitive fields
(strings, dates, numbers, and collections of those). Later in this chapter, you custom-
ize which fields are indexed, but for now you’ll stick with the defaults.

 Your basic search capability is now implemented. If you start up Hubbub, you can
use the provided Searchable page to search your index. Open http://localhost:8080/
hubbub/searchable and take it for a spin, as demonstrated in figure 10.4.

 Not too bad for five minutes’ effort, but there’s still work to do. The data is being
searched, but the output isn’t what you want. It found the user and post information
relating to “glen”, but you need to skin the output with your Hubbub style, and it would
be nice to format the link results to use your preferred permalink format (/user/profile/
glen for profile info, and /users/glen for all the posts). Also, the user probably only
wants to search for posts (Find a Post) or users (Find a Friend).

 Let’s step outside the default search page and create a custom search page. Create
a custom search controller first, and then we’ll put some effort into the view:

grails create-controller com.grailsinaction.Search

You’ll start your implementation by offering a search of all posts because that’s
the more common option. Listing 10.11 shows a first attempt at a custom search
controller.

(continued)

Fortunately the Elasticsearch plugin uses an API that’s largely compatible with Search-
able, so whatever effort you put into learning Searchable is likely to benefit you down
the track if Elasticsearch becomes a popular replacement.
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:8080/hubbub/searchable
http://localhost:8080/hubbub/searchable

287Full-text search: rolling your own search
package com.grailsinaction
class SearchController {
 def search() {
 def query = params.q
 if (!query) {
 return [:]
 }
 try {
 def searchResult = Post.search(query, params)
 return [searchResult: searchResult]
 } catch (e) {
 return [searchError: true]
 }
 }
}

As you saw previously, searchable adds a dynamic search() method B to each domain
class. It has two parameters: the query string and a map of options. Typically the options
map contains values for maximum hits per page, offset for pagination, and sorting order.
For now, you’ll pass in the params object and worry later about passing in explicit options.

 The search() method returns a map containing metadata about the search, along
with a list of domain classes matching the criteria. Table 10.2 gives a breakdown of
what’s available.

 Typically, in the view, you iterate over the results field, displaying each of the hit
objects (and perhaps get fancy with keyword highlighting). You can also use the total
and max values to display the diagnostics (“returned 10 of 326 hits,” for example).

Listing 10.11 Custom search controller

Figure 10.4 The default Searchable interface is usable from the get-go.

Invokes new
search method

 b
Licensed to Mark Watson <nordickan@gmail.com>

288 CHAPTER 10 Using plugins: just add water
With your controller ready to go, you need to put together a small /views/search/
search.gsp file to let the user enter values and to display the results from the search.
Ignore pagination for now and get started with a bare-bones approach, as shown in
the following listing.

<html>
 <head>
 <title>Find A Post</title>
 <meta name="layout" content="main"/>
 </head>
 <body>
 <h1>Search</h1>
 <g:form>
 <g:textField name="q" value="${params.q}"/>
 <g:submitButton name="search" value="Search"/>
 </g:form>
 <hr/>
 <g:if test="${searchResult?.results}">
 <g:each var="result" in="${searchResult.results}">
 <div class="searchPost">
 <div class="searchFrom">
 From
 <g:link controller="users"
 action="${result.user.loginId}">
 ${result.user.loginId}
 </g:link>
 ...
 </div>
 <div class="searchContent">
 ${result.content}
 </div>
 </div>
 </g:each>
 </g:if>
 </body>
</html>

If you get results, iterate over them and render them in divs. That lets you apply CSS
styles to the results. Figure 10.5 shows your first customized search in action.

Table 10.2 The searchResult return value gives you a wealth of query information.

Field Description

total The total number of matching results in the index

results A list of domain class instances matching the query

max The maximum number of hits to return (typically used to paginate; defaults to 10)

offset The number of entries to skip when returning the first hit of the result set—used for pagination

scores A list of raw result confidence for each hit (a floating point value between 0.0 and 1.0)

Listing 10.12 A first custom search form

Iterates over
search results

Creates links to
user profile

Displays matching
post content
Licensed to Mark Watson <nordickan@gmail.com>

289Full-text search: rolling your own search
Those results look nice but don’t include keyword markup. It’s time to explore what
searchable offers for help with that feature.

 When you display search results, users probably want the keyword hits highlighted.

10.5.2 Highlighting hit terms
Searchable gives you the power to implement keyword markup, but it requires work
with closures. The following listing shows the updated controller code, which high-
lights the hits.

package com.grailsinaction
class SearchController {
 def search() {
 def query = params.q
 if (!query) {
 return [:]
 }
 try {
 params.withHighlighter = {highlighter, index, sr ->
 // lazy-init the list of highlighted search results
 if (!sr.highlights) {
 sr.highlights = []
 }

Listing 10.13 An updated search controller with hit-term highlighting

Figure 10.5 Your first custom search form in action

Introduces
withHighlighter

closure

 b

Provides empty highlights
collection if no matches c
Licensed to Mark Watson <nordickan@gmail.com>

290 CHAPTER 10 Using plugins: just add water

 c
 // store highlighted text;
 // "content" is a searchable-property of the
 // Post domain class
 def matchedFragment = highlighter.fragment("content")
 sr.highlights[index] = "..." +
 (matchedFragment ?: "") + "..."
 }
 def searchResult = Post.search(query, params)
 return [searchResult: searchResult]
 } catch (e) {
 return [searchError: true]
 }
 }
}

The updated search code uses the withHighlighter closure B, which takes a high-
lighter object (used to hold the word that was highlighted along with its surround-
ing text), an index counter (used to track the hit number), and the search result
object itself.

 You create a new highlights object on each search result if it doesn’t already
exist C, and you use it to hold the marked-up version of the search result (the ver-
sion with the keyword highlighted).

 For each result, you retrieve the fragment of the Post’s content field that matched
the search D, and you surround it with ellipses E to show it’s an extract. The
matched fragment contains the word that was matched plus a few surrounding words
for context. The matched word is surrounded in tags by the plugin.

 The following listing shows your updated view code that extracts those matching
phrases and renders them in the browser.

<g:each var="result" in="${searchResult.results}" status="hitNum">
 <div class="searchPost">
 <div class="searchFrom">
 From
 <g:link controller="users" action="${result.user.loginId}">
 ${result.user.loginId}
 </g:link>
 ...
 </div>
 <div class="searchContent">
 ${raw(searchResult.highlights[hitNum])}
 </div>
 </div>
</g:each>

This code uses a status attribute B in the <g:each> tag. Then it accesses the hit-
num.Hits marked up with the searchContent div C. Notice that we use the ${raw()}
construct c to ensure that our hit highlighting markup isn’t HTML-escaped. Figure 10.6
shows the results of searching for “work”.

Listing 10.14 Updated view code for handling hit terms

Obtains
highlighted

content d

Surrounds highlight
with ellipses e

Iterates each result with
hitNum counter b

Displays matching hit in
searchContent div
Licensed to Mark Watson <nordickan@gmail.com>

291Full-text search: rolling your own search
With hit-term highlighting set up, the search is starting to look useful. But you don’t
want your search page to display thousands of hits, so it’s time to implement pagination.

10.5.3 Implementing pagination

You explored the first page of your results. You haven’t specified the max property for
your searches, and the Searchable plugin defaults to returning the first ten. It’s time
to give users control over how many results are returned per page. The good news is
that you can use the same pagination control you saw in chapter 6.

 Let’s first add a combo box to let the user choose the number of hits to be dis-
played per page. If you call the field max, searchable will pick it up for free, which
means no changes to your controller code. Here’s the updated form:

<g:form>
 <g:textField name="q" value="${params.q}"/>
 <g:select name="max" from="${[1, 5, 10, 50]}"
 value="${params.max ?: 10}" />
 <g:submitButton name="search" value="Search"/>
</g:form>

The back-end controller is unchanged, but you need to make UI changes to the
results section of your page to use the paginating aspects of the output (the total num-
ber of matching results, which page you’re on, and so on).

Figure 10.6 Hit-term highlighting in action
Licensed to Mark Watson <nordickan@gmail.com>

292 CHAPTER 10 Using plugins: just add water
 Handling the case when there’s only one page of results makes this trickier than it
should be. The following listing shows the updated GSP.

<g:if test="${searchResult}">
Displaying hits
 ${searchResult.offset+1}-
 ${Math.min(searchResult.offset + searchResult.max,

searchResult.total)} of
 ${searchResult.total}:
 <g:set var="totalPages"
 value="${Math.ceil(searchResult.total / searchResult.max)}"/>
 <g:if test="${totalPages == 1}">
 1
 </g:if>
 <g:else>
 <g:paginate controller="search" action="search"
 params="[q: params.q]"
 total="${searchResult.total}"
 prev="< previous" next="next >"/>
 </g:else>
 <p/>
</g:if>

If there’s only one page to display, you don’t invoke the paginate tag at all. But if
you’re spanning pages, you need to tell the tag the total size of the result list. As you’ll
recall from chapter 6, the tag manages its own state and looks after creating the neces-
sary links to navigate to next and previous pages.

 Figure 10.7 shows it in use.
 Your paginating search capability is done. With that feature implemented, you’ve

learned enough of the basics to implement the most common features you’ll need in
your own search facilities. But there’s more searchable power to explore. It’s time to
look at advanced features.

10.5.4 Customizing what gets indexed
In your exploration of search, you relied on the default indexing rules; you marked
your domain classes as searchable. But when you index data, it’s useful to control
what gets stored. It’s pointless indexing a million password fields, because you never
want them exposed in a search. You also want to be careful not to index data that’s
under high concurrency (for example, a clickCounter field stored on every domain
object), because you open yourself up to complex locking and exception handling
around concurrent updates to the index.

Listing 10.15 Displaying marked-up hit terms

Provides pagination
for search results

Figure 10.7 Implementing pagination on your search
Licensed to Mark Watson <nordickan@gmail.com>

293Full-text search: rolling your own search
Fortunately searchable exposes a more complete DSL for fine-grained index cre-
ation, so you can configure what’s searchable. Let’s upgrade your User object to make
sure passwords never get indexed:

class User {
 static searchable = {
 except = ['password']
 }
 // more stuff...
}

Two common operations on the searchable DSL are except (index all fields except
these) and only (only index these).

With your index now set up, it’s time to explore providing a fuzzy search facility.

10.5.5 Query suggestions: did you mean “Grails”?

One of the coolest features in Google is the suggest-query capability. Can’t remem-
ber how to spell zucchini and spell it zukini? Google shows you results, but it also
prompts you, “Did you mean zucchini?” Searchable gives you that feature for free if
you tell it what domain classes are subject to the check.

 To enable this, use the searchable DSL introduced in the previous section. Let’s
change your Post domain class to mark it searchable for the suggest-query option,
which uses the spellCheck option:

static searchable = {
 spellCheck "include"
}

Customizing the index location
When you install the Searchable plugin, it adds a new command to install its config-
uration file. If you don’t install a custom version, it uses default values. Most of these
defaults are fine, except that the index file location defaults to the current user’s
home directory. This isn’t what you want in production.

To install a custom config file, use the following command:

grails install-searchable-config

This creates the /grails-app/conf/Searchable.groovy file, which lets you customize
the location of your index files (and other options—see the comments in the cre-
ated file). For example, you might have a special location for index files on your pro-
duction servers:

compassConnection = new File(
 "/var/indexes/${appName}/${grailsEnv}"
).absolutePath

You can override the locations for the development, test, and production environ-
ments as in Config.groovy.
Licensed to Mark Watson <nordickan@gmail.com>

294 CHAPTER 10 Using plugins: just add water
Once the domain class is marked to use the suggest feature, you pass in the suggest-
Query option to your search code. Here’s your updated search action using the
new parameter:

params.suggestQuery = true
def searchResult = Post.search(query, params)

Although the controller changes were fairly painless, you have more work in the view
to display the suggested terms. Use internal searchable classes to do this. Perhaps
one day this will be wrapped up in a searchable taglib, but for now here’s how to dis-
play the search term:

<g:if test="${searchResult?.suggestedQuery}">
<%@ page import="org.codehaus.groovy.grails.plugins.
 ➥ searchable.internal.util.StringQueryUtils" %>
<p>Did you mean
<g:link controller="search" action="search"
 params="[q: searchResult.suggestedQuery]">
 ${StringQueryUtils.highlightTermDiffs(
 params.q.trim(), searchResult.suggestedQuery)
 }
</g:link>?
</g:if>

You’ve done all the work, so it’s time to run your app and give it a test. Figure 10.8
shows a search for a popular competing web framework.

 Although suggestQuery makes for a great demo, you haven’t yet explored one
core feature of search. What if you want to constrain the query to match items only
within the current user’s posts? To implement that, you need to explore how search
subcomponents work.

10.5.6 Searching across relationships

You already explored how the indexing process handles domain classes that are in
relationships with one another. You discovered that if a domain class has a relation-
ship to another (a User has many Posts) and the related domain class is also marked
searchable, the index will also contain that relationship data. That’s good, because
you can navigate from parent to child without concern.

 But what if you want to search all Posts that belong to a particular user? You need
a way of storing fields from the related User object in the index related to the Post
data. searchable handles that relationship with component.

 We’ll show you the syntax first, and then break down what’s happening behind the
scenes. The following code shows your updated Post object’s searchable mapping.

Figure 10.8 The Searchable suggest-query
feature in action
Licensed to Mark Watson <nordickan@gmail.com>

295Full-text search: rolling your own search
class Post {
 static searchable = {
 user(component:true)
 spellCheck "include"
 }
 static belongsTo = [user : User]
 // ...other stuff
}

You told searchable that you want to store all the fields of your User object with the
index for each Post. When the index is stored in this manner, you can search against
the Post object, using constraints from the User object (for example, to find all posts
where loginId is “glen”).

 To implement this, let’s update the search UI to handle the new option:

<g:if test="${session.user}">
 Just My Stuff:
 <g:checkBox name="justMine" value="${params.justMine}"/>
</g:if>

You also update your search controller to handle the check box. The simplest way to
do this is to append a constraint to the submitted query. You can do this with Google-
style restrictions, by appending +loginId:glen at the end of the query, for example.

 The following code updates your controller to automatically add the constraint
when the check box for justMine is checked:

if (params.justMine) {
 query += " +loginId:${session.user.loginId}"
}
def searchResult = Post.search(query, params)

You now have your constrained user search. Using strings to do this is fine for simple
search restrictions, but it can open up security issues when trying to restrict sensitive
searches. The user could work all kinds of evil on the submitted query-String, so you
have to be careful to remove all the nasties using handcrafted regular expressions.

 For those scenarios, a better option is to use the full-blown searchable Search-
Builder DSL. You could, for example, rework the preceding search using must() spec-
ifiers, which the user can’t tinker with. For example, you could do something like this:

def searchResult = Post.search params, {
 must(queryString(query))
 must(term("loginId", session.user.loginId))
}

Using the SearchBuilder DSL offers a much safer approach for guaranteeing the con-
straint applies to the final query. Check out the searchable SearchBuilder DSL on the
Grails wiki for more information.2 Be warned the DSL can be tricky to use, so you
might want to familiarize yourself with the Compass API that it’s built on first.

2 Query Builder, www.grails.org/Searchable+Plugin+-+Searching+-+Query+Builder.

Allows searching Post objects
based on user criteria
Licensed to Mark Watson <nordickan@gmail.com>

www.grails.org/Searchable+Plugin+-+Searching+-+Query+Builder

296 CHAPTER 10 Using plugins: just add water
The searchable plugin is complex but powerful. Take the time to explore the online
docs and see the configuration options available.

10.6 Summary and best practices
We covered many plugins in this chapter, and you got a thorough grounding in a host
of popular features that you’re likely to add to your next application.

 We introduced you to the basics of how plugins are installed and bundled and cov-
ered integrating email into your application. Then we explored the new Grails cach-
ing infrastructure and showed you how to tune the performance of your Grails app
using clever caching strategies.

 Finally, we explored numerous searchable options for making your app’s full-text
search facility hum. It’s a big chunk of information to take in, but your app’s usability
has increased tremendously.

 Here are a few best practices to take away from the chapter:

■ Install plugins via BuildConfig. Opt for the new BuildConfig.groovy mechanism
when installing plugins. It gives you more control over how your plugin depen-
dencies are configured, and the older install-plugin command is deprecated.

■ Use mail config. Set the mail.grails.default.from attribute in Config.groovy
so there’s a single place to maintain your From address. Then you no longer
need to use the From field when invoking mail services.

■ Apply caching judiciously. If you identify queries or complex logic that can be eas-
ily cacheable to improve performance, take advantage of the built-in caching
annotations. Then install a robust cache such as Ehcache to give you more flex-
ible cache configuration options.

■ Customize search config. Always install a custom searchable config file so you can
place your index data somewhere sensible.

■ Index selectively. Be careful which fields you include in your index. Watch out for
sensitive data, as well as data that’s under high concurrency (if you index your
clickCounter field, only bad can come of it).

Now that you’ve had a good look at some popular Grails plugins, we’ll spend next
chapter learning about adding security to your application using the popular Grails
Spring Security plugin.

Debugging indexes with Luke
Luke (https://code.google.com/p/luke/) is a tool for viewing your index files to see
exactly what’s being stored. If you’ve having trouble working out how all of the
component settings affect index creation, download (or Web Start) Luke, and point it
at your index directory.

The Documents tab is handy for debugging search DSL issues—it lets you step
through each element in the index and see exactly which keywords are stored.
Licensed to Mark Watson <nordickan@gmail.com>

https://code.google.com/p/luke/

Protecting your application
Hubbub looks good now, so perhaps it’s ready to go public. The problem with
going public, however, is that it’s a big bad world out there with plenty of agents
who might want to hack user accounts, steal passwords, or perform a denial of ser-
vice on your site. It’s a sad fact of life, but you need to make sure that Hubbub can
survive in the wild, which means hardening it against attacks.

 Security is a huge field that includes business processes, identification, network
hardening, systems setup, and more. We mention this because it’s worth bearing in
mind that what you’ll focus on in this chapter is a small, Grails-centric bit.

 We’ll cover the two most important aspects of security for Grails developers:
handling user input and implementing access control. These represent the most
common vulnerabilities and the most common requirement of web applications,
respectively. You’ll also learn about Secure Sockets Layer (SSL) and how to set
that up.

This chapter covers
■ What security means
■ How to protect against common attacks
■ How to implement access control
■ Advanced security techniques
297

Licensed to Mark Watson <nordickan@gmail.com>

298 CHAPTER 11 Protecting your application
11.1 Dealing with untrusted data and networks
If you look at the Open Web Application Security Project (OWASP) Top 10,1 you see
that four of the top ten security risks in 2013 involve an attacker submitting malicious
data to a web application: injection attacks, cross-site scripting (XSS), cross-site request
forgery (CSRF), and invalid redirects and forwards. These security risks force you to
verify everything sent over HTTP or sanitize it before use. Fortunately, Grails has sev-
eral features that help with this. In this section, we show you how to validate user
input, escape your output (HTML and otherwise) when it includes user-provided data,
and use form tokens to protect against both double submissions and CSRF attacks.

11.1.1 Validating user input

Imagine that you want to search in Hubbub for all posts that have been tagged
“grails.” Millions of such posts exist because it’s a cool topic to discuss, and if Hubbub
attempted to return all of them, the request would punish both the server and the cli-
ent. To prevent this, Hubbub returns 50 by default. But a user can override this by
passing a max URL parameter, and if you don’t validate the value of that parameter,
your application could attempt to return a billion search results. Outcome? Boom!
You have a denial of service (DoS).

 This is one example where trusting the data sent by the user can result in bad
things happening to your application. One solution is to validate the data before
using it. Grails gives you a couple of ways to do this:

■ Manually check values before use and fall back to a default or raise an error
■ Use command objects

For simple cases such as the max parameter from the previous example, the first
option is fine because the extra code is minimal. For example,

def search() {
 def max = params.max?.toInteger() ?: 50
 max = Math.min(max, 500)
 def results = Post.findAllByTag("grails", [max: max])
 ...
}

If you implement something similar with command objects, you’d likely end up with
code such as the following listing.

class PostController {
 ...
 def search(SearchCommand cmd) {

1 “OWASP Top 10 (2013),” https://www.owasp.org/index.php/Top_10_2013-T10.

Listing 11.1 Result of using command objects to validate data

Limits number of results to
absolute maximum of 500

Grails implicitly calls validate() on
command object at start of method.
Licensed to Mark Watson <nordickan@gmail.com>

https://www.owasp.org/index.php/Top_10_2013-T10

299Dealing with untrusted data and networks
 if (cmd.hasErrors()) {
 render status: 400, text: "Invalid search parameters"
 return
 }

 def results = Post.findAllByTag(cmd.tag, [max: cmd.max])
 ...
 }
 ...
}

class SearchCommand {
 String tag
 int max
 int offset

 static constraints = {
 max min: 0, max: 500
 offset min: 0, max: 500
 }
}

It appears that manually checking the input values is the way to go because the com-
mand object version has more code and it returns an error rather than falling back
gracefully to a safe default value. As a one-off, the manual check works nicely.

 Now imagine that you have other controller actions that need to validate the max
parameter. The manual check would then need to be repeated and you could easily
end up with manual validation checks littered across controller actions. On the other
hand, the command object declares the validation rules in the standard Grails way
and can be reused for any number of actions. In addition, command objects enforce
types. In the previous listing that means a user can’t submit text for the max property
because the command object requires a number and so its validation would fail.

For the simplest cases, manual validation of parameters works fine. But in reality, any
simple case typically stops being simple sooner or later. As soon as you find yourself
repeating validation across multiple actions or requiring more than a couple of valida-
tion checks in a single action, you should switch to command objects. In fact, you’re
unlikely to go wrong if you use command objects right from the start.

SQL injection attacks
A common attack vector is through SQL injection. The attacker submits data to the
application that contains specially crafted SQL. The application then builds a SQL
string from that data without first escaping it and then submits that string to the data-
base. The result may be a leak of confidential data or a DoS.

With Grails, you don’t have to worry about this particular problem as long as you use
dynamic finders, Where queries, the criteria API, or HQL with named or positional
parameters. All of these automatically escape input values. Don’t construct any HQL
or SQL via string concatenation!

Returns 400 Bad Request
response indicating
invalid parameters.

Embeds parameter value limits
as validation constraints.
Licensed to Mark Watson <nordickan@gmail.com>

300 CHAPTER 11 Protecting your application
 Command objects aren’t only useful for validating input. In the next section, we
discuss vulnerabilities related to automatic binding of parameters to domain instances
and how command objects help protect against the corresponding attack.

11.1.2 Data binding

In 2012, the GitHub website was attacked through a known exploit of Ruby on Rails,
the web framework used to build the site. No serious damage was done, as the
attacker’s intention was to highlight the dangers of the exploit to the Rails commu-
nity. The source of the exploit was a feature known as mass assignment—something
you can also see in Grails via code such as new Post(params). The fundamental prob-
lem is that such data binding blindly copies values to a target domain instance’s prop-
erties and an attacker can provide values for properties that shouldn’t be modified.

 Imagine that Hubbub’s posts require moderation. You add an additional moderated
flag to the Post domain class that’s initially set to false. You then make sure that the
page for creating a new post has no option to set that flag. It’s easy to think you’re safe,
but there’s nothing stopping a user from sending their own HTTP POST request to the
relevant URL using a tool such as telnet. Hubbub could receive this request:

POST /hubbub/post/update/13 HTTP/1.1
Host: localhost:8080
Content-Type: application/x-www-form-urlencoded

content=You+all+suck!&moderated=1

If the corresponding controller action that handles this request then does something
like this:

class PostController {
 ...
 def save() {
 def post = new Post (params)
 …
 // Validate and save the new post
 ...
 }
}

the attacker’s request bypasses your moderation mechanism. That’s not good.
 In this case, the simplest solution is to explicitly exclude the moderated property

from automatic binding, via the bindable constraint in the Post domain class:

class Post {
 // Other Post properties
 ...
 Boolean moderated = false

 static constraints = {
 ...
 moderated bindable: false
 }
}

Sets the
moderated flag

Binds all parameters,
including moderated if
it appears in request

Prevents automatic
binding to moderated
property
Licensed to Mark Watson <nordickan@gmail.com>

301Dealing with untrusted data and networks
You can use this constraint in any domain class, and it’s an easy win for existing code
because you don’t have to rewrite your controllers. Unfortunately, you have to remem-
ber to add the constraint—forgetting to do so automatically opens a security hole in
your application.

 An alternative approach is to decouple the domain model from the user input by
using command objects. The command object only has to include the properties that
are allowed by a particular action, eliminating the problem of malicious extra parame-
ters in the request. And as you saw in chapter 7 (section 7.3.1), you can easily bind the
command object to a domain instance. For example:

def update(PostCommand cmd) {
 if (!cmd.hasErrors()) {
 def post = new Post(cmd.properties)
 ...
 }
 ...
}

The properties property works equally well with the bindData() method, too.
 The major downside to command objects is that you feel like you’re duplicating

information when a command object matches a domain class closely. But convenience
is usually the enemy of security, as you can see from the mass assignment feature.
Using a command object also allows you to evolve the domain model independently
of the UI, which makes application maintenance easier.

 Before you move on from the risks of not validating user input, here’s one tempta-
tion you want to avoid: putting your data validation only in the browser (via JavaScript,
Flash, or whatever). Yes, validating in the client and on the server is tedious repeti-
tion, but remember that an attacker doesn’t have to use a browser to use your appli-
cation. They can easily craft HTTP requests via telnet or another tool, bypassing the
client validation.

 Sometimes you don’t use the input data directly, so there’s no point in validating it.
For example, do you want to validate Hubbub’s posts? If so, what rules would you use?
All you do is store them in the database and then display them at a later date. Such
scenarios are the source of a whole class of attack: XSS. Protecting against such attacks
requires a whole different approach.

11.1.3 Escaping output

In XSS, the attacker takes advantage of the lack of validation to provide HTML and/or
JavaScript in whatever content they are submitting. If the web application then regur-
gitates that content as is, the browser parses it, and if there’s any JavaScript content,
executes it. This can lead to all sorts of weird and wonderful behavior, such as alert
boxes popping up every time someone accesses your application. Often it can mean
defacement of your website or exposure of sensitive data.

 The solution is to escape the content before displaying it in the browser, for exam-
ple, by replacing angle brackets with the < and > HTML entities. This prevents

Binds command object
to new domain instance
Licensed to Mark Watson <nordickan@gmail.com>

302 CHAPTER 11 Protecting your application
the browser from parsing the content as HTML and potentially executing malicious
JavaScript. How do you escape your content and safeguard your website?

 As of Grails v2.3, you don’t need to do anything. Let’s look at the fragment of GSP
that renders a Hubbub post:

<div class="postEntry">
 <div class="postText">${post.content}</div>
 <div class="postDate">${post.dateCreated}</div>
</div>

Even if someone submits JavaScript in a Hubbub post, it has no effect. The HTML in
the page would look something like this:

<div class="postEntry">
 <div class="postText">
<script>alert('Got ya!');</script>
 </div>
 <div class="postDate">Wed Feb 05 10:41:43 GMT 2014</div>
</div>

Sometimes this is too safe. Imagine that you have a content management system
(CMS) where the author of a website wants to include HTML tags in one or more of
their pages. Those tags should not be escaped, otherwise their pages will look awful.
In that case, you have two options:

■ Use a special raw() method when rendering the content in a GSP page:

<section name="pageContent">${raw(page.content)}</section>

The method disables any currently active escaping and renders its content as is.
This should be done only with trusted user input.

■ Disable the automatic escaping of content through a couple of configuration
settings:

grails.views.gsp.codecs.expression = 'none'
grails.views.gsp.codecs.scriptlet = 'none'

We recommend you take this path only with extreme caution because it’s easy to
miss bits of a page that need escaping, and can introduce an XSS vulnerability.

How do you escape an expression after you disable the automatic behavior? Grails
implements the automatic escaping through a set of classes called codecs. These allow
you to escape (or encode) arbitrary strings, as well as unescape (or decode) them.
The default automatic behavior results in the HTML codec being applied to the result
of ${} expressions. You can also do this manually via special methods added to the
String class. Imagine that you switched off the automatic expression escaping for
Hubbub. In that case you need to use this code to render each post:

<div class="postEntry">
 <div class="postText">${post.content.encodeAsHTML()}</div>
 <div class="postDate">${post.dateCreated}</div>
</div>

Content inside ${} is
automatically escaped

Applies to ${} expressions

Applies to <% %> expressions

Encodes post
content
Licensed to Mark Watson <nordickan@gmail.com>

303Dealing with untrusted data and networks
Each codec class adds its own pair of methods to the String class: encodeAs<Codec>()
and decode<Codec>() (note the lack of As in the latter method name). The HTML
codec is obviously the most common one, but table 11.1 lists several of the most useful
ones that come with Grails.

Best of all, codec escaping is idempotent. You can call a method such as encodeAsHTML()
as many times as you like; it never double encodes. You’ll never have < become <
and then &lt; through a second call to encodeAsHTML().

One thing you need to be wary of is incorrect encoding. Imagine you have a script ele-
ment in your view:

<script>
alert('${ myMessage }');
</script>

Table 11.1 Useful codecs provided by Grails

Codec class Added methods Description

HTMLCodec encodeAsHTML()
decodeHTML()

Escapes HTML, replacing angle brackets and amper-
sands with the corresponding HTML entities.

Base64Codec encodeAsBase64()
decodeBase64()

Converts bytes to Base64 format for mail attachments
and the like.

URLCodec encodeAsURL()
decodeURL()

Encodes characters according to the x-www-form-urlen-
coded content type. Should only be used to encode text
for the query string part of a URL, not for the path.

MD5Codec encodeAsMD5() Creates an MD5 hash of the string.

SHA256Codec encodeAsSHA256() Creates an SHA256 hash of the string.

Before Grails v2.3
Times were dark in previous versions of Grails. Although there was automatic escap-
ing of GSP expressions, that behavior was disabled by default. Even if you switched
it on via this config setting:

 grails.views.default.codec = "html"

there was no fine-grained way to disable it for individual expressions. It could also
easily break views provided by plugins as there was no double-encoding protection.
If you wanted to disable automatic escaping (assuming it was enabled), your only
option was to add this to the top of your GSP files:

 <%@page defaultCodec="none" %>

which disables the default codec for the entire view or partial template.

Automatically encodes result
using default codec (HTML)
Licensed to Mark Watson <nordickan@gmail.com>

304 CHAPTER 11 Protecting your application
You don’t want Grails to automatically encode myMessage as HTML. Otherwise, the
alert box will display “Hello & goodbye” for a value of “Hello & goodbye”! You
should either use the <g:javascript> tag, which switches the default codec to Java-
Script, or explicitly encode the string:

<script>
alert('${ myMessage.encodeAsJavaScript() }');
</script>

As you can see, Grails has your back as far as XSS prevention goes, while still giving you
flexibility when you need it. You’ve also seen the main aspects of Grails’ encoding sup-
port and you can check out the user guide for information on how tag libraries and
other aspects of view rendering factor into the XSS prevention mechanism.

 A vulnerability that’s closely related to XSS attacks is something called CSRF. You
look at this next.

11.1.4 CSRF and form tokens

When a request comes in, for example to update a user’s Hubbub post, how do you
know that the request is coming from someone with the authority to do that? Nor-
mally you require the user to authenticate first, but logging in for every request leads
to a poor user experience. That’s why a session for the authenticated user is created
and an associated cookie stored in the browser.

 As you can see from figure 11.1, a CSRF attack hijacks the session cookie to post
data to your application as the victim.

 All an attacker needs to do is get the user to load a page on a site (1 & 2) that auto-
matically submits a form to your application (3), and the browser will automatically
ensure that the victim’s session cookie is added to the request. As far as the bank’s
website is concerned, the request to transfer funds is coming from the user!

 Several approaches exist for protecting your application against such forged
requests, but the most common is to include a unique token in the form displayed by

Explicitly encodes myMessage
as JavaScript instead of HTML

Browser

Evil

website

Bank

website

1. GET /index

2. Return

3. GET /transferFunds?...

4. Successful transfer of funds!
Sent with user’s

authenticated

session cookie

Figure 11.1 An example CSRF attack in which a malicious website gets the browser
to send an authenticated request to a bank site to transfer funds
Licensed to Mark Watson <nordickan@gmail.com>

305Dealing with untrusted data and networks
your application. When the browser submits the form, your application checks the
unique token against the one it’s expecting. Unless the tokens are easily guessable,
there’s no way for an attacker to submit the forged request with the correct token.

 This may sound like a fair bit of work and it would be if you had to code it yourself.
Fortunately, Grails has a built-in mechanism: the useToken attribute on the <g:form>
GSP tag along with the withForm() controller method. This feature was originally
introduced to prevent double-submissions of forms (remember those “Please don’t
click on the submit button more than once!” messages?), but it also happens to be the
perfect antidote to CSRF.

 Assuming that your imaginary form for editing an existing post now has the use-
Token="true" attribute, the corresponding controller action looks like the follow-
ing listing.

def update(PostCommand cmd) {
 withForm {
 if (!cmd.hasErrors()) {
 def post = new Post(cmd.properties)
 ...
 }
 ...
 }.invalidToken {
 render "Invalid or duplicate form submission"
 }
}

One downside to using this approach is that you effectively prevent REST requests to
this endpoint. No need to worry. You can have separate endpoints (actions) to handle
REST requests and it’s easier to authenticate a REST client per request than a real end
user, making CSRF a nonissue. We’ll talk about this more in the next chapter.

 All that’s left in terms of data transfer is to ensure confidentiality of the data that
travels between the browser and your application.

11.1.5 Protecting your data in transit

It’s easy to forget that the data traveling between a user’s browser and your applica-
tion server often takes a tortuous and unsecured route. Running the command
traceroute (on Unix-like systems) or tracert (on Windows) against a host name
such as grails.org shows you how many pieces of equipment the data goes through,
any of which could be compromised. And don’t forget that a user may be in an air-
port or other public place using unsafe Wi-Fi. That’s why it’s important to encrypt
any confidential data.

 As you’re no doubt aware, the standard solution on the web is SSL. We won’t go
into the details of how it works, but we think it’s important that you understand
how to set it up for a Grails application. And that depends on how you deploy your
application.

Listing 11.2 Using tokens to block CSRF

Ensures request
has valid token

Renders error message
if no or incorrect token
is submitted
Licensed to Mark Watson <nordickan@gmail.com>

306 CHAPTER 11 Protecting your application
LOCAL DEV MODE

When you develop your application, you want things to be simple. That’s why enabling
SSL is trivial when you use the run-app or run-war commands: add the --https argu-
ment when calling them:

grails --https run-app

All you need to do then is access your application via an HTTPS URL, such as https://
localhost:8443/hubbub/. Note that the scheme, https, and the port, 8443, are differ-
ent from the usual ones. To control the port number used, add the grails.server
.port.https setting to BuildConfig.groovy, or pass the following on the command line:

grails –https –Dgrails.server.port.https=8184 run-app

If you do run Hubbub or your own application like this, notice that your browser
doesn’t seem too happy when accessing it. Figure 11.2 shows you what Firefox thinks
of Hubbub over HTTPS. Behind the scenes, Grails creates a self-signed SSL certificate

Access Hubbub by adding the local
dev server as an exception.

Figure 11.2 Trying to access Hubbub via HTTPS with Firefox—the browser doesn’t like the self-signed
certificate
Licensed to Mark Watson <nordickan@gmail.com>

https://localhost:8443/hubbub/
https://localhost:8443/hubbub/

307Dealing with untrusted data and networks
on demand. Such a certificate in effect says, “trust me because I say so”—hardly
something to inspire confidence. It’s fine for local development but not a produc-
tion deployment.

PRODUCTION

As you can see from figure 11.2, SSL is about more than encrypting data. It’s also
about trust and verifying the identity of both the server and (less commonly) the cli-
ent. If you want users to trust your website, then you have to get your SSL certificate
signed by what’s known as a certificate authority (CA). Examples of companies that
provide this service are VeriSign, Thawte, Comodo, and GoDaddy. It’s worth shopping
around. Be sure to use a CA that most browsers recognize and trust by default, other-
wise the user will see warning messages.

 How do you get your certificate signed by one of these CAs? Every provider gives
explicit instructions for doing this, but the general procedure is something like this:

1 Create a private key for your server using the JDK’s keytool command.

keytool -genkey -alias my.domain -keyalg RSA -keystore
<path_to_keystore>

2 Generate a certificate signing request (CSR).

keytool -certreq -keyalg RSA -alias my.domain -file certreq.csr

➥ -keystore <path_to_keystore>

3 Send the CSR to the CA.
4 Wait for them to send you a signed certificate back, and then import it into your

keystore using keytool.

keytool -import -alias my.domain -keystore <path_to_keystore>

➥ -file <path_to_certificate>

One thing to bear in mind is that if your version of the JDK doesn’t trust your CA by
default, your application won’t work with HTTPS requests. You then have to get the
CA’s root (or chain) certificate and import it into your keystore:

keytool -import -alias root -keystore <path_to_keystore> -trustcacerts

➥ -file <path_to_root_cert>

New versions of the JDK occasionally include extra trusted CA certificates, so it’s worth
checking whether yours has been added when you upgrade your version of the Java
runtime. It makes life easier.

 After you sign a server certificate in your keystore, it’s up to you to ensure your
server is configured appropriately. Tomcat 7.0 requires you to add a <Connector> ele-
ment to your server.xml configuration file that includes the location of the keystore
and the username/password pair for accessing the certificate. After that’s done,
you’re good to go!

 Malicious users will always be out there waiting to take advantage of vulnerabilities
in your application, but by following the guidance on input validation, data binding,
escaping output, and form tokens, you’ll be as safe as you can be. It also helps that
Licensed to Mark Watson <nordickan@gmail.com>

308 CHAPTER 11 Protecting your application
good security practice such as the use of command objects is good architectural prac-
tice, too!

 The topics we covered here apply principally to URLs that everyone has access to,
but many applications want at least part of an application accessible only to selected
users, such as the employees of the company or subscribers to a service. That requires
a different type of security based on access control, which we look at next.

11.2 Access control
Many applications need to know who the user is, either because they’re storing infor-
mation that should be visible only to certain (known) people or because they need to
restrict access to part or all of their functionality. Maybe they need to track who does
what. In Hubbub, for example, you’re not interested in anonymous posts: when a user
posts a new message, Hubbub needs to know who posted it. You also want to make
sure that only a user can modify their own profile. Nobody else should be allowed to
do so, except perhaps a system administrator.

 This is what access control is all about. It can range from making sure that only
real people (as opposed to bots) can access an application to using complex rules
based on multiple permissions, projects, and groups. Hubbub falls firmly into the
first category, but we try to provide enough information that you can readily go
beyond the basics.

11.2.1 What is it and what can we use?

Access control breaks down into two main aspects:

■ Is the person you’re communicating with who they say they are (authentication)?
■ Do they have the rights to perform a given action (authorization)?

Simple access control can be implemented via standard Grails filters and the session
as we did in chapter 7, but you should use one of the available security plugins. Roll-
ing your own security solution usually ends in tears, unless your business is security.
With that in mind, here are the main candidates for security solutions in Grails:

■ Authentication plugin—The Authentication plugin is a lightweight authentica-
tion implementation with no dependencies on any third-party libraries. It’s
good for websites that require registered users but don’t have complex authori-
zation requirements.

■ Shiro plugin—The Shiro plugin provides full-featured access control and cryp-
tography via the Apache Shiro library. The Java library is mainly maintained
by Stormpath.

■ Spring Security plugin—Formerly known as Acegi Security, Spring Security is a
well-known and widely used security framework for Java applications. It pro-
vides the most comprehensive suite of authentication options of the three
plugins listed here. Newcomers often find it difficult to understand, but the
plugin does a great job of hiding much of the complexity.
Licensed to Mark Watson <nordickan@gmail.com>

309Access control
A couple of options we haven’t listed here are the standard Java Authentication and
Authorization Service (JAAS), which comes as part of the JDK, and the access control
specification defined by Java Enterprise Edition (Java EE) and implemented by Java EE
containers such as JBoss. Although both are standards, they aren’t widely used in the
Grails community. JAAS in particular is difficult to use and understand.

 Regardless of which plugin you use, it operates as a gatekeeper to your web appli-
cation, as illustrated in figure 11.3. It decides whether a particular request is allowed
through to the application based on a set of rules that you configure. Those rules may
require the user to authenticate or may result in an access denied page.

We can’t cover all these plugins in one chapter, so we concentrate on the Spring Secu-
rity plugin as it’s powerful and well maintained. Many of the ideas we discuss apply
equally to the other plugins, so you shouldn’t have trouble using them in combination
with their documentation.

11.2.2 Getting started with Spring Security

Access control is impossible without identifying the current user. Hubbub does this by
requiring users to enter their user ID and password on the login page and then storing
the corresponding User instance in the HTTP session (assuming authentication is suc-
cessful). Let’s replace this basic mechanism with the more full-featured Spring Security.

 The first step as usual is to install the plugin by declaring it in BuildConfig.groovy:

plugins {
 ...
 compile ":spring-security-core:2.0"
}

A question of terminology
The phrase “authentication and authorization” is fairly common and means much the
same as access control, but the latter is currently the preferred term in security circles.
Different security frameworks also tend to have their own jargon, which can make com-
paring them difficult. If in doubt, pick a library or framework that you understand.

Browser Web app

Request potentially

blocked by the filter

Security plugin fiter

Figure 11.3 How the
typical Grails security
plugin fits into the
request/response cycle
Licensed to Mark Watson <nordickan@gmail.com>

310 CHAPTER 11 Protecting your application
You may find the name of the plugin confusing, but it makes sense when you realize
that the various Spring Security plugins provide different sets of features, such as
Twitter and Facebook-based authentication. You’ll see those later in the chapter, but
for now the core plugin does everything you need (and more).

 After you update the BuildConfig.groovy file and run the grails refresh-
dependencies command (this is required before running any of the commands pro-
vided by the plugin), you’re ready to set up access control for your application. If you
create a new application from scratch, you can get started quickly by running

grails s2-quickstart org.example User Role Requestmap

This creates four domain classes in the org.example package: User, Role, UserRole,
and Requestmap. It also creates a login page and everything else you need to authenti-
cate users and protect URLs.

 In the case of Hubbub, you already have a User domain class that you don’t want to
overwrite. Rename User.groovy (under the domain folder) to TempUser.groovy so it
isn’t overwritten and run the same command:

grails s2-quickstart com.grailsinaction User Role

Note that you leave out the Requestmap argument because you don’t want to store
URL rules for Hubbub in the database. If you want to change your URL rules at run-
time, then it’s best to include Requestmap. The plugin’s documentation explains how
to use runtime request maps.

 Now you have User.groovy and TempUser.groovy. How do you reconcile them?
The new User class should include everything from the generated class and every-
thing from TempUser except:

■ The username property should be replaced by loginId
■ The password property becomes passwordHash

The Spring Security Core plugin doesn’t force property names on you, but it does
need a property for the username and the hash of the password (you should never
store plain text passwords in your database). You can see the final User domain class
in the following listing with additional changes that we explain afterward.

package com.grailsinaction

class User {

 String loginId
 String passwordHash
 boolean enabled = true
 boolean accountExpired
 boolean accountLocked
 boolean passwordExpired

 Date dateCreated

 static hasOne = [profile : Profile]

Listing 11.3 The Spring Security-enabled User domain class

Renames username
property to loginId

Renames password to
make it explicit you’re
storing password hash

Adds existing User properties missing
from Spring Security-generated class
Licensed to Mark Watson <nordickan@gmail.com>

311Access control
 static hasMany = [posts : Post, tags : Tag, following : User]

 static transients = ['springSecurityService']

 static constraints = {
 loginId size: 3..20, unique: true, blank: false
 tags()
 posts()
 profile nullable: true
 }

 static mapping = {
 posts sort: "dateCreated", order: "desc"
 }

 Set<Role> getAuthorities() {
 UserRole.findAllByUser(this).collect { it.role } as Set
 }

 String toString() { return "User $loginId (id: $id)" }
 String getDisplayString() { return loginId }
}

After you make these changes, you can (and should) remove the TempUser.groovy
file, leaving a simple domain model of a user having zero or more roles.

One important modification to the original code generated by the Spring Security
Core plugin is the removal of the event handlers beforeInsert() and beforeUpdate().
You do this because modifying field values before they’re persisted to the database
causes behavior around validation that’s difficult to understand. It’s also confusing
from the developer’s perspective because there’s a discrepancy between the initial
value set and the one stored.

 The safest choice is to factor out user creation into a service that explicitly encodes
incoming passwords using the springSecurityService bean. For the chapter source
on GitHub, we’ve taken a less ideal but simpler approach: explicitly encoding pass-
words in BootStrap and UserController via the encodePassword(String) method
on the springSecurityService bean.

 With these big changes to the User domain class coming in, it’s not only the appli-
cation code that needs updating. The existing tests don’t work now, either! It would
take too much space to show all the updated code here, so we’ll describe the changes
you need to make to the tests, and then you can look at the source code on GitHub to
see the result. Here’s the short list of things you need to do:

■ Tests involving validation failures should use loginId rather than password. Because
you now have a passwordHash property with no constraints, any test relying on

Don’t forget data migrations!
Because you’re modifying a domain class and adding extra ones, you’ll have to add the
corresponding migrations. You can find examples in the chapter source on GitHub.

Removes password
constraints as Spring
Security stores
password hash.

Removes beforeInsert
and beforeUpdate
event handlers.
Licensed to Mark Watson <nordickan@gmail.com>

312 CHAPTER 11 Protecting your application
the old constraints causing validation failures must be updated. You can use the
loginId property to trigger validation failures instead.

■ Integration tests should not compare passwords. Several integration tests check the
value of the password property, but the property has been renamed and now
contains a hash. You shouldn’t query or test on the password hash, so we
updated the chapter source to remove those tests that do.

■ UserControllerSpec must mock the security service. As UserController now uses
springSecurityService to encode the passwords, this service must be mocked
in the corresponding unit test.

■ Unit tests creating User instances must use passwordHash. Several unit tests instanti-
ate User objects. These should initialize the passwordHash property rather than
password. The value doesn’t have to be a valid hash.

Now that you have the domain model to support your access-control system, you’re
almost ready to implement rules for determining who can do what. The only thing left
to do is configure the plugin to use the loginId and passwordHash properties in place
of username and password. Add the following entry to grails-app/conf/Config.groovy,
preferably after the user domain class name setting (we’ve used g.p.s to save space
but you’ll need the full grails.plugin.springsecurity in your Config.groovy):

g.p.s.userLookup.userDomainClassName = "com.grailsinaction.User"
g.p.s.userLookup.usernamePropertyName = "loginId"
g.p.s.userLookup.passwordPropertyName = "passwordHash"

Several other configuration options allow you to use nonstandard class and property
names, all of which are well documented in the plugin’s user guide. You can, for
example, change the name of the enabled property as well.

NOTE Version 1.2.x and earlier of the Spring Security plugin defaults to a
value of false for enabled. When creating new users, be sure to initialize the
property to true first, otherwise those users won’t be able to log in.

Spring Security is primed and ready, blocking access to most parts of the application.
All you have to do now is tell it what URLs need protection so that users can access at
least some parts of the application without logging in.

Password hashing
The Spring Security plugin stores password hashes (using bcrypt by default) rather
than the plain text password. Ideally, you should use a strong hashing algorithm with
a salt and multiple iterations in case an attacker ever gets hold of the data in the
user table.

You can manually control when password encoding takes place by directly using the
encodePassword() method on the springSecurityService bean.

Adds lines to
Config.groovy
Licensed to Mark Watson <nordickan@gmail.com>

313Access control
11.2.3 Protecting URLs

You’ll start with a simple security model for Hubbub: all pages require an authenti-
cated user except the home page, the global timeline, and all the user pages (such
as registration and user search). The plugin gives you three options for specifying
this information:

■ Static config—The rules are declared in Config.groovy.
■ Dynamic—The rules are stored in the database as Requestmap instances.
■ Annotations—The rules are declared using annotations in controllers and services.

As we mentioned previously, the dynamic option is useful if you want to change the
access control rules at runtime. Annotations are simple and convenient and allow you
to work at the controller and action level, rather than the URL. They’re also conve-
nient for securing service methods.

 For Hubbub, you’re going with the old-fashioned static-config approach, partly
because URL-based rules are common, partly because it keeps all the security informa-
tion together, and partly because we need to talk about the ordering of rules. It also
allows you to protect pages or resources that aren’t backed by an action, such as images.

 Let’s look at the configuration you’ll use to implement the required access control.
Listing 11.4 shows the extra settings you need to add to Config.groovy so that all users
have access to the home and login pages, but only authenticated users can see the rest of
the application. These rules also make sure that all JavaScript, CSS, and image files are
publicly visible. Note that the s2-quickstart command adds a controllerAnnotations
.staticRules setting that you need to replace with the interceptUrlMap one.

grails.plugin.springsecurity.securityConfigType = "InterceptUrlMap"

grails.plugin.springsecurity.interceptUrlMap = [
 '/': ['permitAll'],
 '/post/global': ['permitAll']
 '/user/**': ['permitAll']
 '/login/auth': ['permitAll'],
 '/**/js/**': ['permitAll'],
 '/**/css/**': ['permitAll'],
 '/**/images/**': ['permitAll'],
 '/**': ['isFullyAuthenticated()']
]

A couple of things aren’t apparent from this listing:

■ All URLs require an authenticated user by default if there is no matching rule.
■ The URL patterns in the configuration must be all lowercase.

A URL such as http://localhost:8080/hubbub/starPost/showAll should be specified in
the configuration as

'/starpost/showall'

Listing 11.4 Spring Security configuration for Hubbub’s simple access-control model

Tells Spring
Security to use

static URL rulesUnrestricted
access

Open access to
static resources

Everything else requires
authenticated user
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:8080/hubbub/starPost/showAll

314 CHAPTER 11 Protecting your application
You must be careful with the order of these rules, because Spring Security uses the
first one that matches the request URL. If you put the rule

 '/**': ['ROLE_USER']

first, all pages of your application would require an authenticated user with that role
regardless of the rules that come after. The more specific the URL pattern in a rule,
the earlier it should go in the list.

 Hubbub is now secured against anonymous access. If a user doesn’t have an
account, they can’t post any messages. Try it out by starting the server and pointing
your browser at http://localhost:8080/hubbub/timeline. You’re redirected automati-
cally to the plugin’s login page, shown in figure 11.4.

 You can try to log in using one of the existing users, such as frankie with a pass-
word of testing, but this results in a server error. You still need to integrate the login
with the rest of the application because most pages currently expect to find a User
instance in the session.

 Before you do that, let’s look at that Remember me option on the login page. It’s a
feature we’re sure you’re familiar with from various websites, and it suits Hubbub well.
The application doesn’t need a high degree of security, so allowing users to see their
timeline and post new messages without logging in every time is a big win. The prob-
lem right now is that if you come back to Hubbub after a period of time (30 minutes,
by default), you’ll find you can’t access the application. You can test this by changing

Allows user to access
secured parts of the
application without
explicitly logging in.

Attempting to access any Hubbub URL
currently brings up this login page.

Maps to the loginld
field of User.

Figure 11.4 The Spring Security plugin’s standard login page
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:8080/hubbub/timeline

315Access control
the session timeout in src/templates/war/web.xml to 1 or 2, restarting the server, log-
ging into the application with the Remember me option selected, waiting a couple of
minutes, and then accessing one of the protected pages.

Behind the scenes, Spring Security allows the user through because it remembers
them, despite the user session timing out. Unfortunately, the user isn’t allowed to
access any of the pages because a fully authenticated user is required, meaning one
who has explicitly logged in at the beginning of the session. The result is that Spring
Security redirects the user to the /login/full page, which happens to also require a
fully authenticated user. You end up with an infinite loop of redirects.

WARNING Never allow the user to select the Remember me option if the
application doesn’t support it. Remove the option from the plugin-provided
default login page if you’re using that page.

Okay, so it was foolish to have only the /login/auth URL open to anonymous access.
In reality, you should grant anonymous access to /login/** and /logout/**. But the
configuration we showed previously was useful in highlighting the kinds of strange
behavior that you might see due to misconfigured rules.

 As it happens, you do want to support Remember me in Hubbub. Replace the
/login/auth rule with this:

'/login/**': ['permitAll'],
'/logout/**': ['permitAll'],

and change the last rule to this

'/**': ['isAuthenticated()']

That’s it! The Remember me feature now works, the browser won’t get stuck, and
users no longer need to authenticate every time they visit Hubbub.

 Now that you sorted out that particular problem, let’s see how to wire Spring Secu-
rity into the rest of Hubbub.

11.2.4 Getting hold of the current user

The access control isn’t fully working yet, but that won’t take long to fix. The first
thing to do is sort out the user’s timeline page, which is currently generating a 500
error because it can’t access the logged-in user.

Diagnosing problems
Problems with Spring Security rules can often be diagnosed by seeing what requests
and responses are shuttling between the browser and your application. It’s a good
idea to use your browser’s developer tools for this. Look out for redirects (response
codes 301 or 302), nonauthenticated users (401), and access denied (403).
Licensed to Mark Watson <nordickan@gmail.com>

316 CHAPTER 11 Protecting your application
 You have a couple of options. You could store the User instance in the session
when the user logs in. That requires you to copy the LoginController.groovy file from
the plugin to the app’s controllers directory and modify it. This is wasted effort, how-
ever, because you can get the current user from Spring Security directly. Also, why use
up valuable session space if you don’t have to? Instead, go with the second option: get
the user from Spring Security.

 All the information you need is provided by the springSecurityService bean, so
you can inject into whichever classes need access to the current user. The bean is use-
ful, so we’ve documented several of its properties and methods in table 11.2.

As you can probably guess, you want to use the currentUser property to get hold of
the User instance. One thing to be aware of is that the property returns null if the
user isn’t logged in or remembered. The following listing shows the changes you need
to make in PostController as italics.

class PostController {
 ...
 def postService
 def springSecurityService
 ...
 def personal() {
 def user = springSecurityService.currentUser
 render view: "timeline", model: [user : user]
 }
 ...
 def addPost(String content) {
 def user = springSecurityService.currentUser
 try {
 def newPost = postService.createPost(user.loginId, content)
 ...
 }
 redirect(action: 'timeline', id: user.loginId)
 }

Table 11.2 A summary of useful methods provided by the plugin’s springSecurityService bean

Method Description

currentUser Property that returns the domain instance representing the
current user.

isLoggedIn() Returns true if the current user is logged in, otherwise false.

encodePassword(pwd[, salt]) Encodes the given password with the configured hash algo-
rithm, returning the hash; this hash can be stored in the
password field of the user domain class. You can optionally
pass in a salt for the hash algorithm.

isAjax(request) Returns true if the given HttpServletRequest appears
to be an Ajax one.

Listing 11.5 Using PostController to get the User instance

Fetches current user
from Spring Security
instead of HTTP session
Licensed to Mark Watson <nordickan@gmail.com>

317Access control
 def addPostAjax(String content) {
 def user = springSecurityService.currentUser
 try {
 def newPost = postService.createPost(user.loginId, content)
 def recentPosts = Post.findAllByUser(
 user,
 [sort: 'dateCreated', order: 'desc', max: 20])
 ...
 }
 ...

That fixes the controller, but if you try to access the Global Timeline page, you won’t
see the text box for submitting a new post. The global.gsp view tests whether the HTTP
session contains a user variable, which is no longer the case. Your first thought may be
to use the springSecurityService bean from the view (an ugly solution) or add the
user to the view’s model (a better idea).

 The best approach is to use Spring Security Core’s handy tag library instead, which
provides what you need. Instead of code such as

<g:if test="${session.user}">
 ...
</g:if>

in global.gsp, you can use the following tag to check whether or not a user is logged in

<sec:ifLoggedIn>
 ...
</sec:ifLoggedIn>

If you need access to the User instance for the logged in user, then you do need to pro-
vide it through the view’s model. That’s what we do in the chapter source on GitHub.

 While we’re on the subject of GSP tags, you can add the following block to any of
your layouts; it allows users to log out at any time:

<sec:ifLoggedIn>
 <g:form name="logoutForm" controller="logout" action="index">
 <g:submitButton name="signOut" value="sign out"/>
 </g:form>
</sec:ifLoggedIn>

As you can probably guess, the ifLoggedIn tag only writes out its contents if the user is
logged in via Spring Security. In this case, the content is a form and button that sub-
mit to the index action of the logout controller, which is provided by the plugin. You
use a form because the plugin only allows POST requests for logging out by default,
although this can be changed in your application configuration.

 The access control is working nicely now. Only authenticated (or remembered)
users can access the /post/timeline page, and new posts are correctly associated with
the currently logged-in user. You can even provide a button allowing the user to log
out. What more do you need?

 One problem is that you now have two login pages, so it’s good to get rid of one.
Let’s keep the old one because it has better styling right now and hook it up to the
Spring Security authentication mechanism.
Licensed to Mark Watson <nordickan@gmail.com>

318 CHAPTER 11 Protecting your application
11.2.5 Using a custom login page

The process of configuring the plugin to use your home page for login is easy. Add
these entries to Config.groovy:

g.p.s.auth.loginFormUrl = "/login/form"
g.p.s.failureHandler.defaultFailureUrl = "/login/form"
g.p.s.successHandler.defaultTargetUrl = "/timeline"

The first option makes sure that Spring Security redirects to the previous login page
when authentication is required, and the second tells Spring Security to load the
user’s timeline page by default after a successful login. This second option doesn’t
apply if a user attempts to access a protected page and is redirected to the login page
to authenticate. In that case, Spring Security redirects to the page the user was origi-
nally trying to access.

 It would be nice if that was all you need to do, but the existing login form won’t
work as it is. The username and password fields need to have special names—ones
that are recognized by Spring Security, and the form needs to be submitted to a differ-
ent URL. On the bright side, this gives you an opportunity to add a Remember me
box. The following listing shows the new form in grails-app/views/login/form.gsp.

<g:form uri="/j_spring_security_check" method="POST">
 <fieldset class="form">
 <div class="fieldcontain required">
 <label for="j_username">Login ID</label>
 <g:textField name="j_username" value="${loginId}"/>
 </div>
 <div class="fieldcontain required">
 <label for="j_password">Password</label>
 <g:passwordField name="j_password"/>
 </div>
 <div class="fieldcontain required">
 <label for="_spring_security_remember_me">Remember me</label>
 <g:checkBox name="_spring_security_remember_me"/>
 </div>
 </fieldset>
 <fieldset class="buttons">
 <g:submitButton name="signIn" value="Sign in"/>
 </fieldset>
</g:form>

One last thing you should do is rename your LoginController because Spring Secu-
rity Core provides a controller with the same name. Rename your controller Auth-
Controller and move the views from grails-app/views/login to grails-app/views/auth.
To ensure that the /login/form URL continues to work, add this URL mapping:

"/login/form"(controller: "auth", action: "form")

Also delete the LameSecurityFilters.groovy file, because you’re no longer using it for
access control.

Listing 11.6 Adding a Remember me box

Submits user credentials to
/j_spring_security_check
URI. No other URI works.

The username
field must
be called
j_username.

The
password
field must
be called

j_password.
Licensed to Mark Watson <nordickan@gmail.com>

319Access control
Now that everything is working and you have basic access control in place, it’s time to
consider how to test this. You do want to make sure that it’s working properly and that
future changes don’t break anything!

11.2.6 Testing access control

Spring Security, like other security frameworks, uses a combination of servlet filters
and other types of interceptors to control access to an application. That means if
you want to test your access control at the page level, functional tests are the only
game in town.

 Figure 11.5 shows the logic you want to test. It’s not comprehensive, but it does
illustrate what you’re trying to achieve with your tests. You want to make sure that
all the conditions work and that application pages are displayed when you expect
them to be.

 Writing a test to confirm the behavior shown in the diagram is straightforward, and
you can see the resulting code in the following listing. As in chapter 9, you’re using
the Geb plugin to access particular URLs, but now most of those URLs are protected.

package com.grailsinaction

class AccessControlFunctionalSpec extends spock.lang.Specification {
 void "Anonymous access to home page"() {
 expect: "Unauthenticated user can access global timeline"
 to GlobalTimelinePage
 }

Listing 11.7 A functional test to verify the access-control behavior

Is authentication

required?

URL

User logged in?

Show page.

Redirect to

login page.

Yes

No Yes

No

Figure 11.5 A simple access-control logic flow that we want to functionally test

Allows
anonymous
access
Licensed to Mark Watson <nordickan@gmail.com>

320 CHAPTER 11 Protecting your application
 void "Anonymous access to restricted page"() {
 when: "Unauthenticated user accesses a user's timeline page"
 via TimelinePage, "phil"

 then: "the user is redirected to the login page"
 at LoginPage

 when: "the user logs in"
 login "frankie", "testing"

 then: "he or she can access the timeline page"
 to TimelinePage, "phil"
 }

 private login(String username, String password) {
 to LoginPage
 loginIdField = username
 passwordField = password
 signInButton.click()
 }

}

This functional test should also give you a good idea how to modify the existing func-
tional tests so that they work. Remember, the timeline page for a specific user now
requires authentication and the login page has different names for its fields. You’ll
need to update both TimelineFunctionalSpec and LoginPage.

 Everything is now working, and you have a system in place that you can grow as
needed. And remember, much of the work involved has come from the use of exist-
ing domain classes and views. The process is much simpler and quicker if you accept
the defaults that the plugin provides. That said, by doing it the hard way, you
explored several facets of Spring Security and the plugin that stand you in good
stead for the future.

 In the remainder of the chapter, you look at more advanced techniques that help
you with a variety of security requirements and add useful refinements to Hubbub.

11.3 Further exploration of Spring Security
Spring Security is a powerful framework with various options for authentication and
authorization, many of which the plugin exposes to you. It’s impossible to discuss
everything you can do with Spring Security in a single chapter—a book would be
more appropriate—so rather than attempt the impossible, in this section we intro-
duce common scenarios that require extra work.

11.3.1 Tightening restrictions on access

Spring Security uses the concept of authorities for assigning and determining rights:
who can do what. Its implementation is surprisingly powerful, but because the con-
cept of authorities is abstract, it’s difficult for people to understand.

 The plugin sidesteps this problem by only dealing with named authorities called
roles. These are simple—they’re names. A user is assigned any number of roles, which

Denies
anonymous
access

Checks login
failure
Licensed to Mark Watson <nordickan@gmail.com>

321Further exploration of Spring Security
gives them the right to access URLs restricted to any of those roles. Table 11.3 dem-
onstrates how rule requirements combine with role assignments to determine
whether a user has access to a particular URL. If any of the roles the user has match
any of the required roles, access is granted. Note that in these examples, ROLE_USER
and ROLE_ADMIN are strings. Also, if a user has no role, then they can’t even log in.

How are roles assigned? By linking a Role instance to a User instance either pro-
grammatically, as you do in BootStrap in the example Hubbub source code, or via a
user-management UI. The latter is ideal if you want to assign or revoke user privi-
leges at runtime.2

A typical Role instance might have a name of ROLE_USER and a description of “A
known, registered user of the system.” You can then make that role a requirement for
any given URL by adding it to the corresponding rule in Config.groovy:

'/profile/**': ['ROLE_USER']

This raises the question, what’s the difference between IS_AUTHENTICATED_REMEMBERED,
IS_AUTHENTICATED_FULLY, and ROLE_USER?

■ IS_AUTHENTICATED_REMEMBERED—Built into Spring Security. Allows any user
who’s authenticated or remembered.

■ IS_AUTHENTICATED_FULLY—Built into Spring Security. Allows any authenticated
user. Does not allow remembered users.

■ ROLE_USER—User-defined role that only allows access to users who’ve been
assigned it. Applies whether the user is authenticated or remembered.

Let’s consider a more concrete example. Say you’re using the user-management UI
provided by the Spring Security UI plugin. You don’t want everybody to have access to

Table 11.3 How role requirements and rule assignments relate to each other

Rule requires User has Access granted?

ROLE_USER ROLE_USER Yes

ROLE_ADMIN ROLE_USER No

ROLE_USER,ROLE_ADMIN ROLE_USER Yes

Spring Security expressions
The URL rules can use expressions as well as the string constants. For example,
ROLE_USER can be replaced with hasRole("ROLE_USER"). We use these expres-
sions in the chapter source code. Find out more in the Spring Security user guide.2

2 Expression-Based Access Control, http://docs.spring.io/spring-security/site/docs/3.1.x/reference/el-access
.html.
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.spring.io/spring-security/site/docs/3.1.x/reference/el-access.html
http://docs.spring.io/spring-security/site/docs/3.1.x/reference/el-access.html

322 CHAPTER 11 Protecting your application
it because modifying user information and adding, deleting, or disabling accounts are
highly sensitive operations. What do you do?

 First, you create a new role, in BootStrap.groovy for example, with the name
ROLE_ADMIN and assign it to a user:

def role = new Role(authority: "ROLE_ADMIN", description: "A super user.")
def admin = new User(loginId: "dilbert", ...).save()
role.addToPeople(admin)
role.save()

Then, you restrict access to the user-management URLs to that role:

grails.plugins.springsecurity.interceptUrlMap = [
 '/': ['permitAll'],
 '/user/**': ['ROLE_ADMIN'],
 '/role/**': ['ROLE_ADMIN'],
 ...
]

That’s all there is to it. Your user-management UI is now restricted to administra-
tors only.

 All straightforward, we think you’ll agree. But there’s one fly in the ointment.
Imagine that users can edit their profiles. You can limit access to the edit profile page
by role, but then anyone with the required role can access everyone’s profile, defi-
nitely not what you want! This is where you hit the limits of Spring Security and have
to implement a solution yourself.

 The easiest way to add this kind of feature is via Grails filters. All you have to do is
configure a before interceptor on the profile controller that checks whether the cur-
rent user is the owner of the requested profile. The following listing contains such a fil-
ter, which goes into grails-app/conf/com/grailsinaction/SecurityFilters.groovy. If the
current user’s ID doesn’t match the one given in the request URL, access is blocked.

package com.grailsinaction

class SecurityFilters {
 def springSecurityService

 def filters = {
 profileChanges(controller: "profile", action: "edit|update") {
 before = {
 def currLoginId = springSecurityService.currentUser.loginId
 if (currLoginId != Profile.get(params.id).user.loginId) {
 redirect controller: "login", action: "denied"
 return false
 }
 return true
 }
 }
 }
}

Listing 11.8 Restricting access to a single user via a Grails filter

Blocks access if
profile isn’t current
user’s one
Licensed to Mark Watson <nordickan@gmail.com>

323Further exploration of Spring Security
As you can see, the filter is simple. The main thing is to ensure that it returns false if the
current user shouldn’t be allowed access to the page or submit data to the update action.

 You’ve now finished with the authorization side of things. Role-based schemes
work for many types of applications. For those occasions when you need finer-grained
access control, you might want to look into either the Spring Security ACL plugin,
which supports access control lists (ACLs), or the Spring Security Shiro plugin, which
allows you to use Shiro’s simpler permission system.

 If you’re done with authorization, what’s left? The final feature we’ll add to Hub-
bub is social authentication, because let’s face it, users don’t like maintaining multiple
user accounts with multiple passwords.

11.3.2 Social authentication
The authentication you used so far is based on storing users and their passwords in
the database. Although this is one of the most common approaches, it isn’t the only
one. Spring Security (and, by extension, the plugin) supports many schemes via what
it calls authentication providers. You may be surprised to learn that Hubbub is already
using three of them:

■ AnonymousAuthenticationProvider

■ RememberMeAuthenticationProvider

■ GrailsDaoAuthenticationProvider

It’s the last of these that utilizes your User domain class for authentication and autho-
rization. But do you need to maintain your own identity management?

 Let’s think about what you want for Hubbub right now. The plan is to take over the
world, or at least displace Twitter from its position at the top of microblogging ser-
vices. That means at least allowing Twitter users to access Hubbub immediately, so why
not let them authenticate with Twitter and bypass creating new accounts in Hubbub?
Maintaining an account for every website or application you use is one of the more
frustrating things online today.

 Grails is blessed with several plugins that add social authentication to Spring Secu-
rity, such as Spring Security Twitter, Spring Security Facebook, and Spring Security
OAuth. We won’t look at all of these, but after you see one, the rest are fairly easy to
understand and use. It helps that most of them use OAuth (http://oauth.net/) in one
form or other under the hood.

 Before you can implement Twitter authentication in Hubbub, you need to register
the application with Twitter. It’s not obvious how to do this, so we show the flow of
screens in figure 11.6. Go to https://dev.twitter.com/, log in, and then follow the links
in figure 11.6.

 After the Hubbub application is registered, you have access to the all important
consumer key and secret. You can’t connect to Twitter without them! You can now
switch back to Grails and start incorporating Twitter authentication by first adding the
Spring-Security-Twitter plugin to your dependencies:

compile ":spring-security-twitter:0.6.2"
Licensed to Mark Watson <nordickan@gmail.com>

https://dev.twitter.com/
http://oauth.net/

324 CHAPTER 11 Protecting your application
Then run the compile command (to install the plugin), followed by

grails s2-init-twitter

This asks for several pieces of information:

> Enter your Twitter API Key hubbub
> Enter your Twitter API Consumer Key testuser483498
> Enter your Twitter API Consumer Secret ksfhekfhaekrhsdfsfahhreg

The API Key isn’t that important and you can enter “hubbub” as shown in the exam-
ple. But the other two fields, the Consumer Key and Consumer Secret, require the val-
ues that Twitter provides when you register the application.

 The s2-init-twitter command installs a few files into your project and adds con-
figuration settings to the end of Config.groovy. Those settings comprise the app key,

These fields can be anything. You can even reuse these values yourself.
They are just displayed on the Twitter auth page when a user logs in.

Figure 11.6 The sequence of screens for registering a new application with Twitter
Licensed to Mark Watson <nordickan@gmail.com>

325Further exploration of Spring Security
the Consumer Key, and the Consumer Secret. At this point, you have a decision to
make. Config.groovy is normally included in source control, which means that anything
in it becomes public knowledge. That makes it a bad location for passwords and secrets.

 Now, you may consider your source control system private and safe, so perhaps put-
ting secrets in it isn’t a problem. But you don’t want to do that for Hubbub because its
source is on GitHub and available to everyone. What you’re going to do is move those
settings into a separate file that’s not kept in source control. First, add these lines to
the beginning of Config.groovy:

grails.config.locations = ["classpath:${appName}-config.groovy",
 "file:./${appName}-config.groovy"]

The grails.config.locations setting tells Grails where it can find extra configura-
tion files. Locations that begin with file: represent files on the local filesystem and
those that begin with classpath: represent paths relative the application’s classpath.

 The reason you have two locations like this is so that it works with both run-app
and production deployments. By putting a hubbub-config.groovy file in the project
directory, you can make extra settings available to the application when using run-app
and run-war. But when you package the application as a WAR file and deploy it to
Tomcat, you can put the configuration file into the Tomcat lib directory, which auto-
matically goes onto the application classpath. We talk more about such external con-
figuration files in chapter 17.

 Next, you move the grails.plugin.springsecurity.twitter.* settings from Con-
fig.groovy to hubbub-config.groovy (which goes into the root directory of the project):

grails.plugin.springsecurity.twitter.app.key='Hubbub'
grails.plugin.springsecurity.twitter.app.consumerKey='...'
grails.plugin.springsecurity.twitter.app.consumerSecret='...'

And finally, you enable the Sign in with Twitter feature by adding the following lines
to your login page.

<html>
<head>
 <meta name='layout' content='main'/>
 <title><g:message code="springSecurity.login.title"/></title>
 <g:external dir="css" file="twitter-auth.css"/>
 ...
</head>
<body>
<div id='login'>
 <div class='inner'>
 <div class='fheader'>
 <g:message code="springSecurity.login.header"/>
 </div>
 <twitterAuth:button/>
 </div>
 ...

Listing 11.9 Enabling the Sign in with Twitter feature

Includes CSS to
style Sign in with
Twitter link

Adds Sign in with
Twitter link to page
Licensed to Mark Watson <nordickan@gmail.com>

326 CHAPTER 11 Protecting your application
</body>
</html>

Everything is now in place and all that’s left is try it out. But if you run the application
and try to log in via Twitter (assuming you have a Twitter account), you find that it
doesn’t work. What’s going on?

 When you run the application normally, via run-app, you point your browser at
localhost or 127.0.0.1. Browsers are absolutely fine with this, but Twitter isn’t. You
need a nonlocalhost domain. The way to do this is to invent a local domain, grailsin-
action.local, and bind it to the IP address 127.0.0.1 in the hosts file. On Mac OS X or
Linux, you’d have a line such as the following in the /etc/hosts file:

127.0.0.1 localhost grailsinaction.local

On modern versions of Windows (XP and above) you can find the equivalent file at
%SystemRoot%\system32\drivers\etc\hosts, where %SystemRoot% is typically C:\Windows.

 Now if you point your browser at http://grailsinaction.local:8080/hubbub/ and
ensure that the callback URL registered with Twitter is the same, you can log into your
local Hubbub instance via Twitter! Unfortunately, some of the pages won’t display
because they expect a properly configured profile, which doesn’t get created for Twit-
ter-authenticated users. For seamless integration, you should add a Grails filter that
checks whether the authenticated user has a profile, and if not, redirects that user to a
page for filling in the required profile information.

 You can breathe a sigh of relief—you made it! This chapter covered a good portion
of information on security, but there’s even more to learn. Don’t worry, though;
you’ve got a solid foundation on which to build your knowledge in this area.

11.4 Summary and best practices
Security is a complex subject that often requires the average developer to think in new
ways. You saw several examples of the types of attacks that your Grails applications might
face, but our focus is more on the prevention techniques you should apply rather than
the attacks that they counter. While developing, it’s easier to remember to validate all
your inputs rather than to protect against SQL/code/whatever injection attacks.

 We urge you to think about the access-control rules you set up. A framework such
as Spring Security can make it easy to add access control to an application, but it’s no
more secure than the rules you define. Make sure you understand the application’s
specific requirements before implementing its access control.

 Another important point to think about is how secure the application needs to be.
How sensitive is the information in it? What are the consequences if an attacker man-
ages to masquerade as a genuine user? You can implement security checks, but are
they worth the associated cost in development time and possible user inconvenience?
For example, Hubbub doesn’t contain particularly sensitive information, but it should
make it difficult to post messages as other people. On the other hand, a banking
application requires far more checks and should make sure that no one can even see
user-specific information.
Licensed to Mark Watson <nordickan@gmail.com>

http://grailsinaction.local:8080/hubbub/

327Summary and best practices
 Here are ideas and guidelines to help you protect your application:

■ Remember the motto: “strength in depth.” If you have only a single layer of security
around your application, an attacker who gets through has untrammeled access
to the whole application. You should also perform input validation in your con-
trollers and use the query options that autoescape parameters, for example.

■ Know your trust boundaries. A trust boundary is a point of communication where
one side is trusted and the other isn’t. It’s at these trust boundaries that you
must be particularly vigilant, scrubbing data that comes in and making sure
data going out is safe.

■ Test, test, test! Make sure that the application isn’t susceptible to common types of
attack by using functional tests and automated tools like OWASP’s WebScarab.3

■ Obfuscation isn’t a substitute for proper security. Hiding or mangling information
can be useful—after all, there’s no point in advertising anything that might
help an attacker. But if you rely on obfuscation, you run a high risk of compro-
mise. It’s complementary to other techniques, not a substitute.

■ Develop with security in mind. Remember that security is a process and a mindset.
In order for your application to be secure, you have to consciously consider the
potential effects of the code you write.

■ Perform code reviews. Similar to the way code reviews help weed out coding mis-
takes and movements in the direction of the “ball of mud” design pattern, they
can also pick up security flaws. There’s nothing like a second pair of eyes when
it comes to catching these things.

■ Use existing tools and frameworks. No matter how vigilant you are errors will creep
in. Security tools and frameworks are battle-tested and in wide use, so vulnera-
bilities are quickly found and quashed. Why risk your application by using
homegrown solutions?

We’d like to reiterate that several security frameworks are available for Grails, so if
you need one, we think it’s worth a little research to make sure you pick the right
one for you.

 With all this security knowledge under your belt, you can now consider opening up
your applications and allowing access to software clients, and not only human users via
their web browsers.

3 “WebScarab (Next Generation) Project,” https://www.owasp.org/index.php/OWASP_WebScarab_NG_Project.
Licensed to Mark Watson <nordickan@gmail.com>

https://www.owasp.org/index.php/OWASP_WebScarab_NG_Project

Exposing your app
to other programs
Now that you’ve added access control to Hubbub, your application is ready for the
big, bad world. Your users can start conversations and kick off a big hubbub. Does
that mean there’s nothing more to add? No. An important feature of web applica-
tions these days is an API.

 Do you ever wonder why Twitter and Facebook became so popular? Sure, peo-
ple like socializing, and people gravitate to where everyone else is. But how did they
gain critical mass in the first place? By being first to market? Well, Facebook came
after MySpace and still managed to supplant it.

 They’re successful for many reasons, but one of the most important is that
they’re open platforms. Think about all the websites that include Twitter feeds on
their home page, or all the pages that have the “share via Twitter/Facebook” links.
And never forget the popularity of games such as Farmville on Facebook, games
that are created by companies independent of Facebook itself. Such integration

This chapter covers
■ Implementing RESTful services in Grails
■ Applying authentication to API calls
■ Exporting services to remote clients
328

Licensed to Mark Watson <nordickan@gmail.com>

329Creating a REST interface
with external sites and applications is a key element of a sticky platform, which refers
to how well the platform attracts and retains new users.

 Given that application-to-application integration is important to the success of a
project, a fundamental requirement for the project is to have a public API. Ideally an
API that’s both usable and well documented. For web applications such as Hubbub,
the dominant form of API is a REST-based interface.

12.1 Creating a REST interface
In this section, we introduce the basic elements of REST and then show how to get an
initial REST interface into Hubbub. This approach makes it easy to get going, and you
can start playing with the interface straightaway, using any number of tools. We also
mention how to get those tools and how to use them.

12.1.1 What is REST?

HTTP is the language of the web, but it also embodies an architectural style called
REST that works for any client/server communication. The incredible success of the
web in its current form is a major reason why REST is so popular. Its flexibility and scal-
ability have been proven many times over.

 The idea of REST is that an application is a collection of resources that can be
operated on by a few methods. In a wiki, each page is a single resource that you can
fetch, modify, or delete. You can even create new pages. Each method (except delete)
involves transferring the contents of a particular page between the client (the
browser) and the wiki. The data in the requests and responses is a representation of
the page’s state. Another example of REST comes from Hubbub (see figure 12.1), in
which a client retrieves an existing post and also creates a new one.

 For a web application such as Hubbub, the methods you can use to operate on a
resource are already provided by HTTP. The four basic verbs (or methods) available are:

■ GET—Retrieves a resource
■ POST—Creates a new resource

Client

GET/api/post/2

A Hubbub

post

The resource

<post>
<content>…<content>
<user>glen</user>
<published>…</published>

</post>

An XML representation of the

resource’s current state
Figure 12.1 The key
concepts of REST
Licensed to Mark Watson <nordickan@gmail.com>

330 CHAPTER 12 Exposing your app to other programs
■ PUT—Updates an existing resource or creates a new one with a known ID
■ DELETE—Removes a resource

The first two are common among normal web applications because browsers use them
regularly. Every time you open a web page, the browser is issuing a GET request, and
when you submit a form the information is typically sent as a POST. 1

Those are your REST methods, so what about the resources themselves? First, you
need to know how to identify them when using the methods. Once again, HTTP pro-
vides the solution: URLs. Ideally, those URLs should have the following attributes:

■ Unique to a resource—Each URL should only represent a single resource. A single
URL should not identify two different posts. You can have multiple URLs per
resource, but we think it helps avoid confusion if you don’t.

■ Long-lived—A URL should always point to the same resource, preferably until
the end of time. That may sound like too much to ask for, and the HTTP specifi-
cation acknowledges this with temporary and permanent redirects. Yet you
should endeavor to ensure that your URLs are long-lived, or you might get a bad
reputation for broken links—one of the banes of the web.

The last element of REST, but certainly not the least, is the resource data itself. More
often than not, the data is stored in a database. When a client requests a particular
resource, the REST implementation converts that data into a representation the client

POST versus PUT
A common source of confusion in REST revolves around when you should use POST
and when PUT. According to the specification,1 PUT is used for creating and updating
resources at a given URL.

In Grails, the ID of a new resource often isn’t known before it’s created, so PUT
doesn’t have a URL to work against. Instead, you perform a POST to the parent URL,
say /posts, which creates a subordinate resource, such as /posts/10.

In the case of an existing resource, you know the ID, so you should use PUT to update it.

1 “HTTP/1.1 method definitions,” http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html.

Good URL design
We highlight only two recommendations for URLs here, but they aren’t the only con-
tributing factors to good URL design. It can be argued that URLs should also be short,
easy to understand, and easy to remember. These principles aren’t directly related
to REST, but they can help users and developers. To find out more, search for “good
URL design” on the web.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

331Creating a REST interface
can handle. The most common formats for such data representation are JSON and
XML. The former is particularly popular for rich JavaScript clients because it’s trivial
to parse and use from JavaScript.

 In essence, REST is about resource identifiers (your URLs), methods for interacting
with resources (the HTTP verbs), and the resource data in an easily consumable and
producible form (typically JSON or XML). With that background, you’re ready to
implement your first REST interface for Hubbub.

12.1.2 Implementing a quick API

Grails provides several mechanisms for implementing a REST interface for an applica-
tion with many opportunities for customization. The quickest approach is to mark up
one or more of your domain classes as resources using the following annotation:

package com.grailsinaction

import grails.rest.Resource

@Resource(uri="/posts")
class Post {
 …
}

This will create an implicit controller that provides JSON and XML endpoints at the
URL /hubbub/posts. At least, it would if you didn’t already have a PostController
class. To try this out, rename the PostController.groovy file temporarily (to Post-
Controller.groovy.tmp, say), start the server, and point your browser at /hubbub/
posts. You’ll see an XML representation of all the posts in the database. You’ll see the
same data in JSON form if you use the URL /hubbub/posts.json (the .json suffix forces
the content type to application/json).

 This URL doesn’t only allow you to retrieve the posts from the database. You can
also retrieve individual posts, create new ones, and modify them. It depends on which
URL and HTTP method you use. Table 12.1 shows you which actions are associated
with which URL/method combinations.

If all you want to do is expose your domain model via a cheap and cheerful REST
interface, this is perfect. It doesn’t work so well if you want to have an HTML UI as well

Table 12.1 Standard REST URL and HTTP method mappings

URL HTTP method Controller action Description

/posts GET index Retrieves all posts.

/posts POST save Creates a new post initialized with the given data.

/posts/5 GET show Retrieves only the post with the given ID.

/posts/5 PUT update Updates a particular post with the given data.

/posts/5 DELETE delete Deletes a particular post.

Adds JSON and XML
REST endpoints at the
URL /hubbub/posts
Licensed to Mark Watson <nordickan@gmail.com>

332 CHAPTER 12 Exposing your app to other programs
or want to decouple the REST API from the domain classes. That means you need to
use a different approach for Hubbub.

 Beyond the @Resource annotation, the key parts of a Grails application involved in
REST implementation are the URL mappings and the controller actions. Let’s start
with the URLs. Until now, you’ve only seen one-to-one mappings between URLs and
controller actions. That’s because a standard HTML-based application only ever
accepts one of GET or POST to a particular URL. With a REST interface, each URL can
support more than one HTTP verb. Enter the resource attribute for URL mappings:

"/api/posts"(resources: "postRest")

This single entry creates the same mappings as you saw in table 12.1. You could use the
URL /posts, but we prefer to keep the REST API for the application separate from
the browser-focused UI. Because of that, you’ll also create an extra controller rather
than reusing PostController. You can certainly use a single controller for JSON, XML,
and HTML if you want, but there won’t be much duplication between the separate
controllers if you use services and we like the flexibility to evolve the HTML and REST
interfaces independently.

That’s all you need to do on the URL mapping side. The next step is to implement the
corresponding controller actions so that they return the appropriate content. As in previ-
ous chapters, start your implementation by first creating the controller and its unit test:

grails create-controller com.grailsinaction.PostRest

Next, write the unit test that specifies how the controller should work. This unit test is
different from previous controller tests because you aren’t concerned with any views.
Instead, you want to submit JSON and XML data and verify the resulting JSON and XML.
The following listing contains a subset of the full unit test (which can be found on
GitHub), but it covers all the important techniques for unit testing a RESTful controller.

package com.grailsinaction

import grails.plugin.springsecurity.SpringSecurityService
import grails.test.mixin.TestFor
import grails.test.mixin.Mock
import spock.lang.Specification

resources vs resource
The previous URL mapping example used the parameter resources. Unfortunately
there’s also a resource parameter (the singular form) that has slightly different map-
pings. Just one extra or missing character can break your application. Be careful.

The singular form is for singleton resources, meaning that there aren’t multiple
instances of the resource. Application configuration could be a singleton resource.

Listing 12.1 A unit test for our REST controller
Licensed to Mark Watson <nordickan@gmail.com>

333Creating a REST interface

ng
nt
@TestFor(PostRestController)
@Mock([User, Post])
class PostRestControllerSpec extends Specification {

 void setupSpec() {
 defineBeans {
 springSecurityService(SpringSecurityService)
 }
 }

 void "GET a list of posts as JSON"() {
 given: "A set of posts"
 initialiseUsersAndPosts()

 when: "I invoke the index action "
 controller.index()

 then: "I get the expected posts as a JSON list"
 response.json*.content.sort() == [
 "A first post",
 "A second post",
 "Preparing for battle",
 "Soaking up the sun"]
 }

 void "GET a list of posts as XML"() {
 given: "A set of posts"
 initialiseUsersAndPosts()

 when: "I invoke the show action without an ID and requesting XML"
 response.format = "xml"
 controller.index()

 then: "I get the expected posts as an XML document"
 response.xml.post.content*.text().sort() == [
 "A first post",
 "A second post",
 "Preparing for battle",
 "Soaking up the sun"]
 }

 void "POST a single post as JSON"() {
 given: "A set of existing posts"
 def userId = initialiseUsersAndPosts()

 when: "I invoke the save action with a JSON packet"
 request.json = '{"content":"A new post!","user":{"id":' +
 userId + '}}'
 controller.save()

 then: "I get a 201 JSON response with the ID of the new post"
 response.status == 201
 response.json.id != null
 }

 private initialiseUsersAndPosts() {
 def chuck = new User(loginId: "chuck_norris",
 passwordHash: "password")
 chuck.addToPosts(content: "A first post")

Ensures
springSecurityService
bean is injected into
User domain instances

Checks JSON response,
where json property is
map that replicates
structure of JSON data

Requests XML
response

(works with
withFormat()

method) Checks XML
response, using
GPath syntax

Passes JSON stri
as request conte

Tests HTTP status code of
response; 201 indicates
successful POST
Licensed to Mark Watson <nordickan@gmail.com>

334 CHAPTER 12 Exposing your app to other programs
 chuck.addToPosts(content: "A second post")
 chuck.save(failOnError: true)

 def bruce = new User(loginId: "bruce_lee",
 passwordHash: "iknowkungfu")
 bruce.addToPosts(content: "Soaking up the sun")
 bruce.addToPosts(content: "Preparing for battle")
 bruce.save(failOnError: true, flush: true)

 return chuck.id
 }
}

This code demonstrates several important techniques: submitting JSON and XML data,
specifying a preferred content type for the response, and checking JSON and XML
responses. JSON responses are generally easier to deal with than XML responses
because JSON objects become Groovy maps and JSON lists become Groovy lists.

 The XML responses have a different structure, but we can still use dynamic prop-
erty access and the like via GPath notation. This is a generic Groovy feature that allows
you to select elements and attributes by their names and navigate through the hierar-
chical structure of the document with dot (.) notation. GPath is beyond the scope of
this book, but you can easily find out more online. To help you get started, we break
down the GPath expression from listing 12.1 in figure 12.2.

 The new unit test is failing because you haven’t implemented the necessary control-
ler actions. Let’s rectify that in the following listing with a short PostRestController
implementation.

package com.grailsinaction

import grails.rest.RestfulController

class PostRestController extends RestfulController {
 static responseFormats = ["json", "xml"]

 PostRestController() {
 super(Post)
 }
}

Listing 12.2 A quick and simple REST controller

response.xml.post.content*.text()

Returns root

element

Returns all <post> elements

that are immediate children

of the root

Returns all <content> elements

that are children of <post>s

Converts content of each

<content> element to a string

Figure 12.2 Anatomy of
a GPath expression

Implements all
REST actions

Specifies which content
types the controller
should handle

Tells REST controller which
domain class to scaffold
Licensed to Mark Watson <nordickan@gmail.com>

335Creating a REST interface
Congratulations! You now have a fully functional REST API for Hubbub’s posts that
supports both JSON and XML. A client can easily specify what content type it wants
through a number of mechanisms:

■ A suffix on the end of the URL, such as .json or .xml
■ A format=<type> URL parameter, for example format=json
■ The Accept header of the HTTP request

This does raise the question of how you try the API out. You can perform GET requests
from the browser, but what about adding or updating Hubbub posts? Fortunately,
there are plenty of tools out there that you can use. We like the browser-based ones
such as the Poster extension for Firefox or the REST Console app for Chrome. You can
also use curl from the command line or something like the Spring REST Shell.2

 As a quick test, try submitting the following request content to the URL http://
localhost:8080/hubbub/api/posts. Be sure to set the request content type to applica-
tion/json!

{"content":"A new post via REST", "user":{"id":7}}

You can then go to the timeline page in your browser to verify that the post was added.
Note that you can submit data in a different format than you want it returned, for
example, by submitting JSON and requesting XML in the response. This is rarely use-
ful, though.

 The format of the data in such requests is fixed, corresponding to the properties of
the domain class and its associations. The best way to discover what structure you should
use for your own POST and PUT requests is by looking at the content returned by a GET.
For example, pointing your browser at /api/posts/1.json (and logging in) results in

{"class":"com.grailsinaction.Post",
 "id":1,
 "content":"My first post",
 "dateCreated":"2007-05-12T10:08:22Z",
 "tags":[],
 "user":{"class":"User","id":6}}

This contains more than you need when attempting to create a new Hubbub post via
the REST interface since Grails can infer the type of domain class to instantiate from
the URL. Grails also automatically assigns an ID and creation date. Hence you can
ignore the class, id, and dateCreated fields.

 The content returned by the /api/posts/1.xml URL isn’t much different:

<post id="1">
 <content>My first post</content>
 <dateCreated>2007-05-12 11:08:22.664 BST</dateCreated>
 <tags/>
 <user id="6"/>
</post>

2 “Spring REST Shell project,” https://github.com/spring-projects/rest-shell.

Normal domain class
properties become JSON fields.

Associations become
nested JSON objects.

Normal properties
(except id) become
elements.

Associations become
nested elements.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/spring-projects/rest-shell
http://localhost:8080/hubbub/api/posts
http://localhost:8080/hubbub/api/posts

336 CHAPTER 12 Exposing your app to other programs
In the case of XML, the name of the root element is immaterial. When submitting
XML data via a POST, you could use <root>, <post>, or even <jelly>.

 There’s one big problem with the API as it stands: any changes to the domain
classes immediately result in changes to the generated JSON and XML. Public APIs
should be stable with minimal and controlled changes, whereas the persistence model
embodied by the domain classes should be allowed to change freely as it’s an internal
model. You ideally want to decouple the public API from the internal persistence model
and we look at how to do that in the next section.

12.2 Improving the API
What makes a good API? Here is a list of what we think are the most desirable attributes:

■ Consistent and well-behaved URLs
■ Stable data representations
■ Informative error handling

The core Grails support has the first of these well covered. Each HTTP method on a
resources URL does the appropriate thing. And for those HTTP methods that don’t
make sense, such as a PUT on /api/posts, Grails returns a suitable error status code
(405 Method Not Allowed). You’ll also discover in this section that Grails handles vali-
dation errors well, but you can still improve the general error handling. Before we get
to that, the most critical aspect you need to deal with is stable data representations.

12.2.1 Handling data representations

As the API’s implementer, you’re happy. It was easy to set up and it does lots of things
right. But let’s look at it from a user’s perspective. Consider the response from a GET
request to /api/posts.xml:

<?xml version="1.0" encoding="UTF-8"?>
<list>
 <post id="13">
 <content>Pilates is killing me as well</content>
 <dateCreated>2013-02-26 15:31:41.28 GMT</dateCreated>
 <tags />
 <user id="7" />
 </post>
 ...
</list>

First, the name of the root element leaves something to be desired, although the
name is generally irrelevant when consuming XML. Second, the timestamp for each
post isn’t great for parsing, particularly with a three-letter time zone rather than a UTC
offset. Most importantly, this schema is tied to the domain model.

 You may remember that in chapter 3 you moved the homepage property from the
User class to Profile. It’s useful to have the flexibility to refactor the domain model
like that, otherwise it tends to become harder and harder to work with. But think
Licensed to Mark Watson <nordickan@gmail.com>

337Improving the API
about the impact that such a change would have on the XML and JSON generated for
a User instance. It goes from something like

<user id="5">
 <loginId>phil</loginId>
 <homepage>http://philisgreat.blogspot.com/</homepage>
 ...
</user>

to

<user id="5">
 <loginId>phil</loginId>
 <profile>
 <homepage>http://philisgreat.blogspot.com/</homepage>
 ...
 </profile>
 ...
</user>

A small change, but it would break any client that relied on the old schema. And old
applications abound, so even if you wait two years before making such a breaking
change you’ll probably affect someone—perhaps a paying customer who’ll become
irritated (to put it mildly) and either go elsewhere or sue you.

 The problem here is that APIs should change slowly and with as few breaking changes
as possible, but a persistence model should be free to adapt to changing requirements on
a potentially frequent basis. This friction between the two leads to a simple rule: decou-
ple the resource representations from the internal persistence model.

 Serializing the persistence model without any control results in an unstable API
that clients will refuse to use after a while. What should you do? The choices boil down
to these three:

■ Imperatively generate the XML and JSON
■ Copy the persistence model information into a different, more stable object

hierarchy and serialize that
■ Customize the marshaling of the domain model objects

The first option uses builders or similar to generate the text representation of the
domain model. This approach has the advantages of full control of the XML or JSON
generation and clarity in how the serialization happens. It’s easy for developers to
track the code from the response rendering back to the serialization, but you’re dupli-
cating work that the Grails converters already do.

 The second option requires maintaining a separate model and copying data
from the domain model to this intermediate one. It’s similar to the old data transfer
object (DTO) technique, although in this case the intermediate model may be dif-
ferent from the domain model. Decoupling the UI and public API from the domain
model in this way has significant advantages, but works best when the two models
are noticeably different.
Licensed to Mark Watson <nordickan@gmail.com>

338 CHAPTER 12 Exposing your app to other programs

t
 We don’t have space to cover examples of all three techniques, so we focus on the
third one, particularly as it’s the most Grails-specific option. This approach works with
the existing serialization mechanisms, while allowing for a good degree of control.

 The idea is to register custom marshalers for your classes, which control how
instances of those classes are turned into JSON or XML. This sounds like a nontrivial
amount of work, but, in fact, the simplest scenario is straightforward. Consider that
you want the XML representation of Hubbub posts to look like

<post id="13" published="2013-02-26T15:31:41">
 <message>Pilates is killing me as well</message>
 <tags>
 <tag>personal</tag>
 </tags>
 <user>phil</user>
</post>

This is a similar schema to the existing one, but note the change from <dateCreated>
to <published>, the replacement of the user instance ID with the login ID, and the
renaming of <content> to <message>. To use this, you need to register a custom mar-
shaler for the Post class. To keep things simple, register it in BootStrap.groovy, as
shown in the following listing.

import com.grailsinaction.*
import grails.converters.*
import java.text.SimpleDataFormat

class BootStrap {
 def init = { servletContext ->
 def dateFormatter = new SimpleDateFormat("yyyy-MM-dd'T'hh:mm:ss")

 XML.registerObjectMarshaller(Post) { Post p, converter ->
 converter.attribute "id", p.id.toString()
 converter.attribute "published",
 dateFormatter.format(p.dateCreated)
 converter.build {
 message p.content
 user p.user.loginId
 tags {
 for (t in p.tags) {
 tag t.name
 }
 }
 }

 }

 environments {
 ...
 }

 createAdminUserIfRequired()

Listing 12.3 Registering the marshaler in BootStrap.groovy

Starts
serialization
for given Pos
instance

Uses Groovy
markup builder
syntax to
generate XML
Licensed to Mark Watson <nordickan@gmail.com>

339Improving the API
 }
 ...
}

In this case, the custom marshaler uses the second argument of the closure, the con-
verter instance, to render XML directly via Groovy’s markup builder syntax (see
appendix C). Best of all, the custom XML will be generated whenever a Post instance
is serialized using XML, no matter where this happens.

 You can also customize the JSON that’s generated through the same mechanism,
albeit somewhat more simply. For JSON, the custom marshaler returns a map or a list
of maps representing the object data. The next code generates similarly structured
JSON to the XML you saw in the previous listing.

JSON.registerObjectMarshaller(Post) { Post p ->
 return [id: p.id,
 published: dateFormatter.format(p.dateCreated),
 message: p.content,
 user: p.user.loginId,
 tags: p.tags.collect { it.name }]
}

As you can probably work out from the code, because JSON is a representation of
maps and lists, the previous code converts a Post instance into

{"published":"2013-02-26T15:31:41",
 "message":"Pilates is killing me as well",
 "tags":["personal"],
 "user": "phil"}

And because you aren’t using the converter to generate JSON (you rely on its default
handling of maps), you don’t need the second argument on the closure for register-
ObjectMarshaller().

 You can do the same with the XML converter (return a map), but its default han-
dling of maps is nasty. You end up with XML such as this:

<post>
 <entry key="published">2013-02-27T09:12:27</entry>
 <entry key="message">Pilates is killing me as well</entry>
 <entry key="user">phil</entry>
 <entry key="tags" />
</post>

Nobody wants to use such an API! You’re better off using the markup builder syntax
for XML custom marshalers.

 Using this approach of custom marshalers, you can happily change the domain
model as the need arises. Any time the domain model changes, you update the cus-
tom marshalers to generate the same JSON and XML as before. That said, you don’t
really want to cram all your custom marshaling into your BootStrap class. You’re bet-
ter moving it into a separate class. Create the file src/groovy/com/grailsinaction/
MarshallerRegistrar.groovy and set its content to that shown in this listing.

Returns map
containing data
to serialize
Licensed to Mark Watson <nordickan@gmail.com>

340 CHAPTER 12 Exposing your app to other programs
package com.grailsinaction

import java.text.SimpleDateFormat
import javax.annotation.PostConstruct

class MarshallerRegistrar {
 @PostConstruct
 void registerMarshallers() {
 JSON.registerObjectMarshaller(Post) {
 …
 }
 ...
 }
}

You can register as many marshalers as you want in this class. Once you’ve added it to
the project, you need to make sure that registerMarshallers() is called on applica-
tion startup. You do that by registering it as a Spring bean. We look in more detail at
Spring in chapter 14, but for now add the following to the file grails-app/conf/
spring/resources.groovy:

import com.grailsinaction.MarshallerRegistrar

beans = {
 hubbubMarshallerRegistrar(MarshallerRegistrar)
}

This short bit of code guarantees that all your custom marshalers will be registered
when the application starts up. At least it should. Check issue GRAILS-111163 to see
whether your version of Grails supports this.

Custom marshalers give you a degree of decoupling between the persistence model
and the public REST API, but both the model and the API may evolve to such a point
that custom marshalers can no longer do the job. You then need to consider one of

Listing 12.4 Registration of custom marshalers

3 “Custom marshaller registrar bean does not work,” http://jira.grails.org/browse/GRAILS-11116.

Renderers vs. converters
Converters are Grails’s built-in mechanisms for serializing objects to XML and JSON.
You don’t need to use them if you don’t want to. If you’d prefer to use an external
library for the serialization, such as Jackson for JSON, you can implement and regis-
ter a custom renderer. This gives you full control over how the serialization is done.
The Grails user guide gives you plenty of information on creating custom renderers.

By default, Grails registers XML and JSON renderers that delegate to the converters
for the actual serialization.

Declares that registerMarshallers()
will be called immediately after
object’s constructor

Registers a marshaler
as before

Declares registrar
as a Spring bean
Licensed to Mark Watson <nordickan@gmail.com>

http://jira.grails.org/browse/GRAILS-11116

341Improving the API
the other options we mentioned previously, such as using an intermediate model that
matches the API.

 You should be able to keep the API stable from now on, which your users will
appreciate. What they won’t appreciate is that the REST API doesn’t behave the same
way as the HTML UI. Remember that your PostController is delegating much of the
business logic to PostService, whereas the REST API bypasses the service. You need to
rectify this so that all interfaces to your application behave consistently.

12.2.2 Customizing the controller

The RestfulController class you’re currently using for the REST API is incredibly use-
ful for getting started quickly. It’s akin to the scaffolding for the browser UI. And as with
the scaffolding, you’ll eventually need to write your own actions for most applications.

 Fortunately, Grails makes it easy to create your own REST controllers without using
RestfulController. The key is to implement the standard REST actions (index, show,
save, and so on) and return data in the requested format. Let’s dive straight into the
implementation and go from there. The following listing shows part of the new con-
troller implementation (you can find the rest of it on GitHub). We’ll focus on the
index and save actions here.

package com.grailsinaction

class PostRestController {
 def postService
 def springSecurityService

 def index() {
 respond Post.list()
 }

 def save(Post post) {
 if (!post.hasErrors()) {
 def user = springSecurityService.currentUser
 def newPost = postService.createPost(
 user.loginId,
 post.content)
 respond newPost, status: 201
 }
 else {
 respond post
 }
 }
 ...
}

A lot of the work is done by the respond() method, which determines what content
type to return to the client and performs the serialization of its argument. In fact,
RestfulController uses the respond() method under the hood, so the custom mar-
shalers you created still work.

Listing 12.5 The new REST controller implementation

Generates the list of posts in the
format requested by the client.

Only command objects
or domain classes work
with JSON/XML requests.

Returns new post
with HTTP status 201.

Renders validation errors
in requested format.

Other actions: show,
update, delete.
Licensed to Mark Watson <nordickan@gmail.com>

342 CHAPTER 12 Exposing your app to other programs
It’s also worth noting that when a user submits JSON or XML content, it’s not bound to
the params object, nor does Grails bind the content to typed action arguments
unless the type is a command object or domain class. In fact, the data binding doesn’t
use the converters we discussed in the previous section.

 The standard Grails data binding is based on a set of classes that implement the
DataBindingSourceCreator interface. These are registered against content types and
there are default implementations for application/json and application/xml. The
problem for Hubbub is that you can’t have different implementations for different
data classes, unlike with converters. You could implement your own data binding
classes as shown in figure 12.3, but that’s extra work.

 It’s simpler to use a command object that matches the serialized form you want.
And as we discussed in the previous chapter, it’s safer to use command objects from a
security standpoint. To handle a POST request of the form

<post>
 <message>I’m trying out the new REST API!</message>
</post>

you need to modify the REST controller. We highlight the changes in italics in the fol-
lowing listing.

class PostRestController {
 …
 def save(PostDetails post) {
 if (!post.hasErrors()) {
 def user = springSecurityService.currentUser
 def newPost = postService.createPost(
 user.loginId,
 post.message)
 respond newPost, status: 201
 }
 else {
 respond post
 }
 }
}

Listing 12.6 Using a command object to control the accepted data format

HubbubXmlBinder

PostXmlDeserializer

UserXmlDeserializer

Registered as Spring bean

“xmlDataBindingSourceCreator”

ProfieXmlDeserializer

Per-class XML -> map

deserializers

Figure 12.3 Potential class structure to handle per-domain class data binding

Uses command object
for action argument

Extra data from command
object to create new post
Licensed to Mark Watson <nordickan@gmail.com>

343Improving the API
class PostDetails {
 String message

 static constraints = {
 message blank: false, nullable: false
 }
}

This is good enough for now because you decoupled the data representations from
the domain classes. And yet it’s not ideal because you don’t have full control over the
XML structure. The current code doesn’t support binding attributes to command
object properties. In other words, clients can’t send requests of the form

<post message="A new Hubbub post"/>

You’re trading flexibility for convenience. If you want more control, which would
make sense for a large and popular API, you should create your own DataBinding-
SourceCreator implementations as described in the Grails user guide.

 When making these changes to the controller, you’ll have to update the unit test
for the class. The controller is now using both the Spring Security service and the post
service, and the format of the JSON accepted by the save action has changed.

 The last step in improving the REST API for Hubbub is to set up better error han-
dling, even though Grails already does a good job in this regard.

12.2.3 Reporting errors

Imagine using a library that provides a sendMail() method, perhaps something like
the Mail plugin for Grails. You incorporate it into your application, run your func-
tional tests (because you wrote those before deploying to production), and then dis-
cover that the emails you fire off aren’t being sent. Puzzled, you debug through your
code and notice that the “to” addresses are invalid. It appears that the email API you
use swallows errors related to invalid email addresses, quietly failing without providing
any feedback.

 How long is it before you decide to switch to a different library or do it yourself?
The API could throw an InvalidAddressException or give feedback in another way,
and yet it doesn’t. The result is a wasted half-day trying to find out what’s going on.
We’ve all been there. A REST API is no different: feedback is important in allowing
developers to fix problems with their API clients quickly and effectively.

 Given that error reporting is important, what extra work do you need to do for the
Hubbub API? Grails already deals with the most common scenarios, but you may not
realize what it’s doing. We’ll look at its default behavior first.

 A well-implemented API should always send the appropriate HTTP status code with
every response. That code is normally 200, which is the default status code for Grails
responses. But as you’ll see in table 12.2, even successful responses sometimes have a
non-200 status. For example, a POST should set the status to 201 if it successfully cre-
ates a new resource.

Command object uses
property name matching
XML element name
Licensed to Mark Watson <nordickan@gmail.com>

344 CHAPTER 12 Exposing your app to other programs
Both the @Resource annotation and RestfulController have a save action that will
return a status code of 201 if the save is successful. Any validation errors will result in a
422 and the content of the response will include the detail of those errors using
Vnd.Error4 syntax, which has both JSON and XML forms. You can easily reproduce the
same effect in your own actions and that’s exactly what the code in listing 12.6 does.
To return a 201, you pass a status: 201 argument to the respond() method. As for

Table 12.2 Common HTTP status codes and when to use them

Code Short name Description

200 OK The request completed normally.

201 Created A new resource was created. The Location response header should
contain the “most specific” URI of the new resource, and the response
content should include a list of possible URIs.

301 Redirected
Permanently

The resource moved to a different URI permanently.

302 Found This indicates a temporary redirect. The redirect() method works
by returning this status code.

400 Bad Request The content of the request is incorrect or malformed. Use this code
when the wrong XML message is used for a particular URL or when the
message contains invalid XML.

401 Unauthorized The client isn’t authorized to access the resource. This code is only
valid if one of the standard HTTP authentication methods, such as
Basic, is used.

403 Forbidden The request isn’t allowed. Often used by access control libraries to
indicate an authenticated user does not have access rights.

404 Not Found The resource wasn’t found. Everyone knows this one!

405 Method Not
Allowed

The HTTP method of the request isn’t allowed for the target URL. The
response should include an Allow header listing the allowed methods.

406 Not Acceptable The server can’t return the resource in any format requested by the cli-
ent via the Accept header.

415 Unsupported
Media Type

The server doesn’t recognize or understand the request’s content type.

422 Unprocessable
Entity

Part of the Web DAV specification, the server recognizes the content
type of the request and the content isn’t malformed, but the server
can’t deal with the request content anyway. Often used for data that
fails validation rules.

500 Internal
Server Error

This usually indicates an error in the server code. Servlet containers
typically return 500 if there’s an uncaught exception.

4 Vnd.Error specification, https://github.com/blongden/vnd.error.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/blongden/vnd.error

345Improving the API
returning a 422, respond() does that automatically if its primary argument has a pop-
ulated errors property.

 Grails will also handle requests that use an unsupported HTTP method for a URL.
If you try to send a DELETE request to /posts, you’ll see a 405 status. This will happen
regardless of what you have in your controller: Grails uses the URL mappings to deter-
mine whether a URL accepts a particular HTTP method.

 At the time of writing, Grails doesn’t deal with 406 and 415 responses automatically.
Fortunately, you can easily add your own support. Create a new Grails filter, for example,
via the create-filters command, and set its content to what’s in the next listing.

package com.grailsinaction

class RestFilters {
 def filters = {
 contentType(controller: "postRest") {
 before = {

 if (!(request.format in ["json", "xml", "all"]) &&
 !(request.method in ["DELETE", "GET", "HEAD"])) {
 render status: 415,
 text: "Unrecognized content type"
 return false
 }

 if (!(response.format in ["json", "xml", "all"])) {
 render status: 406,
 text: "${response.format} not supported"
 return false
 }
 }
 }
 }
}

There isn’t much else for Hubbub to do with regard to error handling. All that’s left is
the handling of server-side errors, as represented by 5xx status codes. When the server
throws an exception that bubbles up out of the controller, you see an informative
HTML page describing what the exception was and where it occurred. This is great for
you as the developer of the server because it makes debugging easy. But REST clients
expecting JSON won’t be happy with such a page.

 To ensure that even server-side errors don’t cause problems for clients, you should
create an error controller if you don’t already have one and make it format-aware, as
shown in the following listing.

package com.grailsinaction

class ErrorController {
 def internalServer() {

Listing 12.7 Grails filter to handle 406 and 415 errors

Listing 12.8 Making the error controller format-aware

Only applies to the
REST controller

Tests the
request

content type

Tests the
response

content type
Licensed to Mark Watson <nordickan@gmail.com>

346 CHAPTER 12 Exposing your app to other programs
 def ex = request.exception.cause
 def body = new ErrorDetails(
 type: ex.class.name,
 message: ex.message)
 respond body, view: "/error"
 }
 ...
}

class ErrorDetails {
 String type
 String message
}

To finish this off, make sure that you map the HTTP status codes to the appropriate
error controller actions in UrlMappings.groovy by replacing:

"500"(view:"/error")

with

"500"(controller: "error", action: "internalServer")

You now have all your bases covered as far as error-handling goes. You saw how to
respond to both client errors (4xx status codes) and server errors (5xx), such that cli-
ents can easily find out what went wrong. That’s all there is to it, and that completes
the API from a usability and feature perspective.

 In an ideal world you’ve done enough, but this isn’t an ideal world, and you have
to deal with trust issues and an evolving application. That means dealing with access
control, API versioning, and testing.

12.3 Securing and maintaining the API
You dealt with testing and security in previous chapters, but what you’ve seen so far is
geared toward HTML-based applications. REST APIs have different requirements that
affect the way you approach these topics. In this section, we’ll look at those require-
ments and develop solutions for them, starting with security.

12.3.1 Configuring API security

When it comes to security, API usage is interesting. Most access control is focused
on end users and whether or not they’re allowed to access certain pages. Some-
times this also applies to APIs, but it depends on the software client that’s accessing
the API.

TYPES OF REST CLIENT

Two authentication scenarios to consider are shown in figure 12.4:

■ User authentication—The client application acts as an intermediary agent for an
end user.

■ Client authentication—The client application acts as a client in its own right.

Fetches exception that
triggered error handler

Renders exception details
in requested format
Licensed to Mark Watson <nordickan@gmail.com>

347Securing and maintaining the API
As an example of the first scenario, consider the Twitter applications that exist on var-
ious platforms. These clients access the Twitter API on behalf of the users, who must
log in before they can write tweets, see direct messages, and so on.

 You’ll also find websites and applications that pull data from Twitter to perform
statistical analysis or another job. These are examples of the second scenario, in which
the software doesn’t need access to an end-user account because it’s dealing only with
public data. And that’s the key difference: whether or not the software requires an
end user to authenticate with your application.

 If your API doesn’t require end-user authentication, you could dispense with authen-
tication altogether, with the caveat that this only works for data that’s freely available via
the REST API. If you do need to limit access, it’s best to use a client ID with an API key.
This is similar to a username and password, but the API key is a random, unique string
generated by your application. In fact, the API key can act as the identity as well as the
password, so you could eliminate the client ID, too. Implementing support for API keys
is beyond the scope of the book, but you can do it with Spring Security by creating a cus-
tom security filter that verifies API keys sent in a custom HTTP header.

 Certain sites and applications want software clients to use an API key even when
their data is public, but this is mainly for tracking purposes. It’s also an easy way to
restrict the number of requests a single client can make. Previously, Google required
an API key for its Maps application, but as of v3 of their JavaScript client that’s no lon-
ger the case. If you want to throttle clients without requiring an API key, you can
always do it based on the client IP address.

 That leaves you with end-user authentication. At the moment, Hubbub’s authenti-
cation relies on a redirect to a login page when a user attempts to access a secure
page. This is fine for a browser, but it’s a complete pain for any other type of client.
The application also maintains user state (who is logged in) in the HTTP session,
something else that’s inconvenient for nonbrowser clients. No, we definitely need an
alternative approach, the simplest of which is HTTP Basic Authentication.

Client
REST

API

User

Client
REST

API

Client acts as intermediary between user

and API. It's the user that is authenticated.

Client is autonomous and consumes the

API. The client itself needs to authenticate,

as if it were a user.

Figure 12.4 The roles that a client application can have
Licensed to Mark Watson <nordickan@gmail.com>

348 CHAPTER 12 Exposing your app to other programs
ABOUT HTTP BASIC AUTHENTICATION

Basic Authentication involves clients sending user credentials in the headers of a
request (see figure 12.5). A client must send the credentials with every request that
goes to a restricted URL.

 It’s a simple scheme, but it has weaknesses to address:

■ The credentials are sent in plain text.
■ Authentication must be done for each request.

The first problem is easily solved by requiring clients to use SSL when accessing the
API, a topic we covered briefly in the previous chapter. The second issue is more prob-
lematic because we deliberately try to keep the authentication process relatively slow,
which makes it harder for attackers to use brute force to crack passwords. Slower
authentication doesn’t noticeably impact the experience of a user who logs into the
browser-based version of the application, but it can have a much more noticeable
effect on software clients that send hundreds of requests a second to your API.

 This is where things get interesting. Whose credentials should the application
send? It could be that the client itself has credentials if it needs to access restricted
resources. If it’s acting on behalf of a normal end user, should it send the user’s cre-
dentials instead? The disadvantage of doing that is the slow authentication due to the
salted hash algorithm used for standard logins.

 For the rest of this section on security, we focus on enabling HTTP Basic Authenti-
cation for software clients that have their own identity and access rights. It’s simpler
than dealing with end-user authentication via a client intermediary and allows us to
cover the Grails-specific bits.

Client Server

Request

401 Not Authorized

WWW-Authenticate: Basic realm="Hubbub"

Request

Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

HTTP

headers

Figure 12.5 The sequence of requests and responses that make up HTTP Basic
Authentication
Licensed to Mark Watson <nordickan@gmail.com>

349Securing and maintaining the API
On the basis that we’ve decided to add Basic Authentication to Hubbub, how do you
go about enabling it? The first port of call is the Spring Security plugin.

ADDING BASIC AUTHENTICATION VIA SPRING SECURITY

By default, the plugin and its login controller only support one authentication pro-
vider at a time, but you can change this fairly easily. Even better, you can control which
authentication providers are active for particular URLs. This is immensely useful for
you because you want Basic authentication active on API URLs and normal form-based
(login page) authentication on all the rest. To achieve this, add the following extra bit
of security configuration to Config.groovy:

grails.plugin.springsecurity.useBasicAuth = true
grails.plugin.springsecurity.basic.realmName = "Hubbub"

grails.plugin.springsecurity.filterChain.chainMap = [
 '/api/**': 'JOINED_FILTERS',
 '/**': 'JOINED_FILTERS,-basicAuthenticationFilter,

➥ -basicExceptionTranslationFilter'
]

The first two lines enable Basic authentication, and the rest configure the URLs for
which it’s active. JOINED_FILTERS is a plugin alias that represents all enabled plugin pro-
viders, which includes Basic authentication at this point. You explicitly disable the Basic
authentication provider for the rest of the URLs by prefixing the filter names with a
hyphen (-). Note that the filter chain configuration is distinct from the URL access con-
trol rules you saw first in chapter 11 under the interceptUrlMap configuration option.

 Figure 12.6 may help you understand the filter chain configuration. It shows how
Spring Security applies a chain of filters to every request, each one handling a differ-
ent authentication mechanism. And the order is important: the first filter that handles
a request can prevent the later filters from getting a look in. You can’t have the Basic
authentication filter returning a 401 and the standard login filter redirecting to the
login form.

 Now your API is protected by Basic Authentication, but as we mentioned previously
there’s still an issue in that authentication of the user occurs on every request. Anything
you can do to speed up the authentication process is helpful. This is where generated
API keys can help: because they’re random and long, they’re much harder to crack
using brute-force methods compared to user-selected passwords or passphrases. The

OAuth and end-user authentication
One of the primary aims of OAuth is to provide a mechanism by which a user can
authenticate directly against a target service, to give another application access to
his or her information via that target service’s API. This may sound like the ideal solu-
tion for end-user authentication, but it’s geared toward client web applications. The
application needs to both redirect the user to the target website (Twitter, for example)
and have a URL that the target website can redirect the user back to. It doesn’t work
well for standalone applications.

Basic Authentication
requires realm name.
We recommend the
app name.
Licensed to Mark Watson <nordickan@gmail.com>

350 CHAPTER 12 Exposing your app to other programs
difficulty with this approach is in configuring
Spring Security to do a different, faster cre-
dentials check for API keys as opposed to the
salted hash approach for normal usernames
and passwords. We won’t go into the details
here, but you have to do a couple of things:

1 Create a separate authentication man-
ager for Basic authentication that veri-
fies API keys.

2 Configure the Basic authentication
bean so that it uses the custom authen-
tication manager.

The authentication manager itself isn’t par-
ticularly complicated, because it needs to
authenticate a given set of credentials. As with
normal passwords it’s a good idea to compare
a hash of the API key in case the database is
compromised, but a straightforward SHA-256
hash without salt and only a single iteration is
fast, and because API keys are generated and
random, rainbow tables won’t help attackers
reverse engineer the key.

 Taking the API key approach also means
adding the admin UI elements required to
generate API keys and make them available to clients. You should also consider adding
support to revoke API keys and regenerate new ones in case a key is compromised.

 With authentication in place and communication with the API protected with SSL,
you can start considering the long term and how to handle API changes.

12.3.2 Versioning the API
Once you have a user base for your API, evolving the API without breaking existing cli-
ents becomes a primary concern. You have to think about what sorts of changes are
likely to break clients and whether and how to incorporate them.

WHY VERSION AN API?
Any changes that involve adding data to resources without changing the existing struc-
ture can normally be incorporated without any concerns whatsoever. Most JSON and
XML parsing ignore the extra data. The difficulty arises when clients use schemas (yes,
there’s even a schema language for JSON), which makes it much harder to modify the
structure of the data without breaking clients.

 As a simple example of the kind of change we’re talking about, imagine that you
want to include the number of times a post has been shared through others’ Hubbub
accounts. The XML would probably look like this:

Request

securityContextPersistenceFilter

basicAuthenticationFilter

...

rememberMeAuthenticationFilter

anonymousAuthenticationFilter

Request

Figure 12.6 Example Spring Security
filter chain
Licensed to Mark Watson <nordickan@gmail.com>

351Securing and maintaining the API
<post id="13">
 <content>Pilates is killing me as well</content>
 <published>2013-02-26T15:31:41</published>
 <tags>
 <tag>personal</tag>
 </tags>
 <user>phil</user>
 <sharedCount>10</sharedCount>
</post>

It’s a breaking change for any client that uses a schema. Removing elements, restruc-
turing them, or changing the format of data (for example, dates) will also break exist-
ing clients, even if they don’t use a schema. Imagine that you want to include both the
user’s login ID and his or her full name in the post’s representation. The JSON looks
like this:

{"published":"2013-02-26T15:31:41",
 "content":"Pilates is killing me as well",
 "tags":["personal"],
 "user": {"id":"phil", "name":"Phil Smith"}}

Existing clients break because they assume that the user field is a simple string. You
need a strategy for dealing with changes like this.

 The first question you need to ask yourself is whether you want to maintain the old
API. Ideally you keep it alive for a reasonable time after introducing breaking changes
so that clients have time to upgrade. But keeping it alive for several years is typically
impractical: the underlying domain model often changes to such a degree that it’s no
longer feasible to generate the resource representations for deprecated APIs.

 Looking at it from a different perspective, it’s easy to maintain an old/legacy/dep-
recated API as long as you can generate the resource representations through simple
custom serialization. But if you find yourself retaining old bits of the domain model or
other code, then it’s probably time to drop the old API.

IMPLEMENTING API VERSIONS

Given that you want to introduce breaking changes in the data representation of a
resource and that you still want existing clients to work, what are the next steps? You
have several options:

■ Serve the new representation at a different URL.
■ Use the existing URL, but return either the new or old representation based on

a query parameter or Accept-Version HTTP header.
■ Create custom MIME types for each API version and register custom renderers

for those MIME types.

The first option is fairly common in the wild with many APIs including a version num-
ber in the URL. This is fine, but remember that different URLs represent the locations
of different resources, not different representations of a resource. Such an approach
often runs counter to the principles of REST. On the other hand, using the Accept

An additional element that doesn’t break
existing XML parsing, but may be invalid
according to the resource’s XML schema.

User field is now an object
rather than a string.
Licensed to Mark Watson <nordickan@gmail.com>

352 CHAPTER 12 Exposing your app to other programs

header means working with custom media types—an approach that involves more
work than URL versioning.

 As far as we can tell, the jury is still out on what the ideal approach is. Grails has
support for all three, so it’s a case of use whatever works for you. Nonetheless, you
need to decide what to do for Hubbub’s API. Let’s keep it simple and rely on a URL
query parameter to determine the version.

 All you have to do is honor the v parameter in the backing controller. One poten-
tial approach is to use different marshalers for different API versions. This works well
when the data model doesn’t change much, only the data representation. For big data
model changes, you should probably look at a different URL scheme, different con-
trollers, and perhaps different services.

 For the case where you change the user field in the JSON from a string to an object,
you can register a new custom marshaler. You can register only one default marshaler
per type, which doesn’t help if you want to support both versions of the JSON. Fortu-
nately, you can register marshalers in named configurations as well.

 Your first step is to register a second JSON marshaler alongside the existing one, as
shown in the following listing. The new code is in italics.

JSON.createNamedConfig("v1") { cfg ->
 cfg.registerObjectMarshaller(Post) { Post p ->
 return [published: dateFormatter.format(p.dateCreated),
 message: p.content,
 user: p.user.loginId,
 tags: p.tags.collect { it.name }]
 }
}

JSON.createNamedConfig("v2") { cfg ->
 cfg.registerObjectMarshaller(Post) { Post p ->
 return [published: dateFormatter.format(p.dateCreated),
 message: p.content,
 user: [id: p.user.loginId,
 name: p.user.profile.fullName],
 tags: p.tags.collect { it.name }]
 }
}

The next step is to activate the appropriate converter configuration based on the “v”
URL parameter. That requires a small change to PostRestController, as shown in the
following listing.

package com.grailsinaction

import grails.converters.*
...
class PostRestController {

Listing 12.9 Registering a second JSON marshaler

Listing 12.10 Activating the marshaler if client requests version 2 of the API

Registers previous
marshaler with
name “v1”.

Creates new
configuration called “v2”.

v2 marshaler renders user’s
login ID and full name.
Licensed to Mark Watson <nordickan@gmail.com>

353Securing and maintaining the API
 def index(String v) {
 def configName = 'v' + (v ?: 1)
 re
 JSON.use(configName) {
 respond Post.list()
 }
 }
 ...
}

With those two changes, you can now serve different JSON depending on which
version of the API the client has requested. You can also do exactly the same for
the XML generation as well by creating the named configuration on the XML con-
verter class.

 This isn’t the best solution to the problem, so we recommend that you try the
options Grails supports. The most flexible approach is to create dedicated mime types
for your resources and register different renderers for the each version of a mime type.

 Managing version changes to the API is an important factor in keeping users
happy, but you still need to ensure that both old and new clients work. That means
maintaining proper test coverage of the API.

12.3.3 Implementing functional testing

A stable API that you can evolve requires end-to-end testing. Unit tests are good for
day-to-day development, but the internals are likely to change much more frequently
than the public API. You need a guarantor of the API’s stability. The easiest way to
achieve this is through functional tests.

 In chapter 9, we introduced you to functional testing with Geb. Using a jQuery-like
syntax, you can interrogate the HTML pages coming back from the server and verify
their content. That doesn’t help in this case because you’re dealing with JSON and
XML in the REST API, but such content is easier to test than HTML and doesn’t require
any special tools. In fact, all you need is a client library for sending JSON and XML
requests to the server and something to enable the functional test phase.

 As far as enabling the test phase goes, that’s already done by the Geb plugin. But if
you’re not using Geb, if your application is a pure REST API, then you can install the
Functional Spock plugin instead and follow the rest of this section as is.

 The next step is to choose the client library and make sure it’s added as a depen-
dency. You don’t absolutely need a dedicated library for testing REST APIs, but using
one does make your life easier. You’ll go with the groovy-wslite library for your tests
(you don’t need a plugin), but the Grails HTTP Builder and Rest Client Builder plu-
gins are both viable alternatives. To use groovy-wslite in your tests, you need to add it
as a test dependency in BuildConfig.groovy:

dependencies {
 ...
 test "com.github.groovy-wslite:groovy-wslite:0.7.2"
}

Determines
configuration to use
based on API version
requested

Activates named
configuration
Licensed to Mark Watson <nordickan@gmail.com>

354 CHAPTER 12 Exposing your app to other programs

Note this is a straightforward JAR dependency and doesn’t go in the plugins section.
That’s all you need. Now you can create your functional tests. To demonstrate how this
works, you’ll reproduce the unit test from listing 12.2. The following listing contains the
functional test code that goes into the PostRestFunctionalSpec.groovy file in the test/
functional/com/grailsinaction directory (you’ll need to create the file manually).

package com.grailsinaction

import spock.lang.Specification
import wslite.http.auth.HTTPBasicAuthorization
import wslite.rest.*

class PostRestFunctionalSpec extends Specification {
 @Shared def restClient =
 new RESTClient("http://localhost:8080/hubbub/api/")

 void setup() {
 restClient.authorization =
 new HTTPBasicAuthorization("frankie", "testing")
 restClient.httpClient.sslTrustAllCerts = true
 }

 void "GET a list of posts as JSON"() {
 when: "I send a GET to the posts URL requesting JSON"
 def response =
 restClient.get(path: "/posts", accept: ContentType.JSON)

 then: "I get the expected posts as a JSON list"
 response.json*.message.sort()[0..1] == [
 "Been working my roundhouse kicks.",
 "My first post"]
 }

 void "GET a list of posts as XML"() {
 when: "I send a GET to the posts URL requesting XML"
 def response =
 restClient.get(path: "/posts", accept: "application/xml")

 then: "I get the expected posts as an XML document"
 response.xml.post.message*.text().sort()[0..1] == [
 "Been working my roundhouse kicks.",
 "My first post"]
 }

 void "POST a single post as JSON"() {
 when: "I POST a JSON document to the posts URL"
 def response = restClient.post path: "/posts", {
 type ContentType.JSON
 json message: "A new post!"
 }

 then: "I get a 201 JSON response with the ID of the new post"
 response.statusCode == 201
 response.json.id != null
 }
}

Listing 12.11 A functional test for your REST API

Creates single
REST client used
by all tests in this
spec that targets
test server

Uses json property on
the response to access
data as maps and lists

Uses xml property
to get XML data as
GPath syntax

Sends POST data as
JSON using closure
argument
Licensed to Mark Watson <nordickan@gmail.com>

355Summary and best practices
The structure of the tests isn’t that different between listings 12.1 (the unit test specifi-
cation) and 12.8, but this time you’re sending real HTTP requests to a live server
rather than invoking controller methods directly. The response data is still available
through those special json and xml properties though, meaning that it’s easy to verify
its content.

It’s worth bearing in mind that the tests in listing 12.8 rely on the sample data created
by the BootStrap class when the test server starts up. Refer to chapter 9 for more
information on dealing with test data and avoiding side effects between tests. Another
interesting aspect of the test is the setup() method: this configures the REST client to
trust all SSL certificates. This isn’t important in these particular tests, but if you run
with HTTPS enabled, it’s vital. That’s because the test server uses a self-signed certifi-
cate that the REST client will reject by default, resulting in all the tests failing.

 Listing 12.8 only contains a small sample of the functional tests that you need for
your REST API, but it shows you how to exercise the API through HTTP requests using
different HTTP methods. The mechanics for testing PUTs and DELETEs are no differ-
ent. In real life you want more extensive testing of the data returned, but that’s a case
of using more queries on the returned JSON or XML.

 Hubbub now has a fully fledged REST API for posts that has tests at both the unit
and functional level, a level of security via basic authentication, and a plan for dealing
with versioning. And all of that can easily be transposed to your own projects. The
mechanics are simple, so you can focus on making your API easy to use and full of
value to your users.

12.4 Summary and best practices
Giving software clients access to your application requires a different approach from
the usual HTML-based UIs. Real users require data presented in a manner that’s easy
to read and understand, software clients only care about the data and want to extract
what they need easily.

 We focused in this chapter on implementing the REST architectural pattern, which
is ideally suited to web applications and is supported by Grails out of the box. By

Functional tests without Geb plugin
If you were to remove the Geb plugin and all your Geb tests, Grails would stop running
the PostRestFunctionalSpec that you created. That’s because you have to register
the fact that you have functional tests, along with the location of the test directory.
Grails does this automatically for unit and integration tests, but not functional tests.

The Geb plugin performs this registration for you. Since the registration process
depends on the libraries that you are using and your version of Grails, we recommend
depending on the Geb plugin anyway to ensure that your REST functional tests run.
If you don't use Geb, consider the Functional Spock plugin we mentioned earlier.
Licensed to Mark Watson <nordickan@gmail.com>

356 CHAPTER 12 Exposing your app to other programs
leveraging the HTTP protocol, you can easily create a secure and reliable API for your
application that other applications can use.

 Despite the focus on REST in this chapter, you should be aware that other options
are available. For example, you can use operation-oriented protocols such as SOAP
and Java RMI. Various Java libraries and Grails plugins (such as the CXF plugin) use
these; remember that any documentation and articles that apply to Java applications
also apply to Grails.

 We finish with a few guidelines on REST development and how best to implement
REST APIs in Grails:

■ Know your clients. Is your API going to be used only by a rich, JavaScript UI that
your team or another one in the company is developing? Or will it be used for
integration into other websites? Perhaps autonomous software clients will use it
for analysis. The type of clients you need to support affects your policies on
security and legacy API support as well as how stable the API is. If you only have
a rich UI using the API, you have more room to introduce breaking changes as
the UI is typically kept up to date with the API.

■ Decouple the API from the persistence model. When you have a public API and no con-
trol over the clients, it’s important to keep the API stable. The best way to
achieve this is to decouple the API from the persistence model through custom
marshalers, command objects or Grails services that generate the data represen-
tations as required.

■ Use the appropriate HTTP methods. Map the HTTP methods to actions that conform
to the expectations and requirements of the methods. For example, don’t map
GET to an action that adds, removes, or modifies data on the server. Doing so
breaks the contract defined by HTTP.

■ Make use of HTTP status codes. It’s easy to return a status code of 200 for all
requests and use the content of the response to determine whether a request
was successful. Easy, but bad practice. You give up a flexible and well-defined
mechanism for error reporting—one that can be understood by any HTTP cli-
ent (such as a browser).

From interapplication communication, we move on to internal communication sys-
tems that enable you to coordinate either different parts of an application or multiple
internal applications or subsystems.
Licensed to Mark Watson <nordickan@gmail.com>

Single-page web
applications

(and other UI stuff)
In chapter 12, we took you through the basics of designing and implementing
RESTful API endpoints in your Grails application. And one of the most common
consumers of those RESTful endpoint is likely to be a rich web-client application. In
this chapter you build exactly that—adding rich desktop-like services to your Grails
web tier that leverage today’s hottest JavaScript frameworks and latest web app
architecture trends.

 But before you leap into the code, let’s consider “What exactly are Single-Page
Applications (SPA) and why are they so popular?” Probably the greatest driver
that spiked all the interest in SPAs was the release of Gmail. There had been
numerous webmail solutions before Gmail, but here was a web-based mail client
that had the look and, more importantly, the feel of a desktop application. It
dynamically updated your inbox without all that nasty page refresh flickering you
were used to, it offered a rich viewing experience for reading and replying to mail

This chapter covers
■ Why single-page apps are popular
■ Advanced Grails layouts and Ajax facilities
■ How to manage Grails UI resources
■ Modern web app architecture with AngularJS
357

Licensed to Mark Watson <nordickan@gmail.com>

358 CHAPTER 13 Single-page web applications (and other UI stuff)
items, and it was amazingly fast and responsive. It was like using a desktop mail client.
But in a browser!

 SPAs such as Gmail have become the gold standard for modern web application
development because they attempt to deliver all the richness of a full desktop GUI
application, but hosted in the convenience of a ubiquitous browser. The huge win for
users is that they can access these rich applications from wherever they are and on
whatever device they happen to have with them. And because SPAs are hosted on a sin-
gle page with portions of the screen refreshing as needed, users typically experience a
much snappier and more visually appealing application experience.

 If you’re going to deliver this rich experience to clients, you need to manage
JavaScript, CSS, and HTML artifacts. Fortunately, that whole area is significantly improved
in Grails 2. Let’s take a tour.

13.1 Revisiting Grails web resource management
You can’t avoid it: SPAs are JavaScript heavy. To pull off those seamless page updates
and a responsive user experience, there’s going to be event magic happening behind
the scenes.

 If you attempted to write SPAs in the days of Grails 1, you included truckloads of
JavaScript (typically pulling in bags of YUI or Dojo JavaScript libraries for all the wid-
gets you needed on a particular page).

 Grails 2 changes all that with the introduction of the Resources plugin that we first
mentioned to you in the heat of chapter 8. The new resource infrastructure, which
ships with all Grails 2 applications by default, attempts to address several important
challenges that affect SPAs:

■ Making it easy to pull in CSS/JavaScript libraries and their dependencies
■ Ensuring JavaScript resources are imported to a page in a performance-efficient

manner
■ Minifying and bundling JavaScript and CSS resources for optimized production

deployments
■ Seamlessly handling static resources (such as JavaScript libraries served from

a CDN)
■ Providing a pipeline for resource generation that other resource-aware plugins

can participate in
■ Standardizing the manner in which plugins can expose their own resources to

an application

The first step in taking advantage of this amazing new resource management infra-
structure is to declare your web resources (such as CSS and JavaScript files) in the new
resource DSL. Let’s get you up to speed.
Licensed to Mark Watson <nordickan@gmail.com>

359Revisiting Grails web resource management
13.1.1 Defining your resources
In the new Grails Resources world, you no longer reference CSS/JavaScript files in
your pages. Instead, you abstract away all your required resources in modules that you
define in /grails-app/conf/ApplicationResources.groovy. It’s in these modules that
you specify the physical CSS/JavaScript files that make up a particular module. Using
this approach gives you several important benefits:

■ Your page markup is much smaller because you need to reference only the
module name, not the tons of CSS/JavaScript that it might represent.

■ When you update the version of a JavaScript library, you need to do it in only
one place, not throughout every page in your application that uses it.

■ The Resources plugin can render those files uncompressed in dev (where
you’re debugging them), but compress them when you deploy your WAR file
(or even reference a CDN version in production!).

■ You can define modules to be dependent on other modules, and the Resources
plugin ensures that you only ship one copy of each JavaScript file to your cli-
ent’s browser (optimizing page load time).

You’re probably curious what the resources DSL looks like and how you can define
your own resources. Let’s look at the default resource configuration that you find in
any new Grails application:

modules = {
 application {
 resource url:'js/application.js'
 }
}

Hmm. Kind of unimpressive, isn’t it? By default, Grails only defines one module called
application, which contains a single JavaScript resource called js/application.js
(found relative to your web-app directory, so it lives at /web-app/js/application.js.
The sum contribution of application.js is to conditionally display an Ajax spinner dur-
ing Ajax operations.

 Let’s think of a more common use case for your SPA.
You’re planning to use AngularJS (http://angularjs.org/)
for the JavaScript MVC framework, Restangular (https://
github.com/mgonto/restangular) for all the REST back-
end integration with AngularJS, and Lo-Dash (http://
lodash.com/) for JavaScript utils such as filtering arrays and
the like.

 First, you download the uncompressed versions of those
files (handy for debugging) and drop them in your /web-
app/js directory. You also need a new empty JavaScript file
called hubbub.js, which hosts all the custom logic you
develop this chapter. After all that’s set up, your /web-app/
js directory should look something like figure 13.1.

Figure 13.1 The JavaScript
resources you downloaded
to /web-app/js/, plus an
empty hubbub.js
Licensed to Mark Watson <nordickan@gmail.com>

http://angularjs.org/
https://github.com/mgonto/restangular
https://github.com/mgonto/restangular
http://lodash.com/
http://lodash.com/

360 CHAPTER 13 Single-page web applications (and other UI stuff)
 With the JavaScript files now in place, you can define module entries for each of
them. Set up files in their own modules and with dependencies so you can later pick
and choose the modules you wish to bundle with your page. The following listing
shows how to define the needed modules.

modules = {

 application {
 resource url:'js/application.js'
 }

 angularjs {
 resource url:'js/angular-1.0.8.js', disposition: 'head'
 }

 restangular {
 dependsOn 'angularjs'
 resource url:'js/restangular-1.1.3.js'
 }

 lodashjs {
 resource url:'js/lodash-2.2.0.js'
 }

 baseCss {
 resource url:'/css/main.css'
 resource url:'/css/hubbub.css'
 }

 core {
 dependsOn 'baseCss'
 dependsOn 'restangular,lodashjs,application'
 resource url: '/js/hubbub.js'
 }

}

Notice how in the core module you used the dependsOn construct to pull in your
basecss, and also to pull in Restangular, lodash.js, and your application.js as depen-
dencies. Because Restangular depends on the AngularJS module, that’s pulled
in, too.

 All this bundling means that you need to specify in your target pages that you want
the core module, and the resources infrastructure will drag in everything you need.
Should you ever need to change library versions in the future, you can drop in the
new library/web-app/js, update the single reference in the relevant module, and be
done. And if you have pages that don’t need a kitchen sink include, you can cherry-
pick whichever modules you need on the page in question. Simple and flexible.

 Your modules are defined, so it’s time to update your page markup to take advan-
tage of them. You do that in the next section.

Listing 13.1 Defining modules for angular.js, Restangular, and lodash.js
Licensed to Mark Watson <nordickan@gmail.com>

361Revisiting Grails web resource management
13.1.2 Using resource modules in your view tier

Using resource modules in your GSP layer is normally a two-step process:

1 Add markup to your layout templates as placeholders where the resources
should be placed

2 Update your page templates to specify the modules you want to pull in for par-
ticular pages

Let’s look at your current master template for Hubbub, which lives at /grails-app/
views/layouts/main.gsp, as shown in the following listing.

<!doctype html>
<html>
<head>
 <title>Hubbub » <g:layoutTitle default="Welcome" /></title>
 <g:external dir="css" file="hubbub.css"/>
 <g:external dir="css" file="main.css"/>
 <nav:resources/>
 <g:layoutHead/>
 <r:layoutResources/>
</head>
<body>
 <div>
 <div id="hd">
 <g:link uri="/">
 <g:img id="logo" uri="/images/headerlogo.png" alt="hubbub logo"/>
 </g:link>
 </div>
 <div id="bd"><!-- start body -->
 <nav:render group="tabs"/>
 <g:layoutBody/>
 </div> <!-- end body -->

Why not use the AngularJS resources plugin?
The introduction of the Resources plugin has spawned a slew of resource library plu-
gins for all the common JavaScript frameworks. Among them is an AngularJS
resources plugin (http://grails.org/plugin/angularjs-resources) that’s actively main-
tained with the latest AngularJS library files. You can pull in these types of plugins via
BuildConfig and you’ll have prebuilt modules defined that you can r:require in
your page.

We haven’t opted for that strategy for a few reasons. The first is that we want to teach
you how these resource modules work for yourself, so you’re not dependent on a
plugin for the next library you want to integrate.

But more importantly, if you opt for a Resources plugin for your library of choice, you
often limit yourself to the version of the library the plugin offers. The AngularJS plugin
is frequently updated, but many aren’t. If we empower you to do your own configura-
tion, you can mix and match the libraries and versions you want to use.

Listing 13.2 The existing Hubbub template in main.gsp

External CSS references are
good candidates for modules.

Calls layoutResources
in head and body.
Licensed to Mark Watson <nordickan@gmail.com>

http://grails.org/plugin/angularjs-resources

362 CHAPTER 13 Single-page web applications (and other UI stuff)
 <div id="ft">
 <div id="footerText">Hubbub - Social Networking on Grails</div>
 </div>
 </div>
 <r:layoutResources/>
</body>
</html>

The calls that you need to make sure are in your master template are the <r:layout-
Resource> entries that need to appear in both the <head> and <body> sections of your
HTML. Why in both places? Because the Resources plugin optimizes your page layout
with where it places those CSS and JavaScript references.

 The Resources plugin typically places the CSS entries in the <head> element of your
layout and the JavaScript files at the end of the <body> element. It takes this approach
because your browser blocks when parsing those large JavaScript files and you want that
block to happen after the browser renders the page to the client (and your end user is
busily distracted for a few minutes taking in all that lovely information).

You’ll quickly refactor your layout page to pull in those base CSS modules, but you
won’t drag in all the modules because you don’t want every page in the application to
need to pull in all that base JavaScript (see the following sidebar on caching).

 The way you pull a resource module into a particular page is via the <r:require>
tag—telling it the module or modules you wish to include. Let’s update your base layout
to use the baseCss module you defined previously. Here’s what the new <head> element
of your /grails-app/views/layouts/main.gsp layout looks like with a r:require tag:

<head>
 <title>Hubbub » <g:layoutTitle default="Welcome" /></title>
 <r:require module="baseCss"/>
 <nav:resources/>
 <g:layoutHead/>
 <r:layoutResources/>
</head>

What if I want to override where my resources go on the page?
Control freak, eh? We get it, and so does the Resources plugin. You might have
JavaScript files that you specifically want to load at the head of the page. In fact,
AngularJS is one library that prefers to be in your head section so you can avoid any
FOUM (flash of unstyled content—where AngularJS’s templates appear before
they’re filled in by the JavaScript).

In those cases you can take advantage of the disposition: attribute when specify-
ing your module resource. You may have noticed that we ensured AngularJS was
loaded in the page <head> by defining it as:

angularjs {
 resource url:'js/angular-1.0.8.js', disposition: 'head'
}

Call layoutResources
in head and body.
Licensed to Mark Watson <nordickan@gmail.com>

363RESTful clients with AngularJS
Although the visual layout of the page looks identical to its preresources format, if you
do a “view-source” on the newly minted page, you’ll see that the Resources plugin has
concatenated your baseCss-dependent files into a single file to ensure fewer requests
and better performance. It now looks like this:

<link href="/hubbub/static/bundle-bundle_baseCss_head.css"
 type="text/css" rel="stylesheet" media="screen, projection" />

And if you use your browser tools, you’ll see in the development environment that it’s
an ordered concatenation of the dependencies one after another. In a production
environment, you typically install the zipped-resources and cached-resources plugins
to handle minification and unique URL hashing (even across redeploys).

Now that you’re cross-configuring your resource modules and their dependencies
and know how to require them into your target GSP pages, let’s put them to use by
writing AngularJS code that consumes all those RESTful services you wrote in the
previous chapter.

13.2 RESTful clients with AngularJS
AngularJS has become a popular modern JavaScript framework for building single-
page web applications. Previous frameworks, such as Backbone.js and KnockoutJS,
pioneered the idea of rich JavaScript web tier apps, with JavaScript data binding and
templating, while interacting and syncing with RESTful back-end services.

 AngularJS evolved from JavaScript MVC frameworks with a system that:

■ Provides a simple, declarative HTML templating language that’s easy to extend.
■ Has a powerful two-way data binding system so your UI and JavaScript business

objects always stay in sync.
■ Requires no messing with the browser DOM. AngularJS looks after all the tricki-

ness or refreshes the page bits under its control, so you don’t have to worry.

How the Resources plugin impacts caching
We suggested that you be careful about dragging in more modules than you need on
a particular page because your browser needs to download all that extra JavaScript
on the page render. And that’s good advice. But not the whole story.

Truth be known, the way the Resources plugin sets up its cacheable JavaScript end-
points, if you put all that JavaScript in your base template, it would only be down-
loaded once by the browser—on the first page view. After that initial request, that
JavaScript bundle would then be cached by the browser on every subsequent page
request throughout the application with virtually no performance penalty until you edit
one of those dependent JavaScript files (at which point the Resources plugin would
generate a fresh cacheable JavaScript URL for your bundle).

It doesn’t change our advice to pull in only the bundles you need, but it’s nonetheless
helpful to understand what the resources infrastructure is doing behind the scenes.
Licensed to Mark Watson <nordickan@gmail.com>

364 CHAPTER 13 Single-page web applications (and other UI stuff)
■ Has a large and growing ecosystem of extension modules.
■ Is backed and used by Google. What else can you say?

Writing AngularJS is also an excellent way to demonstrate all the common things you
may want to do in your next Grails-based SPA. Remember that this isn’t a book on
AngularJS, and we can cover only so much. If you want more than the basics, which
we’ll cover, you can find heaps of great books, tutorials, and videos to help you learn
AngularJS. We recommend you check out the Learn section of http://angularjs.org/.
With disclaimers out of the way, let’s hack your first async Hubbub timeline!

13.2.1 Configuring your Grails app for AngularJS

The road to your first AngularJS single-page edition of Hubbub starts with creating a
new controller action and GSP view to host your new markup. We pull in all the data for
your new page via back-end REST calls, so there won’t be much to pass through. Let’s
add a single page action to your PostController class so you can start UI markup:

def singlepage() {
 def user = params.id ? User.findByLoginId(params.id) :
 ➥ springSecurityService.currentUser
 if (!user) {
 response.sendError(404)
 } else {
 [user : user]
 }
}

You passed the current user object through to your singlepage.gsp file, so you could
set up the page title, but otherwise you request everything that you need from the
RESTful service that you built in chapter 12.

 Let’s put in the shell of your singlepage.gsp for now, then talk about how you can
integrate AngularJS into the picture, as shown in the following listing.

<html>
 <head>
 <title>Timeline for ${user.profile ?
 ➥ user.profile.fullName : user.loginId}</title>
 <meta name="layout" content="main"/>
 <r:require module="core"/>
 </head>
 <body>
 <div id="newPost">
 <h3>
 What is ${ user.profile ?
 ➥ user.profile.fullName : user.loginId } hacking on right now?
 </h3>
 </div>

 </body>
</html>

Listing 13.3 A minimalist /grails-app/views/post/singlepage.gsp to get started

Pulls in supporting
JavaScript modules b
Licensed to Mark Watson <nordickan@gmail.com>

http://angularjs.org/

365RESTful clients with AngularJS
Well, that certainly is minimalist! You declared your core module B, and pulled in all
the JavaScript you needed. But before you write any AngularJS code, you have to get
your document setup AngularJS-ready. AngularJS applications like to have an app-
name configured on the ng-app attribute of their HTML root element (the namespace
was chosen because ng sounds like “Angular”), so you want something such as:

<html ng-app="Hubbub">

The only trouble is that you can’t add that definition to the <html> element of your
singlepage.gsp, because it’ll be overwritten by the layout definition of <html> in your
/grails-app/views/layout/main.gsp. Conversely, you can’t add it to the <html> ele-
ment in your main.gsp layout, because it’ll appear on every page in your app!

 You have to perform Grails SiteMesh kung fu to get the magic happening. In your
template, define the header as:

<html ${pageProperty(name:'page.htmlAttrs')}>

Which tells Grails to merge in any page-level properties defined as htmlAttrs on your
target page. If there aren’t any, it leaves this section blank. Let’s update your new sin-
glepage.gsp file with the required attribute:

<html>
 <head>
 <title>Timeline for ${user.profile ?
 ➥ user.profile.fullName : user.loginId}</title>
 <meta name="layout" content="main"/>
 <content tag="htmlAttrs">ng-app="Hubbub"</content>
 <r:require module="core"/>
 </head>
 ...
</html>

Now that you defined your htmlAttrs element, it’ll be merged in the render. Point
your browser at http://localhost:8080/hubbub/post/singlepage and do a view-source
to see your new markup in action:

<html ng-app="Hubbub">

Bingo! With your document now configured for AngularJS, let’s pull in your first set of
POST via a RESTful service.

13.2.2 Your first AngularJS controller: pulling in a RESTful timeline

In chapter 12, you developed a PostRestController that did all the heavy lifting of
adding/updating/deleting/listing the posts held in Hubbub. Let’s write a bit of Angu-
larJS code to pull in the timeline.

 Your first step in writing AngularJS code is to define an ng-controller that’s
responsible for scoping the section of the page where AngularJS binds data and
responds to rendering events.

 In the following listing, let’s start with the markup in singlepage.gsp, then dive into
the backing JavaScript.

Defines the value
of the htmlAttrs
element for merging
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:8080/hubbub/post/singlepage

366 CHAPTER 13 Single-page web applications (and other UI stuff)

S,
<div ng-controller="PostsCtrl">

 <div id="newPost">
 <h3>
 What is ${ user.profile ?
 ➥ user.profile.fullName : user.loginId } hacking on right now?
 </h3>
 </div>

 <div class="allPosts" ng-cloak>
 <div class="postEntry" ng-repeat="post in allPosts">
 <div class="postText">{{post.message}}</div>
 <div class="postDate">{{post.published}}
 ➥ by {{post.user}}</div>
 </div>

</div>

You introduced a few ng-* attributes to your elements. What do they do? The ng-
controller element B binds an Angular controller to this portion of the DOM. That
means you can do things in the controller that affect the markup of this section of the
document (and vice versa).

 After a controller is bound, you can access variables and methods that the control-
ler exposes and perform markup operations based on them. Because you don’t want the
browser displaying anything until the template is finished rendering, use the ng-cloak
directive c to stop any unwanted flickering of the browser.

 In d you do an iteration over the controller’s allPosts property and create a new
div for each post in the timeline using AngularJS’s distinctive double-brace templat-
ing e. How does the matching controller give you all those posts? Let’s look in your
/web-app/js/hubbub.js in the following listing to find out.

angular.module('Hubbub', ['restangular']).config(
 function(RestangularProvider) {
 RestangularProvider.setBaseUrl('/hubbub/api');
 }
);

function PostsCtrl($scope, Restangular) {

 var postsApi = Restangular.all("posts");
 $scope.allPosts = postsApi.getList();

}

Let’s take it slow so you can see everything that’s going on here. First, you register
your application with AngularJS B and import the Restangular module into play.
You can configure modules after you import them, so configure Restangular to know
the base API URL for all your REST calls c.

Listing 13.4 Adding your first AngularJS controller to singlepage.gsp

Listing 13.5 Your first AngularJS controller

Links this block to
Angular controller object b

Prevents browser from
displaying unstyled markup

 c
Iterates

over allPosts
list of this
controller

 d

Renders
attributes of
each post to
browser

 e

Registers Hubbub with AngularJ
importing Restangular module

 b

Defines PostsCtrl,
injecting scope
and Restangular c

Configures Restangular URL
with REST service endpoint URL d

Points REST client at
posts endpoint in API eRequests list of posts f
Licensed to Mark Watson <nordickan@gmail.com>

367RESTful clients with AngularJS
With the config done, you define your PostsCtrl controller d, providing arguments
for AngularJS to inject the current scope and a Restangular object for your REST
calls. Then create an endpoint where you can request a list of post objects e.
(Restangular offers the all() method if you expect a list or the one() method if you
expect a single post object.) At this point your URL resolves the /hubbub/api/posts.

 Finally, you request that list of objects f and assign it to a variable in your control-
ler scope (so your markup can read it). Behind the scenes Restangular sends a GET
request to http://localhost:8080/hubbub/api/posts and parses the list of post objects
it returns. That’s the list you iterated in listing 13.4. As shown in figure 13.2, to see it in
action, point your browser at http://localhost:8080/hubbub/post/singlepage.

 Well done! You wrote your first set of RESTful AngularJS code and saw how data is
bound between the UI and the back-end JavaScript. Your timeline is static for now;
you’ll fix that shortly. But what fun is a dynamic timeline if you can’t create new posts?
Let’s allow users to create posts RESTfully, then circle back to the timeline business.

13.2.3 Creating a new post via REST

Creating a new post is a great way to show off AngularJS’s amazing two-way data bind-
ing services, while also demonstrating how you can interact with your back-end Grails

Figure 13.2 Your first async timeline using AngularJS
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:8080/hubbub/api/posts
http://localhost:8080/hubbub/post/singlepage

368 CHAPTER 13 Single-page web applications (and other UI stuff)

en

a
t

REST service using different HTTP verbs. Recall from the previous chapter that the
common REST verbs are GET (for requesting objects), POST (for creating new objects),
PUT (for updating objects), and DELETE (for removing objects).

 You want to implement POST to your RESTful back end to create a post, but before
that you need content to send there. Let’s put together your first AngularJS form, and
bind it to your controller. Here’s a little posting form to add to singlepage.gsp that
uses your existing styling:

<form >
 <textarea id='postContent' ng-model="postContent"></textarea>
 <button type="button" ng-click="newPost()">Post</button>
</form>

Your new form introduces two new AngularJS directives: ng-model and ng-click. You
might already know what they do! The ng-model directive tells AngularJS that it
should bind the value in the text area to a postContent variable on the controller. If
you change that value in the backing JavaScript, or in the text area itself, AngularJS
makes sure the other side is updated.

 The ng-click directive tells AngularJS to invoke the newPost() function on your
controller when the user clicks the button. Let’s look at the backing code to see how
you can extract that new post content and send it to your Grails REST endpoint, as
shown in the following listing.

angular.module('Hubbub', ['restangular']).config(
 function(RestangularProvider) {
 RestangularProvider.setBaseUrl('/hubbub/api');
 }
);
function PostsCtrl($scope, Restangular) {

 var postsApi = Restangular.all("posts");
 $scope.allPosts = postsApi.getList();

 $scope.newPost = function() {
 var postApi = Restangular.one("posts");
 var newPost = { message: $scope.postContent };
 postApi.post(null, newPost).then(function(response) {
 $scope.allPosts = postsApi.getList();
 $scope.postContent = "";
 }, function(errorResponse) {
 alert("Error on creating post: " + errorResponse.status);
 });
 }

}

Your controller has certainly grown. You defined your newPost handler and pointed
it at the appropriate URL endpoint B. Notice you used one() because you’re send-
ing a single post object this time, not a list. You then constructed the JSON of your

Listing 13.6 Creating your first post via REST

Sets up /hubbub/api/posts
endpoint to receive a POST

 b

Creates new JSON
content to send

 c

Posts new post
to back end

 d

Refreshes list wh
post succeeds e

Handles
ny errors
hat occur f
Licensed to Mark Watson <nordickan@gmail.com>

369RESTful clients with AngularJS
new post c, and called Restangular’s post() method d to perform an HTTP POST
of your new JSON.

 Normally all of that posting happens asynchronously. In listing 13.5 you didn’t care
about waiting around. In the case of listing 13.6, however, you need to know when the
post has finished updating so you can refresh your list of posts.

 That’s why you invoke the then() method d, which takes two arguments that are
callback functions: the first is called for a successful post (in which case you refresh
your post list and clear out the new post text area e), the second if an error condition
is encountered, in which case, you pop up an error dialog f.

 Now’s a great time to point your browser at http://localhost:8080/hubbub/post/
singlepage and post your first RESTful post!

13.2.4 Communicating between controllers
You’ve grown your PostsCtrl controller by jamming in new functionality, but you
can’t keep tracking this way without it leading to a big mess. Time to clean things up
and separate out one controller to look after handling new posts and another control-
ler to look after managing your timeline.

 First let’s change your form markup to introduce its own controller, which you call
NewPostCtrl:

<form ng-controller="NewPostCtrl">
 <textarea id='postContent' ng-model="postContent"></textarea>
 <button ng-click="newPost()">Post</button>
</form>

Then move your timeline renderer into the PostsCtrl on its own.

<div ng-controller="PostsCtrl">
 <div class="allPosts" ng-cloak>
 <div class="postEntry" ng-repeat="post in allPosts">
 <div class="postText">{{post.message}}</div>
 <div class="postDate">{{post.published}}
 ➥ by {{post.user}}</div>
 </div>
 </div>
</div>

You then move all the code that creates now posts into the NewPostCtrl, and let the
PostsCtrl refresh its timeline. For that to happen, you need a way for NewPostCtrl to
notify the PostCtrl when it’s updated the posts. That gives us a reason to talk about
how AngularJS handles events. First, let’s look at the updated controller code, as
shown in the following listing.

angular.module('Hubbub', ['restangular']).config(
 function(RestangularProvider) {
 RestangularProvider.setBaseUrl('/hubbub/api');
 }
);

Listing 13.7 Propagating client-side events with AngularJS
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:8080/hubbub/post/singlepage
http://localhost:8080/hubbub/post/singlepage

370 CHAPTER 13 Single-page web applications (and other UI stuff)

s
function PostsCtrl($scope, Restangular) {

 var postsApi = Restangular.all("posts");

 $scope.allPosts = [];

 $scope.refreshPosts = function() {
 postsApi.getList().then(function(newPostList) {
 $scope.allPosts = newPostList;
 }, function(errorResponse) {
 alert("Error on refreshing posts: " + errorResponse.status);
 });
 }

 $scope.$on('newPost', function() {
 $scope.refreshPosts();
 });

 $scope.refreshPosts();

}

function NewPostCtrl($scope, $rootScope, Restangular) {

 $scope.newPost = function() {
 var postApi = Restangular.one("posts");
 var newPost = { message: $scope.postContent };
 postApi.post(null, newPost).then(function(response) {
 $rootScope.$broadcast("newPost", newPost);
 $scope.postContent = "";
 }, function(errorResponse) {
 alert("Error on creating post: " + errorResponse.status);
 });
 }
}

It seems like new code in there, but mostly you rejiggered the code you’ve already
seen, tidying up a few things along the way. You moved the refreshPosts() operation
into a reusable function with error handling B, which you call the first time the con-
troller loads d. You also started listening for any newPost events c (which is a name
you made up to represent when the user creates a post in the system), and you trigger
a refresh of your post list when that event occurs.

 The other side of your change revolves around raising an event f (or broadcasting,
in AngularJS terms) whenever the user creates a new post, implementing logic to
broadcast an event when new posts are created, and re-rendering the timeline when
that event is consumed. In this case, you want all other controllers to know about the
event, so you broadcast it via the AngularJS $rootScope (the parent of all other
scopes), which you need to inject when defining your new controller e.

 With your two controllers in place, you’ve seen the basics of fetching and creating
posts with Grails and AngularJS. You’ll take a small detour to improve your Hubbub
posting UI experience and to learn a few new ways to apply AngularJS to the client
side, then you’ll circle back to complete your CRUD tour.

Moves post
refreshing into
reusable function

 b

Triggers refresh of post list
on any newPost event

 c

Refreshes all posts the first time
controller loads (first page view)

 d

Injects $rootScope, the
parent of all scopes

 e

When new post is
created, broadcast
newPost event to
all scopes

 f
Licensed to Mark Watson <nordickan@gmail.com>

371RESTful clients with AngularJS
13.2.5 Better posting with live UI feedback

In your exploration of AngularJS, you focused on the RESTful integration with your
Grails service. But when writing SPAs, you also need to think of making a compelling
user experience on the client side.

 You don’t offer users too many data entry experiences in Hubbub, except for gen-
erating new posts. But you can certainly improve that experience. Suppose users have
an input limit of 140 characters on their posts. Let’s add a UI facility that counts down
the number of remaining key presses.

 The markup is simple. You add a small HTML span to hold the current value and
then bind it to your back-end controller. First the markup in singlepage.gsp:

<form ng-controller="NewPostCtrl">
 <textarea id='postContent' ng-model="postContent"></textarea>
 <button ng-click="newPost()">Post</button>
 {{charsRemaining()}}
</form>

You call a function on your NewPostCtrl to get the remaining characters so you can
calculate that value dynamically on the fly. Let’s implement the controller code in
hubbub.js:

function NewPostCtrl($scope, $rootScope, Restangular) {

 $scope.postContent = "";

 $scope.charsRemaining = function() {
 return 140 - $scope.postContent.length;
 }

 // ... other code omitted
}

You initialized the postContent, which is bound to the text area, to an empty string
when the controller starts B because this eliminated any noisy null-checks later on.
Other than that, your charsRemaining function c takes the current length of the text
area away from 140 and returns that as your charsRemaining. You style that
element in your hubbub.css so it appears as an unobtrusive light gray element next to
your post button. Let’s see it in action in figure 13.3.

 That looks fantastic, but let’s take it to the next level. You don’t want users to click
the Post button if they type in more than 140 chars (or if they have no chars in their
post because a blank post breaks your Grails domain class validation rules). Let’s put
in code to stop them entering long or empty posts.

 First, change the Post button definition to include an ng-disabled call to check
whether or not the button should be disabled:

 <button ng-click="newPost()"
 ng-disabled="postInvalidLength()">Post</button>

Initializes postContent to
non-null value on first run

 b

Dynamically calculates
remaining characters c
Licensed to Mark Watson <nordickan@gmail.com>

372 CHAPTER 13 Single-page web applications (and other UI stuff)
Then implement that tweet logic that determines whether the button is grayed out in
your NewPostCtrl:

$scope.postInvalidLength = function() {
 return $scope.postContent.length == 0 ||
 $scope.postContent.length > 140
}

And with that function in place, the Post button is now disabled (appears gray) when
the post is empty, enabled (not gray) while the char count is <= 140 chars, then gray
again after 140 chars. You’re ensuring the user enters only valid data before you make
any expensive remote calls.

Given that 140 chars is a tough limitation for posters, wouldn’t it be nice if you gave
users helpful visual feedback as they approach the character limit (and cue them to start
abbreviating)? This sounds like a good time to look into AngularJS’s CSS integration.

 AngularJS’s ng-class construct lets you set the CSS style class of an element based
on any valid AngularJS expression. Let’s reuse that charsRemaining function you used
in the character counter to change the color of the text area when the character
count gets tight:

The many validators of AngularJS
You rolled your own little AngularJS validation routines because the logic was specific
to our application. For the basic cases, AngularJS includes a range of built-in valida-
tion directives such as ng-maxlength, ng-minlength, and ng-pattern. Check out
the AngularJS docs for details.

Figure 13.3 Your unobtrusive click counter lets you know you have 63 chars remaining.
Licensed to Mark Watson <nordickan@gmail.com>

373Advanced RESTful CRUD: implementing in-place editing
<textarea id='postContent' ng-model="postContent"
 ng-class="{'charsLow' : charsRemaining() < 12,
 'charsOverflow' : charsRemaining() < 0}"></textarea>

Add styling to hubbub.css to define your charsLow class as a bright yellow, and your
charsOverflow as an intrusive red:

.charsLow { background-color: yellow !important; }

.charsOverflow { background-color: red !important; }

Notice that you mark these CSS styles as !important only to make sure you trump your
other base styling that affects the color of focused text areas (you probably won’t have
this need typically). Now users have strong visual cues when their constraints approach.
Let’s see it in action in figure 13.4.

 And with your snazzy posting UI in place, and validation logic in your AngularJS
toolbox, you can return to learning about how to RESTfully edit existing posts. While
you’re at it, you’ll apply all you’ve learned so far to implement in-place editing of your
existing posts.

13.3 Advanced RESTful CRUD: implementing
in-place editing
You performed RESTful GETs to your PostRestController’s list() action and even
created new posts with a RESTful POST to your PostRestController’s save() action.
Let’s finish off your RESTful client exploration of CRUD operations by creating the UI
elements to work with updates (RESTful PUTs to your PostRestController’s update()
action), and deletes (RESTful DELETEs to your PostRestController’s update() action).

 One way you can pull those final two operations together is by offering the user a
way to update and delete their posts directly from their timeline. Let’s make it super

Figure 13.4 Maxing out the field length brings the red text area of doom
Licensed to Mark Watson <nordickan@gmail.com>

374 CHAPTER 13 Single-page web applications (and other UI stuff)
easy by watching when the user moves their mouse over an existing post, then auto-
matically making that post editable.

13.3.1 Implementing UI switching

The easiest way to create the visual appearance of a post becoming editable is to
switch between two divs. You generate the markup for both the “view post” div f
and the “edit post” div d side by side when you generate the timeline, but then you
show only one and hide the other depending on whether the user is mousing over
the element.

 Let’s take a look at the code, as shown in the following listing.

<div class="allPosts" ng-controller="PostsCtrl" ng-cloak>

 <div class="postEntry"
 ➥ ng-repeat="post in allPosts" ng-controller="EditPostCtrl"
 ng-mouseenter="activate()"
 ng-mouseleave="deactivate()">

 <textarea class="inplacePostEdit"
 ➥ ng-model="editedContent"></textarea>
 <button ng-click="updatePost()">Update</button>
 <button ng-click="deletePost()">Delete</button>

 <div class="postText">{{post.message}}</div>
 <div class="postDate">{{post.published}}
 ➥ by {{post.user}}</div>

 </div>

 </div>

Given that all this in-place editing needs state tracking, you introduce a new Edit-
PostCtrl B that looks after the editing for a particular post. One important nuance
is that because this controller is defined on an ng-repeat, AngularJS creates a new
instance of this controller for each iteration of the repeat.

 When the mouse enters or leaves the post, call an activate() or deactivate()
routine c, which flips the edit state of the post from on to off as appropriate. The
remaining two spans conditionally render the “edit post” d or the “view post” f
based on that edit state.

 Your edit mode also sports buttons to update and delete posts e, which you’ll
implement shortly. But before you dive into the update/delete function, let’s take a
look at the following listing, which implements enough of your EditPostCtrl to turn
on your UI elements as appropriate.

Listing 13.8 Marking up for in-place editing

Iterates
over each

available post

 b

Activates or deactivates editing
based on mouse entry C

Provides a
span for the

edit state d
Invokes
update
routines
when user
clicks
buttons E

Provides span
for the view

(nonedit) state f
Licensed to Mark Watson <nordickan@gmail.com>

375Advanced RESTful CRUD: implementing in-place editing
function EditPostCtrl($scope, $rootScope, Restangular) {

 $scope.isEditState = false;

 $scope.editedContent = $scope.post.content

 $scope.activate= function() {
 $scope.isEditState = true;
 }

 $scope.deactivate= function() {
 $scope.isEditState = false;
 }
 // ... we’ll implement our update() and delete() here later
}

The first cut lets you flip the UI between edit and view mode. Let’s head over to
http://localhost:8080/hubbub/post/singlepage and give it a workout.

 That looks good, but you haven’t implemented the connection to your back-end
Grails PostRestController actions.

13.3.2 Introducing an update feature

Let’s fill out the EditPostCtrl with the new methods. We’ll start with the update rou-
tine (updatePost) because it has a tricky corner case. In the case of an error when the
user updates a post, you want to set the post content back to what it was before the edit.
Let’s implement your safe update inside your EditPostCtrl in the following listing.

$scope.originalContent = $scope.post.content
$scope.editedContent = $scope.post.content

$scope.updatePost = function() {

 isEditState = false;

Listing 13.9 Your first cut at adding in-place editing to hubbub.js

Listing 13.10 Implementing post updating in your EditPostCtrl

Figure 13.5 The new in-place editor with Update and Delete on mouse-over

Binds textarea
field to original
post content

Saves original post content
for later revert if required b
Licensed to Mark Watson <nordickan@gmail.com>

ttp://localhost:8080/hubbub/post/singlepage

376 CHAPTER 13 Single-page web applications (and other UI stuff)

u

 $scope.post.message = $scope.editedContent;
 $scope.post.put().then(
 function() {
 $scope.isEditState = false;
 }, function(errorResponse) {
 $scope.post.message = $scope.originalContent;
 alert("Error saving object:" + errorResponse.status);
 }
);

}

In this listing, you save the original post content from the get-go B in case you ever
encounter a REST failure and need to revert. When the user clicks the Update button,
you transfer the contents of the bound text area onto your post object c, then issue a
put() call to send it to the back end d.

 Where does that put() method come from? Remember, you fetched this object
from Restangular when you built the original timeline. Restangular decorates each
object it returns with methods using all the standard RESTful verbs (get(), post(),
put(), and so on).

TIP Check out the Restangular docs for a detailed look at what’s available:
https://github.com/mgonto/restangular.

If things go horribly wrong, revert your change e to the content of the post (remem-
ber AngularJS uses that post content when rendering the “read” view of timeline, so
leave it tidy).

 And your update is in! Time to press on to your final feature: deleting posts!

Wrangling Restangular with custom RESTful endpoints
We’re using a custom JSON mapper, but the default Grails RESTful Post endpoint
would expect the JSON of the post to be wrapped in a nested element called Post.
Although, this practice is common in both Grails and Rails applications, most RESTful
APIs on the web take the JSON of the post natively without the nesting. Either way,
Restangular has you covered.

The easiest way to accommodate the special nesting is to register a Restangular
request interceptor in your application to do the wrapping for you automatically so
you can get on with business. The interceptor wraps every PUT request inside an
element with a wrapper of the same name. For example, it wraps the payload of a
post object of

{ content: "my new post" }

as

{ post : { content: "my new post" } }

Transfers updated
content to post cPUTs

pdated
post to
RESTful
service d

In case of failed update, sets
edited text to original e
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/mgonto/restangular

377Advanced RESTful CRUD: implementing in-place editing
Your last, big in-place editing feature is the delete of an existing post.

13.3.3 Finalizing lifecycles with delete

You already have the button for a delete feature; after you write the backing logic in
your EditPostCtrl, you’re done. Let’s see how it works in the following listing.

$scope.deletePost = function() {

 isEditState = false;

 $scope.post.message = $scope.editedContent;
 $scope.post.remove().then(
 function() {
 $rootScope.$broadcast("deletePost", $scope.post);
 }, function(errorResponse) {
 alert("Error saving object:" + errorResponse.status);
 }
);

}

The delete operation is much more straightforward than update. You made a call to
the remove() method B of your post and when that completes, you broadcast a
deletePost event c so that your PostsCtrl (which looks after the timeline) can
remove the post you deleted from its timeline. Notice that you pass the deleted post as
one of the attributes of the event. That will be important when you consume the event
in your PostsCtrl. Let’s see how you implement that:

(continued)

In case you need to do this in your own applications, here’s the updated configuration
with a RequestInterceptor.

angular.module('Hubbub', ['restangular']).config(
 function(RestangularProvider) {
 RestangularProvider.setBaseUrl('/hubbub/api');
 RestangularProvider.setRequestInterceptor(
 ➥ function(elem, operation, what) {
 var retElem = elem;
 if (operation === 'put') {
 var wrapper = {};
 wrapper[what.substring(0, what.length -1)] = elem;
 retElem = wrapper;
 }
 return retElem;
 });
 }
);

Listing 13.11 Implementing a delete function on EditPostCtrl

Calls remove() method to
issue RESTful delete() call

 b

Broadcasts global deletePost
event to all listeners c
Licensed to Mark Watson <nordickan@gmail.com>

378 CHAPTER 13 Single-page web applications (and other UI stuff)
$scope.$on('deletePost', function(event, postToDelete) {
 $scope.allPosts = _.filter($scope.allPosts, function(nextPost) {
 return nextPost.id != postToDelete.id
 });
});

In your PostsCtrl, you listen for the deletePost event then use a simple JavaScript
utility routine provided by Lo-Dash to filter your posts list and remove the deleted
post placed on the event.

NOTE You could’ve called your $scope.refreshPosts() routine and refetched
the entire timeline from the server (which would now be missing the deleted
post), but that seems expensive for what you need.

And with that change, your in-place editing capability is now complete. Congratula-
tions on hardcore AngularJS hacking. There’s so much more AngularJS we didn’t have
room to cover in this chapter: creating your own custom directive tags, working with
AngularJS services, and integrating JavaScript testing frameworks such as Jasmine.
Make sure you take time to browse the AngularJS site (http://angularjs.org/) if you
want to see more of what this productive new framework has to offer.

13.4 Summary and best practices
You spent this entire chapter in the UI tier: marshaling objects around the browser
and interacting with back-end RESTful services. Although we can’t cover everything
about SPAs, we’ve given you a broad exposure to the tools and techniques available to
build rich and responsive SPAs. You now have jumping-off points to start your own
explorations into this exciting technology.

 Before we leave the UI layer and return to the hardcore middle-tier world of trans-
actional Spring beans, let’s review a few key best practices from this chapter:

■ Use the Resources plugin to abstract your libraries. The Resources plugin saves main-
tenance time because you can update JavaScript libraries in one place rather
than scattering the updates throughout your application.

■ Optimize your resource dependency bundling. Rather than define massive “kitchen
sink” dependencies in the resources DSL, structure your resources so you can
cherry-pick the libraries (or collection of libraries) you need for a particular
page. It pays off in page-load time.

■ Investigate Resources plugins, but don’t be wedded to them. You can get Resource plug-
ins that pull in the resources for all the common JavaScript libraries, but not all
of them are actively updated. Often it’s better to pull down the version of a
library that you want to use and do your own resource configuration.

■ Avoid massive JavaScript controllers. The same rules that apply to all software devel-
opment thinking still apply to JavaScript. It can be tempting to add “a few more
features” to a particular controller, but you end up with a page-scoped control-
ler that’s a mess of responsibilities. Refactor, refactor, refactor.
Licensed to Mark Watson <nordickan@gmail.com>

http://angularjs.org/

379Summary and best practices
■ Don’t forget about eventing. One of the most powerful features of AngularJS is its
integrated eventing model. It provides a loosely coupled way for your controllers
to communicate, and using the provided Eventbus can lead to clean solutions.

■ Go deeper with Angular. As you saw, AngularJS has a gentle learning curve after
you master a few key concepts. Take advantage of the wealth of AngularJS
resources on the web to level up your web-framework knowledge. It pays off in
whatever framework you use next.

In the next chapter, we take a break from the UI tier and jump back in the middle-tier
world of Spring and transactions.
Licensed to Mark Watson <nordickan@gmail.com>

Understanding Spring
and transactions
As you’ve seen throughout the book, Grails isn’t only about giving you the tools to
write web applications. It also provides the means to structure your application in
a standard way, whether that’s through a service layer or a more asynchronous,
message-oriented architecture as described in chapter 15. This isn’t by chance: the
middle tier of your application (the business logic) is important because it nor-
mally provides the real business value.

 The reason Grails works so well in this area is that it’s built on top of the incred-
ibly popular and powerful Spring framework. We mentioned it in passing a few
times, and it tends to remain invisible when your Grails applications don’t have
complex business logic. You happily rely on services being automatically injected
into your controllers and other artifacts. Yet when an application does increase in
complexity, you won’t want to miss out on the help Spring can provide.

 Understanding the basics of Spring is essential to writing flexible and maintain-
able Grails applications. Fortunately, Grails gives you a gradual learning curve to

This chapter covers
■ Introducing the Spring framework
■ Working with transactions
■ Mastering transactions
380

Licensed to Mark Watson <nordickan@gmail.com>

381Spring fundamentals
Spring that we take advantage of in this chapter to dig deeper and tease out the key
features that will help you day to day. We also look at maintaining data integrity
through transactions, which is one of the core features of Spring.

NOTE If you’re already a Spring aficionado, we suggest you skim the intro-
duction and give the section on services a brief review.

This look into the workings of Spring starts with an introduction about what it is and
how Grails’s “Spring by convention” feature, the service, fits into the whole package.

14.1 Spring fundamentals
Since its birth many years ago (version 1.0 was released in 2004), Spring has simplified
the development of enterprise applications, from transaction support to messaging
and more. Its core, though, is a DI framework, which you need to understand for the
rest of Spring to make sense.

14.1.1 What is dependency injection?

A while back, a new paradigm emerged in application architecture called inversion
of control (IoC)1. The principle is simple. Instead of each object creating and ini-
tializing the objects it depends on itself, you have a container that instantiates,
initializes, and wires together objects. Figure 14.1 illustrates the difference between
the two approaches.

1 For a more complete description of IoC, see http://en.wikipedia.org/wiki/Inversion_of_Control.

The traditional approach

Application Controller Service

Controller Service

The IoC approach

IoC container IoC container

Controller Service

IoC container

creates creates wires

creates and

stores ref

creates and

stores ref

Figure 14.1 Inversion of control compared to the traditional approach of dependency management: all
objects are created by the IoC container rather than by the objects themselves.
Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Inversion_of_Control

382 CHAPTER 14 Understanding Spring and transactions
DI is a specific form of IoC and probably the only one you’ll ever see. It may seem
from figure 14.1 that the IoC pattern introduces unnecessary complexity, but the
approach has significant advantages. The key benefit is that object plumbing can be
complex and IoC moves that complexity out of the class, leaving pure, unadulterated
business logic. This makes it easier to understand what a class is doing and helps keep
classes clean and manageable. Secondary benefits exist, too:

■ Easy testing—As objects expect a container to inject their collaborators (through
a constructor or setter methods), unit tests can easily set up mock collaborators
and inject them manually.

■ Flexible topographies—Letting a container manage the wiring of objects together
means that it’s easy to change implementations, even at runtime. For a standard
deployment you may want to use a mail service based on SMTP, but when you
deploy to a cloud you may have to use one based on HTTP. Both services should
implement the same interface, but you can switch between them via a little con-
figuration (rather than explicitly coding it yourself).

■ Simple Aspect-Oriented Programming (AOP)—It can be difficult to explain AOP, but
the idea is that you can wrap methods with other code that executes before and
after the method itself. This is effectively how transactional services work in
Grails: a bit of code provided by Grails starts a transaction before each service
method is called and then another bit of code commits the transaction after
the method completes. You just specify which methods on which classes should
be decorated with transactional behavior.

If you’re new to the IoC approach, you need to learn to let go and let Spring handle
the nitty-gritty of object management. If you fight it, you’ll have an unhappy devel-
opment experience. If you embrace it, you’ll learn how much simpler it can make
your life.

 How do you get Spring to manage your objects for you? None of the classes you’ve
seen so far include any references to Spring. That’s because most of it happens by con-
vention, as you see in the next section.

14.1.2 Beans by convention

When your Grails application starts up, it creates a host of Spring beans, most of which
you won’t see directly. Together, they form the backbone of your application. Perhaps
more important, all the standard artifacts in your project also become Spring beans
(controllers, tag libraries, services, and so on). This makes it easy to wire the various
components together, as you’ve already seen in the Hubbub code.

 If you remember, your PostController delegates the hard work to PostService,
and yet at no point does the controller instantiate the service. The following listing
shows the start of PostController.

Licensed to Mark Watson <nordickan@gmail.com>

383Spring fundamentals
package com.grailsinaction

class PostController {
 static scaffold = true
 ...

 def postService
 def springSecurityService

 def home() {
 if (!params.id) {
 params.id = "chuck_norris"
 }
 redirect(action: 'timeline', params: params)
 }
 ...
}

The controller’s actions work because both the controller and the service are Spring
beans. Not only does Spring instantiate the controller and service, but it also assigns
the service object to the controller’s postService property. This property assignment
is an example of what Spring calls autowiring: objects are wired together via a conven-
tion. In Grails, the default is to autowire by name, so all you need to do is declare a
property with the same name as a Spring bean.

This raises a good question: what are the names of the Spring beans in the applica-
tion? In the case of services, the bean name is the class name but with a lowercase first
letter. Hence PostService becomes postService.

 The other types of artifacts also have names, but those names are deliberately
obtuse so that you can’t automatically wire them into other beans. Controllers are the
HTTP request handlers and aren’t geared toward being used directly by other objects.
Domain classes are designed to be instantiated directly, and so on. In fact, services are
the only standard artifacts that are specifically designed for other beans to depend on.
That’s part of the reason the typical Grails application architecture consists of control-
lers delegating to services, which in turn use GORM to access the database. This is
shown in figure 14.2.

 Any named bean can be injected in this way into any other bean. We mentioned
previously that Grails sets up a bunch of beans, and we list a few of the more useful
ones in table 14.1. Of these, grailsApplication is the one you’re most likely to use. It

Listing 14.1 The start of PostController

Autowiring by type
Experienced Spring developers know that you can also autowire beans by type. Spring
assigns whatever bean matches the type of a given property (so it won’t work with
def properties!). It’s difficult to switch to this behavior for artifacts, but you’ll see
later that you can easily autowire your own beans by type if you define them yourself.
Licensed to Mark Watson <nordickan@gmail.com>

384 CHAPTER 14 Understanding Spring and transactions
provides access to information about the various artifacts in the application as well as
the Spring application context (via grailsApplication.mainContext) and the run-
time application configuration (via grailsApplication.config).

 Less commonly, you may want to use the native Hibernate API in addition to
GORM. If that’s the case, you can declare a sessionFactory property and use that.
Want to parse GSP pages yourself? Consider using the groovyPagesTemplateEngine
bean. And last but not least, the messageSource bean allows you to manually look up
the appropriate text for a given message code.

That’s only a taste of what’s available; almost every plugin adds its own beans to the
mix. You saw the springSecurityService and mailService beans used in Hubbub.
Be sure to check the documentation for every plugin you use so that you know about
any services or other types of Spring bean that they provide. They can prove remark-
ably useful.

Table 14.1 Useful Spring beans in Grails

Bean name Type Provided by

grailsApplication DefaultGrailsApplication Grails core

sessionFactory SessionFactory Hibernate
plugin

groovyPagesTemplateEngine GroovyPagesTemplateEngine Controllers
plugin

messageSource ReloadableResourceBundleMessageSource I18n plugin

Controller View

HTTP

Service

GORM/Hibernate

Database

Figure 14.2 Typical Grails application
architecture using services to
encapsulate business logic
Licensed to Mark Watson <nordickan@gmail.com>

385Spring fundamentals
 You should now understand how a Grails application hangs together via a DI
framework (Spring) and how you can easily inject services and other Spring beans
into your various artifacts. This is an important step in embracing the Spring way of
doing things. We now go a step further and show you concrete benefits of this
approach within the context of Hubbub.

14.1.3 Customizing an application at runtime

One of the biggest benefits of using Spring (other than easy database transactions,
which we cover in the next section) is that it’s easy to switch implementations of vari-
ous beans at runtime. Why would this be useful?

 Let’s say you want to deploy Hubbub to a cloud platform. We look at these in
chapter 18, but for now assume that the cloud platform you choose doesn’t allow
access to SMTP servers. That makes sending emails via the Mail plugin rather diffi-
cult, because it relies on SMTP. One option is to use an HTTP-based email service for
the cloud deployment, while using the Mail plugin’s mailService bean for local
development and any corporate deployments. The road to achieving this starts with
the application context.

THE SPRING APPLICATION CONTEXT

We mentioned the idea of an IoC container several times in this chapter, but we never
said which part of Spring is the container. It’s called the application context, and it’s
the object against which you register bean definitions and then, once it’s initialized,
you can query it for specific beans by name or by type. You can find out more about
this useful object through its API documentation.2

 Let’s make this discussion more concrete by showing you how to work with the
application context. Spin up the Grails console inside the Hubbub project and run
this simple script:

def svc = ctx.getBean("postService")
svc.createPost("nobody", "Some post")

Okay, so it throws an exception, but it’s an exception ("Invalid User Id") that only the
PostService implementation throws. You plucked your Hubbub PostService instance
directly from Spring’s IoC container rather than injecting it into a property. Also, notice
how the argument to getBean() matches the corresponding property name on Post-
Controller. That’s because you typically retrieve beans by their names.

 Most of the time, you won’t want to work directly against the application context
like this because normal DI satisfies most needs. Occasionally it’s useful to get a
direct reference to the application context, in which case you can use one of these
standard techniques:

2 For more on the ApplicationContext API, see http://static.springsource.org/spring/docs/3.2.x/javadoc-api/
org/springframework/context/ApplicationContext.html.
Licensed to Mark Watson <nordickan@gmail.com>

http://static.springsource.org/spring/docs/3.2.x/javadoc-api/org/springframework/context/ApplicationContext.html
http://static.springsource.org/spring/docs/3.2.x/javadoc-api/org/springframework/context/ApplicationContext.html

386 CHAPTER 14 Understanding Spring and transactions
■ Add a grailsApplication property to your bean and access its mainContext
property

■ Get a reference from the servlet context:

import org.springframework.context.ApplicationContext
import org.springframework.web.context.support.WebApplicationContextUtils
ApplicationContext appCtx =
 WebApplicationContextUtils.getWebApplicationContext(servletContext)

■ Fetch the Grails application from a static holder class:

import org.codehaus.groovy.grails.commons.ApplicationHolder
def grailsApp = ApplicationHolder.application
def appCtx = grailsApp.mainContext

These are in order of preference. The static holder class is less than ideal because static
references can be difficult for the JVM to clean up. Alas, it’s sometimes the only way.

 Going back to the idea of using an HTTP-based email service for cloud deploy-
ments, how do you register a different mailService implementation? And equally
important, how do you ensure that your custom mail service implementation is only
used if the application is deployed to the cloud? The answer lies in a special file: grails-
app/conf/resources.groovy.

DEFINING YOUR OWN BEANS

You can turn any of the classes in your application, even those provided in JARs, into
Spring beans. That doesn’t necessarily mean you should, but it makes sense to do it
for singletons and any objects that are collaborators of other objects. To demonstrate
how, you start with a couple of dummy classes for sending email via HTTP, both of
which go into the directory src/groovy/com/grailsinaction/mail:

package com.grailsinaction.mail

class HttpMailService {
 HttpMailClient client

 def sendMail(Closure mailDetails) {
 ...
 }
}

and

package com.grailsinaction.mail

class HttpMailClient {
 String emailServiceUrl

 void send(MailDetails details) {
 ...
 }
}

The exact details of these classes don’t matter for this discussion, although you can
find real implementations in the source code for this chapter on GitHub. The key

Extracts addresses and mail body
from closure, populates MailDetails
instance, and then passes to client

Converts details into HTTP
request that it sends to
emailServiceUrl
Licensed to Mark Watson <nordickan@gmail.com>

387Spring fundamentals
point is how you replace the standard mailService bean provided by the Mail plugin
with your HttpMailService implementation. Let’s do that in the following listing.
Open up grails-app/conf/spring/resources.groovy and add the following.

import com.grailsinaction.mail.*

beans = {
 mailClient(HttpMailClient) {
 emailServiceUrl = "http://my.server/mail"
 }

 mailService(HttpMailService) {
 client = ref("mailClient")
 }
}

Your own mailService bean overrides the mailService bean provided by the Mail
plugin. Now, any time your application calls the sendMail() method, the email is sent
by your dummy HTTP mail service.

 You aren’t done yet. Remember that you only want to use the HTTP mail service
for cloud deployments. Fortunately, resources.groovy is a Groovy file, so you can
put a condition in there. Imagine that you can determine that the application has
been deployed to the cloud by checking for the existence of a cloud.deployed sys-
tem property:

...
beans = {
 if (System.getProperty("cloud.deployed")) {
 mailClient(HttpMailClient) { ... }

 mailService(HttpMailService) { ... }
 }
}

We hope you’re impressed! This is a great way to change the topography of your appli-
cation at runtime based on whether you deploy to the cloud, run user acceptance
tests, or do anything that doesn’t fit with the standard setup.

Listing 14.2 Using the HttpMailService implementation

Load order
Both resources.groovy and resources.xml are loaded after all the core Grails and
plugin beans are defined. You can refer to core and plugin beans from your resources
files, but plugins can’t see the beans you define.

More important, you can override beans that have already been defined by a plugin.
If you define a bean named messageSource, it will be used instead of the bean
defined by the i18n plugin.

Creates bean with name
mailClient of type
HttpMailClient

Initializes bean’s
emailServiceUrl property

Wires the mailClient bean into
mailService bean by name; this is
manual, as opposed to autowiring
Licensed to Mark Watson <nordickan@gmail.com>

388 CHAPTER 14 Understanding Spring and transactions
This example with the HTTP email service also provides an opportunity to show off
further runtime configuration options. Not only can you set the value of the email-
ServiceUrl property on HttpMailClient in resources.groovy, but you can also do it
from Config.groovy!

BEAN PROPERTY OVERRIDES

First of all, why might it be useful to put bean configuration into Config.groovy? That
file is packaged with the application in the same way as resources.groovy, so there
doesn’t seem to be an immediate advantage. Well, imagine that you’re using a Grails
plugin that defines a set of beans and you want to configure a property on one of
those beans, perhaps a URL or a simple flag. If the plugin doesn’t expose a specific
configuration option for that property, your only option is to use the bean property
override syntax.

 Let’s say you want to change the URL used by the mailClient bean from within
Config.groovy. Add a beans block containing the bean name and the properties you
want to set, such as:

beans {
 mailClient {
 emailServiceUrl = "http://my.other.server/mail2"
 }
 ...
}

And you can use the standard environment blocks and if conditions with this tech-
nique to provide different values at runtime based on certain criteria. Bean property
overrides are particularly effective when used in combination with the externalized
configuration we present in chapter 17 (under per server configuration), because
then you can have different values for different deployments without having to
repackage the WAR file.

 There’s far more to Spring and the Grails integration of Spring than we can possi-
bly deal with in this chapter, so it’s worth learning more through books such as Spring
in Action (Manning Publications). The fourth edition, by Craig Walls, will be pub-
lished in 2014. The Grails user guide also gives solid coverage of the syntax for
resources.groovy, so once you fully understand the underlying concepts, you’ll easily
work out how to implement what you need. We have also included a mapping
between Spring’s XML format and Grails’s resources.groovy syntax in appendix C.

 We’ve shown you the IoC aspects of Spring and how powerful they can be, but
that’s not all Spring provides. One of the most important features it gives you is simple
database transactions, which we look at next.

14.2 Using transactions with GORM
In particular fields, transactions are a big deal. Microsoft created Microsoft Trans-
action Server (MTS) and then Component Services (COM+) to make developing
transaction-based applications easier than they used to be. Enterprise JavaBeans (EJBs)

Bean name block contains
the property overrides.

You can override multiple
beans in this block.
Licensed to Mark Watson <nordickan@gmail.com>

389Using transactions with GORM
and their servers were also designed with transactions in mind. What are transactions?
Let’s start with a definition:

DEFINITION A transaction is a unit of work in which either everything is done
or none of it. It isn’t possible for only part of the work to have been done
once the transaction is complete.

As a practical example, consider a user who’s transferring funds between accounts.
This might involve a credit to one database record and a debit to another. A transac-
tion ensures that the two updates either both succeed or both fail. You can’t have an
inconsistent state where one account has been credited but the other hasn’t been
debited. That would spell trouble for the bank. Transactions are therefore a way of
ensuring data integrity, hence the acronym summarizing their behavior: Atomicity,
Consistency, Isolation, Durability (ACID).

 Transactions are a useful tool for many types of applications because applications are
often written with an implicit assumption that the data they store is valid. If database
updates only partially complete, that assumption breaks down and the applications fail.
Without further ado, let’s look at how to use transactions within a Grails application.

14.2.1 Easy transactions with services

To investigate the properties of transactions, we have to add transactional behavior to
Hubbub. It’s not naturally a transaction-oriented application, but we know the feature
we need to demonstrate transactions.

 Let’s say users can reply to others’ posts by including the string @<user ID> in their
own message. You’d like to keep track of these replies and to whom they’re directed,
so you’re going to introduce a new domain class, Reply:

package com.grailsinaction

class Reply {
 Post post
 User inReplyTo
}

Next, you want to make sure that every time a user posts a reply, a corresponding
Reply instance is created. There’s a constraint though: if Hubbub doesn’t recognize
the user ID specified in the message, it shouldn’t even commit that post to the data-
base. You could check the user ID before saving the post, but that doesn’t help in dem-
onstrating transactions. Instead, you first save the message and then check the user ID.
You’ll understand why soon.

NOTE To see the correct behavior, you should use a database that supports
transactions, such as PostgreSQL, H2, or MySQL with the InnoDB engine.
Nontransactional databases, such as MySQL with MyISAM tables, won’t work
as expected.
Licensed to Mark Watson <nordickan@gmail.com>

390 CHAPTER 14 Understanding Spring and transactions
Where do you add the code for all this? It’s time to dust off your old friend Post-
Service. The beefed-up implementation, in which you create replies, is shown in the
following listing.

package com.grailsinaction
...
@Transactional
class PostService {
 Post createPost(String loginId, String content) {
 def user = User.findByLoginId(loginId)
 if (user) {
 def post = new Post(content: content)
 user.addToPosts(post)
 if (!post.validate() || !user.save(flush: true)) {
 throw new PostException(
 message: "Invalid or empty post", post: post)
 }
 def m = content =~ /@(\w+)/
 if (m) {
 def targetUser = User.findByLoginId(m[0][1])
 if (targetUser) {
 new Reply(post: post, inReplyTo: targetUser).save()
 return post
 }
 else {
 throw new PostException(
 message: "Reply-to user not found", post: post)
 }
 }
 }
 throw new PostException(message: "Invalid User Id")
 }
}

As you can see, the post service saves the new post, looks for a reply-to user ID, and
checks that the user exists. If so, a new Reply is saved; otherwise an exception is
thrown. With the service now ready for prime time, what do you need to do to make it
transactional? Nothing!

 The @Transactional annotation on the class ensures that all public methods in a
service are transactional. If you post a message containing @dilbert (assuming Dil-
bert isn’t a user in Hubbub), not only would you see an exception trace in the
browser, but you also discover that the post hasn’t been saved. Why not try it out and
see for yourself? Run the application and then try posting these two messages:

@glen hi there mate!
@dilbert do you really exist?

The first appears in your list of posts, but the second doesn’t—as you expected. This
raises an interesting question: how does Grails know that the transaction should be rolled

Listing 14.3 The reply-aware post service

Required for
consistent
behavior;
(explained in
next section)

Finds
“@ ... ”
in post

Checks target
user exists
Licensed to Mark Watson <nordickan@gmail.com>

391Using transactions with GORM
back (not committed)? Because the method throws an exception. Grails (or more accu-
rately, Spring) turns any runtime exception it catches into a failed transaction.

Let’s now add a dynamic scaffolding controller for the Reply domain class so you can
check whether the replies are being saved:

grails create-scaffold-controller com.grailsinaction.Reply

You can then load the associated “list” view to verify the existence or absence of the
replies. You’re now in a position to demonstrate to yourself the more surprising
behavior related to transactions in Grails.

 One common problem that people encounter is related to exception handling. To
see what we mean, change the line

throw new PostException(message: "Reply-to user not found", ...)

in PostService.createPost() to read

throw new Exception("Reply-to user not found")

All you changed was the exception type, but now when you try to post the @dilbert
message, the new post appears in the list (after a refresh)! Why did that happen?

 The default behavior for Spring mimics that of EJB containers: transactions are
rolled back automatically only for runtime exceptions and errors. It expects you to
handle checked exceptions yourself. That’s because Java forces you to deal with
checked exceptions (or declare them on the method). Groovy, on the other hand, lets
you treat checked exceptions as if they are runtime exceptions, so it’s not immediately
obvious why transactions aren’t rolling back. That can lead to wasted time if you’re
not aware of the issue.

Under the hood
The @Transactional annotation used by PostService triggers an AST transforma-
tion that adds code to start a transaction at the beginning of the method and code
to commit or roll back the transaction at the end.

If you don’t use Grails’s @Transactional annotation, service methods are still
transactional by default but are implemented using Spring’s AOP mechanism: each
service is wrapped by a proxy (via TransactionProxyFactoryBean). When you
have a reference to a service, it’s in fact a reference to that proxy. The same hap-
pens if you use Spring’s @Transactional annotation (which is different from the
Grails one).

Transactions themselves are controlled by a transactionManager bean that’s an
instance of Spring’s HibernateTransactionManager by default. You can override
this in one of the resources.* files if you need a special transaction manager or cus-
tom settings.
Licensed to Mark Watson <nordickan@gmail.com>

392 CHAPTER 14 Understanding Spring and transactions
 What if you don’t want your service to have transactional behavior? Remove the
@Transactional annotation from the class and set the static transactional property
to false:

class PostService {
 static transactional = false
 ...
}

To see what effect this has, make sure that you revert the previous change (the service
method should throw a PostException again rather than an Exception), and then
start the application. Try to post the @dilbert message again. Notice any difference?
The message appears in the list! Even though Dilbert isn’t a recognized user ID (and a
runtime exception is thrown), the post is saved to the database. You no longer have
transactional behavior.

Now that you’ve dealt with the basics of transactions, let’s go back to listing 14.3 and
find out why save(flush: true) is required. It’s all down to how transactions and the
underlying Hibernate session interact.

14.2.2 Transactions, the session, and me

The way Hibernate works can be confusing for newcomers. It’s a powerful library with
a fair bit of corresponding complexity. When you add transactions into the mix, it’s
time to reach for the aspirin. Part of the confusion comes when the Hibernate session
appears to exhibit transactional behavior. If an exception is thrown after a save(), the
data may not be persisted to the database. But notice the use of the word “may”: you
have no guarantees and, hence, it’s most definitely not transactional.

 The Hibernate session is, in reality, a special type of cache that sits in front of the
database. That’s why it’s sometimes also known as the first-level cache (and now you
know why the second-level cache is so called). When you save a domain instance, all
you’re doing is updating this in-memory cache. The data isn’t committed to the data-
base until the cache and database are synchronized, a process known as flushing in
Hibernate. You can see all this in figure 14.3.

Testing transactions
Integration tests run inside a transaction by default, which is then rolled back after
each test finishes. This ensures that data changes don’t affect other tests, but it
means you can’t check whether or not transactions are rolled back. If you want to
test transactional behavior, you need to add a static transactional property to
your test:

static transactional = false

The alternative is to use functional tests for this job.
Licensed to Mark Watson <nordickan@gmail.com>

393Using transactions with GORM
If an exception is thrown before the flush happens, none of the changes to the
domain instances in the session are persisted to the database. The trouble is, you
don’t know exactly when a flush will occur unless you explicitly force it, for example,
through the flush: true argument to save() and delete().

 When is this session thing created? How long is it kept alive? How are objects
added to it? These are important questions and understanding the answers will help
you when your GORM usage goes beyond the basics—a common occurrence.

 In answer to the first two questions, the session is created at the start of a request
and kept alive until the response is finished. That said, you can’t save or modify
domain objects once the corresponding controller action has finished because at that
moment the session switches to a read-only mode. If you’re interested in how this all
happens, check out the sidebar.

That leaves the third question: how are objects added to the session? The most obvi-
ous way is through the save() method. In addition, any object returned in a query or
via the get() method is also automatically added to the session. That means you don’t
have to explicitly save an object to persist its changes, as shown in figure 14.4.

 The main thing to be aware of is that making changes to the database is a two-stage
process: you update your domain objects (or save new ones), then flush the session.

Under the hood
Grails uses a custom version of a Spring web interceptor to ensure that a session is
open before an action executes. The Spring class is OpenSessionInViewIntercep-
tor, but Grails modifies it slightly by changing the flush mode of the session to man-
ual after an action returns but before the view is rendered. This allows views to
access lazy-loaded collections and relationships, but it prevents them from making
any changes that will be automatically committed to the database.

Database

Post

Reply

Session

save()

save()

flush

Figure 14.3 The Hibernate
session is an in-memory
cache that stores data
changes locally and then
persists them to the
database when it’s flushed.
Licensed to Mark Watson <nordickan@gmail.com>

394 CHAPTER 14 Understanding Spring and transactions
The next question is how do transactions fit into this model? Keep in mind the follow-
ing key points:

1 Transactions operate at the database level.
2 A flush isn’t the same as a transaction commit.
3 A transaction creates a new session for the life of that transaction unless one

already exists.
4 Committing a transaction forces a flush of the session.

These properties make transactions easy to use because the behavior is consistent. You
don’t have to worry about whether a Hibernate session exists because a transaction
always creates one. You don’t have to worry about when changes are persisted to the
database because it’s always at the point when the transaction is committed. Transac-
tions are particularly useful if you start your own threads because they don’t have a ses-
sion immediately available to them.

WARNING When a transaction flushes the session, all the changes associated
with that session get persisted to the database, including any that were made
before the start of the transaction. We recommend that you only ever
change or save domain objects within transactions to ensure consistent and
expected behavior.

One question that might be bugging you at this point is what happens when you have
transactions within a transaction? Let’s say that our post service (in transaction mode)
calls another transactional service method. Does the second method start its own trans-
action? Does it have any impact on the original transaction? The answer is that nested
transactions join their parent by default, so there’s only ever one transaction in prog-
ress (the parent). This behavior is configurable.

 There’s no doubt that services are a convenient way to work with transactions
and the benefits we described in this section help explain why they form part of the

Session

Post DB
Post.get()

Post
Modify

properties
DB

flush

Changes to the Post

instance are persisted here.

Figure 14.4 Changes
to objects in the session
are automatically
persisted on a flush,
even without a save().
Licensed to Mark Watson <nordickan@gmail.com>

395Using transactions with GORM
standard Grails application architecture. That doesn’t mean there aren’t other valid
architectures you might want to use, and there may be cases where you need finer-
grained control over transaction boundaries and how child transactions are handled.
We finish this section with a quick look at alternative techniques for using transactions
in a Grails application.

14.2.3 Fine-grained transactions

When might you want more control over what goes into a transaction? One possibility
is that you may want to update the database from a controller directly, because that
particular change only happens in that one place. Or perhaps you want to execute
multiple transactions within a single service method.

 Let’s say you want to move the post creation code back into the controller, but you
still want it to run in a transaction. This isn’t recommended practice, but we do it for
demonstration. You can either apply the @Transactional annotation to the action or
use the withTransaction() static method that’s available on all domain classes. You
can see the resulting code for the latter approach in the following listing. For the sake
of brevity, we removed part of the variable checks.

import org.springframework.transaction.TransactionStatus
class PostController {
 ...
 def addPostAjax(String content) {
 Post.withTransaction { TransactionStatus status ->
 def user = springSecurityService.currentUser
 user.addToPosts(content: content)
 user.save()
 def m = content =~ /@(\w+)/
 if (m) {
 def targetUser = User.findByLoginId(m[0][1])
 if (targetUser) {
 new Reply(post: post, inReplyTo: targetUser).save()
 }
 else {
 status.setRollbackOnly()
 }
 }
 }
 ...
 }
 ...
}

Although we still recommend that you use a transactional service instead, this neatly
demonstrates how you can quickly add a transaction to a block of code. The key is the
withTransaction() method, which accepts a closure as an argument. Everything
inside that closure is run within a transaction. An additional benefit of this approach

Listing 14.4 Using withTransaction() for fine-grained transactions

Starts new
transaction,
whose boundaries
are start and end
of closure

Rolls back changes
without throwing
exception
Licensed to Mark Watson <nordickan@gmail.com>

396 CHAPTER 14 Understanding Spring and transactions
is that you have access to the Spring TransactionStatus instance, which allows you to
manually roll back the transaction without throwing an exception.

On the other hand, the withTransaction() method doesn’t allow you to control how
the transaction behaves in relation to parent or child transactions. For that, you can
use Grails’s @Transactional annotation. This can be attached to any method of any
class (such as a service). Here’s a modified version of PostService that disables the
standard transactional behavior and uses the annotation instead:

package com.grailsinaction

import grails.transaction.Transactional

class PostService {
 static transactional = false

 @Transactional(rollbackFor=Exception)
 Post createPost(String loginId, String content) {
 ...
 }
}

For versions of Grails prior to 2.3, you can use Spring’s @Transactional annotation
instead, which is in the org.springframework.transaction.annotation package.

 You can also use the annotation to control the transaction isolation level and prop-
agation semantics for advanced use cases, although they’re rarely needed. The only
thing you need to be aware of if you use the Spring annotation (as opposed to the
Grails one) is that calling transactional methods from the same class effectively disables
the transaction. To show what we mean, look at the following listing.

import org.springframework.transaction.annotation.Transactional

class MyService {
 static transactional = false

 void nonTransactionalMethod() {
 transactionalMethod()
 }

 @Transactional
 void transactionalMethod() {

Which domain class for withTransaction()?
One thing that might puzzle you is why we call withTransaction() on the Post
domain class rather than User. In fact, it doesn’t matter which domain class is
used—the type has no effect. You could even use Tag, which isn’t used within the
transaction block. It’s best to use a domain class relevant to the code in the trans-
action to avoid unnecessary confusion.

Listing 14.5 Disabling a transaction

Disables standard
Grails service
transactions

Configures transaction for
createPost() that rolls back
on checked as well as
runtime exceptions

No transaction for
this method …

… so this call doesn’t run
in a transaction.
Licensed to Mark Watson <nordickan@gmail.com>

397Summary and best practices
 ...
 }
}

This unusual behavior—a method marked as @Transactional that doesn’t run in a
transaction—only happens when a nontransactional method calls a transactional one
within the same class. If transactionalMethod() were called from a different object,
there would be no problem. It’s one of those things to be aware of and is related to
how Spring implements transactions.

 Transactions are important to many applications, and it’s great that Grails makes
them easy to use. Even better, you always have other options if the defaults don’t meet
your needs. We gave you a peek under the covers of the Hibernate session and how it
interoperates with transactions because we think that knowledge is important when
diagnosing persistence problems and getting the persistence to work the way you
need it to.

14.3 Summary and best practices
As you saw, Spring is a fundamental part of Grails, and although you can happily
develop simple applications without ever being aware of its existence, you should take
advantage of it as your application grows. Fortunately, this is easily done with services
and the automatic DI that Grails provides.

 When you start using Java libraries and integrating your application with other Java
systems, you find that services don’t help. For the integration to work well, you have to
define your own beans using the resources.xml and resources.groovy files, so that they
can be easily slotted into the various Grails artifacts. If you do this type of integration,
we recommend you become more familiar with Spring itself, either through the
online documentation or a book. The framework contains far more than the classes
related to the core IoC container.

 Grails transaction support is one example of other features Spring brings to the
table, and you saw how easy they are to use. If you write an application that performs
updates to a database, you ought to familiarize yourself with transactions and the
effects they have on reliably saving and modifying domain objects.

 What recommendations do we make for your projects?

■ Put your business logic into services. Not only does this conform to the separation
of concerns design principle, resulting in code that’s easier to understand,
maintain, and test, but you can also easily reuse the functionality for web service
gateways, remoting interfaces, and the like.

■ Make important singleton objects Spring beans. Lifecycle management and DI mean
that any singleton objects benefit hugely from becoming Spring beans. Use the
resources.* files to define beans for classes under the src directory or in JAR files.

■ Prefer Spring DSL. Whether or not you’re a fan of XML, the advantages of defin-
ing Spring beans in code are massive, with support for conditions, loops, and
environment-specific definitions.
Licensed to Mark Watson <nordickan@gmail.com>

398 CHAPTER 14 Understanding Spring and transactions
■ Update the database within a transaction. Making changes to the database outside
of a transaction means that you have to be aware of how the Hibernate session
operates, or you can easily end up with inconsistent data. Transactions are so
easy to set up, why not use them?

Note that there’s an overhead associated with transactions, so if you need to
perform a high volume of updates, you may need to come up with a different
solution. This is specialized, though, so it’s unlikely to affect you.

With your application structured along these guidelines, you’ll find that further devel-
opment, testing, and maintenance become easier than you have a right to expect.

 In the next chapter, which begins the final part of this book, you’ll see how Spring
makes it easy to integrate messaging into your applications. This is important as more
and more projects rediscover messaging as a way to scale applications and break them
into manageable, decoupled parts.
Licensed to Mark Watson <nordickan@gmail.com>

Part 4

Advanced Grails

In part 4, we’ll introduce some of the most advanced features that Grails has
to offer. You’ll learn about performance tuning, legacy integration, database
transactions, custom build processes, and even how to develop and publish your
own plugins.

 Chapter 15 walks you through events, messaging, and scheduling tasks. We’ll
work with Platform Core’s lightweight messaging and JMS messaging. Then we’ll
implement queues and topics, schedule jobs using Quartz and cron, and use
Quartz for advanced scheduling tasks.

 In chapter 16, we build on your GORM experience with relational data by
looking deeper into how GORM supports nonrelational data sources such as the
emerging NoSQL movement. You will see an example of how to integrate Grails
with key-value, document-oriented, and even graph datasets.

 Build infrastructure is an important part of professional software develop-
ment, and chapter 17 takes you deep inside the Grails build system. You start by
learning how to add your own Grails commands. Then we teach you how to inte-
grate your Grails build with the most commonly used build tools in the Java
space. We also give you strategies for handling data migration as your applica-
tion grows, demonstrating how third-party plugins can help.

 Chapter 18 explains how the cloud is becoming an important part of all of our
deployment futures, so we’ll survey all the popular cloud deployment options for
Grails apps. We’ll then focus on Cloud Foundry, a very popular Grails cloud deploy-
ment service.

 By the end of part 4, you’ll have taken your Grails skills to a whole new level.
You’ll be ready to write the next uber-scalable, world-changing Web 2.0 social
networking application. Remember us when you hit the big time.
Licensed to Mark Watson <nordickan@gmail.com>

Licensed to Mark Watson <nordickan@gmail.com>

Understanding events,
messaging, and scheduling
In chapter 14, you investigated how Spring integrates with Grails, including the
trickier uses of transactions. In this chapter, we keep you in that enterprise head-
space by looking at sending intraapplication messages. In particular, you examine
how different components in an application can communicate internally while dif-
ferent events in the application’s lifecycle unfold. One of the most popular ways of
doing that is via messaging queues, an architecture sometimes referred to as mes-
sage-oriented middleware (MOM).

 If you’ve been around enterprise circles for a while, you’ve probably used or
heard of MOM architectures. You may think it’s a heavyweight old-school technol-
ogy that won’t die. Nothing could be further from the truth. In fact, with the birth
of service-oriented architectures (SOAs), Enterprise Service Bus (ESB), and the rise

This chapter covers
■ Working with Platform Core’s lightweight

messaging
■ Working with JMS messaging
■ Implementing queues and topics
■ Scheduling jobs using Quartz and cron
■ Using Quartz for advanced scheduling tasks
401

Licensed to Mark Watson <nordickan@gmail.com>

402 CHAPTER 15 Understanding events, messaging, and scheduling
of massive social networking sites, you’re experiencing an explosion of interest in mes-
saging architectures.

 You may wonder why these styles of architecture have had such a resurgence in
recent years. From Twitter to Facebook to LinkedIn, if you look behind any of
today’s big web applications, you find that they’re backed by an extensive messaging
infrastructure. These messaging architectures are prevalent at high-volume sites for
three reasons:

■ They lead to loosely coupled architectures, so you can replace parts of your
infrastructure without any client downtime.

■ They’re highly scalable, so you can add more components to process work on
your queue.

■ They offer a reliable transport that ensures your messages and transactions
aren’t lost in the system.

In this chapter, you add a messaging system to Hubbub so you can create a link
between Hubbub and Jabber, a popular instant messaging (IM) system. After you’re
done, you can post messages to your Hubbub account via your IM client; you’ll also
bridge the other way so you’ll be notified of your friends’ Hubbub posts in your IM cli-
ent. Along the way, you learn the ins and outs of all the common messaging scenarios
and get ideas how to apply them to your current projects.

 The Java Message Service (JMS) API is a popular approach to asynchronous mes-
saging, and you’ll get a close-up look at it in later sections, but the new Grails Platform
Core infrastructure also offers a compelling and lightweight solution for intraapplica-
tion messaging. In particular, if you’re after lightweight application eventing architec-
ture, Platform Core offers an incredible array of features implemented in a typical
Grails convention-over-configuration paradigm. For these reasons, we’ll begin with an
introduction to features of the Platform Core infrastructure; we’ll also demonstrate
the kind of messaging applications that make it an ideal choice.

 But messaging isn’t the only asynchronous game in town. In many situations, a
lightweight scheduling solution is all you need. Kicking off a daily backup? Sending
out daily digest emails? Regenerating your full-text index? Every developer needs to
deal with these kinds of scheduled events occasionally, and Grails offers a robust and
easily configurable scheduler based on the popular Quartz framework. You’ll look at
the different ways you can schedule jobs: how to write daily-digest-type jobs, how to
turn them off and on while your application is running, and how to manage schedul-
ing in clustered environments.

 You’ll get into the details of scheduling later in the chapter. For now, sink your
teeth into Platform Core.

15.1 Lightweight messaging with Platform Core
One of the most exciting new features in Grails v2.x is the introduction of the Plat-
form Core infrastructure developed by Marc Palmer and Stephane Maldini. Designed
Licensed to Mark Watson <nordickan@gmail.com>

403Lightweight messaging with Platform Core
as a set of shared services that applications and plugins can use, this plugin includes
common application infrastructure features such as a menu navigation API, common
security API, configuration API, and, our focus for the next section, a new lightweight
message API called the Events API.

 The Events API is a simple, lightweight, and extremely flexible set of services for
generating and consuming application events in both a synchronous and asynchro-
nous manner. But why is that handy?

 Well, one of the original intents of the Platform Core plugin was to provide a way
for plugins to notify both the application and other plugins that a particular event
occurred. Think of a Grails Security plugin. When the plugin logs the user in or out of
the application, other services and plugins (such as an Audit plugin) may also want to
be notified that the event occurred so the user can log out. The UI may also like to lis-
ten in on this event so it can notify any followers of the user that they are online or
offline. The Events API provides a perfect way to implement this kind of logic while
keeping all the parts of the system loosely coupled.

 In this scenario, the login process raises or fires an event, while the other plugins
and services declare a listener to observe any events generated by the app. Neither
sender nor listener is aware of the other, which makes it extensible for situations that
you never imagined when you first raised the event.

 Enough theory about event-driven architecture, let’s implement eventing! You’ll
implement a basic security audit service, then enhance it to take you through more
sophisticated uses of events.

15.1.1 Installing Platform Core

The first step in your journey is to install the Platform Core library. Add the latest Plat-
form Core plugin to your /grails-app/conf/BuildConfig.groovy to bring the plugin
into your application:

plugins {
 ...
 compile ":platform-core:1.0.RC5"
 ...
}

After the plugin is installed and running, it automatically enhances all your control-
lers, domain classes, and services with a new event method that you can use for raising
events. Let’s make the magic happen.

15.1.2 Sending off an event

The most common approach for sending off an event is known as fire-and-forget.
With this strategy, you generate or raise an event, but you don’t care if anyone is lis-
tening, or you aren’t expecting any kind of return value. That’s certainly the case
here, so let’s augment your login listener to generate your first event, as shown in
the following listing.
Licensed to Mark Watson <nordickan@gmail.com>

404 CHAPTER 15 Understanding events, messaging, and scheduling
class PostService {
 static transactional = true

 Post createPost(String loginId, String content) {
 def user = User.findByLoginId(loginId)
 if (user) {
 def post = new Post(content: content)
 user.addToPosts(post)

 if (post.validate() && user.save()) {
 event 'onNewPost', post
 return post
 }
 else {
 throw new PostException(
 ➥ message: "Invalid or empty post", post: post)
 }
 }

 throw new PostException(message: "Invalid login ID")
 }
}

In this example, you take your new Post and place it on the event bus B using topic
name onNewPost. With that one new line in place, the Events API generates a new
event asynchronously for each new Post that passes validation.

With your onNewPost event topic now sitting on the event bus, it’s time to implement
your new AuditService to listen for your messages.

Listing 15.1 Raising an event from PostService

Map-style events
The most common format for raising an event is

event topicName, message

This is the format used in the previous example. But the plugin offers an alternative
syntax with a richer set of map-style configuration options that developers may find
more flexible:

event topic: 'onNewPost', data: [post: post,
 timestamp: new Date(), source: this.class]

Using this syntax requires more work at the receiving end but does give you a higher
level of flexibility with the content of your generated events. We’d tend toward wrap-
ping the data portion in its own self-describing event object rather than go free-style
with a map, but it’s good to know you have the freedom to innovate.

Raises
new event

 b
Licensed to Mark Watson <nordickan@gmail.com>

405Lightweight messaging with Platform Core
15.1.3 Listening for an event

As you might anticipate, Platform Core offers convenient conventions to make listen-
ing a breeze, as shown in the following listing.

package com.grailsinaction

class AuditService {

 static transactional = false

 @grails.events.Listener
 def onNewPost(Post newPost){
 log.error "New Post from:
 ➥ ${newPost.user.loginId} : ${newPost.shortContent}"
 }

}

To listen for an event, you first annotate a method with the @grails.events.Listener
annotation c. You then give the method a name that matches the event’s topic and
provide an argument that takes the event’s message type d. This code takes advan-
tage of Platform Core’s convention-over-configuration mechanism for event handing.
By declaring a method with the same name as the event topic you raise (onNewPost)
and annotating it as a listener, you’re automatically invoked every time an event of
that type is raised.

 You mark your new audit service nontransactional B so you don’t get Hibernate in
a tangle with your asynchronous work on the incoming objects.

 To name your event handlers something other than the event topic, use a configu-
ration option on the annotation. The following method is analogous to the previous
example but uses a custom method name:

@grails.events.Listener(topic = 'onNewPost')
def myCustomPostEventMethodName(Post newPost){
 // your logic here
}

15.1.4 Using namespaces to integrate GORM and events

You have your audit service up and running and auditing all your Post events because
you made changes to your PostService. But what if you want to use your audit service
to monitor GORM-related activities, such as creating, updating, or deleting domain
objects in the system, without making many changes to your existing services?

 You could certainly use the standard GORM event support built into Grails, per-
haps by wiring up a custom event-listener to domain class changes through a Spring
bean (we talk about such magic in the Advanced GORM kung fu, chapter 19 [available
online as bonus content]), but when it comes to GORM, it turns out that the Platform
Core plugin already performs much of that heavy lifting by exposing all existing GORM

Listing 15.2 Listening to an event via conventions in an AuditService

Ensures no participation
in existing transaction

 b

Marks method as
Eventbus listener

 c

Matches method name
and type to raised event
topic and content

 d
Licensed to Mark Watson <nordickan@gmail.com>

406 CHAPTER 15 Understanding events, messaging, and scheduling
events on the Eventbus. To make sure all those different events don’t clash with any
existing events in your application, the plugin introduces the notion of a namespace.

 Namespaces give you a way to qualify the events that you raise or listen to so they
don’t clash with any application or plugin events of the same name. In the case of
GORM, the plugin uses a custom GORM namespace to make light work of listening to
any of the events that might be interesting.

 Let’s imagine you want to audit any changes to your User or Post objects. In the
following listing, you enhance your audit service to listen to any GORM save or update
events that occur on your User and Post objects, but only for changes made by a
logged-in user (so you wrap your calls in a test for isLoggedIn()).

package com.grailsinaction

class AuditService {

 static transactional = false

 def springSecurityService

 @grails.events.Listener
 def onNewPost(Post newPost){
 log.error "New Post from: ${newPost.user.loginId} :

${newPost.shortContent}"
 }

 @grails.events.Listener(namespace = 'gorm')
 void onSaveOrUpdate(User user) {
 if (springSecurityService.isLoggedIn()) {
 log.error "Changes made to account ${user.loginId}
 ➥ by ${springSecurityService.currentUser}"
 }
 }

 @grails.events.Listener(namespace = 'gorm')
 void onSaveOrUpdate(Post post) {
 if (springSecurityService.isLoggedIn()) {
 log.error "New Post Created: ${post?.content} by
 ➥ ${springSecurityService.currentUser}"
 }
 }
}

The Platform Core plugin gives you conventions for all the common persistence event
types that GORM exposes (beforeInsert, beforeUpdate, beforeDelete, afterInsert,
etc.). If you follow conventions and name your method after the exposed event name,
then take an argument of the type of domain class you are interested in; the plugin
makes sure you’re called at the appropriate time.

 If the standard convention name doesn’t suit, you can customize the name by tak-
ing advantage of the event topic name:

Listing 15.3 Using the GORM namespace to listen to domain class changes

Listens on
specific
GORM
namespace

 b
Licensed to Mark Watson <nordickan@gmail.com>

407Lightweight messaging with Platform Core
@grails.events.Listener(namespace = 'gorm', topic = 'onSaveOrUpdate')
void logAllAccountChanges(User user) {
 log.info "Changes made to account- ${user.name} by
 ➥ ${springSecurityService.currentUser}"
}

15.1.5 Aggressive listening: using wildcards

We gave you the tools to listen in on a single event, but what happens when you want
to listen more aggressively (for example, to every event that occurs)? The Platform
Core has your back! You can listen to the event message itself then pull it apart for all
the gory details. Let’s get a little wild with your AuditService listener and use Event-
Message to catch everything:

@Listener(topic = '*', namespace = 'gorm')
void beforeEachGormEvent(EventMessage message) {
 log.info "gorm event $message.event on domain $message.data.class"
}

To listen to only particular events, tighten up the wildcards, for example

topic="before*"

listens to only before events.

15.1.6 Integrating Spring Security using the grailsEvents bean

The Platform Core plugin automatically decorates your controllers, domain classes,
and services with an event bean for raising events. But what do you do when you’re liv-
ing outside those constraints and need to raise an event?

 Fortunately, the plugin exposes a Spring bean, grailsEvents, which you can access
through the Grails applicationContext or by configuring resources.groovy (see chap-
ter 14 for more information). You’ll take advantage of the applicationContext to
make the Spring Security plugin generate events on user login.

Rejecting GORM events
Depending on the GORM event type that you listen to (for example, beforeInsert,
beforeUpdate), you can use return types to reject the update. If you wanted the
audit service to reject any changes made by the admin user, you could use the fol-
lowing code:

@grails.events.Listener(namespace = 'gorm')
boolean beforeUpdate(User user) {
 if (springSecurityService.principal.username.equals("admin")) {
 return false // veto admin changes
 }
 // rest of your code...
}

Remember that adding lots of GORM custom event listeners can complicate your
code paths during debugging, so use with discretion.
Licensed to Mark Watson <nordickan@gmail.com>

408 CHAPTER 15 Understanding events, messaging, and scheduling

g

 The Spring security plugin has its own internal events that you can listen in on by
configuring /grails-app/conf/Config.groovy. Let’s hook into the Spring Security
events and use the grailsEvents bean to raise an event on the bus:

grails.plugins.springsecurity.useSecurityEventListener = true
grails.plugins.springsecurity.onAuthenticationSuccessEvent =
{ evt, appCtx ->
 appCtx.grailsEvents.event 'security', 'onUserLogin' , evt
}

The grailsEvents event() method takes three arguments: the namespace, the topic,
and the event itself. In this scenario, you raise an onUserLogin event on the security
namespace with the native Spring event as the payload.

 Let’s augment your AuditService to listen in on the user login process:

import org.springframework.security.authentication.

➥ event.AuthenticationSuccessEvent
class AuditService {

 def springSecurityService

 // other methods here

 @grails.events.Listener(namespace = "security")
 def onUserLogin(AuthenticationSuccessEvent loginEvent){
 log.error "We appeared to have logged in a user:
 ➥ ${loginEvent.authentication.principal.username}"
 }

}

If you want, you can even drill into that loginEvent to log out the remote IP address
of the login or other Spring-specific security mechanisms. But we leave that as an exer-
cise for you.

 The Platform Core eventing infrastructure is incredibly powerful. You now have
under your belt all the common use cases (generating events, listening to events,
interacting with GORM, and working with the grailsEvents bean).

 We don’t have space here to show you everything the plugin exposes (event filter-
ing using the DSL, dynamic listeners, collating asynchronous replies, and much more).
The online documentation is excellent, and we highly recommend you check it out to
take your eventing knowledge to the next level.

 For now, it’s time to turn your attention from lightweight messaging to the more
heavyweight industrial-strength messaging you typically find in enterprise Java shops.

15.2 A hitchhiker’s guide to JMS messaging
Messaging has been around for ages, but its predominant use has been in large enter-
prise scenarios, so you may never have been exposed to how this style of architecture
works. In this section, we discuss the basics of how messaging works and get you send-
ing and receiving JMS messages. Buckle up!

Turns on
events in Sprin
Security plugin

 b

Raises Platform
Core events c
Licensed to Mark Watson <nordickan@gmail.com>

409A hitchhiker’s guide to JMS messaging
15.2.1 Learning to think in async: identifying messaging candidates
Often, time- and resource-intensive procedures in your application don’t need to be
done immediately. One example is generating a PDF flight itinerary and emailing it to
the user. When the user books the flight, you tell them you’ll email the PDF to them,
but the work doesn’t have to be done that instant. Generating the PDF is likely to be
CPU-intensive, and you don’t want to hold up every user’s web experience while the
server is bogged down generating one user’s PDF. Realistically, the PDF can be gener-
ated and emailed any time in the next minute or so, but it needs to be done reliably.

 This is a classic example of a candidate for messaging, and this “do it soon”
approach is known as asynchronous processing. Here’s how it might work behind the
scenes: when the user requests a flight itinerary, a message is placed on an itinerary
message queue. That can be done immediately, and you can report to the user that
the PDF is in the mail. Another process, perhaps even on a different server (inside a
firewall, with access to a mail server), retrieves the itinerary request off the queue,
generates the PDF, and emails it to the user. Figure 15.1 shows the PDF request flowing
through the queue to the target process.

 One of the cool parts of this asynchronous approach is that the messaging server
persists the messages on the queue, so the messages remain until a client is available
to service them. If generating PDFs is a bottleneck, you can have many clients listening
on the queue to partition the work of generating and mailing PDFs, and the messag-
ing server preserves the transactional semantics, making sure requests are removed
from the queue after they’re serviced.

 Now that you understand where asynchronous systems can make sense, it’s time to
get acquainted with key implementation terminology. Let’s implement your first queue-
based feature for Hubbub.

15.2.2 Messaging terminology: of producers, consumers, queues, and topics
Before you implement messaging, you need to understand basic JMS terminology. All
the plugin documentation and sample articles assume you know what producers,
queues, and topics are, so we first cover those and give you a feel for which situations
lend themselves to which messaging techniques.

 First, the JMS market uses two types of actors:

■ Producers—Producers generate and place messages on the queue.
■ Consumers—Consumers pull entries off the queue.

• Place PDF
request on
the queue

PDF request

• Message
queue holds
request

• Receive
request and
generate PDF

PDF request

Email to user Figure 15.1 A PDF request flows
through a message queue to a
target process.
Licensed to Mark Watson <nordickan@gmail.com>

410 CHAPTER 15 Understanding events, messaging, and scheduling
In the PDF example, the web application (the producer) posts new PDF requests to the
queue, and the PDF-emailing application (the consumer) pulls them off.

 How do consumers and producers communicate? JMS offers two main communica-
tion models:

■ Queues—Queues operate on a FIFO (first in, first out) principle, where each mes-
sage that a producer places on a queue is processed by one (and only one) con-
sumer. This is sometimes known as point-to-point messaging (see figure 15.2).

■ Topics—Topics use a broadcast model where all listeners on the topic get a copy of
the message. The producer places one message on the queue, but that message is
duplicated and shuffled off to many consumers simultaneously (see figure 15.3).

Place message
on queue Message queue

Queue reading
process #1

Queue reading
process #2

Queue reading
process #3

Figure 15.2 Message queues operate from point to point, with each message going to a
single process.

Place message
on topic Message topic

Topic reading
process #1

Topic reading
process #2

Topic reading
process #3

Figure 15.3 Topics broadcast all messages to all clients.
Licensed to Mark Watson <nordickan@gmail.com>

411A hitchhiker’s guide to JMS messaging
One example that may work well with a topic-style architecture is a network-monitoring
application. For example, when a device in the system experiences an outage, a monitor-
ing application can broadcast on a topic to notify other system components to use an
alternate device. In this scenario, all listeners on the topic process the incoming message.

 In the PDF example, you want your PDF-generation messages processed once, so you
should use a queue. With the theory out of the way, let’s get the JMS plugin up and running.

15.2.3 Installing and configuring the JMS plugin

To implement a basic messaging system for Hubbub, the first step is installing the
JMS plugin. Edit your /grails-app/conf/BuildConfig.groovy to include the necessary
dependency:

plugins {
 ...
 compile ":jms:1.3"
}

Next, choose a messaging provider.

Only small differences in configuration exist between the vendors, so let’s use
ActiveMQ, a popular open-source messaging provider.

 Create a dependencies entry in /grails-app/conf/BuildConfig.groovy to pull in
your message provider jar from Maven central:

dependencies {
 compile 'org.apache.activemq:activemq-core:5.7.0'
}

When to topic, when to queue?
You looked at sending and receiving JMS messages via a queue. Using a queue made
sense in this case, because you wanted your messages to be processed only once.

Topics are ideal for broadcast scenarios in which you want all listeners updated about
a particular event. Imagine writing a network-monitoring system to track when your
services go up or down. The node responsible for probing servers may want to let
everything else in the system know when a server crashes. Topics are ideal for this
kind of broadcast scenario.

About message service providers
The dominant vendors in the industry provide open-source (ActiveMQ, Open MQ, Hor-
netQ) and commercial (IBM WebSphere MQ) providers.

The Java EE specification requires that an application server ship with a JMS con-
tainer, so the decision may have been made for you (GlassFish, for example, is a
great JMS server that ships with Open MQ). But if you plan to deploy to a servlet con-
tainer (such as Tomcat or Jetty), you’re free to choose any provider you like.
Licensed to Mark Watson <nordickan@gmail.com>

412 CHAPTER 15 Understanding events, messaging, and scheduling
NOTE If you get a message saying “Compilation error: java.lang.NoClassDef-
FoundError: javax/jms/MessageListener” when installing the JMS plugin or
when running the first time after installing, you need a JEE JAR file in the lib
directory of your Grails application. This JAR file defines the JMS interfaces
and supporting classes. If you’re using Open MQ, you can use jms.jar. If
you’re using ActiveMQ, use activemq-all-5.1.0.jar.

INSTALLING AND STARTING ACTIVEMQ
ActiveMQ is open source, free, and popular—it’s currently the messaging stack used
by LinkedIn (http://hurvitz.org/blog/2008/06/linkedin-architecture).

 To install it, download a copy of ActiveMQ from http://activemq.apache.org/, and
unzip it into your preferred installation location.

 No configuration is required, so start /activemq/bin/activemq from a new com-
mand prompt. After the startup process completes, you can access the ActiveMQ con-
sole via the browser at http://localhost:8161/admin/ (the default username is
“admin” with a password of “admin”). Figure 15.4 shows the interface in action.

 The ActiveMQ console lets you browse your queues and topics to make sure your
messages are getting through; we explore that later. Now that the messaging server is
running, it’s time to configure Hubbub to point to it.

CONFIGURING YOUR PROVIDER

After installing the JMS plugin and starting your messaging server, you may need to do
two additional tasks to set it up:

■ Configure your messaging service in /grails-app/conf/spring/resources.groovy.
■ Provide custom JMS configuration in /conf/Config.groovy to override the JMS

plugin’s defaults.

Let’s tackle the message-service configuration first. Each JMS provider supplies a con-
nection factory class that’s responsible for establishing connections to your JMS provider.

Figure 15.4 The ActiveMQ console is available via a browser interface.
Licensed to Mark Watson <nordickan@gmail.com>

http://activemq.apache.org/
http://localhost:8161/admin/
http://hurvitz.org/blog/2008/06/linkedin-architecture

413Using the Grails JMS plugin

Imp
br

facto
For ActiveMQ, the connection factory needs the hostname and port of the messaging
server, so let’s update resources.groovy as shown in the following listing to give the
plugin the information it needs.

import org.apache.activemq.ActiveMQConnectionFactory
import org.springframework.jms.connection.SingleConnectionFactory

beans = {
 jmsConnectionFactory(SingleConnectionFactory) {
 targetConnectionFactory = { ActiveMQConnectionFactory cf ->
 brokerURL = "tcp://localhost:61616"
 }
 }
}

Many JMS applications may require further tuning to individual queue or topic config-
urations. The JMS plugin has you covered with an extensive array of fine-grained con-
figuration options that you can apply under a jms { } configuration key in /grails-
app/config/Config.groovy. Consult the online documentation at http://gpc.github.io/
grails-jms/docs/manual/ for all the available options.

 You’re configured and ready to go. It’s time to harness the power of the JMS plugin
to send JMS messages.

15.3 Using the Grails JMS plugin
The Grails JMS plugin provides a simple way to both send to and receive from JMS topics
and queues. Like most Grails plugins, it uses a sensible convention-over-configuration
approach to make sure you’re sending messages, not configuring queues (although
overrides exist for all the conventions if you want to set up your own queue names).

 In this section, we cover the basics of getting messages onto a queue and reading
them off by beefing up Hubbub with an IM gateway.

15.3.1 Our killer Hubbub feature: IM integration with Jabber

Let’s consider what messaging features to implement for Hubbub. A cool one is IM
integration, so for Hubbub let’s write a simple IM gateway to bridge to the popular IM
networks. Specifically, let’s write a messaging gateway for Jabber, a popular open
source IM system that can gateway to other clients (AIM, Yahoo! IM, and so on).

 If a Hubbub user registers his IM account, you can let them post from their favorite
IM client; if they’re online, you can even send back to them posts from users on their
timeline to keep them up to date in real time. When the user adds a new post, you put
it on a messaging queue (to be broadcast to any followers that are IM active). Similarly,
if the user sends an IM message to the Hubbub bot, you put it on an incoming queue
to be posted on the Hubbub website. You use the IM transport to read and send. Fig-
ure 15.5 shows your basic architecture with messages flowing between Hubbub and
the gateway through the queue.

Listing 15.4 Updating resources.groovy to connect to ActiveMQ

orts
oker
ries Defines broker

connection

Configures
broker endpoint
Licensed to Mark Watson <nordickan@gmail.com>

http://gpc.github.io/grails-jms/docs/manual/
http://gpc.github.io/grails-jms/docs/manual/

414 CHAPTER 15 Understanding events, messaging, and scheduling
Before you can implement your gateway, you need to look at what’s involved in put-
ting outgoing messages on a JMS queue.

15.3.2 Sending JMS messages

The JMS plugin provides a jmsService that you can inject into your service and con-
troller classes, giving you a range of JMS-related methods. The method you invoke on
your jmsService object depends on whether you send your message to a queue or a
topic. Table 15.1 lists the methods for each destination type.

Queues and topics each have two methods, but they’re aliases to one another, so feel
free to use whichever makes more sense to you. For your examples, use jmsService
.sendQueueJMSMessage() for queues and jmsService.sendTopicJMSMessage() for
topics because they make things explicit (which is a good thing for other developers).

 Whether you’re dealing with queues or topics, the method parameters are the
same. The first parameter is the destination name (the name of the queue or topic in
your messaging server), and the second is the payload of the message. ActiveMQ
doesn’t require that you precreate queue names, but your provider may differ.
Optional third and fourth parameters in the latest versions of the plugin support JMS

Table 15.1 Method names for each destination type

Destination Method

Queue sendJMSMessage()

sendQueueJMSMessage()

Topic sendPubSubJMSMessage()

sendTopicJMSMessage()

Hubbub Message
queue

Jabber
gateway

Web client Jabber client

Figure 15.5 Your Jabber gateway architecture
Licensed to Mark Watson <nordickan@gmail.com>

415Using the Grails JMS plugin
message templating and custom postprocessing of messages after creation, but in prac-
tice their use is less common, so explore these parameters if and when you need them.

 In the following example, you add a JabberService class that sends your messages.
You’ll place a Map holding all of your relevant message data on the queue.

package com.grailsinaction
class JabberService {
 def jmsService

 void sendMessage(post, jabberIds) {
 log.debug "Sending jabber message for ${post.user.userId}..."
 jmsService.sendQueueJMSMessage("jabberOutQ",
 [userId: post.user.userId,
 content: post.content,
 to: jabberIds.join(",")])
 }
}

All the infrastructure is in place, but nothing is available to read off the queue. Let’s
write a test harness to generate traffic. The following listing shows a basic test case to
exercise the service.

package com.grailsinaction
import grails.plugin.spock.IntegrationSpec
class JabberServiceIntegrationSpec extends IntegrationSpec {

 def jabberService

 def "First send to a queue"() {
 given: "Some sample queue data"
 def post = [user: [userId: 'chuck_norris'],
 content: 'is backstroking across the atlantic']
 def jabberIds = ["glen@grailsinaction.com",
 "peter@grailsinaction.com"]

 expect:
 jabberService.sendMessage(post, jabberIds)

 }
}

Make sure you started ActiveMQ, and then give the test case a run with grails test-
app integration: Jabber*. This test shows that you can put elements on a queue.

 After the test finishes, point your browser to the ActiveMQ console at http://local-
host:8161/admin. Figure 15.6 shows your Queues menu so you can see your new
jabberOutQ queue.

 You can click individual messages to see that everything arrived safely. Figure 15.7
shows what you see when you inspect the contents of an individual message.

 All your message details look in order, and your Map of data is persisted on the
queue awaiting a listener to retrieve it. But before you look at how to read messages,
let’s detour into what types of payload you can put on a queue.

Listing 15.5 Exercising your Jabber service with an integration test

Places Map on
the queue
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:8161/admin
http://localhost:8161/admin

416 CHAPTER 15 Understanding events, messaging, and scheduling
Figure 15.6 Browsing the Jabber queue using ActiveMQ’s web interface

Figure 15.7 Inspecting a message on the queue
Licensed to Mark Watson <nordickan@gmail.com>

417Using the Grails JMS plugin
You’ve seen map messages put on a JMS queue, and you may wonder what sorts of
things are queue-able. You can send several basic JMS data types to a destination.
They’re listed in table 15.2.

Although many people prefer to use XML payloads in the String data type, we find
the Map style message the most flexible. Using a Map allows you to easily add new prop-
erties to objects you send to a destination without worrying about breaking any pars-
ing code elsewhere in the system.

You did the hard work of getting everything on your queue, so it’s time to implement
the queue-reading side of things so you can get your work done.

15.3.3 Reading the queue

By taking advantage of a convention-based model, the JMS plugin makes the reading
process straightforward. For the basic implementation, you need to do four things:

■ Add an entry to your service class to expose it as a queue or topic listener.
■ Add an additional property to name the queue you wish to listen on.
■ Provide an onMessage() method to handle incoming messages.
■ Override conventions (when required) to match your queue names and the

quantity of listener threads.

Let’s cover each of those steps to get you up and running.

Table 15.2 The basic data types for JMS messages

Type Example

String "Message from ${user.name}"

Map [name: "glen", age: "40", job: "stunt programmer"]

byte[] image.getBytes()

Object Any object that implements Serializable

How does type conversion work?
If you’ve worked with JMS before, you know that JMS supports its own type system
(TextMessage, MapMessage, BytesMessage, and so on). The JMS plugin does the
conversion of payload data to the appropriate type for you, leaving you to get on with
building your application.

Behind the scenes, the JMS plugin uses the standard Spring JMS Template class.
By default, this class delegates all type conversion to Spring’s SimpleMessage-
Converter, which handles marshaling the basic types listed in table 15.2.
Licensed to Mark Watson <nordickan@gmail.com>

418 CHAPTER 15 Understanding events, messaging, and scheduling
IMPLEMENTING YOUR FIRST ONMESSAGE()
First, only services can be exposed as JMS endpoints. To let the plugin know that a ser-
vice is a JMS endpoint, include the following line in your class definition:

static expose = ['jms']

The expose property is used by a number of remoting plugins (XFire, Remoting,
Jabber), and you can happily mix and match SOAP and JMS endpoints in the same
service class.

 Next, add an onMessage() method that the plugin can call when new messages
arrive. That gives you a complete messaging class. The following listing implements
the new feature.

package com.grailsinaction
class JabberService {
 static expose = ['jms']
 static destination = "jabberInQ"
 static sendQueue = "jabberOutQ"

 def jmsService

 void onMessage(msg) {
 log.debug "Got Incoming Jabber Response from: ${msg.jabberId}"
 try {
 def profile = Profile.findByJabberAddress(msg.jabberId)
 if (profile) {
 profile.user.addToPosts(new Post(content: msg.content))
 }
 } catch (t) {
 log.error "Error adding post for ${msg.jabberId}", t
 }
 }
 void sendMessage(post, jabberIds) {
 log.debug "Sending jabber message for ${post.user.userId}..."
 def msg = [userId: post.user.userId,
 content: post.content, to: jabberIds.join(",")]
 jmsService.sendQueueJMSMessage(sendQueue, msg)
 }
}

Notice that you specify the destination property of the queue B. Following conven-
tion, the JMS plugin takes the queue name from the service, so your JabberService
defaults to a queue name of Jabber. In this example, you want your incoming and out-
going queue names to follow a different standard, so you overwrite the destination
property to tell the plugin what name you want.

 With your endpoint set up, you inject your JMS service c so you can send messages.
 Finally, you’re particular about handling exception cases d. Certain messaging serv-

ers get upset if clients don’t behave well when reading from open connections, so you
make sure that you terminate nicely when experiencing stray or malformed messages.

Listing 15.6 Handling an incoming message in the service

Names queue
to listen on

 b

Injects JMS service for
sending operations

 c

Catches error
conditions d
Licensed to Mark Watson <nordickan@gmail.com>

419Using the Grails JMS plugin

e
e
 With all your basic logic in place for sending and receiving messages, it’s time to
spark up an integration test to make sure everything is wired together as you expect,
as shown in the following listing.

package com.grailsinaction

import grails.plugin.spock.IntegrationSpec

class JabberServiceIntegrationSpec extends IntegrationSpec {

 def jabberService
 def jmsService

 def jmsOutputQueue = "jabberOutQ"

 static transactional = false

 def "Send message to the jabber queue"() {
 given: "Some sample queue data"
 def post = [user: [userId: 'chuck_norris'],
 content: 'is backstroking across the atlantic']
 def jabberIds = ["glen@grailsinaction.com",
 "peter@grailsinaction.com"]
 def msgListBeforeSend =
 jmsService.browse(jabberService.sendQueue)

 when:
 jabberService.sendMessage(post, jabberIds)

 then:
 jmsService.browse(jabberService.sendQueue).size() ==
 msgListBeforeSend.size() + 1

 }
}

Your integration test introduces you to the browse() method B of the jmsService.
This method lets you inspect the contents of a queue without altering it (typically called
peeking at a queue). This method returns a collection of messages, which you can count
using size() to determine that one new message appeared on the queue c.

 To confirm that your message-sending operation works as expected, issue the com-
mand line command:

grails test-app integration: Jabber*

Don't forget that after you run the test, you can also browse the JMS queue via your
web browser at http://localhost:8161/admin/. With confirmation that your JMS mes-
sages are happily being sent, it’s time to turn your attention to how you can consume
them. Let’s think about your Jabber gateway.

PULLING OUT THE STOPS: IMPLEMENTING A JABBER GATEWAY APPLICATION

Now that your messaging interface is up and running in the web-facing portions of
Hubbub, it’s time to write an application to interface with the Jabber protocol. To

Listing 15.7 Integration test for JMS operation

browse() lets you
peek at messages
on queue.

 b

Confirms messag
queue is now on
message longer.

 c
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:8161/admin/

420 CHAPTER 15 Understanding events, messaging, and scheduling

ng
make things simple, write your gateway application as a separate Grails application
and use the JMS and Jabber plugins to interface with the rest of the internet.

 To install the Jabber plugin, use the normal Grails plugin installation mechanism,
and edit your /grails-app/conf/BuildConfig.groovy:

plugins {
 ...
 compile ":jabber:0.1"
}

The Jabber plugin works much like the JMS plugin you’re familiar with, albeit with a
more opinionated injection strategy. The Jabber plugin identifies any service class
marked with an expose = ['jabber'] property and automatically adds a sendJabber-
Message() method. If the service offers an onJabberMessage() closure, the plugin
calls it when any Jabber message arrives on the configured queue. But before your Jab-
ber plugin can function correctly, you need to point it to a Jabber server. Your next job
is to edit /grails-app/conf/Config.groovy and add your Jabber configuration entries.
You’ll use Google Talk for now because it supports the Jabber protocol (though
they’re talking about removing it one day).

chat {
 serviceName = "gmail.com"
 host = "talk.google.com"
 port = 5222
 username = "your.email@gmail.com"
 password = "your.password"
}

After installing the JMS and Jabber plugins and tidying up your configuration, the whole
application is implemented in a single service class as shown in the following listing.

package com.grailsinaction
class GatewayService {
 static expose = ['jabber', 'jms']
 static destination = "jabberOutQ"
 static sendQueue = "jabberOutQ"

 def jmsService
 void onMessage(msg) {
 log.debug "Incoming Queue Request from:

➥ ${msg.userId} to: ${msg.to} content: ${msg.content}"
 def addrs = msg.content.split(",")
 addrs.each {addr ->
 log.debug "Sending to: ${addr}"
 sendJabberMessage(addr, msg.content)
 }
 }
 void onJabberMessage(jabber) {
 log.debug "Incoming Jabber Message Received

➥ from ${jabber.from()} with body ${jabber.body}"

Listing 15.8 A gateway service reads and writes Hubbub messages to Jabber

Marks service as JMS
and Jabber-aware

 b

Sets JMS
queue name c

Receives incomi
JMS messages d

Sends message to
Jabber queue

 e

Receives incoming
Jabber messages f
Licensed to Mark Watson <nordickan@gmail.com>

421Scheduling tasks with Grails
 def msg = [jabberId: jabber.from, content: jabber.body]
 jmsService.sendQueueJMSMessage(sendQueue, msg)
 }
}

NOTE The complete source for the application is included with the source
code for this chapter under the name jabber-gateway.

Your GatewayService starts with the configuration for receiving both JMS and Jabber
messages B. It then sets up the name of the JMS queue (destination) to listen on c.
It then implements onMessage() for JMS messages d and takes incoming JMS mes-
sages and sends them to a Jabber destination that it pulls from the message e.

 The service implements onJabberMessage() F, which receives Jabber messages
and places them on the message queue for Hubbub to process and add to users’ time-
lines G.

 With those 20 or so lines of code, you implemented a two-way gateway from Jabber
to JMS! As you can see, harnessing the power of plugins can lead to massive reductions
in the code you need to maintain.

 That covers the basics of messaging. It’s now time to explore a more lightweight
alternative for your asynchronous needs: Grails scheduling.

15.4 Scheduling tasks with Grails
You looked at messaging architectures and saw easy ways to take advantage of their
asynchronous approach to making systems simpler, more scalable, and more flexible.
But getting such a reliable and well-performing architecture requires infrastructure.

 Sometimes you want a simple asynchronous solution to run a function at a sched-
uled time (for example, a daily report, an index update, or a daily backup). For those
scenarios, Grails offers a fantastic, easy-to-use scheduling capability, and it’s time to
explore it in depth.

15.4.1 Writing a daily digest job

Grails’s support for scheduling operations is handled by the Quartz plugin. Quartz is a
popular Java library (http://www.quartz-scheduler.org/) with robust and powerful
scheduling capabilities, and the Quartz plugin gives you a simple, Grails-style way to
access all that power. Let’s use it to send a daily digest email to each Hubbub user, out-
lining all the activity on their followers’ timelines for the past day.

 Start by installing the plugin. Edit your grails-app/conf/BuildConfig.groovy to
contain the following:

plugins {
 ...
 compile ":quartz:1.0.1"
 ...
}

Sends message
to JMS queue g
Licensed to Mark Watson <nordickan@gmail.com>

http://www.quartz-scheduler.org/

422 CHAPTER 15 Understanding events, messaging, and scheduling
With the plugin installed, you notice that two new commands are available (which you
can see via the grails help command):

grails create-job
grails install-quartz-config

The first is used to create new job templates (much like grails create-service), and
the second installs a custom Quartz configuration file (which is only needed for
advanced use cases such as clustering; we’ll talk more about it later).

 To create your daily digest email, you need to create a new job that runs each night:

grails create-job com.grailsinaction.DailyDigest

This newly created job class is located in grails-app/jobs/com/grailsinaction/Daily-
DigestJob.groovy.

 The simplest way to use jobs is to specify a timeout value in milliseconds. Every
time an interval of timeout passes, the plugin invokes your job. The following listing
shows the shell for your daily digest job.

package com.grailsinaction

class DailyDigestJob {

 static triggers = {
 simple startDelay: 60 * 1000,
 repeatInterval: 24 * 60 * 60 * 1000
 }

 def execute() {
 log.debug "Starting the Daily Digest job."
 // ... do the daily digest
 log.debug "Finished the Daily Digest job."
 }

}

Notice that you also add a startDelay field, which is the initial wait period before the
plugin invokes your job. This is handy if you have tight timeouts (a few seconds), but
you want to make sure the rest of your Grails application finishes bootstrapping
before the first job fires.

 At this stage, you may be tempted to implement your business logic in the job class.
This is supported, but it’s never a good idea. Because jobs support the same injection-
based conventions as other artifact classes, it’s much better to call an injected service
rather than implement the process inline. Using an injection-based approach makes
things much more testable, and it fosters code reuse. Your newly created job is refac-
tored in the following listing to tidy things up.

package com.grailsinaction

class DailyDigestJob {

Listing 15.9 A basic daily digest job (using timeout style)

Listing 15.10 A basic daily digest job

Runs job once per day

Delays first run
for one minute
Licensed to Mark Watson <nordickan@gmail.com>

423Scheduling tasks with Grails
 def dailyDigestService

 static triggers = {
 simple startDelay: 60 * 1000,
 repeatInterval: 24 * 60 * 60 * 1000
 }

 def execute() {
 log.debug "Starting the Daily Digest job."
 dailyDigestService.sendDailyDigests()
 log.debug "Finished the Daily Digest job."
 }

}

By defining your dailyDigestService field, the Quartz plugin makes sure everything
is nicely wired together before any jobs start.

 Now that your daily digest is running, it’s time to rethink your scheduling mecha-
nism. Until now, you’ve been using simple Quartz scheduling, which is fine for jobs
that need to fire every so many seconds. But you may prefer your daily digest to be
sent out at the same time each day: perhaps 1 a.m. when things are quiet on the serv-
ers. To get that kind of calendar-based flexibility, you need to get acquainted with the
cron scheduler.

15.4.2 Fine-grained scheduling with cron

If you have any kind of UNIX background, you’re probably familiar with the cron ser-
vice. Cron is a UNIX facility that allows you to schedule jobs to run on certain days at
certain times, or on a particular day of the week or month, with all kinds of flexibility.
With that flexibility comes a rather arcane syntax that only a hardcore command-line
fiend could love. Figure 15.8 shows the basic components of a cron expression.

 As shown in figure 15.8, each field of the cron expression refers to a different time
period. This example tells cron to run the job at 1 a.m. every Monday.

 Cron expressions give you incredible scheduling power, but the syntax is certainly
something to wrestle with. All fields in a cron expression can take numbers, wildcards
(*), ranges (5–15), sets (5, 10, 15), or increments (10/15). The month and day-of-
week fields are special cases where you can use special literals. For months, you can
use expressions such as JAN-MAR, and for the days of the week, you can use expressions
such as MON-FRI.

 It’s much easier to understand cron expressions when you see a few in action.
Table 15.3 lists common expressions.

Encapsulates logic
in service class

0 0 1 ? * MON

Seconds Month

Day of
month

Hours

Minutes
Day of
week

Figure 15.8 The basic components
of a cron expression
Licensed to Mark Watson <nordickan@gmail.com>

424 CHAPTER 15 Understanding events, messaging, and scheduling
TIP The Quartz website has a comprehensive reference to cron expressions
and more examples.1

With that bit of dangerous knowledge under your belt, let’s reimplement your daily
digest service so that it runs at 1 a.m. each weekday. The following listing shows the
new version of your job.

package com.grailsinaction

class DailyDigestJob {

 def dailyDigestService

 static triggers = {
 cron cronExpression: "0 0 1 ? * MON-FRI"
 }

 def execute() {
 log.debug "Starting the Daily Digest job."
 dailyDigestService.sendDailyDigests()
 log.debug "Finished the Daily Digest job."
 }

}

That covers the basic scheduling operations available in Grails. It’s time to explore
more advanced options for putting the scheduler to work.

15.5 Advanced scheduling
You covered much of the common scenarios for Grails scheduling, and you’re proba-
bly full of ideas for adding these jobs to your next Grails application. But there’s still
plenty to explore. In this section, you create, trigger, and control jobs programmati-
cally, and you add an administrative UI so you can control them directly from your
application. You also look at sharing data between job runs or sharing jobs in a cluster.
By the time you finish, you’ll know the fine points (and gotchas) of all these scenarios.

Table 15.3 A series of basic cron expressions

Expression Description

0 0,45 1 ? * MON-FRI Every weekday at 1 a.m. and 1:45 a.m.

0 0/15 1 ? * MON Every 15 minutes from 1 a.m. to 1:45 a.m. on a Monday

0 0 10-12 1 * ? 10 a.m., 11 a.m., and 12 p.m. on the first of the month

0 0 0 1 1 ? Midnight on New Year’s Eve

1 Check out the tutorials section of the website for a comprehensive walkthrough: http://www.quartz-sched-
uler.org/documentation/quartz-2.1.x/tutorials/crontrigger.

Listing 15.11 A basic daily digest job with custom cron settings

Supplies cron-style
expression to Quartz job
Licensed to Mark Watson <nordickan@gmail.com>

http://www.quartz-scheduler.org/documentation/quartz-2.1.x/tutorials/crontrigger
http://www.quartz-scheduler.org/documentation/quartz-2.1.x/tutorials/crontrigger

425Advanced scheduling
 Let’s start by getting acquainted with how the scheduling plugin handles stateful
and re-entrant jobs.

15.5.1 Dealing with re-entrance and stateful jobs

By default, the Quartz plugin creates a new instance of your job class and calls it each
time your job runs. But you may have situations when you don’t want two instances of
your job to fire at the same time.

 Imagine you have an SMS notifier for Hubbub. A timer job fires every 10 seconds
to see if any unsent SMS messages exist; if messages exist, it shuffles them off to an SMS
web service that sends them. But what happens if the SMS service takes 60 seconds to
time out? Your job might fire again, and again, and again within the same minute,
resulting in multiple (annoying) message sends. You could work around this by
keeping a processed field on the message itself, or use a JMS queue for the sending;
assuming you ruled out those options, you’ll want a way to make sure your job never
runs concurrently.

 The Quartz plugin protects against concurrency via the concurrent property. The
following listing demonstrates this feature.

package com.grailsinaction

class SmsSenderJob {

 def concurrent = false

 static triggers = {
 simple repeatInterval: 10000 // execute job every 10 seconds
 }

 def execute() {
 log.error "Sending SMS Job at ${new Date()}"
 Thread.sleep(20000)
 log.error "Finished SMS Job at ${new Date()}"

 }
}

If you run this application, you see that even though the timeout is specified to run
every 10 seconds, the simulated delay means it runs only when the job isn’t already
running. Here’s the output of this sample SMS job:

2013-06-24 10:14:44,665 ERROR grailsinaction.SmsSenderJob - Finished SMS Job
at Mon Jun 24 10:14:44 EST 2013

2013-06-24 10:14:54,653 ERROR grailsinaction.SmsSenderJob - Sending SMS Job
at Mon Jun 24 10:14:54 EST 2013

2013-06-24 10:15:14,654 ERROR grailsinaction.SmsSenderJob - Finished SMS Job
at Mon Jun 24 10:15:14 EST 2013

2013-06-24 10:15:24,654 ERROR grailsinaction.SmsSenderJob - Sending SMS Job
at Mon Jun 24 10:15:24 EST 2013

2013-06-24 10:15:44,655 ERROR grailsinaction.SmsSenderJob - Finished SMS Job
at Mon Jun 24 10:15:44 EST 2013

Listing 15.12 Using the concurrent property to stop re-entrance

Simulates web
service delay
Licensed to Mark Watson <nordickan@gmail.com>

426 CHAPTER 15 Understanding events, messaging, and scheduling
2013-06-24 10:15:54,653 ERROR grailsinaction.SmsSenderJob - Sending SMS Job
at Mon Jun 24 10:15:54 EST 2013

2013-06-24 10:16:14,656 ERROR grailsinaction.SmsSenderJob - Finished SMS Job
at Mon Jun 24 10:16:14 EST 2013

It’s important to understand that if a job is scheduled to run, but another instance is
already running, the new job is skipped rather than batched up to run later.

 Another consequence of marking a job as not concurrent is that the plugin creates
the job as a Quartz StatefulJob. That means a shared state area, called a jobDataMap,
is available for you to share information with subsequent jobs. In your SMS gateway
example, you might use a counter to keep track of the number of failed sends, and
raise a warning when a large number of jobs times out. The following listing shows
how to implement this.

package com.grailsinaction

class SmsSenderWithTimeoutJob {

 def concurrent = false

 static triggers = {
 simple repeatInterval: 10000 // execute job every 10 seconds
 }

 def execute(context) {
 log.error "Sending SMS Job at ${new Date()}"
 def failCounter = context.jobDetail.jobDataMap['failCounter'] ?: 0
 log.error "Failed Counter is ${failCounter}"
 try {
 // invoke service class to send SMS here & reset fail count
 throw new RuntimeException("Simulate SMS service failing")
 } catch (te) {
 failCounter++
 log.error "Failed invoking SMS Service. Fail count is
 ➥ ${failCounter}"
 if (failCounter == 5) {
 log.fatal "SMS has not left the building."
 }
 }
 context.jobDetail.jobDataMap['failCounter'] = failCounter
 log.error "Finished SMS Job at ${new Date()}"
 }
}

In this example, notice that you changed your execute() method to take a Quartz
jobContext argument B. Additionally, note that you can store any kind of Serializable
object in the context c: numbers, dates, strings, collections, and so on. Try it out to
see the counter value being passed into subsequent executions.

 You’ve explored stateful jobs and looked at how to handle re-entrance. But what if
you want to take control of scheduling programmatically?

Listing 15.13 A stateful job gets a persistent context to work with

Provides the execute()
entry point for when

trigger fires

 b

Serializes incremented
failCounter value c
Licensed to Mark Watson <nordickan@gmail.com>

427Advanced scheduling
15.5.2 Pausing and resuming stateful jobs programmatically

The Quartz scheduler lets you pause and resume individual jobs, groups of jobs, or
the entire scheduler. In order for your job to be easily controllable, you need to place
it in a group. The following listing shows your first crack at a pausable job.

package com.grailsinaction

class ControllableJob {

 def concurrent = false

 def group = "myServices"

 static triggers = {
 simple repeatInterval: 5000 // execute job every 5 seconds
 }

 def execute(context) {
 log.error "Controllable job running..

${context.jobDetail.key.dump()}"
 }
}

Notice that you specify a group attribute on the job. Later, you’ll use the scheduler to
gain access to this job via its group name.

 For now, you need a way to get a handle on the scheduler itself. It comes as no sur-
prise that this can be done via the standard Grails injection pattern. In the following
listing, you create a controller to tinker with your jobs programmatically.

package com.grailsinaction

class JobAdminController {

 def jobManagerService

 def index = { redirect(action:'show') }
 def show = {
 def status = ""
 switch(params.operation) {
 case 'pause':
 jobManagerService.pauseJob("com.grailsinaction.ControllableJob",
 "myServices")
 status = "Paused Single Job"
 break
 case 'resume':
 jobManagerService.resumeJob("com.grailsinaction.ControllableJob",
 "myServices")
 status = "Resumed Single Job"
 break
 case 'pauseGroup':
 jobManagerService.pauseJobGroup("myServices")
 status = "Paused Job Group"
 break

Listing 15.14 The group property makes it easy to control jobs programmatically

Listing 15.15 A controller for pausing and resuming jobs programmatically

Sets group property
to control job
programmatically

Obtains handle to Quartz
Job Manager service

 b

Determines which
operation user selected

 c
Licensed to Mark Watson <nordickan@gmail.com>

428 CHAPTER 15 Understanding events, messaging, and scheduling
 case 'resumeGroup':
 jobManagerService.resumeJobGroup("myServices")
 status = "Resumed Job Group"
 break
 case 'pauseAll':
 jobManagerService.pauseAll()
 status = "Paused All Jobs"
 break
 case 'resumeAll':
 jobManagerService.resumeAll()
 status = "Resumed All Jobs"
 break
 }
 return [status: status]
 }
}

Your JobAdminController introduces a few important aspects of job control. First,
you define the jobManagerService property to inject the scheduler B. The switch
statement demonstrates the different ways you can pause and resume jobs—by name,
by group, or globally c.

 In the following listing, you add a basic UI so you can drive the scheduler. Let’s add
a grails-app/views/jobAdmin/show.gsp.

<html>
 <head>
 <title>Job Admin</title>
 <style>
 div#status {
 margin: 1em;
 padding: 1em;
 border: 1px solid blue;
 background: lightblue;
 }
 body {
 font-family: "Trebuchet MS",Helvetica;
 }
 </style>
 </head>
 <body>
 <h1>Job Admin</h1>
 <g:if test="${status}">
 <div id="status">
 ${status}
 </div>
 </g:if>
 <g:form action="show">
 <fieldset>
 <legend>Job Admin Operations</legend>
 <label for="operation">Select an operation:</label>
 <g:select id="operation" name="operation"
 from="${ [

Listing 15.16 A basic web UI for interacting with our jobs
Licensed to Mark Watson <nordickan@gmail.com>

429Advanced scheduling
 'pause', 'resume',
 'pauseGroup', 'resumeGroup',
 'pauseAll', 'resumeAll'
] }" />
 <g:submitButton name="go" value="Go"/>
 </fieldset>
 </g:form>
 </body>
</html>

Open http://localhost:8080/hubbub/jobAdmin/show to see this admin UI in action,
as shown in figure 15.9.

 Looking at the Grails output to the command line, log messages show that
Controllable-Job (and your other jobs) can be started and stopped via the admin
UI. This kind of control comes in handy for the administrative section of your applica-
tions, when you want the ability to pause scheduled jobs when dealing with emergency
situations (such as your SMS service provider going down).

 You’ve looked at handling stateful and re-entrant jobs, but what happens to your
scheduled jobs and their jobDataMaps when the application server is restarted? And
what happens when you want to run your jobs in a cluster? For these sorts of cases, you
need to learn how Quartz handles persistence.

15.5.3 Job persistence with JDBS storage
The default storage mechanism for Quartz is the RAMJobStore class, and as you can
probably guess from the name, it’s fast, but it isn’t persistent. If you restart your server,
all of your jobs terminate, and any persistent data in your jobDataMaps is lost. If you
want your stateful jobs persistent, you need to swap out that RAMJobStore for some-
thing permanent, such as a JDBCJobStore.

 To do that, you need to create a Quartz plugin config file:

grails install-quartz-config

The preceding command writes a new file in /grails-app/conf/QuartzConfig.groovy
that lets you enable JDBC storage. It looks like this:

quartz {
 autoStartup = true
 jdbcStore = false
}

When jdbcStore is set to true, your job state is persisted in the database. But before
that can happen, you need to create the required tables.

Figure 15.9 Pausing a
job via your new admin UI
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:8080/hubbub/jobAdmin/show

430 CHAPTER 15 Understanding events, messaging, and scheduling
The SQL to create the tables is found in /plugins/quartz-{version}/src/templates/sql/
inside the Quartz plugin. SQL scripts are available for all the common databases, so
use your favorite database admin tool to import the scripts and create the tables.

 After your database has the required tables, modify QuartzConfig.groovy to turn
on Quartz persistence:

quartz {
 autoStartup = true
 jdbcStore = true
}

Job persistence is now enabled, but one final change is required before you can rerun
your application and see if the job state of your counter job survives a restart of the
application.

 By default, all Quartz jobs are marked as volatile, which means their state won’t
be persisted to the database. Let’s set that right now by marking one of our jobs as
nonvolatile, as shown in the following example.

class SmsSenderWithTimeoutJob {
 def concurrent = false
 def volatility = false
 def execute(context) { ... }
}

You’re in business. Let’s restart your application and see your job write out its counters.

With your exploration of persistent jobs complete, you’ve finished your tour of Grails’s
messaging and scheduling features. Let’s wrap things up with best practices to take away.

15.6 Summary and best practices
You covered much asynchronous territory in this chapter. We introduced you to the
nature of asynchronous technologies and the sorts of applications they’re well suited

Going deeper into Quartz configuration
Sometimes the default configuration options the Quartz plugin exposes aren’t
detailed enough. For instance, if you want more fine-grained control over transaction
management inside your jobs, or you’d like to customize the table names that Quartz
uses for DB persistence. The heavy lifting is done by adding a /src/java/quartz.prop-
erties file to your project, and then taking advantage of the numerous Quartz details
config options you can find discussed on the Quartz website. To enable Quartz clus-
tering support, add entries such as these:

org.quartz.jobStore.isClustered=true
org.quartz.jobStore.clusterCheckinInterval=60000

If you want to see persistence in action on your local H2 DB, you need to change your
data source url property to a persistent version, such as this:

 jdbc:h2:devDb;MVCC=TRUE;LOCK_TIMEOUT=10000
Licensed to Mark Watson <nordickan@gmail.com>

431Summary and best practices
to. You then toured basic messaging terminology and jumped in the deep end with
Platform Core eventing for lightweight messaging to implement an audit service. You
then took a deep dive on the JMS plugin.

 After applying your JMS plugin skills to build a Jabber gateway for Hubbub, you
moved on to explore the lightweight asynchronous options of Grails scheduling. You
used cron-style expressions to implement a daily digest email and discussed program-
matic uses of scheduling.

 It’s time to review best practices:

■ Consider eventing architectures. An eventing approach can provide an extensible,
decoupled system. Platform Core gives you all the tools you need for light-
weight eventing, so consider whether your app can fit that approach.

■ Painless GORM events. Platform Core takes a sane approach to GORM event han-
dling without complex configuration. If you need to listen to GORM events,
choose Platform Core over custom configuration.

■ Know your application server. Your application server probably already ships with a
JMS provider, and it’s time to try using it. If you run on a servlet container, Open
MQ and ActiveMQ are the best options.

■ Choose queues or topics. Use queues when you want a message to be processed by
one listener, and use topics for broadcast scenarios.

■ Favor maps. Favor map-style messages on queues and topics—they give you
greater flexibility to evolve your API over time.

■ Override convention when needed. Don’t be afraid to override default settings (such
as destination names) if it makes your system easier to maintain. It’s nice to know
what a destination is used for by looking at its name (such as sms-Incoming-
Queue and smsOutgoingQueue).

■ Know your throughput. Set the number of queue listeners to match your expected
throughput. Don’t guess—do basic profiling to see what your system is capable
of under load.

■ Use your console. The ActiveMQ admin console gives you good insight into what’s
happening on your queues—take advantage of it.

■ Separate business logic. Don’t put business logic in Quartz job classes. Use ser-
vice injection to wrap your logic in service classes that are more testable and
more reusable.

■ Favor cron. Cron-style expressions are concise and expressive and give you more
consistency than straight timeout values.

■ Name your job groups. Always give your jobs a group attribute so you can get easy
programmatic access to them later on.

■ Be cluster-aware. If you run in a cluster, you can take advantage of Quartz data-
base persistence to share state and partition the work between nodes.

In the next chapter, you work with NoSQL and discover how to use it with Grails to
make your relational and NoSQL data coexist.
Licensed to Mark Watson <nordickan@gmail.com>

NoSQL and Grails
In chapter 15, you worked on events, messaging, and scheduling tasks. In this chap-
ter we take you on a tour of all the popular Grails NoSQL solutions, and give you a
good sense of what makes sense where. You also learn how your relational and
NoSQL data can happily co-exist (remembering that NoSQLstands for Not Only
SQL). By the end of this chapter, you’ll understand the brave and shiny new world
of NoSQL solutions and know which ones are worth exploring in your next enter-
prise project.

16.1 The problem with PostgreSQL (or when to choose NoSQL)
You’ve used GORM with our favorite relational databases throughout the entire
book, so why bother to look elsewhere? We hear you. There’s a huge amount to be
said for sticking with workhorse technologies that are battle-tested and proven in

This chapter covers
■ Why NoSQL is worth considering
■ How GORM interacts with NoSQL stores
■ Key/value stores with Redis
■ Document-oriented data storage with MongoDB
■ Graph databases with Neo4J
432

Licensed to Mark Watson <nordickan@gmail.com>

433Types of NoSQL databases (and typical use cases table)
the real world. Relational technology has been with us since Codd and Date’s work in
the 1960s, and we’ve all had professional experience with modern, fast relational data-
bases. There’s nothing wrong with using PostgreSQL—we highly recommend it if it
suits your data storage needs. And then there’s the catch…

 If you haven’t hit them already in your professional life, situations occur where
you’re willing to make a trade-off between the standard relational ACID model (and
its normalized transactional goodness) and something that offers either one of
the following:

■ Much greater performance on the kinds of large datasets you deal with
■ Much more flexible and extensible data structures than your typical normalized

relational tables will permit

If you’ve ever tried to shoehorn a document-based structure into a relational model
(where each document may have its own unique set of properties), you’ve already felt
the pain of fighting city hall. In these scenarios, using a document-oriented database
that supports these structures out of the box (such as MongoDB) makes sense. Cleaner
code, cleaner data, better performance. What’s not to love?

 Similarly if you’ve ever tried to cram a tree or graph structure (such as a directory
tree) into the relational model, it’s a world of complex joins and indirections and var-
ious parent/child columns, and it becomes difficult to overcome the impedance mis-
match. In those scenarios, having a database that “speaks graph natively” (such as
Neo4j) is what you want. Traversing the tree is fast, the structures are logical and easy
to move around, and no dodgy abstractions are required.

 What kinds of data-storage operations does NoSQL bring to the table? In this sec-
tion we take you on a rock-star tour of the finest tools in the NoSQL market.

16.2 Types of NoSQL databases (and typical use cases table)
Before we dive into the most common NoSQL options, let’s survey popular products
in the NoSQL world and the types of data that they excel at storing (see table 16.1). If
nothing else, it’s worth noting the terminology used for any NoSQL explorations you
do down the road.

Table 16.1 NoSQL databases and types of data they contain

Type of NoSQL database Common products Typical examples of data stored

Key-value store ■ Redis
■ Memcached
■ Voldemort
■ Basho Technologies Riak
■ Tokyo Tyrant

Persistent hash tables, session tokens,
global state, counters (such as API
meters)

Document-oriented store ■ MongoDB
■ Apache CouchDB
■ Apache Jackrabbit
■ Elasticsearch

User profile data (with free-form fields),
survey and questionnaire data, “objects”
with their properties
Licensed to Mark Watson <nordickan@gmail.com>

434 CHAPTER 16 NoSQL and Grails
Now that you’ve seen the common types of NoSQL solutions, it’s time to explore the
field with one of the most common NoSQL services deployed today: a key/value server
called Redis.

16.3 Using Redis to work with key-value stores
You might think of a key-value NoSQL store as a massive persistent hash table: you
send it your key/value pairs to hold, and you pull back your values by key later on.
The advantages of doing this in a NoSQL store rather than in your own app is that you
don’t have to worry about

■ The app-server crashing/restarting
■ Writing anything to disk to save your hash state
■ Configuring any kind of persistent caching solution (such as the ones we

looked at in chapter 15)
■ Providing an API for other applications to share your hash table data

One extremely popular hash table for these kinds of operations is Memcached. It’s
lightweight, easy to set up and replicate, and lightning fast because it stores data only
in memory. It’s also common on cloud services and runs great in both Windows and
UNIX-like environments. The only snag is that it isn’t persistent, so your data never
survives a restart.

 Then Redis came along—a better Memcached than Memcached! It offers all the ben-
efits of Memcached (memory-based, single-threaded, lightning fast), but adds a truckload
of compelling features to boot (persistence, master/slave replication, lists, sets, queues
and unions, and all with transactionality). Being backed by a big vendor (VMware), it also
feels like it’s going to be stable, supported, enhanced, and around for while!

 Tons of high-traffic sites use Redis (think GitHub, Digg, Stack Overflow, and Dis-
qus to name a few), and the technology is rock solid. Thanks to its popularity, you also
find it deployed on all the popular cloud environments (Heroku, OpenShift, and
Cloud Foundry)

16.3.1 Installing your own Redis server

If you’re not running your app on one of the existing cloud services (and chances are
you won’t be for your first iteration), you need to install a local copy of Redis to test

Graph database ■ Neo Technology Inc. Neo4j
■ Orient Technologies OrientDB

Social network graphs (Facebook
graphs), directory and tree structures,
query link depth on related data

Column database ■ Apache HBase
■ Apache Cassandra
■ Google Bigtable

Time series data

Table 16.1 NoSQL databases and types of data they contain (continued)

Type of NoSQL database Common products Typical examples of data stored
Licensed to Mark Watson <nordickan@gmail.com>

435Using Redis to work with key-value stores
against. Fortunately, it’s easy to install and available for all your favorite OSes. Head
over to www.redis.io/ to download a copy for your target OS. If you’re on Windows
(which you will be in this chapter), grab the Microsoft version of Redis that you find
on its GitHub site. You want redisbin.zip (32-bit Windows) or redisbin64.zip (64-bit
Windows), which you’ll find at https://github.com/MSOpenTech/redis/tree/2.6/
bin/release.

 Windows users can simply unzip the binary and they’re ready to roll. No further
setup is required. Linux and OS X users will need to Untar/zip their distro of
choice, then run a make to place a compiled Redis binary in ./src subdirectory.
You can start up your local Redis by running the redis-server executable in your
installation directory. You’re greeted with the famous Redis ASCII art shown in fig-
ure 16.1.

 With your Redis server installed and started, it’s time to learn a few of the basic
Redis commands using the command-line client.

16.3.2 Using Redis operations

With Redis installed, the best way to experiment with the service is to use the redis-cli
executable found in the same directory where you unzipped the service. Start it up
and experiment with the common Redis commands listed in table 16.2. Running
these yourself will acquaint you with the commands you’ll use via the Redis Grails API
in the next section.

Figure 16.1 The Redis welcome screen
Licensed to Mark Watson <nordickan@gmail.com>

www.redis.io/
https://github.com/MSOpenTech/redis/tree/2.6/bin/release
https://github.com/MSOpenTech/redis/tree/2.6/bin/release

436 CHAPTER 16 NoSQL and Grails
As you can see, Redis goes beyond caching and returning simple values. It also has
first-class support for atomic integer operations (perfect for counters), lists, hashes,
and sets. You explore more of that goodness in the next few sections.

16.3.3 Installing the Redis plugin (including pooling configuration)

The first question that you need to ask is “which Grails Redis plugin?” because two
are available:

1 Grails Redis plugin—Provides a nice wrapper for the underlying Jedis library,
with much Grails goodness baked in (taglibs, Grails service, annotations, and so
on). See http://grails.org/plugin/redis.

2 Grails Redis GORM Plugin—Offers GORM support for Redis, including the ability
to store Grails domain objects in Redis and use the standard GORM goodness

Table 16.2 Redis commands and descriptions

Command samples Description

set name glen
get name
exists glen

Placing a value in the cache, reading it’s cur-
rent value, and testing for it’s existence

incr hitcount
decr hitcount

Incrementing and decrementing a counter

rpush users glen
lpush users peter
lrange users 0 1
lpop users
rpop users

Lists can be pushed, popped, and inspected
from either left or right side

hset email glen glen@bytecode.com.au
hget email glen
hvals email
hkeys email

Hashtables are supported natively

sadd fruit orange
smembers fruit
sinter fruit citrus
sdiff fruit citrus
sunion fruit citrus

Sets ensure uniqueness and support
common set operations such as intersection,
diff, and union

Diving deeper into Redis
To learn more about all the available Redis commands, we recommend you check out
the excellent online reference at http://redis.io/commands. If you want to see every-
thing that Redis via Groovy has to offer, we highly recommend all the amazing Redis
presentations given by Groovy great Ted Naleid; they’re linked off the Grails Redis
plugin page at http://grails.org/plugin/redis.
Licensed to Mark Watson <nordickan@gmail.com>

http://redis.io/commands
http://grails.org/plugin/redis
http://grails.org/plugin/redis

437Using Redis to work with key-value stores
you’re used to, including dynamic finders, criteria queries, named queries, and
so on. See http://grails.org/plugin/redis-gorm.

To be honest, the low-level API of the Redis plugin makes more sense for what you
need because Redis isn’t the ideal place to store and query GORM objects (and the
base Redis plugin offers better Grails support for all the common places you typically
want to interact with Redis from Grails).

 Let’s add the latest Redis plugin to your /grails-app/conf/BuildConfig.groovy, so
you’ll be ready to cache up a storm.

plugins {
 ...
 compile ":redis:1.3.3"
 ...
}

With the plugin installed, your application is equipped with a range of Redis enhance-
ments including

■ A redisService Spring bean that wraps all the low-level Redis API, as well as
many Grails-specific convenience methods.

■ A redisPool Spring bean that gives you low-level access to a pool of Redis con-
nections (though typically you let redisService transparently handle all pool-
ing for you).

■ A redis:memoize taglib that lets you cache sections of your GSP pages (with
timeout).

■ A series of Redis-backed annotations, such as @Memoize, @MemoizeList, @Memoize-
Hash, @MemoizeDomainObject, @MemoizeDomainList, that return a cached object
(or fetch the object and cache it if required).

Do you notice all the “@Memoize”ing happening around here? Perhaps we’d better
introduce you to the simple meaning behind this complex term.

16.3.4 Simple, expiring key/value caching: what is all this
@Memoize stuff?

One of the most common ways to use Redis is to cache your expensive data values and
calculations. The quickest and easiest way to do this in Grails is using the range of handy
annotations that ship with the Redis plugin. They all have an @Memoize prefix, which
might be a new term for you, but don’t be scared off, a quick example clears things up.

 If you haven’t yet come across this computer science term, it’s a concise way to
refer to an optimization technique you’ve probably already seen (and used) when you
looked at the Cache plugin in chapter 10. Consider something such as this:

@Memoize(key = "#{user.loginId}", expire = "60000")
def performExpensiveUserProfileOperation(User user) {
 log.info "${user.loginId} not in cache,
 ➥ performing expensive calculation"
 return user.doSomeExpensiveOperation()
}

Licensed to Mark Watson <nordickan@gmail.com>

http://grails.org/plugin/redis-gorm

438 CHAPTER 16 NoSQL and Grails
The first time the perfomExpensiveUserProfileOperation method is invoked with a
given user, the expensive calculation is performed and the value is cached in Redis
based on the user’s loginId. The second time the method is called with the same
user as an input, the cached value is immediately returned (thereby skipping the
expensive calculation).

 The expire parameter specifies that you want this value cached for up to 60 sec-
onds only (the value is specified in milliseconds), and after that you want to expire the
value from the cache and recalculate it. You might hear this called the TTL (time-to-
live) of the value.

 Under the covers, the Redis plugin looks at all the interactions with the back end
to set and get the keys based on the user’s loginid, but the flexibility of the annota-
tion allows you to use whatever keys you like.

 The @Memoize annotation is perfect for all your service classes that perform data
lookups and calculations. But what if you need to cache in the view tier? Well, the
Redis plugin provides the taglib you need.

16.3.5 Working with the Redis taglib

When we introduced the Cache plugin in chapter 10, we showed you the cache:cache
taglib, which allows you to cache a portion of a GSP into an in-memory cache for later
reuse. Remember this old chestnut for caching the user count?

<cache:block>
 Hubbub currently has ${ com.grailsinaction.User.count()} registered users.
</cache:block>

In this case you don’t specify a timeout because you configured the underlying cache
with a set timeout value.

 The Redis plugin gives you the same capability, but this time it’s backed by a Redis
store, so you can safely use it in clusters, and it happily survives restarts. It comes as no
surprise that the Redis plugin embraces a similar semantic:

<redis:memoize key = "hubbubCount", expire = "60000">
 Hubbub currently has ${ com.grailsinaction.User.count()} registered users.
</redis:memoize>

In this case you need to provide a key to use in the Redis store, and, optionally, an
expire value, otherwise the value lives forever.

Backing the standard Grails Cache with Redis
You may wonder whether it’s possible to use Redis to back the standard Grails Cache
plugin. The answer is yes! A special Grails plugin called the Grails Redis Cache plugin
(http://grails.org/plugin/cache-redis) plugs into the existing Grails cache beans and
backs them with Redis. Check out the plugin page for more details.
Licensed to Mark Watson <nordickan@gmail.com>

http://grails.org/plugin/cache-redis

439Using Redis to work with key-value stores
16.3.6 Beyond the basics: working with the Redis service object directly

We showed you the most common use cases for interacting with key/value stores such
as Redis—storing and retrieving expiring values in a persistent cache. But when we
introduced Redis, we said it could do more than that. We talked about sets, lists,
hashes, and atomic integers. It’s time to unleash all that power. The Redis plugin pro-
vides you with the lower-level redisService Spring bean for such operations.

 For your Redis enhancements to Hubbub, we’re going to introduce a StatsService
object responsible for keeping various stats on Hubbub’s operation (such as the num-
ber of posts made today and the highest posting users).

 Let’s get your scaffolding in place for your service object with your familiar grails
create-service com.grailsinaction.Stats. For your stats object, it would be nice
to hook into any new Post objects created in the system, which should make you think
about the Platform Core Events capabilities we introduced in chapter 15.

 Let’s hook your StatsService into any newly created posts and keep a cache of
the number of posts created today, as shown in the following listing.

package com.grailsinaction

class StatsService {

 static transactional = false

 def redisService

 @grails.events.Listener
 void onNewPost(Post newPost){

 String dateToday = new Date().format("yy-MM-dd")
 String redisTotalsKey = "daily.stat.totalPosts.${dateToday}"

 log.debug "New Post from: ${newPost.user.loginId}"

 redisService.incr(redisTotalsKey)

 log.debug "Total Posts at: ${redisService.get(redisTotalsKey)}"

 }

}

To take advantage of standard Grails injection, you inject the redisService B that
the plugin provides. Use this service object to invoke any of the standard Redis opera-
tions included in the Redis command reference we introduced you to previously
(http://redis.io/commands. See the following sidebar for more information on how
this service works under the hood).

 With your service acquired, you need to work out which key to use in Redis to store
your daily post counts. Let’s use the current date as a key c with yy-MM-dd qualifiers,
for example, daily.stat.totalPosts.13-09-30 indicates September 30, 2013.

Listing 16.1 A StatsService storing daily totals in Redis

Injects redisService
for Redis integration

 b

Works out daily
unique Redis

key for caching

 c

Increments post
count for today

 d

Logs out
current totals e
Licensed to Mark Watson <nordickan@gmail.com>

http://redis.io/commands

440 CHAPTER 16 NoSQL and Grails
With a Redis service handle and your key calculated, incrementing the posts for the
day is a simple matter of invoking the incr method d. This is atomic and inherently
thread-safe (because all Redis servers are single-threaded).

 For fun, you log out the current value of this counter e to make sure your
changes stick. You could instead use your command-line Redis client, as shown in fig-
ure 16.2, to inspect the value.

 Wow, 48 posts already. It’s been a good day of testing.

It’s nice to have your daily stats in place, but it would be even nicer if you could break
them down by top posters of the day. And that sounds like a perfect way to introduce
you to one of Redis’s most powerful data structures: the sorted set.

16.3.7 Top posters with Redis sorted sets

In your Redis explorations you looked at caching simple values (such as strings), and
worked with the atomic counter support offered by incr (and decr). But one of Redis’s
most powerful features is its support for lists, sets, and hashes. Users have even described
Redis as “a collection of data structures exposed over the network.”

 If you had a “Top Posters of the Day” feature, you’d need to keep a set of user IDs
and their counts. You can easily do that in a hash, but Redis offers first-class support
for these kinds of counting tables through sorted sets. Every entry in a Redis sorted set
records a name and a score. You can then efficiently perform various operations on
the order sets, such as retrieving the list ordered by score (in either direction), retrieving

Why doesn’t my IDE autocomplete redisService methods?
You may wonder why your IDE isn’t autocompleting the various methods on the
redisService such as incr. The reason is that the plugin is implemented using
Groovy’s methodMissing metaclass feature (the same techniques that GORM uses
for dynamic finders).

The plugin literally catches any method you invoke on the service, then looks for a
matching method in the underlying Jedis Java library. It’s easier to enhance the plugin
with new features that appear in the underlying library but harder for you to find out
exactly which method you need to call!

Figure 16.2 After you create a few posts in Hubbub, you can use the Redis client to
get your current values.
Licensed to Mark Watson <nordickan@gmail.com>

441Using Redis to work with key-value stores
values higher/lower than a given score, finding the score for a given entry, increment-
ing and decrementing scores for a given name, and so on.

 In your Post of the Day sample, you take advantage of these sorted sets to keep a
loginId along with a count of posts for the day. To keep it simple, you key the whole
ordered set off the current date (as you did for the daily totals stat).

 To increase the score of an element in a sorted set, use the Redis command zin-
crby (the Z is used to prefix all sorted set operations). To invoke the command (and
the Grails method), use the following arguments:

ZINCRBY cacheKey incrBy name

To increment the count of posts for chuck_norris by 1 on September 30, 2013, you
issue this command:

redisService.zincrby("daily.stat.totalPosts.13-09-30", 1, "chuck_norris")

To retrieve the current value of that element, use the ZSCORE method:

redisService.zscore("daily.stat.totalPosts.13-09-30", "chuck_norris")

With a basic knowledge of sorted sets under your belt, let’s dive into the implementa-
tion, as shown in the following listing.

package com.grailsinaction

class StatsService {

 static transactional = false

 def redisService

 @grails.events.Listener
 void onNewPost(Post newPost) {

 String dateToday = new Date().format("yy-MM-dd")
 String redisTotalsKey = "daily.stat.totalPosts.${dateToday}"

 redisService.incr(redisTotalsKey)

 String redisTotalsByUserKey = "daily.stat.totalsByUser.${dateToday}"

 redisService.zincrby(redisTotalsByUserKey,
 1, newPost.user.loginId)
 int usersPostsToday = redisService.zscore(redisTotalsByUserKey,

newPost.user.loginId)
 log.debug "Incremented daily stat for ${newPost.user.loginId} to

${usersPostsToday}"

 }

}

Once again, you take advantage of your injected redisService B to do all the low-
level work. You calculate your key using the current date with namespacing c, then

Listing 16.2 A StatsService with total posts by user per day

Injects redisService for
Redis integration

 b

Works out
daily unique

Redis key for
caching daily

sorted set

 c

Increments post count
for user’s daily tally

 d

Fetches current daily
post count for user e
Licensed to Mark Watson <nordickan@gmail.com>

442 CHAPTER 16 NoSQL and Grails
you get to work incrementing the count for the current user d. If the user doesn’t
have a current value in the set, Redis assumes the current value is zero and increments
it to one.

 To prove to yourself the value is persisting, you fetch the current value for the
user e and log it out. This isn’t necessary in prod code. In the real scenario, you’d
fetch those values; you can use the zrevrangeWithScores method to fetch back a list
in reverse sorted order (highest to lowest). Jedis returns these as an ordered list of
tuples, in which you can get at each element using the element() and score() meth-
ods with code similar to the following listing.

def getTodaysTopPosters() {
 String dateToday = new Date().format("yy-MM-dd")
 String redisTotalsByUserKey = "daily.stat.totalsByUser.${dateToday}"
 def tuples = redisService.zrevrangeWithScores(
 redisTotalsByUserKey, 0, 1000)
 tuples.each { tuple ->
 log.debug("Posts for ${tuple.element} -> ${tuple.score}")
 }
 return tuples
 }

Using your redisService, you grab and reverse-order the list from your sorted set
(reverse in the sense that it’s ordered highest to lowest). This routine takes two argu-
ments B: the first is the minimum count to retrieve. Because no one gets into this set
without at least one post, you set this value to zero. The second is the maximum score
to retrieve (which you set to 1,000 as an arbitrarily high value).

 In this case you log out the results c, which sends the list to your console:

DEBUG grailsinaction.StatsService - Posts for frankie -> 12.0
DEBUG grailsinaction.StatsService - Posts for phil -> 10.0
DEBUG grailsinaction.StatsService - Posts for graeme -> 4.0

And now that you’re across common sorted set operations, this completes your whirl-
wind tour of Redis.

Listing 16.3 Getting back an ordered list of top posters for the day

Additional Redis features to explore
We whetted your appetite for all the goodness available in Redis via Grails but rec-
ommend that you look through the online Redis plugin documentation on GitHub
(https://github.com/grails-plugins/grails-redis), which has full coverage of all the
available Redis annotations (and detailed configuration guides for pooling, pipelining,
and other advanced features).

If you want to explore further how to integrate GORM with Redis, we recommend you
also check out Grails’s Redis GORM plugin (http://grails.org/plugin/redis-gorm) to
see how you can augment domain classes for storage in Redis via GORM. It’s a little
fiddly at the moment, but many of the common GORM operations are well supported.

Fetches
ordered

list of top
posters
(highest

to lowest)

 b

Iterates list outputting
name and score c
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/grails-plugins/grails-redis
http://grails.org/plugin/redis-gorm

443Using MongoDB to work with document-oriented data
It’s time to branch out into the document-oriented world of MongoDB.

16.4 Using MongoDB to work with document-oriented data
Your second set of NoSQL technologies to explore revolves around document-oriented
NoSQL, in which the biggest player is MongoDB.

Document-oriented stores specialize in storing data items as self-contained objects
rather than as key/value pairs. They provide fast ways to query and update these docu-
ments (and because they don’t typically need to do any joins, the performance impli-
cations of querying documents can result in lightning-fast responses).

 Aside from the potential speed improvements, what’s so attractive about document-
oriented databases and MongoDB in particular?

■ MongoDB is schemaless. In a relational model, you have to decide your table struc-
ture and list of column names ahead of time, because refactoring columns can
be a pain later. In MongoDB, every document can have its own custom set of
fields, and you can change them (including adding and removing fields) when-
ever you like. That’s amazing flexibility that you can let your database grow with
your software.

■ MongoDB offers easy scalability options. Scaling out to a cluster of relational data-
bases can be tricky business. Deciding on sharing strategies remains a black art.
MongoDB was designed with scalability in mind. Add more MongoDB servers to
your config and MongoDB redistributes your documents for optimal load shar-
ing and failover.

■ MongoDB is fast on Big Data. MongoDB is short for “humongous DB” and ships
with a rich indexing model designed for storing gigantic datasets. Running
MongoDB servers on commodity hardware is likely to give you more fast storage
than you can ever use.

■ MongoDB offers native support for files and other large binary content. Need to store
pictures or other binary content in your database? MongoDB has built-in sup-
port for storing large files and their metadata.

■ Ubiquitous cloud services. Most of the popular cloud operators (such as Heroku,
OpenShift, and Cloud Foundry) all offer native MongoDB support on their
cloud offerings. Companies such as MongoLab and MongoHQ offer “Mongo as
a service” on a per-month, hosted-service basis.

■ Zero-cost kickoff, with great vendor support. MongoDB is free under the Affero Gen-
eral Public License (AGPL) to use and run, but you can also purchase great

MongoDB: company and open-source community
MongoDB Inc. (formerly 10gen) builds and supports MongoDB, the open-source data-
base (www.mongodb.org), and MongoDB Enterprise, the commercial edition of Mon-
goDB (www.mongodb.com).
Licensed to Mark Watson <nordickan@gmail.com>

www.mongodb.org
www.mongodb.com

444 CHAPTER 16 NoSQL and Grails
commercial support from MongoDB Inc. You don’t have to skimp on big ven-
dor backing if it’s important to your scenario.

What do MongoDB documents look like? Let’s work through an example, to give you
an idea of what this document business is all about. Imagine you’re storing a user’s
questionnaire results in your data store. Instead of a typical relational model (where
you’d need to have a table with userid, question number, and question response),
MongoDB stores the whole set of data in a single related document that it represents
in a JSON format similar to the following code:

{
 "_id" : ObjectId("5248d92ae102251e9e94eb4b"),
 "title" : "q1",
 "question" : "What is your favourite colour",
 "answer" : "orange"
}

As you can see, this is the JSON that you know and love from your Ajax work in part 2
of the book, and which we dived even deeper into in chapter 13 when we looked at
single-page web applications).

 Internally, MongoDB stores documents in a special binary version of JSON known
as BSON. But to the outside world, documents present as standard JSON that you can
use with all the JSON tools you’re used to. Because this is such a ubiquitous data for-
mat, developers are drawn to MongoDB because they can use their familiar tools
and libraries.

 But you aren’t limited to “flat” documents of properties; you can also nest docu-
ments within one another as subdocuments. Imagine a blog system where you want to
keep all the comments with their respective blog entry:

{
 title: "MongoDB rocks!",
 author: "Glen Smith",
 content: "I've been experimenting with MongoDB and it looks amazing",
 created: ISODate("2013-09-30T14:00:00Z"),
 comments: [
 {
 comment: "Yeah, looks really promising",
 author: "Joe User",
 created: ISODate("2013-09-30T15:00:00Z")
 },
 {
 comment: "Cool. I must check it out",
 author: "Jill User",
 created: ISODate("2013-09-30T16:00:00Z")
 }
]
}

In addition to the ability to nest documents within documents and query them effi-
ciently, you can structure your data in whatever way makes the most sense to your partic-
ular application without having to worry about any kind of schema definition up front.
Licensed to Mark Watson <nordickan@gmail.com>

445Using MongoDB to work with document-oriented data
 We hope by now we piqued your interest in this bold, new document-oriented
world. Let’s take a small detour to introduce MongoDB terminology, then you’ll create
and query documents of your own.

16.4.1 Learning MongoDB terminology

In the relational world, you talk about tables and rows. But tables and rows don’t make
sense in a document-oriented world. Table 16.3 introduces the way MongoDB thinks
about storage.

We’ll walk you through working with collections and documents, but first, let’s get all
your tools and servers set up.

16.4.2 Getting set up: installing a MongoDB server

First you need to grab a MongoDB server for your platform of choice. It’s a free down-
load at www.mongodb.org/downloads.

 After you unzip the installation, create a data directory to hold your MongoDB data-
base data. By default, this directory is located at C:\data\db on Windows, and /data/db
on UNIX and derivatives. You need to create this directory before you spark up
MongoDB. Alternatively, you can tell MongoDB where your data directory is by pass-
ing in --dbpath c:\my\custom\path, but we assume you’ll use the defaults.

 To launch the MongoDB daemon, head into the bin directory of your unzipped
MongoDB server, and run the mongod command as shown in figure 16.3.

 It’s time to fire up a client and connect to it.

16.4.3 Creating your first database

MongoDB ships with a command-line client called, well, mongo, which you’ll find in
the same bin directory as the MongoDB server. To create your first database, complete
the following steps:

1 Start up the mongo client:

E:\java_apps\mongodb-win32-x86_64-2008plus-2.4.6\bin>mongo
MongoDB shell version: 2.4.6
connecting to: test

Table 16.3 MongoDB terminology

Relational database term MongoDB equivalent

Database Database

Table Collection

Row Document

Field JSON property on a document

Primary key Primary key

Index Index
Licensed to Mark Watson <nordickan@gmail.com>

www.mongodb.org/downloads

446 CHAPTER 16 NoSQL and Grails
2 Create a new database called “quiz” by switching to it with the use command:

> use quiz
switched to db quiz

MongoDB creates the database automatically when you switch to it. Once in a
database, you create a responses collection to house all your response docu-
ments (remember, a collection is analogous to a table in relational parlance).
Collections are automatically created when the first document is inserted
into them.

3 Use the insert method on the responses collection to pass in your JSON
objects, which represent each document:

> db.responses.insert({ title: "q1",
 ➥ question: "What is your fave color", answer: "orange" })
> db.responses.insert({ title: "q1",
 ➥ question: "What is your fave color", answer: "blue" })
> db.responses.insert({ title: "q1",
 ➥ question: "What is your fave color", answer: "green" })

With your collection populated with documents, you can give MongoDB queries to
resolve, such as the count of documents in a collection:

> db.responses.count()
3

Or, if you’re chasing the equivalent of a SELECT * FROM RESPONSES, you can display
all the documents MongoDB has in a collection using the find() command:

> db.responses.find()
{ "_id" : ObjectId("5248e2dbb97b0d6acea283bb"),
 "title" : "q1", "question" : "What is your fave color",
 "answer" : "orange" }

Figure 16.3 Launching the MongoDB server
Licensed to Mark Watson <nordickan@gmail.com>

447Using MongoDB to work with document-oriented data
{ "_id" : ObjectId("5248e2e6b97b0d6acea283bc"),
 "title" : "q1", "question" : "What is your fave color",
 "answer" : "blue" }
{ "_id" : ObjectId("5248e2edb97b0d6acea283bd"),
 "title" : "q1", "question" : "What is your fave color",
 "answer" : "green" }

Notice that MongoDB automatically assigns an ObjectId element to the documents
after they’re inserted. This is a unique key for the object in the database.

 What if you want to qualify your finds? No sweat. Pass in the argument(s) you want
to constrain to your find() call, and MongoDB does the heavy lifting. Here’s the
equivalent of a SELECT FROM RESPONSES WHERE ANSWER=‘green’:

> db.responses.find({answer: 'green'})
{ "_id" : ObjectId("5248e2edb97b0d6acea283bd"),
 "title" : "q1", "question" : "What is your fave color",
 "answer" : "green" }

Now that you’ve experimented with the MongoDB console, let’s look at how to integrate
Grails into this document-oriented world. Start by installing the MongoDB plugin.

Robomongo instead of the command line
If messing about on the command line seems tedious to you, we understand. For-
tunately, you have a range of MongoDB GUIs and web apps that can make all this
experimenting less painful. If a rich GUI takes your interest, we recommend you
check out Robomongo (http://robomongo.org/). It’s free and available on all the
major platforms.

Robomongo is a GUI-based management tool for MongoDB.
Licensed to Mark Watson <nordickan@gmail.com>

http://robomongo.org/

448 CHAPTER 16 NoSQL and Grails
16.4.4 Installing the MongoDB plugin

As you might imagine, the first step in making Hubbub MongoDB-ready is to install
the Grails Mongo plugin (http://grails.org/plugin/mongodb). Add the latest Mon-
goDB plugin to your /grails-app/conf/BuildConfig.groovy so you can get cracking on
your Grails integration effort:

plugins {
 ...
 compile ":mongodb:1.3.0"
 ...
}

If you run MongoDB on your local host and the default port, no further configuration
is required. If you connect to an external cloud-hosted solution, you can always cus-
tomize your MongoDB server as shown in the following code:

grails {
 mongo {
 host = "yourRemoteService"
 port = 27017
 // or replicaSet = ["server1:27017", "server2:27017"]

 databaseName = "hubbub"
 }
}

With the plugin installed (and optionally configured), it’s time to point your domain
classes toward MongoDB.

16.4.5 Polyglot persistence: Hibernate and MongoDB working together

If you use only MongoDB for your persistence engine, you can safely remove the
Hibernate plugin entirely from your /grails-app/conf/BuildConfig.groovy. However,
in your case, you’re going to augment your existing Hibernate solution with new
domain classes that are stored in MongoDB. This strategy is sometimes called polyglot
persistence because you use several persistence engines in a single application.

 One immediate candidate for your MongoDB integration is your AuditService. At
the moment you log out your audit data to a file, but if you persist it in MongoDB, a
range of query operations are available that you can expose to your admin users.

 First up, in the following listing, let’s create an AuditEntry domain object to hold
your audit data.

package com.grailsinaction

import org.bson.types.ObjectId

class AuditEntry {

 static mapWith = "mongo"

Listing 16.4 Defining an AuditEntry object to store in MongoDB

Tells Grails to use
MongoDB for
domain class.

 b
Licensed to Mark Watson <nordickan@gmail.com>

http://grails.org/plugin/mongodb

449Using MongoDB to work with document-oriented data
 ObjectId id
 String message
 String userId
 Date dateCreated

 static constraints = {
 message blank: false
 userId blank: false
 }

 static mapping = {
 collection "logs"
 database "audit"
 userId index:true
 version false
 }

}

This GORM domain class looks remarkably like any other GORM domain class. Aside
from the mapsWith B property (which is only required because you’re getting Hiber-
nate and MongoDB to coexist in one app), it consists of all the field definitions, auto-
timestamp fields d, constraints block, and indexing operations you know and love.

 You’ll notice, however, a few artifacts that are unique to how MongoDB-GORM
interacts. You supplied an ID field c declared as type org.bson.types.ObjectId (see
the following sidebar). You also provided a custom mapping block to tune exactly
where and how MongoDB stores this domain class. In this block you specified the
MongoDB collection name e and database name f, which, if not specified, defaults
to the classname and appname respectively.

 Even though you’re in NoSQL land, for best performance you still need to index
any fields that are likely to be common query candidates g, and because you won’t
ever edit or update an AuditEntry, you probably want to turn off versioning h.

After all the plumbing is in place, persisting objects using the standard GORM APIs
works. Here’s your enhancement to the existing audit service to log all new post cre-
ations back to MongoDB:

@grails.events.Listener
 def onNewPost(Post newPost){
 log.error "New Post from: ${newPost.user.loginId} :
 ➥ ${newPost.shortContent}"

What’s with the ObjectId?
Normally you don’t declare an ID field on Grails domain classes—you let Grails assign
one for you. This causes a snag in MongoDB-land, however, because if you don’t
declare an ID, Grails stores an ordinal Long as the ID, which breaks MongoDB advan-
tages such as autosharing. The best strategy is to declare it as an org.bson.types
.ObjectId and let MongoDB assign an ID to that string when the object is stored
(much like you saw in your console examples).

Defines ObjectId to let
Mongo assign its own IDs. c

Autotimestamping
works fine for Mongo. d

Custom collection name
(defaults to class name).

 e

Custom database name
(defaults to app name).

 f

Indexes common query fields
and increases performance. gTurns off

versioning. h
Licensed to Mark Watson <nordickan@gmail.com>

450 CHAPTER 16 NoSQL and Grails
 def auditEntry = new AuditEntry(message: "New Post:
 ➥ ${newPost.shortContent}",
 userId: newPost.user.loginId)
 auditEntry.save(failOnError: true)
 }

With all the familiar save() semantics you’re used to, you’d think this was heading
into a relational data source if you didn’t know the backstory. Let’s run a few posts and
see where these domain classes end up.

 With a quick browse of the database in Robomongo, you can see your new entries
persisting nicely in figure 16.4.

 Notice the collection name is set to logs and the database name to audit as con-
figured in the domain class (see listing 16.4). Also notice that MongoDB assigned an
appropriate _id field on the document using its standard semantics.

 Until now you’ve stored objects as you would with any relational back end. Now it’s
time to explore GORM’s support for MongoDB’s schemaless operations.

16.4.6 Stepping outside the schema with embeddables
One of the great advantages of document databases is storing all the data related to an
object within a single document—typically through a kind of embedded subdocu-
ment. Fortunately the MongoDB GORM plugin knows all about this style of operation,
so let’s explore the support for these embedded documents.

 One of the simplest forms of embedding is taking advantage of standard lists and
maps on your domain classes. Imagine that when you store your AuditEntry domain
classes, you want to dump out not only the name of the operation happening now, but
also everything you know about the object under audit (such as all the properties of a
newly created post). But you need that to be generic for all the kinds of objects you
may audit in the future.

Figure 16.4 New entries in Robomongo
Licensed to Mark Watson <nordickan@gmail.com>

451Using MongoDB to work with document-oriented data
Let’s capture the details of the object being audited in your AuditEntry via a details
Map. Most of the domain class is omitted, but you’ll get the gist:

class AuditEntry {

 ObjectId id

 // ...other fields omitted

 Map details

}

Now that you have your embedded Map object, it’s a simple matter to dump out all the
properties of the object under audit directly to that map. Something like a straight
properties assignment should do the trick:

@grails.events.Listener
def onNewPost(Post newPost){
 def auditEntry = new AuditEntry(message: "New Post:
 ➥ ${newPost.shortContent}", userId: newPost.user.loginId)
 auditEntry.details = newPost.properties
 auditEntry.save(failOnError: true)
}

If you browse the next newly minted AuditEntry, you see your embedded details
properties object as a subdocument, as shown in figure 16.5.

Figure 16.5 Embedded details as a subdocument
Licensed to Mark Watson <nordickan@gmail.com>

452 CHAPTER 16 NoSQL and Grails
In this case, you probably made things too “noisy” with overhead fields. You’re better
off whitelisting properties (as you feel appropriate) during the assignment to tidy
things up. Perhaps something like this:

auditEntry.details = newPost.properties['userId',
 'shortContent', 'dateCreated']

But what if you want to go beyond embedded maps and embed domain classes? Turns
out the MongoDB plugin takes advantage of GORM’s standard embedded annotation.

 Let’s enhance your AuditEntry to be taggable. You can tag each audit entry
with one or more tags to allow pick up of audit entries that relate to object cre-
ation, object access, deletion, and so on. Here’s your enhanced AuditEntry with
the new modeling:

class AuditEntry {

 static mapWith = "mongo"

 ObjectId id
 String message
 String userId
 Date dateCreated

 Map details

 static hasMany = [tags : AuditTag]

 static embedded = ['tags']

}

Now you need to define your simple AuditTag and you’re ready to persist:

package com.grailsinaction

class AuditTag {

 String name

}

Once again, after the plumbing is in place, all your normal GORM persistence opera-
tions work in the standard relational manner. Here’s an enhanced AuditService
method to add tags to your logging:

@grails.events.Listener
def onNewPost(Post newPost){
 def auditEntry = new AuditEntry(message:
 "New Post: ${newPost.shortContent}",
 userId: newPost.user.loginId)
 auditEntry.details = newPost.properties['userId',
 'shortContent', 'dateCreated']
 auditEntry.addToTags(new AuditTag(name: "post"))
 auditEntry.addToTags(new AuditTag(name: "create"))
 auditEntry.addToTags(new AuditTag(name: "user-driven"))
 auditEntry.save(failOnError: true)
}

Uses standard
hasMany to say
you linked objects

Marks tags as
embedded
Licensed to Mark Watson <nordickan@gmail.com>

453Using MongoDB to work with document-oriented data
Notice you use the standard GORM addToTags infrastructure to work with your embed-
ded collection of tags. Once you create a few audits, browse Robomongo to confirm
your new tags are nicely nested inside a set of subdocuments, as shown in figure 16.6.

 Your three tags seem to be nicely embedded there. You explore how to take advan-
tage of querying those subdocuments in a later section.

Now it’s time to turn your attention to one of the most interesting aspects of working
with a schemaless database: dynamic attributes.

How does MongoDB store non-embeddable Grails relationships?
You may wonder what happens when MongoDB/GORM encounters related domain
classes (such as oneToMany) that aren’t marked as embedded. By default, the plugin
stores the objects as two separate documents, then uses a MongoDB structure
known as a DBRef to provide the link between them.

Remember this has performance implications; you’ll now do more than one fetch
operation to retrieve the related documents when required (which can happen either
lazily or eagerly depending on how you configure your plugin).

Figure 16.6 Tags nested in subdocuments
Licensed to Mark Watson <nordickan@gmail.com>

454 CHAPTER 16 NoSQL and Grails
16.4.7 Dynamic attributes: making up properties as you go along

You’ve mostly dealt with scenarios where you create a field on a domain class, and
then populate it with values. But MongoDB domain classes are happy to have proper-
ties dynamically created on them.

 To store a machineName property on your next AuditEntry, you can pretend that
the property exists and assign it without having any matching field. This is entirely
valid, even without a field definition

auditEntry.machineName = InetAddress.localHost.hostName
auditEntry.save(failOnError: true)

and your new property is persisted directly to the audit object, as shown in figure 16.7.
 You can create your own properties at runtime and add them to your domain

object as you go. You could do something like this

def dynamicProps = [
 "os-name" : System.getProperty("os.name"),
 "os-version" : System.getProperty("os.version"),
 "os-java" : System.getProperty("java.version")
]
dynamicProps.each { key, value ->
 auditEntry[key] = value
}
auditEntry.save(failOnError: true)

which creates the property names dynamically at runtime, as shown in figure 16.8.
 You’ve comprehensively explored all the common dynamic data storage aspects

that MongoDB brings to the table. But what about querying all that dynamic data? In
the next section you see how MongoDB/GORM makes that painless.

Figure 16.7 Your newly minted audit object now in a MongoDb collection

Figure 16.8 New
property names
created at runtime
Licensed to Mark Watson <nordickan@gmail.com>

455Using MongoDB to work with document-oriented data
16.4.8 Querying MongoDB via standard GORM

This should probably be one of the smallest sections in the book because most of your
standard GORM mechanisms apply to MongoDB querying: dynamic finders, criteria
queries, named queries, and query by example. You can’t use Hibernate’s proprietary
HQL (or any other Hibernate-specific API), but it’s a small price to pay.

 The truly amazing thing is that all these query methods work fine with dynamic
MongoDB properties. Remember that dynamic machineName property you added to
AuditEntry? You can query on it via normal query APIs

def entries = AuditEntry.findByMachineName('longblack')

and it returns the full-blown AuditEntry objects you expect. You can iterate them in a
Grails view to prove how ubiquitous the access is

<h1>Recent Audits From Machine: Longblack</h1>

 <g:each in="${com.grailsinaction.AuditEntry.
 ➥ findByMachineName('longblack')}" var="auditEntry">
 ${auditEntry.message} –
 ${auditEntry.userId} –
 ${auditEntry.dateCreated}

 </g:each>

What if you want to find all the AuditEntries that have an embedded tag? Again, all
the standard criteria and where queries work as you expect. If you want to find all
AuditEntries with an embedded tag named post, you can use a regular where query:

def entries = AuditEntry.where {
 tags.name == "post"
}.list()

and entries contains a List of AuditEntry objects that you can manipulate in what-
ever way makes sense for your application.

 But what if you want to go lower level and do raw MongoDB querying without going
through GORM? Even in those scenarios the plugin has you covered. Let’s go native.

16.4.9 Working with low-level MongoDB querying

In addition to the GORM standard API, the plugin enhances your domain class with a
collection property giving you access to the underlying MongoDB collection via the
low-level GMongo API. Be warned, though, you’re now working with MongoDB objects
and not GORM domain classes.

 To repeat your previous query using raw MongoDB querying, you can enter

def entries = AuditEntry.collection.find(tags: [name: 'post'])

which returns a list of DBObjects (that you can treat as a Map if you’re reading values).
If you need to convert your results back to a domain class, the plugin registers type
converters for you, so go ahead and jump in
Licensed to Mark Watson <nordickan@gmail.com>

456 CHAPTER 16 NoSQL and Grails
def entries = AuditEntry.collection.find(tags: [name: 'post'])
entries.each { entry ->
 AuditEntry auditEntry = entry as AuditEntry
 // and you have yourself a domain class
}

If you need to go even lower than the query layer, Grails also injects a GMongo object
(https://github.com/poiati/gmongo) on any service and controller classes that define
a MongoDB property.

 With an injected GMongo instance, you can be as hard-core MongoDB as you like.
How about a Mongo Map-Reduce function that counts the number of audit entries
per user and then stores that in a new collection called auditCounts? The following
listing shows an enhancement to your StatsService to do that, and then returns a
map of userId to auditCount to boot!

class StatsService {

 def mongo

 def countAuditMessageByUser() {

 def db = mongo.getDB("audit")
 def result = db.logs.mapReduce("""
 function map() {
 emit(this.userId, this.message)
 }
""",
 """
 function reduce(userId, auditMessages) {
 return auditMessages.length
 }
""",
 "auditCount", [:]
)

 def countMap = [:]

 db.auditCount.find().each { counter ->
 countMap[counter._id] = counter.value
 }

 return countMap
 }

 // rest of StatsService omitted.

}

As you can see, the sky is the limit with an injected MongoDB instance. Here you pass
in a Map function (in JavaScript because it runs inside MongoDB itself) that maps all
the AuditEntries in your database as a tuple of userId and message. You then feed
those tuples into your reduce function (which is handed a userId along with an array
of matching messages), and you return a count of those messages back to MongoDB.

Listing 16.5 Enhancing StatsService

Declares MongoDB
handle for injection

Maps function to
pair data values

Reduces function to count
number of audit entries

Stores result in a collection
called auditCount

Transforms auditCount
collection to map of
userId to count
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/poiati/gmongo

457Using Neo4j to work with graph-oriented data
After all that Map/Reducing, you’re left with a collection of documents that map a
userId to a count of entries that MongoDB stores in a collection you named audit-
Count. If the collection already exists, MongoDB wipes it out on the next run. You can
even browse the results in Robomongo (see figure 16.9).

 With insanely hard-core Map/Reduce code under your belt, you’re probably
deeper into MongoDB than you ever planned to be in an introductory Grails book!
Let’s spend the last section of the chapter exploring another interesting take on the
NoSQL story: graph databases with Neo4j.

16.5 Using Neo4j to work with graph-oriented data
Neo4j is your final stop on your NoSQL explorations, and we chose it because it mod-
els data and relationships in a completely different way than anything you’ve encoun-
tered so far. You’ve seen the relational model, key/value model, and document
model, but Neo4j introduces you to modeling data as a graph of connected data.

 It’s probably been a while since you’ve played with graph data structures, though
you use them behind the scenes every time you use a social networking application
such as LinkedIn, Facebook, or Twitter. Let’s reintroduce them to you using Hubbub
as an example.

 When one Hubbub user follows another, you create a link in the database that you
model as firstUser.addToFollowing(targetUser). With each user following several

Figure 16.9 The results of our MapReduce operation
Licensed to Mark Watson <nordickan@gmail.com>

458 CHAPTER 16 NoSQL and Grails
other users in the system, you soon end up with a web or “graph” of relationships such
as the one shown in figure 16.10.

 Graph databases such as Neo4j specialize in modeling these types of relationships
and provide high performance tools for querying them. Need to find out which users
are within three degrees of separation from a particular user? That’s expensive to do
in a relational data source but bread and butter for Neo4j. Let’s install it and whip up
a social graph visualization for Hubbub.

16.5.1 Installing and configuring the Neo4j plugin

Your first step in getting Hubbub into graph database territory is to install the Grails
Neo4j plugin (http://grails.org/plugin/neo4j). A quick update of your /grails-app/
conf/BuildConfig.groovy should sort that out. At the time of writing, the current ver-
sion is 1.0.1, so add it to your list of plugins:

plugins {
 ...
 compile ":neo4j:1.0.1"
 ...
}

By default the Neo4j plugin sparks up an embedded version of Neo4j server that
runs in the same JVM as your Grails app. That’s perfect for your experimentation,
but you can always override the defaults by customizing your /grails-app/conf/
Config.groovy. The default place in which the plugin stores your Neo4j database is
/var/neo4j, so if you’re on a local Windows box, tweak that to something that makes
more sense:

grails {
 neo4j {
 type = "embedded"
 location = "/data/neo4j"
 }
}

With the plugin installed and optionally configured, let’s get under way teaching you
Neo4j parlance as you implement Hubbub’s social graph searcher.

Jeff

Burt Graeme

Sara

Figure 16.10 Social networks
contain graphs of data where items
are linked by relationships.
Licensed to Mark Watson <nordickan@gmail.com>

http://grails.org/plugin/neo4j

459Using Neo4j to work with graph-oriented data
16.5.2 Neo4j domain classes: combining with Hibernate

You can use Neo4j as your primary data source, if you like. In that case, as in Mon-
goDB, it’s a matter of removing your Hibernate plugin from /grails-app/conf/Build-
Config.groovy and you’re ready to run. No special domain class markup is required.

 In this case, let’s supplement your existing Hibernate (and MongoDB) domain
classes with a few Neo4j-specific domain classes. The way you mark a domain class for
persistence in Neo4j is similar to what you did with MongoDB—add a custom
mapsWith property.

 Let’s create a domain class that you can use to keep the social networking graph
for Hubbub. Let’s start with the minimal set of data you might keep to store a graph—
userIds and their relationships:

package com.grailsinaction

class UserGraph {

 static mapWith = "neo4j"

 String loginId

 static hasMany = [following : User]

 static constraints = {
 loginId blank: false
 }
}

Now that you have your domain class in place, you need code to populate it with real data
so you have something to query. Let’s write the glue to perform the synchronization.

16.5.3 Populating Hubbub’s social graph

You need a way to sync your domain class with your existing user relationships. Let’s
create a GraphController to house all your graph interactions, and perhaps put in a
scrappy little sync() method to convert your list of users and their followers into a graph
of UserGraph objects, as shown in the following listing.

package com.grailsinaction

class GraphController {

 private UserGraph getOrCreateMatchingUserGraph(User user) {

 UserGraph matchingGraphUser = UserGraph.findByLoginId(user.loginId)
 if (!matchingGraphUser) {
 matchingGraphUser = new UserGraph(loginId: user.loginId)
 matchingGraphUser.save(failOnError: true)
 if (user.profile?.fullName) {
 matchingGraphUser.fullName = user.profile.fullName
 }
 }
 return matchingGraphUser

 }

Listing 16.6 Creating a GraphController and sync method
Licensed to Mark Watson <nordickan@gmail.com>

460 CHAPTER 16 NoSQL and Grails
 def sync() {

 log.debug("Starting sync process...")

 int syncCount = 0
 int linkCount = 0

 UserGraph.list()*.delete() // go nuclear
 User.list().each { user ->

 UserGraph matchingGraphUser =
 getOrCreateMatchingUserGraph(user)
 user.following.each { nextFollowing ->
 UserGraph matchingFollow =

getOrCreateMatchingUserGraph(nextFollowing)
 matchingGraphUser.addToFollowing(matchingFollow)
 linkCount++
 }
 syncCount++
 }
 render text: "<html>Sync complete. Synced ${syncCount} users with

${linkCount} links at ${new Date()}</html>",
 contentType: "text/html"

 }
}

Nothing particularly exciting is going on there. You use standard GORM domain logic
with the odd addToFollowing() and save() calls. Under the covers the Neo4j plugin
persists all those objects for you.

 You may notice that you use dynamic properties (as you did in MongoDB) to store
the user’s full name on the UserGraph node because that comes in handy for render-
ing later on. One gotcha with the current version of the plugin is that dynamic prop-
erties can be set only after save() is called, hence the unusual placement in your
source code.

 It’s time to experiment with walking the tree and rendering nodes.

16.5.4 Walking and visualizing the graph with Cypher

Neo4j offers two ways to query the graph in object style:

■ Its own SQL-like query language called Cypher
■ A code-centric mechanism exposed via a traversal API

All Neo4j domain classes are enhanced with several variations of the cypher() and
traverse() methods to make things easy.

 You start your journey using the Cypher query language to find friends of friends
of a user. The idea is that you can pass in a user, find all their friends, then find all the
friends that are friends with them. In a relational world, you’d need many joins, but as
you’ll see, Neo4j makes that a one-liner.

 Let’s implement the friendsOfFriends() action in your graph controller, as
shown in the following listing, then we’ll show you how it all hangs together.
Licensed to Mark Watson <nordickan@gmail.com>

461Using Neo4j to work with graph-oriented data
def friendsOfFriends() {

 if (params.id) {
 UserGraph startingUser = UserGraph.findByLoginId(params.id)
 if (startingUser) {
 def resultsTable = startingUser.cypher(
 ➥ "start myself=node({this})
 ➥ MATCH myself-[:following]->friend-[:following]->fof
 ➥ WHERE fof.loginId <> myself.loginId
 ➥ RETURN myself, friend, fof")
 [resultsTable: resultsTable]
 } else {
 response.sendError(404)
 }
 } else {
 response.sendError(404)
 }

 }

This is familiar territory. You grab the user’s ID off the incoming URL and attempt
to find a matching UserGraph in your Neo4j database using standard GORM dynamic
finders B. If you can locate them, you invoke the Neo4j cypher method c on
that domain class instance, passing it complex-looking Cypher code (which we’ll
get to in a moment). Finally, you pass any results, which are returned as a table-
like structure, through to the view for rendering d. We’ll look at that rendering
code in a minute, but for now, let’s break down that Cypher query so it becomes
less magical.

 First, let’s reformat the query so you can see the individual clauses:

start myself=node({this})
MATCH myself-[:following]->friend-[:following]->fof
WHERE fof.loginId <> myself.loginId
RETURN myself, friend, fof

If you restate each clause in plainer English, this query says, “Start at the current node,
which I’m going to now alias as ‘myself’. Then match all the nodes that have a ‘follow-
ing’ relationship with me, and alias them as a ‘friend’. Then match all the nodes that
have a ‘following’ relationship with ‘friend’, and alias them as ‘fof’ (friend of friend).
Make sure that my fof.loginId doesn’t match my own loginId because I don’t want to
display cases where my friends follow me back. Finally, return a table with three col-
umns: myself, friend, and fof.”

 Phew! It’s a mouthful of a query, but let’s make it clearer by putting it to use in a
view. To render a table that outputs you, your friend, and their friends, you iterate that
resultsTable. The following listing shows what you may find in a friendsOf-
Friends.gsp.

Listing 16.7 Implementing friendsOfFriends() in your graph controller

Finds matching
UserGraph

using GORM
dynamic finder b

Runs Cypher query
to find followers of
followers c

Passes results
to view d
Licensed to Mark Watson <nordickan@gmail.com>

462 CHAPTER 16 NoSQL and Grails
<h1>Friends Of Friends</h1>
 <table>
 <tr>
 <th>User</th><th>Is A Friend Of</th><th>Who Is A Friend Of</th>
 </tr>
 <g:each in="${resultsTable}" var="row">
 <tr>

<td><g:link action="friendsOfFriends"
 id="${row.myself.loginId}">${row.myself.fullName}
</g:link></td>
<td><g:link action="friendsOfFriends"
 id="${row.friend.loginId}">${row.friend.fullName}
</g:link></td>
<td><g:link action="friendsOfFriends"
 id="${row.fof.loginId}">${row.fof.fullName}
</g:link></td>
 </tr>
 </g:each>
 </table>

Each of the rows in that resultsTable exposes you, your friend, and friend-of-friend
objects whose properties you can inspect to get back your underlying attributes.
What you iterate here are the underlying node objects. If you want to get back to the
matching domain objects (for example, for manipulation), you can take advantage
of another domain class convenience method and call UserGraph.createInstance-
ForNode(row.myself), which gives you back the domain class instance matching
this node.

 You create links on each of those users so you can keep exploring who’s linked to
whom. You also used that dynamic fullName property that you previously squirreled
away on each node. Figure 16.11 shows the view in action for loginId jeff (http://
localhost:8080/hubbub/graph/friendsOfFriends/jeff):

 That’s an impressive way to browse relationships and only scratches the surface
of what Cypher can do. If you want to go deeper, fantastic docs (with working exam-
ples) are on the Neo4j site (http://docs.neo4j.org/chunked/milestone/cypher-
introduction.html).

Listing 16.8 Creating a view for the resultsTable

Figure 16.11 Viewing the friends of Jeff
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:8080/hubbub/graph/friendsOfFriends/jeff
http://localhost:8080/hubbub/graph/friendsOfFriends/jeff
http://docs.neo4j.org/chunked/milestone/cypher-introduction.html
http://docs.neo4j.org/chunked/milestone/cypher-introduction.html

463Using Neo4j to work with graph-oriented data
Querying friends of friends is impressive, but what if you want to walk the entire object
graph displaying every relationship? For that use case it may be time to drop down to
the Neo4j traversal API to see what’s achievable in code.

16.5.5 Walking the entire graph

You’ve experimented with the Cypher query language through the domain class
instance cypher() method, and now let’s look at the API equivalent by seeing what’s
possible through the traverse() method.

 Let’s implement a walk() action on your graph controller that starts at a given node,
and then traverses its following relationships until it runs out of nodes. Depending on
your starting node, and who’s following whom, you may even see the entire system!

 The following listing shows what your walk() action looks like.

import org.grails.datastore.gorm.neo4j.GrailsRelationshipTypes
import org.neo4j.graphdb.*

def walk() {

 if (params.id) {
 UserGraph startingUser = UserGraph.findByLoginId(params.id)
 if (startingUser) {
 def followingRel = startingUser.node.relationships.
 ➥ find { it.type.name == 'following' }
 def nodeList =

startingUser.traverse(Traverser.Order.BREADTH_FIRST,
 StopEvaluator.END_OF_GRAPH,
 ReturnableEvaluator.ALL,
 followingRel.type, Direction.OUTGOING)
 [nodeList: nodeList]
 } else {
 response.sendError(404)
 }
 } else {
 response.sendError(404)
 }

 }

The nodeList returns a list of all the UserGraph nodes that Neo4j found by traversing
outward links. But it’s no fun if you can’t see them, so let’s add a walk.gsp view so you
can see exactly what’s happening, as shown in the following listing.

 <h1>Walking The Graph</h1>
 <table>
 <tr>
 <th>User</th><th>Following</th>
 </tr>

Listing 16.9 Using walk() to find relationships

Listing 16.10 Viewing the list of users
Licensed to Mark Watson <nordickan@gmail.com>

464 CHAPTER 16 NoSQL and Grails
 <g:each in="${nodeList}" var="node">
 <tr>
 <td><g:link action="walk"
 id="${node.loginId}">${node.fullName}</g:link>
 </td>
 <td>

 <g:each in="${node.following}" var="following">

 <g:link action="walk"
 id="${following.loginId}">${following.fullName}</g:link>

 </g:each>

 </tr>
 </g:each>
 </table>

In this view you display the node you found, and all the nodes that node follows. Fig-
ure 16.12 shows the output for user jeff.

 If you notice carefully, the table can be read from the top down. Jeff follows Burt
and Graeme, so they’re the next two nodes you see in the table. Then rinse and repeat
all the way down.

 In this graph, Dillon is followed by Graeme, but Dillon himself doesn’t follow any-
one. If you click the Dillon link, you shouldn’t see any outgoing links in your traversal.
In fact, figure 16.13 shows exactly what that output looks like.

 Using the traversal API offers you powerful features. You traversed OUTGOING
relationships, but you can traverse INCOMING, OUTGOING, or BOTH depending on
how you want to navigate your tree.

Figure 16.12
Viewing all the
friends linked to Jeff
Licensed to Mark Watson <nordickan@gmail.com>

465Summary and best practices
With a good sense of what’s achievable via Neo4j’s low-level API, it’s time to wrap up
your tour of popular NoSQL technologies in Grails.

16.6 Summary and best practices
We covered NoSQL territory in this chapter, introducing three of the most dominant
NoSQL technologies available in the space today:

■ Redis—for persistent key/value storage
■ MongoDB—for document-oriented storage
■ Neo4j—for graph-based storage and traversal

No doubt your head is spinning! This chapter was designed to give you a basic level of
exposure to all three types of stores, so you can decide which ones you may like to
explore further. Before we leave back-end territory and move on to testing and com-
piling in chapter 17, let’s review a few key best practices from this chapter:

■ Redis is a data-structure server. While you can use Redis as a persistent hash table,
it shines when you take advantage of its high-performance data structures, such
as lists, hashes, and sorted sets.

■ Use Redis to back Grails caching. Now that caching services are built into the Grails
platform, don’t forget you can easily back your caches with Redis via the Grails
Redis Cache plugin.

■ Experiment with MongoDB native queries via query tools. Using a GUI tool such as
Robomongo gives you freedom to experiment with Mongo queries or browse
the results of previous Grails database operations. Don’t be afraid to use these
GUI tools to learn more about optimizing your Mongo queries. This approach
can save you time.

■ Always provide an ObjectId field on your MongoDB domain classes. Remember that if
you don’t provide your own ObjectId field, Grails supplies a long-based one.
This can hamper your clustering options later, so bite the bullet and put an
ObjectId ID field on all your domain classes from the get-go.

■ You can always fall back to GMongo. The Grails Mongo integration is complete,
but if you ever hit an edge case not supported out of the box, don’t forget
that you can always drop back to straight GMongo code and do anything you
need to.

■ Consider a graph database. If your application works with graph-based data struc-
tures (such as your social networking app Hubbub), consider storing your data

Figure 16.13 Viewing a friend with no outgoing links
Licensed to Mark Watson <nordickan@gmail.com>

466 CHAPTER 16 NoSQL and Grails
the way it wants to be stored. You end up with less code to maintain, and you
won’t have to worry about endless tuning of relational databases.

■ Learn Neo4j’s Cypher query language. Using Cypher to query a graph gives you a
fast and self-describing mechanism for rich graph queries. Take the time to
work through the Neo4j documentation and learn the basics of the language.
The docs are great, and in-browser tools in the documentation let you experi-
ment. It’s worth the investment.

In the next chapter, we explore the processes involved in compiling, testing, and run-
ning your app.
Licensed to Mark Watson <nordickan@gmail.com>

Beyond compile, test, run
Grails gives you all the tools you need to build your web application and run it, as
we’ve shown throughout the previous chapters. The ability to make changes and
see their effect immediately in a running server makes for a productive develop-
ment environment. At a certain point, though, you need to deploy your application
into a production setting: grails run-app isn’t going to cut it. It won’t scale or per-
form efficiently.

 Getting to the point of deployment can potentially be a single-step process
(use the Grails war command to create the artifact of deployment), but most proj-
ects have more to them. Systems often consist of multiple projects that depend on
one another, and you typically have multiple teams working on them. Building
the software then becomes a process of pulling all these components together,
verifying that they work, packaging them, and deploying one or more of the com-
ponents to production.

This chapter covers
■ Managing dependencies
■ Packaging and deploying your application
■ Using continuous integration
■ Integrating multiproject builds
467

Licensed to Mark Watson <nordickan@gmail.com>

468 CHAPTER 17 Beyond compile, test, run
 In this chapter, we look at the parts of the build process that we haven’t discussed
in previous chapters and yet are significant factors in using Grails for nontrivial projects.
This starts with how you manage your dependencies—a surprisingly tricky subject—
before touching on continuous integration systems and application deployment. Later
in the chapter, you see how to incorporate Grails applications into multiproject builds
using tools such as Maven and Gradle.

17.1 Getting to deployment
Grails applications are fundamentally based on Java servlet technology, so to run them
in production you need to create what’s known as a Web Application Archive (WAR)
file and deploy it into a servlet container, such as Tomcat or Jetty (among others). As
we mentioned at the beginning of the book, even when you execute the run-app com-
mand, you’re starting an instance of Tomcat.

Creating the WAR file (the unit of deployment) is as simple as running the follow-
ing command:

grails war

What else is there to talk about? The most important topic is controlling what goes
into the WAR file. Few things are worse than taking an application that works fine
under run-app, deploying it as a WAR file, and discovering that the application doesn’t
work because the WAR contains conflicting versions of a library. This is where depen-
dency management comes in.

17.1.1 Managing your dependencies

If there’s one area of the Java ecosystem that consistently causes developers grief, it’s
library dependencies. It’s absolutely wonderful that you can use prebuilt libraries that
provide time-saving features. Why reinvent the wheel? And Java has a plethora of
libraries that you can use, as well as all the Grails plugins that people have created.

 Trouble arises because many of those libraries require other libraries to function.
Add in all the possible versions of each library and you create a rather messy mix. To
understand what we mean, let’s look at a few of the dependencies in a normal Grails
application. Figure 17.1 shows a partial dependency graph demonstrating how multi-
ple versions of a single library can end up being pulled in by an application.

 This isn’t normally a problem because Grails automatically picks the most recent
version of a library from the dependency graph and uses that. Any other versions are

Grails 3.0
It’s likely (although not certain) that Grails 3.0 will break the dependence on Java serv-
let technology, allowing you to run Grails applications in different ways. You’ll still have
the ability to create servlet-based applications, but it’ll be one of several options.
Licensed to Mark Watson <nordickan@gmail.com>

469Getting to deployment
“evicted” from the dependency graph so that you only ever have one version in your
application. Based on figure 17.1, Grails uses only version 3.2.1 of the Apache Com-
mons Collection library. If Grails automatically evicts older versions, what’s the issue?
Here are several problem scenarios:

■ A newer version of a library breaks other libraries (or your app)
■ Spock versions
■ Snapshot handling (pre-Grails 2.3)

Let’s look at each of these and work out how to resolve the problems.

NEW VERSIONS BREAKING YOUR APPLICATION

In an ideal world, libraries wouldn’t introduce breaking changes into their APIs except
in major version changes, such as from 3.x to 4.0. As you know, though, the world is far
from ideal. Libraries do introduce breaking changes in new minor or patch versions,
either accidentally or intentionally. When this happens, your application either fails to
compile (if the relevant code is type-checked) or fails at runtime. This isn’t good.

 If you explicitly declared this dependency yourself, then you can easily revert to an
older version. But imagine what happens if you introduce a new dependency that has
the problematic library as a transitive dependency? It’s a newer version, and so Grails
evicts the old (working) version and uses the new (broken) one.

 A real-life example of this was SLF4J, the logging API used by Grails. Certain
method signatures in its API changed between versions 1.5 and 1.6 that meant code
compiled with version 1.5 failed to work with 1.6. At the time, Grails used SLF4J 1.5
and yet it was easy to add a separate library or plugin to a project that included SLF4J
1.6 as a transitive dependency. The result? You got either NoSuchMethodErrors or
MissingMethodExceptions when any logging took place.

App

Hibernate plugin

3.6.10.2

grails-datastore-gorm-hibernate

2.0.2.RELEASE

hibernate-core

3.6.10.Final

commons-collection
3.2

commons-collection
3.2.1

depends

on

Figure 17.1 A partial dependency
graph showing multiple versions of
a single library
Licensed to Mark Watson <nordickan@gmail.com>

470 CHAPTER 17 Beyond compile, test, run
SPOCK VERSIONS

Prior to Grails 2.3, you had to use a Spock plugin to write Spock tests in your Grails
application, and for Grails 2.2, the corresponding dependency declaration was slightly
more complex than the average:

dependencies {
 test "org.spockframework:spock-grails-support:0.7-groovy-2.0"
 ...
}

plugins {
 test ":spock:0.7", {
 excludes "spock-grails-support"
 }
 ...
}

The base Spock library is tied to particular versions of Groovy and so is Grails. The
default dependencies of the plugin are fine with Grails 2.0 and 2.1 (which use
Groovy 1.8), but Grails 2.2 switched to Groovy 2.0, which explains why you need to
perform the previous exclusion.

Fortunately, Spock is one of the few libraries that has different JARs for different ver-
sions of Groovy, making it a special case.

WORKING WITH SNAPSHOT VERSIONS

It’s occasionally necessary to live on the bleeding edge and use development versions
of libraries, whether it’s because they have a specific bug fix you need or a particular
feature. Whatever the reason, one of the most common ways to use development ver-
sions is through snapshots.

 A snapshot is a version for which the underlying JAR can change. You should never
(and rarely can these days) publish a different JAR under an existing release version,
such as 2.1.1. After a release version is published, that JAR is forever tied to that partic-
ular version number. This rule doesn’t apply to snapshots: you can publish new builds
of a JAR under existing snapshot versions. The idea is that if you include a snapshot as
a dependency, you always get the latest published JAR for that version.

 Take caution when using snapshot dependencies. They lead to volatility in your appli-
cation (it can readily break when a new snapshot is published), and before Grails 2.3,
it was difficult to ensure that you got the latest published JAR. Grails 2.3 introduced a
new dependency resolution engine that fixes this problem, so you generally don’t have

Which version of Spock?
The rule is simple: if you’re using Grails 2.0 or 2.1, you need the -groovy-1.8 JAR, the
default for version 0.7 of the Spock plugin. If you’re using Grails 2.2, you need the
-groovy-2.0 JAR. Grails 2.3+ comes with Spock as a core dependency, so you don’t
need the plugin.

Excludes transitive version (0.7-groovy-1.8),
which doesn’t work with Grails 2.2, and
provides correct version.
Licensed to Mark Watson <nordickan@gmail.com>

471Getting to deployment
to worry. Regardless, we strongly recommend against using snapshot dependencies
unless you have to.

Note that milestone releases, such as M1, alpha1, RC1, and so on, don’t behave in the
same way as snapshots, so they’re safe to use. Libraries and tools are still subject to
change between milestone releases, but at least you can control exactly which version
you depend on.

 As we said, the new dependency resolution engine in Grails 2.3 solves the major
problems with snapshot dependencies, but how do you resolve issues that fit into the
other two categories? The answer is through exclusions, an example of which you saw
with the Spock plugin.

RESOLVING DEPENDENCY ISSUES

In many areas of software development, the process of fixing problems starts with
diagnosis. Dependency management is no different, and Grails gives you the tool you
need: the dependency-report command.

 Prior to Grails 2.3, this command generated an HTML report that you could open
in the browser. It now prints the report to the console. In both cases, you get informa-
tion about what dependencies are in which scopes. This is crucial in determining
whether you have any unexpected or duplicate versions of particular dependencies. It
also enables you to ultimately see which of your direct dependencies pulled in the
problematic one.

 After you identify the source of the problem, it’s easy to solve: exclude that par-
ticular transitive dependency. As you saw previously, this is what you do with the
Spock plugin:

plugins {
 test ":spock:0.7", {
 excludes "spock-grails-support"
 }
}

You could be even more precise and specify the dependency’s group, not only its mod-
ule name:

The twin resolution engines
Grails 2.3 introduces and defaults to a new dependency resolution engine based on
Maven rather than Apache Ivy. This results in much more reliable behavior, but you
don’t get the flexibility of the previous engine. Nor do you get the HTML report from
the dependency-report command (the dependency information is printed to the ter-
minal instead).

Despite the limitations, we do recommend sticking to the new resolution engine as
it makes for a much smoother experience.

Exclusions go in
closure argument

Excludes named modules (can
take multiple arguments)
Licensed to Mark Watson <nordickan@gmail.com>

472 CHAPTER 17 Beyond compile, test, run
plugins {
 test ":spock:0.7", {
 exclude group: "org.spockframework",
 module: "spock-grails-support"
 }
}

This can be necessary when projects publish their projects under a new group but
with the same module name. It’s rare, though.

 These exclusions work on normal JAR dependencies as well as plugins. They also
apply to all transitive dependencies, regardless of how far down the dependency tree
those dependencies are. All in all, dependency exclusions are the go-to tool for con-
trolling your dependency tree and solving dependency-related issues. We’d now like
to round off this section by explaining what those dependency scopes (compile, test,
and so on) mean.

UNDERSTANDING DEPENDENCY SCOPES

If you come from a Maven background, then the dependency scopes used by Grails
will be familiar:

■ compile—All the dependencies required to compile your application. If you
use classes directly from a library, that library should be declared as compile
scope, even if it’s also a transitive dependency. This makes it clear to other
developers that you’re using the classes from that library and avoids the prob-
lem associated with the library no longer being a transitive dependency at a cer-
tain point.

■ runtime—Everything required to run the application, even if the classes aren’t
used directly by your code. This automatically includes everything in compile
scope, so you don’t need to repeat your dependency declarations. A common
runtime dependency is a JDBC driver.

■ test—All the dependencies that are needed when testing the application via
test-app. It includes everything in the runtime scope (and by extension com-
pile, too). You normally only declare things in the test scope if they’re used
directly by your test cases.

■ provided—This is an unusual scope in that the associated dependencies are
required to compile the application but aren’t needed at runtime. The classic
example is the servlet-api JAR when you use classes like HttpServletRequest. At
runtime, the servlet container provides these classes instead, so you don’t need
the JAR.

■ build—Unknown in Maven, this scope contains the things you need for the
Grails commands themselves. It’s often used to include plugins (such as Release)
that provide extra build commands. It’s unusual to specify JARs as build depen-
dencies unless you write your own build scripts.

These separate dependency scopes ensure that the compilation and runtime class-
paths contain only those JARs required for the associated activity. This reduces the

Excludes by group and module.
Note “exclude” isn’t plural.
Licensed to Mark Watson <nordickan@gmail.com>

473Getting to deployment
chances of conflicting JARs and improves performance because Groovy has fewer JARs
to search when looking for classes. Note also that certain scopes effectively inherit
from others, which helps keep the number of dependency declarations down. We
show the relationship between the scopes in figure 17.2. If you’re ever in doubt, it’s
usually safe to use the compile scope.

 Be aware of the following issues when it comes to the scopes:

■ Evictions don’t happen across unrelated scopes. If the build dependencies are
merged with the runtime dependencies, and each scope has a different ver-
sion of a particular dependency, the resulting classpath includes both versions
because eviction doesn’t happen between build and runtime. But eviction
does happen between related scopes, such as compile and test, or compile
and runtime.

Imagine that you declare commons-compress version 1.5 as a build depen-
dency and your runtime scope has commons-compress 1.2 through a transitive
dependency. If the dependencies from both scopes are merged into a single class-
path, that classpath includes both version 1.2 and version 1.5 because no eviction
takes place. This raises the question of which JAR the commons-compress classes
are loaded from. The answer is that it depends which JAR is first in the class-
path, and there are no guarantees about what that order is.

Fortunately this isn’t an issue if you use Grails 2.3. Nor is it an issue for
Grails 2.2 if you add this configuration setting to your BuildConfig.groovy:

grails.project.fork.run=true

■ You can compile and run against different library versions. This may seem strange
because we said that evictions occur between related scopes, but it’s possible to
compile your application against version 1.6 of SLF4J and run it with version 1.7.
This happens if the highest version of the library is 1.6 in compile scope, but 1.7
in runtime. This may cause problems if any breaking changes exist between the
two versions.

As we mentioned, dependencies are a surprisingly tricky subject and older versions of
Grails have more problems than more recent ones. Despite that, and no matter what

compilebuild

runtime

test

extends

extends

build scope is

independent of the

others.

Figure 17.2 The relationship
between dependency scopes
Licensed to Mark Watson <nordickan@gmail.com>

474 CHAPTER 17 Beyond compile, test, run
version of Grails you use, you can resolve your dependency pains after you get the
hang of the dependency report and how to use exclusions.

 Dependencies are also a fairly common source of the old “it works for me” prob-
lem in team development. This is typically a result of one developer having the
required library in their dependency cache, although the application’s dependency
tree does not include it. One great way to find these problems early on is through a
process called continuous integration (CI).

17.1.2 Continuous integration and deployment

In the last few years, we’ve started to see a new approach to deploying applications:
continuous delivery. The idea is to push new features and fixes to your production sys-
tems frequently, from every couple of days to many times in a single day (GitHub has
had more than 100 deploys in a single day). This isn’t to say that continuous delivery is
appropriate for all projects, nor is it something that can be achieved solely through
Grails. But the automation necessary for continuous delivery is incredibly useful for
all projects.

 One of the most important factors is test coverage. You can’t deploy new versions
quickly and easily unless you have a high level of confidence that a new version works
correctly. You need fully automated unit, integration, and functional tests that give
close to full coverage of the code. We’ve already covered testing, but when you have
multiple teams working on a single project, how can you be sure that all their work is
properly integrated before testing and deploying? The most common solution is CI.

SETTING UP A CI SERVER

Once upon a time, new application versions were delivered infrequently and there was a
code-freeze period during which multiple teams would attempt to merge (or integrate)
their separate development streams together. It was often a painful and time-consuming
process because the different developments diverged significantly over time.

 CI alleviates this particular issue by ensuring that all the development streams are
merged and tested on a frequent basis, typically on a separate build server, as shown in
figure 17.3. Every time new code is committed to a set branch, the server compiles the

Developer Developer

Central source

code repository

Push code

changes

Push code

changes

Pull latest code

and build
CI server

Notify on build

failures

CI server always builds

with a pristine copy of

the source code and

clean build caches.

Figure 17.3 A typical CI setup
Licensed to Mark Watson <nordickan@gmail.com>

475Getting to deployment
application and runs the tests, then packages the app. The advantage to this approach is
that integration problems are picked up early when they’re relatively easy to resolve.

 As a Grails developer you now have many options for a CI server, including hosted
or installed on your own systems. A few have dedicated support for Grails, but in real-
ity, you can use any build server that supports Java because of the Grails wrapper.

 In figure 17.4, we show you the settings for a Grails application on a Jenkins
instance (http://jenkins-ci.org/) because it’s one of the most popular Java-oriented CI
tools. Although Jenkins has a Grails plugin, we configure the build server to use the
Grails wrapper because this approach is more widely applicable.

 When configuring a Grails application to build on a CI server, you only need to do
a few specialized things:

■ Configure the build to run the Grails wrapper (grailsw).
■ Use grails.work.dir and grails.project.work.dir values that are relative to

the project directory. This ensures they’re cleaned properly between builds.
They can be passed in as system properties, for example:

./grailsw –Dgrails.work.dir=target test-app war

Figure 17.4 The configuration settings for a Grails application on the Jenkins CI server
Licensed to Mark Watson <nordickan@gmail.com>

http://jenkins-ci.org/

476 CHAPTER 17 Beyond compile, test, run
■ Make sure the build server knows where to find the test reports as these are in a
nonstandard location.

That’s all there is to it. Otherwise a Grails application is handled like a normal Java
web application.

CUSTOMIZING THE WAR PACKAGE

When you want to deploy your application to a servlet container, typically you first
package it as a WAR file. This is a ZIP file containing your application classes, resources,
dependencies, and web configuration. Normally the only thing that you need to
worry about is whether you’re packaging the application for the appropriate envi-
ronment. Unlike the run-app command, the war command defaults to the produc-
tion environment.

 Not much typically goes wrong, but you may find extraneous JARs in the WAR file,
particularly if you use an older version of Grails. It’s not uncommon for JARs related to
testing to find their way into it. Fortunately, it’s simple to filter out files from the WAR
file using a build event handler.

 The Grails build system fires events in many circumstances, such as each time a
build target executes—both before and after the execution. Other significant parts of
the build trigger events, too. Unfortunately, the Grails build system is poorly docu-
mented, which is a shame because the build system gives you great flexibility to add
your own Grails commands and hook into its events. Still, the CreateWarStart event
in the following example is useful in its own right and helps you understand articles
and forum postings online that describe other handy events.

 To get started, create the file scripts/_Events.groovy (if it doesn’t already exist).
The scripts directory is where you put all your custom build scripts if you choose to
write them. The underscore (_) prefix tells Grails to ignore the file rather than turn it
into a command. For example, the file scripts/DeployToTomcat.groovy adds a Grails
command called deploy-to-tomcat. Note the transformation from camel case to
hyphenated lowercase.

 Once you have the _Events.groovy script, add the handler inside it:

eventCreateWarStart = { String warName, File stagingDir ->
 println "About to package the WAR file from ${stagingDir}"
}

As you can see, the handler is a closure assigned to a script variable whose name
matches the pattern event<eventName>. To verify that the handler works, run the
Grails war command and look for the message you’re printing. If you don’t see it,
the likely problem is either a misnamed _Events.groovy file or a misnamed event-
CreateWarStart.

 You can probably guess what happens next: because the event is passed the loca-
tion of the staging directory from which the WAR is created, you can remove files from
that directory to keep them from going into the WAR. You can even add files if you
want, although this is less common.
Licensed to Mark Watson <nordickan@gmail.com>

477Getting to deployment

iles
B-
e
 Common libraries that you don’t want in your WAR file but are often packaged in
it include:

■ commons-logging*.jar—Grails uses SLF4J for logging, rather than Apache Com-
mons Logging.

■ h2*.jar—Unless you use the H2 Database Engine for production, you don’t
need the database in your WAR!

■ hsqldb*.jar—Unless you use it for production (not recommended), this shouldn’t
be included.

■ spring-test*.jar—Why would you want a testing library inside your application?
■ Junit*.jar—Same as for spring-test*.jar.

To delete these files, you have two options: use either the JDK classes or the equivalent
Ant tasks via Groovy’s Ant Builder. To use the JDK classes, the code looks like the fol-
lowing listing.

eventCreateWarStart = { String warName, File stagingDir ->
 def exclusions = [
 "commons-logging-1.1.1.jar",
 "h2-1.3.173.jar",
 "hsqldb-1.8.0.10.jar",
 "spring-test-3.2.5.RELEASE.jar",
 "junit-4.11.jar"]
 new File(stagingDir, "WEB-INF/lib").eachFileRecurse { File f ->
 if (f.name in exclusions) {
 f.delete()
 }
 }
}

This works fine, but it’s not convenient if you don’t know the exact names of the files
you want to delete. It’s easy to remember the base name (commons-logging, junit),
but what about the version number of a JAR? And what happens when you upgrade
the app or change a dependency that results in the version number changing on one
of your exclusions? Using a pattern-based approach is generally superior, which is why
you often see Ant Builder used instead. The following listing takes this approach.

eventCreateWarStart = { String warName, File stagingDir ->
 def exclusions = ["commons-logging",
 "h2",
 "hsqldb",
 "spring-test",
 "junit"]
 ant.delete {
 fileset(dir: new File(stagingDir, "WEB-INF/lib").canonicalPath) {
 for (basename in exclusions) {

Listing 17.1 Using JDK classes to delete files

Listing 17.2 Using Ant Builder to delete files based on a pattern

Deletes any f
found in WE
INF/lib whos
name is in
exclusion list

ant variable is available
in all scripts; delete is
Ant task.
Licensed to Mark Watson <nordickan@gmail.com>

478 CHAPTER 17 Beyond compile, test, run
 include name: "${basename}-*.jar"
 }
 }
 }
}

Ant provides useful tasks around file manipulation (among other things), all of
which are built around the powerful file set concept. If you want to write your own
build scripts and event handlers, it’s well worth consulting the Ant manual (http://
ant.apache.org/manual/) to learn which Ant tasks are available.

 Bear in mind that Ant is based on XML, which means that all the task definitions in
the manual are given in XML. We’re obviously not using XML in the previous example,
so how do you convert between the two syntaxes? It’s a simple one-to-one mapping
based on the markup builder syntax (see appendix C). In XML form, the delete task
looks like this:

<delete>
 <fileset dir="stagingDir/WEB-INF/lib">
 <include name="commons-logging-*.jar"/>
 <include name="h2-*.jar"/>
 ...
 </fileset>
</delete>

As you can see, the Groovy nature of the build scripts together with the AntBuilder
object result in a powerful and flexible approach to build that allows you to do most
anything you want. Before you move on to other things, though, we leave you with a
word of warning.

USE AT YOUR OWN RISK As we mentioned previously, the Grails build system is
poorly documented, so you’re somewhat on your own. In addition, it’s likely
that Grails 3.0 will switch to a Gradle-based system that may result in your hav-
ing to manually migrate any custom scripts and event handlers you create. We
recommend you keep the number of build customizations to a minimum and
focus on those that provide real value.

This technique of adding an event handler to the WAR creation is particularly power-
ful when combined with using shared JARs in Tomcat, as you see next.

DEPLOYING TO TOMCAT

If deploying a Grails application to a servlet container is as simple as creating a WAR
file, why talk about Tomcat specifically? It’s because Tomcat is a common platform
that provides a couple of bonus features that developers take advantage of: shared
libraries and per-deployment configuration.

 The idea behind shared libraries is that you may want to deploy multiple Grails appli-
cations to a single servlet container instance. If you try this with a normal Grails WAR
file, you typically run into PermGen memory issues (unless you use the Java 8 JVM).
Every application gets its own copy of all the classes—and Grails uses many classes.

Methods map to XML
elements and closures
to nesting

Named arguments map
to XML attributes
Licensed to Mark Watson <nordickan@gmail.com>

http://ant.apache.org/manual/
http://ant.apache.org/manual/

479Getting to deployment
You can partially solve this problem by putting many of the JARs common to Grails
applications in Tomcat’s lib directory, as shown in figure 17.5. When you do this, you
have only one copy of the classes in those JARs regardless of how many Grails applica-
tions are deployed in the container. That’s a big saving on memory usage! It’s a partial
solution because you can’t put all the common JARs into the shared directory, but you
can at least deploy more than one application to the container.

 The big question is this: Which of the base JARs that are common to most Grails
applications can be shared? The answer is all of them except the Grails-specific ones.
Grails still uses static holder classes for various objects, including the grailsApplication
bean, and those static variables are shared between all Grails web apps running in
Tomcat if the Grails JARs are shared.

 Assuming that you want to split out the shared JARs, how do you do it? The war
command has no built-in feature, unfortunately, so you have to do it manually. The
answer is to use the CreateWarStart event, as shown in the next listing.

eventCreateWarStart = { String warName, File stagingDir ->
 if (grailsEnv == "production") {
 def sharedLibsDir = "${grailsSettings.projectWorkDir}/sharedLibs"

 ant.mkdir dir: sharedLibsDir
 ant.move todir: sharedLibsDir, {
 fileset dir: "${stagingDir}/WEB-INF/lib", {
 include name: "*.jar"
 exclude name: "grails-*"
 }
 }

 println "Shared JARs put into ${sharedLibsDir}"
 }
}

Now all you need to do is place the JARs from the sharedLibs directory into Tomcat’s
lib directory and deploy your (now much slimmer) WAR to Tomcat! For real applica-
tions you should refine this so that only the general Grails dependencies are included
in the sharedLibs directory, not the project-specific ones.

 The lib directory is also the key to setting up per-deployment configurations.
Remember that the application’s runtime configuration goes into the Config.groovy

Listing 17.3 Splitting shared JARs

tomcat/

bin/

conf/

lib/

logs/

webapps/

Tomcat startup and shutdown scripts

Configuration, such as server port, virtual hosts, and so on

JARs and class files shared by all web apps

Log files containing output from Tomcat and the web apps

Where your WAR files go (and get unpacked by Tomcat)

Figure 17.5 The
standard Tomcat 7.0
directory layout
Licensed to Mark Watson <nordickan@gmail.com>

480 CHAPTER 17 Beyond compile, test, run
file, which is then compiled and packaged into the WAR file. This is fine as far as it
goes, but it means that no matter where the WAR file is deployed, it has the same con-
figuration, such as the database connection settings, mail server hosts, and so on. Do
you want to create a different WAR for every target server? We didn’t think so.

PER SERVER CONFIGURATION

Fortunately Grails allows you to pull configuration settings in from other locations at
runtime, including from the classpath and from the filesystem. It happens through
the grails.config.locations setting, which every new Grails application has com-
mented out at the top of Config.groovy. Its most common form is the following, which
you saw at the end of chapter 11:

grails.config.locations = [
 "classpath:${appName}-config.groovy",
 "file:./${appName}-config.groovy"
}

This code loads additional configuration files from both the classpath and the current
working directory. If the files don’t exist, that’s fine: you see a warning, but otherwise
the application works as before. This behavior is important because for local develop-
ment, you can put an <appName>-config.groovy file in the project root with your own
custom settings, which takes effect when you execute run-app, and for Tomcat deploy-
ments you can put an <appName>-config.groovy file in the Tomcat lib directory.

 This sounds like a great idea, we hear you say, but what about the database connec-
tion settings? They have to go in DataSource.groovy, right? In fact, they don’t. You can
also put them in Config.groovy or in one of these external configuration files we’re
talking about. The DataSource.groovy and Config.groovy are merged at runtime into
a single configuration object used by the entire app. The only reason to have a sepa-
rate file is to make it easier to locate the important database settings.

You can achieve a similar result through environments, but you still need to repackage
the WAR every time you make a change to the environment’s configuration settings.
An additional benefit of external configuration files is that they allow you to keep sen-
sitive information, such as usernames, passwords, and API keys, out of source control
or at least out of public source control. That’s the reason we used this technique for
the Twitter API credentials in chapter 11.

 You can deploy Grails applications to multiple platforms, for example, to the
cloud, as we discuss in chapter 18, but it’s still common enough for companies to use
dedicated Tomcat instances that there’s a good chance these tips will help you out.

Order of precedence
Any settings in external configuration files override those in Config.groovy or Data-
Source.groovy, so you can still have useful per-environment defaults in those files.

Loads file from
classpath if it exists

Loads file from current
working directory
Licensed to Mark Watson <nordickan@gmail.com>

481Integrating Grails with Maven
 As you’ve seen, there’s plenty of flexibility for building and deploying standalone
Grails applications, and if that’s all you need to do, you’re good to go. The require-
ments change when you integrate a Grails application into a larger system, or when a
Grails application depends on one or more other components that are separate proj-
ects. In these cases, consider more generic and powerful build tools.

17.2 Integrating Grails with Maven
It’s becoming more and more common for applications or systems to be built from
independent, composable parts. A Grails REST-based service could be one of those
parts used by several other services or applications. It’s also common to bundle fea-
tures into reusable JARs and plugins. The aim is to improve maintainability, keep a
clear separation of responsibilities, and make it easier to independently deploy and
update different parts of the system.

 When your projects are set up this way, you need to use a dedicated build tool that
can handle all the different parts of the system. The Grails build system is fine for
standalone applications, but the way it works makes it effectively useless for building
multiple interdependent projects.

 In this section we discuss how to incorporate Grails projects into builds based on
Maven, and in the next section we look at Gradle. The former is prevalent in the Java
space while Gradle is growing rapidly and will almost certainly become the built-in tool
for Grails 3.0. Apache Ant is also an option, but few new projects are adopting it, and it’s
certainly showing its age. It also has no built-in support for multiproject builds.

Switching to an alternative build tool is not to be undertaken lightly, but you gain ben-
efits within a multiproject environment.

 Maven is a popular build tool in the Java space that brought us build by conven-
tion, transitive dependency management (along with Apache Ivy), and a central
dependency repository (Maven Central). It’s so common now in Java enterprises that
if you want to use Grails for any projects within such companies, you need to integrate
with Maven.

 It’s out of this book’s scope to explain how Maven works or why you want to use it, so
we focus purely on building a Grails project with Maven. That’s what your company’s
build managers are interested in. We start by converting Hubbub into a Maven project
to keep things simple, but we follow that up by turning Hubbub into a multiproject
build—that’s the real use case for choosing Maven rather than the Grails commands.

Maven & Gradle vs. Grails
Although both Maven and Gradle integrate fairly well with the Grails build system, you
do lose features. It’s a rare occurrence that you can use the Grails command line
(and its interactive console) once you set up build integration. You may also find that
certain plugins don’t work, particularly those that provide their own Grails commands.
Licensed to Mark Watson <nordickan@gmail.com>

482 CHAPTER 17 Beyond compile, test, run
17.2.1 Creating a single-project POM

Every Maven build starts with a Project Object Model (POM) file. The POM describes
the project and defines any custom logic required to build it. The idea is to have as lit-
tle custom logic as possible by keeping your Java projects as close to the Maven con-
ventions as they can be. The difficulty with Grails is that its projects are about as far
from those conventions as the moon is from the Earth! Fortunately, Grails provides
help to reconcile these two competing, opinionated views of project structure and
build logic. It all starts with a simple command:

grails create-pom com.grailsinaction

This creates a pom.xml file in the root of the project that you can test by running

mvn clean compile

You perform a clean because Maven puts its files in the target directory, which is
where the generated files from the Grails commands go by default. You may see build
errors if you don’t clean first. It’s also worth noting that the Maven plugin creates a
plugins directory in the root of the project. This is where Maven installs the Grails plu-
gins for the project.

TIP You should delete the grails-app/controllers/TwitterAuthController.groovy
file because it isn’t needed and may cause compilation issues.

Now that you can build the project with Maven, let’s look at the POM that was created.
The first interesting part is the project info:

<groupId>com.grailsinaction</groupId>
<artifactId>hubbub</artifactId>
<packaging>grails-app</packaging>
<version>0.2</version>

The part that sticks out is the packaging: grails-app. You may expect a packaging of
type war because that’s what a Grails application ultimately produces, but the WAR file
is built differently from the standard Maven approach and can cause problems with
other Maven plugins that work with the war packaging type.

 The rest of the POM is standard, and the dependencies section contains all the
JARs and plugins defined in BuildConfig.groovy. It also includes custom repository

Dependency issues
If you run into apparent dependency problems, such as Maven using the wrong ver-
sion of a dependency or missing one, run mvn dependency:tree and compare its
output to that of grails dependency-report. Assuming the project builds with the
Grails command line, you can identify where the problem lies and update the POM
appropriately by adding exclusions or any missing dependencies.

From argument passed
to create-pom

From app name and version
in application.properties
Licensed to Mark Watson <nordickan@gmail.com>

483Integrating Grails with Maven
declarations. It gets more interesting in the plugins section because that’s where the
POM incorporates the Grails Maven plugin:

<plugin>
 <groupId>org.grails</groupId>
 <artifactId>grails-maven-plugin</artifactId>
 <version>${grails.version}</version>
 <configuration>
 <fork>true</fork>
 </configuration>
 <extensions>true</extensions>
</plugin>

It’s the plugin that understands the grails-app packaging type and integrates the
appropriate Grails commands into the Maven build phases. Table 17.1 shows you
which commands are matched to which phases. You can tell which commands are
used by looking closely at the console output from the Maven build—the Grails out-
put and Maven output are interleaved.

As you can see, you can start with a POM (no Grails project at all) and then run mvn
initialize to create the skeleton project based on the packaging type. And if the
project structure already exists, nothing happens.

 This is great if all you need is the standard build phases, and they certainly cover
the most common tasks. But remember that the Grails build system provides addi-
tional commands to ease your workload, such as create-domain-class. Such com-
mands don’t fit into the Maven build cycle, so how do you execute them? You have two
options: use custom Maven goals directly or use the Grails build system instead.

 The Grails Maven plugin does more than integrate the Grails commands into the
Maven build lifecycle. It also provides access to most of the standard Grails commands
via Maven goals that start with the prefix grails. To run the create-domain-class
command, for example, use the following Maven goal:

mvn grails:create-domain-class –DdomainClassName=com.grailsinaction.Post

Table 17.1 How the Grails build commands fit into the Maven phases

Maven phase Grails command

initialize create-app/create-plugin (depending on packaging type)

clean clean

compile compile

test test-app unit:

package war/package-plugin (depending on packaging type)

integration-test test-app integration: functional:

grails.version
property is defined in POM.

A value of true avoids
out-of-memory errors.
Licensed to Mark Watson <nordickan@gmail.com>

484 CHAPTER 17 Beyond compile, test, run
You can find a full list of commands to use with this syntax in the Grails user guide.1

Although it doesn’t contain goals for every command, you’ll find a reference to a
get-out-of-jail-free card: the exec goal. This allows you to execute any arbitrary Grails
command, including those provided by plugins, although at the time of writing there
are problems with the feature.2

 Let’s say you want to run the s2-quickstart command provided by the Spring
Security Core plugin (yes, you’ve already run it, but it’s a useful example). You can
run this command:

mvn grails:exec –Dcommand=s2-quickstart –Dargs="org.example User Role"

The args parameter should be the complete set of arguments that you’d have passed
to the grails command, hence the value is quoted. You can also use this goal to inte-
grate arbitrary Grails commands into the different phases through the Maven plugin
configuration. A short example is given in the Grails user guide, so we won’t go fur-
ther into that here. It’s a Maven feature rather than a Grails one.

 Although you have complete access to the Grails commands through Maven, you
do lose out on the interactive console, and the exec goal is clunky. To get around that,
Grails allows you to use the normal Grails commands while pulling the dependency
information from a POM. To enable this support, add the following line (the one in
italics) to your dependency resolution configuration in BuildConfig.groovy:

grails.project.dependency.resolution = {
 inherits "global"
 pom true
 log "warn"
 ...
}

After you do this, you can use the Grails command line as before, including the
interactive console. It’s like getting the best of both worlds! When doing this, you
should remove all the dependency declarations from BuildConfig.groovy except the
ones marked build. Grails should ignore them, but at the time of writing it doesn’t
appear to.3

1 Grails User Guide—Command line reference, http://grails.org/doc/latest/guide/commandLine.html#ant-
AndMaven.

2 “grails:exec goal does not work for plugin-provided scripts,” http://jira.grails.org/browse/MAVEN-217.

Before Grails 2.3
Using the POM to declare your application’s dependencies works well with Grails 2.3,
but that’s because that version uses Maven’s Aether dependency resolver by default.
Previous versions of Grails used Ivy, which doesn’t work well with POMs. If you use a
pre-2.3 version of Grails, you’re unlikely to get much success with the pom true setting.

3 “pom true is resolving plugins from BuildConfig.groovy,” http://jira.grails.org/browse/GRAILS-10569.

Tells Grails to use POM as
sole source of dependency
information.
Licensed to Mark Watson <nordickan@gmail.com>

http://grails.org/doc/latest/guide/commandLine.html#antAndMaven
http://grails.org/doc/latest/guide/commandLine.html#antAndMaven
http://jira.grails.org/browse/GRAILS-10569
http://jira.grails.org/browse/MAVEN-217

485Integrating Grails with Maven
It’s surprisingly easy to build a Grails project using Maven. Grails helps you create the
initial POM and the Maven plugin does the rest of the work. That said, we won’t lie: it’s
not always going to be smooth and easy. The two build systems are different and the
integration can never be perfect. Here are a couple of things to bear in mind when
using the two together:

■ Maven has no concept of a build scope, so these dependencies have to be main-
tained in BuildConfig.groovy

■ The Maven Release plugin automatically updates the project version in the
POM, but this doesn’t sync to application.properties. You can find a discussion
of this issue online.4

Considering the impedance mismatch between the two, it doesn’t make sense to use
Maven for a standalone Grails project. In contrast, it does make sense when you build
multiple projects together.

17.2.2 Multiproject Maven builds

Many software systems are composed of multiple libraries and applications that can be
built separately or together. The main reasons for this are to allow for effective reuse
and to improve maintainability. By decomposing a monolithic application into modu-
lar parts, you allow developers to work on smaller, easier to understand pieces.

 When taking this approach, it makes sense to have a build tool that can build all
the parts of an application together. Maven allows you to do this through parent
POMs, and this mechanism is fully supported in Grails. In fact, Grails has a built-in
command, create-multi-project-build, to help you to get started quickly. Before
you use that, though, how are you going to split Hubbub into multiple projects?

 Most projects in Java land can be broken down into collections of JAR libraries,
where each library is a separate project. You can do this with Grails, too, but the frame-
work provides a more interesting unit of modularity: the plugin. Writing a Grails
plugin may seem like an intimidating prospect at this stage, and we certainly don’t
expect you to write something such as the Spring Security Core plugin yet. But as
you’ll see shortly, you already know how to develop simple plugins because they’re
Grails applications with optional extras.

 To demonstrate both a multiproject Maven build and a minimal plugin-oriented
architecture, you’ll move Hubbub’s user management code into a plugin. That
includes the domain classes, controllers, and views that are associated with registering
new users and managing their profiles. Because access control and user management
are so closely linked, you’ll also declare the Spring Security plugins as dependencies
of your User Management plugin. You can see a broad overview of the structure you
end up with in figure 17.6. And you can look at the complete chapter code on GitHub
to see exactly which files end up where in this structure.

4 Nicholas Hagen, “Grails 2.1 and Maven Integration: Simple Project,” July 11, 2012, http://www.znetdevelop-
ment.com/blogs/2012/07/11/grails-2-1-and-maven-integration-simple-project/.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.znetdevelopment.com/blogs/2012/07/11/grails-2-1-and-maven-integration-simple-project/
http://www.znetdevelopment.com/blogs/2012/07/11/grails-2-1-and-maven-integration-simple-project/
http://www.znetdevelopment.com/blogs/2012/07/11/grails-2-1-and-maven-integration-simple-project/

486 CHAPTER 17 Beyond compile, test, run
The first step in splitting up Hubbub is to create a new directory structure, with the appli-
cation and plugin in a shared parent project directory. Set up the following directories:

hubbub
 +- user-mgmt
 +- app

You effectively move the current application down one level to a new app directory, so
app now contains the application.properties file, the grails-app directory, and all the
other files and directories that form the Grails application.

 Next, to create the plugin, run this command from the hubbub directory:

grails create-plugin user-mgmt

This creates a new user-mgmt directory that should look familiar when you peek inside: it
looks much like a Grails application with an additional UserMgmtGrailsPlugin.groovy file
in the root. We’ll look closely at that plugin descriptor in chapter 20 (an online bonus chap-
ter), but for now move the user management classes from the application to the plugin:

app/grails-app/domain/com/grailsinaction/User.groovy

becomes

user-mgmt/grails-app/domain/com/grailsinaction/User.groovy

Here’s a complete list of the files you need to move across:

■ User.groovy (grails-app/domain/com/grailsinaction)
■ UserRole.groovy (grails-app/domain/com/grailsinaction)
■ Role.groovy (grails-app/domain/com/grailsinaction)
■ Profile.groovy (grails-app/domain/com/grailsinaction)
■ TwitterUser.groovy (grails-app/domain/com/grailsinaction)
■ UserController.groovy (grails-app/controllers/com/grailsinaction)
■ ProfileController.groovy (grails-app/controllers/com/grailsinaction)
■ ImageController.groovy (grails-app/controllers/com/grailsinaction)

Application

PostController
PostService

Post
layouts

...

User

management

(plugin)

depends on

User
Role

Profile
UserController

...

depends on

Spring Security Core

Spring Security UI

Spring Security Twitter

Hubbub

Figure 17.6 How Hubbub is split into an application and a User Management plugin
Licensed to Mark Watson <nordickan@gmail.com>

487Integrating Grails with Maven
You can now try to build everything by running mvn compile in the parent directory,
but this quickly demonstrates that the plugin doesn’t yet compile: the User domain
class still has references to the Post and Tag domain classes. This is typical of the tight
coupling that litters monolithic applications, and it’s an example of the kind of refer-
ences you need to fix to move successfully to a decoupled, multiproject architecture.

 Let’s take a cheap and cheerful approach to solve this particular problem and cre-
ate a HubbubUser class in the application (not the plugin) that extends User and has
the references to the other classes:

package com.grailsinaction

class HubbubUser extends User {
 static hasMany = [posts : Post, tags : Tag, following : User]
}

Be sure to also remove the hasMany line and the tags and posts constraints from the
plugin’s User class!

 It’s important to be aware that inheritance introduces extra columns into the user
table, so if you have existing data you have to do a database refactoring. It’s better to
go with a solution that doesn’t affect the underlying database table, but that requires
too much work for this example. You should certainly avoid such quick fixes for real
applications, as they typically reintroduce coupling.

 You’re almost done, but if you run mvn install (and wait a while—it has much to
do), you notice that you still have one or two problems:

1 The build complains about a missing EnvironmentAware class.
2 The tests may complain about a missing persistenceInterceptor bean (depend-

ing on the Grails version).

Nobody ever said this would be easy! The first problem results from Maven’s eviction
strategy. The ActiveMQ dependency has a dependency on an older version of Spring
(3.0.x) than Grails uses (3.2.x) and Maven decides to evict the 3.2.x version of the
spring-context JAR, leaving the 3.0.x version. Unfortunately, 3.0.x doesn’t have that
EnvironmentAware class.

 The solution in this case is to add an exclusion to the ActiveMQ dependency in the
POM, as shown in the following listing.

<dependency>
 <groupId>org.apache.activemq</groupId>
 <artifactId>activemq-core</artifactId>
 <version>5.7.0</version>
 <scope>compile</scope>
 <exclusions>
 <exclusion>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 </exclusion>

Listing 17.4 Adding an exclusion to the ActiveMQ dependency

Excludes spring-context JAR,
ensuring Grails’s version is used
Licensed to Mark Watson <nordickan@gmail.com>

488 CHAPTER 17 Beyond compile, test, run
 </exclusions>
</dependency>

The second problem relates to dependency scopes. At the moment, the Hibernate
plugin, which provides the persistenceInterceptor bean, is included as a runtime
dependency. As far as Maven is concerned, that means it’s not required for the tests.
This is different from the Grails approach, which puts all the runtime dependencies
onto the test classpath in addition to the compile and test dependencies. The sim-
plest solution here is to change the Hibernate plugin dependency to compile scope
in the POM.

 With the plugin project set up, you can direct your attention to the application.
The changes you need to make are minimal:

■ Remove the Spring Security dependencies from the app’s POM.
■ Add the user-mgmt plugin as a dependency.
■ Adjust the POM to use a parent POM, if you have one.

Here’s the POM dependency declaration:

<dependency>
 <groupId>com.grailsinaction</groupId>
 <artifactId>user-mgmt</artifactId>
 <version>0.1</version>
 <scope>compile</scope>
 <type>zip</type>
</dependency>

Now that you have the projects building, there’s not much more to say about the
Maven integration. As with any multiproject Maven build, you can put common infor-
mation into a parent POM if you want. In the chapter source, the parent POM contains
the grails.version property plus a couple of other shared properties.

 It’s also worth bearing in mind that you cannot run grails:* goals in the appli-
cation until all its project dependencies are built and available either in the local
Maven cache (via mvn install) or a Maven repository. Even if the goals don’t need
those projects to run, Maven won’t let you execute them unless all the application’s
dependencies can be resolved, so be sure to use mvn install on the parent POM
nice and early!

 The Maven integration had many changes for the Grails 2.1 release, and the intro-
duction of the Aether transitive dependency resolution engine has improved that
integration further. It’s now viable to manage your Grails projects with Maven, particu-
larly as part of multiproject builds. As we said, that doesn’t mean the rough edges are
gone, but the workarounds you need are fewer than before and are feasible.

 Not everyone’s a fan of Maven and it certainly lacks flexibility to express nonstan-
dard builds. That’s why users are shifting to an alternative solution: Gradle. Next we
look at what it takes to get a Grails project building with this relatively new tool.
Licensed to Mark Watson <nordickan@gmail.com>

489Grails with Gradle
17.3 Grails with Gradle
Not everyone has heard of Gradle. It’s a build tool that attempts to solve many of
the problems with Ant and Maven and is gaining traction in many parts of the
Java universe. It’s likely to become even more popular now that it’s the de facto
tool for building Android projects. Gradle also happens to use Groovy as the lan-
guage for describing builds, which is convenient for people like us who work with
Groovy and Grails.

 Perhaps the most important reasons for covering Gradle integration are

■ Gradle has a semiofficial plugin that allows you to build Grails projects.
■ Grails 3.0 is likely to move to Gradle for its build system.

Let’s start along the same path you took with Maven by first creating a Gradle build
that works for the standalone application and then switching to a multiproject build
with a Grails application and a plugin. You’ll need to install Gradle before trying the
samples from this section, so if you don’t already have it, head over to http://
www.gradle.org for the download and installation instructions. Alternatively, use the
Groovy enVironment Manager (GVM) at http://gvmtool.net to install Gradle.

17.3.1 Building a standalone app

Every Gradle build starts with a build file: build.gradle. This file contains the descrip-
tion of the build as well as any custom tasks that need to be performed. For a Groovy
project, the simplest build looks like this:

apply plugin: "groovy"

version = "1.0-SNAPSHOT"

Plugins are Gradle’s mechanism for convention-based builds, which result in stream-
lined build files. In this example, as long as you put source code into the src/main/
groovy directory and tests into src/test/groovy, you can compile the project, run tests,
and build a JAR with no additional information.

 A Grails application is different from a standard Groovy project, so it needs a special
plugin: the Grails plugin for Gradle.5 This plugin provides access to all the standard
Grails commands in a consistent manner. You’ll create a build file for the original
standalone Hubbub application—you can use the source code for chapter 14 as a
starting point.

 Create a build.gradle file in the root of the project and add the content shown in
this listing.

5 Project page for the Grails Gradle plugin, https://github.com/grails/grails-gradle-plugin.

Loads tasks and conventions
for Groovy project

Sets project’s version
Licensed to Mark Watson <nordickan@gmail.com>

http://www.gradle.org
http://www.gradle.org
http://gvmtool.net
https://github.com/grails/grails-gradle-plugin

490 CHAPTER 17 Beyond compile, test, run
buildscript {
 repositories {
 maven { url "http://repo.grails.org/grails/core" }
 }

 dependencies {
 classpath "org.grails:grails-gradle-plugin:2.0.1"
 }
}

apply plugin: "grails"

repositories {
 grails.central()
}

dependencies {
 bootstrap "org.grails.plugins:tomcat:7.0.47"
 compile "org.grails.plugins:hibernate:3.6.10.6"
 ...
 test "org.grails.plugins:dumbster:0.2"
}

group = "com.grailsinaction"
version = "1.0-SNAPSHOT"

grails {
 grailsVersion = "2.3.7"
 groovyVersion = "2.1.9"
 springLoadedVersion = "1.1.4"
}

tasks.withType(org.grails.gradle.plugin.tasks.GrailsTask) { Task t ->
 t.jvmOptions {
 jvmArgs "-Xmx384mx", "-XX:MaxPermSize=256m"
 }
}

The list of dependencies is long, so we cut most of them out of the code in listing 17.5.
You can find the complete list in the chapter source on GitHub. The key dependency
for any Grails project is the Tomcat plugin, and if you’re using a database, you also
need the Hibernate plugin.

 After this build file is in place, you can execute several core tasks:

■ init—Creates a fresh Grails application in the current directory if one doesn’t
already exist

■ clean—Removes all the generated classes and other files
■ test—Executes all your Grails tests
■ assemble—Packages the application as a WAR file

This seems like a limited set of tasks, and indeed it is. That’s because the plugin gives
you direct access to the Grails commands using a simple naming convention. Every
Grails command can be executed through the following pattern:

gradle grails-<grailsCmd>

Listing 17.5 Creating a Gradle build file for Hubbub

Declares dependencies
required to run the build.

Specifies dependency
containing Grails
plugin for Gradle.

Configures this
as Grails build.

Manually configures standard
Grails repositories.

Declares same project
dependencies as
BuildConfig.groovy. Plugins
must include groupId.

Tells plugin which
version of Grails to use.

Makes sure Grails build
system has enough

memory to run.
Licensed to Mark Watson <nordickan@gmail.com>

491Grails with Gradle
If you want to start the development server, you could run this command:

gradle grails-run-app

This even starts your application with automatic reloading enabled! You can also pass
arguments through to the underlying Grails commands via a grailsArgs property:

gradle grails-create-controller –PgrailsArgs=org.example.User

This example creates a new org.example.UserController class using the standard
create-controller command. You can access any Grails command this way, even
those provided by plugins.

 Still, this syntax is slightly more verbose than with the standard Grails command
line, particularly if you regularly pass the same set of arguments to a given command.
The most obvious example is when running the tests: you might want to regularly run
the unit and integration tests together without the functional tests. The Gradle invoca-
tion for this is the command:

gradle grails-test-app -PgrailsArgs="unit: integration:"

Do this often enough and you’ll get frustrated. Fortunately, Gradle allows you to cre-
ate aliases for such invocations through its custom-task mechanism. Every grails-*
task is implemented via the class GrailsTask (which is provided by the plugin), so you
can define your own tasks using that type. Here you effectively alias the previous test-
app command by defining a new task at the end of build.gradle:

task stdTest(type: org.grails.gradle.plugin.tasks.GrailsTask) {
 env = "test"
 command = "test-app"
 args = "unit: integration:"
}

You can then execute the custom task from the command line:

gradle stdTest

You can also incorporate these tasks into the larger build. Let’s say you want to run the
unit and integration tests whenever the application is packaged via the assemble task.
All you have to do is add these lines after the stdTest task is declared:

tasks.'grails-war'.mustRunAfter stdTest
assemble.dependsOn stdTest

The first line ensures that the grails-war task executes after stdTest if they both run.
The second line adds stdTest as a dependency of assemble so that whenever the lat-
ter is executed, so is the former. This is the kind of powerful technique you can use
with Gradle that isn’t possible with Maven.

 There isn’t much more to the core behavior of the plugin. You can see how to exe-
cute any Grails command via Gradle tasks and integrate those into a more complex
build. Now, let’s follow the path you took with Maven and demonstrate how to use
Gradle with a multiproject build.
Licensed to Mark Watson <nordickan@gmail.com>

492 CHAPTER 17 Beyond compile, test, run
17.3.2 Building a multiproject app

In the previous section on Maven, you split Hubbub into an application and a plugin
to demonstrate multiproject Maven builds. You can use that same structure for the
multiproject Gradle build. Figure 17.7 shows the structure you’re after, along with the
relevant Gradle files.

 Let’s start with the parent directory and the settings.gradle file. This is where you
specify what directories take part in the build. It also allows you to set the overall name
of the project. Here’s the code:

include "app", "user-mgmt"

rootProject.name = "hubbub"

for (p in rootProject.children) {
 p.buildFileName = p.name + ".gradle"
}

The settings.gradle file holds configuration information about the overall build, but it
doesn’t describe how to build any of the parts. For that, you need build files. You can
see in figure 17.7 that you have three build files: one for each subproject plus a parent
build file. This raises the question of what that parent build file is for.

 When you have a multiproject build, you often want to share information between
the projects. In this case, you have two Grails projects, so you want to make sure that
they both use the same version of Grails. The parent build is where you can put this
shared information. It’s like the parent POM in Maven.

 Let’s look at the parent build file, build.gradle in the root of the project, and see
what we can use it for, as shown in the following listing.

import org.grails.gradle.plugin.tasks.GrailsTask

buildscript {
 repositories {
 maven { url "http://repo.grails.org/grails/core" }
 }

 dependencies {
 classpath "org.grails:grails-gradle-plugin:2.0.1"
 }
}

Listing 17.6 Writing a top-level build.gradle

app/

app.gradle

user-mgmt/

user-mgmt.gradle

hubbub/

build.gradle

settings.gradle

Figure 17.7 Hubbub multiproject
directory structure with Gradle files

Specifies subprojects
for this build

Sets name of
parent project

Changes build file to use for
subprojects from build.gradle
to <projectName>.gradle

A buildscript can be
defined only in root
(parent) project;
automatically applies
to all subprojects.
Licensed to Mark Watson <nordickan@gmail.com>

493Grails with Gradle
subprojects {
 if (project.file("grails-app").exists()) {
 apply plugin: "grails"

 repositories {
 grails.central()
 }

 dependencies {
 compile "org.grails.plugins:hibernate:3.6.10.6"
 runtime "org.grails.plugins:tomcat:7.0.47"
 }

 grails {
 grailsVersion = "2.3.7"
 }

 tasks.withType(GrailsTask) { Task t ->
 t.jvmOptions {
 jvmArgs "-Xmx512m", "-XX:MaxPermSize=256m"
 }
 }
 }

 group = "com.grailsinaction"
 version = "1.0-SNAPSHOT"
}

It’s a fairly long bit of code, but you’re already familiar with most of it because the bit
inside the subprojects block corresponds to much of the content of the standalone
project’s build.gradle file. Rather than duplicate the plugin declaration, repositories,
dependencies, and Grails version in the build file of each individual Grails project,
you can apply the same settings in one go via the root project’s build.gradle. If you
then add another Grails project at a later date, it also picks up these base settings, sav-
ing copying and pasting.

 All that’s left for the subprojects themselves, app and user-mgmt, are the depen-
dencies. Specifying normal JAR or plugin dependencies is no different from the stand-
alone Hubbub project. The interesting case is where you have one project depending
on another, such as app depending on user-mgmt. Setting this up requires more extra
work than you may expect.

 The starting point is the project being depended upon—user-mgmt in your case. As
things stand, Gradle doesn’t know what the output of building a Grails plugin is. That
means you can’t use a standard Gradle project dependency. You have to tell Gradle what
artifacts it produces (the packaged plugin as a ZIP file) and any transitive runtime
dependencies it has. These are required to use the plugin in the main application.

 Fortunately it only takes a few lines of code in the plugin’s build file to set this up.
The following listing goes inside the user-mgmt/user-mgmt.gradle file.

configurations {
 getByName("default").extendsFrom runtime, archives
}

Listing 17.7 Defining artifacts and dependencies for Gradle

Applies block to all
subprojects.

Conditionally applies Grails
plugin based on existence
of grails-app directory.

All Grails projects
have these default
dependencies.

Adds runtime and
archives configurations
to default.
Licensed to Mark Watson <nordickan@gmail.com>

494 CHAPTER 17 Beyond compile, test, run
dependencies {
 bootstrap "org.grails.plugins:release:3.0.0"
 bootstrap "org.grails.plugins:rest-client-builder:2.0.0", {
 exclude module: "grails-core"
 }

 compile "org.grails.plugins:spring-security-core:2.0-RC2",
 "org.grails.plugins:spring-security-ui:1.0-RC1",
 "org.grails.plugins:spring-security-twitter:0.6.2"
}

artifacts {
 archives file("grails-user-mgmt-${version}.zip"), {
 builtBy tasks.'grails-package-plugin'
 }
}

The two key parts of the build file are the beginning and the end. When you have an
inter-project dependency like this code

dependencies {
 compile project(":user-mgmt")
 ...
}

Gradle checks the configuration named default in the target project (user-mgmt) for
any artifacts. This default configuration doesn’t have anything in it at the beginning,
so you attach the runtime and archives configurations to it. Anything in those configu-
rations is added to the including project (app).

 The last bit of the build file tells Gradle that the plugin package should be added
to the archives configuration. It also tells Gradle that the artifact is built by the task
grails-package-plugin. That’s an important piece of information; otherwise when
you build the project that depends on the user-mgmt plugin, how does Gradle know
what to build and how to do it?

 The last and simplest part of the puzzle is to set up the app project to depend on
user-mgmt, which is done by adding the following line (in italics) to the dependencies
in app/app.gradle:

dependencies {
 compile project(":user-mgmt")
 ...
}

you can see the rest of the application dependencies in the chapter source code
on GitHub.

 After all the pieces are in place, you can build any part of the project. If you try to
build the application via the following:

gradle :app:assemble

You see Gradle build the User Management plugin first before packaging the applica-
tion WAR—the way you want it to! This approach scales to as many subprojects as you
want, typically needing only small build files per project.

Release plugin
allows you to
publish your
plugin.

Tells Gradle what the
generated artifact is,
what’s required to
build it, and what
configuration it’s in.
Licensed to Mark Watson <nordickan@gmail.com>

495Summary and best practices
 The main downside to the Gradle integration is that you can’t use the Grails com-
mand line interchangeably with Gradle tasks. There’s no equivalent of the pom: true
option provided by the Maven integration. That said, you have access to everything
you need for building your Grails projects via Gradle, and you benefit from the stron-
ger dependency management and multiproject support that Gradle offers over the
standard Grails build system. Those features alone make Grails 3.0.0 an enticing pros-
pect if it does eventually use Gradle natively for its build system.

17.4 Summary and best practices
Building nontrivial software is often a complex task, and we’ve shown you in this chap-
ter several of the issues you need to consider. Transitive dependency resolution has
made developers’ lives better in that you no longer need to trawl web pages to find out
what JARs you need to compile and run your application, but it introduces its own
problems. You need to learn how to diagnose and resolve problems with dependency
conflicts and library duplication.

 It’s also important to keep software manageable, which tends to argue for modu-
larization. The Grails build system doesn’t scale well for this, hence we looked at both
Maven and Gradle. These tools are designed to cope with large-scale software and are
worth considering even if you lose the convenience associated with the Grails build
system and its interactive console.

 That leaves us with a few suggestions to round off this chapter:

■ Make use of dependency reports and exclusions. Dependency reports are your friend in
terms of diagnosing class loading issues related to incorrect dependencies, and
exclusions allow you to fix those problems. It’s not fun, but it has to be done!

■ Use a CI server. This is an absolute must if you have a team, otherwise the delay in
discovering errors due to merging code from multiple developers costs you
unnecessary development time and energy. CI also ensures that developers
push code on a fairly frequent basis.

A CI server is even beneficial for one-man-band operations because it’s easy
to commit code without running tests. It also ensures that your build doesn’t
become dependent on stuff you have lying around in various local caches.

■ Externalize sensitive or deployment-specific configuration. Packaging configuration in
with a WAR file makes it less easy to transfer that WAR to an alternative environ-
ment. It’s also important to keep sensitive information out of source control.

■ Use Maven or Gradle for multiproject development. This is a case of using the right
tool for the right job. After you go beyond a single monolithic application, the
Grails build system is less easy to work with.

In this chapter, we talked about topics related to deployment, and that’s where we
head next. But rather than talking about traditional deployments on dedicated hard-
ware, we look at the phenomenon called the cloud.
Licensed to Mark Watson <nordickan@gmail.com>

Grails in the cloud
One of the big questions for any web developer is where to deploy your applica-
tions. The traditional approach in the Java world is to run servlet containers on
dedicated hardware. This is fine for enterprises that can invest in that up-front
cost, but it’s a significant investment for startups and lone developers. It’s been
with much envy that we’ve looked on the PHP world with its huge array of cheap
hosting options.

 Cloud platforms are changing the game, making cheap and easy hosting avail-
able to many web development communities, even Java’s. It’s easy to be cynical
about this because the cloud has become a marketing and business buzzword,
something that solves everyone’s IT problems as if by magic. The truth is definitely
more complex, but the underlying technologies of the cloud continue to change
the way IT systems are run.

This chapter covers
■ Understanding cloud platforms and their

providers
■ Assessing the impact cloud platforms have

on your applications
■ Deploying Hubbub to Cloud Foundry
496

Licensed to Mark Watson <nordickan@gmail.com>

497Getting to know the cloud
 We start by explaining what the cloud is so that you have context for the rest of the
chapter. And if you plan to make any decisions about whether to use a cloud platform,
you should understand how it works. We then compare a few of the best-known plat-
forms for hosting Java (and hence Grails) web applications. Finally, we explain how
cloud platforms affect the way you develop your applications, because assumptions
you make at the moment don’t apply to the cloud.

18.1 Getting to know the cloud
The cloud is many things to many people. For the people who maintain IT infrastruc-
ture, it’s a way to easily manage hardware resources and allocate them to applications
and other bits of software. For consumers, it’s a remote location where their music and
videos are kept. For developers, it’s a place to deploy applications. The cloud concept
has several layers.

 Understanding how these layers fit together helps you make decisions on whether
to use the cloud and helps explain why the cloud places certain restrictions on the way
your applications work. That’s why we start by looking at what makes up the cloud.

18.1.1 What is the cloud?

You’re used to physical computers. You interact with them every day to do your
work, whether they’re desktop computers or laptops. Your computer has a CPU,
memory, a hard drive or flash drive for storage, and miscellaneous bits and pieces.
You boot it up, and it has applications and files on it. This isn’t the cloud. But physi-
cal computers are still the foundation of the cloud because computer software
needs CPUs, memory, and storage.

 To understand what cloud computing is, we go back several years when VMware
Inc. introduced the world to virtualization: the idea that you could run a complete OS
with its own applications, networking, and storage (the guest OS) within another OS
that has direct access to the hardware (the host). In effect, virtualization software
broke the link between the OS and the physical computer such that it was no longer a
one-to-one mapping. You can see an example configuration in figure 18.1 where the
host OS has two guest OSes running inside it.

 Each guest OS runs in a VM that abstracts away the physical hardware and allows
you to move or copy the OS from computer to computer. The VM contains all the
installed software and can even save the memory state at the point the VM is sus-
pended. Suddenly you can run a server anywhere and on any hardware (as long as the
hardware supports the VM).

 This led to the first stage of cloud computing: infrastructure as a service (IaaS).

IAAS CONCEPTS

In the IaaS world, you never access the hardware directly. Instead, you set up VMs and
let the IaaS run them. It’s up to the IaaS to determine which bits of hardware a VM
uses. It’s similar to the way Java applications run; you package your application as a
Licensed to Mark Watson <nordickan@gmail.com>

498 CHAPTER 18 Grails in the cloud
JAR and then let the JVM run it on the host OS and hardware—the VM corresponds to
the JAR and the IaaS corresponds to the JVM.

 You can have as many instances of a VM running as you want. The IaaS provider
manages the physical hardware and typically runs special software to host your VMs.
That software ensures that your VMs have access to the CPU power, memory, and disk
space that they need. Figure 18.2 gives you the basic structure of an IaaS setup.

 You have several options for hosting if you don’t mind configuring VMs, installing
the software you need on them, and then deploying your application.

IAAS PROVIDERS

The best-known IaaS provider is Amazon through its Amazon Web Services (AWS), but
it’s not the only public provider: Microsoft has its Azure cloud and Google has Com-
pute Engine.

Windows 8 (host OS)

VM player

Windows XP
(guest OS)

Linux
(guest OS)

VM player

Figure 18.1 The origins
of virtualization with two
guest OSes running on a
single host OS

CPU + memory +
hard drive

CPU + memory +
hard drive

Windows VM Linux VM Windows VM Linux VM

Servers (hardware) Storage

Individual virtual machines (VMs) with OS
+ other software

Figure 18.2 How IaaS works
Licensed to Mark Watson <nordickan@gmail.com>

499Getting to know the cloud
AWS is where companies such as Netflix and Spotify run their back-end services. It’s
split into several services; the main ones are shown in figure 18.3.

 The big benefit of an IaaS is that you don’t buy any hardware (a capital cost) either
up-front or as the demand on your application grows. Nor do you have to manage
that hardware.

 Another significant benefit of an IaaS is that you can readily scale your application as
the load on it changes—if you design your application for that. Imagine that your com-
pany starts a new marketing campaign that results in a big spike in traffic (the dream of
every marketer). To handle the load, you can increase the number of VMs running your
application and spread the load across them. If and when the traffic drops again, you
can reduce the number of VMs. This is a cost-efficient way to handle variable traffic.

Basic AWS services

Elastic Block

Storage (EBS)

Simple Storage

Service (S3)

Elastic Compute Cloud (EC2)

Elastic Load Balancer (ELB)

EC2 runs your VMS.

You can specify what

sort of virtual CPU

and memory you want,

such as a quad-core,

2 GB AWS instance.

EBS provides fast, medium-

term data access. It’s basically

a virtual hard drive and is used

by most database VMs to store

the data.

S3 allows you to store arbitrarily

large fies for the long term. It’s

often used to host binary

downloads, archives, images,

and more. Every item in S3 also

gets its own publicly accessible

URL that can be shared with

others.

ELB maps requests to individual EC2 instances

to spread the load. Not useful if you only have

one EC2 instance.

Figure 18.3 The core services provided by AWS
Licensed to Mark Watson <nordickan@gmail.com>

500 CHAPTER 18 Grails in the cloud
Yet many software houses don’t want to manage even that much. Wouldn’t it be better
if you could one-click deploy a new application? That’s what the second stage of cloud
computing promises via a new breed of cloud implementations dubbed platform as a
service (PaaS).

18.1.2 The new kids on the block—PaaS providers

Where IaaS abstracts away the hardware infrastructure, PaaS abstracts away the soft-
ware infrastructure. You don’t need to worry about setting up runtimes, servlet con-
tainers, or databases. Instead, you specify what type of application you want to run (a
servlet-based one or perhaps a Ruby web application) and the services you need (such
as a database or a message broker). Figure 18.4 shows how a PaaS fits between an IaaS
provider and your applications.

 It’s these PaaS systems that we focus on for the rest of the chapter because they’re
the growth area at the moment and the most appealing platforms for application host-
ing due to the simplicity of deployment. Enterprises are even evaluating such plat-
forms for their own internal hosting to simplify IT infrastructure management and
make it easier and quicker to deploy applications. We start with a quick look at several
of the more popular public providers and discuss their unique selling points.

 PaaS is still in its early phases, and yet many public clouds are available for your
use. Which one should you go with? At the time of writing, this space has no hard and
fast winners. Instead, you should consider several factors:

■ Can you run your application on a given cloud platform?—Your application may
have special requirements, be it specific data stores or the need to have a persis-
tent filesystem. Such requirements often affect which cloud platforms you can
use or even if you can use one at all. We discuss filesystems and other restrictions

App 1 App 2 App 3

PaaS

Servlet

container
Database Load balancer + more

IaaS

CPU Memory Storage Figure 18.4
The basics of PaaS
Licensed to Mark Watson <nordickan@gmail.com>

501Getting to know the cloud
in the last section of this chapter. It’s also worth bearing in mind that certain
cloud platforms may not even support Java.

■ Where will your applications run?—Data privacy concerns and other issues influ-
ence where companies are willing to host their software. In particular, many
companies and institutions are concerned about hosting in the US. Another
potential consideration is where the majority of your users are. If they’re in
Europe, hosting an application on the US West Coast may result in latency that
adversely affects the user experience.

■ Are you stuck with the provider you initially pick?—One promise of the cloud should
be that you can move your applications between providers easily. Currently,
that’s far from the case. It’s easy (and sometimes required) to use services spe-
cific to a particular provider. But as soon as you do, you tie yourself to that pro-
vider unless you perform major work on your application. And no one wants to
waste valuable engineering time on that.

■ How much will it cost? —Almost every cloud provider charges differently. In addi-
tion to pricing levels, a provider may charge for number of CPUs, CPU usage,
memory usage, and so on. This can make it difficult to compare providers
based on price only. Running costs can be high, so it’s worth investing time try-
ing to work out your needs and how much it’s going to cost.

Let’s look at a few of the contenders.

GOOGLE APP ENGINE

App Engine was one of the first publicly available PaaS systems. Originally it only
allowed you to host Python-based applications on Google’s servers, but Java support
was added. It’s a proven system that scales well. The downside is the number of restric-
tions on your application:

■ Some JDK classes are unavailable.1
■ You can’t write to files on the local filesystem; in effect you have no local filesystem.
■ Several APIs are unsupported, including pure JDBC, JMS, and JNDI.2

In addition to restrictions, the platform is sticky because it provides its own APIs for
such things as an image service, task queues (for background jobs), and full-text
search. We’ve heard recommendations that you also use the native API for BigTable
(Google’s data store) instead of JPA or JDO. The mismatch between the relational
model of the latter and BigTable’s column model results in extra pain for you.

 On the positive side, all the restrictions make it much more likely that your appli-
cation will scale if and when necessary. Google’s core services are good, too. The
search and image services could well be worth the cost of vendor lock-in and the loss

1 See Google’s whitelist of usable classes, https://developers.google.com/appengine/docs/java/jrewhitelist.
2 For a list of the level of compatibility of Java technologies and App Engine, see https://code.google.com/p/

googleappengine/wiki/WillItPlayInJava.
Licensed to Mark Watson <nordickan@gmail.com>

https://developers.google.com/appengine/docs/java/jrewhitelist
https://code.google.com/p/googleappengine/wiki/WillItPlayInJava
https://code.google.com/p/googleappengine/wiki/WillItPlayInJava

502 CHAPTER 18 Grails in the cloud
of GORM, JMS, and so on. It’s also worth bearing in mind that the platform finally sup-
ports a relational database offering: Cloud SQL based on MySQL.

CLOUDBEES

Whereas the other platforms we talk about offer application hosting only, CloudBees
provides much more. If you want, CloudBees can host your source code and build it
on its CI servers (based on Jenkins) before deploying your application to its cloud. It’s
Java-only at the moment, although there appears to be experimental Node.js support.
The Java focus is good for Grails developers, though.

 Beyond deployment of WAR files, CloudBees also offers several essential services:

■ MySQL—The only relational database available at the time of writing
■ SendGrid—Sending email
■ Solr—Full-text indexing and search
■ RabbitMQ—(Non-JMS) message broker

This list is likely to change, but it gives you an idea of what’s available. Many of these
services are provided by third parties.

 Almost uniquely among PaaS systems, CloudBees also supports sticky sessions.
Once a user starts an HTTP session on a particular application instance, they always hit
that instance. This makes life simpler if your application or one of its libraries uses the
session. Be aware that it can scale badly if you have many concurrent users.

 CloudBees’s public cloud currently runs on AWS—although only in the North
American and EU regions. Your application can also access any other services on AWS,
not only those provided through CloudBees’s service integration. That opens up
other options. You can also run your own CloudBees instances as a private PaaS, either
on OpenStack or HP’s cloud services infrastructure.

HEROKU

Heroku started life as a cloud solution for Ruby-based web applications. It has now
evolved into a general-purpose cloud platform that supports many different lan-
guages, runtimes, and frameworks. It runs exclusively on AWS and uses Git for deploy-
ment. The idea is that you push your source code to Heroku and the platform then
builds and deploys your application based on its type. If your application has special
build requirements, then you can develop a buildpack for it. The basic mechanics are
shown in figure 18.5.

 This reliance on Git and command-line-based tools may put off those with a Win-
dows background. Otherwise, it’s a flexible and easy-to-use hosting solution with big-
money backing (Salesforce). It also has one of the largest selections of services to
choose from through the Heroku marketplace, not to mention that you can use any
service on AWS.

CLOUD FOUNDRY

The last of the PaaS offerings we look at is an open source product. Originally created
within VMware, Cloud Foundry is now primarily developed by EMC-VMware spinoff
Pivotal and, like Heroku, constitutes a multilanguage and multiframework PaaS. The
Licensed to Mark Watson <nordickan@gmail.com>

503Running in the cloud
key difference is that anyone can run their own Cloud Foundry PaaS instance from
their own data center.

 Pivotal is one of several public providers that runs your applications on AWS or
elsewhere. And no matter the provider, you use the same tools. Cloud Foundry also
uses the same system of buildpacks as Heroku, which allows you to use frameworks
that aren’t supported by the core system.

 One thing to be aware of is that Cloud Foundry has two distinct versions in the
wild: version 1 and version 2. Each has its own tools for deployment and the versions
are incompatible. Moving from a version 1 instance to a version 2 instance, even if it’s
the same provider, means redeploying your application to the new system and poten-
tially migrating any data you have. We definitely recommend using a version 2 (or
greater) provider.

 As we mentioned, these aren’t the only PaaS providers out there, and many of the
differences between them are marginal (Google App Engine stands out as an excep-
tion to this). It’s also important to recognize that this is a rapidly changing field, so
anything we say here is likely to be out of date fairly quickly. That makes choosing a
provider difficult, particularly if you’re not familiar with PaaS systems in general.
Remember to ask yourself these key questions:

■ Can you run your application with the prospective cloud provider?
■ Where (geographically) will your application run?
■ Are you stuck with the provider once you pick it?
■ How much will it cost?

Your answers may even lead you to go with an IaaS provider so you have more control
over the software infrastructure for your project.

 What’s it like using one of these platforms? In the next section, we focus on deploy-
ing Hubbub to a PaaS to see what’s involved with the deployment process and what
changes you have to make to the application so that it works effectively in the cloud.

18.2 Running in the cloud
Before you can deploy Hubbub to a PaaS and run the application in the cloud, you
first need to choose a provider. That means looking at Hubbub’s requirements to see

Local (Git)

source

repository

Your computer

Heroku

Remote (Git)

source

repository

1. Push code.

2. Build

app using

buildpack.

Packaged

application

Running on

web dyno(s)
3. Deploy!

Figure 18.5 Deploying
new versions of an
application to Heroku
Licensed to Mark Watson <nordickan@gmail.com>

504 CHAPTER 18 Grails in the cloud
which PaaS is the best fit. Next, you should assess the application to identify any
changes you need to make so it can run in the PaaS.

 No hard and fast rules exist for these two steps because every application is differ-
ent. Using Hubbub as an example, we’ll cover many of the common cases you‘re likely
to encounter and walk you through the thought process involved.

18.2.1 Choosing a cloud provider and assessing Hubbub

We demonstrate many Grails features in the book, and this makes Hubbub a moder-
ately complex application. Putting the application in the cloud affects many of those
features in one way or another. Several of these are handled perfectly well by all the
cloud providers:

■ GORM/Hibernate—How do you wire up the application to a cloud database?
All of the cloud platforms we mentioned provide one or more relational data-
bases to choose from.

■ Mail—Can you use SMTP to send emails, as you’re already doing?
All the platforms allow you to send email via SMTP, usually through a service
such as SendGrid (Google App Engine and AWS have their own email sending
services).

■ Quartz—How do you ensure that the daily digest job only runs once, no matter
how many application instances you have?
To ensure that each job is only ever executed by one application instance, the
Quartz plugin needs a relational database in which to persist its jobs. This fea-
ture is already configured in Hubbub, and because Quartz uses whichever data-
base is configured for GORM, you need only wire up the relational database
provided by the cloud platform.

■ Events—Should an event in one application instance propagate to others?
It depends on the event, but if an event results in an update of the internal state
of the application, you want it propagated. That requires something such as an
external message broker or some other service that receives and sends mes-
sages, such as Redis. All the platforms have at least one of these options.

Other features require more thought:

■ Caching—You want the cache shared among all application instances, but dis-
tributed Ehcache requires multicast, which isn’t available on cloud platforms.
No cloud provider supports Ehcache out of the box, so you need a substitute
that works in a distributed way.

■ Spring Security—The library in itself isn’t an issue, but it does rely on HTTP ses-
sion support. If you want more than one application instance for Hubbub, you
need either session affinity (sticky sessions) or distributed sessions.
Only two of the providers provide an out-of-the-box solution.
Licensed to Mark Watson <nordickan@gmail.com>

505Running in the cloud
■ JMS—You need a message broker to forward your messages, preferably one that
supports the JMS API.
JMS is a problem because none of the providers offer a JMS-compliant mes-
sage broker.

Table 18.1 summarizes the potential solutions to these conundrums.

Both Redis and Memcached are fast key-value stores that can be used with the Grails
Cache plugin. The main difference from the Grails integration perspective is that the
Redis plugin is supported by Pivotal. The Memcached plugin is community-contributed
and therefore riskier to use.

 On the HTTP sessions front, it’s definitely best to use any built-in support that a
cloud platform provides. For platforms that don’t have such support, you could instead
use the Grails Database Session plugin. It can be used on any platform that has a rela-
tional database and effectively provides a distributed HTTP session for your application.
The big questions are how well does it work, and how well is it maintained?

 As you can see in table 18.1, it looks like you have to switch from JMS for messag-
ing. Fortunately, RabbitMQ (which CloudAMQP is based on) does everything you
need, and the corresponding plugin works in a similar fashion to the JMS one. As we
mentioned earlier, a cloud message broker also helps with propagating your events
between different application instances.

 Cloud Foundry stands out as having everything you need without much extra
work. For the rest of the chapter, you’re going to rework Hubbub to run on Cloud
Foundry and use it as your demonstration platform. Please note that you must con-
sider many factors when choosing a cloud provider, and each has its pros and cons.
You should always perform your own analysis.

18.2.2 Getting familiar with the platform

Before you update Hubbub and deploy it to Cloud Foundry, let’s work with something
simple to get familiar with the platform’s tools and deployment mechanism. The
Quote of the Day application from chapter 1 is ideal as the only external service it
requires is a relational database.

Table 18.1 Cloud provider support by feature

Feature App Engine CloudBees Heroku Cloud Foundry

Caching Custom caching
service; use
JCache API

Use AWS caching
service

Redis with official
Cache plugin imple-
mentation

Redis with official
Cache plugin imple-
mentation

HTTP
sessions

N/A Sticky sessions N/A Sticky sessions

JMS N/A CloudAMQP with
RabbitMQ plugin

CloudAMQP with
RabbitMQ plugin

CloudAMQP with
RabbitMQ plugin
Licensed to Mark Watson <nordickan@gmail.com>

506 CHAPTER 18 Grails in the cloud
 Start by editing the content of the QOTD home page (grails-app/views/index.gsp)
as shown in the following listing. We’ll explain the reasons for the changes later in
this section.

<!DOCTYPE html>
<html>
 <head>
 <meta name="layout" content="main"/>
 <title>Environment information</title>
 <style>pre { white-space: pre-wrap; }</style>
 </head>
 <body>
 <h2><g:link controller="quote" action="random">Main App</g:link></h2>
 <h2>Environment variables</h2>
 <h3>VCAP_APPLICATION</h3>
 <pre>${System.getenv("VCAP_APPLICATION")}</pre>
 <h3>VCAP_SERVICES</h3>
 <pre>${System.getenv("VCAP_SERVICES")}</pre>
 <h3>VCAP_APP_HOST</h3>
 <pre>${System.getenv("VCAP_APP_HOST")}</pre>
 <h3>VCAP_APP_PORT</h3>
 <pre>${System.getenv("VCAP_APP_PORT")}</pre>
 </body>
</html>

Next, you need to make sure your quotes get persisted to a database. You may think
of sticking with the file-based H2 that QOTD is already configured for. That’s a bad
idea. To understand why, think about where the data is stored. In the case of a file-
based H2, it’s on the local filesystem, which works fine on dedicated hardware. The
problem with cloud-based systems is that the local filesystem is ephemeral, and as such
it doesn’t have a guaranteed lifetime. As an example of this, the filesystem is typi-
cally reset every time you restart the application. When that happens, you lose any
data on it.

 The solution is to use a database service provided by the cloud platform. Let’s
use a PostgreSQL service on Cloud Foundry. All you need to do is add the Post-
greSQL JDBC driver to the application, so open the BuildConfig.groovy for QOTD
and add this dependency:

dependencies {
 ...
 runtime "org.postgresql:postgresql:9.2-1003-jdbc4"
}

At this point you should ask yourself why you’re not updating the data source configu-
ration. How’s the application going to connect to the database otherwise? Cloud
Foundry is unique among cloud platforms in that it understands certain libraries and
frameworks enough that it can automatically configure them. In the case of Spring-
based applications (which Grails apps are), Cloud Foundry looks for a bean of type

Listing 18.1 Changing the QOTD home page

Wraps text in
<pre> blocks

Displays contents of
several environment
variables

Adds PostgreSQL
database driver
Licensed to Mark Watson <nordickan@gmail.com>

507Running in the cloud
javax.sql.DataSource and sets its properties based on whichever relational database
is bound to the application.

 The end result is that you can deploy your Grails application, bind a database ser-
vice to it, and run it. Your application uses that database automatically as if by magic.

 Believe it or not, the application is now ready for deployment to the cloud! All you
need is access to Cloud Foundry-based hosting, which may be a public provider such
as Pivotal or your company’s own Cloud Foundry instance. We went through the Pivotal
registration process (https://console.run.pivotal.io/register), but Pivotal isn’t the
only public provider. Try a web search for “cloud foundry hosting.” Whoever you reg-
ister with, be sure to note your username and password because you need them to
deploy applications.

Once you create an account, you’re ready to deploy the application. The normal
way to deploy applications to Cloud Foundry is via a command-line tool: cf3. Once
the tool is installed, run this sequence of commands in the root directory of your
Grails application:

cf login -a <API URL>
grails war
cf push <app name> –p target/<WAR name> -m 650M

The URL you specify for the login command depends on what provider you’re using.
For Pivotal, this is api.run.pivotal.io. The application name is anything you want, so
long as it’s unique within your account. It makes sense for this value to match the
name in application.properties, but it doesn’t have to. And there you have it: a (hope-
fully) successful deployment to a Cloud Foundry instance. If a deployment isn’t suc-
cessful, try these commands:

■ cf logs <app name>—Displays the startup logs for your application
■ cf events <app name>—Reports significant events that occur during the startup

and running of your application
■ cf files <app name> app/.tomcat/logs/stacktrace.log—Prints the applica-

tion’s stacktrace.log file, which may include exceptions that don’t make it into
the application’s startup log

Cloud Foundry versions 1 and 2
Cloud Foundry has two distinct versions of its code base: version 1 and version 2. A
Cloud Foundry provider can implement one or the other, but not both. Always check
which version a prospective provider uses as it affects the way applications are
deployed. It’s best to stick with version 2 implementations if you can.

3 You can find instructions on how to install it in the Cloud Foundry docs at http://docs.cloudfoundry.org/
devguide/installcf/install-go-cli.html.
Licensed to Mark Watson <nordickan@gmail.com>

https://console.run.pivotal.io/register
http://docs.cloudfoundry.org/devguide/installcf/install-go-cli.html
http://docs.cloudfoundry.org/devguide/installcf/install-go-cli.html

508 CHAPTER 18 Grails in the cloud
Common deployment issues include too little memory allocated for the application
and failed configuration of the services the application needs. In the sequence of
commands, you specify that the application should be started with 650 MB of memory,
which is enough for the QOTD application. If you encounter issues, be sure to verify
that the application runs locally before attempting to fix it on the cloud. It’s much eas-
ier to solve issues with a locally running application!

 Now that the application is running, let’s look at the home page. Previously, you
modified it to display environment variables. Here are those variables with some exam-
ple partial and full values highlighting the most interesting pieces of information:

■ VCAP_APPLICATION

{...,"host":"0.0.0.0","port":61371, ...,
 "limits":{"mem":768,"disk":1024,"fds":16384},
 ...,"application_name":"qotd",...}

■ VCAP_SERVICES

{"elephantsql-n/a":[{"name":"elephantsql-51d59",
 "label":"elephantsql-n/a","tags":["postgres","postgresql","relational"],
 "plan":"turtle","credentials":{"uri":"postgres://..."}}]}

■ VCAP_APP_HOST

0.0.0.0

■ VCAP_APP_PORT

61371

The first two have a high density of data, but don’t worry about trying to understand
all the information. The key point is that this is how Cloud Foundry tells the applica-
tion to connect to the services that are bound to it and what port the application runs
on. You didn’t have to interpret this information yourself because Cloud Foundry
managed the configuration of your application.

 All the cloud platforms use either environment variables or Java system properties
to pass in the service connection information. Cloud Foundry gives you the informa-
tion as a JSON string. Other platforms use multiple environment variables or system
properties, making the data more accessible. Whichever platform you’re on, you can
easily use this information to configure data sources and other data connections. Imag-
ine Cloud Foundry didn’t automatically configure your data source. To do it manually,
you could update your production connection settings in DataSource.groovy as
shown in the following listing.

production {
 dataSource {
 dbCreate = null

 def jsonReader = new groovy.json.JsonSlurper()
 def serviceData =
 jsonReader.parseText(System.getenv("VCAP_SERVICES"))

Listing 18.2 Updating production connection settings

Parses
VCAP_SERVICES

as JSON
Licensed to Mark Watson <nordickan@gmail.com>

509Running in the cloud
 driverClassName = "org.postgresql.Driver"
 url = "jdbc:" +
 serviceData.'elephantsql-n/a'[0].credentials.uri
 ...
 }
}

Remember that the configuration files ending in .groovy are ultimately code, so you
can read environment variables and system properties directly within them. It’s a pow-
erful feature! And it’s typically the approach you use on cloud platforms that don’t
support auto-reconfiguration of Spring beans.

With that familiarization exercise out of the way, let’s get on with adapting Hubbub
for the cloud. You need to set up caching, email, and messaging with RabbitMQ. As for
the other considerations we mentioned previously, the relational database is set up in
the same way as the QOTD app, and the session affinity is taken care of by the plat-
form. In other words, Spring Security will work.

18.2.3 Adding cache support

When you cache data, you want to make sure it’s consistent. This is usually done by auto-
matically clearing a cache when the application updates the corresponding data—you
saw this in action with the @CacheEvict annotation in chapter 10. The trouble is that
each update happens only on one application instance, so the other instances don’t
see the changes. If each app instance has its own cache, those caches get out of sync,
as shown in figure 18.6. Note that this problem isn’t unique to the cloud and affects
any setup with clustered instances of an application.

 This problem has two main solutions:

■ Use a distributed cache
■ Use events to ensure that every update is propagated to every app instance

You currently use an in-memory Ehcache implementation for Hubbub, but we
mentioned previously that the distributed version doesn’t work in the cloud due to
the lack of multicast support. You have an event bus, so you could theoretically syn-
chronize in-memory caches in each application instance via events. The downside
is that it requires you to effectively move Hubbub to an event-based architecture.
That’s not a bad plan, but it takes more work than the solution we suggest: Redis as
a cache.

Configuring other data stores
You can treat nonrelational data stores the same way you do relational databases.
Cloud Foundry can automatically configure Redis and MongoDB if you use the corre-
sponding plugins. For other data stores, you should parse the information in the
VCAP_SERVICES environment variable to get the relevant connection settings. The
Cloud Foundry docs for Ruby & Node.js give useful examples.

Pulls
PostgreSQL
connection
URL from
parsed JSON
Licensed to Mark Watson <nordickan@gmail.com>

510 CHAPTER 18 Grails in the cloud
As you saw in chapter 16, Redis is a fast key-value store. It also has TTL support,
which means that its keys can expire. These attributes make it a great candidate for
caching data. Hence there’s a Redis implementation of the standard Grails Cache
plugin you saw in chapter 10. Thankfully, Cloud Foundry has a Redis service that
you can use.

 How do you set up Redis as the cache provider? Easy! Add this dependency to the
plugins section of BuildConfig.groovy:

plugins {
 ...
 runtime ":cache-redis:1.0.0"
}

Because you haven’t fine-tuned the Ehcache configuration, it’s literally a drop-in
replacement. When you deploy the application to Cloud Foundry, the plugin is auto-
matically reconfigured to use the bound Redis service. If auto-reconfiguration isn’t
available (for example, if you’re using a different cloud provider), you can configure
the Redis connection settings in Config.groovy:

grails {
 cache {
 redis {
 database = 0
 hostName = "localhost"
 port = 6379
 }
 }
}

That’s all it takes. You can now tackle the question of how to send emails when the
application is in the cloud.

App
instance

App
instance

App
instance

Cache Cache Cache

Load balancer

1. Update

1. Update

1. Update

2. Fetch

2. Fetch
latest

2. Fetch
latest

3. Fetch

3. Fetch
stale data

3. Fetch
stale data

There are no guarantees
which app instance will

return the requested data.

Figure 18.6 The trouble with
clustered application instances
and caching

Values should be extracted from
relevant system properties/
environment variables
Licensed to Mark Watson <nordickan@gmail.com>

511Running in the cloud
18.2.4 Sending emails

You currently use the Mail plugin to send emails. Under the hood, this uses the stan-
dard JavaMail API with SMTP to do the work. Fortunately, most cloud platforms have
SMTP access to a mail service, either through a third-party (such as SendGrid) or
through its own (such as Google App Engine). All you need to do is configure the
Mail plugin appropriately.

 In the case of Cloud Foundry, you bind an instance of the SendGrid service to the
application and pull the connection details out of the VCAP_SERVICES environment
variable. The basic JSON content describing the service is on the Cloud Foundry web-
site4 and looks like the following listing.

{ sendgrid-n/a: [
 { name: "mysendgrid",
 label: "sendgrid-n/a",
 plan: "free",
 credentials: {
 hostname: "smtp.sendgrid.net",
 username: "QvsXMbJ3rK",
 password: "HCHMOYluTv"
 }
 }
]}

You parse this in Config.groovy and extract the credentials information in the follow-
ing listing. The code is standalone and can go anywhere in Config.groovy as long as
it’s not nested in any other configuration settings.

...
def vcapServices = System.getenv("VCAP_SERVICES")
if (vcapServices) {
 def servicesData =
 new groovy.json.JsonBuilder().parseText(vcapServices)
 def sendGridCreds = servicesData.'sendgrid-n/a'[0].credentials

 grails.mail.host = sendGridCreds.hostname
 grails.mail.port = 587
 grails.mail.username = sendGridCreds.username
 grails.mail.password = sendGridCreds.password
}
else {
 grails.mail.host = "127.0.0.1"
}

grails.mail.default.from = "hubbub@grailsinaction.com"
...

Listing 18.3 Configuring the Mail plugin

4 JSON configuration format for SendGrid: http://docs.run.pivotal.io/marketplace/services/sendgrid.html.

Listing 18.4 Extracting mail credentials

Only configures for CF if
VCAP_SERVICES exists.

Extracts mail
server credentials

from JSON.

SendGrid service
uses port 587.
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.run.pivotal.io/marketplace/services/sendgrid.html

512 CHAPTER 18 Grails in the cloud
When the application is deployed to Cloud Foundry, it automatically uses the bound
SendGrid service to send emails. There’s nothing more to do.

 Next, let’s tackle the biggest job in this whole process of putting Hubbub into the
cloud: refactoring the application to use RabbitMQ instead of JMS for messaging.

18.2.5 Messaging in the cloud with RabbitMQ

Changing the API you use to do something, particularly in a mature application, is
never to be undertaken lightly. In the case of Hubbub, you can either do that or try to
use the JMS API with a message broker that doesn’t properly support it. An example of
the latter is AWS Simple Queue Service (SQS). Both approaches have their problems,
but the refactoring for RabbitMQ shouldn’t be too hard due to the similarities in the
Grails APIs between JMS and RabbitMQ. The main downside of this approach is that
RabbitMQ doesn’t have an embedded version you can use. You have to install it sepa-
rately. We won’t go into the details here as the RabbitMQ web site has good installation
instructions for all the common platforms. Once it’s installed and running, you need
to configure your application to use the message broker.

CONFIGURING RABBITMQ
Before you can configure your application to use RabbitMQ, you first need to add the
following plugin dependency:

plugins {
 ...
 compile ":rabbitmq:1.0.0"
}

Next, you specify the connection settings for the broker. You did this for JMS by add-
ing a bean definition to the resources.groovy file. That’s not necessary for RabbitMQ.
Instead, you put the settings in Config.groovy:

rabbitmq {
 connectionfactory {
 username = "guest"
 password = "guest"
 hostname = "localhost"
 }
}

These are the typical settings for a locally installed RabbitMQ server, but what about
the Cloud Foundry connection settings? As you may have guessed, you don’t need to
do anything here because Cloud Foundry automatically reconfigures the plugin to use
the bound RabbitMQ service at runtime.

REFACTORING THE MESSAGING SERVICES

The next step in the migration from JMS is to update the Grails services that send and
respond to messages. In the main Hubbub application, that means JabberService, as
shown in the following listing.
Licensed to Mark Watson <nordickan@gmail.com>

513Running in the cloud
package com.grailsinaction

class JabberService {
 static rabbitQueue = "jabberInQ"

 static sendQueue = "jabberOutQ"

 void handleMessage(msg) {
 log.debug "Got Incoming Jabber Response from: ${msg.jabberId}"
 try {
 def profile = Profile.findByJabberAddress(msg.jabberId)
 if (profile) {
 profile.user.addToPosts(new Post(content: msg.content))
 }
 }
 catch (t) {
 log.error "Error adding post for ${msg.jabberId}", t
 }
 }

 void sendMessage(post, jabberIds) {
 log.debug "Sending jabber message for ${post.user.userId}..."
 def msg = [userId: post.user.userId,
 content: post.content,
 to: jabberIds.join(",")]
 rabbitSend(sendQueue, msg)
 }
}

One thing to bear in mind is what other apps are processing the messages. Currently,
the code is serializing maps in a Java-specific way. If you need to work with non-Java
apps, you should consider passing the messages around in JSON, XML, or some other
standard text-based format.

With these changes in place, you can deploy the two applications (Hubbub and Jabber
Gateway) to Cloud Foundry and bind the same instance of a CloudAMQP service to
both of them. That service routes the messages between the apps.

 RabbitMQ is also a good solution if you want to propagate events between applica-
tion instances. You don’t need to do it for Hubbub, but it wouldn’t be difficult to con-
vert events to JSON messages, which are then converted back into the events in the
receiving application instances.

Listing 18.5 Updating JabberService to use RabbitMQ

Updating GatewayService
You need to update GatewayService in the jabber-gateway application the same
way you updated JabberService. We leave that as an exercise for you to do on
your own. Alternatively, you can see the necessary changes in the chapter source
code on GitHub.

Specifies which queue
to pull messages off
(replaces destination
property).

Executes when
message received
(replaces
onMessage()).

Sends message to given queue.
rabbitSend() is available
in all Grails artifacts.
Licensed to Mark Watson <nordickan@gmail.com>

514 CHAPTER 18 Grails in the cloud
 We do think that RabbitMQ is a solid alternative to JMS for messaging. The under-
lying model of exchanges and queues is different from JMS (which is based on queues
and topics), but it’s more flexible. The plugin also makes queue- and topic-style mes-
saging straightforward, as you saw. If you’re thinking of deploying to the cloud, con-
sider using RabbitMQ right from the start because it saves any potential issues with a
migration later on.

18.2.6 Other features to consider

You implemented the library and service-specific changes that you need, but that’s not
the end of the story. Consider these conundrums:

■ How do you make the Twitter credentials available to the application so users
can log in via Twitter? The same goes for Jabber settings.

■ How do you get existing data into and out of the cloud database?

You need answers to these questions before you can safely deploy Hubbub to the cloud.

WORKING WITH A SENSITIVE CONFIGURATION

Credentials can be packaged into the WAR file, but that generally means putting
them into Config.groovy, which should go into source control. That’s far from
ideal, and you solved this problem in chapter 11 by putting the settings into an
external configuration file that you can place directly on the server. That’s not pos-
sible with the cloud because you don’t have access to the filesystem. And as we men-
tioned previously, the filesystem can effectively be reset at any time. You need an
alternative solution.

 You could put an external configuration file in one of the data stores you bind to
the application. While certainly viable, we prefer consistency with the rest of the plat-
form: let’s inject the connection settings as a JSON string in an environment variable!
This works even if the application has no data store bound to it.

 Both the Twitter and Jabber credentials have associated config settings, so it’s nice
to use those setting names in JSON as well. Your goal is to inject JSON, similar to what’s
shown in the following listing, into the runtime configuration of the application.

{ grails: {
 plugins: {
 springsecurity: {
 twitter: {
 app: {
 key: "Hubbub",
 consumerKey: "bd782bsdfj249tuni2ng",
 consumerSecret: "wefnin42048hgnirgn30g8hnerglsh943"
 }
 }
 }
 }
 },

Listing 18.6 Example JSON to inject into the runtime configuration

Equates to
grails.plugins.springsecurity.twitter.app.key
in Config.groovy
Licensed to Mark Watson <nordickan@gmail.com>

515Running in the cloud
 chat: {
 serviceName: "gmail.com",
 host: "talk.google.com",
 port: 5222,
 username: "your.email@gmail.com",
 password: "your.password"
 }
}

We’ll now show you a trick that loads the JSON string from an environment variable
and merges the data into the main application configuration. You treat the JSON
string as another source of external configuration, like the hubbub-config.groovy
file currently in the root of the project. This trick may look scary, but you don’t
need to understand how it works at this point. As your understanding of Groovy
deepens, you’ll eventually understand what’s happening. Add these lines to the
end of Config.groovy:

ConfigLoader.addEntries(loadJson(fetchJson()), this)

def fetchJson() { return System.getenv("GRAILS_APP_CONFIG") }
def loadJson(content) {
 return content ? grails.converters.JSON.parse(content) : [:]
}

Next, create the file grails-app/util/ConfigLoader.groovy and set its contents to the
following:

class ConfigLoader {

 static void addEntries(Map data, obj = null) {
 data?.each { key, value ->
 if (value instanceof Map) {
 addEntries(value, obj.getProperty(key))
 }
 else obj.setProperty(key, value)
 }
 }
}

Note that this class is deliberately not in a package to eliminate having to import it in
Config.groovy, where it’s used.

 With this trick in place, you can put any configuration you like into the JSON string
and it’s merged into the application’s runtime configuration. You can also use this
technique to override settings that are already in Config.groovy.

 You need to provide the JSON configuration as an environment variable, but how
you do this depends on the cloud platform you use. In the case of Cloud Foundry, you
can use the set-env command:

cf set-env qotd GRAILS_APP_CONFIG '...'

The tricky bit is getting the JSON content into a form that you can put on the com-
mand line. We usually opt for writing that content into a text file in its pretty form

Equates to
chat.serviceName
in Config.groovy

Merges JSON into app’s
runtime configuration

Parses JSON
string into
nested maps
and lists

Sets property
value on app’s
config object
Licensed to Mark Watson <nordickan@gmail.com>

516 CHAPTER 18 Grails in the cloud
(across multiple lines with indenting), and then join all the lines together. We then
copy the resulting single line of text and paste it into the command line. It’s not the
prettiest approach, but works fairly well.

IMPORTING AND EXPORTING DATA

The other conundrum we mentioned was how to get data into and out of data stores.
Again, how you do this depends on what cloud platform you use. Certain platforms
have nice web UIs for importing and exporting data. Others give you access to the
data store itself. Cloud Foundry falls into the latter category and allows you to access
any service using the tools you want.

 The first step in accessing a service is to get its public URL. To do this, go to the
Cloud Foundry web console and click the Manage link of the service you want to
access (see figure 18.7). In the case of PostgreSQL, this loads a page showing the URL
of every PostgreSQL service you have in your account.

 Once you have the connection URL, you can use it directly in any PostgreSQL tool.
To export the data from the database, run

pg_dump --no-owner postgres://... > data.sql

where the shortened argument is the URL.
 To import data, run this command:

psql postgres://... < data.sql

Click here to access the
connection URL.

Figure 18.7 How to access the connection URL from the Cloud Foundry
web console
Licensed to Mark Watson <nordickan@gmail.com>

517Summary and best practices
You can also use this URL with the database migration plugin by configuring the appli-
cation’s production data source with the remote URL and running the update com-
mands manually. As a result, you don’t need to rely on automigration on application
startup, which is good because the process can be slow and on particular platforms
may result in the application being killed for not starting quickly enough.

 Like Cloud Foundry, the other cloud platforms provide appropriate tooling to do
the administration you need. Differences exist, however, so we recommend you give at
least a few of the platforms a try to see how they compare on that front.

 Now that you’ve configured Hubbub to run on the cloud, your job here is done.
Although we focused on deploying to Cloud Foundry, most of the information we
presented is applicable to other platforms, too. When combined with the documen-
tation provided by the cloud platforms themselves, you can deploy any application
to any platform.

18.3 Summary and best practices
Whether you think the cloud is the greatest thing since sliced bread or just a passing
fad, it’s not going away any time soon. Its advantages in terms of reduced capital costs
(hardware infrastructure) and simpler IT administration are too great to ignore. It’s
now at the stage where enterprises run their own internal clouds.

 In this chapter we introduced a few cloud providers to get you started, but more are
out there. The big beast in this space is Amazon with its AWS offering—an IaaS offering
used by several of the PaaS providers. Amazon even offers its own PaaS-like system in the
form of Elastic Beanstalk. You’re certainly not short of choices these days.

 If you do decide to deploy to the cloud, the big decision you face is whether to go
for IaaS or PaaS. That’s why we took the time to explain both of them. PaaS gives you
an easier mechanism for deploying and running applications at the cost of losing fine-
grained control over the software setup and configuration. You should consider IaaS if
you have special requirements in terms of load, throughput, data storage, or anything
else that means controlling low-level configuration.

 We also showed you the steps involved in migrating an existing Grails application
to the cloud because the cloud forces certain restrictions on you. This leads us to the
first of several best practices:

■ Decide early whether you’re likely to deploy to the cloud. You don’t have to commit to the
cloud right at the beginning of a project. But remember that such a deployment
affects the way you architect your application and what libraries and services you
use, so it’s best to factor those constraints in at the beginning. Modifying an appli-
cation after the fact can be an extremely painful and slow process.

■ Evaluate the cloud providers on a case-by-case basis. Each project has unique needs, as
do the teams and companies that develop them. Be sure to factor those needs
into the decision on which cloud to use. At the moment, it’s typically not easy to
move your application and data from one provider to another. You can reduce
the risk of needing to do this if you put time into the initial evaluation phase.
Licensed to Mark Watson <nordickan@gmail.com>

518 CHAPTER 18 Grails in the cloud
■ Code for multiple instances. Even though you may think your application will only
ever run one instance, why lose out on the benefits of the cloud by restricting
your ability to scale up the application? And by thinking in terms of multiple
instances, you’re less likely to code in a way that doesn’t work well on the cloud,
such as storing files locally via the File class!

■ Take care with the pricing. It seems at the moment that the cloud providers have
different pricing models, so it can be hard to compare them directly. The main
thing to be aware of is that Spring/Java applications in general, and Grails apps
in particular, require a fair bit of memory to run. That means any pricing based
on memory usage may hurt your wallet.

The cloud is an exciting development in IT and a great way of hosting web applica-
tions in particular. Now is definitely the time to start investigating the options and
experimenting with various applications. Although the cloud places certain restric-
tions on your application, they’re not that onerous and, as you’ve seen, it can be easy
to get an application up and running.

 That’s one of the core aims of the framework: Grails let’s you create simple web
applications in short order. This leads some to view the framework as limited. But that
apparent simplicity hides power that’s hard to master.

 We believe that you now have a solid platform on which to build your Grails expe-
rience. You should have a good understanding of the core features of Grails, such as
controllers, domain classes, views, and custom tags. We hope that you also have an
idea of the flexibility available to you through Spring and the plugin system. You
aren’t limited to a single architectural style or type of web application.
Licensed to Mark Watson <nordickan@gmail.com>

appendix A
Groovy reference

It’s not always easy to find the information you want about Groovy, so we’ve incor-
porated a short reference here that includes useful information in an easily
digested form. It focuses on two Groovy features: operator overloading and the
extension methods that Groovy adds to the core Java class library.

A.1 Operator overloading
Groovy allows you to support operators on your own classes, such as +, *, <<, and so
on. The mechanism for this is straightforward: implement methods with specific
names. If you want to support adding two matrices together with the + operator,
you can implement plus():

class Matrix {
 ...
 Matrix plus(Matrix other) {
 ...
 }
}

Even if you don’t implement any of the operator methods yourself, it’s important to
know the mappings for at least two reasons:

■ API documentation shows the methods of a class. You have to infer from the method
name and signature whether or not a class supports a particular operator.

■ Exceptions display the method name when an operator is incorrectly used. The map-
pings allow you to work out that an operator is the source of a problem.

Table A.1 gives you an extensive list of operators and their corresponding method
signatures.
519

Licensed to Mark Watson <nordickan@gmail.com>

520 APPENDIX A Groovy reference
A.2 Groovy JDK methods
Groovy extends the JDK classes with its own set of properties and methods. In table A.2,
you can see a small, but useful, subset of those properties and methods. You should
familiarize yourself with the rest of the Groovy JDK as soon as possible, as there are
plenty of useful and time-saving methods that we don’t mention here.

Table A.1 Operator to method mappings

Operator Method Operator Method

a + b a.plus(b) a[b] a.getAt(b)

a – b a.minus(b) a[b] = c a.putAt(b, c)

a * b a.multiply(b) a << b a.leftShift(b)

a / b a.div(b) a >> b a.rightShift(b)

a ** b a.power(b) a++ or ++a a.next()

a % b a.mod(b) a-- or --a a.previous()

a | b a.or(b) +a a.positive()

a & b a.and(b) -a a.negative()

a ^ b a.xor(b) ~a a.bitwiseNegate()

Table A.2 Useful Groovy JDK properties and methods

Name Class Description

size() String
array

Returns the length of the string or array. Provides con-
sistency with the standard JDK size() method on
Collection and Map.

each(Closure) Collection
String
array
Map

Iterates over a sequence, executing the given closure
for each element in the sequence. The element is
passed as the closure argument.

find(Closure) Collection
array

Returns the first element in a collection for which the
given closure returns a value of true (according to
Groovy Truth).

findAll(Closure) Collection
array

Returns all the elements in a collection for which the
given closure returns true. The matching elements
are returned as a list.

collect(Closure) Collection
array

Maps all the values in a collection to new values
using a single function.

sort(Closure) Collection
array

Sorts a collection based on the value returned by
the closure.
Licensed to Mark Watson <nordickan@gmail.com>

521Groovy JDK methods
Some of these methods need examples to clarify their use. Let’s say you have a list of
Person objects that each have name and age properties. You could pick out the first
person with an age greater than 65 with this

def person = people.find { it.age > 65 }

or you could print all the people’s names with this

people.each { Person p ->
 println p.name
}

The following example returns a list of the people’s names, in the same order as the
corresponding Person objects:

def names = people.collect { it.name }

You could even extend this to get a comma-separated list of names:

def names = people.collect { it.name }.join(", ")

Sorting the list of Person objects by their names is as simple as this:

def sortedPeople = people.sort { it.name }

We recommend that you look up the Groovy JDK documentation1 for more details on
these and other properties and methods.

join(String) Iterable
array

Combines the stringified value of each element
together into a single string, using the given string as
a separator.

text File Returns the contents of a file as a string. Not recom-
mended for binary files!

size() File Returns the size of a file in bytes.

withWriter(Closure) File One of several with*() methods on File, this
opens the file for writing and passes the Writer object
to the closure. When the closure has finished, the file
is closed, regardless of whether the closure ended
normally or threw an exception.

abs() Number Returns the absolute (positive) value of a number.

times(Closure) Number Executes the given closure n number of times.

1 To see what makes the JDK more groovy, see http://groovy.codehaus.org/groovy-jdk/.

Table A.2 Useful Groovy JDK properties and methods (continued)

Name Class Description
Licensed to Mark Watson <nordickan@gmail.com>

http://groovy.codehaus.org/groovy-jdk/

appendix B
GORM query reference

As you saw in the main chapters, Grails gives you plenty of options when it comes to
querying. Of those, in this appendix, we focus on Where and Criteria queries,
which are closely related. We detail the syntax for both options and also show you
how the criteria map between the two. This will allow you to convert between
Where and Criteria queries. For example, you may find the query you need in an
online blog post in Criteria query form, whereas you may want to use Where que-
ries exclusively in your code.

B.1 Where queries
You can invoke Where queries in several different ways:

def result = <domainClass>.where { <criteria> }.list()
def result = <domainClass>.where { <criteria> }.get()
def result = <domainClass>.where { <criteria> }.find()
def result = <domainClass>.where { <criteria> }.findBy*()
def result = <domainClass>.where { <criteria> }.findAllBy*()
def result = <domainClass>.find { <criteria> }
def result = <domainClass>.findAll { <criteria> }

There is such a thing as too much choice! The where() method creates a query
object but doesn’t execute it. You then use list() if the query can return more
than one result, or get() (find() is a synonym) if the query only returns a single
domain object or null. The dynamic finders allow you to execute the query and
add further criteria in one step.

 The find() and findAll() methods declare and execute the query in one go.
The main disadvantage with these is that the methods are overloaded, with forms
for HQL and query by example. This can be quite confusing. We recommend
exclusively using where() and whereAny().
522

Licensed to Mark Watson <nordickan@gmail.com>

523Criteria queries
 The actual criteria are declared using Groovy expressions, for example:

def bbqPosts = Post.where { content =~ "%BBQ%" }.list()

Sorting and pagination is done through arguments to the list() method:

def posts = Post.where { ... }.list(
 sort: "dateCreated",
 order: "desc",
 offset: 10,
 max: 5)

We tabulate the available criteria expressions in the next section, alongside their Cri-
teria query equivalents.

B.2 Criteria queries
Fewer ways exist to invoke Criteria queries compared to Where queries:

def result = <domainClass>.createCriteria().list { <criteria> }
def result = <domainClass>.createCriteria().get { <criteria> }
def result = <domainClass>.withCriteria { <criteria> }
def result = <domainClass>.withCriteria(uniqueResult: true) { <criteria> }

It’s best to stick either to createCriteria() or withCriteria(). We have no specific
recommendations on which of these you should use; it’s your personal preference.

 The structure of the criteria is based on methods, so if you want all posts contain-
ing the string "BBQ", you’d use this:

def bbqPosts = Post.withCriteria {
 ilike "content", "%BBQ%"
}

Unlike for Where queries and dynamic finders, sorting and pagination are specified
by methods in the criteria block:

def posts = Post.withCriteria {
 ilike "content", "%BBQ%"
 order "dateCreated", "desc"
 firstResult 10
 maxResults 5
}

For easy reference, table B.1 gives you an extensive list of Where query operators and
their corresponding Criteria methods.

Table B.1 Query criteria mappings

Where query Criteria query SQL equivalent

prop == null isNull(prop) prop is null

prop != null isNotNull(prop) prop is not null

prop == value eq(prop, value) prop = value
Licensed to Mark Watson <nordickan@gmail.com>

524 APPENDIX B GORM query reference
prop != value ne(prop, value) prop <> value

prop > value gt(prop, value) prop > value

prop < value lt(prop, value) prop < value

prop >= value ge(prop, value) prop >= value

prop <= value le(prop, value) prop <= value

prop ==~ value like(prop, value) prop like value

prop =~ value ilike(prop, value) prop ilike value

prop in [val1, val2] 'in'(prop, [val1, val2]) prop in (val1, val2)

prop in val1..val2 between(prop, val1, val2) prop between val1 and val2

prop == prop2 eqProperty(prop, prop2) prop = prop2

prop != prop2 neProperty(prop, prop2) prop <> prop2

prop > prop2 gtProperty(prop, prop2) prop > prop2

prop < prop2 ltProperty(prop, prop2) prop < prop2

prop >= prop2 geProperty(prop, prop2) prop >= prop2

prop <= prop2 leProperty(prop, prop2) prop <= prop2

Table B.1 Query criteria mappings (continued)

Where query Criteria query SQL equivalent
Licensed to Mark Watson <nordickan@gmail.com>

appendix C
XML and Spring builders

Groovy allows you to easily generate XML using the groovy.xml.MarkupBuilder
class. We’ll show you the basic mechanics of that class and then look at how
Spring’s XML configuration format maps to the bean builder syntax used in chap-
ter 14, because the mapping is similar.

C.1 XML generation with MarkupBuilder
Generating XML text is trivial with the MarkupBuilder class. We’ll demonstrate with
a simple example, as shown in the following listing.

import groovy.xml.MarkupBuilder

def file = new File("test.xml")
def stock = [
 [quantity: 10, name: "Orange", type: "Fruit"],
 [quantity: 6, name: "Apple", type: "Fruit"],
 [quantity: 2, name: "Chair", type: "Furniture"]]

def b = new MarkupBuilder(file.newWriter("UTF-8"))
b.stock {
 for (entry in stock) {
 item(qty: entry.quantity) {
 name(entry.name)
 type(entry.type)
 }
 }
}

Listing C.1 Using MarkupBuilder to generate XML text

Can mix in normal Groovy
code. Loops and conditions
are common.
525

Licensed to Mark Watson <nordickan@gmail.com>

526 APPENDIX C XML and Spring builders
This will create the file test.xml containing the content, shown in the following listing.

<stock>
 <item qty='10'>
 <name>Orange</name>
 <type>Fruit</type>
 </item>
 <item qty='6'>
 <name>Apple</name>
 <type>Fruit</type>
 </item>
 <item qty='2'>
 <name>Chair</name>
 <type>Furniture</type>
 </item>
</stock>

This ability to convert method calls into elements and named arguments into attri-
butes makes it easy to generate XML, particularly when you factor in loops and
conditions.

NOTE MarkupBuilder doesn’t work with static type checking.

C.2 Bean Builder
Grails’s Bean Builder for Spring maps to Spring XML in a similar fashion to Markup-
Builder syntax and XML but with key differences. Much of the information about
Spring on the web is based on XML configuration, so it’s important that you know
how to map the XML to Bean Builder syntax. This section explains how that map-
ping works.

COMPARING SPRING’S XML AND BEAN BUILDER FORMATS

Bean Builder supports almost all of the features you’ll find in the Spring XML descrip-
tor format. In table C.1, you’ll see the equivalent DSL syntax for various XML forms. If
you don’t understand what a particular form is or what it does, check out the online
Spring reference manual, which covers all of these variants and more.

Listing C.2 Creating the test.xml file

Table C.1 Comparing the Spring XML descriptor format to Bean Builder

Feature XML Bean Builder

Bean
attributes

<bean id="ex" class="o.e.Ex"
 scope="prototype"
 autowire="byType"
 init-method="init"
 destroy-method="finish"/>

ex(o.e.Ex) { b ->
 b.scope = "prototype"
 b.autowire = "byType"
 b.initMethod = "init"
 b.destroyMethod = "finish"
}

First method call on builder
becomes root element

Named arguments
become attributes

Nested methods become
nested elements, argument
becomes content
Licensed to Mark Watson <nordickan@gmail.com>

527Bean Builder
Remember that you can include normal code inside the Bean Builder DSL. Consider
this example, which creates a new bean based on given variables:

def serviceName = "security"
def beanNames = ["transactionInterceptor"]
"${serviceName}Manager"(org.example.ServiceManager) {
 service = serviceName
 if (isTransactional) {
 interceptors = beanNames.collect { ref(it) }
 }
}

This bit of code creates a bean named securityManager, but you can see how the ser-
vice name and bean names can easily be parameterized. The actual bean configura-
tion could be determined at runtime!

NAMESPACES WITH BEAN BUILDER

To show you how to use namespaces, we’ll use a simple example based on Spring’s
Aspect-Oriented Programming (AOP) support. We won’t go into detail about what
AOP is, but suffice it to say that the following example will time (profile) every method
call on the sessionFactory bean:

beans = {
 xmlns aop: "http://www.springframework.org/schema/aop"
 aop.config {
 aspect id: "profiling", ref: "profileInterceptor" {
 around method: "profile", pointcut: "bean(sessionFactory)"
 }
 }
 profileInterceptor(com.manning.gria.ProfilingInterceptor)
}

Lists <bean id="ex" class="o.e.Ex">
 <property name="items">
 <list>
 <value>1</value>
 <value>2</value>
 <value>3</value>
 </list>
 </property>
</bean>

ex(o.e.Ex) {
 items = [1, 2, 3]
}

Static fac-
tory methods

<bean id="ex" class="o.e.Ex"
 factory-method="create"/>

ex(o.e.Ex) { b ->
 b.factoryMethod = "create"
}

Instance
factory
methods

<bean id="ex"
 factory-bean="myFactory"
 factory-method="create"/>

ex(myFactory: "create")

Table C.1 Comparing the Spring XML descriptor format to Bean Builder (continued)

Feature XML Bean Builder
Licensed to Mark Watson <nordickan@gmail.com>

528 APPENDIX C XML and Spring builders
First, you have to declare the namespace and assign it a prefix (aop, in this case),
which you do with the built-in xmlns() method. You can declare additional name-
spaces by adding extra named arguments to the method:

xmlns aop: "...", context: "...", ...

Once you’ve declared a namespace, you can use a property with the same name as the
namespace prefix to access the custom features, as we do for aop.config in the pre-
ceding example. Note that the aspect() and around() methods aren’t prefixed
because they’re nested within a method that is. You could also use this syntax:

aop {
 config {
 aspect ...
 }
}

For more information on the Bean Builder syntax, we recommend the Grails user
guide, which gives significant coverage of this topic.
Licensed to Mark Watson <nordickan@gmail.com>

index
Symbols

: (colon) 231
!= operator 121
?. safe dereference operator 194
. (dot) operator 334
[:] map literal 14
* operator 519
&& operator 121
% wildcard character 118
+ operator 519
< > SQL operator 301
< operator 121
<< operator 38–40, 201, 252,

520
==~ operator 121
> operator 121
| (vertical bar) 44
|| operator 121
$() function 249
${ } expressions 14, 142, 302

Numerics

1:1 relationships 65, 80
1:m relationships 65, 80, 85–86
10gen 443
200-500 status codes 344–345

A

abs() method 48, 521
Accept-Version header 351
access control

getting current user 315–317
login page 318–319

overview 308–309
protecting URLs 313–315
role assignments 320–323
social authentication

323–327
Spring Security 309–312
terminology 309
testing 319–320

access control lists (ACLs) 323
Acegi Security. See Spring Secu-

rity
ACID principles. See Atomicity,

Consistency, Isolation,
Durability principles

ACLs. See access control lists
action argument binding

162–163
actions, passing data

between 151
ActiveMQ 411, 413–415
ActiveMQ console 412, 431
ActiveMQConnectionFactory

413
addTo() method 83
Affero General Public License

(AGPL) 443
aggregate functions 119
agile philosophy 6
AGPL. See Affero General Public

License
AIM 413
Ajax. See Asynchronous

JavaScript and XML
Amazon Web Services

(AWS) 498
and() method 129

AngularJS
configuring Grails app

for 364–365
controllers

communicating
between 369–370

creating 365–367
creating post via REST

367–369
live UI feedback 371–373
overview 363–364
resources plugin 361
validation directives 372

animations, jQuery 220
AnonymousAuthentication-

Provider 323
Ant 478
AOP. See Aspect-Oriented

Programming
Apache Cassandra 434
Apache Commons Collection

library 469
Apache Commons Logging 477
Apache CouchDB 433
Apache HBase 434
Apache Ivy 471, 481
Apache Jackrabbit 433
Apache Shiro 181, 308
Apache Solr 285
app.grails.version property 208
application context 385–386
application programming inter-

face (API). See representa-
tional state transfer

application scope 150
application server 31
529

Licensed to Mark Watson <nordickan@gmail.com>

INDEX530
application.properties 208
application/JSON content

type 223
ApplicationContext 6, 386
ApplicationHolder 386
architecture, loosely

coupled 402
artifacts 44
Aspect-Oriented Programming

(AOP) 382
AST transformations 124
Asynchronous JavaScript and

XML
g:submitToRemote 217
hyperlink 30
introduced 29
JavaScript library for 216–217
posting forms 217–219
spinner 218
See also JavaScript

asynchronous processing 402,
409

at() method 255
Atomicity, Consistency, Isolation,

Durability (ACID)
principles 389, 433

attach() method 150
attachments, mail 269
authentication 309, 313
Authentication plugin 308
authorities 320
authorization 309
automated testing 69
autotimestamping 68
autowiring beans 383
avg() projection 132
AWS. See Amazon Web Services
Azure cloud 498

B

Backbone.js 363
Base64Codec class 303
Basho Technologies Riak 433
Basic Authentication 348–349
bcrypt 312
Bean Builder 526–527
behavior-driven development

(BDD) 41
belongsTo 81–82

affect of on m:n
relationships 87

bidirectional linking 83
BigTable 434, 501
binary large object (BLOB) 81

bind params 163–164
bind() method 164
bindData() method 163–164,

301
black-box tests 234
blacklisting bind params 163
blank constraint 76–77
BLOB. See binary large object
body() method 204
boilerplate code 7, 32
BootStrap class 111, 114, 321
bootstrapping conditionally 135
broken links 330
build scope 472
BuildConfig.groovy 11, 265–266
built-in validation 76–77
business logic 384
byte[] 81

C

CA. See Certificate Authority 307
Cache plugin

annotations for 273–275
CacheManager API 275
extensions 275–276
overview 273
taglibs 276–278

@Cacheable annotation
273–274

@CacheEvict annotation
273–274, 277

cacheExists() method 275
CacheManager API 275
@CachePut annotation 273
caching

in cloud 509–510
with Ehcache 275
with Redis 438
with Resources plugin 363
See also Cache plugin

capitalization, of Grails
artifacts 12

cascading 83, 88
Cascading Style Sheets (CSS) 97

best way to learn 98
classes and ids 213
frameworks 209
layouts 209

Cassandra 434
catch block 50
CDN. See Content Delivery

Network
Certificate Authority 307
Certificate Signing Request 307

cf command-line tool 507
checkBox tag 196–197
CI. See continuous integration
classes, changing behavior at

runtime 55–57
classes() method 251
classifiers 45–46
clearBlocksCache()

method 277
clearTemplatesCache()

method 277
click() method 252
client authentication 346–347
closures 53–55
cloud computing

IaaS
overview 497–498
providers 498–500

overview 497
PaaS

Cloud Foundry 502–503
CloudBees 502
Google App Engine

501–502
Heroku 502
overview 500–501

running app in
cache support 509–510
choosing provider 504–505
external configuration

file 514–516
importing and exporting

data 516–518
messaging with

RabbitMQ 512–514
preparing application for

platform 505–509
sending emails 511–512

Cloud Foundry 434, 502–503,
507

CloudAMQP 505
CloudBees 502
CMS. See content management

system
collect() method 84, 520
column database 434
COM+. See Component Services
command objects 187

binding to controller
action 172

custom validation rules 171
defined 170
encapsulating business

logic 173
handling image uploads 175
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 531
command objects (continued)
hasErrors() method 172
injection support 173–174
introduced 169
testing with controllers 173
unique constraint and 172
user registration forms

170–173
committing to database 392
Commons Logging

(Apache) 477
community 7–8
Comparator class 53
Compass 6
compilation errors 121, 123
compile scope 472
@Compile Static annotation 58
Component Services

(COM+) 388
Compute Engine 498
Config.groovy 268, 480
console

command 35
testing and 236

constraints 24
closure 73
effect on database

generation 78
introduced 73
for URL mappings 185

Content Delivery Network
(CDN) 358

content management system
(CMS) 302

continuous integration (CI)
customizing WAR

package 476–480
deploying to Tomcat 478–480
overview 474
server configuration 480–481
setting up server 474–476

controllers 137
AngularJS

communicating
between 369–370

creating 365–367
connecting service to

159–162
custom view names 143
default actions

one test, two use cases
151–153

redirects and 153–154
explicit return statements 138
Hubbub timeline 138–139

implementing views
creating view 141–143
Hubbub add new post

view 143–148
linking to actions 191
overview 137
passing map to view 138
QOTD application 11–14
with REST 341–343
scope

flash scope 149
overview 148–149
request scope 149
ServletContext scope

150–151
session scope 150

testing
command objects 173
@Mock mixin 139–141
@TestFor mixin 139–141
unit tests 139

views by convention 137, 141
convention over

configuration 4–6, 14, 28,
32, 63, 413

ConversionFailedException
124

ConverterNotFoundException
124

converters 340
CouchDB 433
count() method 21, 128
countBy() method 128
create action 107
create, read, update, delete

(CRUD) 4, 7, 23, 92
create-app command 7, 10, 66
create-controller command 7,

92
createCriteria() method 523
create-domain-class

command 68, 80, 483
create-filters command 178
create-job command 422
createLink tag 191
createLinkTo tag 16
create-multi-project-build

command 485
create-service command 25,

156
create-taglib command 200
Criteria queries

dynamic queries 130
groupBy 131
overview 129

projections 131
tag cloud example 131
using 523–524

cron 423–424
cross-browser layouts 209
cross-field validation 78
cross-site request forgery

(CSRF) 298, 304–305
cross-site scripting (XSS) 298,

301
CRUD. See create, read, update,

delete
CSR. See Certificate Signing

Request
CSRF. See cross-site request

forgery
CSS. See Cascading Style Sheets
current user 315–317
Cypher 460–463

D

daily digest jobs 421–423
data binding

action argument
binding 162–163

bind params 163–164
binding to existing object

163
command objects

defined 170
injection support 173–174
testing with controllers 173
user registration

forms 170–173
error handling 168–169
introduced 145
multiple objects

overview 164–167
testing 167–168

nested objects 164
overview 162
params object 162
prefixing form field

names 166
security 300–301
whitelisting 188

data durability 111
data integrity 389
data model 18

domain classes
deleting 72–73
overview 68–69
unit testing 69–71
updating properties 71–72
Licensed to Mark Watson <nordickan@gmail.com>

INDEX532
data model (continued)
Hubbub application

creating 66–68
domain-driven design

65–66
overview 64–65

many-to-many
relationships 86–88

one-to-many relationships
creating 82–85
sorting many side 85–86

one-to-one relationships
80–82

relationship types 79–90
self-referencing

relationships 89–90
validation

built-in 76–77
cross-field validation 78
custom 77–78
DRY principle and 78–79
overview 73–79

data representations with
REST 336–341

data retrieval
Criteria queries

dynamic queries 130
overview 129
projections 131

loading sample data
data durability 111
throwing exceptions on

save() method 112
using environment

blocks 113
using Environment

class 114
results page 116
search form 115
using HQL 133
Where queries

counting results 128
error types 123
getting data 123
listing results 128
number of results 125
overview 119
syntax for 119–122
viewing SQL 126–127

data transfer object (DTO) 7,
337

database migration plugin
common migrations 281–283
establishing baseline

279–281

Groovy-based
migrations 283–285

installing 278–279
overview 278

DATABASECHANGELOG
table 280

databases
migration 284
rendering images from

177–178
reset on each test cycle 71
schema for 18
transactional 389

DataBindingSourceCreator
interface 342

DataSource interface 507
DataSource.groovy 19, 111,

480
datePicker tag 197–198
DateTagLib.groovy 201
dbCreate setting 19, 111, 278
DBRef 453
decodeBase64() method 303
decodeHTML() method 303
decodeURL() method 303
default actions

alternatives to 153
for controllers

one test, two use cases
151–153

redirects and 153–154
defaultAction 153
defaultTargetUrl 318
delete action 107
DELETE HTTP verb 330–331
denial of service (DoS)

attacks 297–298
dependencies

new versions breaking
application 469

overview 468–469
resolution engine for 471
resolving issues with 471–472
scopes for 472–474
snapshot (development)

versions 470–471
Spock plugin 470

dependency injection (DI) 27,
381–382

dependency-report
command 471

deployment
cloud

cache support 509–510
choosing provider 504–505

external configuration
file 514–516

importing and exporting
data 516–518

messaging with
RabbitMQ 512–514

preparing application for
platform 505–509

sending emails 511–512
continuous integration

customizing WAR
package 476–480

deploying to Tomcat
478–480

overview 474
server configuration

480–481
setting up server 474–476

overview 468
destroyCache() method 275
DetachedCriteria class 125
DEVELOPMENT constant

(environment) 114
development environment 113
development versions, depen-

dency on 470–471
-Dgrails.env option 113
DI. See dependency injection
Digg 434
display property 221, 251
disposition: attribute 362
Disqus 434
document-oriented store 433
Dojo 29
domain classes

deleting 72–73
overview 68–69
properties in Where

queries 119
supported types 68
unit testing 69–71
updating properties 71–72
withTransaction()

method 395
See also create, read, update,

delete; scaffolding
domain model

configuring data source
19–20

database migration and 284
database operations 20–21
overview 18–19

domain-driven design 65–66,
90

don’t repeat yourself (DRY) 79
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 533
DoS attacks. See denial of service
attacks

dot (.) operator 334
DRY. See don’t repeat yourself
-Dserver.port 11
DTO. See data transfer object
duck typing 56
dynamic access control, with

Spring Security 313
dynamic attributes,

MongoDB 454
dynamic finders 70

introduced 21
testing in Grails console 123

dynamic language 4
dynamic programming

changing class behavior at
runtime 55–57

generating data from code 57
dynamic queries 130–131

E

each() method 55, 520
eager fetching 82
Eclipse 9
edit action 107
Effect.BlindUp() method 222
Effect.toggle() method 222
Ehcache extension 275, 504
EJBs. See Enterprise JavaBeans
Elasticsearch 285, 433
email constraint 76
email input type 94
embedded documents,

MongoDB 450–453
encodeAsBase64() method 303
encodeAsHTML() method 303
encodeAsMD5() method 303
encodeAsSHA256()

method 303
encodeAsURL() method 303
encodePassword()

method 311–312, 316
Enterprise JavaBeans (EJBs) 388
Enterprise Service Bus

(ESB) 401
entity relationship (ER) 65
environment blocks 113–114
Environment class 114–115
EnvironmentAware class 487
ER. See entity relationship
error handling

in Groovy 50–51
in REST 343–346

overview 168–169
placing error next to field 169

errors object 75
ESB. See Enterprise Service Bus
escaping output 301–304
evals() method, prototype 223
Events API 403
events, rejecting 407
exceptions

in Groovy 50–51
for URL mappings 185–186

executeForCurrentEnviron-
ment() method 123

executeQuery() method
133–134

executeUpdate() method
133–134

expire parameter 438
explicit types 57–59
expose property 418
exposing application. See repre-

sentational state transfer
Extensible Markup Language

(XML)
avoiding configuration

using 13
database migration and 280
generating with Markup-

Builder class 525–526
Spring descriptor format vs.

Bean Builder 526–527
extensions for Cache

plugin 275–276
external tag 192

F

Facebook 7, 328, 402
factory methods in Spring bean

definitions 527
failOnError argument 112
fetch option 125
fetching, lazy versus eager 82
fieldError object 75
FIFO. See first in, first out
file upload 174, 176
File.withPrintWriter()

method 52
files, manipulating 52–53
filter() method 250
filters

in access control 322
after handler 180
afterView handler 180
altering the model 180

before handler 180
creating 178–181
exposed variables 180
lifecycle phases 180
mapping multiple actions 182
mapping to URLs 182
service injection 181
table of available

variables 180
testing 181
URL matching 182
wildcarding actions 182

final keyword 45
finally block 50
find() method 55, 133–134,

250, 520
findAll() method 54, 133–134,

520, 522
findAllBy() method 128
findBy() method 128
fire-and-forget events 403
first in, first out (FIFO) 410
first-level cache 392
flash scope 148–149, 154
flush mode 393
flushing

database immediately 71
definition of 392
impact of 394

footers
displaying application

versions 208
scaffolding 98–99

for loops 36
forms

Ajax
JavaScript library for

216–217
posting forms 217–219

handling null safety 165
JavaScript

jQuery animations 220
JSON return values

222–225
TinyURL fade effect

220–222
tags

checkBox tag 196–197
createLink tag 191
createLinkTo tag 191
datePicker tag 197–198
each tag 191
eachError tag 169
else tag 190
elseif tag 190
Licensed to Mark Watson <nordickan@gmail.com>

INDEX534
forms (continued)
form tag 145, 194
hasErrors tag 167–169
hiddenField tag 197
if tag 190–191
javascript tag 217
JSP taglibs 199
layout tag 211
layoutBody tag 207
layoutHead tag 207
link tag 191
list of 198–199
message tag 169
meta tag 208
overview 192–194
paginate tag 199
passwordField tag

194–196
radioGroup tag

196–197
remoteLink tag 30
render tag 211
renderErrors tag 167–169
select tag 196
submitToRemote tag

217–219
textArea tag 194–196
textField tag 194–196
UI related 198
uploadForm tag 175–176,

194
tokens 304–305

fragments 211–212
full-text search 285
functional testing 236, 392

for access control 319
for REST 353–356
phase of tests 234–235

G

g:* tags. See forms, tags
G2One 6
Geb plugin 143, 353, 355

adding to project 245
creating tests 245–246
extracting data 251
modeling user

interaction 246–247
modules 258
overview 244–245, 248
page objects

navigating to pages
255–256

overview 252–254

rich content model
257–260

using in tests 254–255
performing actions 251–252
selecting subelements

250–251
selector model 248–249
selector syntax 249–250

generate-all command 106
GET HTTP verb 329, 331
get() method 125, 129, 522
getBean() method 385
getCache() method 275
getCacheNames() method

275
getMainContext() method

386
getResourceAsStream()

method 150
getWebApplicationContext()

method 386
GitHub 434, 474
global plugins 266
Gmail 357
GMongo API 455–457
go() method 254
Google 364
Google App Engine 501–502
Google Bigtable 434
Google Guice 27
Google Web Toolkit (GWT) 4
GORM. See Grails Object-

Relational Mapping
GPath notation 334
gradients 15
Gradle

building multiproject
app 492–495

building standalone app
489–491

overview 489
Grails

3.0 468
agile development

framework 65
best-of-breed components 6
build system 481
building application 7
console 20, 35, 135
controllers 136
custom configuration

properties 268
custom URL mappings 182
ecosystem 5
filters 178

history of 4–5
layout creation 15
messaging 401
next-generation

framework 3–4
plugin system 261
pre-2.3 versions 41, 303, 396,

484
professional services 6
running on a custom port 11
scheduling. See Quartz plugin
seven big ideas

agile philosophy 6
community 7–8
convention over

configuration 5–6
Java integration 7
productivity ethos 8
rock-solid foundations

6–7
scaffolding and

templating 7
social networking options 7
support 7
website 264–265

Grails Object-Relational Map-
ping (GORM)

composition 82
convention over

configuration 67
Criteria queries 523–524
defined 67
detached objects 150
relationship types 80
Where queries 522–523
See also dynamic finders;

Hibernate Query Language
GRAILS_HOME 8
grails.config.locations

setting 325, 480
@grails.events.Listener

annotation 405
grails.org 7
grails.server.port.http setting 11
grails.server.port.https

setting 306
@grails.validation.Validateable

annotation 170
grailsApplication object 268
GrailsCacheAdminService 277
GrailsDaoAuthentication-

Provider 323
grailsEvents bean 407–408
grails-package-plugin

command 494
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 535
graphs, Neo4j
visualizing with Cypher

460–463
walking entire graph

463–466
grid systems (CSS) 209–211
Groovy

classifiers 45–46
closures 53–55
console 35
dynamic programming

changing class behavior at
runtime 55–57

generating data from
code 57

error handling with
exceptions 50–51

explicit types 57–59
file manipulation 52–53
for loop 36
JDK methods and

properties 520–521
maps 47–48
operator overloading

519–520
optional types 35–36
properties 46–47
running scripts 49–50
strings 38–40, 51–52
using Java classes 37–38
variable scope 37

Groovy enVironment Manager
(GVM) 489

Groovy Server Pages (GSP)
escaping expressions 303
expression language 14
tags 190

groovyblogs.org 7
groovyConsole command 35
groovy-wslite library 353
GSP. See Groovy Server Pages
GString 131
GVM. See Groovy enVironment

Manager
GWT. See Google Web Toolkit

H

H2 389
H2, JAR 477
has() method 250
hasErrors() method 169
hasMany() method 82–83, 86
hasRole() method 321
HBase 434

headers, scaffolding 98–99
help command 9
Heroku 434, 502
Hibernate 5–6, 67

Projections class 132
sessions 392
using MongoDB with

448–450
using Neo4j with 459

hibernate block
(configuration) 127

Hibernate Query Language
(HQL) 128, 133, 299

Hibernate sessions 71
HibernateTransactionManager

391
hiddenField tag 197
highlighting search terms

289–291
history of Grails 4–5
HQL. See Hibernate Query

Language
HSQLDB 19
HSQLDB, JAR 477
HTML. See Hypertext Markup

Language
htmlAttrs element 365
HTMLCodec class 303
HtmlUnit 244
HTTP. See Hypertext Transfer

Protocol
--https argument 306
Hubbub application

add new post view
adding test case 147–148
form for 144–145
testing functionality 146
updating controller

145–146
updating view 146

adding timeline 137
cloud deployment

cache support 509–510
choosing provider

504–505
external configuration

file 514–516
importing and exporting

data 516–518
messaging with

RabbitMQ 512–514
preparing application for

platform 505–509
sending emails 511–512

creating 66–68

database schema 89
domain-driven design 65–66
entity relationship (ER)

model 65
IM integration with

Jabber 413–414
introduced 64
overview 64–65
social graph 459–460
timeline 138

Hypertext Markup Language
(HTML)

avoiding embedded 14
entities 301
HTML5 form field types 94

Hypertext Transfer Protocol
(HTTP)

Basic Authentication 348–349
session 150, 309, 504
status codes 344
verbs 329

I

IaaS. See Infrastructure as
a Service

IBM WebSphere MQ 411
id domain class property 70
id parameter 138, 146
IDE. See Integrated Develop-

ment Environment
identifying a user 308–309
ifLoggedIn tag 317
ignoreCase option 125
IM. See instant messaging
images

file uploads 174–176
rendering from

controller 177
rendering from

database 177–178
storing in filesystem 176

img HTML element 191
index action 13, 107, 151, 153
Infrastructure as a Service

(IaaS)
overview 497–498
providers 498–500

init property 123
injection attacks 298–299
injection support for command

objects 173–174
inList constraint 76
in-memory database 19
input, validating 298–300
Licensed to Mark Watson <nordickan@gmail.com>

INDEX536
installing
database migration plugin

278–279
Grails 8–9
MongoDB 445
MongoDB plugin 448
Neo4j plugin 458
Platform Core 403
Redis 434–435
Redis plugin 436–437
templates 102

install-plugin command 265
install-quartz-config

command 422, 429
install-templates command 102
instant messaging (IM) 413
Integrated Development Envi-

ronment (IDE) 9, 440
integration tests 71, 234, 392
IntelliJ 9
intercepting requests 178
interceptUrlMap option 349
InvalidAddressException 343
Inversion of Control (IoC) 27,

381
IS_AUTHENTICATED_FULLY

321
IS_AUTHENTICATED_

REMEMBERED 321
isAjax() method 316
isAuthenticated() method 315
isLoggedIn() method 316
iteration tags 204–205

J

JAAS. See Java Authentication
and Authorization Service

Jabber 81, 402
gateway for 419–421
Hubbub integration 413–414
plugin 420–421

JabberService 415, 418
Jackrabbit 433
Jackson for JSON 340
Java

integration 7
libraries, reusing 7
servlet technology

dependence 468
using classes in Groovy

37–38
Java Authentication and Autho-

rization Service (JAAS) 309
Java Development Kit (JDK) 8

Java Message Service (JMS) 402,
408, 501

application servers 431
cloud deployment and 505
configuring provider 412–413
identifying messaging

candidates 409
installing ActiveMQ 412
Jabber gateway 419–421
Jabber integration for

Hubbub 413–414
onMessage() method

418–419
queue names 414
reading messages 417–421
sending messages 414–417
terminology 409–411

Java Persistence API (JPA) 67
Java virtual machine (JVM) 7
JavaScript 218

animation 220
choosing library for

Ajax 216–217
jQuery animations 220
JSON return values 222–225
TinyURL fade effect 220–222
See also Asynchronous

JavaScript and XML
JavaScript Object Notation

(JSON) 57, 222–225
JavaServer Faces (JSF) 4
JavaServer Pages (JSP) 14, 18
javax.sql.DataSource 507
JBoss messaging 411
JDBC storage 429
JDK (Groovy extensions) 39–40,

52, 520–521
JDK. See Java Development Kit
Jenkins 475
Jetty 411, 468
JMS plugin

brokerURL 413
choosing queues or

topics 431
compilation error 412
configuring 411–412
destination property 418
expose property 418
installing 411
map style messages 431
onMessage() method 417–

418, 420–421
overriding default settings 431
queue naming

conventions 414

sending messages 414
sendJMSMessage()

method 414
sendPubSubJMSMessage()

method 414
sendQueueJMSMessage()

method 414
sendTopicJMSMessage()

method 414
type conversion 417

JMS. See Java Message Service
jmsService 414
join() method 521
JOINED_FILTERS alias 349
JPA. See Java Persistence API
jQuery 216, 220
JSESSIONID 150
JSF. See JavaServer Faces
JSON. See JavaScript Object

Notation
JSP. See JavaServer Pages
JUnit 41, 230
JUnit, JAR 477
JVM. See Java virtual machine

K

keystore 307
key-value store 433
KnockoutJS 363

L

layout template conventions,
table 208

layoutBody tag 16–17
layoutHead tag 16–17
layouts

common title elements 207
follow convention over

configuration 15
fragments in 211–212
grid systems 209–211
introduced 15
merging with content 206
navigation tabs 214–216
overview 206
QOTD application 15–18
SiteMesh

applying layouts by
convention 208–209

merging process 207–208
overview 206–207

skinning 212–213
lazy fetching 82
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 537
lazy-loaded collections 393
link tags

createLink tag 191
external tag 192
link tag 191
resource tag 191–192

LinkedIn 402, 412
link-related tags, table 192
Liquibase XML format 280
list() method 128, 522
listening for messages

JMS 417–421
onMessage() method

418–419
Platform Core 405
using wildcards 407

list-plugins command 263
load order, for Spring

beans 387
localization 96
Lo-Dash 359
log4j 161
logging 161
logical AND operator 121
logical OR operator 121
logical tags 203–204
login page 314, 318–319
logSql option 126
loosely coupled

architecture 402
Lucene 6
Luke 296

M

m:n relationships 65, 80,
86–88

Mail plugin 263
bcc field 269
cc field 269
custom port 268
from address 267
inline option 269
mail.grails.default.from

clause 296
overview 267–269
relative view names 271
sending mail from jobs 271
sending mail from

services 271
sending mail inline

269–270
sendMail() method 269
SSL support 268
subject field 269

testing 271–273
to field 269
using CSS 270
using view as mail body

270–271
mainContext property 386
many-to-many relationships 65,

80, 86–88
maps 47–48
map-style events 404
MarkupBuilder class 525
mass assignment exploit 300
matches constraint 76–77
Maven

creating POM 482–485
dependency resolution

engine 471
multiproject builds 485–488
overview 481–482
phases 483

max option (querying) 125
max() projection 132
maxSize constraint 24, 76
MD5Codec class 303
Memcached 433–434, 505
@Memoize annotation 437–438
@MemoizeDomainList

annotation 437
@MemoizeDomainObject

annotation 437
@MemoizeHash annotation

437
@MemoizeList annotation 437
message codes 384
message queue 409
message-oriented middleware

(MOM) 401
messages.properties 95
messageSource bean 387
messaging

architecture 402
broadcast 410
candidates 409
consumers 409
infrastructure 402
introduced 408
JMS

configuring provider
412–413

identifying messaging
candidates 409

installing ActiveMQ 412
Jabber gateway 419–421
Jabber integration for

Hubbub 413–414

onMessage() method
418–419

reading messages 417–421
sending messages 414–417
terminology 409–411

localization 96
Platform Core

installing 403
integrating Spring

Security 407–408
listening for messages 405
listening using

wildcards 407
overview 402–403
sending messages 403–404
using namespaces 405–406

point to point 410
producers 409
queues 410
RabbitMQ

configuring 512
refactoring messaging

services 512–514
scalability 402
terminology 409
topic versus queue 411
topics 410
transactional semantics 409

methods
mappings to operators 520
mocking dynamic 242–244

microblogging 64
Microsoft Transaction Server

(MTS) 388
migration, database

common migrations
281–283

Groovy-based 283–285
min() projection 132
minifying JavaScript 358
minSize constraint 76
MissingMethodException 46,

469
mixins 238
@Mock annotation 139–141,

239
mocks

core Grails artifacts 237–239
dynamic properties and

methods 242–244
services 241–242

modules, Geb 258
Mojo 3
MOM. See message-oriented mid-

dleware
Licensed to Mark Watson <nordickan@gmail.com>

INDEX538
MongoDB 134
creating database 445–447
dynamic attributes 454
embedded documents

450–453
GUI for 447
installing 445
installing plugin 448
overview 443–445
polyglot persistence using

Hibernate 448–450
querying using GMongo

API 455–457
querying using GORM 455
terminology 445

MTS. See Microsoft Transaction
Server

multipart MIME messages 269
MultipartHttpServletRequest

176
multiproject builds 485–488,

492–495
MyISAM 389
MySQL 389, 502

N

named URL mappings 186–188
namespaces 42

in Spring bean
definitions 527

using with Platform
Core 405–406

naming packages 12
nav:render tag 216
nav:resources tag 215
Navigation plugin 214
navigation tabs 214–216
negation operator (!) 121
Neo4j

Hubbub social graph
459–460

installing plugin 458
overview 457–458
using with Hibernate 459
visualizing graph with

Cypher 460–463
walking entire graph 463–466

nested transactions 394
NetBeans 9
Netflix 499
next() method 250
ng-click directive 368
ng-controller directive 365
ng-maxlength directive 372

ng-minlength directive 372
ng-model directive 368
ng-pattern directive 372
ng-repeat directive 374
noise reduction 32
NonUniqueResultException

126
noSelection attribute 196
NoSuchMethodError 469
Not Only SQL (NoSQL)

MongoDB
creating database 445–447
dynamic attributes 454
embedded

documents 450–453
installing 445
installing plugin 448
overview 443–445
polyglot persistence using

Hibernate 448–450
querying using GMongo

API 455–457
querying using GORM 455
terminology 445

Neo4j
Hubbub social graph

459–460
installing plugin 458
overview 457–458
using with Hibernate 459
visualizing graph with

Cypher 460–463
walking entire graph

463–466
PostgreSQL issues 432–433
Redis

commands 435–436
installing 434–435
installing plugin 436–437
@Memoize

annotation 437–438
overview 434
service object 439–440
sorted sets 440–443
taglib 438

types of 433–434
not() method 250
nullable constraint 74, 77

O

OAuth 323, 349
obfuscation 327
ObjectId 449
offset option 125

on404 element 219
onComplete attribute 218
one-to-many relationships

creating 82–85
sorting many side 85–86

one-to-one relationships 80–82
onJabberMessage() method 420
onLoading attribute 218
onSuccess attribute 218, 222
Open MQ 411
Open Web Application Security

Project (OWASP) 298
OpenSessionInViewInterceptor

393
OpenShift 434
OpenStack 502
operator overloading in

Groovy 519–520
operators, methods mapped

from 520
optional criteria for Where

queries 122
optional types in Groovy 35–36
optional variables for URL

mappings 185
optionKey attribute 196
optionValue attribute 196
or() method 129
order option 125
ordering results 85
org.bson.types.ObjectId 449
OrientDB 434
OSIVI. See OpenSessionIn-

ViewInterceptor
OWASP. See Open Web Applica-

tion Security Project

P

PaaS. See Platform as a Service
packages, naming 12, 42
page objects (Geb)

navigating to pages 255–256
overview 252–254
rich content model 257–260
using in tests 254–255

pagination
paginate tag 199–200
Searchable plugin 291–292
with full-text search 291

params, binding 145
params.id 138
parent() method 250
passwordField tag 194–196
passwords, hashing 312
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 539
PATH environment variable 8
permalinks 183–185
persistenceInterceptor

bean 487
PhantomJS 244
phases, test 230
Pivotal 502
Platform as a Service (PaaS)

Cloud Foundry 502–503
CloudBees 502
Google App Engine 501–502
Heroku 502
overview 500–501

Platform Core
installing 403
integrating Spring

Security 407–408
listening for messages 405
listening using wildcards 407
overview 402–403
sending messages 403–404
using namespaces 405–406

plugin-info command 264
plugins 8

Authentication 308, 311
avoiding those no longer

maintained 265
Cache plugin

annotations for 273–275
CacheManager API 275
extensions 275–276
overview 273
taglibs 276–278

categorized on website 264
creating 485
database migration plugin

common migrations
281–283

establishing baseline
279–281

Groovy-based
migrations 283–285

installing 278–279
overview 278

dependencies 266–267
displaying version info 264
filesystem location 266
finding 262
Functional Test 319
global 266
Grails website 264–265
HTTP proxy 263
installing 265
installing via

BuildConfig.groovy 265–266

Mail plugin
overview 267–269
sending mail inline 269–

270
testing 271–273
using view as mail

body 270–271
MongoDB plugin 448
Neo4j plugin 458
online documentation 264
Redis plugin 436–437
release numbers 263
repository 263–264
Resources 359, 362
Searchable plugin

highlighting terms 289–291
indexed fields 292–293
making objects

searchable 286–289
pagination 291–292
query suggestions 293–294
searching across

relationships 294–296
Spring Security 308, 312

plugins-list.xml 263
plus operator (+) 519
polyglot persistence 448–450
POM. See Project Object Model
POST 329, 331
Post domain class 65, 82
PostController 145
PostgreSQL 389, 432–433
PostService 156–159, 161, 390
previous() method 250
private keys 307
private keyword 45
PRODUCTION constant

(environment) 114
production environment 113,

307–308
productivity ethos 8
Profile domain class 65, 80
Project Object Model (POM)

multiproject builds 485–488
single-project 482–485

projections 131–133
properties

mocking dynamic 242–244
overview 46–47
updating 71

properties object, for domain
classes 164

protected keyword 45
protecting URLs 313
Prototype (JS library) 29

provided scope 472
public keyword 45
PUT HTTP verb 330–331

Q

QOTD. See Quote of the Day
Quartz plugin 6, 402

cloud deployment and 504
clustering 429, 431
concurrent property 425
configuring 422, 429–430
controlling

programmatically 424, 427
cron 423–424, 431
daily digest 421
data types 426
group attribute 427, 431
injecting service classes 422
installing 421
introduced 421
JDBCJobStore 429
jobContext object 426
jobDataMap attribute 426
QuartzConfig.groovy 429
re-entrant jobs 425
restarting app server 429
separating business logic 431
SQL table structure 430
startDelay property 422
stateful jobs 425
StatefulJob interface 426
timeout property 422, 425
volatile property 430

QuartzConfig.groovy 429
queries

criteria mappings 523
Criteria queries

dynamic queries 130–131
overview 129–130
projections 131–133
tag cloud 131–133

GORM
Criteria queries 523–524
Where queries 522–523

HQL 133–135
MongoDB

using GMongo API 455–457
using GORM 455

results page 116–118
search form 115–116
suggestions 293–294
Where queries

counting results 128–129
error types 123–125
Licensed to Mark Watson <nordickan@gmail.com>

INDEX540
queries (continued)
getting data 123
listing results 128–129
number of results 125–126
overview 119
syntax for 119–122
viewing SQL 126–127

queues. See messaging queues
Quote of the Day (QOTD) 1

analyzer class 40
application short of data 34
controller 11–14
improving architecture 25
layouts 15–18
random feature 22
sample program 10
saving a new quote 20
views 14–15

R

r:require tag 362
RabbitMQ 502

configuring 512
refactoring messaging

services 512–514
radioGroup tag 196–197
rapid iterations 32
raw() method 302
redirect() method 151, 153,

344
redirects

to absolute URL 153
after login 318
controllers and 153–154
to external address 154
with parameters 153
to specific action 153
URL longevity and 330

Redis 505
as backing for standard

cache 438
commands 435–436
installing 434–435
installing plugin 436–437
@Memoize annotation

437–438
overview 434
reference online 436
service object 439–440
sorted sets 440–443
taglib 438

redis:memoize taglib 437
redisPool 437
redisService 437, 440

re-entrance with jobs 425–426
ref() method 527
refactoring 65
registerMarshallers()

method 340
regular expressions 77
rejectedValue object 75
rejecting GORM events 407
relationships

many-to-many
relationships 86–88

one-to-many relationships
creating 82–85
sorting many side 85–86

one-to-one relationships
80–82

self-referencing
relationships 89–90

remember me 314–315, 318
RememberMeAuthentication-

Provider 323
removeFrom method 83
render() method 13, 143, 223
renderErrors() method 169
renderers 340
repository for plugins 263–264
representational state transfer

(REST)
AngularJS

configuring Grails app
for 364–365

controllers, communicat-
ing between 369–370

controllers, creating
365–367

creating post 367–369
live UI feedback 371–373
overview 363–364

best practices 336
controller 341–343
data representations 336–341
defining controllers 341–343
error reporting 343–346
functional testing 353–356
implementing interface

331–336
in-place editing

delete feature 377–379
overview 373–374
UI switching 374–375
update feature 375–377

overview 329–331
security 346–350

HTTP Basic
Authentication 348–349

user vs. client
authentication 346–347

using Spring Security
349–350

URL mappings 182–188
versioning

implementing 351–353
purpose of 350–351

request scope 148–149
RequestInterceptor 377
requests, intercepting 178
@Resource annotation 332
resource bundles 95, 187
resource parameter 332
resource tag 191–192
resources

loading from filesystem 150
in REST 329

Resources plugin 359, 362–363
resources, Single Page Apps

defining resources 359–360
overview 358–359
using resource modules in

view tier 361–363
resources.groovy 387, 412
response codes 185–186
response.getOutputStream()

method 177
response.setContentLength()

method 177
REST. See representational state

transfer
Restangular 359, 366, 376
results action 116
results page 116–118
results property 288
Robomongo 447
role assignments 320–323
ROLE_USER 321
Ruby 13, 238, 502
run-app command 10, 111, 234,

468
running app in cloud

cache support 509–510
choosing provider 504–505
external configuration

file 514–516
importing and exporting

data 516–518
messaging with

RabbitMQ 512–514
preparing application for

platform 505–509
sending emails 511–512

run-script command 50
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 541
runtime scope 472
runtime, and Criteria

queries 131
runtime, customizing applica-

tion at
application context 385–386
bean property overrides 388
defining beans 386–388

RuntimeException 50, 157
run-war command 111

S

s2-init-twitter command 324
s2-quickstart command 310,

313, 484
Salesforce 502
save action 107
save() method 20, 112–113, 146
scaffolding 7, 32

adding custom headers and
footers 98

bidirectional relationships
and 106

cons of 107
custom headers and

footers 98–99
Hubbub domain classes

92–93
installing templates 102–103
modifying templates 100,

103–106
overview 23, 92
public facing sites 23
skinning 96
static 106
styling 97–98
switching between dynamic

and static 107
validation 94–96

scalability 443
Scarab 327
scheduling tasks

daily digest job 421–423
re-entrance 425–426
stateful jobs

overview 425–426
pausing and resuming

427–429
persistent storage 429–431

using cron 423–424
schemaless 443
scopes

application 150
common usage 148

for dependencies 472–474
flash 149
overview 148–149
request 149
ServletContext 150–151
session 150
variable 37

Scriptaculous 217, 220
scripts, running 49–50
Seam 4
search action 116
search engine optimization

(SEO) 17
Searchable plugin

adding ellipses 290
component option 294
configuration 293
CSS styling 288
custom controller 286
debugging indexes 296
default search page 286
except clause 293
field types 286
highlighting terms 289–291
indexed fields 292–293
install-searchable-config 293
making objects

searchable 286–289
max property 288, 291
offset() property 288
overview 285
pagination 291–292
query suggestions 293–294
restricting searches 295
scores property 288
search() method 287
SearchBuilder DSL 295
searching across

relationships 294–296
spellCheck option 293
suggestQuery option 294
total property 288
withHighlighter closure 290

searching
Criteria queries

dynamic queries 130–131
overview 129–130
projections 131–133
tag cloud 131–133

loading sample data
data durability 111–112
throwing exceptions on

save() method 112–113
using environment

blocks 113–114

using Environment
class 114–115

results page 116–118
search form 115–116
using HQL 133–135
Where queries

counting results 128–129
error types 123–125
getting data 123
listing results 128–129
number of results 125–126
overview 119
syntax for 119–122
viewing SQL 126–127

searchResult object, available
fields 288

Secure Sockets Layer (SSL) 297
local dev mode 306
production application

307–308
self-signed certificates 306

security
access control

getting current user 315–317
login page 318–319
overview 308–309
protecting URLs 313–315
role assignments 320–323
social authentication

323–327
Spring Security 309–312
testing 319–320

data binding 300–301
escaping output 301–304
form tokens and CSRF

304–305
plugins 308
REST

HTTP Basic
Authentication 348–349

user vs. client
authentication 346–347

using Spring Security
349–350

SSL
local dev mode 306
production

application 307–308
validating user input 298–300

security filter 178
select tag 196
selector model, Geb

overview 248–249
selecting subelements 250–251
syntax 249–250
Licensed to Mark Watson <nordickan@gmail.com>

INDEX542
Selenium WebDriver 248
self-referencing

relationships 89–90
SendGrid 502
sending emails from cloud

app 511–512
sendJabberMessage()

method 420
sendMail() method 343
SEO. See search engine

optimization
Serializable 276, 426
service-oriented architectures

(SOAs) 401
services

connecting to controller
159–162

injecting 159, 161
introduced 156
mocking 241–242
overview 156
PostService 156–159
Redis 439–440
singleton or prototype 161
transactions 156–157,

389–392
servlet filters 178, 319
ServletContext scope 148,

150–151
Session is closed! (in console

UI) error 126
session scope 148, 150
sessions, and transactions

392–395
set-proxy command 263
setRollbackOnly() method

395
settings.groovy 11
setup() method 355
set-version command 208
seven big ideas

agile philosophy 6
community 7–8
convention over

configuration 5–6
Java integration 7
productivity ethos 8
rock-solid foundations 6–7
scaffolding and templating 7

SHA256Codec class 303
Shiro plugin. See Apache Shiro
show action 107
Simple Queue Service

(SQS) 512
simple tags 200–202

SimpleMessageConverter 417
SimpleQueriesIntegrationSpec

class 129
Single Page Applications (SPAs)

AngularJS
configuring Grails app

for 364–365
controllers, communicat-

ing between 369–370
controllers, creating

365–367
creating post via

REST 367–369
live UI feedback 371–373
overview 363–364

in-place editing
delete feature 377–379
overview 373–374
UI switching 374–375
update feature 375–377

web resource management
defining resources

359–360
overview 358–359
resource modules in view

tier 361–363
SiteMesh 6, 16

applying layouts by
convention 208–209

merging process 207–208
overview 206–207

size constraint 74, 77
size() method 520–521
skinning layouts 212–213
SLF4J 469
snapshot version, dependency

on 470–471
SOAs. See service-oriented archi-

tectures
social authentication 323–327
Solr 502
sort option 125
sort() method 85, 520
sorted sets, Redis 440–443
SPAs. See Single Page Applica-

tions
Spock

creating specification 42–43
dependencies and 470
overview 41–42
test types 230
testing multiple data sets

43–44
Spotify 499
Spring framework 5, 27

beans
defined by Grails 384
overriding 387

customizing application at
runtime
application context

385–386
bean property

overrides 388
defining beans 386–388

default beans 382–385
dependency injection

381–382
DSL 526, 528
JMS Template 417
XML descriptor format vs.

Bean Builder 526–527
Spring in Action 388
Spring MVC 4, 7
Spring Security 181

API security 349–350
cloud deployment and 504
getting current user 315–317
integrating with Platform

Core 407–408
login page 318–319
overview 309–312
protecting URLs 313–315
role assignments 320–323
testing 319–320
troubleshooting 315

springSecurityService bean 311
SpringSource 6
spring-test JAR 477
SQL injection 134, 299
SQL. See Structured Query

Language
SQS. See Simple Queue Service
SSL. See Secure Sockets Layer
Stack Overflow 434
standalone apps, building

489–491
stateful jobs

overview 425–426
pausing and resuming

427–429
persistent storage 429–431

static keyword 45
static resources 358
static scaffolding 106
static type checking 58
stats command 31
status codes, HTTP 344
strength in depth 327
strings, Groovy 38–40, 51–52
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 543
Stripes 4
Structured Query Language

(SQL) 5
logging for queries 126–127
query criteria mappings 523

Struts 4
Stub() method 242
subordinate resources 330
sum() method 54, 132

T

tag cloud 131–133
Tag domain class 65, 86
tag libraries 190, 317
tag() method 251
@taglib directive 199
taglibs

for Cache plugin 276–278
introduced 16
Redis 438
testing 202–203

tags
attrs element 200
common 190–191
custom

calling tag from
another 205–206

iteration tags 204–205
logical tags 203–204
overview 200
simple tags 200–202
taglib tests 202–203

custom namespaces 202
form

checkBox tag 196–197
createLink tag 191
createLinkTo tag 191
datePicker tag 197–198
each tag 191
eachError tag 169
else tag 190
elseif tag 190
form tag 145, 194
hasErrors tag 167–169
hiddenField tag 197
if tag 190–191
javascript tag 217
layout tag 211
layoutBody tag 207
layoutHead tag 207
link tag 191
list of 198–199
message tag 169
meta tag 208

overview 192–194
paginate tag 199
passwordField tag

194–196
radioGroup tag 196–197
remoteLink tag 30
render tag 211
renderErrors tag 167–169
select tag 196
submitToRemote tag

217–219
textArea tag 194–196
textField tag 194–196
uploadForm tag 175–176,

194
g: prefix 202
isLoggedIn 317
iterative 200
link

createLink tag 191
external tag 192
link tag 191
resource tag 191–192

logical 200
as method calls 192
paginate tag 199–200
passing through HTML

attributes 195
simple 200
types of 200

Tapestry 4
TDD. See test-driven develop-

ment
templates 7, 16
templates, scaffolding

installing 102–103
modifying 103–106

test case patterns 232
TEST constant 114
test dependency scope 472
test environment 113
test-app command 70, 230
test-driven development

(TDD) 41, 233
@TestFor annotation 139–141,

239
testing 27

access control 319–320
binding to multiple

objects 167–168
controllers

@Mock mixin 139–141
@TestFor mixin 139–141
unit tests 139

functional testing 353–356

Geb
adding to project 245
creating tests 245–246
extracting data 251
modeling user

interaction 246–247
overview 244–245, 248
performing actions 251–252
selecting subelements

250–251
selector model 248–249
selector syntax 249–250

Mail plugin 271–273
mocks

core Grails artifacts 237–239
dynamic properties and

methods 242–244
services 241–242

output 70
page objects

navigating to pages
255–256

overview 252–254
rich content model 257–260
using in tests 254–255

reports 231
reports, HTML version 28
rollback 71
running

functional test phase
234–235

integration test phase 234
overview 230–233
strategy 235–236
unit test phase 233–234

Spock
creating specification 42–43
overview 41–42
testing multiple data

sets 43–44
transactions 71, 392
unit test mixins 239–241
unit tests for views 142
unit vs. integration 69

TestNG 230
text() method 251
textArea tag 194–196
textField tag 194–196
then() method 369
throw statement 51
Throwable class 50
throwing exceptions 112–113
timeline 137, 156
times() method 521
TinyURL fade effect 220–222
Licensed to Mark Watson <nordickan@gmail.com>

INDEX544
to() method 255
Tokyo Tyrant 433
Tomcat 411, 468, 478–480
TopLink 67
traceroute command 305
tracert command 305
@Transactional annotation 391,

395–396
transactional property 392
transactionManager bean 391
TransactionProxyFactoryBean

391
transactions

definition of 389
fine-grained control 395–398
nested 394
overview 388–389
rolling back 390–391
runtime exceptions and 158
session and 392–395
testing 392
using services 389–392

TransactionStatus 396
trust boundaries 327
Twitter 64, 323, 402
@TypeChecked annotation 58

U

UAT. See User Acceptance
Testing

UI (scaffolding). See scaffolding
UI, live feedback in 371–373
Uniform Resource Locators

(URLs)
design of 330
mapping to actions 183–184
matching with filters 182
protecting access to 313–315
restricting access to 321

unique constraint 74, 77, 172
unit testing

best practices 236
for controllers 139
domain classes 69–71
mixins for 239–241
phase of testing 233–234
for views 142

update action 107
url constraint 77
url input type 94
URL mappings

$ variables 183
404 errors 185
500 errors 185

concise syntax 183
constraints 185
conventions for

controllers 13
creating permalinks 183–185
custom error pages 185
directly to view 186
exceptions 185–186
home page redirect 186
named 186–188
optional variables 185
ordering of file

important 185
response codes 185–186
RSS feed example 185
wildcard support 186

URLCodec class 303
UrlMappings.groovy 182
URLs. See Uniform Resource

Locators
User Acceptance Testing

(UAT) 235
user authentication 346–347
User domain class 65, 68
user interaction, modeling

246–247
user management 322
user registration form 170
UserRegistrationCommand 170
useToken attribute 305

V

validate() method 74–75
validation 24

AngularJS 372
built-in 76–77
command objects. See com-

mand objects
cross-field validation 78
custom 77–78
DRY principle and 78–79
overview 73–79
in scaffolding

customizing error
messages 95–96

default behavior 94
user input 298–300

validators
closure 78
constraint 77

value() method 251
variable scope 37
VCAP_SERVICES environment

variable 509, 511

versioning, API (REST)
implementing 351–353
purpose of 350–351

vertical bar (|) 44
via() method 255
views

creating 141–143
extending with custom tags

calling tag from
another 205–206

iteration tags 204–205
logical tags 203–204
overview 200
simple tags 200–202
taglib tests 202–203

Hubbub add new post
adding test case 147–148
form for 144–145
testing functionality 146
updating controller

145–146
updating view 146

QOTD application 14–15
unit tests for 142
URL mappings to 186

virtualization 497
vision, executing quickly 8
VMware Inc. 497
Voldemort 433

W

waitFor() method 247
war command 31
Web Application Archive

(WAR) 4
creating 31
customizing for continuous

integration 476–480
grails war command 468

WebApplicationContextUtils
386

WebDriver 248
WebWork 4
Where queries

counting results 128–129
error types 123–125
getting data 123
listing results 128–129
number of results 125–126
overview 119
syntax for 119–122
using 522–523
viewing SQL 126–127

where() method 116, 522
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 545
whereAny() method 122, 522
whitelisting bind params 163
Wicket 4
wikis, as REST

implementation 329
wildcard character 118
wildcard support in URL

mappings 186
withCriteria() method 130, 523

withForm() method 305
withPrintWriter() method 52
withTransaction() method 395
withWriter() method 521

X

XML. See Extensible Markup
Language

xmlns() method 528
XSS. See cross-site scripting

Y

Yahoo! IM 413
Yahoo! Interface Library

(YUI) 29, 220
YUI Grids Builder 209
Licensed to Mark Watson <nordickan@gmail.com>

Smith ● Ledbrook

I
t may be time for you to stop reconfi guring, rewriting, and
recompiling your Java web apps. Grails, a Groovy-powered
web framework, hides all that busy work so you can concen-

trate on what your applications do, not how they’re built. In
addition to its famously intuitive dev environment and seam-
less integration with Spring and Hibernate, the new Grails 2.3
adds improved REST support, better protection against attacks
from the web, and better dependency resolution.

Grails in Action, Second Edition is a comprehensive introduction
to Grails 2. In this totally revised edition you’ll master Grails
as you apply TDD techniques to a full-scale example (a Twitter
clone). Along the way you’ll learn “single-page web app” tech-
niques, work with NoSQL back ends, integrate with enterprise
messaging, and implement a RESTful API.

What’s Inside
● Covers Grails 2.3 from the ground up
● Agile delivery and testing using Spock
● How to use and manage plugins
● Tips and tricks from the trenches

No Java or Groovy knowledge is required. Some web develop-
ment and OOP experience is helpful.

There’s no substitute for experience: Glen Smith and
Peter Ledbrook have been fi xtures in the Grails community,
contributing code, blogging, and speaking at conferences
worldwide, since Grails 0.2.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/GrailsinActionSecondEdition

$49.99 / Can $52.99 [INCLUDING eBOOK]

Grails IN ACTION Second Edition

JAVA

M A N N I N G

“Provides a solid foundation
... covers best practices and
 background knowledge.”
—From the Foreword by Dierk

König, author of Groovy in Action

“The canonical guide
 to Grails.”—Jerry Gaines, 4impact Group

“Packed with practical
 examples.”

—Pratap Chatterjee
 Karolinska Institute

“The best resource
 to help you get

 ridiculously productive!”—Michael A. Angelo
 Laird Technologies

SEE INSERT

	Front cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	Glen Smith
	Peter Ledbrook

	about this book
	Roadmap
	Who should read this book
	Code conventions
	Getting the source code
	Keeping up to date
	Author Online
	About the authors
	About the technical editor

	about the title
	about the cover illustration
	Part 1—Introducing Grails
	1 Grails in a hurry . . .
	1.1 Introducing Grails
	1.1.1 Why Grails changed the game
	1.1.2 Seven big ideas

	1.2 Getting set up
	1.3 QOTD: your sample program
	1.3.1 Writing a controller
	1.3.2 Generating an HTML page: the view
	1.3.3 Adding style with Grails layouts

	1.4 Creating the domain model
	1.4.1 Configuring the data source
	1.4.2 Exploring database operations

	1.5 Adding UI actions
	1.5.1 Scaffolding: adding rocket fuel
	1.5.2 Surviving the worst-case scenario

	1.6 Improving the architecture
	1.6.1 Your Grails test case
	1.6.2 Going Web 2.0: Ajaxing the view
	1.6.3 Bundling the final product: creating a WAR file
	1.6.4 And 80 lines of code later

	1.7 Summary and best practices

	2 The Groovy essentials
	2.1 Writing your first script
	2.1.1 Using lists, loops, and methods
	2.1.2 Working with strings

	2.2 Creating a quote analyzer class
	2.2.1 Introducing Spock properly
	2.2.2 Creating the initial class
	2.2.3 Working with maps
	2.2.4 Taking the analyzer for a spin

	2.3 Going to the next level
	2.3.1 Discovering closures
	2.3.2 Programming dynamically
	2.3.3 To type or not to type

	2.4 Summary and best practices

	Part 2—Core Grails
	3 Modeling the domain
	3.1 Introducing the Hubbub sample application
	3.1.1 Domain-driven design
	3.1.2 Hubbub kick-start: from 0 to first hit
	3.1.3 Introducing GORM

	3.2 Your first domain class object
	3.2.1 Saving and retrieving users via tests
	3.2.2 Updating user properties
	3.2.3 Deleting users

	3.3 Validation: stopping garbage in and out
	3.3.1 Standard validators
	3.3.2 Custom validation with regular expressions
	3.3.3 Cross-field validation tricks
	3.3.4 Keeping validation DRY by importing constraints

	3.4 Defining the data model—1:1, 1:m, m:n
	3.4.1 One-to-one relationships
	3.4.2 One-to-many relationships
	3.4.3 Many-to-many relationships
	3.4.4 Self-referencing relationships

	3.5 Summary and best practices

	4 Creating the initial UI
	4.1 Creating instant UIs with scaffolding
	4.1.1 Scaffolding Hubbub’s domain classes
	4.1.2 Improving the validation

	4.2 Restyling the scaffolding
	4.2.1 Changing the skin you’re in
	4.2.2 Branding your pages

	4.3 Working with the scaffolding code directly
	4.3.1 Customizing the dynamic scaffolding
	4.3.2 Scaffolding as a starting point

	4.4 Summary and best practices

	5 Retrieving the data you need
	5.1 Setting up the data and search form
	5.1.1 Loading sample data
	5.1.2 Implementing the search

	5.2 Writing Where queries
	5.2.1 The query syntax
	5.2.2 Exploring Where queries

	5.3 When Where queries aren’t suitable
	5.3.1 Cheap and cheerful listing and counting
	5.3.2 Introducing Criteria queries
	5.3.3 Dynamic queries with criteria
	5.3.4 Creating a tag cloud using report-style query projections
	5.3.5 Using HQL directly

	5.4 Summary and best practices

	6 Controlling application flow
	6.1 Controller essentials
	6.2 Implementing a timeline for Hubbub
	6.3 Testing controller actions: an introduction to mocking
	6.3.1 About unit tests
	6.3.2 @TestFor and @Mock mixins
	6.3.3 Applying @TestFor and @Mock

	6.4 From controller to view
	6.4.1 Creating the view
	6.4.2 Adding new posts

	6.5 Exploring scopes
	6.5.1 Request scope
	6.5.2 Flash scope
	6.5.3 Session scope
	6.5.4 servletContext (application) scope

	6.6 Handling default actions
	6.6.1 One test, two use cases
	6.6.2 Working with redirects

	6.7 Summary and best practices

	7 Services and data binding
	7.1 Services: making apps robust and maintainable
	7.1.1 Implementing a PostService
	7.1.2 Wiring PostService to PostController

	7.2 Data binding
	7.2.1 Action argument binding
	7.2.2 Binding to an existing object
	7.2.3 Working with blacklist and whitelist bind params
	7.2.4 Complex forms: binding multiple objects
	7.2.5 Error handling

	7.3 Command objects
	7.3.1 Handling custom user registration forms
	7.3.2 Participating in injection

	7.4 Working with images
	7.4.1 Handling file uploads
	7.4.2 Uploading to the filesystem
	7.4.3 Rendering photos from the database

	7.5 Intercepting requests with filters
	7.5.1 Writing your first filter
	7.5.2 Testing filters
	7.5.3 Filter URL options

	7.6 Creating custom URL mappings
	7.6.1 myHubbub: rolling your own permalinks
	7.6.2 Optional variables and constraints
	7.6.3 Handling response codes and exceptions
	7.6.4 Mapping directly to the view
	7.6.5 Wildcard support
	7.6.6 Named URL mappings

	7.7 Summary and best practices

	8 Developing tasty forms, views, and layouts
	8.1 Understanding the core form tags
	8.1.1 A handful of essential tags
	8.1.2 A pocketful of link tags
	8.1.3 A tour of the form tags
	8.1.4 Adding pagination to the timeline

	8.2 Extending views with your own tags
	8.2.1 Simple tags
	8.2.2 Testing taglibs
	8.2.3 Logical tags
	8.2.4 Iteration tags
	8.2.5 Calling one tag from another

	8.3 Adding delicious layouts
	8.3.1 Introducing SiteMesh
	8.3.2 Standardizing page layouts
	8.3.3 Markup fragments with templates
	8.3.4 Adding skinning
	8.3.5 Implementing navigation tabs

	8.4 Applying Ajax tags
	8.4.1 Choosing a JavaScript library
	8.4.2 Essential Ajax form remoting
	8.4.3 Adding sizzle: animation and effects

	8.5 Summary and best practices

	Part 3—Everyday Grails
	9 Building reliable applications
	9.1 Running tests
	9.1.1 Mastering test execution
	9.1.2 Choosing a test phase

	9.2 Understanding Grails unit tests and mocks
	9.2.1 Mocking core Grails artifacts
	9.2.2 Mocking normal collaborators with Spock

	9.3 Testing the application as a whole
	9.3.1 Introducing browser-based testing with Geb
	9.3.2 Understanding how Geb works
	9.3.3 Using page objects for maintainability

	9.4 Summary and best practices

	10 Using plugins: just add water
	10.1 Taking advantage of others’ hard work
	10.1.1 Finding plugins
	10.1.2 Installing plugins via the (deprecated) install-plugin command
	10.1.3 Installing plugins via BuildConfig.groovy
	10.1.4 Plugin dependencies
	10.1.5 Applying your knowledge: the Hubbub extreme makeover begins

	10.2 Adding mail support
	10.2.1 Sending mail inline
	10.2.2 Using a view as your mail body
	10.2.3 Testing mail operation

	10.3 Caching for performance: making everything snappy
	10.3.1 The core caching annotations
	10.3.2 Working with the CacheManager API
	10.3.3 Leveraging other members of the Cache plugin family
	10.3.4 The cache taglibs: caching in the view

	10.4 Database migrations: evolving a schema
	10.4.1 Installing and configuring the plugin
	10.4.2 Establishing a baseline
	10.4.3 Implementing common migrations
	10.4.4 Groovy-based migrations

	10.5 Full-text search: rolling your own search
	10.5.1 Making objects searchable
	10.5.2 Highlighting hit terms
	10.5.3 Implementing pagination
	10.5.4 Customizing what gets indexed
	10.5.5 Query suggestions: did you mean “Grails”?
	10.5.6 Searching across relationships

	10.6 Summary and best practices

	11 Protecting your application
	11.1 Dealing with untrusted data and networks
	11.1.1 Validating user input
	11.1.2 Data binding
	11.1.3 Escaping output
	11.1.4 CSRF and form tokens
	11.1.5 Protecting your data in transit

	11.2 Access control
	11.2.1 What is it and what can we use?
	11.2.2 Getting started with Spring Security
	11.2.3 Protecting URLs
	11.2.4 Getting hold of the current user
	11.2.5 Using a custom login page
	11.2.6 Testing access control

	11.3 Further exploration of Spring Security
	11.3.1 Tightening restrictions on access
	11.3.2 Social authentication

	11.4 Summary and best practices

	12 Exposing your app to other programs
	12.1 Creating a REST interface
	12.1.1 What is REST?
	12.1.2 Implementing a quick API

	12.2 Improving the API
	12.2.1 Handling data representations
	12.2.2 Customizing the controller
	12.2.3 Reporting errors

	12.3 Securing and maintaining the API
	12.3.1 Configuring API security
	12.3.2 Versioning the API
	12.3.3 Implementing functional testing

	12.4 Summary and best practices

	13 Single-page web applications (and other UI stuff)
	13.1 Revisiting Grails web resource management
	13.1.1 Defining your resources
	13.1.2 Using resource modules in your view tier

	13.2 RESTful clients with AngularJS
	13.2.1 Configuring your Grails app for AngularJS
	13.2.2 Your first AngularJS controller: pulling in a RESTful timeline
	13.2.3 Creating a new post via REST
	13.2.4 Communicating between controllers
	13.2.5 Better posting with live UI feedback

	13.3 Advanced RESTful CRUD: implementing in-place editing
	13.3.1 Implementing UI switching
	13.3.2 Introducing an update feature
	13.3.3 Finalizing lifecycles with delete

	13.4 Summary and best practices

	14 Understanding Spring and transactions
	14.1 Spring fundamentals
	14.1.1 What is dependency injection?
	14.1.2 Beans by convention
	14.1.3 Customizing an application at runtime

	14.2 Using transactions with GORM
	14.2.1 Easy transactions with services
	14.2.2 Transactions, the session, and me
	14.2.3 Fine-grained transactions

	14.3 Summary and best practices

	Part 4—Advanced Grails
	15 Understanding events, messaging, and scheduling
	15.1 Lightweight messaging with Platform Core
	15.1.1 Installing Platform Core
	15.1.2 Sending off an event
	15.1.3 Listening for an event
	15.1.4 Using namespaces to integrate GORM and events
	15.1.5 Aggressive listening: using wildcards
	15.1.6 Integrating Spring Security using the grailsEvents bean

	15.2 A hitchhiker’s guide to JMS messaging
	15.2.1 Learning to think in async: identifying messaging candidates
	15.2.2 Messaging terminology: of producers, consumers, queues, and topics
	15.2.3 Installing and configuring the JMS plugin

	15.3 Using the Grails JMS plugin
	15.3.1 Our killer Hubbub feature: IM integration with Jabber
	15.3.2 Sending JMS messages
	15.3.3 Reading the queue

	15.4 Scheduling tasks with Grails
	15.4.1 Writing a daily digest job
	15.4.2 Fine-grained scheduling with cron

	15.5 Advanced scheduling
	15.5.1 Dealing with re-entrance and stateful jobs
	15.5.2 Pausing and resuming stateful jobs programmatically
	15.5.3 Job persistence with JDBS storage

	15.6 Summary and best practices

	16 NoSQL and Grails
	16.1 The problem with PostgreSQL (or when to choose NoSQL)
	16.2 Types of NoSQL databases (and typical use cases table)
	16.3 Using Redis to work with key-value stores
	16.3.1 Installing your own Redis server
	16.3.2 Using Redis operations
	16.3.3 Installing the Redis plugin (including pooling configuration)
	16.3.4 Simple, expiring key/value caching: what is all this @Memoize stuff?
	16.3.5 Working with the Redis taglib
	16.3.6 Beyond the basics: working with the Redis service object directly
	16.3.7 Top posters with Redis sorted sets

	16.4 Using MongoDB to work with document-oriented data
	16.4.1 Learning MongoDB terminology
	16.4.2 Getting set up: installing a MongoDB server
	16.4.3 Creating your first database
	16.4.4 Installing the MongoDB plugin
	16.4.5 Polyglot persistence: Hibernate and MongoDB working together
	16.4.6 Stepping outside the schema with embeddables
	16.4.7 Dynamic attributes: making up properties as you go along
	16.4.8 Querying MongoDB via standard GORM
	16.4.9 Working with low-level MongoDB querying

	16.5 Using Neo4j to work with graph-oriented data
	16.5.1 Installing and configuring the Neo4j plugin
	16.5.2 Neo4j domain classes: combining with Hibernate
	16.5.3 Populating Hubbub’s social graph
	16.5.4 Walking and visualizing the graph with Cypher
	16.5.5 Walking the entire graph

	16.6 Summary and best practices

	17 Beyond compile, test, run
	17.1 Getting to deployment
	17.1.1 Managing your dependencies
	17.1.2 Continuous integration and deployment

	17.2 Integrating Grails with Maven
	17.2.1 Creating a single-project POM
	17.2.2 Multiproject Maven builds

	17.3 Grails with Gradle
	17.3.1 Building a standalone app
	17.3.2 Building a multiproject app

	17.4 Summary and best practices

	18 Grails in the cloud
	18.1 Getting to know the cloud
	18.1.1 What is the cloud?
	18.1.2 The new kids on the block—PaaS providers

	18.2 Running in the cloud
	18.2.1 Choosing a cloud provider and assessing Hubbub
	18.2.2 Getting familiar with the platform
	18.2.3 Adding cache support
	18.2.4 Sending emails
	18.2.5 Messaging in the cloud with RabbitMQ
	18.2.6 Other features to consider

	18.3 Summary and best practices

	Appendix A—Groovy reference
	A.1 Operator overloading
	A.2 Groovy JDK methods

	Appendix B—GORM query reference
	B.1 Where queries
	B.2 Criteria queries

	Appendix C—XML and Spring builders
	C.1 XML generation with MarkupBuilder
	C.2 Bean Builder

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Back cover

