
M A N N I N G

Dierk König
Paul King
with Guillaume Laforge
 Hamlet D’Arcy
 Cédric Champeau
 Erik Pragt
 Jon Skeet

FOREWORD BY James Gosling

SECOND EDITION

COVERS GROOVY 2.4

www.allitebooks.com

http://www.allitebooks.org

Type checker
extensions

Static typing

Dynamic typing

Optional typing

FACETS OF GROOVY

Static

Dynamic
Method dispatch

GStrings, multiline

Closures

Regular expressions

Lists, maps, ranges

Literals

Spreads (*)

Null-safe deref (?.)

Customizing

Elvis (?:)

Traits

Operators

Categories

Meta class, extensions

Mixins

MOP methods

Features

Language

Runtime

Compile timeAST transformations

Meta-
programming

Groovy beans,
properties

GPath

Optionals,
command chains

Implicit and explicit
coercion and constructors

Syntax

Groovy

Threads, processes

Builders
GDK

Library

Modules

Files, streams,
IO, sockets

Inspections, converters,
transformations

Collection and
map enhancements

Object iteration methods

Testing

Parallel programming

Swing, Ant

Templating, NIO

Web Services, REST,
XML, JSON

Databases
(SQL, NoSql)

GrooScript, Scriptom
GPars, GroovyStream,
FunctionalGroovy

GroovyServ, GVM

Groovy for Android

Gradle, GContracts, Codenarc,
Spock

Grails, GORM, GSP, Griffon,
GroovyFX

Gaelyk, Ratpack, Vert.x, Spring Boot

Parallel, functional programmingUsages

Ecosystem

Command line

Ad hoc queries

REPL for interactive prototyping

Full stack development

Domain-specific languages

Business rules

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Praise for the First Edition

For anyone considering Groovy, or just interested in seeing what all of the fuss is around
the features of dynamic languages, this book will deliver.

—Gregory Pierce, JavaLobby.org

Not just a language guide, this book presents the clear, readable, and enjoyable specification
of Groovy … you should definitely read it.

 —Alexander Popescu, Mindstorm

A real page-turner. Brilliant examples … all other programming books I know really
fall behind.

 —Dr. Gernot Starke

Excellent code samples ... very readable.

 —Scott Shaw, ThoughtWorks

Great, logical focus on language features.

—Norman Richards, author of XDoclet in Action

Destined to be the definitive guide. First rate!

 —Glen Smith, Bytecode Pty Ltd.

Examples are clear, complete, and they work!

 —David Sills, JavaLobby.org

Among the top five Manning books. For me personally, it’s also a perception-changing
and influential book.

 —Weiqi Gao

The examples are the strongest part of the book—all assumptions are checked using assertions,
and they have been run before printing so one can trust that they’re faultless. Explanations
are fine-grained so even inexperienced developers can read it with understanding.

—Marek Zganiacz, Comarch SA

Very readable, engaging, and does a great job of slotting Groovy into the broader world of
software development. Highly recommended.

 —Pan Pantziarka

Real computer LITERATURE.
 —Johannes Link
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

 To our families
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

Groovy in Action
Second Edition

DIERK KÖNIG

PAUL KING

WITH

GUILLAUME LAFORGE
HAMLET D’ARCY

CÉDRIC CHAMPEAU
ERIK PRAGT

AND JON SKEET

M A N N I N G
SHELTER ISLAND
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2015 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Nermina Miller
20 Baldwin Road Copyeditor: Jodie Allen
PO Box 761 Technical editor Michael Smolyak
Shelter Island, NY 11964 Proofreader: Elizabeth Martin

Technical proofreader: Gordon Dickens
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781935182443
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 20 19 18 17 16 15
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

www.manning.com
http://www.allitebooks.org

brief contents
PART 1 THE GROOVY LANGUAGE...1

1 ■ Your way to Groovy 3

2 ■ Overture: Groovy basics 28

3 ■ Simple Groovy datatypes 54

4 ■ Collective Groovy datatypes 91

5 ■ Working with closures 117

6 ■ Groovy control structures 145

7 ■ Object orientation, Groovy style 164

8 ■ Dynamic programming with Groovy 200

9 ■ Compile-time metaprogramming and AST
transformations 233

10 ■ Groovy as a static language 294

PART 2 AROUND THE GROOVY LIBRARY.................................341

11 ■ Working with builders 343

12 ■ Working with the GDK 401

13 ■ Database programming with Groovy 445
v

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

BRIEF CONTENTSvi
14 ■ Working with XML and JSON 506

15 ■ Interacting with Web Services 543

16 ■ Integrating Groovy 561

PART 3 APPLIED GROOVY..603

17 ■ Unit testing with Groovy 605

18 ■ Concurrent Groovy with GPars 650

19 ■ Domain-specific languages 676

20 ■ The Groovy ecosystem 732
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

contents
foreword to the first edition xix
preface xx
acknowledgments xxiii
about this book xxv
about the authors xxx

PART 1 THE GROOVY LANGUAGE...................................1

1 Your way to Groovy 3
1.1 The Groovy story 4

What is Groovy? 5 ■ Playing nicely with Java:
seamless integration 6 ■ Power in your code: a feature-rich
language 9 ■ Community driven but corporate backed 13

1.2 What Groovy can do for you 14
Groovy for the busy Java professional 14 ■ Groovy for the polyglot
programmer 15 ■ Groovy for pragmatic programmers, extremos,
and agilists 16

1.3 Running Groovy 17
Using groovysh for a welcome message 18
Using groovyConsole 18 ■ Using the groovy command 20
vii

Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
1.4 Compiling and running Groovy 22
Compiling Groovy with groovyc 22 ■ Running a compiled
Groovy script with Java 23

1.5 Groovy IDE and editor support 23
IntelliJ IDEA plug-in 24 ■ NetBeans IDE plug-in 25
Eclipse plug-in 26 ■ Groovy support in other editors 26

1.6 Summary 26

2 Overture: Groovy basics 28
2.1 General code appearance 29

Commenting Groovy code 29 ■ Comparing Groovy and
Java syntax 29 ■ Beauty through brevity 30

2.2 Probing the language with assertions 31
2.3 Groovy at a glance 34

Declaring classes 35 ■ Using scripts 35 ■ GroovyBeans 36
Annotations 37 ■ Using grapes 38 ■ Handling text 39
Numbers are objects 40 ■ Using lists, maps, and ranges 40
Code as objects: closures 43 ■ Groovy control structures 45

2.4 Groovy’s place in the Java environment 46
My class is your class 47 ■ GDK: the Groovy library 48
Groovy compiler lifecycle 49

2.5 Summary 53

3 Simple Groovy datatypes 54
3.1 Objects, objects everywhere 55

Java’s type system: primitives and references 55 ■ Groovy’s answer:
everything’s an object 56 ■ Interoperating with Java: automatic
boxing and unboxing 57 ■ No intermediate unboxing 58

3.2 The concept of optional typing 58
Assigning types 59 ■ Dynamic Groovy is type safe 59 ■ Let the
casting work for you 62 ■ The case for optional typing 63

3.3 Overriding operators 64
Overview of overridable operators 64 ■ Overridden operators
in action 66 ■ Making coercion work for you 68

3.4 Working with strings 69
Varieties of string literals 69 ■ Working with GStrings 72
From Java to Groovy 74
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
3.5 Working with regular expressions 76
Specifying patterns in string literals 77 ■ Applying patterns 79
Patterns in action 81 ■ Patterns and performance 83
Patterns for classification 84

3.6 Working with numbers 85
Coercion with numeric operators 85 ■ GDK methods
for numbers 88

3.7 Summary 89

4 Collective Groovy datatypes 91
4.1 Working with ranges 92

Specifying ranges 93 ■ Ranges are objects 94
Ranges in action 95

4.2 Working with lists 97
Specifying lists 97 ■ Using list operators 98
Using list methods 101 ■ Lists in action 105

4.3 Working with maps 107
Specifying maps 108 ■ Using map operators 109
Maps in action 113

4.4 Notes on Groovy collections 114
Understanding concurrent modification 114
Distinguishing between copy and modify semantics 115

4.5 Summary 116

5 Working with closures 117
5.1 A gentle introduction to closures 118
5.2 The case for closures 119

Using iterators 119 ■ Handling resources with a protocol 121

5.3 Declaring closures 123
Simple declaration 123 ■ Using assignments for
declaration 124 ■ Referring to methods as closures 125
Comparing the available options 126

5.4 Using closures 127
Calling a closure 127 ■ More closure capabilities 130

5.5 Understanding closure scope 134
Simple variable scope 135 ■ Inspecting closure scope 136
Scoping at work: the classic accumulator test 139
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSx
5.6 Returning from closures 140
5.7 Support for design patterns 141

Relationship to the Visitor pattern 142 ■ Relationship to the
Builder pattern 143 ■ Relationship to other patterns 143

5.8 Summary 144

6 Groovy control structures 145
6.1 Groovy truth 146

Evaluating Boolean tests 146 ■ Assignments within
Boolean tests 147

6.2 Conditional execution structures 149
The humble if statement 149 ■ The conditional ?: operator
and Elvis 150 ■ The switch statement and the in operator 151
Sanity checking with assertions 154

6.3 Looping 157
Looping with while 157 ■ Looping with for 158

6.4 Exiting blocks and methods 160
Normal termination: return/break/continue 160
Exceptions: throw/try-catch-finally 161

6.5 Summary 162

7 Object orientation, Groovy style 164
7.1 Defining classes and scripts 165

Defining fields and local variables 165 ■ Methods and
parameters 168 ■ Safe dereferencing with the ?. operator 172
Constructors 173

7.2 Organizing classes and scripts 175
File to class relationship 176 ■ Organizing classes in
packages 177 ■ Further classpath considerations 180

7.3 Advanced object-oriented features 181
Using inheritance 181 ■ Using interfaces 182
Multimethods 183 ■ Using traits 185

7.4 Working with GroovyBeans 187
Declaring beans 187 ■ Working with beans 189
Using bean methods for any object 192 ■ Fields, accessors,
maps, and Expando 193
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xi
7.5 Using advanced syntax features 194
Querying objects with GPaths 194 ■ Injecting the spread
operator 197 ■ Concise syntax with command chains 198

7.6 Summary 199

8 Dynamic programming with Groovy 200
8.1 What is dynamic programming? 202

8.2 Meta Object Protocol 202

8.3 Customizing the MOP with hook methods 204
Customizing methodMissing 204 ■ Customizing
propertyMissing 206 ■ Using closures for dynamic hooks 207
Customizing GroovyObject methods 208

8.4 Modifying behavior through the metaclass 210
MetaClass knows it all 210 ■ How to find the metaclass
and invoke methods 211 ■ Setting other metaclasses 213
Expanding the metaclass 214 ■ Temporary MOP modifications
using category classes 219 ■ Writing extension modules 222
Using the @Category annotation 223 ■ Merging classes
with Mixins 224

8.5 Real-world dynamic programming in action 227
Calculating with metrics 227 ■ Replacing constructors with
factory methods 228 ■ Fooling IDEs for fun and profit 228
Undoing metaclass modifications 230 ■ The Intercept/Cache/
Invoke pattern 231

8.6 Summary 232

9 Compile-time metaprogramming and
AST transformations 233
9.1 A brief history 234

Generating bytecode, not source code 234 ■ Putting the power
of code generation in the hands of developers 235

9.2 Making Groovy cleaner and leaner 235
Code-generation transformations 236 ■ Class design and design
pattern annotations 245 ■ Logging improvements 252
Declarative concurrency 254 ■ Easier cloning and
externalizing 258 ■ Scripting support 263
More transformations 267
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxii
9.3 Exploring AST 268
Tools of the trade 270 ■ Other tools 271

9.4 AST by example: creating ASTs 272
Creating by hand 272 ■ AstBuilder.buildFromSpec 273
AstBuilder.buildFromString 274
AstBuilder.buildFromCode 275

9.5 AST by example: local transformations 276

9.6 AST by example: global transformations 282

9.7 Testing AST transformations 286

9.8 Limitations 290
It’s early binding 290 ■ It’s fragile 290
It adds complexity 290 ■ Its syntax is fixed 291
It’s not typed 291 ■ It’s unhygienic 291

9.9 Next steps 292
9.10 Summary 292

10 Groovy as a static language 294
10.1 Motivation for optional static typing 295

The role of types in Groovy 296 ■ Type checking
a dynamic language? 296

10.2 Using @TypeChecked 298
Finding typos 299 ■ Resolving method calls 300
Checking assignments 301 ■ Type inference 303
Type-checked Grooviness 306 ■ Type checking closures 310
Revisiting dynamic features in light of type checking 316
Mixing type-checked code with dynamic code 319

10.3 Flow typing 320
Least upper bound 323 ■ Smart instanceof inference 325
Closure-shared variables 326

10.4 Static compilation 327
@CompileStatic 328 ■ Method dispatch 329

10.5 Static type checking extensions 332
@DelegatesTo revisited 334 ■ Type checking
extension scripts 335 ■ Limits 339

10.6 Summary 340
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xiii
PART 2 AROUND THE GROOVY LIBRARY341

11 Working with builders 343
11.1 Learning by example: Using a builder 345
11.2 Building object trees with NodeBuilder 347

NodeBuilder in action: a closer look at builder code 348
Understanding the builder concept 350 ■ Smart building
with logic 350

11.3 Working with MarkupBuilder 352
Building XML 352 ■ Building HTML 354

11.4 Working with StreamingMarkupBuilder 355
11.5 Task automation with AntBuilder 356

From Ant scripts to Groovy scripts 357 ■ How AntBuilder
works 358 ■ Smart automation scripts with logic 359

11.6 Easy GUIs with SwingBuilder 360
Reading a password with SwingBuilder 361 ■ Creating Swing
widgets 363 ■ Arranging your widgets 366 ■ Referring to
widgets 370 ■ Using Swing actions 372 ■ Using models 374
Binding made easy 377 ■ Putting it all together 380

11.7 Modern UIs with GroovyFX SceneGraphBuilder 386
Application design with FXML 388 ■ Properties and
binding 389 ■ Groovy desktop applications 389

11.8 Creating your own builder 390
Subclassing BuilderSupport 391 ■ Subclassing
FactoryBuilderSupport 395 ■ Rolling your own 398

11.9 Summary 399

12 Working with the GDK 401
12.1 Working with objects 402

Interactive objects 402 ■ Convenient Object methods 405
Iterative Object methods 408

12.2 Working with files and I/O 411
Traversing the filesystem 412 ■ Reading from input
sources 417 ■ Writing to output destinations 418
Filters and conversions 420 ■ Streaming serialized objects 422
Temporary data and file copying 422
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxiv
12.3 Working with threads and processes 423
Groovy multithreading 424 ■ Integrating external processes 426

12.4 Working with templates 429
Understanding the template format 430 ■ Templates in
action 431 ■ Advanced template issues 433

12.5 Working with Groovlets 434
Starting with “Hello world” 435 ■ Groovlet binding 437
Templating Groovlets 441

12.6 Summary 443

13 Database programming with Groovy 445
13.1 Groovy SQL: a better JDBC 446

Setting up for database access 447 ■ Executing SQL 452

13.2 Advanced Groovy SQL 463
Performing transactional updates 463 ■ Working with
batches 464 ■ Working with pagination 466
Fetching metadata 466 ■ Working with named and named-
ordinal parameters 469 ■ Using stored procedures 471

13.3 DataSets for SQL without SQL 474
Using DataSet operations 475 ■ DataSets on
database views 479

13.4 Organizing database work 481
Architectural overview 481 ■ Specifying the application
behavior 483 ■ Implementing the infrastructure 484
Using a transparent domain model 488 ■ Implementing the
application layer 489

13.5 Groovy and NoSQL 492
MongoDB: A document-style database 492
Neo4J: A graph database 495

13.6 Other approaches 503
13.7 Summary 504

14 Working with XML and JSON 506
14.1 Reading XML documents 507

Working with a DOM parser 508 ■ Reading with
a Groovy parser 513 ■ Reading with a SAX parser 518
Reading with a StAX parser 519
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xv
14.2 Processing XML 521
In-place processing 522 ■ Streaming processing 524
Updating XML 529 ■ Combining with XPath 531

14.3 Parsing and building JSON 538
Parsing JSON 538 ■ Building JSON 540

14.4 Summary 542

15 Interacting with Web Services 543
15.1 An overview of Web Services 544
15.2 Reading RSS and ATOM 545
15.3 Using a REST-based API 547
15.4 Using XML-RPC 553
15.5 Applying SOAP 555

Doing SOAP with plain Groovy 556 ■ Simplifying SOAP
access using HTTPBuilder 558 ■ Simplifying SOAP access
using groovy-wslite 559

15.6 Summary 560

16 Integrating Groovy 561
16.1 Prelude to integration 562

Integrating appropriately 563 ■ Setting up dependencies 564

16.2 Evaluating expressions and scripts with GroovyShell 565
Starting simply 565 ■ Passing parameters within a binding 567
Generating dynamic classes at runtime 569 ■ Parsing
scripts 569 ■ Running scripts or classes 571
Further parameterization of GroovyShell 571

16.3 Using the Groovy script engine 575
Setting up the engine 575 ■ Running scripts 576
Defining a different resource connector 576

16.4 Working with the GroovyClassLoader 577
Parsing and loading Groovy classes 577 ■ The chicken
and egg dependency problem 579 ■ Providing a custom
resource loader 580 ■ Playing it safe in a secured sandbox 581

16.5 Spring integration 584
Wiring GroovyBeans 585 ■ Refreshable beans 587
Inline scripts 587
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxvi
16.6 Riding Mustang and JSR-223 588
Introducing JSR-223 588 ■ The script engine manager
and its script engines 589 ■ Compilable and invocable
script engines 590 ■ Polyglot programming 592

16.7 Mastering CompilerConfiguration 592
The import customizer 594 ■ The source-aware customizer 595
Writing your own customizer 597 ■ The configscript
compilation option 598

16.8 Choosing an integration mechanism 600
16.9 Summary 601

PART 3 APPLIED GROOVY ..603

17 Unit testing with Groovy 605
17.1 Getting started 606

Writing tests is easy 607 ■ GroovyTestCase: an
introduction 608 ■ Working with GroovyTestCase 610

17.2 Unit testing Groovy code 611
17.3 Unit testing Java code 614
17.4 Organizing your tests 617

Test suites 617 ■ Parameterized or data-driven testing 618
Property-based testing 619

17.5 Advanced testing techniques 621
Testing made groovy 622 ■ Stubbing and mocking 623
Using GroovyLogTestCase 628 ■ Unit testing performance 629
Code coverage with Groovy 631

17.6 IDE integration 634
Using GroovyTestSuite 635 ■ Using AllTestSuite 637

17.7 Testing with the Spock framework 638
Testing with mocks 639 ■ Data-driven Spock tests 642

17.8 Build automation 644
Build integration with Gradle 644 ■ Build integration
with Maven 647

17.9 Summary 649
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTS xvii
18 Concurrent Groovy with GPars 650
18.1 Concurrency for the rest of us 651

Concurrent != parallel 651 ■ Introducing new concepts 653

18.2 Concurrent collection processing 654
Transparently concurrent collections 655
Available fork/join methods 657

18.3 Becoming more efficient with map/filter/reduce 659
18.4 Dataflow for implicit task coordination 662

Testing for deadlocks 662 ■ Dataflow on sequential
datatypes 663 ■ Final thoughts on dataflow 665

18.5 Actors for explicit task coordination 665
Using the strengths of Groovy 669

18.6 Agents for delegated task coordination 671
18.7 Concurrency in action 671
18.8 Summary 675

19 Domain-specific languages 676
19.1 Groovy’s flexible nature 677

Back to omitting parentheses 677

19.2 Variables, constants, and method injection 681
Injecting constants through the binding 682
Injecting methods into a script 684 ■ Adding imports
and static imports automatically 685 ■ Injecting methods
(revisited) 687 ■ Adding closures to the binding 688

19.3 Adding properties to numbers 690
19.4 Leveraging named arguments 693
19.5 Command chains 696
19.6 Defining your own control structures 699
19.7 Context switching with closures 710
19.8 Another technique for builders 715
19.9 Securing your DSLs 718

Introducing SecureASTCustomizer 718
The ArithmeticShell 719 ■ Stopping the execution
of your programs 721 ■ Preventing cheating with
metaprogramming 723
Licensed to Mark Watson <nordickan@gmail.com>

CONTENTSxviii
19.10 Testing and error reporting 725
19.11 Summary 731

20 The Groovy ecosystem 732
20.1 Groovy Grapes for self-contained scripts 733
20.2 Scriptom for Windows automation 735
20.3 GroovyServ for quick startup 737
20.4 Gradle for project automation 738
20.5 CodeNarc for static code analysis 741
20.6 GContracts for improved design 743
20.7 Grails for web development 745
20.8 Griffon for desktop applications 749
20.9 Gaelyk for Groovy in the cloud 752

20.10 Summary 754

appendix A Installation and documentation 756
appendix B Groovy language information 759
appendix C GDK API quick reference 762
appendix D Cheat sheets 819
appendix E Annotation parameters 825
appendix F Compiler phases 842
appendix G AST visitors 844
appendix H Type checking extensions 850
appendix I Android support 861

index 863
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

foreword to the first edition
I first integrated Groovy into a project I was working on almost two years ago. There is
a long and rich history of using “scripting languages” as a flexible glue to stitch
together, in different ways, large modular components from a variety of frameworks.
Groovy is a particularly interesting language from this tradition, because it doesn’t shy
away from linguistic sophistication in the pursuit of concise programming, especially
in the areas around XML, where it is particularly strong. Groovy goes beyond the
“glue” tradition of the scripting world to being an effective implementation language
in its own right. In fact, while Groovy is often thought of and referred to as a scripting
language, it really is much more than that.

 It is traditional for scripting languages to have an uneasy relationship with the
underlying linguistic system in which the frameworks are implemented. In Groovy’s
case, they have been able to leverage the underlying Java model to get integration that
is smooth and efficient. And because of the linguistic similarities between Java and
Groovy, it is fairly painless for developers to shift between programming in one envi-
ronment and the other.

 Groovy in Action by Dierk König and his coauthors is a clear and detailed exposition
of what is groovy about Groovy. I’m glad to have it on my bookshelf.

JAMES GOSLING

CREATOR OF JAVA

 DECEMBER 2006
xix

Licensed to Mark Watson <nordickan@gmail.com>

preface
Nothing is more terrible than ignorance in action.

 —Johann Wolfgang von Goethe

Thinking back to January 2007 when the first edition of this book hit the shelves, feels
like time travel to the Middle Ages. The idea of using a programming language other
than Java on the Java platform was widely considered frivolous. Today, a new language
seems to pop up every other week, and we even go as far as designing languages for
specific domains (DSLs) on a per-project basis.

 This evolution of languages reflects a change in concerns. If performance were
still our utmost concern, we would all be coding in a low-level language. But if perfor-
mance is considered “good enough” for our purposes, we now turn our focus on
human approachability.

 Groovy has been a trendsetter for this development. Many Groovy features that
ease the burden of developers are now commonplace in novel languages and may
even find their way into newer versions of Java: literal declarations for common data-
types, simplified property access, null-safe dereferencing, closures, and more. Surpris-
ingly many languages have adopted Groovy’s optional typing strategy—few languages
can claim to have static and dynamic behavior at the same time, though, the way Groovy
has since version 2.

 Just like Groovy, the first edition of this book set some trends as well. The idea of hav-
ing every single listing as a self-testing piece of code resonated in the market and may be
one reason why the book is among Manning’s top-ten bestsellers of the decade.
xx

Licensed to Mark Watson <nordickan@gmail.com>

PREFACE xxi
 The feedback for the first edition was overwhelming. We never expected to have so
many great developers speaking so nicely about our work. We have no words to express
this feeling of being proud and humbled at the same time. Most touching, though,
was the stranger who once gave Dierk a pat on the back and mumbled, “Thank you for
the book!” and then disappeared into the crowd. This book is for him.

 We are fully aware that the first edition would have never been so successful if
Groovy itself had been less appealing. The reason for Groovy’s success is easy to see: it
delivers its power in the most Java-friendly manner. It is Java’s dynamic friend.

 The development of Groovy, from version 1.0 covered in the first edition of this
book until the current version 2.4, has closed what used to be a syntax gap by pro-
viding enums, annotations, generics, the classic for loop, nested classes, varargs,
static imports, and the ability to use Groovy closures where Java 8 expects lambda
expressions.

 The Groovy project has progressed at a very high speed, not only in its core but
also at its periphery. We see, for example, new usages of compile-time meta-
programming. This core feature gets instantly applied in the Spock testing frame-
work, which in turn contributes back its “power assert” feature to the core. The com-
munity is buzzing and it has become a challenge to keep up to date with all the
developments and activities.

 It’s only natural that many readers of the first edition of Groovy in Action (or “Gina”
as we say for short) demanded an update that we are now happy to deliver as the sec-
ond edition (codename “ReGina”). Our goal in this book is not only to rework the
code examples, update the API description, and explain new features, but also to reflect
the marketplace and the growth of the ecosystem. Groovy has evolved from a niche
language to the default choice for dynamic programming on the Java platform for
millions of developers.

 Major financial organizations use Groovy to transfer billions of dollars every day,
space agencies watch the stars with the help of Groovy, and satellite live-data streams
are handled by Groovy code. Groovy is traveling the oceans, shipping containers
around the globe, helping software developers automate recurring tasks, and running
Mom’s website. We felt an obligation to provide an up-to-date, solid, and comprehen-
sive book to all these users.

 Not only did Groovy and its environment change, we authors changed as well. We
enjoyed the luxury of working on Groovy projects, introducing new team members to
the language, running workshops and tutorials, recognizing struggles (and occasion-
ally struggling ourselves), finding lots of unanticipated use cases while consulting,
exploring new practices, using the toolset in anger, and generally facing the Groovy
development reality. The book reflects these experiences.

 In this second edition, we put more emphasis on the optional typing system,
explain both dynamic and static metaprogramming in full depth, dive into type check-
ing and static compilation, cover domain-specific languages, and introduce new mod-
ules that have evolved for user interfaces, testing, XML, JSON, database programing,
Licensed to Mark Watson <nordickan@gmail.com>

PREFACExxii
Web Services, dependency management, build automation, and concurrent program-
ming as well as give you an updated overview of the Groovy ecosystem. We hope you
will find this updated book an enjoyable and rewarding read.

DIERK KÖNIG

PAUL KING
Licensed to Mark Watson <nordickan@gmail.com>

acknowledgments
Our publisher warned us that a second edition would be much more difficult. We did
not understand that back then, but he was right. We needed to get more coauthors on
board to account for the growth of Groovy and we are very grateful that Hamlet
D’Arcy, Cédric Champeau, and Erik Pragt joined the group. Paul King invested an
enormous amount of extra time and I (Dierk) am also very grateful to him for that.

 We’re deeply indebted to our technical reviewing team: Atul Khot, David
McFarland, Jakob Mayr, Ken Shih, Paul Grebenc, Phillip Warner, Rick Wagner, Robert
O’Connor, Ronald Tischliar, Scott Ruch, Vinod Panicker, and Vladimír Oraný, with
special thanks to our technical editor Michael Smolyak and technical proofreader
Gordon Dickens.

 While the book was in development, readers could subscribe to Manning’s Early
Access Program (MEAP) to get the content early and to provide feedback. We received
so many valuable suggestions that we cannot possibly list everyone’s name, but we
would like to say a big thank you to all of you! The MEAP ran longer than any other
and while we are not proud of that record, we thank everyone for their patience and
hope that you will find the book up-to-date and worth the wait.

 Other friends helped with the book in one way or another: Andres Almiray, Bob
Brown, Nick Chase, Andy Clement, Scott Davis, Marc Guillemot, Dr. Urs Hengartner,
Arturo Herrero, Martin Huber, Roshan Dawrani, Wim Deblauwe, Dean DeChambeau,
Gordon Dickens, Andrew Eisenberg, Jeremy Flowers, Dave Klein, Rupin Kotecha,
Kenneth Kousen, Peter Ledbrook, Mac Liaw, Johannes Link, Joshua Logan, Chris Mair,
Tsuyoshi Miyake, Vaclav Pech, Graeme Rocher, Baruch Sadogursky, Uwe Sauerbrei,
xxiii

Licensed to Mark Watson <nordickan@gmail.com>

ACKNOWLEDGMENTSxxiv
Erik Schwalbe, Larry Seltzer, Jim Shingler, Dan Sline, Glen Smith, David Stuve, Andre
Steingress, Jochen Theodorou, Marija Tudor, Craig Walls, Dr. Hans-Dirk Walter, and
Geertjan Wielenga.

 The book would never had made it to the shelves without the support and guidance
of everyone at Manning, especially our publisher Marjan Bace, our editors Nermina
Miller and Maureen Spencer, and all the other great people who worked with us:
Jodie Allen, Luke Bace, Jeff Bleiel, Olivia Booth, Candace Gillhoolley, Todd Green,
Steven Hong, Cynthia Kane, Emily Macel, Elizabeth Martin, Tara McGoldrick Walsh,
Mary Piergies, Christina Rudloff, Mike Stephens, and Kevin Sullivan.

 Finally, very special thanks to James Gosling for writing the foreword to the first
edition of Groovy in Action.

 But most of all, we thank our families for their ongoing encouragement to pursue
our ideas, their patience when we were once again physically or mentally absent, and
their love that gives us a purpose in life. We love you.
Licensed to Mark Watson <nordickan@gmail.com>

about this book
Groovy in Action, Second Edition describes the Groovy language, presents the library
classes and methods that Groovy adds to the standard Java Development Kit, and leads
you through a number of topics that you are likely to encounter in your daily develop-
ment work. The book has three parts:

■ Part 1 The Groovy language
■ Part 2 Around the Groovy library
■ Part 3 Applied Groovy

An introductory chapter explains what Groovy is and then part 1 starts with a broad
overview of Groovy’s language features, before going into more depth about scalar and
collective datatypes. The language description includes an explanation of the closure
concept that is ubiquitous in Groovy, describing how it relates to and distinguishes
itself from control structures. We present Groovy’s model of object-orientation and its
dynamic capabilities at both runtime and compile-time. Part 1 closes with a surprise:
You can use Groovy as a static language as well!

 Part 2 begins the library description with a presentation of Groovy’s builder con-
cept and its various implementations. An explanation of the GDK follows, with
Groovy’s enhancements to the Java standard library. This is the “beef” of the library
description in part 2. The Groovy library shines with simple but powerful support
for database programming and XML and JSON handling, and we include a detailed
exposition of both topics. Another big advantage of Groovy is its all-out seamless
xxv

Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THIS BOOKxxvi
integration with Java, and we explain the options provided by the Groovy library for
setting this into action.

 If part 1 was a tutorial and part 2 a reference, part 3 is about typical use cases for
Groovy. It starts with a thorough exposition of how to use Groovy for test automa-
tion. Testing is an important topic in itself, but with Groovy even more so since
Groovy developers seem to be very quality-oriented and even in otherwise plain-Java
projects, Groovy is often used for testing because it is so convenient. Next, we want
to use Groovy on multi-core machines and thus go into concurrent programming
with Groovy. Another much-requested topic is using Groovy for domain specific lan-
guages, which we cover in a full, dedicated chapter. Part 3 ends with an overview of
the Groovy ecosystem.

 The book closes with an extensive series of helpful appendixes, which are intended
to serve as quick references, cheat sheets, and detailed technical descriptions.

Who should read this book?
This book is for everyone who wants to learn Groovy as a new dynamic programming
language. Existing Groovy users can use it to deepen their knowledge; and both new
and experienced programmers can use it as a black-and-white reference. We found
ourselves going to our own book to look up details that we had forgotten. Newcomers
to Groovy will need a basic understanding of Java since Groovy is completely depen-
dent on it; Java basics are not covered in our book.

 Topics have been included that will make reading and understanding easier, but
are not mandatory prerequisites: patterns of object-oriented design, Ant, Maven,
JUnit, HTML, XML, JSON, Swing, and JavaFX. It is beneficial—but not required—to
have been exposed to some other scripting language. This enables you to connect
what you read to what you already know. Where appropriate, we point out similarities
and differences between Groovy and other languages.

What’s new in the second edition?
When starting the second edition, we considered adding visual clues or icons to the
book so readers could quickly see what had changed from the first edition. We had to
give up on that idea or the whole book would have been full of markers since there is
hardly any paragraph that hasn’t changed!

 The second edition is a full rewrite. We dropped some chapters, reorganized others,
and added new ones, so the book now has 20 chapters, up from 16, and a few hundred
additional pages of genuinely new content. These changes reflect the evolution of the
language and its use in the market.

 Tackling the task of covering such a big topic needs many hands and we were very
lucky that Hamlet Darcy, Cédric Champeau, and Erik Pragt joined the team. Hamlet
authored the new chapters 9 “AST Transformations” and 20 “The Groovy Ecosystem.”
Cédric contributed his deep knowledge of Groovy internals to the new chapter 10
“Groovy as a static language” and helped to fine-tune chapters 7, 9, and 16. Erik got
Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THIS BOOK xxvii
the laborious task of going through all changes to the Groovy standard library for
chapter 12 “Working with the GDK” and fundamentally revised chapter 17 “Unit test-
ing with Groovy” to cover the popular Spock testing framework.

 Guillaume Laforge revised chapter 16 “Integrating Groovy” and shaped new chap-
ter 19 “Domain Specific Languages (DSLs)” to address this important usage of Groovy.

 Dierk König added chapter 19 “Concurrent Groovy with GPars” to show how well
Groovy fits into the multi-core era. He also thoroughly revised and updated the core
“language” chapters 1 through 6. Former chapter 7 was split into “Object orientation,
Groovy style,” and a new chapter 8 “Dynamic Programming with Groovy.”

 Paul King revised the “library” chapters 11 “Working with builders,” 13 “Database
programming with Groovy,” and split the former XML chapter 14 into “Working with
XML and JSON” and 15 “Interacting with Web Services” and extended the content to
account for the rising importance of these Groovy usages. He also did the enormous
work of going through every single page of the book to ensure consistency in style, word-
ing, feel, and appearance. With so many authors and such diverse topics it is very diffi-
cult to keep the book coherent. If we finally managed to achieve this, it is thanks to Paul.

Code conventions and downloads
This book provides copious examples that show how you can make use of each of the
topics covered. Source code in listings or in text appears in a fixed-width font like
this to separate it from ordinary text. In addition, class and method names, object
properties, and other code-related terms and content in text are presented using
fixed-width font.

 Occasionally, code is italicized, as in reference.dump(). In this case reference
should not be entered literally but replaced with the content that is required, such as
the appropriate reference.

 Where the text contains the pronouns “I” and “we”, the “we” refers to all the
authors. “I” refers to the lead author of the respective chapter.

 Most of the code examples contain Groovy code. This code is very compact so we
present it “as is” without any omissions. Unless stated otherwise, you can copy and
paste it into a new file and run it right away. In rare cases, when this wasn’t possible, we
have used … (ellipses).

 Java, HTML, XML, and command-line input can be verbose. In many cases, the
original source code (available online) has been reformatted; we’ve added line breaks
and reworked indentation to accommodate the page space available in the book. In
rare cases, when even this was not enough, line-continuation markers were added.

 Code annotations accompany many of the listings, highlighting important con-
cepts. In some cases, numbered cueballs link to additional explanations that follow
the listing.

 You can download the source code for all of the examples in the book from the
publisher’s website at www.manning.com/GroovyinActionSecondEdition.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.manning.com/GroovyinActionSecondEdition

ABOUT THIS BOOKxxviii
Keeping up to date
The world doesn’t stop turning when you finish writing a book, and getting the book
through production also takes time. Therefore, some of the information in any techni-
cal book becomes quickly outdated, especially in the dynamic world of agile languages.

 This book covers Groovy 2.4. Groovy will see numerous improvements, and by the
time you read this, it’s possible that an updated version will have become available.
New Groovy versions always come with a detailed list of changes. It is unlikely that any
of the core Groovy concepts as laid out in this book will change significantly in the
near future; and even then the emphasis is likely to be on additional concepts and fea-
tures. Groovy has earned a reputation of caring deeply about backward compatibility.
This outlook makes the book a wise investment, even in a rapidly changing world.

 We will do our best to keep the online resources for this book reasonably up to
date and provide information about language and library changes as the project
moves on. Please check for updates on the book’s web page at www.manning.com/
GroovyinActionSecondEdition.

Author Online
Purchase of Groovy in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/Groovyin-
ActionSecondEdition. This page provides information on how to get on the forum
once you are registered, what kind of help is available, and the rules of conduct on
the forum. It also provides links to the source code for the examples in the book,
errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the AO remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the cover illustration
The figure on the cover of Groovy in Action, Second Edition is a “Danzerina del Japon,” a
Japanese dancer, taken from a Spanish compendium of regional dress customs first
published in Madrid in 1799. While the artist may have captured the “spirit” of a Japa-
nese dancer in his drawing, the illustration does not accurately portray the looks,
dress, or comportment of a Japanese woman or geisha of the time, compared to Japa-
nese drawings from the same period. The artwork in this collection was clearly not
researched first hand!
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.manning.com/GroovyinActionSecondEdition
http://www.manning.com/GroovyinActionSecondEdition
http://www.manning.com/GroovyinActionSecondEdition
http://www.manning.com/GroovyinActionSecondEdition
http://www.allitebooks.org

ABOUT THIS BOOK xxix
The book’s title page states:

Coleccion general de los Trages que usan actualmente todas las Nacionas del
Mundo desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R.
Obra muy util y en special para los que tienen la del viajero universal

which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the known world,
designed and printed with great exactitude by R.M.V.A.R. This work is very useful
especially for those who hold themselves to be universal travelers

Although nothing is known of the designers, engravers, and workers who colored this
illustration by hand, the “exactitude” of their execution is evident in this drawing. The
“Danzerina del Japon” is just one of many figures in this colorful collection. Travel for
pleasure was a relatively new phenomenon at the time and books such as this one
were popular, introducing both the tourist as well as the armchair traveler to the
exotic inhabitants, real and imagined, of other regions of the world.

 Dress codes have changed since then and the diversity by nation and by region, so
rich at the time, has faded away. It is now often hard to tell the inhabitant of one con-
tinent from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interesting
intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the rich diversity of regional life two centu-
ries ago, brought back to life by the pictures from this collection.
Licensed to Mark Watson <nordickan@gmail.com>

about the authors
DIERK KÖNIG has worked for over 20 years as a professional software developer,
architect, trainer, and consultant. Through his publications, conference appear-
ances, trainings, workshops, and consulting activities, Dierk has reached more devel-
opers than he ever thought possible. He has worked with Canoo Engineering AG,
Basle, Switzerland, since 2000, where he is a cofounder and enjoys being part of a
thriving organization.

 Dierk contributes to many open source projects, including Groovy, Grails, Open-
Dolphin, Frege, and CanooWebTest. He joined the Groovy project in 2004 and has
worked as a committer ever since. He presented Groovy to win the JAX Innovation
Award 2007 and won the JAX Developer Challenge 2009 with his team.

 He is an acknowledged reviewer and contributor to numerous books, including
the classic Extreme Programming Explained (Kent Beck), Test-Driven Development (Kent
Beck), Agile Development in the Large (Jutta Eckstein), Unit Testing in Java (Johannes
Link), JUnit and Fit (Frank Westphal), Refactoring in Large Software Projects (Martin
Lippert and Stephen Roock), The Definitive Guide to Grails (Graeme Rocher), and Grails
in Action (Glen Smith, Peter Ledbrook).

 In the course of authoring this second edition, Dierk became a happy husband
and a proud father of a girl and a boy. You can follow him on twitter as @mittie.

DR. PAUL KING’S career spans technical and managerial roles in a number of organi-
zations, underpinned by deep knowledge of the information technology and tele-
communications markets and a passion for the creation of innovative organizations.
xxx

Licensed to Mark Watson <nordickan@gmail.com>

ABOUT THE AUTHORS xxxi
Throughout his career, Paul has provided technical and strategic consulting to hun-
dreds of organizations in the U.S. and Asia Pacific. The early stages of Paul’s career
were highlighted by his contributions to various research fields, including object-
oriented software development, formal methods, telecommunications, and distrib-
uted systems. He has had numerous publications at international conferences and
in journals and trade magazines. He is an award-winning author and sought-after
speaker at conferences.

 Currently, Paul leads ASERT (Advanced Software Engineering, Research & Train-
ing), which is recognized as a world-class center of expertise in the areas of middle-
ware technology, agile development, and internet application development and
deployment. ASERT has experience teaching thousands of students in more than 15
countries, and has provided consulting services and development assistance through-
out Asia Pacific to high-profile startups and government e-commerce sites. In his
spare time, Paul is a taxi driver and homework assistant for his seven children and two
grandchildren. You can follow him on twitter as @paulk_asert.

GUILLAUME LAFORGE has been the official Groovy project manager since the end of
2004, after having been a contributor and later a core committer on the project. He is
also the specification lead for JSR-241, the ongoing effort to standardize the Groovy
language through Sun’s Java Community Process. Guillaume is Groovy’s “public face”
and often responds to interviews regarding Groovy and presents his project at confer-
ences around the world, such as at JavaOne or Devoxx, where he recently spoke about
how scripting can simplify enterprise development. Guillaume cofounded the G2One
company, which focused on and further developed the Groovy and Grails technolo-
gies, later acquired by SpringSource; also VMware and its Pivotal spin-off. Guillaume
recently joined Restlet as Product Ninja and Advocate.

CÉDRIC CHAMPEAU is a member of the Groovy core team. He is a passionate developer
who started writing programs at the age of eight and learned it the hard way by manu-
ally typing magazine listings into an Amstrad PC1512. He worked several years in natu-
ral language processing where he used Groovy in multiple contexts, from a workflow
engine to a DSL for linguists, and Lucene custom scoring. This is how he dived into
the internals of the language and started contributing before becoming one of the
core team members. He implemented many advanced Groovy features like compila-
tion customizers, static compilation, traits, the markup template engine, and the
recent support for Android.

HAMLET D’ARCY is a software engineer at Microsoft, founder of the Basel-based Hack-
ergarten open source coding group, and can be found speaking at local and interna-
tional user groups and conferences. He’s a committer on the Groovy and CodeNarc
projects and a contributor on a number of other projects (including the IDEA Groovy
Plugin). He’s passionate about learning new languages and different ways of thinking
about problems. He blogs regularly at http://hamletdarcy.blogspot.com.
Licensed to Mark Watson <nordickan@gmail.com>

http://hamletdarcy.blogspot.com

ABOUT THE AUTHORSxxxii
ERIK PRAGT is a passionate software developer with a broad range of experience in
static languages like Java and Scala, and dynamic languages like Groovy, JavaScript,
and Python. Having worked as a consultant for a broad range of customers, mostly in
the Telecom, ISP, and banking sectors, Erik is now an independent freelance consul-
tant. He founded the Dutch Groovy and Grails user group, and is a regular confer-
ence speaker and trainer. Erik spends most of his free time working on open source
software. In the limited time he’s not sitting behind the computer he can be found in
the gym, riding his motorcycle, or diving, always looking for new inspiration, which he
shares on twitter at @epragt.

JON SKEET Jon Skeet is a software engineer working for Google in London. He is prob-
ably best known for his contributions on Stack Overflow. He blogs, tweets (@jon-
skeet), speaks at conferences, and generally says too much and listens too little. For
some years now, his primary open source contribution to the world has been Noda
Time, a better .NET date and time API. He is the author of Manning’s C# in Depth,
Third Edition.
Licensed to Mark Watson <nordickan@gmail.com>

Part 1

The Groovy language

A good notation has subtlety and suggestiveness which at times makes it
almost seem like a live teacher.

 — Bertrand Russell
 The World of Mathematics (1956)

Learning a new programming language is comparable to learning to speak
a foreign language. You have to deal with new vocabulary, grammar, and language
idioms. But this initial effort pays off multiple times. With the new language,
you find unique ways to express yourself, you’re exposed to new concepts and
styles that add to your personal abilities, and you may even explore new perspec-
tives on your world. This is what Groovy did for us, and we hope Groovy will do it
for you, too.

 The first part of this book introduces you to the language basics: the Groovy
syntax, grammar, and typical idioms. We present the language by example as
opposed to using an academic style.

 You may skim this part on first read and revisit it before going into serious
development with Groovy. If you decide to skim, please make sure you visit chap-
ter 2 and its examples. They are cross-linked to the in-depth chapters so you can
easily look up details about any topic that interests you.

 One of the difficulties of explaining a programming language by example is
that you have to start somewhere. No matter where you start, you end up needing
to use some concept or feature that you haven’t explained yet for your examples.
Licensed to Mark Watson <nordickan@gmail.com>

2 PART 1 The Groovy language
Section 2.3 serves to resolve this perceived deadlock by providing a collection of self-
explanatory warm-up examples.

 We explain the main portion of the language using its built-in datatypes and intro-
duce expressions, operators, and keywords as we go along. By starting with some of the
most familiar aspects of the language and building up your knowledge in stages, we
hope you’ll always feel confident when exploring new territory.

 Chapter 3 introduces Groovy’s practical approach to typing, examines the numeric and
other primitive types that Groovy supports, and discusses strings and regular expressions.

 Chapter 4 continues looking at Groovy’s rich set of built-in types, examining those
with a collection-like nature: ranges, lists, and maps.

 Chapter 5 builds on the preceding sections and provides an in-depth description
of the closure concept.

 Chapter 6 touches on logical branching, looping, and shortcutting program exe-
cution flow.

 Chapter 7 sheds light on the way Groovy builds on Java’s object-oriented features
adding support for multimethods and traits.

 Chapter 8 looks at Groovy’s dynamic programming capabilities.
 Chapter 9 dives into compile-time metaprogramming and AST transformations.
 Chapter 10, the final chapter in part 1, discusses Groovy as a static language.
 At the end of part 1, you’ll have the whole picture of the Groovy language. This is

the basis for getting the most out of part 2, which explores the Groovy library: the
classes and methods that Groovy adds to the Java platform. Part 3, “Applied Groovy,”
leads you through places where the power of Groovy is put into action.
Licensed to Mark Watson <nordickan@gmail.com>

Your way to Groovy
It isn’t the mountains ahead to climb that wear you out; it’s the pebble in
your shoe.

 —Muhammad Ali

You’ve heard of Groovy, maybe even installed the distribution and tried snippets
from the online tutorials. Perhaps your project has adopted Groovy as a dynamic
extension to Java and you now seek information about what you can do with it. You
may have been acquainted with Groovy from using the Grails web application plat-
form, the Griffon desktop application framework, the Gradle build system, or the
Spock testing facility, and now look for background information about the lan-
guage that these tools are built upon. This book delivers to that purpose, but you
can expect even more from learning Groovy.

 Groovy will give you quick wins, whether by making your Java code simpler to
write, by automating recurring tasks, by modeling business logic in domain-specific

This chapter covers
■ What Groovy is all about
■ How it makes your programming life easier
■ How to start
3

Licensed to Mark Watson <nordickan@gmail.com>

4 CHAPTER 1 Your way to Groovy
languages (DSLs), or by supporting ad-hoc scripting for your daily work as a program-
mer. It’ll give you longer-term wins by making your code simpler to read. Perhaps most
important, it’s a pleasure to use.

 Learning Groovy is a wise investment. Groovy brings the power of advanced lan-
guage features such as closures, dynamic methods, and the Meta Object Protocol
(MOP) to the Java platform. Your Java knowledge will not become obsolete by walking
the Groovy path. Groovy will build on your experience and familiarity with the Java
platform, allowing you to pick and choose when you use which tool—and when to
combine the two seamlessly.

 Groovy follows a pragmatic “no drama”1 approach: it obeys the Java object model
and always keeps the perspective of a Java programmer. It doesn’t force you into any
new programming paradigm, but offers those advanced capabilities that you legiti-
mately expect from a “top-of-stack” language.

 This first chapter provides background information about Groovy and everything
you need to know to get started. It starts with the Groovy story: why Groovy was cre-
ated, what considerations drive its design, and how it positions itself in the landscape
of languages and technologies. The next section expands on Groovy’s merits and how
they can make life easier for you, whether you’re a Java programmer, a script aficio-
nado, or an agile developer.

 We strongly believe that there’s only one way to learn a programming language: by
trying it. We present a variety of scripts to demonstrate the compiler, interpreter, and
shells, before listing plug-ins available for widely used IDEs and where to find the latest
information about Groovy.

 By the end of this chapter, you’ll have a basic understanding of what Groovy is and
how you can experiment with it.

 We—the authors, the reviewers, and the editing team—wish you a great time pro-
gramming Groovy and using this book for guidance and reference.

1.1 The Groovy story
At Groovy One 2004—a gathering of Groovy developers in London—James Strachan
gave a keynote address telling the story of how he arrived at the idea of inventing Groovy.

 He and his wife were waiting for a late plane. While she went shopping, he visited
an internet cafe and spontaneously decided to go to the Python website and study the
language. In the course of this activity, he became more and more intrigued. Being a
seasoned Java programmer, he recognized that his home language lacked many of the
interesting and useful features Python had invented, such as native language support
for common datatypes in an expressive syntax and, more important, dynamic behav-
ior. The idea was born to bring such features to Java.

1 Thanks to Mac Liaw for this wording.
Licensed to Mark Watson <nordickan@gmail.com>

5The Groovy story
This led to the main principles that guide Groovy’s development: to be a feature-rich
and Java-friendly language, bringing the attractive benefits of dynamic languages to a
robust and well-supported platform.

 Figure 1.1 shows how this unique combination defines Groovy’s position in the var-
ied world of languages for the Java platform.2 We don’t want to offend anyone by spec-
ifying exactly where we believe any particular other language might fit in the figure,
but we’re confident of Groovy’s position.

 In the early days of Groovy, we were mainly asked how it’d compare to Java, Bean-
Shell, Pnuts, and embedded expression languages. The focus was clearly on Java
friendliness. Then the focus shifted to dynamic capabilities and the debate went on
putting Groovy, JavaScript (Rhino), Jython, and JRuby side by side. Recently, we see
more comparison with Clojure, Scala, Kotlin, Ceylon, Fan, Nice, Newspeak, and Frege.
Most of them introduce the functional programming paradigm to the Java platform,
which makes a comparison on the feature dimension rather difficult. They’re simply
different. Some other JVM languages like Alice and Fortress are even totally unrelated.
By the time you read this, some new kids are likely to have appeared on the block and
the pendulum may have swung in a totally different direction. But with the landscape
picture shown in figure 1.1 you’re able to also position upcoming languages.

 Some languages may offer more advanced features than Groovy. Not so many lan-
guages may claim to fit equally well to the Java language. None can currently touch
Groovy when you consider both aspects together: nothing provides a better combina-
tion of Java friendliness and a complete feature set.

 With Groovy being in this position, what are its main characteristics?

1.1.1 What is Groovy?

Groovy is an optionally typed, dynamic language for the Java platform with many fea-
tures that are inspired by languages like Python, Ruby, and Smalltalk, making them

2 See www.is-research.de/info/vmlanguages/category/jvm-language/, which lists about 240 languages target-
ing the Java virtual machine (JVM).

Other

Other
Other

F
e

a
tu

re
 r

ic
h

Java friendly

Groovy
Other

Figure 1.1 The landscape of JVM-based
languages. Groovy is a feature-rich and
Java-friendly language—it excels at both
sides instead of sacrificing one for the
sake of the other.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.is-research.de/info/vmlanguages/category/jvm-language/

6 CHAPTER 1 Your way to Groovy
available to Java developers using a Java-like syntax. Unlike other alternative languages,
it’s designed as a companion to, not a replacement for, Java.

 Groovy is often referred to as a scripting language, and it works very well for script-
ing. It’s a mistake to label Groovy purely in those terms, though. It can be precom-
piled into Java bytecode, integrated into Java applications, power web applications,
add an extra degree of control within build files, and be the basis of whole applica-
tions on its own. Groovy, obviously, is too flexible to be pigeonholed.

 What we can say about Groovy is that it’s closely tied to the Java platform. This is
true in terms of both implementation (many parts of Groovy are written in Java, with
the rest being written in Groovy itself) and interaction. When you program in Groovy,
in many ways you’re writing a special kind of Java. All the power of the Java platform—
including the massive set of available libraries—is there to be harnessed.

 Does this make Groovy just a layer of syntactic sugar? Not at all. Although every-
thing you do in Groovy could be done in Java, it’d be madness to write the Java code
required to work Groovy’s magic. Groovy performs a lot of work behind the scenes
to achieve its agility and dynamic nature. As you read this book, try to think every so
often about what would be required to mimic the effects of Groovy using Java. Many
of the Groovy features that seem extraordinary at first—encapsulating logic in
objects in a natural way, building hierarchies with barely any code other than what’s
absolutely required to compute the data, expressing database queries in the normal
application language before they’re translated into SQL, manipulating the runtime
behavior of individual objects after they’ve been created—are tasks that Java wasn’t
designed for.

 To quote a JavaOne slogan: Groovy is there for “extending the reach of Java.”
 Let’s take a closer look at what makes Groovy so appealing, starting with how

Groovy and Java work hand-in-hand.

1.1.2 Playing nicely with Java: seamless integration

Being Java friendly means two things: seamless integration with the Java Runtime Envi-
ronment and having a syntax that’s aligned with Java.

SEAMLESS INTEGRATION

Figure 1.2 shows the integration aspect of
Groovy: it runs inside the JVM and makes use
of Java’s libraries (together called the Java
Runtime Environment, or JRE). Groovy is only
a new way of creating ordinary Java classes—
from a runtime perspective, Groovy is Java
with an additional JAR file as a dependency.

 Consequently, calling Java from Groovy
is a nonissue. When developing in Groovy,
you end up doing this all the time without
noticing. Every Groovy type is a subtype of

Java Runtime Environment

Groovy

code

Java

code

Figure 1.2 Groovy and Java join together in
a tongue-and-groove fashion.
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

7The Groovy story
java.lang.Object. Every Groovy object is an instance of a type in the normal way. A
Groovy date is a java.util.Date. You can call all methods on it that you know are
available for a Date, and you can pass it as an argument to any method that expects
a Date.

 Calling into Java is an easy exercise. It’s something that all JVM languages offer,
at least the ones worth speaking of. They all make it possible, some by staying inside
their own non-Java abstractions, and some by providing a gateway. Groovy is one of
the few that does it its own way and the Java way at the same time, because there’s
no difference.

 Integration in the opposite direction is just as easy. Suppose a Groovy class
MyGroovyClass is compiled into MyGroovyClass.class and put on the classpath. You
can use this Groovy class from within a Java class by typing

new MyGroovyClass(); // create from Java

You can then call methods on the instance, pass the reference as an argument to
methods, and so forth. The JVM is blissfully unaware that the code was written in
Groovy. This becomes particularly important when integrating with Java frameworks
that call your class where you have no control over how that call is affected.

 The “interoperability” in this direction is a bit more involved for alternative JVM
languages. Yes, they may compile to bytecode but that doesn’t mean much by itself,
because one can produce valid bytecode that’s totally incomprehensible for a Java
caller. A language may not even be object-oriented and provide classes and methods.
And even if it does, it may assign totally different semantics to those abstractions.
Groovy, in contrast, fully stays inside the Java object model. Actually, compiling to class
files is only one of many ways to integrate Groovy into your Java project. Chapter 16
on integration describes the full range of options. The integration ladder in figure 1.3
arranges the criteria by their significance.

 One step up on the integration ladder and you meet the issue of references. A
Groovy class may reference a Java class (that goes without saying) and a Java class may
reference a Groovy class, as you’ve just seen. You can even have circular references
and groovyc compiles them all transparently. Even better, the leading IDEs provide
cross-language compile, navigation, and refactoring such that you rarely need to care
about the project build setup. You’re free to choose Java or Groovy when implement-
ing any class for that matter. Such tight build-time integration is a challenge for every
other language.

 The next rung where candidates slip off is overloaded methods. Imagine you set out
to implement the Java interface java.io.Writer in any non-Java language. It comes
with three versions of write that take one parameter: write(int c), write(String str),
and write(char[] buf). Implementing this in Groovy is trivial—it’s exactly like in Java.
The formal parameter types distinguish which methods you override. That’s one of
many merits of optional typing. Languages that are solely dynamically typed have no
way of doing this.
Licensed to Mark Watson <nordickan@gmail.com>

8 CHAPTER 1 Your way to Groovy
But the buck doesn’t stop here. The Java–Groovy mix allows annotations and inter-
faces being defined in either language and implemented and used in the other. You
can subclass in any combination even with abstract classes and “sandwich” inheritance
like Java–Groovy–Java or Groovy–Java–Groovy in arbitrary depth. It may look exotic at
first sight but we actually needed this feature in customer projects. We’ll come back to
that. Of course, this integration presupposes that your language knows about annota-
tions and interfaces like Groovy does.

 True seamless integration means that you can take any Java class from a given Java
codebase and replace it with a Groovy class. Likewise, you can take any Groovy class
and rewrite it in Java, both without touching any other class in the code base. That’s
what we call a drop-in replacement, which imposes further considerations about annota-
tions, static members, and accessibility of the used libraries from Java.

 Generated bytecode can be more or less Java-tool friendly. There are more and
more tools on the market that directly augment your bytecode, be it for gathering
test coverage information or “weaving aspects” in. These tools don’t only expect
bytecode to be valid, but also to find well-known patterns in it such as the Java and
Groovy compiler provide. Bytecode generated by other languages is often not digest-
ible for such tools.

 Alternative Java virtual machine (JVM) languages are often attributed as working
“seamlessly” with Java. With the integration ladder in figure 1.3, you can check to
what degree this applies: calls into Java, calls from Java, bidirectional compilation,
inheritance intermix, mutual class substitutability, and tool support. We didn’t even

JVM
Language Java

Call to Java

Cross IDE support

Call from Java

Inheritance mix

Cross compile

Class substitution

Figure 1.3 The integration ladder
shows increasing cross-language
support from simple calls for
interoperability up to seamless
tool integration.
Licensed to Mark Watson <nordickan@gmail.com>

9The Groovy story
consider security, profiling, debugging, and other Java architectures. So much for
the platform integration, now on to the syntax.

SYNTAX ALIGNMENT

The second dimension of Groovy’s friendliness is its syntax alignment. Let’s compare
the different mechanisms to obtain today’s date in various languages to demonstrate
what alignment should mean:

import java.util.*; // Java
Date today = new Date(); // Java

today = new Date() // Groovy

require 'date' # Ruby
today = Date.new # Ruby

import java.util._ // Scala
var today = new Date // Scala

(import '(java.util Date)) ; Clojure
(def today (new Date)) ; Clojure
(def today (Date.)) ; Clojure alternative

The Groovy solution is short, precise, and more compact than regular Java. Groovy
doesn’t need to import the java.util package or specify the Date type. This is very
handy when using Groovy to evaluate user input. In those cases, one cannot assume
that the user is proficient in Java package structures or willing to write more code than
necessary. Additionally, Groovy doesn’t require semicolons when it can understand
the code without them. Despite being more compact, Groovy is fully comprehensible
to a Java programmer.

 The Ruby solution is listed to illustrate what Groovy avoids: a different packaging
concept (require), a different comment syntax, and a different object-creation syn-
tax. Scala introduces a new wildcard syntax with underscores and has its own way of
declaring whether a reference is supposed to be (in Java terms) “final” or not (var vs.
val). The user has to provide one or the other. Clojure doesn’t support wildcard
imports as of now, and shows two alternative ways of instantiating a Java class, both of
which differ syntactically from Java.

 Although all the alternative notations make sense in themselves and may even be
more consistent than Java, they don’t align as nicely with the Java syntax and architec-
ture as Groovy does. Throw into the mix that Groovy is the only language besides Java
that fully supports the Java notation of generics and annotations and you easily retrace
why the Groovy syntax is placed perfectly aligned with Java.

 Now you have an idea what Java friendliness means in terms of integration and syn-
tax alignment. But how about feature richness?

1.1.3 Power in your code: a feature-rich language

Giving a list of Groovy features is a bit like listing moves a dancer can perform.
Although each feature is important in itself, it’s how well they work together that
Licensed to Mark Watson <nordickan@gmail.com>

10 CHAPTER 1 Your way to Groovy
makes Groovy shine. Groovy has three main enhancements over and above those of
Java: language features, libraries specific to Groovy, and additions to the existing Java
standard classes (known as the Groovy Development Kit, or GDK). Figure 1.4 shows
some of these enhancements and how they fit together. The shaded circles indicate
the way that the features use each other. For instance, many of the library features rely
heavily on language features. Idiomatic Groovy code rarely uses one feature in isola-
tion; instead, it usually uses several of them together, like notes in a chord.

 Unfortunately, many of the features can’t be understood in just a few words. Clo-
sures, for example, are an invaluable language concept in Groovy, but the word on its
own doesn’t tell you anything. We won’t go into all the details now, but here are a few
examples to whet your appetite.

Object

inspection

Threads and

processes

Files and I/OMaps

Lists

Strings

Lists/Maps/Ranges

Closures

Strings/RegEx

Multimethods

GroovyBeans

Object operators

Category use (Mixin)

Dynamic methods

and properties

Method interception

Switch

Iterations

Advanced operators

Groovy truth

GPath

Hot class reloading

Scriptability

Groovy-aware

methods GDK

SQL

Stubs and

mocks

Ant

Groovlets

Templates

Swing

XML

Library

Language
Meta Object

Protocol

Control flow

Execution

Everything

is an object

Literals

Figure 1.4 Many of the additional libraries and GDK enhancements in Groovy build on the new
language features. The combination of the three forms a “sweet spot” for clear and powerful code.
Licensed to Mark Watson <nordickan@gmail.com>

11The Groovy story
LISTING A FILE: CLOSURES AND I/O ADDITIONS

Closures are blocks of code that can be treated as first-class objects: passed around as
references, stored, executed at arbitrary times, and so on. Java’s anonymous inner classes
are often used this way, particularly with adapter classes, but the syntax of inner classes is
ugly, and they’re limited in terms of the data they can access and change.

 File handling in Groovy is made significantly easier with the addition of various
methods to classes in the java.io package. A great example is the File.eachLine
method. How often have you needed to read a file, a line at a time, and perform the
same action on each line, closing the file at the end? This is such a common task; it
shouldn’t be difficult. In Groovy, it isn’t.

 Let’s put the two features together and create a complete program that lists a file
with line numbers:

def number = 0
new File('data.txt').eachLine { line ->
 number++
 println "$number: $line"
}

which prints

1: first line
2: second line

The braces enclose the closure. It’s passed as an argument to File’s new eachLine
method, which in turn calls back the closure for each line that it reads, passing the
current line as an argument.

PRINTING A LIST: COLLECTION LITERALS AND SIMPLIFIED PROPERTY ACCESS

The interfaces java.util.List and java.util.Map are probably the most widely
used ones in Java, but there’s little language support for them. Groovy adds the ability
to declare list and map literals just as easily as you would a string or numeric literal,
and it adds many methods to the collection classes.

 Similarly, the JavaBean conventions for properties are almost ubiquitous in Java,
but the language makes no use of them. Groovy simplifies property access, allowing
for far more readable code.

 Here’s an example using these two features to print the package for each of a list of
classes. Note that the word “clazz” isn’t “class” because that would be a Groovy keyword—
exactly like in Java. Although Java would allow a similar first line to declare an array, we’re
using a real list here—elements could be added or removed with no extra work:

def classes = [String, List, File]
for (clazz in classes) {
 println clazz.package.name
}

which prints

java.lang
java.util
java.io
Licensed to Mark Watson <nordickan@gmail.com>

12 CHAPTER 1 Your way to Groovy
In Groovy, you can even avoid such commonplace for loops by applying property
access to a list—the result is a list of the properties. Using this feature, an equivalent
solution to the previous code is

println([String, List, File]*.package*.name)

which prints

[java.lang, java.util, java.io]

Pretty cool, eh? The star character is optional in the preceding code. It’s added to
emphasize that the access to package and name is spread over the list and thus applied
to every item in it.

XML HANDLING THE GROOVY WAY: GPATH WITH DYNAMIC PROPERTIES
Whether you’re reading it or writing it, working with XML in Java requires a consider-
able amount of work. Alternatives to the W3C DOM make life easier, but Java itself
doesn’t help you in language terms—it’s unable to adapt to your needs. Groovy allows
classes to act as if they had properties at runtime even if the names of those properties
aren’t known when the class is compiled. GPath was built on this feature, and it allows
seamless XPath-like navigation of XML documents.

 Suppose you have a file called customers.xml such as this:

<?xml version="1.0" ?>
<customers>
 <corporate>
 <customer name="Bill Gates" company="Microsoft" />
 <customer name="Tim Cook" company="Apple" />
 <customer name="Larry Ellison" company="Oracle" />
 </corporate>
 <consumer>
 <customer name="John Doe" />
 <customer name="Jane Doe" />
 </consumer>
</customers>

You can print all the corporate customers with their names and companies using just
the following code:

def customers = new XmlSlurper().parse(new File('customers.xml'))
for (customer in customers.corporate.customer) {
 println "${customer.@name} works for ${customer.@company}"
}

which prints

Bill Gates works for Microsoft
Tim Cook works for Apple
Larry Ellison works for Oracle

Note that Groovy cannot possibly know anything in advance about the elements and
attributes that are available in the XML file. It happily compiles anyway. That’s one
capability that distinguishes a dynamic language.
Licensed to Mark Watson <nordickan@gmail.com>

13The Groovy story
A FRIENDLY LANGUAGE

Even trying to demonstrate just a few features of Groovy, you’ve seen other features in
the preceding examples—string interpolation with GString, simpler for loops, optional
typing, and optional statement terminators and parentheses, just for starters. The fea-
tures work so well with each other and become second nature so quickly, you hardly
notice you’re using them.

 Although being Java friendly and feature rich are the main driving forces for
Groovy, there are more aspects worth considering. So far, we’ve focused on the hard
technical facts about Groovy, but a language needs more than that to be successful. It
needs to attract people. In the world of computer languages, building a better mouse-
trap doesn’t guarantee that the world will beat a path to your door. It has to appeal to
both developers and their managers, in different ways.

1.1.4 Community driven but corporate backed

For some people it’s comforting to know that their investment in a language is pro-
tected by its adoption as a standard. This is one of the distinctive promises of Groovy.
Groovy is a de-facto standard like Spring and, not coincidentally, it’s endorsed by the
same company. Groovy is also a “first-class citizen” in the Spring framework.

 The size of the user base is a second criterion. The larger the user base, the greater
the chance of obtaining good support and sustainable development. Groovy’s user
base has grown beyond all expectations and has recently reached the top 20 of the
TIOBE (www.tiobe.com) index.3 Recent polls suggest that Groovy is used in the
majority of organizations that develop professionally with Java, much higher than
any alternative language. Groovy is regularly covered in Java conferences and publi-
cations, and virtually any Java open source project that allows scripting extensions
supports Groovy and has become an important item in many developers’ CVs and
job descriptions.

 Many corporations support Groovy. Oracle integrates Groovy support in its Net-
Beans IDE tool suite, presents Groovy at JavaOne, and pushes forward the idea of
multiple languages on the JVM, as in the JSRs 223 (Scripting Integration) and 292
(InvokeDynamic). Oracle has a long-standing tradition of using Groovy in a number
of products, just like other big players including IBM and SAP. While the develop-
ment of Groovy has always been driven by its community, it also profited from finan-
cial backing. Sustainability of the Groovy development was first sponsored by Big
Sky Technology, then by G2One and SpringSource (later acquired by VMware and
then spun off as part of Pivotal). Since 2015, Groovy is run under the stewardship of
the Apache Software Foundation (ASF). Big thanks to all that made this develop-
ment possible!

3 Groovy’s ranking tends to jump around quite a lot for that index as TIOBE Software alters its algorithm.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.tiobe.com

14 CHAPTER 1 Your way to Groovy
 Commercial support is also available if needed. Many companies offer training,
consulting, and engineering for Groovy, including the ones that we authors work for:
ASERT, Canoo, and Jworks.

 Attraction is more than strategic considerations, however. Beyond what you can
measure is a gut feeling that causes you to enjoy programming or not.

 The developers of Groovy are aware of this feeling, and it’s carefully considered
when deciding on language features. After all, there’s a reason for the name of the
language.

GROOVY “A situation or an activity that one enjoys or to which one is espe-
cially well suited (found his groove playing bass in a trio). A very pleasurable
experience; enjoy oneself (just sitting around, grooving on the music). To be
affected with pleasurable excitement. To react or interact harmoniously.”
(http://dict.leo.org).

Working with Groovy feels like a partnership between you and the language, rather than
a battle to express what’s clear in your mind in a way the computer can understand.

 Of course, while it’s nice to “feel the groove,” you still need to pay your bills. In
the next section, we’ll look at practical advantages Groovy will bring to your profes-
sional life.

1.2 What Groovy can do for you
Depending on your background and experience, you’re probably interested in differ-
ent features of Groovy. It’s unlikely that anyone will require every aspect of Groovy in
their day-to-day work, just as no one uses the whole of the mammoth framework pro-
vided by the Java standard libraries.

 This section presents interesting Groovy features and areas of applicability for Java
professionals; script programmers; and pragmatic, extreme, and agile programmers.
We recognize that developers rarely have just one role within their jobs and may well
have to take on each of these identities in turn. But it’s helpful to focus on how Groovy
helps in the kinds of situations typically associated with each role.

1.2.1 Groovy for the busy Java professional

If you consider yourself a Java professional, you probably have years of experience in
Java programming. You know all the important parts of the Java Runtime API and
most likely the APIs of a lot of additional Java packages.

 But, be honest. There are times when you cannot easily leverage this knowledge.
Consider an everyday task like searching through a number of websites for a particu-
lar word. If you’re in a hurry you might even want to do the searching concurrently.
You probably know several libraries and classes that could be effectively utilized to
accomplish this ad-hoc task but, if you’re like us, you probably consider coding the
Java solution as just too much effort.
Licensed to Mark Watson <nordickan@gmail.com>

http://dict.leo.org

15What Groovy can do for you
 As you’ll learn in this book, with Groovy you can quickly open the console and
accomplish this task by typing just a few lines of code as shown here:

import static groovyx.gpars.GParsPool.withPool

def urls = [
 'http://www.groovy-lang.org',
 'http://gpars.codehaus.org',
 'http://gr8conf.org/'
]*.toURL()

println withPool {
 urls.collectParallel {
 it.text.findAll(~/[Gg]roovy/).size()
 }
}

At the time of writing, this produced the following list of three numbers:

[38, 13, 2]

With current versions of Java, the equivalent solution with its exception handling,
thread management, and other scaffolding code is significantly harder to write and
understand. Java 8 improves on this somewhat, thanks to the introduction of lambdas,
but Groovy remains far ahead with regard to readability and ease of use.

 Besides command-line availability and code beauty, Groovy allows you to bring
dynamic behavior to Java applications, such as through expressing business rules that
can be maintained while the application is running, allowing smart configurations, or
even implementing DSLs.

 You have the options of using static or dynamic types and working with precom-
piled code or plain Groovy source code with on-demand compiling. As a developer,
you can decide where and when you want to put your solution “in stone” and where it
needs to be flexible. With Groovy, you have the choice.

 This should give you enough safeguards to feel comfortable incorporating Groovy
into your projects so you can benefit from its features.

1.2.2 Groovy for the polyglot programmer

As a polyglot programmer, you may be versed in various kinds of languages and pro-
gramming paradigms like Perl, Ruby, Python, Smalltalk, Lisp, Haskell, or Dylan. But
the Java platform has an undeniable market share, and it’s fairly common that folks
like you work with the Java language to make a living. Corporate clients often run a
Java standard platform (for example, JEE), allowing nothing but Java to be developed
and deployed in production. You have no chance of getting your ultraslick foreign-
language solution in there, so you bite the bullet, thinking all day, “If I only had [your
language here], I could replace this whole method with a single line!” We confess to
having experienced this kind of frustration.
Licensed to Mark Watson <nordickan@gmail.com>

16 CHAPTER 1 Your way to Groovy
 Groovy can give you relief and bring back the fun of programming by providing
advanced language features where you need them: in your daily work. By allowing you
to call methods on anything, pass blocks of code around for immediate or later execu-
tion following a functional approach, augment existing library code with your own spe-
cialized semantics, and use a host of other powerful features, Groovy lets you express
yourself clearly and achieve miracles with little code. Just sneak the groovy-all-*.jar file
into your project’s classpath, and you’re there.

 Today, software development is seldom a solitary activity, and your teammates (and
your boss) need to know what you’re doing with Groovy and what Groovy is about.
This book aims to be a device you can pass along to others so they can learn, too. (Of
course, if you can’t bear the thought of parting with it, you can tell them to buy their
own copies. We won’t mind.)

1.2.3 Groovy for pragmatic programmers, extremos, and agilists

If you fall into this category, you probably already have an overloaded bookshelf, a
board full of index cards with tasks, and an automated test suite that threatens to turn
red at a moment’s notice. The next iteration release is close, and there’s anything but
time to think about Groovy. Even uttering the word makes your pair-programming
mate start questioning your state of mind.

 One thing that we’ve learned about being pragmatic, extreme, or agile is that
every now and then you have to step back, relax, and assess whether your tools are still
sharp enough to cut smoothly. Despite the ever-pressing project schedules, you need
to sharpen the saw regularly. In software terms, that means having the knowledge and
resources needed and using the right methodology, tools, technologies, and lan-
guages for the task at hand.

 Groovy will be your house elf for all automation tasks that you’re likely to have in
your projects. These range from simple build automation, continuous integration
(CI), and reporting, up to automated documentation, shipment, and installation. The
Groovy automation support leverages the power of existing solutions such as Ant,
Maven, and Gradle while providing a simple and concise language means to control
them. Groovy even helps with testing, both at the unit and functional levels, helping
us test-driven folks feel right at home.

 Hardly any school of programmers applies as much rigor and pays as much atten-
tion as we do when it comes to self-describing, intention-revealing code. We feel an
almost physical need to remove duplication while striving for simpler solutions. This is
where Groovy can help tremendously.

 Before Groovy, I (Dierk) used other scripting languages (preferably Ruby) to
sketch some design ideas, do a spike (a programming experiment to assess the feasibil-
ity of a task), and run a functional prototype. The downside was that I was never sure if
what I was writing would also work in Java. Worse, in the end, I had the work of porting
it over or redoing it from scratch. With Groovy, I can do all the exploration work
directly on my target platform.
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

17Running Groovy
The seamless interplay of Groovy and Java opens two dimensions of optimizing code:
using Java for code that needs to be optimized for runtime performance, and using
Groovy for code that needs to be optimized for flexibility and readability.4

 Along with all these tangible benefits, there’s value in learning Groovy for its own
sake. It’ll open your mind to new solutions, helping you to perceive new concepts
when developing software, whichever language you use.

 No matter what kind of programmer you are, we hope you’re now eager to get
some Groovy code under your fingers. If you cannot hold back from looking at real
Groovy code, look ahead at chapter 2.

1.3 Running Groovy
First, we need to introduce you to the tools you’ll be using to run and optionally com-
pile Groovy code. If you want to try these out as you read, you’ll need to have Groovy
installed, of course. Appendix A provides a guide for the installation process.

TIP You can execute Groovy code—and most examples in this book—even
without installing anything! Point your browser to http://groovyconsole
.appspot.com/. This console is hosted on the Google app engine and is pro-
vided by Guillaume Laforge. Share and enjoy!

There are three commands to execute Groovy code and scripts, as shown in table 1.1.
Each of the three different mechanisms of running Groovy is demonstrated in the fol-
lowing sections with examples and screenshots. Groovy can also be run like any ordi-
nary Java program, as you’ll see in section 1.4.2, and there’s also a special integration
with Ant that’s explained in section 1.4.3.

 We’ll explore several options for integrating Groovy in Java programs in chapter 11.

Real-life example
Recently, Guillaume and I did a spike on prime number factorization.4 We started
with a small Groovy solution that did the job cleanly but not efficiently. Using
Groovy’s interception capabilities, we unit-tested the solution and counted the num-
ber of operations. Because the code was clean, it was a breeze to optimize the
solution and decrease the operation count. It would have been much more difficult
to recognize the optimization potential in Java code. The final result can be used
from Java as it stands, and although we certainly still have the option of porting the
optimized solution to plain Java, which would give us another performance gain, we
can defer the decision until the need arises.

4 Every ordinal number N can be uniquely disassembled into factors that are prime numbers: N = p1 × p2 × p3.
The factorization problem is known to be hard. Its complexity guards cryptographic algorithms like the pop-
ular Rivest–Shamir–Adleman (RSA) algorithm.
Licensed to Mark Watson <nordickan@gmail.com>

http://groovyconsole.appspot.com/
http://groovyconsole.appspot.com/

18 CHAPTER 1 Your way to Groovy
1.3.1 Using groovysh for a welcome message

Let’s look at groovysh first because it’s a handy tool for running experiments with
Groovy. It’s easy to edit and run Groovy interactively in this shell, and doing so facili-
tates seeing how Groovy works without creating and editing script files.

 To start the shell, run groovysh (UNIX) or groovysh.bat (Windows) from the
command line. You should get a command prompt like the following where you can
enter Groovy code to receive a warm welcome:

Groovy Shell (2.4.0, JVM: 1.7.0_75)
Type ':help' or ':h' for help.
--
groovy:000> "Welcome, " + System.properties."user.name"
===> Welcome, Dierk
groovy:000>

The shell is a good companion when you work on a remote server with only a text termi-
nal available. For the more common case where you are working on a desktop or laptop
machine, there are options that are even more comfortable as you’ll see in a minute.

 The shell can be started with a number of different command-line options that are
well explained in the online documentation (www.groovy-lang.org/groovysh.html). The
shell also understands useful commands, most notably help, which spares us listing all
commands here. One explanation, though: the shell comes with the notion of an edit-
ing buffer that comes in to play when a statement or expression spans multiple lines.
Class and method definitions are typical cases. The shell then keeps track of the line
numbers and allows various commands on the buffer, like editing it in your system’s
text editor.

1.3.2 Using groovyConsole

groovyConsole is a Swing interface that acts as a minimal Groovy development editor.
It lacks support for the command-line options supported by groovysh; however, it has
a File menu to allow Groovy scripts to be loaded, created, and saved. Interestingly,
groovyConsole is written in Groovy. Its implementation is a good demonstration of
builders, which are discussed in chapter 11.

Table 1.1 Commands to execute Groovy

Command What it does

groovy Starts the processor that executes Groovy scripts. Single-line Groovy scripts
can be specified as command-line arguments.

groovysh Starts the groovysh command-line shell, used to execute Groovy code inter-
actively. By entering statements or whole scripts line by line into the shell,
code is executed on the fly.

groovyConsole Starts a graphical interface that’s used to execute Groovy code interactively;
moreover, groovyConsole loads and runs Groovy script files.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.groovy-lang.org/groovysh.html

19Running Groovy
groovyConsole takes no arguments and starts a two-paned window like the one shown
in figure 1.5. The console accepts keyboard input in the upper pane. To run a script,
either key in Ctrl-R or Ctrl-Enter, or use the Run command from the Action menu.
When any part of the script code is selected, only the selected text is executed. This
feature is useful for simple debugging or single stepping by successively selecting one or
multiple lines.

 groovyConsole comes with all the UI goodness that you expect from a Swing appli-
cation.5 Walk through the menus or read the documentation under www.groovy-
lang.org/groovyconsole.html (you got the pattern by now, right?). The console comes
with some pleasant surprises. For good reasons, we made it very “demo-friendly.” Ctrl-
Shift-L and Ctrl-Shift-S will make the code appear larger or smaller so that the audi-
ence can better see the code.

 You can also drag and drop Groovy files from your filesystem right into the editor.
But that’s not all!

 Figure 1.6 shows the Object Browser inspecting the returned list of IP addresses. It
contains information about the ArrayList class in the header, with tabbed tables
showing available variables, methods, and fields.

 For easy browsing, you can sort columns by clicking the headers or reverse the sort
with a second click. You can sort by multiple criteria by clicking column headers in
sequence, and rearrange the columns by dragging the column headers.

 By this means, you can easily find out which methods you can call on the object
you’re currently working on (same intent as code completion in IDEs), which type
declared that method, and whether it comes from Groovy or Java. Let’s try this out:
click the Name header to sort by method names, then click Declarer, then click Ori-
gin. Now scroll down the list until you see Object as the declarer. Now you should see

5 Thanks to Romain Guy, the UI expert and coauthor of Filthy Rich Clients: Developing Animated and Graphical
Effects for Desktop Java Applications (Addison-Wesley Professional, 2007), who supported the Groovy team here.

Figure 1.5 groovyConsole with a
script in the edit pane that finds the
IP addresses of google.com. The
output pane captures the result.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.groovy-lang.org/groovyconsole.html
http://www.groovy-lang.org/groovyconsole.html

20 CHAPTER 1 Your way to Groovy
the same as in figure 1.6: the list of all methods, including parameter types and return
type, that Groovy adds to java.lang.Object. You’ll learn more about these methods
in chapter 12.

 Highlighted is the method dump() that Groovy adds to all objects. Try it! Put it in
the input field of the console. You’ll see that it’s like toString() but includes the
internal state of the object.

 Unless explicitly stated otherwise, you can put any code example in this book
directly into groovysh or groovyConsole and run it there. The more often you do
that, the quicker you’ll get a feeling for the language.

1.3.3 Using the groovy command

The groovy command is used to execute Groovy programs and scripts. Listing 1.1 cal-
culates the golden ratio that intersects a line into a smaller and bigger part such that
the total line length relates to the bigger part like the bigger part relates to the
smaller part. Composing paintings, photos, or UIs with the help of the golden ratio

Figure 1.6 The Groovy Object Browser when opened on an object of type
ArrayList, displaying the table of available methods in its bytecode and
registered meta-methods.
Licensed to Mark Watson <nordickan@gmail.com>

21Running Groovy

Go

candi

Sm
se
is considered pleasing to the human eye and has a long tradition in classic art. The
pentagram that underlies the Groovy logo is composed of golden ratios.6

 We calculate the golden ratio by narrowing down on the ratio of adjacent Fibo-
nacci7 numbers. The Fibonacci number sequence is a pattern where the first two num-
bers are 1 and 1, and every subsequent number is the sum of the preceding two. The
ratio between fibo(n) and fibo(n – 1) comes closer and closer to the golden ratio for
increasing values of n.

 We don’t go into the details of the implementation right now. Think about it as
arbitrary Groovy code, which for the beginning isn’t quite as “Groovy idiomatic” as it
could be. One little explanation anyway: [-1] refers to the last element in a list, [-2]
to the last-but-one.

 If you’d like to try this, copy the code into a file, and save it as Gold.groovy. The file
extension doesn’t matter much as far as the groovy executable is concerned, but nam-
ing Groovy scripts with a .groovy extension is conventional. One benefit of using this
extension is that you can omit it on the command line when specifying the name of
the script—instead of groovy Gold.groovy, you can just run groovy Gold.

List fibo = [1, 1]
List gold = [1, 2]

while (! isGolden(gold[-1])) {
 fibo.add(fibo[-1] + fibo[-2])
 gold.add(fibo[-1] / fibo[-2])
}

println "found golden ratio with fibo(${ fibo.size-1 }) as"
println fibo[-1] + " / " + fibo[-2] + " = " + gold[-1]
println "_" * 10 + "|" + "_" * (10 * gold[-1])

def isGolden(candidate) {
 def small = 1
 def big = small * candidate
 return isCloseEnough((small+big)/big, big/small)
}

def isCloseEnough(a,b) { return (a-b).abs() < 1.0e-9 }

6 For additional information about pentagrams and golden ratios, see http://en.wikipedia.org/wiki/Golden
_ratio#Pentagram.

7 Leonardo Pisano (1170–1250), a.k.a. Fibonacci, was a mathematician from Pisa (now a town in Italy). He
introduced this number sequence to describe the growth of an isolated rabbit population. Although this may
be questionable from a biological point of view, his number sequence plays a role in many different areas of
science and art. For more information, you can subscribe to the Fibonacci Quarterly.

Listing 1.1 Calculating the golden ratio with Gold.groovy

Initial Fibonacci
numberslden

ratio
dates

Last gold
candidate

Next Fibonacci
numberNext golden

candidate

Candidate
satisfies
golden rule

aller
ction Bigger

section
Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Golden_ratio#Pentagram
http://en.wikipedia.org/wiki/Golden_ratio#Pentagram

22 CHAPTER 1 Your way to Groovy
Run this file as a Groovy program by passing the filename to the groovy command.
You should see the following output that prints the value, the last step of the calcula-
tion, and a visual indication of where the golden ratio intersects a given line:

found golden ratio with fibo(23) as
46368 / 28657 = 1.6180339882
__________|________________

The groovy command has many additional options that are useful for command-line
scripting. For example, expressions can be executed by typing groovy -e "println
Math.PI", which prints 3.141592653589793 to the console. Section 12.3 will lead you
through the full range of options, with numerous examples.

 In this section, we’ve dealt with Groovy’s support for simple ad-hoc scripting, but
this isn’t the whole story. The next section expands on how Groovy fits into a code-
compile-run cycle.

1.4 Compiling and running Groovy
So far, we’ve used Groovy in direct8 mode, where the code is directly executed without
producing any executable files. In this section, you’ll see a second way of using
Groovy: compiling it to Java bytecode and running it as regular Java application code
within a JVM, called precompiled mode. Both ways execute Groovy inside a JVM even-
tually, and both ways compile the Groovy code to Java bytecode. The major difference
is when that compilation occurs and whether the resulting classes are used in memory
or stored on disk.

1.4.1 Compiling Groovy with groovyc

Compiling Groovy is straightforward because it comes with a compiler called groovyc.
The groovyc compiler generates at least one class file for each Groovy source file com-
piled. As an example, you can compile Gold.groovy from the previous section into
normal Java bytecode by running groovyc on the script file like so:

groovyc -d classes Gold.groovy

In this case, the groovyc compiler outputs Java class files to a directory named
classes, which you told it to do with the -d flag. If the directory specified with -d
doesn’t exist, it’s created. When you’re running the compiler, the name of each gener-
ated class file is printed to the console.

 For each script, Groovy generates a class that extends groovy.lang.Script, which
contains a main method so that Java can execute it. The name of the compiled class

8 We avoid the term interpreted to make clear that Groovy code is never interpreted in the sense of tradi-
tional Perl/Python/Ruby/Bash scripts. It’s always fully compiled into proper classes, even if that hap-
pens transparently.
Licensed to Mark Watson <nordickan@gmail.com>

23Groovy IDE and editor support
matches the name of the script being compiled. More classes may be generated,
depending on the script code.

 Now that you’ve got a compiled program, let’s see how to run it.

1.4.2 Running a compiled Groovy script with Java

Running a compiled Groovy program is identical to running a compiled Java pro-
gram, with the added requirement of having the embeddable groovy-all-*.jar file in
your JVM’s classpath, which will ensure that all of Groovy’s third-party dependencies
will be resolved automatically at runtime. Make sure you add the directory in which
your compiled program resides to the classpath, too. You then run the program in the
same way you’d run any other Java program, with the java command:9

java –cp %GROOVY_HOME%/embeddable/groovy-all-2.4.0.jar;classes Gold
found golden ratio with fibo(23) as
46368 / 28657 = 1.6180339882
__________|________________

Note that the .class file extension for the main class shouldn’t be specified when run-
ning with the java command.

 All this may seem like a lot of work if you’re used to building and running your
Java code with Ant at the touch of a button. We agree, which is why the developers of
Groovy have made sure you can do all of this easily in an Ant script.

 Groovy comes with a groovyc Ant task that works pretty much like the javac task. See
the details under www.groovy-lang.org/groovyc.html#_ant_task. But there’s more! The
groovy Ant task allows you to hook into the Ant build with whatever Groovy code you like.
See http://docs.groovy-lang.org/next/html/documentation/#_the_groovy_ant_task.

 When it comes to integrating Groovy into a larger project setup, there are even
more options. One is using the Groovy Maven integration. A second option is to
rely on the Groovy-based Gradle build system that we introduce in the “Gradle for
Project Automation” section in chapter 20. A very lightweight option for depen-
dency resolution is using Groovy’s @Grab annotation as covered in “Using Grapes”
in section 2.3.5. Groovy projects of any size are developed with IDE help anyway, and
they all support the transparent cross-compile of Groovy and Java sources as we’ll
discuss next.

1.5 Groovy IDE and editor support
Depending on how you use Groovy—from command-line scripts through medium-
sized all-Groovy applications up to multilanguage enterprise projects—you face very
different needs for development support. On the small scale, a decent text editor is

9 You should replace the .jar version (shown here as 2.4.0) with the version of Groovy you’ve installed. Also, the
command line as shown applies to Windows shells. The equivalent on UNIX would be:
> java –cp $GROOVY_HOME/embeddable/groovy-all-2.4.0.jar:classes Gold
Licensed to Mark Watson <nordickan@gmail.com>

http://www.groovy-lang.org/groovyc.html#_ant_task
http://docs.groovy-lang.org/next/html/documentation/#_the_groovy_ant_task

24 CHAPTER 1 Your way to Groovy
fine; however, on the large scale, you need the full story, including integrated cross-
language unit testing, refactoring, debugging, and profiling support like all leading
IDEs provide. This applies to literally all languages, but for Groovy, there’s an addi-
tional consideration.

 The Groovy compiler is by default very lenient when it comes to compile-time
checking of code. It must be, because in a dynamic language, new methods10 may
become available at runtime that the compiler cannot foresee. Therefore, it cannot
shield you from mistyped method names. But the IDE can warn you. It can highlight
unknown method names and even apply so-called type inference to give better warn-
ings and type-inferred code completion.

 That’s why IDE support is even more valuable for Groovy than it is for other pro-
gramming languages. Some commonly used IDEs and text editors for Groovy are
listed in the following sections. But this information is likely to be out of date as soon
as it’s printed. Stay tuned for updates for your favorite IDE.

 Since Groovy 2.0, you can make the Groovy compiler behave more like you’d
expect when using a traditional static language by enforcing type checking at compile
time. This isn’t done by default, but it is easily activated by annotating your code with
@TypeChecked or @CompileStatic. In chapter 3, we’ll dive into the details of typing in
Groovy and explain the possible options, and we devote all of chapter 10 to static typ-
ing aspects of Groovy.

1.5.1 IntelliJ IDEA plug-in

JetBrains, the company behind IntelliJ IDEA, was the first to provide a compelling
Groovy plug-in for its commercial IDE under the name JetGroovy, which today is bun-
dled by default with their distribution (since version 8.0). The JetGroovy plug-in is now
bundled with IDEA and split into two parts. The Groovy language support comes with
the free open source IntelliJ IDEA Community Edition, and the Grails/Griffon support
comes with the Ultimate Edition. No separate JetGroovy releases will be made. The
development of this plug-in led to the first cross-language compiler for Groovy, which
made bidirectional Java–Groovy compilation possible. JetBrains thankfully donated this
compiler to the Groovy project and it has heavily influenced today’s Groovy compiler.

 Listing all the features of the IntelliJ Groovy plug-in would be a futile attempt. We
wouldn’t even know where to start. It may be enough to say that any Groovy code is so
tightly integrated that the lines with Java begin to blur. The screenshot in figure 1.7
shows a Groovy script that produces this book from docbook format to PDF. Note that
the method getRepls() has no return type and is thus dynamically typed. It returns a
map where both keys and values are strings. Now see how in the structure pane (left
bottom) the return type is listed as Map<String,String>.

 This is type inference in action and it controls how code completion works in the
trailing code and even how method calls on keys and values of that map are known to

10 This applies to more than just method names, but we’ll keep it short at the start.
Licensed to Mark Watson <nordickan@gmail.com>

25Groovy IDE and editor support
be of type String. As an example, in line.contains(key) the key must be a String,
and because IntelliJ infers that it is, there’s no warning marker.

 Note that IntelliJ even understands the inferred type of args (it’s String[]), and
therefore it knows the available methods. This allows the IDE to provide code comple-
tion for all the methods on args. Beyond the native language support, IntelliJ offers
goodies for various Groovy-based frameworks like Grails, Griffon, Gradle, Gant, and,
by the time you’re reading this, probably even more.

1.5.2 NetBeans IDE plug-in

NetBeans IDE11 is an open source IDE sponsored by Oracle. Groovy support is a main
focus for NetBeans since version 6.5. Since then, Groovy is part of the standard Java
distribution of NetBeans IDE.

 NetBeans 8.0, the current version, has good support for Groovy, Grails, Gradle,
and Griffon. One of the compelling features of NetBeans IDE, besides it being open
source, is the cross-language support for multiple languages, enabling one to easily
combine Java, Groovy, JavaFx, and others in the same project. Furthermore, NetBeans
IDE is always at the forefront of providing value-added services for the Groovy frame-
works Grails and Griffon. The online documentation gives a good overview of the fea-
tures. Also check out Geertjan Wielenga’s12 blog and the quick-start guide.13

11 See “NetBeans IDE—The Smarter and Faster Way to Code,” https://netbeans.org/features/.
12 Geertjan’s blog, “Random NetBeans Stuff,” can be found at https://blogs.oracle.com/geertjan/.
13 At www.netbeans.org/kb/docs/java/groovy-quickstart.html you’ll find a document that gets you started with

Groovy in NetBeans IDE.

Figure 1.7 The special Groovy support in IntelliJ IDEA uses type inference to provide type safety where
the compiler can’t.
Licensed to Mark Watson <nordickan@gmail.com>

https://netbeans.org/features/
https://blogs.oracle.com/geertjan/
http://www.netbeans.org/kb/docs/java/groovy-quickstart.html

26 CHAPTER 1 Your way to Groovy
1.5.3 Eclipse plug-in

The Groovy plug-in for Eclipse has a long tradition and has gone through a num-
ber of changes. Recently, its development has followed the approach of coercing
the Groovy compiler into contributing to the Java model used by the Java Develop-
ment Toolkit (JDT) to populate the workbench. This piggyback approach provides a
deeply integrated developer experience for the Eclipse user and eliminates some
pitfalls of traditional compilation approaches that have relied on stub generation.
In fact, the compilation mechanism used by this plug-in has now been put into its
own separate module so that it can be used outside of Eclipse with the Maven build
tool.14

 In addition, you can download a special bundled version of Eclipse with Groovy and
Grails support called the Groovy and Grails Tool Suite, found at http://spring.io/tools.

1.5.4 Groovy support in other editors

Although they don’t claim to be full-featured development environments, a lot of all-
purpose editors provide support for programming languages in general and Groovy
in particular.

 The cross-platform JEdit editor comes with a plug-in for Groovy that supports exe-
cuting Groovy scripts and code snippets. A syntax-highlighting configuration is avail-
able separately. More details are available at http://plugins.jedit.org/plugins/?Groovy.

 For Mac users, there’s the popular TextMate editor with its Windows equivalent
simply called E. It comes with a Groovy and Grails bundle that you can install from
MacroMate’s bundle repository.

 UltraEdit can easily be customized to provide syntax highlighting for Groovy and
to start or compile scripts from within the editor. Any output goes to an integrated
output window. A small sidebar lets you jump to class and method declarations in the
file. It supports smart indentation and brace matching for Groovy. Besides the Groovy
support, it’s a feature-rich, quick-starting, all-purpose editor.

1.6 Summary
We hope that by now we’ve convinced you that you really want Groovy in your life. As
a modern language built on the solid foundation of Java, with a great community of
millions of users, and with corporate backing, Groovy has something to offer every-
one, in whatever way they interact with the Java platform.

 With a clear idea of why Groovy was developed and what drives its design, you
should be able to see where features fit into the bigger picture as each is introduced in
the coming chapters. Keep in mind the principles of Java integration and feature rich-
ness, making common tasks simpler and your code more expressive.

14 For details and to download the latest Groovy Eclipse plug-in, see http://docs.groovy-lang.org/latest/html/
documentation/tools-groovyeclipse.html.
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://docs.groovy-lang.org/latest/html/documentation/tools-groovyeclipse.html
http://docs.groovy-lang.org/latest/html/documentation/tools-groovyeclipse.html
http://spring.io/tools
http://plugins.jedit.org/plugins/?Groovy
http://www.allitebooks.org

27Summary
 Once you have Groovy installed, you can run it both directly as a script and after
compilation into classes. If you’ve been feeling energetic, you may even have installed
a Groovy plug-in for your favorite IDE. With this preparatory work complete, you’re
ready to see (and try!) more of the language itself. In the next chapter, we’ll take you
on a whistle-stop tour of Groovy’s features to give you a better feeling for the shape of
the language, before we examine each element in detail for the remainder of part 1.
Licensed to Mark Watson <nordickan@gmail.com>

Overture: Groovy basics
Do what you think is interesting, do something that you think is fun and
worthwhile, because otherwise you won’t do it well anyway.

—Brian Kernighan

This chapter follows the model of an overture in classical music, in which the initial
movement introduces the audience to a musical topic. Classical composers weave
euphonious patterns that are revisited, extended, varied, and combined later in the
performance. In a way, overtures are the whole symphony en miniature.

 In this chapter, we introduce many basic constructs of the Groovy language.
First though, we cover two things you need to know about Groovy to get started:
code appearance and assertions. Throughout the chapter, we provide examples to
jumpstart you with the language, but only a few aspects of each example will be
explained in detail—just enough to get you started. If you struggle with any of the
examples, revisit them after having read the whole chapter.

This chapter covers
■ What Groovy code looks like
■ Quickstart examples
■ Groovy’s dynamic nature
28

Licensed to Mark Watson <nordickan@gmail.com>

29General code appearance
 An overture allows you to make yourself comfortable with the instruments, the sound,
the volume, and the seating. So lean back, relax, and enjoy the Groovy symphony.

2.1 General code appearance
Computer languages tend to have an obvious lineage in terms of their look and feel.
For example, a C programmer looking at Java code might not understand a lot of the
keywords but would recognize the general layout in terms of braces, operators, paren-
theses, comments, statement terminators, and the like. Groovy allows you to start out
in a way that’s almost indistinguishable from Java and transition smoothly into a more
lightweight, suggestive, idiomatic style as your knowledge of the language grows. We’ll
look at a few of the basics—how to comment-out code, places where Java and Groovy
differ, places where they’re similar, and how Groovy code can be briefer because it lets
you leave out certain elements of syntax.

 Groovy is indentation-unaware, but it’s good engineering practice to follow the usual
indentation schemes for blocks of code. Groovy is mostly unaware of excessive
whitespace, with the exception of line breaks that end the current statement and
single-line comments. Let’s look at a few aspects of the appearance of Groovy code.

2.1.1 Commenting Groovy code

Single-line comments and multiline comments are exactly like those in Java, with an
additional option for the first line of a script:

#!/usr/bin/env groovy
// some line comment
/* some multi
 line comment */

Here are some guidelines for writing comments in Groovy:

■ The #! shebang comment is allowed only in the first line. The shebang allows
UNIX shells to locate the Groovy bootstrap script and run code with it.

■ // denotes single-line comments that end with the current line.
■ Multiline comments are enclosed in /* ... */ markers.
■ Javadoc-like comments in /** ... */ markers are treated the same as other

multiline comments, but are processed by the groovydoc Ant task.

Other parts of Groovy syntax are similarly Java friendly.

2.1.2 Comparing Groovy and Java syntax

Most Groovy code—but not all—appears exactly as it would in Java. This often leads to
the false conclusion that Groovy’s syntax is a superset of Java’s syntax. Despite the sim-
ilarities, neither language is a superset of the other. Groovy currently doesn’t support
multiple initialization and iteration statements in the classic for(init1,init2;test;
inc1,inc2) loop. As you’ll see in listing 2.1, the language semantics can be slightly dif-
ferent even when the syntax is valid in both languages. For example, the == operator
can give different results depending on which language is being used.
Licensed to Mark Watson <nordickan@gmail.com>

30 CHAPTER 2 Overture: Groovy basics
 Beside those subtle differences, the overwhelming majority of Java’s syntax is part
of the Groovy syntax. This applies to:

■ The general packaging mechanism.
■ Statements (including package and import statements).
■ Class, interface, enum, field, and method definitions including nested classes,

except for special cases with nested class definitions inside methods or other
deeply nested blocks.

■ Control structures.
■ Operators, expressions, and assignments.
■ Exception handling.
■ Declaration of literals, with the exception of literal array initialization where the

Java syntax would clash with Groovy’s use of braces. Groovy uses a shorter
bracket notation for declaring lists instead.

■ Object instantiation, referencing and dereferencing objects, and calling methods.
■ Declaration and use of generics and annotations.

The added value of Groovy’s syntax includes the following:

■ Ease access to Java objects through new expressions and operators.
■ Allow more ways of creating objects using literals.
■ Provide new control structures to allow advanced flow control.
■ Use annotations to generate invisible code, the so-called AST transformations

that are described in chapter 9.
■ Introduce new datatypes together with their operators and expressions.
■ A backslash at the end of a line escapes the line feed so that the statement can

proceed on the following line.
■ Additional parentheses force Groovy to treat the enclosed content as an expres-

sion. We’ll use this feature in section 4.3 when we cover more of the details
about maps.

Overall, Groovy looks like Java, except more compact and easier to read thanks to
these additional syntax elements. One interesting aspect that Groovy adds is the ability
to leave things out.

2.1.3 Beauty through brevity

Groovy allows you to leave out some elements of syntax that are always required in
Java. Omitting these elements often results in code that’s shorter and more expressive.
Compare the Java and Groovy code for encoding a string for use in a URL. For Java:

java.net.URLEncoder.encode("a b", "UTF-8");

For Groovy:

URLEncoder.encode 'a b', 'UTF-8'
Licensed to Mark Watson <nordickan@gmail.com>

31Probing the language with assertions
By leaving out the package prefix, parentheses, and semicolon, the code boils down to
the bare minimum.

 The support for optional parentheses is based on the disambiguation and prece-
dence rules as summarized in the Groovy Language Specification (GLS). Although
these rules are unambiguous, they’re not always intuitive. Omitting parentheses can
lead to misunderstandings, even though the compiler is happy with the code. We pre-
fer to include the parentheses for all but the most trivial situations. The compiler
doesn’t try to judge your code for readability—you must do this yourself.

 Groovy automatically imports the packages groovy.lang.*, groovy.util.*,
java.lang.*, java.util.*, java.net.*, and java.io.*, as well as the classes
java.math.BigInteger and BigDecimal. As a result, you can refer to the classes in
these packages without specifying the package names. We’ll use this feature through-
out the book, and we’ll use fully qualified class names only for disambiguation or for
pointing out their origin. Note that Java automatically imports java.lang.*, but noth-
ing else.

 There are other elements of syntax that are optional in Groovy too:

■ In chapter 7, we’ll talk about optional return statements.
■ Even the ubiquitous dot becomes optional when the chaining method is called.

For example, in combination with optional parentheses, the following code is
legal in Groovy: buy best of stocks, which is short for buy(best).of(stocks).
Chapter 7 has the full description of these so-called command chains.

■ Where Java demands type declarations, they either become optional in Groovy or
can be replaced by def to indicate that you don’t care about the type.

■ Groovy makes type casts optional.
■ You don’t need to add the throws clause to your method signature when your

method potentially throws a checked exception.

This section has given you enough background to make it easier to concentrate on
each individual feature in turn. We’re still going through them quickly rather than in
great detail, but you should be able to recognize the general look and feel of the code.
With that under your belt, we can look at the principal tool you’re going to use to test
each new piece of the language: assertions.

2.2 Probing the language with assertions
If you’ve worked with Java 1.4 or later, you’re probably familiar with assertions. They
test whether everything is right with the world as far as your program is concerned.
Usually they live in your code to make sure you don’t have any inconsistencies in your
logic, for performing tasks such as checking preconditions at the beginning and
postconditions and invariants at the end of a method, or for ensuring that method
arguments are valid. In this book we’ll use them to demonstrate the features of
Groovy. Just as in test-driven development, where the tests are regarded as the ulti-
mate demonstration of what a unit of code should do, the assertions in this book
Licensed to Mark Watson <nordickan@gmail.com>

32 CHAPTER 2 Overture: Groovy basics
demonstrate the results of executing particular pieces of Groovy code. We use asser-
tions to show not only what code can be run, but the result of running the code. This
section will prepare you for reading the code examples in the rest of the book,
explaining how assertions work in Groovy and how you’ll use them.

 Although assertions may seem like an odd place to start learning a language,
they’re our first port of call because you won’t understand any of the examples until
you understand assertions. Groovy provides assertions with the assert keyword. The
following listing makes some simple assertions.

assert(true)
assert 1 == 1
def x = 1
assert x == 1
def y = 1; assert y == 1

Let’s go through the lines one by one.

assert(true)

This introduces the assert keyword and shows that you need to provide an expres-
sion that you’re asserting will be true.1

assert 1 == 1

This demonstrates that assert can take full expressions, not just literals or simple vari-
ables. Unsurprisingly, 1 equals 1. Exactly like Ruby or Scala but unlike Java, the ==
operator denotes equality, not identity. The parentheses were left out as well, because
they’re optional for top-level statements.

def x = 1
assert x == 1

This defines the variable x, assigns it the numeric value 1, and uses it inside the
asserted expression. Note that nothing was revealed about the type of x. The def key-
word means “dynamically typed.”

def y = 1; assert y == 1

This is the typical style when asserting the program status for the current line. It uses
two statements on the same line, separated by a semicolon. The semicolon is Groovy’s
statement terminator. As you’ve seen before, it’s optional when the statement ends
with the current line.

Listing 2.1 Using assertions

1 Groovy’s meaning of truth encompasses more than a simple Boolean value, as you’ll see in “The Groovy truth”
in chapter 6.
Licensed to Mark Watson <nordickan@gmail.com>

33Probing the language with assertions
 What happens if an assertion fails? Let’s see!2 For example:

def a = 5
def b = 9
assert b == a + a

prints to the console (yes, really!):

Assertion failed:

assert b == a + a
 | | | | |
 9 | 5 | 5
 | 10
 false

 at snippet22_failing_assert.run(snippet22_failing_assert.groovy:3)

Pause and think about the language features required to provide such a sophisticated
error message. You’ll see more examples of Groovy’s “power assert” feature when we
discuss unit testing in chapter 17.

 Assertions serve multiple purposes:

■ They can be used to reveal the current program state, as they’re used in the
examples in this book. The one-line assertion in the previous example reveals
that the variable y now has the value 1.

■ They often make good replacements for line comments, because they reveal
assumptions and verify them at the same time. The assertion reveals that, at this
point, it’s assumed that y has the value 1. Comments may go out of date without
anyone noticing—assertions are always checked for correctness. They’re like tiny
unit tests sitting inside the real code.

2 This code is one of the few listings that isn’t executed as part of the book production.

Real-life example
One real-life example of the value of assertions is in your hands right now (or on your
screen). This book is constructed such that all listings and the assertions they con-
tain are maintained outside the actual text and linked into the text via file references.
With the help of a little Groovy script, all the listings are evaluated before the normal
production process even begins. For instance, the assertions in listing 2.1 were eval-
uated and found to be correct. If an assertion fails, the whole process stops with an
error message.

The fact that you’re reading a production copy of this book means the production pro-
cess wasn’t stopped and all assertions succeeded. This should give you confidence
in the correctness of the Groovy examples provided. For the first edition, we did the
same with MS Word using Scriptom (chapter 20) to control MS Word, and AntBuilder
(chapter 11) to help with the building side. As we said before, the features of Groovy
work best when they’re used together.

Expected
to fail

Expression
retained

Referenced
values

Subexpression
values
Licensed to Mark Watson <nordickan@gmail.com>

34 CHAPTER 2 Overture: Groovy basics
Most of the examples use assertions—one part of the expression will use the feature
being described, and another part will be simple enough to understand on its own. If
you have difficulty understanding an example, try breaking it up, thinking about the
language feature being discussed and what you’d expect the result to be given your
description, and then looking at what you’ve said the result will be, as checked at run-
time by the assertion. Figure 2.1 breaks up a more complicated assertion into its con-
stituent parts.

 This is an extreme example—you’ll often perform the steps in separate statements
and then make the assertion itself short. The principle is the same, however: there’s
code that has functionality you’re trying to demonstrate, and there’s code that’s trivial
and can be easily understood without knowing the details of the topic at hand.

 In case assertions don’t convince you or you mistrust an asserted expression in this
book, you can usually replace it with output to the console. A hypothetical assertion
such as

assert x == 'hey, this is really the content of x'

can be replaced by

println x

which prints the value of x to the console. Throughout the book, we often replace
console output with assertions for the sake of having self-checking code. This isn’t a
common way of presenting code in books,3 but we feel it keeps the code and the
results closer—and it appeals to our test-driven nature.

 Assertions have a few more interesting features that can influence your program-
ming style, and we’ll return to them in section 6.2.4 where we’ll cover them in more
depth. Now that we’ve explained the tool you’ll be using to put Groovy under the
microscope, you can start seeing some of the features in use.

2.3 Groovy at a glance
Like many languages, Groovy has a language specification that breaks down code
into statements, expressions, and so on. Learning a language from such a specifica-
tion tends to be a dry experience and doesn’t take you far toward the goal of writing
useful Groovy code in the shortest possible amount of time. Instead, we’ll present

3 This was a genuine innovation in the first edition of this book, which was found so useful by other authors
that they copied the concept. We don’t mind. Everything that advances our profession is welcome.

Keyword Equality operator

assert ('text' * 3 << 'hello').size() == 4 * 3 + 5

Feature under consideration Known bit

Figure 2.1 A complex
assertion, broken up into
its constituent parts
Licensed to Mark Watson <nordickan@gmail.com>

35Groovy at a glance
simple examples of typical Groovy constructs that make up most Groovy code: classes,
scripts, beans, strings, regular expressions, numbers, lists, maps, ranges, closures, loops,
and conditionals.

 Take this section as a broad but shallow overview. It won’t answer all your ques-
tions, but it’ll allow you to start experimenting with Groovy on your own. We encourage
you to play with the language. If you wonder what would happen if you were to tweak
the code in a certain way, try it! You learn best by experience. We promise to give
detailed explanations in later, in-depth chapters.

2.3.1 Declaring classes

Classes are the cornerstone of object-oriented programming (OOP), because they
define the blueprints from which objects are created.

 Listing 2.2 contains a simple Groovy class named Book, which has an instance vari-
able title, a constructor that sets the title, and a getter method for the title. Note that
everything looks much like Java, except there’s no accessibility modifier: methods are
public by default.

class Book {
 private String title
 Book (String theTitle) {
 title = theTitle
 }
 String getTitle(){
 return title
 }
}

Please save this code in a file named Book.groovy, because we’ll refer to it in the
next section.

 The code isn’t surprising. Class declarations look much the same in most object-
oriented languages. The details and nuts and bolts of class declarations will be explained
in chapter 7.

2.3.2 Using scripts

Scripts are text files, typically with an extension of *.groovy, that can be executed from
the command shell like this:

 > groovy myfile.groovy

Note that this is very different from Java. In Groovy, you’re executing the source code!
An ordinary Java class is generated for you and executed behind the scenes. But from
a user’s perspective, it looks like you’re executing plain Groovy source code.4

Listing 2.2 A simple Book class

4 Any Groovy code can be executed this way as long as it can be run; that is, it’s either a script, a class with a
main method, a Runnable, or a Groovy or JUnit test case.
Licensed to Mark Watson <nordickan@gmail.com>

36 CHAPTER 2 Overture: Groovy basics
 Scripts contain Groovy statements without an enclosing class declaration. Scripts
can even contain method definitions outside of class definitions to better structure the
code. You’ll learn more about scripts in chapter 7. Until then, take them for granted.

 Listing 2.3 shows how easy it is to use the Book class in a script. You create a new
instance and call the getter method on the object by using Java’s dot syntax. Then you
define a method to read the title backward.

Book gina = new Book('Groovy in Action')

assert gina.getTitle() == 'Groovy in Action'
assert getTitleBackwards(gina) == 'noitcA ni yvoorG'

String getTitleBackwards(book) {
 String title = book.getTitle()
 return title.reverse()
}

Note how you’re able to invoke the method getTitleBackwards before it’s declared.
Behind this observation is a fundamental difference between Groovy and scripting
languages such as Ruby. A Groovy script is fully constructed—that is, parsed, com-
piled, and generated—before execution. Section 7.2 has more details about this.

 Another important observation is that you can use Book objects without explic-
itly compiling the Book class! The only prerequisite for using the Book class is that
Book.groovy must reside on the classpath. The Groovy runtime system will find the
file, compile it transparently into a class, and yield a new Book object. Groovy com-
bines the ease of scripting with the merits of object orientation.

 This inevitably leads to the question of how to organize larger script-based applica-
tions. In Groovy, the preferred way isn’t to mesh numerous script files together, but
instead to group reusable components into classes such as Book. Remember that such
a class remains fully scriptable; you can modify Groovy code, and the changes are
instantly available without further action.

 It was pretty simple to write the Book class and the script that used it. Indeed, it’s
hard to believe that it can be any simpler—but it can, as you’ll see next.

2.3.3 GroovyBeans

JavaBeans are ordinary Java5 classes that expose properties. What is a property? That’s
not easy to explain, because it’s not a single standalone concept. It’s made up from a
naming convention. If a class exposes methods with the naming scheme getName()
and setName(name), then the concept describes name as a property of that class. The
get and set methods are called accessor methods. (Some people make a distinction
between accessor and mutator methods, but we don’t.) Boolean properties can use an
is prefix instead of get, leading to method names such as isAdult.

Listing 2.3 Using the Book class from a script

5 This is prior to Java 8 where a new concept of properties as first-class citizens comes bundled with JavaFX 8.
Licensed to Mark Watson <nordickan@gmail.com>www.allitebooks.com

http://www.allitebooks.org

37Groovy at a glance
 A GroovyBean is a JavaBean defined in Groovy. In Groovy, working with beans is
much easier than in Java. Groovy facilitates working with beans in three ways:

■ Generating the accessor methods
■ Allowing simplified access to all JavaBeans (including GroovyBeans)
■ Simplifying registration of event handlers together with annotations that declare

a property as bindable

The following listing shows how the Book class boils down to a one-liner defining the
title property. This results in the accessor methods getTitle() and setTitle(title)
being generated.

class BookBean {
 String title
}

def groovyBook = new BookBean()

groovyBook.setTitle('Groovy in Action')
assert groovyBook.getTitle() == 'Groovy in Action'

groovyBook.title = 'Groovy conquers the world'
assert groovyBook.title == 'Groovy conquers the world'

We also demonstrate how to access the bean in the standard way with accessor methods,
as well as in the simplified way, where property access reads like direct field access.

 Note that listing 2.4 is a fully valid script and can be executed as is, even though it
contains a class declaration and additional code. You’ll learn more about this con-
struction in chapter 7.

 Also note that groovyBook.title is not a field access. Instead, it’s a shortcut for the
corresponding accessor method. It’d work even if you’d explicitly declared the prop-
erty longhand with a getTitle() method.

 More information about methods and beans will be given in chapter 7.

2.3.4 Annotations

In Groovy, you can define and use annotations just like in Java, which is a distinctive
feature among JVM languages. Beyond that, Groovy also uses annotations to mark
code structures for special compiler handling. Let’s have a look at one of those anno-
tations that comes with the Groovy distribution: @Immutable.

 A Groovy bean can be marked as immutable, which means that the class becomes
final, all its fields become final, and you cannot change its state after construction.
Listing 2.5 declares an immutable FixedBean class, calls the constructor in two differ-
ent ways, and asserts that you have a standard implementation of equals() that sup-
ports comparison by content. With the help of a little try-catch, you assert that
changing the state isn’t allowed.

Listing 2.4 Defining the BookBean class as a GroovyBean

Property
declaration

Property use with
explicit getter calls

Property use with
Groovy shortcuts
Licensed to Mark Watson <nordickan@gmail.com>

38 CHAPTER 2 Overture: Groovy basics
import groovy.transform.Immutable

@Immutable class FixedBook {
 String title
}

def gina = new FixedBook('Groovy in Action')
def regina = new FixedBook(title:'Groovy in Action')

assert gina.title == 'Groovy in Action'
assert gina == regina

try {
 gina.title = "Oops!"
 assert false, "should not reach here"
} catch (ReadOnlyPropertyException expected) {
 println "Expected Error: '$expected.message'"
}

It must be said that proper immutability isn’t easily achieved without such help and
the annotation does actually much more than what you see in listing 2.5: it adds a cor-
rect hashCode() implementation and enforces defensive copying for access to all proper-
ties that aren’t immutable by themselves.

 Immutable types are always helpful for a clean design but they’re indispensable for
concurrent programming: an increasingly important topic that we’ll cover in chapter 18.

 The @Immutable annotation is only one of many that can enhance your code with
additional characteristics. In the next section we’ll briefly cover the @Grab annotation,
in chapter 8 we’ll look at @Category and @Mixin, and in chapter 9 we’ll cover the full
range of other annotations that come with the GDK.

 Most Groovy annotations, like @Immutable, instruct the compiler to execute an
AST transformation. The acronym AST stands for abstract syntax tree, which is a repre-
sentation of the code that the Groovy parser creates and the Groovy compiler works
on to generate the bytecode. In between, AST transformations can modify that AST
to sneak in new method implementations or add, delete, or modify any other code
structure. This approach is also called compile-time metaprogramming and isn’t
limited to the transformations that come with the GDK. You can also provide your
own transformations!

2.3.5 Using grapes

Before continuing we should cover one of the other annotations that you’ll see in
numerous places in the rest of the book. The @Grab annotation is used to explicitly
define your external library dependencies within a script. We sometimes use the term
grapes as friendly shorthand for our external Groovy library dependencies. In the
Java world, you might store your dependent libraries in a lib directory and add that
to your classpath and IDE settings, or you might capture that information in an Ivy,
Maven, or Gradle build file. Groovy provides an additional alternative that’s very

Listing 2.5 Defining the immutable FixedBean and exercising it

AST
annotation.

Positional
constructor.

Named-arg
constructor.

Standard
equals().

Not
allowed!
Licensed to Mark Watson <nordickan@gmail.com>

39Groovy at a glance
handy for making scripts self-contained. The following listing shows how you might
use it.

@Grab('commons-lang:commons-lang:2.4')
import org.apache.commons.lang.ClassUtils

class Outer {
 class Inner {}
}

assert !ClassUtils.isInnerClass(Outer)
assert ClassUtils.isInnerClass(Outer.Inner)

Here the use of the commons lang library is declared. It’s used to make some asser-
tions about two classes, ensuring that one of them is an inner class. At compile time
and runtime that library will be downloaded if needed and added to the classpath.
More details about @Grab and numerous related annotations can be found in appen-
dix E.

2.3.6 Handling text

Just as in Java, character data is mostly handled using the java.lang.String class. But
Groovy provides some tweaks to make that easier, with more options for string literals
and some helpful operators.

GSTRINGS
In Groovy, string literals can appear in single or double quotes. The double-quoted
version allows the use of placeholders, which are automatically resolved as required.
This is a GString, and that’s also the name of the class involved. The following code
demonstrates a simple variable expansion, although that’s not all GStrings can do:

def nick = 'ReGina'
def book = 'Groovy in Action, 2nd ed.'
assert "$nick is $book" == 'ReGina is Groovy in Action, 2nd ed.'

Chapter 3 provides more information about strings, including more options for
GStrings, how to escape special characters, how to span string declarations over mul-
tiple lines, and the methods and operators available on strings. As you’d expect,
GStrings are pretty neat.

REGULAR EXPRESSIONS
If you’re familiar with the concept of regular expressions, you’ll be glad to hear that
Groovy supports them at the language level. If this concept is new to you, you can safely
skip this section for the moment. You’ll find a full introduction to the topic in chapter 3.

 Groovy makes it easy to declare regular expression patterns, and provides operators
for applying them. Figure 2.2 declares a pattern with the slashy // syntax and uses the =~
find operator to match the pattern against a given string. The first example ensures that
the string contains a series of digits; the second example replaces every digit with an x.

Listing 2.6 Grabbing external libraries
Licensed to Mark Watson <nordickan@gmail.com>

40 CHAPTER 2 Overture: Groovy basics
Note that replaceAll is defined on java.lang.String and takes two string arguments.
It becomes apparent that '12345' is a java.lang.String, as is the expression /\d/.

 Chapter 3 explains how to declare and use regular expressions and goes through
the ways to apply them.

2.3.7 Numbers are objects

Hardly any program can do without numbers, whether for calculations or (more fre-
quently) for counting and indexing. Groovy numbers have a familiar appearance, but
unlike in Java, they’re first-class objects rather than primitive types.

 In Java, you cannot invoke methods on primitive types. If x is of primitive type
int, you cannot write x.toString(). On the other hand, if y is an object, you can-
not use 2*y.

 In Groovy, both are possible. You can use numbers with numeric operators, and
you can also call methods on number instances. For example:

def x = 1
def y = 2
assert x + y == 3
assert x.plus(y) == 3
assert x instanceof Integer

The variables x and y are objects of type java.lang.Integer. Thus, you can use the
plus method, but you can just as easily use the + operator.

 This is surprising and a major lift to object orientation on the Java platform.
Whereas Java has a small but ubiquitous part of the language that isn’t object oriented
at all, Groovy makes a point of using objects for everything. You’ll learn more about
how Groovy handles numbers in chapter 3.

2.3.8 Using lists, maps, and ranges

Many languages, including Java, only have direct support for a single collection type—
an array—at the syntax level and have language features that only apply to that type.
In practice, other collections are widely used, and there’s no reason why the language
should make it harder to use those collections than arrays. Groovy makes collection
handling simple, with added support for operators, literals, and extra methods beyond
those provided by the Java standard libraries.

Check Find operator

assert '12345' =~ /\d+/

String

of digits

Pattern

string

Check Pattern string ‘digit’

assert 'xxxxx' == '12345'.replaceAll(/\d/, 'x')

Result

String

of digits

Replacement

string

Figure 2.2 Regular expression support in Groovy through operators and slashy strings
Licensed to Mark Watson <nordickan@gmail.com>

41Groovy at a glance
LISTS
Java supports indexing arrays with a
square bracket syntax, which we’ll call the
subscript operator. In Groovy the same syn-
tax can be used with lists—instances of
java.util.List—which allows adding
and removing elements, changing the
size of the list at runtime, and storing
items that aren’t necessarily of a uniform
type. In addition, Groovy allows lists to be
indexed outside their current bounds,
which again can change the size of the
list. Furthermore, lists can be specified as
literals directly in your code.

 The example in figure 2.3 declares a
list of Roman numerals and initializes it
with the first seven numbers.

 The list is constructed such that each
index matches its representation as a
Roman numeral. Working with the list
looks like you’re working with an array, but in Groovy, the manipulation is more
expressive, and the restrictions that apply to arrays are gone:

def roman = ['', 'I', 'II', 'III', 'IV', 'V', 'VI', 'VII']
assert roman[4] == 'IV'

roman[8] = 'VIII'
assert roman.size() == 9

Note that there was no list item with index 8 when you assigned a value to it. You
indexed the list outside the current bounds. We’ll look at the list datatype in more
detail in section 4.2.

SIMPLE MAPS
A map is a storage type that associates a key with a value. Maps store and retrieve values
by key; lists retrieve them by numeric index.

 Unlike Java, Groovy supports maps at the language level, allowing them to be spec-
ified with literals and providing suitable operators to work with them. It does so with a
clear and easy syntax. The syntax for maps looks like an array of key–value pairs,
where a colon separates keys and values. That’s all it takes.

 The example in figure 2.4 stores descriptions of HTTP6 return codes in a map.

6 The server returns these codes with every response. Your browser typically shows the mapped descriptions for
codes above 400.

Index

Roman

numeral

0

I1

II2

III3

IV4

V5

VI6

VII7

VIII8 New entry

Figure 2.3 An
example list where
the content for
each index is the
Roman numeral
for that index

List of Roman
numerals

List
accessList

expansion
Licensed to Mark Watson <nordickan@gmail.com>

42 CHAPTER 2 Overture: Groovy basics
You can see the map declaration and initialization, the retrieval of values, and the
addition of a new entry. All of this is done with a single method call explicitly appear-
ing in the source code—and even that’s only checking the new size of the map:

def http = [
 100 : 'CONTINUE',
 200 : 'OK',
 400 : 'BAD REQUEST'
]
assert http[200] == 'OK'
http[500] = 'INTERNAL SERVER ERROR'
assert http.size() == 4

Note how the syntax is consistent with that used to declare, access, and modify lists.
The differences between using maps and lists are minimal, so it’s easy to remember
both. This is a good example of the Groovy language designers taking commonly
required operations and making programmers’ lives easier by providing a simple and
consistent syntax. Section 4.3 gives more information about maps and their rich fea-
ture set.

RANGES
Although ranges don’t appear in the standard Java libraries, most programmers have
an intuitive idea of what a range is—effectively a start point and an end point, with an
operation to move between the two in discrete steps. Again, Groovy provides literals to
support this useful concept, along with other language features such as the for state-
ment, which understands ranges.

 The following code demonstrates the range literal format, along with how to find
the size of a range, determine whether it contains a particular value, find its start and
end points, and reverse it:

def x = 1..10
assert x.contains(5)
assert !x.contains(15)
assert x.size() == 10
assert x.from == 1
assert x.to == 10
assert x.reverse() == 10..1

Key

(return code)

Value

(message)

100 CONTINUE

200 OK

400 BAD REQUEST

500 INTERNAL SERVER ERROR New entry

Figure 2.4 An example map
where HTTP return codes map
to their respective messages
Licensed to Mark Watson <nordickan@gmail.com>

43Groovy at a glance
These examples are limited because we’re only trying to show what ranges do on their
own. Ranges are usually used in conjunction with other Groovy features. Over the
course of this book, you’ll see a lot of range uses.

 So much for the usual datatypes. We’ll now come to closures, a concept that
doesn’t exist in Java, but which Groovy uses extensively.

2.3.9 Code as objects: closures

The concept of closures isn’t a new one, but it has usually been associated with func-
tional languages, allowing one piece of code to execute an arbitrary piece of code that
has been specified elsewhere.

 In object-oriented languages, the Method Object pattern has often been used to
simulate the same kind of behavior by defining types, the sole purpose of which is to
implement an appropriate single-method interface. The instances of those types can
subsequently be passed as arguments to methods, which then invoke the method on
the interface.

 A good example is the java.io.File.list(FilenameFilter) method. The File-
nameFilter interface specifies a single method, and its only purpose is to allow the list
of files returned from the list method to be filtered while it’s being generated.

 Unfortunately, this approach leads to an unnecessary proliferation of types, and
the code involved is often widely separated from the logical point of use. Java uses
anonymous inner classes and, since Java 8, lambdas and method references to address
these issues. Although similar in function, Groovy closures are much more versatile
and powerful when it comes to reaching out to the caller’s scope and putting closures
in a dynamic execution context. Groovy allows closures to be specified in a concise,
clean, and powerful way, effectively promoting the Method Object pattern to a first-
class position in the language.

 Because closures are a new concept to most Java programmers, it may take a little
time to adjust. The good news is that the initial steps of using closures are so easy that
you hardly notice what’s so new about them. The “aha-wow-cool” effect comes later,
when you discover their real power.

 Informally, a closure can be recognized as a list of statements within braces, like
any other code block. It optionally has a list of identifiers to name the parameters
passed to it, with an -> marking the end of the list.

 It’s easiest to understand closures through examples. Figure 2.5 shows a simple clo-
sure that’s passed to the List.each method, called on a list [1, 2, 3].

List Parameter Statement

[1, 2, 3].each entry println entry{ -> }

Iterator Closure in braces

Figure 2.5 A simple example of
a closure that prints the numbers
1, 2, and 3
Licensed to Mark Watson <nordickan@gmail.com>

44 CHAPTER 2 Overture: Groovy basics
The List.each method takes a single parameter—a closure. It then executes that clo-
sure for each of the elements in the list, passing in that element as the argument to
the closure. In this example, the main body of the closure is a statement to print what-
ever is passed to the closure, namely the parameter called entry.

 Let’s consider a slightly more complicated question: If n people are at a party and
everyone clinks glasses with everybody else, how many clinks do you hear?7 Figure 2.6
sketches this question for five people, where each line represents one clink.

 To answer this question, you can use Integer’s upto method, which does something
for every Integer starting at the current value and going up to a given end value. You
apply this method to the problem by imagining people arriving at the party one by
one. As people arrive, they clink glasses with everyone who is already present. This
way, everyone clinks glasses with everyone else exactly once.

 Listing 2.7 calculates the number of clinks. You keep a running total of the num-
ber of clinks, and when each guest arrives, you add the number of people already
present (the guest number – 1). Finally, you test the result using Gauss’ formula8 for
this problem—with 100 people, there should be 4,950 clinks.

def totalClinks = 0
def partyPeople = 100
1.upto(partyPeople) { guestNumber ->
 clinksWithGuest = guestNumber-1
 totalClinks += clinksWithGuest
}
assert totalClinks == (partyPeople * (partyPeople-1)) / 2

7 In computer terms: What is the maximum number of distinct connections in a dense network of n components?
8 Johann Carl Friedrich Gauss (1777–1855) was a German mathematician. At the age of seven, his teacher wanted

to keep the kids busy by making them sum up the numbers from 1 to 100. Gauss discovered this formula and
finished the task correctly and surprisingly quickly. There are differing reports on how the teacher reacted.

Listing 2.7 Counting all the clinks at a party using a closure

Figure 2.6 Five elements and their
distinct connections, modeling five
people (the circles) at a party clinking
glasses with each other (the lines). Here
there are 10 clinks.

Modifies
outer
scope
Licensed to Mark Watson <nordickan@gmail.com>

45Groovy at a glance
How does this code relate to Java? In Java, you’d have used a loop like the following code
snippet. The class declaration and main method are omitted for the sake of brevity:

// Java snippet
int totalClinks = 0;
int partyPeople = 100;
for(int guestNumber = 1;
 guestNumber <= partyPeople;
 guestNumber++) {
 int clinksWithGuest = guestNumber-1;
 totalClinks += clinksWithGuest;
}

Note that guestNumber appears four times in the Java code but only twice in the
Groovy version. Don’t dismiss this as a minor thing. The code should explain the pro-
grammer’s intention with the simplest possible means, and expressing behavior with
two words rather than four is an important simplification.

 Also note that the upto method encapsulates and hides the logic of how to walk
over a sequence of integers. That is, this logic appears only one time in the code (in the
implementation of upto). Count the equivalent for loops in any Java project, and
you’ll see the amount of structural duplication inherent in Java. But while code dupli-
cation itself is bad, it’s even more so an indicator for a lack of modularity! Groovy gives
you more means to separate your code into its independent concerns such as how to
walk a data structure and what to do at each step.

 The example has another subtle twist. The closure updates the totalClinks vari-
able, which is defined in the outer scope. It can do so because it has access to the
enclosing scope. That’s pretty tricky to do in Java, even with lambdas in Java 8.9

 There’s much more to say about the great concept of closures, and we’ll do so in
chapter 5.

2.3.10 Groovy control structures

Control structures allow a programming language to control the flow of execution
through code. There are simple versions of everyday control structures like if-else,
while, switch, and try-catch-finally in Groovy, just like in Java.

 In conditionals, null is treated like false, and so are empty strings, collections,
and maps. The for loop has a

for(i in x) { body }

notation, where x can be anything that Groovy knows how to iterate through, such as
an iterator, an enumeration, a collection, a range, a map—or literally any object, as
explained in chapter 6. In Groovy, the for loop is often replaced by iteration methods
that take a closure argument. The following listing gives an overview.

9 Java pours “syntax vinegar” over such a construct to discourage programmers from using it.
Licensed to Mark Watson <nordickan@gmail.com>

46 CHAPTER 2 Overture: Groovy basics
if (false) assert false

if (null)
{
 assert false
}
else
{
 assert true
}

def i = 0
while (i < 10) {
 i++
}
assert i == 10

def clinks = 0
for (remainingGuests in 0..9) {
 clinks += remainingGuests
}
assert clinks == (10*9)/2

def list = [0, 1, 2, 3]
for (j in list) {
 assert j == list[j]
}

list.each() { item ->
 assert item == list[item]
}

switch(3) {
 case 1 : assert false; break
 case 3 : assert true; break
 default: assert false
}

The code in listing 2.8 should be self-explanatory. Groovy control structures are rea-
sonably close to Java’s syntax, but we’ll go into more detail in chapter 6.

 That’s it for the initial syntax presentation. You’ve got your feet wet with Groovy
and you should have the impression that it’s a nice mix of Java-friendly syntax ele-
ments with some new interesting twists.

 Now that you know how to write your first Groovy code, it’s time to explore how it
gets executed on the Java platform.

2.4 Groovy’s place in the Java environment
Behind the fun of Groovy looms the world of Java. We’ll examine how Groovy classes
enter the Java environment to start with, how Groovy augments the existing Java class
library, and how Groovy gets its groove: a brief explanation of the dynamic nature of
Groovy classes.

Listing 2.8 Control structures

The if as
one-liner

null is false

Blocks may start
on new line

Classic
while

The for in
range

The for
in list

The each method
with a closure

Classifer
switch
Licensed to Mark Watson <nordickan@gmail.com>

47Groovy’s place in the Java environment
2.4.1 My class is your class

Mi casa es su casa—my home is your home. That’s the Spanish way of expressing hospi-
tality. Groovy and Java are just as generous with each other’s classes. So far, when talk-
ing about Groovy and Java, we’ve compared the appearance of the source code. But
the connection to Java is much stronger. Behind the scenes, all Groovy code runs
inside the JVM, and follows Java’s object model. Regardless of whether you write
Groovy classes or scripts, they run as Java classes inside the JVM.

 You can run Groovy classes inside the JVM in two ways:

■ You can use groovyc to compile *.groovy files to Java *.class files, put them on
Java’s classpath, and retrieve objects from those classes via the Java classloader.

■ You can work with *.groovy files directly and retrieve objects from those
classes via the Groovy classloader. In this case, no *.class files are generated,
but rather class objects—that is, instances of java.lang.Class. In other words,
when your Groovy code contains the expression new MyClass(), and there’s a
MyClass.groovy file, it’ll be parsed, a class of type MyClass will be generated
and added to the classloader, and your code will get a new MyClass object as if it
had been loaded from a *.class file. (We hope the Groovy programmers will for-
give this oversimplification.)

These two methods of converting *.groovy files into Java classes are illustrated in fig-
ure 2.7. Either way, the resulting classes have the same format as classic Java classes.
Groovy enhances Java at the source-code level but stays compatible at the bytecode level.

Compile

time

Runtime

Loaded class

Code.groovy

groovyc

Code.class

Java classloader

Loaded class

Code.groovy

Groovy classloader

Precompiled mode Direct mode

Figure 2.7 Groovy code can be compiled using groovyc and then
loaded with the normal Java classloader, or loaded directly with the
Groovy classloader.
Licensed to Mark Watson <nordickan@gmail.com>

48 CHAPTER 2 Overture: Groovy basics
2.4.2 GDK: the Groovy library

Groovy’s strong connection to Java makes using Java classes from Groovy and vice
versa exceptionally easy. Because they’re the same thing, there’s no gap to bridge. In
the code examples, every Groovy object is instantly a Java object. Even the term Groovy
object is questionable. Both are identical objects, living in the Java runtime.

 This has an enormous benefit for Java programmers, who can fully leverage their
knowledge of the Java libraries. Consider a sample string in Groovy:

'Hello World!'

Because this is a java.lang.String, Java programmers know that they can use JDK’s
String.startsWith method on it:

if ('Hello World!'.startsWith('Hello')) {
 // Code to execute if the string starts with 'Hello'
}

The library that comes with Groovy is an extension of the JDK library. It provides
some new classes (for example, for easy database access and XML processing), but it
also adds functionality to existing JDK classes. This additional functionality is
referred to as the GDK,10 and it provides significant benefits in consistency, power,
and expressiveness.

One example is the size method as used in the GDK. It’s available on everything that’s
of some size: strings, arrays, lists, maps, and other collections. Behind the scenes,
they’re all JDK classes. This is an improvement over the JDK, where you determine an
object’s size in a number of different ways, as listed in table 2.1. We think you’d agree
that the GDK solution is more consistent and easier to remember.

 Groovy can play this trick by funneling all method calls through a device called
MetaClass. This allows a dynamic approach to object orientation, only part of which
involves adding methods to existing classes. You’ll learn more about MetaClass in the
next section.

10 This is a bit of a misnomer because DK stands for development kit, which is more than just the library; it
should also include supportive tools. We’ll use this acronym anyway, because it’s conventional in the Groovy
community.

Still have to write Java code? Don’t get too comfortable...
Going back to plain Java and the JDK after writing Groovy with the GDK can often be
an unpleasant experience! It’s all too easy to become accustomed not only to the
features of Groovy as a language, but also to the benefits it provides in making com-
mon tasks simpler within the standard library.
Licensed to Mark Watson <nordickan@gmail.com>

49Groovy’s place in the Java environment
When describing the built-in datatypes later in the book, we also mention their most
prominent GDK properties. Appendix C contains the complete list.

 To help you understand how Groovy objects can leverage the power of the GDK,
we’ll next sketch how Groovy objects come into being.

2.4.3 Groovy compiler lifecycle

Although the Java runtime understands compiled Groovy classes without any prob-
lem, it doesn’t understand *.groovy source files. More work has to happen behind the
scenes if you want to load *.groovy files dynamically at runtime.

 Some relatively advanced Java knowledge is required to fully appreciate this sec-
tion. If you don’t already know a bit about classloaders, you may want to skip to the
chapter summary and assume that magic pixies transform Groovy source code into
Java bytecode at the right time. You won’t have as full an understanding of what’s
going on, but you can keep learning Groovy without losing sleep. Alternatively, you
can keep reading and not worry when things get tricky.

 Groovy syntax is line-oriented, but the execution of Groovy code is not. Unlike other
scripting languages, Groovy code isn’t processed line-by-line in the sense that each
line is interpreted separately.

 Instead, Groovy code is fully parsed, and a class is generated from the informa-
tion that the parser has built. The generated class is the binding device between
Groovy and Java, and Groovy classes are generated such that their format is identical
to Java bytecode.

 Inside the Java runtime, classes are managed by a classloader. When a Java class-
loader is asked for a certain class, it usually loads the class from a *.class file, stores it
in a cache, and returns it. Because a Groovy-generated class is identical to a Java class,
it can also be managed by a classloader with the same behavior. The difference is that
the Groovy classloader can also load classes from *.groovy files (and do parsing and
class generation before putting it in the cache).

Table 2.1 Ways of determining sizes in the JDK

Type Determine the size in JDK via ... Groovy

Array length field size() method

Array java.lang.reflect.Array.getLength(array) size() method

String length() method size() method

StringBuffer length() method size() method

Collection size() method size() method

Map size() method size() method

File length() method size() method

Matcher groupCount() method size() method
Licensed to Mark Watson <nordickan@gmail.com>

50 CHAPTER 2 Overture: Groovy basics
Groovy can at runtime read *.groovy files as if they were *.class files. The class genera-
tion can also be done before runtime with the groovyc compiler. The compiler simply
takes *.groovy files and transforms them into *.class files using the same parsing and
class-generation mechanics.

GROOVY CLASS GENERATION AT WORK
Suppose you have a Groovy script stored in a file named MyScript.groovy, and you
run it via groovy MyScript.groovy. The following are the class-generation steps, as
shown in figure 2.8:

1 The file MyScript.groovy is fed into the Groovy parser.
2 The parser generates an AST that fully represents all the code in the file.
3 The Groovy class generator takes the AST and generates Java bytecode from it.

Depending on the file content, this can result in multiple classes. Classes are
now available through the Groovy classloader.

4 The Java runtime is invoked in a manner equivalent to running java MyScript.

Figure 2.8 also shows a second variant, when groovyc is used instead of groovy.
This time, the classes are written into *.class files. Both variants use the same class-
generation mechanism.

 All this is handled behind the scenes and makes working with Groovy feel like it’s
an interpreted language, which it isn’t. Classes are always fully constructed before run-
time and don’t change while running.11

11 This doesn't preclude replacing a class at runtime, when the *.groovy file changes.

groovy groovyc

Class generation

Parser

Class generator

MyScript.groovy

Classloader MyScript.class

JVM bytecode

Figure 2.8 Flowchart of the
Groovy bytecode generation
process when executed in the
runtime environment or compiled
into *.class files. Different
options for executing Groovy
code involve different targets for
the bytecode produced, but the
parser and class generator are
the same in each case.
Licensed to Mark Watson <nordickan@gmail.com>

51Groovy’s place in the Java environment
 Given this description, you might legitimately ask how Groovy can be called a
dynamic language if all Groovy code lives in the static Java class format. Groovy performs
class construction and method invocation in a particularly clever way, as you’ll see.

GROOVY IS DYNAMIC
What makes dynamic languages so powerful is their dynamic method dispatch. Allow
yourself some time to let this sink in. It’s not the dynamic typing that makes a dynamic
language dynamic. It’s the dynamic method dispatch.

 In Grails, for example, you see statements like Album.findByArtist('Oscar
Peterson') but the Album class has no such method! Neither has any superclass. No
class has such a method! The trick is that method calls are funneled through an object
called a MetaClass, which in this case recognizes that there’s no corresponding
method in the bytecode of Album and therefore relays the call to its missingMethod
handler. This knows about the naming convention of Grails’ dynamic finder methods
and fetches your favorite albums from the database.

 But because Groovy is compiled to regular Java bytecode, how is the MetaClass
called? Well, the bytecode that the Groovy class generator produces is necessarily dif-
ferent from what the Java compiler would generate—not in format but in content.
Suppose a Groovy file contains a statement like foo(). Groovy doesn’t generate byte-
code that reflects this method call directly, but does something like this:12

getMetaClass().invokeMethod(this, "foo", EMPTY_PARAMS_ARRAY)

That way, method calls are redirected through the object’s MetaClass. This MetaClass
can now do tricks with method invocations such as intercepting, redirecting, adding/
removing methods at runtime, and so on. This principle applies to all calls from
Groovy code, regardless of whether the methods are in other Groovy objects or are in
Java objects. Remember: there’s no difference.

TIP The technically inclined may have fun running groovyc on some Groovy
code and feeding the resulting class files into a decompiler such as Jad. Doing
so gives you the Java code equivalent of the bytecode that Groovy generated.

Calling the MetaClass for every method call seems to imply a considerable perfor-
mance hit, and, yes, this flexibility comes at the expense of runtime performance. But
this hit isn’t quite as bad as you might expect, because the MetaClass implementation
comes with some clever caching and shortcut strategies that allow the Java just-in-time
compiler and the hot-spot technology to step in. When you need near-Java perfor-
mance, you can even use @CompileStatic (see chapter 10) and the generated code is
no longer calling into the MetaClass.

 A less obvious but perhaps more important consideration is the effect that
Groovy’s dynamic nature has on the compiler. Notice that, for example, Album.find-
ByArtist('Oscar Peterson') isn’t known at compile time but the compiler has to

12 The actual implementation involves a few more redirections.
Licensed to Mark Watson <nordickan@gmail.com>

52 CHAPTER 2 Overture: Groovy basics
compile it anyway. Now if you’ve mistyped the method name by accident, a compiler
cannot warn you. In fact, compilers have to accept almost any method call that you
throw at them and the code will fail at runtime.13 But don’t despair! What the com-
piler cannot do, other tools can. Your IDE can do more than the compiler because it
has contextual knowledge of what you’re doing. It’ll warn you on method calls that it
cannot resolve and, in the preceding case, it even gives you code completion and
refactoring support for Grails’s dynamic finder methods.

 A way of using dynamic code is to put the source in a string and ask Groovy to eval-
uate it. You’ll see how this works in chapter 16. Such a string can be constructed liter-
ally or through any kind of logic. Be warned though: you can easily get overwhelmed
by the complexity of dynamic code generation.

 Here is an example of concatenating two strings and evaluating the result:

def code = '1 + '
code += System.getProperty('java.class.version')
assert code == '1 + 51.0'
assert 52.0 == evaluate(code)

Note that code is an ordinary string! It happens to contain '1 + 51.0' when running
the code with Java 7,14 which is a valid Groovy expression (a script, actually). Instead of
having a programmer write this expression (say, println 1 + 51.0), the program puts
it together at runtime. The evaluate method finally executes it.

 Wait—didn’t we claim that line-by-line execution isn’t possible, and code has to be
fully constructed as a class? How can code be executed like this? The answer is simple.
Remember the left path in figure 2.7? Class generation can transparently happen at
runtime. The only new feature here is that the class-generation input can also be a
string like code rather than the content of a *.groovy file.

 The ability to evaluate an arbitrary string of code is the distinctive feature of script-
ing languages. That means Groovy can operate as a scripting language although it’s a
general-purpose programming language in itself.

GROOVY CAN BE STATIC

Does the dynamic support within Groovy worry you? Do you think it might add per-
formance penalties to your execution? Or do you worry that you might have reduced
IDE support when writing your programs? We already told you not to despair because
of the excellent tool support available even for Groovy in its most dynamic form. But
if you still aren’t reassured, you can force the Groovy compiler to do strict type check-
ing (with elaborate type inference) by using the @TypeChecked annotation for pieces
of code that you know to be free of dynamic features. The type checking mechanism
is extensible so you can even provide stricter type checking than available in Java if
you want.

13 That is, the code fails at unit-test time, right?
14 You should expect 49.0 if running using JDK5, 50.0 using JDK6, and 52.0 if using JDK8.
Licensed to Mark Watson <nordickan@gmail.com>

53Summary
 To see a glimpse of this feature, examine the following class definition:

class Universe {
 @groovy.transform.TypeChecked
 int answer() { "forty two" }
}

If you try to compile this you’ll get a compilation error:

[Static type checking] - Cannot return value of type java.lang.String
on method returning type int

Without the @TypeChecked annotation, the code would fail at runtime with a Groovy-
CastException. Chapter 10 has all the details.

2.5 Summary
That’s it for our initial overview. Don’t worry if you don’t feel you’ve mastered every-
thing we’ve covered—we’ll go over it all in detail in the upcoming chapters.

 We started by looking at how this book demonstrates Groovy code using assertions.
This allows you to keep the features you’re trying to demonstrate and the results of
using those features close together within the code. It also lets you automatically verify
that the listings are correct.

 You got a first impression of Groovy’s code notation and found it both similar to and
distinct from Java at the same time. Groovy is similar with respect to defining classes,
objects, and methods. It uses keywords, braces, brackets, and parentheses in a very simi-
lar fashion; however, Groovy’s notation is more lightweight. It needs less scaffolding
code, fewer declarations, and fewer lines of code to make the compiler happy. This may
mean that you need to change the pace at which you read code: Groovy code says more
in fewer lines, so you typically have to read more slowly, at least to start with.

 Groovy is bytecode compatible with Java and obeys Java’s protocol of full class con-
struction before execution. But Groovy is still fully dynamic, generating classes trans-
parently at runtime when needed. Despite the fixed set of methods in the bytecode of
a class, Groovy can modify the set of available methods as visible from a Groovy caller’s
perspective by routing method calls through the MetaClass, which we’ll cover in
depth in chapter 8. Groovy uses this mechanism to enhance existing JDK classes with
new capabilities, together named GDK.

 You now have the means to write your first Groovy scripts. Do it! Grab the Groovy
shell (groovysh) or the console (groovyConsole) and write your own code. As a side
effect, you’ve also acquired the knowledge to get the most out of the examples that
follow in the upcoming in-depth chapters.

 For the remainder of part 1, we’ll leave the surface and dive into the deep sea of
Groovy. This may be unfamiliar, but don’t worry. We’ll return to sea level often enough
to take some deep breaths of Groovy code in action.
Licensed to Mark Watson <nordickan@gmail.com>

Simple Groovy datatypes
Do not worry about your difficulties in mathematics. I can assure you mine are
still greater.

 —Albert Einstein

Groovy supports a limited set of datatypes at the language level; that is, it offers con-
structs for literal declarations and specialized operators. This set contains the sim-
ple datatypes for strings, regular expressions, and numbers, as well as the collective
datatypes for ranges, lists, and maps. This chapter covers simple datatypes; the next
chapter introduces collective datatypes.

 Before we go into details, we’ll talk about Groovy’s general approach to typing.
With this in mind, you can appreciate Groovy’s approach of treating everything as
an object and all operators as method calls. You’ll see how this improves the level of
object orientation in the language compared to Java’s division between primitive
types and reference types.

This chapter covers
■ Groovy’s approach to typing
■ Operators as method implementations
■ Strings, regular expressions, and numbers
54

Licensed to Mark Watson <nordickan@gmail.com>

55Objects, objects everywhere
 We then describe the natively supported datatypes individually. By the end of this
chapter, you’ll be able to confidently work with Groovy’s simple datatypes and have a
whole new understanding of what happens when you write 1+1.

3.1 Objects, objects everywhere
In Groovy, everything is an object. It is, after all, an object-oriented language. Groovy
doesn’t have the slight “fudge factor” of Java, which is object-oriented apart from
some built-in types. To explain the choices made by Groovy’s designers, we’ll first go
over basics of Java’s type system. We’ll then explain how Groovy addresses the difficul-
ties presented, and finally examine how Groovy and Java can still interoperate with
ease due to automatic boxing and unboxing where necessary.

3.1.1 Java’s type system: primitives and references

Java distinguishes between primitive types (such as boolean, short, int, double, float,
char, and byte) and reference types (such as Object and String). There’s a fixed set of
primitive types, and these are the only types that have value semantics—where the value
of a variable of that type is the actual number (or character, or true/false value).
You cannot create your own value types in Java.

 Reference types (everything apart from primitives) have reference semantics—the
value of a variable of that type is only a reference to an object. Readers with a C/C++
background may wish to think of a reference as a pointer—it’s a similar concept. If
you change the value of a reference type variable, it has no effect on the object it was
previously referring to—you’re just making the variable refer to a different object or
to no object at all. The reverse is true too: changing the contents of an object doesn’t
affect the value of a variable referring to that object.

 You cannot call methods on values of primitive types, and you cannot use them
where Java expects objects of type java.lang.Object. For each primitive type, Java
has a wrapper type—a reference type that stores a value of the primitive type in an
object. The wrapper for int, for example, is java.lang.Integer.

 Conversely, operators such as * in 3 * 2 or a * b aren’t supported for arbitrary1 refer-
ence types in Java, but only for primitive types (with the notable exception of +, which
is also supported for strings).

 The Groovy code in listing 3.1 calls methods on seemingly primitive types (first
with a literal declaration and then on a variable), which isn’t allowed in Java where
you need to explicitly create the integer wrapper to convince the compiler. While
calling + on strings is allowed in Java, calling the - (minus) operator is not. Groovy
allows both.

1 From Java 5 onward, the autoboxing feature may kick in to unbox the wrapper object to its primitive payload
and apply the operator.
Licensed to Mark Watson <nordickan@gmail.com>

56 CHAPTER 3 Simple Groovy datatypes
(60 * 60 * 24 * 365).toString(); // invalid Java

int secondsPerYear = 60 * 60 * 24 * 365;
secondsPerYear.toString(); // invalid Java

new Integer(secondsPerYear).toString();

assert "abc" - "a" == "bc" // invalid Java

The Groovy way looks more consistent and involves some language sophistication that
we’re going to explore next.

3.1.2 Groovy’s answer: everything’s an object

To make Groovy fully object-oriented, and because at the JVM level Java doesn’t sup-
port object-oriented operations such as method calls on primitive types, the Groovy
designers decided to do away with primitive types. When Groovy needs to store values
that would have used Java’s primitive types, Groovy uses the wrapper classes already
provided by the Java platform. Table 3.1 provides a complete list of these wrappers.

Any time you see what looks like a primitive literal value (the number 5, for example,
or the Boolean value true) in Groovy source code, that’s a reference to an instance of
the appropriate wrapper class. For the sake of brevity and familiarity, Groovy allows
you to declare variables as if they were primitive-type variables. Don’t be fooled—the
type used is really the wrapper type. Strings and arrays aren’t listed in table 3.1 because
they’re already reference types, not primitive types—no wrapper is needed.

 While we have the Java primitives under the microscope, so to speak, it’s worth
examining the numeric literal formats that Java and Groovy each use. They’re slightly
different because Groovy allows instances of java.math.BigDecimal and java.math
.BigInteger to be specified using literals in addition to the usual binary floating-point

Listing 3.1 Groovy supports primitive methods and object operators

Table 3.1 Java’s primitive datatypes and their wrappers

Primitive type Wrapper type Description

byte java.lang.Byte 8-bit signed integer

short java.lang.Short 16-bit signed integer

int java.lang.Integer 32-bit signed integer

long java.lang.Long 64-bit signed integer

float java.lang.Float Single-precision (32-bit) floating-point value

double java.lang.Double Double-precision (64-bit) floating-point value

char java.lang.Character 16-bit Unicode character

boolean java.lang.Boolean Boolean value (true or false)
Licensed to Mark Watson <nordickan@gmail.com>

57Objects, objects everywhere
types. Table 3.2 gives examples of each of the literal formats available for numeric
types in Groovy.

Notice how Groovy decides whether to use a BigInteger or a BigDecimal to hold a lit-
eral with a G suffix depending on the presence or absence of a decimal point. Notice
also how BigDecimal is the default type of noninteger literals. BigDecimal will be used
unless you specify a suffix to force the literal to be a Float or a Double.

3.1.3 Interoperating with Java: automatic boxing and unboxing

Converting a primitive value into an instance of a wrapper type is called boxing in Java
and other languages that support the same notion. The reverse action—taking an
instance of a wrapper and retrieving the primitive value—is called unboxing. Groovy
performs these operations automatically for you where necessary. This is primarily the
case when you call a Java method from Groovy. This automatic boxing and unboxing
is known as autoboxing.

 You’ve seen that Groovy is designed to work well with Java, so what happens
when a Java method takes primitive parameters or returns a primitive return type?
How can you call that method from Groovy? Consider the existing method in the
java.lang.String class: int indexOf (int ch). You can call this method from Groovy
like this:

assert 'ABCDE'.indexOf(67) == 2

From Groovy’s point of view, you’re passing an Integer containing the value 67 (the
Unicode value for the letter C), even though the method expects a parameter of prim-
itive type int. Groovy takes care of the unboxing. The method returns a primitive type

Table 3.2 Numeric literals in Groovy

Type Example literals

java.lang.Integera

a. Project Coin introduced binary literals and underscores within integer constants as part of Java 7. You can use these
features within Groovy even using older versions of the JDK.

15, 0x1234ffff, 0b00110011, 100_000_000

java.lang.Long 100L, 200lb

b. The use of lowercase l as a suffix indicating Long is discouraged, as it can look like a 1 (number one). There’s no
difference between the uppercase and lowercase versions of any of the suffixes.

java.lang.Float 1.23f, 4.56F

java.lang.Double 1.23d, 4.56D

java.math.BigInteger 123g, 456G

java.math.BigDecimal 1.23, 4.56, 1.4E4, 2.8e4, 1.23g, 1.23G
Licensed to Mark Watson <nordickan@gmail.com>

58 CHAPTER 3 Simple Groovy datatypes
int that’s boxed into an Integer as soon as it enters the world of Groovy. That way,
you can compare it to the Integer with value 2 back in the Groovy script.

 Figure 3.1 shows the process of going from the Groovy world to the Java world
and back.

 All of this is transparent—you don’t need to do anything in the Groovy code to
enable it. Now that you understand autoboxing, the question of how to apply opera-
tors to objects becomes interesting. We’ll explore this question next.

3.1.4 No intermediate unboxing

If in 1+1 both numbers are objects of type Integer, you may be wondering whether
those Integer objects are unboxed to execute the plus operation on primitive types.

 The answer is no: Groovy is more object-oriented than Java. It executes this expres-
sion as 1.plus(1), calling the plus() method of the first Integer object, and passing2

the second Integer object as an argument. The method call returns an Integer
object of value 2.

 This is a powerful model. Calling methods on objects is what object-oriented lan-
guages should do. It opens the door for applying the full range of object-oriented
capabilities to those operators.

 Let’s summarize. No matter how literals (numbers, strings, and so forth) appear in
Groovy code, they’re always objects. Only at the border to Java are they boxed and
unboxed. Operators are shorthand for method calls. Now that you’ve seen how
Groovy handles types when you tell it what to expect, let’s examine what it does when
you don’t give it any type information.

3.2 The concept of optional typing
So far, we haven’t used any type declarations in the sample Groovy scripts—or have
we? Well, we haven’t used them in the way that you’re familiar with in Java. We assigned
strings and numbers to variables and didn’t care about the type. Behind the scenes,

2 The phrase “passing an object” is short for “passing a reference to an object.” In Groovy and Java alike, only
references are passed as arguments: objects themselves are never passed.

assert 'ABCDE'.indexOf(67) == 2

java.lang.String

Groovy

Integer Integer

java.lang.String intint

'ABCDE'.indexOf(67) 2Java

Unboxing Boxing Figure 3.1 Autoboxing in
action: an Integer parameter
is unboxed to an int for the
Java method call, and an int
return value is boxed into an
Integer for use in Groovy.
Licensed to Mark Watson <nordickan@gmail.com>

59The concept of optional typing
Groovy implicitly assumes these variables to be of static type java.lang.Object. This
section discusses what happens when a type is specified, and the pros and cons of
doing it either way.

3.2.1 Assigning types

Groovy offers the choice of explicitly specifying variable types just as you do in Java.
Table 3.3 gives examples of optional type declarations. It’s tricky—anything talk-
ing about a “type declaration” makes us think it’s a type being declared, not a vari-
able. What we’re really talking about is “variable declarations using optional typing,”
but that’s a mouthful. We’re normally an absolute stickler for getting terminology
right, but if you’d like to fudge this slightly for the sake of more readable text,
that’s fine.

 The def keyword is used to indicate that no particular type is specified.

As we stated earlier, it doesn’t matter whether you declare a variable to be of type int
or Integer. Groovy uses the reference type (Integer) either way.

 It’s important to understand that regardless of whether a variable’s type is explic-
itly declared, the system is type safe. Unlike untyped languages, Groovy doesn’t allow
you to treat an object of one type as an instance of a different type without a well-
defined conversion being available. You could never assign a java.util.Date to a ref-
erence of type java.lang.Number, in the hope that you’d end up with an object that
you could use for calculation. That sort of behavior would be dangerous, which is why
Groovy doesn’t allow it any more than Java does.

3.2.2 Dynamic Groovy is type safe

We’ll first look at Groovy’s default dynamic behavior. It’s important to understand that
even when using all of its dynamic capabilities, Groovy is providing full type safety at
runtime. In chapter 10, we’ll explore how to make Groovy provide more type check-
ing at compile time to match and even exceed the kind of checking you might expect
from Java.

Table 3.3 Example Groovy statements and the resulting runtime type

Statement Type of value Comment

def a = 1 java.lang.Integer Implicit typing

def b = 1.0f java.lang.Float

int c = 1 java.lang.Integer Explicit typing using the Java primitive type names

float d = 1 java.lang.Float

Integer e = 1 java.lang.Integer Explicit typing using reference type names

String f = '1' java.lang.String
Licensed to Mark Watson <nordickan@gmail.com>

60 CHAPTER 3 Simple Groovy datatypes
 The web is full of heated discussions of whether static or dynamic typing is “better”
while it often remains unclear what either should actually mean. Static is often associ-
ated with the appearance of type markers in the code. For instance, code such as

String greeting = readFromConsole()

is often considered static because of the String type marker, while unmarked
code like

def greeting = readFromConsole()

is usually deemed dynamic. But it isn’t as simple as that. In languages that support type
inference3 and have no dynamic behavior capabilities, it might be possible to fully stat-
ically type check the latter code, while in a fully dynamic language, it’s not possible at
compile time to type check the former code even with type markers. This is because in
general solely dynamic languages cannot tell what type the readFromConsole()
method will eventually return,4 so there’s little point in doing many of the traditional
compile-time checks.5

 By default, Groovy is very much a dynamic language. You can safely leave out type
markers (and also type casts) in most scenarios and know that Groovy will do the
appropriate runtime checks to ensure type safety when required. Because type mark-
ers are optional in Groovy, that concept is often called optional typing. The types are
still there, of course, but you can choose not to make them explicit in your code.

 All of that may sound as if type markers are superfluous, but they play an impor-
tant role not only at runtime—for the method dispatch as you’ll see in chapters 7
and 8—but also for our current concern: type-safe assignments.

 Groovy uses type markers to enforce the Java type system at runtime. Yes, you’ve
read this correctly: Groovy enforces the Java type system! But it only does so at runtime,
where Java does so with a mixture of compile-time and runtime checks. Java enforces
the type system to a large extent at compile time based on static information, which
gives static typing its second meaning. The fact that Java does part of the work at run-
time can easily be inferred from the fact that Java programs can still raise Class-
CastExceptions and other runtime typing errors.

 All this explains why the Groovy compiler6 takes no issue with

Integer myInt = new Object()
println myInt

3 And indeed Groovy, when using @TypeChecked or @CompileStatic, is one of them!
4 It may, for example, be intercepted, relayed, or replaced by a different method.
5 Groovy will still do some compile-time checks even when compiling dynamically. For instance, if you

declare that a class implements an interface, Groovy requires that at compile time it contains the methods
from the interface.

6 Your IDE will present you a big warning, though. It can apply additional logic like data flow analysis and type
inference to even discover more hidden assignment errors. It’s your responsibility as a developer on how to
deal with these warnings.
Licensed to Mark Watson <nordickan@gmail.com>

61The concept of optional typing
but when running the code, the cast from Object to Integer is enforced and you’ll see

org.codehaus.groovy.runtime.typehandling.GroovyCastException:
 Cannot cast object 'java.lang.Object@5b0bc6'
 with class 'java.lang.Object' to class 'java.lang.Integer'

In fact, this is the same effect you see if you write a typecast on the right-hand side of
the assignment in Java.

 Consider this Java code:

Integer myInt = (Integer) returnsObject(); // Java!

The Java compiler will check whether returnsObject() returns an object of a type
that can sensibly be cast to Integer. Let’s assume that the declared return type is
Object. That makes Object the compile-time type7 of the returnsObject() reference.
The hope is that at runtime it’ll yield an Integer, which becomes its runtime type.8

 The Groovy code

Integer myInt = returnsObject()

is the exact equivalent of the preceding Java code as far as the type handling is con-
cerned. The Groovy compiler inserts type-casting logic for you that makes sure that
the right-hand side of an assignment is cast to the type of the left-hand side. Conse-
quently, when using the dynamic programming style as in

def myInt = returnsObject()

you’d cast to Object because that’s assumed when def is used. But this can never
have any effect because every object is at least of type Object and Groovy optimizes
the cast away.

 Declared types give you a number of benefits. They’re means of documentation
and communication, but most of all, they enable you to reason about your code. Con-
sider this code snippet:

Integer myInt = returnsObject()
println(++myInt)

The second line is guarded by the first line; there’s no way that it’d ever be called if
myInt wasn’t of type Integer. You can reason that the ++ operator will be found and
work as expected.

 As a second example, consider a method definition with a parameter that bears a
type marker:

def printNext(Integer myInt) {
 println(++myInt)
}

7 This is usually also called the static type but we avoid this term here to avoid further confusion.
8 Often called the dynamic type—a term we avoid for the same reason.
Licensed to Mark Watson <nordickan@gmail.com>

62 CHAPTER 3 Simple Groovy datatypes
There’s no possible way that this method could ever be called with an argument that
isn’t of type Integer! Even though the compiler accepts code like printNext(new
Object()), this will never result in calling the previous method. And now to a common
misconception.

Type declarations and type casts also play an important role in the Groovy method dis-
patch that we’ll examine in more detail in chapters 7 and 8. Casts come with some
additional logic to make development easier.

3.2.3 Let the casting work for you

To complete the picture, Groovy actually applies convenience logic when casting,
which is mainly concerned with casting primitive types to their wrapper classes and
vice versa, arrays to lists, characters to integers, Java’s type widening for numeric types,
applying the “Groovy truth” (see chapter 6) for casts to boolean, calling toString()
for casts to string, and so on. The exhaustive list can be looked up in DefaultType-
Transformation.castToType.

 Two notable features are baked into the Groovy type casting logic that may be sur-
prising at first, but make for really elegant code: casting lists and maps to arbitrary
classes. The following listing introduces these features by creating Point, Rectangle,
and Dimension objects.

import java.awt.*

Point topLeft = new Point(0, 0) // classic
Point botRight = [100, 100] // List cast
Point center = [x:50, y:50] // Map cast

assert botRight instanceof Point
assert center instanceof Point

def rect = new Rectangle()
rect.location = [0, 0] // Point
rect.size = [width:100, height:100] // Dimension

As you see from the listing, implicit runtime casting can lead to very readable code,
especially in cases like property assignments where Groovy knows that rect.size is of

Groovy types aren’t dynamic, they never change
If we could make the ink blink, we would! The word “dynamic” doesn’t mean that the
type of a reference, once declared, can ever change. Once you’ve declared Integer
myInt, you cannot execute myInt = new Object(). This will throw a GroovyCast-
Exception. You can only assign a value, which Groovy can cast to an Integer. As
you see, the phrase “dynamic typing” can be misleading and is best avoided.

Listing 3.2 Casting lists and maps to arbitrary classes
Licensed to Mark Watson <nordickan@gmail.com>

63The concept of optional typing
type java.awt.Dimension and can cast your list or map of constructor arguments onto
that. You don’t have to worry about it: Groovy infers the type for you.

 We’ve seen the value of type markers and pervasive casting. But because Groovy
offers optional typing, what is the use case for omitting type markers?

3.2.4 The case for optional typing

Omitting type markers isn’t only convenient for the lazy programmer who does ad-
hoc scripting, but is also useful for relaying and duck typing. Suppose you get an
object as the result of a method call, and you have to relay it as an argument to some
other method call without doing anything with that object yourself:

def node = document.findMyNode()
log.info node
db.store node

In this case, you’re not interested in finding out what the heck the actual type and
package name of that node are. You’re spared the work of looking them up, declaring
the type, and importing the package. You also communicate: “That’s just something.”

 The second use of unmarked typing is calling methods on objects that have no
guaranteed type. This is often called duck typing, and it allows the implementation of
generic functionality with high reusability.

For programmers with a strong Java background, it’s not uncommon to start program-
ming Groovy almost entirely using type declarations, and gradually shift into a more
dynamic mode over time. This is legitimate because it allows everybody to use what
they’re confident with.

RULE OF THUMB Experienced Groovy programmers tend to follow this rule of
thumb: as soon as you think about the type of a reference, declare it; if you’re
thinking of it as “just an object,” leave the type out.

Duck typing
As coined by the dynamic language community, “If it walks like a duck and quacks
like a duck, it must be a duck.” Weakly typed languages usually let you call any
method or access any property on an object, even if you don’t know at compile time
or even at runtime that the object is of a known type that contains that method or
property. This means you know the kind of objects you expect will have the relevant
signature or property. It’s an assumption. If you can call the method or access the
property, it must be the type you were expecting—hence, it’s a duck because it walks
and quacks like a duck!

Duck typing implies that as long as an object has a certain set of method signatures,
it’s interchangeable with any other object that has the same set of methods, regard-
less of whether the two have a related inheritance hierarchy.
Licensed to Mark Watson <nordickan@gmail.com>

64 CHAPTER 3 Simple Groovy datatypes
Whether or not you declare your types, you’ll find that Groovy lets you do a lot more
than you may expect. Let’s start by looking at the ability to override operators.

3.3 Overriding operators
Overriding refers to the object-oriented concept of having types that specify behavior
and subtypes that override this behavior to make it more specific. When a language
bases its operators on method calls and allows these methods to be overridden, the
approach is called operator overriding.

 It’s more conventional to use the term operator overloading, which means almost the
same thing. The difference is that overloading suggests, at least to many Java program-
mers, that you have multiple implementations of a method (and thus the associated
operator) that differ only in their parameter types.

 We’ll show you which operators can be overridden, show a full example of how
overriding works in practice, and offer guidance on the decisions you need to make
when operators work with multiple types.

3.3.1 Overview of overridable operators

As you saw in section 3.1.2, 1+1 is a convenient way of writing 1.plus(1). This is
achieved by class Integer having an implementation of the plus method.

 This convenient feature is also available for other operators. Table 3.4 shows
an overview.

Table 3.4 Method-based operators

Operator Name Method Works with

a + b Plus a.plus(b) Number, String,
StringBuffer, Collection,
Map, Date, Duration

a – b Minus a.minus(b) Number, String, List, Set,
Date, Duration

a * b Star a.multiply(b) Number, String, Collection

a / b Divide a.div(b) Number

a % b Modulo a.mod(b) Integral number

a++

++a

Postincrement
Preincrement

def v = a; a = a.next(); v

a = a.next(); a

Iterator, Number, String,
Date, Range

a--

--a

Postdecrement
Predecrement

def v = a; a =
a.previous(); v

a = a.previous(); a

Iterator, Number, String,
Date, Range

-a Unary minus a.unaryMinus() Number, ArrayList
Licensed to Mark Watson <nordickan@gmail.com>

65Overriding operators
+a Unary plus a.unaryPlus() Number, ArrayList

a ** b Power a.power(b) Number

a | b Numerical or a.or(b) Number, Boolean, BitSet,
Process

a & b Numerical and a.and(b) Number, Boolean, BitSet

a ^ b Numerical xor a.xor(b) Number, Boolean, BitSet

~a Bitwise
complement

a.bitwiseNegate() Number, String (the latter
returning a regular expression
pattern)

a[b] Subscript a.getAt(b) Object, List, Map,
CharSequence, Matcher,
many more

a[b] = c Subscript
assignment

a.putAt(b, c) Object, List, Map,
StringBuffer, many more

a << b Left shift a.leftShift(b) Integral number, also used
like “append” to String-
Buffer, Writer, File,
Socket, List

a >> b Right shift a.rightShift(b) Number

a >>> b Right shift
unsigned

a.rightShift-
Unsigned(b)

Number

switch(a
){
 case b:
}

Classification b.isCase(a) Object, Class, Range,
Collection, Pattern,
Closure; also used with
Collection c in c.grep(b),
which returns all items of c where
b.isCase(item)

a in b Classification b.isCase(a) See previous row

a == b Equals if (a implements
Comparable) {
a.compareTo(b) == 0 }
else { a.equals(b) }

Object; consider

hashCode()a

a != b Not equal !(a == b) Object

a. When overriding the equals method, Java strongly encourages the developer to also override the hashCode()
method such that equal objects have the same hash code (whereas objects with the same hash code are not necessarily
equal). See the Java API documentation of java.lang.Object#equals.

Table 3.4 Method-based operators

Operator Name Method Works with
Licensed to Mark Watson <nordickan@gmail.com>

66 CHAPTER 3 Simple Groovy datatypes
You can easily use any of these operators with your own classes. Just implement the
respective method. Unlike in Java, there’s no need to implement a specific interface.

 Strictly speaking, Groovy has even more operators in addition to those in table 3.4,
such as the dot operator for referencing fields and methods. Their behavior can also
be overridden. They come into play in chapter 7.

 This is all good in theory, but let’s see how it all works in practice.

3.3.2 Overridden operators in action

Listing 3.3 demonstrates an implementation of the == (equals) and + (plus) operators
for a Money class. It’s an implementation of the Value Object9 pattern. You allow values
of the same currency to be summed, but don’t support multicurrency addition.

Table 3.4 Method-based operators (continued)

Operator Name Method Works with

a <=> b Spaceship a.compareTo(b) java.lang.Comparable

a > b Greater than a.compareTo(b) > 0

a >= b Greater than
or equal to

a.compareTo(b) >= 0

a < b Less than a.compareTo(b) < 0

a <= b Less than or
equal to

a.compareTo(b) <= 0

a as type Enforced
coercion

a.asType (typeClass) Any type

The case of equals
Nothing is easier than determining whether a == b is true, right? Well, only at first
sight if you want this to be a useful equality check. If both are null, they should count
as equal. If they reference the same object, they’re equal without the need for check-
ing. In other words, a == a for all values of a.

But there’s more! If a >= b and a <= b, then you can deduce that a == b, right? But
this may impose a conflict if you have a Comparable object that doesn’t implement
the equals method consistently. This is why Groovy only looks at the compareTo
method for Comparable objects when doing the equality check and ignores the
equals method in this case. You can find the full logic implemented in the Groovy
runtime under DefaultTypeTransformation.compareEqual(a,b).

9 See a discussion of value objects at http://c2.com/cgi/wiki?ValueObject.
Licensed to Mark Watson <nordickan@gmail.com>

http://c2.com/cgi/wiki?ValueObject

67Overriding operators
 You implement equals indirectly by using the @Immutable annotation as intro-
duced in section 2.3.4. Remember that == (or equals method) denotes object equality
(equal values), not identity (same object instances).

import groovy.transform.Immutable

@Immutable
class Money {
 int amount
 String currency

 Money plus (Money other) {
 if (null == other) return this
 if (other.currency != currency) {
 throw new IllegalArgumentException(
 "cannot add $other.currency to $currency")
 }
 return new Money(amount + other.amount, currency)
 }
}

Money buck = new Money(1, 'USD')
assert buck
assert buck == new Money(1, 'USD')
assert buck + buck == new Money(2, 'USD')

Because every immutable object automatically gets a value-based implementation of
equals, you get away with only a minimal declaration at B. The use of this operator is
shown at d, where one dollar becomes equal to any other dollar. At c, the + opera-
tor isn’t overridden in the strict sense of the word, because there’s no such operator in
Money’s superclass (Object). In this case, operator implementing is the best wording. This
is used at e, where two Money objects are added.

 We mentioned earlier in this section that Java programmers may already be familiar
with method overloading. You can apply that concept even with operators by defining
additional plus implementations. Let’s look at a possible overload for the + operator. In
listing 3.3, Money can only be added via the plus method to other Money objects. How-
ever, you might also want to be able to add Money with code like this:

assert buck + 1 == new Money(2, 'USD')

We can provide the additional method as follows:

Money plus (Integer more) {
 return new Money(amount + more, currency)
}

which overloads the plus method with a second implementation that takes an Integer
parameter. The Groovy method dispatch finds the right implementation at runtime.

Listing 3.3 Overriding the plus and equals operators

Overrides ==
operator

 b

Implements +
operator

 c

Uses
overridden ==

 d

Uses
implemented +

 e
Licensed to Mark Watson <nordickan@gmail.com>

68 CHAPTER 3 Simple Groovy datatypes
NOTE Our plus operation on the Money class returns Money objects in both
cases. We describe this by saying that Money’s plus operation is closed under its
type. Whatever operation you perform on an instance of Money, you end up
with another instance of Money.

This example leads to the general issue of how to deal with different parameter types
when implementing an operator method. We’ll go through aspects of this issue in the
next section.

3.3.3 Making coercion work for you

Implementing operators is straightforward when both operands are of the same type.
Things get more complex with a mixture of types, say

1 + 1.0

This adds an Integer and a BigDecimal. What is the return type? Section 3.6 answers
this question for the special case of numbers, but the issue is more general. One of the
two arguments needs to be promoted to the more general type. This is called coercion.

 When implementing operators, there are three main issues to consider as part
of coercion.

SUPPORTED ARGUMENT TYPES
You need to decide which argument types and values will be allowed. If an operator
must take a potentially inappropriate type, throw an IllegalArgumentException where
necessary. In the Money example, even though it makes sense to use Money as the param-
eter for the plus operator, you don’t allow different currencies to be added together.

PROMOTING MORE SPECIFIC ARGUMENTS
If the argument type is a more specific one than your own type, promote it to your type
and return an object of your type. To see what this means, consider how you might
implement the + operator if you were designing the BigDecimal class, and what you’d
do for an Integer argument.

 Integer is more specific than BigDecimal: every Integer value can be expressed
as a BigDecimal, but the reverse isn’t true. So for the BigDecimal.plus(Integer)
operator, you’d consider promoting the Integer to BigDecimal, performing the addi-
tion, and then returning another BigDecimal—even if the result could accurately be
expressed as an Integer.

HANDLING MORE GENERAL ARGUMENTS WITH DOUBLE DISPATCH
If the argument type is more general, call its operator method with yourself (“this,” the
current object) as an argument. Let it promote you. This is also called double dispatch,10

and it helps to avoid duplicated, asymmetric, possibly inconsistent code. Let’s reverse
the previous example and consider Integer.plus (BigDecimal operand).

10 Double dispatch is usually used with overloaded methods: a.method(b) calls b.method(a) where method
is overloaded with method(TypeA)and method(TypeB).
Licensed to Mark Watson <nordickan@gmail.com>

69Working with strings
 We’d consider returning the result of the expression operand.plus(this), dele-
gating the work to BigDecimal’s plus(Integer) method. The result would be a Big-
Decimal, which is reasonable—it’d be odd for 1+1.5 to return an Integer but 1.5+1
to return a BigDecimal.

 Of course, this is only applicable for commutative11 operators. Test rigorously, and
don’t make the mistake of creating an endless cycle. If Integer’s plus is calling
BigInteger’s plus, you better make sure that BigInteger’s plus doesn’t call back
to Integer!

GROOVY’S CONVENTIONAL BEHAVIOR
Groovy’s general strategy of coercion is to return the most general type. Other lan-
guages such as Ruby try to be smarter and return the least general type that can be
used without losing information from range or precision. The Ruby way saves mem-
ory at the expense of processing time. It also requires that the language promotes a
type to a more general one when the operation would generate an overflow of that
type’s range. Otherwise, intermediary results in a complex calculation could trun-
cate the result.

 Now that you know how Groovy handles types in general, we can delve deeper
into what it provides for each of the datatypes it supports at the language level. We
begin with the type that’s probably used more than any other non-numeric type: the
humble string.

3.4 Working with strings
Considering how widely strings are used, many languages—including Java—provide
few language features to make them easier to handle. Scripting languages tend to fare
better in this regard than mainstream application languages, so Groovy takes on
board some of those extra features. This section examines what’s available in Groovy
and how to make the most of the extra abilities.

 Groovy strings come in two flavors: plain strings and GStrings. Plain strings are
instances of java.lang.String, and GStrings are instances of groovy.lang.GString.
GStrings allow placeholder expressions to be resolved and evaluated at runtime. Many
scripting languages have a similar feature, usually called string interpolation, but it’s
more primitive than the GString feature of Groovy. Let’s start by looking at each flavor
of string and how it appears in code.

3.4.1 Varieties of string literals

Java allows only one way of specifying string literals: placing text in quotes “like this.”
If you want to embed dynamic values within the string, you have to either call a for-
matting method (made easier, but still far from simple, in Java 1.5) or concatenate
each constituent part. If you specify a string with a lot of backslashes in it (such as a

11 An operator is commutative if the operands can be exchanged without changing the result of the operation.
For example, plus is usually required to be commutative (a + b == b + a) but minus is not (a – b != b - a).
Licensed to Mark Watson <nordickan@gmail.com>

70 CHAPTER 3 Simple Groovy datatypes
Windows filename or a regular expression), your code becomes hard to read, because
you have to double the backslashes. If you want a lot of text spanning several lines in
the source code, you have to make each line contain a complete string (or several
complete strings).

 Groovy recognizes that not every use of string literals is the same, so it offers a vari-
ety of options. These are summarized in table 3.5.

The aim of each form is to specify the text data you want with a minimum of fuss. Each
of the forms has a single feature that distinguishes it from the others:

■ The single-quoted form never pays any attention to placeholders. This is closely
equivalent to Java string literals.

■ The double-quoted form is the equivalent of the single-quoted form, except
that if the text contains unescaped dollar signs, the dollar sign introduces a
placeholder, and the string will be treated as a GString instead of a plain string.
GStrings are covered in more detail in the next section.

■ The triple-quoted form (or multiline string literal) allows the literal to span sev-
eral lines. New lines are always treated as \n regardless of the platform, but all
other whitespace is preserved as it appears in the text file. Multiline string liter-
als may also be GStrings, depending on whether single quotes or double quotes
are used. Multiline string literals act similar to Ruby or Perl.

■ The slashy form of string literal is also multiline but allows strings with back-
slashes to be specified simply without having to escape all the backslashes. This
is particularly useful with regular expressions, as you’ll see later. There are only
a few exceptions and limitations. Slashes are escaped with a backslash. A back-
slash can’t appear as the last character of a slashy string. Dollar symbols that
could introduce a placeholder but aren’t meant to also need to be escaped. If
you want to create a string with a backslash followed by a u, the backslash needs

Table 3.5 Summary of the string literal styles available in Groovy

Start/end
characters Example

Placeholder
resolved?

Backslash
escapes?

Single quote 'hello Dierk' No Yes

Double quote "hello $name" Yes Yes

Triple single
quote (' ' ')

' ' '========== Total: $0.02 ==========' ' ' No Yes

Triple double
quote (""")

"""first $line second $line third
$line"""

Yes Yes

Forward slash /x(\d*)y/ Yes Occasionally

Dollar slash $/x(\d*)y/$ Yes Occasionally
Licensed to Mark Watson <nordickan@gmail.com>

71Working with strings
to be escaped so as not to be interpreted as a Unicode character, which hap-
pens in the earliest stages of parsing.12

■ The dollar slashy form of string literal also allows strings with backslashes to be
specified without having to escape all the backslashes. Only Unicode characters
are escaped with a backslash. Dollar signs and slashes are escaped with a dollar
sign. The other restrictions on backslashes you saw for normal slashy strings
don’t apply.

As we hinted earlier, Groovy uses a similar mechanism to Java for specifying special
characters, such as linefeeds and tabs. In addition to the Java escapes, dollar signs can
be escaped in double-quoted GStrings to allow them to be placed directly in such
strings without the compiler assuming you’re defining a GString placeholder. The full
set of escaped characters is specified in table 3.6.

Note that in a double-quoted string, single quotes don’t need to be escaped, and vice
versa. In other words, 'I said, "Hi."' and "don't" both do what you hope they will.
For the sake of consistency, both still can be escaped in each case. Likewise, dollar
signs can be escaped in single-quoted strings, even though they don’t need to be. This
makes it easier to switch between the forms.

12 Escaping backslashes and dollars is slightly tricky in a slashy string and involves either using GString tricks
or embedding Unicode escape sequences (for example, \u005C is the Unicode for a backslash). Here
are three expressions involving slashy strings resulting in a string starting with a backslash followed by u2:
/\u005Cu${1+1}/ or GString.EMPTY + '\\' + /u${1+1}/ or /${'\\'}u${1+1}/. A similar issue occurs
if you want to use a dollar sign. This is a small (and rare) price to pay for the benefits available, however.

Table 3.6 Escaped characters as known to Groovy

Escaped special character Meaning

\b Backspace

\t Tab

\r Carriage return

\n Linefeed

\f Form feed

\\ Backslash

\$ Dollar sign

\uabcd Unicode character u + abcd (where a, b, c, and d are hex digits)

\abc Unicode character u + abc (where a, b, and c are octal digits, and b and c
are optional)

\' Single quote

\" Double quote
Licensed to Mark Watson <nordickan@gmail.com>

72 CHAPTER 3 Simple Groovy datatypes
 Note that Java uses single quotes for character literals, but as you’ve seen, Groovy
cannot do so because single quotes are already used to specify strings.

 But you can achieve the same as in Java when providing the type explicitly:

char a = 'x'

or

Character b = 'x'

The java.lang.String 'x' is cast into a java.lang.Character. If you want to coerce
a string into a character at other times, you can do so in either of the following ways:

'x' as char

or

'x'.toCharacter()

As a GDK goody, there are more to* methods to convert a string, such as toInteger,
toLong, toFloat, and toDouble.

 Whichever literal form is used, unless the compiler decides it’s a GString, it ends up
as an instance of java.lang.String, just like Java string literals. So far, we’ve only teased
you with allusions to what GStrings are capable of. Now it’s time to spill the beans.

3.4.2 Working with GStrings

GStrings are like strings with additional capabilities.13 They’re literally declared in
double quotes. What makes a double-quoted string literally a GString is the appear-
ance of placeholders. Placeholders may appear in a full ${expression} syntax or an
abbreviated $reference syntax. See the examples in the following listing.

import static java.util.Calendar.*

def me = 'Tarzan'
def you = 'Jane'
def line = "me $me - you $you"
assert line == 'me Tarzan - you Jane'

TimeZone.default = TimeZone.getTimeZone('GMT')
def date = new Date(0)
def dateMap = [y:date[YEAR]-1900, m:date[MONTH], d:date[DAY_OF_MONTH]]
def out = "Year $dateMap.y Month $dateMap.m Day $dateMap.d"
assert out == 'Year 70 Month 0 Day 1'

def tz = TimeZone.getTimeZone('GMT')
def format = 'd MMM YYYY HH:mm:SS z'
out = "Date is ${date.format(format, tz)} !"
assert out == 'Date is 1 Jan 1970 00:00:00 GMT !'

13 groovy.lang.GString isn’t actually a subclass of java.lang.String, and couldn’t be, because String is
final. But GStrings can usually be used as if they were strings—Groovy coerces them into strings when it needs to.

Listing 3.4 Working with GStrings

Abbreviated
dollar syntax

 b

Extended
dot syntax c

Full syntax
with braces d
Licensed to Mark Watson <nordickan@gmail.com>

73Working with strings
def sql = """
SELECT FROM MyTable
 WHERE Year = $dateMap.y
"""
assert sql == """
SELECT FROM MyTable
 WHERE Year = 70
"""

out = "my 0.02\$"
assert out == 'my 0.02$'

Within a GString, simple references to variables can be dereferenced with the dollar
sign. This simplest form is shown at B, whereas c shows this being extended to use
property accessors with the dot syntax. You’ll learn more about accessing properties in
chapter 7.

 The full syntax uses dollar signs and braces, as shown at D. It allows arbitrary
Groovy expressions within the braces. The braces denote a closure.

 In real life, GStrings are handy in templating scenarios. A GString is used to create
the string for an SQL query. Groovy provides even more sophisticated templating sup-
port, as shown in chapter 8. If you need a dollar character within a template (or any
other GString use), you must escape it with a backslash as shown in E.

 Although GStrings behave like java.lang.String objects for all operations that a
programmer is usually concerned with, they’re implemented differently to capture
the fixed and dynamic parts (the so-called values) separately. This is revealed by the
following code:

def me = 'Tarzan'
def you = 'Jane'
def line = "me $me - you $you"
assert line == 'me Tarzan - you Jane'
assert line instanceof GString
assert line.strings[0] == 'me '
assert line.strings[1] == ' - you '
assert line.values[0] == 'Tarzan'
assert line.values[1] == 'Jane' 14

Placeholder evaluation time
Each placeholder inside a GString is evaluated at declaration time and the result is
stored in the GString object. By the time the GString value is converted into a
java.lang.String (by calling its toString method or casting it to a string), each
value gets written14 to the string. Because the logic of how to write a value can be
elaborate for certain types (most notably closures), this behavior can be used in
advanced ways that make the evaluation of such placeholders appear to be lazy. See
section D.2 of the cheat sheet appendix for an example of this.

14 See Writer.write(Object) in section 12.2.3.

Multiline
GStrings

 E

Escaped
dollar sign

Literal
dollar sign
Licensed to Mark Watson <nordickan@gmail.com>

74 CHAPTER 3 Simple Groovy datatypes
You’ve seen the Groovy language support for declaring strings. What follows is an
introduction to the use of strings in the Groovy library. This will also give you a first
impression of the seamless interplay of Java and Groovy. We start in typical Java style
and gradually slip into Groovy mode, carefully watching each step.

3.4.3 From Java to Groovy

Now that you have your strings easily declared, you can have some fun with them.
Because they’re objects of type java.lang.String, you can call String’s methods on
them or pass them as parameters wherever a string is expected, such as for easy con-
sole output:

System.out.print("Hello Groovy!");

This line is equally valid Java and Groovy. You can also pass a literal Groovy string in
single quotes:

System.out.print('Hello Groovy!');

Because this is such a common task, the GDK provides a shortened syntax:

print('Hello Groovy!');

You can drop parentheses and semicolons, because they’re optional and don’t help
readability in this case. The resulting Groovy style boils down to

print 'Hello Groovy!'

Looking at this last line only, you cannot tell whether this is Groovy, Ruby, Perl, or one
of several other line-oriented scripting languages. It may not look sophisticated, but it
boils down the code to its essence.

 The next listing presents more of the mix-and-match between core Java and addi-
tional GDK capabilities. How would you judge the signal-to-noise ratio of each line?

String greeting = 'Hello Groovy!'

assert greeting.startsWith('Hello')

assert greeting.getAt(0) == 'H'
assert greeting[0] == 'H'

assert greeting.indexOf('Groovy') >= 0
assert greeting.contains('Groovy')

assert greeting[6..11] == 'Groovy'
assert 'Hi' + greeting - 'Hello' == 'Hi Groovy!'

assert greeting.count('o') == 3

assert 'x'.padLeft(3) == ' x'
assert 'x'.padRight(3,'_') == 'x__'

Listing 3.5 A miscellany of string operations
Licensed to Mark Watson <nordickan@gmail.com>

75Working with strings
assert 'x'.center(3) == ' x '
assert 'x' * 3 == 'xxx'

These self-explanatory examples give an impression of what’s possible with strings in
Groovy. If you’ve ever worked with other scripting languages, you may notice that a
useful piece of functionality is missing from listing 3.5: changing a string in place.
Groovy cannot do so because it works on instances of java.lang.String and obeys
Java’s invariant of strings being immutable.

 Before you say “What a lame excuse!” here’s Groovy’s answer to changing strings:
although you cannot work on String, you can still work on StringBuffer!15 On a
StringBuffer, you can work with the << (left shift) operator for appending and the
subscript operator for in-place assignments. Using the << operator on String returns
a StringBuffer. Here’s the StringBuffer equivalent to listing 3.5:

def greeting = 'Hello'

greeting <<= ' Groovy'

assert greeting instanceof java.lang.StringBuffer

greeting << '!'

assert greeting.toString() == 'Hello Groovy!'

greeting[1..4] = 'i'

assert greeting.toString() == 'Hi Groovy!'

NOTE Although the expression stringRef << string returns a StringBuffer,
note that StringBuffer isn’t automatically assigned to the stringRef B.
When used on a String, it needs explicit assignment; on StringBuffer it
doesn’t. With a StringBuffer, the data in the existing object is changed C—
with a String you can’t change the existing data, so you have to return a
new object instead. You might also note that a greeting was explicitly typed.
It’s effectively of type Object and can reference both String and String-
Buffer values.

Throughout the next sections, you’ll gradually add to what you’ve learned about
strings as you discover more language features. String has gained several new meth-
ods in the GDK. You’ve already seen a few of these, but you’ll see more as we talk about
working with regular expressions and lists. The complete list of GDK methods on
strings is listed in appendix C.

 Working with strings is one of the most common tasks in programming, and for
script programming in particular: reading text, writing text, cutting words, replacing
phrases, analyzing content, search and replace—the list is amazingly long. Think
about your own programming work. How much of it deals with strings?

15 Future versions may use a StringBuilder instead. StringBuilder was introduced in Java 1.5 to reduce the
synchronization overhead of StringBuffers. Typically, StringBuffers are used only in a single thread and
then discarded—but StringBuffer itself is thread-safe, at the expense of synchronizing each method call.

Left shift
and assign b

Left shift on
StringBuffer c

Substring 'ello'
becomes 'i'
Licensed to Mark Watson <nordickan@gmail.com>

76 CHAPTER 3 Simple Groovy datatypes
 Groovy supports you in these tasks with comprehensive string support, but that’s
not the whole story. The next section introduces regular expressions, which cut through
text like a chainsaw: difficult to operate but extremely powerful.

3.5 Working with regular expressions

Once a programmer had a problem. He thought he could solve it with a regular
expression. Now he had two problems.

 —Jamie Zawinski

Suppose you had to prepare a table of contents for this book. You’d need to collect all
the headings like “3.5 Working with regular expressions”—paragraphs that start with a
number or with a number, a dot, and another number. The rest of the paragraph
would be the heading. This would be cumbersome to code naïvely: iterate over each
character; check whether it’s a line start; if so, check whether it’s a digit; if so, check
whether a dot and a digit follow. Puh—lots of rope, and we haven’t even covered num-
bers that have more than one digit.

 Regular expressions come to the rescue. They allow you to declare such a pattern
rather than programming it. Once you have the pattern, Groovy lets you work with it
in numerous ways.

 Regular expressions are prominent in scripting languages and have also been avail-
able in the Java library since JDK 1.4. Groovy relies on Java’s regex (regular expression)
support and adds three operators for convenience:

■ The regex find operator, =~
■ The regex match operator, ==~
■ The regex pattern operator, ~string

An in-depth discussion about regular expressions is beyond the scope of this book. Our
focus is on Groovy, not on regexes. We give the shortest possible introduction to make
the examples comprehensible and provide you with a jumpstart. For additional infor-
mation, see http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html.

 Regular expressions are defined by patterns. A pattern can be anything from a
simple character, fixed string, or something like a date format made up of digits and
delimiters, up to descriptions of balanced parentheses in programming languages.
Patterns are declared by a sequence of symbols. In fact, the pattern description is a
language of its own. Some examples are shown in table 3.7. Note that these are the
raw patterns, not how they’d appear in string literals. In other words, if you stored
the pattern in a variable and printed it out, this is what you’d want to see. It’s impor-
tant to make the distinction between the pattern itself and how it’s represented in
code as a literal.

 A pattern like one of the examples in table 3.7 allows you to declare what you’re
looking for, rather than having to program how to find something.
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

77Working with regular expressions
Next you’ll see how patterns appear as literals in code and what can be done with them.
We’ll then revisit the initial example with a full solution, before examining some perfor-
mance aspects of regular expressions and finally showing how they can be used for clas-
sification in switch statements and for collection filtering with the grep method.

3.5.1 Specifying patterns in string literals

How do you put the sequence of symbols that declares a pattern inside a string? In
Java, this causes confusion. Patterns use lots of backslashes, and to get a backslash in
a Java string literal, you need to double it. This leads to Java strings, which are very
hard to read in terms of the raw pattern involved. It gets even worse if you need to
match an actual backslash in your pattern—the pattern language escapes that with a
backslash too, so the Java regex string literal needed to match a\b is "a\\\\b".

 Groovy does much better. As you saw earlier, there’s the slashy form of string literal,
which doesn’t require you to escape the backslash character and still works like a normal
GString. The following listing shows how to declare patterns conveniently.

assert "abc" == /abc/
assert "\\d" == /\d/

def reference = "hello"
assert reference == /$reference/

Note that you have the choice to declare patterns in either kind of string: literal string
with single quotes, GString with double quotes, or slashy strings.

TIP Sometimes the slashy syntax interferes with other valid Groovy expressions
such as line comments or numerical expressions with multiple slashes for divi-
sion. When in doubt, put parentheses around your pattern like (/pattern/).
Parentheses force the parser to interpret the content as an expression.

Table 3.7 Simple regular expression pattern examples

Pattern Meaning

some text Exactly “some text.”

some\s+text The word “some” followed by one or more whitespace characters fol-
lowed by the word “text.”

^\d+(\.\d+)? (.*) Our introductory example: headings of level one or two denoted by a line
^ start, one or more digits, and an optional dot followed by more digits.
Parentheses are used for grouping. The question mark makes the first
group optional. The second group contains the title, made of a dot for
any character and a star for any number of such characters.

\d\d/\d\d/\d\d\d\d A date formatted as exactly two digits followed by a slash, two more dig-
its followed by a slash, followed by exactly four digits.

Listing 3.6 Regular expression GStrings
Licensed to Mark Watson <nordickan@gmail.com>

78 CHAPTER 3 Simple Groovy datatypes
SYMBOLS
The key to using regular expressions is knowing the pattern symbols. For convenience,
table 3.8 provides a short list of the most common ones. Put an earmark on this page
so you can easily look up the table—you’ll use it a lot.

TIP Symbols tend to have the same first letter as what they represent; for
example, digit, space, word, and boundary. Uppercase symbols define the com-
plement; think of them as a warning sign for no.

Table 3.8 Regular expression symbols (excerpt)

Symbol Meaning

. Any character

^ Start of line (or start of document, when in single-line mode)

$ End of line (or end of document, when in single-line mode)

\d Digit character

\D Any character except digits

\s Whitespace character

\S Any character except whitespace

\w Word character

\W Any character except word characters

\b Word boundary

() Grouping

(x | y) x or y, as in (Groovy|Java|Ruby)

\1 Backmatch to group one; for example, find doubled characters with (.)\1

x * Zero or more occurrences of x

x + One or more occurrences of x

x ? Zero or one occurrence of x

x { m , n } At least m and at most n occurrences of x

x { m } Exactly m occurrences of x

[a-f] Character class containing the characters a, b, c, d, e, f

[^a] Character class containing any character except a

(?is:x) Switches mode when evaluating x; i turns on ignoreCase, s means single-
line mode
Licensed to Mark Watson <nordickan@gmail.com>

79Working with regular expressions
More to consider:

■ Use grouping properly. The expanding operators such as * and + bind closely;
ab+ matches abbbb. Use (ab)+ to match ababab.

■ In normal mode, the expanding operators are greedy, meaning they try to match
the longest substring that matches the pattern. Add an additional question mark
after the operator to put them into restrictive mode. You may be tempted to
extract the href from an HTML anchor element with this regex: href="(.*)". But
href= "(.*?)" is probably better. The first version matches until the last double
quote in your text; the latter matches until the next double quote.16

This is only a brief description of the regex pattern format, but a complete specifica-
tion comes with your JDK, as part of the Javadoc for java.util.regex.Pattern. It may
change marginally between JDK versions; for JDK 7, it can be found online at http://
docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html.

 See the Javadoc to learn more about different evaluation modes, positive and nega-
tive look-ahead, back references, and posix characters.

 It always helps to test your expressions before putting them into code. There are
many online applications that allow interactive testing of regular expressions. You
should be aware that not all regular expression pattern languages are exactly the same.
You may get unexpected results if you take a regular expression designed for use in .NET
and apply it in a Java or Groovy program. Although there aren’t many differences, the
differences that do exist can be hard to spot. Even if you take a regular expression from
a book or a website, you should still test that it works in your code.

 Once you’ve declared the pattern you want, you need to tell Groovy how to apply
it. We’ll explore a whole variety of uses.

3.5.2 Applying patterns

For a given string and pattern, Groovy supports the following tasks for regular
expressions:

■ Tell whether the pattern fully matches the whole string.
■ Tell whether there’s an occurrence of the pattern in the string.
■ Count the occurrences.
■ Do something with each occurrence.
■ Replace all occurrences with some text.
■ Split the string into multiple strings by cutting at each occurrence.

Listing 3.7 puts patterns into action. Unlike most other examples, this listing contains
some comments. This reflects real life and isn’t for illustrative purposes. The use of
regexes is best accompanied by this kind of comment for all but the simplest patterns.

16 This is only to explain the greedy behavior of regular expression, not to explain how HTML is parsed cor-
rectly, which would involve a lot of other topics such as ordering of attributes, spelling variants, and so forth.
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

80 CHAPTER 3 Simple Groovy datatypes
def twister = 'she sells sea shells at the sea shore of seychelles'

// twister must contain a substring of size 3
// that starts with s and ends with a
assert twister =~ /s.a/

def finder = (twister =~ /s.a/)
assert finder instanceof java.util.regex.Matcher

// twister must contain only words delimited by single spaces
assert twister ==~ /(\w+ \w+)*/

def WORD = /\w+/
matches = (twister ==~ /($WORD $WORD)*/)
assert matches instanceof java.lang.Boolean

assert !(twister ==~ /s.e/)

def wordsByX = twister.replaceAll(WORD, 'x')
assert wordsByX == 'x x x x x x x x x x'

def words = twister.split(/ /)
assert words.size() == 10
assert words[0] == 'she'

B and C have an interesting twist. Although the regex find operator evaluates to a
Matcher object, it can also be used as a Boolean conditional. We’ll explore how this is
possible when examining the “Groovy Truth” in chapter 6.

TIP To remember the difference between the =~ find operator and the ==~
match operator (it looks like a burning match), recall that match is more restric-
tive, because the pattern needs to cover the whole string. The demanded cover-
age is “longer” just like the operator itself.

See your Javadoc for more information about the java.util.regex.Matcher object,
such as how to walk through all the matches and how to work with groupings within
each match.

COMMON REGEX PITFALLS
You don’t need to fall into the regex traps yourself. We’ve already done this for you
and we (the authors) have learned the following:

■ When things get complex (note, this is when, not if), comment verbosely.
■ Use the slashy syntax instead of the regular string syntax, or you’ll get lost in a

forest of backslashes.
■ Don’t let your pattern look like a toothpick puzzle. Build your pattern from sub-

expressions like WORD in listing 3.7.
■ Put your assumptions to the test. Write some assertions or unit tests to test your

regex against static strings. Please don’t send us any more flowers for this advice; a
tweet like “Assertions saved my life today! Thanks #ReGina.” will suffice.

Listing 3.7 Regular expressions

Regex find operator
usable in an if statement

 b

Find expression evaluates
to a Matcher object

 c

Regex match
operator

Match expression
evaluates to a Boolean

Match is full
unlike find

Split returns a
list of words
Licensed to Mark Watson <nordickan@gmail.com>

81Working with regular expressions
3.5.3 Patterns in action

You’re now ready to do everything you wanted to do with regular expressions, except
we haven’t covered “do something with each occurrence.” Something and each sounds
like a cue for a closure to appear, and that’s the case here. String has a method called
eachMatch that takes a regex as a parameter along with a closure that defines what to
do on each match.

The match gets passed into the closure for further analysis. In the musical example in
the next listing, each match is appended to a result string.

def myFairStringy = 'The rain in Spain stays mainly in the plain!'

// words that end with 'ain': \b\w*ain\b
def wordEnding = /\w*ain/
def rhyme = /\b$wordEnding\b/
def found = ''
myFairStringy.eachMatch(rhyme) { match ->
 found += match + ' '
}
assert found == 'rain Spain plain '

found = ''
(myFairStringy =~ rhyme).each { match ->
 found += match + ' '
}
assert found == 'rain Spain plain '

def cloze = myFairStringy.replaceAll(rhyme){ it-'ain'+'___' }
assert cloze == 'The r___ in Sp___ stays mainly in the pl___!'

There are two different ways to iterate through matches with identical behavior: use
String.eachMatch(Pattern) B, or use Matcher.each() C, where the Matcher is the
result of applying the regex find operator to a string and a pattern. D shows a special
case for replacing each match with some dynamically derived content from the given
closure. The variable it refers to the matching substring. The result is to replace “ain”
with underscores, but only where it forms part of a rhyme.

What is a match?
A match is the occurrence of a regular expression pattern in a string. It’s therefore a
string: a substring of the original string. When the pattern contains groupings like in
/begin(.*?)end/, you need to know more information: not just the string matching
the whole pattern, but also what part of that string matched each group. Therefore,
the match becomes a list of strings, containing the whole match at position 0 with
group matches being available as match[n] where n is group number n. Groups are
numbered by the sequence of their opening parentheses.

Listing 3.8 Working on each match of a pattern

String.eachMatch(regex){} b

Matcher.each{} c

String.replaceAll(regex){} d
Licensed to Mark Watson <nordickan@gmail.com>

82 CHAPTER 3 Simple Groovy datatypes
 To fully understand how the Groovy regular expression support works, we need to
look at the java.util.regex.Matcher class. It’s a JDK class that encapsulates knowl-
edge about:

■ How often and at what position a pattern matches.
■ The groupings for each match.

The GDK enhances the Matcher class with simplified array-like access to this informa-
tion. In Groovy, you can think about a matcher as if it was a list of all its matches. This is
what happens in the following example that matches all nonwhitespace characters:

def matcher = 'a b c' =~ /\S/

assert matcher[0] == 'a'
assert matcher[1..2] == ['b','c']
assert matcher.size() == 3

This use case comes with an interesting variant that uses Groovy’s parallel assignment
feature that allows you to directly assign each match to its own reference.

def (a,b,c) = 'a b c' =~ /\S/

assert a == 'a'
assert b == 'b'
assert c == 'c'

It gets even more interesting with groupings in the match. If the pattern contains
parentheses to define groups, then the result of asking for a particular match is an
array of strings rather than a single one: the same behavior as we mentioned for
eachMatch. Again, the first result (at index 0) is the match for the whole pattern.
Consider this example, where each match finds pairs of strings that are separated by
a colon. For later processing, the match is split into two groups, for the left and the
right string:

def matcher = 'a:1 b:2 c:3' =~ /(\S+):(\S+)/

assert matcher.hasGroup()
assert matcher[0] == ['a:1', 'a', '1'] // 1st match
assert matcher[1][2] == '2' // 2nd match, 2nd group

In other words, what matcher[0] returns depends on whether the pattern contains
groupings.

 This also applies to the matcher’s each method, which comes with a convenient
notation for groupings. When the processing closure defines multiple parameters, the
list of groups is distributed over them:

def matcher = 'a:1 b:2 c:3' =~ /(\S+):(\S+)/
matcher.each { full, key, value ->
 assert full.size() == 3
 assert key.size() == 1 // a,b,c
 assert value.size() == 1 // 1,2,3
}
Licensed to Mark Watson <nordickan@gmail.com>

83Working with regular expressions
This matcher matches three times, passing the full match and the two groups into the
closure on each match. The preceding code snippet enables you to assign meaningful
names to the group matches. We decided to call them key and value, which much
better reveals their intent than match[1] and match[2]would.

 Our advice is to use group names whenever the group count is fixed. Groovy sup-
ports the spreading of match groups over closure parameters for all methods that
pass a match into a closure. For example, you can use it with the String.each-
Match(regex){match->} method.

IMPLEMENTATION DETAIL Groovy internally stores the most recently used
matcher (per thread). It can be retrieved with the static property Matcher
.lastMatcher. You can also set the index property of a matcher to make it
look at the respective match with matcher.index = x. Both can be useful in
some exotic corner cases. See Matcher’s API documentation for details.

We’ll revisit the Matcher class later in numerous places. It’s particularly interesting
because it plays so well with Groovy’s approach of letting classes decide how to iterate
over themselves and reusing that behavior pervasively.

 Matcher and Pattern work in combination and are the key abstractions for
regexes in Java and Groovy. You’ve seen Matcher, and we’ll have a closer look at the
Pattern abstraction next.

3.5.4 Patterns and performance

Finally, let’s look at performance and the pattern operator ~string (note this is a
tilde, not a minus sign). The pattern operator transforms a string into an object of
type java.util.regex.Pattern. For a given string, this pattern object can be asked
for a matcher object.

 The rationale behind this construction is that patterns are internally backed by a
finite-state machine that does all the high-performance magic. This machine is com-
piled when the pattern object is created. The more complicated the pattern, the lon-
ger the creation takes. In contrast, the matching process as performed by the machine
is extremely fast.

 The pattern operator allows you to split pattern-creation time from pattern-matching
time, increasing performance by reusing the finite-state machine. The following list-
ing shows a poor-man’s performance comparison of the two approaches. The precom-
piled pattern version is at least twice as fast (although these kinds of measurements
can differ wildly).

def twister = 'she sells sea shells at the sea shore of seychelles'
// some more complicated regex:
// word that starts and ends with same letter
def regex = /\b(\w)\w*\1\b/
def many = 100 * 1000

Listing 3.9 Increasing performance with pattern reuse
Licensed to Mark Watson <nordickan@gmail.com>

84 CHAPTER 3 Simple Groovy datatypes
start = System.nanoTime()
many.times{
 twister =~ regex
}
timeImplicit = System.nanoTime() - start

start = System.nanoTime()
pattern = ~regex
many.times{
 pattern.matcher(twister)
}
timePredef = System.nanoTime() - start

assert timeImplicit > timePredef * 2

To find words that start and end with the same character, the \1 backmatch is used to
refer to that character. Its use is prepared by putting the word’s first character into a
group, which happens to be group 1.

 Note the difference in spelling in B. This isn’t a =~ b but a= ~b. Tricky.

Don’t forget that performance should usually come second to readability—at least to
start with. If reusing a pattern means bending your code out of shape, you should ask
yourself how critical the performance of that particular area is before making the
change. Measure the performance in different situations with each version of the code,
and balance ease of maintenance with speed and memory requirements.

3.5.5 Patterns for classification

Listing 3.10 completes your journey through the domain of patterns. The Pattern
object, as returned from the pattern operator, implements an isCase(String) method
that’s equivalent to a full match of that pattern with the string. This classification
method is a prerequisite for using patterns conveniently with the in operator, the
grep method, and in switch cases.

 The example classifies words that consist of exactly four characters. The pattern,
therefore, consists of the word character class \w followed by the {4} quantification.

Use whitespace wisely
The observant reader may spot a language issue: What happens if you write a=~b
without any whitespace? Is that the =~ find operator, or is it an assignment of the ~b
pattern to a? For the human reader, it’s ambiguous. Not so for the Groovy parser. It’s
greedy and will parse this as the find operator.

It goes without saying that being explicit with whitespace is good programming style,
even when the meaning is unambiguous for the parser. Do it for the next human
reader, which will probably be you.

Find operator with implicit
pattern construction

 b

Explicit pattern
construction

Apply pattern
on a string

At least twice as fast
(possibly 3–5 times)
Licensed to Mark Watson <nordickan@gmail.com>

85Working with numbers
def fourLetters = ~/\w{4}/

assert fourLetters.isCase('work')

assert 'love' in fourLetters

switch('beer'){
 case fourLetters: assert true; break
 default : assert false
}

beasts = ['bear','wolf','tiger','regex']

assert beasts.grep(fourLetters) == ['bear','wolf']

TIP Classifications read nicely with in, switch, and grep. It’s rare to call
classifier.isCase(candidate) directly, but when you see such a call, it’s
easiest to read it from right to left: “candidate is a case of classifier.”

Patterns are also prevalent in the Groovy library (see the GDK reference in appendix C).
These methods give you the convenient choice between using either a string that
describes the regular expression (conventionally this parameter is called regex), or
supplying a pattern object instead (conventionally called pattern).

 At times, regular expressions can be difficult beasts to tame, but mastering them
adds a new quality to all text-manipulation tasks. Once you have a grip on them, you’ll
hardly be able to imagine having programmed (some would say lived) without them.
Writing this book without their help would have been very hard indeed. Groovy makes
regular expressions easily accessible and straightforward to use.

 This concludes our coverage of text-based types, but of course computers have
always dealt with numbers as well as text. Working with numbers is easy in most pro-
gramming languages, but that doesn’t mean there’s no room for improvement. Let’s
see how Groovy goes the extra mile when it comes to numeric types.

3.6 Working with numbers
We introduced the available numeric types and their declarations in section 3.1 and
you’ve already seen that for decimal numbers, the default type is java.math.Big-
Decimal. This is a feature to get around the most common misconceptions about
floating-point arithmetic. We’re going to look at which type is used where and what
extra abilities have been provided for numbers in the GDK.

3.6.1 Coercion with numeric operators

It’s always important to understand what happens when you use one of the numeric
operators.

 Most of the rules for the addition, multiplication, and subtraction operators are
the same as in Java, but there are some changes regarding floating-point behavior, and

Listing 3.10 Patterns for classification
Licensed to Mark Watson <nordickan@gmail.com>

86 CHAPTER 3 Simple Groovy datatypes
BigInteger and BigDecimal also need to be included. The rules are straightforward.
The first rule to match the situation is used.

 For the operations +, -, and *:

■ If either operand is a Float or a Double, the result is a Double. (In Java, when
only Float operands are involved, the result is a Float too.)

■ Otherwise, if either operand is a BigDecimal, the result is a BigDecimal.
■ Otherwise, if either operand is a BigInteger, the result is a BigInteger.
■ Otherwise, if either operand is a Long, the result is a Long.
■ Otherwise, the result is an Integer.

Table 3.9 depicts the scheme for quick lookup. Types are abbreviated by uppercase
letters.

Other aspects of coercion behavior include:

■ Like Java but unlike Ruby, no coercion takes place when the result of an opera-
tion exceeds the current range, except for the power operator.

■ For division, if any of the arguments is of type Float or Double, the result is of
type Double; otherwise the result is of type BigDecimal with the maximum pre-
cision of both arguments, rounded half up. The result is normalized—that is,
without trailing zeros.

■ Integer division (keeping the result as an integer) is achievable through explicit
casting or by using the intdiv() method.

■ The shifting operators are implemented with bit-shifting semantics only for
types Integer and Long but you can implement them for other types, too,
through operator overriding. They don’t coerce to other types.

Table 3.9 Numerical coercion

+ - * B S I C L BI BD F D

Byte I I I I L BI BD D D

Short I I I I L BI BD D D

Integer I I I I L BI BD D D

Character I I I I L BI BD D D

Long L L L L L BI BD D D

BigInteger BI BI BI BI BI BI BD D D

BigDecimal BD BD BD BD BD BD BD D D

Float D D D D D D D D D

Double D D D D D D D D D
Licensed to Mark Watson <nordickan@gmail.com>

87Working with numbers
■ The power operator coerces to the next best type that can take the result in
terms of range and precision, in the sequence Integer, Long, Double.

■ The equals operator coerces to the more general type before comparing.

Rules can be daunting without examples, so this behavior is demonstrated in table 3.10.

The only surprise is that there’s no surprise. In Java, results like in the fourth row are
often surprising—for example, (1/2) is always 0 because when both operands of divi-
sion are integers, only integer division is performed. To get 0.5 in Java, you need to
write (1f/2).

 This behavior is especially important when using Groovy to enhance your appli-
cation with user-defined input. Suppose you allow superusers of your application
to specify a formula that calculates an employee’s bonus, and a business analyst

Table 3.10 Numerical expression examples

Expression Result Type Comments

1f*2f Double In Java, this would be Float.

(Byte)1+(Byte)2 Integer As in Java, integer arithmetic is always per-
formed in at least 32 bits.

1*2L Long

1/2 BigDecimal (0.5) In Java, the result would be the integer 0.

(int)(1/2) Integer (0) This is normal coercion of .BigDecimal
to Integer.

1.intdiv(2) Integer (0) This is the equivalent of the Java 1/2.

Integer.MAX_VALUE+1 Integer Non-power operators wrap without promoting
the result type.

2**30 Integer

2**31 BigInteger The power operator promotes where
necessary.

2**3.5 Double

2G+1G BigInteger

2.5G+1G BigDecimal

1.5G==1.5F Boolean (true) Float is promoted to BigDecimal
before comparison.

1.1G==1.1F Boolean (false) 1.1 can’t be exactly represented as a Float
(or indeed a Double), so when it’s promoted
to BigDecimal, it isn’t equal to the exact
BigDecimal 1.1G but rather
1.100000023841858G.
Licensed to Mark Watson <nordickan@gmail.com>

88 CHAPTER 3 Simple Groovy datatypes
specifies it as businessDone * (1/3). With Java semantics, this will be a bad year for
the poor employees.

3.6.2 GDK methods for numbers

The GDK defines all applicable methods from table 3.4 to implement overridable
operators for numbers such as plus, minus, power, and so forth. They all work without
surprises. In addition, the following methods fulfill their self-describing duty:

assert 1 == (-1).abs()
assert 2 == 2.5.toInteger() // conversion
assert 2 == 2.5 as Integer // enforced coercion
assert 2 == (int) 2.5 // cast
assert 3 == 2.5f.round()
assert 3.142 == Math.PI.round(3)
assert 4 == 4.5f.trunc()
assert 2.718 == Math.E.trunc(3)

assert '2.718'.isNumber() // String methods
assert 5 == '5'.toInteger()
assert 5 == '5' as Integer
assert 53 == (int) '5' // gotcha!
assert '6 times' == 6 + ' times' // Number + String

As you can see, there are various conversion possibilities: the toInteger() method
(also available for Double, Float, and so on), enforced coercion with the as operator
that calls the asType(class)method, and the humble cast.

WARNING! Don’t cast strings to numbers! In Groovy, you can cast a string of
length 1 directly to a char. But char and int are essentially the same thing on
the Java platform. This leads to the gotcha where '5' is cast to its Unicode
value 53. Instead, use the type conversion methods.

More interestingly, the GDK also defines the methods times, upto, downto, and step.
They all take a closure argument. Listing 3.11 shows these methods in action: times is
just for repetition, upto is for walking a sequence of increasing numbers, downto is for
decreasing numbers, and step is the general version that walks until the end value by
successively adding a step width.

def store = ''
10.times{
 store += 'x'
}
assert store == 'xxxxxxxxxx'

store = ''
1.upto(5) { number ->
 store += number
}
assert store == '12345'

Listing 3.11 GDK methods on numbers

Repetition

Walking up with
loop variable
Licensed to Mark Watson <nordickan@gmail.com>

89Summary
store = ''
2.downto(-2) { number ->
 store += number + ' '
}
assert store == '2 1 0 -1 -2 '

store = ''
0.step(0.5, 0.1){ number ->
 store += number + ' '
}
assert store == '0 0.1 0.2 0.3 0.4 '

Calling methods on numbers can feel unfamiliar at first when you come from Java.
Just remember that numbers are objects and you can treat them as such. As you’ve
seen, numbers in Groovy work in a natural way and protect you against the most
common errors with floating-point arithmetic. In most cases, there’s no need to
remember all details of coercion. When the need arises, this section may serve as
a reference.

 The strategy of making objects available in unexpected places starts to become an
ongoing theme. You’ve seen it with numbers, and section 4.1 will show the same prin-
ciple applied to ranges.

3.7 Summary
Contrary to popular belief, Groovy gives you the same type safety as Java, albeit at run-
time instead of Java’s mix of compile time and runtime. This approach is a prerequi-
site to enable the awesome power of dynamic language features such as synthesized
methods, flexible bindings for scripts, templates and closures, and all the other meta-
programming goodness that we’ll explore in the course of this book.

 Making common activities more convenient is one of Groovy’s main promises.
Consequently, Groovy promotes even the primitive data types to first-class objects and
implements operators as method calls to make the benefits of object orientation ubiq-
uitously available.

 Developer convenience is further enhanced by allowing a variety of means for
string literal declarations, whether through flexible GString declarations or with the
slashy syntax for situations where extra escaping is undesirable, such as regular expres-
sion patterns. GStrings contribute to another of Groovy’s central pillars: concise and
expressive code. This allows the reader a clearer insight into the runtime string value,
without having to wade through reams of string concatenation or switch between for-
mat strings and the values replaced in them.

 Regular expressions are well represented in Groovy, again confirming its comfort-
able place among other top-of-stack languages. Utilizing regular expressions is an
everyday exercise, and a language that treated them as second-class citizens would be
severely hampered. Groovy effortlessly combines Java’s libraries with language sup-
port, retaining the regular expression dialect familiar to Java programmers with the
ease of use found in scripting.

Walking
down

Walking with
step width
Licensed to Mark Watson <nordickan@gmail.com>

90 CHAPTER 3 Simple Groovy datatypes
 The Groovy way of treating numbers with respect to type conversion and preci-
sion handling leads to intuitive use, even for nonprogrammers. This becomes partic-
ularly important when Groovy scripts are used for smart configurations of larger
systems where business users may provide formulas—for example, to define share-
valuation details.

 Strings, regular expressions, and numbers alike profit from numerous methods
that the GDK introduces on top of the JDK. A clear pattern has emerged already—
Groovy is a language designed for the ease of those developing in it, concentrating on
making repetitive tasks as simple as they can be without sacrificing the power of the
Java platform.

 You’ll soon see that this focus on ease of use extends far beyond the simple types that
Java developers are used to having built-in language support for. The Groovy designers
are well aware of other concepts that are rarely far from a programmer’s mind. The next
chapter shows how intuitive operators, enhanced literals, and extra GDK methods are
also available with Groovy’s collective datatypes: ranges, lists, and maps.
Licensed to Mark Watson <nordickan@gmail.com>

Collective
Groovy datatypes
The intuitive mind is a sacred gift and the rational mind is a faithful servant.
We have created a society that honors the servant and has forgotten the gift.

—Albert Einstein

The nice thing about computers is that they never get tired of repeatedly doing the
same task. This is probably the singlemost important quality that justifies letting
them take part in our lives. Searching through countless files or web pages, down-
loading emails every 10 minutes, looking up all values of a stock symbol for the last
quarter to paint a nice graph—these are only a few examples in which a computer
needs to repeatedly process an item of a data collection. It’s no wonder that a great
deal of programming work is about collections.

 Because collections are so prominent in programming, Groovy alleviates the
tedium of using them by directly supporting datatypes of a collective nature: ranges,

This chapter covers
■ Understanding Groovy’s collective datatypes:

ranges, lists, and maps
■ How to declare them
■ Operators and library methods for these types
■ How to use them in action
91

Licensed to Mark Watson <nordickan@gmail.com>

92 CHAPTER 4 Collective Groovy datatypes
lists, and maps. Just as with simple datatypes, Groovy’s support for collective datatypes
encompasses new lightweight means for literal declaration, specialized operators, and
numerous GDK enhancements.

 The notation that Groovy uses to set its collective datatypes into action will be new
to Java programmers, but as you’ll see, it’s easy to understand and remember. You’ll
pick it up so quickly that you’ll hardly be able to imagine a time when you were new to
the concept.

 Despite the new notation possibilities, lists and maps have the very same semantics
as in Java. This situation is slightly different for ranges, because they don’t have a
direct equivalent in Java. So let’s start our tour with that topic.

4.1 Working with ranges
Think about how often you’ve written a loop like this:

for (int i=0; i<upperBound; i++){
 // do something with i
}

Most of us have done this thousands of times. It’s so common that it is second nature.
Does the code tell you what it does or how it does it?

 After inspecting the variable, the conditional, and the incrementation, you see that
it’s an iteration starting at zero and not reaching the upper bound, assuming there are
no side effects on i in the loop body. You have to go through the description of how
the code works to find out what it does.

 Next, consider how often you’ve written a conditional like this:

if (x >= 0 && x <= upperBound) {
 // do something with x
}

The same thing applies here: you have to inspect how the code works to understand
what it does. Variable x must be between zero and an upper bound for further process-
ing. It’s easy to overlook that the upper bound is now inclusive.

 We’re not saying that we make mistakes using this syntax on a regular basis. We’re
not saying that you can’t get used to (or indeed haven’t gotten used to) the C-style for
loop, as countless programmers have over the years. What we’re saying is that it’s
harder than it needs to be; and, more important, it’s less expressive than it could be.
Can you understand it? Absolutely. Then again, you could understand this chapter if it
were written entirely in capital letters—that doesn’t make it a good idea, though.

 Groovy allows you to reveal the meaning of such code pieces by providing the con-
cept of a range. A range has a left bound and a right bound. You can do something for
each element of a range, effectively iterating through it. You can determine whether
a candidate element falls inside a range. In other words, a range is an interval plus a
strategy for how to move through it.

 By introducing the new concept of ranges, Groovy extends your means of express-
ing your intentions in the code.
Licensed to Mark Watson <nordickan@gmail.com>

93Working with ranges
 We’ll show you how to specify ranges, how the fact that they’re objects makes them
ubiquitously applicable, how to use custom objects as bounds, and how they’re typi-
cally used in the GDK.

4.1.1 Specifying ranges

Ranges are specified using the double-dot range operator (..) between the left and
right bounds. This operator has a low precedence, so you often need to enclose the dec-
laration in parentheses. Ranges can also be declared using their respective constructors.

 The ..< range operator specifies a half-exclusive range—that is, the value on the
right isn’t part of the range:

left..right
(left..right)
(left..<right)

Ranges usually have a lower left bound and a higher right bound. When this is
switched it’s called a reverse range. Ranges can also be any combination of the types
we’ve described. The following listing shows these combinations and how ranges can
have bounds other than integers, such as dates and strings. Groovy supports ranges at
the language level with the special for-in-range loop.

assert (0..10).contains(0)
assert (0..10).contains(5)
assert (0..10).contains(10)

assert (0..10).contains(-1) == false
assert (0..10).contains(11) == false

assert (0..<10).contains(9)
assert (0..<10).contains(10) == false

def a = 0..10
assert a instanceof Range
assert a.contains(5)

a = new IntRange(0,10)
assert a.contains(5)

assert (0.0..1.0).contains(1.0)
assert (0.0..1.0).containsWithinBounds(0.5)

def today = new Date()
def yesterday = today - 1
assert (yesterday..today).size() == 2

assert ('a'..'c').contains('b')

def log = ''
for (element in 5..9){
 log += element
}
assert log == '56789'

Listing 4.1 Range declarations

Inclusive
ranges

Half-exclusive
ranges

References
to ranges

 b

Explicit
construction

Bounds
checking

Date ranges c

String ranges d

for-in-range
loop
Licensed to Mark Watson <nordickan@gmail.com>

94 CHAPTER 4 Collective Groovy datatypes
log = ''
for (element in 9..5){
 log += element
}
assert log == '98765'

log = ''
(9..<5).each { element ->
 log += element
}
assert log == '9876'

Note that we assign a range to a variable B. In other words, the variable holds a refer-
ence to an object of type groovy.lang.Range. We’ll examine this feature further and
see what consequences it implies.

 Date objects can be used in ranges c because the GDK adds the previous and
next methods to date, which increases or decreases the date by one day.

NOTE The GDK also adds minus and plus operators to java.util.Date, which
increases or decreases the date by so many days.

The String methods previous and next are added by the GDK to make strings
usable for ranges d. The last character in the string is incremented or decre-
mented, and overflow or underflow is handled by appending a new character or
deleting the last character.

 You can walk through a range with the each method, which presents the current
value to the given closure with each step e. If the range is reversed, you walk through
the range backward. If the range is half-exclusive, the walking stops before reaching
the right bound.

4.1.2 Ranges are objects

Because every range is an object, you can pass a range around and call its methods.
The most prominent methods are each, which executes a specified closure for each
element in the range, and contains, which specifies whether or not a value is within
a range.

 Being first-class objects, ranges can also participate in the game of operator over-
riding (see section 3.3) by providing an implementation of the isCase method, with
the same meaning as contains. That way, you can use ranges as grep filters and as
switch cases. This is shown in the following listing.

def result = ''
(5..9).each { element ->
 result += element
}
assert result == '56789'

Listing 4.2 Ranges are objects

Loop with
reverse
range

Half-exclusive,
reverse, each
with closure

 E

Iterating
over a
range
Licensed to Mark Watson <nordickan@gmail.com>

95Working with ranges
assert 5 in 0..10
assert (0..10).isCase(5)

def age = 36
switch(age){
 case 16..20 : insuranceRate = 0.05 ; break
 case 21..50 : insuranceRate = 0.06 ; break
 case 51..65 : insuranceRate = 0.07 ; break
 default: throw new IllegalArgumentException()
}
assert insuranceRate == 0.06

def ages = [20, 36, 42, 56]
def midage = 21..50
assert ages.grep(midage) == [36, 42]

The use with the grep method c is a good example for passing around range objects:
the midage range gets passed as a parameter to the grep method.

 Classification through ranges B is what you’ll often find in the business world:
interest rates for different ranges of allocated assets, transaction fees based on volume
ranges, and salary bonuses based on ranges of business done. Although technical peo-
ple prefer using functions, business people tend to use ranges. When you’re modeling
the business world in software, classification by ranges can be very handy.

4.1.3 Ranges in action

Listing 4.1 made use of date and string ranges. In fact, any datatype can be used with
ranges, provided that both of the following are true:

■ The type implements next and previous; that is, it overrides the ++ and --
operators.

■ The type implements java.lang.Comparable; that is, it implements compareTo,
effectively overriding the <=> (spaceship) operator.

As an example, listing 4.3 implements a class Weekday that represents a day of the
week. From the perspective of the code that uses the class, a Weekday has a value 'Sun'
through 'Sat'. Internally, it’s just an index between 0 and 6. A little list maps indexes
to weekday name abbreviations.

 We implement next and previous to return the respective new Weekday object.
compareTo simply compares the indexes.

 With this preparation, we can construct a range of working days and work our way
through it, reporting the work done until we reach the well-deserved weekend. Oh, and
our boss wants to assess the weekly work report. A final assertion does this on his behalf.

class Weekday implements Comparable {
 static final DAYS = [
 'Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat'
]
 private int index = 0

Listing 4.3 Custom ranges: weekdays

Ranges for
classification

 b

Filtering
with ranges

 c
Licensed to Mark Watson <nordickan@gmail.com>

96 CHAPTER 4 Collective Groovy datatypes
 Weekday(String day) {
 index = DAYS.indexOf(day)
 }

 Weekday next() {
 return new Weekday(DAYS[(index + 1) % DAYS.size()])
 }

 Weekday previous() {
 return new Weekday(DAYS[index - 1])
 }

 int compareTo(Object other) {
 return this.index <=> other.index
 }

 String toString() {
 return DAYS[index]
 }
}

def mon = new Weekday('Mon')
def fri = new Weekday('Fri')

def worklog = ''
for (day in mon..fri) {
 worklog += day.toString() + ' '
}
assert worklog == 'Mon Tue Wed Thu Fri '

This code can be placed inside one script file,1 even though it contains both a class
declaration and script code. The Weekday class is like an inner class to the script.

 The implementation of previous B is a bit unconventional. Although next uses
the modulo operator in a conventional way to jump from Saturday (index 6) to Sun-
day (index 0), the opposite direction simply decreases the index. The index –1 is used
for looking up the previous weekday name, and DAYS[-1] references the last entry of
the days list, as you’ll see in the next section. We construct a new Weekday('Sat'),
and the constructor normalizes the index to 6.

 Compared to the Java alternatives, ranges have proven to be a flexible solution.
for loops and conditionals aren’t objects, they cannot be reused, and they cannot be
passed around, but ranges can. Ranges let you focus on what the code does, rather
than how it does it. This is a pure declaration of your intent, as opposed to fiddling
with indexes and boundary conditions.

 Using custom ranges is the next step forward. Look actively through your code for
possible applications. Ranges slumber everywhere, and bringing them to life can sig-
nificantly improve the expressiveness of your code. With a bit of practice, you may

1 But don’t call it Weekday.groovy, otherwise two clashing Weekday.class files will be produced, one for
the script and one for the inner class.

Allows all
values

Range bound
methods b

Working
through
the week
Licensed to Mark Watson <nordickan@gmail.com>

97Working with lists
find ranges where you never thought possible. This is a sure sign that new language
concepts can change your perception of the world.

 You’ll shortly refer to your newly acquired knowledge about ranges when we explore
the subscript operator on lists, the built-in datatype that we’re going to cover next.

4.2 Working with lists
In a recent Java project, we had to write a method that takes a Java array and adds an
element to it. This seemed like a trivial task, but we forgot how awkward Java program-
ming could be. (We’re spoiled from too much Groovy programming.) Java arrays can-
not be changed in length, so you cannot add elements easily. One way is to convert the
array to a java.util.List, add the element, and convert back. A second way is to con-
struct a new array of size+1, copy the old values over, and set the new element to the
last index position. Either way takes some lines of code.

 But Java arrays also have their benefits in terms of language support. They work
with the subscript operator to easily retrieve elements of an array by index like
myarray[index], or store elements at an index position with myarray[index] =
newElement.

 We’ll demonstrate how Groovy lists give you the best of both approaches, extend-
ing the features for smart operator implementations, method overloading, and using
lists as Booleans. With Groovy lists, you’ll also discover new ways of leveraging the
power of the Java Collections API.

4.2.1 Specifying lists

Listing 4.4 shows various ways of specifying lists. The primary way is with square brack-
ets around a sequence of items, delimited with commas:

[item1, item2, item3]

The sequence can be empty to declare an empty list. Lists are by default of type
java.util.ArrayList and can also be declared explicitly by calling the respective
constructor. The resulting list can still be used with the subscript operator. In fact, this
works with any type of list, as shown next with type java.util.LinkedList.

 Lists can be created and initialized at the same time by calling toList on ranges.

List myList = [1, 2, 3]

assert myList.size() == 3
assert myList[0] == 1
assert myList instanceof ArrayList

List emptyList = []
assert emptyList.size() == 0

List longList = (0..1000).toList()
assert longList[555] == 555

Listing 4.4 Specifying lists
Licensed to Mark Watson <nordickan@gmail.com>

98 CHAPTER 4 Collective Groovy datatypes
List explicitList = new ArrayList()
explicitList.addAll(myList)
assert explicitList.size() == 3
explicitList[0] = 10
assert explicitList[0] == 10

explicitList = new LinkedList(myList)
assert explicitList.size() == 3
explicitList[0] = 10
assert explicitList[0] == 10

We use the addAll(Collection) method from java.util.List B to easily fill the
lists. As an alternative, the collection to fill from can be passed right into the construc-
tor, as done here with LinkedList.

 For the sake of completeness, we need to add that lists can also be constructed by
passing a Java array to Groovy. Such an array is subject to autoboxing—a list will be
automatically generated from the array with its elements being autoboxed.

 The GDK extends all arrays, collection objects, and strings with a toList method
that returns a newly generated list of the contained elements. Strings are handled like
lists of characters.

4.2.2 Using list operators

Lists implement some of the operators that you saw in section 3.3. Listing 4.4 contains
two of them: the getAt and putAt methods to implement the subscript operator. But
this is a simple use that works with a mere index argument. There’s much more to the
list operators than that.

SUBSCRIPT OPERATOR

The GDK overloads the getAt method with range and collection arguments to access a
range or a collection of indexes. This is demonstrated in the next listing.

 The same strategy is applied to putAt, which is overloaded with a Range argument,
assigning a list of values to a whole sublist.

myList = ['a','b','c','d','e','f']

assert myList[0..2] == ['a','b','c']
assert myList[0,2,4] == ['a','c','e']

myList[0..2] = ['x','y','z']
assert myList == ['x','y','z','d','e','f']

myList[3..5] = []
assert myList == ['x','y','z']

myList[1..1] = [0, 1, 2]
assert myList == ['x', 0, 1, 2, 'z']

Listing 4.5 Accessing parts of a list with an overloaded subscript operator

Fills from
myList

 b

getAt(Range)

getAt(collection
of indexes)

putAt(Range)

Removing
elements b

Adding
elements c
Licensed to Mark Watson <nordickan@gmail.com>

99Working with lists
Subscript assignments with ranges don’t need to be of identical size. When the assigned
list of values is smaller than the range or even empty, the list shrinks B. When the
assigned list of values is bigger, the list grows c.

 Ranges used within subscript assignments are a convenience feature to access Java’s
excellent sublist support for lists. See also the Javadoc for java.util.List#sublist.

 In addition to positive index values, lists can be subscripted with negative indexes
that count from the end of the list backward. Figure 4.1 shows how positive and nega-
tive indexes map to an example list [0,1,2,3,4].

 Consequently, you get the last entry of a nonempty list with list[-1] and the next-
to-last with list[-2]. Negative indexes can also be used in ranges, so list[-3..-1]
gives you the last three entries. When using a reversed range, the resulting list is
reversed as well, so list[4..0] is [4,3,2,1,0]. In this case, the result is a new list
object rather than a sublist in the sense of the JDK. Even mixtures of positive and nega-
tive indexes are possible, such as list[1..-2], to cut away the first entry and the
last entry.

Avoid negative indexes with half-exclusive ranges
Ranges in List’s subscript operator are IntRanges. Exclusive IntRanges are
mapped to inclusive ones at construction time, before the subscript operator comes
into play and can map negative indexes to positive ones. This can lead to surprises
when mixing positive left and negative right bounds with exclusiveness; for example,
IntRange (0..<-2) gets mapped to (0..-1), such that list[0..<-2] is effectively
list[0..-1].

Although this is stable and works predictably, it may be confusing for the readers of
your code, who may expect it to work like list[0..-3]. For this reason, this situation
should be avoided for the sake of clarity.

Example list

values
0 1 2 3 4

Positive index

Out of

bounds

Out of

bounds

In

bounds

Negative index

0 1 2 3 4

–5 –4–7 –6 –3 –2 –1

5 6

Figure 4.1 Positive and negative indexes of a list of length 5, with “in bounds” and “out of bounds”
classification for indexes
Licensed to Mark Watson <nordickan@gmail.com>

100 CHAPTER 4 Collective Groovy datatypes
ADDING AND REMOVING ITEMS

Although the subscript operator can be used to change any individual element of a
list, there are also operators available to change the contents of the list in a more dras-
tic way: plus(Object), plus(Collection), leftShift(Object), minus(Collection),
and multiply. The following listing shows them in action. The plus method is over-
loaded to distinguish between adding an element and adding all elements of a collec-
tion. The minus method only works with collection parameters.

myList = []

myList += 'a'
assert myList == ['a']

myList += ['b','c']
assert myList == ['a','b','c']

myList = []
myList << 'a' << 'b'
assert myList == ['a','b']

assert myList - ['b'] == ['a']

assert myList * 2 == ['a','b','a','b']

While we’re talking about operators, it’s worth noting that we’ve used the == operator
on lists, happily assuming that it does what we expect. Now you see how it works: the
equals method on lists tests that two collections have equal elements. See the Javadoc
of java.util.List#equals for details.

CONTROL STRUCTURES

Groovy lists are more than flexible storage places. They also play a major role in orga-
nizing the execution flow of Groovy programs. The following listing shows the use of
lists in Groovy’s if, switch, and for control structures.

myList = ['a', 'b', 'c']

assert myList.isCase('a')
assert 'b' in myList

def candidate = 'c'
switch(candidate){
 case myList : assert true; break
 default : assert false
}

assert ['x','a','z'].grep(myList) == ['a']

myList = []
if (myList) assert false

// Lists can be iterated with a 'for' loop
def expr = ''

Listing 4.6 List operators involved in adding and removing items

Listing 4.7 Lists taking part in control structures

plus(Object)

plus(Collection)

leftShift is
like append

minus(Collection)

Multiply

Classifies by
containment

 b

Intersection
filter

 c

Empty lists
are false d
Licensed to Mark Watson <nordickan@gmail.com>

101Working with lists
for (i in [1,'*',5]){
 expr += i
}
assert expr == '1*5'

In B and c, you see the trick that you already know from patterns and ranges: imple-
menting isCase and getting a grep filter and a switch classification for free. d is a little
surprising. Inside a Boolean test, empty lists evaluate to false. e shows looping over
lists or other collections and also demonstrates that lists can contain mixtures of types.

4.2.3 Using list methods

There are so many useful methods on the List type that we cannot provide an exam-
ple for all of them in the language description. The large number of methods comes
from the fact that the Java interface java.util.List is already fairly wide (25 meth-
ods in JDK 1.7 and 28 in JDK 1.8).

 Furthermore, the GDK adds methods to the List interface, to the Collection
interface, and to Object. Therefore, many methods are available on the List type,
including all methods of Collection and Object.

 Appendix C has the complete overview of all methods added to List by the GDK.
The Javadoc of java.util.List has the complete list of its JDK methods.

 While working with lists in Groovy, there’s no need to be aware of whether a method
stems from the JDK or the GDK, or whether it’s defined in the List or Collection
interface. But for the purpose of describing the Groovy List datatype, we fully cover
the GDK methods on lists and collections, but not all combinations from overloaded
methods and not what’s covered in the previous examples. We provide only partial
examples of the JDK methods that we consider important.

MANIPULATING LIST CONTENT

A first set of methods is presented in the following listing. It deals with changing the
content of the list by adding and removing elements; combining lists in various ways;
sorting, reversing, and flattening nested lists; and creating new lists from existing ones.

assert [1,[2,3]].flatten() == [1,2,3]
assert [1,2,3].intersect([4,3,1])== [3,1]
assert [1,2,3].disjoint([4,5,6])

list = [1,2,3]
popped = list.pop()
assert popped == 3
assert list == [1,2]

assert [1,2].reverse() == [2,1]
assert [3,1,2].sort() == [1,2,3]

def list = [[1,0], [0,1,2]]
list = list.sort { a,b -> a[0] <=> b[0] }
assert list == [[0,1,2], [1,0]]

Listing 4.8 Methods to manipulate list content

Iterates over
a list e

Treating a list
like a stack

 b

Comparing
lists by first
element

 c
Licensed to Mark Watson <nordickan@gmail.com>

102 CHAPTER 4 Collective Groovy datatypes
list = list.sort { item -> item.size() }
assert list == [[1,0], [0,1,2]]

list = ['a','b','c']
list.remove(2)
assert list == ['a','b']
list.remove('b')
assert list == ['a']

list = ['a','b','b','c']
list.removeAll(['b','c'])
assert list == ['a']

def doubled = [1,2,3].collect{ item ->
 item*2
}
assert doubled == [2,4,6]

def odd = [1,2,3].findAll{ item ->
 item % 2 == 1
}
assert odd == [1,3]

List elements can be of arbitrary type, including other nested lists. This can be used to
implement lists of lists, the Groovy equivalent of multidimensional arrays in Java. For
nested lists, the flatten method provides a flat view of all elements.

 An intersection of lists contains all elements that appear in both lists. Collections can
also be checked for being disjointed—that is, whether their intersection is empty.

 Lists can be used like stacks, with usual stack behavior on push and pop B. The
push operation is relayed to the list’s << (left-shift) operator.

 When list elements are comparable, there’s a natural sort. Alternatively, the com-
parison logic of the sort can be specified as a closure c, d. The first example sorts
lists of lists by comparing their entry at index 0. The second example shows that a sin-
gle argument can be used inside the closure for comparison. In this case, the compar-
ison is made between the results that the closure returns when fed each of the
candidate elements.

 Elements can be removed by index e or by value f. We can also remove all the
elements that appear as values in the second list. These removal methods are the only
ones in the listing that are available in the JDK.

 The collect method g returns a new list that’s constructed from what a closure
returns when successively applied to all elements of the original list. In the example,
we use it to retrieve a new list where each entry of the original list is multiplied by two.
Other languages call such a method map, but we don’t because it’s so easily confused
with the datatype of the same name.2

2 The collect method’s name was originally inspired from Smalltalk and is also used in C#, but several pop-
ular functional languages use map. Given the increased popularity of functional concepts, future versions of
Groovy may supply a map alias for collect.

Comparing
lists by size d

Removing
by index e

Removing
by value f

Transforming one
list into another g

Finding every
element matching
the closure h
Licensed to Mark Watson <nordickan@gmail.com>

103Working with lists
 With findAll h, we retrieve a list of all items for which the closure evaluates to
true. The example here uses the modulo operator to find all odd numbers.

 Two issues related to changing an existing list are removing duplicates and null
values. One way to remove duplicate entries is to convert the list to a datatype that’s
free of duplicates: a Set. This can be achieved by calling a Set’s constructor with that
list as an argument, such as:

def x = [1,1,1]
assert [1] == new HashSet(x).toList()
assert [1] == x.unique()

If you don’t want to create a new collection but want to keep working on your cleaned
list, you can use the unique method, which ensures that the sequence of entries isn’t
changed by this operation.

 Removing null from a list can be done by keeping all non-nulls—for example,
with the findAll methods that you’ve seen previously:

def x = [1,null,1]
assert [1,1] == x.findAll{it != null}
assert [1,1] == x.grep{it}

You can see there’s an even shorter version with grep, but to understand its mechan-
ics, you need more knowledge about closures (see chapter 5) and the “Groovy truth”
(see chapter 6). Just take it for granted until then.

ACCESSING LIST CONTENT

Lists have methods to query their elements for certain properties, iterate through
them, and retrieve accumulated results.

 Query methods include a count of given elements in the list, min and max, a find
method that finds the first element that satisfies a closure, and methods to determine
whether every or any element in the list satisfies a closure.

 Iteration can be achieved as usual—forward with each or backward with each-
Reverse.

 Cumulative methods come in simple and sophisticated versions. The join method
is simple: it returns all elements as a string, concatenated with a given string. The
inject method is inspired by Smalltalk: it uses a closure to inject new functionality.
That functionality operates on an intermediary result and the current element of the
iteration. The first parameter of the inject method is the initial value of the interme-
diary result. In the following listing, we use this method to sum up all elements and
then use it a second time to multiply them.

def list = [1, 2, 3]

assert list.first() == 1
assert list.head() == 1
assert list.tail() == [2, 3]

Listing 4.9 List query, iteration, and accumulation
Licensed to Mark Watson <nordickan@gmail.com>

104 CHAPTER 4 Collective Groovy datatypes
assert list.last() == 3
assert list.count(2) == 1
assert list.max() == 3
assert list.min() == 1

def even = list.find { item ->
 item % 2 == 0
}
assert even == 2

assert list.every { item -> item < 5 }
assert list.any { item -> item < 2 }

def store = ''
list.each { item ->
 store += item
}
assert store == '123'

store = ''
list.reverseEach { item ->
 store += item
}
assert store == '321'

store = ''
list.eachWithIndex { item, index ->
 store += "$index:$item "
}
assert store == '0:1 1:2 2:3 '

assert list.join('-') == '1-2-3'

result = list.inject(0) { clinks, guests ->
 clinks + guests
}
assert result == 0 + 1 + 2 + 3
assert list.sum() == 6

factorial = list.inject(1) { fac, item ->
 fac * item
}
assert factorial == 1 * 1 * 2 * 3

Understanding and using the inject method can be a bit challenging if you’re new
to the concept. Note that it’s parallel to the iteration examples, with store playing
the role of the intermediary result. The benefit is that you don’t need to introduce
that extra variable to the outer scope of your accumulation, and your closure has no
side effects on that scope. Other languages often call this kind of method fold
or reduce.

 There are a host of additional GDK methods we don’t have space to cover in
detail, including collate, collectMany, combinations, dropWhile, flatten, groupBy,
permutations, take, transpose, and withIndex. Consult the cheat sheet for lists in

Querying

Iterating

Accumulating
Licensed to Mark Watson <nordickan@gmail.com>

105Working with lists
appendix D for a few more examples and the complete list of GDK methods for lists in
the groovy-jdk documentation.3

 The GDK also introduces two convenience methods for producing views backed
by an existing list: asImmutable and asSynchronized. These methods use Java’s
Collections.unmodifiableList and Collections.synchronizedList to protect the
list from unintended content changes and concurrent access. See these methods’
Javadocs for more details on the topic.

4.2.4 Lists in action

After all the artificial examples, you deserve to see a real one. Here it is: we’ll imple-
ment Tony Hoare’s Quicksort4 algorithm in listing 4.10. To make things more interest-
ing, we’ll do so in a generic way; we’ll not demand any particular datatype for sorting.
We’ll rely on duck typing.5 For our use, this means that as long as we can use the <, =,
and > operators with the list items, we treat them as if they were comparable.

 The goal of Quicksort is to be sparse with comparisons. The strategy relies on find-
ing a good pivot element in the list that serves to split the list into two sublists: one with
all elements smaller than the pivot, and the second with all elements bigger than the
pivot. Quicksort is then called recursively on the sublists. The rationale behind this is
that you never need to compare elements from one list with elements from the other
list. If you always find the perfect pivot, which exactly splits your list in half, the algo-
rithm runs with a complexity of n × log(n). In the worst case, you choose a border ele-
ment every time, and you end up with a complexity of n2. In the next listing, we
choose the middle element of the list, which is a good choice for the frequent case of
preordered sublists.

def quickSort(list) {
 if (list.size() < 2) return list
 def pivot = list[list.size().intdiv(2)]
 def left = list.findAll { item -> item < pivot }
 def middle = list.findAll { item -> item == pivot }
 def right = list.findAll { item -> item > pivot }
 return quickSort(left) + middle + quickSort(right)
}

assert quickSort([]) == []
assert quickSort([1]) == [1]
assert quickSort([1,2]) == [1,2]

3 Groovy JDK API Documentation describes the methods added to the JDK to make it more groovy: http://
docs.groovy-lang.org/docs/latest/html/groovy-jdk/.

4 For an explanation of Quicksort, sometimes called partition-exchange sort, see http://en.wikipedia.org/wiki/
Quicksort.

5 See section 3.2.4 “The case for optional typing” for more details.

Listing 4.10 Quicksort with lists

Classify
by pivot

 b

Recursive
calls
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.groovy-lang.org/docs/latest/html/groovy-jdk/
http://docs.groovy-lang.org/docs/latest/html/groovy-jdk/
http://en.wikipedia.org/wiki/Quicksort
http://en.wikipedia.org/wiki/Quicksort

106 CHAPTER 4 Collective Groovy datatypes

assert quickSort([2,1]) == [1,2]
assert quickSort([3,1,2]) == [1,2,3]
assert quickSort([3,1,2,2]) == [1,2,2,3]
assert quickSort([1.0f,'a',10,null]) == [null,1.0f,10,'a']
assert quickSort('bca') == 'abc'.toList()

In contrast to what we said earlier, we use not two but three lists B. Use this imple-
mentation when you don’t want to lose items that appear multiple times.

 The duck-typing approach is powerful when it comes to sorting different types. We
can sort a list of mixed content types c, or even sort a string d. This is possible
because we didn’t demand any specific type to hold the items. As long as that type
implements size, getAt(index), and findAll, we’re happy to treat it as a sortable.
Actually, we use duck typing twice: for the items and for the structure.

NOTE The sort method that comes with Groovy uses Java’s sorting imple-
mentation that beats our example in terms of worst-case performance. It
guarantees a complexity of n × log(n). But we win on a different front.

Of course, this implementation could be optimized in multiple dimensions. Our goal
is to be tidy and flexible, not the fastest on the block.

 If we had to explain the Quicksort algorithm without the help of Groovy, we’d sketch
it in pseudocode that looks exactly like listing 4.10. In other words, the Groovy code
itself is the best description of what it does. Imagine what this can mean to your code-
base, when all your code reads like it were a formal documentation of its purpose!

 Another extremely common use case where Groovy’s GDK methods for lists add real
value is filter/map/reduce style processing of lists of your domain classes. We’ll use a
list of URLs but you could imagine a list of customers, invoices, shopping carts, or some
other domain objects. Suppose we want to take a list of URLs, select only those having a
port with certain characteristics, then transform some information from the URL, then
sort the results, and finally combine the results into a single string. This can be done
easily with a series of list GDK methods as shown in the following listing.

def urls = [
 new URL('http', 'myshop.com', 80, 'index.html'),
 new URL('https', 'myshop.com', 443, 'buynow.html'),
 new URL('ftp', 'myshop.com', 21, 'downloads')
]

assert urls
 .findAll{ it.port < 99 }
 .collect{ it.file.toUpperCase() }
 .sort()
 .join(', ') == 'DOWNLOADS, INDEX.HTML'

Prior to Java 8, the equivalent Java code to achieve this would be quite cluttered and
cumbersome. The Groovy version is simple and very easy to understand in comparison.

Listing 4.11 Processing lists of URLs

Duck-typed
items

 c

Duck-typed
structure

 d
Licensed to Mark Watson <nordickan@gmail.com>

107Working with maps
The Java 8 version is substantially better and the good news is that you can leverage the
Java 8 methods with a bit of Groovy syntactic sugar added to boot, as can be seen here:

// Groovy with Java 8
import java.util.stream.Collectors
def commaSep = Collectors.joining(", ")
assert urls.stream()
 .filter{ it.port < 99 }
 .map{ it.file.toUpperCase() }
 .sorted()
 .collect(commaSep) == 'DOWNLOADS, INDEX.HTML'

If you like what you see with these examples, there’s even better news when you see
how to perform such operations concurrently using GPars in chapter 18.

 You’ve seen that lists are one of Groovy’s strongest workhorses. They’re always at
hand; they’re easy to specify inline, and using them is easy due to the operators sup-
ported. The plethora of available methods may be intimidating at first, but that’s also
the source of lists’ power.

 You’re now able to add them to your carriage and let them pull the weight of
your code.

 The next section about maps will follow the same principles that you’ve seen for
lists: extending the Java collection’s capabilities while providing efficient shortcuts.

4.3 Working with maps
Suppose you were about to learn the vocabulary of a new language, and you set out to
find the most efficient way of doing so. It’d surely be beneficial to focus on the words
that appear most often in your texts. So, you’d take a collection of your texts and ana-
lyze the word frequencies in that text corpus.6

 What Groovy mechanisms are available to do this? For the time being, assume that
you can work on a large string. You have numerous ways of splitting this string into
words. But how do you count and store the word frequencies? You can’t have a distinct
variable for each possible word you encounter. Finding a way of storing frequencies in
a list is possible but inconvenient—more suitable for a brainteaser than for good
code. Maps come to the rescue.

 Some pseudocode to solve the problem could look like this:

for each word {
 if (frequency of word is not known)
 frequency[word] = 0
 frequency[word] += 1
}

This looks like the list syntax, but with strings as indexes rather than integers. In fact,
Groovy maps appear like lists, allowing any arbitrary object to be used for indexing.

6 Analyzing word frequencies in a text corpus is a common task in computer linguistics and is used for optimiz-
ing computer-based learning, search engines, voice recognition, and machine translation programs.
Licensed to Mark Watson <nordickan@gmail.com>

108 CHAPTER 4 Collective Groovy datatypes
 To describe the map datatype, we show how maps can be specified, which opera-
tions and methods are available for maps, some surprisingly convenient features of
maps, and, of course, a map-based solution for the word-frequency exercise.

4.3.1 Specifying maps

The specification of maps is analogous to the list specification that you saw in the
previous section. Just like lists, maps make use of the subscript operator to retrieve
and assign values. The difference is that maps can use any arbitrary type as an argu-
ment to the subscript operator, where lists are bound to integer indexes. Lists are
aware of the sequence of their entries, maps are generally not. Specialized maps like
java.util.TreeMap may have a sequence to their keys, though.

 Simple maps are specified with square brackets around a sequence of items, delim-
ited with commas. The key feature of maps is that the items are key–value pairs that
are delimited by colons:

[key1:value1, key2:value2, key3:value3]

In principle, any arbitrary type can be used for keys or values. When using exotic7 types
for keys, you need to obey the rules as outlined in the Javadoc for java.util.Map.

 The character sequence [:] declares an empty map. Maps are, by default, of type
java.util.LinkedHashMap, and can also be declared explicitly by calling the respective
constructor. The resulting map can still be used with the subscript operator. In fact, this
works with any type of map, as you see in the next listing with java.util.TreeMap.

def myMap = [a:1, b:2, c:3]

assert myMap instanceof LinkedHashMap
assert myMap.size() == 3
assert myMap['a'] == 1

def emptyMap = [:]
assert emptyMap.size() == 0

def explicitMap = new TreeMap()
explicitMap.putAll(myMap)
assert explicitMap['a'] == 1

def composed = [x:'y', *:myMap]
assert composed == [x:'y', a:1, b:2, c:3]

In the previous listing, we use the putAll(Map) method from java.util.Map to easily
fill the example map. One alternative would be to pass myMap as an argument to
TreeMap’s constructor.

7 Exotic in this sense refers to types of which the instances change their hashCode during their lifetime. There
is also a corner case with GStrings if their values write themselves lazily.

Listing 4.12 Specifying maps

Spread
operator
Licensed to Mark Watson <nordickan@gmail.com>

109Working with maps
 For the common case of having keys of type String, you can leave out the string
markers (single or double quotes) in a map declaration:

assert ['a':1] == [a:1]

Such a convenience declaration is allowed only if the key contains no special charac-
ters (it needs to follow the rules for valid identifiers) and isn’t a Groovy keyword.

 This notation can also get in the way when, for example, the content of a local vari-
able is used as a key. Suppose you have local variable x with content 'a'. Because [x:1]
is equal to ['x':1], how can you make it equal to ['a':1]? The trick is that you can
force Groovy to recognize a symbol as an expression by putting it inside parentheses:

def x = 'a'
assert ['x':1] == [x:1]
assert ['a':1] == [(x):1]

It’s rare to require this functionality, but when you need keys that are derived from
local symbols (local variables, fields, properties), forgetting the parentheses is a likely
source of errors.

4.3.2 Using map operators

The simplest operations with maps are storing objects in a map with a key and retriev-
ing them back using that key. Listing 4.13 demonstrates how to do that. One option
for retrieving is using the subscript operator. As you’ve probably guessed, this is imple-
mented with Map’s getAt method. A second option is to use the key like a property with
a simple dot-key syntax. You’ll learn more about properties in chapter 7. A third
option is the get method, which additionally allows you to pass a default value to be
returned if the key isn’t yet in the map. If no default is given, null will be used as the
default. If on a get(key,default) call the key isn’t found and the default is returned,
the (key,default) pair is added to the map.

def myMap = [a:1, b:2, c:3]

assert myMap['a'] == 1
assert myMap.a == 1
assert myMap.get('a') == 1
assert myMap.get('a',0) == 1

assert myMap['d'] == null
assert myMap.d == null
assert myMap.get('d') == null

assert myMap.get('d',0) == 0
assert myMap.d == 0

myMap['d'] = 1
assert myMap.d == 1
myMap.d = 2
assert myMap.d == 2

Listing 4.13 Accessing maps (GDK map methods)

Retrieves
existing
elements

Attempts to
retrieve missing
elements

Default value

Single putAt
Licensed to Mark Watson <nordickan@gmail.com>

110 CHAPTER 4 Collective Groovy datatypes

e

Assignments to maps can be done using the subscript operator or via the dot-key syn-
tax. If the key in the dot-key syntax contains special characters, it can be put into
string markers, like so:

myMap = ['a.b':1]
assert myMap.'a.b' == 1

Just writing myMap.a.b wouldn’t work here—that would be the equivalent of calling
myMap.getA().getB().

 Listing 4.14 shows how information can easily be gleaned from maps, largely
using core JDK methods from java.util.Map. Using equals, size, containsKey, and
containsValue as in listing 4.14 is straightforward. The keySet method returns a set of
keys, a collection that’s flat like a list but has no duplicate entries and no inherent
ordering. See the Javadoc of java.util.Set for details. To compare the keySet
method against the list of known keys, we need to convert this list to a set. This is done
with a small service method toSet.

 The value method returns the list of values. Because maps have no idea how their
keys are ordered, there’s no foreseeable ordering in the list of values. To make it com-
parable with the known list of values, we convert both to a set.

 Maps can be converted into a collection by calling the entrySet method, which
returns a set of entries where each entry can be asked for its key and value property.

def myMap = [a:1, b:2, c:3]
def other = [b:2, c:3, a:1]

assert myMap == other

assert !myMap.isEmpty()
assert myMap.size() == 3
assert myMap.containsKey('a')
assert myMap.containsValue(1)
assert myMap.entrySet() instanceof Collection

assert myMap.any {entry -> entry.value > 2 }
assert myMap.every {entry -> entry.key < 'd'}
assert myMap.keySet() == ['a','b','c'] as Set
assert myMap.values().toList() == [1, 2, 3]

The GDK adds two more informational methods to the JDK map type: any and every B.
They work analogously to the identically named methods for lists: they return a Bool-
ean value to tell whether any or every entry in the map satisfies a given closure.

 Listing 4.14 makes use of the fact that a literally declared map is of type Linked-
HashMap and we can therefore rely on the ordering of entries, keys, and values. This
feature is so helpful and shields programmers from bugs that arise when relying on
such a sequence for arbitrary maps. With the information about the map, we can
iterate it over the entries or over keys and values separately. Because the sets that are

Listing 4.14 Query methods on maps

Call to
equals

JDK
methods

GDK methods bSet
quals

List equals
Licensed to Mark Watson <nordickan@gmail.com>

111Working with maps
returned from keySet and entrySet are collections, we can use them with the for-
in-collection type loops. The following listing goes through some of the possible
combinations.8

def myMap = [a:1, b:2, c:3]

def store = ''
myMap.each { entry ->
 store += entry.key
 store += entry.value
}
assert store == 'a1b2c3'

store = ''
myMap.each { key, value ->
 store += key
 store += value
}
assert store == 'a1b2c3'

store = ''
for (key in myMap.keySet()) {
 store += key
}
assert store == 'abc'

store = ''
for (value in myMap.values()) {
 store += value
}
assert store == '123'

Map’s each method uses closures in two ways: passing one parameter into the closure
means that it’s an entry, and passing two parameters means it’s a key and a value. The
latter is more convenient to work with for common cases.

 Map content can be changed in various ways, as shown in listing 4.16. Removing
elements works with the original JDK methods. New capabilities that the GDK intro-
duces are:

■ Creating a subMap of all entries with keys from a given collection.
■ findAll entries in a map that satisfy a given closure.
■ find one entry that satisfies a given closure, where, unlike lists, there’s no

notion of a first entry because there’s no ordering in maps.
■ collect in a list whatever a closure returns for each entry, optionally adding to

a given collection.

Listing 4.15 Iterating over maps (GDK)

8 The example uses a default Groovy map that retains order. When using other types of maps, the order in
which these iteration methods return values may be undefined.

Iterates over
entries

Iterates
over keys
and values

Iterates over
just keys

Iterates over
just values
Licensed to Mark Watson <nordickan@gmail.com>

112 CHAPTER 4 Collective Groovy datatypes
def myMap = [a:1, b:2, c:3]
myMap.clear()
assert myMap.isEmpty()

myMap = [a:1, b:2, c:3]
myMap.remove('a')
assert myMap.size() == 2

assert [a:1] + [b:2] == [a:1, b:2]

myMap = [a:1, b:2, c:3]
def abMap = myMap.subMap(['a', 'b'])
assert abMap.size() == 2

abMap = myMap.findAll { entry -> entry.value < 3 }
assert abMap.size() == 2
assert abMap.a == 1

def found = myMap.find { entry -> entry.value < 2 }
assert found.key == 'a'
assert found.value == 1

def doubled = myMap.collect { entry -> entry.value *= 2 }
assert doubled instanceof List
assert doubled.every { item -> item % 2 == 0 }

def addTo = []
myMap.collect(addTo) { entry -> entry.value *= 2 }
assert addTo instanceof List
assert addTo.every { item -> item % 2 == 0 }

The first two examples (clear and remove) in the listing are from the core JDK; the
rest are all GDK methods. Only the subMap method B is particularly new here; collect,
find, and findAll act as they would with lists, operating on map entries instead of list
elements. The subMap method is analogous to subList, but it specifies a collection of
keys as a filter for the view onto the original map.

 To assert that the collect method works as expected, recall a trick that we dis-
cussed about lists: use the every method on the list to make sure that every entry is
even. The collect method comes with a second version that takes an additional col-
lection parameter. It adds all closure results directly to this collection, avoiding the
need to create temporary lists.

 From the list of available methods that you’ve seen for other datatypes, you may
miss the dearly beloved isCase for use with grep and switch. Don’t we want to classify
with maps? Well, we need to be more specific: Do we want to classify by the keys or by
the values? Either way, an appropriate isCase is available when working on Map’s key-
Set or values.

 The GDK introduces two more methods for the map datatype: asImmutable and
asSynchronized. These methods use Collections.unmodifiableMap and Collections
.synchronizedMap to protect the map from unintended content changes and concur-
rent access. See these methods’ Javadocs for more details on the topic.

Listing 4.16 Changing map content and building new objects from it

Creates a
view onto
original map

 b
Licensed to Mark Watson <nordickan@gmail.com>

113Working with maps
4.3.3 Maps in action

In listing 4.17, we revisit the initial example of counting word frequencies in a text
corpus. The strategy is to use a map with each distinct word serving as a key. The
mapped value of that word is its frequency in the text corpus. We go through all words
in the text and increase the frequency value of that respective word in the map. We
need to make sure that we can increase the value when a word is hit the first time and
there’s no entry yet in the map. Luckily, the get(key,default) method does the job.

 We then take all keys, put them in a list, and sort it so that it reflects the order of
frequency. Finally, we play with the capabilities of lists, ranges, and strings to print a
nice statistic.

 The text corpus under analysis is Baloo the Bear’s anthem on his attitude
toward life.

def textCorpus =
"""
Look for the bare necessities
The simple bare necessities
Forget about your worries and your strife
I mean the bare necessities
Old Mother Nature's recipes
That bring the bare necessities of life
"""

def words = textCorpus.tokenize()
def wordFrequency = [:]
words.each { word ->
 wordFrequency[word] = wordFrequency.get(word,0) + 1
}
def wordList = wordFrequency.keySet().toList()
wordList.sort { wordFrequency[it] }

def statistic = "\n"
wordList[-1..-5].each { word ->
 statistic += word.padLeft(12) + ': '
 statistic += wordFrequency[word] + "\n"
}
assert statistic == """
 necessities: 4
 bare: 4
 the: 3
 your: 2
 life: 1
"""

The example nicely combines our knowledge of Groovy’s datatypes B. Counting the
word frequency is essentially a one-liner. It’s even shorter than the pseudocode that we
used to start this section. Having the sort method on the wordList accept a closure
turns out to be very beneficial c, because it’s able to implement its comparing logic

Listing 4.17 Counting word frequency with maps

Updates
frequency
count

 b

Sorts by
frequency c
Licensed to Mark Watson <nordickan@gmail.com>

114 CHAPTER 4 Collective Groovy datatypes
on the wordFrequency map—on an object totally different from the wordList. Just as
an exercise, try to do that in Java, count the lines, and judge the expressiveness of
either solution. As an advanced exercise, you could try sorting by frequency and then
alphabetically both in Groovy and Java. This will make the expressiveness of Groovy
even more obvious.

 In listing 4.11, we showed you map/filter/reduce style processing with lists. The
same style of processing is frequently used with maps too as shown in this example:

def people = [peter: 40, paul: 30, mary: 20]
assert people
 .findAll{ _, age -> age < 35 }
 .collect{ name, _ -> name.toUpperCase() }
 .sort()
 .join(', ') == 'MARY, PAUL'

Lists and maps make a powerful duo. There are whole languages that build on just
these two datatypes (such as Perl, with lists and hashes) and implement all other data-
types and even objects upon them. Their power comes from the complete and mind-
fully engineered Java Collections Framework. Thanks to Groovy, this power is now
right at our fingertips.

 Until now, we carelessly switched back and forth between Groovy and Java collec-
tion datatypes. We’ll throw more light on this interplay in the next section.

4.4 Notes on Groovy collections
The Java Collections API is the basis for all the nice support that Groovy gives you
through lists and maps. In fact, Groovy not only uses the same abstractions, it even
works on the very same classes that make up the Java Collections API.

 This is exceptionally convenient for those who come from Java and already have a
good understanding of it. If you haven’t, and you’re interested in more background
information, have a look at your Javadoc starting at java.util.Collection. The JDK
documentation also includes a guide and tutorial about Java collections.

 One of the typical peculiarities of the Java collections is that you shouldn’t try to
structurally change one while iterating through it. A structural change is one that adds
an entry, removes an entry, or changes the sequence of entries when the collection is
sequence-aware. This applies even when iterating through a view onto the collection,
such as using list[range].

4.4.1 Understanding concurrent modification

If you fail to meet this constraint, you’ll see a ConcurrentModificationException.
For example, you cannot remove all elements from a list by iterating through it and
removing the first element at each step:

def list = [1, 2, 3, 4]
list.each{ list.remove(0) }
// throws ConcurrentModificationException !!
Licensed to Mark Watson <nordickan@gmail.com>

115Notes on Groovy collections
NOTE Concurrent in this sense doesn’t necessarily mean that a second thread
changed the underlying collection. As shown in the example, even a single
thread of control can break the structural stability constraint.

In this case, the correct solution is to use the clear method. The Java Collections API
has lots of such specialized methods. When searching for alternatives, consider collect,
addAll, removeAll, findAll, and grep.

 This leads to a second issue: some methods work on a copy of the collection and
return it when finished; other methods work directly on the collection object they
were called on (we call this the receiver9 object).

4.4.2 Distinguishing between copy and modify semantics

Generally, there’s no easy way to anticipate whether a method modifies the receiver
or returns a copy. Some languages have naming conventions for this. But Groovy
couldn’t do so because all Java methods are directly visible in Groovy, and Java’s
method names couldn’t be made compliant to such a convention. But Groovy tries to
adapt to Java and follow the heuristics that you can spot when looking through the
Java Collections API:

■ Methods that modify the receiver typically don’t return a collection. Examples:
add, addAll, remove, removeAll, and retainAll. Counterexample: sort.

■ Methods that return a collection typically don’t modify the receiver. Examples:
grep, findAll, and collect. Counterexample: sort (though we recommend
using toSorted in that case). And yes, sort is a counterexample for both,
because it returns a collection and modifies the receiver.

■ Methods that modify the receiver have imperative names. They sound like there
could be an exclamation mark behind them. (Indeed, this is Ruby’s naming
convention for such methods.) Examples: add, addAll, remove, removeAll,
retainAll, and sort. Counterexamples: collect, grep, and findAll, which
are imperative but don’t modify the receiver and return a modified copy.

The preceding rules can be mapped to operators, by applying them to the names of
their method counterparts: << leftShift is imperative and modifies the receiver (on
lists, unfortunately not on strings—doing so would break Java’s invariant of strings
being immutable); plus isn’t imperative and returns a copy.

 The convention in Groovy is that any method that implements an arithmetic oper-
ator (plus, minus, multiply, divide) doesn’t modify the receiver but returns a copy.

 These aren’t clear rules but only heuristics to give you some guidance. Whenever
you’re in doubt and object identity is important, have a look at the documentation or
write a few assertions.

9 From the Smalltalk notion of describing method calls on an object as sending a message to the receiver.
Licensed to Mark Watson <nordickan@gmail.com>

116 CHAPTER 4 Collective Groovy datatypes
4.5 Summary
This has been a long trip through the valley of Groovy’s datatypes. There were lots of
paths to explore that led to new interesting places.

 We introduced ranges as objects that, as opposed to control structures, have their
own time and place of creation, can be passed to methods as parameters, and can be
returned from method calls. This makes them very flexible, and once the concept of a
range is available, many uses beyond simple control structures suggest themselves.
The most natural example you’ve seen is extracting a section of a list using a range as
the operand to the list’s subscript operator.

 Lists and maps are more familiar to Java programmers than ranges but have suf-
fered from a lack of language support in Java itself. Groovy recognizes just how often
these datatypes are used, gives them special treatment in terms of literal declarations,
and, of course, provides operators and extra methods to make life even easier. The
lists and maps used in Groovy are the same ones encountered in Java and come with
the same rules and restrictions, although these become less onerous due to some of the
additional methods available on the collections.

 Throughout our coverage of Groovy’s datatypes, you’ve seen closures used ubiqui-
tously for making functionality available in a simple and unobtrusive manner. In the
next chapter, we’ll demystify the concept, explain the usual and not-so-usual applica-
tions, and show how you can spice up your own code with closures.
Licensed to Mark Watson <nordickan@gmail.com>

Working with closures
I wouldn’t like to build a tool that could only do what I had been able to imagine
for it.

 —Bjarne Stroustrup

Closures are important. Very important. They’re arguably one of the most useful
features of Groovy. But at the same time they can be a strange concept until you
fully understand them. To get the best out of Groovy, or to understand anyone
else’s Groovy code, you’re going to have to be comfortable with closures. Not just
“met them once at a wedding” comfortable, but “invite them over for a barbecue
on the weekend” comfortable.

 Now, we don’t want to scare you away. Closures aren’t hard—they’re just differ-
ent than anything you might be used to. In a way, this is strange, because one of
the chief tenets of object orientation is that objects have behavior as well as data.

This chapter covers
■ Why you want to have closures
■ How to declare and use closures
■ How to design methods that make use of

closures
117

Licensed to Mark Watson <nordickan@gmail.com>

118 CHAPTER 5 Working with closures
Closures are objects of which the main purpose in life is their behavior—that’s almost
all there is to them.

 In previous chapters, you’ve seen a few uses of closures, so you might already have
a good idea of what they’re about. Please forgive us if we seem to be going over the
same ground again—it’s so important, we’d rather repeat ourselves than leave you
without a good grasp of the basic principles.

 In this chapter, we’ll introduce the fundamental concept of closures (again),
explain their benefits, and then show you how they can be declared and called. After
this basic treatment, we’ll look in a bit more depth at other methods available on clo-
sures and the scope of a closure—that is, the data and members that can be accessed
within it—as well as consider what it means to return from a closure. We end the chap-
ter with a discussion of how closures can be used to implement many common design
patterns and how they alleviate the need for some others by solving the problem in a
different manner.

 So, without further ado, let’s take a look at what closures really are in the first place.

5.1 A gentle introduction to closures
Let’s start with a simple definition of closures, and then we’ll expand on it with an
example. A closure is a piece of code wrapped up as an object. It acts like a method in
that it can take parameters and return a value. It’s a normal object in that you can pass
a reference to it just as you can to any other object. Don’t forget that the JVM has no
idea you’re running Groovy code, so there’s nothing particularly odd that you could
be doing with a closure object. It’s just an object. Groovy provides a very easy way of
creating closure objects and enables some very smart behavior.

 Consider an envelope containing a piece of paper. For other objects, the paper
might have the values of variables on it: x = 5, y = 10, and so on. For a closure, the
paper would have a list of instructions. You can give that envelope to someone, and
that person might decide to follow the instructions, or they might give the envelope to
someone else. That person might decide to follow the instructions lots of times, with a
different context each time. For instance, the piece of paper might say, “Send a letter
to the person you’re thinking of,” and the person might flip through the pages of
their address book thinking of every person listed in it, following the instructions over
and over again, once for each contact in the address book.

 The Groovy equivalent of that example would be something like this:

Closure envelope = { person -> new Letter(person).send() }
addressBook.each (envelope)

That’s a fairly long-winded way of going about it, and not idiomatic Groovy, but it
shows the distinction between the closure itself (in this case, the value of the envelope
variable) and its use (as a parameter to the each method). Part of what makes closures
hard to understand when coming to them for the first time is that they’re usually used
Licensed to Mark Watson <nordickan@gmail.com>

119The case for closures
in an abbreviated form. Groovy makes them very concise because they’re so frequently
used—but that brevity can be detrimental to the learning process.

 Just for comparison, here’s the previous code written using the shorthand Groovy
provides. When you see this shorthand, it’s often worth mentally separating it out into
the longer form:

addressBook.each { new Letter(it).send() }

It’s still a method call passing a closure as the single parameter, but that’s all hid-
den—passing a closure to a method is sufficiently common in Groovy that there
are special rules for it. Similarly, if the closure needs to take only a single parame-
ter to work on, Groovy provides a default name—it—so that you don’t need to
declare it specifically. That’s how our example ends up so short when we use all the
Groovy shortcuts.

 Now, we’re in danger of getting ahead of ourselves here, so we’ll pause and think
about why we’d want to have closures in the first palace. Just keep remembering:
they’re objects that are associated with some code, and Groovy provides neat syntax
for them.

5.2 The case for closures
Java as a platform is great: portable, stable, scalable, and reasonably well performing. Java
as a language has a lot of advantages but, unfortunately, also some shortcomings.

 Some of those deficiencies can be addressed in Groovy through the use of clo-
sures. We’ll look at two particular areas that benefit from closures: performing every-
day tasks with collections, and using resources in a safe manner. In these two common
situations, you need to be able to perform some logic that’s the same for every case
and execute arbitrary code to do the actual work. In the case of collections, that code
is the body of the iterator; in the case of resource handling, it’s the use of the resource
after it’s been acquired and before it’s been released. In general terms, such a mecha-
nism uses a callback to execute the work. Closures are Groovy’s way of providing trans-
parent callback targets as first-class citizens.

5.2.1 Using iterators

A typical task is to iterate through a collection. Here’s how you do it in classic Java:

// Java 5
for (ItemType item : list) {
 // do something with item
}

With Groovy closures you can do this:

// Groovy object iteration
list.each { item -> /* do something with item */ }
Licensed to Mark Watson <nordickan@gmail.com>

120 CHAPTER 5 Working with closures
Since Java 8 there’s something similar1 to Groovy:

// Java 8 with lambda
list.stream().forEach((item) -> {
 // do something with item
});

We don’t want to go too much into the differences between closures and lambdas
but we’ll point out some of them as we go along. Interestingly, Groovy can take full
advantage of the JDK additions that have been introduced to support lambdas, espe-
cially the streaming API. You can always use closures where lambda expressions are
expected, as follows:

// Groovy closures with Java 8
list.stream().forEach { println it}

Clearly, it’s useful to have a for loop that iterates through every item in a collection—
otherwise, Groovy wouldn’t have it, for starters. (Groovy’s for statement is somewhat
broader in scope than Java’s—see section 6.3 for more details.) It’s useful, but it’s not
everything we could wish for. There are common patterns for why we want to iterate
through a collection, such as finding whether a particular condition is met by any ele-
ment, finding all the elements met by a condition, or transforming each element into
another, thereby creating a new collection.

 It’d be madness to have a specialized syntax for all of those patterns. Making a lan-
guage too smart in a nonextensible way ends up like a road through the jungle—it’s
fine when you’re doing something anticipated by the designers, but as soon as you
stray off the path, life is tough. So, without direct language support for all those pat-
terns, what’s left? Each of the patterns relies on executing a particular piece of code
again and again, once for each element of the collection. Java has no concept of “a
particular piece of code” unless it’s buried in a method. That method can be part of
an interface implementation, but at that point each piece of code needs its own (pos-
sibly anonymous) class, and life gets very messy.

 Groovy uses closures to specify the code to be executed each time and adds the
extra methods (each, find, findAll, collect, and so forth) to the collection classes
to make them readily available. Those methods aren’t magic—they’re simple Groovy,
because closures allow the controlling logic (the iteration) to be separated from the
code to execute for every element. If you find yourself wanting a similar construct that
isn’t already covered by Groovy, you can add it easily.

 Java 8 lambdas address this issue in a similar way as Groovy closures do. The
request from the developer community that knew the concept of Groovy closures for
years has been so overwhelming that Java saw the need to introduce them.

1 Java 8 works on a stream here, not on the collection. This is quite a difference because reading from a stream
is destructive. You cannot read the same value twice. You most likely never want to share a stream.
Licensed to Mark Watson <nordickan@gmail.com>

121The case for closures
 Separating iteration logic from what to do on each iteration isn’t the only reason
for introducing the closure concept. A second reason that may be even more impor-
tant is the use of closures when handling resources.

5.2.2 Handling resources with a protocol

How many times have you seen code that opens a stream but calls close at the end of
the method, overlooking the fact that the close statement may never be reached
when an exception occurs while processing? So, it needs to be protected with a try-
catch block. No—wait—that should be try-finally, or should it? And inside the
finally block, close can throw another exception that needs to be handled. There
are too many details to remember, and so resource handling is often implemented
incorrectly. With Groovy’s closure support, you can put that logic in one place and use
it like this:

new File('myfile.txt').eachLine { println it }

The eachLine method of File now takes care of properly following the protocol of
opening and closing the file input stream at the appropriate time. This guards you
from accidentally producing a resource leak of file handles.

 Streams are the most obvious tip of the iceberg of protocol-managed resources. Data-
base connections, statements, transactions, native handles such as graphic resources,
network connections, thread pools, and even your GUI are resources that need to be
managed—that is, repainted correctly at the right time—and observers and event lis-
teners need to be removed when the time comes, or you end up with a memory leak.

 Forgetting to clean up correctly in all situations ought to be a problem that only
affects neophyte Java programmers, but because the language provides little help
beyond try-catch-finally, try-with-resources, and the AutoCloseable interface,
even experienced developers end up making mistakes. It’s possible to code around
this in an orderly manner, but Java leads inexperienced programmers away from
centralized resource handling. Code structures are duplicated, and the probability of
not-so-perfect implementations rises with the number of duplicates.

 Resource-handling code is often tested poorly. Projects that measure their test cov-
erage typically struggle to fully cover this area. That’s because duplicated, widespread
resource handling is difficult to test and eats up precious development time. Testing
centralized handlers is easy and requires only a single test.

 Let’s see what resource-handling solutions Java provides and why they’re not used
often, and then we’ll show you the corresponding Groovy solutions.

A COMMON JAVA APPROACH: USE INNER CLASSES

To do centralized resource handling, you need to pass resource-using code to the han-
dler. This should sound familiar by now—it’s essentially the same problem we encoun-
tered when considering collections: the handler needs to know how to call that code,
and therefore it must implement some known interface. In Java, this is frequently
implemented by an inner class for two reasons. First, it allows the resource-using code
Licensed to Mark Watson <nordickan@gmail.com>

122 CHAPTER 5 Working with closures
to be close to the calling code (which is often useful for readability). Second, it allows
the resource-using code to interact with the context of the calling code, using local
variables, calling methods on the relevant object, and so on.

NOTE JUnit, one of the most prominent Java packages outside the JDK, follows
this strategy by using the Runnable interface with its runProtected method.

Anonymous inner classes (and lambdas since Java 8) are mainly used for this kind of
pattern—if Java had closures or lambdas from the beginning, it’s possible that anony-
mous inner classes might never have been invented. The rules and limitations that
come with them (and with plain inner classes) impose some uncomfortable restrictions.
As soon as you have to start typing code like MyClass.this.doSomething, you know
something is wrong—and that’s aside from the amount of distracting clutter required
around your code just to create it in the first place. The interaction with the context of
the calling code is limited. Rules such as “local variables having to be final to be used”
made life so awkward that with Java 8 this restriction was lifted to “essentially final.”

 Java’s limitations get in the way too much to make it an elegant solution. The fol-
lowing example uses a Resource that it gets from a ResourceHandler, which is respon-
sible for its proper construction and destruction. Only the boldface code is needed
for doing the job:

// Java
interface ResourceUser { // a @FunctionalInterface in Java 8
 void use(Resource resource)
}

resourceHandler.handle(new ResourceUser(){
 public void use (Resource resource) {
 resource.doSomething()
 }
});

The Groovy equivalent of this code reveals all the necessary information without
any waste:

resourceHandler.handle { resource -> resource.doSomething() }

Groovy’s scoping is also significantly more flexible and powerful, while removing the
“code mess” that inner classes introduce.

AN ALTERNATIVE JAVA APPROACH: THE TEMPLATE METHOD PATTERN
Another strategy to centralize resource handling in Java is to do it in a superclass and
let the resource-using code live in a subclass. This is the typical implementation of the
Template Method (Gang of Four) pattern.

 The downside here is that you either end up with a proliferation of subclasses or
use (maybe anonymous) inner subclasses, which brings us back to the drawbacks dis-
cussed earlier. It also introduces penalties in terms of code clarity and freedom of
implementation, both of which tend to suffer when inheritance is involved. This leads
us to take a close look at the dangers of abstraction proliferation.
Licensed to Mark Watson <nordickan@gmail.com>

123Declaring closures
 If there were only one interface that could be used for the purpose of passing logic
around, like the imaginary ResourceUser interface from the previous example, then
things wouldn’t be too bad. But in Java, there’s no such beast—that is, no single
ResourceUser interface that serves all purposes. The signature of the callback method
use needs to adapt to the purpose: the number and type of parameters, the number
and type of declared exceptions, and the return type.

 A variety of interfaces has evolved over time: Runnables, Observers, Listeners,
Visitors, Comparators, Strategies, Commands, Controllers, and so on.2 This makes
their use more complicated, because with every new interface, there’s also a new
abstraction or concept that needs to be understood.

 In comparison, Groovy closures can handle any method signature, and the behav-
ior of the controlling logic may even change depending on the signature of the clo-
sure provided to it, as you’ll see later.

 These two examples of pain-points in Java that can be addressed with closures are
just that—examples. If they were the only problems made easier by closures, closures
would still be worth having, but reality is much richer. It turns out that closures enable
many patterns of programming that would be unthinkable without them.

 Before you can live your dreams, however, you need to learn more about the basics
of closures. Let’s start with how you declare them.

5.3 Declaring closures
So far, we’ve used the simple abbreviated syntax of closures: after a method call, put
your code in braces with parameters delimited from the closure body by an arrow.

 Let’s start by adding to your knowledge about the simple abbreviated syntax, and
then we’ll look at two more ways to declare a closure: by using them in assignments
and by referring to a method.

5.3.1 Simple declaration

The next listing shows the simple closure syntax plus a new convenience feature.
When there’s only one parameter passed into the closure, its declaration is optional.
The magic variable it can be used instead. See the two equivalent closure declara-
tions in the following listing.

log = ''
(1..10).each{ counter -> log += counter }
assert log == '12345678910'

log = ''
(1..10).each{ log += it }
assert log == '12345678910'

2 With Java 8 come new interfaces that are more versatile like Function, Producer, and Consumer. This is nice
because we can directly use them in Groovy.

Listing 5.1 Simple abbreviated closure declaration
Licensed to Mark Watson <nordickan@gmail.com>

124 CHAPTER 5 Working with closures
Note that unlike counter, the magic variable it needs no declaration. This syntax is
an abbreviation because the closure object as declared by the braces is the last param-
eter of the method and would normally appear within the method’s parentheses. As
you’ll see, it’s equally valid to put it inside parentheses like any other parameter,
although it’s hardly ever used this way:

log = ''
(1..10).each({ log += it })
assert log == '12345678910'

This syntax is simple because it uses only one parameter—the implicit parameter it.
Multiple parameters can be declared in sequence, delimited by commas. A default
value can optionally be assigned to parameters, in case no value is passed from the
method to the closure. We’ll show examples in section 5.4.

TIP Think of the arrow as an indication that parameters are passed from the
method on the left into the closure body on the right.

5.3.2 Using assignments for declaration

A second way of declaring a closure is to directly assign it to a variable:

def printer = { line -> println line }

The closure is declared inside the braces and assigned to the printer variable.

TIP Whenever you see the braces of a closure, think: new Closure(){}.

There’s also a special kind of assignment to the return value of a method:

def Closure getPrinter() {
 return { line -> println line }
}

Again, the braces denote the construction of a new closure object. This object is
returned from the method call.

TIP Braces can denote the construction of a new closure object or a Groovy
block. Blocks can be class, interface, static, or object initializers, or method
bodies. Or they can appear with the Groovy keywords if, else, synchronized,
for, while, switch, try, catch, and finally. All other occurrences are closures.

As you see, closures are objects. They can be stored in variables, they can be passed
around, and, as you probably guessed, you can call methods on them. Being objects,
closures can also be returned from a method.3

3 This is a key distinction to Java 8 lambdas.
Licensed to Mark Watson <nordickan@gmail.com>

125Declaring closures
5.3.3 Referring to methods as closures

The third way of declaring a closure is to reuse
something that’s already declared: a method. Meth-
ods have a body, may return a value, can take
parameters, and can be called. The similarities
with closures are obvious, so Groovy lets you reuse
the code you already have in methods, but as a clo-
sure. Referencing a method as a closure is per-
formed using the reference.& operator. The
reference is used to specify which instance should
be used when the closure is called, just like a nor-
mal method call to reference.someMethod(). Figure 5.1 shows an assignment using a
method closure, breaking up the statement into its constituent parts.

 Listing 5.2 demonstrates method closures in action, showing two different instances
being used to give two different closures, even though the same method is invoked in
both cases.

class SizeFilter {
 Integer limit

 boolean sizeUpTo(String value) {
 return value.size() <= limit
 }
}

SizeFilter filter6 = new SizeFilter(limit:6)
SizeFilter filter5 = new SizeFilter(limit:5)

Closure sizeUpTo6 = filter6.&sizeUpTo

def words = ['long string', 'medium', 'short', 'tiny']

assert 'medium' == words.find (sizeUpTo6)
assert 'short' == words.find (filter5.&sizeUpTo)

First, we create two instances B. Each has a separate idea of how long a string it will
deem to be valid in the sizeUpTo method. We create a reference to that method with
filter6.&sizeUpTo c, showing that the reference can be assigned to a variable,
which is then passed at d as a parameter to the find method. Alternatively, we can
create such a reference directly as a parameter to the find method e. We use a sam-
ple list of words to check that the closures are doing what we expect them to.

 Method closures are limited to instance methods, but they do have another inter-
esting feature—runtime overload resolution, also known as multimethods. You’ll find
out more about multimethods in section 7.3, but the following listing gives a taste.

Listing 5.2 Simple method closures in action

Normal

assignment

Method closure

operator

def c = reference someMethod.&

Receiver Method name

Figure 5.1 Anatomy of a simple
method closure assignment statement

GroovyBean
constructor calls

 b

Method closure
assignment

 c

Calling with
closure

 d

Passing a method
closure directly e
Licensed to Mark Watson <nordickan@gmail.com>

126 CHAPTER 5 Working with closures
class MultiMethodSample {

 int mysteryMethod (String value) {
 return value.length()
 }
 int mysteryMethod (List list) {
 return list.size()
 }
 int mysteryMethod (int x, int y) {
 return x+y
 }
}

MultiMethodSample instance = new MultiMethodSample()
Closure multi = instance.&mysteryMethod

assert 10 == multi ('string arg')
assert 3 == multi (['list', 'of', 'values'])
assert 14 == multi (6, 8)

Here a single instance is used, and indeed a single closure B. But each time it’s
called, a different method implementation is invoked c. We don’t want to rush ahead
of ourselves, but you’ll see a lot more of this kind of dynamic behavior in chapter 7.

 Now that you’ve seen all the ways of declaring a closure, it’s worth pausing for a
moment and seeing them all together, performing the same function, just with differ-
ent declaration styles.

5.3.4 Comparing the available options

Listing 5.4 creates and uses closures in various ways: through simple declaration,
assignment to variables, and method closures. In each case, we call the each method
on a simple map, providing a closure that doubles a single value. By the time we’ve fin-
ished, we’ve doubled each value three times.

Map map = ['a':1, 'b':2]
map.each{ key, value -> map[key] = value * 2 }
assert map == ['a':2, 'b':4]

Closure doubler = {key, value -> map[key] = value * 2 }
map.each(doubler)
assert map == ['a':4, 'b':8]

def doubleMethod (entry){
 entry.value = entry.value * 2
}
doubler = this.&doubleMethod
map.each(doubler)
assert map == ['a':8, 'b':16]

Listing 5.3 Multimethod, also known as runtime overload resolution, closures

Listing 5.4 Full closure declaration examples

Only a single
closure is
created

 b

Different implementations
are called based on
argument types

 c

Parameter sequence
with commas

 b

Assigns and then
calls a closure
reference

 c

Usual method
declaration

 d

References and calls a
method as a closure

 e
Licensed to Mark Watson <nordickan@gmail.com>

127Using closures
In B, we pass the closure as the parameter directly. This is the form you’ve seen most
commonly so far.

 The declaration of the closure in c is disconnected from its immediate use. The
curly braces are Groovy’s way of declaring a closure, so we assign a closure object to
the variable doubler. Some people incorrectly interpret this line as assigning the result
of a closure call to a variable. Don’t fall into that trap! The closure isn’t yet called, only
declared, until we reach it. There you see that passing the closure as an argument to
the each method via a reference is exactly the same as declaring the closure in-place,
the style that we followed in all the previous examples.

 The method declared in d is a perfectly ordinary method. There’s no trace of our
intention to use it as a closure.

 In e, the reference.& operator is used for referencing a method name as a clo-
sure. Again, the method isn’t immediately called; the execution of the method occurs
as part of the next line. This is just like c. The closure is passed to the each method,
which calls it back for each entry in the map.

 Typing4 is optional in Groovy, and consequently it’s optional for closure parame-
ters. A special thing about closure parameters with explicit types is that this type isn’t
checked at compile time but at runtime.

 To fully understand how closures work and how to use them within your code, you
need to find out how to invoke them. That’s the topic of the next section.

5.4 Using closures
So far, you’ve seen how to declare a closure for the purpose of passing it for execution,
to the each method, for example. But what happens inside the each method? How
does it call your closure? If you knew this, you could come up with equally smart
implementations. We’ll first look at how simple calling a closure is and then move on
to explore advanced methods that the Closure type has to offer.

5.4.1 Calling a closure

Suppose you have a reference x pointing to a closure; you can call it with x.call() or
simply x(). You’ve probably guessed that any arguments to the closure call go between
the parentheses.

 Let’s start with a simple example. The following listing shows the same closure
being called both ways.

def adder = { x, y -> return x+y }

assert adder(4, 3) == 7
assert adder.call(2, 6) == 8

4 The word typing has two meanings: declaring object types and typing keystrokes. Although Groovy provides
optional typing, you still have to key in your program code.

Listing 5.5 Calling closures
Licensed to Mark Watson <nordickan@gmail.com>

128 CHAPTER 5 Working with closures

S
prew
We start off by declaring pretty much the simplest possible closure—a piece of code
that returns the sum of the two parameters it’s passed. Then we call the closure both
directly and using the call method. Both ways of calling the closure achieve exactly
the same effect.

 Now let’s try something more involved. In the next listing, we demonstrate calling a
closure from within a method body and how the closure gets passed into that method in
the first place. The example measures the execution time of the closure.

def benchmark(int repeat, Closure worker) {
 def start = System.nanoTime()

 repeat.times { worker(it) }

 def stop = System.nanoTime()
 return stop - start
}
def slow = benchmark(10000) { (int) it / 2 }
def fast = benchmark(10000) { it.intdiv(2) }
assert fast * 2 < slow

Do you remember our performance investigation for regular expression patterns in list-
ing 3.9? We needed to duplicate the benchmarking logic because we had no means to
declare how to benchmark something. Now you know how. You can pass a closure into
the benchmark method, where some pre- and postwork takes control of proper timing.

 We put the closure parameter at the end of the parameter list B to allow the sim-
ple abbreviated syntax when calling the method. In the example, we declare the type
of the closure. This is only to make things more obvious. The Closure type is optional.

 We effectively start timing the benchmark at c. From a general point of view, this
is arbitrary prework like opening a file or connecting to a database. It just so happens
that our resource is time.

 At d, we call the given closure as many times as our repeat parameter demands.
We pass the current count to the closure to make things more interesting. From a gen-
eral point of view, a resource is passed to the closure.

 We stop timing at e and calculate the time taken by the closure. Here’s the place
for the postwork: closing files, flushing buffers, returning connections to the pool,
and so on.

 The payoff comes at f. We can now pass logic to the benchmark method. Note that
we use the simple abbreviated syntax and use the magic it to refer to the current
count. As a side effect, we learn that the general number division takes more than two
times longer than the optimized intdiv method.

NOTE This kind of benchmarking shouldn’t be taken too seriously. There are
all kinds of effects that can heavily influence such wall clock–based measure-
ments: the machine characteristics, OS, current machine load, JDK version,
just-in-time (JIT) compiler, and HotSpot settings, and so on.

Listing 5.6 Calling closures

Puts closures last bome
ork c

Calls closure the given
number of times dSome

postwork
 e

Passes different
closures for
analysis

 f
Licensed to Mark Watson <nordickan@gmail.com>

129Using closures
Figure 5.2 shows the UML sequence diagram for the general calling scheme of the
declaring object that creates the closure, the method invocation on the caller, and
the caller’s callback to the given closure.

 When calling a closure, you need to pass exactly as many arguments to the closure
as it expects to receive, unless the closure defines default values for its parameters.
This default value is used when you omit the corresponding argument. The following
is a variant of the addition closure as used in listing 5.5, with a default value for the
second parameter and two calls—one that passes two arguments, and one that relies
on the default:

def adder = { x, y=5 -> return x+y }

assert adder(4, 3) == 7
assert adder.call(7) == 12

For the use of default parameters in closures, the same rules apply as for default
parameters for methods. Also, closures can be used with a parameter list of variable
length in the same way that methods can. We’ll cover this in chapter 7.

 At this point, you should be comfortable with passing closures to methods and
have a solid understanding of how the callback is executed (see also the UML diagram
in figure 5.2). Whenever you pass a closure to a method, you can be sure that a call-
back will be executed one way or the other (maybe only conditionally), depending on
that method’s logic. Closures are capable of more than just being called, though. In
the next section, you see what else they have to offer.

create

method (args, closure)

call (args)

declarer:

:Closure

caller:

Figure 5.2 UML sequence diagram of the typical sequence of method calls when a declarer
creates a closure and attaches it to a method invocation on the caller, which in turn calls
that closure’s call method
Licensed to Mark Watson <nordickan@gmail.com>

130 CHAPTER 5 Working with closures
5.4.2 More closure capabilities

The class groovy.lang.Closure is an ordinary class, albeit one with extraordinary
power and extra language support. It has a number of methods available beyond
call. We’ll present the most important ones. Even though you’ll usually just declare
and call closures, it’s nice to know there’s extra power available when you need it.

REACTING ON THE PARAMETER COUNT OR TYPE

In section 4.3.2 you saw Map’s each method. It passes either a Map.Entry object or
key and value separately into a supplied closure, depending on whether the closure
takes one or two arguments. The each method adapts its behavior depending on the
number of arguments that the closure that it receives was built with. You can do this
in your own methods by retrieving the expected parameter count (and types, if
declared) by calling Closure’s getMaximumNumberOfParameters and getParameter-
Types methods:

def numParams (Closure closure){
 closure.getMaximumNumberOfParameters()
}

assert numParams { one -> } == 1
assert numParams { one, two -> } == 2

def paramTypes (Closure closure){
 closure.getParameterTypes()
}

assert paramTypes { String s -> } == [String]
assert paramTypes { Number n, Date d -> } == [Number, Date]

As in the Map.each example, this allows for the luxury of supporting closures with dif-
ferent parameter styles, adapted to the caller’s needs.

HOW TO CURRY FAVOR WITH A CLOSURE

Currying is a technique invented by Moses Schönfinkel and Gottlob Frege, and named
after the logician Haskell Brooks Curry (1900–1982), a pioneer in functional program-
ming. (Unsurprisingly, the functional language Haskell is also named after Curry.)
The basic idea is to take a function with multiple parameters and transform it into a
function with fewer parameters by fixing some of the values.5 A classic example is to
choose an arbitrary value n and transform a function that sums two parameters into a
function that takes a single parameter and adds n to it.

 In Groovy, Closure’s curry method returns a clone of the current closure, having
bound one or more parameters to a given value. Parameters are bound to curry’s
arguments from left to right. The following listing gives an implementation.

5 A functional aficionado may point out that currying and partial application are different but related concepts
and that Groovy’s curry function might better have been named “partial.” Perhaps a future version of Groovy
will provide alternative names for these methods. In the meantime, we’ll give ourselves a bit of poetic license
to simplify the jargon in our explanations.
Licensed to Mark Watson <nordickan@gmail.com>

131Using closures
def mult = { x, y -> return x * y }
def twoTimes = mult.curry(2)
assert twoTimes(5) == 10

The twoTimes closure is a new one that’s derived from the mult closure by binding the
leftmost parameter x. There are also methods to bind the rightmost parameter
(rcurry) or the nth parameter (ncurry) or do the left binding explicitly (lcurry).
But in Groovy it’s so easy to literally declare a closure such that currying is used less
often than in other functional languages. Here’s the literal variant, which is arguably a
little less elegant:

def twoTimes = { y -> mult 2, y }

If you’re new to closures or currying, now might be a good time to take a break and re-
read the currying discussion. It’s a deceptively simple concept to describe mechani-
cally, but it can be quite difficult to internalize. Just take it slowly, and you’ll be fine.

 The real power of currying comes when the closure’s parameters are themselves
closures. This is a common construction in functional programming, but it does take
a little getting used to.

 Suppose you’re implementing a logging facility. It should support filtering of log
lines, formatting them, and appending them to an output device. Each activity should
be configurable. The idea is to provide a single closure for a customized version of
each activity, while still allowing you to implement the overall pattern of when to apply
a filter, do the formatting, and output the log line in one place. The following listing
shows how currying is used to inject the customized activity into that pattern.

def configurator = { format, filter, line ->
 filter(line) ? format(line) : null
}
def appender = { config, append, line ->
 def out = config(line)
 if (out) append(out)
}

def dateFormatter = { line -> "${new Date()}: $line" }
def debugFilter = { line -> line.contains('debug') }
def consoleAppender = { line -> println line }

def myConf = configurator.curry(dateFormatter, debugFilter)
def myLog = appender.curry(myConf, consoleAppender)

myLog('here is some debug message')
myLog('this will not be printed')

Closures B and c are like recipes: given any filter, output format, destination, and a
line to potentially log, they perform the work, delegating appropriately. The short

Listing 5.7 A simple currying example

Listing 5.8 More elaborate currying

Configuration
use

 b

Formatting
use

 c

Filter, format,
and output parts

 d

Putting it
all together

 e
Licensed to Mark Watson <nordickan@gmail.com>

132 CHAPTER 5 Working with closures
closures in d are the specific ingredients in the recipe. They could be specified every
time, but we’re always going to use the same ingredients. Currying at e allows us to
remember just one object rather than each of the individual parts. To continue the
recipe analogy, we’ve put all the ingredients together, and the result needs to be put
in the oven whenever we want to do any logging.

 Logging is often dismissed as a dry topic. But, in fact, the few lines in listing 5.8
prove that conception wrong. As a mindful engineer, you know that log statements
will be called often, and any logging facility must pay attention to performance. In
particular, there should be the least possible performance hit when no log is written.

 The time-consuming operations in this example are formatting and printing. Fil-
tering is quick. With the help of closures, we laid out a code pattern that ensures that
the expensive operations aren’t called for lines that don’t need to be printed. The
configurator and appender closures implement that pattern.

 This pattern is extremely flexible, because the logic of how the filtering works,
how the formatting is applied, and how the result is written is fully configurable
(even at runtime).

 With the help of closures and their curry method, we achieved a solution with the
best possible coherence and lowest possible coupling. Note how each of the closures
completely addresses exactly one concern.

 This is the beginning of functional programming. See Andrew Glover’s excellent
IBM developerWorks online article on functional programming with Groovy clo-
sures.6 It expands on how to use this approach for implementing your own expression
language, capturing business rules, and checking your code for holding invariants.
Neal Ford’s articles at the same site also dive into some more functional thinking con-
cepts using Groovy and other languages.7

CLOSURE COMPOSITION

Another cornerstone of functional programming is the ability to work in a composi-
tional way. You may remember from school mathematics that for functions f and g
one can write f(g(x)) as the composition of the functions (f . g) (x) where the dot is
the composition operator. In Groovy you use the leftShift or the rightShift opera-
tor for this purpose, pointing from the inner to the outer closure. You can, for exam-
ple, compose the twoTimes closure like so:

def fourTimes = twoTimes >> twoTimes
def eightTimes = twoTimes << fourTimes

assert eightTimes(1) == twoTimes(fourTimes(1))

6 “Practically Groovy: Functional programming with curried closures,” IBM developerWorks, technical topics,
www.ibm.com/developerworks/library/j-pg08235/.

7 “Functional thinking: Functional features in Groovy, Part 1; Treasures lurking in Groovy, IBM developer-
Works, Technical topics, www.ibm.com/developerworks/java/library/j-ft7/.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.ibm.com/developerworks/library/j-pg08235/
http://www.ibm.com/developerworks/java/library/j-ft7/

133Using closures
MEMOIZATION

Closures aren’t functions in the mathematical sense. We cannot guarantee8 that they
have no side effects and that they always return the same result when given the same
arguments. But programmers may know better and use that knowledge to their
advantage.

 When you have a closure that’s called much too often with the same arguments or
the execution of the closure is very expensive, then you may want to cache the results.
Groovy closures provide a very simple way to do so with the memoize method. Look
how conveniently you can use it for calculating Fibonacci numbers efficiently without
interfering with the core logic:

def fib
fib = { it < 2 ? 1 : fib(it-1) + fib(it-2) }
fib = fib.memoize()
assert fib(40) == 165_580_141

This code takes 0.001 seconds on our machine to execute. Without memoize it takes
about 20 seconds!

 There are also methods to get more fined-grained control over the cache: memoize-
AtMost, memoizeAtLeast, and memoizeBetween. These allow you to set one or both of
an upper limit, on the cache size with cache entries ejected on a least recently used
(LRU) basis, and a protected minimum limit. Cache entries outside the protected
limit are subject to garbage collection, and those below are protected. In section 9.2,
you’ll also see the @Memoized AST transformation for memoizing methods.

JUMPING ON THE TRAMPOLINE

Our fib closure included a recursive call. Such calls can easily lead to a stack overflow,
and because the JVM has no tail call elimination, this is difficult to overcome. Groovy
offers two approaches. The first follows the trampoline9 algorithm, and we’ll use the
respective method for very inefficiently (but functionally) finding the last element of
anything that has at least a size, a head, and a tail:

def last
last = { it.size() == 1 ? it.head() : last.trampoline(it.tail()) }

last = last.trampoline()

assert last(0..10_000) == 10_000

Without trampoline, the code goes into a stack overflow before 2,000 iterations. Note
that you can use trampoline only for closures that are tail-recursive. For methods of that
kind you can use Groovy’s second weapon against stack overflow, the @TailRecursive
AST transformation that we’ll encounter in section 9.2.

8 None of the popular JVM languages can give such a guarantee with the notable exception of Frege
(www.frege-lang.org). It’s a Haskell for the JVM that nicely combines with Groovy.

9 In computer programming, trampoline has a number of meanings, and is generally associated with jumps
(i.e., moving to different code paths); http://en.wikipedia.org/wiki/Trampoline_(computing).
Licensed to Mark Watson <nordickan@gmail.com>

http://www.frege-lang.org
http://en.wikipedia.org/wiki/Trampoline_(computing)

134 CHAPTER 5 Working with closures
CLASSIFICATION VIA THE ISCASE METHOD

Closures implement the isCase method to make them work as classifiers in grep
and switch. In that case, the respective argument is passed into the closure, and
calling the closure needs to evaluate to a Groovy Boolean value (see section 6.1) as
you see in the following snippet:

def odd = { it % 2 == 1}

assert [1,2,3].grep(odd) == [1, 3]

switch(10) {
 case odd : assert false
}

if (2 in odd) assert false

This allows you to classify by arbitrary logic. Again, this is only possible because clo-
sures are objects.

REMAINING METHODS

For the sake of completeness, it needs to be said that closures support the clone
method in the usual Java sense.

 The asWriteable method returns a clone of the current closure that has an addi-
tional writeTo(Writer) method to write the result of a closure call directly into the
given Writer.

 Finally, there are a setter and getter for the so-called delegate. We’ll cross the topic
of what a delegate is and how it’s used inside a closure when investigating a closure’s
scoping rules in the next section.

5.5 Understanding closure scope
You’ve seen how to create closures when they’re needed for a method call and how to
work with closures when they’re passed to your method. This is very powerful while
still simple to use.

 This section deepens your understanding of what happens when you use this sim-
ple construction. We explore which data and methods you can access from a closure,
what difference using the this reference makes, and how to put your knowledge to
the test with a classic example designed to test any language’s expressiveness.

 This is a bit of a technical section, and you can safely skip it on first read. But at
some point you may want to read it and learn how Groovy can provide all these clever
tricks. In fact, knowing the details will enable you to come up with particularly elegant
solutions yourself.

 By investigating the scope of a closure, you’ll see

■ Which variables are accessible
■ When and how variables are bound to a value
■ How you can get control over the scoping
Licensed to Mark Watson <nordickan@gmail.com>

135Understanding closure scope
We start with an explanation of the behavior that you’ve seen so far. For that purpose,
we revisit a piece of code that does something 10 times:

def x = 0
10.times {
 x++
}
assert x == 10

It’s evident that the closure that’s passed into the times method can access variable x,
which is locally accessible when the closure is declared. Remember: the braces show
the declaration time of the closure, not the execution time. The closure can access x for
both reading and writing10 at declaration time.

 This leads to a second thought: the closure surely needs to also access x at execu-
tion time. How could it increment it otherwise? But the closure is passed to the times
method, a method that’s called on the Integer object with value 10. That method, in
turn, calls back to the closure. But the times method has no chance of knowing about
x. So it cannot pass it to the closure, and it surely has no means of finding out what the
closure is doing with it.

 The only way in which this can possibly work is if the closure somehow remembers
the context of its birth and carries it along throughout its lifetime. That way, it can
work on that original context whenever the situation calls for it.

 This birthday context that the closure remembers needs to be a reference, not a
copy. If that context were a copy of the original one, there would be no way of
changing the original from inside the closure. But the example clearly changes the
value of x—otherwise the assertion would fail. Therefore, the birthday context must
be a reference.

5.5.1 Simple variable scope

Figure 5.3 depicts your current understanding of which objects are involved in the
times example and how they reference each other.

 The Script creates the Closure and is therefore called its owner. The closure has a
back reference to x, which is in the local scope of its owner. Script calls the times
method on the Integer 10 object, passing the declared closure as a parameter. In
other words, when times is executed, a reference to the closure object lies on the
stack. The times method uses this reference to execute Closure’s call method, pass-
ing its local variable count to it. In this specific example, count isn’t used within Clo-
sure.call. Instead, Closure.call only works on the x reference that it holds to the
local variable x in Script.

 Through analysis, you see that local variables are bound as references to the closure
at declaration time.

10 This isn’t possible with Java 8 lambdas.
Licensed to Mark Watson <nordickan@gmail.com>

136 CHAPTER 5 Working with closures
5.5.2 Inspecting closure scope
It wouldn’t be surprising if other scope elements were treated the same as local vari-
ables: the value of this, fields, methods, and parameters.

 This generalization is mostly correct, but the this reference is a special case. The
Java and Groovy language rule is that any unqualified (“vanilla”) reference is short-
hand for the qualified this.reference. Inside a closure, you could legitimately
assume this would refer to the current object, which is the closure object itself, and
thus, all references to the enclosing scope would need to be qualified. This would be
very noisy and impractical.

 Groovy follows a different strategy, which is quite unique in the landscape of JVM
languages: the programmer can control how references are resolved. While you can-
not directly set this to a different value, you can set a so-called delegate, which will
be used when resolving free variables. Per default, the delegate refers to the owner.

 If that sounds complicated, don’t worry. The effect of this approach is that in the
normal case everything works just fine without the need to consider any scoping rules
at all, but in special cases, you get an enormous amount of additional flexibility.

 Listing 5.9 implements a class Mother that should give birth to a closure through a
method with that name. The class has a property, another method, parameters, and
local variables that we can study. The closure should return a list of all elements that are
in the current scope. Behind the scenes, these elements will be bound but not evaluated
until the closure is called. Let’s investigate the result of such a call.

class Mother {
 def prop = 'prop'
 def method(){ 'method' }

Listing 5.9 Investigating closure scope

x = 0

Script

x

Closure

call

x++

intern = 10

Integer

closure.call()

reference

method call

times

closure

Figure 5.3 Conceptual view of object references and method calls between a calling script, an
Integer object of value 10 that is used in the script, and the closure that is attached to the
Integer’s times method for defining something that has to be done 10 times
Licensed to Mark Watson <nordickan@gmail.com>

137Understanding closure scope

variab
reso
 Closure birth (param) {
 def local = 'local'
 def closure = {
 [this, prop, method(), local, param]
 }
 return closure
 }
}

Mother julia = new Mother()
def closure = julia.birth('param')

def context = closure.call()

assert context[0] == julia
assert context[1, 2] == ['prop', 'method']
assert context[3, 4] == ['local', 'param']

assert closure.thisObject == julia
assert closure.owner == julia

assert closure.delegate == julia
assert closure.resolveStrategy == Closure.OWNER_FIRST

We added the optional return type Closure to the method declaration B to point out
that this method returns a closure object. A method that returns a closure isn’t the
most common use of closures, but every now and then it comes in handy.

 After having constructed a new Mother, we call its birth method c to retrieve a
newly born closure object. Note that we’re at declaration time of the closure. The list
that the closure will return when called doesn’t exist yet but local variables are bound
as references at this time: local and param.

 Rubber meets the road at d. Now we call the closure using the explicit call syntax
to make it stand out. The closure constructs its list of all resolved references. We store
that list in a variable for further inspection.

 At e we can see what this referred to when the remaining free variables prop and
method were resolved such that they have the expected values in f. The values of the
bound variables local and param at g should come as no surprise.

 At h we ask the closure object itself what it currently uses as this and what its owner
is. While the thisObject may change over the lifetime of a closure, the owner never does.

 While we see at i that the delegate, the owner, and thus the thisObject all refer
to the same object, we’ve finally reached the point where we can exercise control over
the scoping. We can, for example, set the delegate to a different object.

 The GDK with method does exactly that: executing a closure by first setting the
delegate to the receiver of the with method:

def map = [:]
map.with { // delegate is now map
 a = 1 // same as map.a = 1
 b = 2 // same as map.b = 2
}
assert map == [a:1, b:2]

Creation
method b

Closure
declaration time

 c

Closure
execution time

 d

What "this"
refers to

 eFree
les,

lved

 f

Bound
variables

 g

Read only h

Scope control i
Licensed to Mark Watson <nordickan@gmail.com>

138 CHAPTER 5 Working with closures
The effect is that inside the closure, you don’t have to repeat map all the time. This
looks like a very small benefit, but it’s the mechanism that many other features, such
as Builders and DSLs, depend on.

 Having the local closure scope, the delegate, and the owner raises the question of
who is used for resolving references and, in case of conflicts, in which order. This
again can be configured by setting the resolveStrategy to OWNER_ONLY, OWNER_FIRST
(default), DELEGATE_ONLY, DELEGATE_FIRST, or SELF_ONLY.

 Figure 5.4 shows who refers to whom in listing 5.9.
 Lectures about scoping rules and closures from other languages such as JavaScript,

Lisp, Smalltalk, Perl, Ruby, and Python typically end with mind-boggling examples
about variables with identical names, mutually overriding references, and mystic
rebirth of supposed-to-be foregone contexts. These examples are like puzzles. They
make for an entertaining pastime on a long winter evening, but they have no practical

field = 1

Mother

birth

param

local

new

foo

owner

Closure

param

local

Script

closure

closure = julia.birth(param)

closure.call(this)

field

call

caller

return…

reference

method call

Figure 5.4 Conceptual view of object references and method calls for the general scoping
example in listing 5.9, revealing the calls to the julia instance of Mother for creating a closure
that’s called in the trailing Script code to return all values in the current scope.
Licensed to Mark Watson <nordickan@gmail.com>

139Understanding closure scope
relevance. We’ll not provide any of those, because they can easily undermine your
carefully built confidence in the scoping rules.

 Our intention is to provide a reasonable introduction to Groovy’s closures. This
should give you the basic understanding that you need when hunting for more com-
plex examples in mailing lists and on the web. Instead of giving a deliberately obscure
example, however, we’ll provide one that shows how closure scopes can make an
otherwise complex task straightforward.

5.5.3 Scoping at work: the classic accumulator test

There’s a classic example to compare the power of languages by the way they support
closures. One of the things it highlights is the power of the scoping rules for those lan-
guages as they apply to closures. Paul Graham first proposed this test in his excellent
article “Revenge of the Nerds,”11 which also talks about the difference a language can
make. You’ll find good arguments in it for switching to Groovy.

 In some languages, this test leads to a brain-teasing solution. Not so in Groovy. The
Groovy solution is exceptionally obvious and straightforward to achieve.

 Here is the original requirement statement:

We want to write a function that generates accumulators—a function that
takes a number n, and returns a function that takes another number i
and returns n incremented by i.

The following are proposed solutions for other languages.

In Lisp:

(defun foo (n)
 (lambda (i) (incf n i)))

In Perl 5:

sub foo {
 my ($n) = @_;
 sub {$n += shift}
}

In Smalltalk:

foo: n
 |s|
 s := n.
 ^[:i| s := s+i.]

11 “The struggle between the pointy-headed academics and the pointy-haired bosses,” May 2002; www.paulgraham
.com/icad.html.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.paulgraham.com/icad.html
http://www.paulgraham.com/icad.html

140 CHAPTER 5 Working with closures
The following steps lead to a Groovy solution, as shown in listing 5.10:

1 We need a function that returns a closure. In Groovy, we don’t have functions,
but methods. (Actually, we’ve not only methods, but also closures. But let’s keep
it simple.) We use def to declare such a method. It has only one line, which
after return creates a new closure. We’ll call this method foo to make the solu-
tions comparable in size. The name createAccumulator would better reflect
the purpose.

2 Our method takes an initial value n as required.
3 Because n is a parameter to the method that declares the closure, it gets bound as

a reference to the closure scope. We can use it inside the closure body to calcu-
late the incremented value.

4 The incremented value isn’t only calculated but also assigned to n as the new
value.12 That way we have a true accumulation.

We add a few assertions to verify our solution and reveal how the accumulator is sup-
posed to be used. The following listing shows the full code.

def foo(n) {
 return {n += it}
}

def accumulator = foo(1)
assert accumulator(2) == 3
assert accumulator(1) == 4

All the steps that led to the solution are straightforward applications of what you’ve
learned about closures.

 In comparison to the other languages, the Groovy solution is short and surpris-
ingly clear. Groovy has passed this language test exceptionally well.

 Is this test of any practical relevance? Maybe not in the sense that we’d ever need
an accumulator generator, but it’s relevant in a different sense. Passing this test means
that the language is able to dynamically put logic in an object and manage the context
that this object lives in. This is an indication of how powerful abstractions in that lan-
guage can be.

5.6 Returning from closures
So far, you’ve seen how to declare closures and how to call them. But there’s one crucial
topic that we haven’t touched yet: how to return from a closure.

12 Remember that n is a reference. Such a construct isn’t easily possible with Java 8 lambdas.

Listing 5.10 Accumulator problem in Groovy
Licensed to Mark Watson <nordickan@gmail.com>

141Support for design patterns
 In principle, there are two ways of returning:

■ The last expression of the closure has been evaluated, and the result of this eval-
uation is returned. This is called end return. Using the return keyword in front
of the last expression is optional.

■ The return keyword can also be used to return from the closure prematurely.

This means the following ways of doubling the entries of a list have the very same
effect:

[1, 2, 3].collect{ it * 2 }

[1, 2, 3].collect{ return it * 2 }

A premature return can be used to, for example, double only the even entries:

[1, 2, 3].collect{
 if (it%2 == 0) return it * 2
 return it
}

This behavior of the return keyword inside closures is simple and straightforward.
You hardly expect any misconceptions, but there’s something to be aware of.

WARNING! There’s a difference between using the return keyword inside
and outside of a closure.

Outside a closure, any occurrence of return leaves the current method. When used
inside a closure, it only ends the current evaluation of the closure, which is a much
more localized effect. For example, when using List.each, returning early from the
closure doesn’t return early from the each method—the closure will still be called
again with the next element in the list.

 While progressing further into the book, we’ll hit on this issue again and explore
more ways of dealing with it.

5.7 Support for design patterns
Design patterns are widely used by developers to enhance the quality of their designs.
Each design pattern presents a typical problem that occurs in OOP along with a corre-
sponding well-tested solution. Let’s take a closer look at the way the availability of clo-
sures affects how, which, and when patterns are used.

 If you’ve never seen design patterns, we suggest you look at the classic Design Pat-
terns: Elements of Reusable Object-Oriented Software by Gamma et al. (Addison-Wesley,
1994), or one of the more recent ones such as Head First Design Patterns by Freeman
et al. (O’Reilly Media, 2004) or Refactoring to Patterns by Joshua Kerievsky (Addison-
Wesley, 2004). Or, search for “patterns repository” or “patterns catalog” using your
favorite search engine.

 Although many design patterns are broadly applicable and apply to any language,
some are particularly well suited to solving issues that occur when using programming
Licensed to Mark Watson <nordickan@gmail.com>

142 CHAPTER 5 Working with closures
languages like C++ and Java. They most often involve implementing new abstractions
and new classes to make the original programs more flexible or maintainable. With
Groovy, some of the restrictions that face C++ and Java don’t apply, and the design pat-
terns are either of less value or more directly supported using language features
rather than introducing new classes. We pick two examples to show the difference: the
Visitor and Builder patterns. As you’ll see, closures and dynamic typing are the key dif-
ferentiators in Groovy that facilitate easier pattern usage.

5.7.1 Relationship to the Visitor pattern

The Visitor pattern is particularly useful when you wish to perform complex business
functionality on a composite collection (such as a tree or list) of existing simple
classes. Rather than altering the existing simple classes to contain the desired business
functionality, a Visitor class is introduced. Visitor knows how to traverse the com-
posite collection and how to perform the business functionality for different kinds of
a simple class. If the composite changes or the business functionality changes over
time, typically only the Visitor class is impacted.

 Listing 5.11 shows how simple the Visitor pattern can look in Groovy; the compos-
ite traversal code is in the accept method of the Drawing class, whereas the business
functionality (in our case, to perform calculations involving shape area) is contained
in two closures that are passed as parameters to the appropriate accept methods.
There’s no need for a separate Visitor class in this simple case.

class Drawing {
 List shapes
 def accept(Closure yield) { shapes.each{it.accept(yield)} }
}
class Shape {
 def accept(Closure yield) { yield(this) }
}
class Square extends Shape {
 def width
 def area() { width**2 }
}
class Circle extends Shape {
 def radius
 def area() { Math.PI * radius**2 }
}

def picture = new Drawing(shapes:
 [new Square(width:1), new Circle(radius:1)])

def total = 0
picture.accept { total += it.area() }
println "The shapes in this drawing cover an area of $total units."
println 'The individual contributions are: '
picture.accept { println it.class.name + ":" + it.area() }

Listing 5.11 Visitor pattern in Groovy
Licensed to Mark Watson <nordickan@gmail.com>

143Support for design patterns
Running this code will print to the console:

The shapes in this drawing cover an area of 4.141592653589793 units.
The individual contributions are:
Square:1
Circle:3.141592653589793

5.7.2 Relationship to the Builder pattern

The Builder pattern serves to encapsulate the logic associated with constructing
a product from its constituent parts. When using the Builder pattern, you normally
create a Builder class, which contains logic determining which builder methods to
call and in which sequence to call them to ensure proper assembly of the product. For
each product, you must supply the appropriate logic for each relevant builder method
used by the Builder class; each builder method typically returns one of the constitu-
ent parts.

 Coding Java solutions based on the Builder pattern isn’t hard, but the Java code
tends to be cumbersome and verbose and doesn’t highlight the structure of the
assembled product. For that reason, the Builder pattern is rarely used in Java; instead,
developers use unstructured or replicated builder-type logic mixed in with their other
code. This is a shame, because the Builder pattern is so powerful.

 Groovy’s builders provide a solution using nested closures to conveniently specify
even very complex products. Such a specification is easy to read, because the appear-
ance of the code reflects the product structure. Groovy has built-in library classes
based on the Builder pattern that allow you to easily build arbitrarily nested node
structures, produce markup like HTML or XML, define GUIs in Swing or other widget
toolkits, and even access the wide range of functionality in Ant. You’ll see lots of exam-
ples in chapter 11, and we’ll explain how to write your own builders in section 11.9.

5.7.3 Relationship to other patterns

Almost all patterns are easier to implement in Groovy than in Java. This is often because
Groovy supports more lightweight solutions that make the patterns less of a necessity—
mostly because of closures and dynamic typing. In addition, when patterns are required,
Groovy often makes expressing them more succinct and simpler to set up.

 We discuss a number of patterns elsewhere in this book, such as Strategy (see sec-
tions 8.3.3 and 12.1.3), Observer (see section 11.8.2), and Builder (see chapters 11
and 14), which benefit from using closures instead of implementing new classes. Pat-
terns such as Adapter (associated with mixins; see section 8.4.8) and Decorator (see
section 13.1.2) benefit from dynamic typing and method lookup. We also briefly dis-
cuss patterns such as Template Method (see section 5.2.2) and Value Object (see sec-
tion 3.3.2), the “incomplete library class” smell (see chapter 8), the Model View
Controller pattern (see section 11.6.6), and the Data Transfer Object and Data Access
Object patterns (see chapter 13). Just by existing, closures can completely replace the
Method Object pattern.
Licensed to Mark Watson <nordickan@gmail.com>

144 CHAPTER 5 Working with closures
 Groovy provides plenty of support for using patterns within your own programs. Its
libraries embody pattern practices throughout. Higher-level frameworks such as Grails
take it one step further. Grails provides you with a framework built on top of Groovy’s
libraries and patterns support. Using such frameworks saves you from having to deal
with many pattern issues directly by taking advantage of the framework you’ll automati-
cally end up using patterns without needing to understand the details in most cases.
Even then, it’s useful to know about some of the patterns we’ve touched on so that you
can leverage the maximum benefit from whichever frameworks you use.

5.8 Summary
You’ve seen that closures follow our theme of everything is an object. They capture a
piece of logic, making it possible to pass it around for execution, return it from a
method call, or store it for later use.

 Closures encourage centralized resource handling, thus making your code more
reliable. This doesn’t come at any expense. In fact, the codebase is relieved from struc-
tural duplication, enhancing expressiveness and maintainability.

 Defining and using closures is surprisingly simple because all the difficult tasks,
such as keeping track of references and relaying method calls back to the delegating
owner, are done transparently. If you don’t care about the scoping rules, everything
falls into place naturally. If you want to hook into the mechanics and perform tasks
such as deviating the calls to the delegate, you can. Of course, such an advanced use
needs more care. You also need to be careful when returning from a delegate, par-
ticularly when using one in a situation where in other languages you might use a for
loop or a similar construct. This has surprised more than one new Groovy devel-
oper, although the behavior is logical when examined closely. Re-read section 5.6
when in doubt.

 Closures open the door to several ways of doing things that may be new to many
developers. Some of these, such as currying, can appear daunting at first sight but
allow a great deal of power to be wielded with remarkably little code. Additionally, clo-
sures can make familiar design patterns simpler to use or even unnecessary.

 Although you now have a good understanding of Groovy’s datatypes and closures,
you still need a means to control the flow of execution through your program. This is
achieved with control structures, which form the topic of the next chapter.
Licensed to Mark Watson <nordickan@gmail.com>

Groovy control structures
The pursuit of truth and beauty is a sphere of activity in which we are permitted
to remain children all our lives.

 —Albert Einstein

At the hardware level, computer systems use simple arithmetic and logical opera-
tions, such as jumping to a new location if a memory value equals zero. Any com-
plex flow of logic that a computer is executing can always be expressed in terms of
these simple operations. Fortunately, languages like Java raise the abstraction level
available in programs you write so that you can express the flow of logic in terms of
higher-level constructs—for example, looping through all of the elements in an
array or processing characters until you reach the end of a file.

 In this chapter, we explore the constructs Groovy provides to describe logic flow
in ways that are even simpler and more expressive than Java. Before we look at the

This chapter covers
■ Groovy truth
■ Conditionals and branching
■ Looping
■ Exception handling
145

Licensed to Mark Watson <nordickan@gmail.com>

146 CHAPTER 6 Groovy control structures
constructs themselves, however, we have to examine Groovy’s answer to that age-old
philosophical question: What is truth?1

6.1 Groovy truth
To understand how Groovy handles control structures such as if and while, you need
to know how it evaluates expressions, which need to have Boolean results. Many of the
control structures we examine in this chapter rely on the result of a Boolean test—an
expression that’s first evaluated and then considered as being either true or false.
The outcome of this affects which path is then followed in the code. In Java, the con-
sideration involved is usually trivial, because Java requires the expression to be one
resulting in the primitive boolean type to start with. Groovy is more relaxed about
this, allowing simpler code at the slight expense of language simplicity. We’ll exam-
ine Groovy’s rules for Boolean tests and give some advice to avoid falling into an
age-old trap.

6.1.1 Evaluating Boolean tests

The expression of a Boolean test can be of any (nonvoid) type. It can apply to any
object. Groovy decides whether to consider the expression as being true or false
by applying the rules shown in table 6.1, based on the result’s runtime type. The
rules are applied in the order given, and once a rule matches, it completely deter-
mines the result.2

The following listing shows these rules in action, using the Boolean negation operator
! to assert that expressions that ought to evaluate to false really do so.

1 Groovy has no opinion as to what beauty is. We’re sure that if it did, however, it would involve expressive min-
imalism. Closures too, probably.

Table 6.1 Sequence of rules used to evaluate a Boolean test

Runtime type Evaluation criterion required for truth

Boolean Corresponding Boolean value is true

Matcher Matcher has a match

Collection Collection is nonempty

Map Map is nonempty

String, GString String is nonempty

Number, Character Value is nonzero

None of the above Object reference is non-null

2 It would be rare to encounter a situation where more than one rule matched, but you never know when some-
one will subclass java.lang.Number and implement java.util.Map at the same time.
Licensed to Mark Watson <nordickan@gmail.com>

147Groovy truth
assert true
assert !false

assert ('a' =~ /./)
assert !('a' =~ /b/)

assert [1]
assert ![]

Iterator iter = [1].iterator()
assert iter
iter.next()
assert !iter

assert ['a':1]
assert ![:]

assert 'a'
assert !''

assert 1
assert 1.1
assert 1.2f
assert 1.3g
assert 2L
assert 3G
assert !0

assert ! null
assert new Object()

class AlwaysFalse {
 boolean asBoolean() { false }
}
assert ! new AlwaysFalse()

These rules can make testing for “truth” simpler and easier to read. But they come
with a price, as you’re about to find out.

6.1.2 Assignments within Boolean tests

Before we get into the meat of the chapter, we have a warning to point out. Just like
Java, Groovy allows the expression used for a Boolean test to be an assignment—and
the value of an assignment expression is the value assigned. Unlike Java, the type of a
Boolean test isn’t restricted to booleans, which means that a problem you might have
thought was ancient history reappears, albeit in an alleviated manner. Namely, an
equality operator == incorrectly entered as an assignment operator = is valid code with
a drastically different effect than the intended one. Groovy shields you from falling
into this trap for the most common appearance of this error: when it’s used as a top-
level expression in an if statement. But it can still arise in less usual cases.

 The following listing leads you through some typical variations of this topic.

Listing 6.1 Example Boolean test evaluations

Boolean values
are trivial

Matchers
must match

Collections must
be nonempty

Iterators must have
next element

Maps must be
nonempty

Strings must be
nonempty

Numbers
(any type)
must be
nonzero

Objects must
be non-null

Custom truth

Calls asBoolean()
Licensed to Mark Watson <nordickan@gmail.com>

148 CHAPTER 6 Groovy control structures
def x = 1

if (x == 2) {
 assert false
}
/*******************
if (x = 2) {
 println x
}
********************/
if ((x = 3)) {
 println x
}
assert x == 3

def store = []
while (x = x - 1) {
 store << x
}
assert store == [2, 1]

while (x = 2) {
 println x
 break
}

The equality comparison B is fine and would be allowable in Java. In c, an equality
comparison was intended, but one of the equal signs was left out. This raises a Groovy
compiler error, because an assignment isn’t allowed as a top-level expression in an
if test.

 Boolean tests can be nested inside expressions in arbitrary depth; the simplest one
is shown at d, where extra parentheses around the assignment make it a subexpres-
sion, and therefore the assignment becomes compliant with the Groovy language.
The value 3 will be assigned to x, and x will be tested for truth. Because 3 is considered
true, the value 3 gets printed. This use of parentheses to please the compiler can even
be used as a trick to spare an extra line of assignment. The unusual appearance of the
extra parentheses then serves as a warning sign for the reader.

 The restriction of assignments from being used in top-level Boolean expressions
applies only to if and not to other control structures such as while. Doing assignment
and testing in one expression are often used with while in the style shown at e. This
style tends to appear with classic uses like processing tokens retrieved from a parser or
reading data from a stream. Although this is convenient, it leaves us with the potential
coding pitfall shown at f, where x is assigned the value 2 and the loop would never
stop if there weren’t a break statement.3

Listing 6.2 What happens when == is mistyped as =

3 Remember that the code in this book has been executed. If we didn’t have the break statement, the book
would have taken literally forever to produce.

Normal
comparison b

Not allowed;
compiler error c

Assigns and
tests in nested
expression d

Deliberate
assign and
test in while e

Ouch—this
will print 2 f
Licensed to Mark Watson <nordickan@gmail.com>

149Conditional execution structures
 This potential cause of bugs has given rise to the idiom in other languages (such as
C and C++, which suffer from the same problem to a worse degree) of putting con-
stants on the left side of the equality operator when you wish to perform a comparison
with one. Such a construct is sometimes called a “Yoda conditional” since in the Star
Wars motion picture the Yoda character talks in this swapped fashion like “difficult to
see the future is.” Following this style the last while statement in the previous listing
(still with a typo) becomes

while (1 = x) {
 println x
}

This would raise an error, as you can’t assign a value to a constant. We’re back to
safety—so long as constants are involved. Unfortunately, not only does this fail when
both sides of the comparison are variables, it also reduces readability. Whether it’s a
natural occurrence, a quirk of human languages, or conditioning, most people find
while (x==3) significantly simpler to read than while (3==x). Although neither is
going to cause confusion, the latter tends to slow people down or interrupt their train
of thought. In this book, we’ve favored readability over safety—but our situation is
somewhat different than that of normal development. You’ll have to decide for your-
self which convention suits you and your team better.

 Now that we’ve examined which expressions Groovy will consider to be true and
false, we can start looking at the control structures themselves.

6.2 Conditional execution structures
Our first set of control structures deals with conditional execution. They all evaluate a
Boolean test and make a choice about what to do next based on whether the result
was true or false. None of these structures should come as a new experience to any
Java developer, but, of course, Groovy adds twists of its own. We’ll cover if statements,
the conditional operator, switch statements, and assertions.

6.2.1 The humble if statement

Our first two structures act exactly the same way in Groovy as they do in Java, apart
from the evaluation of the Boolean test itself. We start with if and if else statements.

 Just as in Java, the Boolean test expression must be enclosed in parentheses. The
conditional block is normally enclosed in curly braces. These braces are optional if
the block consists of only one statement.4

 A special application of the “no braces needed for single statements” rule is the
sequential use of else if. In this case, the logical indentation of the code is often

4 Even though the braces are optional, many coding conventions insist on them to avoid errors that can occur
through careless modification when they’re not used.

Should
be ==
Licensed to Mark Watson <nordickan@gmail.com>

150 CHAPTER 6 Groovy control structures
flattened—that is, all else if lines have the same indentation although their mean-
ing is nested. The indentation makes no difference to Groovy and is only of aes-
thetic relevance.

 Listing 6.3 gives some examples, using assert true to show the blocks of code that
will be executed, and assert false to show the blocks that won’t be.

 There should be no surprises in the listing, although it might still look slightly odd
to you that non-Boolean expressions such as strings and lists can be used for Boolean
tests. Don’t worry—it becomes natural over time.

if (true) assert true
else assert false
if (1) {
 assert true
} else {
 assert false
}
if ('nonempty') assert true
else if (['x']) assert false
else assert false
if (0) assert false
else if ([]) assert false
else assert true

6.2.2 The conditional ?: operator and Elvis

Groovy also supports the ternary conditional operator ?: for small inline tests, as
shown in listing 6.4. This operator returns the object that results from evaluating the
expression left or right of the colon, depending on the test before the question mark.
If the first expression evaluates to true, the middle expression is evaluated. Other-
wise, the last expression is evaluated. Just as in Java, whichever of the last two expres-
sions isn’t used as the result isn’t evaluated.

def result = (1==1) ? 'ok' : 'failed'
assert result == 'ok'
result = 'some string' ? 10 : ['x']
assert result == 10

Again, notice how the Boolean test (the first expression) can be of any type. Also note
that because everything is an object in Groovy, the middle and last expressions can be
of radically different types.

 Groovy comes with another interesting shortcut for the case that the test expres-
sion is to be used as the result value when true. Consider this piece of code:

def argument = "given"
def standard = "default"
def result = argument ? argument : standard

Listing 6.3 The if statement in action

Listing 6.4 The conditional operator
Licensed to Mark Watson <nordickan@gmail.com>

151Conditional execution structures
Groovy allows you to abbreviate the third line as

def value = argument ?: standard

Not only is this version shorter but it also evaluates the argument only once. When
reading the ?: operator like an emoticon you can guess why we call it the Elvis operator.

 Opinions about the ternary conditional operator vary wildly. Some people find it
extremely convenient and use it often. Others find it too Perl-ish. You may well find that
you use it less often in Groovy because there are features that make its typical applica-
tions obsolete—for example, GStrings (covered in section 3.4.2) allow dynamic creation
of strings that would be constructed in Java using the ternary operator.

 So far, so Java-like. Things change significantly when we consider switch statements.

6.2.3 The switch statement and the in operator

On a recent train ride, I (Dierk) spoke with a teammate about Groovy, mentioning the
oh-so-cool switch capabilities. He wouldn’t even let me get started, waving his hands
and saying, “I never use switch!” I was put off at first, because I lost my momentum in
the discussion; but after more thought, I agreed that I don’t use it either—in Java.

 The switch statement in Java is quite restrictive. Originally you could only switch
on an int type, with byte, char, and short automatically being promoted to int. As of
Java 5, enum types can also be switched on, due to some compiler trickery, and as of
Java 7, additional trickery with string hash codes lets you use strings too. But even with
these extensions, it’s still restrictive. Its applicability is bound to either low-level tasks
or some kind of dispatching on a type code. In object-oriented languages, the use of
type codes is considered smelly.5

THE SWITCH STRUCTURE

The general appearance of the switch construct, shown in the following listing, is
just like in Java, and its logic is identical in the sense that the handling logic falls
through to the next case unless it’s exited explicitly. We’ll explore exiting options in
section 6.4.

def a = 1
def log = ''
switch (a) {
 case 0 : log += '0'
 case 1 : log += '1'
 case 2 : log += '2' ; break
 default : log += 'default'
}
assert log == '12'

5 See “Replace Conditional with Polymorphism” in chapter 9 of Refactoring by Martin Fowler (Addison-Wesley,
2000).

Listing 6.5 General switch appearance is like Java or C

Fall through
Licensed to Mark Watson <nordickan@gmail.com>

152 CHAPTER 6 Groovy control structures
Although the fall through is supported in Groovy, there are few cases where this feature
really enhances the readability of the code. It usually does more harm than good (this
applies to Java, too). As a general rule, putting a break at the end of each case is good style.

SWITCH WITH CLASSIFIERS

You’ve seen the Groovy switch used for classification in section 3.5.5 and when work-
ing through the datatypes. A classifier is eligible as a switch case if it implements the
isCase method. In other words, a Groovy switch like

switch (candidate) {
 case classifier1 : handle1() ; break
 case classifier2 : handle2() ; break
 default : handleDefault()
}

is roughly equivalent (besides the fall through and exit handling) to

if (classifier1.isCase(candidate)) handle1()
else if (classifier2.isCase(candidate)) handle2()
else handleDefault()

This allows expressive classifications and even some unconventional uses with mixed
classifiers. Unlike Java’s constant cases, the candidate may match more than one classi-
fier. This means that the order of cases is important in Groovy, whereas it doesn’t
affect behavior in Java. The next listing gives an example of multiple types of classifi-
ers. After having checked that our number 10 isn’t zero, isn’t in range 0..9, isn’t in list
[8,9,11], isn’t of type Float, and isn’t an integral multiple of 3, we finally find it to be
made of two characters.

switch (10) {
 case 0 : assert false ; break
 case 0..9 : assert false ; break
 case [8,9,11] : assert false ; break
 case Float : assert false ; break
 case {it%3 == 0}: assert false ; break
 case ~/../ : assert true ; break
 default : assert false ; break
}

The new feature B is that we can classify by type. Float is of type java.lang.Class,
and the GDK enhances Class by adding an isCase method that tests the candidate
with isInstance.

 The isCase method on closures c passes the candidate into the closure and
returns the result of the closure call coerced to a Boolean.

 The final classification d as a two-digit number works because ~/../ is a Pattern and
the isCase method on patterns applies its test to the toString value of the argument.

 To leverage the power of the switch construct, it’s essential to know the available
isCase implementations. It’s not possible to provide an exhaustive list, because any

Listing 6.6 Advanced switch and mixed classifiers

Type case b

Closure case c

Regular
expression case

 d
Licensed to Mark Watson <nordickan@gmail.com>

153Conditional execution structures
custom type in your code or in a library can implement it. Table 6.2 has the list of
known implementations in the GDK.

NOTE The isCase method is also used with grep on collections such that
collection.grep(classifier) returns a collection of all items that are a case
of that classifier.

THE IN OPERATOR

The isCase logic is actually used three times: for switch cases for grep classification
and for the in operator as used for conditionals like the following assertion:

def okValues = [1, 2, 3]
def value = 2
assert value in okValues

Using the Groovy switch in the sense of a classifier is a big step forward. It adds much
to the readability of the code. The reader sees a simple classification instead of a tan-
gled, nested construction of if statements. Again, you’re able to reveal what the code
does rather than how it does it.

 As pointed out in section 4.1.2, the switch classification on ranges is particularly
convenient for modeling business rules that tend to prefer discrete classification to
continuous functions. The resulting code reads almost like a specification.

 Look actively through your code for places to implement isCase. A characteristic
sign of looming classifiers is lengthy else if constructions.

Table 6.2 Standard implementations of isCase for switch, grep, and in

Class a.isCase(b) implemented as

Object a.equals(b)

Class a.isInstance(b)

Collection a.contains(b)

Range a.contains(b)

Pattern a.matcher(b.toString()).matches()

String (a==null && b==null) || a.equals(b)

Closure a.call(b)

Advanced topic
It’s possible to overload the isCase method to support different kinds of classification
logic depending on the candidate type. If you provide both methods, isCase(String
candidate) and isCase(Integer candidate), then switch ('1') can behave dif-
ferently than switch(1) with your object as the classifier.
Licensed to Mark Watson <nordickan@gmail.com>

154 CHAPTER 6 Groovy control structures
Our next topic, assertions, may not look particularly important at first glance. But
although assertions don’t change the business capabilities of the code, they do make
the code more robust in production. Moreover, they do something even better:
enhance the development team’s confidence in their code, as well as their ability to
remain agile during additional enhancements and ongoing maintenance.

6.2.4 Sanity checking with assertions

This book contains several hundred assertion statements—and indeed, you’ve already
seen a number of them. Now it’s time to go into extra detail. We’ll look at producing
meaningful error messages from failed assertions, reflect over reasonable uses of this
keyword, and show how to use it for inline unit tests. We’ll also quickly compare the
Groovy solution to Java’s assert keyword and assertions as used in unit test cases.

PRODUCING INFORMATIVE FAILURE MESSAGES

When an assertion fails, it produces a stack trace and a message. Put the code

a = 1
assert a==2

in a file called FailingAssert.groovy, and let it run via

> groovy FailingAssert.groovy

It’s expected to fail, and it does so with the message

Assertion failed:

assert a==2
 ||
 |false
 1
 at FailingAssert.run(FailingAssert.groovy:2)
 at FailingAssert.main(FailingAssert.groovy)

You see that on failure, the assertion prints out the failed expression and the value of
all subexpressions plus the stack trace.

 This is a lot of information, and it’s sufficient to locate and understand the error in
most cases, but not always. Let’s try another example that tries to protect a file reading
code from being executed if the file doesn’t exist or cannot be read (Perl program-
mers will see the analogy to or die):

input = new File('no such file')
assert input.exists()
assert input.canRead()
println input.text

This produces the output

Caught: java.lang.AssertionError: Expression: input.exists()
 ...
Licensed to Mark Watson <nordickan@gmail.com>

155Conditional execution structures
which isn’t very informative. The missing information here is what the bad filename
was. To this end, assertions can be instrumented with a trailing message:

input = new File('no such file')
assert input.exists() , "cannot find '$input.name'"
assert input.canRead() , "cannot read '$input.canonicalPath'"
println input.text

This produces the following:

... cannot find 'no such file'. Expression: input.exists()

which is the information we need. But this special case also reveals the sometimes
unnecessary use of assertions, because in this case we could easily leave the asser-
tions out:

input = new File('no such file')
println input.text

The result is the following sufficient error message:

FileNotFoundException: no such file (The system cannot find the file
specified)

This leads to the following best practices with assertions:

■ Before writing an assertion, let your code fail, and see whether any other
thrown exception is good enough.

■ When writing an assertion, let it fail the first time, and see whether the failure
message is sufficient. If not, add a message. Let it fail again to verify that the
message is now good enough.

■ If you feel you need an assertion to clarify or protect your code, add it regard-
less of the previous rules.

■ If you feel you need a message to clarify the meaning or purpose of your asser-
tion, add it regardless of the previous rules.

ENSURE CODE WITH INLINE UNIT TESTS

Finally, there’s a potentially controversial use of assertions as unit tests that lives right
inside production code and gets executed with it. The following listing shows this
strategy with a nontrivial regular expression that extracts a hostname from a URL.
The pattern is first constructed and then applied to some assertions before being
put to action. We also implement a simple method assertHost for easy asserting of
a match grouping.6

6 Please note that we use regexes here only to show the value of assertions. If we really set out to find the host-
name of a URL, we’d use candidate.toURL().host.
Licensed to Mark Watson <nordickan@gmail.com>

156 CHAPTER 6 Groovy control structures
def host = /\/\/([a-zA-Z0-9-]+(\.[a-zA-Z0-9-])*?)(:|\/)/

assertHost 'http://a.b.c:8080/bla', host, 'a.b.c'
assertHost 'http://a.b.c/bla', host, 'a.b.c'
assertHost 'http://127.0.0.1:8080/bla', host, '127.0.0.1'
assertHost 'http://t-online.de/bla', host, 't-online.de'
assertHost 'http://T-online.de/bla', host, 'T-online.de'

def assertHost (candidate, regex, expected){
 candidate.eachMatch(regex){ assert it[1] == expected
}

// ... use host regex ...

Imagine finding a Groovy script such as this sitting on a production filesystem and
let’s assume you want to understand it. If you’re very lucky, the script might be under
version control and have a test harness that’s run against it regularly. But if that isn’t
the case, or if the preceding example assertions were perhaps included as comments,
then a reader of the script cannot really be sure that it works as expected. In such cir-
cumstances, the value of inline assertions becomes obvious.

 Some may fear a bad impact on performance when doing this style of inline unit
tests. The best answer is to use a profiler and investigate where performance is really
relevant. Our assertions in listing 6.7 run in a few milliseconds and shouldn’t nor-
mally be an issue. When performance is important, one possibility would be to put
inline unit tests where they’re executed only once per loaded class: in a static initial-
izer. You’ll need to decide for yourself whether inline unit tests suit your scenarios,
but we strongly recommend them as a technique to keep in mind and apply on a
case-by-case basis.

RELATIONSHIPS TO OTHER ASSERTIONS

Java has had an assert keyword since JDK 1.4. It differs from Groovy assertions in that
it has a slightly different syntax (a colon instead of a comma to separate the Boolean
test from the message) and it can be enabled and disabled. Java’s assertion feature
isn’t as powerful, because it works only on a Java Boolean test, whereas the Groovy
assert keyword takes a full Groovy conditional (see section 6.1).

 The JDK documentation has a long chapter on assertions that discusses the dis-
abling feature for assertions and its impact on compiling, starting the virtual machine,
and resulting design issues. Although this is fine and the design rationale behind Java
assertions is clear, we feel the disabling feature is the biggest stumbling block for using
assertions in Java. You can never be sure that your assertions are really executed.

 Some people claim that for performance reasons, assertions should be disabled
in production, after the code has been tested with assertions enabled. On this issue,
Bertrand Meyer,7 the father of design by contract, pointed out that it’s like learning to

Listing 6.7 Using assertions for inline unit tests

7 See Object-Oriented Software Construction, 2nd ed., by Bertrand Meyer (Prentice-Hall, 1997).

Regular
expression
matching host

Trailing code
goes here
Licensed to Mark Watson <nordickan@gmail.com>

157Looping
swim with a swimming belt and taking it off when leaving the pool and getting in the
ocean. In Groovy, your assertions are always executed.

 Assertions also play a central role in unit tests. Groovy comes with a bundled ver-
sion of JUnit, the leading unit test framework for Java. JUnit makes a lot of specialized
assertions available to its TestCases. Groovy adds even more of them, as you’ll see in
chapter 17. The information that Groovy provides when assertions fail makes them
very convenient when writing unit tests, because it relieves the tester from writing lots
of messages.

 Assertions can make a big difference to your personal programming style and even
more to the culture of a development team, regardless of whether they’re used inline
or in separate unit tests. Asserting your assumptions not only makes your code more
reliable, it also makes it easier to understand and easier to work with.

 That’s it for conditional execution structures. They’re the basis for any kind of log-
ical branching and a prerequisite to allow looping—the language feature that makes
your computer do all the repetitive work for you. The next two sections cover the loop-
ing structures while and for.

6.3 Looping
The structures you’ve seen so far have evaluated a Boolean test once and changed the
path of execution once based on the result of the condition. Looping, on the other
hand, repeats the execution of a block of code multiple times. The loops available in
Groovy are while and for, both of which we cover here.

6.3.1 Looping with while

The while construct is like its Java counterpart. The only difference is the one you’ve
seen already—the power of Groovy Boolean test expressions. To summarize, the Bool-
ean test is evaluated, and if it’s true, the body of the loop is then executed. The test is
then reevaluated, and so forth. Only when the test becomes false does control pro-
ceed past the while loop. The next listing shows an example that removes all entries
from a list. We visited this problem in chapter 3, where you discovered that you can’t
use each for that purpose. The second example adds the values again in a one-liner
body without the optional braces.

def list = [1,2,3]
while (list) {
 list.remove(0)
}
assert list == []

while (list.size() < 3) list << list.size()+1
assert list == [1,2,3]

Again, there should be no surprises in this code, with the exception of using just list
as the Boolean test in the first loop.

Listing 6.8 Example while loops
Licensed to Mark Watson <nordickan@gmail.com>

158 CHAPTER 6 Groovy control structures
 Note that there are no do {} while(condition) or repeat {} until (condition) loops
in Groovy. Of course with closures you could write your own do-while or repeat-until control
structures with only some minor restrictions and differences compared to a language-
supported equivalent. We discuss some of these differences in the next section. In chap-
ter 19, we look at a WhenUntilTransform which even removes some of the limitations.

6.3.2 Looping with for

Considering it’s probably the most commonly used type of loop, the traditional for loop
in Java is relatively hard to use, when you examine it closely. Through familiarity, people
who have used a language with a similar structure (and there are many such languages)
grow to find it easy to use, but that is solely due to frequent use, not to good design.
Although the nature of the traditional for loop is powerful, it’s rarely used in a way that
can’t be more simply expressed in terms of iterating through a collection-like data struc-
ture. Although supporting most forms of the for loop that Java supports, Groovy
embraces this simplicity and strongly encourages for loops following this structure:

for (variable in iterable) { body }

where variable may optionally have a declared type. The Groovy for loop iterates
over iterable. Frequently used iterables are ranges, collections, maps, arrays, itera-
tors, and enumerations. In fact, any object can be an iterable. Groovy applies the same
logic as for object iteration, described in chapter 12.

 Braces around the body are optional if it consists of only one statement. The follow-
ing listing shows some of the possible combinations.

def store = ''
for (String s in 'a'..'c') store += s
assert store == 'abc'

store = ''
for (i in [1, 2, 3]) {
 store += i
}
assert store == '123'

def myString = 'Old school Java'
store = ''
for (int i=0; i < myString.size(); i++) {
 store += myString[i]
}
assert store == myString

myString = 'Java range index'
store = ''
for (int i : 0 ..< myString.size()) {
 store += myString[i]
}
assert store == myString

Listing 6.9 Multiple for loop examples

Explicit typing,
over string range,
no braces

 b

Implicit typing,
over list as
collection, braces

 c

Explicit typing,
Java-style
traditional for
loop, braces

 d

Explicit typing,
Java-style
iterable index,
braces

 e
Licensed to Mark Watson <nordickan@gmail.com>

159Looping
myString = 'Groovy range index'
store = ''
for (i in 0 ..< myString.size()) {
 store += myString[i]
}
assert store == myString

myString = 'Java string Iterable'
store = ''
for (String s : myString) {
 store += s
}
assert store == myString

myString = 'Groovy iterator'
store = ''
for (s in myString) {
 store += s
}
assert store == myString

The first example B uses explicit typing for s and no braces with a loop body of a sin-
gle statement. The looping is done on a range of strings.

 The usual for loop appearance when working on a collection is shown in c.
Recall that thanks to autoboxing, this also works for arrays.

 Groovy also supports Java for loops style d and the more recent iterable variants
either on the index e or the string value itself g.

 Looping on a half-exclusive integer range f is a slight improvement over the tra-
ditional Java for loop style d or an equivalent to the Java iterable index style e.

 The final example h illustrates the typical Groovy style recommended when
working on strings. It’s more Groovy to treat a string as a collection of characters.

 Using the for loop with object iteration as described in section 12.1.3 provides
some very powerful combinations. You can use it to print a file line-by-line via

def file = new File('myFileName.txt')
for (line in file) println line

or to print all one-digit matches of a regular expression:

def matcher = '12xy3'=~/\d/
for (match in matcher) println match

If the container object is null, no iteration will occur:

for (x in null) println 'This will not be printed!'

If Groovy cannot make the container object iterable by any means, the fallback solu-
tion is to do an iteration that contains only the container object itself:

for (x in new Object()) println "Printed once for object $x"

Implicit typing,
over half-exclusive
IntRange, braces

 f

Explicit typing,
Java-style
iterable value,
braces

 g

Implicit typing,
over string as
collection,
braces

 h
Licensed to Mark Watson <nordickan@gmail.com>

160 CHAPTER 6 Groovy control structures
Object iteration makes the Groovy for loop a sophisticated control structure. It’s a
valid counterpart to using methods that iterate over an object with closures, such as
using Collection’s each method.

 The main difference is that the body of a for loop isn’t a closure! That means this
body is a block:

for (x in 0..9) { println x }

whereas this body is a closure:

(0..9).each { println it }

Even though they look similar, they’re very different in construction.
 A closure is an object of its own and has all the features that you saw in chapter 5. It

can be constructed in a different place and passed to the each method. The body of
the for loop, in contrast, is directly generated as bytecode at its point of appearance.
No special scoping rules apply.

 This distinction is even more important when it comes to managing exit handling
from the body. The next section shows why.

6.4 Exiting blocks and methods
Although it’s nice to have code that reads as a simple list of instructions with no jump-
ing around, it’s often vital that control is passed from the current block or method to
the enclosing block or calling method—or sometimes even further up the call stack.
Just like in Java, Groovy allows this to happen in an expected, orderly fashion with
return, break, and continue statements, and in emergency situations with excep-
tions. Let’s take a closer look.

6.4.1 Normal termination: return/break/continue

The general logic of return, break, and continue is similar to Java. One difference is
the return keyword is optional for the last expression in a method or closure. If it’s
omitted, the return value is that of the last expression. Methods with explicit return
type void don’t return a value; closures always return a value.8

 The following listing shows how the current loop is cut short with continue and
prematurely ended with break. Like Java, there’s an optional label.

def a = 1
while (true) {
 a++
 break
}
assert a == 2

8 But what if the last evaluated expression of a closure is a void method call? In this case, the closure returns
null.

Listing 6.10 Simple break and continue

Do forever

Forever is
over now
Licensed to Mark Watson <nordickan@gmail.com>

161Exiting blocks and methods
for (i in 0..10) {
 if (i == 0) continue
 a++
 if (i > 0) break
}
assert a == 3

In classic programming style, the use of break and continue is sometimes considered
smelly. But it can be useful for controlling the workflow in services that run in an end-
less loop. Similarly, returning from multiple points in the method is frowned upon in
some circles, but other people find it can greatly increase the readability of methods
that might be able to return a result early. We encourage you to figure out what you
find most readable and discuss it with whoever else is going to be reading your code—
consistency is as important as anything else.

 As a final note on return handling, remember that closures, when used with itera-
tion methods like each, have a different meaning of return than the control struc-
tures while and for, as explained in section 5.6.

6.4.2 Exceptions: throw/try-catch-finally

Exception handling in Groovy is similar to Java and follows the same logic. Just as in
Java, you can specify a complete try-catch-finally sequence of blocks, or just try-
catch, or just try-finally. Note that unlike various other control structures, braces
are required around the block bodies whether or not they contain more than one
statement. The main difference between Java and Groovy in terms of exceptions is
that declarations of exceptions in the method signature are optional, even for
checked exceptions. The next listing shows the usual behavior.

def myMethod() {
 throw new IllegalArgumentException()
}

def log = []
try {
 myMethod()
} catch (Exception e) {
 log << e.toString()
} finally {
 log << 'finally'
}
assert log.size() == 2

There are no compile-time or runtime warnings from Groovy when checked excep-
tions aren’t declared. When a checked exception isn’t handled, it’s propagated up the
execution stack like a RuntimeException.

Listing 6.11 Exception handling in Groovy

Proceed with 1

Premature
loop end
Licensed to Mark Watson <nordickan@gmail.com>

162 CHAPTER 6 Groovy control structures
 Java 7 introduced a multi-catch syntax. Groovy also supports this as this code shows:

try {
 if (Math.random() < 0.5) 1 / 0
 else null.hashCode()
} catch (ArithmeticException | NullPointerException exception) {
 println exception.class.name
}

NOTE Java 7 introduced a try-with-resources mechanism. At the time of
writing, Groovy doesn’t support that syntax. try-with-resources isn’t needed
in Groovy, where we have full closure support. A future version of Groovy may
support the Java 7 notation to ease cut-and-paste compatibility between the
two languages, but even if it does, we’d encourage you to consider the closure
variants for managing resources, which are cleaner and more powerful.

We cover integration between Java and Groovy in more detail in chapter 16; but it’s
worthwhile noting an issue relating to exceptions here. When using a Groovy class
from Java, you need to be careful. The Groovy methods will not declare that they
throw any checked exceptions unless you’ve explicitly added the declaration, even
though they might throw checked exceptions at runtime. Unfortunately, the Java com-
piler attempts to be clever and will complain if you try to catch a checked exception in
Java when it believes there’s no way that the exception can be thrown. If you run into
this and need to explicitly catch a checked exception generated in Groovy code, you
may need to add a throws declaration to the Groovy code, just to keep javac happy.

6.5 Summary
This was our tour through Groovy’s control structures: conditionally executing code,
looping, and exiting blocks and methods early. It wasn’t too surprising because every-
thing turned out to be like Java, enriched with a bit of Groovy flavor. The only struc-
tural difference was the for loop. Exception handling is very similar to Java, except
without the requirement to declare checked exceptions.9

 Groovy’s handling of Boolean tests is consistently available both in conditional
execution structures and in loops. We examined the differences between Java and
Groovy in determining when a Boolean test is considered to be true. This is a cru-
cial area to understand, because idiomatic Groovy will often use tests that aren’t sim-
ple Boolean expressions.

 The switch keyword and its use as a general classifier bring a new object-oriented
quality to conditionals. The interplay with the isCase method allows objects to con-
trol how they’re treated not only inside switch but also for the grep method on lists
and the in operator in Boolean expressions. You get three for one. Although the use

9 Checked exceptions are regarded by many as an experiment that was worth performing but that proved not
to be as useful as had been hoped.
Licensed to Mark Watson <nordickan@gmail.com>

163Summary
of switch is often discouraged in object-oriented languages, the new power given to it
by Groovy gives it a new sense of purpose.

 In the overall picture, assertions find their place as the bread-and-butter tool for the
mindful developer. They belong in the toolbox of every programmer who cares about
their craft.

 With what you learned in the tour, you have all the means to do any kind of proce-
dural programming. But certainly, you have higher goals and want to master object-
oriented programming. The next chapter will teach you how.
Licensed to Mark Watson <nordickan@gmail.com>

Object orientation,
Groovy style
Any intelligent fool can make things bigger, more complex, and more violent. It
takes a touch of genius—and a lot of courage—to move in the opposite direction.

—Albert Einstein

There’s a common misconception about scripting languages. Because a scripting
language might support a less rigid approach to typing and provide some initially
surprising syntax shorthands, it may be perceived as a nice new toy for hackers
rather than a language suitable for serious OOP. This reputation stems from the
time when scripting was done in terms of shell scripts or early versions of Perl,
where the lack of encapsulation and other object-oriented features sometimes led
to poor code management, frequent code duplication, and obscure hidden bugs. It

This chapter covers
■ Defining classes and scripts
■ Object-oriented features: inheritance,

interfaces, multimethods, and traits
■ Working with GroovyBeans
■ Advanced syntax features: GPath, spread

operators, and command chains
164

Licensed to Mark Watson <nordickan@gmail.com>

165Defining classes and scripts
wasn’t helped by languages that combined notations from several existing sources as
part of their heritage.

 Over time, the scripting landscape has changed dramatically. Perl has added sup-
port for object orientation, Python has extended its object-oriented support, and,
more recently, even JavaScript can be generated from more strictly typed languages
like TypeScript and PureScript.

 Groovy extends the reach of Java by making it scriptable, but it also provides new
language constructs to better reveal the intent of the developer. You’ve already seen
that Groovy provides reference types in cases where Java uses nonobject primitive
types, introduces ranges and closures as first-class objects, and has many shorthand
notations for working with collections of objects. But these enhancements are just
scratching the surface. Groovy allows you to not just write code but to design it and
keep this design visible.

 In this chapter, we’ll take you on a journey. We begin in familiar territory, with
classes, objects, constructors, references, and so forth. Every so often, there’s some-
thing a bit different, a little tweak of Grooviness. By the end of the chapter, you’ll see
code that reads so much like plain English that it could have been mistaken for a com-
ment. Welcome to the Groovy world.

7.1 Defining classes and scripts
Class definition in Groovy is almost identical to Java; classes are declared using the
class keyword and may contain fields, constructors, initializers, and methods.1 Methods
and constructors may themselves use local variables as part of their implementation
code. Scripts are different—offering additional flexibility but with some restrictions
too. They may contain code, variable definitions, and method definitions, as well as
class definitions. We’ll describe how all of these members are declared and cover a
previously unseen operator on the way.

7.1.1 Defining fields and local variables

In its simplest terms, a variable is a name associated with a slot of memory that can
hold a value. Just as in Java, Groovy has local variables, which are scoped within the
method they’re part of, and fields, which are associated with classes or instances of
those classes. Fields and local variables are declared in much the same way, so we cover
them together.

DECLARING VARIABLES

Fields and local variables must be declared before first use (except for a special case
involving scripts, which we discuss later). This helps to enforce scoping rules and pro-
tects the programmer from accidental misspellings. The declaration always involves
specifying a name, and may optionally include a type, modifiers, and assignment of an
initial value. Once declared, variables are referenced by their name.

1 Interfaces are also like their Java counterparts, but we’ll hold off discussing those further until section 7.3.2.
Licensed to Mark Watson <nordickan@gmail.com>

166 CHAPTER 7 Object orientation, Groovy style
 Scripts allow the use of undeclared variables, in which case these variables are
assumed to come from the script’s binding and are added to the binding if they’re not
yet there. The binding is a data store that enables transfer of variables to and from the
caller of a script. Section 16.2.2 has more details about this mechanism.

 Groovy uses Java’s modifiers—the keywords private, protected, and public for
modifying visibility2; final for disallowing reassignment; and static to denote class
variables. A nonstatic field is also known as an instance variable. These modifiers all have
the same meaning as in Java.

 The default visibility for fields has a special meaning in Groovy. When no visibility
modifier is attached to a field declaration, a property is generated for the respective
name. You’ll learn more about properties in section 7.4 when we present GroovyBeans.

 Defining the type of a variable is optional. But the identifier must not stand alone
in the declaration. When no type and modifier are given, the def keyword must be
used as a replacement, effectively indicating that the field or variable can be assigned
an object of any type at runtime.

 The following listing depicts the general appearance of field and variable declara-
tions with optional assignment and using a comma-separated list of identifiers to
declare multiple references at once.

class ClassWithTypedAndUntypedFieldsAndProperties {

 public fieldWithModifier
 String typedField
 def untypedField
 protected field1, field2, field3
 private assignedField = new Date()

 static classField
 public static final String CONSTA = 'a', CONSTB = 'b'

 def someMethod(){
 def localUntypedMethodVar = 1
 int localTypedMethodVar = 1
 def localVarWithoutAssignment, andAnotherOne
 }
}

def localvar = 1
boundvar1 = 1

def someMethod(){
 def localMethodVar = 1
 boundvar2 = 1
}

someMethod()

2 Java’s default package-wide visibility is supported via the @PackageScope annotation.

Listing 7.1 Variable declaration examples

Local variable
to script From the

binding

Local method
to script
Licensed to Mark Watson <nordickan@gmail.com>

167Defining classes and scripts
Assignments to typed references must conform to the type. You saw in chapter 3 that
Groovy provides autoboxing and coercion when it makes sense. All other cases are
type-breaking assignments and lead to a ClassCastException at runtime, as can be
seen in the following listing.3

final String PI = '3.14'
assert PI.class.name == 'java.lang.String'
assert PI.size() == 4
GroovyAssert.shouldFail(ClassCastException){
 Float areaOfCircleRadiusOne = PI
}

As previously discussed, variables can be referred to by name in the same way as in
Java—but Groovy provides a few more interesting possibilities.

REFERENCING AND DEREFERENCING FIELDS

In addition to referring to fields by name with the obj.fieldname4 syntax, they can
also be referenced with the subscript operator, as shown in the next listing. This allows
you to access fields using a dynamically determined name.

class Counter {
 public count = 0
}

def counter = new Counter()

counter.count = 1
assert counter.count == 1

def fieldName = 'count'
counter[fieldName] = 2
assert counter['count'] == 2

Accessing fields in such a dynamic way is part of the bigger picture of dynamic execu-
tion that we’ll analyze in the course of this chapter.

 If you worked through the Groovy datatype descriptions, your next question will
probably be: Can I override the subscript operator? Sure you can, and you’ll extend but
not override the general field-access mechanism that way. But you can do even better
and extend the field-access operator!

 Listing 7.4 shows how to do that. To extend both set and get access, provide
the following methods

Object get (String name)
void set (String name, Object value)

Listing 7.2 Variable declaration examples

3 The shouldFail method as used in this example checks that a ClassCastException occurs. More details
can be found in section 17.3.

4 This notation can also appear in the form of obj.@fieldname, as you’ll see in section 7.4.2.

Listing 7.3 Referencing fields with the subscript operator
Licensed to Mark Watson <nordickan@gmail.com>

168 CHAPTER 7 Object orientation, Groovy style
There’s no restriction on what you do inside these methods; get can return artificial
values, effectively pretending that your class has the requested field. In listing 7.4, the
same value is always returned, regardless of which field value is requested. The set
method is used for counting the write attempts.

class PretendFieldCounter {
 public count = 0

 Object get (String name) {
 return 'pretend value'
 }
 void set (String name, Object value) {
 count++
 }
}

def pretender = new PretendFieldCounter()

assert pretender.isNoField == 'pretend value'
assert pretender.count == 0

pretender.isNoFieldEither = 'just to increase counter'

assert pretender.count == 1

With the count field, you can see that it looks like the get/set methods aren’t used if
the requested field is present. This is true for our special case. In section 7.4 you’ll see
the full set of rules that produces this effect.

 Generally speaking, overriding the get method means to override the dot-fieldname
operator. Overriding the set method overrides the field-assignment operator.

FOR THE GEEKS What about a statement of the form x.y.z=something? This
is equivalent to getX().getY().setZ(something).

Referencing fields is also connected to the topic of properties, which we’ll explore in
section 7.4, where we’ll discuss the need for the additional obj.@fieldname syntax.

7.1.2 Methods and parameters

Method declarations follow the same concepts you’ve seen for variables: the usual Java
modifiers can be used; declaring a return type is optional; and, if no modifiers or
return type are supplied, the def keyword fills the hole. When the def keyword is
used, the return type is deemed to be unrestricted (although it can still have no
return type, the equivalent of a void method). In this case, under the covers, the
return type will be java.lang.Object. The default visibility of methods is public.

 The following listing shows the typical cases in a self-describing manner.

Listing 7.4 Extending the general field-access mechanism
Licensed to Mark Watson <nordickan@gmail.com>

169Defining classes and scripts
class ClassWithTypedAndUntypedMethods {

 static void main(args) {
 def some = new ClassWithTypedAndUntypedMethods()
 some.publicVoidMethod()
 assert 'hi' == some.publicUntypedMethod()
 assert 'ho' == some.publicTypedMethod()
 combinedMethod()
 }

 void publicVoidMethod() { }

 def publicUntypedMethod() {
 return 'hi'
 }

 String publicTypedMethod() {
 return 'ho'
 }

 private static final void combinedMethod() { }
}

The main method B has interesting twists. First, the public modifier can be omitted
because it’s the default. Second, args usually has to be of type String[] to make the main
method the one to start the class execution. Thanks to Groovy’s method dispatch, it works
anyway, although args is now implicitly of static type java.lang.Object. Third, because
return types aren’t used for the dispatch, we can further omit the void declaration.

 So, the Java declaration

public static void main (String[] args)

boils down to this in Groovy:

static main (args)

NOTE The Java compiler fails on missing return statements when a return type
is declared for the method. In Groovy, return statements are optional, there-
fore it’s impossible for the compiler to detect “accidentally” missing returns.

The main(args) example illustrates that declaring explicit parameter types is optional.
When type declarations are omitted, Object is used. Multiple parameters can be used
in sequence, delimited by commas. The following listing shows that explicit and omit-
ted parameter types can also be mixed.

class ClassWithTypedAndUntypedMethodParams {
 static void main(args) {
 assert 'untyped' == method(1)
 assert 'typed' == method('whatever')
 assert 'two args' == method(1, 2)
 }

Listing 7.5 Declaring methods

Listing 7.6 Declaring parameter lists

Implicit
public b

Calls static
method of
current class
Licensed to Mark Watson <nordickan@gmail.com>

170 CHAPTER 7 Object orientation, Groovy style
 static method(arg) {
 return 'untyped'
 }

 static method(String arg) {
 return 'typed'
 }

 static method(arg1, Number arg2) {
 return 'two args'
 }
}

In the examples so far, all method calls have involved positional parameters, where the
meaning of each argument is determined from its position in the parameter list. This
is easy to understand and convenient for the simple cases you’ve seen, but suffers from
a number of drawbacks for more complex scenarios:

■ You must remember the exact sequence of the parameters, which gets increas-
ingly difficult with the length of the parameter list. We recommend a coding style
that encourages small numbers of parameters, but this isn’t always possible.

■ If it makes sense to call the method with different information for alternative
use scenarios, different methods must be constructed to handle these alterna-
tives. This can quickly become cumbersome and lead to a proliferation of meth-
ods, especially where some parameters are optional. It’s especially difficult if
many of the optional parameters have the same type. Fortunately, Groovy
comes to the rescue with using maps as named parameters.

NOTE Whenever we talk about named parameters, we mean keys of a map
that are used as an argument in method or constructor calls. From a pro-
grammer’s perspective, this looks pretty much like native support for named
parameters, but it isn’t. This trick is needed because the JVM doesn’t support
storing parameter names in the bytecode.5

The following listing illustrates Groovy method definitions and calls supporting posi-
tional and named parameters, parameter lists of variable length, and optional parame-
ters with default values. The example provides four alternative summing mechanisms,
each highlighting different approaches for defining the method call parameters.

class Summer {
 def sumWithDefaults(a, b, c=0){
 return a + b + c
 }
 def sumWithList(List args){
 return args.inject(0){sum,i -> sum += i}
 }

5 This isn’t strictly true. Some APIs define their own @ParameterName annotations to store such information
and Java 8 can optionally do so. It would be more accurate to say there is no universally adopted approach
that is guaranteed to be enabled.

Listing 7.7 Advanced parameter uses

Explicit arguments
and default value b

Defines
arguments as list c
Licensed to Mark Watson <nordickan@gmail.com>

171Defining classes and scripts
 def sumWithOptionals(a, b, Object[] optionals){
 return a + b + sumWithList(optionals.toList())
 }
 def sumNamed(Map args){
 ['a','b','c'].each{args.get(it,0)}
 return args.a + args.b + args.c
 }
}

def summer = new Summer()

assert 2 == summer.sumWithDefaults(1,1)
assert 3 == summer.sumWithDefaults(1,1,1)

assert 2 == summer.sumWithList([1,1])
assert 3 == summer.sumWithList([1,1,1])

assert 2 == summer.sumWithOptionals(1,1)
assert 3 == summer.sumWithOptionals(1,1,1)

assert 2 == summer.sumNamed(a:1, b:1)
assert 3 == summer.sumNamed(a:1, b:1, c:1)
assert 1 == summer.sumNamed(c:1)

All four alternatives have their pros and cons. In B, sumWithDefaults, we have the most
obvious declaration of the arguments expected for the method call. It meets the needs
of the sample script—being able to add two or three numbers together—but we’re lim-
ited to as many arguments as we have declared parameters.

 Using lists as shown in c is easy in Groovy, because in the method call, the argu-
ments only have to be placed in brackets. We can also support argument lists of arbi-
trary length. But it’s not as obvious what the individual list entries should mean.
Therefore, this alternative is best suited when all arguments have the same meaning,
as they do here where they’re used for adding. Refer to section 4.2.3 for details about
the List.inject method.

 The sumWithOptionals method d can be called with two or more parameters. To
declare such a method, define the last argument as an array. Groovy’s dynamic
method dispatch bundles excessive arguments into that array.

 Named arguments can be supported by using a map as in e. It’s good practice to
reset any missing values to a default before working with them. This also better reveals
what keys will be used in the method body, because this isn’t obvious from the method
declaration.

 When designing your methods, you have to choose one of the alternatives. You may
wish to formalize your choice within a project or incorporate the Groovy coding style.

NOTE There are more ways of implementing parameter lists of variable length.
You can use varargs with the method(args...) or method(Type[] args) nota-
tion or even hook into Groovy’s method dispatch by overriding the invoke-
Method(name, params[]) that every GroovyObject provides. You’ll learn more
about these hooks in section 7.6.2.

Optional arguments
as array d

Defines
arguments
as map e
Licensed to Mark Watson <nordickan@gmail.com>

172 CHAPTER 7 Object orientation, Groovy style
ADVANCED NAMING

When calling a method on an object reference, you should usually follow this format:

objectReference.methodName()

This format imposes the Java restrictions for method names; for example, they may
not contain special characters such as minus (-) or dot (.). But Groovy allows you to
use these characters in method names if you put quotes around the name:

objectReference.'my.methodName'()

This feature supports scenarios where the method name of a call becomes part of the
functionality. You won’t normally use this feature directly, but it is used under the covers
by other parts of Groovy. You’ll see this in action in chapters 8 and 10.

FOR THE GEEKS Where there’s a string, you can generally also use a GString.
So how about obj."${var}"()? Yes, this is also possible, and the GString will
be resolved to determine the name of the method that’s called on the object!

That’s it for the basics of class members. Before we leave this topic, though, there’s
one convenient operator we should introduce while we’re thinking about referring to
members via references.

7.1.3 Safe dereferencing with the ?. operator
When a reference doesn’t point to any specific object, its value is null. When calling a
method or accessing a field on a null reference, a NullPointerException (NPE) is
thrown. This is useful to protect code from working on undefined preconditions, but
it can easily get in the way of “best-effort” code that should be executed for valid refer-
ences and just be silent otherwise.

 Listing 7.8 shows several alternative approaches to protect code from NPEs. As an
example, we wish to access a deeply nested entry within a hierarchy of maps, which
results in a path expression—a dotted concatenation of references that’s typically cum-
bersome to protect from NPEs. We can use explicit if checks or use the try-catch
mechanism. Groovy provides the additional ?. operator for safe dereferencing. When
the reference before that operator is a null reference, the evaluation of the current
expression stops, and null is returned.

def map = [a:[b:[c:1]]]

assert map.a.b.c == 1

if (map && map.a && map.a.x){
 assert map.a.x.c == null
}

try {
 assert map.a.x.c == null
} catch (NullPointerException ignore){
}

assert map?.a?.x?.c == null

Listing 7.8 Protecting from NullPointerExceptions using the ?. operator

Protects with if:
short-circuit
evaluation

 b

Protects with
try-catch

 c

Safe
dereferencing

 d
Licensed to Mark Watson <nordickan@gmail.com>

173Defining classes and scripts
In comparison, using the safe dereferencing operator in d is the most elegant and
expressive solution.

 Note that B is more compact than its Java equivalent, which would need three
additional nullity checks. It works because the expression is evaluated from left to
right, and the && operator stops evaluation with the first operand that evaluates
to false. This is known as short-circuit evaluation.

 Alternative c is a bit verbose and doesn’t allow fine-grained control to protect
only selective parts of the path expression. It also abuses the exception-handling
mechanism. Exceptions weren’t designed for this kind of situation, which is easily
avoided by verifying that the references are non-null before dereferencing them.
Causing an exception and then catching it is the equivalent of steering a car by install-
ing big bumpers and bouncing off buildings.

 Some software engineers like to think about code in terms of cyclomatic complexity
(http://en.wikipedia.org/wiki/Cyclomatic_complexity), which in short describes code
complexity by analyzing alternative pathways through the code. The safe dereferenc-
ing operator merges alternative pathways and therefore reduces complexity when
compared to its alternatives; essentially, the metric indicates that the code will be eas-
ier to understand and simpler to verify as correct.

7.1.4 Constructors

Objects are instantiated from their classes via constructors. If no constructor is given, an
implicit constructor without arguments is supplied by the compiler. This appears to be
exactly like in Java, but because this is Groovy, it should not be surprising that addi-
tional features are available.

 In section 7.1.2, we examined the merits of named parameters versus positional
ones, as well as the need for optional parameters. The same arguments applicable to
method calls are relevant for constructors, too, so Groovy provides the same conve-
nience mechanisms. We’ll first look at constructors with positional parameters, and
then we’ll examine named parameters.

POSITIONAL PARAMETERS

Until now, we’ve only used implicit constructors. The following listing introduces the
first explicit one. Notice that just like all other methods, the constructor is public by
default. We can call the constructor in three different ways: the usual Java way, with
enforced type coercion by using the as keyword, or with implicit type coercion.

class VendorWithCtor {
 String name, product

 VendorWithCtor(name, product) {
 this.name = name
 this.product = product
 }
}

Listing 7.9 Calling constructors with positional parameters

Constructor
definition
Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Cyclomatic_complexity

174 CHAPTER 7 Object orientation, Groovy style
def first = new VendorWithCtor('Canoo','ULC')

def second = ['Canoo','ULC'] as VendorWithCtor

VendorWithCtor third = ['Canoo','ULC']

The coercion in B and c may be surprising. When Groovy sees the need to coerce a
list to some other type, it tries to call the type’s constructor with all arguments sup-
plied by the list, in list order. This need for coercion can be enforced with the as key-
word or arise from assignments to explicitly typed references. The latter of these is
called implicit construction, which we’ll cover shortly.

NAMED PARAMETERS

Named parameters in constructors are handy. One use case that crops up frequently is
creating immutable classes that have some parameters that are optional. Using posi-
tional parameters would quickly become cumbersome because you’d need to have
constructors allowing for all combinations of the optional parameters.

 As an example, suppose in listing 7.9 that VendorWithCtor should be immutable
and name and product can be optional. We’d need four6 constructors: an empty one,
one to set name, one to set product, and one to set both attributes. To make things
worse, we couldn’t have a constructor with only one argument, because we couldn’t
distinguish whether to set the name or the product attribute (they’re both strings).
We’d need an artificial extra argument for distinction, or we’d need to strongly type
the parameters.

 But don’t panic: Groovy’s special way of supporting named parameters comes to
the rescue again.

 The following listing shows how to use named parameters with a simplified version
of the VendorWithCtor class. It relies on the implicit default constructor. Could that
be any easier?

class SimpleVendor {
 String name, product
}

new SimpleVendor()
new SimpleVendor(name: 'Canoo')
new SimpleVendor(product: 'ULC')
new SimpleVendor(name: 'Canoo', product: 'ULC')

def vendor = new SimpleVendor(name: 'Canoo')
assert 'Canoo' == vendor.name

6 In general, 2n constructors are needed, where n is the number of optional attributes.

Listing 7.10 Calling constructors with named parameters

Normal
constructor use

Coercion with as b

Coercion in
assignment c
Licensed to Mark Watson <nordickan@gmail.com>

175Organizing classes and scripts
The listing illustrates how flexible named parameters are for your constructors. In
cases where you don’t want this flexibility and want to lock down all of your parame-
ters, define your desired constructor explicitly; the implicit constructor with named
parameters will no longer be available.

 Coming back to how we started this section, the empty default constructor invoca-
tion new SimpleVendor() appears in a new light. Although it looks exactly like its Java
equivalent, it’s a special case of the default constructor with named parameters that
happen to be called without any being supplied.

IMPLICIT CONSTRUCTORS

Finally, there’s a way to call a constructor implicitly by simply providing the construc-
tor arguments as a list. That means that instead of calling the Dimension(width,
height) constructor explicitly, for example, you can use

java.awt.Dimension area

area = [200, 100]

assert area.width == 200
assert area.height == 100

Of course, Groovy must know which constructor to call, and therefore implicit con-
structors are solely available for assignment to statically typed references where the
type provides the respective constructor. They don’t work for abstract classes or even
interfaces.

 Implicit constructors are often used with builders, as you’ll see in the SwingBuilder
example in section 11.6.

 That’s it for the usual class members. This is a solid basis we can build upon. But
we’re not yet in the penthouse; we’ve four more levels to go. Next, we’ll walk through
the topic of how to organize classes and scripts before reaching the level of advanced
object-oriented features. The next floor after that is named GroovyBeans and deals
with simple object-oriented information about objects. At this level, we can play with
Groovy’s power features. Finally, we’ll visit the highest level, where we look at advanced
syntax features.

7.2 Organizing classes and scripts
In section 2.4.1, you saw that Groovy classes are Java classes at the bytecode level, and
consequently, Groovy objects are Java objects in memory. At the source-code level,
Groovy class and object handling is for all practical purposes a superset of the Java syn-
tax. We’ll examine the organization of classes and source files, and the relationships
between the two. We’ll also consider Groovy’s use of packages and type aliasing, as well
as demystify where Groovy can load classes from its classpath.
Licensed to Mark Watson <nordickan@gmail.com>

176 CHAPTER 7 Object orientation, Groovy style
7.2.1 File to class relationship

The relationship between files and class declarations isn’t as fixed as in Java.
Groovy files can contain any number of public class declarations according to the
following rules:

■ If a Groovy file contains no class declaration, it’s handled as a script; that is, it’s
transparently wrapped into a class of type Script. This automatically generated
class has the same name as the source script filename7 (without the extension).
The content of the file is wrapped into a run method, and an additional main
method is constructed for easily starting the script.

■ If a Groovy file contains exactly one class declaration with the same name as the file
(without the extension), then there’s the same one-to-one relationship as in Java.

■ A Groovy file may contain multiple class declarations of any visibility, and
there’s no enforced rule that any of them must match the filename. The
groovyc compiler happily creates *.class files for all declared classes in such a
file. If you wish to invoke your script directly—for example, using groovy on
the command line or within an IDE—then the first class within your file
should have a main method.8

■ A Groovy file may mix class declarations and scripting code. In this case, the
scripting code will become the main class to be executed, so don’t declare a
class yourself having the same name as the source filename.

When not compiling explicitly, Groovy finds a class by matching its name to a corre-
sponding *.groovy source file. At this point, naming becomes important. Groovy only
finds classes where the class name matches the source filename. When such a file is
found, all declared classes in that file are parsed and become known to Groovy.

 The following listing shows a sample script with two simple classes, Vendor and
Address. For the moment, they have no methods, only public fields.

class Vendor {
 public String name
 public String product
 public Address address = new Address()
}

class Address {
 public String street, town, state
 public int zip
}

def canoo = new Vendor()
canoo.name = 'Canoo Engineering AG'
canoo.product = 'UltraLightClient (ULC)'

7 Because the class has no package name, it’s implicitly placed in the default package.
8 Strictly speaking, you can alternatively extend GroovyTestCase or implement the Runnable interface.

Listing 7.11 Multiple class declarations in one file
Licensed to Mark Watson <nordickan@gmail.com>

177Organizing classes and scripts
canoo.address.street = 'Kirschgartenst. 7'
canoo.address.zip = 4051
canoo.address.town = 'Basel'
canoo.address.state = 'Switzerland'

assert canoo.dump() =~ /ULC/
assert canoo.address.dump() =~ /Basel/

Vendor and Address are simple data storage classes. They’re roughly equivalent to
struct in C or record in Pascal. We’ll soon explore more elegant ways of defining
such classes.

 The previous example illustrates a convenient convention supported by Groovy’s
source file to class mapping rules, which we discussed earlier. This convention allows
small helper classes that are used only with the current main class or current script to
be declared within the same source file. Compare this with Java, which allows you to
use nested classes to introduce locally used classes without cluttering up your public
class namespace or making navigation of the codebase more difficult by requiring a
proliferation of source-code files. Although it isn’t exactly the same, this convention
has similar benefits for Groovy developers.

7.2.2 Organizing classes in packages
Groovy follows Java’s approach of organizing files in packages of hierarchical struc-
ture. The package structure is used to find the corresponding class files in the filesys-
tem’s directories.

 Because *.groovy source files aren’t necessarily compiled to *.class files, there’s
also a need to look up *.groovy files. When doing so, the same strategy is used: the
compiler looks for a Groovy class Vendor in the business package in the file busi-
ness/Vendor.groovy.

 In listing 7.12, we separate the Vendor and Address classes from the script code, as
shown in listing 7.11, and move them to the business package.

CLASSPATH

The lookup has to start somewhere, and Java uses its classpath for this purpose. The
classpath is a list of possible starting points for the lookup of *.class files. Groovy
reuses the classpath for looking up *.groovy files.

 When looking for a given class, if Groovy finds both a *.class and a *.groovy file, it
uses whichever is newer; that is, it’ll recompile source files into *.class files if they’ve
changed since the previous class file was compiled.9

PACKAGES

Exactly like in Java, Groovy classes must specify their package before the class defini-
tion. When no package declaration is given, the default package is assumed.

 The following listing shows the file business/Vendor.groovy, which has a package
statement as its first line.

9 Whether classes are checked for runtime updates can be controlled by the CompilerConfiguration, which
obeys the system property groovy.recompile by default. See the API documentation for details.
Licensed to Mark Watson <nordickan@gmail.com>

178 CHAPTER 7 Object orientation, Groovy style
package business

class Vendor {
 public String name
 public String product
 public Address address = new Address()
}

class Address {
 public String street, town, state
 public int zip
}

To reference Vendor in the business package, you can either use business.Vendor
within the code or use import statements for abbreviation.

IMPORTS

Groovy follows Java’s notion of allowing import statements before any class declara-
tion to abbreviate class references.

NOTE Please keep in mind that unlike in some other scripting languages, an
import statement has nothing to do with literal inclusion of the imported
class or file. It merely informs the compiler how to resolve references.

The following listing shows the use of an import statement, with the .* notation advis-
ing the compiler to try resolving all unknown class references against all classes in the
business package.

import business.*

def canoo = new Vendor()
canoo.name = 'Canoo Engineering AG'
canoo.product = 'UltraLightClient (ULC)'

assert canoo.dump() =~ /ULC/

Listing 7.12 Vendor and Address classes moved to the business package

Listing 7.13 Using import to access Vendor in the business package

Default import statements
By default, Groovy imports six packages and two classes, making it seem like every
Groovy code program contains the following initial statements:

 import java.lang.*
 import java.util.*
 import java.io.*
 import java.net.*
 import groovy.lang.*
 import groovy.util.*
 import java.math.BigInteger
 import java.math.BigDecimal
Licensed to Mark Watson <nordickan@gmail.com>

179Organizing classes and scripts
TYPE ALIASING

An import statement has another nice twist: together with the as keyword, it can be
used for type aliasing. Whereas a normal import statement allows a fully qualified class
to be referred to by its base name, a type alias allows a fully qualified class to be referred
to by a name of your choosing. This feature resolves naming conflicts and supports
local changes or bug fixes to a third-party library.

 Consider the following library class:

package thirdparty

class MathLib {
 Integer twice(Integer value) {
 return value * 3 // intentionally wrong!
 }
 Integer half(Integer value) {
 return value / 2
 }
}

Note its obvious error10 (although in general it might not be an error but just a locally
desired modification). Suppose now that we have existing code that uses that library:

assert 10 == new MathLib().twice(5)

We can use a type alias to rename the old library and then use an inheritance to make
a fix. No change is required to the original code that was using the library, as you can
see in the following listing.

import thirdparty.MathLib as OrigMathLib

class MathLib extends OrigMathLib {
 Integer twice(Integer value) {
 return value * 2
 }
}

// nothing changes below here
def mathlib = new MathLib()

assert 10 == mathlib.twice(5)
assert 2 == mathlib.half(5)

Now, suppose that we have the following additional math library that we need to use:

package thirdparty2

class MathLib {
 Integer increment(Integer value) {
 return value + 1
 }
}

10 Where are the library author’s unit tests?

Listing 7.14 Using import as for local library modifications

Use code for
library remains
unchanged

Invokes fixed
method

Invokes original
method
Licensed to Mark Watson <nordickan@gmail.com>

180 CHAPTER 7 Object orientation, Groovy style
Although it has a different package, it has the same name as the previous library. With-
out aliasing, we have to fully qualify one or both of the libraries within our code. With
aliasing, we can avoid this in an elegant way and improve communication by better
indicating intent within our program about the role of the third-party library’s code,
as shown in the next listing.

import thirdparty.MathLib as TwiceHalfMathLib
import thirdparty2.MathLib as IncMathLib
def math1 = new TwiceHalfMathLib()
def math2 = new IncMathLib()
assert 3 == math1.half(math2.increment(5))

If we later find a math package with both increment and twice/half functionality, we
can refer to that new library twice and keep our more meaningful names.

 You should consider using aliases within your own program, even when using sim-
ple built-in types. If you’re developing an adventure game, for example, you might
alias Map to SatchelContents. (Here we mean java.util.Map and not TreasureMap,
which our adventure game might allow us to place within the satchel!) This doesn’t
provide the strong typing that defining a separate SatchelContents class would give,
but it does greatly improve the human understandability of the code.

7.2.3 Further classpath considerations

Finding classes in *.class and *.groovy files is an important part of working with
Groovy, and unfortunately a likely source of problems.

 If you installed the JDK including the documentation, you’ll find the classpath
explanation under %JAVA_HOME%/docs/technotes/tools/windows/classpath.html
under Windows, or under a similar directory for Linux and Solaris. Everything the
documentation says equally applies to Groovy.

 A number of contributors can influence the effective classpath in use. The over-
view in table 7.1 may serve as a reference when you’re looking for a possible “bad guy”
that’s messing up your classpath.

Listing 7.15 Using import as for avoiding name clashes

Table 7.1 Forming the classpath

Origin Definition Purpose and Use

JDK/JRE %JAVA_HOME%/lib
%JAVA_HOME%/lib/ext

Boot classpath for the Java runtime environment
and its extensions

OS setting CLASSPATH variable Provides general default settings

Command shell CLASSPATH variable Provides more specialized settings

Java -cp
--classpath
option

Settings per runtime invocation
Licensed to Mark Watson <nordickan@gmail.com>

181Advanced object-oriented features
Groovy defines its classpath in a special configuration file under %GROOVY_HOME%/conf.
Looking at the file groovy-starter.conf reveals the following lines (beside others):

Load required libraries
load ${groovy.home}/lib/*.jar
load user specific libraries
load ${user.home}/.groovy/lib/*

Uncommenting the last line by removing the leading hash sign enables a cool feature.
In your personal home directory user.home, you can use a subdirectory .groovy/lib
(note the leading dot!), where you can store any *.class or *.jar files that you want to
have accessible whenever you work with Groovy.

 If you have problems finding your user.home, open a command shell and execute

groovy -e "println System.properties.'user.home'"

Chances are, you’re in this directory by default anyway.
 Chapter 16 goes through more advanced classpath issues that need to be respected

when embedding Groovy in environments that manage their own class-loading infra-
structure—for example, an application server.

 You’re now able to use constructors in a number of different ways to make new
instances of a class. Classes may reside in packages, and you’ve seen how to make them
known via import statements. This wraps up our exploration of object basics. The
next step is to explore more advanced object-oriented features.

7.3 Advanced object-oriented features
Before beginning to embrace further parts of the Groovy libraries that make funda-
mental use of the object-oriented features we’ve been discussing, we first stop to
briefly explore other object-oriented concepts that change once you enter the Groovy
world. We’ll cover inheritance and interfaces, which will be familiar from Java, and
multimethods, which will give you a taste of the dynamic object orientation coming
later. Finally, we’ll look at Groovy’s support for traits that offer incredible flexibility
when composing functionality.

7.3.1 Using inheritance

You’ve seen how to explicitly add your own fields, methods, and constructors into your
class definitions. Inheritance allows you to implicitly add fields and methods from a

Groovy %GROOVY_HOME%/lib Groovy runtime environment

Groovy -cp Settings per groovy execution call

Groovy . Groovy classpath defaults to the current directory

Table 7.1 Forming the classpath

Origin Definition Purpose and Use
Licensed to Mark Watson <nordickan@gmail.com>

182 CHAPTER 7 Object orientation, Groovy style
base class. The mechanism is useful in a range of use cases. We leave it up to others11

to describe its benefits and warn you about the potential overuse of this feature. We
simply let you know that all the inheritance features of Java (including abstract
classes) are available in Groovy and also work (almost seamlessly12) between Groovy
and Java.

 Groovy classes can extend Groovy and Java classes and interfaces alike. Java classes
can also extend Groovy classes and interfaces. You need to compile your Java and
Groovy classes in a particular order for this to work (see section 16.4.2 for more
details). The only other thing you need to be aware of is that Groovy is more dynamic
than Java when it selects which methods to invoke for you. This feature is known as
multimethods and is discussed further in section 7.3.3.

7.3.2 Using interfaces

A frequently advocated style of Java programming involves using Java’s interface
mechanism. Code written using this style refers to the dependent classes that it uses
solely by interface. The dependent classes can be safely changed later without requir-
ing changes to the original program. If a developer accidentally tries to change one of
the classes for another that doesn’t comply with the interface, this discrepancy is
detected at compile time. Groovy fully supports the Java interface mechanism.

 Some13 argue that interfaces alone aren’t strong enough, and design-by-contract is
more important for achieving safe object substitution and allowing nonbreaking
changes to your libraries. Judicious use of abstract methods and inheritance becomes
just as important as using interfaces. Groovy’s support for Java’s abstract methods, its
automatically enabled assert statement, and its built-in ready access to test methods
mean that it’s ideally suited to also support this stricter approach.

 Still others argue that dynamic typing is the best approach, leading to much less
typing and less scaffolding code without much reduced safety—which should be cov-
ered by tests in any case. The good news is that Groovy supports this style as well. To
give you a flavor of how this would impact you in everyday coding, consider how you’d
build a plug-in mechanism in Java and Groovy.

 In Java, you’d normally write an interface for the plug-in mechanism and then an
implementation class for each plug-in that implements that interface. In Groovy,
dynamic typing allows you to more easily create and use implementations that meet a
certain need. You’re likely to be able to create just two classes as part of developing
two plug-in implementations. In general, you have a lot less scaffolding code and a lot
less typing.

11 Rebecca Wirfs-Brock et al., Designing Object-Oriented Software (Prentice-Hall, 1990) is a good place to begin.
12 The only limitation that we’re aware of has to do with map-based constructors, which Groovy provides by

default. These aren’t available directly in Java if you extend a Groovy class. They’re provided by Groovy as a
runtime trick.

13 See Bertrand Meyer, Object-oriented Software Construction, 2nd ed. (Prentice-Hall, 1997) and http://cafe.elharo
.com/java/the-three-reasons-for-data-encapsulation/.
Licensed to Mark Watson <nordickan@gmail.com>

http://cafe.elharo.com/java/the-three-reasons-for-data-encapsulation/
http://cafe.elharo.com/java/the-three-reasons-for-data-encapsulation/

183Advanced object-oriented features
In summary, if you’ve come from the Java world, you may be used to following a strict
style of coding that strongly encourages interfaces. When using Groovy, you’re not
compelled to stick with any one style. In many situations, you can minimize the amount
of typing by making use of dynamic typing; and if you really need it, the full use of
interfaces is available.

7.3.3 Multimethods

Remember that Groovy’s mechanics of method lookup take the dynamic type of
method arguments into account, whereas Java relies on the static type. This Groovy
feature is called multimethods.

 The following listing shows two methods, both called oracle, that are distinguish-
able only by their argument types. They’re called two times with arguments of the
same static type but different dynamic types.

def oracle(Object o) { return 'object' }
def oracle(String o) { return 'string' }

Object x = 1
Object y = 'foo'

assert 'object' == oracle(x)
assert 'string' == oracle(y)

The x argument is of static type Object and of runtime type Integer. The y argument is
of static type Object but of runtime type String. Both arguments are of the same static
type, which would make the equivalent Java program dispatch both to oracle(Object).

Implementing interfaces and SAM types
If you decide to make heavy use of interfaces, Groovy provides ways to make them
more dynamic. If you have an interface, MyInterface, with a single method and a clo-
sure, myClosure, you can use the as keyword to coerce the closure to be of type
MyInterface. In fact from Groovy 2.2, you don’t even need the as keyword. Groovy
does implicit closure coercion into single abstract method types as shown in this exam-
ple, where the addListener method would normally require an ActionListener:

import java.awt.event.ActionListener
listeners = []
def addListener(ActionListener al) { listeners << al }
addListener { println "I heard that!" }
listeners*.actionPerformed()

Alternatively, if you have an interface with several methods, you can create a map of
closures keyed on the method names and coerce the map to your interface type.
See the Groovy documentation for more details: http://docs.groovy-lang.org/latest/
html/documentation/core-semantics.html#closure-coercion.

Listing 7.16 Multimethods: method dispatch on runtime type

Returns object
in Java
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.groovy-lang.org/latest/html/documentation/core-semantics.html#closure-coercion
http://docs.groovy-lang.org/latest/html/documentation/core-semantics.html#closure-coercion

184 CHAPTER 7 Object orientation, Groovy style
Because Groovy dispatches by the runtime type, the specialized implementation of
oracle(String) is used in the second case.

 With this capability in place, you can better avoid duplicated code by being able to
override behavior more selectively. Consider the equals implementation in the fol-
lowing listing that overrides Object’s default equals method only for the argument
type Equalizer.

class Equalizer {
 boolean equals(Equalizer e){
 return true
 }
}

Object same = new Equalizer()
Object other = new Object()

assert new Equalizer().equals(same)
assert ! new Equalizer().equals(other)

When an object of type Equalizer is passed to the equals method, the specialized
implementation is chosen. When an arbitrary object is passed, the default implemen-
tation of its superclass Object.equals is called, which implements the equality check
as a reference identity check.

 The net effect is that the caller of the equals method can be fully unaware of the
difference. From a caller’s perspective, it looks like equals(Equalizer) would over-
ride equals(Object), which would be impossible to do in Java. Instead, a Java pro-
grammer has to write it like this:

public class Equalizer { // Java
 public boolean equals(Object obj)
 {
 if (obj == null) return false;
 if (!(obj instanceof Equalizer)) return false;
 Equalizer w = (Equalizer) obj;
 return true; // custom logic here
 }
}

This is unfortunate, because the logic of how to correctly override equals needs to be
duplicated for every custom type in Java. This is another example where Java uses the
static type Object and leaves the work of dynamic type resolution to the programmer.

NOTE Wherever there’s a Java API that uses the static type Object, this code
effectively loses the strength of static typing. You’ll inevitably find it used with
typecasts, compromising compile-time type safety. This is why the Java type
concept is called weak static typing: you lose the merits of static typing without
getting the benefits of a dynamically typed language such as multimethods.

Listing 7.17 Multimethods to selectively override equals
Licensed to Mark Watson <nordickan@gmail.com>

185Advanced object-oriented features
Groovy, in contrast, comes with a single and consistent implementation of dispatching
methods by the dynamic types of their arguments.

 That’s it for multimethods, but in terms of advanced object-oriented features,
we’ve saved the best for last. One of the benefits of object-oriented languages is the
flexibility in designing systems through composition and subtyping. Java’s decision to
adopt single inheritance of implementation greatly simplified the language at the
expense of making it more difficult to support certain kinds of reuse. We’ve all heard
the mantra “prefer delegation over inheritance.” It’s arguable that this is a direct con-
sequence of Java’s restrictions. A programmer might have the desire to share code
capabilities within their classes without duplication, but given Java’s restrictions, they
create inappropriate subtype relationships. Default methods in Java 8 interfaces lift
this restriction somewhat but still don’t allow a full “design by capability” that includes
state. Groovy introduces traits to support composition of capabilities in a very flexible
way. We’ll cover traits next.

7.3.4 Using traits

Groovy traits support composition of capabilities. Capabilities that are designed to be
shared are implemented in traits. Your classes can then implement those traits to indi-
cate that they provide that capability.14 They “inherit” the implementation from the
trait but can override it if they wish. If this sounds like Java 8 default methods, you’re
on the right track, but Groovy traits also support state. Let’s look at some examples.

 Assume we have to model a Book class. Books have an ISBN number. Books also
have a title just like other types of publications but not all publications have an ISBN.
So our domain is books that are subclasses of publications:

class Publication {
 String title
}

class Book extends Publication {
 String isbn
}

But in our application, we also need to save Book instances to a database. Saving has
nothing to do with books or publications but is an independent capability that applies
to all persistent entities.

 The following listing solves this design task with Groovy traits in a very fine-grained
manner such that one can mix-and-match the capabilities of having identifiers and ver-
sions for persistent entities.

14 Before Groovy 2.3 the way to share capabilities among classes was through the @Mixin annotation, which is
now deprecated in favor of more powerful traits.
Licensed to Mark Watson <nordickan@gmail.com>

186 CHAPTER 7 Object orientation, Groovy style
trait HasId {
 long id
}

trait HasVersion {
 long version
}

trait Persistent {
 boolean save() { println "saving ${this.dump()}" }
}

trait Entity implements Persistent, HasId, HasVersion {
 boolean save() {
 version++
 Persistent.super.save()
 }
}

class Publication implements Entity {
 String title
}

class Book extends Publication {
 String isbn
}

Entity gina = new Book(id:1, version:1, title:"gina", isbn:"111111")
gina.save()
assert gina.version == 2

At B we make Publication an Entity. This is what we call the intrusive way of apply-
ing traits. There’s an even more flexible one: applying them nonintrusively at runtime.
Publications stay totally agnostic of persistency:

class Publication {
 String title
}

We apply the trait later when needed with the enforced coercion through the as
keyword:

Entity gina = new Book(title:"gina", isbn:"111111") as Entity
gina.id = 1
gina.version = 1

Note that gina is no longer of type Book as it was before. That’s the price we pay for
flexibility. But this nonintrusive way of extending a class independent from its inheri-
tance in a type-safe manner is a great way of developing incrementally.

 That’s all you need to know to get started using traits. There are some more
advanced details such as rules for dealing with conflicts when two or more traits define

Listing 7.18 Traits with inheritance

Defines a trait
with state

Traits can use
subtyping

Uses specific
methods

Implements
the trait b
Licensed to Mark Watson <nordickan@gmail.com>

187Working with GroovyBeans
the same method, and rules for chaining traits and restrictions when combining traits
with AST transformations. See the Groovy documentation on traits for more details.15

7.4 Working with GroovyBeans
The JavaBeans specification16 was introduced with Java 1.1 to define a lightweight and
generic software component model for Java. The component model builds on naming
conventions and APIs that allow Java classes to expose their properties to other classes
and tools. This greatly enhanced the ability to define and use reusable components
and opened up the possibility of developing component-aware tools.

 The first tools were mainly visually oriented, such as visual builders that retrieved
and manipulated properties of visual components. Over time, the JavaBeans concept
has been widely used and extended to a range of use cases including server-side com-
ponents (in JavaServer Pages [JSP]), transactional behavior and persistence (Enter-
prise JavaBeans [EJB]), object-relational mapping (ORM) frameworks, and countless
other frameworks and tools.

 Groovy makes using JavaBeans (and therefore most of these other JavaBean-
related frameworks) easier with special language support. This support covers three
aspects: special Groovy syntax for creating JavaBean classes; mechanisms for easily
accessing beans, regardless of whether they were declared in Groovy or Java; and sup-
port for JavaBean event handling. This section will examine each part of this lan-
guage-level support, as well as cover the library support provided by the Expando class.

7.4.1 Declaring beans

JavaBeans are normal classes that follow certain naming conventions. For example, to
make a String property myProp available in a JavaBean, the bean’s class must have
public methods declared as String getMyProp and void setMyProp (String value).
The JavaBean specification also strongly recommends that beans should be serializable
so they can be persistent and provide a parameterless constructor to allow easy con-
struction of objects from within tools. A typical Java implementation is

// Java
public class MyBean implements java.io.Serializable {
 private String myprop;
 public String getMyprop(){
 return myprop;
 }
 public void setMyprop(String value){
 myprop = value;
 }
}

15 Groovy Language Documentation, 1.4.2, “Traits,” http://docs.groovy-lang.org/docs/groovy-latest/html/
documentation/#_traits.

16 The JavaBeans spec, www.oracle.com/technetwork/java/javase/overview/spec-136004.html.
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.groovy-lang.org/docs/groovy-latest/html/documentation/#_traits
http://docs.groovy-lang.org/docs/groovy-latest/html/documentation/#_traits
http://www.oracle.com/technetwork/java/javase/overview/spec-136004.html

188 CHAPTER 7 Object orientation, Groovy style
The Groovy equivalent is

class MyBean implements Serializable {
 String myprop
}

The most obvious difference is size. One line of Groovy replaces seven lines of Java.
But it’s not only about less typing, it’s also about self-documentation. In Groovy, it’s
easier to assess which fields are considered exposed properties: all fields that are
declared with default visibility. The three related pieces of information—the field and
the two accessor methods—are kept together in one declaration. Changing the type
or name of the property requires changing the code in only a single place.

NOTE Older versions of Groovy used an @Property syntax for denoting prop-
erties. This was considered ugly and was removed in favor of handling proper-
ties as a “default visibility.”

Underneath the covers, Groovy provides public accessor methods similar to this Java
code equivalent, but you don’t have to type them. Moreover, they’re generated only if
they don’t already exist in the class. This allows you to override the standard accessors
with either customized logic or constrained visibility. Groovy also provides a private
backing field (again similar to the Java equivalent code). Note that the JavaBean spec-
ification cares only about the available accessor methods and doesn’t even require a
backing field, but having one is an intuitive and simple way to implement the meth-
ods—so that’s what Groovy does.

NOTE It’s important that Groovy constructs the accessor methods and adds
them to the bytecode. This ensures that when using a MyBean in the Java
world, the Groovy MyBean class is recognized as a proper JavaBean.

The following listing shows the declaration options for properties with optional typing
and assignment. The rules are equivalent to those for fields (see section 7.2.1).

class MyBean implements Serializable {
 def untyped
 String typed
 def item1, item2
 def assigned = 'default value'
}
def bean = new MyBean()
assert 'default value' == bean.getAssigned()
bean.setUntyped('some value')
assert 'some value' == bean.getUntyped()
bean = new MyBean(typed:'another value')
assert 'another value' == bean.getTyped()

Properties are sometimes called readable or writeable depending on whether the corre-
sponding getter or setter method is available. Groovy properties are both readable

Listing 7.19 Declaring properties in GroovyBeans
Licensed to Mark Watson <nordickan@gmail.com>

189Working with GroovyBeans
and writeable, but you can always roll your own if you have special requirements.
When the final keyword is used with a property declaration, the property will only be
readable (no setter method is created and the backing field is final).

 Writing GroovyBeans is a simple and elegant solution for fully compliant JavaBean
support, with the option of specifying types as required.

7.4.2 Working with beans

The wide adoption of the JavaBeans concept in the world of Java has led to a common
programming style where bean-style accessor methods are limited to simple access
(costly operations are strictly avoided in these methods). These are the types of acces-
sors generated for you by Groovy. If you have complex additional logic related to a
property, you can always override the relevant getter or setter method, but you’re usu-
ally better off writing a separate business method for your advanced logic.

ACCESSOR METHODS

Even for classes that don’t fully comply with the JavaBeans standard, you can usually
assume that such an accessor method can be called without a big performance penalty
or other harmful side effects. The characteristics of an accessor method are much like
those of a direct field access (without breaking the uniform access principle17).

 Groovy supports this style at the language level according to the mapping of
method calls shown in table 7.2.

This mapping works regardless of whether it’s applied to a Groovy or plain old Java
object (POJO), and it works for beans as well as for all other classes. The next listing
shows this in a combination of bean-style and derived properties.

class MrBean {
 String firstname, lastname

 String getName(){
 return "$firstname $lastname"
 }
}

17 “Uniform Access Principle,” http://en.wikipedia.org/wiki/Uniform_access_principle.

Table 7.2 Groovy accessor method to property mappings

Java Groovy

getPropertyname() propertyname

setPropertyname(value) propertyname = value

Listing 7.20 Calling accessors the Groovy way

Groovy style
properties

Getter for derived
property b
Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Uniform_access_principle

190 CHAPTER 7 Object orientation, Groovy style

G
constr
def bean = new MrBean(firstname: 'Rowan')
bean.lastname = 'Atkinson'

assert 'Rowan Atkinson' == bean.name

Note how much the Groovy-style property access in c and d looks like direct field
access, whereas B makes clear that there’s no field but only some derived value. From
a caller’s point of view, the access is truly uniform.

 Because field access and the accessor method shortcut have an identical syntax, it
takes rules to choose one or the other.

NOTE When both a field and the corresponding accessor method are accessi-
ble to the caller, the property reference is resolved as an accessor method
call. If only one is accessible, that option is chosen.

That looks straightforward, and it is in the majority of cases. But there are some points
to consider, as you’ll see next.

FIELD ACCESS WITH .@
Before we leave the topic of properties, we have one more example to explore. The fol-
lowing listing illustrates how you can provide your own accessor methods and also how
to bypass the accessor mechanism. You can get directly to the field using the .@ (dot-at)
operator when the need arises.

class DoublerBean {
 public value

 void setValue(value){
 this.value = value
 }

 def getValue(){
 value * 2
 }
}

def bean = new DoublerBean(value: 100)

assert 200 == bean.value
assert 100 == bean.@value

Let’s start with what’s familiar: bean.value at d calls getValue and thus returns
the doubled value. But wait—getValue calculates the result at c as value * 2. If
value at this point was interpreted as a bean shortcut for getValue, we’d have an
endless recursion.

 A similar situation arises at B, where the assignment this.value = would in bean
terms be interpreted as this.setValue, which would also let us fall into endless loop-
ing. Therefore, the following rules have been set up.

Listing 7.21 Advanced accessors with Groovy

eneric
uctor Calls setter c

Calls getter d

Visible
field

Inner field
access b

Inner field
access c

Property
access

 d
Outer field
access
Licensed to Mark Watson <nordickan@gmail.com>

191Working with GroovyBeans
RULES Inside the lexical scope of a field, references to fieldname or
this.fieldname are resolved as field access, not as property access. The same
effect can be achieved from outside the scope using the reference.@field-
name syntax.

It needs to be mentioned that these rules can produce pathological corner cases
with logical but surprising behavior, such as when using @ from a static context or
with def x=this; x.@fieldname, and so on. We’ll not go into more details here,
because such a design is discouraged. Decide whether to expose the state as a field,
as a property, or via explicit accessor methods, but don’t mix these approaches.
Keep the access uniform.

BEAN-STYLE EVENT HANDLING

Besides properties, JavaBeans can also be event sources that feed event listeners.18 An
event listener is an object with a callback method that gets called to notify the listener
that an event was fired. An event object that further qualifies the event is passed as a
parameter to the callback method.

 The JDK is full of different types of event listeners. A simple event listener is the
ActionListener on a button, which calls an actionPerformed(ActionEvent) method
whenever the button is clicked. A more complex example is the VetoableChange-
Listener that allows listeners to throw a PropertyVetoException inside their vetoable-
Change(PropertyChangeEvent) method to roll back a change to a bean’s property.
Other uses are multifold, and it’s impossible to provide an exhaustive list.

 Groovy supports event listeners in a simple but powerful way. Suppose you need to
create a Swing JButton with the label “Push me!” that prints the label to the console
when it’s clicked. A Java implementation can use an anonymous inner class in the fol-
lowing way:

// Java
final JButton button = new JButton("Push me!");
button.addActionListener(new IActionListener(){
 public void actionPerformed(ActionEvent event){
 System.out.println(button.getText());
 }
});

The developer needs to know about the respective listener and event types (or inter-
faces), as well as about the registration and callback methods.

 A Groovy programmer only has to attach a closure to the button as if it were a field
named by the respective callback method:

button = new JButton('Push me!')
button.actionPerformed = { event ->
 println button.text
}

18 See the JavaBeans Specification: http://www.oracle.com/technetwork/java/javase/overview/spec-136004.html.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.oracle.com/technetwork/java/javase/overview/spec-136004.html

192 CHAPTER 7 Object orientation, Groovy style
The event parameter is added only to show how we could get it when needed. In this
example, it could have been omitted, because it’s not used inside the closure.

NOTE Groovy uses bean introspection to determine whether a field setter refers to
a callback method of a listener that’s supported by the bean. If so, a Closure-
Listener is transparently added that calls the closure when notified. A
ClosureListener is a proxy implementation of the required listener interface.

Event handling is conceived as a JavaBeans standard. But you don’t need to somehow
declare your object to be a bean before you can do any event handling. The depen-
dency is the other way around: as soon as your object supports this style of event han-
dling, it’s called a bean.

 Although Groovy adds the ability to register event listeners easily as closures, the
Java style of bean event handling remains fully intact. That means you can still use all
available Java methods to get a list of all registered listeners, adding more of them, or
removing them when they’re no longer needed.

7.4.3 Using bean methods for any object

Groovy doesn’t distinguish between beans and other kinds of object. It solely relies on
the accessibility of the respective getter and setter methods.

 The following listing shows how to use the getProperties method and thus the
properties property (sorry for the tricky wording) to get a map of a bean’s proper-
ties. You can do so with any object you fancy.

class ClassWithProperties {
 def someProperty
 public someField
 private somePrivateField
}

def obj = new ClassWithProperties()

def store = []
obj.properties.each { property ->
 store += property.key
 store += property.value
}
assert store.contains('someProperty')
assert store.contains('someField') == false
assert store.contains('somePrivateField') == false
assert store.contains('class')

assert obj.properties.size() == 2

In addition to the property that’s explicitly declared, you also see class and metaClass
references. These are artifacts of the Groovy class generation.19

Listing 7.22 GDK methods for bean properties

19 The class property stems from Java. But tools that use Java’s bean introspection often hide this property.
Licensed to Mark Watson <nordickan@gmail.com>

193Working with GroovyBeans
 This was a taste of what will be explained in more detail in section 12.1.

7.4.4 Fields, accessors, maps, and Expando

In Groovy code, you’ll often find expressions such as object.name. Here’s what hap-
pens when Groovy resolves this reference:

■ If object refers to a map, object.name refers to the value corresponding to the
name key that’s stored in the map. Otherwise, if name is a property of object,
the property is referenced (with precedence of accessor methods over fields, as
you saw in section 7.4.2).

■ Every Groovy object has the opportunity to implement its own getProperty
(name) and setProperty(name, value) methods. When it does, these imple-
mentations are used to control the property access. Maps, for example, use this
mechanism to expose keys as properties.

■ Field access can be intercepted by providing the object.get(name) method, as
shown in section 7.1.1. This is a last resort as far as the Groovy runtime is con-
cerned: it’s used only when there’s no appropriate JavaBeans property available
and when getProperty isn’t implemented.

It’s worth noting that when name contains special characters that wouldn’t be valid for
an identifier, it can be supplied in string delimiters—for example, object.'my-name'.
You can also use a GString: def name = 'my-name'; object. "$name". As you saw in
section 7.1.1 and we’ll further explore in section 12.1.1, there’s also a getAt imple-
mentation on Object that delegates to the property access so that you can access a
property via object[name].

 The rationale behind the admittedly nontrivial reference resolution is to allow
dynamic state and behavior for Groovy objects. Groovy comes with an example of how
useful this feature is: Expando. An Expando can be thought of as an expandable alterna-
tive to a bean, albeit one that can be used only within Groovy and not directly in Java.
It supports the Groovy style of property access with a few extensions. Listing 7.23
shows how an Expando object can be expanded with properties by assignment, analo-
gous to maps. The difference comes with assigning closures to a property. Those are
executed when accessing the property, optionally taking parameters. In the example,
the boxer fights back by returning multiple times what he has taken before.

def boxer = new Expando()

assert null == boxer.takeThis

boxer.takeThis = 'ouch!'

assert 'ouch!' == boxer.takeThis

boxer.fightBack = {times -> delegate.takeThis * times }

assert 'ouch!ouch!ouch!' == boxer.fightBack(3)

Listing 7.23 An example using Expando
Licensed to Mark Watson <nordickan@gmail.com>

194 CHAPTER 7 Object orientation, Groovy style
In a way, Expando’s ability to assign closures to properties and have property access
calling the stored closures is like dynamically attaching methods to an object.

 Maps and Expandos are extreme solutions when it comes to avoiding writing sim-
ple data structures as classes, because they don’t require any extra class to be written.
In Groovy, accessing the keys of a map or the properties of an Expando doesn’t look
different from accessing the properties of a full-blown JavaBean. This comes at a
price: Expandos cannot be used as beans in the Java world and don’t support any kind
of typing.

7.5 Using advanced syntax features
This section presents three power features that Groovy supports at the language level:
GPath, the spread operator, and command chains.

 We start by looking at GPaths. A GPath is a construction in Groovy code that pow-
ers object navigation. The name is chosen as an analogy to XPath, which is a stan-
dard for describing traversal of XML (and equivalent) documents. Just like an XPath, a
GPath is aimed at expressiveness: realizing short, compact expressions that are still
easy to read.

 GPaths are almost entirely built on concepts that you’ve already seen: field
access, shortened method calls, and the GDK methods added to Collection. They
introduce only one new operator: the *. (spread-dot) operator. Let’s start working
with it right away.

7.5.1 Querying objects with GPaths

We’ll explore Groovy by paving a path through the Reflection API. The goal is to get a
sorted list of all getter methods for the current object. We’ll do so step by step, so
please open a groovyConsole and follow along. You’ll try to get information about
your current object, so type

this

and run the script (by pressing Ctrl-Enter). In the output pane, you’ll see some-
thing like

Script1@e7e8eb

which is the string representation of the current object. To get information about the
class of this object, you could use this.getClass, but in Groovy you can type

this.class

which displays (after you run the script again)

class Script2

The class object reveals available methods with getMethods, so type

this.class.methods
Licensed to Mark Watson <nordickan@gmail.com>

195Using advanced syntax features
which prints a long list of method object descriptions. This is too much information
for the moment. You’re only interested in the method names. Each method object has
a getName method, so call

this.class.methods.name

and get a list of method names, returned as a list of string objects. You can easily work
on it, applying what you learned about strings, regular expressions, and lists. Because
you’re only interested in getter methods and want to have them sorted, type

this.class.methods.name.grep(~/get.*/).sort()

and voilà, you’ll get the result

["getBinding", "getClass", "getMetaClass", "getProperty"]

Such an expression is called a GPath. One special thing about it is that you can call the
name property on a list of method objects and receive a list of string objects—that is,
the names.

 The rule behind this is that

list.property

is equal to

list.collect{ item -> item?.property }

This is an abbreviation of the special case when properties are accessed on lists. The
general case reads like

list*.member

where *. is the spread-dot operator and member can be a field access, a property access,
or a method call. The spread-dot operator is needed whenever a method should be
applied to all elements of the list rather than to the list itself. It is equivalent to

list.collect{ item -> item?.member }

To see GPath in action, we step into an example that’s reasonably close to reality. Sup-
pose you’re processing invoices that consist of line items, where each line refers to the
sold product and a multiplicity. A product has a price in dollars and a name. An
invoice could look like table 7.3.

Figure 7.1 depicts the corresponding software model in a UML class diagram. The
Invoice class aggregates multiple LineItems that in turn refer to a Product.

Table 7.3 Sample invoice

Name Price in $ Count Total

ULC 1,499 5 7,495

Visual editor 499 1 499
Licensed to Mark Watson <nordickan@gmail.com>

196 CHAPTER 7 Object orientation, Groovy style
The following listing is the Groovy implementation of this design. It defines the classes
as GroovyBeans, constructs sample invoices with this structure, and uses GPath expres-
sions to query the object graph in multiple ways.

class Invoice {
 List items
 Date date
}
class LineItem {
 Product product
 int count
 int total() {
 return product.dollar * count
 }
}
class Product {
 String name
 def dollar
}

def ulcDate = Date.parse('yyyy-MM-dd', '2015-01-01')
def otherDate = Date.parse('yyyy-MM-dd', '2015-02-02')
def ulc = new Product(dollar:1499, name:'ULC')
def ve = new Product(dollar:499, name:'Visual Editor')

def invoices = [
 new Invoice(date:ulcDate, items: [
 new LineItem(count:5, product:ulc),
 new LineItem(count:1, product:ve)
]),
 new Invoice(date:otherDate, items: [
 new LineItem(count:4, product:ve)
])
]

def allItems = invoices.items.flatten()

assert [5*1499, 499, 4*499] == allItems*.total()

assert ['ULC'] == allItems.grep{it.total() > 7000}.product.name

Listing 7.24 Invoice example for GPath

Invoice

items
date

//accessors

LineItem

product
count

//accessors
+ total()

Product

name
dollar

//accessors

*

Figure 7.1 UML class diagram of an Invoice class that aggregates multiple instances of a
LineItem class, which in turn aggregates exactly one instance of a Product class

Sets up data
structures

Fills with
sample data

Total for each
line item

 b
Query of
product
names

 c
Licensed to Mark Watson <nordickan@gmail.com>

197Using advanced syntax features
def searchDates = invoices.grep{
 it.items.any{it.product == ulc}
}.date*.toString()
assert [ulcDate.toString()] == searchDates

The queries in the listing are fairly involved. The first B finds the total for each invoice,
adding up all the line items. We then run a query c which finds all the names of prod-
ucts that have a line item with a total of over $7,000. The next query D finds the date of
each invoice containing a purchase of the ULC product and turns it into a string.

 Printing the full Java equivalent here would cover several pages and would not be a
very exciting read. Java 8 improves the Java comparison to some degree, but the met-
rics still very much favor Groovy whether you measure lines of code (LOC), number of
statements, or complexity in the sense of nesting depth.

 Writing less code isn’t just an exercise for its own sake. It also means lower
chances of making errors and thus less testing effort. Whereas some new developers
think of a good day as one in which they’ve added lots of lines to the codebase, we
consider a really good day as one in which we’ve added functionality but removed
lines from the codebase.

 In a lot of languages, less code comes at the expense of clarity. Not so in Groovy.
The GPath example is the best proof. It’s much easier to read and understand than its
Java counterpart. Even the complexity metrics are superior.

 As a final observation, consider maintainability. Suppose your customer refines
their requirements, and you need to change the lookup logic. How much effort does
that take in Groovy as opposed to Java?

7.5.2 Injecting the spread operator

Groovy provides a * (spread) operator that’s connected to the spread-dot operator in
that it deals with tearing a list apart. It can be seen as the reverse counterpart of the
subscript operator that creates a list from a sequence of comma-separated objects.
The spread operator distributes all items of a list to a receiver that can take this
sequence. Such a receiver can be a method that takes a sequence of arguments or a
list constructor.

 What is this good for? Suppose you’ve a method that returns multiple results in a
list, and your code needs to pass these results to a second method. The spread opera-
tor distributes the result values over the second method’s parameters:

def getList(){
 return [1,2,3]
}
def sum(a,b,c){
 return a + b + c
}
assert 6 == sum(*list)

This allows clever meshing of methods that return and receive multiple values while
allowing the receiving method to declare each parameter separately.

Query of
invoice date

 d
Licensed to Mark Watson <nordickan@gmail.com>

198 CHAPTER 7 Object orientation, Groovy style
 The distribution with the spread operator also works on ranges and when distribut-
ing all items of a list into a second list:

def range = (1..3)
assert [0,1,2,3] == [0,*range]

The same trick can be applied to maps:

def map = [a:1,b:2]
assert [a:1, b:2, c:3] == [c:3, *:map]

The spread operator eliminates the need for boilerplate code that would otherwise be
necessary to merge lists, ranges, and maps into the expected format. You’ll see this in
action in section 10.3, where this operator helps implement a user command lan-
guage for database access.

 As shown in the previous assertions, the spread operator is used inside expressions,
supporting a functional style of programming as opposed to a procedural style. In a
procedural style, you’d introduce statements like list.addAll(otherlist).

 Now comes a Groovy’s syntax feature that makes reading Groovy code like plain
English.

7.5.3 Concise syntax with command chains

Much of the Groovy goodness comes from the combination of simple language fea-
tures. Command chains are such a feature that’s based on a very simple idea: one can
omit dots and parentheses in chain-of-method calls.

 When a chain-of-method call looks like

link(producer).to(consumer)

then Groovy allows you to write this as

link producer to consumer

which reads like an English sentence and is immensely useful in DSLs.
 Command chains are also possible with methods that have multiple arguments or

that take an argument map. The following lines are equivalent:

move(10, forward).painting(color:blue)
move 10, forward painting color:blue

Note that this is a pure syntax feature and doesn’t require any special provision when
defining the methods. It works with all methods that have at least one argument. With-
out an argument, the syntax would be ambiguous. A method without parentheses and
not at least one argument is indistinguishable from property access. If that were
allowed, the sequencing of method names and arguments would be destroyed with
one exception: in the very last position of a method chain. And, in fact, this is the one
and only position where a property access is allowed.
Licensed to Mark Watson <nordickan@gmail.com>

199Summary
 Groovy is often perceived as a scripting language for the JVM, and it is. Scripts
cannot impose lots of ceremonial syntax to please the compiler. That would be too
cumbersome for the script author. But making Java scriptable isn’t the most distinc-
tive feature. Groovy syntax is made so that the programmer can always clearly reveal
his intent.

7.6 Summary
Congratulations on making it to the end of this chapter. If you’re new to dynamic lan-
guages, your head may be spinning right now—it’s been quite a journey!

 The chapter started without too many surprises, showing the similarities between
Java and Groovy in terms of defining and organizing classes. As we introduced named
parameters for constructors and methods, optional parameters for methods, and
dynamic field lookup with the subscript operator, as well as Groovy’s “load at runtime”
abilities, it became obvious that Groovy has more spring in its step than Java.

 Groovy’s handling of the JavaBeans conventions reinforced this, as we showed
Groovy classes with JavaBean-style properties that were simpler and more expressive
to both create and use than their Java equivalents. By the time you saw Groovy’s
power features such as GPath, command chains, and traits, you could value the clar-
ity of the syntax.

 In retrospect, the dependencies and mutual support between these different
aspects of the language become obvious: using the map datatype with default construc-
tors, using the range datatype with the subscript operator, using operator overriding
with the switch control structure, using closures for grepping through a list, using the
list datatype in generic constructors, using bean properties with a fieldlike syntax,
and so on. This seamless interplay not only gives Groovy its power but also makes it
fun to use.

 What’s perhaps most striking is the compactness of the Groovy code, while the read-
ability is preserved if not enhanced. It has been reported20 that developer productivity
hasn’t improved much since the 1970s in terms of lines of code written per day. The
boost in productivity comes from the fact that a single line of code nowadays expresses
much more than in previous eras. Now, if a single line of Groovy can replace multiple
lines of Java, we could start to see the next major boost in developer productivity.

 Descriptions of static languages can stop at this point. You learned the syntax and
that’s it. Not so for Groovy. You’ve only swallowed the blue pill of the static parts of the
language. Next comes the red pill for you: Groovy’s dynamic language features.

20 The Journal of Defense Software Engineering, 8/2000, www.crosstalkonline.org/storage/issue-archives/2000/
200008/200008-0-Issue.pdf, based on the work of Gerald M. Weinberg.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.crosstalkonline.org/storage/issue-archives/2000/200008/200008-0-Issue.pdf
http://www.crosstalkonline.org/storage/issue-archives/2000/200008/200008-0-Issue.pdf

Dynamic programming
with Groovy
Until real software engineering is developed, the next best practice is to develop
with a dynamic system that has extreme late binding in all aspects.

—Alan Kay

We’re going to start our journey with a few general considerations about dynamic
programming, how it differs from conventional object-oriented approaches, and
why you want to have it in your toolbox. We’ll show how the MOP serves as the cen-
tral hub that provides you with dynamic programming capabilities. Groovy comes
with dynamic features out-of-the-box but you can also add your own. There are var-
ious ways of achieving this and we’ll start with the simpler ones and slowly move on
to the more advanced use cases. As you’ll see, there’s no reason to be scared about
words like “dynamic” or “meta.” If by the end of this chapter you say, “Well, it isn’t
so magical after all,” then we’ve achieved our goal.

This chapter covers
■ How Groovy supports dynamic programming
■ An explanation of the Meta Object Protocol

(MOP)
■ How to utilize the MOP for your own purposes
200

Licensed to Mark Watson <nordickan@gmail.com>

201Dynamic programming with Groovy
 If you seek perfection in completeness, designing and implementing an object-
oriented system becomes hard. It may well be impossible.

 Imagine you’re responsible for java.lang.Integer. You’re of course aware that
this class will be used for counting, indexing, calculations, and so on, but you cannot
possibly anticipate all use cases.

 Before not too long, somebody will come along and would like to use it with a
times method like in 3.times { println it }, which you haven’t foreseen, or calcu-
late dates as in 2.weeks.from.today, but you haven’t provided a getWeeks() method
on Integer that would be needed to make this possible.

 On another occasion, another user of your class may prefer having an exception
being thrown on Integer.MAX_VALUE + 1 rather than returning a negative number.

 A third user would like to optimize an algorithm and count the number of modulo
operations on any integer that happen when the algorithm is executed. You’re very
unlikely to have anticipated such a requirement.

 The good news is dynamic programming allows adding such features later—without
even touching the original! And the original can even be a Java class as long as it’s
called from Groovy.

 Changes to such a ubiquitously used class as Integer are better only applied to
the scope where you need them or you risk interference with seemingly unrelated
parts of your codebase. Therefore, dynamic programming allows using such a fea-
ture only temporarily: adding and removing it at runtime; limiting its use to a given
piece of code, a class, or only single instances; or even confining it to the current
thread of execution.

 Dynamic programming has a wide range of applicability, including

■ Designing DSLs (see chapter 18)
■ Implementing builders (see chapter 11)
■ Advanced logging, tracing, debugging, and profiling
■ Automated testing even where testing seems impossible (see chapter 17)
■ Putting lipstick on existing APIs—for example, by eliminating the “incomplete

library class” smell1—to make them more complete, coherent, and accessible
■ Organizing the codebase so that features are kept in one place even if their

behavior involves the collaboration of multiple classes; for example, you need
abstractions for date, time, and duration working together to provide the date-
calculation feature.

The last point is particularly interesting. You can observe it in Grails where the persis-
tency feature is dynamically available in all domain classes. On a domain class like Person
you can call Person.findAllByFirstName('Dierk') to find all people in the database
that share the first name Dierk, even though this method doesn’t exist!

1 See chapter 3 of Refactoring, by Martin Fowler and Kent Beck (Addison-Wesley, 1999).
Licensed to Mark Watson <nordickan@gmail.com>

202 CHAPTER 8 Dynamic programming with Groovy
 Note that such an approach has one quality that static code generation never
achieves: because the code isn’t materialized anywhere, you cannot introduce errors
in it! Also, your code is kept as clean as possible and you never have to read through
code that was generated!

 In this chapter, we’ll go through the various means of dynamic programming in
Groovy and provide examples of use cases. Now, let’s start with looking at what
mechanics make programming dynamic.

8.1 What is dynamic programming?
In classic object-oriented systems, every class has a well-known set of states, captured in
the fields of that class, and well-known behavior, defined by its methods. Neither the
set of states nor the behavior ever changes after compilation, and it’s identical for all
instances of a class.

 Dynamic programming breaks this limitation by allowing the introduction of a
new state, or even more importantly, allowing the addition of a new behavior or modi-
fication of an existing one.

How can you possibly add a new state and behavior at runtime, when you’re working
on the JVM and the Java object model provides no such means? As the saying goes,
“Every problem in computer science can be solved with a layer of indirection (besides
the problem of too many layers of indirection).”2 Enter the Meta Object Protocol.

8.2 Meta Object Protocol
The approach is actually rather straightforward. Whenever Groovy calls a method, it
doesn’t call it directly but asks an intermediate layer to do so on its behalf. The inter-
mediate layer provides hooks that allow you to influence its inner workings.

What is “meta”?
Meta means applying a concept onto itself—for example, metainformation is infor-
mation about information. Likewise, because programming is “writing code,” metapro-
gramming means writing code that writes code. This includes source-code generation
(for example, producing a long string that’s then evaluated as a script), bytecode gen-
eration as explained in the next chapter, and pretending or synthesizing methods.
The latter is part of dynamic programming and we’ll encounter it later in this chapter.

The use of “meta” as a qualifier in the Groovy runtime system is in many places debat-
able. Anyway, it isn’t only there for historical reasons; it also suggests that we’re work-
ing on an elevated abstraction level whenever this word is used.

2 For a brief biography of David Wheeler, said to have invented the subroutine, see http://en.wikipedia.org/
wiki/David_Wheeler_%28British_computer_scientist%29.
Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/David_Wheeler_%28British_computer_scientist%29
http://en.wikipedia.org/wiki/David_Wheeler_%28British_computer_scientist%29

203Meta Object Protocol
 A protocol is a collection of rules and formats. The MOP is the collection of rules
of how a request for a method call is handled by the Groovy runtime system and how
to control the intermediate layer. The format of the protocol is defined by the respec-
tive APIs, which we’ll walk through in the course of this chapter.

 An important part of understanding the mechanics is knowing what it means when
we say that Groovy calls a method. When writing Groovy source code, the Groovy com-
piler generates bytecode that calls into the MOP.

 As an illustration, assume that your Groovy source code contains the statement

println 'Hello' // Groovy

Then the resulting bytecode that Groovy produces is roughly equivalent to the follow-
ing Java code:

InvokerHelper.invokeMethod(this, "println", {"Hello"}); // Java

When executed, the InvokerHelper as part of the MOP looks for the method named
"println" with a String argument, finds that the Groovy runtime has registered
such a method for java.lang.Object, and calls that implementation. This is a slightly
simplified description of what actually happens, but one that explains the principle
and one that we can start with.

NOTE Every innocent method call that you write in Groovy is really a call into
the MOP, regardless of whether the call target has been compiled with Groovy
or Java. This applies equally to static and instance method calls, constructor
calls, and property access, even if the target is the same object as the caller.

Figure 8.1 shows how the MOP works like a filter for all method calls that originate
from code that was compiled by Groovy. The MOP is like a pair of rainbow-colored
glasses that makes all objects appear rich and powerful.

 Figure 8.1 shows what happens by default. Of course, you can also call into the
MOP from Java but this requires calling InvokerHelper.invokeMethod() explicitly. By
default, Java classes only see what’s in the bytecode of a class and not what the MOP
adds to it, even if the target class was compiled by Groovy.

Caller

Target

Groovy

Groovy

MOP

Compiled with groovyc

Java

Java

Compiled with javac

Figure 8.1 Every method
call from a Groovy class or
object into either Groovy or
Java automatically goes
through the MOP. Method
calls from Java to both
Groovy and Java targets
don’t use the MOP per
default.
Licensed to Mark Watson <nordickan@gmail.com>

204 CHAPTER 8 Dynamic programming with Groovy
The MOP needs a lot of information to find the right call target for each method call
that it serves. This information is stored in so-called metaclasses. These metaclasses
aren’t fixed. One part of dynamic programming is changing the content of meta-
classes and replacing one metaclass with another. We’ll explore this in section 8.4.3

 But even with the default metaclass being in place, which does nothing fancy
besides providing the GDK methods and doing some very advanced performance opti-
mizations, the MOP knows about some special methods that allow the first degree of
dynamic behavior. They’re called hook methods.

8.3 Customizing the MOP with hook methods
The core of the MOP responsibilities is finding and selecting the right target method
and handling the case when the requested method cannot be found. The first hook
method that we’ll look at allows customizing the “missing method” case. A second one
covers the case that a property access fails to find a property of the requested name.
Then we’ll explore the effects of combining hook methods with closure properties to
allow instance-specific hooks that can even change at runtime. We finish up with cus-
tom logic for methods that objects need to provide if they implement the Groovy-
Object interface.

8.3.1 Customizing methodMissing

Whenever a method cannot be found in the target object, the MOP looks for the
hook method

Object methodMissing(String name, Object arguments)

and invokes it with the requested method name and arguments.
 The next listing uses this hook in a Pretender class to merely return a string that

shows what had been requested. The Pretender only pretends4 to have the method
hello(String), but in the bytecode of the class there’s no such method.

There’s no spoon
Relating to the Matrix motion picture,3 there’s no such thing as a Groovy class. You
may have noticed that we avoid the wording of Java class versus Groovy class.
That’s because classes are classes, regardless of who compiled them. They have
the same format and constraints. Of course, they differ in content, but so do all
classes anyway.

3 The main character sees a child playing with a dynamic spoon object and realizes that it isn’t a truly physical
object. Dynamic programming is kind of like that.

4 Some call this a synthesized method, but we feel this suggests that it somehow materializes, which it doesn't.
Licensed to Mark Watson <nordickan@gmail.com>

205Customizing the MOP with hook methods
class Pretender {
 def methodMissing(String name, Object args) {
 "called $name with $args"
 }
}
def bounce = new Pretender()
assert bounce.hello('world') == 'called hello with [world]'

The target is absolutely free in what it does inside methodMissing. It may provide a
more sophisticated error handling than merely throwing a MissingMethodException
(which is the default), delegate all calls to a collaborating object, or inspect the
method name and arguments to derive what needs to be done.

 The use case in listing 8.1 goes into the direction that Grails provides with its
dynamic finder methods in the Groovy object-relational mapping (GORM). The fol-
lowing listing outlines the approach. A method name like findByXXX is analyzed to
select the search criterion.

class MiniGorm {
 def db = []
 def methodMissing(String name, Object args) {
 db.find { it[name.toLowerCase()-'findby'] == args[0] }
 }
}

def people = new MiniGorm()
def dierk = [first: 'Dierk', last:'Koenig']
def paul = [first: 'Paul', last:'King']
people.db << dierk << paul

assert people.findByFirst('Dierk') == dierk
assert people.findByLast('King') == paul

Of course, a full implementation of GORM dynamic finder methods is more complex,
but the principle and the mechanics are the same.

FOR THE GEEKS You can share the implementation of methodMissing by vari-
ous means. One is to put it in a base superclass. In section 8.4 we’ll see how
methods can be injected into a class without even pretending to have access
to the code of that class! You can even pretend to have hook methods.

The methodMissing hook is quite simple to understand and use. Yet, it’s very versatile
and covers the vast majority of use cases for dynamic programming with DSLs. It’s a
very good entry point into dynamic programming and a good default choice when
deciding upon which means of dynamic programming to apply. It comes with a coun-
terpart that does to property access what methodMissing does to method calls.

Listing 8.1 Bouncing when a missing method is called

Listing 8.2 Using methodMissing to simulate a miniature GORM

Extracts
criterion from
method name

Sets up
test data

Calls with
pretended
methods
Licensed to Mark Watson <nordickan@gmail.com>

206 CHAPTER 8 Dynamic programming with Groovy
8.3.2 Customizing propertyMissing

What methodMissing is for method calls, propertyMissing is for property access.
You implement

Object propertyMissing(String name)

to catch all access to nonexisting properties. All the rest is exactly analogous to
methodMissing such that the following listing should be rather self-explanatory. We
try to access the hello property, which isn’t in the bytecode.

class PropPretender {
 def propertyMissing(String name) {
 "accessed $name"
 }
}
def bounce = new PropPretender()
assert bounce.hello == 'accessed hello'

This hook is a specialization of methodMissing: if you pretend the respective getter
method, you achieve the same effect. Anyway, having this more specialized hook is
sometimes convenient. In listing 8.4 we use this hook as a method of the Script
class to implement an easy way to calculate with binary numbers. This actually feels
like a DSL.

 The idea is quite simple. We’d like to use symbols like IOOI to specify a positive
integer of value 9 in its binary form. Now, simply using this symbol would throw us a
MissingPropertyException. By providing a propertyMissing hook we can do the
translation from a string into an integer.

def propertyMissing(String name) {
 int result = 0
 name.each {
 result <<= 1
 if (it == 'I') result++
 }
 return result
}

assert IIOI +
 IOI ==
 IOOIO

In case you have difficulties with the string-to-integer translation logic here, don’t
worry, it’s an implementation detail. The main point to take away is how to use the
hook method.

 Where there’s specialization, there may also be generalization and, actually, there is.
But before we come to that in section 8.3.4, we’ll enter a new dimension of dynamicity.

Listing 8.3 Bouncing when a missing property is accessed

Listing 8.4 Using propertyMissing to calculate with binary numbers in DSL style
Licensed to Mark Watson <nordickan@gmail.com>

207Customizing the MOP with hook methods
8.3.3 Using closures for dynamic hooks

By now, you may have the impression that MOP hook methods are very conventional.
And in a way they are. They’re just ordinary methods.

 But if you think that this means that their behavior is guaranteed to be identical
for all instances of your class, then this isn’t quite so in Groovy. In fact, if you wish so,
you can even change the hook logic during the lifetime of an object!

 Hook methods aren’t static. They’re instance methods. Being that, they can work
with the object’s state. This state can include parameters for the hook logic. If these
properties are of type Closure, then we have another example of parameterization
with logic (see chapter 5).

 The next listing maintains a whatToDo property of type Closure that’s called from
inside a hook method. This allows changing the hook logic at runtime, and (not shown)
having multiple instances of DynamicPretender using different closures.

class DynamicPretender {
 Closure whatToDo = { name -> "accessed $name"}
 def propertyMissing(String name) {
 whatToDo(name)
 }
}
def one = new DynamicPretender()
assert one.hello == 'accessed hello'
one.whatToDo = { name -> name.size() }
assert one.hello == 5

In classic Java programming, the behavior of a class never changes and the behavior is
the same for all objects of the class. At best, you can use a Strategy pattern5 to switch
between objects that behave differently. The previous pattern of using a closure prop-
erty to customize behavior of an object has a dynamic touch in itself, even though it’s
totally independent of the MOP. But in combination with the MOP, it adds a new
dimension to the solution space.

NOTE All features of dynamic programming that are explained in this chap-
ter can be combined with closure properties to open another dimension
of versatility.

The hook methods that we’ve talked about so far apply regardless whether the call tar-
get is compiled by Groovy or Java. The next section will be about more specific han-
dling that the MOP applies to Groovy targets.

Listing 8.5 Using the closure property to change hook logic at runtime

5 Design Patterns: Elements of Reusable Object-Oriented Software, by Gamma et al. (Addison-Wesley, 1994).

Closure property
with default logic

Delegates to
the closure

Changes hook
behavior at runtime
Licensed to Mark Watson <nordickan@gmail.com>

208 CHAPTER 8 Dynamic programming with Groovy
8.3.4 Customizing GroovyObject methods

All classes that are compiled by Groovy implement the GroovyObject interface, which
looks like this:

public interface GroovyObject {
 Object invokeMethod(String methodName, Object args);
 Object getProperty(String propertyName);
 void setProperty(String propertyName, Object newValue);
 MetaClass getMetaClass();
 void setMetaClass(MetaClass metaClass);
}

Again, you’re free to implement any such methods in your Groovy class to your liking.
If you don’t, then the Groovy compiler will insert a default implementation for you.
This default implementation is the same as if you’d inherit from GroovyObjectSupport,
which basically relays all calls to the metaclass. It roughly looks like this (excerpt):

public abstract class GroovyObjectSupport implements GroovyObject {

 public Object invokeMethod(String name, Object args) {
 return getMetaClass().invokeMethod(this, name, args);
 }
 public Object getProperty(String property) {
 return getMetaClass().getProperty(this, property);
 }
 public void setProperty(String property, Object newValue) {
 getMetaClass().setProperty(this, property, newValue);
 }
 // more here...
}

We defer the explanation of the metaclass handling to the next section. For the
moment, it’s just a device that we can use for calling into the MOP.

NOTE You can fool the MOP into thinking that a class that was actually com-
piled by Java was compiled by Groovy. You only need to implement the Groovy-
Object interface or, more conveniently, extend GroovyObjectSupport.

As soon as a class implements GroovyObject, the following rules apply:

■ Every access to a property calls the getProperty() method.6

■ Every modification of a property calls the setProperty() method.
■ Every call to an unknown method calls invokeMethod(). If the method is known,

invokeMethod() is only called if the class implements GroovyObject and the
marker interface GroovyInterceptable.

Let’s use this newly acquired knowledge to play with the Groovy language rules. In
Groovy, parentheses for method calls are optional for top-level statements, but only if

6 There is a special handling for maps in the default metaclass that makes sure that even though Map isn’t a
GroovyObject, every property access on a map is relayed to the respective MapEntry.
Licensed to Mark Watson <nordickan@gmail.com>

209Customizing the MOP with hook methods
there’s at least one argument. This is needed to distinguish method calls from prop-
erty access. We cannot call toString() without the parentheses because toString
would refer to the property of the name toString. The next listing allows us to go
around this limitation. We implement getProperty() such that if the property exists,
we return its value; if not, we assume that the parameterless method will be executed.
Such a feature can be interesting when designing DSLs.

class NoParens {
 def getProperty(String propertyName) {
 if (metaClass.hasProperty(this, propertyName)) {
 return metaClass.getProperty(this, propertyName)
 }
 invokeMethod propertyName, null
 }
}

class PropUser extends NoParens {
 boolean existingProperty = true
}

def user = new PropUser()
assert user.existingProperty
assert user.toString() == user.toString

This example uses the metaclass and so leads us slowly into the topic of the next sec-
tion where we’ll explore this concept in more detail.

 When we B check whether a known property is requested, we ask the metaClass
(that is, we call the getMetaClass() method) if it has such a property. In case it has,
we ask the metaClass for its value. Note that we cannot simply use this."$property-
Name" because this would call getProperty() again, leading to endless recursion.

 To eventually execute the method c, we call the default implementation of the
invokeMethod() hook, which relays the call to the metaclass.

 We see in d that subclasses can share this NoParens feature. Subclassing is gener-
ally not a good way of sharing features but it works. We’ll discuss this further and pro-
vide better alternatives at a later time.

 We assert e that omitting parentheses really works with selecting the ubiqui-
tously available toString() method as our test candidate. Existing properties remain
untouched.

 Implementing get/setProperty can often improve the elegance of an API. Just
consider Groovy maps. They relay property access like map.a to map content access
like map['a'] and you can do the equivalent with your own objects.

NOTE Once you’ve implemented getProperty(), every property will be
found and thus propertyMissing() will no longer be called.

So far, you’ve seen various means of dynamic programming that require access to the
source code of the target class and the possibility to apply modifications to it. We call

Listing 8.6 Using getProperty to call parameterless methods without parentheses

Properties
have priority

 b

Dynamic
invocation c

Subclass for
feature sharing d

Look, Ma, no
parentheses!

 e
Licensed to Mark Watson <nordickan@gmail.com>

210 CHAPTER 8 Dynamic programming with Groovy
this approach intrusive. You may be glad to hear that there’s also a nonintrusive approach,
which is the topic of our next section.

8.4 Modifying behavior through the metaclass
By now you should feel at ease with the situation that all method calls that originate
from Groovy code are routed through the MOP. If the last sentence still sounds odd to
you, consider rereading section 8.2 and doing more experiments around the pro-
vided examples until you’ve gained enough confidence to proceed.

 With methodMissing and propertyMissing you’ve seen examples of hook meth-
ods that the MOP invokes when it cannot find the requested method or property. In
this section, we’ll explore how Groovy tries to locate those and how you can use the
lookup mechanism for the purposes of customizing the object’s behavior.

8.4.1 MetaClass knows it all

For every class A in the class loader, Groovy maintains a metaclass—an object of type
MetaClass. This metaclass maintains the collection of all methods and properties of A,
starting with the bytecode information of A and adding additional methods that
Groovy knows about per default (DefaultGroovyMethods).

 Generally, all instances of class A share the same metaclass. But Groovy also sup-
ports having per-instance metaclasses—that is, different instances of A may refer to dif-
ferent metaclasses. We’ll revisit this situation later.

 You can easily ask any metaclass for its metainformation (recall seeing the informa-
tion in figure 1.6, which displayed the Groovy Object Browser).

 Listing 8.7 inspects the capabilities of MetaClass by asking String for its meta-
class and calling various methods on it. We inspect the availability of methods with
respondsTo, list all properties, list all methods from the bytecode, list all meta-
Methods that Groovy added dynamically, and call invokeMethod, invokeStaticMethod,
and invokeConstructor to show dynamic invocation.

MetaClass mc = String.metaClass
final Object[] NO_ARGS = []
assert 1 == mc.respondsTo("toString", NO_ARGS).size()
assert 3 == mc.properties.size()
assert 74 == mc.methods.size()
assert 176 == mc.metaMethods.size()
assert "" == mc.invokeMethod("","toString", NO_ARGS)
assert null == mc.invokeStaticMethod(String, "println", NO_ARGS)
assert "" == mc.invokeConstructor(NO_ARGS)

There are more methods and more variants in MetaClass, but those in the previous
listing give a good overview of what it does in general: providing means of reflection
and dynamic invocation.

Listing 8.7 MetaClass is key to Groovy reflection and dynamic method invocation

Numbers may vary
depending on Java
version.
Licensed to Mark Watson <nordickan@gmail.com>

211Modifying behavior through the metaclass
Even the MOP hook methods that you’ve seen in earlier sections make no exception.
If you provide your own implementation of let’s say invokeMethod, then this method
is added to your object’s metaclass at class loading time and later invoked from there.7

 All this should look to you as a pretty simple rule and you may ask what’s so special
about it. The trick is that a metaclass can change at runtime and that an object may
also change its metaclass. Let’s first investigate how Groovy finds metaclasses.

8.4.2 How to find the metaclass and invoke methods

You’ve seen that all GroovyObjects have a metaClass property (setMetaClass and
getMetaClass methods). That makes it easy to find the metaclass for them. You simply
ask the object with obj.metaClass.

 If you don’t provide a custom implementation of the metaClass property accessor
methods, the default implementation looks up the metaclass in the so-called Meta-
ClassRegistry. The registry maintains a map of classes and their metaclasses. Figure 8.2
displays the connection among GroovyObject, MetaClass, and MetaClassRegistry.

Calling a method means calling the metaclass
You can assume that Groovy never calls methods directly in the bytecode but always
through the object’s metaclass. At least, this is how it looks to you as a programmer.

Behind the scenes there are optimizations going on that technically circumvent the
metaclass, but only when it’s safe to do so.

7 If you add hook methods like invokeMethod to a superclass or interface, you need to previously call Expando-
MetaClass.enableGlobally() if you want that hook method to apply further down the inheritance hierarchy.

MetaClassRegistry

+getMetaClass(class): MetaClass
+setMetaClass(class, metaClass)

MetaClass

+invokeMethod(...): Object
+invokeStaticMethod(...): Object
+invokeConstructor(...): Object

<<interface>>
GroovyObject

+invokeMethod(...): Object
+getMetaClass(...): MetaClass

*

Figure 8.2 A UML class diagram of the GroovyObject interface that refers to an instance of class
MetaClass, where MetaClass objects are also aggregated by the MetaClassRegistry to allow
class-based retrieval of metaclasses in addition to GroovyObject’s optional object-based retrieval.
Licensed to Mark Watson <nordickan@gmail.com>

212 CHAPTER 8 Dynamic programming with Groovy
 Objects that don’t inherit from GroovyObject aren’t asked for the metaClass
property. Their metaclass is retrieved from the MetaClassRegistry.

FOR THE GEEKS The default metaclass can be changed from the outside with-
out touching any application code. Let’s assume you have a class Custom in
package custom. Then you can change its default metaclass by putting a meta-
class with the name groovy.runtime.metaclass.custom.CustomMetaClass on
the classpath. This device has been proven useful when inspecting large Groovy
codebases in production.

Putting all this together is a bit of a challenge. The following snippet is a sketch in
pseudocode to keep the level of detail manageable while still revealing the core of the
logic. Important methods from the metaclass are shown in bold italics, hook methods
as underlined. Note that invokeMethod appears twice: with two parameters as a hook
method and with three parameters in MetaClass.

 At the very beginning, you decide whether you have a GroovyObject and, if not,
look for the metaclass in the registry and use it to invoke the requested method:

// MOP pseudo code
def mopInvoke(Object obj, String method, Object args) {
 if (obj instanceof GroovyObject) {
 return groovyObjectInvoke(obj, method, args)
 }
 registry.getMetaClass(obj.class).invokeMethod(obj, method, args)
}

If you have a GroovyObject, you use the metaClass property to find the metaclass but
you also have to care for the special handling around GroovyInterceptable and
unknown methods (see section 8.2):

def groovyObjectInvoke(Object obj, String method, Object args){
 if (obj instanceof GroovyInterceptable) {
 return obj.metaClass.invokeMethod(method, args)
 }
 if (! obj.metaClass.respondsTo(method, args)) {
 return obj.metaClass.invokeMethod(method, args)
 }
 obj.metaClass.invokeMethod(obj, method, args)
}

You may ask why methodMissing doesn’t appear in the preceding code. This case is
handled in the default metaclass:

// Default meta class pseudo code
def invokeMethod(Object obj, String method, Object args) {
 if (obj.metaClass.respondsTo(method, args)) {
 return methodCall(obj, method, args)
 }
Licensed to Mark Watson <nordickan@gmail.com>

213Modifying behavior through the metaclass
 if (methodMissingAvailable(obj)) {
 return obj.metaClass.methodMissing(method, args)
 }
 throw new MissingMethodException()
}

Don’t forget that all the previous is pseudocode, that actual implementation differs
quite a bit, mostly for performance reasons. Also, the code is supposed to have Java
semantics; that is, all method calls and property access are direct and don’t go
through the MOP itself. Otherwise, you’d run into endless recursion.

 The mechanics of the MOP may appear complex but for usual cases you can assume
that all method calls go through the metaclass and the default metaclass is in place. This
raises the question what other metaclasses are available and why you’d want to use them.

8.4.3 Setting other metaclasses

Groovy comes with a number of metaclasses:

■ The default metaclass MetaClassImpl, which is used in the vast majority of cases
■ The ExpandoMetaClass, which can expand the state and behavior
■ A ProxyMetaClass, which can decorate a metaclass with interception capabilities
■ Additional metaclasses that are used internally and for testing purposes

Let’s look at ProxyMetaClass as an example of how to use a customized metaclass. A
ProxyMetaClass wraps an existing metaclass that it relays all method calls to. When
doing so, it provides the ability to execute customized logic before and after each
method call. That customized logic is captured in a so-called Interceptor. With
Groovy comes a TracingInterceptor that simply logs all method access to a writer,
effectively providing a trace of all method calls. The following listing configures such a
ProxyMetaClass with a TracingInterceptor and assigns this metaclass to an arbitrary
Groovy object that should be subject to tracing.

class InspectMe {
 int outer(){
 return inner()
 }
 private int inner(){
 return 1
 }
}

def tracer = new TracingInterceptor(writer: new StringWriter())
def proxyMetaClass = ProxyMetaClass.getInstance(InspectMe)
proxyMetaClass.interceptor = tracer

InspectMe inspectMe = new InspectMe()
inspectMe.metaClass = proxyMetaClass

Listing 8.8 Assigning a ProxyMetaClass to a GroovyObject for tracing method calls

Setup b

Assigning a
metaclass

 c
Licensed to Mark Watson <nordickan@gmail.com>

214 CHAPTER 8 Dynamic programming with Groovy
assert 1 == inspectMe.outer()

assert "\n" + tracer.writer.toString() == """
before InspectMe.outer()
 before InspectMe.inner()
 after InspectMe.inner()
after InspectMe.outer()
"""

Our self-testing code requires a small change to the default. In B we set up the Tracing-
Interceptor to not print to System.out but to use a StringWriter that we can later
inspect for its content.

 In c we assign our metaclass to the object under inspection. We do have a per-
instance metaclass this way.

 When we call any method on our object under inspection as in d, then all method
calls and returns are traced, even in private methods. Note that this doesn’t require
any change in InspectMe nor is that class in any way aware of the tracing. It’s all con-
trolled from the outside. This is what we call nonintrusive.

Oftentimes, you may want to use the proxy metaclass only temporarily and set the
metaclass back to the original afterwards. In such a case you can put the proxy-using
code inside a closure and give it to the use method like this:

proxyMetaClass.use(inspectMe){
 inspectMe.outer() // proxy in use
}
// proxy is no longer in use

Manually setting the metaclass of a Groovy object works as expected and working
through the example has confirmed your understanding of the MOP. But Groovy
wouldn’t be Groovy if it would leave you behind with only the low-level devices.

 In the next sections you’ll see ways of working with the MOP on a higher level of
abstraction to make it more accessible, more flexible, and more convenient to work
with for specialized use cases.

8.4.4 Expanding the metaclass

Groovy has, since its early days, a class called Expando. It’s a tiny class with few meth-
ods but one interesting characteristic: it can expand its state and behavior. The fol-
lowing listing uses an Expando as a boxer who can take some hits but will eventually
fight back.

Interceptors are more than aspects
Interceptors may remind one or the other reader of aspect-oriented programming
(AOP) and the TracingInterceptor suggests this connotation. But interceptors can
do much more: they can redirect to a different method, change the arguments, sup-
press the method call, and even change the return value!

Normal
method call d
Licensed to Mark Watson <nordickan@gmail.com>

215Modifying behavior through the metaclass
def boxer = new Expando()

boxer.takeThis = 'ouch!'
boxer.fightBack = { times -> takeThis * times }

assert boxer.fightBack(3) == 'ouch!ouch!ouch!'

A new state is assigned to not-yet-existing properties, analogous to what you’ve seen
for maps.

 A new behavior is assigned to not-yet-existing properties as closures. After the
assignment, it can be called as if it was a method.

 The reason for explaining the Expando class here is that there’s an ExpandoMeta-
Class in Groovy that, as you may have guessed, is a metaclass that works like an
Expando. You can register a new state (properties) and new behavior (methods) in the
metaclass by using property assignments.

 Listing 8.10 introduces the concept with an example that adds a new method
called low() to java.lang.String. It does the same as toLowerCase() but is shorter
and the spelling is easier to remember. We don’t need to set the ExpandoMetaClass
explicitly. Groovy automatically replaces the default metaclass with an ExpandoMeta-
Class when we apply any modification to it.

assert String.metaClass =~ /MetaClassImpl/
String.metaClass.low = {-> delegate.toLowerCase() }
assert String.metaClass =~ /ExpandoMetaClass/

assert "DiErK".low() == "dierk"

Note that our closure uses the delegate reference to refer to the actual String
instance that the closure is called upon. The closure must also have the right number
of parameters. The usual rules for closure parameters apply—type markers are
optional, and you can use default values, varargs, and so forth. Because our method
will not have any parameters we use an empty parameter list {-> ...}.

 The next listing adds a new property (myProp) and a new method (test) to the
metaclass of MyGroovy1—a class that’s written in Groovy. Note that the dynamic test
method refers to the dynamic property myProp. These dynamic features are only
available for objects of type MyGroovy1 that have been constructed after the meta-
class modification.

class MyGroovy1 { }

def before = new MyGroovy1()

MyGroovy1.metaClass.myProp = "MyGroovy prop"
MyGroovy1.metaClass.test = {-> myProp }

Listing 8.9 An Expando can extend the state and behavior at runtime

Listing 8.10 Adding low() to java.lang.String via ExpandoMetaClass

Listing 8.11 Modifying the metaclass of a class (Groovy and Java)
Licensed to Mark Watson <nordickan@gmail.com>

216 CHAPTER 8 Dynamic programming with Groovy
try {
 before.test()
 assert false, "should throw MME"
} catch(mme) { }

assert new MyGroovy1().test() == "MyGroovy prop"

Here we’ve changed the metaclass of a class and thus for all instances of that class. In
the following listing we do the very same but only on a single instance. Only the
myGroovy instance gets the new dynamic features because we only modify a per-
instance metaclass.

class MyGroovy2 { }

def myGroovy = new MyGroovy2()

myGroovy.metaClass.myProp = "MyGroovy prop"
myGroovy.metaClass.test = {-> myProp }

try {
 new MyGroovy2().test()
 assert false, "should throw MME"
} catch(mme) { }

assert myGroovy.test() == "MyGroovy prop"

Per-instance metaclasses are very valuable because they allow fine-grained control over
where and how dynamic features are added.

 Imagine a large development team where accidentally two developers modify the
same metaclass with the same method names for different reasons. The last modifica-
tion wins and may compromise the logic of the developer who did the first change.8

 With per-instance metaclasses such clashes are easier to avoid. The next listing uses
per-instance metaclasses even for such a ubiquitous Java object as a String while
avoiding clashes.

def myJava = new String()

myJava.metaClass.myProp = "MyJava prop"
myJava.metaClass.test = {-> myProp }

try {
 new String().test()
 assert false, "should throw MME"
} catch(mme) { }

assert myJava.test() == "MyJava prop"

Listing 8.12 Modifying the metaclass of a Groovy instance

8 This situation is often called “monkey patching,” referring to programmers who use programming constructs
that they’ve seen elsewhere without fully understanding what they do: “monkey see, monkey do.”

Listing 8.13 Modifying the metaclass of a Java instance

Not
available

Not
available

Not
available
Licensed to Mark Watson <nordickan@gmail.com>

217Modifying behavior through the metaclass
So far, we’ve asked classes and objects for their metaclass every single time when we
did a modification. Listing 8.14 introduces a new so-called builder style for doing multi-
ple changes at once. We use it to encode and decode strings by moving every character
up and down the alphabet with the respective methods, a metaclass property to cap-
ture how many characters to shift up or down, and property accessor methods to
work more conveniently with the code and the original.

 If you’ve ever seen Stanley Kubrick’s motion picture A Space Odyssey, you may
remember the super-intelligent computer HAL. It turns out that this is an encoded
version of IBM. Well, things could have been worse for that company if the writer
Arthur C. Clarke had chosen a different shift distance for the encoding...

def move(string, distance) {
 string.collect { (it as char) + distance as char }.join()
}

String.metaClass {
 shift = -1
 encode {-> move delegate, shift }
 decode {-> move delegate, -shift }
 getCode {-> encode() }
 getOrig {-> decode() }
}

assert "IBM".encode() == "HAL"
assert "HAL".orig == "IBM"

def ibm = "IBM"
ibm.shift = 7
assert ibm.code == "PIT"

Note that we can change the shift distance on a per-instance basis by setting the
respective property.

NOTE Modifying the metaclass of the String class will affect all future String
instances.

In all the preceding examples, we’ve added new instance methods to all instances of
a class or to only a specific instance of a class. The following listing adds a static
method to java.lang.Integer by using the static keyword. We can now ask the
Integer class (as opposed to an Integer object) for the answer to “life, the universe,
and everything.”

Integer.metaClass.static.answer = {-> 42}

assert Integer.answer() == 42

Listing 8.14 Decoding A Space Odyssey with a metaclass builder

Listing 8.15 Adding a static method to a class
Licensed to Mark Watson <nordickan@gmail.com>

218 CHAPTER 8 Dynamic programming with Groovy
When talking about objects, we also have to consider inheritance. Listing 8.16 adds a
new method toTable() dynamically to a superclass and asserts that it’s transparently
available in its subclass.

 We can even modify the metaclass of interfaces and all classes that implement this
interface share the new behavior.

class MySuperGroovy { }
class MySubGroovy extends MySuperGroovy { }

MySuperGroovy.metaClass.added = {-> true }

assert new MySubGroovy().added()

Map.metaClass.toTable = {->
 delegate.collect{ [it.key, it.value] }
}

assert [a:1, b:2].toTable() == [
 ['a', 1],
 ['b', 2]
]

Note that we call toTable() on a literally declared map, which is of type LinkedHash-
Map. Even though we’ve added the new method to the metaclass of the java.util.Map
interface, it’s available for all instances of its subtypes.

 We mop9 up the metaclass topic with an example that should illustrate that we can
add any kind of method dynamically, even operator methods and MOP hook methods.

 Listing 8.17 adds the >>> operator to strings with the rightShiftUnsigned opera-
tor method to split the string by words and push them to the right. It then replaces
names with nicknames by calling a method of the to-be-replaced name with the
replacement as the argument. To make this possible for every conceivable name, it
adds the methodMissing hook to String.

String.metaClass {
 rightShiftUnsigned = { prefix ->
 delegate.replaceAll(~/\w+/) { prefix + it }
 }
 methodMissing = { String name, args->
 delegate.replaceAll name, args[0]
 }
}

def people = "Dierk,Guillaume,Paul,Hamlet,Jon"
people >>>= "\n "
people = people.Dierk('Mittie').Guillaume('Mr.G')

Listing 8.16 Metaclass changes for superclasses and interfaces

9 Pun intended but we’ll try not to wring out the analogy too far.

Listing 8.17 Metaclass injection of operator and MOP hook methods
Licensed to Mark Watson <nordickan@gmail.com>

219Modifying behavior through the metaclass
assert people == '''
 Mittie,
 Mr.G,
 Paul,
 Hamlet,
 Jon'''

Some takeaways and rules of thumb for metaclasses:

■ All method calls from Groovy code go through a metaclass.
■ Metaclasses can change for all instances of a class or per a single instance.
■ Metaclass changes affect all future instances in all running threads.
■ Metaclasses allow nonintrusive changes to both Groovy and Java code as

long as the caller is Groovy. We can even change access to final classes like
java.lang.String.

■ Metaclass changes can take the form of property accessors (pretending prop-
erty access), operator methods, GroovyObject methods, or MOP hook methods.

■ ExpandoMetaClass makes metaclass modifications more convenient.
■ Metaclass changes are best applied only once, preferably at application

startup time.

The last point directly leads us to another concept of dynamic programming in Groovy.
ExpandoMetaClass isn’t designed for easily removing a once dynamically added
method or undoing any other change. For such temporary changes, Groovy provides
category classes.

8.4.5 Temporary MOP modifications using category classes

Metaclasses are the main workhorses for dynamic programming in Groovy but some-
times you don’t need their full power and would prefer an alternative that’s small and
focused and confined to the current thread and a small piece of code. This is exactly
what category classes are. We’ll look into how you use existing category classes, what
benefits they bring, and how to write your own ones.

 Using a category class is trivial. Groovy adds a use method to java.lang.Object
that takes two parameters: a category class (or any number thereof) and a closure:

use CategoryClass, {
 // new methods are available
}
// new methods are no longer available

While the closure is executed, the MOP is modified as defined by the category. After
the closure execution is finished, the MOP is reset to its old state.

 Listing 8.18 leads us through two examples of using a category: a TimeCategory
that’s part of Groovy and the java.util.Collections class.

 TimeCategory allows simplified working with date, time, and duration for both,
easier definition and easier calculation. If you have an appointment in two weeks, you
can find the date with 2.weeks.from.today.
Licensed to Mark Watson <nordickan@gmail.com>

220 CHAPTER 8 Dynamic programming with Groovy
 Collections is the unmodified class from the JDK. It contains a number of static
helper methods.

import groovy.time.TimeCategory

def janFirst1970 = new Date(0)
use TimeCategory, {
 Date xmas = janFirst1970 + 1.year - 7.days
 assert xmas.month == Calendar.DECEMBER
 assert xmas.date == 25
}

use Collections, {
 def list = [0, 1, 2, 3]
 list.rotate 1
 assert list == [3, 0, 1, 2]
}

Inside the closures, we have new properties on numbers (1.year), new operator
methods for calculating dates, and a new rotate method on lists. Outside the clo-
sures, no such feature is visible. Note that janFirst1970 was constructed before the
use closure.

 Category classes are by no means special. Neither do they implement a certain
interface nor do they inherit from a certain class. They aren’t configured or registered
anywhere! They just happen to contain static methods with at least one parameter.

 When a class is used as an argument to the use method, it becomes a category class
and every static method like

static ReturnType methodName(Receiver self, optionalArgs) {...}

becomes available on the receiver as if the Receiver had an instance method like

ReturnType methodName(optionalArgs) {...}

As always, an example says it better than any explanation. Listing 8.19 defines a class
Marshal with static methods to marshal and unMarshal an integer to and from a
string. The string version may be used for sending the integer to a remote machine.
When we use the Marshal category class, we can call marshal() on an integer and
unMarshal() on a string.

class Marshal {
 static String marshal(Integer self) {
 self.toString()
 }
 static Integer unMarshal(String self) {
 self.toInteger()
 }
}

Listing 8.18 How to use existing categories like TimeCategory and Collections

Listing 8.19 Running a category to marshal and unMarshal integers to/from strings
Licensed to Mark Watson <nordickan@gmail.com>

221Modifying behavior through the metaclass
use Marshal, {
 assert 1.marshal() == "1"
 assert "1".unMarshal() == 1
 [Integer.MIN_VALUE, -1, 0, Integer.MAX_VALUE].each {
 assert it.marshal().unMarshal() == it
 }
}

Naming the receiver object self is just a convention. You can use any name you want.
Groovy’s design decision of using static methods to implement category behavior has
a few beneficial effects.

■ You’re much less likely to run into concurrency issues, because there’s less
shared state.

■ You can use a plethora of classes as categories even if they’ve been implemented
without knowing about Groovy. Collections was just an example of many
classes with static methods that reside in widely used helper libraries.

■ They can easily be created in Groovy, Java, or any other JVM language that pro-
duces classes and static methods.

Category classes are a good place to collect methods that work conjointly on different
types, such as Integer and String, to accomplish a feature like marshaling.

 Key characteristics of using category classes are:

■ The use method applies categories to the runtime scope of the closure (as
opposed to the lexical scope). That means you can extract code from the clo-
sure into a method and call the method from inside the closure.

■ Category use is confined to the current thread.
■ Category use is nonintrusive.
■ If the receiver type refers to a superclass or even an interface, then the method

will be available in all subclasses/implementors without further configuration.
■ Category method names can well take the form of property accessors (pretend-

ing property access), operator methods, and GroovyObject methods. MOP
hook methods cannot be added through a category class.10

■ Category methods can override method definitions in the metaclass.
■ Where performance is crucial, use categories with care and measure their

influence.
■ Categories cannot introduce a new state in the receiver object; they cannot add

new properties with a backing field.

The last point reveals that even though categories are a great tool for combining
behavior into reusable features they do have their limitations when it comes to shar-
ing state.

10 This is a restriction as of Groovy 2.4. The feature may become available in later versions.
Licensed to Mark Watson <nordickan@gmail.com>

222 CHAPTER 8 Dynamic programming with Groovy
 In addition to the way that you’ve seen here, there are two more ways to bring in
category methods: as extension methods and through the @Category annotation.

8.4.6 Writing extension modules
Extension modules can be seen as categories that are always visible: you don’t need to
call use to enable the methods. Just like Groovy enriches the JDK classes with custom
methods, you can make your categories globally visible and make them behave like
methods from the GDK. One of the most interesting use cases for this is that you can
bundle such extension modules into their own JAR file and make them available to
other programs just by adding the JAR file to your classpath.

 Converting a category into an extension module is straightforward. Imagine that
you want to use the Marshal category defined in listing 8.19 without having to explic-
itly use the category. To achieve that, you only need two steps:

1 Write the Marshal class into its own source file (we’ll place it in regina/
Marshal.groovy).

2 Write an extension module descriptor and make it available on a classpath.

The first step is straightforward, but what is the descriptor file? You need to create a
file named org.codehaus.groovy.runtime.ExtensionModule and ensure it’s found
in the META-INF/services folder of your JAR. This file is used internally by Groovy to
load your extension module and make the category transparently available. The
descriptor file consists of four entries:

moduleName=regina-marshal
moduleVersion=1.0
extensionClasses=regina.Marshal
staticExtensionClasses=

The moduleName and moduleVersion entries are used by Groovy when the runtime is
initialized. If two versions of a module of the same name are found on the classpath,
the module will not be loaded and an error will be thrown. The extensionClasses
entry is a comma-separated list of category-like classes. This means that you can define
multiple categories in a single extension module. Here there’s only one extension
class, so the line only contains the fully qualified name of the category class.

 Interestingly, extension modules allow you to define static extension methods (add
static methods to existing classes). In that case, the static methods must be defined in
a separate class, but are written in the same way.

 As you can see, bundling extension modules is very easy: the minimum that’s
required is a descriptor file. One could decide, for example, to write an extension mod-
ule for the very famous StringUtils class from Apache Commons.11 In that case, you
wouldn’t need to put the StringUtils class into your JAR file. All that’s needed is a
descriptor file, which makes the StringUtils class available as an extension module!

11 Commons Lang provides helper utilities for the java.lang API, including String manipulation methods miss-
ing from java.lang.String. See http://commons.apache.org/proper/commons-lang/.
Licensed to Mark Watson <nordickan@gmail.com>

http://commons.apache.org/proper/commons-lang/

223Modifying behavior through the metaclass
moduleName=apache-commons-stringutils
moduleVersion=3.2
extensionClasses=org.apache.commons.lang3.StringUtils

The use of the category format makes extension modules very appealing because it’s a
common pattern to find utility classes in the form of static methods. Commons Lang
is just one example. Extension modules have an interesting advantage compared to
categories: while the latter are totally dynamic, the former are statically bound (they’re
known when Groovy initializes), making them compatible with type checking and static
compilation (see chapter 10 for details).

8.4.7 Using the @Category annotation

With @Category, you write your class as if it were an instance class but the annotation
adjusts it to have the required format needed for categories, meaning, methods are
made static and the self parameter, such as you saw in listing 18.9, is automatically
added. The following listing shows how we might rewrite listing 18.9 to use the cate-
gory annotation.

@Category(Integer)
class IntegerMarshal {
 String marshal() {
 toString()
 }
}

@Category(String)
class StringMarshal {
 Integer unMarshal() {
 this.toInteger()
 }
}

use ([IntegerMarshal, StringMarshal]) {
 assert 1.marshal() == "1"
 assert "1".unMarshal() == 1
}

The @Category annotation can only be used for creating categories associated with a
single class; therefore we split our category into two. First up is our category meth-
ods for Integer, though in this case there’s only one. We place that method in an
IntegerMarshal class and annotate it with @Category(Integer) B. Methods aren’t
written as static methods but in instance form with no self parameter required.
Implicit c and explicit d references to this are automatically changed into self
reference. Using our category class is the same as before, though in this case we now
have two category classes so we use the list variant of the method e.

 That finishes our discussion of categories. Next up are Mixins, which are the final
topic in our dynamic programming tour.

Listing 8.20 Using @Category to create your own category

Specifies the
type of self b

Implicit
this c

Explicit
this d

List variant
of use e
Licensed to Mark Watson <nordickan@gmail.com>

224 CHAPTER 8 Dynamic programming with Groovy
8.4.8 Merging classes with Mixins

Have you ever noticed that in Java many interface names (Appendable, Adjustable,
Activatable, Callable, Cloneable, Closeable, and many more) end with “-able”?.
That’s because they refer to an ability.

 An object may have many abilities and so its class may implement many interfaces,
but reusing implementations of any such ability is restricted to only one superclass. In
Java and Groovy alike, you can only inherit once even though you can implement
many interfaces.

NOTE Using inheritance for reuse of an ability implementation is often
frowned upon. Instead of implementation reuse, it’s considered good object-
oriented design to only use inheritance if there’s a true is-a relationship
between the subclass and superclass.

If you have a superclass A with a subclass B then any object of class B isn’t only a B, it
also is an A! The definitions of A and B typically reside in different files.12 The situation
looks as if A and B would be merged when constructing an instance of B. They share
both state and behavior.

 This class merging by inheritance is pretty restricted in Java.

■ You cannot use it when inheritance has already been used for other purposes.
■ You cannot merge (inherit from) more than one class.
■ It’s intrusive. You have to change the class definition.
■ You cannot do it with final classes.

Groovy provides a feature called Mixin that addresses exactly these limitations. This
feature comes in two flavors. The first flavor is the @Mixin class annotation. This fea-
ture is now deprecated because the more powerful trait mechanism (see section 7.3.4)
provides a better alternative, but we’ll describe it anyway for users of older versions of
Groovy where traits didn’t exist. The second flavor is the mixin method, which is avail-
able on any class or metaclass. We’ll discuss this after @Mixin.

 The following listing uses the @Mixin class annotation to mix reusable state and
behavior into a test case that uses inheritance to be recognized by the testing
framework.

@Mixin(MessageFeature)
class FirstTest extends GroovyTestCase {
 void testWithMixinUsage() {
 message = "Called from Test"
 assertMessage "Called from Test"
 }
}

12 Because of Java’s late binding, you cannot even be sure that the A that was available at compile time is the same
A that’s used at runtime. Java is much more dynamic than many might assume.

Listing 8.21 Mixing a feature into a test case by using the @Mixin annotation
Licensed to Mark Watson <nordickan@gmail.com>

225Modifying behavior through the metaclass
class MessageFeature {
 def message
 void assertMessage(String msg) {
 assertEquals msg, message
 }
}

Note that you can execute listing 8.21 as a script and it will run the test case with the
bundled JUnit. Test frameworks for both unit and functional tests tend to use inheri-
tance a lot even though this is no longer considered good framework design. Inheri-
tance makes it more difficult to nicely factor out common state and behavior. With
Mixins, you can circumvent this restriction. They make a good companion for unit
tests with JUnit and functional tests with Canoo WebTest.

 Using the @Mixin annotation is intrusive. You have to change the code of the class
that receives the new features. Listing 8.22, in contrast, works nonintrusively. It calls
the mixin method on the ArrayList type to mix in two different features that “sieve”
factors of 2 or any other number from a list of numbers. Such a feature is helpful
when implementing the Sieve of Erastothenes13 to efficiently find prime numbers.

class EvenSieve {
 def getNo2() {
 removeAll { it % 2 == 0}
 return this
 }
}
class MinusSieve {
 def minus(int num) {
 removeAll { it % num == 0}
 return this
 }
}

ArrayList.mixin EvenSieve, MinusSieve

assert (0..10).toList().no2 - 3 - 5 == [1, 7]

You see that we can mix in multiple classes (EvenSieve, MinusSieve) with property
accessor methods (getNo2) and operator methods (minus).

 The surprising part is how easily the sieve classes implement their feature methods
as if they were of type ArrayList themselves, which they aren’t. Even the return value
this refers to the actual ArrayList instance when the method is called from the
ArrayList, but not when you’re looking at this from inside the feature method.

 Mixins are often compared with multiple inheritance but they’re of a different
nature. In the first place, our ArrayList doesn’t become a subtype of MinusSieve.

Listing 8.22 Mixing in multiple sieve features nonintrusively

13 The Sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit. See
http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes.
Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

226 CHAPTER 8 Dynamic programming with Groovy
Any instanceof test will fail. There’s no is-a relationship and no polymorphism. You
can use enforced type coercion with the as operator, though.

 Unlike many models of multiple inheritance, the mixing in of new features always
happens in traceable sequence and, in case of conflicts, the latest addition wins. Mix-
ins work like metaclass changes in that respect.

 To sum it up, here are the important characteristics of Mixins:

■ You can instantiate objects from a blend of many classes. The object’s state and
behavior encompasses all properties and methods of all mixed classes.

■ There’s an intrusive use with the @Mixin class annotation and a nonintrusive
use with the mixin method on classes. Both alternatives happen at runtime
(as opposed to compile time). @Mixin happens at class construction time in a
static initializer.

■ Mixins are visible in all threads.
■ There are no restrictions on what methods to mix in. Property accessors, opera-

tor methods, GroovyObject methods, and even MOP hook methods all work fine.
■ You can mix into superclasses and interfaces.
■ A Mixin can override a method of a previous Mixin but not methods in the

metaclass.
■ There’s no per-instance Mixin. You can only mix into classes and metaclasses.

To achieve the effect of a per-instance Mixin, you can mix into a per-instance
metaclass.

■ Mixins cannot easily be undone.

In general, Mixins are designed for sharing features while not modifying any existing
behavior of the receiver. Features can build on top of each other and merge and
blend with the receiver. And remember traits from section 7.3.4, which provide an
alternative approach to some of the problems which Mixins solve.

NOTE In case of multiple method definitions, a category class shadows a pre-
viously applied category class. Changes to an ExpandoMetaClass override
previously added methods in that metaclass. Later applied Mixins shadow
previously applied Mixins.

MOP priorities
It’s always good advice to keep things simple. With dynamic programming one can
easily go overboard by doing too much, such as using category classes, metaclass
changes, and Mixins in combination. If you do anyway, then categories are looked at
first, then the metaclass, and finally the Mixins:

category class > meta class > mixin

But this only applies to methods that are defined for the same class and have the
same parameter types. Otherwise, the rules for method dispatch by class/super-
class/interface take precedence.
Licensed to Mark Watson <nordickan@gmail.com>

227Real-world dynamic programming in action
That’s it for the technical description of Groovy’s dynamic programming devices. We
discussed quite a number of different concepts for you to understand and remember.
Their real value will become apparent when you use them in practice and the follow-
ing use cases may give you some inspiration for when and how to try dynamic pro-
gramming yourself.

8.5 Real-world dynamic programming in action
After having seen the various means of dynamic programming in Groovy you may ask
yourself how this applies to real-world projects. If you haven’t seen much dynamic pro-
gramming in your career so far, you may even ask whether it’s valuable at all because,
apparently, you’ve been able to live without it so far.

 This section presents five scenarios that we’ve derived from working experience
with Groovy. They’re taken from real codebases with minor modifications. We’ll
always start with explaining the task so that you can take it as an exercise to come up
with your own solution. Then we’ll present a solution and talk about the design ratio-
nale. We start simple and proceed to the more complex.

8.5.1 Calculating with metrics

We always do silly mistakes when calculating with measurements that have a different
order of magnitude. How many nanoseconds are there in a second? Hmm, we must
concede that we’d rather look it up than guessing.

 But Groovy can help us. Let’s take meters, centimeters, and millimeters as a simple
example. If we could simply write "1.m + 20.cm - 8.mm", that would be much easier
than calculating with 1,192 millimeters.

 The task is to make this possible. Calculations will be done in millimeters. The fea-
ture will be ubiquitously available.

 The following listing addresses the requirements by adding the respective property
accessor methods.

Number.metaClass {
 getMm = { delegate }
 getCm = { delegate * 10.mm }
 getM = { delegate * 100.cm }
}

assert 1.m + 20.cm - 8.mm == 1.192.m

We chose a metaclass modification as the vehicle to introduce the new getters for the
remainder of the program. We add them to the Number interface to not only accom-
modate Integers but also Doubles, Floats, and so on.

 Note that from inside one new feature method we can call the others. Specify-
ing that one meter is 100 cm is more obvious than trying to specify a meter in terms
of millimeters.

Listing 8.23 Metric calculations that avoid common magnitude mistakes
Licensed to Mark Watson <nordickan@gmail.com>

228 CHAPTER 8 Dynamic programming with Groovy
 A solution like the example can be found in many DSLs. You’ll find more examples
in chapter 18.

8.5.2 Replacing constructors with factory methods

New objects are usually constructed by using the new keyword and a constructor as in
new Integer(42). Many question this language design and you often hear the advice
to favor factory methods over direct constructor calls.

 The task is to change the Groovy language so that every class can be constructed by
a static factory method called make with the same parameters as the respective con-
structor (for example, Integer.make(42) will replace new Integer(42)).

 The next listing goes for a solution that’s essentially a one-liner, even though it’s
typeset on three lines for better reading. It tests itself with factory methods that take
zero, one, and two parameters.

import java.awt.Dimension

Class.metaClass.make = { Object[] args ->
 delegate.metaClass.invokeConstructor(*args)
}

assert new HashMap() == HashMap.make()
assert new Integer(42) == Integer.make(42)
assert new Dimension(2, 3) == Dimension.make(2, 3)

Quite obviously, we have to introduce the make method on some metaclass. But which
one? It will be available on every class—on every instance of java.lang.Class. There-
fore, we add it to the metaclass of the Class class.14

 Invoking the constructor is done dynamically; that is, on the metaclass of the cur-
rent Class object, which we refer to as the delegate. To allow any number of parame-
ters we use varargs (Object[]) in the closure parameter list and spread all arguments
over the invokeConstructor argument list with the spread operator (*args).

 This has been a tiny change and we’ve seemingly changed all classes in the system!
That’s the true power of dynamic programming. Try this with a static language.

 Our example has a number of real-world uses. The Ruby language, for example,
solely relies on this approach to constructing objects. Tammo Freese first explored
the solution when he, Johannes Link, and I (Dierk) designed our “Groovy in a Day”
workshop.

8.5.3 Fooling IDEs for fun and profit

Imagine you had a set of components that you have to connect. One component’s
output channel will be connected to another component’s input channel. Let’s call
the process of defining the connections wiring.

Listing 8.24 Introducing static factory methods to all classes

14 If you’ve gone cross-eyed by now, don't worry. That’s a healthy reaction. Rereading and understanding the
last paragraph will improve your nerd level at the possible risk of compromising your common sense.
Licensed to Mark Watson <nordickan@gmail.com>

229Real-world dynamic programming in action
 You could do the wiring by maintaining a list of pairs where every pair reflects one
connection between a source and a target component. But you don’t get much IDE
support when you create such pairs.

 The task is to allow an approach to wiring that gives you IDE support and checks
for assignable types such that only channels of assignable types are wired. All compo-
nents should remain untouched in the wiring process.

 The next listing comes up with a solution that fools your IDE into thinking that
there would be property assignments while you actually intercept the assignment
and only register the call for the wiring. Depending on the quality of your IDE sup-
port, it will check the assignment statements for assignable types and will suggest
only those.

interface ChannelComponent {}
class Producer implements ChannelComponent {
 List<Integer> outChannel
}
class Adaptor implements ChannelComponent {
 List<Integer> inChannel
 List<String> outChannel
}
class Printer implements ChannelComponent {
 List<String> inChannel
}

class WiringCategory {
 static connections = []
 static setInChannel(ChannelComponent self, value){
 connections << [target:self, source:value]
 }
 static getOutChannel(ChannelComponent self){
 self
 }
}

Producer producer = new Producer()
Adaptor adaptor = new Adaptor()
Printer printer = new Printer()

use WiringCategory, {
 adaptor.inChannel = producer.outChannel
 printer.inChannel = adaptor.outChannel
}

assert WiringCategory.connections == [
 [source: producer, target: adaptor],
 [source: adaptor, target: printer]
]

Because the components will remain untouched, you use a category class for the scope
of the wiring. The assignments are intercepted by overriding the respective property
getter and setter methods nonintrusively on the common interface of all components.

Listing 8.25 Temporarily faking property assignments for configuration purposes

Intercepts
assignments

Fakes
assignments
Licensed to Mark Watson <nordickan@gmail.com>

230 CHAPTER 8 Dynamic programming with Groovy
 The solution is a simplified version of the wiring in the PillarOne project
(www.pillarone.org). PillarOne is an open source project for risk calculation in the
insurance industry. It makes heavy use of Groovy for specifying risk models made from
wired components.

8.5.4 Undoing metaclass modifications

Modifying a metaclass is simple. Undoing such a modification can be a bit involved,
though. The task is to try various approaches and to start with an experiment that
modifies the size() method of String such that it returns twice the actual value by
referring to the old implementation. Later you want to set the size() method back to
the original behavior.

 The next listing searches the metaclass of String for the MetaMethod of size()
and stores it for later reference. A MetaMethod has an invoke method that takes the
receiver object as the first parameter.

MetaClass oldMetaClass = String.metaClass

MetaMethod alias = String.metaClass.metaMethods
 .find { it.name == 'size' }
String.metaClass {
 oldSize = { -> alias.invoke delegate }
 size = { -> oldSize() * 2 }
}

assert "abc".size() == 6
assert "abc".oldSize() == 3

if (oldMetaClass.is(String.metaClass)){
 String.metaClass {
 size = { -> alias.invoke delegate }
 oldSize = { -> throw new UnsupportedOperationException() }
 }
} else {
 String.metaClass = oldMetaClass
}

assert "abc".size() == 3

When overriding a method on the metaclass, there’s nothing like “super” that we’d
have used in subclasses to refer to an original implementation in a superclass. As a
replacement, we introduce a new method oldSize() as an alias for the c old method
so that we can refer to it.

 Undoing that modification comes in two flavors: doing a d reverse modification
or e setting the metaclass instance back to the original instance B in case the
instance has changed. If before the modification the default metaclass was in use,
then it was changed into an ExpandoMetaClass with the first modification and we can
reset to the old metaclass. Otherwise, we’ve already started with an ExpandoMetaClass
and only modified that instance.

Listing 8.26 Method aliasing and undoing metaclass modifications

Stores old
metaclass b

Stores
MetaMethod c

Reverses
modification

 d

Resets
metaclass e
Licensed to Mark Watson <nordickan@gmail.com>

www.pillarone.org

231Real-world dynamic programming in action
 Resetting the metaclass instance is the cleaner way but it’s only available if there
were no changes to the metaclass of String before we started. The code in listing 8.26
is again a simplified version of metaclass handling in the PillarOne project.

8.5.5 The Intercept/Cache/Invoke pattern

The methodMissing hook method is a cornerstone of the MOP. Some people even
define dynamic programming by the availability of such a method. But it comes at a
cost. Because Groovy first tries all other possibilities of finding a suitable method
before it finally calls methodMissing, this requires some time. It’s also very common
that a method that has been called once will be called again.

 The task is to step into methodMissing at most once for every distinct method call.
For example, we want to support methods of the form findBy<propertyName>(value)
that searches any collective datatype for items that have a property of that name with
the given value. We seek an optimized and nonintrusive version of listing 8.2.

 The following listing searches a list of maps for planets with a given name or aver-
age distance from Earth in astronomical units (rounded).

ArrayList.metaClass.methodMissing = { String name, Object args ->
 assert name.startsWith("findBy")
 assert args.size() == 1
 Object.metaClass."$name" = { value ->
 delegate.find { it[name.toLowerCase()-'findby'] == value }
 }
 delegate."$name"(args[0])
}

def data = [
 [name:'moon', au: 0.0025],
 [name:'sun', au: 1],
 [name:'neptune', au:30],
]

assert data.findByName('moon')
assert data.findByName('sun')
assert data.findByAu(1)

We add the methodMissing hook to the metaclass of ArrayList. Whenever we enter
the hook method we add a new method of the requested name to our metaclass B.
For this new method, the missing hook method will never be called again, because it’s
no longer missing. We’ve synthesized a new method.

 We also need to execute the synthesized method, which we do in c.
 The Intercept/Cache/Invoke pattern was invented by Graeme Rocher, the project

lead of the Grails web platform. It’s a core part of the Grails infrastructure. The pro-
ductive version is a bit more elaborate than our example, mainly to work nicely in
highly concurrent environments, but the general approach is the same.

Listing 8.27 The Intercept/Cache/Invoke pattern for finding by property value

Caches
the
method

 b

Invokes the
method c

Intercepted
call

Cached call
Licensed to Mark Watson <nordickan@gmail.com>

232 CHAPTER 8 Dynamic programming with Groovy
8.6 Summary
We hope that by now you’ve gained a good overview of the concepts that allow
dynamic programming with Groovy. These language capabilities may have been new
to you and thus unfamiliar and maybe even daunting.

 But even if they appear like magic, they’re all easily explained by the fact that
Groovy sees the world through the glasses of the MOP. The MOP itself offers many
alternatives for adapting it to new necessities.

 We can use the MOP hook methods intrusively or apply nonintrusive changes by
switching metaclasses, modifying metaclasses, using categories, or mixing in a new
state and behavior. All these devices come in combination with the Groovy method
dispatch, property handling, operator methods, GroovyObject methods, and inheri-
tance. The pervasive use of closures adds another dimension of dynamically changing
behavior at runtime.

 Once you’ve experienced the merits of dynamic programming, you’ll find it
unwieldy to go back to a static language.

 You may be surprised to hear that the topic of dynamic programming isn’t over,
yet. What we’ve covered so far is the runtime aspect of it. But there are also compile-
time aspects that we’ll explore in the next chapter.
Licensed to Mark Watson <nordickan@gmail.com>

Compile-time
metaprogramming and

AST transformations
It is my firm belief that all successful languages are grown and not merely
designed from first principles.

 —Bjarne Stroustrup,
 The Design and Evolution of C++

The previous chapter covered dynamic programming with Groovy, where the behav-
ior of a type or even an individual object can change while the program is executing.
You don’t always need the behavior to vary that dynamically though—sometimes
you want only to be able to apply common patterns in an expressive and efficient
manner once and for all when the class is compiled.

 This chapter covers compile-time metaprogramming or AST transformations.
You’ll learn a bit about the concept and its importance. Then we’ll explore most of

This chapter covers
■ Removing redundancy and verbosity with

Groovy’s metaprogramming annotations
■ Writing your own compiler extensions using

the AST transformations feature
■ Compile-time metaprogramming testing, tools,

and pitfalls
233

Licensed to Mark Watson <nordickan@gmail.com>

234 CHAPTER 9 Compile-time metaprogramming and AST transformations
the transformations Groovy ships with, such as @ToString, @EqualsAndHashCode, and
@Lazy, and show you how these keep your code lean and clean. Next, we’ll dive into
more details about how AST transformations work and ways to create AST data struc-
tures. Then you’ll write your own local and global AST transformations before we look
at tools available for viewing and testing AST data structures. As a final step, you’ll
see some of the common mistakes and limitations encountered with compile-time
metaprogramming.

9.1 A brief history
The term compile-time metaprogramming has only recently entered the vocabulary of
mainstream Groovy developers and some of the more daring Java developers. But
Java has had a long history of code generation: tools and frameworks that automati-
cally create code in the hopes of reducing development time. In the good-old days,
when CORBA services were the standard remoting technology, it was common to
have Java source code automatically generated as part of your build process. More
modern applications still do similar things. The common wsdl2java and wsimport
applications read WSDL (Web Service Definition Language) interface documents
and produce source code for projects using web services. This approach is so com-
mon that Maven even has a convention for dealing with the files: put them all in a
folder called generated.

9.1.1 Generating bytecode, not source code

The technologies listed so far share a common trait: they all generate source code as
part of the build process. Like many other modern languages, Groovy takes a different
approach to code generation. Instead of writing out source code that the standard
compiler can later read and convert to bytecode, Groovy lets you, the programmer,
get involved in the compilation process.

From the very beginning, Groovy has made life easier for programmers by manipulat-
ing what gets written into the final JVM .class file. The difficulty was that if you wanted
a new feature in the language, then you needed to download the Groovy source code
and write the feature yourself. But this all changed with the 1.6 release and has
evolved further in later releases.

How are getters and setters generated?
In Groovy there’s no need to write getters and setters for fields: they’ll be generated
for you. This occurs without a separate source-code file listing these getters and set-
ters hidden on the disk somewhere. The Groovy compiler is smart enough to just read
your source and write out the correct class definition in the .class file. These changes
are all visible from Java or other languages calling your code, because they’re part of
the compilation process. As far as anything looking at the class is concerned, the get-
ters and setters exist as if they’d been handwritten.
Licensed to Mark Watson <nordickan@gmail.com>

235Making Groovy cleaner and leaner
9.1.2 Putting the power of code generation in the hands of developers

AST transformations have been part of Groovy since version 1.6. The AST part of this is
an abstract syntax tree—a representation of code as data. This feature allows you to
modify the code being generated without ever needing a source-code representation.
For example, you can add new methods and fields to a class, or add code into the
method bodies. Although no source code is generated, the bytecode is present in
the final class file in an entirely ordinary way. This is important because it means Java
objects calling your Groovy objects will see the new code, which isn’t the case for
changes made through runtime metaprogramming.

 Compile-time metaprogramming is an exciting area of the language. There are
many new libraries and frameworks for Groovy that generate verbose, boilerplate code
directly into the .class files instead of forcing all the users to write extra source code.
Code generation is no longer limited to those brave developers willing to download
and build the source code for the Groovy compiler: it’s available to anyone using
Groovy. If you have a great idea for a new language feature then it’s possible to write it
today as a library. This powerful technique creates a living language, where you’re
allowed to extend the language in the direction best suited to your project. Many of
Groovy’s features are implemented on top of the AST transformation framework. For
example, the @Delegate, @Immutable, and @Log annotations all hook into the com-
piler and affect the final .class file. @Bindable is the secret to UI property binding in
the Griffon framework (or writing Groovy Swing in general). The Spock and GCon-
tracts libraries both leverage AST transforms, providing useful and productivity-boosting
results. Compile-time metaprogramming is used by these libraries to produce more
readable tests and more correct runtime behavior.

 Before you start writing your own transformations, we’ll look at a few annotations
that ship with Groovy, so you can get a feel for what’s possible. It’s worth bearing in
mind any repetitive coding tasks you’ve recently had to perform; if they sound like
the kind of work that these annotations help with, you may well be able to eliminate
them soon.

9.2 Making Groovy cleaner and leaner
Groovy ships with many AST transformations that you can use today to get rid of
those annoying bits of repetitive code in your classes. When applied properly, the
annotations described here make your code less verbose, so that the bulk of the
code expresses meaningful business logic to the reader instead of meaningful code
templates to the compiler. AST transformations cover a wide range of functionality,
from generating standard toString() methods, to easing object delegation, to clean-
ing up Java synchronization constructs, and more. You don’t need to know anything
about compilers or Groovy internals before using the annotations described in this
section: just annotate a class or method and watch your standard code templates
disappear.
Licensed to Mark Watson <nordickan@gmail.com>

236 CHAPTER 9 Compile-time metaprogramming and AST transformations
 For the purposes of this section, we’ve divided the existing AST transformations
into six categories:

■ Code-generation transformations
■ Class design and design pattern annotations
■ Logging improvements
■ Declarative concurrency
■ Easier cloning and externalizing
■ Scripting support

Let’s start by looking at some annotations that write code into your class so that you
don’t have to.

9.2.1 Code-generation transformations

AST transformations often focus on automating the repetitive task of writing common
methods like equals(Object), hashCode(), and constructors that generate the code
for you so that you don’t have to write it yourself. The built-in annotations in this cate-
gory are @ToString, @EqualsAndHashCode, @TupleConstructor, @Lazy, @Indexed-
Property, @InheritConstructors, @Builder, and @Sortable. See also @Newify in
section 19.8.

@GROOVY.TRANSFORM.TOSTRING

Annotating a class with the @ToString annotation gives that class a standard toString()
method. @ToString prints out the class name and, by default, all of the field values, as
you can see in the simple example in the following listing.

import groovy.transform.ToString

@ToString
class Detective {
 String firstName, lastName
}

def sherlock = new Detective(firstName: 'Sherlock', lastName: 'Holmes')
assert sherlock.toString() == 'Detective(Sherlock, Holmes)'

You can also control the information that toString() displays with various annotation
parameters. An example including property names and eliding null values is shown
in the following listing.

import groovy.transform.ToString

@ToString(includeNames = true, ignoreNulls = true)
class Sleuth {
 String firstName, lastName
}

Listing 9.1 Using @ToString to generate a toString() method

Listing 9.2 Using @ToString with annotation parameters
Licensed to Mark Watson <nordickan@gmail.com>

237Making Groovy cleaner and leaner
def nancy = new Sleuth(firstName: 'Nancy', lastName: 'Drew')
assert nancy.toString() == 'Sleuth(firstName:Nancy, lastName:Drew)'
nancy.lastName = null
assert nancy.toString() == 'Sleuth(firstName:Nancy)'

Other annotation parameters let you exclude certain properties, include fields, exclude
the package name from the class name, include properties from superclasses, and
cache the produced value (useful for immutable objects) if you wish. A full descrip-
tion of the available parameters for @ToString appears in appendix E.

 You might wonder what the generated toString() method looks like. Remember
we said that no source code is produced, so there’s no code to show you directly, but
we can show you the equivalent code (and later you’ll see the tools that allow you to
do this yourself) for the Sleuth class’s toString() method, which would look some-
thing like this:

 String toString() {
 def _result = new StringBuilder()
 def $toStringFirst = true
 _result.append('Sleuth(')

 def firstName = InvokerHelper.getProperty(this, 'firstName')
 if (firstName != null) {
 if ($toStringFirst) {
 $toStringFirst = false
 } else {
 _result.append(', ')
 }
 _result.append('firstName:')
 if (firstName.is(this)) {
 _result.append('(this)')
 } else {
 _result.append(InvokerHelper.toString(firstName))
 }
 }

 def lastName = InvokerHelper.getProperty(this, 'lastName')
 // ... ditto of above if statement but for lastName

 _result.append(')')
 return _result.toString()
 }

Don’t be too concerned about the details in this equivalent code listing. After our tour
of Groovy’s built-in transformations, you’ll get to see more details about such generated
code. Most of the code should look similar to what you might write by hand, but for the
curious, we’ll point out that there are some calls of InvokerHelper utility methods that
you can safely ignore if you haven’t come across them before. They ensure that the
property values printed will be correct even if dynamic changes have been made, and
these values will be output using Groovy’s standard formatting mechanisms.

 That’s it for the @ToString transform. Next we’ll look at another boilerplate-saving
transformation for some of the other methods from Java’s Object class.
Licensed to Mark Watson <nordickan@gmail.com>

238 CHAPTER 9 Compile-time metaprogramming and AST transformations
@GROOVY.TRANSFORM.EQUALSANDHASHCODE

Implementing the equals() and hashCode() methods correctly is repetitive and
error-prone. Luckily the @EqualsAndHashCode annotation does it for you. The gener-
ated equals() method obeys the contract of Object.equals(), and the generated
hashCode() produces an appropriate hash value using a standard algorithm factoring
in the constituent fields. The following listing shows using @EqualsAndHashCode in
action on an Actor class.

import groovy.transform.EqualsAndHashCode

@EqualsAndHashCode
class Actor {
 String firstName, lastName
}
def magneto = new Actor(firstName:'Ian', lastName: 'McKellen')
def gandalf = new Actor(firstName:'Ian', lastName: 'McKellen')
assert magneto == gandalf

You can customize the equals() and hashCode() methods created using annotation
parameters. With these, you can easily exclude certain properties from the calcula-
tion, include fields in the calculation, or cache the calculated values (appropriate if
you have an immutable class). A full description of the available parameters for
@EqualsAndHashCode appears in appendix E.

@GROOVY.TRANSFORM.TUPLECONSTRUCTOR

Groovy has a flexible syntax for creating objects, such as named arguments and with
blocks. But sometimes you want the object constructor to take all of the fields explic-
itly, especially when you’re creating the Groovy object from Java code. The @Tuple-
Constructor annotation adds this constructor onto the object, as you can see in the
following listing.

import groovy.transform.TupleConstructor

@TupleConstructor
class Athlete {
 String firstName, lastName
}
def a1 = new Athlete('Michael', 'Jordan')
def a2 = new Athlete('Michael')
assert a1.firstName == a2.firstName

By default, the overloaded constructors use the declaration order of the properties to
determine the order of the parameters (and if the includeFields annotation param-
eter is enabled, then the fields will follow the properties, again in declaration order).
In addition, each constructor argument is defined with Java’s default value for the
argument type, allowing you to leave off parameters from the right if you plan to set

Listing 9.3 @EqualsAndHashCode generates equals() and hashCode() methods

Listing 9.4 Using @TupleConstructor to generate Java-style constructors
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.groovy-lang.org/latest/html/gapi/groovy/transform/builder/Builder.html

239Making Groovy cleaner and leaner

Decl
st

@L
resou

V

those values later or you’re coding a scenario where the default suffices. There are
numerous other ways to fine-tune the exact behavior in a very flexible way using anno-
tation parameters. These parameters let you include or exclude certain properties,
include fields, or interact with the superclass properties in various ways. Appendix E
provides a full explanation of the available annotation parameters.

 The @ToString, @EqualsAndHashCode, and @TupleConstructor annotations are so
useful that in many cases you may want to use all three annotations together. In sec-
tion 9.2.2 we’ll review @Canonical and @Immutable, which allow you to do just that.
But first, let’s look at other very handy boilerplate-saving annotations.

@GROOVY.TRANSFORM.LAZY

Lazy instantiation is a common idiom in Java. If a field is expensive to create, such as
a database connection, then the field is initialized to null, and the actual connec-
tion is created only the first time that field is used. Typical in this idiom is a null
check and instantiation within a getter method. But not only is this boilerplate code,
there are numerous tricky scenarios, such as correctly handling creation in a multi-
threaded environment, which are error-prone. The @Lazy field annotation correctly
delays field instantiation until the time when that field is first used and correctly han-
dles numerous tricky special cases. An example illustrating this concept is shown in
the following listing.

class Resource {
 private static alive = 0
 private static used = 0
 Resource() { alive++ }
 def use() { used++ }
 static stats() { "$alive alive, $used used" }
}

class ResourceMain {
 def res1 = new Resource()
 @Lazy res2 = new Resource()
 @Lazy static res3 = { new Resource() }()
 @Lazy(soft=true) volatile Resource res4
}

new ResourceMain().with {
 assert Resource.stats() == '1 alive, 0 used'
 res2.use()
 res3.use()
 res4.use()
 assert Resource.stats() == '4 alive, 3 used'
 assert res4 instanceof Resource
 def expected = 'res4=java.lang.ref.SoftReference'
 assert it.dump().contains(expected)
}

Listing 9.5 Using @Lazy to delay property instantiation

Defines Resource
class with inbuilt
statistics b

Declares normal
resource

 c

Declares @Lazy
resource

 d

ares
atic
azy
rce e

Thread-safe and
compatible with
garbage collection f

After ResourceMain
creation only res1 is
alive g

Using res2, res3,
res4 creates
instances lazily h

erifies
res4
class i

Verifies soft reference
used internally j
Licensed to Mark Watson <nordickan@gmail.com>

240 CHAPTER 9 Compile-time metaprogramming and AST transformations
We first create a Resource class with inbuilt instance-tracking counters B. This class
and the counters are simply to help us understand what @Lazy is doing for us. In prac-
tice, this would be your database (or other expensive) resource. We now declare a
ResourceMain class with four Resource properties. Normally you might have just one
resource property but we want to illustrate available options.

 The first property, res1 c, is a normal Groovy property. The backing field for
that property will point to an eagerly created Resource instance created when the
ResourceMain instance is created. The second property, res2 d, is lazily created.
When the ResourceMain instance is created, the backing field for res2 will remain
null. In the getter method for res2, a check is made to see if the backing field is null,
and if so, a new Resource is created.

 For the third property, res3 e, we indicate that we want a static singleton
Resource. The static modifier on the field denotes this case and the compiler knows
to adopt the thread-safe lazy initialization holder class idiom.1 This property also illus-
trates special syntax supported by the @Lazy annotation. If you have complex initial-
ization logic where you can’t use the normal syntax for defining an initial value (for
example, you might need try-catch logic), then you declare that logic as if it were a
Closure but follow it by a matching pair of round brackets, as if you were following
Groovy’s normal convention for calling a closure. We didn’t strictly need anything
complex for our example but it does illustrate the idea.

 For an efficient thread-safe lazy instance field in Java, we might be tempted to use
the double-checked locking idiom.2 A correct implementation of double-checked locking
would have a volatile private field and a synchronized getter. We use the volatile
modifier to indicate this case as shown for res4 f. Groovy automatically provides a
correct implementation of the idiom. There are two other salient points to note about
the declaration for res4.

 First, no initial value is given. In this case, the default no-arg constructor for the
property’s type will be called. If the type of the field is abstract or it doesn’t have a no-
arg constructor, you’ll receive a runtime error. For clarity, and to avoid a missing con-
structor exception, you might consider always supplying an initial value.

 Second, we made use of the optional soft parameter annotation. This determines
if the field should be a SoftReference, and therefore eligible for garbage collection.
By default, the field isn’t a soft reference. A typical use case for making a soft refer-
ence would be if a resource was only rarely used but consumed significant memory.
Allowing it to be garbage collected and recreated if needed again might be a prudent
use of the memory footprint. We’d recommend avoiding premature optimization and
only using this option if performance tests indicated a memory issue.

 The remainder of the example checks Resource statistics to confirm the expected
behavior. We first check g that creating our ResourceMain instance causes only one

1 Described in item 71 of Effective Java, 2nd ed., by Joshua Bloch (Addison-Wesley, 2008).
2 Explained in section 16.2 of Java Concurrency in Practice, by Brian Goetz et al. (Addison-Wesley, 2006).
Licensed to Mark Watson <nordickan@gmail.com>

241Making Groovy cleaner and leaner
Resource to be created (the eager one). After attempting to use all of our resources, we
note they’re all created h. As a final check, we can see that when using the soft refer-
ence, a Resource is returned from the res4 getter i but the internal backing field is a
soft reference to the Resource instance j. We’re using Groovy’s dump() method to dis-
play some of the Resource internals but we don’t need to worry about the details here.

 The use of lazy idioms and soft references are advanced topics and the code to do
them correctly is notoriously error-prone. Using @Lazy with its optional parameters
and modifier keywords is an easy way to leverage the advantages of deferred initializa-
tion but also make sure your code is correct.

@GROOVY.TRANSFORM.INDEXEDPROPERTY

Groovy automatically provides getters and setters for properties. This follows Java’s
conventions for JavaBeans. What you may not know is that additional JavaBean con-
ventions exist for dealing with array properties. In addition to providing setters and
getters for the whole array, there are extra getter and setter methods that take an
index value and work on just one member of the array. As you can see in listing 9.6,
Groovy doesn’t automatically provide these extra methods because Groovy’s array-like
notation is even easier to use B. But if you’re creating classes that need to be accessed
from Java or by JavaBean-aware tools, then you can use the @IndexedProperty annota-
tion to have these methods added automatically. This works for both arrays and lists
(and anything else supporting Groovy’s subscript (getAt/putAt) operator). You can
see @IndexedProperty in use in the following listing.

import groovy.transform.IndexedProperty

class Author {
 String name
 @IndexedProperty List<String> books
}

def books = ['The Mysterious Affair at Styles',
 'The Murder at the Vicarage']

new Author(name: 'Agatha Christie', books: books).with {
 books[0] = 'Murder on the Orient Express'
 setBooks(0, 'Death on the Nile')
 assert getBooks(0) == 'Death on the Nile'
}

The generated indexed setter and getter can be used to set a specific element c and
read it d respectively.

@GROOVY.TRANSFORM.INHERITCONSTRUCTORS

The @InheritConstructors annotation removes the boilerplate of writing match-
ing constructors for a superclass. Suppose you wanted to write your own custom
PrintWriter-like class. The java.io.PrintWriter class has eight constructors, and

Listing 9.6 Using @IndexedProperty to generate index-based setters and getters

Groovy idiom
for setting
first property

 b

JavaBean
approach to
setting a single
element

 c

JavaBean
approach to
reading a
single element

 d
Licensed to Mark Watson <nordickan@gmail.com>

242 CHAPTER 9 Compile-time metaprogramming and AST transformations
your subclass should probably provide the same set of creation options. @Inherit-
Constructors to the rescue. The annotation creates matching constructors for every
superclass constructor. You can see two of them in use in the following listing.

import groovy.transform.InheritConstructors

@InheritConstructors
class MyPrintWriter extends PrintWriter { }

def pw1 = new MyPrintWriter(new File('out1.txt'))
def pw2 = new MyPrintWriter('out2.txt', 'US-ASCII')
[pw1, pw2].each {
 it << 'foo'
 it.close()
}
assert new File('out1.txt').text == new File('out2.txt').text
['out1.txt', 'out2.txt'].each{ new File(it).delete() }

The important code as far as this annotation is concerned happens when we use the two
constructors, but for completeness, the remainder of the example uses the custom print
writers to write content to the two output files that are then compared and deleted.

 You can still write your own constructors, of course. If there’s a conflict with a
superclass constructor then @InheritConstructors is smart enough to back off and
not overwrite your implementation. A word of warning, however: think about your
subclass when using this annotation. If your subclass introduces required properties,
then it’s often best to make those properties required in a constructor and not
implement too many of the superclass constructors. Plus, some Groovy features rely
on the availability of a constructor without parameters, so having one on your class
is typically a good idea; bear this in mind if you inherit constructors from a class
without a no-arg constructor.

 You can fine-tune whether annotations on a parent constructor are copied into
your constructors using annotation parameters. A full description of the available
parameters for @InheritConstructors appears in appendix E.

@GROOVY.TRANSFORM.SORTABLE

The @Sortable annotation, shown in the following listing, removes the boilerplate of
writing the implementation code for the methods of the Comparable and Comparator
interfaces.

import groovy.transform.Sortable

@Sortable(includes = 'last,initial')
class Politician {
 String first
 Character initial
 String last

Listing 9.7 Using @InheritConstructors to automatically generate constructors

Listing 9.8 Using @Sortable to generate Comparable/Comparator methods

File f
variant

String filename,
String charset
variant

Sorts by last
then by initial b
Licensed to Mark Watson <nordickan@gmail.com>

243Making Groovy cleaner and leaner
 String initials() { first[0] + initial + last[0] }
}

def politicians = [
 new Politician(first: 'Margaret', initial: 'H', last: 'Thatcher'),
 new Politician(first: 'George', initial: 'W', last: 'Bush')
]

def sorted = politicians.toSorted()
assert sorted*.initials() == ['GWB', 'MHT']
def byInitial = Politician.comparatorByInitial()
sorted = politicians.toSorted(byInitial)
assert sorted*.initials() == ['MHT', 'GWB']

Using @Sortable is easy. Just include the annotation on your class definition. In this
example we chose to make sorting based on the last name and, if those are equal, then
based on the initial. We used the optional includes annotation parameter B to
achieve that behavior. @Sortable adds Comparable<Politician> to the list of imple-
mented interfaces of our Politician class and adds a compareTo method containing
the appropriate comparison logic. Calling sort() is enough to invoke that logic. In
our example, we then take the politician’s initials as our final result c. In addition,
@Sortable adds comparators for each of our included properties. Under the covers it
creates an appropriate Comparator class containing a compare method but we don’t
need to worry about the details because it also provides a method to gain access to sin-
gleton instances of those classes. In our example, we access the comparator for the
initial property d and use one of the sort methods available for comparators e.

 In addition to the optional includes annotation parameter, there’s an excludes
parameter. This is handy if you have many properties and want to exclude one or two
from affecting the sort behavior. Appendix E provides a full explanation of the avail-
able annotation parameters.

@GROOVY.TRANSFORM.BUILDER

The @Builder annotation removes the boilerplate of writing instance-building code.
Given Groovy’s built-in support for compact instance creation, you might ask why such
code is needed. Consider the following Chemist class:

class Chemist {
 String first, last
 int born
}

You can create a new instance easily, like this:

def c = new Chemist(first: "Marie", last: "Curie", born: 1867)

But what if you misspell one of the properties or supply the wrong type? You might
have an IDE that’s powerful enough to give you a warning, but otherwise, the first indi-
cation you’ll have that something is wrong is when you receive a MissingProperty-
Exception or some kind of CastException at runtime. Similarly, if you need to create

Performs
default sort

 c
Autogenerates
comparator
based on initial

 d

Sorts by
initial e
Licensed to Mark Watson <nordickan@gmail.com>

244 CHAPTER 9 Compile-time metaprogramming and AST transformations
instances from Java, Groovy’s conventions don’t make things easier for you. In these
scenarios, you might find the @Builder annotation exactly meets your needs. Here’s
an example of the @Builder annotation in use.

import groovy.transform.builder.Builder

@Builder
class Chemist {
 String first
 String last
 int born
}

def builder = Chemist.builder()
def c = builder.first("Marie").last("Curie").born(1867).build()
assert c.first == "Marie"
assert c.last == "Curie"
assert c.born == 1867

We access a builder B and use it to create our Chemist instance c. Each of the meth-
ods has a typed parameter that allows better Java integration and the potential for
increased IDE completion and checking.

 Because one size doesn’t fit all when building, the @Builder annotation allows
the building process to be customized by supplying alternative strategy classes.
Groovy comes with four built-in strategies (in the groovy.transform.builder pack-
age) to cover some fairly common scenarios, but feel free to provide your own if you
have different requirements. Table 9.1 summarizes the built-in @Builder strategies.
If, like in listing 9.9, no strategy is specified, the DefaultStrategy is used. Consult
the GroovyDoc (http://docs.groovy-lang.org/latest/html/gapi/groovy/transform/
builder/Builder.html) for these annotations for more details.

Listing 9.9 Using @Builder to make building classes easier

Table 9.1 Built-in @Builder strategies

Strategy Description

DefaultStrategy Creates a nested helper class for instance creation. Each method in
the helper class returns the helper until finally a build() method is
called, which returns a created instance.

SimpleStrategy Creates chainable setters, where each setter returns the object itself
after updating the appropriate property.

ExternalStrategy Allows you to annotate an explicit builder class while leaving some
builder class being built untouched. This is appropriate when you want
to create a builder for a class you don’t have control over such as from
a library or another team in your organization.

InitializerStrategy Creates a nested helper class for instance creation that when used
with @CompileStatic allows type-safe object creation. Compatible
with @Immutable.

Accessing
a builder
instance

 b
Fluent
API style
instance
creation

 c
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.groovy-lang.org/latest/html/gapi/groovy/transform/builder/Builder.html
http://docs.groovy-lang.org/latest/html/gapi/groovy/transform/builder/Builder.html

245Making Groovy cleaner and leaner

Auto
to
m

The @Builder annotation provides numerous annotation parameters to allow fur-
ther customization. In addition to specifying the strategy, you can include or exclude
properties as well as rename various generated methods or classes. Note that not all
strategies support all annotation parameters; consult the GroovyDoc for each strat-
egy for further details. Appendix E provides a full explanation of the available anno-
tation parameters.

 That’s the last of the code-generation annotations in Groovy. Next up on the tour are
annotations that help you maintain a better designed and more object-oriented system.

9.2.2 Class design and design pattern annotations

Some transformations focus on implementing common design patterns or best-
practice idioms. The goal is to make the right design decisions also the easiest ones to
implement. The annotations in this category are @Canonical, @Immutable, @Delegate,
@Singleton, @Memoized, and @TailRecursive, and their goal is to bring clarity of
design intent and correctness of implementation when using these design patterns.
See also @Category in section 8.4.7.

@GROOVY.TRANSFORM.CANONICAL

@ToString, @EqualsAndHashCode, and @TupleConstructor are commonly used together
to create standard, or canonical, objects. Groovy provides @Canonical to make this a
little easier. @Canonical is the combination of all three of these transformations. As you
can see in the following listing, a canonical object has tuple constructors, equals() and
hashCode() implementations, and a standard toString() representation.

import groovy.transform.Canonical

@Canonical
class Inventor {
 String firstName, lastName
}

def i1 = new Inventor('Thomas', 'Edison')
def i2 = new Inventor('Thomas')
assert i1 != i2
assert i1.firstName == i2.firstName
assert i1.toString() == 'Inventor(Thomas, Edison)'

The @Canonical annotation takes optional parameters to include or exclude proper-
ties from the constructor and method implementations that it creates. If you wish to
have more fine-grained control over the transformation’s behavior, you can override
its defaults by using one of the constituent annotations in conjunction with @Canonical.
If you want to use @Canonical but customize the @ToString behavior, then annotate
the class with both @Canonical and @ToString. The @ToString definition and param-
eters takes precedence over @Canonical. And just what exactly is a sensible default? A
complete listing of the default values for @Canonical is given in appendix E.

Listing 9.10 @Canonical generates equals(), hashCode(), toString(), and constructors

Automatic
tuple
constructor

Objects not equal despite
equal firstName property

matic
String
ethod
Licensed to Mark Watson <nordickan@gmail.com>

246 CHAPTER 9 Compile-time metaprogramming and AST transformations

toSt
met
@GROOVY.TRANSFORM.IMMUTABLE

Immutable types (such as String) permit no changes in state: when an instance has
been created it can never be altered. The main advantage of immutability is that the
object is side-effect free and thread safe. There’s almost no way to change an immuta-
ble object from within a method or any way to abuse an immutable object across
threads (without resorting to using reflection, that is). Also, there’s never a need to
make a defensive copy of an immutable object, or worry about what other objects may
have references to your internal state. Working with immutable objects is highly rec-
ommended on the Java platform. Groovy provides the groovy.transform.Immutable
transformation to help you easily create immutable objects, as shown in the follow-
ing listing.

import groovy.transform.Immutable
import static groovy.test.GroovyAssert.shouldFail

@Immutable
class Genius {
 String firstName, lastName
}

def g1 = new Genius(firstName: 'Albert', lastName: "Einstein")
assert g1.toString() == 'Genius(Albert, Einstein)'

def g2 = new Genius('Leonardo', "da Vinci")
assert g2.firstName == 'Leonardo'
assert g1 != g2

shouldFail(ReadOnlyPropertyException) {
 g2.lastName = 'DiCaprio'
}

The Genius class has quite a lot of generated code. It’s absent from the source but we
can see it once we start using the class:

■ A Map-based constructor B
■ A tuple constructor d
■ A getter for each property, for example e
■ An appropriate toString method c
■ Appropriate equals and hashCode methods f

The @Immutable annotation is very intelligent about which properties to handle. All
properties in an @Immutable class must also be marked Immutable, or be of a known
immutable type such as a primitive type, String, Color, or URI. Known “effectively
immutable” fields are also handled. Dates, arrays, and other cloneable objects are
defensively copied in the constructor and getters so that state cannot be changed, and
List, Map, and Collection classes are converted to Immutable objects in the construc-
tor. Also, the @Immutable annotation shares similar behavior to @ToString and @Equals-
AndHashCode: your class receives a nicely formatted toString() method and correct

Listing 9.11 Using @Immutable to mark fields final and suppress setter methods

Map-based
constructor

 b

ring
hod c

Tuple
constructor

 d

Property
getter e

Appropriate equals
and hashCode f
Licensed to Mark Watson <nordickan@gmail.com>

247Making Groovy cleaner and leaner
equals(Object) and hashCode() implementations. @Immutable uses sensible defaults
for generating the toString(), equals(Object), and hashCode() methods, and they
are fully described in appendix E.

WARNING! Earlier versions of the Groovy codebase contained two @Immutable
annotations: groovy.lang.Immutable and groovy.transform.Immutable. The
one in the groovy.lang package is deprecated. Please only use the new one
in groovy.transform.

@GROOVY.LANG.DELEGATE

In Java, one of easiest ways to reuse existing code is with a parent class, but just because
it’s easy doesn’t mean that it’s the best approach. If you genuinely have a pure is-a rela-
tionship between two classes, then inheritance might be appropriate, but in many cases
when constructing the new class you want to make modifications to the behavior of
some of the methods. In those cases, consider delegation. A delegate is a has-a relation-
ship between two classes. Typically, one class will contain a reference to another and
then also share some of the API with that class. The following example might illustrate
this better. First, let’s look at how we might be tempted to use inheritance to create a
NoisySet class that prints some output whenever an item is added to the set. A naïve
attempt might assume that a NoisySet is-a HashSet and might look something like this:

class NoisySet extends HashSet {
 @Override
 boolean add(item) {
 println "adding $item"
 super.add(item)
 }

 @Override
 boolean addAll(Collection items) {
 items.each { println "adding $it" }
 super.addAll(items)
 }
}

This approach is broken. Any items added using addAll will be printed out twice
because under the covers addAll calls add within HashSet. For this simple case, we
could remove the println statements in addAll but it would be a brittle solution—if
the HashSet implementation changed in the future, we might no longer be printing
out all the items! The solution is to use delegation. It’s a well-known and relatively
straightforward design pattern but involves quite a bit of boilerplate code. For our
example, it would look something like this:

class NoisySet implements Set {
 private Set delegate = new HashSet()

 @Override
 boolean add(item) {
 println "adding $item"
 delegate.add(item)
 }
Licensed to Mark Watson <nordickan@gmail.com>

248 CHAPTER 9 Compile-time metaprogramming and AST transformations
 @Override
 boolean addAll(Collection items) {
 items.each { println "adding $it" }
 delegate.addAll(items)
 }

 @Override
 boolean isEmpty() {
 return delegate.isEmpty()
 }

 @Override
 boolean contains(Object o) {
 return delegate.contains(o)
 }

 // ... ditto for size, iterator, toArray, remove,
 // containsAll, retainAll, removeAll, clear ...
}

In this approach, our NoisySet has-a HashSet. We simply define a private delegate
field. Then for each method in HashSet (or more accurately for each method in the
Set interface) we provide an implementation that calls through to the delegate. The
add and addAll methods will also contain the println statements required by our
noisy set.

 What is wrong with this implementation? Strictly speaking nothing, but it does suf-
fer from the problem that if the base class ever changed, we’d need to add delegate
methods. Also, the intent isn’t very clear. Intermixed with the two methods we actually
changed are another 10 boilerplate methods that increase the maintenance footprint
of the class and provide noise when trying to understand what the class is doing. Okay,
we’re implementing a noisy set but we want its design to be noise free! Let’s consider
an alternative implementation of NoisySet using the @Delegate annotation as shown
in the following listing.

class NoisySet {
 @Delegate
 Set delegate = new HashSet()

 @Override
 boolean add(item) {
 println "adding $item"
 delegate.add(item)
 }

 @Override
 boolean addAll(Collection items) {
 items.each { println "adding $it" }
 delegate.addAll(items)
 }
}

Listing 9.12 Using @Delegate
Licensed to Mark Watson <nordickan@gmail.com>

249Making Groovy cleaner and leaner
Set ns = new NoisySet()
ns.add(1)
ns.addAll([2, 3])
assert ns.size() == 3

This example has a much clearer intent. We’re using delegation but changing two of
the methods. The @Delegate transformation adds all of the public instance methods
from the delegate onto your class, and automatically calls the delegate when those
methods are invoked. This is how NoisySet can implement Set yet only declare two
methods instead of every method on the Set interface. By default, the owning class is
also made to implement all of the interfaces defined by the delegate as well, so you
don’t even need to explicitly implement the Set interface if you don’t want.

 There could be a conflict between the owner class and one of the delegate meth-
ods, or if multiple delegates are in use, between two methods with the same signature
coming from different delegates. In that case, the first existing method is used. The
delegate fields are processed in the order they appear in the class. If any method sig-
nature matches an existing signature, that method is skipped. If that isn’t what you
require, you can fine-tune the behavior using annotation parameters that are described
in appendix E.

@GROOVY.LANG.SINGLETON

The Singleton pattern is intended to ensure that only one instance of a class exists
within your system at a time. A standard way to achieve this behavior is for a class to
have a private static reference to this instance, a private constructor so that it cannot
be instantiated outside the class, and a public static method to access the single
instance. If you were to manually implement a singleton in Groovy it would look some-
thing like this:

class Zeus {
 static final Zeus instance = new Zeus()
 private Zeus() { }
}

assert Zeus.instance

This isn’t too much code to write, particularly as the code generation in Groovy
already supplies the accessor method, but it can be simplified using the @Singleton
annotation. The obvious advantage is less code, but it also means that invoking the
private constructor results in an exception, as shown in the following listing.

import static groovy.test.GroovyAssert.shouldFail

@Singleton class Zeus { }

assert Zeus.instance
def ex = shouldFail(RuntimeException) { new Zeus() }
assert ex.message ==
 "Can't instantiate singleton Zeus. Use Zeus.instance"

Listing 9.13 Using @Singleton to enforce a single instance of an object
Licensed to Mark Watson <nordickan@gmail.com>

250 CHAPTER 9 Compile-time metaprogramming and AST transformations
An additional advantage is that you can use the @Lazy annotation parameter to prop-
erly generate a lazily instantiated instance, which marks the instance variable as vola-
tile and correctly performs double-checked locking in the instantiation method.
Appendix E describes the available annotation parameters for @Singleton.

NOTE The Singleton pattern can be useful, but it’s considered by some to be
an anti-pattern. Certainly in Java, a singleton offers no layers of abstraction:
it’s a concrete type and cannot be extended or easily mocked or changed.
The story is a little better in Groovy but there are often better approaches.
Also, when using singletons, improper serialization or multiple classloaders
can result in two instances of the singleton object, and there are also thread
safety complications. Singletons are useful, but be aware of the downsides.

@GROOVY.TRANSFORM.MEMOIZED

For pure functional methods that always return the same result given the same inputs
it can be efficient to cache the results, especially if calculating the result is quite
complex or time-consuming. You could do this manually yourself but the groovy
.transform.Memoized transformation can do it automatically for you, as shown in the
following listing.

import groovy.transform.Memoized

class Calc {
 def log = []

 @Memoized
 int sum(int a, int b) {
 log << "$a+$b"
 a + b
 }
}

new Calc().with {
 assert sum(3, 4) == 7
 assert sum(4, 4) == 8
 assert sum(3, 4) == 7
 assert log.join(' ') == '3+4 4+4'
}

All you need to do is annotate the method or methods you want to enable. In our
case that’s the sum method B. To show that caching is actually taking place we’ll
also log the parameters each time a calculation occurs c. We’ll call the sum with
the parameters 3 and 4 twice d, e but those parameters will appear in the log only
once f.

 The annotation has a few parameters for tweaking the caching behavior. See
appendix E for details. Also, remember that if it’s a closure you want to memoize and
not a class method, then see Closure’s memoize method discussed in chapter 5.

Listing 9.14 Using @Memoized to cache method results

Enables
memoization by
annotating a method

 b

Logs all
calculations c

Calculation
performed first time

 d

Results returned
from cache

 e

Logging shows calculations
performed once each f
Licensed to Mark Watson <nordickan@gmail.com>

251Making Groovy cleaner and leaner
@GROOVY.TRANSFORM.TAILRECURSIVE

When implementing algorithms in a functional style, recursion is often used in prefer-
ence to imperative loops. If you were implementing a utility class with a function that
returns the items from a list in reverse order (and ignoring that such a function
already exists), you might use code such as this:

class ListUtil {
 static List reverse(List list) {
 if (list.isEmpty()) list
 else reverse(list.tail()) + list.head()
 }
}

assert ListUtil.reverse(['a', 'b', 'c']) == ['c', 'b', 'a']

This code works as it should and is reasonably elegant, though it could possibly be
slower than its imperative equivalent. (We value correctness and clarity ahead of speed
but sometimes need a little bit of speed too.) More importantly, for large lists, the
code is subject to a stack overflow error. Some languages might try to automatically
optimize such code to make it as fast as equivalent imperative code or to unravel the
recursion to potentially avoid the stack overflow problem. Current versions of Groovy
don’t promise such optimizations but do put you in control of optimizing a subset of
recursive functions known as tail-recursive functions.

 The previous example, while recursive, wasn’t tail-recursive. When calling back to
itself, the last thing a tail-recursive function must do is call itself and nothing else. In
our reverse code we reverse the tail (recursively) but then append the head. So, the
first thing we need to do is rewrite the code to be tail-recursive. For our case, we intro-
duce an additional parameter that stores the reversed list so far. Once we have a tail-
recursive function we can then add the @TailRecursive annotation. Groovy will
unravel the code and replace it with equivalent iterative code. Let’s look at this in
more detail in the following listing.

import groovy.transform.TailRecursive

class ListUtil {
 static reverse(List list) {
 doReverse(list, [])
 }

 @TailRecursive
 private static doReverse(List todo, List done) {
 if (todo.isEmpty()) done
 else doReverse(todo.tail(), [todo.head()] + done)
 }
}

assert ListUtil.reverse(['a', 'b', 'c']) == ['c', 'b', 'a']

Listing 9.15 Using @TailRecursive to optimize tail calls

Rewritten
function with
tail recursion
Licensed to Mark Watson <nordickan@gmail.com>

252 CHAPTER 9 Compile-time metaprogramming and AST transformations
NOTE Before Groovy 2.3 introduced the @TailRecursive annotation, the way
to avoid stack overflow when using recursion with closures was to use the
Closure.trampoline() method (available since Groovy 1.8). This method
wraps the closure into a TrampolineClosure, which, instead of doing a recur-
sive call to the closure, returns a new closure, which is called during the next
step of the computation. This turns a recursive execution into a sequential
one, thus helping avoiding the stack overflow, albeit at some performance cost.

That’s the end of the discussion of the class design and design pattern annotations.
Before moving on to concurrency and scripting annotations, let’s see some of the
annotation-based logging improvements in Groovy.

9.2.3 Logging improvements

There’s still a surprising amount of debate about the best way of logging errors and
informative messages from Java, and new logging frameworks are still in development.
The @Log family of annotations exists to simplify correct logging idioms from Groovy
code. The family includes @Log, @Log4j, @Log4j2, @Slf4j, and @Commons.

 The annotation does more than just create a logger for you. To understand the
power of @Log, consider the following listing and ask yourself if the runLongDatabase-
Query() method will be executed.

import groovy.util.logging.Log

@Log
class Database {
 def search() {
 log.fine(runLongDatabaseQuery())
 }

 def runLongDatabaseQuery() {
 println 'Calling database'
 /* ... */
 return 'query result'
 }
}

new Database().search()

From a Java background, the obvious answer would be yes, the runLongDatabase-
Query() method will be executed, because in Java, method arguments are always eval-
uated before the method is called. There’s no way to avoid this. In Groovy, the answer
is maybe: it depends on whether the FINE log level is enabled.

 The @Log annotation first creates a logger based on the name of your class. It then
wraps any logging method with a conditional checking whether that level is enabled
before trying to execute the logging line. The result is equivalent to wrapping the log-
ging call in a if (logger.isEnabled(LogLevel.FINE)) condition. The arguments to

Listing 9.16 Using @Log to inject a Logger object into an object

Calling
database
Licensed to Mark Watson <nordickan@gmail.com>

253Making Groovy cleaner and leaner
the method may never be evaluated depending on the logging configuration. The
transformation is smart too; no check is made if the parameter is a constant such as a
simple string or integer. This improves the readability significantly—there’s no more
need to include manual checks everywhere for the sake of performance. Groovy does
the correct thing by default.

 The @Log family of annotations takes one optional parameter: the name of the log
variable. By default the log variable is called log, but you can change it to whatever
you want. If you don’t like how Groovy initializes the Logger object based on the cur-
rent class name, then add your own logger field and update the annotation to refer to
the field name. Five major logging frameworks are covered by Groovy, and each has its
own annotation. The five annotations are detailed in table 9.2 (they’re all in the
groovy.util.logging package).

It doesn’t stop there though, because the @Log feature is extensible. You can use your
own company’s logger as well, as long as you implement one interface to define your
new annotation. This extension mechanism is how the standard five @Log annotations
are implemented, so there are five good examples in the Groovy codebase. To imple-
ment the interface you need to define a new Logger object and instantiate it, deter-
mine if a method should be wrapped in a conditional check, and then wrap the log
call in a guard. Writing the AST for this isn’t hard, but you’ll need to understand the
rest of the chapter before tackling the problem.

 Next we’ll look at declarative concurrency. Groovy provides annotations to declare
how your code is locked during multithreaded access instead of writing the code that
performs low-level locking.

Table 9.2 Five @Log annotations

Name Description

@Log Injects a static final java.util.logging.Logger into your class and initializes it
using Logger.getLogger(class.name).

@Commons Injects an Apache Commons logger as a static final
org.apache.commons.logging.Log into your class and initializes
it using LogFactory.getLog(class).

@Log4j Injects a Log4j logger as a static final org.apache.log4j.Logger into your
class and initializes it using Logger.getLogger(class).

@Log4j2 Injects a Log4j2 logger as a static final org.apache.log4j.Logger into your
class and initializes it using Logger.getLogger(class).

@Slf4j Injects an Slf4j logger as a static final org.slf4j.Logger into your class and
initializes it using org.slf4j.LoggerFactory.getLogger(class). The
LogBack framework uses SLF4J as the underlying logger, so LogBack users should
use @Slf4j.
Licensed to Mark Watson <nordickan@gmail.com>

254 CHAPTER 9 Compile-time metaprogramming and AST transformations
9.2.4 Declarative concurrency

Synchronization and access to a mutable state is hard to get right. Proper synchroniza-
tion can leave your little branch of business logic hidden, surrounded by a forest of
lock acquire and lock release code. The concurrency-related annotations aim to rem-
edy this problem: @Synchronized, @WithReadLock, and @WithWriteLock.

@GROOVY.TRANSFORM.SYNCHRONIZED

Code that’s accessed from several threads at once often needs to be synchronized to
avoid common concurrency problems. One problem with this is that correct concurrent
code is hard: it’s all too easy to introduce one problem when trying to solve another. The
easiest solution for Java developers is to add the synchronized keyword to the method
declaration. This is another instance where the easiest solution isn’t the best solution.

The problem with method-level synchronization is that it’s very coarse-grained and it’s
also part of the public API of the object. You’re effectively locking on a publicly acces-
sible reference: the this reference. Some secure coding standards ban method-level
synchronization or synchronization on the this reference because an attacker who
has a reference to your object can interfere with your synchronization by synchroniz-
ing on it. It’s best to declare a local, private lock and expose that lock to subclasses if
classes need to coordinate locking. Doing this correctly is easy with the @Synchronized
annotation, as seen in the following listing.

import groovy.transform.Synchronized

class PhoneBook1 {
 private final phoneNumbers = [:]

 @Synchronized
 def getNumber(key) {
 phoneNumbers[key]
 }

 @Synchronized
 void addNumber(key, value) {
 phoneNumbers[key] = value
 }
}

Avoid low-level synchronization
Java contains many fine primitives for working with concurrent code, such as the syn-
chronized keyword and the contents of the java.util.concurrent package. But
these are mostly primitives and not abstractions. The tools are low level and meant
to serve as a foundation. GPars is a framework for parallelization that’s built on top
of these primitives. It provides many abstractions that shield you from low-level coor-
dination tasks. GPars is described fully in chapter 18.

Listing 9.17 Declarative synchronization with @Synchronized
Licensed to Mark Watson <nordickan@gmail.com>

255Making Groovy cleaner and leaner

Ch
s

nu
def p1 = new PhoneBook1()
(0..99).collect { num ->
 Thread.start {
 p1.addNumber('Number' + num, '98765' + num)
 }
}*.join()
assert p1.getNumber('Number43') == '9876543'

This annotation injects a lock object into your class. The object is a zero-length
Object array so that your class remains serializable (which an Object instance
isn’t). And any method marked with the annotation has a synchronized block
around it but without method synchronization. If you want to limit the scope of
your synchronized block, then provide a name for the lock using the default anno-
tation parameter and write the synchronized block yourself when needed, as shown
in the following listing.

import groovy.transform.Synchronized
import groovy.util.logging.Log

@Log
class PhoneBook2 {
 private final phoneNumbers = [:]
 private final lock = new Object[0]

 @Synchronized('lock')
 def getNumber(key) {
 phoneNumbers[key]
 }

 def addNumber(key, value) {
 log.info("Adding phone number $value")
 synchronized (lock) {
 phoneNumbers[key] = value
 }
 }
}

def p2 = new PhoneBook2()
(0..99).collect { num ->
 Thread.start {
 p2.addNumber('Number' + num, '98765' + num)
 }
}*.join()
assert p2.getNumber('Number43') == '9876543'

Synchronization is a low-level, primitive operation. Java has higher-level locking mech-
anisms as well, and the following two annotations help make them easy to use.

@GROOVY.TRANSFORM.WITHREADLOCK AND @GROOVY.TRANSFORM.WITHWRITELOCK

Java 5 included the java.util.concurrent.locks.ReentrantReadWriteLock class as
a tool to use when you need more control over locking than simply using synchro-
nized blocks. A ReentrantReadWriteLock can guard against either read access or

Listing 9.18 Mixing @Synchronized with custom synchronized block

Each thread adds a
dummy phonebook
entry

Await completion of
100 parallel threads

eck a
ample
mber

Manually
created lock

Specifies lock
name

Manually
synchronized
block
Licensed to Mark Watson <nordickan@gmail.com>

256 CHAPTER 9 Compile-time metaprogramming and AST transformations
write access, where many readers are allowed concurrently, but only one writer is
allowed. Although this is a very useful concurrency abstraction, acquiring and releas-
ing a lock correctly is cumbersome, as you can see in this code snippet:

import java.util.concurrent.locks.ReentrantReadWriteLock

class PhoneBook3 {
 private final phoneNumbers = [:]
 final private lock = new ReentrantReadWriteLock()

 def getNumber(key) {
 lock.readLock().lock()
 try {
 phoneNumbers[key]
 } finally {
 lock.readLock().unlock()
 }
 }

 def addNumber(key, value) {
 lock.writeLock().lock()
 try {
 phoneNumbers[key] = value
 } finally {
 lock.writeLock().unlock()
 }
 }
}

Phew, that’s quite a bit of code. It does do the right thing: reading data is guarded
with a read lock and writing data is guarded with a write lock. But the code is much
simpler when you use the @WithReadLock and @WithWriteLock annotations instead
as shown here:

import groovy.transform.*

class PhoneBook3 {
 private final phoneNumbers = [:]

 @WithReadLock
 def getNumber(key) {
 phoneNumbers[key]
 }

 @WithWriteLock
 def addNumber(key, value) {
 phoneNumbers[key] = value
 }
}

This time the logic of the class stands out instead of being drowned in a sea of try-
finally blocks, and you’ll never forget to release a lock. Similar to @Synchronized,
these annotations take a parameter for the lock name, and that lock will be used if it
exists in the class. You might wonder how to test this class. It isn’t that hard, but if you
want to actually ensure that the read and write locks are working correctly, it can be a
Licensed to Mark Watson <nordickan@gmail.com>

257Making Groovy cleaner and leaner
bit of work. What we’ll do is add some println debugging lines3 and sleep calls4 into
the preceding example and then start off a bunch of interleaving threads that will
read and write phone numbers concurrently. The complete example is shown in the
following listing.

import groovy.transform.*

class PhoneBook3 {
 private final phoneNumbers = dummyNums()

 private dummyNums() {
 (1..8).collectEntries {
 ['Number' + it, '765432' + it]
 }
 }

 @WithReadLock
 def getNumber(key) {
 println "Reading started for $key"
 phoneNumbers[key]
 sleep 80
 println "Reading done for $key"
 }

 @WithWriteLock
 def addNumber(key, value) {
 println "Writing started for $key"
 phoneNumbers[key] = value
 sleep 100
 println "Writing done for $key"
 }
}

def p3 = new PhoneBook3()

(3..4).each{ count ->
 Thread.start {
 sleep 100 * count
 p3.addNumber('Number' + count, '9876543')
 }
}
(2..6).collect{ count ->
 Thread.start {
 sleep 100 * count
 p3.getNumber('Number' + count)
 }
}*.join()

3 We don’t recommend using println statements in multithreaded code as a general rule, but we’ll get away
with it in this simple example.

4 If we didn’t add some sleep calls, things would happen so quickly that you’ll likely not get any concurrency.

Listing 9.19 Using @WithReadLock and @WithWriteLock for efficient concurrency

Fills phonebook
with dummy
numbers

Starts writer
threads

Starts interleaved
reader threads
Licensed to Mark Watson <nordickan@gmail.com>

258 CHAPTER 9 Compile-time metaprogramming and AST transformations
The exact output will vary depending on your machine speed and language versions,
but you should see something like this:

Reading started for Number2
Reading started for Number3
Reading done for Number2
Reading done for Number3
Writing started for Number3
Writing done for Number3
Reading started for Number4
Reading done for Number4
Writing started for Number4
Writing done for Number4
Reading started for Number5
Reading started for Number6
Reading done for Number6
Reading done for Number5

The important thing should be that multiple reads should be happening concurrently,
but when any thread is writing, no other reading or writing should be taking place.

 These examples all show how annotations for AST transformations work. There are
other ways to be thread-safe as well. You could use an appropriate collection type from
the java.util.concurrent package such as CopyOnWriteArrayList or Concurrent-
HashMap, or you could use immutable objects or persistent data structures. The value
in the Groovy annotation approach is that synchronization and safety are declarative.
You don’t explain how the synchronization works, you just declare that it exists and let
Groovy do the rest.

 In general, declarative solutions offer good abstractions, where you don’t need to
see the details and can focus on the more important parts of the code instead of the
low-level mechanics. The same is true for other areas where you traditionally end up
with a lot of boilerplate code to write. Each individual bit of boilerplate is simple
enough, but after you’ve written it enough times you’re bound to make a subtle mis-
take—and it really impacts the readability of the class. The same idea extends to other
operations you might wish to perform on your objects, too.

9.2.5 Easier cloning and externalizing

Implementing Cloneable and Externalizable correctly isn’t always simple. The @Auto-
Clone annotation can give you a reasonable and configurable cloning strategy by add-
ing just the annotation. In a similar vein, @AutoExternalize makes implementing
Externalizable simpler by correctly creating default read and write methods.

@GROOVY.TRANSFORM.AUTOCLONE

Classes that implement Cloneable should provide a public clone method that cre-
ates a copy of the class. At its simplest, the @AutoClone annotation causes your class
to implement Cloneable and provides a default and simple clone method imple-
Licensed to Mark Watson <nordickan@gmail.com>

259Making Groovy cleaner and leaner
mentation. But because one size doesn’t fit all when it comes to cloning, the @Auto-
Clone annotation supports several slightly different styles of cloning. We’ll look at
these styles shortly, but let’s first look at the annotation in action as shown in the fol-
lowing listing.

import groovy.transform.AutoClone

@AutoClone
class Chef1 {
 String name
 List<String> recipes
 Date born
}

def name = 'Heston Blumenthal'
def recipes = ['Snail porridge', 'Bacon & egg ice cream']
def born = Date.parse('yyyy-MM-dd', '1966-05-27')
def c1 = new Chef1(name: name, recipes: recipes, born: born)
def c2 = c1.clone()
assert c2.recipes == recipes

Under the covers, your class will be augmented to look something like this:

class Chef1 implements Cloneable {
 ...
 Chef1 clone() throws CloneNotSupportedException {
 Chef1 _result = (Chef1) super.clone()
 if (recipes instanceof Cloneable) {
 _result.recipes = (List<String>) recipes.clone()
 }
 _result.born = (Date) born.clone()
 return _result
 }
}

The superclass clone() method is invoked, followed by invoking clone() on each
Cloneable field or property in the class. If a field or property isn’t Cloneable then it’s
simply copied in a bitwise fashion. If some properties don’t support cloning, then a
CloneNotSupportedException is thrown. You might wonder about the check for clon-
ing recipes. Its type is List, which isn’t Cloneable though many list implementations
including Groovy’s default list type (ArrayList) are, and so in our case recipes will be
(shallow) cloned. Deep copies are left to the end user (you) to implement. That was
simple but doesn’t cover a range of cloning scenarios. For a wider range of scenarios
you need to select the appropriate cloning style. The available options are listed in
table 9.3.

Listing 9.20 @AutoClone provides cloning capability
Licensed to Mark Watson <nordickan@gmail.com>

260 CHAPTER 9 Compile-time metaprogramming and AST transformations
So, using the SIMPLE style, your augmented class will have this form:

class Chef1 implements Cloneable {
 ...
 protected void cloneOrCopyMembers(Chef1 other) {
 other.name = name
 if (recipes instanceof Cloneable) {
 other.recipes = (List<String>) recipes.clone()
 } else {
 other.recipes = recipes
 }
 other.born = (Date) born.clone()
 }

 Chef1 clone() throws CloneNotSupportedException {
 Chef1 _result = new Chef1()
 this.cloneOrCopyMembers(_result)
 return _result
 }
}

And, with the SERIALIZATION style, your class would need to implement Serializable
(or Externalizable) and the generated method would look like this:

Object clone() throws CloneNotSupportedException {
 def baos = new ByteArrayOutputStream()
 baos.withObjectOutputStream{ it.writeObject(this) }
 def bais = new ByteArrayInputStream(baos.toByteArray())
 bais.withObjectInputStream(getClass().classLoader){ it.readObject() }
}

Table 9.3 Four @AutoClone styles

Name Description

CLONE Adds a clone() method to your class. The clone() method will call
super.clone() before calling clone() on each Cloneable property
of the class. Doesn’t provide deep cloning. Not suitable if you have final
properties. This is the default cloning style if no style attribute is provided.

SIMPLE Adds a clone() method to your class that calls the no-arg constructor
then copies each property calling clone() for each Cloneable property.
Handles inheritance hierarchies. Not suitable if you have final properties.
Doesn’t provide deep cloning.

COPY_CONSTRUCTOR Adds a copy constructor, which takes your class as its parameter, and a
clone() method to your class. The copy constructor method copies each
property calling clone() for each Cloneable property. The clone()
method creates a new instance making use of the copy constructor. Suitable
if you have final properties. Handles inheritance hierarchies. Doesn’t provide
deep cloning.

SERIALIZATION Adds a clone() method to your class that uses serialization to copy your
class. Suitable if your class already implements the Serializable or
Externalizable interface. Automatically performs deep cloning. Not as
time or memory efficient. Not suitable if you have final properties.
Licensed to Mark Watson <nordickan@gmail.com>

261Making Groovy cleaner and leaner
Another popular cloning approach is to use the COPY_CONSTRUCTOR style. As shown in
table 9.3, it handles both final properties and inheritance hierarchies. The following
listing illustrates these features.

import groovy.transform.*
import static groovy.transform.AutoCloneStyle.*

@TupleConstructor
@AutoClone(style=COPY_CONSTRUCTOR)
class Person {
 final String name
 final Date born
}

@TupleConstructor(includeSuperProperties=true,
 callSuper=true)
@AutoClone(style=COPY_CONSTRUCTOR)
class Chef2 extends Person {
 final List<String> recipes
}

def name = 'Jamie Oliver'
def recipes = ['Lentil Soup', 'Crispy Duck']
def born = Date.parse('yyyy-MM-dd', '1975-05-27')
def c1 = new Chef2(name, born, recipes)
def c2 = c1.clone()
assert c2.name == name
assert c2.born == born
assert c2.recipes == recipes

The added methods generated for the Chef2 class look roughly like this:

protected Chef2(Chef2 other) {
 super(other)
 if (other.recipes instanceof Cloneable) {
 this.recipes = (List<String>) other.recipes.clone()
 } else {
 this.recipes = other.recipes
 }
}

public Chef2 clone() throws CloneNotSupportedException {
 new Chef2(this)
}

You can use several annotation parameters to fine tune @AutoClone, and these param-
eters are described in appendix E. With these annotation parameters and @Auto-
Clone’s supported styles, many of your cloning scenarios should be covered. But for
more complex objects, it’s often best to write your own clone method so that you can
have complete control.

Listing 9.21 Using the COPY_CONSTRUCTOR style with @AutoClone
Licensed to Mark Watson <nordickan@gmail.com>

262 CHAPTER 9 Compile-time metaprogramming and AST transformations
@GROOVY.TRANSFORM.AUTOEXTERNALIZE

The Externalizable interface is similar to Serializable in that it’s used to persist
objects into a binary form. Externalizable was added to the JDK after Serializable.
The new interface gives you more control over the persisted form than Serializable
does, and it doesn’t use reflection, which at one time was a performance bottleneck.
Some performance-sensitive applications prefer using Externalizable.

 A class marked @AutoExternalize automatically implements the Externalizable
interface, gaining two new method implementations: readExternal(ObjectInput) and
writeExternal(ObjectOutput). An example of its usage is in the following listing.

import groovy.transform.*

@AutoExternalize
@ToString
class Composer {
 String name
 int born
 boolean married
}

def c = new Composer(name: 'Wolfgang Amadeus Mozart',
 born: 1756, married: true)

def baos = new ByteArrayOutputStream()
baos.withObjectOutputStream{ os -> os.writeObject(c) }
def bais = new ByteArrayInputStream(baos.toByteArray())
def loader = getClass().classLoader
def result
bais.withObjectInputStream(loader) {
 result = it.readObject().toString()
}
assert result == 'Composer(Wolfgang Amadeus Mozart, 1756, true)'

The generated methods look something like this:

class Composer implements Externalizable {
 ...
 void writeExternal(ObjectOutput out) throws IOException {
 out.writeObject(name)
 out.writeInt(born)
 out.writeBoolean(married)
 }

 void readExternal(ObjectInput oin) {
 name = (String) oin.readObject()
 born = oin.readInt()
 married = oin.readBoolean()
 }
}

Listing 9.22 Using @AutoExternalize for easier serialization
Licensed to Mark Watson <nordickan@gmail.com>

263Making Groovy cleaner and leaner
You can fine-tune the @AutoExternalize behavior using the annotation parameters
described in appendix E. Note that if you look into the source code for @Auto-
Externalize it’s defined as an annotation alias combining the @ExternalizeMethods
and @ExternalizeVerifier annotations. This split of functionality into two places
can be considered an internal implementation detail. It does, however, allow the two
bits of functionality to be run at different compiler phases. You might consider this
technique when writing your own AST transformations.

 That’s all for the cloning and externalizing annotations. The next set of annota-
tions we’ll discuss exist to make using Groovy as a scripting language safe and secure.

9.2.6 Scripting support

You saw in section 2.3 that scripting is an integral part of the Groovy language. It
should come as no surprise that some AST transforms have been developed to make
your scripting even more productive. These range from transforms that give you some
control over the created script class or its components to ones designed to assist with
security and robustness. The transforms that fall into this category include @Field,
@BaseScript, @TimedInterrupt, @ThreadInterrupt, and @ConditionalInterrupt.
You should also check out the GroovyDoc for @SourceURI, which gives you a hook
back to a script’s source.

 Security and robustness are important aspects of modern software. Groovy makes
it easy to run scripts submitted by your users (as well as your own scripts), but this can
be a security hole that needs to be shielded not only against unauthorized access but
also against accidental programming errors. No one wants a set of long-running
scripts to cause a denial of service. These scripting annotations automatically add
safety hooks into scripts so that they time out, respect a thread interrupt, or otherwise
behave correctly. They’re designed to be added automatically to scripts executing in
GroovyShell or another evaluator, but you can also use them yourself on your own
scripts and classes.

@GROOVY.TRANSFORM.TIMEDINTERRUPT

Annotating a class with @TimedInterrupt sets a maximum time the script or instances
of the class are allowed to exist. If the maximum time is exceeded then a Timeout-
Exception is thrown. This annotation is designed to guard against runaway processes,
infinite loops, or a maliciously long-running user script.

 When annotated, the object instance marks the instantiation time in the construc-
tor. If this instance later detects that the maximum runtime is exceeded then it throws
an exception. Checks are made at the beginning of every method call, the first line of
every closure, and within every iteration of a for or while loop. If the object sits idle
and is never invoked, then no exception is thrown regardless of how much time
passes. The following listing is a simple example of its use.

Licensed to Mark Watson <nordickan@gmail.com>

264 CHAPTER 9 Compile-time metaprogramming and AST transformations
import groovy.transform.TimedInterrupt
import java.util.concurrent.TimeoutException
import static java.util.concurrent.TimeUnit.MILLISECONDS

@TimedInterrupt(value = 480L, unit = MILLISECONDS)
class BlastOff1 {
 def log = []

 def countdown(n) {
 sleep 100
 log << n
 if (n == 0) log << 'ignition'
 else countdown(n - 1)
 }
}

def b = new BlastOff1()
Thread.start {
 try {
 b.countdown(10)
 } catch (TimeoutException ignore) {
 b.log << 'aborted'
 }
}.join()
assert b.log.join(' ') == '10 9 8 7 6 aborted'

Annotation parameters you can use to fine-tune the behavior are described in appen-
dix E.

@GROOVY.TRANSFORM.THREADINTERRUPT

For timely responsiveness, long-running user scripts should periodically check the
Thread.currentThread().isInterrupted() status and throw an Interrupted-
Exception when an interrupt is detected. But in practice, scripts are almost never
written this way. An easy way to properly respect the interrupted flag is to use the
@ThreadInterrupt annotation. When this annotation is present, your script or class
will automatically check the isInterrupted() flag and throw an Interrupted-
Exception if the thread is interrupted. These checks occur at the start of every
method call, at the start of every closure, and within every iteration of a loop. An
example is shown in the following listing.

import groovy.transform.ThreadInterrupt

@ThreadInterrupt
class BlastOff2 {
 def log = []

 def countdown(n) {
 Thread.sleep 100
 log << n

Listing 9.23 Using @TimedInterrupt to guard against slow scripts

Listing 9.24 Using @ThreadInterrupt to detect interruptions

Just a little
less than 500
milliseconds
Licensed to Mark Watson <nordickan@gmail.com>

265Making Groovy cleaner and leaner
 if (n == 0) log << 'ignition'
 else countdown(n - 1)
 }
}

def b = new BlastOff2()
def t1 = Thread.start {
 try {
 b.countdown(10)
 } catch(InterruptedException ignore) {
 b.log << 'aborted'
 }
}
sleep 590
t1.interrupt()
t1.join()
assert b.log.join(' ') == '10 9 8 7 6 aborted'

Similar to @TimedInterrupt, there are some parameters you can use to tweak the
behavior of @ThreadInterrupt that are detailed in appendix E.

@GROOVY.TRANSFORM.CONDITIONALINTERRUPT

The last annotation in the Interrupt family is @ConditionalInterrupt. This annota-
tion allows you to specify your own custom interrupt logic to be woven into a class.
Like the others, the interrupt check occurs at the start of every method, the start of
every closure, and each loop iteration.

 The way you specify the conditional interrupt is within a closure annotation parame-
ter. You can reference any variable that’s in scope within this closure. For scripts,
general script variables are in scope, and for classes, instance fields are in scope. The
following listing shows a script that executes some work 1,000 times or until 10 excep-
tions have been thrown, whichever comes sooner.

import groovy.transform.ConditionalInterrupt

@ConditionalInterrupt({ count <= 5 })
class BlastOff3 {
 def log = []
 def count = 10

 def countdown() {
 while (count != 0) {
 log << count
 count--
 }
 log << 'ignition'
 }
}

def b = new BlastOff3()
try {
 b.countdown()

Listing 9.25 Using @ConditionalInterrupt to set an automatic error threshold

Just a little
less than 600
milliseconds
Licensed to Mark Watson <nordickan@gmail.com>

266 CHAPTER 9 Compile-time metaprogramming and AST transformations
} catch (InterruptedException ignore) {
 b.log << 'aborted'
}
assert b.log.join(' ') == '10 9 8 7 6 aborted'

Parameters you can use to tweak the functionality of @ConditionalInterrupt are
described in appendix E.

@GROOVY.TRANSFORM.FIELD

Section 7.2 gave details about how Groovy “wraps” script files into a script class and
automatically provides main and run methods. The code inside your script ends up
being placed inside the run method, which makes it a local variable declaration. Sup-
pose you have a script containing the lines

def x = 4
println x

then the generated script file looks like this:

class ScriptXXXXX extends Script {
 public static void main(String[] args) {
 new ScriptXXXXX().run()
 }

 public run() {
 def x = 4
 println x
 }
}

As you can see, the variable x is a local variable definition within the run method. It
wouldn’t be visible to other methods or be available across multiple calls of the run
method. For most scripts this is exactly what you want. Annotating a variable with
@Field promotes it to a field within your script class. Let’s look at this in action in the
following listing.

import groovy.transform.Field

@Field List awe = [1, 2, 3]
def awesum() { awe.sum() }
assert awesum() == 6

The equivalent generated code would look like this:

class ScriptYYYYY extends Script {
 List awe = [1, 2, 3]

 public static void main(String[] args) {
 new ScriptYYYYY().run()
 }

 public awesum() {
 awe.sum()
 }

Listing 9.26 Using @Field for class-level instance variables in a script

Slightly simplified,
ignoring some
unimportant
details

Variable awe is an
instance field of script

Again, slightly
simplified
Licensed to Mark Watson <nordickan@gmail.com>

267Making Groovy cleaner and leaner
 public run() {
 assert awesum() == 6
 }
}

@GROOVY.TRANSFORM.BASESCRIPT

Annotating a script with @BaseScript lets you customize a script’s parent class. Sup-
pose you wanted all your scripts to save all printed lines to a log. You could add boiler-
plate code into each script to achieve this. But imagine you later wanted to alter your
logging approach. Your maintenance burden would be quite high as you’d need to
refactor each script. Let’s look at an alternative approach using @BaseScript. For the
purposes of this example, we’ll use a very simple logging mechanism; we’ll keep only a
list of printed strings.

@BaseScript(LoggingScript)
import groovy.transform.BaseScript

abstract class LoggingScript extends Script {
 def log = []
 void println(args) {
 log << args
 System.out.println args
 }
}

println 'hello'
println 3 * 5

assert log.join(' ') == 'hello 15'

For this example, we placed the LoggingScript base class right into our script, but
obviously to share this across scripts you’d normally want to place that into its own sep-
arate source file. Now, our generated script will extend from LoggingScript instead
of the normal Script class and so it will contain the log field and augmented println
method. You can see another example of @BaseScript in section 19.2.2.

9.2.7 More transformations

There are other transformations as well, but they’re covered elsewhere in the book.
@PackageScope is discussed in chapter 7 and @Category and @Mixin are covered in
chapter 8. See chapter 11 for a discussion of @Bindable, @Vetoable, and @Listener-
List. @Newify is covered in section 19.8.

 That’s the end of our tour of the AST transformations that come with Groovy. You
can use these annotations today without knowing much more. But you don’t have to
be satisfied with just what Groovy gives you. You’re free to write your own annotations
as well. The rest of this chapter delves into the task of implementing your own annota-
tions using AST transformations. We’re going to discuss local and global transforma-
tions, writing your own AST, testing your work, and the known limitations.

Listing 9.27 Using @BaseScript to customize a script’s parent class
Licensed to Mark Watson <nordickan@gmail.com>

268 CHAPTER 9 Compile-time metaprogramming and AST transformations
So why exactly would you want to write your own AST transformation? There are some
good reasons to use compile-time metaprogramming instead of runtime. If you want
Java to see the changes you make to a Groovy class, then use an AST transformation to
write your changes directly into the produced class file. The code-generation transfor-
mations are good examples of doing this. If you need to avoid evaluating a method
parameter before a method is invoked, then use an AST transform to avoid or wrap
the call, as the @Log transformation does. And as we’ll see later, you may also find com-
pile-time metaprogramming a good fit for advanced or fine-grained control over
DSLs. Lastly, if you want to do something wildly different, like change the semantics of
the language, then your best approach is an AST transform. Let’s get into deeper
explanations and in-depth examples.

 Throughout this chapter, you’ve heard the term abstract syntax tree several times,
usually abbreviated as AST, but we haven’t looked at what it really means. It’s time to
take a deep dive into AST and the Groovy compiler.

9.3 Exploring AST
To use AST transformations, you don’t necessarily need to understand all the details of
their inner workings, but to write your own transformations, it’s important to have at
least a little bit of knowledge about how the compiler works and which data structures it
uses. In this section you’ll learn about ASTs, see some of the AST visualization tools avail-
able for the platform, and understand the basics of the Groovy compiler.

 An AST is a representation of your program in tree form. The tree has nodes that
can have leaves and branches, and there’s a single root node. Many compilers, not just
Groovy, create an AST as a step toward a compiled program. In general and simplified
terms, running a Groovy script is a multistep process, as shown in figure 9.1.

First, the Groovy compiler reads the source file and checks it
for basic forms of validity. Then the source code is converted
into an AST, which is eventually converted to bytecode. Finally,
the JVM loads the class and executes it. The AST is where all of
the interesting language stuff happens. For example, adding
getters and setters for properties happens in AST, and giving a
script a main() method happens there. If you want to write a
language feature, then you’ll quite possibly be working with
the AST. Let’s look at simple AST examples to help you under-
stand it better. Figure 9.2 shows the tree representing the
expression 1 + 1, the simplest nontrivial example.

Read

source

Parse

source

Convert

to AST

Convert to

bytecode

Load

class
Execute

Figure 9.1 General process of compiling and running a Groovy script

1 1

+

Figure 9.2 An AST for
the expression 1 + 1
Licensed to Mark Watson <nordickan@gmail.com>

269Exploring AST
 The plus operation is a binary one: it has two oper-
ands, a left and a right. When this program is executed,
a plus operation is executed and (hopefully) the result
is 2. Figure 9.3 shows a slightly more advanced example:
the expression 1 + 2 + 3.

 It’s no accident that the branch 1 + 2 forms the left-
most branch. Addition is associated left to right, and to
compute the answer to 1 + 2 + 3 you must first compute
1 + 2. Only then will you be able to evaluate 3 + 3 and
see the result as 6. Figure 9.4 shows a more realistic
example, the groovy script assert 1 + 1 == 2.

 In Groovy terms, this script creates an AssertState-
ment, which has a BooleanExpression, which in turn
has a BinaryExpression. It’s this BinaryExpression
that holds the == equals operator. Entire programs are
easily represented in tree form, and the tree can be analyzed, navigated, and trans-
formed as part of the compilation.

 Each language (or compiler, really) has its own tree structure, and it’s up to the
AST implementors to determine the exact structure. In Groovy, each element of the
tree is an instance of the class ASTNode, and there’s a subclass for everything in the lan-
guage: BooleanExpression, ForStatement, WhileStatement, ClosureExpression, to
name a few. There are over 75 subclasses of ASTNode, and having a good IDE to help
you navigate the class hierarchy is highly recommended. Point your IDE to the

1 2

+ 3

+

Figure 9.3 An AST for the
expression 1 + 2 + 3

==

1 1

+ 2

BinaryExpression

BooleanExpression

AssertStatement

Figure 9.4 An AST for
the expression assert
1 + 1 == 2
Licensed to Mark Watson <nordickan@gmail.com>

270 CHAPTER 9 Compile-time metaprogramming and AST transformations
Groovy sources and you should be fine; some IDEs will automatically download them
for you.

9.3.1 Tools of the trade

At this point you no doubt have many questions about Groovy, ASTs, and class files.
Groovy compiles to Java class files, so to analyze bytecode of a .class file you can always
use the javap application from the JDK. But that’s a very low-level approach, which can
be time-consuming and frustrating, particularly if you’re trying to examine code of
any significant size. Luckily, there are many tools at your disposal if you’re interested
in digging a little deeper into how things work. If you plan on working with compile-
time metaprogramming then each of the tools listed here will be an invaluable asset in
your toolbox.

 Groovy Console’s AST browser and source viewer is GroovyConsole, which is
included in the Groovy installation and contains a tool that lets you view and analyze
the AST of a Groovy script. Once you have GroovyConsole open, you can analyze any
script using the menu item Script> View AST or the Ctrl-T shortcut (Cmd-T on
Macs). The window that opens is called the AST browser. The AST browser has three
parts: the tree view, the property table, and the decompiled source view, as shown in
figure 9.5.

 The tree view displays the AST of your script using a standard tree widget. You can
expand and navigate nodes, and otherwise explore the AST. As you click a tree node,
the property table on the right lists all of the properties of the node, and the main
GroovyConsole window highlights the source code corresponding to that AST node.
The decompiled source view, along the bottom of the window, displays the AST ren-
dered as Groovy source code. The generated source code is perhaps the easiest way to
understand what the AST contains because it’s much easier to read source code than a
tree component.

 Throughout this chapter we’ve shown snippets of equivalent generated source
code for several of the transforms. Now would be a great time to try examples within
the GroovyConsole’s AST browser and see the equivalent generated code for yourself.

Homogeneous versus heterogeneous AST
Heterogeneous AST is the term for having one subclass of ASTNode for each language
element. The tree is populated with many different types, and analyzing the tree
means reading the type of the tree leaves, not just reading the leaf properties. The
javac compiler from Oracle also uses a heterogeneous AST. The advantage is that
it’s easy to store and retrieve node-specific data from the AST leaves. Other lan-
guages use a homogeneous AST, where every node in the tree is the same type. Imag-
ine if all the objects in the entire tree were of the concrete type ASTNode. The main
advantage in this approach is that tree visitors are trivial to write, but static analysis
is more difficult. The book Language Implementation Patterns by Terence Parr (Prag-
matic Bookshelf, 2010) offers excellent in-depth coverage of ASTs.
Licensed to Mark Watson <nordickan@gmail.com>

271Exploring AST
You should change the Phase dropdown list between the various phases and refresh
the generated code to see how the output changes during the compilation process.
Setting the phase to Canonicalization is often useful, because most of the transforms
have been invoked by then but other details added later don’t clutter up the class file.

 The decompiled source viewer is one of the best features to learn and understand
how Groovy works. Even if you’re not attempting to write AST transformations, it can
be a real learning experience to see how different pieces of Groovy source code get
transformed into the final output.

9.3.2 Other tools

The last important tools are a good decompiler and debugger. A decompiler will
reverse-engineer the source code out of a class file, and the results can be quite amaz-
ing. Any Java decompiler should work perfectly well with Groovy, and there are many
open source and free ones to choose from. JD-GUI is also nice. It’s free for noncom-
mercial use but isn’t open source. Also a good IDE and debugger aid greatly when
exploring the large ASTNode class hierarchy. When there are over 75 subclasses to nav-
igate, it’s important to be able to quickly find the source code you need and view the

Figure 9.5 Groovy’s standard AST browser showing the AST data structures (top left), the properties
(top right), and the equivalent source code (bottom)
Licensed to Mark Watson <nordickan@gmail.com>

272 CHAPTER 9 Compile-time metaprogramming and AST transformations
current state of instances. There are several open source and free options available for
IDEs with great Groovy support.

 You’ve seen a lot already. We’re nearly ready to create our own transformations. But
first, we’ll examine a few approaches to writing ASTs, including using the AstBuilder.

9.4 AST by example: creating ASTs
This section examines creating ASTs in more depth, first by building an AST manually,
and then using the three different approaches offered by AstBuilder. It’s hard to
make a general comparison between the options. Each approach has advantages
and disadvantages and should be used in different scenarios. The examples in this
section all produce the same AST: a return statement that returns a new instance of
java.util.Date. This is the same thing as the source code return new Date(), except
that it’s the AST and not the actual source. The examples start at the lowest level possi-
ble, working directly with ASTNode instances, and ascend toward a higher level, where
you can write code that’s automatically converted into an AST. Let’s see it in action.

9.4.1 Creating by hand

The most basic approach is to directly manipulate and construct the concrete classes.
The main disadvantages are verbosity, complexity, and a lack of abstraction. As you
can see in the following listing, the code to produce just a return statement can
become quite large.

import org.codehaus.groovy.ast.ClassHelper
import org.codehaus.groovy.ast.expr.*
import org.codehaus.groovy.ast.stmt.ReturnStatement

def ast = new ReturnStatement(
 new ConstructorCallExpression(
 ClassHelper.make(Date),
 ArgumentListExpression.EMPTY_ARGUMENTS
)
)

assert ast instanceof ReturnStatement

For simple problems that approach suffices. An IDE gives you code completion and
some type checking, and should allow you to navigate to the source code of the
ASTNode class hierarchy, which helps a lot with the learning process. Also, there are no
limitations on the AST you can produce. Any tree whatsoever can be created by directly
using the classes like this, which isn’t the case for some of the other approaches. Also,
it’s quite easy to merge in information from the calling context.

 There are some disadvantages to this approach, and for larger, more real-world
examples this technique becomes a burden. First, the code to create an AST quickly
becomes large and doesn’t really resemble the source code it’s trying to model. For
big examples it’s difficult to read the source code you write and mentally map it into

Listing 9.28 Creating AST objects by hand
Licensed to Mark Watson <nordickan@gmail.com>

273AST by example: creating ASTs
the code it’s meant to produce. Second, you need to manage things like Variable-
Scope and tying the nodes together yourself. For example, many tasks involve two
steps, such as creating a MethodNode and then adding it to the parent class. To be
effective you’ll need to learn a large part of the API. Third, this approach offers no
abstraction layer over the raw AST.

 The lack of abstraction can be seen in the example. For example, a Constructor-
CallExpression accepts a ClassNode and an Expression as arguments (they’re used
as the constructor type and arguments). To write this AST by hand you need to know
that an empty argument list is ArgumentListExpression.EMPTY_ARGUMENTS and not
null. Also, you need to know that the best type to use for the constructor arguments is
an ArgumentListExpression object. You can use other types but they probably aren’t
what you intend. Lastly and most importantly, a ClassNode should be made by calling
the ClassHelper.make() method.

Before looking at alternatives, it’s worth pointing out that there are some utility classes
that reduce the burden of using the AST nodes directly. The main class is General-
Utils in the org.codehaus.groovy.ast.tools package. Using static imports from
this class allows you to improve the previous listing to look like the following.

import org.codehaus.groovy.ast.stmt.ReturnStatement
import static org.codehaus.groovy.ast.ClassHelper.make
import static org.codehaus.groovy.ast.tools.GeneralUtils.*

def ast = returnS(ctorX(make(Date)))
assert ast instanceof ReturnStatement

This is an improvement but this helper class doesn’t cover all of the ASTNode classes
and you still need to know most of the implementation details of the ASTNode classes.
A good abstraction should allow you to create ASTNode types without knowing all of
this low-level information. Luckily, Groovy provides the AstBuilder.

9.4.2 AstBuilder.buildFromSpec

This approach provides a light DSL over the ASTNode class hierarchy. It should look
similar to listing 9.28 but it’s slightly cleaner as can be seen in the following listing.

Creating a ClassNode with ClassHelper

The ClassHelper class contains logic for creating and caching a ClassNode cor-
rectly, which isn’t exactly a simple process. If you need a ClassNode object, then
always create it through ClassHelper, passing either a Class reference or a String
representing a fully qualified class name. The String parameter is useful when you
don’t want a compile-time dependency on the target class.

Listing 9.29 Using the GeneralUtils helper class
Licensed to Mark Watson <nordickan@gmail.com>

274 CHAPTER 9 Compile-time metaprogramming and AST transformations
import org.codehaus.groovy.ast.builder.AstBuilder
import org.codehaus.groovy.ast.stmt.ReturnStatement

def ast = new AstBuilder().buildFromSpec {
 returnStatement {
 constructorCall(Date) {
 argumentList {}
 }
 }
}

assert ast[0] instanceof ReturnStatement

The AstBuilder is a convenient shortcut for writing shorter, more concise AST. A
shorthand notation exists for every ASTNode type, and much of the API is simplified.
For instance, you can work directly with Class objects instead of ClassNode objects,
and scopes are largely handled for you. Similar to the by-hand approach, there are no
limitations on the AST you create and it’s easy to merge in code and parameters from
the surrounding context. The best documentation for buildFromSpec is the unit test,
which shows the correct use of every single node type.

 AstBuilder.buildFromSpec helps eliminate verbosity and some complexity. It
almost matches the flexibility of calling the constructors by hand, suffering only from
the fact that passing and referencing Class literals means that Class must be present
at compile time (a limitation the manual approach doesn’t share). The buildFrom-
Spec API currently doesn’t allow you to use ClassHelper in all cases—class literals are
sometimes required. But the main disadvantage is that the DSL offers little in terms of
abstraction. To effectively write a new AST you’ll still need to know a lot about what
AST you want to produce. You don’t need to worry about scopes, but you’ll need to know
that a ReturnStatement requires an Expression and a ConstructorCallExpression
requires an ArgumentListExpression. The next two alternatives offer better abstrac-
tion but with some loss in flexibility.

9.4.3 AstBuilder.buildFromString

The AstBuilder object has a buildFromString method that converts Groovy source
code into the corresponding AST. By default it compiles the code to the class-generation
phase and returns only the AST for the enclosed script, not any classes defined within the
script. Of course, both of these behaviors can be changed by passing different arguments
to the method. This approach allows you to create an AST without knowing anything
about the underlying object hierarchy: at this point we have a genuine abstraction over
the AST classes. The following listing shows the buildFromString approach in action.

import org.codehaus.groovy.ast.builder.AstBuilder
import org.codehaus.groovy.ast.stmt.BlockStatement
import org.codehaus.groovy.ast.stmt.ReturnStatement

Listing 9.30 Creating AST objects using buildFromSpec

Listing 9.31 Creating AST objects using buildFromString
Licensed to Mark Watson <nordickan@gmail.com>

275AST by example: creating ASTs
def ast = new AstBuilder().buildFromString('new Date()')
assert ast[0] instanceof BlockStatement
assert ast[0].statements[0] instanceof ReturnStatement

The only knowledge required is that a script is a BlockStatement and that Block-
Statement has a ReturnStatement in its statement list. As you can see, this is a terse
mechanism for AST creation, and the intent of the produced code is clear. This is the
preferred approach when accepting and compiling user input, because it can usually
be converted into a String.

 The main limitation is flexibility. How exactly do you merge in code or variables
from the calling context? You need to resort to String concatenation as shown in the
following listing, which creates a method returning twice .

import org.codehaus.groovy.ast.builder.AstBuilder
import org.codehaus.groovy.control.CompilePhase
import org.codehaus.groovy.ast.*

def approxPI = 3.14G
def ast = new AstBuilder().buildFromString(
 CompilePhase.CLASS_GENERATION,
 false,
 'static double getTwoPI() { def pi = ' + approxPI + '; pi * 2 }'
)

assert ast[1] instanceof ClassNode
def method = ast[1].methods.find { it.name == 'getTwoPI' }
assert method instanceof MethodNode

That’s a little complicated! Pushing compile-time data, such as the approximate value of
 in the preceding example, into the AST requires String concatenation and potentially
escaping, and getting the MethodNode requires searching through all the methods
defined on the class and pulling it out by name. And we haven’t even looked into how
you might access other ASTNode implementation details such as VariableScope objects.

 For more advanced examples it might be too difficult to manage this complexity.
You can use the buildFromString method for this type of task, but it’s fraught with
difficulties. This is an abstraction over ASTNodes that doesn’t easily allow you to dive
deeper into the code when the need arises. Finally, synthesizing some types of struc-
tural nodes is difficult.

 The buildFromString method and the next approach are great for creating
method bodies, expressions, or statements. But if you’re dealing with structures like
ClassNodes, MethodNodes, or FieldNodes, then it’s easier to use buildFromSpec or cre-
ate the nodes by hand.

9.4.4 AstBuilder.buildFromCode

The last approach is possibly the most interesting. Using the buildFromCode method
you can specify your source code directly as source code, and the builder turns it into

Listing 9.32 Trying to mix dynamic code with buildFromString
Licensed to Mark Watson <nordickan@gmail.com>

276 CHAPTER 9 Compile-time metaprogramming and AST transformations
AST. This is similar to the buildFromString approach except that the input isn’t a
String, it’s just code.

import org.codehaus.groovy.ast.builder.AstBuilder
import org.codehaus.groovy.ast.stmt.ReturnStatement

def ast = new AstBuilder().buildFromCode {
 new Date()
}
assert ast[0].statements[0] instanceof ReturnStatement

This is quite simple, and it reads like code because it is code! The advantage is that the
Groovy compiler and IDEs will highlight syntax correctly, do code completion, and gen-
erally validate your input. But its strength is also its weakness. The main disadvantage is
that the Groovy compiler will validate your input. For instance, you cannot declare a
new class within a closure body, so declaring a new class (or method) using buildFrom-
Code isn’t allowed. Also, there’s no way to bind in data from the enclosing context. The
new Date() expression here is only executed at runtime. The scope at compile time is
different from the scope at runtime, so any variables in scope at compile time won’t be
available when the code is executed. There’s no way to write the getTwoPI() method
using this approach. When it’s appropriate, this is the most elegant solution, and offers
the best abstraction level—but there’s a price to pay in flexibility.

 There are many different scenarios where ASTs can be useful, and there are several
APIs to help you build them. There’s no one right way to create an AST. In general,
our advice is the same for most things in life: start simple, stay simple. If you think the
AstBuilder simplifies your implementation, then by all means use it. But if you find
yourself fighting against it, or spending too much time figuring out how it works, then
just go the simple route and write the AST by hand. There’s a lot to learn with com-
pile-time metaprogramming, and your time is probably better spent writing a few
more tests than trimming down your AST generation by a few more lines of code.

 If the caveats on AstBuilder use leave you feeling a little underwhelmed, stay
tuned for Groovy macros that aim to remove some of the limitations of AstBuilder.
Groovy macros are scheduled in Groovy’s roadmap for version 2.5.

 You’ve seen plenty of built-in AST transforms and you now understand a lot more
about the AST data structures. Let’s put your newfound knowledge to use and let you
create some of your own AST transforms!

9.5 AST by example: local transformations
All of the examples presented so far, such as @ToString and @Canonical, are known as
local transformations. A local transformation relies on annotations to rewrite Groovy code.
There are other forms of transformations as well; however a local transformation has
the advantage of being the easiest to write: Groovy takes care of instantiating and invok-
ing your transformation correctly, as well as making sure to avoid calling it when it’s not

Listing 9.33 Creating AST objects using buildFromCode
Licensed to Mark Watson <nordickan@gmail.com>

277AST by example: local transformations
needed. Features written as local transformations modify the class generated by Groovy
and are activated by annotating existing code structures, such as a method or a class.

 Let’s start your exploration with a simple example of a local transformation. To
demonstrate a local transformation, you’re going to create a method annotation that
marks a method as being a Java main method. The transformation will add a main
method that can be a public entry point to run the class, and that main method will
create an instance of your class and call its annotated method. What you want to end
up with is the ability to write code that looks like this:

class Greeter {
 @Main
 def greet() {
 println "Hello from the greet() method!"
 }
}

There’s no point in running this code at this point, because the @Main annotation
doesn’t exist yet, but after just a few more steps, you’ll have written this annotation
and also a transformation that creates a main method on the Greeter class. This main
method will create an instance of the Greeter class and then invoke the greet()
method on it. After your transformation runs, the source equivalent of the modified
AST tree will be

class Greeter {
 def greet() {
 println "Hello from the greet() method!"
 }

 public static void main(String[] args) {
 new Greeter().greet()
 }
}

and the output from invoking this class as a console application will be

Hello from the greet() method!

From the sample use you can glean some information about the objects involved. You
need to define an annotation called @Main, and that must trigger the AST transforma-
tion to create the main method. There isn’t much more to it than that. Creating and
invoking the object is all done internally by Groovy. Figure 9.6 shows the classes
involved with a local AST transformation.

 You could define the @Main annotation using Groovy or as a standard Java annota-
tion; there’s no Groovy magic involved. If you chose Groovy you’d follow normal con-
ventions and place it in a file called Main.groovy. Here’s what it would look like (a full
listing is coming shortly):

@Retention(RetentionPolicy.SOURCE)
@Target([ElementType.METHOD])
@GroovyASTTransformationClass(classes = [MainTransformation])
@interface Main {}
Licensed to Mark Watson <nordickan@gmail.com>

278 CHAPTER 9 Compile-time metaprogramming and AST transformations
The retention policy should be SOURCE, meaning that the compiler doesn’t carry the
presence of this annotation through to the final class file. The target element type
specifies what the annotation can be applied to—so in this case, you’re going to use
METHOD. If you’ve written normal Java annotations before you’ll have come across
these concepts.

 The use of the GroovyASTTransformationClass annotation is special to the
Groovy compiler. It specifies the class (or classes) implementing the logic of the AST
transformation, and is how the compiler binds the pieces together. In this case, that’s
the MainTransformation class, which you’ll write next. Before seeing all of the details
though, let’s have a look at a class skeleton and sketch out what the transformation
should do.

 Following normal naming conventions, you’d place your code in a file called Main-
Transformation.groovy and that file would have the following form:

@GroovyASTTransformation(phase = CompilePhase.INSTRUCTION_SELECTION)
class MainTransformation implements ASTTransformation {
 void visit(ASTNode[] astNodes, SourceUnit sourceUnit) {
 // perform any checks
 // construct appropriate main method
 // add main method to class
 }
}

There are two important things to note about this example:

■ The class is annotated with @GroovyASTTransformation, which informs the
Groovy compiler of the phase in which you want the transformation to be
invoked. This is a required annotation for a transformation and must be
Semantic Analysis or later. It can’t be any earlier than that because your original
annotation wouldn’t be loaded at that point. There’s a bit of a chicken and egg
problem with trying to go earlier.

■ Your transformation class must implement the ASTTransformation interface,
which has a single method, called visit. The visit method takes two parame-
ters. For simple transformations, you only need to use the ASTNode[] parameter.
Element 0 contains the annotation that triggered the transformation and ele-
ment 1 contains the ASTNode that was annotated.

Greeter ASTTransformation

<<Annotation>>
Main

Uses

MainTransformation

Implements

Refers to Figure 9.6 Classes
involved with the @Main
local AST transformation
Licensed to Mark Watson <nordickan@gmail.com>

279AST by example: local transformations
Your MainTransformation class will be instantiated and invoked by Groovy when the
@Main annotation is encountered. The code inside the visit method must accom-
plish these steps:

1 Perform any checks.
2 Find the method that was annotated with @Main (in this case greet()).
3 Get a reference to the enclosing class (Greeter).
4 Create a synthetic public static void main method and instantiate the Greeter

instance within it.
5 Invoke the greet() method on the Greeter instance.
6 Add the new method onto the Greeter class.

There’s one more requirement that we haven’t mentioned until now. Before compiling
your Greeter class, compiled versions of the classes for @Main and MainTransformation
must be on the classpath. There are several ways to achieve this. If you’re compiling by
hand from the command line or using your IDE, ensure that those files are compiled
first. If you have a build tool like Gradle you can configure your build file so that com-
pilation of your transformation classes occurs before compilation of classes that use
those transformations. For the purposes of this chapter, place everything in the one
source file but use a new GroovyShell to compile your Greeter class after everything
else has been compiled.

 The complete example is shown in the following listing.

import org.codehaus.groovy.ast.*
import org.codehaus.groovy.transform.*
import java.lang.annotation.*
import org.codehaus.groovy.control.*

@Retention(RetentionPolicy.SOURCE)
@Target([ElementType.METHOD])
@GroovyASTTransformationClass(classes = [MainTransformation])
@interface Main {}

import static groovyjarjarasm.asm.Opcodes.*
import static org.codehaus.groovy.ast.ClassHelper.VOID_TYPE
import static org.codehaus.groovy.ast.tools.GeneralUtils.*

@GroovyASTTransformation(phase = CompilePhase.INSTRUCTION_SELECTION)
class MainTransformation implements ASTTransformation {
 private NO_EXCEPTIONS = ClassNode.EMPTY_ARRAY
 private STRING_ARRAY = ClassHelper.STRING_TYPE.makeArray()

 void visit(ASTNode[] astNodes, SourceUnit sourceUnit) {
 if (astNodes?.size() != 2) return
 if (!(astNodes[0] instanceof AnnotationNode)) return
 if (astNodes[0].classNode.name != Main.name) return
 if (!(astNodes[1] instanceof MethodNode)) return

Listing 9.34 Implementing the ASTTransformation for the @Main annotation

Annotation
class definition

Defensive
programming
via guard
clauses
Licensed to Mark Watson <nordickan@gmail.com>

280 CHAPTER 9 Compile-time metaprogramming and AST transformations

)

 def targetMethod = astNodes[1]
 def targetClass = targetMethod.declaringClass
 def targetInstance = ctorX(targetClass)
 def callTarget = callX(targetInstance, targetMethod.name)
 def mainBody = block(stmt(callTarget))
 def visibility = ACC_STATIC | ACC_PUBLIC
 def parameters = params(param(STRING_ARRAY, 'args'))
 targetClass.addMethod('main', visibility,
 VOID_TYPE, parameters, NO_EXCEPTIONS, mainBody)
 }
}

new GroovyShell(getClass().classLoader).evaluate '''
class Greeter {
 @Main
 def greet() {
 println "Hello from the greet() method!"
 }
}
'''

The visit method is where the interesting action happens. It shows how to create
ASTNode objects. You can call constructors directly, or use the GeneralUtils helper
class as shown here, or you’re also free to use the AstBuilder as discussed in section 9.4.
The code sample does some error checking on the input, because in production code
it’s often best to state your assumptions with a few assertions or guard clauses.

 It may not be obvious, but there are a few assumptions made even in this small
example. The enclosing class must have a no-argument constructor (because you call
new Greeter()) that creates the object in a usable state. The example also doesn’t
cater to annotating multiple methods, or annotating a static method, or handling an
existing main method. You can obviously extend this example in numerous ways if
you’re feeling adventurous. Let’s look at a few extensions now.

import org.codehaus.groovy.ast.*
import org.codehaus.groovy.ast.stmt.BlockStatement
import org.codehaus.groovy.transform.*
import java.lang.annotation.*
import org.codehaus.groovy.control.*

@Retention(RetentionPolicy.SOURCE)
@Target([ElementType.METHOD])
@GroovyASTTransformationClass(classes = [MainTransformation2])
@interface Main2 {
 boolean merge() default false
}

import static org.codehaus.groovy.ast.ClassHelper.VOID_TYPE
import static org.codehaus.groovy.ast.tools.GeneralUtils.*

@GroovyASTTransformation(phase = CompilePhase.INSTRUCTION_SELECTION)
class MainTransformation2 extends AbstractASTTransformation {
 private MSG1 = "@Main2 annotation use requires no-arg constructor!"

Listing 9.35 Implementing an enhanced @Main2 transformation

New
Greeter().greet(

Adds public static
void main method

Defines an
annotation
attribute
Licensed to Mark Watson <nordickan@gmail.com>

281AST by example: local transformations
 private MSG2 = "@Main2 annotation used but main already exists!"
 private NO_EXCEPTIONS = ClassNode.EMPTY_ARRAY
 private NO_PARAMS = Parameter.EMPTY_ARRAY
 private STRING_ARRAY = ClassHelper.STRING_TYPE.makeArray()

 void visit(ASTNode[] astNodes, SourceUnit sourceUnit) {
 init(astNodes, sourceUnit)
 def (anno, mainMethod) = astNodes

 boolean merge = getMemberValue(anno, 'merge')
 def mainClass = mainMethod.declaringClass
 def callTarget
 if (mainMethod.isStatic()) {
 callTarget = mainClass
 } else {
 if (!hasNoArgConstructor(mainClass)) {
 addError(MSG1, mainMethod)
 return
 }
 callTarget = ctorX(mainClass)
 }
 def callStatement = stmt(callX(callTarget, mainMethod.name))
 def parameters = params(param(STRING_ARRAY, 'args'))
 def existingMain = mainClass.getDeclaredMethod('main', parameters)
 if (existingMain && !merge) {
 addError(MSG2, mainMethod)
 return
 }

 if (existingMain) {
 if (existingMain.code instanceof BlockStatement) {
 existingMain.code.addStatement(callStatement)
 } else {
 block(existingMain.code).addStatement(callStatement)
 }
 } else {
 mainClass.addMethod('main', ACC_STATIC | ACC_PUBLIC,
 VOID_TYPE, parameters, NO_EXCEPTIONS, block(callStatement))
 }
 }

 private hasNoArgConstructor(mainClass) {
 def constructors = mainClass.declaredConstructors
 def explicitNoArg = constructors.find { it.parameters == NO_PARAMS }
 def implicitNoArg = constructors.size() == 0
 implicitNoArg || explicitNoArg
 }
}

new GroovyShell(getClass().classLoader).evaluate '''
class Greeter {
 public static void main(String[] args) {
 println 'Hello from main()'
 }

Reads
annotation
attribute value

Indicates error if
missing no-arg
constructor

Indicates error
unless explicit
merging

Handles block
statement case

Handles single
statement case
Licensed to Mark Watson <nordickan@gmail.com>

282 CHAPTER 9 Compile-time metaprogramming and AST transformations
 @Main2(merge=true)
 def greet() {
 println "Hello from the greet() instance method!"
 }

 @Main2(merge=true)
 static greet2() {
 println "Hello from the greet2() static method!"
 }
}
'''

Several edge cases are now handled. We now check for two types of error. First, if the
class containing the method being annotated (the Greeter class in this example)
doesn’t have a no-arg constructor we stop compilation with an error message. Second,
if an existing main method is found we’ll also treat that as an error unless the annota-
tion’s merge attribute has been set to true, in which case we’ll add the calling code to
the existing main method. We’ll also cater to static methods annotated with @Main2
calling that static method from inside the main method instead of creating a new
instance. Finally, there’s an implementation detail we need to handle. For the case of
adding code to an existing main method, we’ll account for main methods containing
just a single statement as well as ones that contain a block of statements.

 The edge cases of writing transformations can sometimes be challenging. Writing
an AST transformation forces you to sit and think about just what could happen in the
language, and you’ll come away from the experience with a much better understand-
ing of Groovy.

 When you write an AST transformation, you’ll need to decide which compiler
phase to target. The choice depends on what you’re trying to do to the AST. A full
description of the different compiler phases, as well as some hints for choosing which
phase to target, appears in appendix F.

 Local transformations require an annotation, which isn’t particularly limiting
when you consider that Groovy annotations are more flexible than Java’s. They can
appear in more places within a source file than in Java, including import statements.
When in doubt choose a local transformation because it’s the easiest to write. You can
always refactor to a global transformation or hard-code a transformation into a class-
loader later.

9.6 AST by example: global transformations
Global transformations are similar to local transformations except that no annotation
is required to wire-in a visitor. Instead of having the end user specify when your trans-
formation is applied, global transformations are simply applied to every single source
unit in the compilation. Global transformations can also be applied to any phase in
the compilation, even those before semantic analysis. With this flexibility comes a per-
formance penalty. All compilations will take longer, even if your transformation isn’t
used. For this reason you should use global transformations with reticence and consider
Licensed to Mark Watson <nordickan@gmail.com>

283AST by example: global transformations
implementing global transformations in Java or using @CompileStatic for the perfor-
mance benefits.

 Global transformations are specified in JAR file metadata. To deploy a global trans-
formation it must be packaged into a JAR file, and the META-INF metadata must spec-
ify the fully qualified path of your transformation class. Let’s see this in action with an
example. Imagine a transformation that adds a static method to every class that
returns the date and time of the compilation as a String. You could use it from any
class or script as follows:

println 'script compiled at: ' + compiledTime
class MyClass { }
println 'script class compiled at: ' + MyClass.compiledTime

Don’t try to run this as is just yet because we haven’t created the global transformation
yet. We’ll have a test coming up shortly that will give you a proper chance to see this
transform in action. Also, remember that free-standing scripts without classes still get
generated into a Script subclass during compilation, so adding a getCompiledTime()
method to every Class in the SourceUnit should be enough to accomplish this fea-
ture. For this transformation we’re going to add a public static method called get-
CompiledTime to every class in the SourceUnit, and it will simply return the date of
compilation as a String.

 In local transformations we manipulated the supplied ASTNode[] to find the con-
text in which we were invoked. For global transformations this array holds little of
interest. Instead we need to query the SourceUnit to find our source AST. It contains
all the classes that were defined in the file along with the script, which itself is a class of
type Script.

 The following listing shows the implementation of our global transformation.

package regina

import org.codehaus.groovy.ast.*
import org.codehaus.groovy.transform.*
import org.codehaus.groovy.control.*
import org.codehaus.groovy.ast.builder.AstBuilder
import static groovyjarjarasm.asm.Opcodes.*

@GroovyASTTransformation(phase=CompilePhase.CONVERSION)
class CompiledAtASTTransformation implements ASTTransformation {

 private static final compileTime = new Date().toString()

 void visit(ASTNode[] astNodes, SourceUnit sourceUnit) {
 List classes = sourceUnit.ast?.classes
 classes.each { ClassNode clazz ->
 clazz.addMethod(makeMethod())
 }
 }

Listing 9.36 Adding a new method to a class using a global AST transformation
Licensed to Mark Watson <nordickan@gmail.com>

284 CHAPTER 9 Compile-time metaprogramming and AST transformations
 MethodNode makeMethod() {
 def ast = new AstBuilder().buildFromSpec {
 method('getCompiledTime', ACC_PUBLIC | ACC_STATIC, String) {
 parameters {}
 exceptions {}
 block {
 returnStatement {
 constant(compileTime)
 }
 }
 annotations {}
 }
 }
 ast[0]
 }
}

For simplicity, the error checking was left out of the example; in a real transformation
you’d apply similar guard clauses to the ones we used in the @Main example from list-
ing 9.34. Now all we need to do is tell the compiler about our transformation so it can
be applied appropriately.

 The first requirement is that the transformation class or classes plus a particularly
named metadata configuration file must be on the classpath. A common way to do
this is to create a JAR file containing all of the necessary pieces. The JAR file must con-
tain your AST transformation classes as well as a special file named org.code-
haus.groovy .transform.ASTTransformation in the META-INF/services directory. By
convention, the services directory is the standard place for putting configuration
metadata files like the one we need to create. The configuration file is a simple text
file, and each line is a fully qualified class name of an AST transformation. So, for our
case we need the single-line regina.CompiledAtASTTransformation.

 The full contents of our JAR file, including classes and services, can be seen in fig-
ure 9.7.

Figure 9.7 Contents of JAR file containing CompiledAtASTTransformation
Licensed to Mark Watson <nordickan@gmail.com>

285AST by example: global transformations
The name of the JAR file doesn’t matter. As long as it’s on the classpath during compi-
lation, the Groovy compiler will read the configuration file and apply any transforma-
tions listed within it. To make things easy, the sample code for this book has a little
Gradle build file to generate the JAR for you. Just run gradlew jar at the command
line to create the JAR in your build/libs folder. Feel free to create the JAR manually or
using your own tool of choice.

 Once we have our global transform on our Groovy classpath, we can test it by com-
piling any class or script. The following listing shows how.

package regina

class CompiledAtASTTransformationTest extends GroovyTestCase {
 // matches format: EEE MMM dd HH:mm:ss zzz yyyy
 static DATE_FMT = /\w{3} \w{3} \d\d \d\d:\d\d:\d\d \S{3,9} \d{4}/

 @Override
 protected void setUp() throws Exception {
 super.setUp()
 }

 void testShouldApplyToThisTest() {
 assert compiledTime.toString() =~ DATE_FMT
 }

 void testShouldApplyToScriptAndScriptClasses() {
 assertScript '''
 import static regina.CompiledAtASTTransformationTest.*
 assert compiledTime.toString() =~ DATE_FMT
 class MyClass { }
 assert MyClass.compiledTime.toString() =~ DATE_FMT
 '''
 }
}

The fact that the global transformation will typically be packaged in a JAR file has an
effect on your project structure. If you want to use the transformation within your
project, then the transformation JAR must be built before the compilation of the rest
of your project. For most build tools and IDEs this means creating a separate project
for the transformation, possibly along with a separate build script. Again, to make
your life simple, the sample source code uses Gradle to make it easy for you to run the
preceding test without you having to go to such trouble and without the global trans-
form impacting any other Groovy work you might be doing. Simply run gradlew test
from the command line to run the test.

 There’s one more feature of global AST transformations that DSL writers find use-
ful. You can specify a file extension to which the Groovy compiler will automatically
apply your transformation. The mechanism to define a file extension is similar to
defining the transformation. Simply write the file extensions (without any wildcards)
into a file called org.codehaus.groovy.source.Extensions and include it in your JAR

Listing 9.37 Example showing use of getCompiledTime() on a class
Licensed to Mark Watson <nordickan@gmail.com>

286 CHAPTER 9 Compile-time metaprogramming and AST transformations
next to the org.codehaus.groovy.transform.ASTTransformation file. Each line of the
file should list a file extension without any sort of wildcards attached. Your final JAR
file needs to contain both the ASTTransformation file and the extensions configura-
tion file, plus any required .class files.

 There’s a lot to learn with compile-time metaprogramming, and your time is prob-
ably better spent writing a few more tests than trimming down your AST generation by
a few more lines of code. That brings us to our next topic: testing.

9.7 Testing AST transformations
Test, test, test. It’s hard to overtest an AST transformation because source code can come
in a dizzying array of variations, each exposing unique edge cases. Also, during upgrades
between Groovy versions you need a good regression test. Luckily, transformations are
easy to test. Local transformations are the most testable. Typically, you create a nested
class within your test case that contains your annotation and then test against that class.
Consider the test for @WithReadLock in the following listing.

import groovy.transform.WithReadLock
import java.util.concurrent.locks.ReentrantReadWriteLock
import static java.lang.reflect.Modifier.*

class ReadWriteLockTestWithNestedClass extends GroovyTestCase {

 static class MyClass {
 @WithReadLock
 void readerMethod1() {}
 }

 void testLockFieldDefaultsForReadLock() {
 def field = MyClass.getDeclaredField('$reentrantlock')
 assert isPrivate(field.modifiers)
 assert !isTransient(field.modifiers)
 assert isFinal(field.modifiers)
 assert !isStatic(field.modifiers)
 assert field.type == ReentrantReadWriteLock
 }
}

Error reporting
Errors can be reported using the addError and addException methods on Source-
Unit; however, it’s much better to use an ErrorHandler, which can be retrieved
from the SourceUnit with the getErrorHandler() method. This object collects all
of the error messages during the compile and has a broader API. There are methods
to add an error and fail the build, add an error but continue, add warnings, and more.
And please, for the sake of your users, always add error messages that contain a
good description of what happened, the conditions that caused the error, and the line
number where the error occurred. If your users really wanted cryptic or bizarre compi-
lation failures, they’d be using C++.

Listing 9.38 Possible unit test for the @WithReadLock transformation

Nested
class
Licensed to Mark Watson <nordickan@gmail.com>

287Testing AST transformations
This test case asserts that WithReadLock on a method creates a private final instance
field called $reentrantlock with type ReentrantReadWriteLock. This is a simple and
readable approach, and it works especially well within an IDE where the class can be
verified and easily seen in searches. But there are two disadvantages. One, with a lot of
tests come a lot of nested classes, and this can clutter up your namespace. Your build
will create many, many extra classes that don’t have meaning outside of a specific test
method. And two, there’s no way to debug the AST transformation in an IDE because
by the time the test runs the class is already compiled. To work around these issues you
can use a GroovyClassLoader to compile the class. The same test is presented in the
following listing but this time using a GroovyClassLoader.

import java.util.concurrent.locks.ReentrantReadWriteLock
import static java.lang.reflect.Modifier.*

class ReadWriteLockTestClassLoader extends GroovyTestCase {

 public void testLockFieldDefaultsForReadLock() {
 def tester = new GroovyClassLoader().parseClass('''
 class MyClass {
 @groovy.transform.WithReadLock
 public void readerMethod1() { }
 }
 ''')

 def field = tester.getDeclaredField('$reentrantlock')
 assert isPrivate(field.modifiers)
 assert !isTransient(field.modifiers)
 assert isFinal(field.modifiers)
 assert !isStatic(field.modifiers)
 assert field.type == ReentrantReadWriteLock
 }
}

With this approach debugger breakpoints should be hit when compiling MyClass,
making development and troubleshooting much easier. Also, all class definitions are
local to the test method, so the test isn’t polluted with dozens of private classes and
there are never naming conflicts. But the class definition within a string makes it more
difficult to find uses of your annotation. If you need to create instances or run a script
as setup, you may want to use GroovyShell instead of GroovyClassLoader, as shown in
the following listing.

import java.lang.reflect.Modifier

class ReadWriteLockTestGroovyShell extends GroovyTestCase {

 public void testLockFieldDefaultsForReadLock() {
 def tester = new GroovyShell().evaluate('''
 import groovy.transform.WithReadLock

Listing 9.39 Improved unit test for the @WithReadLock transformation

Listing 9.40 An AST transformation unit test based on GroovyShell
Licensed to Mark Watson <nordickan@gmail.com>

288 CHAPTER 9 Compile-time metaprogramming and AST transformations
 class MyClass {
 @WithReadLock
 public void readerMethod1() { }
 }
 new MyClass()
 ''')

 def field = tester.getClass().getDeclaredField('$reentrantlock')
 assert Modifier.isPrivate(field.modifiers)
 // and more assertions...
 }
}

Notice how this script returns a new instance of MyClass. GroovyClassLoader and
GroovyShell are similar, and which you use is largely a matter of preference. One tip:
try to leave your assertions out of the string script. The more you can leave out of the
string the better, because tools will have a much easier time understanding and sup-
porting your code.

 Global transformations are a little harder to test because they must generally be
packaged and on the classpath before your test is compiled. To make testing global
transformations easier, Groovy contains a class created specifically for testing called
TransformTestHelper. You configure the object with a transformation and a compiler
phase in which the transform should run, and then ask it to compile a file or string
into a class you can test against. The following listing shows an example of Transform-
TestHelper.

import org.codehaus.groovy.tools.ast.TransformTestHelper
import static groovy.test.GroovyAssert.shouldFail
import static org.codehaus.groovy.control.CompilePhase.*

def DATE_FMT = /\w{3} \w{3} \d\d \d\d:\d\d:\d\d \S{3,9} \d{4}/

def folder = new File('src/main/groovy/regina')
def source = new File(folder, 'CompiledAtASTTransformation.groovy')
def transform = getClass().classLoader.parseClass(source).newInstance()

def helper = new TransformTestHelper(transform, PARSING)
def clazz = helper.parse(' class MyClass {} ')
shouldFail(MissingMethodException) {
 clazz.getCompileTime()
}

helper = new TransformTestHelper(transform, CONVERSION)
clazz = helper.parse(' class MyClass {} ')
assert clazz.getCompiledTime()
assert clazz.getCompiledTime() =~ DATE_FMT

Finally, Groovy comes with an AST transformation aimed at testing other AST transfor-
mations: @groovy.transform.ASTTest. While the tests we’ve shown you so far are test-
ing the behavior of the AST transformation once it’s been applied, testing an AST
transformation properly requires you to perform assertions on the AST itself. For

Listing 9.41 Using TransformTestHelper for testing transformations
Licensed to Mark Watson <nordickan@gmail.com>

289Testing AST transformations

Ann
an enc
example, each AST node contains a map of custom metadata, called nodeMetaData,
where the writer of an AST transformation is allowed to store information. This fea-
ture is also used internally by the compiler. The type checker, written in the form of
an AST transformation, also stores inferred types in the form of node metadata. The
problem is that this information isn’t available in the class file or at runtime. This
means that TransformTestHelper wouldn’t be able to access it because the informa-
tion is lost.

 This means that when using TransformTestHelper, you’re testing the result of the
AST transformation, but you’re not testing the transformation itself. @ASTTest will let
you do that. It’s an annotation that you can put on any AST node that accepts annota-
tions, and that requires two arguments: a compile phase and a code block. For exam-
ple, you can write:

@ASTTest(phase=CompilePhase.SEMANTIC_ANALYSIS, value={
 assert node instanceof DeclarationExpression
})
def name = 'Testing an AST transformation'

As you can see, the code block, in the form of a closure, has access to a special variable
called node, which corresponds to the annotated node. This allows you to write cus-
tom assertions on the AST itself! Writing CompilePhase.SEMANTIC_ANALYSIS means
that the assertion will be executed after the semantic analysis phase has completed.

 Because not all AST nodes accept annotations, in addition to the node variable, the
code block gives access to a helper method called lookup. The role of this method is to
search for a specific AST node starting from the annotated node. Let’s imagine that you
want to perform an assertion on a for loop. As you cannot annotate the for loop
directly, we’ll use the lookup method to find it, as shown in the following listing.

import groovy.transform.ASTTest
import org.codehaus.groovy.ast.stmt.ForStatement
import org.codehaus.groovy.control.CompilePhase

@ASTTest(phase=CompilePhase.SEMANTIC_ANALYSIS, value={
 lookup('anchor').each { n ->
 assert n instanceof ForStatement
 }
})
void doSomething() {
 println 'Hello, Groovy!'
 anchor: for (int i=0; i<10;i++) { println "Iteration $i" }
}

This technique, which uses a label as a marker, allows you to reach any AST node that
is inside the scope of a node that can be annotated. Using @ASTTest, you’re now capa-
ble of testing the transformation during the compilation itself, which is a big plus over
runtime checks.

Listing 9.42 Using @ASTTest with a lookup function

otates
losing
node

Calls lookup to find
a node labeled with
‘anchor’

Performs assertion
on each matching
node

Uses a label
on the node
Licensed to Mark Watson <nordickan@gmail.com>

290 CHAPTER 9 Compile-time metaprogramming and AST transformations
 Between GroovyShell, GroovyClassLoader, @ASTTest, and TransformTestHelper,
there are quite a few options for testing. The hard part of testing isn’t overall test cov-
erage, but covering the edge cases. For instance, do your tests cover code that’s writ-
ten as a script and code that’s written as a class? How about a mixture of both? Does it
cover inner classes and anonymous classes? Have you considered what happens with
internal naming conflicts? How does it run when other transformations are present?
Properly testing transformations is a fun challenge. There are many opportunities to
learn from your own experience but also the experience of others. The Groovy source
code contains many unit tests for transformations. Doing a little code archeology now
is time well spent, especially if it avoids a future late-night support call.

9.8 Limitations
Congratulations! You’ve almost finished your training in compile-time metaprogram-
ming. Consider yourself armed and dangerous, both to others and yourself. It may be
tempting to write a new language feature, but be careful. There are limitations and
drawbacks to mucking about with the Groovy compiler. This section contains the bare
minimum set of limitations you should know before embarking on your journey.

9.8.1 It’s early binding

Groovy’s power comes from late binding. Methods can be added to classes at runtime.
Method overloading is resolved at runtime. Missing method exceptions can be caught
and handled at runtime. In contrast, all the AST transformation work occurs at com-
pile time, making it less flexible than dynamic metaprogramming. It can be very use-
ful, but in general runs against the spirit of the dynamic parts of Groovy. If you can
find a runtime solution then use it. Sometimes the best answer to the question “When
should I use compile-time metaprogramming?” is “Only when you have to.”

9.8.2 It’s fragile

The syntax of Groovy and the GDK classes (anything in the groovy.* package) forms a
public contract that’s guaranteed to be backwards compatible between releases. You
may have noticed from the import statements in the code examples that most of the
AST-related code is in the org.codehaus.groovy packages. The backwards compatibil-
ity promises are weaker here. As new features are added to the language, there may be
instances where breaking changes are introduced to the AST node hierarchy.

9.8.3 It adds complexity

When you use compile-time metaprogramming you’re basically adding a feature to
the language. If you add too many features, your users will drown in complexity. If you
provide too many similar features, users may be confused about the best way to use an
object. Language designers talk about orthogonality and composition: features should
be independent of one another and be able to be used together without conflicts.
Complexity lies at the intersection of overlapping language features. Consider how
Licensed to Mark Watson <nordickan@gmail.com>

291Limitations
Java generics, autoboxing, and primitive types intersect. There are many edge cases
where unboxing a Boolean into a boolean throws a NullPointerException. Or a List
can hold all objects except primitives. When several features come together edge cases
occur, and sharp edges are dangerous. Be sparing in your cleverness.

9.8.4 Its syntax is fixed

AST transformations can change the meaning, or semantics, of code. For instance,
Spock repurposes the logical OR operator (|) and the break/continue label to have a
special meaning in test specifications. But Spock doesn’t introduce any new syntax.
The syntax of Groovy is fixed by the parser. Invalid Groovy won’t parse, and AST trans-
formations will not be invoked for it. You can change the semantics of the language,
but you cannot change the syntax…except that you actually can if you’re determined
enough. Under the covers, Groovy uses ANTLR as a parser, and it’s possible to write an
ANTLR plugin for Groovy. That’s a topic that deserves its own book, but information
about how to do it can be found online.

9.8.5 It’s not typed

Most interesting AST transformations rely on knowing the type of a variable. To
Groovy, almost everything is an object. It’s surprisingly difficult to determine the type
of an instance and impossible to determine at compile time exactly where a method
call will dispatch. For instance, metaclass additions are rarely known at compile time
yet affect method dispatch. You can try to keep track of this information yourself, but
as soon as a closure is declared, or a second thread is run, then the variable may no
longer be what you think it is. This is acceptable for some tools like IDE integration or
static analysis that read and make suggestions based on AST. But if you’re rewriting
AST and generating new bytecode, then guessing the type of an instance and getting it
wrong can have disastrous effects on a program, especially if it fails to compile because
of your mistake. Be careful what you think you know about types. It’s easy to make a
guess, and it’s easy to be wrong.

9.8.6 It’s unhygienic

It’s possible, using an AST transformation, to introduce a field, class, method, or vari-
able that conflicts with an existing one. If you add a method called getCompiled-
Time(), you need to consider the possibility that the target class already has that
method. The term for a compile-time metaprogramming system that allows naming
conflicts is unhygienic. It’s not really a term of derision, but it’s obvious that the term
was coined by users with a hygienic language. It’s not an insurmountable problem,
and you should carefully select names for synthetic variables and private fields and
methods. The $ symbol is typically used in the identifier name because this symbol is
rarely used in user-written code. For example, @WithReadLock generates a field called
$reentrantlock. You can still have a conflict, but it should be rare. Choose your
names carefully.
Licensed to Mark Watson <nordickan@gmail.com>

292 CHAPTER 9 Compile-time metaprogramming and AST transformations
 And with that the compile-time metaprogramming training is complete. It’s time
to go out into the world and write some interesting code.

9.9 Next steps
If you have an idea you want to implement, then the next steps are fairly obvious. Take
a look at the templates in the Groovy source distribution, set up a project, and write
some code. But before going too far we recommend talking about the idea on the
Groovy mailing list. The community takes an active role helping people refine their
ideas and make decisions about implementation. You may find you’re talked into
using runtime metaprogramming instead.

 If you don’t have a specific idea but want to learn more, then writing a static analy-
sis rule for CodeNarc is an excellent way to get started. It’s a small and well-contained
project, the community is friendly, and you should be able to make a contribution
within an hour or two. There’s a create-rule script that comes with the project that
creates all the needed files and unit test templates for new rules. CodeNarc is based
on AST visitors, and the various types of visitors are fully described in appendix G.

 For bookworms, there are other resources available. One of the authors keeps an
active blog that includes several articles related to Groovy and compile-time metapro-
gramming. But other languages are worth investigating as well. Java, C#, Clojure, and
JRuby also expose their ASTs to programmers or allow you to work directly with
expression trees, and their documentation is easily found with a search engine. Of
the languages listed, Clojure has the best support with a feature called Macros,
which is arguably a more advanced and powerful form of the AST transformations
described in this chapter. For an overview of language implementation in general,
we definitely recommend Language Implementation Patterns by Terence Parr (Pragmatic
Brookshelf, 2010). For an overview and classic reference for compile-time metapro-
gramming in Lisp, read Paul Graham’s On Lisp, which is freely available for download
at www.paulgraham.com/onlisp.html.

9.10 Summary
Compile-time metaprogramming is a new, exciting, and growing area of the Groovy
ecosystem. Many of the new Groovy features use compile-time metaprogramming to
eliminate redundant or verbose code. Use annotations like @Canonical, @Lazy, and
@InheritConstructors to remove this unnecessary code from your source files yet
still have it visible from Java. Use @Delegate, @Immutable, and @Singleton for an easy
path to correct object design. The annotations @Log, @Commons, @Log4j, and @Slf4j
streamline declaring and using loggers. Declarative concurrency constructs like
@Synchronized clean up multithreaded code considerably, @AutoClone and @Auto-
Externalize help make externalizing and cloning simple, and scripting has become
much safer with @TimedInterrupt, @ThreadInterrupt, and @ConditionalInterrupt.

 Writing your own transformation involves either a local AST transformation,
which manipulates the AST when a certain annotation is discovered, or a global AST
Licensed to Mark Watson <nordickan@gmail.com>

www.paulgraham.com/onlisp.html

293Summary
transformation, which is run for every compiled class. If your transformation needs to
know information about the tree, then you’ll probably need a code visitor to walk the
entire AST, visiting nodes as they’re found in the source code. If neither local nor
global transformation is suitable for your scenario then you can always weave a visitor
directly into a classloader without too much effort.

 Groovy contains several alternatives for generating ASTs. Writing them by hand
using the class constructors is always an option, but it’s worth learning the AstBuilder
API as well. The buildFromSpec method offers a useful DSL over the constructors;
buildFromString offers a useful abstraction over all the classes, and buildFromCode
provides an intuitive and elegant way to convert source into an AST.

 There are several standard tools for working with ASTs. The javap application dis-
plays the raw .class file output. Groovy Console’s AST browser is much more advanced,
and shows the AST in tree form and also generated source-code form. A good Java
decompiler is always a useful view of transformation results too, but perhaps the best
tool is a large suite of unit tests. GroovyClassLoader, GroovyShell, and Trans-
formTestHelper can all be used to test drive (or regression test) AST transformations.

 Compile-time metaprogramming isn’t suitable for every scenario. In general, we
prefer late binding and flexibility. But there are concrete advantages: Java integration,
easy embedded language development, delayed evaluation, and the ability to change
the semantics of the language. AST transformations are opening a whole new world of
what’s possible with Groovy. After reading this chapter you should be better prepared
to go into that world and see what new and useful tools you can create.
Licensed to Mark Watson <nordickan@gmail.com>

Groovy as
a static language
We shall not cease from exploration, and the end of all our exploring will be to
arrive where we started and know the place for the first time.

—T. S. Eliot

There are endless debates in computer programming. vi or emacs? Tabs or spaces?
Interfaces or abstract classes? Likewise, the debate over the benefits of static versus
dynamic languages is never ending. You’ll find people telling you that static lan-
guages are the best because you can find errors at compile time, while on the other
side, people will empathize how powerful and concise dynamic code can be. In
most languages, you have to choose one or the other. Not so in Groovy.

This chapter covers
■ Incorporating static typing in a dynamic

language
■ Using the @TypeChecked annotation
■ Type inference and flow typing
■ Static compilation and the @CompileStatic

annotation
■ Type checking extensions
294

Licensed to Mark Watson <nordickan@gmail.com>

295Motivation for optional static typing
 Groovy gives you the best of both worlds: it’s dynamic, yet able to apply type checks
just like static languages. It can optionally provide the runtime characteristics of a
static language. It’s your choice.

 Groovy has a very interesting history with regards to typing, because it’s derived
from a strongly typed, static language, Java, but itself is a strongly typed dynamic lan-
guage. A lot of the power of the language comes from its dynamic nature: MOP
methods, metaprogramming, and all the other advanced features that we’ve intro-
duced in the preceding chapters. These features heavily rely on the fact that the
Groovy language defines a dynamic execution model, which supports, for example,
defining and extending types at runtime. Yet at the same time, static typing is widely
understood and cherished by many JVM developers who might be looking at other
languages beyond Java.

 In this chapter, you’ll learn

■ Why optional static type checking and static compilation were introduced into
Groovy

■ In what situations you can use these features
■ What the limits are
■ How you can extend the static type system of Groovy to provide even more type

safety than Java

In a way, we started with static Java, added more and more dynamic features, made them
statically verifiable, even produced optional static runtime characteristics, but reen-
tered the static world with many more options and a better language than before.

 Buckle up! It’s an in-depth and fast-paced journey. Let’s start with a look at why you
might want static typing in the first place.

10.1 Motivation for optional static typing
It’s clear that Groovy’s success is related to its powerful runtime metaprogramming
capabilities. When the Groovy team announced that Groovy 2 would support static
typing, a lot of people were wondering why we did so. Groovy is, and will remain, a
dynamic language, but it now offers optional static typing. This is in line with a general
agnostic stance Groovy takes on style. Functional or imperative, static or dynamic,
Groovy lets you decide. The objective of the language isn’t to force you into a particu-
lar style or paradigm but to give you options. It won’t lock you into a particular mind-
set, that dynamic languages are generally better than static ones, or vice versa.

 Groovy has been designed recognizing that both static and dynamic language fea-
tures have their place. The individual programmer can weigh the advantages and
drawbacks and should be smart enough to choose the best approach for the task at
hand. With Groovy, no one will ever tell you that you must use static typing, but if you
want to, you can. Since version 2, Groovy gives you the best of both worlds, and more
importantly, lets you mix and match approaches as needed.
Licensed to Mark Watson <nordickan@gmail.com>

296 CHAPTER 10 Groovy as a static language
10.1.1 The role of types in Groovy

Often programmers are confused when they have to describe the various type systems.
If you ask someone if a dynamic language implies weak typing, the answer will likely
be “of course.” The truth is more complex. Despite being a dynamic language, Groovy
is a strongly typed language. And it was strongly typed even before the release of
Groovy 2. In fact, Groovy is a dynamic, optionally typed language. The difference is that
types in Groovy are very important and are in the heart of the dynamic dispatch sys-
tem. Types are used at runtime for the method dispatch. The fact that types are mainly
used at runtime allows a lot of flexibility, but often creates the misconception that
types aren’t used at all.

 The following methods aren’t equivalent:

def greet(message) { println "1: $message" }
def greet(String message) { println "2: $message" }

The fact that the first one omits the type is a convenience for accepting any type, but
the type is important. If no println method exists at runtime accepting the actual
type of message, then Groovy would report an error. In the second case, one would
only be able to call the greet method if the actual argument is of type String. So
imagine that we’re calling the code like this:

greet 'Hello'
greet ((Object)'World')

The actual output would be:

2: Hello
1: World

Someone not used to Groovy may find the output surprising, but it illustrates the con-
cept that optional typing doesn’t mean that the language is untyped. On the contrary,
types are very important, and the explicit cast to Object on the second line is a way, in
Groovy, to bypass the dynamic method selection and force a specific overload of a
method to be chosen. Don’t worry if you don’t fully understand the method dispatch
concept at this point—we’ll cover this in detail in this chapter. What’s important to
understand is that Groovy always had a strongly typed system, but it was mainly used at
runtime, not at compile time.

 A typical argument against runtime method dispatch is that if a method doesn’t
exist, you’ll only have an error at runtime, although you could have caught the prob-
lem at compile time. That’s exactly where Groovy 2’s static type checker comes into
action. It can perform static analysis of your code at compile time and report errors
like missing methods and more.

10.1.2 Type checking a dynamic language?

At first, the idea may appear strange. Because Groovy is a dynamic language, there’s
absolutely no reason why a method not discoverable at compile time couldn’t, in
Licensed to Mark Watson <nordickan@gmail.com>

297Motivation for optional static typing
practice, exist at runtime. So performing type checking of dynamic code is, in the-
ory, walking upside down. The following listing defines and uses a dynamic method
that’s perfectly available at runtime but not at compile time.

class Duck {
 def methodMissing(String name, args) {
 println "$name!"
 }
}

def duck = new Duck()
duck.quack()

The class Duck doesn’t define any method named quack, yet the code compiles fine
and, at runtime, it’s still working. It works because we define a handler B for calls to
methods that don’t exist. In our case, it just prints the name of the method being
called c. Groovy supports many tricks like this one as you’ve seen in chapter 8.

 So in short: the dynamic capabilities of Groovy disallow type checking. But type
checking can be very useful to spot typos like in the following listing.

class Detective {
 String firstName
 String lastName
}

def sherlock = new Detective(firstname: 'Sherlock', lastname: 'Holmes')
assert sherlock.lastName == 'Holmes'

If you compile this code, no error will occur. If you don’t spot the error (a syntax high-
lighting editor can warn you here; see figure 10.1) and correct it, then only at runtime
when you execute the code will you be faced with a MissingPropertyException. It
works this way because Groovy is a dynamic language and it’s possible that at runtime,
the perceived error is handled (for example, we might have a metaclass that makes
property access case-insensitive).

 Despite the IDE warnings and the quite reasonable error message at runtime, it
would be nice to catch the typo in cases where dynamic features aren’t used anyway.

 This is the main reason why static type checking was introduced in Groovy 2: it
gives you the familiar compile-time type checking through an optional annotation by
which you declare that you don’t expect any dynamic features to be used in that part
of the code.

Listing 10.1 A method may exist only at runtime

Listing 10.2 Can you spot the typo?

Dynamic method
missing behavior

 b

Prints name of
method being called c

Calls a dynamic
method
Licensed to Mark Watson <nordickan@gmail.com>

298 CHAPTER 10 Groovy as a static language
10.2 Using @TypeChecked
Performing additional static type checking is as easy as annotating it with @groovy
.transform.TypeChecked. The @TypeChecked annotation can be applied on classes or
methods. In the following listing, the whole class will be type checked, including fields,
properties, inner classes, and closures.

import groovy.transform.TypeChecked

@TypeChecked
class Sleuth {
 String firstName
 String lastName

 String getFullName() { "$firstName $lastName" }
}

def nancy = new Sleuth(firstName: 'Nancy', lastName: 'Drew')
assert nancy.fullName == 'Nancy Drew'

The checking process includes verifying that fields and properties exist at compile
time. If you want more fine-grained control, you can choose to instead annotate one
or more methods of a class. In the following listing, type checking is only applied to

Listing 10.3 Type checking a full class

Figure 10.1 An IDE will warn you of suspect naming even with dynamic code
Licensed to Mark Watson <nordickan@gmail.com>

299Using @TypeChecked
the getFullName method B, which would allow other methods such as makePeace c
to use the dynamic features of the language.

import groovy.transform.TypeChecked

class Actor {
 String firstName, lastName

 @TypeChecked
 String getFullName() { "$firstName $lastName" }

 void makePeace() {
 new AntBuilder().echo('Peace was never an option')
 }
}

def magneto = new Actor(firstName: 'Ian', lastName: 'McKellen')
assert magneto.fullName == 'Ian McKellen'
magneto.makePeace()

For this example, we could have also chosen to annotate at the class level and then
turn off checking just for the makePeace method. You’ll see what’s involved later when
we discuss in more detail mixing static and dynamic code. We’ll also discuss Ant-
Builder in more detail in chapter 11. For now you need only know that it’s indeed a
dynamic feature; the AntBuilder class has no echo method but the builder instead
calls Ant’s echo task.

 Listings 10.3 and 10.4 would both compile fine without the TypeChecked annota-
tion, because there’s actually no error in the code. It’s also worth understanding that
adding the annotation won’t change the behavior of the application at runtime!

NOTE Some of the upcoming listings are designed not to compile. So, if
you get an error, don’t be too surprised, that’s exactly what’s supposed to
happen. But remember that all of our listings are like a giant suite of tests.
How do we make a listing pass that doesn’t even compile? We make it a
script and wrap it into a shouldFail call. If you’re interested in what’s going
on behind the scenes, chapters 16 and 17 discuss more about integrating
and testing scripts, respectively.

Next, let’s make a few errors and let @TypeChecked catch them.

10.2.1 Finding typos

Perhaps the most frequent complaint against dynamic languages is the lack of compile-
time recognition of typos. By adding @TypeChecked, you’re allowing the Groovy com-
piler to catch such errors in much the same way the Java compiler does for a Java
source file. Let’s make sure the Groovy compiler recognizes such errors by amending
listing 10.3 as follows to introduce a small typo.

Listing 10.4 Type checking a single method

Checked b

Dynamic
features
allowed

 c
Licensed to Mark Watson <nordickan@gmail.com>

300 CHAPTER 10 Groovy as a static language
import groovy.transform.TypeChecked

@TypeChecked
class Sleuth {
 String firstName
 String lastName
 String getFullName() { "$firstName $lastname" }
}

In listing 10.5, the getFullName method is supposed to return a string that combines
the first and last names. But there’s a typo inside the GString: lastname is used instead
of lastName (note the uppercase N). It’s quite obvious that this is an error, but with-
out @TypeChecked, it’s absolutely impossible for the compiler to report it, and you
have to rely on the fact of calling getFullName to find the bug, which is often too
late. Now if you compile listing 10.5, you’ll see that the compilation fails with the fol-
lowing message:

[Static type checking] - The variable [lastname] is undeclared.
at line: 7, column: 39

As you can see, adding @TypeChecked allowed the compiler to check the class, but
more importantly, features like interpolated strings are also checked. What happens
here is that the compiler analyzed the GString, found the use of a variable named
lastname, but couldn’t find any local variable, field, or property of which the name
matched. Instead of letting this pass, the compiler now reports an error and fails
compilation.

 Finding typos is obviously not limited to variables, fields, and properties: it works
the same for methods, as you’re going to see.

10.2.2 Resolving method calls

Resolving method calls is a key concept that differentiates a dynamic language from a
static one. As you’ve seen, Groovy is a dynamic language, so method calls are normally
resolved at runtime. Java resolves method calls at compile time.

 Activating type checking in Groovy means that you’d like the compiler to report
errors at compile time if a method doesn’t exist. For that, you need to be able to
resolve its name, but you also need to check for the existence of a method that
matches the parameters. To simplify slightly, you’re expecting Groovy to give error
messages like the Java compiler would.1 In the following listing, the compiler will
report an error because a misspelled method doesn’t exist.

Listing 10.5 Catching a typo at compile time

1 In fact, Groovy has a few special cases and doesn’t behave exactly like Java; it follows these rules: http://
docs.groovy-lang.org/latest/html/documentation/#_method_resolution.

Uppercase N

Incorrect
lowercase n
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.groovy-lang.org/latest/html/documentation/#_method_resolution
http://docs.groovy-lang.org/latest/html/documentation/#_method_resolution

301Using @TypeChecked
@groovy.transform.TypeChecked
class Person {
 String name
 String getFullName() { name.toUppercase() }
}

Compiling listing 10.6 would trigger the following compilation error:

[Static type checking] - Cannot find matching method
java.lang.String#toUppercase()

The reason is that we wanted to call the toUpperCase method but we misspelled the
method name. The situation isn’t always that simple. You might not have made a spell-
ing error, but you might have mixed up the order of the parameters or supplied the
wrong type to one of the parameters. As an example, it’s easy to switch two arguments,
as shown in the next listing.

@groovy.transform.TypeChecked
class Repeat {
 static void repeat(int n, String message) {
 n.times{ println message }
 }
 static void main(String... args) {
 repeat('Hello', 4)
 }
}

When compiling this example, the compiler fails with

[Static type checking] - Cannot find matching method
Repeat#repeat(java.lang.String, int)

Since @TypeChecked works at compile time it cannot always know what the runtime
method dispatch will do. It needs to make assumptions. There’s a remaining risk that
it chooses the “wrong” method. This will later become more important when we intro-
duce @CompileStatic, which additionally has an effect on the generated code.

 Luckily, using @TypeChecked provides a lot of very interesting compile-time errors
that justify its use and, as we’ve discussed before, you’re in control of when to turn it
on and off.

10.2.3 Checking assignments

While nicely supporting a functional programming style that emphasizes immutabil-
ity, Groovy is first and foremost an imperative language that uses assignments. So it
should come as no surprise that @TypeChecked checks assignments at compile time.
The following listing contains invalid assignments that @TypeChecked would com-
plain about.

Listing 10.6 Find a typo in a method name

Listing 10.7 The method doesn’t exist with the provided arguments

Incorrect
lowercase c
Licensed to Mark Watson <nordickan@gmail.com>

302 CHAPTER 10 Groovy as a static language
@groovy.transform.TypeChecked
void testAssignmentsShouldThrowCompilationErrors() {
 Set set = new Object()
 byte b = 200L
 List<Integer> list = ['Richard', 'Mary']
 int prim = null
}

The relevant parts from the compiler errors are:

Cannot assign value of type java.lang.Object to variable
 of type java.util.Set
Possible loss of precision from long to byte
Incompatible generic argument types. Cannot assign
 java.util.List <java.lang.String> to: java.util.List <Integer>
Cannot assign value of type java.lang.Object to variable of type int

It’s worth noting that there are four exceptions to the assignment rules that are cov-
ered by the type checker, corresponding to five cases where Groovy wouldn’t throw
any errors at runtime: assignments to String, Boolean, boolean, Class, and String
assignments to enum values. There are special coercion rules for these special cases.
For example, the following assignment is something totally valid in Groovy (indepen-
dently of type checking):

String person = new Person(name: 'Philip')

Groovy transparently calls the toString method on the Person class in this case.
 We’ve explained in chapter 6 that you can also assign any object to a boolean (or

Boolean) when discussing the Groovy truth:

boolean flag = person

But it’s little known that Groovy also allows anything to be converted to a Class! You
can write

Class personClass = 'com.acme.Person'

Groovy converts an object to a Class by calling its toString method to get the class
name and then loading that class.

 If you attempt to assign a String value to an enum, Groovy will use the enum’s
implicit valueOf(String) method when performing the assignment.

 You can use all of these techniques together with @TypeChecked as shown in the
following listing.

enum MyEnum {
 var, val
}

Listing 10.8 Type checking assignments

Listing 10.9 Type checking assignment coercion

Cannot cast
Object into Set

Possible loss
of precisionWrong

genericsPrimitives
cannot be null
Licensed to Mark Watson <nordickan@gmail.com>

303Using @TypeChecked
@groovy.transform.TypeChecked
void testAssignmentsWithCoercion() {
 MyEnum val = 'val'
 assert val == MyEnum.val

 String blue = java.awt.Color.BLUE
 assert blue == 'java.awt.Color[r=0,g=0,b=255]'

 boolean nonEmpty = new Date()
 Boolean empty = ''
 assert nonEmpty
 assert !empty

 Class stringClass = 'java.lang.String'
 assert stringClass.interfaces.size() == 3
}

testAssignmentsWithCoercion()

Automatic coercion of any object to a String, Boolean, boolean, or Class, and
String assignments to enum values is a useful feature. You wouldn’t like to lose that
feature just because of the use of a type checker. For that reason, the Groovy type
checker is aware of those features and will let those cases pass, even if the left-hand
side and the right-hand side of assignments otherwise appear invalid.2

 As you’ll see in the following examples, this is a general rule that the type checker
tries to follow whenever possible: if a “dynamic Groovy” feature exists, try to be aware
of it and let it pass. Of course, there are some cases where it’s not possible, but obvi-
ously, using a type checker isn’t a reason to make the Groovy language more verbose
and turn it back into Java!

 For the very same reason, the type checker embeds a smart type inference engine
that makes the code elegant while keeping it concise.

10.2.4 Type inference

A type inference engine is a component that’s capable of determining the type of
expressions even when there’s no explicit type declaration. Take the following decla-
ration in Java:

String text = "Type is explicit";

The type of the text variable is explicit, so the compiler doesn’t have to make any com-
putation to determine it. If a method is called on the text variable, it has to be
declared on the type String.

 Groovy has the def keyword, which allows you to declare a type in a very short man-
ner, so the equivalent code is shorter:

def text = 'Type is implicit'

2 For the complete rules see http://docs.groovy-lang.org/latest/html/documentation/#_type_checking
_assignments.

Strings coerced
to enum values

Anything coerced
to String

Anything coerced to
boolean/Boolean

Strings coerced
to classes
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.groovy-lang.org/latest/html/documentation/#_type_checking_assignments
http://docs.groovy-lang.org/latest/html/documentation/#_type_checking_assignments

304 CHAPTER 10 Groovy as a static language
Here, def is equivalent to declaring it as Object, but because Groovy resolves method
calls at runtime, the compiler doesn’t need to know the explicit type at compile time.
But if you want to do type checking, you face a problem because the compiler
wouldn’t know that the text variable is in fact of type String. Groovy has to infer it.
This not only includes information on how text was declared but also all assignments
made on it.

DEF VERSUS EXPLICIT TYPE

The fact that Groovy has a type inference engine doesn’t mean that you can use def
everywhere and still pass the type checker. Sometimes you need to give Groovy more
hints about your intentions.

 Likewise, it’s definitely not advisable to declare a field or a property with def, espe-
cially because we’re living in a multithreaded world. Let’s take a look at the following
listing, which exhibits a bad coding style in the context of type checking.

class Holder {
 def value = 'My value'
}

@groovy.transform.TypeChecked
void testNoCompileTimeErrorDueToDef() {
 def holder = new Holder()
 holder.value = 5
}

testNoCompileTimeErrorDueToDef()

If you look solely at the Holder class definition, in particular the declaration of the
value property B, you might think that the type of the value field is String,
because of the default value that’s assigned to it. The truth is more complex,
because def is equivalent to Object, so while a String is used as the default value,
any variable of any type inheriting from Object can be assigned to it. In particular,
in our example, the type of value changes from String (its initial default value set
when we create the instance at c) to Integer when we explicitly set the value prop-
erty d! While the type changes of local references can be predicted (because the
scope is well defined and we know exactly what methods are called), it’s not the case
for an “external” reference. Worse than that, such a reference can change at any
time from any thread. For that reason, the type checker won’t do any type inference
in these cases, but instead relies on the declared type, so it’s important to use an
explicit type in that case.

TIP Using explicit types is considered good style for documentation reasons,
especially in method signatures and properties. Using def is okay for local
variables or to signal “I really don’t care,” in which case you probably won’t
make use of @TypeChecked anyway.

Listing 10.10 Properties shouldn’t be declared with def for type checking

Property
declaration b

Creates Holder
instance

 c

Holder value
type changes! d
Licensed to Mark Watson <nordickan@gmail.com>

305Using @TypeChecked
Groovy 1.8 introduced the notion of primitive type optimizations. With def, you’ll
never get an optimized primitive type like int but an Integer object.

 Last but not least, using an explicit type also causes additional type checks. The
assignment case that we’ve explained earlier is one use case. If you want to make sure
that one doesn’t assign just anything to a variable, you can declare the type explicitly
and the type checker will guarantee that all future assignments will be valid.

GENERICS

You may be surprised to hear that Java also has a type inference engine. In fact, Java 7
has one due to the introduction of the diamond operator. In the following code, the
type of the generic type argument on the right-hand side of the assignment is deter-
mined by the type inference engine:

List<String> list = new ArrayList<>(); // Java

Java 8 has a much smarter type inference engine, made necessary by the introduction
of lambdas to the language, but it makes it clear that generics are one of the pain
points of a static language. On one side, they made it very powerful, but on the other
side, they’re often very difficult to write or awfully verbose.

 Without type checking, we can almost say that Groovy only makes use of generics
for decorative reasons. This isn’t totally true because they’re used for compatibility
with Java, but internally, Groovy makes minimal use of generics. You’ll be aware that
Java’s type erasure throws away generics information at runtime. You could consider
that dynamic Groovy is more aggressive at throwing away that kind of information.

 With type checking, the game is very different because generics dramatically
improve the expressiveness of the type system. Declaring a list with a generic type will
remove the need for explicit casts of arguments. For those reasons, Groovy’s type
checker needs to understand generics, but it also needs to be more powerful than
Java’s. Let’s consider the following listing, which shows a typical list declaration.

def authors = ['Dierk', 'Guillaume']
authors.each { println it }

In the first line B we use a very idiomatic way to declare the list. Under the hood,
Groovy will create an ArrayList of strings, but the fact that it contains strings is
arbitrary. But as soon as you start using type checking, determining the type of the
components is very important, so the type inference engine cannot limit itself to
determine that the type of authors is List. Instead, it’s smart enough to tell that it’s a
List<String>. To understand why it’s important, let’s update listing 10.11 to make it
use @TypeChecked as shown in the following listing.

Listing 10.11 In-place list declaration

Declaration
of a list bList

iteration
Licensed to Mark Watson <nordickan@gmail.com>

306 CHAPTER 10 Groovy as a static language
import groovy.transform.TypeChecked

@TypeChecked
void printAuthors() {
 def authors = ['Dierk', 'Guillaume']
 printToUpperCase(authors)
}

void printToUpperCase(List<String> authors) {
 authors.each { println it.toUpperCase() }
}

printAuthors()

In this example, the printAuthors method calls another method internally that’s
named printToUpperCase, but only accepts a List<String>. If the type checker wasn’t
able to perform type inference of generic type arguments, then the type information on
the authors variable won’t be sufficient to call the printToUpperCase method.

 Fortunately, the type inference engine of Groovy is smart enough to resolve this
case and even capable to deal with types that you can’t even express in Groovy (or
Java), like we’ll discuss later (see section 10.3.1). Of course, using generics explicitly
isn’t something that programmers of dynamic languages are used to, so here again,
you’ll have the choice to use implicit or explicit generic type declarations, but in case
you choose implicit types, then you’re relying on a type inference system, which may
behave differently from what you expect.3

10.2.5 Type-checked Grooviness

Type checking shouldn’t make your code more verbose nor let it lose its groove. This sec-
tion shows idiomatic Groovy code that’s out-of-the-box compatible with type checking.

LIST AND MAP CONSTRUCTORS

There are several ways to create objects in Groovy. The most widely used (and also
best performing) approach comes from Java and consists in calling a constructor:

Dimension d = new Dimension(800, 600)

But Groovy also provides a short notation equivalent to the above, using a list:

Dimension d = [800, 600]

In this case, Groovy makes use of the declaration type of the variable (Dimension),
then takes the list and tries to find a constructor of which the argument types match
the types of the elements of the list. So here, Groovy would try to find a constructor to
Dimension that takes two integers as arguments.

Listing 10.12 Type checking generics

3 As Groovy derives from Java, it uses the same generics model. It has both advantages and drawbacks, but you
must be aware that the type checker can be fragile with regards to generics.
Licensed to Mark Watson <nordickan@gmail.com>

307Using @TypeChecked
 Let’s see what would happen with dynamic Groovy if you made an error when
using this shortcut. Instead of supplying the two required integer values, suppose you
supplied only one as shown in the following listing.

import static groovy.test.GroovyAssert.shouldFail

void oneDimensional() {
 java.awt.Dimension d = [100]
}

shouldFail(ClassCastException) {
 oneDimensional()
}

When you execute this example, you’ll get a cast exception at runtime. We confirm
that behavior with the shouldFail clause.

 The nice thing is that this list-style constructor shortcut is compatible with type
checking, and when used together you’ll benefit from additional checks at compile
time, as the following listing shows.

@groovy.transform.TypeChecked
void alsoOneDimensional() {
 java.awt.Dimension d = [100]
}

When the compiler analyzes the list-style constructor call, it fails to find a Dimension
(int) constructor and complains with:

No matching constructor found: java.awt.Dimension<init>(int)

This is an illustration of how you can benefit from type checking in a situation where
you know you don’t use the dynamic features of Groovy. The error is there, but the
only way for the compiler to be certain that it’s an error is by using @TypeChecked.

 Another interesting constructor call shortcut in Groovy is the map-style con-
structor. In that case, the right-hand side of the declaration isn’t a list but a map,
which gives the advantage of being able to use named arguments, as seen in the fol-
lowing listing.

import groovy.transform.TypeChecked

class Athlete {
 String first, last
 int age
}

Listing 10.13 Failing at runtime with list-style constructors

Listing 10.14 Proper type checking with list-style constructors

Listing 10.15 Type checking map-style constructors

Two parameters
required! Runtime
error here!

Two parameters
required.
Compilation fails!
Licensed to Mark Watson <nordickan@gmail.com>

308 CHAPTER 10 Groovy as a static language
@TypeChecked
void ageInteger() {
 Athlete ok = [first: 'Michael', last: 'Jordan', age: 52]
}

@TypeChecked
void ageString() {
 Athlete bad = [first: 'Michael', last: 'Jordan', age: '52']
}

For this example, first use of the shortcut syntax for map-style constructors B is cor-
rect. What Groovy does in that case is equivalent to the following:

Athlete ok = new Athlete()
ok.first = 'Michael'
ok.last = 'Jordan'
ok.age = 52

The problem is that on our second usage c we made a mistake and used a String for
the age property instead of an int. Without type checking, you’d have to run that
code to find the error and, unless you have good test coverage, running it might mean
it’s in production and perhaps that’s too late. Activating type checking gives you the
advantage of catching the problem earlier, during compilation. The type checker
would fail with the following error:

Cannot assign value of type java.lang.String to variable of type int

Of course, the verifications that the type checker performs here are also available if
you use the long variant of the map-style constructor, which is:

new Athlete(first: 'Michael', last: 'Jordan', age: '52')

While being compatible with list- and map-style constructors, there are some limita-
tions to what you can do if you activate type checking. In listing 10.16, we’re trying to
use the list-style constructor with a list that’s provided externally, as the parameter of a
method call. While this would work at runtime, it’s not compatible with type checking,
because unless you analyze every call site to the method, you cannot determine stati-
cally what will be the types of the elements of the list.

import groovy.transform.*

@TupleConstructor
class Author {
 String first
 String last
 int born
}

Listing 10.16 Type checking error with list-style constructor

Passes b

Fails c

Fails
Licensed to Mark Watson <nordickan@gmail.com>

309Using @TypeChecked
@TypeChecked
Author createAuthor(List params) {
 Author a = params
 a
}
createAuthor(['Agatha', 'Christie', 1890])

It’s possible to make this pass statically, but you’re facing the same problem as the one
you’d have in Java: you’d have to add a lot of code to ensure type safety, as the follow-
ing listing tries to achieve.

import groovy.transform.*

@TupleConstructor
class Author {
 String first
 String last
 int born
}

@TypeChecked
Author createAuthor(List params) {
 if (params.size() != 3) {
 throw new IllegalArgumentException('Incorrect number of arguments')
 }
 String first = params[0]
 String last = params[1]
 Integer age = (Integer) params[2]
 Author a = [first, last, age]
 a
}

assert createAuthor(['Agatha', 'Christie', 1890]).born == 1890

Please note that compile-time type safety isn’t fully guaranteed here, because we
have to check that the list contains at least three elements and that can only be done
at runtime.4 While, in general, Groovy constructs are compatible with type checking,
there might be situations like this one where you’d have to rewrite your code to
ensure type safety. One may argue that this is exactly what you’re trying to achieve
by annotating your code with @TypeChecked, so limitations are acceptable. From a
language point of view, Groovy’s static checking capabilities were designed to
reduce as much as possible the cases where you’d need to change your code to work
in the static and dynamic “modes.”

 In that context, one of the interesting cases to study is closures: they’re one of the
most appealing features of the language, and making them compatible with type
checking is a challenge.

Listing 10.17 Fixing type safety

4 There’s more that we could do here with typed tuples but that’s beyond the scope of what we want to discuss
in this book.

Compile-
time error!

No need to cast
as String on LHS

Cast required

Passes
Licensed to Mark Watson <nordickan@gmail.com>

310 CHAPTER 10 Groovy as a static language
10.2.6 Type checking closures

Closures are very similar to methods: they’re blocks of code that can accept parame-
ters and return values. When it comes to type checking, however, there’s a big differ-
ence between a method and a closure: while in the first one the signature is declared
explicitly, for closures, the return type is implicit and arguments are optional. More-
over, what gives the closures their name is the fact that they’re able to capture local
variables and references from the enclosing scope. Let’s examine these differences in
more detail.

CLOSURE RETURN TYPES

The following listing compares two equivalent operations: one defined as a method,
the other defined as a closure.

def sum1(int x, int y) { x + y }
def sum2 = { int x, int y -> x + y }
assert sum1(3, 4) == 7
assert sum2(4, 5) == 9

The difference is that the closure can be manipulated as data, making it ideal to be
passed as an arguments to a method. It’s the most elegant solution to the Gang of
Four Strategy design pattern. This means that at b, the type of the sum2 variable is a
Closure. As closures are Callable, it’s possible to call them using the same syntax as a
regular method call.

 By using @TypeChecked, Groovy can infer the return type of a closure. In listing 10.18,
because the closure body only depends on its parameters, which are of type int, the
return type of the closure can be inferred as int, so the type of the sum2 variable is,
in the end, inferred as Closure<Integer>. This means that if you try to assign it to a
Closure<String>, for example, it would fail as shown in the following listing.

import groovy.transform.TypeChecked

class Logger {
 static void print(Closure<String> messageProvider) {
 println "Received message : ${messageProvider()}"
 }
}

@TypeChecked
void testMessage() {
 def returnsString = { 'Hello, Groovy!' }
 def returnsInt = { int x, int y -> x + y }
 Logger.print(returnsString)
 Logger.print(returnsInt)
}

Listing 10.18 Comparing methods and closures

Listing 10.19 Checking closure return types

sum function
defined using
a method

sum function
defined using
a closure b

Passes b

Compilation
fails

 c
Licensed to Mark Watson <nordickan@gmail.com>

311Using @TypeChecked
Because the print method in the Logger class accepts a closure that returns a String,
calling it with returnsString B is correct because the body of that closure only
returns a String (a constant one). But when trying to call print with the returnsInt
closure c, which returns an int, the type checker will complain and you’ll see a
compile-time error:

Cannot call Logger#print(groovy.lang.Closure <java.lang.String>)
with arguments [groovy.lang.Closure <java.lang.Integer>]

CLOSURE ARGUMENT TYPES

Handling closure argument types can be a little tricky. As you’ve seen in chapter 5, clo-
sures can have an implicit “it” parameter corresponding to the first argument of a
closure call. The type of this parameter is Object. That doesn’t give much help to the
type checker. So, in general, if you want to use type checking with closures in Groovy
you might need to declare the types of the closure parameters explicitly. The good
news is that there are cases where the argument types can be inferred. We’ll look at
the various cases in the remainder of this section.

 Suppose you’re entering information about users on your site and have created
the following domain class to capture their username and password:

class User {
 String name
 String password
}

And now suppose you wish to run some validation rules to check various characteristics
of a user instance. You might create some code such as shown in the following listing.

void validate(User u, Closure<Boolean> rule) {
 if (!rule.call(u)) {
 println "User $u.name $u.password rejected"
 }
}

void validateAll(user) {
 validate(user) { !it.name.isEmpty() }
 validate(user) { it.password.size() > 7 }
 // other rules ...
}

def bob = new User(name: 'Bob', password: 'secr3t')
validateAll(bob)

Here we evaluate each validation rule, passing it the user instance B, and reject the
user if he or she fails the rule. In our case, user Bob doesn’t have an empty name, so
our first example rule c will pass but Bob’s password is too short and the second rule
will fail d. What can we say about the nature of these rules? They’re likely to be very
simple, perhaps not needing any fancy dynamic capabilities, and most certainly will

Listing 10.20 Dynamic validation of a user instance

Apply
rule b

Example
passing rule

 c

Example
failing rule d
Licensed to Mark Watson <nordickan@gmail.com>

312 CHAPTER 10 Groovy as a static language
make heavy use of properties from our User domain class. They seem like a good can-
didate for additional type checking.

 We can naively try to apply type checking to our validateAll method; however,
there will be three things that the static compiler won’t like, as shown in the follow-
ing listing.

import groovy.transform.TypeChecked

void validate(User u, Closure<Boolean> rule) {
 if (!rule.call(u)) {
 println "User $u.name $u.password rejected"
 }
}

@TypeChecked
void validateAll(user) {
 validate(user) { !it.name.isEmpty() }
 validate(user) { it.password.size() > 7 }
}

def bob = new User(name: 'Bob', password: 'secr3t')
validateAll(bob)

The first thing we can do is explicitly add the necessary type declarations as shown in
the next listing.

import groovy.transform.TypeChecked

void validate(User u, Closure<Boolean> rule) {
 if (!rule.call(u)) {
 println "User $u.name $u.password rejected"
 }
}

@TypeChecked
void validateAll(User user) {
 validate(user) { User u -> !u.name.isEmpty() }
 validate(user) { User u -> u.password.size() > 7 }
}

def bob = new User(name: 'Bob', password: 'secr3t')
validateAll(bob)

While being a bit more verbose, adding explicit type information isn’t necessarily a
bad option, but we do have a few other possibilities available to us. First, it might be
possible to leverage Groovy’s ability to automatically convert a closure to a single
abstract method (SAM) type (see chapter 7). Let’s consider that next.

Listing 10.21 Type checker will get grumpy if it sees too many Object types

Listing 10.22 User validation with explicit parameter types

Error: type of
user is Object

Error: no property
name for Object

Error: no property
password for Object

User type in
method and closure
declarations
Licensed to Mark Watson <nordickan@gmail.com>

313Using @TypeChecked

SAM TYPE CONVERSION

If we have an appropriate SAM type available that already has type information expressed
in its parameter declarations, the type checker can use that information to derive the
argument type information for the closure arguments. We can incorporate that
approach into our user validation example as the following listing shows.

import groovy.transform.TypeChecked

interface Predicate<On> { boolean apply(On e) }

void validate(User u, Predicate<User> rule) {
 if (!rule.apply(u)) {
 println "User $u.name $u.password rejected"
 }
}

@TypeChecked
void validateAll(User user) {
 validate(user) { !it.name.isEmpty() }
 validate(user) { it.password.size() > 7 }
}

def bob = new User(name: 'Bob', password: 'secr3t')
validateAll(bob)

Because the method of our SAM type uses a generic type for its argument B and our
validate method supplies User for the type parameter c, the necessary type infor-
mation can be inferred by the type checker. Therefore, our closure rules d don’t
need the explicit User type that was required in listing 10.22.

 Another alternative that the type checker can possibly use to determine argument
type information is API metadata. Groovy has several annotations that add metadata to
the API. Let’s look at those next.

@CLOSUREPARAMS

Another alternative that the type checker can use to determine argument type infor-
mation is API metadata, if it’s available. Groovy provides the @ClosureParams annota-
tion as used in the following listing to give type hints for the expected parameter types
of the validation closure.

import groovy.transform.TypeChecked
import groovy.transform.stc.*

void validate(User u,
 @ClosureParams(FirstParam) Closure<Boolean> rule) {
 if (!rule.call(u)) {
 println "User $u.name $u.password rejected"
 }
}

Listing 10.23 User validation harnessing a SAM method

Listing 10.24 User validation leveraging ClosureParams

SAM type
definition

 b

SAM type
argument c

Implicit type
inferred

 d

First parameter to
validate method is
of type User

Type hint
FirstParam
refers to
User type b
Licensed to Mark Watson <nordickan@gmail.com>

314 CHAPTER 10 Groovy as a static language
@TypeChecked
void validateAll(User user) {
 validate(user) { !it.name.isEmpty() }
 validate(user) { it.password.size() > 7 }
}

def bob = new User(name: 'Bob', password: 'secr3t')
validateAll(bob)

The @ClosureParams annotation is added to the closure parameter, in our case the
rule parameter B. The @ClosureParams annotation minimally accepts one argu-
ment, a type hint. The type hint is a class that’s responsible for completing type infor-
mation at compile time for the closure. In this example, the type hint being used is
groovy.transform.stc.FirstParam, which indicates to the type checker that the clo-
sure will accept one parameter of which the type is the type of the first parameter of
the method. In our case, the first parameter of the method is User, so it indicates to the
type checker that the first parameter of the closure is in fact a User.

 Numerous type hint classes are provided. As an example, if a closure has one User
argument and the method you’re annotating is passed a List<User> in its second argu-
ment, you can use SecondParam.FirstGenericType like this:

void validateUsers(Date when,
 List<User> users,
 @ClosureParams(SecondParam.FirstGenericType) Closure c) {
 /* method body omitted */
}

Some hint type classes support optional information; for example, if you have a clo-
sure that takes two arguments, a String and an int, you could use:

@ClosureParams(value=SimpleType,options=['java.lang.String','int'])
Closure c

See the Groovy documentation for a complete list of available type hint classes.5 You
should also be aware that much of the Groovy-GDK has these annotations included.
So, for the most part, when you’re using any Groovy library methods, you’ll have type-
checking support.

 Now let’s move on to another annotation that also augments your API with meta-
data and see if we can put it to good use for our user validation example.

@DELEGATESTO

There’s another trick for giving information to the type checker that can often be
used when writing DSLs. You can use the @DelegatesTo annotation. We’ll have a brief
look at it here and come back to it in more detail in the last section of this chapter
when we look at tricks for extending the type checker for scenarios such as type check-
ing your own DSLs.

5 Groovy Language Documentation, version 2.4.3, http://docs.groovy-lang.org/latest/html/documentation/
#_the_code_closureparams_code_annotation.

Second
parameter User is

generic type
from second
parameter
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.groovy-lang.org/latest/html/documentation/#_the_code_closureparams_code_annotation
http://docs.groovy-lang.org/latest/html/documentation/#_the_code_closureparams_code_annotation

315Using @TypeChecked

Simpli
r

syn
 First, let’s relook at our validation rules. All of our rules so far have expressions of
the form u.name.isEmpty() or it.password.size(). Perhaps the person writing the
rules isn’t an IT guru but some business expert. We might want to allow him or her to
just write name.isEmpty() and password.size().6 So, let’s look at revising our valida-
tion code to support this capability.

 An interesting feature of Groovy closures is that they have delegates, as explained
in chapter 5. Delegates can be considered as the message receiver when none is speci-
fied. So, to implement our revised validation rules, we just need to ensure that the
user is set as the delegate. The following listing does exactly that.

def validate(User u, Closure rule) {
 rule.delegate = u
 rule()
}

void validateAll(User u) {
 validate(u) { if (name.isEmpty()) println 'Empty name' }
 validate(u) { if (password.size() < 8) println 'Password too short' }
}

def bob = new User(name: 'Bob', password: 'secr3t')
validateAll(bob)

The differences from our earlier solutions are minimal. We set the delegate before
calling the rule B. Because the delegate is set, we can now call the rule without a
parameter c. And, finally, our rules can use the slightly simplified syntax we were
hoping to achieve d. The solution works but so far it’s dynamic. The type checker
can’t know in general that the delegate has been set at runtime, there are no explicit
types for the closure, and on top of that there are now properties like name and pass-
word that aren’t declared anywhere. Again, API metadata comes to the rescue. This
time with the @DelegatesTo annotation that specifically covers this case.

 To use this approach, simply annotate the rule closure and indicate the type of the
Closure delegate. For our case, we declare that the delegate will be of type User as
the following listing shows.

import groovy.transform.TypeChecked

def validate(User u, @DelegatesTo(User) Closure rule) {
 rule.delegate = u
 rule()
}

6 See chapter 19 if you want to see tricks for even further simplifications.

Listing 10.25 Toward a user validation DSL

Listing 10.26 Type-checked user validation DSL using DelegatesTo

Sets user
as delegate

 b

Calls
validation rule c

fied
ule
tax

 d

Annotation
on Closure
parameter
Licensed to Mark Watson <nordickan@gmail.com>

316 CHAPTER 10 Groovy as a static language

Ann
C

and
@TypeChecked
void validateAll(User u) {
 validate(u) { if (name.isEmpty()) println 'Empty name' }
 validate(u) { if (password.size() < 8) println 'Password too short' }
}

def bob = new User(name: 'Bob', password: 'secr3t')
validateAll(bob)

There’s a slight variation to the approach. You still need to annotate the closure param-
eter with @DelegatesTo but instead of explicitly setting the delegate type (User in our
example), you use the @DelegateTo.Target annotation on another parameter and let
the compiler determine the type. The following listing uses that variant.

import groovy.transform.TypeChecked

def validate(@DelegatesTo.Target User u, @DelegatesTo Closure rule) {
 rule.delegate = u
 rule()
}

@TypeChecked
void validateAll(User u) {
 validate(u) { if (name.isEmpty()) println 'Empty name' }
 validate(u) { if (password.size() < 8) println 'Password too short' }
}

def bob = new User(name: 'Bob', password: 'secr3t')
validateAll(bob)

This approach becomes particularly interesting in conjunction with flow typing, which
we cover in more detail in section 10.5.

10.2.7 Revisiting dynamic features in light of type checking

While some people may want to perform static type analysis on their full codebase, it’s
in practice very unlikely that all your Groovy code can be statically checked. There’s a
very good reason for that. You saw in chapter 8 that a lot of the Groovy features are
dynamic: categories, metaclasses, builders, and mixins to name a few. Let’s examine a
few of these and consider the implications of trying to statically check some of these
use scenarios.

CATEGORIES

As an example, take this use of Groovy’s TimeCategory class:

use (TimeCategory) {
 duration = 1.week – 1.day
}

Here, TimeCategory adds methods at runtime that are difficult to examine for the
type checker. The following listing uses the category out of its lexical scope to point
out the issue.

Listing 10.27 Type-checked user validation DSL using DelegatesTo.Target

otates
losure
 User
Licensed to Mark Watson <nordickan@gmail.com>

317Using @TypeChecked
import groovy.time.TimeCategory

class VacationHelper {
 static duration() {
 use(TimeCategory) {
 doCompute()
 }
 }

 static doCompute() { 1.week - 1.day }
}

assert VacationHelper.duration().toString() == '6 days'

This code is totally valid even if the doCompute method itself doesn’t explicitly use
TimeCategory, because it’s called from the duration method that has “opened” the
category. If one calls doCompute directly, it would fail, so the code validity depends on
the entry point, which is beyond the scope of static analysis. For that reason, you can-
not use categories with the type checker. See chapter 19 if you want to see tricks for
even further simplifications.

 You might think this is a very contrived example and perhaps we should be forced
to refactor code like in listing 10.28 to require any dynamic code to “live” inside the
use block. But as you’ll see in chapter 11, we definitely don’t want to do that. There
we’ll see that the same building logic can be used with multiple builders: NodeBuilder
and MarkupBuilder.

METACLASSES

Another dynamic Groovy feature that isn’t amenable to static analysis is runtime
metaprogramming through metaclasses. The following listing uses Groovy’s Expando-
MetaClass with the Intercept-Cache-Invoke pattern as seen in chapter 8 to add new
methods at runtime.

class Spy {
 static {
 def mc = new ExpandoMetaClass(Spy, false, true)
 mc.initialize()
 Spy.metaClass = mc
 }
 String name = "James"

 void methodMissing(String name, args) {
 if (name.startsWith('changeNameTo')) {
 println "Adding method $name"
 String newName = name.substring(12)
 def newMethod = { delegate.name = newName }
 Spy.metaClass."$name" = newMethod
 newMethod()

Listing 10.28 Valid dynamic code that cannot be type checked

Listing 10.29 Using ExpandoMetaClass

Creates an
ExpandoMetaClass
for Spy class

If method not
found, defines
new one

 b

Cache
method

 c
Call new
method
Licensed to Mark Watson <nordickan@gmail.com>

318 CHAPTER 10 Groovy as a static language
 } else {
 throw new MissingMethodException(name, this.class, args)
 }
 }
}

def spy = new Spy()
assert "James" == spy.name
spy.changeNameToAustin()
assert "Austin" == spy.name
spy.changeNameToMaxwell()
assert "Maxwell" == spy.name
spy.changeNameToAustin()

Calling this code will produce the following output:

Adding method changeNameToAustin
Adding method changeNameToMaxwell

This is a typical use of ExpandoMetaClass as a tool to create DSLs. Here, instead of hav-
ing the user call the setName method on a person, we allow them to use change-
NameTo<PersonName>. At B, we’re creating a new method if none is found, which
delegates to the setter and caches the newly created method in c. This explains why
the last call to changeNameToAustin doesn’t trigger a call to methodMissing, because
this time the method is known and cached.

 Obviously, there’s no way for a static analysis tool to determine all possible
method calls because the behavior is defined at runtime, when methodMissing actu-
ally gets called. For that reason, you cannot use metaclasses in combination with
@TypeChecked.

 Categories and metaclasses aren’t the only features of Groovy that aren’t compati-
ble with type checking and also why we don’t believe applying @TypeChecked on your
whole Groovy codebase makes much sense: if you do, this means that you explicitly
decide not to use half of the features of the language, including some that are in par-
ticular very powerful: builders.

BUILDERS

Builders are a central feature of many DSLs written in Groovy and we’ll cover them in
detail in chapter 11. They make dealing with hierarchical data incredibly easy and
provide an elegant and concise syntax. While Groovy makes it easy to write builders, it
also provides some builders for common use cases, such as the MarkupBuilder to gen-
erate XML markup, or the JsonBuilder to output JSON. Builders often use many
dynamic features, including closure delegates, method missing, and property missing,
making the code often impossible to check statically. (Section 10.5 explains how you
can help the type checker in such situations, making it in many cases possible to per-
form static type checking of even purely dynamic code!) Let’s see the issue firsthand
in the following listing that emits proper HTML code.

Licensed to Mark Watson <nordickan@gmail.com>

319Using @TypeChecked
import groovy.xml.MarkupBuilder

def writer = new StringWriter()
def xml = new MarkupBuilder(writer)

xml.html {
 head {
 title('An XHTML Page')
 }
}

println writer

This example says it all: the MarkupBuilder class doesn’t define any html, head, or
title methods B, so if you tried to apply @TypeChecked on this example, the com-
piler would report them as compilation errors. But you can see that this works at run-
time. If you’re anything like us, you want both: dynamic features and type checks for
your code. Groovy allows you to mix both approaches.

10.2.8 Mixing type-checked code with dynamic code
The first solution relies on annotating individual methods with @TypeChecked instead
of annotating a whole class. The following listing calls dynamic builder code from a
statically type-checked method.

import groovy.xml.MarkupBuilder
import groovy.transform.TypeChecked

class HTMLExample {
 private static String buildPage(String pageTitle) {
 def writer = new StringWriter()
 def xml = new MarkupBuilder(writer)

 xml.html {
 head { title(pageTitle) }
 }
 writer
 }

 @TypeChecked
 static String page404() {
 buildPage '404 - Not Found'
 }
}

HTMLExample.page404()

While being an easy solution, this technique has drawbacks:

■ You have to annotate each method that you want to be type checked with
@TypeChecked.

■ Static initializers blocks, instance initializer blocks, and fields cannot be anno-
tated, so they’ll never be type checked.

Listing 10.30 Using MarkupBuilder and unresolved methods

Listing 10.31 Mixing @TypeChecked and dynamic code in a single class

Instantiate
MarkupBuilder

Method calls that
@TypeChecked
would reject

 b

Type check only
this method
Licensed to Mark Watson <nordickan@gmail.com>

320 CHAPTER 10 Groovy as a static language
It’s also worth noting that the method level is the finest granularity for type checking:
you cannot mix type-checked and not-type-checked code in a single method body.
This implies that if a method defines an anonymous inner class or a closure inside,
then the anonymous inner class (respectively the closure) will only be type checked if
the method or the class is itself annotated.

SKIPPING TYPE CHECKING

Fortunately, the type checker provides a way to enable type checking on a full class
but skip some methods. This should be used, for example, if a class mostly consists
of statically checkable code and has only a few methods that use dynamic features.
We can modify listing 10.31 to use the TypeCheckingMode option as shown in the fol-
lowing listing.

import groovy.xml.MarkupBuilder
import groovy.transform.TypeChecked
import groovy.transform.TypeCheckingMode

@TypeChecked
class HTMLExample {
 @TypeChecked(TypeCheckingMode.SKIP)
 private static String buildPage(String pageTitle) {
 def writer = new StringWriter()
 def xml = new MarkupBuilder(writer)

 xml.html {
 head { title(pageTitle) }
 }
 writer
 }

 static String page404() {
 buildPage '404 - Not Found'
 }
}

HTMLExample.page404()

Depending on your needs, you might want to use one option or the other.

TIP If you like the benefits of type checking and only use dynamic features in
quite specific places, then we’d recommend using TypeCheckingMode.SKIP
because it more clearly clarifies the exact portions of the code that are
“dynamic.”

10.3 Flow typing
In the previous sections, we’ve spent time explaining what @TypeChecked would offer
you, and what it would prohibit, but we also explained why it was difficult to perform
static analysis of a dynamic language. The semantics of a dynamic program are diffi-
cult, if not impossible, to determine at compile time, meaning that the type checker

Listing 10.32 Using TypeCheckingMode.SKIP

Type-checked
class…

…but exclude
this method
Licensed to Mark Watson <nordickan@gmail.com>

321Flow typing

As
S
t

might think that one method will be called, but in reality, another one would be. To
reduce the gap between the dynamic and the static behavior, the type inference
engine uses the principle of flow typing.

 Flow typing is the ability to determine the type of a variable at some point in the
code, depending on the previous assignments. The next listing contains a series of
assignments that change the runtime type.

import groovy.transform.TypeChecked

@TypeChecked
def flowTyping() {
 def var = 'A string'
 var = var.toUpperCase()
 var = var.length()
 var = String.valueOf(var)
 var = 2*var
 var
}

This example makes use of a single variable (var) to which different objects are
stored at different lines. The type of var, at any particular point, depends on the
execution flow. It means that the type of the variable that is inferred B—that is, a
String—is used c to determine what method can be called on var. The result of
the method call is a String, so the inferred type of var after the assignment will
remain a String. But we’re calling the length() method, which is known to return
an int d. The type checker is aware of that, so it knows the method that is called is
in fact String#valueOf(int)e, which returns a String. This is why the only compi-
lation error that will appear is at F, because we’re trying to call the multiply
method on an integer c, and that method doesn’t accept a String as a second
argument. Because no such method exists, the compiler reports an error.

 The alternative, for the type checker, would’ve been to take all assignments into
consideration and determine a single inferred type for var that would be used every-
where. Here, because we’re assigning both a String and an Integer, the only type
that would match is Object. One could consider this the right thing to do; however, it
has a major problem: it would make the code much more verbose because you’d have
to use explicit casts everywhere! The code would be equivalent to what you have to do
in Java:

Object var = "A string";
var = ((String)var).toUpperCase();
var = ((String)var).length();
var = String.valueOf((Integer)var);

This code wouldn’t feel like Groovy!

Listing 10.33 Flow typing and subsequent assignments

Assigns
String to var

 b

Assigns another
String to var

 c

Assigns int
to var dsigns

tring
o var e Fails! Trying to

call (int*String) f
Licensed to Mark Watson <nordickan@gmail.com>

322 CHAPTER 10 Groovy as a static language
NOTE Listing 10.33 is using bad style. It stores objects of different types in a
single variable. Groovy makes it easy to write much less imperative equivalent
versions of the preceding code but doesn’t prevent you from using bad style:
its goal is to help you to write effective, readable, and concise code. In any lan-
guage, you can write bad code and Groovy isn’t an exception to that rule.

Though we showed you an admittedly contrived example above to introduce you to
the idea of flow typing, it really makes a lot of sense for more complex code and is par-
ticularly useful if you consider type hierarchies like in the following listing.

import groovy.transform.TypeChecked

interface Flying {
 void fly()
}

class Bird implements Flying {
 void fly() { println "I'm flying!" }
}

class Canary extends Bird {
 void sing() { println "Tweet!" }
}

@TypeChecked
void aviary() {
 def o = new Bird()
 o.fly()
 o = new Canary()
 o.fly()
 o.sing()
}

aviary()

The big difference with Java is that here, you can have type-checked code that’s
written in an idiomatic Groovy way (def, no semicolons, no instanceof) but still
doesn’t require any cast! In particular, you don’t have to tell the compiler it’s a bird B
or a canary C, when calling the respective methods. Of course, if you add the fol-
lowing lines:

o = new Bird()
o.sing()

then the type checker would report a compilation error, because it realizes that the sing
method isn’t defined on an object of type Bird. Flow typing, which is part of the type
inference engine, is quite easy to understand for “linear” flows like this one. But real-life
code isn’t as simple and we have to introduce a new concept, the least upper bound, to
understand the behavior of the type checker in more advanced circumstances.

Listing 10.34 Type hierarchies and flow typing

A bird
can fly

 b

A canary can fly
and also sing

 c

Would fail
compilation
Licensed to Mark Watson <nordickan@gmail.com>

323Flow typing
10.3.1 Least upper bound

The type inference engine of Groovy has proven to be pretty smart. In reality, it’s even
smarter than you might think, which can lead to results that are surprising at first. For
example, the type checker is able to represent types that you can’t define. To illustrate
the concept, let’s look at the following code:

def list = [23, 3.14]

Could you at first glance determine what the type of the list is? Several answers are possi-
ble, but if you take a close look at the elements, you’d see that the first one is an
Integer, while the second one is a BigDecimal (in Groovy, decimal numbers are Big-
Decimal by default, not double like in Java). So the type checker has to compute the
common supertype of those two elements. From memory, you’d probably guess Number,
which is an interface. That is correct, but both Integer and BigDecimal implement
Serializable, so why would you prefer Number over Serializable? Why not choose
the lowest concrete common superclass (which in this case, would be Object).

 To solve the problem, Groovy introduces the concept of least upper bound, which is
some kind of virtual type that the user cannot define7 but that the compiler knows about.
In this case, the least upper bound is something that is a Number, Comparable, and
Serializable.8

 Another option for the type inference engine would have to say that the list is a list
of Integer or BigDecimal (a union type). But this causes problems, as shown in the
following listing.

import groovy.transform.TypeChecked

interface Polite {
 void greet()
 void thank()
}

class Person implements Polite {
 String name
 void greet() { println "Hello, I'm $name!" }
 void thank() { println 'Thanks!' }
}

class Owl implements Polite {
 void greet() { hoot() }
 void thank() { hoot() }
 void hoot() { println 'Hoot' }
}

7 Neither Java nor Groovy support the notion of union types or higher-rank type classes at the syntax level.
Given Groovy’s excellent extensibility, there have been some interesting type class experiments for Groovy
but details are beyond the scope of this book.

8 A limit to the current implementation is that this virtual type isn’t fully aware of the fact that Comparable
only applies to the same types (Integer with Integer, BigDecimal with BigDecimal).

Listing 10.35 Least upper bound versus union type
Licensed to Mark Watson <nordickan@gmail.com>

324 CHAPTER 10 Groovy as a static language
@TypeChecked
void main() {
 def list = [new Person(name: 'Bill'), new Owl()]
 Polite p1 = list[0]
 Polite o1 = list[1]
 Owl o2 = list[0]
 Person p2 = list[1]
}

main()

If the type of the list was inferred as a union type, then the assignments at B and C
would have been valid, because the type checker can’t determine, in general, what will
be the type of the nth element of the list. This would trigger a runtime error that we
want to avoid. Using the least upper bound, Groovy only allows assignments to the com-
mon supertype or any of the interfaces implemented by all the elements of the list.
This means that even if potentially an assignment would work at runtime (if we assign
the first element of the list to a Person, for example), the type checker will report a
compile-time error because type safety isn’t guaranteed.

 Lists are far from being the only place where a least upper bound is computed.
The following listing poses another challenge to the type checker by putting an assign-
ment inside a conditional branch.

import groovy.transform.TypeChecked

@TypeChecked
void leastUpperBoundOnConditional() {
 def o = new Date()
 if (Math.random()) {
 o = 'Hello'
 }
 o.time
}

Without @TypeChecked the code may succeed or fail depending on a random factor!
But a type checker doesn’t play dice; it has to make some guarantees on your code.
Therefore, if an assignment to a variable is made inside a conditional branch, then after
the conditional, the only type that can be guaranteed is the least upper bound of the
variable type before the conditional B and all assignments inside the conditional C;
that is, here a Date and a String. So if you compile listing 10.36, the compiler will fail
with the following error:

No such property: time for class: java.io.Serializable

Internally, the least upper bound is also used to compute the inferred return type of a
method or a closure. For that, the type checker collects all return expressions (both
explicit, using the return keyword, and implicit, without return) and compares their

Listing 10.36 Conditionals trigger least upper bound computation

Creates list with
Person and Owl

Assigns either element to
variable of type Polite

Tries to assign first
element to Owl b

Tries to assign
second element
to Person c

Variable
initialized
with Date

 b

Random
conditionAssigns

a String c
Tries to
call o.time
Licensed to Mark Watson <nordickan@gmail.com>

325Flow typing
inferred type to the declared method return type. If any of the return statement isn’t
compatible with the return type, an error is thrown. If, as expected, all returns are
compatible, the inferred return type of the method is computed as the least upper
bound of all returns.

DECLARING THE RETURN TYPE

In Groovy, people often declare methods using def as the return type and sometimes
(implicitly or explicitly) for argument types. In general, this isn’t a problem; however,
when the method belongs to a public API, it’s preferable to declare an explicit return
type and explicit method parameters. This is a good idea for interoperability with Java
and for documenting your API’s contract and, as you’ve just seen, it helps the type
checker perform additional checks too.

10.3.2 Smart instanceof inference

How many times have you written code like this in Java?

if (obj instanceof Person) {
 value = ((Person)obj).getName();
}

And then you may have wondered why you have to perform an explicit cast although
you’ve just indicated that obj was an instance of Person. This is typical boilerplate
code. In dynamic Groovy, you don’t have the problem. You can write:

if (obj instanceof Person) {
 value = obj.name
}

What about type-checked Groovy code? The good news is that it’s exactly the same!
Even if you use type checking, the compiler won’t force you to add an explicit cast.

COMPATIBILITY WITH AST TRANSFORMATIONS

AST transformations, as explained in chapter 9, are compile-time metaprogramming
features that allow code generation. With that, one could wonder if they’re compati-
ble with type checking. There are two answers. The first one is yes, of course. If you
use @Log, the type checker will recognize the added log field. The second answer is
maybe. The main reason is that for an AST transformation to work, it has to be
designed to provide type information. Because AST transformations are aimed at code
generation, the generated code may be written in a dynamic fashion, which doesn’t
allow it to be type checked. In general, the AST transformations that Groovy comes
with are compatible with type checking, but it’s not mandatory: should you find an
AST transformation that doesn’t work in combination with @TypeChecked, we strongly
recommend that you raise a ticket on the Groovy project bug tracker.

 Before we jump on the static compilation subject, let’s study one last issue you may
face with type-checked code, regarding closures.
Licensed to Mark Watson <nordickan@gmail.com>

326 CHAPTER 10 Groovy as a static language
10.3.3 Closure-shared variables

You’ve seen previously that the type checker is aware of closures and their enclosing
context. It’s possible, for a closure, to capture local variables, and a difference with
anonymous inner classes in Java, for example, is that those variables don’t have to be
final to be used inside the closure body. The following listing illustrates this by modify-
ing a variable that’s bound from the enclosing scope.

import groovy.transform.TypeChecked

@TypeChecked
def captureOfALocalVariable() {
 def msg = 'Hello'
 def cl = { msg = 'Hi!' }
 assert msg == 'Hello'
 cl()
 assert msg == 'Hi!'
}

captureOfALocalVariable()

A closure-shared variable doesn’t have to be explicitly declared as shared: as the exam-
ple shows, it’s shared because it’s used inside a closure, and nothing prevents the clo-
sure from overwriting the variable. Actually, we see that it’s only when the closure is
called B that the value changes. This is very important to understand, because as clo-
sures are code as data, they can be manipulated and executed at any time. A slight
change at B may totally change the result:

Thread.start { cl() }

In this case, the closure is called asynchronously. This is only an example of a deferred
call, but you can imagine many others (executors, thread pools, and so on), so in gen-
eral, it’s not because a closure is defined that you know at compile time when it’ll be
executed. For that reason, closure-shared variables cannot participate in flow typing as
other regular variables. Instead, the compiler uses the least upper bound once again
to tell you what you’re allowed to do.

 In particular, method calls on closure-shared variables are only possible on meth-
ods that exist on the least upper bound of all assignments. Attempts to use other
methods will fail compilation as shown in the following listing.

@TypeChecked
void notAllowed() {
 def var = "String"
 def cl = { var = new Date() }
 cl()
 var = var.toUpperCase()
}

Listing 10.37 Writing to a closure-shared variable

Listing 10.38 toUpperCase isn’t defined on the least upper bound

Variable msg is
closure-shared
variable

Closure can
write to msg

Closure
is called b
Licensed to Mark Watson <nordickan@gmail.com>

327Static compilation
Even if in this example it’s clear that when the closure is called, in general, we cannot
make specific assumptions, so the least upper bound of String and Date is computed.
Because the toUpperCase method isn’t defined on this least upper bound, the com-
piler will report an explicit error:

A closure shared variable [var] has been assigned with various types and the
method [toUpperCase()] does not exist in the lowest upper bound of those
types: [java.io.Serializable <? extends java.lang.Object>]. In general, this
is a bad practice (variable reuse) because the compiler cannot determine
safely what is the type of the variable at the moment of the call in a
multithreaded context.

The error message is a bit long, but gives you a chance to understand what’s happen-
ing. In particular, it describes why it’s not a good idea to use a closure-shared variable
to store objects of different types. In contrast, the following listing won’t trigger any
compilation error, even though the closure is assigned values of different types.

class A { void foo() {} }
class B extends A { void bar() {} }

@TypeChecked
void main() {
 def var = new A()
 def cl = { var = new B() }
 cl()
 var.foo()
}

main()

The difference is that the method foo, which is called at the end of the main method,
is defined in the least upper bound of A and B. Because the compiler can ensure that
the method exists, it has no reason to report an error. There’s a lesson to be learned
here. If you’re facing obscure error messages because your code exhibits complex
least upper bound types, it’s probably a sign that your design is too complex and
needs to be refactored.

 We’ve now completed our tour of @TypeChecked features and it’s time to go a little
further in the static world by describing its cousin annotation, @CompileStatic.

10.4 Static compilation
Having seen the benefits of @TypeChecked raises the question whether we can profit
from even more static features like precalculated method dispatch for better perfor-
mance and restricted static call semantics. You guessed it right: we can.

 Many programmers live under the misconception that dynamic languages are
always slower than statically-compiled languages. This isn’t always true. Groovy is
generally almost as fast as Java. But there are situations where the cost of dynamic
method selection becomes relevant like when optimizing a tight inner loop on the
performance-critical path. (Remember: always before optimizing!) In other situations,

Listing 10.39 Valid assignment of closure-shared variables
Licensed to Mark Watson <nordickan@gmail.com>

328 CHAPTER 10 Groovy as a static language
you may want to selectively disable the method object protocol and thus all dynamic
features of Groovy.

 Before Groovy 2, the only choice was to write parts of your application in Java. Do
you remember the rainbow-colored glasses in figure 8.1 that Groovy wears when look-
ing at Java code? Here’s how you can take them off and still write nice Groovy code
that now has all the static characteristics of Java.

10.4.1 @CompileStatic

Static compilation in Groovy can be achieved by annotating a class or a method with
@CompileStatic. The rules for @CompileStatic are exactly the same as they are for
@TypeChecked: you can annotate a class or a method, and if you do so, all the code
within the scope of the annotation becomes statically compiled. The annotation also
accepts the optional type checking mode attribute (TypeCheckingMode.SKIP), which
allows skipping a method or a class from static compilation.

 The question is now to tell what actually changes when you switch from @Type-
Checked to @CompileStatic. To prove the difference, we’ll use an example in list-
ing 10.40 that’s often used to “prove” the superiority of any language against any
other: the Fibonacci suite. While we doubt that a lot of production code relies on the
generation of Fibonacci numbers, the example is particularly challenging because it’s
a micro-benchmark that focuses on recursive calls and primitive computations, where
Java used to be much faster than Groovy.

@Grab('org.gperfutils:gbench:0.4.3-groovy-2.4')
import groovy.transform.CompileStatic

def dynamicFib(n) { n<1 ? 1 : dynamicFib(n-1) + dynamicFib(n-2) }

int primFib(int n) { n<1 ? 1 : primFib(n-1) + primFib(n-2) }

@CompileStatic
int staticFib(int n) { n<1 ? 1 : staticFib(n-1) + staticFib(n-2) }

def r = benchmark {
 'Dynamic Groovy' { dynamicFib(10) }
 'Primitive optimized Groovy' { primFib(10) }
 'Statically compiled Groovy' { staticFib(10) }
}
r.prettyPrint()

The listing makes use of GBench (https://code.google.com/p/gbench/), a bench-
marking library for Groovy, to make measurements of performance. Here the output
of this script tells us which methods are faster than others. The following figures were
obtained on a laptop, but what’s interesting is the relative difference between them:

 user system cpu real

Dynamic Groovy 6662 0 6662 6662
Primitive optimized Groovy 1383 0 1383 1383
Statically compiled Groovy 581 0 581 603

Listing 10.40 Fibonacci in action
Licensed to Mark Watson <nordickan@gmail.com>

https://code.google.com/p/gbench/

329Static compilation
As you can see, if you don’t use any explicit type, Fibonacci can be really slow. But as
soon as you tell Groovy that the method will only work for primitive integers, the com-
piler is able to generate optimized bytecode and reach performance that’s close to
Java. But adding @CompileStatic to the code makes it even better: it becomes twice as
fast as the version with primitive type optimization on par with Java.9

 Let’s examine what makes such a performance boost possible.

10.4.2 Method dispatch

To understand how method dispatch works in Groovy, we’ll start by explaining how it
works in Java. The following listing shows a simple greeting class that demonstrates
what a static language like Java does at compile time:

public class Greeter { // Java!
 static void greet(Object o) {
 System.out.println("Hello, object "+o);
 }
 static void greet(String s) {
 System.out.println("Hello, string " + s);
 }
 public static void main(String...args) {
 Object o = "Bob";
 String s = "Bob";
 greet(o);
 greet(s);
 }
}

If you run this program in Java, it will output the following:

Hello, object Bob
Hello, string Bob

Now if you copy and paste the very same code in Groovy and execute again, you’ll see
a difference:

Hello, string Bob
Hello, string Bob

The same string appears twice! In fact, a lot of programmers ignore how Java dis-
patches method calls, but this example shows that the target methods are selected at
compile time, based on the declaration type of the arguments. It’s very important to
understand that it’s based on the declaration type, so here, even if both o and s con-
tain the same string, because one is declared as Object and the second one is declared
as a String, the compiler will choose the Object variant of the overloaded greet
method for the first case, and the String variant for the second case.

9 The benchmark doesn’t call any native Java method here, but it would be easy to do so and verify the claim.

Listing 10.41 Statically compiled greeting in Java
Licensed to Mark Watson <nordickan@gmail.com>

330 CHAPTER 10 Groovy as a static language
 Groovy is the opposite, using the runtime argument types. Runtime dispatch often
looks more natural to new programmers, because it’s using the type that we actually have.

 But method dispatch requires some logic and, when done at runtime, it adds a lit-
tle to the cost of method invocation, which explains why Groovy is in general a little
bit slower than Java. Groovy is quite intelligent about the dispatch logic, though, and
keeps a cache to avoid recalculation when it can be sure that it can safely jump to the
same call site.

@COMPILESTATIC METHOD DISPATCH

By annotating your code with @CompileStatic, not only are you activating type check-
ing, but you’re also asking the compiler to generate statically compiled code. In short,
the generated code follows the same rules as in Java, with some differences.

 Statically compiled Groovy code will have bytecode that’s close, if not equal, to
what the Java compiler generates. Therefore, using @CompileStatic provides the
same level of performance as Java!

 But there’s now an issue that Groovy has to solve: when using @CompileStatic how
should the method selection operate given that the runtime types aren’t available at
compile time?

 The solution is that statically compiled Groovy selects methods like Java does, with
a twist.

INFERRED TYPE METHOD DISPATCH

As opposed to Java, Groovy doesn’t use the declared types of the arguments for the
static method dispatch but the inferred types! The following listing motivates this deci-
sion by being able to find the method we expect where Java cannot.

import groovy.transform.CompileStatic
static String prettify(String s) { "String: $s" }
static String prettify(Date d) { "Date: ${d.time}" }

@CompileStatic
void test() {
 def var = "I'm a String"
 println prettify(var)
}
test()

The test method declares a variable using def B. It’s not final (it doesn’t have to be,
because we’re using flow typing), yet the compiler is able to infer that the type of var
is String when we reach C. So instead of calling prettify(Object) like Java would
do, we’ll call prettify(String), which is also what dynamic Groovy would have done!

STATIC COMPILATION BY DEFAULT?
While static compilation for Groovy was being developed, some people feared that the
semantics of the language would change and that Groovy would move from a dynamic
language to a static one. Let’s make it very clear: that isn’t the case. Groovy is and

Listing 10.42 Static method dispatch in Groovy

Using def, which is
equivalent to Object

 b

Calls
prettify(String) c
Licensed to Mark Watson <nordickan@gmail.com>

331Static compilation

Ch
that

retur
remains a primarily dynamic language that offers an optional static compilation
mode. The Groovy development team considers that there are so many advantages to
using dynamic (legacy) Groovy that there’s absolutely no reason to switch to static
compilation by default.

 But the introduction of this feature in Groovy 2 also attracted people from the Java
(and other statically compiled languages) world who wanted to activate static compila-
tion by default. We don’t encourage this, but if you really want to do it, take a look at
chapter 16.

 So what’s static compilation good for in Groovy? We think there are a few valid use
cases for statically compiled code:

■ Optimizing hotspots—This is the first obvious reason, but it’s important to double
check with facts. Never optimize without measuring first! Remember: prema-
ture performance optimization is evil.

■ Frameworks—Grails (www.grails.org) is an example of a full-stack framework
written in Groovy to build web applications. Since frameworks are used as foun-
dations to real applications, it’s good to have the smallest footprint and best
performance possible. Instead of writing parts of the framework in Java, frame-
work writers now have the ability to keep using Groovy as their development
language.

■ Immunity to monkey patching—This use case is interesting, because statically com-
piled Groovy classes behave like Java classes. They’re immune to runtime meta-
programming. The following listing demonstrates how to make Groovy code
immune to metaprogramming changes.

import groovy.transform.CompileStatic

class MyFramework {
 static int sizeOf(String s) { s.size() }

 @CompileStatic
 static int staticSizeOf(String s) { s.size() }
}

String s = 'a happy new year!'
s.metaClass.size = { -> 5 }
assert s.size() == 5
assert MyFramework.sizeOf(s) == 5
assert MyFramework.staticSizeOf(s) == 17

In this example, we simulate the use of the size method on String by a framework.
The first case B isn’t statically compiled, while in the other C we’re using @Compile-
Static. To be safe, it’s better if the framework uses the real method, but here, on

Listing 10.43 Immunity to monkey patching

sizeOf method uses
dynamic dispatch

 b

staticSizeOf method
uses static dispatch

 c

Changes metaclass
so that size always
returns 5

 d
ecks
size
ns 5

 e

Checks that calling
size from framework
returns 5 f

Checks that from statically
compiled method returns

original size g
Licensed to Mark Watson <nordickan@gmail.com>

http://www.grails.org

332 CHAPTER 10 Groovy as a static language
line D, we’re defining a custom metaclass that makes size return 5, so calling size
on s like on line E returns 5 as expected. It’s also the case when we call the frame-
work method, which itself calls the size method F, making it clear that the framework
inherited a behavior that’s defined externally. But at G we’re using the statically com-
piled method, and the result is different: it calls the original method, instead of the
stubbed one. That’s what we call immunity to monkey patching: by using @Compile-
Static, the method makes a direct call to size, instead of going through the meta-
object protocol.

 If you ever choose to make use of static compilation intensively in your framework,
it’s interesting to notice that Groovy provides a shortcut for @CompileStatic(Type-
CheckingMode.SKIP), named @CompileDynamic. You may find this useful if you only
want to exclude one or two methods from static compilation in a class.

 In this section, we’ve explained how you could use @CompileStatic instead of
@TypeChecked to enforce static semantics, but we didn’t show why you should prefer
one over the other. There’s one good reason to prefer @TypeChecked over @Compile-
Static when it comes to type checking DSLs, as you’ll see in the next section.

10.5 Static type checking extensions
One of the most important use cases for Groovy is implementation of internal DSLs,
which we’ll cover in chapter 19. Groovy makes it very easy thanks to both advanced
syntax features and metaprogramming. DSLs are aimed toward experts of a domain.
It’s easy to design a DSL that’s aimed, for example, toward the person responsible for
schedules at school:

book meeting room 'Honolulu' between 9.am and 12.am to 'B2'

The following listing defines a DSL for such bookings.

import groovy.transform.Canonical

@Canonical
class Booking {
 String meetingRoom
 String className
 Date start, end
}

def book(meeting) {
 [room: { name ->
 [between: { sd ->
 [and: { ed ->
 [to: { to ->
 def b = new Booking(meetingRoom: name,
 className: to, start: sd, end: ed)
 println b
 b
 }]

Listing 10.44 Booking DSL
Licensed to Mark Watson <nordickan@gmail.com>

333Static type checking extensions
 }]
 }]
 }]
}

def meeting
@Category(Integer)
class TimeCategory {
 static Date getAm(Integer self) {
 def d = Calendar.instance
 d.set(Calendar.MINUTE, 0)
 d.set(Calendar.SECOND, 0)
 d.set(Calendar.HOUR_OF_DAY, self)
 d.time
 }
}
use(TimeCategory) {
 book meeting room 'Honolulu' between 9.am and 12.am to 'B2'
}

The details of the implementation are unimportant here, but please note that it’s
heavily making use of maps and closures. If we tried to apply @TypeChecked to the user
script, it would fail with lots of errors, because in the script context, nothing is known
in advance: book is an unknown method, meeting is an undefined variable, room is an
unknown property, and so forth. There’s no information that the type checker could
use to help. But you, as a DSL designer, know a lot about the context, as well as you
know much about the implementation details. This means that there are chances that
if you give hints to the type checker, it will be able to help you in return.

WHY TYPE CHECKING DSLS?
Why would you want to perform type checking on a user script? The first reason is that
people writing those scripts aren’t necessarily developers. They don’t know what a unit
test is and they certainly don’t want to write unit tests for everything they write. Know-
ing that and the fact that the scripts will directly go in production, you’d certainly
want to avoid bad scripts being uploaded. On the contrary, it’s better to catch errors
earlier and report them to the user before the script gets executed.

 In fact, you’ll do the best you can to perform static analysis of dynamic code and,
just like type checking, report errors to the user. In this section, you’ll see how to
make this possible and what Groovy has to offer to make the language even more type-
safe than what you can find in lots of statically compiled languages!

 Last but not least, Groovy doesn’t make it mandatory for a DSL to be type-safe. It’s
up to you, and the language designers won’t force you to use a particular implementa-
tion of the DSL to make it type-safe. The design of the type checking extensions, for
example, makes it easy to add type checking afterwards. This means that you can focus
on the implementation of your DSL on a first step, then write extensions to make it
type-safe on a second step. The fact that you’ll want to use static analysis later should
never drive the implementation of the DSL.
Licensed to Mark Watson <nordickan@gmail.com>

334 CHAPTER 10 Groovy as a static language
10.5.1 @DelegatesTo revisited

We discussed @DelegatesTo and @DelegatesTo.Target in section 10.2.6 when
implementing a user validation script. We didn’t go into details about when
@DelegatesTo.Target would be particularly useful. Well, it turns out to be very useful
when building DSLs. Let’s consider a very slight extension to our user validation script
to allow it to validate multiple domain classes.

import groovy.transform.TypeChecked

class Address { String country }
class WishList { List<String> items }

def validate(@DelegatesTo.Target def o, @DelegatesTo Closure rule) {
 rule.delegate = o
 rule()
}

@TypeChecked
void validateAll() {
 def a = new Address(country: 'Australia')
 validate(a) {
 if (country[0] == 'X')
 println 'No countries start with that'
 }
 def wl = new WishList(items: ['iphone', 'iphone'])
 validate(wl) {
 if (items != items.toUnique())
 println 'Item appeared twice'
 }
}

validateAll()

At B, we’re using @DelegatesTo.Target, which tells the compiler that when our rule
closure is used, then the delegate type will be the type of the first argument of the
method call. So when we’re calling the method C, the flow type for o, inferred by
the compiler, is Address, and the country property is recognized D. Afterwards, the type
of o changes, but thanks to flow typing, it’s still recognized that the validate method
will be called with a WishList as first argument E, so items will be resolved F.

 As you can see, @DelegatesTo is a very powerful tool that dramatically improves
the intelligence of the type checker. It’s especially useful for builder-like DSLs. It’s also
worth noting that even if you don’t use @TypeChecked, it’s recommended to docu-
ment your API using @DelegatesTo, because it gives more information to the users of
your API on one side, but it also helps IDEs, which will be capable of proposing improved
code completion.

 Table 10.1 summarizes the optional parameters accepted by @DelegatesTo.

Listing 10.45 Using @DelegatesTo.Target

Compiler will
determine type.

 b

First parameter
is Address.

 c

Address inferred
so country will
be found.

 d

First parameter
is WishList.

 e

WishList inferred
so items will be
found. f
Licensed to Mark Watson <nordickan@gmail.com>

335Static type checking extensions
While @DelegatesTo is very helpful, it’s still not enough to solve all type checking
issues that you can face with DSLs. For those, Groovy provides an advanced mecha-
nism called type checking extensions.

10.5.2 Type checking extension scripts

At the core of type checking extensions sits an event-based API. The type checker, inter-
nally, throws events to which you, as a type checking extension designer, can react. For
example, when it starts visiting a method, an event is sent. Likewise, when a method is
selected (in the sense of type checking, meaning that a method with the correct name
and argument types exists), a method selection event is sent. There are multiple events
to which you can react, making it possible to extend the behavior of the type checker.

 The goal of this chapter isn’t to tell you how you should implement a DSL in
Groovy. For that, we refer you to chapter 19. The idea is rather to take a look at snip-
pets of code that can be considered DSLs, and make them type-safe. Consider the fol-
lowing code:

robot.move 100.meters

It’s a single line of code that can be written by a robot expert. This line of code doesn’t
define any robot variable, nor does it define a move method or a meters method on an
integer. Groovy can compile this without problems, and there are ways to make it stat-
ically checked without having to explicitly add @TypeChecked to the code. See chapter
16, in particular ASTTransformationCustomizer for a more in-depth explanation.
What would happen if you did so? The compiler would fail with

[Static type checking] - The variable [robot] is undeclared.
[Static type checking] - No such property: meters for class: int

Table 10.1 Parameters of @DelegatesTo

Parameter Description Example

type (optional) Type name to be used
when neither value nor
target can represent
the delegate type

public <T,U extends
Configurable<T>> U
configure(Class<U> clazz,
@DelegatesTo(type="T") Closure
configSpec)

value (optional) Explicit type of
delegate

@DelegatesTo(Person)

strategy (optional) The closure resolve
strategy; defaults to
OWNER_FIRST

@DelegatesTo(value=Person,
strategy=Closure.DELEGATE_ONLY)

target (optional,
in combination with
@DelegatesTo.Target)

ID of the target param-
eter that determines
the delegate type

void
validate(@DelegatesTo.Target(
'delegate’) target,
@DelegatesTo(target='delegate')
action) { … }
Licensed to Mark Watson <nordickan@gmail.com>

336 CHAPTER 10 Groovy as a static language
It fails because it doesn’t know how the code is supposed to be executed. With more
context, it would be able to find out what the type of the robot variable is. So let’s
imagine that the script is executed inside a GroovyShell and the robot variable
resides in its binding:

def binding = new Binding()
binding.robot = new Robot()
def shell = new GroovyShell(binding,config)
shell.evaluate(script)

Even though the robot object is now available, its type is still unknown. Likewise, the
meters property for 100 looks spurious. The following listing comes to the rescue
with the help of a type checking extension.

unresolvedVariable { var ->
 if (var.name == 'robot') {
 storeType(var, lookupClassNodeFor('Robot'))
 handled = true
 }
}

unresolvedProperty { pexp ->
 if (getType(pexp.objectExpression) == int_TYPE &&
 pexp.propertyAsString == 'meters') {
 storeType(pexp, long_TYPE)
 handled = true
 }
}

What we see here is that the type checking extension is itself a DSL! In fact, it’s a DSL
aimed at type checking DSLs. Listing 10.46 defines two handlers, reacting to two differ-
ent events, which are in fact the errors that the type checker has thrown: one handler
will allow us to react to the fact that the robot variable is unknown and will inform the
type checker that the type is Robot B, and the second one will let us explain that
100.meters returns a long C. Both handlers follow a common formula. They typically
have a guard to be very specific about their purpose. They typically make adjustments to
the typing information. Finally, the handled property is usually set to tell the com-
piler whether the extension has resolved the missing information so the type checker
knows whether further handling, like reporting a type error, is required.

KNOW YOUR AST
At this point, you should be warned: writing a type checking extension requires knowl-
edge about the Groovy’s AST. If you’re used to writing AST transformations as described
in chapter 9, writing type checking extensions should be a piece of cake.

EVENT TYPES

Table 10.2 summarizes the available event types and their purposes. For a full descrip-
tion, see appendix H.

Listing 10.46 Robot type checking extension

An unresolved
'robot' variable has
type Robot.

 b

An unresolved
'meters' property
on an int has
type long.

 c
Licensed to Mark Watson <nordickan@gmail.com>

337Static type checking extensions
Generally, type checking extensions fall into two categories:

■ Extensions that react to errors of the type checker—In this case, what you want is to
give hints and provide context information.

■ Extensions that perform additional checks—In this case, type checking passes with-
out an extension, but you want to leverage the type checking architecture to
perform additional static analysis.

The second category makes type checking extensions an advanced tool that many
other languages can only dream of no matter how type-safe they claim to be.

IMPROVED TYPE CHECKING

In chapter 13 you’ll learn how to do database programming in Groovy and use state-
ments like

sql.eachRow('SELECT * FROM Person') { … }

This eachRow method takes a string as an argument that corresponds to a SQL query.
The cool news is, with type check extensions, you can even type-check the literal string
for being a syntactically correct SQL statement!

Table 10.2 Type checking events

Event Called when

setup Once the type checker finishes initialization

finish After the type checker completes type checking

unresolvedVariable A variable cannot be resolved (typed)

unresolvedProperty A property cannot be resolved (x.property)

unresolvedAttribute An attribute cannot be resolved (x.@attr)

beforeMethodCall Before the type checker tries to resolve a method call

afterMethodCall After the type checker tried to resolve a method call

onMethodSelection The type checker finds the target method of a call

methodNotFound The type checker cannot find a matching method for the call

beforeVisitMethod Before the type checker starts analyzing a method body

afterVisitMethod After the type checker completes the analysis of a method body

beforeVisitClass Before the type checker starts analyzing a class

afterVisitClass After the type checker completes the analysis of a class

incompatibleAssignment If an assignment is invalid

ambiguousMethods If the type checker cannot choose among several methods

incompatibleReturnType If the inferred return type isn’t compatible with the declared return type
Licensed to Mark Watson <nordickan@gmail.com>

338 CHAPTER 10 Groovy as a static language
 The logical steps to perform SQL syntax checking are simple:

■ Whenever the type checker finds that you call eachRow on a sql object, and that
the first argument is a String, parse the SQL query, check the syntax, and throw
compilation errors if the syntax is invalid.

Such an extension has already been written10 and can be found in the following listing.
It’s impressively short compared to the importance of the feature that we implement.

@Grab('com.github.jsqlparser:jsqlparser:0.9.2')
import net.sf.jsqlparser.parser.CCJSqlParserManager

afterMethodCall { mc ->
 def receiver = mc.receiver
 if (!isVariableExpression(receiver)) return
 def method = getTargetMethod(mc)
 if (classNodeFor(groovy.sql.Sql) == getType(receiver)
 && method.name == 'eachRow') {
 def argList = getArguments(mc)
 if (argList && isConstantExpression(argList[0])) {

 def pm = new CCJSqlParserManager()
 def sqlQuery = argList[0].text
 try {
 pm.parse(new StringReader(sqlQuery))
 } catch (e) {
 addStaticTypeError("SQL query is not valid: $e", argList[0])
 }
 }
 }
}

The first part of the extension follows the formula we saw in the previous extension in
listing 10.46: some information extraction and some guards B. We make use of a
third-party library during the processing part of the extension C, showing that even if
you plug into the compilation process, you can use external libraries (here, the library
is fetched using @Grab). The type checking architecture gives access to the actual
string value that represents the SQL query, so the third-party library can be used to
parse it.

 The final part D is a little different. The earlier handlers were called in the case of
errors and had to indicate if they “fixed” the error. The afterMethodCall event is
called for every method. Our goal should be to do nothing unless an error is found.
In our case, if an error is detected, addStaticTypeError is called to add an error to

10 This example is courtesy of André Steingress; see this blog post for details: http://blog.andresteingress.com/
2013/01/25/groovy-2-1-type-checking-extensions/.

Listing 10.47 Syntax checking of SQL queries

Info extraction
and guards

 b

Validate SQL
using library

 c

Flag an error
if invalid d
Licensed to Mark Watson <nordickan@gmail.com>

http://blog.andresteingress.com/2013/01/25/groovy-2-1-type-checking-extensions/
http://blog.andresteingress.com/2013/01/25/groovy-2-1-type-checking-extensions/

339Static type checking extensions
the compilation unit. This means that if the user calls eachRow with a syntactically
incorrect SQL query, the compilation now fails.

 So for listing 10.47:

@TypeChecked(extensions = 'Listing_10_47_SQLExtension.groovy')
findAthletes(Sql sql) {
 sql.eachRow('select * frm Athlete') { row -> println row }
}

you’d receive an error like this:

Sql.groovy: 7: [Static type checking] - SQL query is not valid:
net.sf.jsqlparser.JSQLParserException
 @ line 7, column 15.
 sql.eachRow('select * frm Athlete') { row -> println row }
 ^
1 error

You might wonder what the extensions attribute on the TypeChecked annotation is
all about. It points to the extension we want. We’ll cover the details next. But before
we move on, we should point out that you’re not limited to only parsing the query.
You have access to the closure too, so you could perform type checking of the closure
with regards to what the query is supposed to return. In that case, the type checker
would require additional metadata, in particular the database schema that you can
read from the database and check against your types at hand. This should give you a
glimpse at the vast possibilities.

APPLYING EXTENSIONS

Once you’ve written a type checking extension, you still need to get them applied. It’s
in fact very easy: both @TypeChecked and @CompileStatic accept an optional parame-
ter named extensions. It accepts a list of strings corresponding to paths to type
checking extension scripts that need to reside on the classpath or fully qualified class
names in the case of precompiled extension classes. For example:

@TypeChecked(extensions=['/regina/RobotExtension.groovy',
 'regina.SQLExtension'])
void usesExtensions() { … }

This implies that the RobotExtension.groovy script and SQLExtension class file are
on the classpath. If not, compilation would fail. Chapter 16 describes numerous ele-
gant ways to transparently apply type checking as well as extensions. We recommend
that you use annotations explicitly during the design of an extension, then make it
transparently applied. The advantage is that it makes the fact that a DSL is statically
analyzed totally transparent to the user.

10.5.3 Limits

In listing 10.47, we’ve shown how you could analyze a SQL query passed as an argu-
ment to eachRow. But a limit to this extension is that the SQL query must be a constant

Typo 'frm'
not 'from'
Licensed to Mark Watson <nordickan@gmail.com>

340 CHAPTER 10 Groovy as a static language
string directly used as an argument. If the string is stored in a variable, for example, it
should be obvious that no analysis can be performed.11

 You may be tempted to alter the AST from inside a type checking extension. Never
even try!

WARNING! You cannot alter the AST from inside a type checking extension.
You need to use the mechanics of AST transformations for that purpose.

Otherwise, your imagination is the only limit.

10.6 Summary
This has been a long and challenging chapter. Congratulations that you followed it
through! Core language topics such as method dispatch and type systems are some-
times considered dry but we hope to have given you something valuable in return: the
ability to fully understand what’s going on and to use the power of Groovy’s internals
to your advantage.

 You’ve seen how to leverage the @TypeChecking annotation to achieve the same level
of type safety that static languages offer while retaining the feel of Groovy. Type check-
ing is well suited to make developers who come from Java perfectly at ease with Groovy.

 On that basis, we made Groovy produce bytecode as if it were a static language.
The @CompileStatic annotation gives compiled Groovy code the same characteristics
as plain Java with respect to performance and unmodifiable behavior. Groovy makes
no concessions, though, when it comes to keeping the code free of nonessentials.
Type inference and flow typing have proven to be our friends.

 But the absolutely stunning feature is the ability to extend the type checker so
easily. Who had ever envisioned that Groovy wouldn’t even type-check itself, but
even embedded languages like SQL or self-made DSLs? We wonder what you will do
with type checking extensions. Checking against web service schemata, HTML doc-
types, ECMAScript standards, or including code quality checks? Please post to the
forum about your experiences!

11 Even if you track assignments, in the end an SQL query can be composed or come from a method parameter,
so there’ll always be cases that are impossible to solve.
Licensed to Mark Watson <nordickan@gmail.com>

Part 2

Around
the Groovy library

Civilization advances by extending the number of important operations
which we can perform without thinking of them.

 —Alfred North Whitehead

Part 1 has lifted you to the level where you can confidently work with the
Groovy language. You’ve also seen a glimpse of some of the fundamental parts of
the Groovy library. Part 2 builds upon this knowledge, diving into other pieces
of the Groovy library and exploring how Groovy extends the Java Runtime
Environment. You’ve already seen how Groovy tries to make commonly performed
tasks as easy as possible in the language—this part of the book shows how the
same principle is applied in Groovy’s libraries, using many of the advanced lan-
guage features available to let you do more work with less code.

 Chapter 11 introduces the builder concept, which is one of Groovy’s distinc-
tive capabilities, because it can only be implemented in a general library class
with a truly dynamic language. We’ll examine the builders that come as part of
the Groovy distribution and show you how to implement your own builders.

 Chapter 12 covers, at the object/method level, pure GDK library capabili-
ties that weren’t presented in part 1, because they aren’t directly related to lan-
guage features.
Licensed to Mark Watson <nordickan@gmail.com>

342 PART 2 Around the Groovy library
 Chapter 13 goes through Groovy’s library support for dealing with relational and
other database systems, providing total flexibility where necessary and significant
shortcuts where simple solutions suffice.

 Chapter 14 dives into the special topic of XML and JSON support in Groovy:
reading and writing documents with ultimate performance, transforming them into
other representations, and using XML or JSON for interoperation between heteroge-
neous systems.

 Chapter 15 guides you through the world of web services and how to use the Groovy
library and language features to take advantage of this cornucopia of information.

 Chapter 16 shows how to seamlessly integrate Groovy with Java projects and other
JVM languages.

 Part 3 will lead you to new places where Groovy is applied for testing, concurrent
programming, DSLs, and the whole ecosystem around it.
Licensed to Mark Watson <nordickan@gmail.com>

Working with builders
Art is the imposing of a pattern on experience, and our aesthetic enjoyment is
recognition of the pattern.

 —Alfred North Whitehead

As software developers, everything we do day in and day out is building: we build
graphical applications, command-line tools, data stores, and a lot of other, often
invisible products. To this end we make use of components and frameworks as
building blocks assembled on a fundamental base. We build by following the rules
of the architecture and the best practices of our trade.

 Not surprisingly, the general task of building faces us with recurring activities
and structures. Over time, developer experience has led to proven standard solu-
tions for repetitive building tasks captured in terms of patterns. One such pattern is
the Builder pattern. In this pattern, a builder object is used to help build a complex

This chapter covers
■ The builder concept
■ Using common builders bundled with the

Groovy distribution
■ Writing your own builders
343

Licensed to Mark Watson <nordickan@gmail.com>

344 CHAPTER 11 Working with builders
object, called the Product. It encapsulates the logic of how to assemble the product
from given pieces.

 Products can be complex because they maintain a tricky internal state (think of a
parser object) or because they’re built of numerous objects with interdependencies.
The latter case is frequently seen when there are treelike structures that you find
everywhere in the world of software:

■ Most obviously, a filesystem is a tree of directories and files.
■ This book is a tree of parts, chapters, sections, subsections, and paragraphs.
■ HTML and XML documents have a treelike document object model.
■ Test cases are bundled into suites and suites are bundled into higher-level suites

such that a tree of tests is constructed.
■ GUIs are built from components that are assembled into containers. A Swing

JFrame may include multiple JPanels that again include multiple JPanels, etc.
A JavaFX scene graph is a tree of nodes.

■ Less obviously, business objects often form a tree at runtime: invoice objects
that refer to multiple line items that refer to products, and so on.

Surprisingly, most programming languages have a hard time modeling this oh-so-
common structure, especially building a treelike structure in program code. Most of
the time the programmer is left with the task of calling several addChild and set-
Parent methods.

 This has two major drawbacks:

■ The logic of how to properly build the tree structure is often subject to massive
duplication.

■ When reading the code, it’s hard to get an overview picture of the nesting structure.

To overcome the latter drawback there are many approaches that store the nesting
structure in some external format, possibly XML or JSON, and construct runtime
objects from there. This, of course, has other limitations, because you lose all the mer-
its of your programming language when defining the structure. This leads to a lack of
flexibility and is likely to produce a lot of duplication.

 Groovy offers an alternative approach. Its builder support allows you to define
nested, treelike structures right inside the code, being descriptive and flexible at the
same time. When viewing the code, at least in reasonably simple situations, the result-
ing hierarchy is easily visible on the screen. Groovy enables this style of coding through
the use of closures, the MOP (usually), and simple map declarations.

 Understanding the sample code doesn’t require a deep understanding of these
helper classes or of the MOP, but if you feel uncertain about closures and map literals,
you might want to have a look back to chapters 4 (for maps) and 5 (for closures), or at
least have them earmarked for quick reference.

 In this chapter, you’ll try out representative builders that come bundled with
Groovy, including NodeBuilder, MarkupBuilder, StreamingMarkupBuilder, AntBuilder,
Licensed to Mark Watson <nordickan@gmail.com>

345Learning by example: Using a builder
SwingBuilder, and SceneGraphBuilder from GroovyFX. You should also consult the
API documentation for other builders such as CliBuilder, JmxBuilder, Namespace-
Builder, ObjectGraphBuilder, DOMBuilder, SAXBuilder, StaxBuilder, and Compiler-
CustomizationBuilder. Each of these builder implementations has specific uses and
details, but they all follow the same general pattern of building some kind of nested
data or product using nested (but otherwise standard) Groovy code.

 Special library support comes in the form of helper classes BuilderSupport and
FactoryBuilderSupport. It isn’t universally true (and is certainly not a requirement),
but many of the builders that come with Groovy subclass one of these two support
classes. The final thing you’ll learn in this chapter is how to implement your own
builder with or without the helper classes.

11.1 Learning by example: Using a builder
Builders are easier to understand with concrete examples, so we’ll look at sample code
and compare it with how we’d achieve the same result without builders. At this point
we’re not going to present the details of builders, just the feeling of using them. We hap-
pen to use MarkupBuilder, but the general principle is the same for all of the builders.

 Builders provide a convenient way of building hierarchical data models. They
don’t allow you to create anything you couldn’t have created before, but the conve-
nience they add is enormous, giving a direct correlation between hierarchy in the
code and the hierarchy of the generated data. We demonstrate this by building the
short XML1 document shown in listing 11.1. The XML contains information about the
numbers 10–15: their square values and their factors.2 Obviously this isn’t a terribly
useful document in real-world terms, but it means we can focus on the code for gener-
ating the XML instead of the code required to gather more interesting data. There’s
nothing in the example that wouldn’t apply just as much in a more complex case.

<?xml version="1.0"?>
<numbers>
 <description>Squares and factors of 10..15</description>
 <number value="10" square="100">
 <factor value="2" />
 <factor value="5" />
 </number>
 <number value="11" square="121" />
 <number value="12" square="144">
 <factor value="2" />
 <factor value="3" />
 <factor value="4" />
 <factor value="6" />
 </number>

1 For more information about XML processing in Groovy see chapter 14.
2 For any given x the factors are all numbers y such that x % y == 0.

Listing 11.1 XML example data: Squares and factors of 10–15
Licensed to Mark Watson <nordickan@gmail.com>

346 CHAPTER 11 Working with builders
 <number value="13" square="169" />
 <number value="14" square="196">
 <factor value="2" />
 <factor value="7" />
 </number>
 <number value="15" square="225">
 <factor value="3" />
 <factor value="5" />
 </number>
</numbers>

Before we show the Groovy way of generating this, let’s look at how we’d do it in Java
using the W3C DOM API. Don’t worry if you haven’t used DOM before—the idea isn’t
to understand the details of the code, it’s more to get an idea of the shape and com-
plexity of the code required. To keep the example in listing 11.2 short, we’ll assume
we’ve already constructed an empty Document, and we won’t do anything with it when
we’ve finished. All we’re interested in is creating the data.

// Java!
// … doc made available here …
Element numbers = doc.createElement("numbers");
Element description = doc.createElement("description");
doc.appendChild(numbers);
numbers.appendChild(description);
description.setTextContent("Squares and factors of 10..15");

for (int i=10; i <= 15; i++)
{
 Element number = doc.createElement("number");
 numbers.appendChild(number);
 number.setAttribute("value", String.valueOf(i));
 number.setAttribute("square", String.valueOf(i*i));
 for (int j=2; j < i; j++)
 {
 if (i % j == 0)
 {
 Element factor = doc.createElement("factor");
 factor.setAttribute("value", String.valueOf(j));
 number.appendChild(factor);
 }
 }
}

Note how there’s a lot of text in listing 11.2 that isn’t directly related to the data
itself—all the calls to methods, and explicitly stating the hierarchy using variables.
This is remarkably error-prone—just in creating this simple example, we accidentally
appended two elements to the wrong place. The hierarchy isn’t at all evident, either.
The numbers element appears at the same indentation level as the description ele-
ment, despite one being a parent of the other. The loops create a feeling of hierarchy,

Listing 11.2 Java snippet for producing the example XML
Licensed to Mark Watson <nordickan@gmail.com>

347Building object trees with NodeBuilder
but it’s only incidental. In a different example they could be setting attributes on
another element, without adding to the depth of the tree at all.

 Now let’s look at the Groovy equivalent in the next listing. In fact, this is a com-
plete script that writes the XML out to the console when it’s run. You’ll see later on
how simple it is to write the content elsewhere, but for the moment the default behav-
ior makes testing the example very easy.

def builder = new groovy.xml.MarkupBuilder()
builder.numbers {

 description 'Squares and factors of 10..15'

 for (i in 10..15) {
 number (value: i, square: i*i) {
 for (j in 2..<i) {
 if (i % j == 0) {
 factor (value: j)
 }
 }
 }
 }
}

This time, there’s very little to the program apart from the data. There’s no need for
variables to hold elements while we build up the data for them—the data is con-
structed “inline,” with method parameters specifying attributes and closures specify-
ing nested elements. The hierarchy is much clearer, too: every child element is
indented further than the parent element. The exact amount of indentation depends
on other control structures such as the if and for statements, but there’s no danger
of accidentally having, say, factor elements show up as siblings of number elements.

 The example may feel slightly like magic at the moment. That’s a natural first reac-
tion to builders, as we appear to be getting something almost for nothing. We gener-
ally view anything magical as somewhat suspicious—if it appears too good to be true, it
usually is. As you shall see, however, builders are clever but not miraculous. They use
the language features provided by Groovy, particularly closures and metaprogram-
ming, and combine them to form a very elegant coding pattern.

 Now that you’ve got a first impression of what using a builder looks like and what
they’re good for, let’s go into a bit more detail and see how they work, as you learn
how to create hierarchies of straightforward objects instead of XML elements.

11.2 Building object trees with NodeBuilder
We start the more detailed explanation of builders with the same example we used in
section 7.5 to demonstrate GPath: modeling invoices with line items and products.
We’ll build a runtime structure of nodes rather than specialized business objects and
watch the building process closely. Along the way, you’ll learn not only about how

Listing 11.3 Using MarkupBuilder to produce the sample XML

Emit number
elements 10–15

Emit each
factor element
Licensed to Mark Watson <nordickan@gmail.com>

348 CHAPTER 11 Working with builders
NodeBuilder works, but how the general principle of builders is applied in Groovy.
We’ll then consider how the declarative style of builder use can be freely mixed in
with normal logic.

 Builders can be used without any special knowledge, but to understand how they
work, it’s a prerequisite to know about pretended and relayed methods (see section 7.6)
and closure scoping (see section 5.5.2).

 Based on our invoice example from section 7.5.1, we set out to build a runtime
object structure as depicted in figure 11.1.

 In listing 7.24 we constructed this runtime structure with three defined classes,
Invoice, LineItem, and Product, and through calling their default constructors in a
nested manner.

11.2.1 NodeBuilder in action: a closer look at builder code

Listing 11.4 shows the equivalent using a NodeBuilder. The NodeBuilder can replace all
three of the classes (Invoice, LineItem, and Product), assuming that we’re treating
them as data storage types (that is, we don’t need to add methods for business logic or
other behavior). Also added is a final GPath expression to prove that we can still walk

invoices : Invoices

List invoices

: Invoice

Date date = 1.1.2015
List items

: LineItem

int count = 5
Product product

: LineItem

int count = 1
Product product

: LineItem

int count = 4
Product product

ulc : Product

int dollar = 1499
String name = 'ULC'

ve : Product

int dollar = 499
String name =

'Visual Editor'

ve : Product

int dollar = 499
String name =

'Visual Editor'

: Invoice

Date date = 2.2.2015
List items

Figure 11.1 A runtime structure of objects and references in the invoice example where an
invoices node refers to multiple instances of the Invoice class that in turn holds one or more
LineItem objects that further refer to a single Product object each.
Licensed to Mark Watson <nordickan@gmail.com>

349Building object trees with NodeBuilder
conveniently through the object graph. This is the same query we used in section 7.5.1.
Note how the tree structure from figure 11.1 is reflected in the code!

def builder = new NodeBuilder()
def ulcDate = Date.parse('yyyy-MM-dd', "2015-01-01")
def otherDate = Date.parse('yyyy-MM-dd', '2015-02-02')
def invoices = builder.invoices {
 invoice(date: ulcDate) {
 item(count: 5) {
 product(name: 'ULC', dollar: 1499)
 }
 item(count: 1) {
 product(name: 'Visual Editor', dollar: 499)
 }
 }
 invoice(date: otherDate) {
 item(count: 4) {
 product(name: 'Visual Editor', dollar: 499)
 }
 }
}

soldAt = invoices.grep {
 it.item.product.any { it.'@name' == 'ULC' }
}.'@date'
assert soldAt == [ulcDate]

We make a new instance of the NodeBuilder for later use B, and then call the invoices
method on the NodeBuilder instance c. This is a pretended method—the NodeBuilder
intercepts the method call. It constructs a node based on the name of the intercepted
method name and returns it into the invoices variable.3 Before the node is con-
structed, the trailing closure is called to construct its nested nodes. To make this possi-
ble, the BuilderSupport that NodeBuilder inherits from sets the closure’s delegate to
the NodeBuilder instance.

 The invoice method call is relayed to the NodeBuilder instance d, because it’s
the current closure’s delegate. This method also takes a map as a parameter. The con-
tent of this map describes the attributes of the constructed node.

 As a last step, we need to adapt the GPath to use it in e. First, we’ve broken it into
multiple lines to allow proper typesetting in the book. Second, node attributes are no
longer accessible as properties but like map entries. Therefore, product.name now
becomes product['@name'] or, even shorter, product.'@name'. The additional @ is
used for denoting attributes in analogy to XPath attribute conventions. A third change

Listing 11.4 Invoice example with NodeBuilder

3 Because invoices is the root node, the method name makes no difference in how we use the node in the
example. Listing 11.4 also works if you replace builder.invoice with builder.whatever.

Builder
creation b

Root node
creation c

Invoice
creation d

GPath
query

 e
Licensed to Mark Watson <nordickan@gmail.com>

350 CHAPTER 11 Working with builders
is that through the general handling mechanism of nodes, item.product is now a list
of products, not a single one.

11.2.2 Understanding the builder concept

From the preceding example we extract the following general rules:

■ Nodes are constructed from pretended method calls on the builder.
■ Method names determine node names.
■ When a map is passed as a method argument, it determines the node’s attri-

butes. Generally speaking, each key–value pair in the map is used to call the
field’s setter method named by the key with the value. This refinement will later
be used with SwingBuilder to register EventListeners.

■ Nesting of nodes is done with closures. Closures relay method calls to the builder.

This concept is an implementation of the Builder pattern. Instead of programming
how some treelike structure is built, only the result, the what, is specified. The how is
left to the builder.

 Note that only simple attribute names can be declared in the attribute map with-
out enclosing the name in single or double quotes. Similarly, node names are con-
structed from method names, so if you need names that wouldn’t be valid Groovy
identifiers, such as “x.y” or “x-y”, you’ll again need to use quotes.

 So far, we’ve done pretty much the same as we did with handmade classes but
without writing the extra code. This is already a useful advantage but there’s more
to come.

11.2.3 Smart building with logic

With builders you can mix declarative style and Groovy logic as listing 11.5 shows.
We create nested invoices in a loop for three consecutive days, with sales of the
product growing each day. To assess the result, we use a pretty-printing facility avail-
able for nodes.

TimeZone.default = TimeZone.getTimeZone("CET")

def builder = new NodeBuilder()
def invoices = builder.invoices {
 for (day in 1..3) {
 def invDate = Date.parse('yyyy-MM-dd', "2015-01-0$day")
 invoice(date: invDate) {
 item(count: day) {
 product(name: 'ULC', dollar: 1499)
 }
 }
 }
}

Listing 11.5 Using Logic inside the NodeBuilder

Sets TimeZone for
consistent Date
toString() values in test

Loops over
three days

Code for
building a
single invoice

 b
Licensed to Mark Watson <nordickan@gmail.com>

351Building object trees with NodeBuilder
def writer = new StringWriter()
invoices.print(new PrintWriter(writer))

assert writer.toString() == """\
invoices() {
 invoice(date:Thu Jan 01 00:00:00 CET 2015) {
 item(count:1) {
 product(name:'ULC', dollar:1499)
 }
 }
 invoice(date:Fri Jan 02 00:00:00 CET 2015) {
 item(count:2) {
 product(name:'ULC', dollar:1499)
 }
 }
 invoice(date:Sat Jan 03 00:00:00 CET 2015) {
 item(count:3) {
 product(name:'ULC', dollar:1499)
 }
 }
}
"""

The code for building a single invoice B calls the NodeBuilder’s pretended methods
directly. This is fine for loops like for and while, but when looping with closures like
in a [1..3].each{} loop, you have to call the NodeBuilder like builder.invoice,
because it wouldn’t be known otherwise. The closure passed to each will have a dele-
gate of the calling context (that is, the script), whereas the rest of the method calls
appear within closures that have had their delegates set to the instance of Node-
Builder. It’s very important to understand what the delegate of each closure is. Just
remember that the first thing a method call to NodeBuilder does is set the closure of
the delegate parameter to the builder itself.

 Of course, there are more options available than just for and while. The closure is
just normal code. You can use other control structures such as if and switch as well.

 Nodes as constructed with the NodeBuilder have some interesting methods as
listed in table 11.1. Note that these methods being present on the nodes doesn’t pre-
vent you from having nodes of the same name (for example, a node called iterator).
You build child nodes by calling methods on the NodeBuilder, not on the nodes them-
selves. For a complete and up-to-date description have a look at its GroovyDoc API
documentation. Nodes are used throughout the Groovy library for transparently stor-
ing treelike structures. You’ll see further uses of nodes when we explore XmlParser in
chapter 14.

Table 11.1 Public node methods (excerpt)

Return type Method name Purpose

Object name() The name of the node, for instance invoice

Object value() The node itself

Prints to a
StringWriter
for testing
Licensed to Mark Watson <nordickan@gmail.com>

352 CHAPTER 11 Working with builders
With this in mind you may want to have some fun by typing

println invoices.depthFirst()*.name()

That’s all there is to NodeBuilder. It makes a representative example for all builders in
the sense that whenever using a builder, you create a builder instance, and call meth-
ods on it with attached nested closures that result in an object tree.

11.3 Working with MarkupBuilder
In listing 11.5 you saw the structured, pretty-printed output from a tree of nodes. This
can be very useful when debugging object structures, but you frequently want to
exchange that information with non-Groovy programs or store it in a standard format
for later retrieval. XML is one obvious candidate format, so of course Groovy makes it
easy to generate. You’ve already encountered MarkupBuilder in our quick introduction,
and now you’re going to have a closer look at its capabilities, both with XML and HTML.

11.3.1 Building XML

Listing 11.6 shows how simple that is: replace the NodeBuilder with a MarkupBuilder
and, voilà, you’re done. The only other difference is the way you obtain the results.
Because markup is usually generated for formatted output, the printing is done
implicitly as soon as the construction is finished. To make testing possible, a Writer is
passed into MarkupBuilder’s constructor.

import groovy.xml.MarkupBuilder

TimeZone.default = TimeZone.getTimeZone("CET")

def writer = new StringWriter()
def builder = new MarkupBuilder(writer)

Map attributes() All attributes in a map

Node parent() The back reference to the parent

List children() The list of all children

Iterator iterator() The Iterator over all children

List depthFirst() Provides a collection of all the nodes in the tree
using a depth-first traversal

List breadthFirst() Provides a collection of all the nodes in the tree
using a breadth-first traversal

void print(PrintWriter out) Pretty-printing as nested structure

Listing 11.6 Invoice example with MarkupBuilder

Table 11.1 Public node methods (excerpt) (continued)

Return type Method name Purpose

New: MarkupBuilder
replaces NodeBuilder
Licensed to Mark Watson <nordickan@gmail.com>

353Working with MarkupBuilder
builder.invoices {
 for (day in 1..3) {
 def invDate = Date.parse('yyyy-MM-dd', "2015-01-0$day")
 invoice(date: invDate) {
 item(count: day) {
 product(name: 'ULC', dollar: 1499)
 }
 }
 }
}

assert "\n" + writer.toString() == """
<invoices>
 <invoice date='Thu Jan 01 00:00:00 CET 2015'>
 <item count='1'>
 <product name='ULC' dollar='1499' />
 </item>
 </invoice>
 <invoice date='Fri Jan 02 00:00:00 CET 2015'>
 <item count='2'>
 <product name='ULC' dollar='1499' />
 </item>
 </invoice>
 <invoice date='Sat Jan 03 00:00:00 CET 2015'>
 <item count='3'>
 <product name='ULC' dollar='1499' />
 </item>
 </invoice>
</invoices>"""

There is no change whatsoever in the two listings as far as the nested builder calls are
concerned. That means we can extract that code in a method and pass it different
builders for different purposes. This is an inherent benefit of the Builder pattern.

 Just as with NodeBuilder, you need to be careful about node and attribute names
containing “special” characters. This frequently occurs when using MarkupBuilder, as
multiword names often appear with hyphens in XML. Suppose you want to generate a
J2EE web.xml descriptor with a MarkupBuilder. You’d need to construct markup like
<web-app> but you cannot have a minus sign in a method name, so you need quotes,
like this:

def writer = new StringWriter()
def builder = new groovy.xml.MarkupBuilder(writer)

def web = builder.'web-app' {
 builder.'display-name'('Groovy WebApp')
}

def result = writer.toString().replaceAll("\r","")

assert "\n"+result == """
<web-app>
 <display-name>Groovy WebApp</display-name>
</web-app>"""
Licensed to Mark Watson <nordickan@gmail.com>

354 CHAPTER 11 Working with builders
Note that a method name in quotes also needs an object reference to be called upon
like this or builder in the preceding example.

11.3.2 Building HTML

XML and HTML follow the common strategy of bringing structure to a text by using
markup with tags. Rules for HTML are a bit more special, but for the sole purpose of
building a well-formed serialized format the same rules apply.

 It should come as no surprise that MarkupBuilder can also produce HTML to real-
ize web pages as shown in figure 11.2.

 This web page is created from the following HTML source code:

<html>
 <head>
 <title>Constructed by MarkupBuilder</title>
 </head>
 <body>
 <h1>What can I do with MarkupBuilder?</h1>
 <form action='whatever'>
 <input checked='checked' type='checkbox' id='Produce HTML'/>
 <label for='Produce HTML'>Produce HTML</label>

 <input checked='checked' type='checkbox' id='Produce XML'/>
 <label for='Produce XML'>Produce XML</label>

 <input checked='checked' type='checkbox' id='Have some fun'/>
 <label for='Have some fun'>Have some fun</label>

 </form>
 </body>
</html>

The following listing shows how this HTML source code is built with a MarkupBuilder.
It’s all straightforward. For building the checkboxes, we use a list of labels and do the
iterations with the for loop.

Figure 11.2 Web page that’s rendered by the browser from HTML
source code that was built from MarkupBuilder to show a level-
one heading and three checkboxes with labels
Licensed to Mark Watson <nordickan@gmail.com>

355Working with StreamingMarkupBuilder
def writer = new FileWriter('markup.html')
def html = new groovy.xml.MarkupBuilder(writer)
html.html {
 head {
 title 'Constructed by MarkupBuilder'
 }
 body {
 h1 'What can I do with MarkupBuilder?'
 form (action:'whatever') {
 for (line in ['Produce HTML','Produce XML','Have some fun']){
 input(type:'checkbox',checked:'checked', id:line, '')
 label(for:line, line)
 br()
} } } }

HTML source code as produced by the MarkupBuilder is always properly built with
respect to balancing and nesting tags. It also deals with a number of character-encoding
issues like replacing the < character with the < entity. See the GroovyDoc API docu-
mentation for details.

 MarkupBuilder expects that the last argument to each method call is either a clo-
sure for further nesting or a string that makes the text content.

NOTE If you need to create mixed elements (that is, elements with intermin-
gled text and child elements, such as <parent>Some text<child>Child
text</child>More text</parent>) then you can use a special mkp notation.4

Use mkp.yield normally and mkp.yieldUnescaped if you want to bypass
escaping of special symbols like the ampersand, less-than, and greater-than
characters, which are normally escaped and replaced with their equivalent
HTML encoding.

That’s it for MarkupBuilder. It’s often used whenever XML processing is to be done and
when developing web applications. MarkupBuilder also works nicely in combination
with Groovy’s templating engines that are the topic of section 12.4. There’s another
markup builder class that comes bundled with Groovy: StreamingMarkupBuilder. It’s
especially designed for handling streaming scenarios. Let’s look at that next.

11.4 Working with StreamingMarkupBuilder
In streaming scenarios (for example, when creating large markup files) you might
consider using StreamingMarkupBuilder. It’s almost a drop-in replacement for
MarkupBuilder but there are a few differences you should be aware of. First let’s take
our invoices example and tweak it to use StreamingMarkupBuilder as shown in the
following listing.

Listing 11.7 HTML GUI with MarkupBuilder

4 mkp is short for markup but the abbreviation isn’t likely to conflict with a name you might want to use in your
created content.
Licensed to Mark Watson <nordickan@gmail.com>

356 CHAPTER 11 Working with builders
def builder = new groovy.xml.StreamingMarkupBuilder()
def writable = builder.bind {
 invoices {
 for (day in 1..3) {
 def invDate = Date.parse('yyyy-MM-dd', "2015-01-0$day")
 invoice(date: invDate) {
 item(count: day) {
 product(name: 'ULC', dollar: 1499)
 }
 }
 }
 }
}
def result = writable.toString()
assert result.startsWith("<invoices><invoice date='Thu Jan 01")
assert result.endsWith('</invoice></invoices>')

One difference you might notice straightaway is that instead of calling build.invoices
you call builder.bind and invoices becomes the first method called within the
markup closure. From that point on, the closure contents are identical. Another dif-
ference you may have spotted is that the output isn’t indented and will be just one
long line. For simplicity and ease of typesetting, we won’t check the whole generated
line, just its start and end. The decision to not indent aligns with the goals of this
streaming builder. It keeps just the minimal amount of information in memory at any
time and spits out characters to its output stream as quickly as it can.

 If XML isn’t your thing and you prefer JSON, Groovy comes with builders for that
too (covered in chapter 14).

 That’s quite a few options you have for creating structured data. Let’s consider now
some alternative applications of the builder concept.

11.5 Task automation with AntBuilder
Ant (http://ant.apache.org/) is a build automation tool. If you’ve never worked with
Ant you should give it a try. It’s a great tool for any kind of automation task and works
nicely in combination with Groovy. For the remainder of this section it’s assumed that
you have some basic understanding of Ant.

 As a build tool on its own, Ant has lost ground in recent years. But more popular
build toolkits like Gradle (www.gradle.org) still make heavy use of Ant and allow
accessing the underlying Ant tasks with the help of AntBuilder. See section 20.4 for
more on Gradle.

 AntBuilder is a Groovy builder that’s used to build and execute Ant datatypes
and tasks. This allows you to harness the power of Ant directly within Groovy scripts and
classes. Representing interactions with the outside world—manipulating the filesys-
tem, compiling code, running unit tests, fetching the contents of websites—is often

Listing 11.8 Invoice example with StreamingMarkupBuilder

The bind
method
introduces
markup closure

Root node must
be included in
markup…

…or
writable.writeTo(file)

Checking start
and end of long
single line
Licensed to Mark Watson <nordickan@gmail.com>

http://ant.apache.org/
http://www.gradle.org

357Task automation with AntBuilder
more easily expressed in Ant than with the standard Java libraries. Using Ant within
normal Java programs is a little clumsy at times, but Groovy makes it straightforward
with AntBuilder. This section shows how Ant scripts can be represented in Groovy,
examines how AntBuilder works, and demonstrates what a powerful combination the
two technologies can form.

 Ant uses the notion of a build for describing its work. Unfortunately, this naming
sometimes clashes with what we do in this book in a builder. For distinction in the
text, build is always set in italics when referring to the Ant meaning of the word.

11.5.1 From Ant scripts to Groovy scripts

Ant build scripts are typically used for automating tasks that need to be done as part of
the process of transforming source files and other resources into project deliverables
(executables and other artifacts). Build scripts often involve a range of tasks: cleaning
directories, compiling code, running unit tests, producing documentation, moving
and copying files, bundling archive files, deploying the application, and much more.

 A first example of an Ant build script was shown in the introductory sections of this
book in listing 1.2. Listing 11.9 provides another tiny example to show the XML-based
syntax of Ant build scripts. It achieves one of the tasks that build this book: cleaning
the target directory and copying the raw documents to it excluding any temporary
word documents.

<project name="prepareBookDirs" default="copy">

 <property name="target.dir" value="target"/>
 <property name="chapters.dir" value="chapters"/>

 <target name="copy">
 <delete dir="${target.dir}" />
 <copy todir="${target.dir}">
 <fileset dir="${chapters.dir}"
 includes="*.doc"
 excludes="~*" />
 </copy>
 </target>
</project>

After saving such a script to build.xml it can be started from the command line via the
ant command and produces an output like this:

C:\groovy-book> ant
Buildfile: build.xml

copy:
 [delete] Deleting directory C:\safe\subversion\groovy-book\target
 [copy] Copying 10 files to C:\safe\subversion\groovy-book\target

BUILD SUCCESSFUL
Total time: 0 seconds

Listing 11.9 Tiny Ant script for file manipulation
Licensed to Mark Watson <nordickan@gmail.com>

358 CHAPTER 11 Working with builders
The real production process doesn’t use this build.xml file but an AntBuilder in a
Groovy script:

TARGET_DIR = 'target'
CHAPTERS_DIR = 'chapters'
ant = new AntBuilder()

ant.delete(dir:TARGET_DIR)
ant.copy(todir:TARGET_DIR){
 fileset(dir:CHAPTERS_DIR, includes:'*.doc', excludes:'~*')
}

When transferring Ant build scripts to Groovy scripts by using the AntBuilder, the fol-
lowing rules apply:

■ Ant task names map to AntBuilder method names.
■ Ant attributes are passed as a map to AntBuilder methods.
■ Where traditional Ant uses strings for other datatypes (for example, boolean

and int), Groovy code can directly pass data of the correct type (for example,
ant.copy(…, overwrite:true)).

■ Nested Ant tasks or elements map to method calls in the attached closure.

Ant comes with a cornucopia of useful tasks, far more than we could possibly describe
here. Please refer to the Ant documentation at http://ant.apache.org/manual.

 Groovy comes with a bundled version of Ant that’s used automatically (without any
further setup) whenever you use AntBuilder.

11.5.2 How AntBuilder works

Looking at the similarity of the build.xml and the corresponding Groovy script one
could easily assume that AntBuilder builds this XML like a MarkupBuilder and passes
it to Ant for execution. This isn’t the case.

 The Groovy AntBuilder works directly on the Java classes that Ant uses for doing
its work. We need to take a quick detour into the internals of Ant to build a better pic-
ture of AntBuilder’s approach.

 When Ant has parsed the build.xml it iterates through the XML nodes and builds
Java objects from it. When it sees the copy element it looks into a taskdef and finds
that it must construct an org.apache.tools.ant.taskdefs.Copy object. Similarly, the
nested fileset element results in a FileSet object that’s added to the Copy object.
When all the task objects are created, their perform method is called that finally exe-
cutes the task logic. Figure 11.3 shows the resulting object dependencies in a UML
class diagram.

 AntBuilder follows the same approach but without the need to work on the XML
structure. When the copy method is called on AntBuilder, it uses Ant’s helper methods
to construct an instance of Ant’s Copy object. The nested fileset call is handled equiva-
lently. As a result, the very same object structure as depicted in figure 11.3 is created.
Licensed to Mark Watson <nordickan@gmail.com>

http://ant.apache.org/manual

359Task automation with AntBuilder
When the construction of a top-level element is finished, AntBuilder automatically calls
its perform method to start task execution.

11.5.3 Smart automation scripts with logic

AntBuilder shines when it comes to using Ant functionality mixed with logic. In Ant,
even the simplest conditional logic is very cumbersome to use.

 Suppose your build should fail with an error message when you try to run it on an
unsupported version of Java. Look at a possible build.xml that implements this feature,5

just to get an impression of the complexity, not to go through all details:

<project name="AntIf" default="main" >

 <target name="check.java.version">
 <condition property="java.version.ok">
 <contains string="${java.version}" substring="1.7"/>
 </condition>
 <fail unless="java.version.ok">
 This build script requires JDK 1.7.x.
 </fail>
 </target>

 <target name="main"
 depends="check.java.version"
 if="java.version.ok">

 <!-- further action -->

 </target>

</project>

5 It may seem odd to think of failure as a feature, but if you’ve ever fought against a build that just didn’t quite
work, you’ll understand that a failure with an explanation can save hours of frustration!

Task

+ perform()

Delete

+ setDir(File)

Copy

+ setTodir(File)
+ addFileset(Fileset)

FileSet

+ setIncludes(String)
+ setExcludes(String)
+ setDir(File)

Figure 11.3 UML class diagram of Ant’s Delete and Copy tasks that both inherit from the Task
class, where Copy also refers to a FileSet object that was added at build construction time via
Copy’s addFileset() method.
Licensed to Mark Watson <nordickan@gmail.com>

360 CHAPTER 11 Working with builders
The same can be achieved with the following Groovy script:

ant = new AntBuilder()
if (! System.properties.'java.version'.contains('1.7')) {
 ant.fail 'This build script requires JDK 1.7.x but was ' +
 System.properties.'java.version'
}
// further action

The advantage is obvious.
 When it comes to even putting any kind of looping logic inside an Ant build, plain

Ant cannot offer anything. There are additional packages like Jelly and AntContrib
that enhance Ant with logic, but then you end up programming in XML syntax, which
isn’t for everybody. Using AntBuilder allows you to smoothly integrate any kind of
Groovy looping logic with Ant’s declarative style of task definitions.

 For all the usual automation tasks that one encounters in software development
projects, the combination of Groovy and AntBuilder is the one-two punch. Ant-
Builder gives you simple access to a huge amount of Ant’s functionality, while Groovy
allows setting this functionality into action in the most flexible ways. Whenever you
find yourself struggling with Ant’s XML approach, check whether you can use Groovy
to make things easier. Whenever struggling with an automation task in Groovy, have a
look at the Ant documentation and search for a task that does the trick. One powerful
trick is to use Ant-in-Groovy-in-Ant. The <groovy> task allows you to run Groovy code
within an Ant script, and sets up an AntBuilder attached to the project containing the
script. This allows you to express sophisticated logic within your build, and reference
the results elsewhere in the Ant script.

 AntBuilder is a prominent example of providing an intuitive API to a Java frame-
work by using Groovy builders, but it’s not the only one. The next section presents
SwingBuilder, which simplifies implementing GUIs with the Java Swing framework.

11.6 Easy GUIs with SwingBuilder
Even in the era of web applications it’s profitable to know how to build interactive
desktop applications with a user-friendly GUI in terms of presentation and responsive-
ness. For this purpose, Java provides three frameworks: the Abstract Window Toolkit
(AWT), Swing, and since recently JavaFX.

 Groovy’s SwingBuilder is a simplified API to the Swing framework allowing
quicker development and easier maintenance through a lot of shortcut expressions
and by revealing the GUI’s containment structure in the structure of the code.

 We’ll start our presentation of SwingBuilder with a simple initial example that
reads a password from user input for further processing in a script. With this exam-
ple in mind, the main concept, the range of features, and the rationale of the
implementation will be explained. Finally, we’ll apply this knowledge on a complete
Swing application.
Licensed to Mark Watson <nordickan@gmail.com>

361Easy GUIs with SwingBuilder
 For the remainder of this section it’s assumed that you have some basic under-
standing of how to program with Swing. If you’re new to Swing, you may want to first
work through the Swing tutorial at http://java.sun.com/docs/books/tutorial/uiswing/
index.html.

11.6.1 Reading a password with SwingBuilder

In a recent project we used a little Groovy automation script to connect to a secure
website. We needed to give it a password but certainly we didn’t want to hardwire it in
the code. The script was used for a corporate client so we couldn’t just read it from a
file, the command line, or the standard input stream because the password would
then possibly be visible to others.

 Luckily, we remembered that Swing provides a
JPasswordField that shields user input from acciden-
tal over-the-shoulder readers with an echo character
(* by default). Placed inside a JFrame the simple-most
solution looks like that shown in figure 11.4.

 Using SwingBuilder, it was easy to integrate that
dialog in a script. Listing 11.10 contains the snippet
that achieves this. It follows the same strategy that you’ve already seen for other build-
ers: it creates a builder instance and calls methods on it with attached closures that
make up the nesting structure and argument maps that further define properties of
the product.

 For the case of the password dialog, the nesting structure is simple: there’s only
one container—the outermost JFrame—containing one simple component—the
JPasswordField.

 Because we’re working with Swing widgets, we need to add an ActionListener to
the password field whose actionPerformed method is called as soon as the users have
finished their input. In Groovy, we can do that with a simple closure.

 We need to call JFrame’s layout manager via the pack method and make it visible
and start the main loop via show, as shown next.

import groovy.swing.SwingBuilder

swing = new SwingBuilder()
frame = swing.frame(title:'Password') {
 passwordField(columns:10, actionPerformed: { event ->
 println event.source.text
 // any further processing is called here
 System.exit(0)
 }
)
}
frame.pack()
frame.visible = true

Listing 11.10 Simple password dialog with SwingBuilder

Figure 11.4 JPasswordField
to read a password from user input
Licensed to Mark Watson <nordickan@gmail.com>

http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://java.sun.com/docs/books/tutorial/uiswing/index.html

362 CHAPTER 11 Working with builders
The example shows two idiosyncrasies of SwingBuilder:

■ For constructing a JFrame the according method name is frame, not jFrame as
one may expect. This allows reusing code with builders for other widget sets like
AWTBuilder (not yet available), SWTBuilder, or ULCBuilder.6

■ Adding the ActionListener to the password field follows the style that you’ve
seen in section 7.4.2; that is, we define a closure that’s executed when the field
notifies its listener’s actionPerformed method. In this closure, we print the cur-
rent content of the field and exit the application. It’s important to spot that the
closure is specified as a value in the map, not a closure to be one level down
from the password field itself.

Note that the flow of execution is different from normal console-based scripts but sim-
ilar to normal Swing applications. The flow doesn’t wait for the user input but runs
right until the end where Swing’s main loop is started implicitly. When the users have
committed their input with the Enter key, the flow proceeds in the actionPerformed
closure. This is where any trailing activities must reside.

 The initial example was very basic. For more elaborate uses we need more informa-
tion about SwingBuilder’s access to Swing’s views and models, as well as guidance on
how to use layout managers and Swing’s Action concept. The next sections are about
those features.

 If you’d rather like to look at some advanced examples at this point, you can do
so within your Groovy distribution and online. Table 11.2 gives directions, where
GROOVY_SOURCES refers to the Groovy source tree in the project’s version control.

6 ULC is a server-side widget set that allows writing web applications on the server in a Swing-equivalent man-
ner. The UI is presented on the client through an application-independent UI engine. ULCBuilder enables
you to write Groovy ULC applications analogous to writing Swing applications with SwingBuilder. See
www.canoo.com/ulc.

Table 11.2 SwingBuilder uses within the Groovy distribution and online source repository

Example Location Purpose/features

groovyConsole GROOVY_HOME
/lib/groovy-*.jar
groovy/ui/Console.groovy

Interactive Groovy shell, using
MenuBar, Menu, MenuItem,
Accelerator, CaretListener,
Action, TextArea, TextPane,
StyledDocument, Look&Feel,
FileChooser, and Dialog

ObjectBrowser GROOVY_HOME
/lib/groovy-*.jar
groovy/inspect/swingui/
ObjectBrowser.groovy

Inspecting objects, using Label,
TabbedPane, Table, Table-
Model, ClosureColumn, Mouse-
Listener, BorderLayout,
FlowLayout, Look&Feel,
ScrollPane, and Dialog
Licensed to Mark Watson <nordickan@gmail.com>

http://www.canoo.com/ulc

363Easy GUIs with SwingBuilder
11.6.2 Creating Swing widgets

SwingBuilder is simple in appearance but very elaborate inside. Its methods don’t
only create and connect the plain Swing widgets that represent views but also give
access to those objects that Swing uses for gluing together the final GUI-like actions,
models, layout managers, and constraints.

 This section lists the factory method calls for building views. Trailing sections go
into detail about building supporting objects.

 SwingBuilder knows about the Swing widgets that are listed in table 11.3. If no
other indication is given, the factory methods in the table return the product object,
optionally setting properties from a supplied map.

 SwingBuilder cares about proper containment of widgets by following the clo-
sure’s nesting structure. Only standalone containers are to be used without a parent.
See the Swing API documentation for full coverage of the product classes and their
properties.

paintingByNumbers GROOVY_SOURCES
/examples/groovy2d/
paintingByNumbers.groovy

Random patchwork graphics,
using simple Java2D API graphics

BloglinesClient GROOVY_SOURCES
/examples/swing/
BloglinesClient.groovy

RSS reader, using Lists,
ListModels, ScrollPanes,
ValueChangedListeners, and
a define-before-layout approach

Widgets GROOVY_SOURCES
/examples/swing/
Widgets.groovy

Swing Widget demonstrator, using
various Dialogs, MenuBar,
Menu, MenuItem, Action,
TabbedPane, Panel, Grid-
Layout, GridBagLayout,
Constraints, BorderLayout,
FormattedTextField,
Slider, and Spinner
(with model)

SwingDemo GROOVY_TEST_SOURCES
/groovy/swing/
SwingDemo.groovy

SwingBuilder demonstrator
giving access to
groovy.model.MvcDemo,
TableDemo, and TableLayout-
Demo, additionally featuring VBox,
ComboBox, Table, TableModel,
TableLayout (td, tr),
PropertyColumn, and
ClosureColumn

Table 11.2 SwingBuilder uses within the Groovy distribution and online source repository

Example Location Purpose/features
Licensed to Mark Watson <nordickan@gmail.com>

364 CHAPTER 11 Working with builders
Table 11.3 SwingBuilder’s widget factory methods

SwingBuilder method Product Notes

button JButton

buttonGroup ButtonGroup Invisible; used to group radio buttons
and checkboxes.

checkBox JCheckBox

checkBoxMenuItem JCheckBoxMenuItem

colorChooser JColorChooser

comboBox JComboBox Obeys optional argument items.

desktopPane JDesktopPane

dialog JDialog Can be used inside a parent container
as well as standalone.

editorPane JEditorPane

fileChooser JFileChooser

formattedTextField JFormattedTextField Obeys either format or value properties
(in that order)

frame JFrame Standalone container.

internalFrame JInternalFrame

label JLabel

layeredPane JLayeredPane

list JList

menu JMenu

menuBar JMenuBar

menuItem JMenuItem

optionPane JOptionPane

panel JPanel

passwordField JPasswordField

popupMenu JPopupMenu

progressBar JProgressBar

radioButton JRadioButton

radioButtonMenuItem JRadioButtonMenuItem

scrollBar JScrollBar
Licensed to Mark Watson <nordickan@gmail.com>

365Easy GUIs with SwingBuilder
What’s missing in SwingBuilder is JToolTip, which cannot be set as a nested element
but only via the toolTipText attribute. Also missing is JApplet, which is not imple-
mented at the time of this writing.

 With the information from table 11.3 we can construct a first little GUI that looks
like figure 11.5. The outermost container is a JFrame that contains two top-level ele-
ments: a JMenuBar and a JPanel. The JMenuBar in turn contains a JMenu with JMenu-
Items. The JPanel contains three JComponents: a JLabel, a JSlider, and a JComboBox
with a simple list.

 We were tempted to show this simple containment structure in a diagram and we
would have done so if we were programming in Java. But because we use Groovy’s

scrollPane JScrollPane

separator JSeparator

slider JSlider

spinner JSpinner

splitPane JSplitPane Initializes its subcomponents.

tabbedPane JTabbedPane

table JTable

textArea JTextArea

textField JTextField

textPane JTextPane

toggleButton JToggleButton

toolBar JToolBar

tree JTree

viewport JViewport

window JWindow Can be used inside a parent container
as well as standalone. Obeys the owner
argument to override containment.

Table 11.3 SwingBuilder’s widget factory methods

SwingBuilder method Product Notes

Figure 11.5 Swing GUI with
multiple contained widgets
Licensed to Mark Watson <nordickan@gmail.com>

366 CHAPTER 11 Working with builders
SwingBuilder the containment structure is nicely reflected in the code itself, as you
can see in the following listing. The code is its own documentation.

import groovy.swing.SwingBuilder

swing = new SwingBuilder()
frame = swing.frame(title:'Demo') {
 menuBar {
 menu('File') {
 menuItem 'New'
 menuItem 'Open'
 }
 }
 panel {
 label 'Label 1'
 slider()
 comboBox(items:['one','two','three'])
 }
}
frame.pack()
frame.visible = true

The Java equivalent isn’t only three to four times longer (and thus too long to print
here), but, perhaps more importantly, it fails to reveal the widget containment in the
code layout. If you’ve ever written Swing GUIs in Java, the code in listing 11.11 will
probably feel like a big improvement.

IMPLEMENTATION DETAIL We made use of SwingBuilder’s default text key in
the attribute map, so menu(text:'File') can be abbreviated as menu('File').
Where parentheses are optional, even menuItem 'New' is possible, as demon-
strated in listing 11.11.

The label, slider, and combo box need to be contained in a panel because a frame’s root
pane can contain at most only one element. The panel serves as this single element.

NOTE SwingBuilder is an ideal place to make use of the implicit constructor as
introduced in section 7.1.4. Say you want to set a frame’s size attribute. In
Java, you need to create a Dimension object for that purpose. With Groovy’s
general constructor you write frame(size:[100,100]).

The panel in listing 11.11 somehow needs to visually arrange its contained widget. For
that purpose, it uses its default LayoutManager, which is FlowLayout for JPanels. Swing-
Builder also gives access to Swing’s other LayoutManagers as shown in the next section.

11.6.3 Arranging your widgets

For visual arrangement of widgets, the builder’s nesting structure doesn’t provide
enough information. Suppose a panel contains two buttons. Are they to be arranged
horizontally or vertically? Swing’s layout management provides this information.

Listing 11.11 Simple widget containment demo with SwingBuilder
Licensed to Mark Watson <nordickan@gmail.com>

367Easy GUIs with SwingBuilder
 Layout management with SwingBuilder can be
achieved in two ways: by setting the according
properties on the widgets themselves or by using
nested method calls.

 We begin with the first option, which works
without any layout-specific treatment in Swing-
Builder. This is shown with an example that uses
Swing’s BorderLayout with JButtons in figure 11.6.

 The next listing (it produces the layout of fig-
ure 11.6) shows that no special methods need to be
called. It’s sufficient to set the according properties
on the Swing widgets: layout and constraints. We use Groovy’s import as feature
for convenience to ease access to BorderLayout with the BL abbreviation.

import groovy.swing.SwingBuilder
import java.awt.BorderLayout as BL

swing = new SwingBuilder()
frame = swing.frame(title:'Layout Demo') {
 panel(layout: new BL()) {
 button(constraints: BL.NORTH, 'North')
 button(constraints: BL.CENTER, 'Center')
 button(constraints: BL.SOUTH, 'South')
 button(constraints: BL.EAST, 'East')
 button(constraints: BL.WEST, 'West')
 }
}
frame.pack()
frame.visible = true

The second option for laying out widgets is using method calls as listed in table 11.4
that work inside the nesting structure. In addition to Swing’s standard layout options,
SwingBuilder also provides simplified access to supporting objects like constraints,
glues, and struts. See the Swing API documentation for full coverage of the several
layout managers, a description of their “layouting” strategy, their properties together
with predefined constant values, and the constraints they rely upon.

Listing 11.12 Laying out widgets the common Swing way

Table 11.4 SwingBuilder’s methods for laying out components within a UI

SwingBuilder method Swing class/method Notes

borderLayout BorderLayout Layout manager

boxLayout BoxLayout Layout manager; obeys axis,
default: X_AXIS

cardLayout CardLayout Layout manager

Figure 11.6 Swing BorderLayout
defined through SwingBuilder
Licensed to Mark Watson <nordickan@gmail.com>

368 CHAPTER 11 Working with builders
All layout management methods in table 11.4 can be used as a nested element of the
laid out container as shown in the following code snippet, which arranges two but-
tons horizontally:

panel {
 boxLayout()
 button 'one'
 button 'two'
}

In contrast, container methods as marked in table 11.4 start their own nesting struc-
ture to lay out their nested widgets like this, which arranges two buttons vertically:

vbox {
 button 'one'
 button 'two'
}

flowLayout FlowLayout Layout manager

gridBagLayout GridBagLayout Layout manager

gridBagConstraints GridBagConstraints Constraints to be used with
GridBagLayout

gbc GridBagConstraints Abbreviation for
gridBagConstraints

gridLayout GridLayout Layout manager

overlayLayout OverlayLayout Layout manager

springLayout SpringLayout Layout manager

tableLayout n/a Container; needs nested
tr()/td() calls

hbox Box.createHorizontalBox Container

hglue Box.createHorizontalGlue Widget

hstrut Box.createHorizontalStrut Widget; obeys width, default: 6

vbox Box.createVerticalBox Container

vglue Box.createVerticalGlue Widget

vstrut Box.createVerticalStrut Widget; obeys height, default: 6

glue Box.createGlue Widget

rigidArea Box.createRigidArea Widget; obeys size or (width,
height), default: 6

Table 11.4 SwingBuilder’s methods for laying out components within a UI (continued)

SwingBuilder method Swing class/method Notes
Licensed to Mark Watson <nordickan@gmail.com>

369Easy GUIs with SwingBuilder
In HTML-based web applications, tables are often used to control the page layout.
SwingBuilder allows following the same approach with a genuine TableLayout that
almost looks like HTML made by MarkupBuilder:

tableLayout{
 tr {
 td { button 'one' }
 td { button 'two' }
 }
 tr {
 td(colspan:2) { button 'three' }
 }
}

Note td’s colspan attribute. The table layout can be adjusted with such cell attributes.
The available cell attributes is listed in table 11.5 or can be derived from the API docu-
mentation of groovy.swing.impl.TableLayoutCell.

Still left to explain from table 11.4 are the invisible horizontal and vertical glues,
struts, and the rigid area. Within SwingBuilder they’re used like any other widget in
the containment structure. They fill excessive space in the layout. Struts are of fixed
size while glues grow and shrink with the available space. A rigid area simply is a two-
dimensional strut.

 A simple example of a vertical glue between two buttons is shown next. It fills verti-
cal space, effectively forcing button 'one' to flow to the left and button 'two' to flow
to the right of the surrounding panel.

panel {
 button 'one'
 glue()
 button 'two'
}

More precisely, a glue is an invisible widget that has an indefinite maximum size and
minimum size of [0,0]. The effect of adding a glue to a container depends on that

Table 11.5 Cell attributes in table layout

Attribute Type Range/default

align String 'LEFT', 'CENTER', 'RIGHT'

valign String 'TOP', 'MIDDLE', 'BOTTOM'

colspan int Default: 1

rowspan int Default: 1

colfill boolean Default: false

rowfill boolean Default: false
Licensed to Mark Watson <nordickan@gmail.com>

370 CHAPTER 11 Working with builders
container’s layout management and the (preferred, minimum, maximum) size of other
contained widgets.

 So far you’ve seen how to create and compose widgets and how to arrange them.
For setting them into action, widgets and their according event listeners need some
way to refer to each other. The next sections show how to do that.

11.6.4 Referring to widgets

Suppose you have an application with a text field and
a button. When pushing the button, the current con-
tent of the text field is to be printed to the console.
This simple application could look like figure 11.7.

 The corresponding code would contain a snippet
like this (which is incomplete):

textField(columns:10)
button(text:'Print', actionPerformed: { event ->
 println 'the entered text is ... ???'
})

To print the content of the text field, the actionPerformed closure would need some
reference to it. This section is about ways of obtaining such a reference:

■ By traversing the containment structure
■ By ID
■ By variables

The first option makes use of the event object that gets passed to the closure. It has a
source property that refers to the source of the event: the button. So, at least, you
have a reference to the button.

 The button and text field are nested in the same parent container, available via
button’s parent property. That parent property in turn reveals its nested components
and the text field happens to be the first one of those. The final traversal looks like
the following:

panel {
 textField(columns:10)
 button(text:'Print', actionPerformed: { event ->
 println event.source.parent.components[0].text
 })
}

This works, but is ugly for a number of reasons. First, the path expression doesn’t
nicely reveal that you’re referring to the text field at all. Second, when rearranging
the containment structure, the code will break. Third, the purpose of the text field
remains unexplained.

 The second option of referencing addresses these concerns. An id attribute can
be attached to the text field. It’s successively available as a property on the Swing-
Builder itself.

Figure 11.7 A simple application
that prints the content of the text
field to the console.
Licensed to Mark Watson <nordickan@gmail.com>

371Easy GUIs with SwingBuilder
swing = new SwingBuilder()
frame = swing.frame(title:'Printer') {
 panel {
 textField(id:'message', columns:10)
 button(text:'Print', actionPerformed: {
 println swing.message.text
 })
 }
}

This is much better but raises the question why this special handling is needed at all.
Why not simply use variables for referencing an object? In fact, you can do so and the
following code snippet works as well:

message = textField(columns:10)
button(text:'Print', actionPerformed: {
 println message.text
})

This looks very appealing at first sight but you need to be careful when things aren’t as
simple as in this example. Variables need to be known in the scope of the referrer and
they must have been properly assigned before use. SwingBuilder’s simple appearance
can easily lead to overlooking this. Remember that you’re in a closure and thus in a
closed block. You cannot simply introduce a variable to the enclosing scope.

 Suppose you set out to print not the text field content, but the frame title. You
already have a variable called frame. A first (unsuccessful) try could be

button(text:'Print', actionPerformed: {
 println frame.title // fails !!!
})

But this fails because you’re still in the process of frame construction when trying to
reference it. It isn’t even declared, yet!

 Obviously, when going the “reference by variable” route it makes sense to first fully
construct your widgets and take care of nesting, layout, and referencing afterwards.

 This can look like the following code snippet where you first construct the frame
and hold a reference to it. When defining the containment structure, you can use this
reference at two places: where the frame widget is needed for containment and in the
actionPerformed closure. SwingBuilder’s widget method allows placing a predefined
widget in the containment structure.

swing = new SwingBuilder()
frame = swing.frame(title:'Printer')

swing.widget(frame) {
 panel {
 textField(columns:10)
 button(text:'Print', actionPerformed: {
 println frame.title
 })
 }
}

Licensed to Mark Watson <nordickan@gmail.com>

372 CHAPTER 11 Working with builders
You can do the same with the button and attach the listener after the frame construc-
tion is finished:

swing = new SwingBuilder()
button = swing.button('Print')

frame = swing.frame(title:'Printer') {
 panel {
 textField(columns:10)
 widget(button)
 }
}

button.actionPerformed = {
 println frame.title
}

The latter is particularly handy when constructing views or attaching listeners gets
more complex such that it would hamper understanding the containment structure if
done inline.

 A further Swing abstraction that helps code readability is the Action concept. The
next section shows how it’s supported in SwingBuilder.

11.6.5 Using Swing actions

The full description of Swing’s Action concept is in the API documentation of
javax.swing.Action, but in short, an Action is an ActionListener that can be used
from multiple widgets. In addition to a shared actionPerformed method it stores
common properties and broadcasts property changes to its widgets.

 This is particularly helpful when a menu item and a toolbar button should do the
same thing. With a shared Action, they share, for instance, the enabled state such that
disabling the Action instantly disables both the menu item and the toolbar button.

 Table 11.6 lists the predefined Action properties with a short description.

Table 11.6 Predefined Action properties

Property Type Note

closure Closure Introduced by SwingBuilder; the closure to
be called for actionPerformed()

accelerator String Keystroke to invoke a JMenuItem, even if
not visible

mnemonic single char String Character in the name used for quick navigation
to the widget

name String Default text for widgets

shortDescription String Used for tooltip text
Licensed to Mark Watson <nordickan@gmail.com>

373Easy GUIs with SwingBuilder
The accelerator and keyStroke properties both take String representations of a
keystroke as described with javax.swing.KeyStroke.getKeyStroke(String)—you
don’t have to bother with the keystroke abstractions but can simply use 'ctrl ENTER'
and the like.

 As expected, SwingBuilder uses the action method to create an action object,
like this:

swing = new SwingBuilder()

printAction = swing.action(name:'Print', closure: {
 println swing.message.text
})

Such a reference can be used with the action property of its widgets.

frame = swing.frame(title:'Printer') {
 panel {
 textField(action: printAction, id:'message',columns:10)
 button (action: printAction)
 }
}

We added the action method to both widgets so the action closure gets called when
pressing the Enter key in the text field.

 The button no longer needs a text property. Instead, it retrieves its label from the
action name.

 There’s a second option of referring to an action that’s equally valid but a bit less
intuitive: an action can be nested. For this purpose there’s a second flavor of the
action method that makes the given action known to the parent (similar to the
widget() method):

frame = swing.frame(title:'Printer') {
 panel {
 textField(id:'message',columns:10) { action(printAction) }
 button { action(printAction) }
 }
}

longDescription String Can be used for context help

enabled Boolean Shared enabled state

smallIcon javax.swing.Icon Shared icon for widgets (toolbar buttons), typi-
cally javax.swing.ImageIcon

keyStroke String General keystroke to invoke the action

Table 11.6 Predefined Action properties

Property Type Note
Licensed to Mark Watson <nordickan@gmail.com>

374 CHAPTER 11 Working with builders
Using SwingBuilder’s action support is usually a good choice. It helps in terms of
structuring the code, achieving consistent action behavior, and providing user-friendly
GUIs that can be controlled by keyboard or mouse alike.

11.6.6 Using models

Swing follows the Model-View-Controller (MVC) pattern and, thus, models are used to
provide widgets with data. All the usual Swing models can be used with SwingBuilder.
In addition, SwingBuilder provides convenience factory methods for models as listed
in table 11.7.

NOTE At the time of this writing, there’s no special SwingBuilder support for
TreeModel to be used with JTree or ListModel to be used with JList and
JComboBox.

From table 11.7 the tableModel is most special. We start its presentation with a small
example table that lists the names and favorite colors of some members of a famous
Australian children’s band. It produces the GUI shown in figure 11.8.

Table 11.7 Factory methods for models

Method Model Note

boundedRangeModel DefaultBoundedRangeModel For JSlider and
JProgressBar

spinnerDateModel SpinnerDateModel For JSpinner

spinnerListModel SpinnerListModel For JSpinner

spinnerNumberModel SpinnerNumberModel For JSpinner

tableModel groovy.model.DefaultTableModel For JTable; obeys the
model or list properties as
ValueModel (in that
order); supports nested
TableColumns

propertyColumn TableColumn Supports header,
propertyName,
type(Class)

closureColumn TableColumn Supports header,
read(Closure),
write(Closure),
type(Class)
Licensed to Mark Watson <nordickan@gmail.com>

375Easy GUIs with SwingBuilder
The next listing contains the code that makes up the GUI of figure 11.8. The table-
Model method uses nested TableColumn objects, propertyColumn in this example.
Note the containment of scrollPane – table – tableModel – propertyColumn is
reflected in the code layout.

import groovy.swing.SwingBuilder
import groovy.transform.Canonical
import javax.swing.JLabel
import javax.swing.JTable
import javax.swing.table.TableCellRenderer
import java.awt.Color
import java.awt.Component

import static java.awt.Color.*

@Canonical
class NamedColor {
 String name
 Color foreground, background
}

purple = new NamedColor('Purple', WHITE, new Color(127, 0, 255))
mediumBlue = new NamedColor('Blue', WHITE, new Color(64, 128, 255))
brightYellow = new NamedColor('Yellow', BLACK, YELLOW)
brightRed = new NamedColor('Red', BLACK, RED)

data = [
 [name: 'Anthony', color: mediumBlue],
 [name: 'Greg', color: brightYellow],
 [name: 'Jeff', color: purple],
 [name: 'Murray', color: brightRed]
]

swing = new SwingBuilder()
frame = swing.frame(title: 'Table Demo') {
 scrollPane {
 table(id: 'table') {
 tableModel(list: data) {
 propertyColumn(header: 'Name', propertyName: 'name')

Listing 11.13 Example of a table backed by tableModel and propertyColumns

Figure 11.8 Table backed by
tableModel and propertyColumns
Licensed to Mark Watson <nordickan@gmail.com>

376 CHAPTER 11 Working with builders

 can
ich

ting
r

 propertyColumn(
 header: 'Color', propertyName: 'color', type: NamedColor
)
 }
 }
 }
}
frame.pack()
swing.table.setDefaultRenderer(NamedColor, new ColorRenderer())
frame.visible = true

class ColorRenderer extends JLabel implements TableCellRenderer {
 ColorRenderer() { opaque = true }

 Component getTableCellRendererComponent(JTable table, color,
 boolean selected, boolean focus, int row, int col) {
 background = color.background
 foreground = color.foreground
 text = color.name
 horizontalAlignment = CENTER
 this
 }
}

When using propertyColumn the data must be a list of objects that can be asked for
the propertyName. By default the returned property value is assumed to be a String
value but other types like Integer are also handled and converted as you’d expect.
(You’ll see an example using integers in listing 11.14.) You can also specify your own
custom types, in our case NamedColor B. We defined our own renderer for Named-
Color instances d that sets foreground and background colors and sets an appropri-
ate alignment. We register our renderer with the table c.

 If the data isn’t exactly in the format that should be displayed in the table, closure-
Column allows you to funnel all read and write access to the data through a read or
write closure. For example, if you didn’t want to use the custom renderer in listing 11.3,
you could replace the propertyColumn line with a closureColumn:

closureColumn(header: 'Color', read: {it.color.name})

When your table is editable for the user or you change the table content programmat-
ically, consider providing an additional write closure. It’s used for converting the
external format of a value back to the table’s internal format. Think about it as the
reverse operation of the read closure.

 SwingBuilder’s special support for TableColumns makes using TableModels much
easier. Normally there’s no more need to implement extra TableModel classes on your
own, but you can certainly still do so when the need arises and use them with the
JTable model property. Nested tableModel methods can also take a custom model
argument to allow this.

Model
have r
types b

Registering a
renderer for
a rich type

 c

Implemen
a rendere d
Licensed to Mark Watson <nordickan@gmail.com>

377Easy GUIs with SwingBuilder
11.6.7 Binding made easy

In earlier examples in this section, you’ve seen actions, events, and listeners as the low-
level glue that binds together our widgets and other logic. The conventions around
how we glue things together are well understood but often involve significant boiler-
plate code. Wouldn’t it be nice if Groovy could support ways to remove such boiler-
plate? Doesn’t that sound like the kind of problem that AST transformations from
chapter 9 were designed to solve? Indeed, Groovy provides the @Bindable, @Vetoable,
and @ListenerList AST transformations to solve this exact problem.

 Consider a Person domain object with name and age properties. If other compo-
nents in our application have an interest in when those properties change, the stand-
ard conventions would require us to add methods for adding and removing property
change listeners and firing property change events to our class. The Groovy code
would look like this:

import groovy.beans.*

class Person {
 @Bindable String name
 @Vetoable int age
}

The equivalent generated code would look like this (excerpt):

import java.beans.*

class Person { // truncated to save some trees. Original is 88 such lines.
 private String name
 private int age
 final private PropertyChangeSupport this$propChangeSupport =
 new PropertyChangeSupport(this)
 void addPropertyChangeListener(PropertyChangeListener listener) {
 this$propChangeSupport.addPropertyChangeListener(listener)
 }
 void removePropertyChangeListener(String name,
 PropertyChangeListener listener) {
 this$propChangeSupport.removePropertyChangeListener(name, listener)
 }
 void firePropertyChange(String name, oldValue, newValue) {
 this$propChangeSupport.firePropertyChange(name, oldValue, newValue)
 }
 void setName(String value) {
 this.firePropertyChange('name', name, name = value)
 }
 String getName() {
 name
 }
}

The annotated code is much more readable and maintainable. It’s a similar story for
@ListenerList, so we won’t bother you with the details. Instead, it’s time to dive right
in and create an application that uses all three AST transforms.
Licensed to Mark Watson <nordickan@gmail.com>

378 CHAPTER 11 Working with builders
We’ll create a variation of our Wiggle’s application from the last section.7 This time
we’ll record the name and age of the original band members. We’ll use a similar table
model as we did in our previous example but with an age property instead of color.
We’ll also make the columns editable. The UI will look like that shown in figure 11.9.

 Our data for the table model will now be a list of Person domain objects but other-
wise the table model shouldn’t look unfamiliar. Our Person objects will also be designed
to listen for birthday events. We’ll also create a BirthdayNotifier domain object that
notifies Person instances when they have a birthday so that they can increment their
age. Putting this altogether gives us the following listing.

import groovy.beans.*
import groovy.swing.SwingBuilder

import java.awt.event.ActionEvent
import java.awt.event.ActionListener
import java.beans.PropertyVetoException

class Person implements ActionListener {
 @Bindable String name
 @Vetoable int age

 void actionPerformed(ActionEvent e) {
 if (e.actionCommand == name) setAge(age + 1)
 }
}

class BirthdayNotifier {
 @ListenerList List<ActionListener> listeners

 def triggerBirthday(name) {
 def event = new ActionEvent(this, 0, name)
 fireActionPerformed(event)
 }
}

data = [
 new Person(name: 'Anthony', age: 51),
 new Person(name: 'Greg', age: 42),
 new Person(name: 'Jeff', age: 60),
 new Person(name: 'Murray', age: 54)
]

7 You did guess that was the band (www.thewiggles.com) we were talking about didn’t you?

Listing 11.14 Example of an application with bindable components

Figure 11.9 An application
with bindable components
Licensed to Mark Watson <nordickan@gmail.com>

http://www.thewiggles.com

379Easy GUIs with SwingBuilder

e

es
swing = new SwingBuilder()
frame = swing.frame(title: 'Binding Demo') {
 table {
 tableModel(list: data, id: 'tableModel') {
 propertyColumn(header: 'Name', propertyName: 'name',
 editable: true)
 propertyColumn(header: 'Age', propertyName: 'age',
 type: Integer, editable: true)
 }
 }
}
frame.pack()
frame.visible = true

notifier = new BirthdayNotifier()
data.each {
 it.addPropertyChangeListener { evt ->
 println "$evt.newValue has replaced $evt.oldValue"
 }
 it.addVetoableChangeListener { evt ->
 if (evt.newValue < 0)
 throw new PropertyVetoException("Can't have -ve age", evt)
 else
 println "$evt.source.name now has age $evt.newValue"
 }
 notifier.addActionListener(it)
}

try {
 data[0].age = -99
} catch (e) {
 println "Change ignored: $e.message"
}
data[1].name = 'Sam'
data[1].age = 36

notifier.triggerBirthday(data[2].name)

swing.tableModel.fireTableDataChanged()

After creating our UI, we glue our pieces together. For each Person instance, we:

■ Add a logging closure that tracks name changes B.
■ Add a logging closure that tracks age changes but vetoes the change if a nega-

tive age change is attempted c.
■ Register the instance as a listener for birthday events d.

Finally, we start changing properties. We first attempt to set a negative age value e.
Then we alter wiggle at index value 1 to change the name and age f. Then we trig-
ger a birthday event for the wiggle at index value 2 g.

 When you run this example you’ll see sample output as follows:

Change ignored: Can't have -ve age
Sam has replaced Greg
Sam now has age 36
Jeff now has age 61

Logs when
name changes b

Logs when ag
changes but
vetoes -ve ag

 c

Listens for birthday
notifications d

Attempts to
trigger invalid age e

Sam replaces
Greg

 f

Jeff has a
birthday g
Licensed to Mark Watson <nordickan@gmail.com>

380 CHAPTER 11 Working with builders
If you start editing the table cells, you’ll start to see additional log output produced.
Play around now and convince yourself that you understand how all the components
are interacting.

 So far, you’ve seen only relatively small examples and snippets that discuss possible
variations. We still owe you a comprehensive example of a Swing application built with
SwingBuilder. We’ll keep that promise in the next section.

11.6.8 Putting it all together
It’s time to implement a complete application using SwingBuilder. The idea is to create
something that shows how all the pieces we’ve gone through fit together and that also
reveals the benefit that Groovy’s dynamic nature brings to application development.

GATHERING REQUIREMENTS

The application should plot arbitrary mathematical functions with one free variable,
f(x) in mathematical terms. The user enters the function in the format of a Groovy
expression on x.

 The application, as displayed in figure 11.10, will provide the user with the follow-
ing features:

■ Defining the function.
■ Plotting the graph by pressing Enter in any input field, by clicking the Paint

button, by choosing from a menu, or by pressing Ctrl-P.
■ Defining domain and range upper and lower bounds either by typing in a new

value or by increasing or decreasing the current value with mouse or arrow keys.
A repaint should be triggered immediately when any of these values changes.

■ Resizing the window to resize the plotting canvas.
■ Supporting quick navigation by means of all menus and buttons.

Figure 11.10 A general
function plotter built with
SwingBuilder
Licensed to Mark Watson <nordickan@gmail.com>

381Easy GUIs with SwingBuilder
A Help/About as shown in figure 11.11
will be provided via menu and via the F1
function key

GETTING PREPARED

SwingBuilder makes it possible to start with
a minimal design and refine and extend
the containment structure and layout man-
agement as the application grows. This is a
big improvement over ordinary Swing pro-
gramming in Java and competitive to using
visual builders.8

 But sketching the design in advance prevents it from getting lost. Figure 11.12
splits the expected GUI in pieces, gives hints about the general layout management,
and notes some ideas about the components.

8 In fact, since many visual builders create source code that’s effectively only usable within the builder, and
effectively unreadable on its own, SwingBuilder could be said to have the edge over them.

Figure 11.11 A Help/About message made by
SwingBuilder

borderLayout

emptyBorder

titledBorder

labeledSpinner

Figure 11.12 Design sketch of components and layout for the plotter application
Licensed to Mark Watson <nordickan@gmail.com>

382 CHAPTER 11 Working with builders
The requirements suggest a BorderLayout. All function-specific controls can float to
NORTH, and dimension controls can be placed WEST and SOUTH. Most important, the
plotting canvas can be CENTERed and will thus expand when resized.

 All subcontainers can be arranged as horizontal or vertical boxes.
 The dimension controls max/min/from/to that are placed at the corners share

some commonalities: they’re built from a label, a small space, a spinner, and a spinner
model. It would be nice to avoid code duplication and have something like a labeled-
Spinner concept.

 Two questions are still open: how to plot a graph using Swing and how to dynami-
cally evaluate the function text. This isn’t explained in too much detail because our
current focus is on SwingBuilder. In brief:

■ Any Swing widget can be asked for its Graphics object (and thus, we can use a
simple panel). This in turn has a number of painting methods. See the API doc-
umentation of java.awt.Graphics. The main point to consider is the system of
coordinates. It starts at the upper-left corner with [0, 0] and expands right and
down. We’ll need some transformation of coordinates to handle that.

■ Dynamic code evaluation will be handled in depth in chapter 16. For our sim-
ple purpose we can ask a GroovyShell to parse the text into a script. We pass it
the current value of x and calling script.run() returns f(x).

This should be enough preparation to start implementing.

IMPLEMENTATION

The code in listing 11.15 resides in a single file. It’s made up of four parts:

■ Defining actions.
■ Building widgets, containment structure, and layout in one place; IDs are used

for referencing widgets.
■ Starting the main loop.
■ Defining additional helper methods and classes.

EventListener closures are implemented as methods and referred to as method clo-
sures (the .& operator, see chapter 5). They’re used in two places: in actions and the
spinner’s ChangeListener (stateChanged method).

 The Dynamo class encapsulates the dynamic expression evaluation. It caches the
current script to avoid excessive reparsing.

import groovy.swing.SwingBuilder
import java.awt.Color
import java.awt.BorderLayout as BL
import javax.swing.WindowConstants as WC
import javax.swing.BorderFactory as BF
import javax.swing.JOptionPane

swing = new SwingBuilder()

Listing 11.15 Mathematical function plotter application

Type aliases as
shortcuts
Licensed to Mark Watson <nordickan@gmail.com>

383Easy GUIs with SwingBuilder
paint = swing.action(
 name: 'Paint',
 closure: this.&paintGraph,
 mnemonic: 'P',
 accelerator: 'ctrl P'
)
about = swing.action(
 name: 'About',
 closure: this.&showAbout,
 mnemonic: 'A',
 accelerator: 'F1'
)

frame = swing.frame(title:'Plotter',
 location:[100,100], size:[500,500],
 defaultCloseOperation:WC.EXIT_ON_CLOSE) {
 menuBar (){
 menu(mnemonic:'A','Action'){
 menuItem(action:paint)
 }
 glue()
 menu(mnemonic:'H','Help'){
 menuItem(action:about)
 }
 }
 panel (border:BF.createEmptyBorder(6,6,6,6)) {
 borderLayout()
 vbox (constraints: BL.NORTH){
 hbox {
 hstrut(width:10)
 label 'f(x) = '
 textField(id:'function',action:paint,'Math.sin(x)')
 button(action:paint)
 }
 }
 vbox (constraints: BL.WEST){
 labeledSpinner('max',1d)
 20.times { swing.vglue()}
 labeledSpinner('min',-1d)
 }
 vbox(constraints: BL.CENTER,
 border:BF.createTitledBorder('Function Plot')) {
 panel(id:'canvas')
 }
 hbox (constraints: BL.SOUTH){
 hstrut(width:10)
 labeledSpinner('from',0d)
 10.times { swing.hglue()}
 labeledSpinner('to',6.3d)
 }
 }
}
frame.visible = true

// implementation methods

Refers to
method closure

General
constructor

Separates
help menu

Uses factory
method

Builds
with logic

 b
Licensed to Mark Watson <nordickan@gmail.com>

384 CHAPTER 11 Working with builders
def labeledSpinner(label, value){
 swing.label(label)
 swing.hstrut()
 swing.spinner(id:label, stateChanged:this.&paintGraph,
 model:swing.spinnerNumberModel(value:value)
)
}
def paintGraph(event) {
 calc = new Dynamo(swing.function.text)
 gfx = swing.canvas.graphics
 int width = swing.canvas.size.width
 int height = swing.canvas.size.height
 gfx.color = new Color(255, 255, 150)
 gfx.fillRect(0, 0, width, height)
 gfx.color = Color.blue
 xFactor = (swing.to.value - swing.from.value) / width
 yFactor = height / (swing.max.value - swing.min.value)
 int ceiling = height + swing.min.value * yFactor
 int lastY = calc.f(swing.from.value) * yFactor
 for (x in (1..width)) {
 int y = calc.f(swing.from.value + x * xFactor) * yFactor
 gfx.drawLine(x-1, ceiling-lastY, x, ceiling-y)
 lastY = y
 }
}
void showAbout(event) {
 JOptionPane.showMessageDialog(frame,
'''A Function Plotter
that serves as a SwingBuilder example for
Groovy in Action''')
}
// Keep all dynamic invocation handling in one place.
class Dynamo {
 static final GroovyShell SHELL = new GroovyShell()
 Script functionScript
 Dynamo(String function){
 functionScript = SHELL.parse(function)
 }
 Object f(x) {
 functionScript.x = x
 return functionScript.run()
 }
}

It doesn’t happen too often, but sometimes building with logic that you’ve seen with
other builders is also useful with SwingBuilder, like in B. At this point the rationale is
that adding a single glue isn’t enough to push the labeled spinners into their corners
because box layout tries to distribute component sizes evenly. The same effect could
have been achieved by using a more complex layout manager.

 The labeledSpinner method c is perfect for putting your builder and closure
knowledge to the test: Why is the extra 'swing.' prefix needed? The answer is because
labeledSpinner is a callback from the closure’s delegate (swing) to the enclosing

Factory
method c

Method used
as closure d

Main
plotting
loop

Shows
message
dialog

Once per
paint

For each x
Licensed to Mark Watson <nordickan@gmail.com>

385Easy GUIs with SwingBuilder
scope (our main Script). But this raises a second question: How can swing then ever
add the parent; for example, the label to the parent hbox? Builders keep track of the
current parent in their internal state. So swing still knows that we’re adding some-
thing to that box.

 There’s no point in going into too much detail about the actual plotting per-
formed in d. We figure out the current dimension because the user may resize the
panel, fill it with the background color to erase any old function plot, calculate scaling
factors, and finally draw in an upside-down manner to cope with Swing’s way of han-
dling coordinates.

ASSESSMENT

Even though we set out to produce a complete application example and we achieved a
lot within a hundred lines of code, I’m afraid it isn’t production-ready. We should have
included exception handling for invalid scripts and those that don’t return a number,
together with warnings and failure indications, in a dialog or a status bar, for example.

 Allowing users to provide executable code can also be a security issue. This topic
will be examined in chapter 16.

 Performance could be improved by a number of means, such as:

■ Double buffering (plotting on an invisible canvas and toggle canvases afterwards)
■ Sweeping through the domain with a step size > 1 when plotting
■ Reparsing function text only when changed

If you liked this example and aim to improve your SwingBuilder skills, why not
extend the example with new features? Some useful additions could be:

■ Coordinate lines, tick marks, and labels
■ History of plotted functions
■ Table of x/y values
■ Immediate repaint on focusGained, resized

Finally, we’d like to add that there’s much more about Swing that we haven’t yet
mentioned: drag and drop, look and feel, all kinds of *ModelListeners, renderers, editors,
and so on. Even so, we hope we’ve refreshed your curiosity about Swing and shown
how Groovy’s SwingBuilder provides a smooth introduction into the world of desk-
top applications.

 One thing that we particularly like about SwingBuilder is that it’s instantly avail-
able wherever there’s Groovy. Other scripting languages often require additionally
installing a special GUI toolkit (tk, Gtk, Fox, and others) and you can bet that when
downloading a program, it requires the one toolkit that you haven’t installed on
your current machine. SwingBuilder only relies on Swing and that comes with your
Java installation.

 But this isn’t yet the end of the story. The next section will lead us to even fancier
user interfaces.
Licensed to Mark Watson <nordickan@gmail.com>

386 CHAPTER 11 Working with builders
11.7 Modern UIs with GroovyFX SceneGraphBuilder
SwingBuilder makes creating desktop applications fun and worthwhile, but it can
only build Swing applications and has been recently superseded by JavaFX. JavaFX 2 is
included in all Java 7 distributions since update 10 and JavaFX 8 comes bundled with
Java 8. So JavaFX is “the new Swing,” and you guessed right that Groovy is by your side
when it comes to building JavaFX applications.

 At the time of this writing, the Groovy support for JavaFX isn’t included in the stan-
dard distribution of Groovy but in an extra project called GroovyFX that you’ll find at
http://groovyfx.org. It’s easy to use because you can directly refer to it with a @Grab
annotation as you’ll see soon.

 JavaFX introduces the notion of a scene graph as opposed to the canvas-based
graphics system of Swing. All widgets in the UI are nodes in that scene graph and cre-
ating a JavaFX view means that you’re building that graph. It should come as no sur-
prise that GroovyFX offers you a SceneGraphBuilder to simplify this work.

 Listing 11.16 makes use of the SceneGraphBuilder for saying “Hello” to the FX
world, resulting in the display of figure 11.13. The start method automatically instan-
tiates the builder and sets it as the delegate such that the builder is totally hidden
behind the scenes (no pun implied).

@Grab('org.codehaus.groovyfx:groovyfx:0.3.1')

import static groovyx.javafx.GroovyFX.start

start {
 stage title: 'GroovyFX Hello World', visible: true, {
 scene fill: BLACK, width: 600, height: 300, {
 hbox padding: 40, alignment:'center', {

Listing 11.16 GroovyFX greets the world

Figure 11.13 “Hello FX World” as generated with the GroovyFX
SceneGraphBuilder using gradients, fonts, images, and effects
Licensed to Mark Watson <nordickan@gmail.com>

http://groovyfx.org

387Modern UIs with GroovyFX SceneGraphBuilder
 text 'Hello', font: '80pt sanserif', {
 fill linearGradient(endX: 0, stops: [PALEGREEN, SEAGREEN])
 }
 text ' FX ', font: '80pt sanserif', {
 fill linearGradient(endX: 0, stops: [CYAN, DODGERBLUE])
 effect dropShadow(color: DODGERBLUE, radius: 25, spread: 0.35)
 }
 imageView 'file:World.png', effect:reflection()
 }
 }
 }
}

The general approach of SceneGraphBuilder isn’t much different from Swing-
Builder, and for the typical widgets and layouts, you can reuse what you learned in
the previous section. There are a few specialties, though. JavaFX calls a frame a stage
and the root component a scene.

 Describing all the details of JavaFX and how GroovyFX maps onto them is, of
course, far beyond the scope of this book, but we encourage you to explore the awe-
some capabilities of that technology. A very good starting point is the demo folder of
the GroovyFX project.

 The mapping between SceneGraphBuilder methods and SceneGraph nodes is usu-
ally pretty straightforward:

■ arc maps to javafx.scene.shape.Arc
■ boxBlur maps to javafx.scene.effect.BoxBlur
■ circle maps to javafx.scene.shape.Circle

And so on. With the help of your IDE you’ll easily find your way around.

Here are some features of JavaFX that might be of particular interest:

■ Layout definitions in FXML created by visual tools
■ Styling via CSS, including gradients and effects
■ Translations, transitions, and animations
■ Properties and binding
■ 3D worlds

Java-style JavaFX builders
JavaFX has seen many versions. Version 2 introduced builders in a Java-style with
nested method calls and vararg parameter lists. This was widely seen as an improve-
ment because it was a step in the direction of the ease of use that Groovy provides.
This feature was deprecated in version 8 for reasons that remain unclear. The spec-
ulation is that generating these builder classes became too costly because in Java
you cannot do it dynamically as in Groovy. The best way to use JavaFX with builders
is again GroovyFX.
Licensed to Mark Watson <nordickan@gmail.com>

388 CHAPTER 11 Working with builders
For some of those there’s special GroovyFX support that we’d like to point you to.
Let’s start with FXML.

11.7.1 Application design with FXML

Oracle offers a free tool called SceneBuilder as displayed in figure 11.14 that can be
used to visually compose a JavaFX application. The result of the design process is
stored in FXML.

 From an application, you can read that file and get hold of the JavaFX node that’s
the root of all elements that you’ve created in SceneBuilder. GroovyFX has a very sim-
ple way to achieve this:

fxml resource("/SceneBuilderOutput.fxml")

As a special bonus comes the resource() method that finds the FXML file on the
classpath. But having the root of all your components isn’t the end of the story. You
also need a way to refer to special components in the graph, let’s say a button. There’s
an easy way to achieve this: inside SceneBuilder you assign an ID like myButton to that
button (in some versions of the tool called CSS ID). In your GroovyFX code, you can
then refer to that button as if you had assigned that ID in the code. So Groovy under-
stands myButton as a direct reference to that button object!

 From our experience we’ve come to the conclusion that the best way to use the
visual builder is to have the general structure in FXML and use the visual builder to
create and maintain it. All details should be under programmatic control, though.
That means that the tool only creates layouts and containers with a fixed ID. What
goes into the containers is then managed through code.

 This leaves us with the question of how to bind data and logic to components.

Figure 11.14 SceneBuilder when creating the “Hello FX World” JavaFX application
Licensed to Mark Watson <nordickan@gmail.com>

389Modern UIs with GroovyFX SceneGraphBuilder
11.7.2 Properties and binding

JavaFX makes Properties (the capitalization is on purpose) first-class citizens that are
far more powerful than plain-old JavaBean properties. They’re themselves objects
with added capabilities. First and foremost, they’re observable. Second, and as a direct
consequence, they’re bindable.

 This is extremely powerful—much more than we first expected—but it comes
at the expense of lots of additional boilerplate code when creating a class with
JavaFX Properties in plain Java. But Groovy comes to the rescue with all its language
sophistication.

 Let’s assume the greeting of our “Hello FX World” should come from a model.
That model would have the greeting as a JavaFX property, like so:

import groovyx.javafx.beans.FXBindable
class GreetingModel {
 @FXBindable String hi = "Hello"
}

Then our application can create an instance of that model:

def model = new GreetingModel()

and the SceneGraphBuilder can bind the text node to the hi Property:

text bind(model.hi())

Note that we aren’t setting the value of hi, we’re binding the hi Property! The differ-
ence is that whenever the value of that Property changes the view will automatically
update, without any ValueChangeListeners or other controllers being in the play.

 Let’s end with a few considerations about desktop applications that you build with
SwingBuilder or SceneGraphBuilder.

11.7.3 Groovy desktop applications

No matter whether or not you have Swing or JavaFX as your toolkit for your desk-
top application, you’ll profit from structuring your code properly. All toolkits sup-
port a separation of responsibilities in MVC but this still leaves important questions
unanswered:

■ May a view refer to other views?
■ May controllers refer to views? To all or only to selected ones?
■ Which code has to run in which thread? What if there are exceptions?

Independent of your UI toolkit of choice you have to find answers to these questions
for any project of reasonable size and importance. For any such project you need
more support than plain Groovy can provide and I (Dierk) suggest that you have a
serious look at OpenDolphin (http://open-dolphin.org) as it leads to the highest
degree of decoupling between views and between views and controllers, and provides
an easy-to-use threading model.
Licensed to Mark Watson <nordickan@gmail.com>

http://open-dolphin.org

390 CHAPTER 11 Working with builders
 OpenDolphin provides special support for Groovy and many interesting Open-
Dolphin demos use GroovyFX for the views.

 If you’re looking for an MVC framework with event, lifecycle, and resource man-
agement; build automation; testing; packaging; and much more, then Griffon9 should
be on your list.

 Having seen the merits of NodeBuilder, MarkupBuilder, StreamingMarkup-
Builder, AntBuilder, SwingBuilder, and SceneGraphBuilder, it’s reasonable to ask
whether you can use that concept for your own kind of builder. You know the answer
already, right? Of course you can—and of course Groovy makes it easy. The next sec-
tion gives the details.

11.8 Creating your own builder
The built-in builders are very useful, but of course they aren’t tailored for your specific
needs. Given how frequently hierarchies are used within software development, it
wouldn’t be at all surprising to find that you had a domain-specific use for builders
that isn’t quite covered with NodeBuilder and its colleagues. Fortunately, Groovy
makes it easy to build your own builder (which isn’t as recursive as it sounds). Let’s
plunge ahead with an example.

 Suppose you’re creating an application that helps you keep track of dietary infor-
mation about the food you’re consuming. You’re about to have lunch and being so
enthralled by writing new Groovy examples, you haven’t been getting as much exer-
cise as you’d like. You’d like to know if you should be having that extra slice of pizza,
but can you really tell if you haven’t added up the calories, carbs, protein, and so
forth. So, you’d like to have some help in tracking this sort of information. You’d like
to enter something like this:

lunch.count {
 pizza(size: 'large') {
 crust('thin')
 topping('pepperoni')
 topping('veggies')
 }
 appetizer {
 wings(quantity: 2)
 'garlic-bread'()
 }
}

And let the computer give you the good (or bad) news about that extra slice!
 We’ll keep the example simple and only count calories. The nested structure allows

you to track calorie information for whole meals if you know it or for individual

9 Griffon is a desktop application development platform for the JVM. Inspired by Grails, Griffon leverages the
use of the Groovy language and concepts like convention over configuration. See http://new.griffon-frame-
work.org. Another source is Griffon in Action by Andres Almiray et al. (Manning Publications, 2012).
Licensed to Mark Watson <nordickan@gmail.com>

http://new.griffon-framework.org
http://new.griffon-framework.org

391Creating your own builder
ingredients that might make up a meal. For simplicity we’ll keep a map of ingredient-
to-calorie values in an in-memory map. Obviously, you could extend the example to
use a proper database and you might want to track more than calories.

 There are three ways to go about writing a calorie builder in Groovy:

■ Subclass BuilderSupport
■ Subclass FactoryBuilderSupport
■ Roll your own dynamic behavior

Let’s examine each of these in turn.

11.8.1 Subclassing BuilderSupport

Many builders in the Groovy library subclass groovy.util.BuilderSupport. This class
implements the general builder strategy features including the ability to pretend your
builder methods, to recursively process any attached closures, to relay method calls in
closures back to your builder, and call your builder’s template methods.

 For implementing you own builder, you subclass BuilderSupport and implement
the template methods as listed in table 11.8. There is no need to do anything more.

BuilderSupport follows this construction algorithm:

■ When hitting a builder method, call the appropriate createNode method.
■ Call setParent with the current parent and the node you’ve just created (unless

it’s a root node, because that has no parent).
■ Process any attached closure. (This is where recursion happens.)
■ Call nodeCompleted with the current parent and the created node (even if par-

ent is null).

Table 11.8 Template methods for builders

Info Returns Name Parameters Call triggered by

abstract Object createNode Object name foo()

abstract Object createNode Object name, Object
value

foo('x')

abstract Object createNode Object name, Map
attributes

foo(a:1)

abstract Object createNode Object name,
Map attributes,
Object value

foo(a:1, 'x')

abstract void setParent Object parent,
Object child

createNode
finished

empty void nodeCompleted Object parent,
Object node

recursive closure
call finished
Licensed to Mark Watson <nordickan@gmail.com>

392 CHAPTER 11 Working with builders
That means that a code fragment like

builder = new MyBuilder()
builder.foo() {
 bar(a:1)
}

will result in method calls similar to those shown in the following pseudocode (inden-
tation indicates recursion depth):

builder = new MyBuilder()
foo = builder.createNode('foo')
// no setParent() call because we are a root node
 bar = builder.createNode('bar',[a:1])
 builder.setParent(foo, bar)
 // no closure to process for bar
 builder.nodeCompleted(foo, bar)
builder.nodeCompleted(null, foo)

Note that the foo and bar variables aren’t used inside the real builder. They’re used in
this pseudocode only for illustrating identities.

 In terms of the implementation, nodeCompleted isn’t a template method in the
strict meaning of the word because it’s not declared abstract in BuilderSupport but
has an empty default implementation. It’s added to table 11.8 because most builders
need to override it anyway.

 Further methods of BuilderSupport are listed in table 11.9. See their API docu-
mentation for more details.

The next section puts all this together in a complete example.

THE CALORIE BUILDER EXAMPLE

Let’s create a first version of the calorie builder with the help of the BuilderSupport
class as shown in the following listing. Our example will override the four createNode
methods as well as the setParent and nodeCompleted methods.

Table 11.9 More BuilderSupport methods

Returns Name Parameters Use

Object getCurrent The node under construction; the
parent when processing a closure

Object getName String methodName Override to allow builder-specific
name conversions; default obeys
nameMappingClosure

void setClosureDelegate Closure closure,
Object node

Override to allow mix of builders
Licensed to Mark Watson <nordickan@gmail.com>

393Creating your own builder

y
class CalorieBuilder1 extends BuilderSupport {
 def calories = 0.0
 def name = 'root'
 def calorieDatabase = [
 crust : [thin: 169, classic: 212, deepdish: 259, stuffed: 360],
 topping : [pepperoni: 24, veggies: 10, cheese: 50],
 appetizer: [wings: 60, 'garlic-bread': 180]
]

 def createNode(name) {
 [name: name, calories: 0.0]
 }

 def createNode(name, value) {
 def result = createNode(name) + [value: value]
 findCalories(result, name, value)
 result
 }

 def createNode(name, Map attributes) {
 createNode(name) + [*: attributes]
 }

 def createNode(name, Map attributes, value) {
 createNode(name, value) + [*: attributes]
 }

 void setParent(parent, child) {
 if (child.size && parent.size && child.size != parent.size)
 throw new IllegalStateException("Conflicting sizes found")
 if (child.size) {
 child.scale = (child.size == 'large') ? 1.5 : 1.0
 }
 }

 void nodeCompleted(parentOrNull, node) {
 def parent = parentOrNull ?: this
 def qty = node.quantity ?: 1
 def scale = node.scale ?: 1.0
 findCalories(node, parent.name, node.name)
 parent.calories += node.calories * qty * scale
 }

 private void findCalories(Map map, name, value) {
 if (calorieDatabase.containsKey(name)) {
 map.calories = calorieDatabase[name][value].toInteger()
 }
 }

 }

def lunch = new CalorieBuilder1()

lunch.count {
 pizza(size: 'large') {
 crust('thin')
 topping('pepperoni')

Listing 11.17 Using BuilderSupport for calorie builder

Handles
cases like
crust('thin')

 b

Checks
consistenc
between
child and
parent

 c

Handles cases
like appetizer
{ wings() }

 d
Licensed to Mark Watson <nordickan@gmail.com>

394 CHAPTER 11 Working with builders
 topping('veggies')
 }
 appetizer {
 wings(quantity: 2)
 'garlic-bread'()
 }
}

assert lunch.calories == 604.5

The approach we’ll use is to collect all the information we’re given at any level in our
builder tree within a map. This is done in the createNode methods. The attributes go
straight into the map and the name and value also go in using name and value as the
keys. We’ll also try to populate calorie information if we can; for example, given
crust('thin'), we can look for a “thin crust” item in our calorie database B and,
having found one, we can add [calories: 169] into our map.

 Next up we have the setParent method. Here we could link our maps together if
we wanted to, perhaps with parent and children keys in our maps. Such linking isn’t
required for something as simple as calorie counting, so instead we’ll crosscheck
sizes c between parent and child nodes; if you tell us you’re having a large pizza but
with only a regular-sized crust, it sounds as if you might be cheating on your counting,
so we’ll flag that as an error. We’ll also set up a scaling factor if we find a large-size
item. This doesn’t require access to both child and parent maps, and so could have
been done in various other places, but it’s convenient to set it here while processing
size information.

 Finally, we have the nodeCompleted method. At this point, we’ll either be at a leaf
node or a parent node. As an example leaf node, we might have completed the wings
node in this fragment:

appetizer {
 wings()
}

and at this point we’ll find the “wings appetizer” item in our calorie database d. We
save the calories information in our map for the wings node but also bump up the
parent appetizer calorie value. If we find ourselves completing an aggregate node like
appetizer, then we won’t find it in the calorie database, but the appetizer node will
already have the correct calorie value because we can be sure that, by this point, all of
its child nodes have been processed. So, we can bump up our parent’s calorie value.
When bumping the parent’s calorie value, we multiply by any quantity or scaling fac-
tors for the current node.

 There’s also one special case. For the root node, the parent will have a null value.
In that case, we treat the builder itself as if it were the parent and bump up its calorie
value, which is the value our test will later check.

 So we ended up having to do a bit of work, but by using BuilderSupport, we
could make our changes in a very structured and consistent way. Much of the
Licensed to Mark Watson <nordickan@gmail.com>

395Creating your own builder
behind-the-scenes work was taken care of for us and we could focus on the logic of
our application.

 Suppose we now wish to beef up10 our application’s functionality. We might want to
start tracking carbs, proteins, gluten-free status, and other information for our ingre-
dients and meals. The first thing we might want to do is introduce a whole set of
richer domain types. We can support such a change and keep our BuilderSupport
approach, but more than likely we’ll end up funneling creation of our nodes through
one of the createNode methods and it would have an unwieldy mess of if-then-else
or switch logic that created all of our types. Surely there’s a better way? Enter the
FactoryBuilderSupport class.

11.8.2 Subclassing FactoryBuilderSupport

This support class has similar goals to builder support but makes use of the Factory pat-
tern to greatly simplify domain class construction. To use this approach, you must associ-
ate a factory with each node type that you want to support. The factory must implement
the Factory interface that’s described in table 11.10. A common trick is to override the
AbstractFactory class and then just implement the required methods.

10 We’ll try not to dine out too much on the food puns.

Table 11.10 Methods from groovy.util.Factory

Returns Name Parameters Use

Object newInstance,
isHandlesNodeChildren(),
onFactoryRegistration(),
onNodeChildren()

FactoryBuilder-
Support builder, Object
name, Object value, Map
properties

Responsible for cre-
ating the appropriate
object for a given
node

boolean onHandleNodeAttributes() FactoryBuilder-
Support builder, Object
node, Map attributes

Sets properties on
the node

void onNodeCompleted FactoryBuilder-
Support builder, Object
parent, Object child

Responsible for
any cleanup

void setParent FactoryBuilder-
Support builder, Object
parent, Object child

Responsible for
establishing parent–
child relationships

void setChild FactoryBuilder-
Support builder, Object
parent, Object child

May be useful to
make adjustments
to parent–child
relationships

boolean isLeaf Prohibits any further
nested method calls
Licensed to Mark Watson <nordickan@gmail.com>

396 CHAPTER 11 Working with builders
When creating our builder we extend the FactoryBuilderSupport class and before
using the builder we must register all of our relevant factories. Let’s see this in action
in an example.

THE CALORIE BUILDER EXAMPLE

Let’s create a second version of our calorie builder with the help of the Factory-
BuilderSupport class as shown in listing 11.18. Our example will create just a single
factory, the CalorieBeanFactory, which will be responsible for creating all of our
domain classes. Its strategy for creating the classes will be simple. It will attempt to cre-
ate a new instance using an uppercased version of the node name; so for instance,
when finding the pizza node, we’ll create an instance of the Pizza class. Let’s see this
altogether in the following listing.

class CalorieBuilder2 extends FactoryBuilderSupport {
 def calories = 0.0
 def factory = new CalorieBeanFactory(getClass().classLoader)

 protected void postInstantiate(name, Map attrs, node) {
 super.postInstantiate(name, attrs, node)
 attrs.each { k, v -> node[k] = v }
 }

 protected Factory resolveFactory(name, Map attrs, value) {
 return factory
 }

 void setParent(parent, child) {
 if (child.hasProperty("size")) {
 child.scale = child.size == 'large' ? 1.5 : 1.0
 }
 }

 void nodeCompleted(parentOrNull, node) {
 def parent = parentOrNull ?: this
 def qty = node.quantity ?: 1
 def scale = node.scale ?: 1.0
 parent.calories += node.calories * qty * scale
 }
}

class CalorieBeanFactory extends AbstractFactory {
 private ClassLoader loader

 CalorieBeanFactory(ClassLoader loader) {
 this.loader = loader
 }

 def newInstance(FactoryBuilderSupport fbs, name, value, Map attrs) {
 def className = name[0].toUpperCase() +
 name[1..-1].replaceAll(/-(.)/) { it[1].toUpperCase() }
 def clazz = loader.loadClass(className)
 return value ? clazz.newInstance(value: value) : clazz.newInstance()
 }
}

Listing 11.18 Using FactoryBuilderSupport for calorie builder
Licensed to Mark Watson <nordickan@gmail.com>

397Creating your own builder
class Countable {
 int quantity
 def scale
 def calories = 0.0
}

class Count extends Countable {}

class Pizza extends Countable {
 def size
}

abstract class CountableGroup extends Countable {
 String value

 abstract getCalorieDB()

 def getCalories() { calorieDB[value] }
}

class Crust extends CountableGroup {
 def calorieDB = [thin: 169, classic: 212, deepdish: 259, stuffed: 360]
}

class Topping extends CountableGroup {
 def calorieDB = [pepperoni: 24, veggies: 10, cheese: 50]
}

class Appetizer extends Countable {}

class Wings extends Countable {
 def calories = 60
}

class GarlicBread extends Countable {
 def calories = 180
}

def lunch = new CalorieBuilder2()

lunch.count {
 pizza(size: 'large') {
 crust('thin')
 topping('pepperoni')
 topping('veggies')
 }
 appetizer {
 wings(quantity: 2)
 'garlic-bread'()
 }
}

assert lunch.calories == 604.5

Our calories database has been pushed down into the domain classes and we’ve used a
few intermediate parent classes to reduce some duplication. There are only a few lines
of business logic within the nodeCompleted method of our builder.

 For our application, having rich domain classes might add more complexity to the
solution than we need but it’s easy to see how extensible this approach can be.
Licensed to Mark Watson <nordickan@gmail.com>

398 CHAPTER 11 Working with builders
11.8.3 Rolling your own

The final approach we have available to use is to go directly to Groovy’s low-level method
interception hooks. This provides us with the ultimate flexibility but may require a fair
bit of work. Depending on your scenario, though, it might be the best approach.

THE CALORIE BUILDER EXAMPLE

Let’s create a third version of our calorie builder as shown in the following listing.

class CalorieBuilder3 {
 def calorieDatabase = [
 crust : [thin: 169, classic: 212, deepdish: 259, stuffed: 360],
 topping : [pepperoni: 24, veggies: 10, cheese: 50],
 appetizer: [wings: 60, 'garlic-bread': 180]
]
 def parent = new Stack()
 def getCalories() { parent.peek().calories }

 CalorieBuilder3() {
 parent.push([calories:0.0])
 }

 def invokeMethod(String methodName, args) {
 def current = [name: methodName, calories:0.0]
 if (args && args[0] instanceof Map) {
 current << args[0]
 }
 countCalories(current, parent.peek().name, methodName)
 if (args && args[0] instanceof String) {
 countCalories(current, methodName, args[0])
 }
 if (args && args.size() > 1 && args[1] instanceof String) {
 countCalories(current, methodName, args[1])
 }
 current.scale = current.size == 'large' ? 1.5 : 1.0

 if (args && args[-1] instanceof Closure) {
 parent.push(current)
 Closure nested = args[-1]
 nested.delegate = this
 nested.call()
 parent.pop()
 }
 def qty = current.quantity ?: 1
 def scale = current.scale ?: 1.0
 parent.peek().calories += current.calories * qty * scale
 }

 private void countCalories(Map current, String key, String value) {
 if (calorieDatabase.containsKey(key)) {
 current.calories = calorieDatabase[key][value].toInteger()
 }
 }
}

Listing 11.19 By-hand calorie builder
Licensed to Mark Watson <nordickan@gmail.com>

399Summary
def lunch = new CalorieBuilder3()

lunch.count {
 pizza(size: 'large') {
 crust('thin')
 topping('pepperoni')
 topping('veggies')
 }
 appetizer {
 wings(quantity: 2)
 'garlic-bread'()
 }
}

assert lunch.calories == 604.5

In this version, we intercept all method calls using the standard invokeMethod hook.
We look up the names of the methods that are called in our calorie database and store
away any calorie values if they were found. For aggregate nodes we dive down and pro-
cess child nodes setting the appropriate delegates for the nested closures as we go.
Upon returning we add up the calorie values found for our child nodes. We again use
a Map to store relevant information and to handle nesting we use a stack to keep track
of the current Map to store information in. It turns out not to be too difficult for this
simple example but, in general, this approach can quickly become unwieldy if the
number of types of nodes that need to be supported grows large.

 That wraps up our roll your own version of the calorie builder. You can see that
you have quite a few options for creating builders, each with its own strengths and
weaknesses.

 That’s all there is to implementing your own builder. We hope we’ve convinced
you about the simplicity of that task. At least, the core steps of making your code work-
ing as a builder are simple. It goes without saying that any specific builder can still be
as complex as any piece of code.

11.9 Summary
The way that Groovy works with builders and the simplicity that it brings to defining
your own ones is one of Groovy’s genuine contributions to the open source commu-
nity. In fact, it’s so appealing that other well-established languages copied the concept.
This is fair enough, because Groovy has adopted so many great features from other
languages as well.

 What makes builders special is their descriptive nature while still being ordinary exe-
cutable code. Together with Groovy’s feature of executing code dynamically, this com-
bination comes close to the ambition of LISP: working as an executable specification.

 Builders can be seen as a way of implementing DSLs. You’ve seen many domains in
this chapter, from runtime structures (NodeBuilder) through text structures (Markup-
Builder and friends), task automation (AntBuilder) and desktop UIs (SwingBuilder
and SceneGraphBuilder), to ones we’ve only just dreamed up—our calorie-counting
Licensed to Mark Watson <nordickan@gmail.com>

400 CHAPTER 11 Working with builders
builders. These are distinct domains, and making them easy to work with is the job of
a DSL. Chapter 19 covers the whole range of Groovy features that make it our first
choice for implementing DSLs.

 With DSLs it should be possible to express domain facts in a way that’s more flexi-
ble, powerful, and easier to read than XML but not as demanding as full-blown pro-
gramming languages. Groovy builders are an ideal vehicle to achieve this. We look
forward to seeing which domains will have Groovy builders created for them. How
about a workflow engine, for example? Animation? A new way of considering thread-
ing, built from parallel pieces of logic? Who knows—perhaps you’ll be the one to
bring the next big thing to Groovy. Whatever domain you may choose to tackle,
Groovy’s support for builders is likely to be able to help you.

 Now that we’ve examined builders, it’s time to revisit a topic we’ve frequently men-
tioned in passing: the GDK, or Groovy’s way of extending the JDK.
Licensed to Mark Watson <nordickan@gmail.com>

Working with the GDK
Einstein argued that there must be simplified explanations of nature, because
God is not capricious or arbitrary. No such faith comforts the software engineer.

—Fred Brooks

Learning a new programming language is a twofold task: learning the syntax and
learning the standard library. Learning the syntax is a matter of days and getting
proficient with new language idioms may require a few weeks, but working through
a new library can easily take several months.

 Luckily, no Java programmer needs to go through this time-consuming activity
when learning Groovy. They already know most of the Groovy Standard Library,
because that’s the set of APIs that the Java Runtime provides. You can work with
Groovy by solely using objects and methods as provided by the Java platform,
although this approach doesn’t fully leverage the power of Groovy.

This chapter covers
■ How Groovy extends the JVM
■ GDK extensions
■ Working with objects
401

Licensed to Mark Watson <nordickan@gmail.com>

402 CHAPTER 12 Working with the GDK
 Groovy extends this foundation by providing
an extension to the core Java classes, called the
GDK. The GDK includes some new classes and
utility libraries, but for the most part, it seam-
lessly integrates with existing core Java classes
like String, Numbers, Collections, and Object,
offering a superset of functionality for each
class. Groovy does this in a way that’s normally
not possible for Java applications. Figure 12.1
provides an architectural overview.

 This chapter will give you an overview of how
Groovy extends the JVM, what functionality is
provided, and how to use these extensions to
increase your productivity. You’ll find that the
GDK extensions make Groovy more convenient to work with, make scripting easier,
provide new dynamic features, offer a more consistent way of handling objects, and
adapt the Java APIs to the Groovy language idioms.

 Let’s start with Object, the most general and most important class in the JDK, and
see how Groovy further extends the GDK with features for exploration and control.

12.1 Working with objects
Java comes with a narrow API of 11 methods for its central abstraction java.lang
.Object. These methods deal with the object lifecycle (clone, finalize), object
equality (equals, hashCode), information (toString), self-reflection (getClass), and
multithreading support (notify, notifyAll, three versions of wait).

 Groovy adds much to the self-reflective and informational aspects of the API to bet-
ter support live exploration of objects. It handles identity/equality differently and
therefore needs to extend the respective API. It adds convenience methods to Object
for the purpose of making these methods available anywhere in the code. It also adds
collection-aware methods to Object that are useful when the object can be seen as some
kind of collection even though it’s not necessarily of static type java.util.Collection.
This last category also includes the handling of object arrays.

 We’ll go through these categories one by one, starting with self-reflective and infor-
mational methods.

12.1.1 Interactive objects

When working on a program, you often need to inspect your objects, whether for
debugging, logging, or tracing purposes. In dynamic languages such as Groovy, this
need is even greater, because you may work with your programming language in an
interactive fashion, asking your objects about their state and capabilities to subse-
quently send them messages.

Groovy

library

Java

runtime

(JRE)

APIs:

Builder, templates, SQL, ...

GDK

APIs:

Lang, util, I/O, ...

Java virtual machine

Figure 12.1 GDK’s place in the Groovy
architecture
Licensed to Mark Watson <nordickan@gmail.com>

403Working with objects
OBJECT INFORMATION IN STRINGS

Often, the first task is to ask an object for some general information about itself:
toString() in Java parlance. Groovy adds two more methods of this kind:

■ dump returns a description of the object’s state, namely its fields and their values.
■ inspect makes a best effort to return the object as it could appear in Groovy

source code, with lists and maps in the format of their literal declaration. If it
cannot do better, it falls back to toString.

You can call these methods on a string that contains a single newline character as
shown in the following listing.1

def newline = "\n"

assert newline.toString() == "\n"

assert newline.dump() ==
'''<java.lang.String@a value=
 hash=10 hash32=0>'''

assert newline.inspect() == /'\n'/

Note how inspect returns a string that’s equivalent to newline’s literal declaration:
the characters backslash and n are enclosed in double quotes (four characters total),
whereas toString returns only the newline character (one character). The dump of a
string object may yield different results in other JVMs.

 If these methods aren’t sufficient when working with Groovy interactively, remem-
ber that you can fire up the graphical ObjectBrowser via

groovy.inspect.swingui.ObjectBrowser.inspect(obj)

You’ve seen the dump method reveal the object’s fields and their values. The same and
more can be done with the object’s properties.

ACCESSING PROPERTIES

Remember that any Groovy object can be seen as a JavaBean, as you saw in section 7.4.
You’ve already seen that its properties can be inspected with the getProperties
method or the properties property. The getProperties method returns a read-only
map of property names and their current values. During inspection, printing the
whole map of properties is as easy as

println properties

or

println someObj.properties

Listing 12.1 Using dump and inspect

1 The exact information returned by dump differs slightly between JDK versions.
Licensed to Mark Watson <nordickan@gmail.com>

404 CHAPTER 12 Working with the GDK
When doing so, you may see more properties than you expected, because Groovy’s
class-generation mechanism introduces accessors for that object’s class and Meta-
Class properties behind the scenes.

 Listing 12.2 shows property reflection in use. The example uses a class with a first
property and a second read-only property that returns a derived value and isn’t
backed by a field. We also define a public field, third, without accessor methods. The
listing shows how to list all keys of that object’s properties.

 Of course, you can ask the map of properties for the value of a property either with
the subscript operator or with the dot-propertyname syntax. This last option looks
exactly the same as directly asking the object for the value of a property if its name is
known at coding time. This raises the question of whether you can ask an object
directly for a property value if its name is only known at runtime and resides in a vari-
able. Listing 12.2 shows that you can do so by using the subscript operator directly on
the object without the need for redirection over the properties map.

 Because we know that the subscript operator is implemented via the getAt method,
it would be surprising if the putAt method for subscript-assignment weren’t imple-
mented in the same manner. Again, the following listing shows that this works and
allows us to assign a value to a property the name of which is derived dynamically.

class MyClass {
 def first = 1 // read-write property
 def getSecond() { first * 2 } // read-only property
 public third = 3 // public field
 def myMethod() { } // public method
}

def obj = new MyClass()

assert obj.hasProperty('first')
assert obj.respondsTo('myMethod')

def keys = ['first', 'second', 'class']
assert obj.properties.keySet() == new HashSet(keys)

assert 1 == obj.properties['first']
assert 1 == obj.properties.first

assert 1 == obj.first
assert 1 == obj['first'] // getAt('first')

def one = 'first'
def two = 'second'
obj[one] = obj[two] // putAt(one)
assert obj.dump() =~ 'first=2'

Using the hasProperty B and respondsTo c methods you can check if the object
has the specified property or method, respectively. This works for public as well as for
private fields and methods.

Listing 12.2 Reflecting on properties

Property
check

 b

Method
check c

Properties
map

 d

Direct
access

 e

Dynamic
assignment

 F
Field
introspection

 g
Licensed to Mark Watson <nordickan@gmail.com>

405Working with objects
 At d and e, you see that objects implement the getAt and putAt methods by
default, such that the code appears to be accessing a map of properties as far as the
subscript operator is concerned.

 The code at f shows a simple way of introspecting an object via the dump method.
Because the first property is backed by a field of the same name, this field and its
current value appear in the dump. Note that this field is private and wouldn’t be visi-
ble otherwise. This trick is useful, especially in test cases.

NOTE When working with Groovy code, you may also come across Object’s
method getMetaPropertyValues. It’s used internally with an object’s meta-
information and returns a list of PropertyValue objects that encapsulate the
name, type, and value of a property.

Working with properties means working on a higher level of abstraction than working
with methods or even fields directly. We’ll now take one step down and look at dynamic
method invocation.

12.1.2 Convenient Object methods

How often have you typed System.out.println when programming Java? In Groovy, you
can achieve the same result with println, which is an abbreviation for this.println;
and because the GDK makes println available on Object, you can use this anywhere
in the code. This is what we call a convenience method.

 This section walks through the available convenience methods and their uses, as
listed in table 12.1.

Table 12.1 Object convenience methods

Introduced Object method Meaning

addShutdownHook {closure} Add a shutdown hook via the Runtime; see the
Neo4J listings in chapter 13 for an example

is(other) Compare Object identities (references)

isCase(caseValue, switchValue) Default implementation: equality

print(), print(value),
println(), println(value)

System.out.print…

printf(formatStr, value)
printf(formatStr, value[])

Java 5 System.out.printf()

sprintf(formatStr, value)
sprintf(formatStr, value[])

Java 5 String.format(), which returns a for-
matted String

sleep(millis)
sleep(millis) {onInterrupt}

static Thread.currentThread().
sleep(millis)

use(categoryClass) {closure}
use(categoryClassList) {closure}

Use metamethods as defined in categoryClass
for the scope of the closure
Licensed to Mark Watson <nordickan@gmail.com>

406 CHAPTER 12 Working with the GDK
Let’s go through the methods.
 Because Groovy uses the == operator for equality instead of identity checking, you

need a replacement for the Java meaning of ==. That’s what the is method provides.
In Java:

if (a == b) { /* more code here */}

In Groovy:

if (a.is(b)) { /* more code here */}

The is method saves you the work of comparing the System.identityHashCode(obj)
of a and b manually.

 The isCase method occurred often in the Groovy language description in part 1.
For Object, the GDK provides a default implementation that checks for object equal-
ity. Note that this means you can use any (Java) object in a Groovy grep or switch:

switch(new Date(0)){
 case new Date(0) : println 'dates are equal'
}

The identity or with method, which are synonyms, calls the attached closure with
the receiver object as the closure’s delegate. Use it when a piece of code deals primar-
ily with only one object, like the following:

new Date().identity {
 println "$date.$month.$year"
}

The properties date, month, and year will now be resolved against the current date.
The same can be done with the with method, which can be used to simplify object
creation:

def address = new Address()
address.with {
 streetName = 'Mainstreet'
 houseNumber = '42'
}

For this simple example, Groovy’s named argument constructor syntax would have
worked even more simply, but you might need try-catch blocks or other more com-
plicated logic when setting the properties.

with {closure} Any method invoked inside the closure will first be
invoked on the self-reference; more formally the
Closure delegate is the self-reference; there’s
also an alias for with: identity.

Table 12.1 Object convenience methods (continued)

Introduced Object method Meaning
Licensed to Mark Watson <nordickan@gmail.com>

407Working with objects
 The versions of print and println print to System.out by default, whereas
println emits an additional line feed. Of course, you can still call these methods on
any kind of PrintStream or PrintWriter to send your output in other directions.

 The same is true for the printf method. It’s based on Java’s formatted print sup-
port, which has been available since Java 5 and works only if you run Groovy under
Java 5 or higher. A RuntimeException is thrown otherwise. In terms of supported for-
matting features, we cannot present the full list here. Have a look at the Javadoc for
class java.util.Formatter. The full description covers about 1,800 lines.

 In Groovy, printf isn’t as crucial as in other languages, because GStrings already
provide excellent support at the language level and the String datatype provides the
most common features of left and right padding and centering text. But there are
times when formatted output is more convenient to achieve with a format string, espe-
cially when the user should be able to configure the output format to their prefer-
ences. The line

printf('PI=%2.5f and E=%2.5f', Math.PI, Math.E)

prints

PI=3.14159 and E=2.71828

Note that we’ve used printf with three arguments, but because a format string may
contain an arbitrary number of placeholders, printf supports an argument list of
arbitrary length. It goes without saying that the number of additional arguments must
match the number of placeholders in the format string, unless you explicitly specify
the argument number to use in the format string. You can also provide a single argu-
ment of type list—for example, [Math.PI, Math.E].

 When working through the Formatter API documentation, you’ll notice some
advanced topics around printf:

■ Conversions apply when a placeholder and the corresponding argument are of
different types.

■ Placeholders can be prefixed with n$ to map the placeholder to the nth argument
in the list. This may get you in conflict with the GString meaning of $. Therefore,
it’s wise to use only single-quoted string literals as printf format strings.

The sprintf method works similar to the printf method, with the difference that
instead of printing to System.out, this method will return the formatted String
instead. This method is identical to the String.format method.

 The use method allows you to use a list of categories to extend the functionality
provided in classes. This is done by creating a category, and using that category in the
use method. Any method not found in the object the method is used on will be
searched for in the applied category. For example:

class StringCasingCategory {
 static String lower(String string) {
 return string.toLowerCase()
Licensed to Mark Watson <nordickan@gmail.com>

408 CHAPTER 12 Working with the GDK
 }
}

use(StringCasingCategory) {
 assert "groovy" == "GroOvy".lower()
}

The last convenience method in our list is sleep, which suspends the current thread
for a given number of milliseconds. It enhances the JDK method Thread.sleep by
automatically handling interruptions such that sleep is called again until the given
time has elapsed (as closely as the machine timer can tell). This makes the effective
sleep time more predictable.

 If you want to handle interruptions differently, you can attach a closure that’s
called when sleep encounters an InterruptedException.

 With the sleep method, you can have fun, as with the following example. Run it
from the Groovy shell or command-line console after predicting its output. Did you
guess correctly what it does?

text = """
This text appears
slowly on the screen
as if someone was
typing it.
"""
for (c in text) {
 sleep 100
 print c
}

These are all methods that the GDK adds to every object for convenience. But objects
frequently come in a crowd. For such cases, the GDK provides methods to select them
one-by-one, as shown in the next section.

12.1.3 Iterative Object methods

In the Java world, any collection (in the general meaning of the word) of objects can
support inspection of its contained items by providing an Iterator, a separate object
that knows how to walk through that collection. Oh, wait—sometimes an Enumeration
is used instead. As a further inconsistency, Iterators aren’t directly available on arrays
and a lot of other common types.

 With the introduction of Java 5, the Iterable<T> interface was created so that the
object can be used in the for-each statement, which makes iterations in Java a bit eas-
ier. For example:

for (MyClass obj : collection){
 // do something with obj
}

While Groovy supports the preceding syntax, Groovy provides a simpler and more
consistent way of doing this:

collection.each { /* do something with it */}
Licensed to Mark Watson <nordickan@gmail.com>

409Working with objects
Besides the simple each method, you can use any of the iterative methods that are
listed in table 12.2.

What’s so useful about the methods in table 12.2 is that you can use them on any
object you fancy. The GDK makes these methods available on Object and yields the
respective items. As we described in section 6.3.2, this iteration strategy is also used in
Groovy’s for loop.

 Getting the items is done with a best-effort strategy for the candidate types in
table 12.3, where the first matching possibility is chosen.

Table 12.2 Iterative Object methods

Return value Method

boolean any {closure}

Collection List collect {closure}

Object each {closure}

Object eachWithIndex {closure}

boolean every {closure}

Object find {closure}

Collection findAll {closure}

int findIndexOf {closure}

List findIndexValues {closure}

int findLastIndexOf {closure}

Object findResult

List grep(Object filter)

Object inject {closure}

Collection split {closure}

Table 12.3 Priority of Object’s iteration strategy

No. Candidate Use with

1. java.util.Iterator Itself

2. org.w3c.dom.NodeList Iterator over Nodes

3. java.util.Enumeration Convert to iterator

4. java.util.regex.Matcher Iterator over matches

5. java.lang.Iterable Iterable.iterator()

6. Responds to iterator method Call it
Licensed to Mark Watson <nordickan@gmail.com>

410 CHAPTER 12 Working with the GDK
This allows for flexible uses of Groovy’s iteration-aware methods. There’s no need to
care whether you work with an iterator, an enumeration, a collection, or whatever, for
example, within a GPath expression.

 The possible candidates in table 12.3 are fairly straightforward, but some back-
ground information certainly helps:

■ Candidate 2—A NodeList is used with a document object model (DOM). Such a
DOM can be constructed from, for example, XML or HTML documents. We’ll
revisit this topic in chapter 14.

■ Candidate 6—A candidate object may provide its Iterator with the iterator
method. Instead of a single static interface, the availability of the iterator
method is used in the sense of duck-typing. An example is groovy.util.Node.

■ Candidate 7—A candidate object is collectable if it can be coerced into an object
of type java.util.Collection.

■ Candidate 10 —This is an unconventional way of providing an Iterator, but it’s
interesting because it puts our Groovy knowledge to the test.

Suppose you have a method that takes a closure as a parameter and calls the closure
back with a single argument, multiple times, using a different argument each time.
This could be seen as successively passing arguments to a closure. Successively passing
arguments is exactly what an Iterator does. To make this method work as an iterator,
refer to it as a MethodClosure, as described in section 5.3.3.

 As an example, imagine calculating sin(x) for sample domain values of x between 0
and 2. A domain method can feed an arbitrary yield closure with these x samples:

samples = 4
def domain(yield) {
 step = Math.PI * 2 / samples
 (0..samples).each { yield it*step }
}

7. Collectable Collection.iterator()

8. java.util.Map Iterator over Map.Entry objects

9. Array Iterator over array items

10. MethodClosure Iterator over calls

11. java.lang.String Iterator over characters

12. java.io.File Iterator over lines

13. null Empty iterator

13. Otherwise Iterator that only contains the candidate

Table 12.3 Priority of Object’s iteration strategy (continued)

No. Candidate Use with
Licensed to Mark Watson <nordickan@gmail.com>

411Working with files and I/O
Printing the x values would be as simple as invoking

domain { println it}

As the domain method successively passes objects to the given closure, it can be used
with the object-iteration methods such as with collect to get a list of sine values for all
samples from the domain. Use a reference to the domain method: this.&domain,
which makes it a MethodClosure:

this.&domain.collect { Math.sin(it) }

Using a MethodClosure as an Iterator doesn’t seem to provide much advantage
other than reusing a method that possibly already exists. Our domain method could
have returned a list of x values. Things would have been easier to understand that way.
There also isn’t a performance or memory consumption gain, because this list is con-
structed behind the scenes anyway when converting the closure.

 But it may be handy when the method does more than our simple example. For
statistical purposes it could produce side-effects. It could get data from a live data feed
or some expensive resource with an elaborate caching strategy. Because references to
MethodClosures can be held in variables, you could change this strategy at runtime
(Strategy pattern).2

 Those were the GDK methods for Object. There are more methods in the GDK for
arrays of objects. They make arrays usable as lists such that Groovy programmers can
use them interchangeably. These methods were described in section 4.2.

 Not surprisingly, GDK’s Object methods are about all-purpose functionality such
as revealing information about an object’s state and dynamically accessing proper-
ties and invoking methods. Iterating over objects can be done regardless of each
object’s behavior.

 The next sections will cover GDK methods for more specialized but frequently used
JDK classes used for I/O, such as File.

12.2 Working with files and I/O
Many scripts (and perhaps most large applications) make heavy use of files and other
sources of data from remote systems. The JDK addresses this need with its java.io
and java.net packages. It provides elaborate support with the File and URL classes
and numerous versions of streams, readers, and writers. Since Java 7, there is also a
java.nio.file package which provides more advanced access to files, file attributes,
and filesystems. We won’t discuss that package here, but Groovy extends those classes
too. See table C.9 for more details.

 But the programmer is left with the repetitive, tedious, and error-prone task of
managing I/O resources, such as properly closing an opened file even if exceptions
occur while processing.

2 Gamma et al., Design Patterns (Addison-Wesley, 1995).
Licensed to Mark Watson <nordickan@gmail.com>

412 CHAPTER 12 Working with the GDK
 This is where the GDK steps in and provides numerous methods that let you focus
on the task at hand rather than thinking about I/O boilerplate code. This results in
faster development, better readability of your code, and more stable solutions, because
resource leaks are less likely with centralized error-handling. Having read chapter 5,
you may correctly surmise that this is a job for closures.

 In table 12.3, you saw that File objects work with Object’s iteration methods. The
next listing uses this approach to print itself to the console: the output is exactly
what you see. Assertions are used to show the use of any, findAll, and grep. Note that
file.grep{it} returns only nonempty lines, because empty strings evaluate to false.

file = new File('Listing_12_03_File_Iteration.groovy')
file.each { println it }
assert file.any { it =~ /File/ }
assert 3 == file.findAll { it =~ /File/ }.size()

assert 5 == file.grep { it }.size()

Additionally, the GDK defines many methods with overloaded variants for File, URL,
Reader, Writer, InputStream, OutputStream, and others. Table 12.4 lists just the File
methods added by the GDK. The full list of all methods is in appendix C. We’ll present
explanations and examples for some of the main variants of these methods. The use
of the remaining methods/variants is analogous.

 Obviously, some of the methods in table 12.4 are concerned with reading, others
with writing; we’ll explain them separately. There are also methods that are specifi-
cally concerned with conversions. Their method names start with transform or new.
We’ll illustrate their use in a separate section. Finally, we’ll cover the serialization sup-
port provided.

 The eachDir, eachDirMatch, eachDirRecurse, and eachFile methods stand out as
dealing with aspects of the filesystem rather than I/O operations. We’ll cover them first,
followed by the traverse method, which provides the same functionality as the meth-
ods mentioned before, but provides a much more flexible way of handling files and
directories. We’ll dive into the traverse method after handling the other four methods.

12.2.1 Traversing the filesystem

Groovy follows the Java approach of using the File class for both files and directo-
ries, where a File object represents a location (not content, contrary to a common
misconception).

 Using a File object from Groovy often includes calling its JDK methods in a prop-
erty-style manner. To display information about the current directory, you can use

file = new File('.')
println file.name
println file.absolutePath
println file.canonicalPath
println file.directory

Listing 12.3 File’s object iteration method examples
Licensed to Mark Watson <nordickan@gmail.com>

413Working with files and I/O
Listing 12.4 shows this in conjunction with the GDK methods eachDir, eachDir-
Match, eachDirRecurse, eachFile, eachFileMatch, and eachFileRecurse. They all
work with a closure that gets a File object passed into it, disregarding the filesystem
entries that represent the current and parent directories (“.” and “..”). While each-
File yields File objects that may represent files or directories, eachDir yields only
the latter.

 Filtering can be achieved with eachFileMatch, which applies the isCase method of
its filter argument on each filename. As the name suggests, eachFileRecurse runs recur-
sively through all subdirectories.

Table 12.4 GDK methods for java.io.File

append(InputStream)

append(Object, String)

append(Writer, String)

append(Reader, String)

append(Object)

append(Reader)

append(Writer)

append(byte[])

asType(Class)

asWritable()

asWritable(String)

static createTempDir(

String, String)

static createTempDir()

deleteDir()

directorySize()

eachByte(int, Closure)

eachByte(Closure)

eachDir(Closure)

eachDirMatch(Object,

Closure)

eachDirRecurse(Closure)

eachFile(Closure)

eachFile(FileType, Closure)

eachFileMatch(Object,

Closure)

eachFileMatch(FileType,
Object, Closure)

eachFileRecurse(Closure)

eachFileRecurseFileType(

Closure)

eachLine(String, Closure)

eachLine(Closure)

eachLine(String, int,

Closure)

eachLine(int, Closure)

eachObject(Closure)

filterLine(Writer,

Closure)

filterLine(String,

Closure)

filterLine(Closure)

filterLine(Writer, String,

Closure)

getBytes()

getText(String)

getText()

leftShift(Object)

leftShift(byte[])

leftShift(InputStream)

newDataInputStream()

newDataOutputStream()

newInputStream()

newObjectInputStream()

newObjectInputStream(

ClassLoader)

newObjectOutputStream()

newOutputStream()

newPrintWriter(String)

newPrintWriter()

newReader(String)

newReader()

newWriter(boolean)

newWriter(String, boolean)

newWriter()

newWriter(String)

readBytes()

readLines(String)

readLines()

renameTo(String)

setBytes(byte[])

setText(String)

setText(String, String)

size()

splitEachLine(String,

String, Closure)

splitEachLine(String,

Closure)

splitEachLine(Pattern,

Closure)

splitEachLine(Pattern,

String, Closure)

traverse(Closure)

traverse(Map)

traverse(Map, Closure)

withDataInputStream(

Closure)

withDataOutputStream(

Closure)

withInputStream(Closure)

withObjectInputStream(

Closure)

withObjectInputStream(

ClassLoader, Closure)

withObjectOutputStream(

Closure)

withOutputStream(Closure)

withPrintWriter(Closure)

withPrintWriter(String,

Closure)

withReader(Closure)

withReader(String,

Closure)

withWriter(Closure)

withWriter(String,

Closure)

withWriterAppend(String,

Closure)

withWriterAppend(Closure)

write(String, String)

write(String)
Licensed to Mark Watson <nordickan@gmail.com>

414 CHAPTER 12 Working with the GDK
 In listing 12.4, we investigate a directory tree. The source listings for this chapter
are in a single flat directory, so it’s not very interesting to traverse. Instead we’ll look at
chapter 9. In addition to numerous top-level files, it contains a mini-Gradle build
structure as shown here:

chap09
│ build.gradle
│ Listing_09_01_ToStringDetective.groovy
│ // other top level files not shown
│
├───.gradle
│ └───// contents not shown
│
├───build
│ └───// contents not shown
│
├───gradle
│ └───wrapper
│ // contents not shown
│
└───src
 ├───main
 │ ├───groovy
 │ │ └───regina
 │ │ CompiledAtASTTransformation.groovy
 │ │
 │ └───resources
 │ └───META-INF
 │ └───services
 │ org.codehaus.groovy.transform.ASTTransformation
 │
 └───test
 └───groovy
 └───regina
 CompiledAtASTTransformationTest.groovy

Let’s now use the additional GDK File methods to record and count files and directo-
ries underneath our top-level directory as shown in the following listing.

import static groovy.io.FileType.DIRECTORIES
import static groovy.io.FileType.FILES

def topDir = new File('../chap09')
def srcDir = new File(topDir, 'src')

dirs = []
srcDir.eachDir { dirs << it.name }
assert ['main', 'test'] == dirs

dirs = []
topDir.eachDirRecurse { dirs << it.name }
assert dirs.containsAll(['gradle', 'src', 'main'])
assert dirs.containsAll(['groovy', 'services', 'wrapper'])

Listing 12.4 File methods for traversing the filesystem

Closure recording
directory names

Recursively records
directory names
Licensed to Mark Watson <nordickan@gmail.com>

415Working with files and I/O

dirs = []
topDir.eachDirMatch(~/[^l]*/) { dirs << it.name }
assert dirs == ['src']

files = []
topDir.eachFile { files << it.name }
assert files.contains('Listing_09_01_ToStringDetective.groovy')
assert files.contains('src')

files = []
topDir.eachFile(FILES) { files << it.name }
assert files.contains('Listing_09_01_ToStringDetective.groovy')

count = 0
srcDir.eachFileRecurse { if (it.directory) count++ }
assert 9 == count

count = 0
srcDir.eachFileRecurse(DIRECTORIES) { count++ }
assert 9 == count

files = []
topDir.eachFileMatch(~/Listing_09_01.*/) { files << it.name }
assert ['Listing_09_01_ToStringDetective.groovy'] == files

Inside the preceding closures, we get access to a reference of type File. We’ll further
explore what we can do with such a reference.

 Alternatively, it’s also possible to use the traverse method on File. The traverse
method is an adaptable method providing many options to traverse a filesystem.
Table 12.5 describes the traverse options.

Table 12.5 traverse options

Option Description

type An enum of type FileType to determine if normal files, directories, or
both are processed.

preDir A closure run before each directory is processed and optionally returning a
FileVisitResulta that can be used to control subsequent processing.

preRoot A boolean indicating that the preDir closure should be applied at the
root level.

postDir A closure run after each directory is processed and optionally returning a
FileVisitResult that can be used to control subsequent processing.

postRoot A boolean indicating that the postDir closure should be applied at the
root level.

visitRoot A boolean indicating that the given closure should be applied for the root
directory (not applicable if type is set to FileType#FILES).

Records directory names
matching a pattern
(.gradle is excluded here)

Records filenames
and directory
names

Records
filenames

Counts directory
names recursively

Counts directory
names recursively,
alternative solution

Records filenames
and directory
names matching
a pattern
Licensed to Mark Watson <nordickan@gmail.com>

416 CHAPTER 12 Working with the GDK
An example of the traverse method based on the file structure listed before can be
seen in the following listing.

import static groovy.io.FileType.ANY
import static groovy.io.FileVisitResult.SKIP_SUBTREE

def totalSize = 0
def count = 0
def sortByTypeThenName = { a, b ->
 a.isFile() != b.isFile() ?
 a.isFile() <=> b.isFile() :
 a.name <=> b.name
}
def log = []

inputDir = new File('../chap09/')

inputDir.traverse(
 type : ANY,
 nameFilter : ~/.*groovy.*/,
 excludeNameFilter : ~/.*Test.*/,

maxDepth The maximum number of directory levels when recursing (default is –1,
which means infinite, set to 0 for no recursion).

filter A filter to perform on traversed files/directories (using the
DefaultGroovyMethods#isCase method). If set, only files/
directories that match are candidates for visiting.

nameFilter A filter to perform on the name of traversed files/directories (using
the DefaultGroovyMethods#isCase method). If set, only files/
directories that match are candidates for visiting (must not be set if
filter is set).

excludeFilter A filter to perform on the name of traversed files/directories (using
the DefaultGroovyMethods#isCase method). If set, only files/
directories that match are candidates for visiting (must not be set if
filter is set).

excludeNameFilter A filter to perform on the names of traversed files/directories (using
the DefaultGroovyMethods#isCase method). If set, any
candidates that match won't be visited (must not be set if
excludeFilter is set).

sort A closure that if set causes the files and subdirectories for each
directory to be processed in sorted order. Note that even when
processing only files, the order of visited subdirectories will be affected
by this parameter.

a. CONTINUE, SKIP_SIBLINGS, SKIP_SUBTREE, or TERMINATE.

Listing 12.5 File methods for traversing the filesystem

Table 12.5 traverse options (continued)

Option Description
Licensed to Mark Watson <nordickan@gmail.com>

417Working with files and I/O
 preDir : {
 if (it.name =~ '.?gradle|build') return SKIP_SUBTREE
 count = 0
 totalSize = 0
 },
 postDir : {
 if (count) {
 log << "Found $count files in $it.name : $totalSize bytes"
 count = 0
 totalSize = 0
 }
 },
 postRoot : true,
 sort : sortByTypeThenName
) {it -> totalSize += it.size(); count++ }
println log.join('\n')
assert log.size() == 3
assert log*.replaceAll(/\d+/, '*').join('\n') == '''
Found * files in regina : * bytes
Found * files in services : * bytes
Found * files in chap* : * bytes
'''.trim()

Here, we again choose to explore the chapter 9 directory structure. That directory is
traversed using the traverse method that’s supplied with an options map. The
options indicate that any file or directory will be matched. Only Groovy files will be
matched, but any test classes will be excluded, and so will some Gradle-related directo-
ries. Any items found will be counted, and their file size will be summed per directory.
The sorting here doesn’t have any effect on totals or counts, but might be handy when
processing files in a certain order, say by date, might be required. After printing the
result to standard output, we assert that the result satisfies an expected value that has
digits replaced by a star to avoid slight differences in file sizes across various machines.

12.2.2 Reading from input sources

Suppose we have a file example.txt in the data directory below our current one.
It contains

line one
line two
line three

One of the most common operations with such small text files is to read them at once
into a single string. Doing so and printing the contents to the console is as easy as call-
ing the file’s text property (similar to the getText method):

println new File('data/example.txt').text

What’s particularly nice about the text property is that it’s available not only on File,
but also on Reader, InputStream, and even URL. Where applicable, you can pass a
Charset to the getText method. See the API documentation of java.nio.charset
.Charset for details of how to obtain a reference to a Charset.
Licensed to Mark Watson <nordickan@gmail.com>

418 CHAPTER 12 Working with the GDK
NOTE Groovy comes with a class groovy.util.CharsetToolkit that can be
used to guess the encoding. See its API documentation for details.

The following listing goes through examples of file reading with more fine-grained
control. The readLines method returns a list of strings, each representing one line in
the input source with newline characters chopped.

example = new File('data/example.txt')

lines = ['line one', 'line two', 'line three']
assert lines == example.readLines()

example.eachLine {
 assert it.startsWith('line')
}

hex = []
example.eachByte { hex << it }
assert hex.size() == example.length()

example.splitEachLine(/\s/) {
 assert 'line' == it[0]
}

example.withReader { reader ->
 assert 'line one' == reader.readLine()
}

The eachLine method works on files exactly like the iteration method each does. The
method is also available on Reader, InputStream, and URL. Input sources can be read
a byte at a time with eachByte, where an object of type java.lang.Byte gets passed
into the closure.

 When the input source is made of formatted lines, splitEachLine can be handy.
For every line, it yields a list of items to its closure determined by splitting the line with
the given regular expression.

 Generally, the with<Resource> method passes the <Resource> into the closure,
handling resource management appropriately. The same applies to the withReader
method. The readLine method can then be used on such a given Reader.

 This file-reading code reads nicely because Groovy relieves us of all the resource
handling. You’d be disappointed if writing weren’t equally straightforward.

12.2.3 Writing to output destinations

Just as the previous paragraph showed how easy it is to read a file using a one liner,
you can do the same when writing the file. One of the easiest ways of writing to a file is
by calling the text property of File (similar to calling the setText method):

new File("/tmp/example.txt").text = "line one"

Listing 12.6 File-reading examples
Licensed to Mark Watson <nordickan@gmail.com>

419Working with files and I/O
That will create the example.txt file in the /tmp directory if the file doesn’t exist yet,
and replace the contents by the String value passed to the text property.

 Listing 12.7 shows more methods for writing to an output destination. Writing a
whole file at once can be achieved with File’s write method; appending is done
with append. The with<Resource> method works exactly as you’d expect. The use of
withWriter and withWriterAppend is shown in the listing; withPrintWriter and
withOutputStream are analogous. The left-shift operator on File has the meaning
of append.

def outFile = new File('data/example.txt')

def lines = ['line one','line two','line three']

outFile.write(lines[0..1].join("\n"))
outFile.append("\n"+lines[2])

assert lines == outFile.readLines()

outFile.withWriter { writer ->
 writer.writeLine(lines[0])
}
outFile.withWriterAppend('ISO8859-1') { writer ->
 writer << lines[1] << "\n"
}
outFile << lines[2]

The example file has been opened and closed eight times: six times for writing, two
times for reading. You see no error-handling code for properly closing the file in case
of exceptions. File’s GDK methods handle that on our behalf.

 Note the use of the writeLine and << (left-shift) methods. Other classes that are
enhanced by the GDK with the left-shift operator with the exact same meaning
are Process and Socket.

 The left-shift operator on Writer objects is a clever beast. It relays to Writer’s
write method, which in the GDK makes a best effort to write the argument. The idea
is to write a string representation with special support for arrays, maps, and collec-
tions. For general objects, toString is used.

 If the argument is of type InputStream or Reader, its content is pumped into the
Writer. The following listing shows this in action.

TimeZone.default = TimeZone.getTimeZone("CET")
reader = new StringReader('abc')
writer = new StringWriter()

writer << "\nsome String" << "\n"
writer << [a:1, b:2] << "\n"
writer << [3,4] << "\n"

Listing 12.7 File-writing examples

Listing 12.8 Using Writer’s smart left-shift operator

Writing/appending with
simple method calls

Writing/
appending
with closures

Appending with
left-shift operator
Licensed to Mark Watson <nordickan@gmail.com>

420 CHAPTER 12 Working with the GDK
writer << new Date(0) << "\n"
writer << reader << "\n"

assert writer.toString() == '''
some String
[a:1, b:2]
[3, 4]
Thu Jan 01 01:00:00 CET 1970
abc
'''

Note that connecting a reader with a writer is as simple as

writer << reader

It may seem like magic, but it’s a straightforward application of operator overriding
done by the GDK.

 The left-shift operator on Writer objects has special support for arguments of type
Writable. In general, a Writable is an object with a write method: it knows how to
write something. This makes a Writable applicable to

writer << writable

The Writable interface is newly introduced by the GDK and used with Groovy’s tem-
plate engines, as you’ll see in section 12.4. It’s also used with filtering, as shown in the
next section.

12.2.4 Filters and conversions

There are times when ready-made resource handling as implemented by the
with<Resource> method isn’t what you want. This is when you can use the methods
newReader, newInputStream, newDataInputStream, newDataOutputStream, newObject-
OutputStream, newOutputStream, newWriter, and newPrintWriter to convert from a
File object to the type of resource you need.

 A second kind of conversion is transformation of the content, either character
by character or line by line. Listing 12.9 shows how you can use transformChar and
transformLine for this task. They both take a closure argument that determines
the transformation result. Whatever that closure returns gets written to the writer
argument.

 Also shown is filtering with the filterLine method. Here, each line is relayed to
the writer if the closure returns true (see section 6.1).

def n = System.lineSeparator()

reader = new StringReader('abc')
writer = new StringWriter()

reader.transformChar(writer) { it.next() }
assert 'bcd' == writer.toString()

Listing 12.9 Transforming and filtering examples

System-dependent
line separator b

Transforms
‘abc’ to ‘bcd’
Licensed to Mark Watson <nordickan@gmail.com>

421Working with files and I/O
reader = new File('../data/example.txt').newReader()
writer = new StringWriter()

reader.transformLine(writer) { it - 'line' }
assert " one${n} two${n} three${n}" == writer.toString()

input = new File('../data/example.txt')
writer = new StringWriter()

input.filterLine(writer) { it =~ /one/ }
assert "line one${n}" == writer.toString()

writer = new StringWriter()
writer << input.filterLine { it.size() > 8 }
assert "line three${n}" == writer.toString()

We define a system-dependent line separator (using a JDK 7 method3) B so that the
test passes across all OSs. Also, note that the last example of filterLine c doesn’t
take a writer argument but returns a Writable that’s then written to the writer with
the left-shift operator.

NOTE The *Line methods use the newLine method of the according writer,
thus producing system-dependent line feeds. They also produce a line feed
after the last line, even if a source stream didn’t end with it.

A frequently used conversion is from binary data to strings with base-64 encoding,
where binary data is represented only in printable characters, as specified in RFC
2045. This can be useful for sending binary-coded data in an email, for example. The
name of this codec comes from it having 64 symbols in its “alphabet,”4 just as the deci-
mal system is base 10 (10 symbols: 0–9) and binary is base 2 (2 symbols: 0 and 1):

byte[] data = new byte[256]
for (i in 0..255) { data[i] = i }

store = data.encodeBase64().toString()

assert store.startsWith('AAECAwQFBg')
assert store.endsWith ('r7/P3+/w==')

restored = store.decodeBase64()

assert data.toList() == restored.toList()

An interesting feature of the encodeBase64 method is that it returns a Writable and
can thus be used with writers; the returned object also implements toString conve-
niently. This has saved us the work of pushing the Writable into a StringWriter.

 Base-64 encoding works with arbitrary binary data with no meaning attached to it.
To encode objects instead, we need to venture into the world of serialization, which is
the topic of the next section.

3 You can get the “line separator” property yourself on earlier JDKs.
4 One extra character is used for padding at the end of a block of data, but that isn’t relevant when considering

the effective base of the codec.

Chops ‘line’ from
each line of the
example file

Reads only lines
containing ‘one’

Reads only
long lines

 c
Licensed to Mark Watson <nordickan@gmail.com>

422 CHAPTER 12 Working with the GDK
12.2.5 Streaming serialized objects

Java comes with a serialization protocol that allows objects of type Serializable to be
stored in a format so that they can be restored in VM instances that are disconnected
in either space or time.5 Serialized objects can be written to ObjectOutputStreams
and read from ObjectInputStreams. These streams allow making deep copies of
objects (with ByteArrayIn/OutputStream), sending objects across networks, and stor-
ing objects in files or databases.

 Listing 12.10 shows the special GDK support for reading serialized objects from
a file. First, an Integer, a String, and a Date are written to a file. They’re then
restored with File’s new eachObject method. A final assertion checks whether
the restored objects are equal to the original.

file = new File('objects.dat')
file.deleteOnExit()

objects = [1, "Hello Groovy!", new Date()]
file.withObjectOutputStream { outstream ->
 objects.each {
 outstream << it
 }
}

retrieved = []
file.withObjectInputStream { instream ->
 instream.eachObject {
 retrieved << it
 }
}

assert retrieved == objects

As a variant, instead of using withObjectInputStream we could have used

file.eachObject

or

file.newObjectInputStream().eachObject

and obtained similar results, but the version in the listing automatically cleans up stream
resources as soon as they’re no longer in use and is the recommended approach.

12.2.6 Temporary data and file copying

Groovy makes it very easy to work with temporary files and folders. The GDK pro-
vides methods for creating and removing temporary files and directories, and get-
ting the size of directory contents. Besides that, Groovy makes it easy to copy file

5 See “Interface Serializable,” which also lists all known subinterfaces, http://docs.oracle.com/javase/8/docs/
api/java/io/Serializable.html.

Listing 12.10 Reading serialized objects from files

Cleans up after
ourselves

Serializes each
object in the
list in turn

Deserializes each
object in turn
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
http://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html

423Working with threads and processes

Ch

direc
is em
contents using the DataOutputStream and DataInputStream. This is best illustrated
by the following listing that creates a temporary directory with a file, which is copied
and later removed.

File tempDir = File.createTempDir()

assert tempDir.directorySize() == 0

File source = new File(tempDir, 'input.dat')
source.bytes = "hello world".bytes

assert tempDir.directorySize() == 11

File destination = new File(tempDir, 'output.dat')

destination.withDataOutputStream { os->
 source.withDataInputStream { is->
 os << is
 }
}

assert tempDir.directorySize() == 22

tempDir.deleteDir()

That’s it for file access and I/O as far as the GDK is concerned. Daily work with files
and streams is a combination of using JDK, GDK, and often AntBuilder functionality.
Thanks to Groovy’s seamless integration, it still looks like a single library, as you’ll see
in the code examples in part 3.

12.3 Working with threads and processes

The only reason for time is so that everything doesn’t happen at once.

—Albert Einstein

One of Java’s merits is its great support for multithreading. The Java platform provides
various means for scheduling and executing threads of control efficiently, whereas the
Java language allows easy definition of Runnable objects for multithreaded execution
and control by wait/notify schemes and the synchronized keyword.

 Threads are useful for organizing execution flow inside an application. Processes,
in contrast, deal with functionality outside your Java or Groovy application. They can-
not share objects but need to communicate via streams or other external means. They
often appear in Groovy automation scripts, because by nature, such scripts trigger
machine-dependent functionality.

 The GDK supports working with threads and processes by introducing new Groovy-
friendly methods for these classes, as you’ll see in the following sections. For the remain-
der of this section, it’s assumed that you have some basic understanding of Java’s

Listing 12.11 File copy in temporary directory

Creates a temporary
directory

ecks
that
tory
pty

Creates a file and
sets file contents

Checks that directory
size increased

Copies file and checks
that directory size
doubled

Deletes
directory
Licensed to Mark Watson <nordickan@gmail.com>

424 CHAPTER 12 Working with the GDK
multithreading. It’s useful to look at the API documentation of java.lang.Thread
and java.lang.Process.

12.3.1 Groovy multithreading

The first and foremost Groovy feature for multithreading support is that Closure
implements Runnable. This allows simple thread definitions like

t = new Thread() { /* Closure body */ }
t.start()

This can even be simplified with two new static methods on the Thread class, each with
two variants:

Thread.start { /* Closure body */ }

or

Thread.start('threadName') { /* Closure body */ }

Java has the concept of a daemon thread; therefore so does Groovy. The runtime system
handles such a thread differently than a non-daemon thread. Usually, a Java or Groovy
application doesn’t exit as long as one of its threads is still alive. This doesn’t apply to
daemon threads—they don’t prevent the application from exiting. A daemon thread
can be started via

Thread.startDaemon { /* Closure body */ }

or

Thread.startDaemon('threadName') { /* Closure body */ }

For a deferred start of a closure in its own thread, there’s a new method runAfter
(milliseconds) on java.util.Timer. To start after a one-second delay, use it like

new Timer().runAfter(1000){ /* Closure body */}

Let’s look at a listing showing the Groovy solution for the classical producer–consumer
problem. The producer pushes integer values on a stack, and the consumer pops
them when available. The push/pop actions are reported; the report might look like
the leftmost column of the listing. Additional columns (not generated by the code)
show how over time the producer refills the storage that the consumer has emptied:

 Producer Storage Consumer
push: 0 0 -> 0
push: 1 1 -> 01
push: 2 2 -> 012
pop : 2 01 -> 2
push: 3 3 -> 013
push: 4 4 -> 0134
pop : 4 013 -> 4
push: 5 5 -> 0135
Licensed to Mark Watson <nordickan@gmail.com>

425Working with threads and processes

o
d
push: 6 6 -> 01356
pop : 6 0135 -> 6
push: 7 7 -> 01357
push: 8 8 -> 013578
pop : 8 01357 -> 8
push: 9 9 -> 013579
pop : 9 01357 -> 9
pop : 7 0135 -> 7
pop : 5 013 -> 5
pop : 3 01 -> 3
pop : 1 0 -> 1
pop : 0 -> 0

The actual sequence isn’t predictable (that’s part of the fun). We use closures for running
something (producing and consuming) in a separate thread and sleep to slow down the
consumer. We introduce a Storage class that holds our stack and synchronizes access to it.
If we try to pop from an empty stack, we’ll wait until the producer has caught up.

 The following listing shows the code.

import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;

Thread.metaClass.'static'.getName = { Thread.currentThread().name }

BlockingQueue sharedQueue = [] as LinkedBlockingQueue

Thread.start('push') {
 10.times {
 try {
 println("${Thread.name}\t: ${it}")
 sharedQueue << it
 sleep 100
 } catch (InterruptedException ignore) {}
 }
}

Thread.start('pop') {
 for (i in 0..9) {
 sleep 200
 println("${Thread.name}\t: ${sharedQueue.take()}")

 }
}

Try to run this code multiple times and you’ll see varying output depending on your
system’s scheduler. It’s also fun to play with different sleep values.

 Groovy makes concurrent programming syntactically easy, although the issue is
inherently tricky and can lead to subtle errors. If you set out to dive deeply into this
topic, ensure you read up on the subject.6

Listing 12.12 Using threads with synchronization for the producer–consumer problem

6 One excellent book is Brian Goetz’s, Java Concurrency in Practice (Addison Wesley, 2006).

Creates
a new
method t
get threa
nameCreates

shared
queue

Starts thread
producing 10 items

Starts thread
consuming 10 items
Licensed to Mark Watson <nordickan@gmail.com>

426 CHAPTER 12 Working with the GDK
12.3.2 Integrating external processes
A process is an abstraction for concurrent execution that happens outside your JVM.
Control is relayed from the VM to the system’s runtime, the OS that also runs your VM.
Such functionality provides access to your machine, which can be both a blessing and
a source of problems. It’s a blessing because you can leverage the power of your
machine; for example, reformatting a hard disk programmatically or doing some-
thing less intrusive such as calling shell scripts. Problems occur when you try to use
processes across platforms or when the need for synchronization arises.

 To create a process, you need to work with a string the value of which is the com-
mand to execute. The GDK allows this with the execute method on strings that return
the corresponding Process object:

Process proc = myCommandString.execute()

Instead of a string, the command can also be a list (or array) of strings. This is useful
when the command is made up of multiple entries that would require putting argu-
ments in quotes, which may also require character escaping (when the argument con-
tains quotes). The full list of related GDK methods is shown in table 12.6.

Suppose you create a method that creates a process from Windows’s dir command.
You may get passed a directory name that contains backslashes or whitespace charac-
ters. The simplest way to deal with this is something like

def dircmd = ['cmd','/c','dir']
def dir = /\Program Files/
def proc = (dircmd + dir).execute()

Table 12.6 Process-related GDK methods

List
 execute(List, File)
 execute()
 execute(String[], File)
Process
 closeStreams()
 consumeProcessErrorStream(
 Appendable)
 consumeProcessErrorStream(
 OutputStream)
 consumeProcessOutput(
 OutputStream, OutputStream)
 consumeProcessOutput(
 Appendable, Appendable)
 consumeProcessOutput()
 consumeProcessOutputStream(
 OutputStream)
 consumeProcessOutputStream(
 Appendable)
 getErr()
 getIn()
 getOut()

Process (cont’d)
 getText()
 leftShift(byte[])
 leftShift(Object)
 or(Process)
 pipeTo(Process)
 waitForOrKill(long)
 waitForProcessOutput(
 OutputStream, OutputStream)
 waitForProcessOutput()
 waitForProcessOutput(
 Appendable, Appendable)
 withOutputStream(Closure)
 withWriter(Closure)
String
 execute(List, File)
 execute(String[], File)
 execute()
String[]
 execute()
 execute(String[], File)
 execute(List, File)
Licensed to Mark Watson <nordickan@gmail.com>

427Working with threads and processes
NOTE Depending on your system, you need a command processor to execute
console commands. On Windows, that’s cmd.exe (command.com on Win98).
The /c option closes the console shell when the command has finished.

When creating a process, you can further define environment settings: use the so-called
environment variables as a list (or array) of key–value strings and a File object to specify
the directory where the process is executed (null stays in the current directory).

 You can list the Windows settings for your process with the set command:

def env = ['USERNAME=mittie']
def proc = 'cmd /c set'.execute(env, new File('/'))

You’ll notice that providing your own environment parameters also suppresses the
inheritance of current environment parameters to your child process (with the possi-
ble exception of default parameters).

 Now that we’ve obtained a Process object, we’d like to see the produced output.
The GDK adds the getText method to achieve this. In other words, the text property
gives you the output as a String:

println proc.text

More fine-grained control can be achieved by using the input, output, and error
streams of the process as available in the respective properties:

InputStream in = proc.in
InputStream err = proc.err
OutputStream out = proc.out

Note that the naming is from the Groovy/Java point of view as opposed to the point of
view of the external process. The stdin for the external process is proc.out on the
Groovy/Java side. Figure 12.2 depicts the mapping.

 Instead of appending to proc.out, you can also append to the process itself with
the same effect:

proc.out << "one\n"
proc << "two\n"

Groovy/Java

program

External

process

out

in

err

stdin

stdout

stderr

java.lang.Process

Figure 12.2 How java.lang.Process streams map to the streams from an external
process
Licensed to Mark Watson <nordickan@gmail.com>

428 CHAPTER 12 Working with the GDK
You never know whether your process might possibly hang forever. The common way
of dealing with this problem is to start a watchdog thread that waits for a maximum
time and destroys the process if it hasn’t finished by then. The GDK provides the
method waitForOrKill(millis) on Process:

proc.waitForOrKill(1000)

This gives us enough to start a little experiment.
 Let’s say that we want to get a listing of some of our files, and we want to case-

insensitive reverse sort them, for reasons well beyond the scope of this book. Just
assume there’s a good reason to do so. There are many ways to accomplish this
using Unix commands, and the next example is just that; it gives a demonstration
of how processes can be piped together and how the output of such a process chain
can be used.

def listFiles = 'ls'.execute()
def ignoreCase = "tr '[A-Z]' '[a-z]'".execute()
def reverseSort = 'sort -r'.execute()

listFiles | ignoreCase | reverseSort

reverseSort.waitForOrKill(1000)
if(reverseSort.exitValue()) {
 print reverseSort.err.text
} else {
 print reverseSort.text
}

We’re using the pipeTo method of Process, which is invoked by using the overridden
or (|) operator. Then we wait for the process to finish with a safe time to wait, and
print the result.

 The observant reader (yes, that’s all of you!) will have recognized that although
the code is a slick solution, there’s also a pure Groovy solution that’s platform inde-
pendent. Coming up with a pure Groovy solution is left as an exercise to you. This
chapter should have given you all the necessary means to do so.

 Instead of only handling output, it’s of course also possible to combine input and
output of processes and link them together. The next example listing will dive a bit
into that.

def outputBuffer = new StringBuffer()
def errorBuffer = new StringBuffer()

zipProcess = 'gzip -c'.execute()
unzipProcess = 'gunzip -c'.execute()

unzipProcess.consumeProcessOutput(outputBuffer, errorBuffer)
zipProcess.consumeProcessErrorStream(errorBuffer)

Listing 12.13 Finding the earliest listing via command-line processing

Listing 12.14 Finding the earliest listing via command-line processing
Licensed to Mark Watson <nordickan@gmail.com>

429Working with templates
zipProcess | unzipProcess
zipProcess.withWriter { writer ->
 writer << 'Hello World'
}
unzipProcess.waitForOrKill(1000)

println 'Output: ' + outputBuffer
println 'Error : ' + errorBuffer

The preceding code is quite simple and easy to understand. If you’re feeling mas-
ochistic, you may want to try writing the equivalent code in Java. We don’t recom-
mend it.

 Working with external processes is inherently platform-dependent. The difference
isn’t only in what capabilities each platform provides, but also in how to call such pro-
cesses correctly from Java. For cross-platform scripting, things can get really hairy.

 Luckily, we can follow the footsteps of pioneers. The Ant developers did all the
grunt work and captured it in the exec task. For example, to call the CVS7 executable on
Windows and capture the command output for later analysis, we can use AntBuilder:

ant = new AntBuilder()

ant.exec(
 dir : '.' ,
 executable : 'cvs.exe' ,
 outputproperty: 'cvsout' ,
 errorproperty : 'cvserror',
 resultproperty: 'cvsresult')
 {
 arg(line : ' checkout MyModule')
 }

println ant.project.properties.cvsresult

In trailing code, refer to ant.project.properties.cvsout as a simple string.
 Traditionally, scripts have often been associated with running other processes to

perform the bulk of their work. Although Groovy brings the full power of the Java
platform (and then some!) to scripting, it doesn’t shy away from this situation. Another
common use of scripting languages is for processing text. Again, Groovy is up to the
task, as we show in the next section.

12.4 Working with templates
Groovy is a pragmatic language. Rather than following any dogma in language and
library design, it focuses on getting recurring tasks done. Working with templates is
such a task.

7 There’s also a specialized CVS task for Ant that we’d use if the example was about connecting to CVS rather
than showing different means of talking to external processes.
Licensed to Mark Watson <nordickan@gmail.com>

430 CHAPTER 12 Working with the GDK
 A template is essentially text. Unlike fixed literal text, a template allows predefined
modifications. These modifications follow some structure; they don’t occur wildly.

 If you think about a web application, literal text would be a static HTML page. At
the other end of the continuum are web application frameworks that create such
HTML solely by programming logic, such as JavaServer Faces (JSF). In between are
approaches like JavaServer Pages (JSP) and others that create the final HTML from
a template.

 The use of templating isn’t limited to web applications. It’s equally useful for

■ Organizing database queries
■ Helping to connect to web services
■ Generating code
■ Transforming XML
■ Predefining PostScript documents
■ Standard emails

and much more, as you’ll see in the remainder of the book.
 We briefly describe what templates look like before launching into a full example.

We also examine some of the more advanced uses of templates. Understanding the
content of this section is also important when we come to the next topic, Groovlets.

12.4.1 Understanding the template format

The format of templates is inspired by the JSP syntax, the JSP Expression Language (EL),
the Velocity framework, and GStrings. The idea is to use placeholders inside the run-
ning text. Table 12.7 lists the supported placeholders and their purpose. If you’ve ever
worked with JSP or a similar technology, it will feel familiar.

The groovy.text package defines multiple template engines. These engines (the
name factory would better reveal their purpose) have createTemplate methods that
read the template’s raw text from an input source (String, Reader, File, or URL) and
return a Template object.

 Template objects can make a final text by replacing all the placeholders with their
respective values. A map of variable names and their respective values (the binding) is

Table 12.7 Template placeholders

Marker Purpose

$variable Insert the value of the variable into the text

${groovycode} Evaluate single-line groovycode, and insert the result into the text

<%=groovycode%> Evaluate the groovycode, and insert the result into the text

<%groovycode%> Evaluate the groovycode
Licensed to Mark Watson <nordickan@gmail.com>

431Working with templates
therefore passed to the template’s make method, which returns the final text in terms
of a Writable. Figure 12.3 shows how all this fits together.

 Different Template classes provide different runtime characteristics. One imple-
mentation might fully read the raw text and cache it for the later make step; other
implementations might only store a reference to the source and merge it with the
binding at make time. The latter streaming scenario can use source Readers and result
Writers for optimized performance and scalability.

12.4.2 Templates in action

Suppose you’ve been asked to write a tool that sends out monthly email reminders,
and your boss wants it to support mail-merge functionality (in other words, personal-
ized content). A sample mail may look like this with variable items in bold:

Dear Mrs. Davis,
another month has passed and it's time for these
2 tasks:
- visit the Groovy in Action Second Edition (ReGinA) page
- chat with ReGinA readers

your collaboration is very much appreciated.

First, we need to think about placeholders.
 Davis seems to be a last name, so we need a variable for that; we refer to it

as $lastname.
 Mrs. should get extra handling, because not all people have a salutation and we

don’t want to have that extra space character when there’s none. This leads to a
simple Groovy expression that we enclose in braces. The placeholder becomes
${salutation?salutation+' ':''}

 For the tasks, we use a simple list of strings and ask for the list’s <%=tasks.size()%>.
Iteration is trickier, but listing 12.15 shows how to use <% %> to solve that. Note that
we can open the each closure in one placeholder and close it in a second one. The
text that’s between these two is processed for each task. We can even use the clo-
sure’s it reference.

createTemplate
Template engine Template

Source

make

Template
raw text

Binding

Key: value
Key: value

Result

Figure 12.3 Templates are created from a template engine and called with a binding to make the
final result.
Licensed to Mark Watson <nordickan@gmail.com>

432 CHAPTER 12 Working with the GDK
 In the following listing, we use the SimpleTemplateEngine, which is the standard
choice when no specialized behavior is required.

mailReminder =
'''
Dear ${salutation?salutation+' ':''}$lastname,
another month has passed and it's time for these
<%=tasks.size()%> tasks:
<% tasks.each { %>- $it
<% } %>
your collaboration is very much appreciated
'''

def engine = new groovy.text.SimpleTemplateEngine()
def template = engine.createTemplate(mailReminder)
def binding = [
 salutation: 'Mrs.',
 lastname : 'Davis',
 tasks : ['visit the Groovy in Action (GinA) page',
 'chat with GinA readers']
]

assert template.make(binding).toString() ==
'''
Dear Mrs. Davis,
another month has passed and it's time for these
2 tasks:
- visit the Groovy in Action (GinA) page
- chat with GinA readers

your collaboration is very much appreciated
'''

If you’d prefer, you can construct the engine via SimpleTemplateEngine(true) to
make it print additional information on how it works inside. You’ll see the follow-
ing output:

-- script source --
/* Generated by SimpleTemplateEngine */
out.print("\n");
out.print("Dear ${salutation?salutation+' ':''}$lastname,\n");
out.print("another month has passed and it's time for these\n");
out.print("");out.print("${tasks.size()}");
out.print(" tasks:\n");
out.print(""); tasks.each { ;
out.print("- $it \n");
out.print(""); } ;
out.print(" \n");
out.print("your collaboration is very much appreciated\n");
out.print("");

-- script end --

Listing 12.15 Using a simple template engine for email text

Text of template
containing
placeholders

Variables to
substitute in
the template

Evaluates the
template against
the binding
Licensed to Mark Watson <nordickan@gmail.com>

433Working with templates
That means the template is a Groovy script, generated from the template source and
invoked dynamically. All the $ and ${} placeholders work because they’re placed
inside double quotes. The iteration logic (in bold) is literally inserted in the script as it
appears between <% %>.

 The log output is also useful in case of errors in the script. Error messages with line
and column indications relate to that generated script.

12.4.3 Advanced template issues

Also interesting is the out variable in the preceding output. It refers to a Writer that’s
placed into the binding by default and is thus also available in template placeholders.
You can use it like

<%
 tasks.each { out.println('- '+it) }
%>

When working with templates, here are some points to consider:

■ If you choose to declare the template’s raw text in a string (as in listing 12.15),
you should use single-quoted string literals, rather than double-quoted ones,
which may be transformed into GStrings. Using GStrings would result in
resolving $ and ${} placeholders at the time you call createTemplate,8 not at
make time. Sometimes this may be what you want, but most of the time proba-
bly not.

■ Templates have no defined escaping. For the rare case when you need to
include %> in your template literally, you need a trick to make the engine accept
it. One way is to put the offending text in a variable, pass that into the binding,
and refer to it in the text via $variable.

The groovy.text and groovy.text.markup packages currently provide five template
engines that all obey the same format of placeholders but have different characteristics:

■ SimpleTemplateEngine produces the template in terms of a script as discussed
previously. At make time that script writes line by line to the output destination.
The script is cached.

■ StreamingTemplateEngine has equivalent functionality to the SimpleTemplate-
Engine but creates the template using writable closures making it more scalable
for large templates. In particular, this template engine can handle strings larger
than 64,000, which causes problems for the other Groovy template engines.

■ GStringTemplateEngine holds the template in terms of a writable closure, pos-
sibly providing better performance and scalability for large templates and for
stateless streaming scenarios. See section 12.2.2.

8 Maybe even earlier; see section 13.2.5.
Licensed to Mark Watson <nordickan@gmail.com>

434 CHAPTER 12 Working with the GDK
■ XmlTemplateEngine is optimized when the template’s raw text and the resulting
text are both valid XML. It operates on nodes in the DOM and can thus provide
a pretty-printed result. Unlike other engines, it produces system-dependent
line feeds.

■ MarkupTemplateEngine compiles the template for better performance and
optionally provides type checking on model attributes used in the template. It
has many benefits and we recommend it highly. For further details, consult the
Groovy documentation.9

For more details on these engines, see the respective API documentation pages.
 So far you’ve seen four ways to generate text dynamically: GStrings, Formatter (with

printf calls, for example), MarkupBuilder, and templates. Each has its own sweet spot
of applicability. GStrings and Formatter work best for simple in-code purposes, Markup-
Builder for producing structured text with mostly dynamic content, and templates
for mostly static text with few dynamic parts injected. Of course, combinations aren’t
only possible but normal in real-world applications.

 One obvious application where templates and markup go together is for web appli-
cations. Our next section introduces Groovlets, Groovy’s built-in support for simple
yet powerful web applications.

12.5 Working with Groovlets
The Java platform is available in a standard edition (Java SE) and an enterprise edi-
tion (Java EE). So far, we’ve only worked with features of the standard edition; we’ll
now look at a special capability that Groovy adds to the enterprise edition. In particu-
lar, we’ll look at the Java EE Servlet technology10 for implementing web applications.
For the remainder of this chapter, it’s assumed that you have some basic understand-
ing of servlets.

 Groovlets are to Groovy what servlets are to Java: a basic, standardized way of writ-
ing web applications. The pure use of Groovlets is good for small and simple applica-
tions, whereas more demanding applications benefit from frameworks such as Grails
(see chapter 20) or Ratpack (www.ratpack.io/).

 We’re going to start with a simple “Hello world” program, which we use to demon-
strate installation. We’ll briefly look at an inspection Groovlet that illustrates some of
the kinds of information available to the Groovlet environment before moving on to a
guessing game that lets us examine how data flows in Groovlets. Finally, we’ll rewrite
the guessing game using the templating technology you saw in section 12.4.

9 Groovy Language Documentation, section 3.11.7: The MarkupTemplateEngine is primarily aimed at generat-
ing XML-like markup, but that can be used to generate any text-based content. It relies on a DSL that uses the
builder syntax. See http://docs.groovy-lang.org/latest/html/documentation/#_the_markuptemplateengine.

10 A description of Java Servlet technology can be found at www.oracle.com/technetwork/java/index-jsp-
135475.html.
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.groovy-lang.org/latest/html/documentation/#_the_markuptemplateengine
http://www.oracle.com/technetwork/java/index-jsp-135475.html
http://www.oracle.com/technetwork/java/index-jsp-135475.html
http://www.ratpack.io/

435Working with Groovlets
12.5.1 Starting with “Hello world”

We’d like to write a “Hello world” Groovlet that displays a welcome message in the
browser. It should look something like the screenshot shown in figure 12.4. What’s the
bare minimum that we have to do to get this Groovlet working?

 First, we need a Java EE–compliant web server. There are lots of open source pure
Java servers available for free, ranging from Jetty (lightweight, in-process capabilities)
to Tomcat (feature rich) to JBoss (application server). The easiest way of installing a
web server is by using Grape. You can do so using the following listing.

@Grab('org.eclipse.jetty.aggregate:jetty-server:8.1.16.v20140903')
@Grab('org.eclipse.jetty.aggregate:jetty-servlet:8.1.16.v20140903')
@Grab('javax.servlet:javax.servlet-api:3.0.1')

import org.eclipse.jetty.server.Server
import org.eclipse.jetty.servlet.*
import groovy.servlet.*
import static org.eclipse.jetty.servlet.ServletContextHandler.*

def server = new Server(1234)
def context = new ServletContextHandler(server, "/", SESSIONS)
context.resourceBase = "."
context.addServlet(GroovyServlet, "*.groovy")
server.start()

Use the supplied listing file in the book’s sample code, and you can start this server
from the command line with the following command:

groovy Listing_12_16_GroovletExample.groovy

The name of the file isn’t important—for example, you could type the previous list-
ing in a file named something like webserver.groovy, and start it using the follow-
ing command:

groovy -Dgroovy.grape.report.downloads=true webserver.groovy

Here we chose to also add a useful debugging option. The –D option makes Grape
log verbose output when resolving and downloading dependencies. Depending on
your Grape repository and internet speed, the script might seem to otherwise hang

Listing 12.16 Simple Groovy web server

Figure 12.4 “Hello world”
as done with Groovlets
Licensed to Mark Watson <nordickan@gmail.com>

436 CHAPTER 12 Working with the GDK
the first time you invoke it. When everything goes right, you should see a similar
output as the following:

Resolving dependency: javax.servlet#javax.servlet-api;3.0.1
{default=[default]}
Resolving dependency: org.eclipse.jetty.aggregate#jetty-
servlet;8.1.9.v20130131 {default=[default]}
Resolving dependency: org.eclipse.jetty.aggregate#jetty-
server;8.1.9.v20130131 {default=[default]}
Preparing to download artifact javax.servlet#javax.servlet-
api;3.0.1!javax.servlet-api.jar
Preparing to download artifact org.eclipse.jetty.aggregate#jetty-
servlet;8.1.9.v20130131!jetty-servlet.jar
Preparing to download artifact org.eclipse.jetty.aggregate#jetty-
server;8.1.9.v20130131!jetty-server.jar
2013-03-04 23:01:36.710:INFO:oejs.Server:jetty-8.1.9.v20130131
2013-03-04 23:01:36.820:INFO:oejs.AbstractConnector:Started
SelectChannelConnector@0.0.0.0:1234

If you look carefully you’ll see that the last line mentions that Jetty has started success-
fully and is now listing on port 1234, ready to serve Groovlets.

 With this configuration in place, we can start writing our first Groovlet. List-
ing 12.17 implements it by using the default builder available under the name
html in the Groovlets binding. You should save it next to the webserver.groovy as
hello.groovy.

html.html{
 head {
 title 'Groovlet Demonstrator'
 }
 body { h1 'Welcome to the World of Groovlets' }
}

Pretty slick, eh? You can see its output by starting your web server and pointing your
browser to http://localhost:1234/Listing_12_17_HelloWorldGroovlet.groovy (or if
you typed the listing into a file called, say hello.groovy, change the URL to http://local-
host:1234/hello.groovy and make sure it’s in the same directory as the *.groovy file
with your running servlet engine).

 At this point, it’s fun to play around with changing the Groovlet, saving the file,
and reloading the page in the browser.

NOTE No server restart or application reload is needed to see changed out-
put. This makes for rapid application development!

Listing 12.17 The “Hello world” Groovlet using the HTML builder
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:1234/Listing_12_17_HelloWorldGroovlet.groovy
http://localhost:1234/hello.groovy
http://localhost:1234/hello.groovy

437Working with Groovlets
A Groovlet is essentially an ordinary Groovy script that sends its output to your browser.
To understand what’s achievable with Groovlets, you need to know what information
they can work on.

 Now we’ve got a web server up and running that’s capable of serving Groovy pages.
If, however, you’re not able to use Grape, or want to deploy in a Java EE container, you
must make the web server aware of this capability. In the usual Java EE manner, you
can achieve this via the standard web.xml file. The following listing contains a sample.
The symbolic name Groovy is mapped to the class GroovyServlet. This class is able to
load *.groovy scripts to handle them as Groovlets.

<web-app xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/

xml/ns/javaee/web-app_3_0.xsd" version="3.0">
 <servlet>
 <servlet-name>Groovlet</servlet-name>
 <servlet-class>groovy.servlet.GroovyServlet</servlet-class>
 </servlet>
 <servlet>
 <servlet-name>Template</servlet-name>
 <servlet-class>groovy.servlet.TemplateServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>Groovlet</servlet-name>
 <url-pattern>*.groovy</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>Template</servlet-name>
 <url-pattern>*.html</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>Template</servlet-name>
 <url-pattern>*.gsp</url-pattern>
 </servlet-mapping>

</web-app>

All requests (the URL pattern *) are dispatched to Groovy. All other entries, such as
display-name and description, are for documentation purposes only.

12.5.2 Groovlet binding

Like all other Groovy scripts, Groovlets have a binding that contains information,
which can be accessed with the binding property. For Groovlets, this information is

Listing 12.18 Sample web.xml file for configuring a web application for Groovlet use
Licensed to Mark Watson <nordickan@gmail.com>

438 CHAPTER 12 Working with the GDK
provided by the GroovyServlet that handles the request. Listing 12.19 asks the bind-
ing what’s inside and puts it on your browser screen if you request the following:

http://localhost:1234/Listing_12_19_InspectGroovlet.groovy

When displayed in your browser. It should look something like the screenshot shown
in Figure 12.5.

html.html{
 head {
 title 'Groovlet Demonstrator'
 }
 body {
 h1 'Variables in the Binding:'
 table(summary:'binding') {
 tbody {
 binding.variables.each { key, value ->

Listing 12.19 Inspect.groovy Groovlet reveals what’s in the Groovlet binding

Figure 12.5 Inspecting the Groovlet binding
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:1234/Listing_12_19_InspectGroovlet.groovy

439Working with Groovlets
 tr {
 td key.toString()
 td(value ? value.toString() : 'null')
} } } } } }

This little Groovlet gives us a valid HTML table. Note the summary attribute of the
table element and the nested tbody element. They’re often forgotten because brows-
ers don’t complain if they’re missing. But without them, the HTML will not be fully
compliant with recent HTML standards.

 Table 12.8 lists the output as produced by listing 12.19 and additional use information.

The variables out, sout, html, and json are initialized lazily; they’re null until the
Groovlet uses them the first time. This allows us to work on the response object
before the output stream is opened. This can be necessary to set response properties
such as the contentType.

 The session variable is null unless there’s session information for the current
conversation. This allows optimization for stateless Groovlets that don’t need session
information. To use session information in Groovlets, you typically start like so:

if (!session) // error handling here if needed
session = request.session

Table 12.8 Information available to Groovlets

Name Note Example use

headers Map of HTTP request headers headers.host

params Map of HTTP request parameters params.myParam

session ServletSession, can be null session?.myParam

request HttpServletRequest request.remoteHost

response HttpServletResponse response.contentType=’text/xml’

context ServletContext context.myParam

application ServletContext
(same as context)

application.myParam

out response.writer Lazy init, not in binding

sout response.outputStream Lazy init, not in binding

html Builder initialized as
new MarkupBuilder(out)

Lazy init, not in binding

json Builder initialized as new
StreamingJsonBuilder(out)

Lazy init, not in binding
Licensed to Mark Watson <nordickan@gmail.com>

440 CHAPTER 12 Working with the GDK
NOTE Session-related error handling may be needed if the Groovlet is to be
used only after some prework has been done that should have initialized the
session already. Think about an online shop where the user has put a product
in their shopping cart. This information is stored in the session. When the
user tries to check out but the session has expired, there will be no item to
pay for because the session is null.

A Groovlet is also evaluated with the
use of the ServletCategory that adds
the methods get/set and getAt/putAt
to the classes ServletContext, Http-
Session, ServletRequest, and Page-
Context.

 A small example will show how all
this works together. Figure 12.6 shows
the UI of a little web game. It takes a
random number between 0 and 100
and lets the user guess it, giving indica-
tions whether the guess was too high or
too low.

 Listing 12.20 shows the Groovlet code that implements the game. To view it, you
should point your browser to http://localhost:1234/Listing_12_20_HiLowGame.groovy.

 The game needs to handle session data and request parameters. The target num-
ber is stored as an Integer value in the session under the symbolic name goal. It’s ini-
tialized to a random number on first use as well as when a new game is requested.

 The request parameter guess carries the last input value; restart is submitted if
the user clicks the New Game button. When dealing with request parameters, you
need to be aware that they can be null (if not submitted) or an empty string (when
submitted without value).

def session = request.session
def guess = params.guess
guess = guess ? guess.toInteger() : null
if (params.restart) guess = null

if (!session.goal || params.restart) {
 session.goal = (Math.random()*100).toInteger()
}
def goal = session.goal

html.html{ head { title 'Think of a Number' }
 body {
 h1 'Think of a Number'
 if (goal && guess) {
 div "Your guess $guess is "
 switch (guess) {

Listing 12.20 Groovlet code of the High/Low game

Figure 12.6 HTML UI of the High/Low game

Generates a
number to guess,
if necessary

Starts a builder to
generate HTML

Uses a GString as a
simple template for text
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:1234/Listing_12_20_HiLowGame.groovy

441Working with Groovlets
 case goal : div 'correct!'; break
 case {it < goal} : div 'too low' ; break
 case {it > goal} : div 'too high'; break
 }
 }
 p "What's your guess (0..100)?"
 form(action:'Listing_12_20_HiLowGame.groovy'){
 input(type:'text', name:'guess', '')
 button(type:'submit', 'Guess')
 button(type:'submit', name:'restart', value:'true',
 'New Game')
} } }

The code is divided into two pieces. It starts with a controller part that cares about the
current state (the session) and requested actions (the parameters). The second part is
the HTML builder, which plays the role of the view, visualizing the current state.

 So far, our Groovlets have built the view only through the HTML builder, but there
are more options.

12.5.3 Templating Groovlets

With the out writer available in the Groovlet binding, you can write directly to the
response object. That means you can do things like

out << '<HTML>'
 // more output here …
out << '</HTML>'

or output the current date and time as GStrings like

out << "<HTML><BODY>${new Date().toGMTString()}</BODY></HTML>"

In section 12.4, you found that Groovy templates almost read like JSPs, so using them
in this scenario is an obvious choice. The following listing stores an HTML template
for the High/Low game that works with the goal and guess parameters.

<html>
 <head>
 <title>Think of a Number</title>
 </head>
 <body>
 <h1>Think of a Number</h1>
<% if (bind.hasProperty('guess') { %>
 Your guess $guess is <%
 switch (guess) {
 case goal : out << 'correct!'; break
 case {it < goal} : out << 'too low' ; break
 case {it > goal} : out << 'too high'; break
 }
 %>
 <p>What"s your guess (0..100)?</p>

Listing 12.21 Number.template.html as a view for the High/Low game

Classifies
the guess
appropriately

Displays a form
posting to the
same page again
Licensed to Mark Watson <nordickan@gmail.com>

442 CHAPTER 12 Working with the GDK
 <form action='Listing_12_22_TemplateGroovlet.groovy'>
 <input type='text' name='guess'>
 <button type='submit'>Guess</button>
 <button type='submit' name='restart' value='true'>New Game
 </button>
 </form>
 </body>
</html>

Notice how the template contains a GString (the guess) and Groovy code inside
<%...%>. This template can be used from a controlling Groovlet with the same initial
logic as listing 12.20 but with the rendering logic replaced with some template render-
ing code B as the following listing shows.

def session = request.session
def guess = params.guess
guess = guess ? guess.toInteger() : null
if (params.restart) guess = null

if (!session.goal || params.restart) {
 session.goal = (Math.random()*100).toInteger()
}

def engine = new groovy.text.SimpleTemplateEngine()
def source = getClass().classLoader.
 getResource('Number.template.html')
def template = engine.createTemplate(source)
out << template.make(guess: guess, goal: session.goal)

The template is evaluated appropriately, with the GString placeholder being replaced
and the embedded code being executed.

 A specialty of this approach is that the controlling Groovlet needs to read the tem-
plate source as a resource from the classpath, because it cannot know where
the respective file would be located. For our embedded Jetty example, it’s easy; again
just place it next to the *.groovy file running your servlet engine. To make this possi-
ble in Tomcat or any other Java EE container, the template file must be stored in the
classes directory of your web application.

 The organizational style of having a controller Groovlet and a view template allows
a practical division of concerns, and keeps templating nicely separated from business
logic or database access.

 When the emphasis of the web application is on the templates rather than on the
controlling logic, Groovy also supports a full JSP-like approach sometimes dubbed
Groovy Server Pages (GSP). It works exactly like the preceding templates with the
same binding as for Groovlets.

 A special TemplateServlet acts in the role of the controlling Groovlet. Configure
it webservice.groovy by adding the following line:

context.addServlet(TemplateServlet, "*.html")

Listing 12.22 A template-based Groovlet

Template
rendering
code

 b
Licensed to Mark Watson <nordickan@gmail.com>

443Summary
Or, alternatively, in your web.xml by adding this code snippet:

<servlet>
 <servlet-name>template</servlet-name>
 <servlet-class>groovy.servlet.TemplateServlet</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>template</servlet-name>
 <url-pattern>*.html</url-pattern>
</servlet-mapping>

All *.html requests will then be relayed to the appropriate template. You can test this
by placing the following code snippet (demo.html) into the directory containing your
servlet engine script and access it by going to http://localhost:1234/demo.html:

<html>
 <body>
 <% 3.times { %>
 Hello Groovy!
 <% } %>
 </body>
</html>

TemplateServlet will also care for properly caching each template. This gives better
performance than reconstructing the template for every request.

 Of course, there’s more to implementing web applications than mastering the
basic technology. But our focus here is only on the Groovy aspects, leaving much
room for more books to be written about how to implement full web applications
with Groovy.

 For further pointers to Groovy-related web technologies, see http://freshmeat
.net/projects/gvtags, http://groovestry.sourceforge.net, and http://biscuit.javanicus
.com/biscuit/.

12.6 Summary
The GDK—the way that Groovy augments and enhances the JDK—provides key
devices for a wide range of programming tasks.

 The GDK makes I/O handling a breeze. It takes away low-level considerations in
common situations, dealing with resource management automatically. The difference
isn’t only in terms of development speed when writing the program code initially. You
may even be a little slower in the beginning, because you need some time to adapt,
and typing time is rarely the bottleneck of programming. The real benefit comes from
working on a slightly higher level of abstraction.

 Similarly, instead of teasing the programmer with how to properly walk through an
enumeration/iteration/collection/array, the GDK lets you focus on what to achieve;
for example, to find something using col.find{} regardless of what col is.

 Working with threads and processes is equally easy in Groovy. Multithreading is a
tricky topic at the best of times, and again Groovy reduces the amount of scaffolding
code required, making it easier to see what’s going on. Process handling can be vital
Licensed to Mark Watson <nordickan@gmail.com>

http://localhost:1234/demo.html
http://freshmeat.net/projects/gvtags
http://freshmeat.net/projects/gvtags
http://groovestry.sourceforge.net
http://biscuit.javanicus.com/biscuit/
http://biscuit.javanicus.com/biscuit/

444 CHAPTER 12 Working with the GDK
in a scripting language, and Groovy not only makes working with the plain Java Process
class straightforward, but also facilitates the executable handling semantics from Ant
using AntBuilder.

 Dynamically filling in templates can be important in a variety of applications, and
Groovy comes with an easy-to-grasp templating technology, using a syntax that’s famil-
iar to most Java programmers.

 Although the standard JDK is important, the importance of Java EE cannot be over-
stated. Groovy participates in this arena, too, providing Groovlets as yet another web
application framework. You’ll learn more about web applications when we consider
Grails in chapter 16.

 It may look like the Groovy language made much of this possible, but this is only
one side of the story. The Groovy language—and its MOP in particular—provides the
means that the GDK employs. What the GDK does with the JDK can be done with any
library or API. That’s what some people call language-oriented programming: lifting your
code up to a level where it directly expresses your concerns.
Licensed to Mark Watson <nordickan@gmail.com>

Database programming
with Groovy
As far as the laws of mathematics refer to reality, they are not certain, and as far
as they are certain, they do not refer to reality.

 —Albert Einstein

Databases are stores of structured data. If your Groovy application needs persistent
data, you most likely will need to talk to one. There are many different kinds, each
with particular advantages, disadvantages, and characteristics; luckily Groovy makes it
easy to talk to whichever kind you need. Perhaps the most well-known kind of data-
base is the family of relational1 databases, but other kinds include object-oriented,

This chapter covers
■ Using the low-level Groovy API for interacting

with relational databases
■ Transactions, batching operations, and

retrieving database metadata
■ DataSets for performing CRUD operations
■ Architectural and design of a data access layer
■ Groovy and NoSQL databases

1 An Introduction to Database Systems, by C. J. Date (Addison-Wesley, 2003).
445

Licensed to Mark Watson <nordickan@gmail.com>

446 CHAPTER 13 Database programming with Groovy
key–value stores, document-centric, and graph. We’ll concentrate on relational data-
bases first and briefly cover some of the NoSQL2 forms later in the chapter.

13.1 Groovy SQL: a better JDBC
Relational databases are data stores that are based on a relational model. It’s this model
that makes them so powerful. Its mathematical foundation allows you to reason about
the results of operations and lets database engines perform appropriate optimizations.

 Database access is also highly standardized, allowing multiple applications to coor-
dinate by sharing their data even if these applications are built with different technol-
ogies. The standard that incorporates the relational algebra is SQL.

 Because using SQL and connecting to relational databases is such an important
task, any programming language worth talking about provides a way of doing it.
Scripting languages—notably PHP, Python, and Ruby—provide simple and immediate
access, whereas Java comes with the JDBC API, which isn’t as simple but comes with
some levels of improved consistency across different database systems and improved
integration with Java objects.

 Now comes Groovy. The Groovy database connectivity support (Groovy SQL for
short) is plain JDBC with sugar from Groovy’s groovy.sql library package. It takes
only a handful of classes (the main four being Sql, DataSet, GroovyResultSet, and
GroovyRowResult) to make database work short and sweet. Figure 13.1 shows where
Groovy SQL fits into the API stack.

NOTE FOR MODULE USERS Groovy 2 introduced modularization (see section B.3
of appendix B) and groovy-sql is one of the available modules. If you’re using
the groovy-all JAR file or using one of the Groovy distributions, you’ll automati-
cally have the groovy-sql module available to you. If you’re integrating directly
with the core module groovy.jar file, then you might need to @Grab the groovy-
sql module (contained in a groovy-sql.jar/) or place the JAR file on your class-
path. The listings for this chapter have the necessary module @Grab statements
in them but they’re commented out and not needed for most users.

2 Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement, by E. Redmond and J. R.
Wilson (Pragmatic Programmers, 2012).

JDBC DriverManager or DataSource

Groovy/Java application

Groovy SQL

JDBC API

Database

server Figure 13.1 Groovy SQL
builds on plain JDBC
Licensed to Mark Watson <nordickan@gmail.com>

447Groovy SQL: a better JDBC
Groovy SQL lifts JDBC to a level of user-friendliness that’s comparable to, and in
some respects better than, that offered by other scripting languages. But it also
plays nicely at the object level. JDBC is often used with database-related design pat-
terns that evolved around it. In this chapter, you’ll see some of them in the form of
data transfer objects (DTOs) and data access objects (DAOs). You’ll witness how Groovy
SQL reduces the need for creating such extra classes, sometimes eliminating the
extra work.

 Database systems and SQL make a topic of their own, and many books have been
written about them. You need this knowledge for our examples, but explaining it here
would exceed the scope of this book.3 In return for your understanding, we keep the
SQL examples reasonably basic.

 For the remainder of this section, it’s assumed that you have some basic knowledge
about SQL and how to work with relational databases in Java.

 When you’ve finished this section, you’ll be able to work on your databases
through Groovy for any kind of administration task, automated or ad hoc reporting,
persisting your business objects, and leveraging the power of the relational data
model—all in a simple yet organized manner.

13.1.1 Setting up for database access

It’s fairly obvious that you cannot do anything before you have a database system that
you can use. Groovy has no database in its distribution. If you have a database system
that comes with a JDBC driver, you can go with it. You might want to check if one was
installed along with your JDK installation (many distributions bundle Java DB4). Other-
wise, you’ll need to install one, where install can mean totally different things for dif-
ferent database products.

INSTALLING A DATABASE

The examples in this chapter should work with most vendor and open source data-
bases that support JDBC. We used the popular HyperSQL Database (HSQLDB), which
you can download from http://hsqldb.org. We used version 2.3.2 but any recent ver-
sion should work. HSQLDB is an easily embeddable, Java-only database engine with a
small footprint but is still fairly feature complete. Installing HSQLDB means putting
the hsqldb.jar file on your classpath when executing this chapter’s examples, or using
the appropriate @Grab statement as per the sample listings. See section 7.2.3 for details
of how to add JAR files to the classpath. Remember that you can drop a JAR file into
your <user.home>/.groovy/lib directory to have it on your classpath whenever you
start any of Groovy’s built-in tools.

 If you decide to use a different database system, follow its installation instructions.
Typically, you’ll also have a JAR file that needs to be added to the classpath, because at

3 See An Introduction to Database Systems, by C. J. Date (Addison Wesley, 2003) for a good introduction.
4 Java DB is Oracle’s supported distribution of the Apache Derby open source database. It is included in the

JDK. See www.oracle.com/technetwork/java/javadb/.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.oracle.com/technetwork/java/javadb/
http://hsqldb.org

448 CHAPTER 13 Database programming with Groovy
least the implementation-specific driver or data source class needs to be found there.
You’ll also need to adjust the URL to suit your selected database engine.

NOTE FOR WINDOWS USERS The JdbcOdbcDriver is on the classpath by default
because it ships with the JDK. It allows connections to database systems that
implement the Open Database Connectivity (ODBC) standard over the so-
called JDBC–ODBC bridge. Popular ODBC data sources are Microsoft Excel
and Microsoft Access. This driver isn’t intended for production use, however.
It’s an easy way to explore a database exposed by ODBC, but a dedicated JDBC
driver is usually a more stable and better-performing long-term solution.

Database products also differ in the SQL they accept. Every system has its own dialect.5

Because our examples use HSQLDB, the SQL that you’ll see in the examples is in
HSQLDB dialect. Should you choose to use a different database, the examples should
be very similar, but see the manual of your database product for possible deviations.

 Basic relational database operations are supported in Groovy according to the
design guideline that simple tasks should be easy and advanced tasks should be possi-
ble. This section is solely about simple tasks. That means you can expect an easy intro-
duction into the topic. We’ll go through:

■ Connecting to the database
■ Creating the database schema
■ Working with sample data

Working with data is done through four operations: create, read, update, and delete,
together called CRUD operations.

 At the end of this section, you’ll be able to do standard database work with Groovy.
The knowledge in this section will be sufficient to write whole applications that utilize
databases. The remainder of the section will expand your design choices to more elab-
orate solutions.

FIRST CONTACT

Regardless of your technology, you must provide four pieces of information to access
a database:

■ The database URL
■ Username
■ Password
■ Driver class name (which can sometimes be derived automatically)

The database URL needs a short explanation. A database URL (a JDBC URL in our con-
text) is a platform-independent way of addressing a database. It always starts with
jdbc: followed by a vendor-specific subprotocol. You need to refer to your database
system’s documentation for possible subprotocols.

5 “The wonderful thing about standards is: there are so many to choose from.”—Prof. Andrew Tennenbaum.
Licensed to Mark Watson <nordickan@gmail.com>

449Groovy SQL: a better JDBC
 HSQLDB supports several subprotocols, and the main ones are listed in table 13.1.6

When using the HSQLDB in-memory database, for example, our database URL will be
jdbc:hsqldb:mem:GinA. Changing to the server or file-based version is as easy as
changing the URL accordingly.

 We’ll use standard username/password settings: sa for sysadmin and an empty pass-
word string. It goes without saying that this is acceptable only for experimental purposes.

 The driver class name will be org.hsqldb.jdbcDriver. If you use a different ven-
dor, this name will also be different.

 Where do you put this information? In Groovy, you access the database through an
object of type groovy.sql.Sql.7 There are a few ways to get such an object. The most
common is through Sql’s newInstance factory method, passing the preceding infor-
mation as parameters. The following listing shows typical use.

import groovy.sql.Sql

def url = 'jdbc:hsqldb:mem:GinA'
def user = 'sa'
def password = ''
def driver = 'org.hsqldb.jdbcDriver'
def sql = Sql.newInstance(url, user, password, driver)

// use 'sql' instance ...

sql.close()

Congratulations; you’ve successfully connected to the database!
 When you look into Sql’s API documentation, you’ll find more variants of the

newInstance factory method. It might seem like there are many variants to choose

Table 13.1 HSQLDB subprotocols

URL pattern Purpose

jdbc:hsqldb:hsql://server/
dbname

Connects to a HSQLDB server process; use when mul-
tiple clients or processes need to share the database

jdbc:hsqldb:file:/path/dbname Connects to a single-client HSQLDB instance with file-
based persistence; multiple files starting with dbname
will be created if the database doesn’t yet exist

jdbc:hsqldb:mem:dbname Connects to a nonpersistent in-memory database

6 But see the relevant documentation (http://hsqldb.org/doc/2.0/guide/dbproperties-chapt.html) for read-
ing from read-only resource databases, turning on security, or a whole host of other database properties that
can be set as part of the URL.

7 If you think this naming is questionable, we wouldn’t disagree. If it helps, you can think of it as a database API
that for the most part exposes SQL statements to the programmer.

Listing 13.1 Connecting to a database
Licensed to Mark Watson <nordickan@gmail.com>

http://hsqldb.org/doc/2.0/guide/dbproperties-chapt.html

450 CHAPTER 13 Database programming with Groovy
from, but you’ll quickly find that there are typically only one or two that are appropri-
ate for any given scenario. We’ll cover some of the common scenarios to make it a bit
easier for you.

 Listing 13.1 assumes that the JAR file containing the required JDBC driver is on the
classpath as we alluded to earlier in this section. That typically involves declaring or
defining a dependency to the required JAR file in your IDE or build system. To support
the creation of self-contained scripts, Groovy’s @Grab annotation can be used. For our
example we could tweak the earlier listing as follows:

@Grab('org.hsqldb:hsqldb:2.3.2')
@GrabConfig(systemClassLoader=true)
import groovy.sql.Sql
// ... as before ...

This adds the required JAR file (downloading if needed) to the classpath on the fly.
You’d need to change the artifact reference if you aren’t using the particular version
of HSQLDB that we used in our examples. Don’t worry too much about the @Grab-
Config statement. Groovy has some simple class-loading infrastructure under the
covers that you normally don’t need to even know about; here we’re telling that infra-
structure to load the driver in a way that allows the JDK’s DriverManager class to see
your driver class.

 The map variant of the newInstance method allows Groovy’s named-parameter
convention to be applied and also makes it easy to set additional parameters when
needed. Our call to newInstance using that variant could look as follows:

def sql = Sql.newInstance(
 url: 'jdbc:hsqldb:mem:GinA',
 user: 'sa',
 password: '',
 driver: 'org.hsqldb.jdbcDriver',
 cacheStatements: true,
 resultSetConcurrency: CONCUR_READ_ONLY)

While discussing variants, we should also cover the alternative withInstance method.
It has the same variants as the newInstance method and automatically calls the close
method. Using it would look like this:

Sql.withInstance(url, user, password, driver) { sql ->
 // use 'sql' instance ...
}

The other scenario, which is quite common, is using a DataSource. We cover that next.

DRIVERMANAGER VS. DATASOURCE

If you look back to figure 13.1, you’ll notice two concepts below the JDBC API: Driver-
Manager and DataSource. The Sql.newInstance methods always go through the
DriverManager facility, which can be seen as the classic low-level way of connecting.
Since JDK 1.4, there has been a second way that uses the DataSource concept.
Licensed to Mark Watson <nordickan@gmail.com>

451Groovy SQL: a better JDBC
 Although the DriverManager facility is still supported for backward compatibility,
using DataSource is generally preferable. In addition to providing a connection to the
database, it may optionally manage a connection pool and support distributed transactions
(not explained here). Because obtaining connections to a database is a time-consuming
operation, it’s common to reuse them. The pool is the storage facility that provides
you with a connection. You have to pass the connection back after use so that others can
reuse it. If you forget to return it, the pool becomes pointless. To avoid that, Groovy SQL
transparently returns the connection for you.

 DataSources become even more important when running in a managed environ-
ment such as within an application server. A managed environment provides its appli-
cations with DataSource objects to make its special features (such as connection
pooling) available. In this scenario, DataSource objects are often retrieved through
the Java Naming and Directory Interface (JNDI).

 Now that you’ve heard about the merits of DataSources, how do you use them in
Groovy? Your database vendor provides its own implementation of the javax.sql
.DataSource interface. HSQLDB, for example, provides the class org.hsqldb.jdbc
.JDBCDataSource for that purpose. To obtain a Sql instance for a DataSource, you
need to create it, optionally set its properties, and pass it to the Sql constructor, as can
be seen in the following listing.

import groovy.sql.Sql
import org.hsqldb.jdbc.JDBCDataSource

def dataSource = new JDBCDataSource(
 database: 'jdbc:hsqldb:mem:marathon', user: 'sa', password: '')
def sql = new Sql(dataSource)

// use 'sql' instance ...

sql.close()

NOTE FOR ENTERPRISE DEVELOPERS If you’re using an application server, you
might retrieve the DataSource using JNDI as previously mentioned. The advan-
tage of this approach is that it allows administration of the database to be more
independent from your program. Your program doesn’t need to mention spe-
cific database drivers or DataSource classes, and you could migrate from one
database to another with reduced effort. But we did mention the dialect differ-
ences, didn’t we?

No matter whether you use a DataSource in the Sql constructor or the Driver-
Manager facility through Sql.newInstance, in the end you have a reference to a Sql
instance (as the value of the sql variable). You can work with this reference regardless
of how it was constructed.

 These are the recommended ways of connecting to the database in Groovy. In situ-
ations when you already have a database connection and you’d like to work on it

Listing 13.2 Connecting using a DataSource
Licensed to Mark Watson <nordickan@gmail.com>

452 CHAPTER 13 Database programming with Groovy
through Groovy, you can use new Sql(connection). But beware that in this case,
Groovy SQL cannot manage that connection and you have to take care of properly
closing it yourself.

 If you have a Sql instance and you need a second one with the same characteristics
(a clone), you can use new Sql(sql).

 Now that you have a Sql instance that represents your connection to the database,
you’ll use it to execute SQL statements.

13.1.2 Executing SQL

Once you have a Sql instance in the sql reference, executing an SQL statement on
the database is as easy as

sql.execute(statement)

Groovy SQL carries out all the management work around that call: getting a connec-
tion (possibly from the DataSource connection pool), constructing and configuring
the statement, sending it, logging encountered exceptions, and closing resources
(statement and connection) properly even if exceptions have been thrown. It even
does a bit more, as you’ll see in the course of this chapter.

CREATING THE DATABASE SCHEMA

The first thing you can use the execute method for is creating the database schema.
Let’s assume we’re going to store data about marathon athletes and their perfor-
mances. To identify an athlete, we need the first name, last name, and date of birth. A
first attempt might be

sql.execute '''
 CREATE TABLE Athlete (
 firstname VARCHAR(64),
 lastname VARCHAR(64),
 dateOfBirth DATE
);
'''

This does the job but isn’t very realistic because we’ll need a primary key to look up
athletes and we didn’t define one. It’s obvious that none of these fields listed is unique
in itself. A combination of all three is unlikely to have duplicates, but such a com-
pound key is always tricky to deal with and is still not guaranteed to be unique.

 It’s conventional to use an artificial key (also known as a surrogate key) in such cases,
so we’ll introduce one. Because we’re lazy, we’ll let the database figure out how to cre-
ate one as shown in the following listing.

import groovy.sql.Sql

def url = 'jdbc:hsqldb:mem:GinA'
def user = 'sa'
def password = ''

Listing 13.3 Creating a table in a database
Licensed to Mark Watson <nordickan@gmail.com>

453Groovy SQL: a better JDBC
def driver = 'org.hsqldb.jdbcDriver'
def sql = Sql.newInstance(url, user, password, driver)

sql.execute '''
 CREATE TABLE Athlete (
 athleteId INTEGER GENERATED BY DEFAULT AS IDENTITY,
 firstname VARCHAR(64),
 lastname VARCHAR(64),
 dateOfBirth DATE
);
'''

sql.close()

That’s the minimal schema we’ll start with. We’ll work with it in an agile way; the
schema will grow over time. Reconstructing the schema programmatically every time
we need it makes this agile database programming possible. But wait. If we issue the
preceding statement to a database instance that already has an Athlete table (maybe
from our last run), it will throw a SqlException. We need to drop the old one, but
only if an old one exists:

sql.execute '''
 DROP TABLE Athlete IF EXISTS;
'''

As the SQL boilerplate code grows, it starts to bury the interesting information. For our
purposes, in the following listing we’ll refactor this boilerplate code into a static helper
method, create(), within a utility class, DbUtil, and call that in future examples.8

import groovy.sql.Sql

class DbUtil {
 static Sql create() {
 def url = 'jdbc:hsqldb:mem:GinA'
 def user = 'sa'
 def password = ''
 def driver = 'org.hsqldb.jdbcDriver'
 def sql = Sql.newInstance(url, user, password, driver)

 sql.execute """
 DROP TABLE Athlete IF EXISTS cascade;
 DROP TABLE Record IF EXISTS;
 """

 sql.execute """
 CREATE TABLE Athlete (
 athleteId INTEGER GENERATED BY DEFAULT AS IDENTITY,
 firstname VARCHAR(64),

Listing 13.4 A static helper method, create(), within a utility class, DbUtil

8 See the book’s sample code for the full listing.

Column
value will be
automatically
generated
Licensed to Mark Watson <nordickan@gmail.com>

454 CHAPTER 13 Database programming with Groovy
 lastname VARCHAR(64),
 dateOfBirth DATE,
 UNIQUE(athleteId)
);
 """

 // additional set up will be added in future examples

 sql
 }

 // additional utility methods will be added in future examples
}

Note that this could be refactored into a template if you find yourself writing repeated
code for multiple tables.

INSERTING DATA

With the schema defined, you can start entering data. You can use the execute method
for this purpose. Let’s add a marathon runner:

sql.execute '''
 INSERT INTO Athlete (firstname, lastname, dateOfBirth)
 VALUES ('Paul', 'Tergat', '1969-06-17');
'''

We were once in a project where we used this approach to insert a thousand records
of carefully hand-managed test data. But this approach is difficult to read and man-
age, because it contains a lot of duplication. You can make the execute method pro-
duce what is called a prepared statement, a SQL statement with occurrences of values
replaced by placeholders (question marks).

 You can reuse the same statement for a possibly large sequence of calls with differ-
ent values per call. The JDBC driver has to do its per-statement work only once instead
of numerous times. The work per statement includes parsing the SQL, validating, opti-
mizing access paths, and constructing an execution plan. The more complex the state-
ment, the more time-consuming this work becomes. In other words, using a prepared
statement is always a good move. In Java, prepared statements are represented using
the java.sql.PreparedStatement interface.

 The following example separates the SQL from the data used:

def athleteInsert = '''
 INSERT INTO Athlete (firstname, lastname, dateOfBirth)
 VALUES (?, ?, ?);
'''
sql.execute athleteInsert, ['Khalid', 'Khannouchi', '1971-12-22']

The execute method is smart enough to know when it needs to work with a prepared
statement. The preceding construction also better supports reading the list of fields
from an external source such as a file and populating the database with it. The
approach also avoids a nasty security vulnerability known as SQL injection.
Licensed to Mark Watson <nordickan@gmail.com>

455Groovy SQL: a better JDBC
NOTE In SQL, string values are placed in single quotes like 'Paul'. But with a
prepared statement, these single quotes must not be used. They aren’t pres-
ent in the prepared statement, nor are they part of the string data passed in
the list of values. (In other words, the single quotes in those values are for
Groovy, not for SQL.) Similarly, even though dates have been represented
here as strings, they really are dates in the database. You could have passed an
instance of java.util.Date to the execute method, and in production code
this would be more likely, but the sample code in this chapter is clearer using
simple string representations.

When the statement gets more complicated, the mapping between each question
mark and the corresponding list entry can become difficult to follow. In the course of
development, the statement or the list may change, and the task of keeping both in
sync is a likely source of errors.

 It would be nicer if you could use a placeholder that better reveals its purpose and
goes around the rigid sequence constraint. Toward that end, execute can also pro-
duce a prepared statement from a GString. We show this with a map for the athlete’s
data but you could just as easily use a full-blown Athlete object instead—with the
additional work of creating an Athlete class to start with, of course:

def data = [first: 'Ronaldo', last: 'da Costa', birth: '1970-06-07']
sql.execute """
 INSERT INTO Athlete (firstname, lastname, dateOfBirth)
 VALUES (${data.first}, ${data.last}, ${data.birth});
"""

Pay attention to the tripled double quotes around the statement, and remember that
this construction produces a prepared statement and will therefore be just as efficient
and safe on the database as the question-mark version (indeed that’s what it’s turned
into under the covers).

 This might sound like magic to you and might leave you with some doubts,
because after all you cannot see whether we’re telling the truth. But we can enable
logging and assess our claim. Use the following lines to see what happens behind
the curtain:

import java.util.logging.*

Logger.getLogger('groovy.sql').level = Level.FINE
// your execute(GString)

For the previous example this produces:9

19/04/2015 7:23:28 PM groovy.sql.Sql getStatement
FINE: SELECT * FROM Athlete

9 If you have trouble, see troubleshooting comments in the sample code for the book.
Licensed to Mark Watson <nordickan@gmail.com>

456 CHAPTER 13 Database programming with Groovy
19/04/2015 7:23:28 PM groovy.sql.Sql getPreparedStatement
FINE:
 INSERT INTO Athlete (firstname, lastname, dateOfBirth)
 VALUES (?,?,?);
 | [Ronaldo, da Costa, 1970-06-07]

It goes without saying that logging the SQL that’s eventually executed is always a good
practice during development. Also note that because we have a real prepared state-
ment, the SQL expression uses no single quotes around the placeholder. The special
use of GStrings as SQL statements limits the use of placeholders to places where a
question mark would otherwise be allowed in a prepared statement.10

 Before moving on, we should summarize options for execute that we’ve dis-
cussed so far. There are three main variants of the execute statement as shown in
table 13.2.

If you look at the GroovyDoc for the Sql class you’ll note a number of other variants
of the execute method. These variants support less common calling scenarios such as
using varargs-style parameters instead of a list, using named parameters (discussed in
section 13.2), and variants taking an additional closure to support SQL statements that
might return zero or more results. See the GroovyDoc for additional details and
examples of these other variants.

 Before completing our discussion of inserting data, we should mention the closely
related executeInsert method. It supports similar parameter variants as execute
but expects the provided SQL to represent an INSERT statement and can provide
additional information via the return value. The normal execute statement returns a
Boolean (which is frequently ignored) indicating whether the statement returned a
ResultSet. The executeInsert statement instead returns a list of any autogenerated
key values. So in the example you could find out what athleteId was automatically
assigned for any inserted row. There are also variants of executeInsert that take a list
of key column names of interest, allowing you more control over which autogenerated
keys might interest you. Let’s put together the execute and executeInsert examples
into a complete listing.

10 There’s an escape mechanism. See the GroovyDoc for Sql#expand for more details.

Table 13.2 Main versions of the execute method

Returns Method name Parameters

boolean execute String statement

boolean execute String prepStmt, List values

boolean execute GString prepStmt
Licensed to Mark Watson <nordickan@gmail.com>

457Groovy SQL: a better JDBC
import util.DbUtil

def sql = DbUtil.create()

sql.execute '''
 INSERT INTO Athlete (firstname, lastname, dateOfBirth)
 VALUES ('Paul', 'Tergat', '1969-06-17')
'''

def data = [first: 'Khalid', last: 'Khannouchi', birth: '1971-12-22']
def keys = sql.executeInsert """
 INSERT INTO Athlete (firstname, lastname, dateOfBirth)
 VALUES (${data.first}, ${data.last}, ${data.birth})
"""
assert keys[0] == [1]

def insertSql = '''
 INSERT INTO Athlete (firstname, lastname, dateOfBirth)
 VALUES (?,?,?)
'''
def params = ['Ronaldo', 'da Costa', '1970-06-07']
def keyColumnNames = ['ATHLETEID']
keys = sql.executeInsert insertSql, params, keyColumnNames
assert keys[0] == [ATHLETEID: 2]

sql.close()

HSQLDB starts autogenerated values from zero and increments by one, so the second
row will have value 1 B and the third row 2 c. If you’re using a different database,
these values may be different so the related assertions may need to change.

 You now have three rows in your Athlete table. Because you’re using an in-memory
database, it will turn out to be handy to populate some rows like this for many of the
future examples. For convenience in future examples, we’ll move this logic into two
helper methods: the insertAthlete method will insert one athlete, the populate
method will call insertAthlete for three sample athletes. Both methods are added to
our DbUtil class.11

 The first important steps have been done: you connected to the database, created
the schema, and inserted data. In other words, you’ve covered the C in CRUD. Still to
come are read, update, and delete. Let’s look at read next.

READING DATA

Usually the most frequently used operation is reading data.12 Reading has different
aspects, depending on whether you look for a single row or multiple rows, what query

Listing 13.5 Inserting athletes into our table

11 See the book's sample code for the full listing.
12 This isn’t necessarily true in all databases—when a database is used essentially for audit logging, for instance,

it may be read very rarely. But most databases are more frequently read than changed.

Inserts using
plain statement

GString
variant

Checks
generated keys
for second row b

Lists of params
variant

Checks generated
athleteId key for
third row c
Licensed to Mark Watson <nordickan@gmail.com>

458 CHAPTER 13 Database programming with Groovy
information is available, and how you intend to process the retrieved data. The Sql
class provides a range of methods, as listed in table 13.3, to cover these cases. The vari-
ants for handling of plain and prepared statements are the same as for execute.

You’ll again find additional variants when looking at the GroovyDoc. Some of these
extra variants are needed for paging and named parameters which we’ll cover in sec-
tion 13.2. See the GroovyDoc for further details and examples if the standard variants
don’t meet your needs.

 The methods eachRow and query use a closure for processing the result. query
calls the given closure once and passes the full java.sql.ResultSet into it; eachRow
calls the closure for each row of the result, thus relieving the programmer from the
usual iteration work.

FETCHING A ROW AT A TIME WITH EACHROW

Suppose you’d like to print a report about all known athletes that should look like this:

----- Athlete Info ------
Paul Tergat
born on 17. Jun 1969 (Tue)

Khalid Khannouchi
born on 22. Dec 1971 (Wed)

Ronaldo da Costa
born on 07. Jun 1970 (Sun)

Table 13.3 Main methods for reading data from the database

Returns Method Parameters

void eachRow String statement { row -> code }

void eachRow String prepStmt, List values { row -> code }

void eachRow GString prepStmt { row -> code }

void query String statement { resultSet -> code }

void query String prepStmt, List values { resultSet -> code }

void query GString prepStmt { resultSet -> code }

List rows String statement

List rows String prepStmt, List values

List rows GString prepStmt

Object firstRow String statement

Object firstRow String prepStmt, List values

Object firstRow GString prepStmt
Licensed to Mark Watson <nordickan@gmail.com>

459Groovy SQL: a better JDBC
You can achieve this by using eachRow and a simple selection statement. The row that’s
passed into the closure is an interesting object. You can use the column names as if
they were property names of that object:

println ' Athlete Info '.center(25,'-')
def fmt = new java.text.SimpleDateFormat('dd. MMM yyyy (E)',
 Locale.US)
db.eachRow('SELECT * FROM Athlete'){ athlete ->
 println athlete.firstname + ' ' + athlete.lastname
 println 'born on '+ fmt.format(athlete.dateOfBirth)
 println '-' * 25
}

Note how you’re using the row as if it were an Athlete object, which it isn’t. But you
can also use the row as if it were a list (which it isn’t either) and call the subscript oper-
ator on it. To print

Paul Tergat
Khalid Khannouchi
Ronaldo da Costa

you could call

db.eachRow('SELECT firstname, lastname FROM Athlete'){ row ->
 println row[0] + ' ' + row[1]
}

NOTE When working with column indexes, it’s always safer to explicitly spec-
ify the sequence of column names in the select statement. 'SELECT *' may
sometimes return the columns in an expected order (for example, the order
they were defined in CREATE TABLE), but this isn’t guaranteed for all database
management systems.

So what’s that row object, after all? It’s of type groovy.sql.GroovyResultSet, which is
a decorator around the underlying java.sql.ResultSet. Being a Groovy object, it
can pretend to have properties and provide Groovy-friendly indexing (starting from
zero, allowing negative indexes that count from the end).

FETCHING A RESULTSET WITH QUERY

The query method allows you to customize the iteration over the query results at the
expense of convenience, because you can only work with the good-old java.sql.Result-
Set. Suppose you’re only interested in the first athlete, and don’t want to go through all
results for that purpose. You can use query like this:

db.query('SELECT firstname, lastname FROM Athlete'){ resultSet ->
 if (resultSet.next()){
 print resultSet.getString(1)
 print ' '
 println resultSet.getString('lastname')
 }
}

Licensed to Mark Watson <nordickan@gmail.com>

460 CHAPTER 13 Database programming with Groovy

Re
u
qu n

Set
Just like the eachRow method, the query method manages your resources (the con-
nection and the statement). The downside is that the ResultSet that gets passed into
the closure is less convenient to work with. You need to call next to move the cursor
forward, you need to call type-specific getters (getString, getDate, and so on), and—
most annoyingly—indexes start at one instead of zero.

FETCHING ALL ROWS AT ONCE

As shown in table 13.3, it’s also possible to fetch all rows at once into a (possibly long) list
with the rows method. Each list item can be used with an index or a property name (just
like in eachRow). Suppose you have a simple requirement, like printing the following:

There are 3 Athletes:
Paul Tergat, Khalid Khannouchi, Ronaldo da Costa

You can use a simple database call like

List athletes = db.rows('SELECT firstname, lastname FROM Athlete')
println "There are ${athletes.size()} Athletes:"
println athletes.collect{"${it[0]} ${it.lastname}"}.join(", ")

Having the selection results in a list makes them eligible to be put in GPath expres-
sions. The example shows this with the collect method, but you can imagine find,
findAll, grep, any, every, and so forth in its place.

NOTE The list items are implemented as GroovyRowResult objects, the equiv-
alent of GroovyResultSet object as used with eachRow.

The firstRow(stmt) method returns the equivalent of rows(stmt)[0] but, if your
database supports it, only requests the first row (see section 13.2.3 for more details on
how this trick is supported). Let’s put all of this together in a complete listing.

import util.DbUtil

def sql = DbUtil.create()
DbUtil.populate(sql)

def expected = ['Paul Tergat', 'Khalid Khannouchi', 'Ronaldo da Costa']

def rowNum = 0
sql.query('SELECT firstname, lastname FROM Athlete') { resultSet ->
 while (resultSet.next()) {
 def first = resultSet.getString(1)
 def last = resultSet.getString('lastname')
 assert expected[rowNum++] == "$first $last"
 }
}

Listing 13.6 Reading athlete information from our table

ads
sing
ery

 b
External
iteration o
the Result

 c

Accesses properties
via JDBC API calls d
Licensed to Mark Watson <nordickan@gmail.com>

461Groovy SQL: a better JDBC

Re
using r

es
or
s

Re
u

first

Re
using r

M
effic

calcula
rowNum = 0
sql.eachRow('SELECT firstname, lastname FROM Athlete') { row ->
 def first = row[0]
 def last = row.lastname
 assert expected[rowNum++] == "$first $last"
}

def first = sql.firstRow('SELECT lastname, dateOfBirth FROM Athlete')
assert first.values().sort().join(',') == 'Tergat,1969-06-17'

List athletes = sql.rows('SELECT firstname, lastname FROM Athlete')
assert athletes.size() == 3
assert athletes.collect { "$it.FIRSTNAME ${it[-1]}" } == expected

assert sql.firstRow('SELECT COUNT(*) AS num FROM Athlete').num == 3

This listing provides an excellent summary of your options for reading data. You can
use the query method B, in which case you need to handle iteration of the result set
yourself c and use JDBC API calls to access column values d. You can use the internal
iterator style eachRow method e, in which case a closure is called with a GroovyRow-
Result for each row returned by the query. GroovyRowResult supports accessing
column values f using 0-based ordinal syntax (with Groovy’s normal conventions
around negative index values) or (case-insensitive) named property syntax. You can
use firstRow g for efficient access to a single row or rows h for all rows. Both meth-
ods also use a GroovyRowResult to represent a row. These methods provide many
options for reading and manipulating database information. You’ll soon be working
with database data with the same ease and efficiency that Groovy offers for Java’s col-
lection structures. Do remember, though, to make the database do work when appro-
priate (for example, i).

 That’s it for reading data. The next CRUD operation is updating.

UPDATING DATA

The update operation works with the execute method in the same way you’ve seen so
far. Suppose we initially insert only the last name of a marathon runner:

sql.execute '''
 INSERT INTO Athlete (lastname) VALUES ('da Costa')
'''

Now suppose we want to update the row to also include the athlete’s first name:

sql.execute '''
 UPDATE Athlete SET firstname='Ronaldo' where lastname='da Costa'
'''

Our update here used a plain statement but, just like for inserting, we could have
provided a list of parameters or used a GString to enforce the use of a prepared
statement.

ads
ows e

Accesses
properti
via map
list style

 f
ads
sing
Row

 g

ads
ows

 h

ore
ient
size
tion

 i
Licensed to Mark Watson <nordickan@gmail.com>

462 CHAPTER 13 Database programming with Groovy
 As you saw for inserting, there’s a closely related method for updating with some
special features. The executeUpdate method works the same way as execute but pro-
vides a different return value. execute returns a Boolean indicating whether the state-
ment returned a ResultSet and executeUpdate returns the number of rows that were
changed by the update. So, to change the athlete again, this time entering the date
of birth you’d use:

def updateCount = sql.executeUpdate '''
 UPDATE Athlete SET dateOfBirth='1970-06-07' where lastname='da Costa'
'''
assert updateCount == 1

Putting that altogether gives you the following complete listing.

import util.DbUtil

def sql = DbUtil.create()

sql.execute '''
 INSERT INTO Athlete (lastname) VALUES ('da Costa')
'''

sql.execute '''
 UPDATE Athlete SET firstname='Ronaldo' where lastname='da Costa'
'''

def updateCount = sql.executeUpdate '''
 UPDATE Athlete SET dateOfBirth='1970-06-07' where lastname='da Costa'
'''
assert updateCount == 1

def row = sql.firstRow '''
 SELECT * FROM Athlete where lastname = 'da Costa'
'''
assert "${row.firstname} ${row.lastname} ${row.dateofbirth}" ==
 'Ronaldo da Costa 1970-06-07'

sql.close()

DELETING DATA

So far, you’ve created tables and inserted, read, and updated. The last CRUD opera-
tion you need to examine is delete. You’ll use the execute method and pass in the
appropriate SQL statement. A complete listing follows.

import util.DbUtil

def sql = DbUtil.create()
DbUtil.populate(sql)

assert sql.firstRow('SELECT COUNT(*) as num FROM Athlete').num == 3

Listing 13.7 Updating a table row

Listing 13.8 Deleting a table row

Checks one row
was updated

Populates using
helper method

Checks
initially
three
rows
Licensed to Mark Watson <nordickan@gmail.com>

463Advanced Groovy SQL

sql.execute "DELETE FROM Athlete WHERE lastname = 'Tergat'"

assert sql.firstRow('SELECT COUNT(*) as num FROM Athlete').num == 2

You’ve seen how easy it is to execute SQL with Groovy to perform basic CRUD opera-
tions, but many applications need more advanced processing. That’s the topic of our
next section.

13.2 Advanced Groovy SQL
Groovy’s SQL features provide a higher-level API above JDBC. But that doesn’t mean
when you need to do something a little out of the ordinary that Groovy’s SQL librar-
ies get in your way. You can always start working directly at the JDBC level if you need
to, but what you’ll discover in the rest of this section is that many other common
database tasks also have special support from Groovy SQL. We’ll start by looking
at database transactions.

13.2.1 Performing transactional updates

In many scenarios, for data integrity reasons, it’s important to update multiple pieces
of information all at the same time or, if that isn’t possible, change none of the infor-
mation. Such systems are said to support transactions and preserve ACID properties.
When using a single database, JDBC provides such functionality out of the box, pre-
suming, of course, your database supports this feature.

 By default, every JDBC update is treated as a transaction. If you want to perform
multiple updates, that normally involves turning off the autocommit behavior, per-
forming your changes, and either committing, if everything went according to
plan, or rolling back the transaction if there was a problem and then resetting the
autocommit status (if needed). Thankfully Groovy SQL provides a nice little short-
cut for these steps.

 Suppose you wanted to add two new athletes to the database and suppose it’s
important that they both are added in one transaction. It would be as simple as
including the operations within a withTransaction block as shown in the follow-
ing listing.

import static util.DbUtil.*

def sql = create()
populate(sql)

sql.withTransaction {
 insertAthlete(sql, 'Haile', 'Gebrselassie', '1973-04-18')
 insertAthlete(sql, 'Patrick', 'Makau', '1985-03-02')
}

assert sql.firstRow('SELECT COUNT(*) as num FROM Athlete').num == 5

Listing 13.9 Invoking a transaction

Two rows
left after
delete
Licensed to Mark Watson <nordickan@gmail.com>

464 CHAPTER 13 Database programming with Groovy
This isn’t only significantly shorter but much less error-prone.
 There are times when data integrity isn’t your primary concern, instead efficiency

is. That’s where batch processing comes into play. We cover that next.

13.2.2 Working with batches

Whenever you send commands or queries to a database server, there will be some
communication overhead. When large volumes of information must be sent, this over-
head can become significant. Batch processing is a standard mechanism to minimize
this overhead and it comes in two flavors.

 The first variant allows arbitrary commands to be sent to the database. An optional
parameter (not used here) allows you to set a batch size. If you don’t set a batch size,
then all commands will be in the one batch unless you manually call stmt.execute-
Batch(), which allows you to chunk the batch into arbitrary-sized pieces. If you wanted
to combine an insert into the Athlete table and one for a related Record table as a
batch, you’d execute the following withBatch statement:

sql.withBatch { stmt ->
 stmt.addBatch '''
 INSERT INTO Athlete (firstname, lastname, dateOfBirth)
 VALUES ('Paula', 'Radcliffe', '1973-12-17')'''
 stmt.addBatch """
 INSERT INTO Record (time, venue, whenRun, fkAthlete)
 SELECT ${2*60*60+15*60+25}, 'London', '2003-04-13',
 athleteId FROM Athlete WHERE lastname='Radcliffe'"""
}

If logging is turned on, this produces:

22/04/2013 6:34:59 AM groovy.sql.BatchingStatementWrapper processResult
FINE: Successfully executed batch with 2 command(s)

Before proceeding further, we should dive under the covers and see what this Record
table looks like. It’s created with the following SQL:

CREATE TABLE Record (
 runId INTEGER GENERATED BY DEFAULT AS IDENTITY,
 time INTEGER, -- in seconds
 venue VARCHAR(64),
 whenRun DATE,
 fkAthlete INTEGER,
 CONSTRAINT fk FOREIGN KEY (fkAthlete)
 REFERENCES Athlete (athleteId) ON DELETE CASCADE
);

We modify our DbUtil create and populate methods to create and fill in four sample
Record rows respectively.13

13 It follows the same pattern as we saw earlier for the Athlete table. Full details can be seen in the DbUtil class
within the sample code.
Licensed to Mark Watson <nordickan@gmail.com>

465Advanced Groovy SQL
 The second batch variant uses prepared statements and is used when all the com-
mands in the batch involve the same kind of operation. For example, if we want to
enter multiple athletes as a batch operation, and we wanted to chunk the batch into
pieces of size 3, we’d use the following code:

def qry = '''
 INSERT INTO Athlete (firstname, lastname, dateOfBirth)
 VALUES (?,?,?)
'''
sql.withBatch(3, qry) { ps ->
 ps.addBatch('Paula', 'Radcliffe', '1973-12-17')
 ps.addBatch('Catherine', 'Ndereba', '1972-07-21')
 ps.addBatch('Naoko', 'Takahashi', '1972-05-06')
 ps.addBatch('Tegla', 'Loroupe', '1973-05-09')
 ps.addBatch('Ingrid', 'Kristiansen', '1956-03-21')
}

If logging is turned on, this produces:

20/04/2015 2:18:10 AM groovy.sql.BatchingStatementWrapper processResult
FINE: Successfully executed batch with 3 command(s)
20/04/2015 2:18:10 AM groovy.sql.BatchingStatementWrapper processResult
FINE: Successfully executed batch with 2 command(s)

Let’s see the complete listing (including some assertions that our additional rows
were added).

import util.DbUtil

def sql = DbUtil.create()
DbUtil.populate(sql)
DbUtil.enableLogging()

sql.withBatch { stmt ->
 stmt.addBatch '''
 INSERT INTO Athlete (firstname, lastname, dateOfBirth)
 VALUES ('Paula', 'Radcliffe', '1973-12-17')'''
 stmt.addBatch """
 INSERT INTO Record (time, venue, whenRun, fkAthlete)
 SELECT ${2*60*60+15*60+25}, 'London', '2003-04-13',
 athleteId FROM Athlete WHERE lastname='Radcliffe'"""
}

assert sql.firstRow('SELECT COUNT(*) as num FROM Athlete').num == 4
assert sql.firstRow('SELECT COUNT(*) as num FROM Record').num == 5

def qry = '''
 INSERT INTO Athlete (firstname, lastname, dateOfBirth)
 VALUES (?,?,?)
'''

Listing 13.10 Batching operations
Licensed to Mark Watson <nordickan@gmail.com>

466 CHAPTER 13 Database programming with Groovy
sql.withBatch(3, qry) { ps ->
 ps.addBatch('Catherine', 'Ndereba', '1972-07-21')
 ps.addBatch('Naoko', 'Takahashi', '1972-05-06')
 ps.addBatch('Tegla', 'Loroupe', '1973-05-09')
 ps.addBatch('Ingrid', 'Kristiansen', '1956-03-21')
}

assert sql.firstRow('SELECT COUNT(*) as num FROM Athlete').num == 8

Sometimes you might have a different kind of performance problem. Your queries
may produce too much data. To combat this problem let’s look at pagination.

13.2.3 Working with pagination

When working with large databases, it’s sometimes useful to only work with a subset of
the returned information. This can be useful when you need a small subset of sample
data or when working with the information in chunks (for example, displaying a page
of information at a time on a website). Many Groovy SQL commands contain variants
that allow subsets to be worked with; for example, the rows method takes an optional
offset and size parameter as shown in the following listing, which returns athletes in
chunks of two.

import util.DbUtil

def sql = DbUtil.create()
DbUtil.populate(sql)

def qry = 'SELECT * FROM Athlete'
assert sql.rows(qry, 1, 2)*.lastname == ['Tergat', 'Khannouchi']
assert sql.rows(qry, 3, 2)*.lastname == ['da Costa']

Relational database systems reveal information about themselves in so-called metadata.
This is “data about the data”—in its simplest terms, information like the types and
names of columns, tables, and so forth. A look at accessing such information is next.

13.2.4 Fetching metadata

Earlier we looked at methods to print out parts of our Athlete table. Let’s now con-
sider writing a helper method that should dump the content of any given table. The
table name is provided as a method parameter. If you call the method as dump(sql,
'Athlete'), it should print

------- CONTENT OF TABLE Athlete -------
0: ATHLETEID 0
1: FIRSTNAME Paul
2: LASTNAME Tergat
3: DATEOFBIRTH 1969-06-17
--
 ... other rows ...

Listing 13.11 Pagination operations
Licensed to Mark Watson <nordickan@gmail.com>

467Advanced Groovy SQL
For proper display, you need additional questions answered:

■ How many columns should we display?
■ What are the column names?

Luckily, ResultSet (and thus also the GroovyResultSet) provides a method called
getMetaData that returns a ResultSetMetaData object. This contains all the necessary
information. See its API documentation in the following listing for details.

import util.DbUtil

def sql = DbUtil.create()
DbUtil.populate(sql)

def dump(sql, tablename) {
 println " CONTENT OF TABLE ${tablename} ".center(32, '-')
 sql.eachRow('SELECT * FROM ' + tablename) { rs ->
 def meta = rs.getMetaData()
 if (meta.columnCount <= 0) return
 for (i in 0..<meta.columnCount) {
 print "${i}: ${meta.getColumnLabel(i + 1)}".padRight(20)
 println rs[i]?.toString()
 }
 println '-' * 32
 }
}

def baos = new ByteArrayOutputStream()
System.setOut(new PrintStream(baos))

dump(sql, 'Athlete')
assert baos.toString().readLines()*.trim().join('\n') == '''\
--- CONTENT OF TABLE Athlete ---
0: ATHLETEID 0
1: FIRSTNAME Paul
2: LASTNAME Tergat
3: DATEOFBIRTH 1969-06-17

0: ATHLETEID 1
1: FIRSTNAME Khalid
2: LASTNAME Khannouchi
3: DATEOFBIRTH 1971-12-22

0: ATHLETEID 2
1: FIRSTNAME Ronaldo
2: LASTNAME da Costa
3: DATEOFBIRTH 1970-06-07
--------------------------------\
'''

Like all the classes from the java.sql package, ResultSetMetaData works with indexes
starting at 1. Therefore, you need to call getColumnLabel B with (i+1). You also use

Listing 13.12 Accessing metadata

Counts
from 1

 b

Counts from 0
and possibly null c

Captures
standard out

 d
Licensed to Mark Watson <nordickan@gmail.com>

468 CHAPTER 13 Database programming with Groovy
the safe dereferencing operator (see section 7.1.3) in case the value at the given index
is null c. You’ll override standard output and capture it into a byte array so you can
check that the method is printing the correct value d.

 Making use of metadata is so common that Groovy SQL provides additional vari-
ants of some of its methods that take a Closure that works exclusively with the meta-
data. You saw earlier that an eachRow method was available that took an SQL query
and a closure:

eachRow(String sql, Closure rowClosure)

which would normally be called using the normal trailing Closure syntax. The meta-
data variant has an extra parameter:

eachRow(String sql, Closure metaClosure, Closure rowClosure)

The metaClosure is called once and passed the ResultSetMetaData object from the
query result. The rowClosure is then called once for each row. Here’s how you might
use it to rework the dump method:

def dump2(sql, tablename) {
 def printColNames = { meta ->
 (1..meta.columnCount).each {
 print meta.getColumnLabel(it).padRight(12)
 }
 println()
 }
 def printRow = { row ->
 row.toRowResult().values().each {
 print it.toString().padRight(12) }
 println()
 }
 sql.eachRow('SELECT * FROM ' + tablename, printColNames, printRow)
}

One thing you might notice here is that we didn’t use the trailing closure syntax. We
certainly could have chosen to do so, though we often avoid that style when calling
methods with multiple closure parameters. Let’s add formatting characters and
checks that we produce the correct output (for both the Athlete and Record tables)
as shown in the following complete listing.

import util.DbUtil

def sql = DbUtil.create()
DbUtil.populate(sql)

Listing 13.13 Using a metadata closure
Licensed to Mark Watson <nordickan@gmail.com>

469Advanced Groovy SQL
def dump2(sql, tablename) {
 def printColNames = { meta ->
 def width = meta.columnCount * 12
 println " CONTENT OF TABLE ${tablename} ".center(width, '-')
 (1..meta.columnCount).each {
 print meta.getColumnLabel(it).padRight(12)
 }
 println()
 println '-' * width
 }
 def printRow = { row ->
 row.toRowResult().values().each {
 print it.toString().padRight(12)
 }
 println()
 }
 sql.eachRow('SELECT * FROM ' + tablename, printColNames, printRow)
}

def baos = new ByteArrayOutputStream()
System.setOut(new PrintStream(baos))

dump2(sql, 'Athlete')
assert baos.toString().readLines()*.trim().join('\n') == '''\
----------- CONTENT OF TABLE Athlete -----------
ATHLETEID FIRSTNAME LASTNAME DATEOFBIRTH
--
0 Paul Tergat 1969-06-17
1 Khalid Khannouchi 1971-12-22
2 Ronaldo da Costa 1970-06-07\
'''

baos.reset()
dump2(sql, 'Record')
assert baos.toString().readLines()*.trim().join('\n') == '''\
----------------- CONTENT OF TABLE Record ------------------
RUNID TIME VENUE WHENRUN FKATHLETE
--
0 7495 Berlin 2003-09-28 0
1 7538 London 2002-04-14 1
2 7542 Chicago 1999-10-24 1
3 7565 Berlin 1998-09-20 2\
'''

You’ve seen that using GStrings provides for succinct and clear expression of our SQL
commands, but there’s an alternative syntax using named and named-ordinal parame-
ters. We’ll look at that next.

13.2.5 Working with named and named-ordinal parameters

You saw earlier that many Groovy SQL methods have multiple variants—String,
String plus a list of parameters, and GString variants, to name three. For most users,
these variants will be quite sufficient but there are a few scenarios where an alternate
Licensed to Mark Watson <nordickan@gmail.com>

470 CHAPTER 13 Database programming with Groovy
syntax is useful. In particular, when integrating with Java, where GStrings might be less
convenient to use, or when handling multiple objects containing properties to be fed
into the SQL. Sometimes also, you might wish to mix your queries with some templat-
ing solution where GStrings may not be convenient. In such circumstances, named
and named-ordinal parameters are useful.

NAMED PARAMETERS

With this style, you use placeholders similar to what we showed earlier for Prepared-
Statements; however, instead of a series of question marks and a list of parameters,
you have one parameter that could be a domain object or a map and each place-
holder references the relevant property from the parameter. Two placeholder syntax
styles are supported: using either a colon (:) before the property name or a question
mark–dot (?.) before the property name.

 First, let’s assume you have the following SQL insert fragment that will begin your
SQL examples in this section:

def insertPrefix = '''
 INSERT INTO Athlete (firstname, lastname, dateOfBirth)
 VALUES '''

and the following map:

def loroupe = [first: 'Tegla', last: 'Loroupe', dob: '1973-05-09']

Then you can insert runner Loroupe into the database as follows using the colon form:

db.execute insertPrefix + '(:first,:last,:dob)', loroupe

Alternatively, you can use Groovy’s named parameter style method call to include the
map inline (for runner Kristiansen):

db.execute insertPrefix + '(:first,:last,:dob)',
 first: 'Ingrid', last: 'Kristiansen', dob: '1956-03-21'

If you wanted to use domain objects, you might declare one like so:

@Canonical class Athlete { String first, last, dob }
def ndereba = new Athlete('Catherine', 'Ndereba', '1972-07-21')

You could add this athlete as follows using the question mark form:

db.execute insertPrefix + '(?.first,?.last,?.dob)', ndereba

NAMED-ORDINAL PARAMETERS

As a final example, perhaps the information you have is in multiple objects (in this
case one domain object and one map). In that case, use an alternative to the question
Licensed to Mark Watson <nordickan@gmail.com>

471Advanced Groovy SQL
mark–dot form that also includes the numeric index of which parameter is referred
to. Here’s an example:

def takahashi = new Athlete('Naoko', 'Takahashi')
def takahashiExtra = [dob: '1972-05-06']

db.execute insertPrefix + '(?1.first,?1.last,?2.dob)',
 takahashi, takahashiExtra

Putting these snippets together gives us the following listing.

import groovy.transform.Canonical
import util.DbUtil

def sql = DbUtil.create()
DbUtil.populate(sql)

def insertPrefix = '''
INSERT INTO Athlete (firstname, lastname, dateOfBirth) VALUES
'''

sql.execute insertPrefix + '(:first,:last,:dob)', first: 'Ingrid',
 last: 'Kristiansen', dob: '1956-03-21'

def loroupe = [first: 'Tegla', last: 'Loroupe', dob: '1973-05-09']
sql.execute insertPrefix + '(:first,:last,:dob)', loroupe

@Canonical class Athlete { String first, last, dob }

def ndereba = new Athlete('Catherine', 'Ndereba', '1972-07-21')
sql.execute insertPrefix + '(?.first,?.last,?.dob)', ndereba

def takahashi = new Athlete('Naoko', 'Takahashi')
def takahashiExtra = [dob: '1972-05-06']
def namedOrdinalSuffix = '(?1.first,?1.last,?2.dob)'
sql.execute insertPrefix + namedOrdinalSuffix, takahashi, takahashiExtra

assert sql.firstRow('SELECT COUNT(*) as num FROM Athlete').num == 7

That wraps up our discussion on this special parameter syntax. Next we’ll look at
Groovy’s special support for stored procedures.

13.2.6 Using stored procedures

One feature that many databases support is the ability to store code or functions in the
database itself. We won’t argue whether this is always an ideal practice but we acknowl-
edge that there are times when we’ve needed to support use of such procedures. JDBC
has support for such scenarios, but it can be a little cumbersome. Groovy SQL stream-
lines the process a little bit for you. We’ll also note that the details of defining stored
procedures and functions may vary slightly depending on your database14 but how you
call equivalent procedures across varying databases should remain the same.

Listing 13.14 Using named and named-ordinal parameters

14 And to be honest there isn’t much Groovy SQL can do to assist you with these differences!
Licensed to Mark Watson <nordickan@gmail.com>

472 CHAPTER 13 Database programming with Groovy
 We’ll look at creating and then using stored procedures. First you’ll create a
SELECT_ATHLETE_RECORD stored function, which returns a table of data. Then you’ll
process the returned table using eachRow as shown in the following listing.

import util.DbUtil

def sql = DbUtil.create()
DbUtil.populate(sql)

sql.execute '''
 CREATE FUNCTION SELECT_ATHLETE_RECORD ()
 RETURNS TABLE (lastname VARCHAR(64), venue VARCHAR(64), whenRun DATE)
 READS SQL DATA
 RETURN TABLE (
 SELECT Athlete.lastname, Record.venue, Record.whenRun
 FROM Athlete, Record
 WHERE Athlete.athleteId = Record.fkAthlete
 ORDER BY whenRun
)
'''
def result = []
sql.eachRow('CALL SELECT_ATHLETE_RECORD()') {
 result << "$it.lastname $it.venue $it.whenRun"
}
assert result == [
 'da Costa Berlin 1998-09-20',
 'Khannouchi Chicago 1999-10-24',
 'Khannouchi London 2002-04-14',
 'Tergat Berlin 2003-09-28'
]

Creating the stored function involved executing the appropriate SQL. The stored
function joins information from the Athlete and Record tables and returns the result-
ing rows. You used eachRow to process those rows but could have used any of the
methods for processing rows.

 Consider now a FULL_NAME stored function that takes a parameter. If you give it an
athlete’s last name, it will return the full name. The following listing shows how you
could create and then use such a function.

import util.DbUtil

def sql = DbUtil.create()
DbUtil.populate(sql)

sql.execute '''
 CREATE FUNCTION FULL_NAME (p_lastname VARCHAR(64))
 RETURNS VARCHAR(100)
 READS SQL DATA

Listing 13.15 Working with a stored procedure

Listing 13.16 Working with a stored procedure with simple parameters
Licensed to Mark Watson <nordickan@gmail.com>

473Advanced Groovy SQL
 BEGIN ATOMIC
 DECLARE ans VARCHAR(100);
 SELECT CONCAT(firstname, ' ', lastname) INTO ans
 FROM Athlete WHERE lastname = p_lastname;
 RETURN ans;
 END
'''

assert sql.firstRow("{? = CALL FULL_NAME(?)}",
 ['Tergat'])[0] == 'Paul Tergat'

The creation of the stored function is again a simple execute statement. You can
again use any of the reading methods. It makes most sense to use firstRow here
because you’ll always get back only one row. As before, our SQL statement will involve
using the SQL call method but we’ll also use a placeholder to indicate that a parame-
ter is required and another to indicate that a result is returned.

 So far our stored functions have returned single or multiple rows. JDBC also sup-
ports what are known as IN, OUT, and INOUT parameters for stored procedures. This
mechanism allows multiple unrelated return values. We’ll illustrate this mechanism by
creating a stored procedure to concatenate two strings. Groovy and Java both support
native string concatenation but we’ll ignore that fact for the purposes of this example.
We’ll start by defining our procedure in the following listing.

import groovy.sql.Sql
import util.DbUtil

def sql = DbUtil.create()
DbUtil.populate(sql)

sql.execute '''
 CREATE PROCEDURE CONCAT_NAME (OUT fullname VARCHAR(100),
 IN first VARCHAR(50), IN last VARCHAR(50))
 BEGIN ATOMIC
 SET fullname = CONCAT(first, ' ', last);
 END
'''

sql.call("{call CONCAT_NAME(?, ?, ?)}",
 [Sql.VARCHAR, 'Paul', 'Tergat']) {
 fullname -> assert fullname == 'Paul Tergat'
}

When defining the stored procedure we use two input parameters (first and last)
and one output parameter (fullname), but we could have any combination of IN, OUT,
and INOUT parameters if needed. To invoke our stored procedure we use Groovy’s spe-
cial call method. This method supports a number of special conventions. The first
and last names are passed in the normal way, but for the OUT parameter we instead
pass in the type that the stored procedure will produce, which for us is a VARCHAR.
Because we have an OUT parameter, we’ll use the Closure variant of the method. It

Listing 13.17 A stored procedure with IN and OUT parameters
Licensed to Mark Watson <nordickan@gmail.com>

474 CHAPTER 13 Database programming with Groovy
calls our closure passing in the OUT parameter from the stored procedure, and for this
example we’ll check its value with an assertion.

 You’ve seen how easy it is to execute SQL with Groovy including advanced use tech-
niques. Wouldn’t it be nice not to have to worry about the SQL at all? Unlikely as that
concept sounds, it’s the topic of our next section.

13.3 DataSets for SQL without SQL
We demanded that simple tasks should be easy. So far, you’ve seen simple SQL and
easy ways for sending it to the database. It’s hard to believe that database program-
ming can be any simpler, but it can.

 Groovy provides a basic way of working with the database that doesn’t even work
with SQL. This approach is based on the concept of a DataSet, and we’ll look at each
of the operations it supports:

■ Adding a row to a table
■ Working through all rows of a table or a view
■ Selecting rows of a table or a view by simple expressions

You cannot define a schema that way or use delete or update operations. But you can
mix the use of DataSets with other Groovy SQL operations and use whatever seems
most appropriate for the task at hand.

 A groovy.sql.DataSet is a subclass of and a decorator around groovy.sql.Sql.
Figure 13.2 shows the UML class diagram.

Sql

+ dataSet(String tablename) : DataSet

DataSet

+ sql
+ parameters

+ add(Map fields)
+ each { closure }
+ findAll { closure } : DataSet
+ sort { closure } : DataSet
+ reverse { closure } : DataSet
+ rows() : List<GroovyRowResult>
+ firstRow() : GroovyRowResult

Figure 13.2 UML class diagram
of groovy.sql.DataSet
decorating groovy.sql.Sql
Licensed to Mark Watson <nordickan@gmail.com>

475DataSets for SQL without SQL
The conventional way of retrieving a DataSet instance is to call Sql’s factory method
dataSet. You pass it the name of the table that this DataSet should work with. For
more alternatives, see the API documentation of Sql and DataSet:

// assuming sql refers to an instance of Sql
athletes = sql.dataSet('Athlete')

Let’s explore what you can do with such an instance.

13.3.1 Using DataSet operations

With an instance of a DataSet, you can call its methods, as listed in figure 13.2. We can
add a new row to the Athlete table with

athletes.add(
 firstname: 'Paula',
 lastname: 'Radcliffe',
 dateOfBirth: '1973-12-17')

That’s all we need to do. A SQL insert statement will be created behind the scenes and
executed immediately. If we omit any of the fields, a null value will be inserted instead.

 We can also use the athletes to work with what’s currently in the table. The code

athletes.each {
 println it.firstname
}

would print

Paul
Khalid
Ronaldo
Paula

Let’s see this in action in a complete listing.

import util.DbUtil

def sql = DbUtil.create()
DbUtil.populate(sql)

def athletes = sql.dataSet('Athlete')

def result = []
athletes.each { result << it.firstname }
assert result == ['Paul', 'Khalid', 'Ronaldo']

athletes.add(
 firstname: 'Paula',
 lastname: 'Radcliffe',
 dateOfBirth: '1973-12-17'
)

Listing 13.18 Using DataSets for SQL-free code

Treats an SQL
table like a list
of maplike rows

 b

Initially we have our
three sample athletes
Licensed to Mark Watson <nordickan@gmail.com>

476 CHAPTER 13 Database programming with Groovy
result = athletes.rows().collect { it.firstname }
assert result == ['Paul', 'Khalid', 'Ronaldo', 'Paula']

When processing each athlete (note the use of the implicit it variable), it works anal-
ogously to the GroovyResultSet you saw before: you can use fieldnames as if they
were properties and use positive or negative indexes. The goal of the abstraction pro-
vided by the DataSet methods (each, add, and findAll) is that a DataSet can be used
in much the same way as any other collection and no SQL needs to appear in your
code (for example, b). The abstraction has been kept simple, so other methods you
might expect to find on collections (for example, collect) aren’t currently found
within the DataSet class. Instead there are two hooks, via the firstRow and rows
methods, which then allow you to call collect if required c.

 Now comes the findAll method, which looks simple at first but turns out to be
very sophisticated. Let’s start with trying

athletes.findAll{ it.dateOfBirth > '1970-1-1' }

This method call returns a new DataSet, which can in turn be used with the each
method to work over the filtered result:

youngsters = athletes.findAll{ it.dateOfBirth > '1970-1-1' }
youngsters.each { println it.firstname }

What’s behind this construction? At first sight, you might guess that the findAll
method fetches all the rows from the table, applying the closure and adding rows that
pass the filter to a list internally. This would be far too time-consuming for large tables.
Instead, findAll produces a SQL statement that reflects the expression within the clo-
sure. This generated statement is encapsulated in the returned youngsters DataSet.

 It’s hard to believe that Groovy can do that,15 but proof is available. Any DataSet
encapsulates a statement in its sql property, and because that’s the SQL of a prepared
statement, it also needs parameters, which are stored in the parameters property.
Let’s find out what these properties are for our sample code:

youngsters = athletes.findAll{ it.dateOfBirth > '1970-1-1' }
println youngsters.sql
println youngsters.parameters
youngsters.each { println it.firstname }

These lines print

select * from Athlete where dateOfBirth > ?
["1970-1-1"]
Khalid
Ronaldo
Paula

15 It may be slightly easier to believe if you’ve looked at Microsoft’s LINQ project or similar projects. Groovy has
had this feature since before LINQ was generally available but now the technique is widely used.

Uses rows
followed
by collect cConfirm we now

have four athletes
Licensed to Mark Watson <nordickan@gmail.com>

477DataSets for SQL without SQL
So take note:

■ findAll only creates a new DataSet (with the enclosed prepared statement).
■ findAll doesn’t even access the database.
■ Only the trailing each triggers the database call.

To prove this to yourself, you can add logging to the program in the same way we did
in section 10.1.2. Logging is useful during development to see when the database is
accessed, as well as how it’s accessed.

 But the buck doesn’t stop here. Because the findAll method returns a DataSet
that can be interpreted as a filtered selection of the original DataSet (which was the
whole Athlete table in our example), it would be surprising if it weren’t possible to
combine filters. And yes, you can. The lines

youngsters = athletes.findAll{ it.dateOfBirth > '1970-1-1' }
paula = youngsters.findAll{ it.firstname == 'Paula' }
println paula.sql
println paula.parameters

print

select * from Athlete where dateOfBirth > ? and firstname = ?
[1970-1-1, Paula]

Interestingly enough, we can achieve the same effect by providing a combined filter
expression in the findAll closure:

youngsters = athletes.findAll{
 it.dateOfBirth > '1970-1-1' && it.firstname == 'Paula'
}

You can legitimately ask how this could possibly work. Here is the answer: the expres-
sion in the findAll closure is never executed! Instead, the DataSet implementation
fetches Groovy’s internal representation of the closure’s code. This internal represen-
tation is the AST and was generated by the Groovy parser. By walking over the AST
(with a Visitor pattern), the DataSet implementation emits the SQL equivalent of
each AST node. The mapping is listed in table 13.4.

Table 13.4 Mapping of Groovy AST nodes to their SQL equivalents

AST node SQL equivalent

&& And

|| Or

== =

Other operators Themselves, literally

it.propertyname propertyname

Constant expression ? (Expression is added to the parameters list)
Licensed to Mark Watson <nordickan@gmail.com>

478 CHAPTER 13 Database programming with Groovy
This also means that the following restrictions apply for expressions inside the find-
All closure:

■ They must be legal Groovy code (otherwise, the Groovy parser fails).
■ They must contain only expressions as listed in table 13.4, excluding variables

and method calls.

These restrictions limit the possibilities of filtering DataSets. Conversely, this approach
brings a new quality to database programming: using the parser of your programming
language for checking your selection expression at compile time.

 If you put syntactically invalid SQL into a string and pass it to Sql’s execute method,
you won’t notice the error until the database is accessed and throws a SqlException.

 If you put a syntactically invalid expression into a findAll closure and choose to
compile your code, the compiler fails without accessing the database. You also get bet-
ter error messages that way, because the compiler can point you to the offending
code. With good IDE support, your IDE can open the editor on such failing code or
even highlight the error while editing.

 That’s quite a lot to absorb. Let’s look at what we’ve discussed in a complete listing.

import util.DbUtil

def sql = DbUtil.create()
DbUtil.populate(sql)
DbUtil.enableLogging()

def athletes = sql.dataSet('Athlete')

athletes.add(
 firstname: 'Paula',
 lastname: 'Radcliffe',
 dateOfBirth: '1973-12-17'
)

def query = athletes.findAll { it.firstname >= 'P' }
query = query.findAll { it.dateOfBirth > '1970-01-01' }
query = query.sort { it.dateOfBirth }
query = query.reverse()
assert query.sql == 'select * from Athlete where firstname >= ? and ' +
 'dateOfBirth > ? order by dateOfBirth DESC'
assert query.parameters == ['P', '1970-01-01']
assert query.rows()*.firstname == ['Paula', 'Ronaldo']

Now might be a good time to have a cup of coffee. Let the last couple of pages sink in.
Read them again. Try a few example queries for yourself. This ability to view the code
within the closure as data and transform it into another type of code (SQL) rather
than a block to be executed may be one of the most important concepts in ushering
in a new era of database application development.

 So far you’ve seen DataSets working on a single table only. We’ll next explore how
to use this concept more generally.

Listing 13.19 Using DataSets with filtering
Licensed to Mark Watson <nordickan@gmail.com>

479DataSets for SQL without SQL
13.3.2 DataSets on database views

DataSets are a convenient way to work on a single table. But working on a single table
is usually not of much value in a relational model.

 You saw earlier that we stored the marathon world records for our athletes in a sep-
arate table. Each row in the Record table captures how many seconds a particular mar-
athoner took, and when and where it happened. For relating such a row with the
according athlete, we refer to the athlete’s unique ID, the athleteId, by the foreign
key fkAthlete. Figure 13.3 shows the relationship. Note that we also introduce a
recordId16 to give this performance a unique handle.

 For filling the Record table with example data, we unfortunately cannot easily
use a DataSet; we’d need to know the corresponding athleteId, which we cannot
foresee because it’s dynamically generated by the database. The next best solution is
to use a helper method that executes an insert statement to retrieve the athleteId
from a subselect. Here’s some sample code, which uses parameters for most values
but has a hard-coded distance for demonstration purposes. Likewise, it assumes
there will be only one athlete with a given last name—something we wouldn’t do in
real life code:

def insertRecord(h, m, s, venue, date, lastname){
 def time = h*60*60 + m*60 + s
 db.execute """
 INSERT INTO Record (time, venue, when, fkAthlete)
 SELECT $time, $venue, $date,
 athleteId FROM Athlete WHERE lastname=$lastname;
 """
}

We can now call the insertRecord method with example data:

insertRecord(2,4,55, 'Berlin', '2003-09-28', 'Tergat')
insertRecord(2,5,38, 'London', '2002-04-14', 'Khannouchi')
insertRecord(2,5,42, 'Chicago', '1999-10-24', 'Khannouchi')
insertRecord(2,6,05, 'Berlin', '1998-09-20', 'da Costa')

16 There’s no pressing need for the recordId. We introduce it because that’s our usual working pattern when
creating tables.

athleteId
firstname
lastname
dateOfBirth

Athlete

recordId
fkAthlete
time
venue
when

Record

Figure 13.3 Entity-
relationship diagram of
athletes and multiple
records
Licensed to Mark Watson <nordickan@gmail.com>

480 CHAPTER 13 Database programming with Groovy
After this preparation, how can we use DataSets to list runs for an athlete name? We
need to join the information from that Record table with the information from the
Athlete table to retrieve the names.

 Of course, we could read both tables and do the join programmatically, but that
wouldn’t leverage the power of the relational model and wouldn’t perform well because
of the overhead of each database call.

 The trick is to create a database view that behaves like a read-only table made up
from an arbitrary selection.

 Here’s how to create a view named AthleteRecord that combines athletes with
their records as if we have a combined table that contains both tables but only for ath-
letes for whom we have record information:

DROP VIEW AthleteRecord IF EXISTS;
CREATE VIEW AthleteRecord AS
 SELECT * FROM Athlete INNER JOIN Run
 ON fkAthlete=athleteId;

With this view, we can create a DataSet and work with it as if it were one big table.17 To
find where Khalid Khannouchi performed his records, we can use

record = db.dataSet('AthleteRecord').findAll{ it.firstname=='Khalid' }
record.each{ println it.lastname + ' ' + it.venue }

which prints

Khannouchi London
Khannouchi Chicago

Let’s have a look at these snippets as a complete listing.

import util.DbUtil

def sql = DbUtil.create()
DbUtil.populate(sql)

sql.execute '''
 DROP VIEW AthleteRecord IF EXISTS;
 CREATE VIEW AthleteRecord AS
 SELECT * FROM Athlete LEFT OUTER JOIN Record
 ON fkAthlete=athleteId;
'''

def records = sql.dataSet('AthleteRecord').findAll {
 it.firstname == 'Khalid'
}
def result = records.rows().collect { "$it.lastname $it.venue" }
assert ['Khannouchi London', 'Khannouchi Chicago'] == result

17 You may wish to compare this approach with the SELECT_ATHLETE_RUN stored procedure earlier in this
chapter.

Listing 13.20 Using DataSets with views
Licensed to Mark Watson <nordickan@gmail.com>

481Organizing database work
What you’ve done here is remove SQL-specific knowledge, such as how to join two
tables, from the application. This makes the code more portable across database ven-
dors, as well as making it readable to developers who may not be particularly skilled in
SQL. This comes at the expense of putting it into the infrastructure (the database
setup code). This requires the database structure to be under your control. In large
organizations, where the database is maintained by an entirely different set of people,
the challenge is to get these administrators on board for efficient collaboration and
for leveraging their database knowledge in your project.

 You now have the tools you need to access a database. Giving someone a chisel doesn’t
make them a carpenter. How the tools are used is as important as the tools themselves.

13.4 Organizing database work
Knowing the technical details of database programming is one thing, but organizing
a whole application for database use takes more than that. You have to take care of
design considerations such as separation of concerns, assigning responsibility, and
keeping the codebase manageable and maintainable—free from duplication.

 This section will give you insight into how Groovy SQL fits into the overall architec-
ture of a database application. We’ll plan the architecture, define what the application
has to be capable of, and then implement the application in a layered fashion, exam-
ining how Groovy makes things easier at every level. No single and authoritative solu-
tion fits all needs. Instead, you need to use your imagination and creativity to find out
how to relate the presented rules, structures, and patterns to the situation at hand.

13.4.1 Architectural overview

Today’s architectural patterns usually call for a layered architecture, as depicted
in figure 13.4. The lowest layer is the infrastructure that shields all upper layers

Business object

DTO DTO DTO DTO

Business object

DAO DAO

User interface

Application

Workflow

Helpers

JDBC API

Domain model

Infrastructure

May be transparent

with Groovy SQL

Figure 13.4 Layered architecture for database programming
Licensed to Mark Watson <nordickan@gmail.com>

482 CHAPTER 13 Database programming with Groovy
from SQL specifics. It presents DAOs to the domain model layer above it. There often
is a one-to-one relationship between business objects in the domain model layer
and DAOs. Classically, DAOs and business objects pass DTOs back and forth for
communication.

 Above the domain model layer is the application layer, which makes use of the busi-
ness objects in its workflow and presents them within the UI.

 Layering also means that any layer may call the layer below it, but never the
one above. Strict layering also forbids calling layers deeper than the one directly
below; for example, calls from the application layer to the infrastructure layer would
be forbidden.

 With the advent of Groovy SQL, things can be done more easily. First, custom-built
DTOs become obsolete, due to the dynamic nature of Groovy’s classes. There’s no
more need to create special classes for each DTO type. A DAO can exchange informa-
tion with transparent types—types that are independent of any DAO or business object
specifics. Good candidates for transparent DTOs are GroovyRowResult, Map, List, and
Expando. For DTOs that should encapsulate a collection of business objects, a list of
these DTOs or a DataSet may be used.

NOTE With layering as in figure 13.4, DAOs aren’t allowed to directly return
business objects, because calling their constructor would mean calling into
the upper domain model layer. As a trick, they can pass back a map of proper-
ties and let the caller object do the construction, such as new MyBusiness-
Object(map).

For simple read-only data, business objects can also be replaced by transparently using
a GroovyRowResult, a Map, or an Expando. Suppose the following line exists in the
application code:

out << athlete.firstname

To a reader of this code, everything looks like athlete is a business object. But you
cannot tell whether it’s really of type Athlete. It could just as well be a GroovyRow-
Result, a Map, or an Expando. From the code, it all looks the same.

 Of course, this works only in simple scenarios. If you go for domain-driven design,18

you’ll want to implement your business objects explicitly (most often with the help of
GroovyBeans).

 DAOs can sometimes be replaced by transparently using a DataSet, as you saw in
the previous section. There’s a crucial point about DataSets that makes this possible:
the way they handle findAll. DAOs shouldn’t expose SQL specifics to their caller,
because that makes the infrastructure layer leaky. Conventional DAOs often break this

18 Domain-Driven Design: Tackling Complexity in the Heart of Software, by Eric Evans (Addison Wesley, 2003).
Licensed to Mark Watson <nordickan@gmail.com>

483Organizing database work
constraint by allowing the caller to pass parts of the WHERE clause; or they end up with
a plethora of methods like

findByFirstName(firstname)
findByLastName(lastname)
findByFirstAndLastName(firstname, lastname)
findByBirthdateBefore(date)
…

You’ve also seen that DataSets can replace DAOs, which represent sophisticated rela-
tions by providing the appropriate view in the database schema.

 All this is interesting in theory, but it’s what it looks like in practice that counts. In
the next section, we’ll examine some real code.

13.4.2 Specifying the application behavior

Thinking through the architecture is nice, but only the code tells the truth. So let’s go
for a full example of managing our athletes.

 We’ll use a layered architecture similar to figure 13.4, albeit not a strict version.
Our general approach is bottom-up. We begin at the infrastructure layer, starting with
helpers and deciding what DAOs we’re going to provide. DTOs will all be transparent.
From our decisions about DAOs, the business objects will fall into place almost auto-
matically. Finally, we have to implement the application. Because our current focus is
on database programming, we’ll keep the UI and workflow basic and provide a small
command-line interface.

 Here is how the application should work. The application should start by creating
the database schema. With logging enabled, we should see the following output when
the application starts:

DROP TABLE Athlete IF EXISTS;
CREATE TABLE Athlete (
 athleteId INTEGER GENERATED BY DEFAULT AS IDENTITY,
 dateOfBirth DATE,
 firstname VARCHAR(64),
 lastname VARCHAR(64)
);

Entering athletes should be like in this transcript (input in bold):

create Paul Tergat 1969-06-17
1 Athlete(s) in DB:
id firstname lastname dateOfBirth
0: Paul Tergat 1969-06-17
create Khalid Khannouchi
2 Athlete(s) in DB:
id firstname lastname dateOfBirth
0: Paul Tergat 1969-06-17
1: Khalid Khannouchi null

Note that we use the create operation and pass parameters in a well-known sequence.
Missing parameters result in null values. The current list of athletes is displayed after
the operation, sorted by the automatically generated ID.
Licensed to Mark Watson <nordickan@gmail.com>

484 CHAPTER 13 Database programming with Groovy
 The update operation should work for a given ID, fieldname, and new value:

update 1 dateOfBirth 1971-12-22
1 row(s) updated
2 Athlete(s) in DB:
id firstname lastname dateOfBirth
0: Paul Tergat 1969-06-17
1: Khalid Khannouchi 1971-12-22

The list of athletes should be sortable, where the sort is performed by the database,
not in the application code. It needs to support multiple-column sorts:

sort firstname
2 Athlete(s) in DB:
id firstname lastname dateOfBirth
1: Khalid Khannouchi 1971-12-22
0: Paul Tergat 1969-06-17

The delete operation should accept an ID and delete the corresponding row:

delete 1
1 row(s) deleted
1 Athlete(s) in DB:
id firstname lastname dateOfBirth
0: Paul Tergat 1969-06-17

The application is to be terminated with the exit operation.
 No validation of user input needs to be implemented; we also don’t need to grace-

fully handle database errors resulting from bad user input.
 Let’s see how to design and implement the infrastructure, domain model, and

application layer to make this functionality work.

13.4.3 Implementing the infrastructure

The infrastructure contains helpers and DAOs. For our example, we have a single
helper class DbHelper, an AthleteDAO, and a general abstract DataAccessObject as
depicted in figure 13.5.

 The DbHelper is responsible for providing access to an instance of groovy.sql.Sql
through its db property and setting it to a default value. The second responsibility
is to support automatic schema creation by executing the DDL for a given Data-
AccessObject.

 The DataAccessObject is a general implementation of the basic CRUD operations.
The AthleteDAO is a specialization of a DataAccessObject providing the least possible
information for accessing an Athlete table: the fieldnames and their types.

 We’ll next go through the classes to see how they implement their responsibilities.

IMPLEMENTING DBHELPER

The implementation of DbHelper as in listing 13.21 yields no surprises. It contains the
code for a database connection via the Sql class and the SQL template for creating a
table. Unlike in previously presented variants, we now use a SimpleTemplateEngine
for separation of concerns.
Licensed to Mark Watson <nordickan@gmail.com>

485Organizing database work
The template contains the structure of a simple table definition in SQL; the Data-
AccessObject as passed into executeDdl is used for getting details about the table
name and other schema details, such as fieldnames and their SQL types.

package layering

import groovy.sql.Sql
import groovy.text.SimpleTemplateEngine as STE

import org.hsqldb.jdbc.JDBCDataSource

class DbHelper {
 Sql db

 DbHelper() {
 db = new Sql(new JDBCDataSource(
 database: 'jdbc:hsqldb:mem:GinA', user: 'sa', password: ''))
 }

 def simpleTemplate = new STE().createTemplate('''
DROP TABLE $name IF EXISTS;
CREATE TABLE $name (
 ${lowname}Id INTEGER GENERATED BY DEFAULT AS IDENTITY,
$fields
);
''')

Listing 13.21 Athlete example infrastructure: DbHelper

+ getFields() : List

DbHelper

+ db

+ executeDdl(DataAccessObject dao)

DataAccessObject

+ db
+ tablename
+ idField
+ fieldNames
+ schema

AthleteDAO

+ dataSet() : DataSet
+ abstract getFields()
+ all(List sortFieldNames) : List
+ create(List args)
+ update(id, field, newValue)
+ delete(id)

Figure 13.5 UML class diagram of the athlete example’s infrastructure layer
Licensed to Mark Watson <nordickan@gmail.com>

486 CHAPTER 13 Database programming with Groovy
 def executeDdl(DataAccessObject dao) {
 def template = simpleTemplate
 def binding = [
 name: dao.tablename,
 lowname: dao.tablename.toLowerCase(),
 fields: dao.schema.collect { key, val ->
 " ${key.padRight(12)} $val" }.join(",\n")
]
 def stmt = template.make(binding).toString()
 db.execute stmt
 }
}

At first glance, this may look like an oversimplification of SQL table definitions,
because we don’t have to deal with foreign keys or other constraints, views, joins, and
so forth. But it would be easy to expand DbHelper to also cover those scenarios by pro-
viding correspondingly amended templates.

 Because this class works in collaboration with a DataAccessObject, that’s the next
class to implement.

IMPLEMENTING DATAACCESSOBJECT

DAOs encapsulate the knowledge of how to do basic CRUD operations with the data-
base, and DataAccessObject is the general superclass that collects common function-
ality for DAOs. With Groovy SQL, so many operations can be done generally that this
superclass grows large in comparison to its subclasses.

 In addition to the CRUD operations, DataAccessObject uses the structural infor-
mation that its subclasses provide through their class names and the getFields
method to build the DAOs’ meta-information in a general way.

 Subclasses are expected to follow the naming convention of MyTableDAO for a table
of name MyTable. Their getFields method is expected to return a list of strings, alter-
nating between the fieldnames and their SQL type descriptions.

 The following listing shows how DataAccessObject uses this information to
expose the table name, fieldnames, schema, and so forth.

package layering

abstract class DataAccessObject {
 def db

 abstract List getFields()

 def dataSet() { db.dataSet(tablename) }
 def getIdField() { tablename.toLowerCase() + 'Id' }
 private getWhereId() { "WHERE $idField = ?" }

 String getTablename() {
 def name = this.getClass().name
 return name[name.lastIndexOf('.') + 1..-4]
 }

Listing 13.22 Athlete example infrastructure: DataAccessObject

Subclass
implements this to
provide field list

 b

Properties for
use in SQL
statements

 c
Licensed to Mark Watson <nordickan@gmail.com>

487Organizing database work
 def create(List args) {
 Map argMap = [:]
 args.eachWithIndex { arg, i -> argMap[fieldNames[i]] = arg }
 dataSet().add argMap
 }

 Map getSchema() {
 Map result = [:]
 fieldNames.each {
 result[it] = fields[fields.indexOf(it) + 1]
 }
 return result
 }

 List getFieldNames() {
 List result = []
 0.step(fields.size(), 2) { result << fields[it] }
 return result
 }

 def update(field, newValue, id) {
 def stmt = "UPDATE $tablename SET $field = ? $whereId"
 db.executeUpdate stmt, [newValue, id]
 }

 def delete(id) {
 def stmt = "DELETE FROM $tablename $whereId"
 db.executeUpdate stmt, [id]
 }

 def all(sortField) {
 def selects = fieldNames + idField
 def result = []
 def stmt = "SELECT " + selects.join(',') +
 " FROM $tablename ORDER BY $sortField"
 db.eachRow(stmt.toString()) { rs ->
 Map businessObject = [:]
 selects.each { businessObject[it] = rs[it] }
 result << businessObject
 }
 return result
 }
}

Note that the CRUD operations work with prepared statements. The update and
delete statements both use the id column to identify a row, obtaining the appropri-
ate where clause using properties c. The creation operation d takes a list of values,
which it converts into a map by assuming they’re in the same order as the field list pro-
vided by the subclass via the getFields method B. A single read operation e is
provided, but because db is available as a property, callers can provide their own que-
ries easily enough. For this particular application, we don’t need any other read oper-
ations anyway.

 The all method returns business objects transparently as maps.

Creates
operation d

Sample read
operation e
Licensed to Mark Watson <nordickan@gmail.com>

488 CHAPTER 13 Database programming with Groovy
IMPLEMENTING ATHLETEDAO
With all the hard work already done in DataAccessObject, implementing the Athlete-
DAO is a breeze. It’s hardly worth an object.

 The following listing shows how AthleteDAO needs to do nothing else but subclass
DataAccessObject and provide the field information.

package layering

class AthleteDAO extends DataAccessObject {
 List getFields() {
 return [
 'firstname', 'VARCHAR(64)',
 'lastname', 'VARCHAR(64)',
 'dateOfBirth', 'DATE'
]
 }
}

If you ever need specialized versions of CRUD operations or elaborate finder methods,
such a DAO provides the place to put it in. For simple applications, a DAO is overkill
and you can get by without one, as you’ll see in the next section.

13.4.4 Using a transparent domain model

Our application uses transparent business objects, implemented as maps. There is no
Athlete class as you might expect.

 Of course, if we ever needed one, we could easily create it like this:

class Athlete {
 def firstname
 def lastname
 def dateOfBirth
}

Inside the application, we could create these objects, for example, from an Athlete-
DAO call like

athletes = athleteDAO.all('firstname').collect{ new Athlete(it) }

The reason for not introducing such business objects is that they currently add no
value. All their information (the fieldnames) is already available in the DAO.

 The point at which to start using such business objects is when they begin to
depend on other objects in the domain layer or when they provide additional behav-
ior, such as specialized methods.

 In the next section, you’ll see that simple applications are even easier when using
transparent business objects.

Listing 13.23 Athlete example infrastructure: AthleteDAO
Licensed to Mark Watson <nordickan@gmail.com>

489Organizing database work
13.4.5 Implementing the application layer

The application layer is implemented in the AthleteApplication class. Listing 13.24
reveals that it does little more than call the infrastructure and display the transparent
business objects.

 The mainLoop method reads the user input from the console, interpreting the first
word as the operation and any additional input as parameters. It passes this informa-
tion to invokeMethod, which automatically dispatches to the according method call.
Each keyword is implemented by a method of the same name.

package layering

class AthleteApplication {
 def helper = new DbHelper()
 def athleteDAO = new AthleteDAO(db: helper.db)
 def sortBy = 'athleteId'
 def done = false

 def init() { helper.executeDdl(athleteDAO) }

 def exit() { done = true }

 def sort(field) {
 sortBy = field
 list()
 }

 def create(first, last = null, dob = null) {
 athleteDAO.create([first, last, dob])
 list()
 }

 def list() {
 def athletes = athleteDAO.all(sortBy)
 println athletes.size() + ' Athlete(s) in DB: '
 println 'id firstname lastname dateOfBirth'
 athletes.each { athlete ->
 println athlete.athleteId + ': ' +
 athlete.firstname.padRight(10) + ' ' +
 athlete.lastname.padRight(12) + ' ' +
 athlete.dateOfBirth
 }
 }

 def update(id, field, newValue) {
 def count = athleteDAO.update(field, newValue, id)
 println count + ' row(s) updated'
 list()
 }

 def delete(id) {
 def count = athleteDAO.delete(id)
 println count + ' row(s) deleted'
 list()
 }

Listing 13.24 Athlete example application layer: AthleteApplication

Initialization. b
Licensed to Mark Watson <nordickan@gmail.com>

490 CHAPTER 13 Database programming with Groovy
 def mainLoop() {
 def reader = System.in.newReader()
 while (!done) {
 println '\ncommands: create list update delete sort exit'
 def input = reader.readLine().tokenize()
 def method = input.remove(0)
 this."$method"(*input)
 }
 }
}

To use the application, you first need to initialize the database B before calling the
main loop of the class c. Because the commands are provided as the method name
followed by the arguments, you can tokenize each line and treat it as a method call. Of
course, you’d have lots of validation in a real system, but it’s amazing how a functional
console interface can be implemented with so little code.

 You can see this in action in the following listing, which shows a script that fires up
the application, ready for input from the user at the console prompt.

import layering.*

def app = new AthleteApplication()
app.init()
app.mainLoop()

It wasn’t intended originally, but this little application effectively implements a domain-
specific language: a simple line-oriented command language for manipulating the
Athlete table. This example provides a good way to learn Groovy SQL. It’s worth play-
ing with the given code and expanding it in multiple dimensions: more DAOs, rela-
tionships between DAOs (one-to-one, one-to-many), views, more operations, and a more
sophisticated UI.

 You might wonder how to test our AthleteApplication class. Because it takes
input from the console, you can certainly perform manual testing and we’d encour-
age you to do so. It always pays to do some exploratory testing19 in addition to running
your test suites. But we can create a test for our regression suites too by intercepting
the standard input and output streams as shown in the following listing.

import layering.*

def app = new AthleteApplication()
app.init()
ByteArrayOutputStream baos = captureSystemOut()
overrideSystemIn()

Listing 13.25 Running the Athlete example application

19 See www.kaner.com/pdfs/QAIExploring.pdf and James Bach, “What is Exploratory Testing? And How it Dif-
fers from Scripted Testing,” Satisfice Inc., http://www.satisfice.com/articles/what_is_et.shtml.

Listing 13.26 Testing the Athlete example application

Entry point after
initialization. c

Commands are provided as
methods, then arguments.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.kaner.com/pdfs/QAIExploring.pdf
http://www.satisfice.com/articles/what_is_et.shtml

491Organizing database work
app.mainLoop()
verifyOutput(baos)

def captureSystemOut() {
 def baos = new ByteArrayOutputStream()
 System.out = new PrintStream(baos)
 baos
}

def overrideSystemIn() {
 System.in = new ByteArrayInputStream('''\
create Paul Tergat 1969-06-17
create Khalid Khannouchi
update 1 dateOfBirth 1971-12-22
sort firstname
delete 1
exit
'''.bytes)
}

def verifyOutput(output) {
 assert output.toString().readLines()*.trim().join('\n') == '''
commands: create list update delete sort exit
1 Athlete(s) in DB:
id firstname lastname dateOfBirth
0: Paul Tergat 1969-06-17

commands: create list update delete sort exit
2 Athlete(s) in DB:
id firstname lastname dateOfBirth
0: Paul Tergat 1969-06-17
1: Khalid Khannouchi null

commands: create list update delete sort exit
1 row(s) updated
2 Athlete(s) in DB:
id firstname lastname dateOfBirth
0: Paul Tergat 1969-06-17
1: Khalid Khannouchi 1971-12-22

commands: create list update delete sort exit
2 Athlete(s) in DB:
id firstname lastname dateOfBirth
1: Khalid Khannouchi 1971-12-22
0: Paul Tergat 1969-06-17

commands: create list update delete sort exit
1 row(s) deleted
1 Athlete(s) in DB:
id firstname lastname dateOfBirth
0: Paul Tergat 1969-06-17

commands: create list update delete sort exit'''
}

By now, you should have a good idea of how to possibly organize your code around
Groovy SQL to work with relational databases. It has become increasingly popular,
however, to also consider nonrelational data stores. Groovy shines here as well.

Captures standard
output stream for
testing

Replaces standard
input stream with
canned input
Licensed to Mark Watson <nordickan@gmail.com>

492 CHAPTER 13 Database programming with Groovy
13.5 Groovy and NoSQL
We don’t have sufficient space to cover the topic of NoSQL databases at an in-depth
level. Such information is covered elsewhere.20 Instead we plan to whet your appetite
by diving straight into showing you how easy it is to use a couple of the popular NoSQL
databases: MongoDB, a document database, and Neo4j, a graph database. We’ll start
with MongoDB.

13.5.1 MongoDB: A document-style database

Relational database systems like you saw earlier in this chapter store data in (typically)
highly normalized two-dimensional tables with rows and columns. Data values are
(typically) strictly typed and tables can be joined into more complex ones. If you can
predict your data use ahead of time, it’s relatively straightforward to design appropri-
ate database schemas to allow efficient queries to be carried out.

 Document databases take a different tack. Instead of aiming for high levels of nor-
malization, document databases aim to keep related material together in a document
or nested map of information. This allows more ad hoc data structures to be used and
lends itself to being able to scale in large distributed environments. We’ll examine
MongoDB21 (www.mongodb.org) as our exemplar document database.

INSTALLING MONGODB
So let’s get started. MongoDB runs as a separate server process. You’ll need to down-
load and install it by following the instructions on the MongoDB website. Once it’s
installed, run the mongod executable from the command line. You now have a data-
base server you can talk to. You might want to optionally play with the MongoDB shell
to familiarize yourself with some of the database’s features but we’ll move straight on
to accessing it from Groovy via its API.

USING MONGODB
MongoDB has a Java API. Thanks to Groovy’s great Java integration, to interact with
your MongoDB server from Groovy, you could use that API directly but there’s also
a special-purpose Groovy API called GMongo (https://github.com/poiati/gmongo).
That’s what we’ll use.

 Suppose now we wanted to store our original athlete information in MongoDB. We
certainly could mirror our Athlete and Record tables that we used with our relational
database but a more document-style approach would be to keep an athlete and his or
her runs as a single document. So we’ll choose to store an athlete as a map of proper-
ties. One of those properties is the runs, which is a list of maps, each map in the list
representing one run. Let’s work on a script for entering the athlete information.

20 See Seven Databases in Seven Weeks, by E. Redmond and J. R. Wilson (Pragmatic Programmers, 2012) or
“NoSQL,” https://en.wikipedia.org/wiki/NoSQL.

21 Another good source is Kyle Banker, MongoDB in Action, 2nd edition, (Manning Publications, 2011),
www.manning.com/banker/. A second edition is to be published this year.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/poiati/gmongo
http://www.mongodb.org
https://en.wikipedia.org/wiki/NoSQL
http://www.manning.com/banker/

493Groovy and NoSQL
ENTERING INFORMATION

First, we’ll need to access the GMongo library. We’ll do that using @Grab. We’ll use a
field in our script (hence the @Field annotation) to store our reference to the data-
base. For good measure we’ll clean out any earlier versions of an athlete collection
before adding Paul Tergat and his Berlin run into an athlete collection.

@Grab('com.gmongo:gmongo:1.3')
import com.gmongo.GMongo
import groovy.transform.Field

@Field db = new GMongo.getDB('athletes')
db.athletes.drop()
db.athletes << [first: 'Paul', last: 'Tergat', dob: '1969-06-17', runs: [
 [distance: 42195, time: 2*60*60 + 4*60 + 55,
 venue: 'Berlin', when: '2003-09-28']
]]

If we want to add lots of athletes and runs (perhaps at different times) it might be use-
ful to define a couple of helper methods:

def insertAthlete(first, last, dob) {
 db.athletes << [first: first, last: last, dob: dob]
}

def insertRun(h, m, s, venue, date, lastname) {
 db.athletes.update(
 [last: lastname],
 [$addToSet: [runs: [distance: 42195,
 time: h * 60 * 60 + m * 60 + s,
 venue: venue, when: date]]]
)
}

Note that because we’re storing an athlete’s runs with the athlete (all one document,
remember) we use an update method and a special $addToSet operator, which together
will accumulate any runs we add into the runs property. Here’s how we might use
those methods:

insertAthlete('Khalid', 'Khannouchi', '1971-12-22')
insertAthlete('Ronaldo', 'da Costa', '1970-06-07')

insertRun(2,5,38, 'London', '2002-04-14', 'Khannouchi')
insertRun(2,5,42, 'Chicago', '1999-10-24', 'Khannouchi')
insertRun(2,6,05, 'Berlin', '1998-09-20', 'da Costa')

This should look very familiar to you. The fact that we split out the two helper meth-
ods means that we normalized to some extent data entry.

 Given that we might want to add any arbitrary document, it should come as no sur-
prise that GMongo supports mechanisms to enter whole documents not just rows.
We’ll look at entering Paula Radcliffe’s information as a JSON document:

import com.mongodb.util.JSON

def radcliffe = """{
 first: 'Paula',
Licensed to Mark Watson <nordickan@gmail.com>

494 CHAPTER 13 Database programming with Groovy
 last: 'Radcliffe',
 dob: '1973-12-17',
 runs: [
 {distance: 42195, time: ${2*60*60+15*60+25},
 venue: 'London', when: '2003-04-13'}
]
}"""

db.athletes << JSON.parse(radcliffe)

Now let’s look at forms for querying our athlete information.

QUERYING OUR DATABASE

First, we’ll check how many athletes we have and then list each athlete we find in
the collection:

assert db.athletes.count == 4
db.athletes.find().each {
 println "$it._id $it.last ${it.runs.size()}"
}

For our system this prints out

516b15fc2b10a15fa09331f2 Tergat 1
516b15fc2b10a15fa09331f3 Khannouchi 2
516b15fc2b10a15fa09331f4 da Costa 1
516b15fc2b10a15fa09331f5 Radcliffe 1

If you run this yourself, you’ll no doubt see something similar but with your own
unique IDs. Next, let’s confirm the athletes who have run in London:

def londonAthletes = db.athletes.find('runs.venue': 'London')*.first
assert londonAthletes == ['Khalid', 'Paula']

Now we’ll retrieve the first names of the athletes born after 1970 (sorted from young-
est to oldest):

def youngAthletes = db.athletes.aggregate(
 [$project: [first: 1, dob: 1]],
 [$match: [dob: [$gte: '1970-01-01']]],
 [$sort: [dob: -1]]
)
assert youngAthletes.results()*.first == ['Paula', 'Khalid', 'Ronaldo']

Let’s look at those steps as a single listing.

@Grab('com.gmongo:gmongo:1.3')
import com.gmongo.GMongo
import com.mongodb.util.JSON
import groovy.transform.Field

@Field db = new GMongo().getDB('athletes')
db.athletes.drop()

Listing 13.27 Athletes stored in MongoDB
Licensed to Mark Watson <nordickan@gmail.com>

495Groovy and NoSQL
db.athletes << [first: 'Paul', last: 'Tergat', dob: '1969-06-17', records: [
 [time: 2 * 60 * 60 + 4 * 60 + 55,
 venue: 'Berlin', when: '2003-09-28']
]]

def insertAthlete(first, last, dob) {
 db.athletes << [first: first, last: last, dob: dob]
}

def insertRecord(h, m, s, venue, date, lastname) {
 db.athletes.update(
 [last: lastname],
 [$addToSet: [records: [time: h * 60 * 60 + m * 60 + s,
 venue: venue, when: date]]]
)
}

insertAthlete('Khalid', 'Khannouchi', '1971-12-22')
insertAthlete('Ronaldo', 'da Costa', '1970-06-07')

insertRecord(2, 5, 38, 'London', '2002-04-14', 'Khannouchi')
insertRecord(2, 5, 42, 'Chicago', '1999-10-24', 'Khannouchi')
insertRecord(2, 6, 05, 'Berlin', '1998-09-20', 'da Costa')

def radcliffe = """{
 first: 'Paula',
 last: 'Radcliffe',
 dob: '1973-12-17',
 records: [
 {time: ${2 * 60 * 60 + 15 * 60 + 25},
 venue: 'London', when: '2003-04-13'}
]
}"""

db.athletes << JSON.parse(radcliffe)

assert db.athletes.count == 4
db.athletes.find().each {
 println "$it._id $it.last ${it.records.size()}"
}

def londonAthletes = db.athletes.find('records.venue': 'London')*.first
assert londonAthletes == ['Khalid', 'Paula']

def youngAthletes = db.athletes.aggregate(
 [$project: [first: 1, dob: 1]],
 [$match: [dob: [$gte: '1970-01-01']]],
 [$sort: [dob: -1]]
)

assert youngAthletes.results()*.first == ['Paula', 'Khalid', 'Ronaldo']

That sure was a whirlwind tour of MongoDB, but we hope we’ve given you a flavor for
the document style of NoSQL database. Next, we’ll look at a graph database.

13.5.2 Neo4J: A graph database

Graph databases store structured data in terms of nodes, edges, and properties. They’re
ideally suited to data that’s highly interrelated. Individual nodes use edges to point to
Licensed to Mark Watson <nordickan@gmail.com>

496 CHAPTER 13 Database programming with Groovy
data they’re related to. When deep interconnections exist within the data, the extra
overheads of storing this additional edge information yield extremely fast query and
traversal times compared to more traditional approaches.

 We’ll use the popular Neo4j (www.neo4j.org/) database to illustrate a graph data-
base.22 Let’s start by defining our athlete information. To make it more interesting
from a graph point of view we’ll add information about the relationship between mar-
athon records, such as when one record broke an earlier record. Let’s have a look at
how we might code this in a script. We’ll cover adding each piece of information
before showing you a complete listing.

ENTERING INFORMATION

First we define the necessary @Grab to make the Neo4j library available. We define a
variable in our script to point to the database. We’re using Neo4j in its embedded
mode so there’s no need for any other kind of installation:

@Grab('org.neo4j:neo4j-kernel:2.1.6')
import org.neo4j.graphdb.*
import org.neo4j.graphdb.factory.GraphDatabaseFactory

def factory = new GraphDatabaseFactory()
def db = factory.newEmbeddedDatabase("marathon")

We also declare an enum to capture the relationships that we’ll be representing within
our data:

enum MyRelationshipTypes implements RelationshipType { set, broke }

We’ve chosen to use a bit of metaprogramming magic here to make our remaining
code be more succinct:

Node.metaClass {
 propertyMissing { String name, val -> delegate.setProperty(name, val) }
 propertyMissing { String name -> delegate.getProperty(name) }
 methodMissing { String name, args ->
 delegate.createRelationshipTo(args[0], MyRelationshipTypes."$name")
 }
}

With these definitions in place, here’s how we define Paul Tergat and his Berlin record:

def tx = db.beginTx()
def athlete1, record1
try {
 athlete1 = db.createNode()
 athlete1.first = 'Paul'
 athlete1.last = 'Tergat'
 athlete1.dob = '1969-06-17'
 record1 = db.createNode()
 record1.distance = 42195

22 Another good source is Aleksa Vukotic et al., Neo4j in Action (Manning Publications, 2014), www.man-
ning.com/partner/.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.neo4j.org/
http://www.manning.com/partner/
http://www.manning.com/partner/

497Groovy and NoSQL
 record1.time = 2*60*60+4*60+55
 record1.venue = 'Berlin'
 record1.when = '2003-09-28'
 athlete1.set(record1)

 def venue = marathon1.venue
 def when = marathon1.when
 println "$athlete1.first $athlete1.last won the $venue marathon on $when"

 tx.success()
} finally {
 tx.close()
 db.shutdown()
}

As in previous examples, we might wish to define helper methods to make additional ath-
lete and run definitions easier. First a little bit more metaprogramming will be useful:

GraphDatabaseService.metaClass {
 createNode { Map properties ->
 def n = delegate.createNode()
 properties.each{ k, v -> n[k] = v }
 n
 }
}
Relationship.metaClass {
 propertyMissing { String name, val -> delegate.setProperty(name, val) }
 propertyMissing { String name -> delegate.getProperty(name) }
}

These will let us use a Map-flavored variant for createNode. Now our helper methods are:

def athlete(db, first, last, dob) {
 db.createNode(first: first, last: last, dob: dob)
}

def record(db, h, m, s, venue, when, athlete) {
 def secs = h * 60 * 60 + m * 60 + s
 def record = db.createNode(time: secs, venue: venue, when: when)
 athlete.set(record)
 run
}

With these definitions in place, we can add the additional athletes:

athlete2 = athlete(db, 'Khalid', 'Khannouchi', '1971-12-22')
record2a = record(db, 2, 5, 38, 'London', '2002-04-14', athlete2)
record2b = record(db, 2, 5, 42, 'Chicago', '1999-10-24', athlete2)

athlete3 = athlete(db, 'Ronaldo', 'da Costa', '1970-06-07')
record3 = record(db, 2, 6, 5, 'Berlin', '1998-09-20', athlete3)

athlete4 = athlete(db, 'Paula', 'Radcliffe', '1973-12-17')
record4a = record(db, 2, 17, 18, 'Chicago', '2002-10-13', athlete4)
record4b = record(db, 2, 15, 25, 'London', '2003-04-13', athlete4)
Licensed to Mark Watson <nordickan@gmail.com>

498 CHAPTER 13 Database programming with Groovy
QUERYING OUR DATABASE

We can perform queries on the athletes and their relationships as follows:

def allAthletes = [athlete1, athlete2, athlete3, athlete4]
def londonRecords = allAthletes.findAll { athlete ->
 athlete.getRelationships(MarathonRelationships.set).any {
 record -> record.getOtherNode(athlete).venue == 'London'
 }
}
assert londonRecords*.last == ['Khannouchi', 'Radcliffe']

The real power of graph databases comes into play when we have more interesting
relationships. Let’s add a broke relationship to indicate that one marathon world
record broke an earlier one:

record2b.broke(record3)
record2a.broke(record2b)
record1.broke(record2a)
record4b.broke(record4a)

Figure 13.6 illustrates these relationships graphically.
 With these relationships in place we can now perform more interesting queries that

rely on the graph structure of the data. We can use the API from earlier when we deter-
mined which athletes have won a race in London. This API can become a little bit cum-
bersome with complex graph algorithms. Fortunately, Neo4j comes with special traversal
methods especially for when working with graph algorithms. Let’s use the traversal facili-
ties to find all records that superseded Ronaldo da Costa’s Berlin world record:

import org.neo4j.graphdb.traversal.*

println "World records following $record3.venue $record3.when:"
def result = []
 for (Path p in db.traversalDescription().breadthFirst().
 relationships(MarathonRelationships.broke).
 evaluator(Evaluators.fromDepth(1)).

da Costa
set

broke

broke

broke

set

set

set

Khannouchi

Tergat

Berlin

1998

Chicago

1999

London

2002

Berlin

2003 Figure 13.6 Marathon world
records showing edge relationships
Licensed to Mark Watson <nordickan@gmail.com>

499Groovy and NoSQL
 uniqueness(Uniqueness.NONE).
 traverse(record3)) {
 def newRecord = p.endNode()
 println "$newRecord.venue $newRecord.when"
 }

Running this yields the following output:

World records following Berlin 1998-09-20:
Chicago 1999-10-24
London 2002-04-14
Berlin 2003-09-28

That took quite a few steps. Let’s see it all together in a single listing.

@Grab('org.neo4j:neo4j-kernel:2.1.6')
@Grab('org.neo4j:neo4j-lucene-index:2.1.6;transitive=false')
@Grab('org.apache.lucene:lucene-core:3.6.2')
import org.neo4j.graphdb.*
import org.neo4j.graphdb.traversal.*
import static util.Neo4jUtil.*

def db = create()
def tx = null
def athlete1, athlete2, athlete3, athlete4
def record1, record2a, record2b, record3, record4a, record4b
try {
 tx = db.beginTx()

 athlete1 = db.createNode()
 athlete1.first = 'Paul'
 athlete1.last = 'Tergat'
 athlete1.dob = '1969-06-17'

 record1 = db.createNode()
 record1.time = 2 * 60 * 60 + 4 * 60 + 55
 record1.venue = 'Berlin'
 record1.when = '2003-09-28'

 athlete1.set(record1)

 assert 'Paul Tergat won the Berlin marathon on 2003-09-28' ==
 "$athlete1.first $athlete1.last won the " +
 "$record1.venue marathon on $record1.when"

 athlete2 = insertAthlete(
 db, 'Khalid', 'Khannouchi', '1971-12-22')
 record2a = insertRecord(
 db, 2, 5, 38, 'London', '2002-04-14', athlete2)
 record2b = insertRecord(
 db, 2, 5, 42, 'Chicago', '1999-10-24', athlete2)

 athlete3 = insertAthlete(db, 'Ronaldo', 'da Costa', '1970-06-07')
 record3 = insertRecord(db, 2, 6, 5, 'Berlin', '1998-09-20', athlete3)

Listing 13.28 Neo4J marathon database

Creates
athlete1
by hand

Creates
record1
by hand

Creates nodes
using utility
methods
Licensed to Mark Watson <nordickan@gmail.com>

500 CHAPTER 13 Database programming with Groovy
 athlete4 = insertAthlete(db, 'Paula', 'Radcliffe', '1973-12-17')
 record4a = insertRecord(
 db, 2, 17, 18, 'Chicago', '2002-10-13', athlete4)
 record4b = insertRecord(
 db, 2, 15, 25, 'London', '2003-04-13', athlete4)

 def allAthletes = [athlete1, athlete2, athlete3, athlete4]
 def londonRecords = allAthletes.findAll { athlete ->
 athlete.getRelationships(MarathonRelationships.set).any {
 record -> record.getOtherNode(athlete).venue == 'London'
 }
 }
 assert londonRecords*.last == ['Khannouchi', 'Radcliffe']

 record2b.broke(record3)
 record2a.broke(record2b)
 record1.broke(record2a)
 record4b.broke(record4a)

 def result = []
 for (Path p in db.traversalDescription().breadthFirst().
 relationships(MarathonRelationships.broke).
 evaluator(Evaluators.fromDepth(1)).
 uniqueness(Uniqueness.NONE).
 traverse(record3)) {
 def newRecord = p.endNode()
 result << "$newRecord.venue $newRecord.when"
 }
 def expected = ['Chicago 1999-10-24',
 'London 2002-04-14',
 'Berlin 2003-09-28']
 assert expected == result

 tx.success()
} finally {
 tx?.close()
}

Such graph-based queries are so common for graph databases that a special Groovy-
based DSL called Gremlin23 has been devised to make writing such queries a bit easier.

USING GREMLIN

Let’s use Gremlin and perform some similar queries again. First, we add the necessary
@Grab commands to load the Gremlin library and the needed import statements:

@Grab('com.tinkerpop.gremlin:gremlin-groovy:2.6.0')
@Grab('com.tinkerpop.blueprints:blueprints-neo4j-graph:2.6.0')
@Grab('com.tinkerpop.blueprints:blueprints-core:2.6.0')
import com.tinkerpop.blueprints.Graph
import com.tinkerpop.blueprints.impls.neo4j.Neo4jGraph
import com.tinkerpop.gremlin.groovy.Gremlin

23 Gremlin is a DSL for traversing property graphs. See https://github.com/tinkerpop/gremlin.

Finds
athletes
holding a
record set
in London

Specifies
additional
graph edges
of interest

Finds world
records
superseding
record3
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/tinkerpop/gremlin

501Groovy and NoSQL
Next we need to initialize Gremlin (it enables similar metaprogramming to what we’ve
done manually earlier in this section) and then create a Gremlin Graph object, which
will let us do our queries:

Gremlin.load()

Graph g = new Neo4jGraph(graphDb)

The expression g.V('venue', 'London') finds all vertices in our graph that have
their venue property set to London. We can use that expression to find all the records
set in London:

def pretty = { it.collect{ "$it.venue $it.when" }.join(', ') }
def results = []
g.V('venue', 'London').fill(results)
println 'London world records: ' + pretty(results)

For our data this will produce

London world records: London 2002-04-14, London 2003-04-13

We can also find all world records set immediately after (that is, breaking) a world
record set in London:

results = []
g.V('venue', 'London').in('broke').fill(results)
println 'World records after London: ' + pretty(results)

For our data, this produces

World records after London: Berlin 2003-09-28

And to see traversal in action, we can find all world records after Ronaldo da Costa’s
Berlin world record:

results = []
def berlin98 = { it.venue == 'Berlin' && it.when.startsWith('1998') }
def emitAll = { true }
def forever = { true }
g.V.filter(berlin98).in('broke').
 loop(1, forever, emitAll).fill(results)
println 'World records after Berlin 1998: ' + pretty(results)

For our data, this produces

World records after London: Berlin 2003-09-28
World records after Berlin 1998: Chicago 1999-10-24, London 2002-04-14,

Berlin 2003-09-28

Let’s see that one more time as a complete listing.

@Grab('org.neo4j:neo4j-kernel:2.1.6')
@Grab('org.neo4j:neo4j-management:2.1.6')
@Grab('org.neo4j:neo4j-cypher:2.1.6;transitive=false')
@Grab('org.neo4j:neo4j-cypher-commons:2.1.6;transitive=false')

Listing 13.29 Neo4J with Gremlin
Licensed to Mark Watson <nordickan@gmail.com>

502 CHAPTER 13 Database programming with Groovy
@Grab('org.neo4j:neo4j-cypher-compiler-1.9:2.0.4;transitive=false')
@Grab('org.neo4j:neo4j-cypher-compiler-2.0:2.0.4;transitive=false')
@Grab('org.neo4j:neo4j-cypher-compiler-2.1:2.1.6;transitive=false')
@Grab('org.neo4j:neo4j-lucene-index:2.1.6;transitive=false')
@Grab('org.apache.lucene:lucene-core:3.6.2')
@Grab('com.tinkerpop.gremlin:gremlin-groovy:2.6.0;transitive=false')
@Grab('com.tinkerpop.gremlin:gremlin-java:2.6.0;transitive=false')
@Grab('com.tinkerpop.blueprints:\
blueprints-neo4j2-graph:2.6.0;transitive=false')
@Grab('commons-configuration:commons-configuration:1.6')
@Grab('com.tinkerpop.blueprints:blueprints-core:2.6.0;transitive=false')
@Grab('com.tinkerpop:pipes:2.6.0;transitive=false')
@Grab('org.parboiled:parboiled-scala_2.10:1.1.6;transitive=false')
@Grab('org.parboiled:parboiled-core:1.1.6')
@Grab('org.scala-lang:scala-library:2.10.4')
@Grab('com.googlecode.concurrentlinkedhashmap:\
concurrentlinkedhashmap-lru:1.4.1')
@GrabExclude('junit:junit')
@GrabExclude('org.hamcrest:hamcrest-all')
@GrabExclude('org.mockito:mockito-core')

import com.tinkerpop.blueprints.Graph
import com.tinkerpop.blueprints.impls.neo4j2.Neo4j2Graph
import com.tinkerpop.gremlin.groovy.Gremlin
import static util.Neo4jUtil.*

def db = create()
def tx = null
def athlete1, athlete2, athlete3, athlete4
def record1, record2a, record2b, record3, record4a, record4b

Gremlin.load()

try {
 tx = db.beginTx()

 // create athlete1 .. athlete4
 athlete1 = insertAthlete(db, 'Paul', 'Tergat', '1969-06-17')
 record1 = insertRecord(
 db, 2, 4, 55, 'Berlin', '2003-09-28', athlete1)

 athlete2 = insertAthlete(db, 'Khalid', 'Khannouchi', '1971-12-22')
 record2a = insertRecord(
 db, 2, 5, 38, 'London', '2002-04-14', athlete2)
 record2b = insertRecord(
 db, 2, 5, 42, 'Chicago', '1999-10-24', athlete2)

 athlete3 = insertAthlete(db, 'Ronaldo', 'da Costa', '1970-06-07')
 record3 = insertRecord(
 db, 2, 6, 5, 'Berlin', '1998-09-20', athlete3)

 athlete4 = insertAthlete(db, 'Paula', 'Radcliffe', '1973-12-17')
 record4a = insertRecord(
 db, 2, 17, 18, 'Chicago', '2002-10-13', athlete4)
 record4b = insertRecord(
 db, 2, 15, 25, 'London', '2003-04-13', athlete4)

 record2b.broke(record3)
 record2a.broke(record2b)
Licensed to Mark Watson <nordickan@gmail.com>

503Other approaches
 record1.broke(record2a)
 record4b.broke(record4a)

 Graph g = new Neo4j2Graph(db)

 def pretty = { it.collect { "$it.venue $it.when" }.join(', ') }
 def results = []
 g.V('venue', 'London').fill(results)
 println 'London world records: ' + pretty(results)

 results = []
 g.V('venue', 'London').in('broke').fill(results)
 println 'World records after London: ' + pretty(results)

 results = []
 def emitAll = { true }
 def forever = { true }
 def berlin98 = { it.venue == 'Berlin' &&
 it.when.startsWith('1998') }
 g.V.filter(berlin98).in('broke').
 loop(1, forever, emitAll).fill(results)
 println 'World records after Berlin 1998: ' + pretty(results)
 tx.success()
} finally {
 tx?.close()
}

That wraps up our brief tour of graph databases and Neo4j. We’re almost done. On
the final pages in this chapter, we want to cover other approaches you might find
when persisting data.

13.6 Other approaches
For some time now, language and library providers have been trying to make data-
bases easier to use. There have been many approaches, including several along the
lines of object-relational mapping (ORM). In the most general terms, ORM frameworks
allow developers to describe their data models, including the relationships, for use
in an object-oriented language. The idea is to retrieve data from the database as
objects using an object-oriented search facility, manipulate the objects, and then
persist any changes back to the database. The ORM system takes care of adding and
deleting records in the right order to satisfy constraints, datatype conversions, and
similar concerns.

 This sounds wonderful, but reality is more complicated than theory, as always. In
particular, new databases can often be designed to be “ORM-friendly,” but existing
databases are sometimes significantly harder to work with. The situation can become
sufficiently complex that the author Ted Neward has referred to ORM as “the Vietnam
of computer science.”24

24 “The Vietnam of Computer Science,” June 26, 2006, http://blogs.tedneward.com/2006/06/26/The+Vietnam
+Of+Computer+Science.aspx.
Licensed to Mark Watson <nordickan@gmail.com>

http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx
http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx

504 CHAPTER 13 Database programming with Groovy
 There are many different approaches and libraries, both free and commercial, for
many different platforms. In the Java world, two of the best-known players in the field
are the Java Data Objects (JDO) specification and Hibernate. The latest Enterprise Java-
Beans (EJB) (also known as the Java Persistence Architecture (JPA) specification) includes
ORM to allow implementation-independent expression of relationships. It has yet to
be seen how well this independence will work in practice.

 As you’ve seen, Groovy provides more object-oriented database access than good-
old JDBC, but it doesn’t implement a full-blown ORM solution. Of course, because it
integrates seamlessly with Java, any of the solutions available in Java can be used in
Groovy too.

 Even within the Groovy library, more can be done without crossing the line into
full ORM. We expect future versions of Groovy to ship with DataSets that support all
CRUD operations, a general DAO implementation, and possibly ready-made Active-
Record support.

 Beyond the Groovy library are activities to come up with a special Groovy ORM
(GORM). This is an approach that builds on Hibernate but relieves the programmer
of all the configuration work by relying on code and naming conventions. GORM is
developed as a part of the Grails project.

 Finally, we’d like to emphasize that it would be a misconception to see ORM as the
final solution to database programming and to dismiss all other approaches. ORM is
targeted at providing object persistence and transaction support. It tries to shield you
from the relational model (to some extent). When selecting an ORM solution, make
sure it allows you to exploit the relational model. Otherwise, you’re losing most of the
power that you paid your database vendor for.

 We find the Groovy SQL approach appealing: it provides good means for working
with the relational model with an almost ORM-like feeling for the simple cases while
keeping all statements under programmatic control.

 Before leaving this section we would be remiss if we didn’t mention the Spring
Data project (www.springsource.org/spring-data). This project aims to provide an
overarching framework to make it easier for Spring-based applications to use rela-
tional and nonrelational databases, MapReduce frameworks, and cloud-based data ser-
vices. Groovy integrates well with Spring so you may wish to consider using Spring Data
from your Groovy or Grails applications to remove some of the differences between the
different persistence options.

13.7 Summary
In this chapter, we’ve shown you that Groovy has considerable support for database
programming within its standard library. Groovy SQL is available wherever Groovy is.
You don’t need to install any additional modules. It’s also easy to integrate with the
many available NoSQL databases either via their Java support or in some cases with spe-
cial Groovy functionality.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.springsource.org/spring-data

505Summary
 Groovy SQL is made from a small set of classes that build on JDBC and make it
Groovy-friendly. Important features are as follows:

■ Minimal setup for database access
■ Simple execution of SQL statements
■ Improved reliability through automatic, transparent resource handling (Data-

Source, Connection, Statement, ResultSet)
■ Easy transparent use of prepared statements with GStrings
■ Convenience with DataSets (adding, nested filtering with expressions)
■ Transparent DTOs
■ Optionally transparent DAOs and business objects

The filtering available in the DataSet class is particularly important in terms of clo-
sures being understood not only as a block of code but also as an abstract syntax tree.
This can allow logic to be expressed in a manner familiar to the developer without the
potentially huge inefficiency of retrieving all the data from the database and filtering
it within the application.

 You’ve seen how an example application can be written with the help of Groovy
SQL so that the code organization fits into architectural layers and database program-
ming patterns with little work.

 Although Groovy doesn’t provide any true ORM facilities, it integrates well with
existing solutions; and where the full complexities of ORM aren’t required, the facili-
ties provided above and beyond straight JDBC can help tremendously.

 Groovy doesn’t come with NoSQL drivers out of the box but it’s easy to find appropri-
ate drivers and often special Groovy support for many of the available NoSQL databases.
Licensed to Mark Watson <nordickan@gmail.com>

Working with XML
and JSON
Perfection is achieved not when you have nothing more to add, but when you
have nothing left to take away.

 —Antoine de Saint-Exupéry

Computing means applying logic to data. We retrieve data, process it, and store it
again. Processing is the essential activity while retrieving and storing are just neces-
sities. All the aspects of various data formats, encodings, and access protocols can
get complex, though, and the required work is likely to distract us. Groovy helps us
to stay focused by making the data handling part almost transparent.

 We’re going to explore two data serialization formats that have special built-in
support in the Groovy standard library: XML and JSON. Most of the chapter is
devoted to XML, which is the more mature approach and has more options avail-
able for its production and consumption. JSON is another popular serialization

This chapter covers
■ Reading and writing XML and JSON
■ Transforming treelike structures in-place

and as streams
■ Navigating inside structured data
506

Licensed to Mark Watson <nordickan@gmail.com>

507Reading XML documents
format for semistructured data. We’ll briefly cover the details of processing JSON very
efficiently at the end of the chapter.

 XML, the eXtensible Markup Language, is so commonly used these days that it’s
hard to believe there were times without it. The World Wide Web Consortium (W3C)
standardized the first version of XML in 1996.

 The widespread use of XML and worldwide adoption of Java took place at about
the same time. This may be one of the reasons why the Java platform developed such
excellent support for working with XML. Not only are there the built-in SAX and DOM
APIs, but many other libraries have appeared over time for parsing and creating XML
and for working with it using standards such as XPath.

 The topic of XML has the unusual property of being simple and complex at the
same time. XML is straightforward until you bring in namespaces, entities and the like.

 Similarly, although it’s feasible to demonstrate one way of working with XML fairly
simply, giving a good overview of all (or even most) of the ways of working with XML
would require more space than we have in this book. We’ll concentrate on the new
capabilities that Groovy brings, as well as mention the enhanced support for the DOM
API. Even limiting ourselves to these topics doesn’t let us explore every nook and cranny.

 This chapter is broadly divided into three parts:

■ Techniques for parsing XML in Groovy.
■ Tricks for processing and transforming XML.
■ Groovy support for parsing JSON, which is probably the most widespread alter-

native to XML.

We assume you already have a reasonable understanding of XML. If you find yourself
struggling with any of the XML concepts we use in this chapter, please refer to one of
the many available XML books.1

 XML processing typically starts with reading an XML document, which is our
first topic.

14.1 Reading XML documents
When working with XML, we have to somehow read it to begin with. This section will
lead you through the many options available in Groovy for parsing XML: the normal
DOM route, enhanced by Groovy; Groovy’s own XmlParser and XmlSlurper classes;
SAX event-based parsing; and StAX pull-parsers.

 Let’s suppose we have a little data store in XML format for planning our Groovy
self-education activities. In this data store, we capture how many hours per week we
can invest in this training, what tasks need to be done, and how many hours each task
will eat up in total. To keep track of our progress, we’ll also store how many hours are
“done” for each task and optionally a little summary of how the task went.

1 We recommend XML Made Simple by S. Deane and R. Henderson (Made Simple, 2003) as an introductory
text, and XML 1.1 Bible by E. R. Harold (Wiley, 2004) for more comprehensive coverage.
Licensed to Mark Watson <nordickan@gmail.com>

508 CHAPTER 14 Working with XML and JSON
 The following listing shows our XML data store that resides in a file named data/
plan.xml.

<plan>
 <week capacity="8">
 <task done="2" total="2" title="read XML chapter">easy</task>
 <task done="3" total="3" title="try some reporting">fun</task>
 <task done="1" total="2" title="use in current project"/>
 </week>
 <week capacity="8">
 <task done="0" total="1" title="re-read DB chapter"/>
 <task done="0" total="3" title="use DB/XML combination"/>
 </week>
</plan>

We plan for two weeks, with eight hours for education each week. Three tasks are
scheduled for the current week: reading this chapter (two hours for a quick reader),
playing with the newly acquired knowledge (three hours of real fun), and using it in
the real world (one hour done and one still left).

 This will be our running example for most of the chapter.
 For reading such a data store, we’ll present two different approaches: using tech-

nologies built into the JRE, and then using the Groovy parsers. We’ll start with the
more familiar DOM parser.

14.1.1 Working with a DOM parser

Why do we bother with Java’s classic DOM parsers? Shouldn’t we restrict ourselves to
show only Groovy specifics here?

 First, even in Groovy code, we sometimes need DOM objects for further processing;
for example, when applying XPath expressions to an object as we’ll explain in sec-
tion 14.2.4. For that reason, we show the Groovy way of retrieving the DOM repre-
sentation of our data store with the help of Java’s DOM parsers. Second, there’s basic
Groovy support for dealing with DOM NodeLists, and Groovy also provides extra helper
classes to simplify common tasks within the DOM. Third, it’s much easier to appreciate
how slick the Groovy parsers are after having seen the “old” way of reading XML.

 We start by loading a DOM tree into memory.

GETTING THE DOCUMENT

Not surprisingly, the DOM is based around the central abstraction of a document, real-
ized as the Java interface org.w3c.dom.Document. An object of this type will hold our
data store.

 The Java way of retrieving a document is through the parse method of a Document-
Builder (that is, a parser). This method takes an InputStream to read the XML from.
So a first attempt at reading would look like this:

def doc = builder.parse(new FileInputStream('data/plan.xml'))

Listing 14.1 Example data store data/plan.xml
Licensed to Mark Watson <nordickan@gmail.com>

509Reading XML documents
Where does builder come from? We’re working slowly backward to find a solution. The
builder must be of type DocumentBuilder. Instances of this type are delivered from a
DocumentBuilderFactory, which has a factory method called newDocumentBuilder:

def builder = fac.newDocumentBuilder()
def doc = builder.parse(new FileInputStream('data/plan.xml'))

Where does this factory come from? There’s a static method to create one of those.
Here it’s all together:

import javax.xml.parsers.DocumentBuilderFactory

def fac = DocumentBuilderFactory.newInstance()
def builder = fac.newDocumentBuilder()
def doc = builder.parse(new FileInputStream('data/plan.xml'))

Java’s XML handling API is designed with flexibility in mind.2 A downside of this flexibil-
ity is that for our simple example, we have a few hoops to jump through to retrieve our
file. It’s not too bad, though, and now that we have it we can dive into the document.

WALKING THE DOM
The document object isn’t yet the root of our data store. To get the top-level ele-
ment, which is plan in our case, we have to ask the document for its document-
Element property:

def plan = doc.documentElement

We can now work with the plan variable. It’s of type org.w3c.dom.Node and so it can
be asked for its nodeType and nodeName. The nodeType is Node.ELEMENT_NODE, and the
nodeName is plan.

 The design of such DOM nodes is a bit unusual (to put it mildly). Every node
has the same properties, such as nodeType, nodeName, nodeValue, childNodes, and
attributes (to name only a few; see the API documentation for the full list). But
what’s stored in these properties and how they behave depends on the value of the
nodeType property.

 We’ll deal with types ELEMENT_NODE, ATTRIBUTE_NODE, and TEXT_NODE (see the API
documentation for the exhaustive list).

 It’s not surprising that XML elements are stored in nodes of type ELEMENT_NODE,
but it’s surprising that attributes are also stored in node objects (of nodeType
ATTRIBUTE_NODE). To make things even more complex, each value of an attribute is
stored in an extra node object (with nodeType TEXT_NODE). This complexity is a
large part of the reason why simpler APIs such as JDOM, dom4j, and XOM have
become popular.

2 The DocumentBuilderFactory can be augmented in several ways to deliver DocumentBuilder implemen-
tations. See its API documentation for details.
Licensed to Mark Watson <nordickan@gmail.com>

510 CHAPTER 14 Working with XML and JSON
As an example, the nodes and their names, types, and values are depicted in figure 14.1
for the first week element in the data store.

 The fact that node objects behave differently with respect to their nodeType leads
to code that needs to work with this distinction. For example, when reading informa-
tion from a node, you need a method such as this:

import org.w3c.dom.Node
String info(node) {
 switch (node.nodeType) {
 case Node.ELEMENT_NODE:
 return 'element: '+ node.nodeName
 case Node.ATTRIBUTE_NODE:
 return "attribute: ${node.nodeName}=${node.nodeValue}"
 case Node.TEXT_NODE:
 return 'text: '+ node.nodeValue
 }
 return 'some other type: '+ node.nodeType
}

With this helper method, you have almost everything you need to read information
from the data store. Two pieces of information aren’t yet explained: the types of the
childNodes and attributes properties.

capacity

8

ATTRIBUTE_NODE

nodeName

Legend:

nodeValue

nodeType

attributes

8

TEXT_NODE

plan

ELEMENT_NODE

week

ELEMENT_NODE

childNodes

childNodes

childNodes

Figure 14.1 Example of a DOM object model (excerpt) for element, attribute, and text nodes
Licensed to Mark Watson <nordickan@gmail.com>

511Reading XML documents
 The childNodes property is of type org.w3c.dom.NodeList. Unfortunately, it
doesn’t extend the java.util.List interface but provides its own methods, get-
Length and item(index). This makes it inconvenient to work with (think error-prone
for loops). Fortunately the groovy-xml module provides an iterator method for
NodeList that’s all that Groovy requires to make its object iteration methods (each,
find, findAll, and so on) available on that type (as you already saw in section 12.1.3).

 The attributes property is of type org.w3c.dom.NamedNodeMap, which doesn’t
extend java.util.Map either. We’ll use its getNamedItem(name) method.

 The following listing puts all this together and reads our plan from the XML data
store, walking into the first task of the first week.

import javax.xml.parsers.DocumentBuilderFactory
import static org.w3c.dom.Node.*

def factory = DocumentBuilderFactory.newInstance()
def builder = factory.newDocumentBuilder()
def doc = builder.parse(new FileInputStream('data/plan.xml'))
def plan = doc.documentElement

String info(node) {
 switch (node.nodeType) {
 case ELEMENT_NODE:
 return "element: $node.nodeName"
 case ATTRIBUTE_NODE:
 return "attribute: $node.nodeName=$node.nodeValue"
 case TEXT_NODE:
 return "text: $node.nodeValue"
 }
 return "some other type: $node.nodeType"
}

assert info(plan) == 'element: plan'
assert plan.childNodes.length == 5

def firstWeek = plan.childNodes.find { it.nodeName == 'week' }
assert info(firstWeek) == 'element: week'

def firstTask = firstWeek.childNodes.item(1)
assert info(firstTask) == 'element: task'

def firstTaskText = firstTask.childNodes.item(0)
assert info(firstTaskText) == 'text: easy'

def firstTaskTitle = firstTask.attributes.getNamedItem('title')
assert info(firstTaskTitle) == 'attribute: title=read XML chapter'

def firstTaskTitleText = firstTaskTitle.childNodes.item(0)
assert info(firstTaskTitleText) == 'text: read XML chapter'

Note how we use the object iteration method find c to access the first week element
under plan. We use indexed access to the first task child node d. But why is the
index 1 and not 0? Because in our XML document, there’s a line break between week

Listing 14.2 Reading plan.xml with the classic DOM parser

Element and
whitespace
children visible

 b

Object
iteration
method c

Indexed
access d
Licensed to Mark Watson <nordickan@gmail.com>

512 CHAPTER 14 Working with XML and JSON
and task. The DOM parser generates a text node containing this line break (and sur-
rounding whitespace) and adds it as the first child node of week (at index 0). The
task node floats to the second position with index 1. These text nodes (three in all)
also explain why we have five child nodes at B.

NOTE Groovy 2 introduced Modularization (see section B.3 in appendix B)
and groovy-xml is one of the available modules. If you’re using the groovy-all
JAR file or using one of the Groovy distributions, you’ll automatically have the
groovy-xml module available to you. If, however, you’re integrating directly with
the core groovy JAR file, then you might need to @Grab the groovy-xml module
(contained in groovy-xml.jar) or place the JAR file on your classpath.

MAKING DOM GROOVIER

Groovy wouldn’t be “groovy” without a convenience method for the lengthy pars-
ing prework:

def doc = DOMBuilder.parse(new FileReader('data/plan.xml'))
def plan = doc.documentElement

NOTE The DOMBuilder isn’t only for convenient parsing. As the name sug-
gests, it’s a builder and can be used like any other builder (see chapter 11). It
returns a tree of org.w3c.dom.Node objects just as if they’d been parsed from
an XML document. You can add it to another tree, write it to XML, or query it
using XPath (see section 14.2.4).

Dealing with child nodes and attributes as in listing 14.2 doesn’t feel “groovy” either.
Therefore, Groovy provides a DOMCategory that you can use for simplified access.
With it, you can index child nodes via the subscript operator or via their node name.
You can refer to attributes by getting the @attributeName property. A complete listing
is shown next.

import groovy.xml.DOMBuilder
import groovy.xml.dom.DOMCategory

def doc = DOMBuilder.parse(new FileReader('data/plan.xml'))
def plan = doc.documentElement
use(DOMCategory) {
 assert plan.name() == 'plan'
 assert plan.week[0].name() == 'week'
 assert plan.week[0].'@capacity' == '8'
 assert plan.week.task[0].name() == 'task'
 assert plan.week.task[0].text() == 'easy'
}

The example shows some of the additional syntax shortcuts that DOMCategory pro-
vides, specifically the name() method B, attribute access c, and node text access d.
Other shortcuts such as children, iterator, and parent will be explained later in this

Listing 14.3 Reading plan.xml with Groovy’s DOMCategory

Accessing
node name

 b

Accessing node
attribute c

Accessing
node text d
Licensed to Mark Watson <nordickan@gmail.com>

513Reading XML documents
chapter, because they originated in Groovy’s purpose-built XML parsing classes. Con-
sult the online Groovy documentation for more details.

 This was a lot of work to get the DOM parser to read our data, and we had to face
surprises along the way. We’ll now do the same task using the Groovy parser with less
effort and fewer surprises.

14.1.2 Reading with a Groovy parser

The Groovy way of reading the plan data store is so simple, we’ll dive headfirst into
the solution as presented in the following listing.

def plan = new XmlParser().parse(new File('data/plan.xml'))

assert plan.name() == 'plan'
assert plan.week[0].name() == 'week'
def firstTask = plan.week[0].task[0]
assert firstTask.name() == 'task'
assert firstTask.text() == 'easy'
assert firstTask.@title == 'read XML chapter'

No fluff, just stuff. The parsing is only a one-liner B. Because Groovy’s XmlParser
resides in package groovy.util, we don’t even need an import statement for that
class. The parser can work directly on File objects and other input sources, as you’ll
see in table 14.2. The parser returns a groovy.util.Node. You saw this type in sec-
tion 11.2. That means we can easily use GPath expressions to walk through the tree, as
shown when we reference the first task c and in the various assert statements.

 Up to this point, you’ve seen that Groovy’s XmlParser provides all the functionality
you first saw with the DOM parser. But there’s more to come. In addition to the Xml-
Parser, Groovy comes with the XmlSlurper. Let’s explore the commonalities and dif-
ferences between those two before considering more advanced uses of each.

COMMONALITIES BETWEEN XMLPARSER AND XMLSLURPER
Let’s start with the commonalities of XmlParser and XmlSlurper: they both reside in
package groovy.util and provide the constructors listed in table 14.1.

Listing 14.4 Reading plan.xml with Groovy’s XmlParser

Table 14.1 Common constructors of XmlParser and XmlSlurper

Parameter list Note

() Parameterless constructor

(boolean validating,
 boolean namespaceAware)

After parsing, the document can be validated against a declared
DTD, and namespace declarations shall be taken into account

(XMLReader reader) If you have an org.xml.sax.XMLReader available, it can
be reused

(SAXParser parser) If you have a javax.xml.parsers.SAXParser available,
it can be reused

Parsing in
one line b

Referring
to a node c
Licensed to Mark Watson <nordickan@gmail.com>

514 CHAPTER 14 Working with XML and JSON
Besides sharing constructors with the same parameter lists, the types share parsing
methods with the same signatures. The only difference is that the parsing methods of
XmlParser return objects of type groovy.util.Node; XmlSlurper returns GPathResult
objects. Table 14.2 lists the uniform parse methods.

These are the most commonly used methods on XmlParser and XmlSlurper. The
description of additional methods (such as for using specialized DTD handlers and
entity resolvers) is in the API documentation.

 The result of the parse method is either a Node (for XmlParser) or a GPathResult
(for XmlSlurper). Table 14.3 lists the common available methods for both result types.
Note that because both types understand the iterator method, all object iteration
methods are also instantly available.

 GPathResult and groovy.util.Node provide additional shortcuts for method
calls to the parent object and all descendant objects. Such shortcuts make reading
a GPath expression more like other declarative path expressions such as XPath or
Ant paths.

Table 14.2 Parse methods common to XmlParser and XmlSlurper

Signature Note

parse(InputSource input) Reads from an org.xml.sax.InputSource

parse(File file) Reads from a java.io.File

parse(InputStream input) Reads from a java.io.InputStream

parse(Reader in) Reads from a java.io.Reader

parse(String uri) Reads the resource that the uri points to after connecting to it

parseText(String text) Uses the text as input

Table 14.3 Common methods of groovy.util.Node and GPathResult

Node method GPathResult method Shortcut

Object name() String name()

String text() String text()

String toString() String toString()

Node parent() GPathResult parent() '..'

List children() GPathResult children() '*'

Map attributes()* Map attributes()
Licensed to Mark Watson <nordickan@gmail.com>

515Reading XML documents

No ho
done

sec
w

Objects of type Node and GPathResult can access both child elements and attributes
as if they were properties of the current object. Table 14.4 shows the syntax and how
the leading @ sign distinguishes attribute names from nested element names.

Note the close similarities between the two APIs (we discuss other differences later).
Even though there are a few places where the return types are different, the code
using the two APIs will typically be identical. If you wrote the XmlSlurper version of
listing 14.4 it would only differ where the XmlSlurper was created instead of the Xml-
Parser. The other lines would remain the same. So let’s look at some slightly more
advanced features using XmlSlurper (and even with advanced features it turns out
that the XmlParser code would also remain identical). The following listing plays with
method calls and uses GPath expressions to further process our plan data.

def plan = new XmlSlurper().parse(new File('data/plan.xml'))

assert plan.week.task.size() == 5
assert plan.week.task.@done*.toInteger().sum() == 6
assert plan.week[1].task.every{ it.@done == '0' }

Iterator iterator() Iterator iterator()

List depthFirst() Iterator depthFirst() '**'

List breadthFirst() Iterator breadthFirst()

* Strictly speaking, attributes() is a method of NodeChild, not GPathResult, but this is transparent in
most uses.

Table 14.4 Element and attribute access in groovy.util.Node and GPathResult

Node (XmlParser) GPathResult (XmlSlurper) Meaning

['elementName'] ['elementName'] All child elements of that name

.elementName .elementName

[index] [index] Child element by index

['@attributeName'] ['@attributeName'] The attribute value stored under
that name

.'@attributeName' .'@attributeName'

.@attributeName .@attributeName

Listing 14.5 Using common methods of groovy.util.Node and GPathResult

Table 14.3 Common methods of groovy.util.Node and GPathResult

Node method GPathResult method Shortcut

Five tasks
in total

 b

Six hours
done so far c

urs
 for
ond
eek

 d
Licensed to Mark Watson <nordickan@gmail.com>

516 CHAPTER 14 Working with XML and JSON
assert plan.breadthFirst()*.name().join('->') ==
 'plan->week->week->task->task->task->task->task'
assert plan.depthFirst()*.name().join('->') ==
 'plan->week->task->task->task->week->task->task'
assert plan.depthFirst()*.name() == plan.'**'*.name()

In B plan.week.task is a GPathResult, which represents all the tasks. Conceptually
you treat the result in the same way as if you had used XmlParser but there are key dif-
ferences that we elaborate on later. For now, all you need to know is that XmlParser
would eagerly create intermediate results (such as week and task nodes) in a tempo-
rary data structure (a node list). But XmlSlurper stores whatever iteration logic is needed
to determine the result and then lazily executes that logic and returns the result (the
size in this example) only when needed.

 At c, you see that in GPath, attribute access has the same effect as access to child
elements; node.week.task.@done results in a list of all values of the done attribute of
all tasks of all weeks. We use the spread-dot operator (see section 7.5.2) to apply the
toInteger method to all strings in that list, returning a list of integers. We finally use
the GDK method sum on that list.

 The line at d can be read as: “Assert that the done attribute in every task of week[1]
is '0'.” What’s new here is using indexed access and the object iteration method
every. Because indexing starts at zero, week[1] means the second week.

 This example should serve as an appetizer for your own experiments with applying
GPath expressions to XML documents.

 In addition to the convenient GPath notation, you might wish to make use of tra-
versal methods as shown in e.

 So far, you’ve seen that XmlParser and XmlSlurper can be used in a similar fashion
to produce similar results. But there would be no need for two separate classes if there
weren’t a difference. That’s what we cover next.

DIFFERENCES BETWEEN XMLPARSER AND XMLSLURPER

Despite the similarities between XmlParser and XmlSlurper when used for simple
reading purposes, there are differences when it comes to more advanced reading
tasks and when processing XML documents into other formats.

 XmlParser uses the groovy.util.Node type and its GPath expressions result in lists
of nodes. That makes working with XmlParser feel like there always is a tangible object
representation of elements—something that we can inspect via toString, print, or
change in place. Because GPath expressions return lists of such elements, we can
apply all our knowledge of the list datatype (see section 4.2).

 This convenience comes at the expense of additional upfront processing and
extra memory consumption. The GPath expression node.week.task.'@done' gen-
erates three lists: a temporary list of weeks3 (two entries), a temporary list of tasks
(five entries), and a list of done attribute values (five strings) that’s finally returned.

3 This is short for a list of references to objects of type groovy.util.Node with name()=='week'.

Breadth- and
depth-first
traversal

 e
Licensed to Mark Watson <nordickan@gmail.com>

517Reading XML documents
This is reasonable for our small example but hampers processing large or deeply
nested XML documents.

 XmlSlurper in contrast doesn’t store intermediate results when processing infor-
mation after a document has been parsed. It avoids the extra memory hit when pro-
cessing. Internally, XmlSlurper uses iterators instead of extra collections to reflect
every step in the GPath. With this construction, it’s possible to defer processing until
the last possible moment.

NOTE This doesn’t mean that XmlSlurper would work without storing the
parsed information in memory. It still does, and the memory consumption
rises with the size of the XML document. But for processing that stored infor-
mation via GPath, XmlSlurper doesn’t need extra memory.

Table 14.5 lists the methods unique to Node. When using XmlParser, you can use these
methods in your processing.

Table 14.6 lists the methods that are unique to or are optimized in GPathResult. We
could add the following line to listing 14.5 to use the optimized findAll in GPathResult:

assert 2 == path.week.task.findAll{ it.'@title' =~ 'XML' }.size()

Additionally, some classes may only work on one type or the other; for example,
there’s groovy.util.XmlNodePrinter with method print(Node) but no support for
GPathResult. Like the name suggests, XmlNodePrinter pretty-prints a Node tree to a
PrintStream in XML format.

Table 14.5 XmlParser: Methods of groovy.util.Node not available in GPathResult

Method Note

Object value() Retrieves the payload of the node, either the
children() or the text()

void setValue(Object value) Changes the payload

Object attribute(Object key) Shortcut to attributes().get(key)

NodeList getAt(QName name) Provides namespace support for selecting child ele-
ments by their groovy.xml.QName

void print(PrintWriter out) Pretty-printing with NodePrinter

Table 14.6 XmlSlurper: Methods of GPathResult not available in groovy.util.Nod

Method Note

GPathResult parents() Represents all parent elements on the path
from the current element up to the root

GPathResult declareNamespace
 (Map newNamespaceMapping)

Registers namespace prefixes and their URIs
Licensed to Mark Watson <nordickan@gmail.com>

518 CHAPTER 14 Working with XML and JSON
You’ve seen that there are a lot of similarities and some slight differences when reading
XML via XmlParser or XmlSlurper. The real, fundamental differences become apparent
when processing the parsed information. In section 14.2 we’ll look at these differences
in more detail by exploring two examples: processing with direct in-place data manipu-
lation and processing in a streaming scenario. But first we’re going to look at event-style
parsing and how it can be used with Groovy. This will help better position some of
Groovy’s powerful XML features in our forthcoming more-detailed examples.

14.1.3 Reading with a SAX parser

In addition to the original Java DOM parsing you saw earlier, Java supports what’s
known as event-based parsing. The original and most common form of event-based pars-
ing is Simple API for XML, or SAX. SAX is a push-style, event-based parser because the
parser pushes events to your code.

 When using this style of processing, no memory structure is constructed to store
the parsed information; instead, the parser notifies a handler about parsing events. You
implement such a handler interface in your program to perform processing relevant
to your application’s needs whenever the parser notifies you.

 Let’s explore this for your simple plan example. Suppose you wish to display a
quick summary of the tasks that are under way and those that are upcoming; you
aren’t interested in completed activities for the moment. The following listing shows
how to receive start element events using SAX and perform your business logic of print-
ing the tasks of interest.

import javax.xml.parsers.SAXParserFactory
import org.xml.sax.*
import org.xml.sax.helpers.DefaultHandler

class PlanHandler extends DefaultHandler {
 def underway = []
 def upcoming = []
 void startElement(String namespace, String localName,
 String qName, Attributes atts) {

List list() Converts a GPathResult into a list of
groovy.util.slurpersupport.Node
objects for list-friendly processing

int size() The number of result elements
(memory-optimized implementation)

GPathResult find(Closure closure) Overrides the object iteration method find

GPathResult findAll(Closure closure) Overrides the object iteration method findAll

Listing 14.6 Using a SAX parser with Groovy

Table 14.6 XmlSlurper: Methods of GPathResult not available in groovy.util.Nod (continued)

Method Note

Declares our
handler

Interested
in element
start events
Licensed to Mark Watson <nordickan@gmail.com>

519Reading XML documents
 if (qName != 'task') return
 def title = atts.getValue('title')
 def total = atts.getValue('total')
 switch (atts.getValue('done')) {
 case '0' : upcoming << title ; break
 case { it != total } : underway << title ; break
 }
 }
}

def handler = new PlanHandler()
def factory = SAXParserFactory.newInstance()
def reader = factory.newSAXParser().XMLReader
reader.contentHandler = handler
new File('data/plan.xml').withInputStream { is ->
 reader.parse(new InputSource(is))
}

assert handler.underway == [
 'use in current project'
]
assert handler.upcoming == [
 're-read DB chapter',
 'use DB/XML combination'
]

Note that with this style of processing, we have more work to do. When our start-
Element method is called, we’re provided with SAX event information including the
name of the element (along with a namespace, if provided) and all the attributes. It’s
up to us to work out whether we need this information and process or store it as
required during this method call. The parser won’t do any further storage for us. This
minimizes memory overhead of the parser, but the implication is that we won’t be able
to do GPath-style processing and we aren’t in a position to manipulate a treelike data
structure. We’ll have more to say about SAX event information when we explore
XmlSlurper in more detail in section 14.2.

14.1.4 Reading with a StAX parser

In addition to the push-style SAX parsers supported by Java, a recent trend in process-
ing XML with Java is to use pull-style event-based parsers. The most common of these
are called StAX-based parsers4 (Streaming API for XML). With such a parser, you’re still
interested in events, but you ask the parser for events (you pull events as needed) dur-
ing processing,5 instead of waiting to be informed by methods being called.

 The following listing shows how you can use StAX with Groovy. If you’re using an old
version of Java, you’ll need to add a StAX parser to your classpath to run this example.

4 Elliotte Rusty Harold, “An Introduction to StAX,” O’Reilly XML.com, 2003, www.xml.com/pub/a/2003/09/
17/stax.html.

5 This is the main event-based style supported by .NET and included with Java 6.

Interested only in
task elements

Declares our
SAX reader
Licensed to Mark Watson <nordickan@gmail.com>

http://www.xml.com/pub/a/2003/09/17/stax.html
http://www.xml.com/pub/a/2003/09/17/stax.html

520 CHAPTER 14 Working with XML and JSON
import javax.xml.stream.*

def input = 'file:data/plan.xml'.toURL()
def underway = []
def upcoming = []

def eachStartElement(inputStream, Closure yield) {
 def token = XMLInputFactory.newInstance()
 .createXMLStreamReader(inputStream)
 try {
 while (token.hasNext()) {
 if (token.startElement) yield token
 token.next()
 }
 } finally {
 token?.close()
 inputStream?.close()
 }
}

class XMLStreamCategory {
 static Object get(XMLStreamReader self, String key) {
 return self.getAttributeValue(null, key)
 }
}

use (XMLStreamCategory) {
 eachStartElement(input.openStream()) { element ->
 if (element.name.toString() != 'task') return
 switch (element.done) {
 case '0' :
 upcoming << element.title
 break
 case { it != element.total } :
 underway << element.title
 }
 }
}

assert underway == [
 'use in current project'
]
assert upcoming == [
 're-read DB chapter',
 'use DB/XML combination'
]

Note that this style of parsing is similar to SAX-style parsing except that we’re running
the main control loop ourselves rather than having the parser do it. This style has
advantages for certain kinds of processing where the code becomes simpler to write
and understand.

 Suppose you have to respond to many parts of the document differently. With
push models, your code has to maintain extra state to know where you are and how to

Listing 14.7 Using a StAX parser with Groovy

Declares
parser

Loops through
events of
interest

Defines
category
for simple
attribute
access

Uses
category
Licensed to Mark Watson <nordickan@gmail.com>

521Processing XML
react. With a pull model, you can decide what parts of the document to process at any
point within your business logic. The flow through the document is easier to follow,
and the code feels more natural.

 We’ve now explored the breadth of parsing options available in Groovy. Next we
explore the advantages of the Groovy-specific parsing options in more detail.

14.2 Processing XML
Many situations involving XML call for more than just reading the data and then
navigating to a specific element or node. XML documents often require transforma-
tion, modification, or complex querying. When we look at the characteristics of
XmlParser and XmlSlurper when processing XML data in these ways, we see the biggest
differences between the two. Let’s start with a simple but perhaps surprising anal-
ogy: heating water.

 There are essentially two ways of boiling water, as illustrated in figure 14.2. You can
pour water into a tank (called a boiler), heat it, and get the hot water from the outlet.
Or you can use a continuous-flow heater, which heats the water while it streams from
the cold-water inlet through the heating coil until it reaches the outlet. The heating
happens only when requested, as indicated by opening the outlet tap.

 How does XML processing relate to boiling water? Processing XML means you’re
not just using bits of the stored information, but retrieving it, adding some new quality
to it (making it hot in our analogy), and outputting the whole thing. Just like boiling
water, this can be done in two ways: by storing the information in memory and pro-
cessing it in-place, or by retrieving information from an input stream, processing it
on-the-fly, and streaming it to an output device.

 In general, processing XML with XmlParser (and groovy.util.Node) is more like
using a boiler; XmlSlurper can serve as a source in a streaming scenario analogous to
continuous-flow heating.

Boiler Continuous-flow heater

Figure 14.2 Comparing the strategies of boiling versus continuous-flow heating
Licensed to Mark Watson <nordickan@gmail.com>

522 CHAPTER 14 Working with XML and JSON
We’re going to start by looking at the “boiling” strat-
egy of in-place modification and processing and then
proceed to explore streamed processing and com-
binations with XPath.

14.2.1 In-place processing

In-place processing is the conventional means of
XML processing. It uses the XmlParser to retrieve a
tree of nodes. These nodes reside in memory and
can be rearranged, copied, or deleted, and their
attributes can be changed. We’ll use this approach
to generate an HTML report for keeping track of our
Groovy learning activities.

 Suppose the report should look like figure 14.3.
You can see that new information is derived from
existing data: tasks and weeks have a new property
that we’ll call status with the possible values of scheduled, in progress, and finished.

 For tasks, the value of the status property is determined by looking at the done
and total attributes. If done is zero, the status is considered scheduled; if done is
equal to or exceeds total, the status is finished; otherwise, the status is in progress.

 Weeks are finished when all contained tasks are finished. They’re in progress
when at least one contained task is in progress.

 This sounds like we’re going to do lots of number comparisons with the done and
total attributes. Unfortunately, these attributes are stored as strings, not numbers.
These considerations lead to a three-step “heating” process:

1 Convert all string attribute values to numbers where suitable.
2 Add a new attribute called status to all tasks, and determine the value.
3 Add a new attribute called status to all weeks, and determine the value.

With such an improved data representation, it’s finally straightforward to use Markup-
Builder to produce the HTML report.

 We have to produce HTML source like

<html>
 <head>
 <title>Current Groovy progress</title>
 <link href='style.css' type='text/css' rel='stylesheet' />
 </head>
 <body>
 <h1>Week No. 0: in progress</h1>
 <dl>
 <dt class='finished'>read XML chapter</dt>
 <dd>(2/2): finished</dd>
…

Figure 14.3 An HTML progress
report of Groovy learning activities
Licensed to Mark Watson <nordickan@gmail.com>

523Processing XML
 </dl>
 </body>
</html>

where the stylesheet style.css contains the decision of how a task is finally displayed
according to its status. It can, for example, use the following lines for that purpose:

dt { font-weight:bold }
dt.finished { font-weight:normal; text-decoration:line-through }

Listing 14.8 contains the full solution. The numberfy method implements the string-
to-number conversion for those attributes that we expect to be of integer content. It
also shows how to work recursively through the node tree.

 The methods weekStatus and taskStatus make the new status attribute avail-
able on the corresponding node, where weekStatus calls taskStatus for all its con-
tained tasks to make sure it can work on their status inside GPath expressions.

 The final htmlReport method is the conventional way of building HTML. Thanks
to the “heating” prework, there’s no logic needed in the report. The report uses the
status attribute to assign a stylesheet class of the same value.

import groovy.xml.MarkupBuilder

void numberfy(Node node) {
 def atts = node.attributes()
 atts.keySet().grep(['capacity', 'total', 'done']).each {
 atts[it] = atts[it].toInteger()
 }
 node.each { if (it instanceof Node) numberfy(it) }
}

void taskStatus(task) {
 def atts = task.attributes()
 switch (atts.done) {
 case 0: atts.status = 'scheduled'; break
 case 1..<atts.total: atts.status = 'in progress'; break
 default: atts.status = 'finished';
 }
}

void weekStatus(week) {
 week.task.each { taskStatus(it) }
 def atts = week.attributes()
 atts.status = 'scheduled'
 if (week.task.every { it.@status == 'finished'})
 atts.status = 'finished'
 if (week.task.any { it.@status == 'in progress'})
 atts.status = 'in progress'
}

Listing 14.8 Generating an HTML report with in-memory data preparation

Converts strings
to numbers

Calculates and
assigns task status

Calculates and
assigns week
status
Licensed to Mark Watson <nordickan@gmail.com>

524 CHAPTER 14 Working with XML and JSON
void htmlReport(builder, plan) {
 builder.html {
 head {
 title('Current Groovy progress')
 link(rel: 'stylesheet',
 type: 'text/css',
 href: 'style.css')
 }
 body {
 plan.week.eachWithIndex { week, i ->
 h1("Week No. $i: ${week.@status}")
 dl {
 week.task.each { task ->
 dt(class: task.@status, task.@title)
 dd("(${task.@done}/${task.@total}): ${task.@status}")
} } } } } }

def node = new XmlParser().parse(new File('data/plan.xml'))
numberfy(node)
node.week.each { weekStatus(it) }

new File('data/GroovyPlans.html').withWriter { writer ->
 def builder = new MarkupBuilder(writer)
 htmlReport(builder, node)
}

After the careful prework, the code isn’t surprising. What’s a bit unconventional is
having a lot of closing braces on one line at the end of htmlReport. This isn’t only for
compact typesetting in the book. We also sometimes use this style in our everyday
code. We find it nicely reveals what levels of indentation are to be closed and still
allows us to check brace-matching by column. It would be great to have IDE support
for toggling between this and conventional code layout.

 Now that you’ve seen how to use the in-memory “boiler,” let’s investigate the
streaming scenario.

14.2.2 Streaming processing

To demonstrate the use of streaming, let’s start with the simplest kind of processing
that we can think of: pumping out what comes in without any modification. Even this
simple example can be hard to understand as long as the approach is unfamiliar. We
recommend that if you find it confusing, keep reading, but don’t worry too much
about the details. It’s definitely worth coming back later for a second try, though, in
many situations, the benefits of stream-based processing are well worth the harder
conceptual model.

Reports
building logic

Prepares data
for reporting
Licensed to Mark Watson <nordickan@gmail.com>

525Processing XML
UNMODIFIED PIPING
You use XmlSlurper to parse the original XML. Because the final output format is XML
again, you need some device that can generate XML in a streaming fashion. The
groovy.xml.StreamingMarkupBuilder class is specialized for outputting markup on
demand—in other words, when an information sink requests it. Such a sink is an opera-
tion that requests a Writable (for example, the left-shift operator call on streams or
the evaluation of GStrings). The trick that StreamingMarkupBuilder uses to achieve
this effect is similar to the approach of template engines. StreamingMarkupBuilder
provides a bind method that returns a WritableClosure. This object is a Writable
and a closure at the same time. Because it’s a Writable, you can use it wherever the
final markup is requested. Because it’s a closure, the generation of this markup can be
done lazily on the fly, without storing intermediate results.

 Listing 14.9 shows this in action. The bind method also needs the information
about what logic is to be applied to produce the final markup. Wherever logic is
needed, closures are the first candidate, and so it’s with bind. We pass a closure to the
bind method that describes the markup logic.

 For our initial example of pumping the path through, we use a special feature of
StreamingMarkupBuilder that allows us to yield the markup generation logic to a
Buildable, an object that knows how to build itself. It happens that a GPathResult
(and thus path) is buildable. To yield the building logic to it, we use the yield
method. But we cannot use it unqualified because we’d produce a <yield/> markup if
we did. The special symbol mkp marks our method call as belonging to the namespace
of markup keywords.

import groovy.xml.StreamingMarkupBuilder

def path = new XmlSlurper().parse(new File('data/plan.xml'))

def builder = new StreamingMarkupBuilder()
def copier = builder.bind{ mkp.yield(path) }
def result = "$copier"

assert result.startsWith('<plan><week ')
assert result.endsWith('</week></plan>')

There’s a lot going on here in only a few lines of code. The result variable, for exam-
ple, refers to a GString with one value: a reference to copier. Note that we didn’t call it
“copy” because it’s not a thing but an actor.

 When we call the startsWith method on result, the string representation of the
GString is requested, and because the one GString value copier is a Writable, its
writeTo method is called. The copier was constructed by the builder so that writeTo
relays to path.build().

Listing 14.9 Pumping an XML stream without modification
Licensed to Mark Watson <nordickan@gmail.com>

526 CHAPTER 14 Working with XML and JSON
 Figure 14.4 summarizes this streaming behavior.
 Note how in figure 14.4, the processing doesn’t start before the values are requested.

Only after the GString’s toString method is called does the copier start running and
is the path iterated upon. Until then, the path isn’t touched! No memory representa-
tion has been created for the purpose of markup or iteration. This is a simplification
of what’s going on. XmlSlurper does have memory requirements. It stores the SAX
event information you saw in section 14.1.3 but doesn’t process or store it in the
processing-friendly Node objects.

 Calling startsWith is like opening the outlet tap to draw the markup from the
copier, which in turn draws its source information from the path inlet. Any code
before that point is only the plumbing.

 As a variant of listing 14.9 you can also directly write the markup onto the console.
Use the following:

System.out << copier

Remember that System.out is an OutputStream that understands the left-shift opera-
tor with a Writable argument.

XMLSlurper.parse(1)

create

create

create

startsWith

writeTo

toString

build

bind

copier

:Script

<<Buildable>>
path:

GPathResult
builder:

StreamingMarkup
Builder

result:GString

<<Writable>>
copier:Closure

Figure 14.4 UML sequence diagram for streamed building
Licensed to Mark Watson <nordickan@gmail.com>

527Processing XML
For this simple example, we could have used the SAX or StAX approaches you saw
earlier. They would be even more streamlined solutions. Not only would they not
need to process and store the treelike data structures that XmlParser creates for
you, but they also wouldn’t need to store the SAX event information. The same isn’t
true for the more complicated scenarios that follow. As is common in many XML
processing scenarios, the remaining examples have processing requirements that
span multiple elements. Such scenarios benefit greatly from the ability to use GPath-
style expressions.

HEATING UP TO HTML
Until now, we copied only the “cold” input. It’s time to light our heater. The goal is to
produce the same GUI as in figure 14.3.

 We start with the basics of listing 14.9 but enhance the markup closure that gets
bound to the builder. In listing 14.10, the building looks almost the same as in the
“boiling” example of listing 14.7; only the evaluation of the week and task status
needs to be adapted. We don’t calculate the status in advance and store it for later ref-
erence, but instead do the classification on the fly when the builder lazily requests it.

import groovy.xml.StreamingMarkupBuilder

def taskStatus(task) {
 switch (task.@done.toInteger()) {
 case 0: return 'scheduled'
 case 1..<task.@total.toInteger(): return 'in progress'
 default: return 'finished'
 }
}

def weekStatus(week) {
 if (week.task.every { taskStatus(it) == 'finished' })
 return 'finished'
 if (week.task.any { taskStatus(it) == 'in progress' })
 return 'in progress'
 return 'scheduled'
}

def plan = new XmlSlurper().parse(new File('data/plan.xml'))

Closure markup = {
 html {
 head {
 title('Current Groovy progress')
 link(rel: 'stylesheet',
 type: 'text/css',
 href: 'style.css')
 }
 body {
 plan.week.eachWithIndex { week, i ->
 h1("Week No. $i: ${owner.weekStatus(week)}")

Listing 14.10 Streamed heating from XML to HTML

Calculates
task status

Calculates
week status

“Slurps” in
the XML

Expresses the
processing as
a closure
Licensed to Mark Watson <nordickan@gmail.com>

528 CHAPTER 14 Working with XML and JSON
 dl {
 week.task.each { task ->
 def status = owner.taskStatus(task)
 dt(class: status, task.@title)
 dd("(${task.@done}/${task.@total}): $status")
} } } } } }

def heater = new StreamingMarkupBuilder().bind(markup)
def outfile = new File('data/StreamedGroovyPlans.html')
outfile.withWriter{ it << heater }

The cool thing here is that at first glance it looks similar to listing 14.8, but it works
very differently:

■ All evaluation is done lazily.
■ Memory consumption for GPath operations is minimized.
■ No in-memory assembly of HTML representation is built before outputting.

This allows you to produce lots of output, because it’s not assembled in memory but
directly streamed to the output as the building logic demands. But because of the stor-
age of SAX event information on the input, this approach won’t allow input docu-
ments as large as would be possible with SAX or StAX.

 Figure 14.5 sketches the differences between both processing approaches with
respect to processing requirements and memory use. The process goes from left to
right either in the top row (for “boiling”) or in the bottom row (for streaming). Either
process encompasses parsing, evaluating, building, and serializing to HTML, where evalu-
ating and building aren’t necessarily in strict sequence. This is also where the differ-
ences are: working on intermediate data structures (trees of lists and nodes) or on
lightweight objects that encapsulate logic (iterators and closures).

Binds parsed
XML to
processing logic

Writes out
result to a file

Building HTML

Lists

Iterators

Logic

Nodes

Boiling

Streaming

Parsing Gpath evaluation

Figure 14.5 Memory use characteristics for the “boiling” versus streaming strategies
Licensed to Mark Watson <nordickan@gmail.com>

529Processing XML
That’s it for the basics of reading XML and transforming XML into completely new
data structures. But sometimes you want to update just a part of an XML document.
Groovy has support for that kind of operation too.

14.2.3 Updating XML

Suppose you now wanted to update your XML data store programmatically. You’ve
reached the end of the first week in your planned activities. You want to update the
first week to record your total progress on the third task and provide a small com-
ment. For the second week you’ve revised your priorities. You no longer wish to per-
form the current second task and instead wish to perform two alternative ones.

 Let’s treat this as an opportunity to exercise test-first development and write a
test helper first to reflect how you expect the XML to look like upon completion of
the update.

 For the first week (remember that’s index 0) you expect the hours done to equal
the hours in total (that is, seven hours) and you expect that the comment 'time
saver' will appear for one of the tasks (the last one but we won’t overprescribe the
ordering among tasks).

 For the second week (index 1) you expect the week to have three tasks. You expect
the old task to have gone (no @title will match the old value) and two new tasks
should be found—we’ll check the @title of one and the @total of the other. Our test
code could look something like this:

class UpdateChecker {
 static check(text) {
 def updated = new XmlParser().parseText(text)
 updated.week[0].with { w0 ->
 assert w0.task.@done*.toInteger().sum() == 7
 assert w0.find{ it.text() == 'time saver' }
 }
 updated.week[1].with { w1 ->
 assert w1.children().size() == 3
 assert w1.find{ it.@total == "4" }
 assert w1.find{ it.@title == "build web service client" }
 assert !w1.find{ it.@title == "use DB/XML combination" }
 }
 }
}

You’re using XmlParser in your check, but as you’ve seen earlier, you could have cho-
sen XmlSlurper or used DOMCategory if you preferred. Something else worth noting
here is that your check is assuming that your updated XML is written back out as text
ready to be parsed by your test code. For XmlParser and DOMCategory, you could have
just as easily done some asserts on the in-memory tree of nodes, but stick with your
earlier approach as it works also for XmlSlurper (it does lazy updates) and also shows
the end-to-end process for writing XML after an update.

 Now consider the following listing, which shows the DOMCategory code needed to
update the XML.
Licensed to Mark Watson <nordickan@gmail.com>

530 CHAPTER 14 Working with XML and JSON
import groovy.xml.DOMBuilder
import groovy.xml.XmlUtil
import groovy.xml.dom.DOMCategory

def doc = DOMBuilder.parse(new FileReader('data/plan.xml'))
def plan = doc.documentElement

use(DOMCategory) {
 plan.week[0].task[2]['@done'] = '2'
 plan.week[0].task[2].value = 'time saver'
 plan.week[1].task[1].replaceNode {
 task(done:'0', total:'4', title:'build web service')
 }
 plan.week[1].task[1] + {
 task(done:'0', total:'1', title:'build web service client')
 }
}

UpdateChecker.check(XmlUtil.serialize(plan))

We set the new attribute value using Groovy’s putAt GPath syntax shortcut B. The
node’s text value is set using the value property c. Then we use replaceNode and
plus (using the + shorthand) to alter the task nodes.

 There are several other ways you could have updated the XML. We chose an
approach that illustrated two of the most common operations that are typically used
(replaceNode and plus) but, if we had wanted to, we could have:

■ Used replaceNode once but with two task node entries inside it
■ Used appendNode instead of plus, supplying it the new node name and attri-

butes as a map
■ Deleted the original node using the removeChild method and then had a plus

closure with two nodes or two appendNode method calls

Now do the same again with the XmlParser as shown in the following listing.

import groovy.xml.XmlUtil

def plan = new XmlParser().parse(new File('data/plan.xml'))

plan.week[0].task[2].@done = '2'
plan.week[0].task[2].value = 'time saver'

plan.week[1].task[1].replaceNode {
 task(done:'0', total:'4', title:'build web service')
}
plan.week[1].task[1] + {
 task(done:'0', total:'1', title:'build web service client')
}
UpdateChecker.check(XmlUtil.serialize(plan))

Listing 14.11 Updating XML with DOMCategory

Listing 14.12 Updating XML with XmlParser

Updates done
attribute with
new value

 b

Sets the task’s
text value c
Licensed to Mark Watson <nordickan@gmail.com>

531Processing XML
Identical GPath operations are required to perform the update. And similar options
also exist as you saw for DOMCategory. For example, you could have used appendNode
or various other options. Now we’ll do it one more time with XmlSlurper as shown in
the following listing.

import groovy.xml.XmlUtil

def plan = new XmlSlurper().parse(new File('data/plan.xml'))

plan.week[0].task[2].@done = '2'
plan.week[0].task[2] = 'time saver'

plan.week[1].task[1].replaceNode {
 task(done:'0', total:'4', title:'build web service')
}
plan.week[1].task[1] + {
 task(done:'0', total:'1', title:'build web service client')
}

UpdateChecker.check(XmlUtil.serialize(plan))

The first thing to note is that identical GPath expressions are required again for the
update operations. You could have also used appendNode (though XmlSlurper’s syn-
tax for appendNode varies slightly, taking a Closure parameter like plus does). You
could have also used the leftShift (syntax shortcut <<) to append nodes to the par-
ent node, saving just a little bit of typing.

 One other thing to note is that with the XmlSlurper, additional streaming behavior
is in play. When you call the replaceNode and plus methods, XmlSlurper doesn’t
actually alter the underlying data structures representing the original tree; instead, it
saves away the desired changes that will be applied when you output the XML docu-
ment to some stream. In this case, this is when you serialize the plan for subsequent
checking with your checker.

 In section 14.1.1, you saw that classic Java DOM parsers return objects of type
org.w3c.dom.Node, which differs from what the Groovy parsers return. When using
Java to process such nodes, the low-level APIs that you’ve seen up until now can be a
little cumbersome. While Java has nothing akin to the GPath expressions you’ve seen
for Groovy, it does allow a slightly higher-level approach to be used with the help of
XPath. The next section shows how Java XPath and Groovy XML processing can be
used in combination.

14.2.4 Combining with XPath

XPath is for XML what SQL select statements are for relational databases or what reg-
ular expressions are for plain text. It’s a means to select parts of the whole document
and to do so in a descriptive manner.

Listing 14.13 Streamed updating of XML with XmlSlurper
Licensed to Mark Watson <nordickan@gmail.com>

532 CHAPTER 14 Working with XML and JSON
UNDERSTANDING XPATH

An XPath is an expression that appears in Java or Groovy as a string (exactly like regex
patterns or SQL statements do). A full introduction to XPath is beyond the scope of
this book, but here’s a short introduction from a Groovy programmer’s point of view.6

 Just like a GPath, an XPath selects nodes. Where GPath uses dots, XPath uses slashes.
For example,

/plan/week/task

selects all task nodes of all weeks below plan. The leading slash indicates that the
selection starts at the root element. In this expression, plan, week, and task are each
called a node test. Each node test may be preceded with an axis specifier from table 14.7
and a double colon.

With these specifiers, you can select all task elements via

/descendant-or-self::task

With the shortcut syntax, you can select all total attribute nodes of all tasks via

//task/@total

6 For a full description of the standard, see www.w3.org/TR/xpath; and for a tutorial, see www.w3schools.com/
xpath/. For a good book, see XSLT 2.0 and XPath 2.0, 4th edition, by Michael Kay (Wiley, 2008).

Table 14.7 XPath axis specifiers

Axis Selects nodes Shortcut

child Directly below nothing or *

parent Directly above ..

self The node itself (use for further references) .

ancestor All above

ancestor-or-self All above including self

descendant All below

descendant-or-self All below including self //

following All on the same level trailing in the XML document

following-sibling All with the same parent trailing in the XML document

preceding All on the same level preceding in the XML document

preceding-sibling All with the same parent preceding in the XML document

attribute The attribute node @

namespace The namespace node
Licensed to Mark Watson <nordickan@gmail.com>

http://www.w3.org/TR/xpath
http://www.w3schools.com/xpath/
http://www.w3schools.com/xpath/

533Processing XML
A node test can have a trailing predicate in square brackets to constrain the result. A
predicate is an expression made up from path expressions, functions, and operators
for the datatypes node-set, string, number, and boolean. Table 14.8 lists what’s possi-
ble.7 Table 14.9 shows examples.

Table 14.8 XPath predicate expression cheat sheet

Category Appearance Note

Path operators /, //, @, [], *, .., . See table 14.7

Union operator | Union of two node sets

Boolean operators and, or, not() not() is a function

Arithmetic
operators

+, -, *, div, mod, idiv (XPath 2.0)

Comparison
operators

=, !=, <, >, <=, >=

String functions concat(), substring(), contains(),
substring-before(), substring-
after(), translate(), normalize-
space(), string-length()

See the docs for exact
meanings and parameters;
for example,
www.w3schools.com/xpath/
xpath_functions.asp#string

Number functions sum(), round(), floor(), ceiling()

Node functions name(), local-name(), namespace-uri()

Context functions position(), last() [n] is short for
[position()=n]

Conversion
functions

string(), number(), boolean()

Value compari-
sons (XPath 2.0)

eq, ne, lt, le, gt, ge

Table 14.9 XPath examples

XPath Meaning and notes Note

/plan/week[1] First* week node Indexing starts at one

//task[@done<@total] All unfinished tasks Auto-conversion to a number

//task[@done<@total][@done>0] All tasks in progress Implicit and between brackets

sum(//week[1]/task/@total) Total hours in the first
week

Returns a number

* More specifically, the week node at position 1 below plan.

7 These operators are available in XPath 1.0 and XPath 2.0 unless otherwise indicated.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.w3schools.com/xpath/xpath_functions.asp#string

534 CHAPTER 14 Working with XML and JSON
The next obvious question is how to use such XPath expressions in Groovy code.

USING THE XPATH API
Groovy comes with all the support you need for using XPath expressions in your code,
building on Java’s factory method for accessing the XPath library in a platform-
independent way. Use the javax.xml.xpath.XPathFactory class to create an instance
of an xpath object. This object then has methods available for evaluating XPath expres-
sions on your parsed XML (or when efficiency is a major concern we can compile
XPath expressions for later evaluation).

 In practice, you may want to do something with all weeks. You’ll select the appro-
priate list of nodes via xpath.evaluate('//week', plan, NODESET). The last parame-
ter indicates the expected return type. In your case you want an aggregate of nodes.
Because this returns a NodeList, you can use the object iteration methods on it to get
hold of each week:

xpath.evaluate('//week', plan, NODESET).eachWithIndex{ week, i ->
 // do something with week
}

For each week, print the sum of the total and done attributes with the help of XPath.
Each week node becomes the new context node for the XPath evaluation and the
expected return type is NUMBER:

xpath.evaluate('//week', plan, NODESET).eachWithIndex{ week, i ->
 out << "\nWeek No. $i\n"
 int total = xpath.evaluate('sum(task/@total)', week, NUMBER)
 int done = xpath.evaluate('sum(task/@done)', week, NUMBER)
 out << " planned $total of ${week.'@capacity'}\n"
 out << " done $done of $total"
}

The following listing puts all this together with a little reporting functionality that pro-
duces a text report for each week, stating the capacity, the total hours planned, and
the progress in hours done.

import groovy.xml.DOMBuilder
import groovy.xml.dom.DOMCategory

import javax.xml.xpath.XPathFactory

import static javax.xml.xpath.XPathConstants.NODESET
import static javax.xml.xpath.XPathConstants.NUMBER

def doc = DOMBuilder.parse(new FileReader('data/plan.xml'))
def plan = doc.documentElement
def xpath = XPathFactory.newInstance().newXPath()

def out = new StringBuilder()
use(DOMCategory) {

Listing 14.14 XPath to text reporting

Use DOMCategory
for simple
attribute access

 b
Licensed to Mark Watson <nordickan@gmail.com>

535Processing XML

Sele
via X
retr
inde
 xpath.evaluate('//week', plan, NODESET).eachWithIndex {
 wk, i ->
 out << "\nWeek No. $i\n"
 int total = xpath.evaluate('sum(task/@total)', wk, NUMBER)
 int done = xpath.evaluate('sum(task/@done)', wk, NUMBER)
 out << " planned $total of ${wk.'@capacity'}\n"
 out << " done $done of $total"
 }
}
assert out.toString() == '''
Week No. 0
 planned 7 of 8
 done 6 of 7
Week No. 1
 planned 4 of 8
 done 0 of 4'''

XPath is used in two ways here—the querying capability is used to select all the week
elements B, and then attributes total and done are extracted with the evaluate
method c. You’ll mix and match ways of accessing attributes, using DOMCategory to
access the capacity attribute with the node.@attributeName syntax d.

 Such a text report is fine to start with, but it would certainly be nicer to show the
progress in a chart. Figure 14.6 suggests an HTML solution. In a normal situation, we’d
use colors in such a report, but they wouldn’t be visible in the print of this book.
Therefore, we use only a simple box representation of the numbers.

 Each box is made from the border of a styled div element. The style also deter-
mines the width of each box.

 This kind of HTML production task calls for a
templating approach, because there are multi-
ple recurring patterns for HTML fragments: for
the boxes, for each attribute row, and for each
week. We’ll use template engines, GPath, and
XPath in combination to make this happen.

 Listing 14.15 presents the template that
we’re going to use. It’s a simple template as
introduced in section 12.4.2. It assumes the
presence of two variables in the binding: a
scale, which is needed to make visible box
sizes from the attribute values, and weeks,
which is a list of week maps. Each week map
contains the keys 'capacity', 'total', and
'done' with integer values.

 The template resides in a separate file. We
like to name such files with the word template in
the name and ending in the usual file exten-
sion for the format they produce. For example,

ction
Path,

ieving
x and
value c

Evaluation
using XPath

 d

Evaluation using
DOM attributes
directly

Figure 14.6 Screenshot of an HTML-
based reporting
Licensed to Mark Watson <nordickan@gmail.com>

536 CHAPTER 14 Working with XML and JSON
the name GroovyPlans.template.html reveals the nature of the file, and we can still
use it with an HTML editor.

<html>
 <head>
 <title>Current Groovy progress</title>
 </head>
 <body>
 <% weeks.eachWithIndex{ week, i -> %>
 <h1>Week No. $i</h1>
 <table cellspacing="5" >
 <tbody>
 <% ['capacity','total','done'].each{ attr -> %>
 <tr>
 <td>$attr</td>
 <td>${week[attr]}</td>
 <td>
 <div style=
"border: thin solid #000000; width: ${week[attr]*scale}px">
 </div>
 </td>
 </tr>
 <% } // end of attribute %>
 </tbody>
 </table>
 <% } // end of week %>
 </body>
</html>

This template looks like a JSP file, but it isn’t. The contained logic is expressed in
Groovy, not plain Java. Instead of being processed by a JSP engine, it’ll be evaluated by
Groovy’s SimpleTemplateEngine as shown in listing 14.16. We use XPath expressions
to prepare the values for binding. A special application of GPath comes into play when
calculating the scaling factor.

 Scaling is required so that the longest capacity bar is of length 200, so we have to
find the maximum capacity for the calculation. Because we’ve already put these values
in the binding, we can use a GPath to get a list of those and play our GDK tricks with it
(calling max).

import groovy.xml.DOMBuilder
import groovy.xml.dom.DOMCategory
import groovy.text.SimpleTemplateEngine as STE

import javax.xml.xpath.XPathFactory
import static javax.xml.xpath.XPathConstants.NODESET
import static javax.xml.xpath.XPathConstants.NUMBER

Listing 14.15 HTML reporting layout in data/GroovyPlans.template.html

Listing 14.16 Using XPath, GPath, and templating in combination for HTML reporting
Licensed to Mark Watson <nordickan@gmail.com>

537Processing XML
def doc = DOMBuilder.parse(new FileReader('data/plan.xml'))
def plan = doc.documentElement
def xpath = XPathFactory.newInstance().newXPath()

def binding = [scale:1, weeks:[]]
use(DOMCategory) {
 xpath.evaluate('//week', plan, NODESET).each{ week ->
 binding.weeks << [
 total: (int) xpath.evaluate('sum(task/@total)', week, NUMBER),
 done: (int) xpath.evaluate('sum(task/@done)', week, NUMBER),
 capacity: week.'@capacity'.toInteger()
]
 }
}
def max = binding.weeks.capacity.max()
if (max > 0) binding.scale = 200.intdiv(max)

def templateFile = new File('data/GroovyPlans.template.html')
def template = new STE().createTemplate(templateFile)

new File('data/XPathGroovyPlans.html').withWriter {
 it << template.make(binding)
}

The code didn’t change dramatically between the text reporting in listing 14.14 and
the HTML reporting in listing 14.16. But listing 14.16 provides a more general solu-
tion, because we can also get a text report from it solely by changing the template.

 The kind of transformation from XML to HTML that we achieve with listing 14.16 is
classically addressed with XML Stylesheet Transformation (XSLT), which is a powerful
technology. It uses stylesheets in XML format to describe a transformation mapping,
also using XPath and templates. Its logical means are equivalent to those of a func-
tional programming language.

 Although XSLT is suitable for mapping tree structures, we often find it easier to use
the Groovy approach when the logic is the least bit complex. XPath, templates, build-
ers, and the Groovy language make a unique combination that allows for elegant and
concise solutions. There may be people who are able to look at significant amounts of
XSLT for more than a few minutes at a time without risking their mental stability, but
they’re few and far between. Using the technologies you’ve encountered, you can play
to your strengths of understanding Groovy instead of using a different language with a
fundamentally different paradigm.

LEVERAGING ADDITIONAL JAVA XML PROCESSING TECHNOLOGIES

Before wrapping up our introduction of processing XML with Groovy, we should
mention that although we think that you’ll find Groovy’s built-in XML features are
suitable for many of your processing needs, you’re not locked into using just those
APIs. Because of Groovy’s Java heritage, many libraries and technologies are available

XPath on
DOM nodes

GPath on
binding

Templating
Licensed to Mark Watson <nordickan@gmail.com>

538 CHAPTER 14 Working with XML and JSON
for you to consider. We’ve already mentioned StAX and Jaxen. Here are a few more
of our favorites:8

■ Although XmlParser, XmlSlurper, and of course the Java DOM and SAX should
meet most of your needs, you can always consider JDOM, dom4j, or XOM.

■ If you need to compare two XML fragments for differences, consider XMLUnit.
■ If you wish to process XML using XQuery, consider Saxon.
■ If you need to persist your XML, consider JAXB or Stream.
■ If you need to do high-performance streaming, consider Nux.

Our introduction to Groovy XML could finish at this point, because you’ve seen all the
basics of XML manipulation. You should now be able to write Groovy programs that
read, process, and write XML in a basic way. You’ll need more detailed documentation
when the need arises to deal with more advanced issues such as namespaces, resolving
entities, and handling DTDs in a customized way.

 The final section of this chapter deals with one of the most widespread alternatives
to XML—that being JSON.

14.3 Parsing and building JSON
JSON, the JavaScript Object Notation, was originally derived from a subset of the
JavaScript language, but the data format itself is language-independent and it’s in
widespread use with many programming languages. JSON was designed for represent-
ing simple data structures. Let’s have a look at what’s involved with parsing and then
building JSON content.

14.3.1 Parsing JSON

Let’s revisit our plan example from earlier in the chapter. Suppose we had stored our
little database of information in a JSON file instead of the previously discussed XML
file. The JSON file would look like this:

{ "weeks": [
 {
 "capacity": 8,
 "tasks": [
 { "done": 2, "total": 2,
 "title": "read XML chapter", "status": "easy" },
 { "done": 3, "total": 3,
 "title": "try some reporting", "status": "fun" },
 { "done": 1, "total": 2,
 "title": "use in current project" }
]
 },

8 More information is available at http://xmlbeans.apache.org, http://saxon.sourceforge.net, http://dsd.lbl.gov,
http://xmlunit.sourceforge.net, http://xstream.codehaus.org, and https://jaxb.java.net.
Licensed to Mark Watson <nordickan@gmail.com>

http://xmlbeans.apache.org
http://saxon.sourceforge.net
http://dsd.lbl.gov
http://xmlunit.sourceforge.net
http://xstream.codehaus.org
https://jaxb.java.net

539Parsing and building JSON
 {
 "capacity": 8,
 "tasks": [
 { "done": 0, "total": 1, "title": "re-read DB chapter" },
 { "done": 0, "total": 3, "title": "use DB/XML combination" }
]
 }
]}

For this example, we’ll assume our file is called plan.json in a data folder. Now let’s
look at the following listing to see how we can parse it.

import groovy.json.JsonSlurper

def plan = new JsonSlurper().parse(new File('data/plan.json'))
assert plan.weeks[0].tasks[0].status == 'easy'
assert plan.weeks[1].capacity == 8
assert plan.weeks[1].tasks[0].title == 're-read DB chapter'

That’s about as easy as we could expect and follows closely (but not exactly) what we
saw for XML. You’ll note that the concept of attributes is missing for JSON. We store
such information as a list of properties.

 The good news is that while easy examples like we just saw are indeed easy, tricky cases
are handled too, primarily by switching between parsing implementations with slightly
different characteristics. Table 14.10 shows the provided parser implementations.

You can switch to one of the other parsers when calling the constructor like this:

new JsonSlurper(type: JsonParserType.LAX)

See the online Groovy documentation for more details.9 That’s it for parsing. What if you
want to go the other way and actually create some JSON content? Let’s look at that next.

Listing 14.17 Parsing JSON

Table 14.10 JsonSlurper parser implementations

Implementation Description

JsonParserCharArray (default) Copies character subarrays (“chopping”) during parsing

JsonFastParser An index-overlay parser that avoids or defers creating
new char arrays or String instances and keeps
pointers to the underlying original character array

JsonParserLax Supports comments, no-quote strings, and other
constructs not officially supported in the ECMA-404
JSON grammar

JsonParserUsingCharacterSource A special parser for very large files

9 “Parsing and producing JSON,” http://groovy-lang.org/json.html.
Licensed to Mark Watson <nordickan@gmail.com>

http://groovy-lang.org/json.html

540 CHAPTER 14 Working with XML and JSON
14.3.2 Building JSON
Let’s look at building some JSON. The produced JSON is similar to what we produced
when updating our plan with XML, but for simplicity we’ll just show directly creating
the JSON content rather than updating the original file. The following listing illus-
trates what’s required: simply create a JsonBuilder and use it in the same way you’ve
seen for other builders.

import groovy.json.JsonBuilder

def builder = new JsonBuilder()
builder.weeks {
 capacity '8'
 tasks(
 [{
 done '0'
 total '4'
 title 'build web service'
 }, {
 done '0'
 total '1'
 title 'build web service client'
 }]
)
}

assert builder.toString() == '{"weeks":{"capacity":"8","tasks":[' +
 '{"done":"0","total":"4","title":"build web service"},' +
 '{"done":"0","total":"1","title":"build web service client"}' +
 ']}}'

As you’ve seen before with other builders, we can also use coding logic intermixed
with our synthetic methods when using JsonBuilder. Let’s again look at our invoice
example from earlier chapters.10 You can generate JSON corresponding to our nested
invoice information as shown in the following listing.

import groovy.json.JsonBuilder

def builder = new JsonBuilder()
builder {
 invoices(1..3) { day ->
 invoice(date: "2015-01-0$day") {
 item(count: day) {
 product(name: 'ULC', dollar: 1499)
 }
 }
 }
}

Listing 14.18 Building JSON

10 See section 7.5.1 for GPath examples and section 11.4 for builder examples.

Listing 14.19 Invoice example with JSONBuilder

Pretended method
can take collection
and closure

 b

Closure defines
JSON for each
item in collection

 c
Licensed to Mark Watson <nordickan@gmail.com>

541Parsing and building JSON
assert builder.toPrettyString().startsWith(
'''{
 "invoices": [
 {
 "invoice": [
 {
 "date": "2015-01-01"
''')

There’s special support for handling lists of maplike structures. For example, our
invoices will contain a list of three invoice maps, so we pass a collection (in this case
the range 1..3) to invoices B and also provide a closure to process each item in the
collection c. Rather than using the normal toString() method like we used in list-
ing 14.18, we’ll use a toPrettyString() variant d that performs appropriate indent-
ing and line-breaking to make the nesting relationships in the result clear.

 There’s also a streaming JSON builder called (as you might guess) StreamingJSON-
Builder. Consult the GroovyDoc API documentation for further details.

 The final useful JSON class we’ll look at is JsonOutput. It’s used to serialize Groovy
objects into JSON. It handles most common datatypes and, importantly, also nested
structures of objects and your own domain classes. It’s a helper class with static utility
methods. It contains numerous toJson methods corresponding to the various data-
types it converts and a prettyPrint method. Using them is pretty straightforward as
shown for a simple athlete data structure in the following listing.

import static groovy.json.JsonOutput.*

def json = toJson([date: '2015-01-01', time: '6 am'])
assert json == '{"date":"2015-01-01","time":"6 am"}'

class Athlete { String first, last }

def mj = new Athlete(first: 'Michael', last: 'Jordan')
assert toJson(mj) == '{"first":"Michael","last":"Jordan"}'

def pt = new Athlete(first: 'Paul', last: 'Tergat')
def athletes = [basketball: mj, marathon: pt]

json = toJson(athletes)
assert prettyPrint(json) == '''
{
 "basketball": {
 "first": "Michael",
 "last": "Jordan"
 },
 "marathon": {
 "first": "Paul",
 "last": "Tergat"
 }
}
'''.trim()

Listing 14.20 Athlete example with JsonOutput

Check the start
of pretty output d
Licensed to Mark Watson <nordickan@gmail.com>

542 CHAPTER 14 Working with XML and JSON
The good news is that most of the time, you don’t need to use JsonOutput directly.
The final example in listing 14.19 could have used JsonBuilder as

new JsonBuilder(athletes).toPrettyString()

and JsonBuilder would call JsonOutput under the covers. Nevertheless, you might
find using JsonOutput directly comes in handy for tricky cases like trying to serialize
recursive data structures—just don’t expect either class to automatically handle such
a case.

 That wraps up our tour of JSON. Let’s have a look at what we covered in this chapter.

14.4 Summary
XML and JSON are such big topics that we cannot possibly touch all bases in a book on
Groovy. We’ve covered the most important aspects in enough detail to provide a good
basis for experimentation and further reading. When pushing the limits with Groovy
XML and JSON, you’ll probably encounter topics that aren’t covered in this chapter.
Don’t hesitate to consult the online resources.

 At this point, you have a solid basis for understanding the different ways of working
with XML and JSON in Groovy.

 Using the familiar Java DOM parsers in Groovy enables you to work on the stan-
dard org.w3c.com.Node objects whenever the situation calls for it. Such nodes can be
retrieved from the DOMBuilder, conveniently accessed with the help of DOMCategory,
and investigated with XPath expressions. Groovy makes life with the DOM easier, but it
can’t rectify some of the design decisions that give surprises or involve extra work for
no benefit.

 Groovy’s internal XmlParser and XmlSlurper provide access to XML documents in
a Groovy-friendly way that supports GPath expressions for working on the document.
XmlParser provides an in-memory representation for in-place manipulation of nodes,
whereas XmlSlurper is able to work in a more streamlike fashion. For even further
memory reductions, you can also use SAX and StAX.

 Finally, it’s easy to parse and build JSON for situations where XML isn’t required.
XML parsers in Java have been optimized over many years and Groovy stands on the
shoulder of giants when making XML more accessible. For JSON, the situation is quite
different. Here Groovy is currently at the head of the pack in terms of parsing speed.

 Whatever your XML- or JSON-based activity, Groovy is likely to have something that
will ease your work. By now, that shouldn’t come as a surprise.
Licensed to Mark Watson <nordickan@gmail.com>

Interacting
with Web Services
Service to others is the rent you pay for your room here on earth.

—Muhammad Ali

From the early days of computer networking, we’ve used a wealth of protocols and
data formats to allow computers to interact and exchange information. With the
popularity and ubiquity of the World Wide Web, the range of protocols and data
formats has consolidated to primarily focus on HTTP, which implements the request–
response model you know from your everyday browsing activities, and a small num-
ber of markup notations (mainly HTML, XML, and JSON) as the data-exchange for-
mat. These are the commonly called web service technologies and are the subject of
this chapter.

 At a simple level, sharing data happens every time you surf the web. With the
help of your browser, you request a URL. The server responds with an HTML document

This chapter covers
■ Consuming RSS and ATOM feeds
■ Using REST and JAX-RS
■ Remote operations with XML-RPC
■ SOAP Web Services
543

Licensed to Mark Watson <nordickan@gmail.com>

544 CHAPTER 15 Interacting with Web Services
that your browser knows how to display. The server and the browser are intercon-
nected through the HTTP that implements the request–response model, and they use
HTML as the data-exchange format.

 Now imagine a program that surfs the web on your behalf. Such a program could
visit a list of URLs to check for updates, browse a list of news providers for new infor-
mation about your favorite topics (we suggest “Groovy”), access a stock ticker to see
whether your shares have exceeded some target price, and check the local weather
service to see if it issued a thunderstorm warning.

 Such a program would have significant difficulties to overcome if it had to find the
requested information in the HTML of each website. The HTML describes not only
what the data is, but also how it should be broadly presented. A change to the presen-
tation aspect of the HTML could easily break the program that was trying to under-
stand the data.

 What if instead of using a format intended to present content to human readers,
we chose a notation friendlier to computers. Perhaps we could use a binary notation
directly matching how our computer represents the data? Unfortunately, intercon-
nected systems can be heterogeneous. They may be written in different languages,
run on different platforms (think .NET versus Java), use different OSs, and run on dif-
ferent hardware architectures.

 Instead of dealing with the two aspects of content and presentation together, it
would be more reliable if there were an XML or JSON description of the pure content.
This is what Web Services are about.

 XML and JSON describe data in a system-independent way. This makes them obvi-
ous candidates for exchanging data across a network. No matter how different these
systems are, they can exchange data through XML or JSON, so long as both sides have
some idea of how to interpret or serialize the data they’re given.

 A full description of all web service formats and protocols is beyond the scope of this
book, but we’ll show how you can use some of them with Groovy. Our focus will be on
writing web service clients in Groovy but we’ll glimpse a few bits of server technology
and techniques along the way. We cover reading XML resources via RSS and ATOM, fol-
lowed by a more detailed look at using the REST style. Then we cover Groovy’s special
XML-RPC support on the client and, albeit briefly, the server side. Finally, we’ll look at all
the ways to use Groovy for writing requests to SOAP services.

 In case REST and SOAP make it sound like we’re talking about having a bath
instead of accessing Web Services, you’ll be pleased to hear we’re starting with a brief
description of some of these protocols and conventions.

15.1 An overview of Web Services
Web Services solutions cover a spectrum of approaches from the simple to what some
regard as extremely complex. Perhaps the simplest approach is to use the stateless
HTTP protocol to request a resource via a URL. This is the basis of the REpresentational
State Transfer (REST) architecture. The terms REST and RESTful are sometimes used in
Licensed to Mark Watson <nordickan@gmail.com>

545Reading RSS and ATOM
a very strict sense for Web Services that follow all of the principles espoused in the
original Ph.D. thesis1 by Roy Fielding on the topic, but the terms have also been used
more widely to refer to any mechanism for exposing content on the web via simple
XML or JSON.

 One of the first popular uses of the REST architecture in its most basic form was for
making content of web blogs available. Two of the most commonly used formats in
this area are Really Simple Syndication2 (RSS) and ATOM (RFC-4287). We’ll start our explo-
ration of web services by looking at these formats.

 The next logical extension from using a URL to request a resource is to use sim-
ple XML embodied within a normal HTTP POST request. This also can be regarded
as a REST solution. We’ll examine several XML and JSON APIs of this nature as part
of our REST tour.

 When the focus isn’t on the remote resource but on triggering an operation on the
remote system, the XML Remote Procedure Call (XML-RPC) can be used. XML-RPC uses
HTTP but adds context, which makes it a stateful protocol (as opposed to REST).

 The SOAP3 protocol extends the concept of XML-RPC to support not only remote
operations but even remote objects. Web service enterprise features that build upon
SOAP provide other functionality such as security, transactions, and reliable messag-
ing, to name a few of the many advanced features available.

 Now that you have your bearings, let’s look at how Groovy can access two of the
most popular web service formats in use today.

15.2 Reading RSS and ATOM
Let’s start our day by reading the news. The BBC broadcasts its latest news on an RSS
channel. Because we’re busy programmers, we’re interested only in the top three
headlines. A little Groovy program fetches them and prints them to the console. What
we’d like to see is the headline, a short description, and a URL pointing to the full arti-
cle in case a headline catches our interest.

 Here is some sample output (edited slightly for brevity):

The top three news today:
Cameron challenged on pupil funding ...
http://www.bbc.co.uk/...
David Cameron promises not to cut school budgets ...

Litvinenko 'worked as MI6 consultant'
http://www.bbc.co.uk/...
Former Russian spy Alexander Litvinenko ...

1 “Architectural Styles and the Design of Network-based Software Architectures,” available at www.ics.uci.edu/
~fielding/pubs/dissertation/top.htm.

2 Also called Rich Site Summary (RSS 0.9x) or Resource Description Framework (RDF) Site Summary (RSS 1.0).
3 SOAP used to stand for Simple Object Access Protocol, but this meaning has been dropped since version 1.2, because

SOAP does more than access objects, and the word simple was questionable from the start.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

546 CHAPTER 15 Interacting with Web Services
Greste 'angst' for jailed colleagues
http://www.bbc.co.uk/...
Australian Al-Jazeera journalist Peter Greste ...

The next listing implements this newsreader. It requests the web resource that con-
tains the news as XML. It finds the resource by its URL. Passing the URL to the parse
method implicitly fetches it from the web. The remainder of the code can directly
work on the node tree using GPath expressions.

def base = 'http://news.bbc.co.uk/rss/newsonline_uk_edition/'
def url = base +'front_page/rss091.xml'

println 'The top three news items today:'
def items = new XmlParser().parse(url).channel[0].item
for (item in items[0..2]) {
 println item.title.text()
 println item.link.text()
 println item.description.text()
 println '----'
}

Of course, for writing such code, we need to know what elements and attributes are
available in the RSS format. In listing 15.1, we assumed that at least the following struc-
ture is available:

<rss ...>
 <channel>
 ...
 <item>
 <title>…</title>
 <description>...</description>
 <link>...</link>
 ...

This is only a small subset of the full information. You can find a full description of the
RSS and ATOM formats and their various versions in RSS and ATOM in Action by Dave
Johnson (Manning, 2006).

 Reading an ATOM feed is equally easy, as shown in listing 15.2. It reads the ATOM
feed from IBM’s developerWorks Java Technology topic feed. At the time of writing
this chapter, it prints

22 Jan 2015 Integrating FindBugs, CheckStyle and Cobertura with Rational
Team Concert build system
21 Jan 2015 Embed rich reports in your applications
17 Dec 2014 Create a coupon-finding app by combining Yelp, Google Maps,
Twitter, and Klout services
 ...

Listing 15.1 A simple RSS newsreader
Licensed to Mark Watson <nordickan@gmail.com>

547Using a REST-based API

One thing that’s new in listing 15.2 is the use of XML namespaces. The ATOM format
makes use of namespaces like so:

<feed xmlns="http://www.w3.org/2005/Atom">
 ...
 <entry>
 <title>Java.next: The Java.next languages</title>
 ...

To traverse nodes that are bound to namespaces with GPath expressions, qualified
names (QName objects) are used.4 A QName object can be retrieved from a Namespace
object by requesting the property of the corresponding element name. To collect the
entries we’re interested in we use atom.entry. For each entry we subsequently look up
its atom.published date (truncating off time information), its atom.summary (printing
out a star for any that mention Groovy), and its atom.title.

import groovy.xml.Namespace

def url = 'http://www.ibm.com/developerworks/views/java/rss/' +
 'libraryview.jsp?feed_by=atom'
def atom = new Namespace('http://www.w3.org/2005/Atom')
def numEntries = 3
def entries = new XmlParser().parse(url)[atom.entry][0..<numEntries]
def len = "dd mmm yyyy ".size()
def summaries = entries.collect {
 it[atom.published].text()[0..<len] +
 (it[atom.summary].text().contains('Groovy') ? '*' : ' ') +
 it[atom.title].text()
}
println summaries.join("\n")

That was all fairly easy, right? The next topic, REST, will be more elaborate but covers a
wider area of applicability, because it’s a more general approach.

15.3 Using a REST-based API
Although many Web Services are bound to a standard, REST is an open concept rather
than a standard. The common denominators of REST services are the following:5

■ Formatted data is exchanged between client and server (typically using XML
or JSON).

■ Communication is done on a stateless request–response model over HTTP(S)
using verbs such as GET, POST, and so forth.

■ Resources or services are addressed by a URL.

4 XmlParser and XmlSlurper are namespace-aware by default but can be configured to not handle name-
spaces if you prefer, though you’d typically have more work to do yourself manually in that case.

Listing 15.2 Reading an ATOM feed

5 We could get in-depth here and talk about additional constraints but we’ll keep it simple for now.

Shows
latest
three
entries

Chops
published
date after
this many
chars
Licensed to Mark Watson <nordickan@gmail.com>

548 CHAPTER 15 Interacting with Web Services
No binding standard describes the structure of the XML or JSON that’s sent around.
You need to look into the documentation of each REST service to find out what infor-
mation is requested and provided. The documentation will describe the available
resources, the verbs supported, the XML or JSON structure they expect to receive (for
operations that consume a payload), and the result they return.

 As a first example, we’ll look into the REST services for interacting with The Apache
Software Foundation’s6 JIRA7 used by Groovy for issue tracking. The documentation
for these services can be found on the Atlassian website at http://docs.atlassian.com/
jira/REST/latest/. It has around 40 different resources listed in the API (some with
subresources). For each resource, the supported methods are given. For our pur-
poses, we’re interested in the following resource (which will allow us to query the
details about a particular JIRA issue of interest8):

/rest/api/latest/issue/{issueIdOrKey}

It supports GET, PUT, and DELETE methods but we’re only interested in GET. Looking at
the documentation for GET, it has a few options to customize our query (for example,
to select which fields are returned). These would be passed in as URL parameters (in
general, REST APIs might use JSON- or XML-formatted messages in, for example, a
POST method instead of URL parameters). For our purposes, we won’t customize our
query, so no additional parameters are required.

 Invoking the query is simply a matter of performing a GET request at the above
URL but substituting in the key for the issue of interest. Since a GET request is the
default type of request, we open an HTTP connection to the URL and it will return
JSON containing the details we’re after. We can use Groovy’s JsonSlurper to consume
the returned JSON and confirm details about the issue of interest. We might also like
to check that we get back a valid response code:

def httpConnection = new URL(base + key).openConnection()
assert httpConnection.responseCode == httpConnection.HTTP_OK
def result = slurper.parse(httpConnection.inputStream.newReader())
// do something with result …

We’ll provide a Groovy-friendly wrapper class (class Jira in listing 15.3) around these
calls. That way if we need to swap the JSON parser for an XML one, or the details change
about which methods and resources we should be calling, it won’t affect the code using
our wrapper class. Putting this together can be seen in the following listing.

6 The Groovy project is currently hosted within the Apache incubator as part of moving to the Apache Software
Foundation. See www.apache.org for details.

7 The project tracking system from Atlassian. See www.atlassian.com/software/jira/overview for details.
8 One nice aspect of this particular resource is that for simple querying, no authentication is required.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.apache.org
http://www.atlassian.com/software/jira/overview
http://docs.atlassian.com/jira/REST/latest/
http://docs.atlassian.com/jira/REST/latest/

549Using a REST-based API
import groovy.json.JsonSlurper

class Jira {
 def base = 'https://issues.apache.org/jira/rest/api/latest/issue/'
 def slurper = new JsonSlurper()

 def query(key) {
 def httpConnection = new URL(base + key).openConnection()
 assert httpConnection.responseCode == httpConnection.HTTP_OK
 slurper.parse(httpConnection.inputStream.newReader())
 }
}

def jira = new Jira()
def response = jira.query("GROOVY-5999")
response.fields.with {
 assert summary == "Make @Delegate work with @DelegatesTo"
 assert fixVersions.name == ['2.1.1']
 assert resolutiondate.startsWith('2013-02-14')
}

For this simple example, using the JDK URL class was relatively simple and painless, but
as the complexity grows, this approach tends to involve a fair bit of boilerplate logic in
the solution. We can keep things simple by using a dedicated REST client API. We’ll
use HTTPBuilder,9 which provides a RESTClient class. This class makes the GET, POST,
and other HTTP methods easily available to us and hides away the underlying details
of connection handling. It automatically can determine if a JSON or XML response is
returned using MIME-TYPE information in the response and provides us with the nec-
essary slurper without us needing to worry about the details. The end result is cleaner-
looking code as shown in the following listing.

@Grab('org.codehaus.groovy.modules.http-builder:http-builder:0.7.2')
import groovyx.net.http.RESTClient

def base = 'https://issues.apache.org/jira/rest/api/latest/'
def jira = new RESTClient(base)
jira.get(path: 'issue/GROOVY-5999') { resp, json ->
 assert resp.status == 200
 json.fields.with {
 assert summary == "Make @Delegate work with @DelegatesTo"
 assert fixVersions.name == ['2.1.1']
 assert resolutiondate.startsWith('2013-02-14')
 }
}

Listing 15.3 Querying JIRA via its REST API

9 See https://github.com/jgritman/httpbuilder/wiki.

Listing 15.4 Querying JIRA using HTTPBuilder
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/jgritman/httpbuilder/wiki.

550 CHAPTER 15 Interacting with Web Services
Let’s look at another web service used for finding the conversion rate between two mon-
etary currencies. It’s hosted at the popular Web Services portal at www.webservicex.net/.
It’s very similar to our earlier example but requires query parameters and returns
XML instead of JSON. The base URL for this service is:

http://www.webservicex.net/CurrencyConvertor.asmx

The path and query parameters for conversion from U.S. dollars to Euros are:

<baseUrl>/ConversionRate?FromCurrency=USD&ToCurrency=EUR

When invoked, XML content containing an appropriate exchange rate will be produced:

<double xmlns="http://www.webserviceX.NET/">0.882</double>

The HTTPBuilder code to access this web service is shown in the following listing.

@Grab('org.codehaus.groovy.modules.http-builder:http-builder:0.7.2')
import groovyx.net.http.RESTClient

def url = 'http://www.webservicex.net/CurrencyConvertor.asmx/'
def converter = new RESTClient(url)
def params = [FromCurrency: 'USD', ToCurrency: 'EUR']
converter.get(path: 'ConversionRate', query: params) { resp, data ->
 assert resp.status == 200
 assert data.name() == 'double'
 println data.text()
}

When run, the following output was produced at the time of writing:

0.882

The example illustrates a nice feature of the HTTPBuilder library. The library exam-
ines the MIME type of the web service response and correctly chooses an appropriate
slurper to handle the incoming content. Whereas it chose a JSON slurper for our JIRA
example in listing 15.4, it has now chosen an XML slurper. When we combine that fea-
ture with Groovy’s duck-typing we end up with code that’s more resilient should the
format of the response change in the future. In common with our JIRA example in list-
ing 15.4, this example also used an HTTP GET method but the webservicex currency
web service also supports POST method requests as shown in the following listing.

@Grab('org.codehaus.groovy.modules.http-builder:http-builder:0.7.2')
import groovyx.net.http.RESTClient
import static groovyx.net.http.ContentType.URLENC

def url = 'http://www.webservicex.net/CurrencyConvertor.asmx/'
def converter = new RESTClient(url)

Listing 15.5 Using HTTPBuilder with query parameters

Listing 15.6 Using HTTPBuilder with a POST method
Licensed to Mark Watson <nordickan@gmail.com>

http://www.webservicex.net/

551Using a REST-based API
def postBody = [FromCurrency: 'USD', ToCurrency: 'EUR']
converter.post(path: 'ConversionRate', body: postBody,
 requestContentType: URLENC) { resp, data ->
 assert resp.status == 200
 assert data.name() == 'double'
 println data.text()
}

The examples so far are very simple, but a more typical example might differ in one of
two ways:

1 It might involve greater complexity. It may have many more URL parameters,
involve authentication, involve JSON or XML POST payloads, etc. The HTTP-
Builder library provides markup builders to support these more complex sce-
narios. See the API documentation for more details.10

2 It may be a mashup combining many other services together to provide a more
compelling service.

Having said that, you should now have the knowledge to tackle such complex REST
applications even with only the few small tools we’ve shown you in this section.

 Before leaving this section, we should briefly look at the latest JAX-RS 2.0 stan-
dard (also known as JSR-339).11 Earlier versions of this standard have been part of
the Java EE world for some time. JAX-RS annotations such as @GET, @PUT, @Path, and
@QueryParam are added to server-side implementation code. The JAX-RS library
takes care of the mapping between the HTTP protocol endpoint and the implemen-
tation code. Part of the mapping may involve serialization between domain objects
used in the implementation code and their representation as parameters or as a
JSON or XML payload.

 Obviously this API frees the developer from much low-level detail so it’s definitely
of interest for endpoint service writers, but this is a chapter focusing on writing web
service client code. Why should JAX-RS be of interest? The good news is that as of ver-
sion 2.0 of this standard, there’s now a unified client API. In addition, some of the
implementations don’t require a Java EE container and can be used standalone with
Java SE. That makes it ideal for our needs. We’ll use the RESTEasy (www.jboss.org/
resteasy) client from JBoss.

 When using JAX-RS as a client, you use a fluent API provided by a ClientBuilder
class to define the details necessary for the builder to make the appropriate HTTP
request to your endpoint of interest and understand the returning response. The API
has numerous extension points to allow you to cater for custom MIME types or special
serialization needs. We’ll avoid using those parts of the API. For our example, it’s suffi-
cient to specify the target URL and our query parameters and then declare that we

10 See https://github.com/jgritman/httpbuilder/wiki.
11 See www.jcp.org/en/jsr/detail?id=339 for the final specification.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.jcp.org/en/jsr/detail?id=339
https://github.com/jgritman/httpbuilder/wiki
http://www.jboss.org/resteasy
http://www.jboss.org/resteasy

552 CHAPTER 15 Interacting with Web Services
want a raw string back as the response type. We’ll process the response ourselves with
Groovy’s XmlSlurper. The resulting code can be seen in the following listing.

@Grab('org.jboss.resteasy:resteasy-client:3.0.10.Final')
import javax.ws.rs.client.ClientBuilder

def client = ClientBuilder.newClient()
def base = "http://www.webservicex.net/CurrencyConvertor.asmx"
def response = client.target(base + '/ConversionRate')
 .queryParam("FromCurrency", "USD")
 .queryParam("ToCurrency", "EUR")
 .request().get(String)
def rate = new XmlSlurper().parseText(response)
assert rate.name() == 'double'
println rate.text()

Specifying we wanted a raw string back was as easy as supplying the String class to the
get method B. Alternatively, we could get the HTTP response object back or a domain
object we’ve previously defined using JAX-RS annotations. Such a class would be avail-
able if we had used JAX-RS to define our service.

 We should also point out a nice feature of RESTEasy that isn’t currently part of the
JSR-339 standard. It provides a proxy method that takes an interface class. The inter-
face class is annotated in much the same way as a service endpoint would be with nor-
mal JAX-RS conventions, but only the client side mapping is catered for with this
technique. This is exactly what we want and the resulting code is shown in the follow-
ing listing.

@Grab('org.jboss.resteasy:resteasy-client:3.0.10.Final')
import javax.ws.rs.GET
import javax.ws.rs.Path
import javax.ws.rs.Produces
import javax.ws.rs.QueryParam
import javax.ws.rs.client.ClientBuilder

interface CurrencyConvertor {
 @GET
 @Path("ConversionRate")
 @Produces("application/xml")
 String convert(@QueryParam("FromCurrency") String from,
 @QueryParam("ToCurrency") String to)
}

def client = ClientBuilder.newClient()
def base = "http://www.webservicex.net/CurrencyConvertor.asmx"
def proxy = client.target(base).proxy(CurrencyConvertor)
def response = proxy.convert("USD", "EUR")
def root = new XmlSlurper().parseText(response)
assert root.name() == 'double'
println root.text()

Listing 15.7 Using JAX-RS

Listing 15.8 Using a RESTEasy client proxy

Specifies
a String
response

 b
Licensed to Mark Watson <nordickan@gmail.com>

553Using XML-RPC
Here the CurrencyConvertor interface is our declarative description of the details
for the web service. Annotations on the convert method and its parameters give
enough information for the proxy method to provide us with an object that satisfies
the CurrencyConvertor interface but makes the correct HTTP call to the web service
when called.

 We don’t have space within this chapter to deep dive into other details of JAX-RS.
For a few more details with a Groovy flavor, we suggest reading Make Java Groovy by
Kenneth Kousen (Manning, 2013) or visiting the JAX-RS website (https://jax-rs-spec
.java.net/) for all the official details.

 REST APIs provide a very simple but powerful mechanism for client–server interac-
tion. The downside is that each API is different; you need to understand the details of
each one before you use it. You’ll see one approach to overcoming this lack of stan-
dardization when we look into XML-RPC in the next section.

15.4 Using XML-RPC
The XML-RPC specification is almost as old as XML. It’s extremely simple and concise.
See www.xmlrpc.com for all details.

 Thanks to this specification, Groovy can provide a general implementation for
many of the infrastructure details that you have to write for REST. A separate module
(groovy-xmlrpc) contains the general implementation and can be easily obtained with
a @Grab annotation in your class or script or by simply downloading the .jar file.

 Perhaps the best way to convince you of its merits is by example. Suppose you have
a simple XML-RPC server running on your local machine on port 8080 that exposes an
echo operation that returns whatever it receives. Using this service from a Groovy cli-
ent is as simple as

import groovy.net.xmlrpc.XMLRPCServerProxy as Proxy
def remote = new Proxy('http://localhost:8080/')
assert 'Hello world!' == remote.echo('Hello world!')

Installing a server that implements the echo operation is equally easy. Create a server
instance, and assign a closure to its echo property:

import groovy.net.xmlrpc.XMLRPCServer as Server

def server = new Server()

server.echo = { return it }

The server must be started on a ServerSocket before the client can call it, and it must
be stopped afterward. The following listing installs the echo server, starts it, requests
the echo operation, and stops it at the end.

@Grab('org.codehaus.groovy:groovy-xmlrpc:0.8')
import groovy.net.xmlrpc.XMLRPCServerProxy as Proxy
import groovy.net.xmlrpc.XMLRPCServer as Server

Listing 15.9 Self-contained XML-RPC server and client for the echo operation
Licensed to Mark Watson <nordickan@gmail.com>

https://jax-rs-spec.java.net/
https://jax-rs-spec.java.net/
http://www.xmlrpc.com

554 CHAPTER 15 Interacting with Web Services
def server = new Server()
server.echo = { return it }

def socket = new ServerSocket(8080)
server.startServer(socket)

remote = new Proxy("http://localhost:8080/")
assert 'Hello world!' == remote.echo('Hello world!')

server.stopServer()

Having the client and server together is useful for testing purposes, but in production
these two parts usually run on different systems.

 XML-RPC also defines error handling, which in Groovy XML-RPC is available through
the XMLRPCCallFailureException with the properties faultString and faultCode.

 The areas of applicability for XML-RPC are so wide that any list we could come up
with would be necessarily incomplete. It’s used for reading and posting to blogs, con-
necting to instant messaging systems (over the Jabber protocol for systems such as
GoogleTalk12), newsfeeds, search engines, continuous integration servers, bug-track-
ing systems, and so on.

 It’s appealing because it’s powerful and simple at the same time. Let’s, for exam-
ple, find out information about the projects managed at the Apache Software Founda-
tioin (ASF).13 The ASF provides the JIRA14 bug-tracking system for its hosted projects.

 Printing all project names can be done easily with the following code:

import groovy.net.xmlrpc.XMLRPCServerProxy as Proxy

def remote = new Proxy('http://jira.codehaus.org/rpc/xmlrpc')

def loginToken = remote.jira1.login('user','***')
def projects = remote.jira1.getProjects(loginToken)
projects.each { println it.name }

It’s conventional for operations exposed via XML-RPC to have a dot-notation like
jira1.login. Groovy’s XML-RPC support can deal with that.

 But if you call a lot of methods, using the remote.jira1. prefix gets in the way of
readability. It would be nicer to avoid that. Listing 15.10 has a solution. Calls to proxy
methods can always optionally take a closure. Inside that closure, method names are
resolved against the proxy. We extend this behavior with a specialized JiraProxy that
prefixes method calls with jira1.

12 See Guillaume’s excellent article on how to use GoogleTalk through Groovy at http://glaforge.free.fr/
weblog/index.php?itemid=142.

13 The Groovy project is currently hosted within the Apache incubator as part of moving to the Apache Software
Foundation.

14 Find information about the JIRA XML-RPC methods at http://confluence.atlassian.com/display/JIRA/
JIRA+XML-RPC+Overview.

Client code
Licensed to Mark Watson <nordickan@gmail.com>

http://glaforge.free.fr/weblog/index.php?itemid=142
http://glaforge.free.fr/weblog/index.php?itemid=142
http://confluence.atlassian.com/display/JIRA/JIRA+XML-RPC+Overview
http://confluence.atlassian.com/display/JIRA/JIRA+XML-RPC+Overview

555Applying SOAP
 To make things a bit more interesting this time, we print information about the
Groovy project in the ASF’s JIRA.

@Grab('org.codehaus.groovy:groovy-xmlrpc:0.8')
import groovy.net.xmlrpc.XMLRPCServerProxy as Proxy

class JiraProxy extends Proxy {
 JiraProxy(url) { super(url) }

 Object invokeMethod(String methodname, args) {
 super.invokeMethod('jira1.' + methodname, args)
 }
}

def jira = new JiraProxy('https://issues.apache.org/jira/rpc/xmlrpc')

// insert your codehaus username and password below
jira.login('username', '****') { loginToken ->
 def projects = getProjectsNoSchemes(loginToken)
 println "${projects.size()} projects found in the Apache jira"
 def groovy = projects.find { it.name == 'Groovy' }
 if (groovy) {
 println "Found the $groovy.name project with key $groovy.key"
 println "Description: $groovy.description"
 println "Led by $groovy.lead and hosted at $groovy.projectUrl"
 }
}

This prints

519 projects found in the Apache jira
Found the groovy project with key GROOVY
Description: Groovy programming language: a modern dynamic language for the JVM
Led by guillaume and hosted at https://groovy.incubator.apache.org

Note the simplicity of the code. Unlike with REST, you don’t need to work on XML or
JSON nodes, either in the request or in the response. You can just use Groovy data-
types such as strings (user), lists (projects), and maps (groovy). Who can ask for more?

 There would be a book’s worth more to say about XML-RPC and its Groovy module,
especially about implementing the server side. But this book has only so many pages,
and you need to refer to the online documentation for more details and use scenarios.

 You now have the basic information to start your work with XML-RPC. Why not try
it right now! Or alternatively, continue on our tour through all the options for distrib-
uted processing with an all-embracing solution: SOAP.

15.5 Applying SOAP
SOAP is the successor of XML-RPC and follows the approach of providing a binding
standard. This standard is maintained by the W3C; see www.w3.org/TR/soap/.

 The SOAP standard extends the XML-RPC standard in multiple dimensions. One
extension is datatypes. Where XML-RPC allows only a small fixed set of datatypes, SOAP

Listing 15.10 Using the JIRA XML-RPC API on the Groovy project
Licensed to Mark Watson <nordickan@gmail.com>

http://www.w3.org/TR/soap/

556 CHAPTER 15 Interacting with Web Services
provides means to define new service-specific datatypes. Other frameworks, including
CORBA, DCOM, and Java RMI, provide functionality similar to that of SOAP, but SOAP
messages are written entirely in XML and are therefore platform- and language-
independent. The general approach of SOAP is to allow a web service to describe its
public API: where it’s located, what operations are available, and the request and
response formats (called messages). A SOAP service makes this information available
via the Web Services Definition Language (WSDL).

 SOAP has been widely adopted by the industry, and numerous free services are
available, ranging from online shops through financial data, maps, music, payment
systems, online auctions, order tracking, blogs, news, picture galleries, weather services,
credit card validation—the list is endless.

 Numerous programming languages and platforms provide excellent support for
SOAP. Popular SOAP stack implementations on the Java platform include Metro
(http://metro.java.net) and Apache CXF (http://cxf.apache.org/). Built-in SOAP
support for Groovy is rather basic, but it’s used successfully for production projects.
First, we’ll explore how you can use SOAP with pure Groovy in an effective yet con-
cise manner.

15.5.1 Doing SOAP with plain Groovy

Our example uses the currency conversion web service we looked at earlier located
at www.webservicex.net, which provides a lot of interesting public Web Services.
First, we fetch the service description for its currency converter as shown in the fol-
lowing listing.

import groovy.xml.Namespace

def url = 'http://www.webservicex.net/CurrencyConvertor.asmx?WSDL'
def wsdl = new Namespace('http://schemas.xmlsoap.org/wsdl/','wsdl')
def doc = new XmlParser().parse(url)

println doc[wsdl.portType][wsdl.operation].'@name'

This prints the available operations:

["ConversionRate", "ConversionRate", "ConversionRate"]

The service exposes three operations named ConversionRate with different charac-
teristics.15 We’re interested in one that takes FromCurrency and ToCurrency as input
parameters and returns the current conversion rate. Currencies can be expressed
using a format like USD or EUR.

Listing 15.11 Listing the operations of a SOAP service

15 For advice on how to read a WSDL service description, refer to www.w3.org/TR/wsdl.
Licensed to Mark Watson <nordickan@gmail.com>

http://cxf.apache.org/
http://www.webservicex.net
http://www.w3.org/TR/wsdl
http://metro.java.net

557Applying SOAP
 SOAP uses something called an envelope format for the request. The details are
beyond the scope of this chapter. See the specifications for details. Our envelope looks
like this:

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ConversionRate xmlns="http://www.webserviceX.NET/">
 <FromCurrency>${from}</FromCurrency>
 <ToCurrency>${to}</ToCurrency>
 </ConversionRate>
 </soap:Body>
</soap:Envelope>

As you see from the ${} notation, this envelope is a template that we can use with a
Groovy template engine.

 The code in listing 15.12 reads this template, fills it with parameters for U.S.-dollar-to
Euro conversion, and adds it to a POST request to the service URL. The request needs
additional request headers such as the SOAPAction to make the server understand it. We
explicitly use UTF-8 character encoding to avoid any cross-platform encoding problems.

 The service responds with a SOAP result envelope. We know it contains a node
named ConversionRateResult belonging to the service’s namespace. We locate the
first such node in the response and get the conversion rate as its text value.

import groovy.text.SimpleTemplateEngine as STE
import groovy.xml.Namespace

def file = new File('data/conv.templ.xml')
def template = new STE().createTemplate(file)
def params = [from:'USD', to:'EUR']
def request = template.make(params).toString().getBytes('UTF-8')

def url = 'http://www.webservicex.net/CurrencyConvertor.asmx'
def conn = new URL(url).openConnection()
def reqProps = [
 'Content-Type': 'text/xml; charset=UTF-8',
 'SOAPAction' : 'http://www.webserviceX.NET/ConversionRate',
 'Accept' : 'application/soap+xml, text/*'
]
reqProps.each { key,value -> conn.addRequestProperty(key,value) }

conn.requestMethod = 'POST'
conn.doOutput = true
conn.outputStream << new ByteArrayInputStream(request)
if (conn.responseCode != conn.HTTP_OK) {
 println "Error - HTTP:${conn.responseCode}"
 return
}

Listing 15.12 Using the ConversionRate SOAP service

Templated envelope
of SOAP request

Requests
headers to use
every time

Sends the
request
Licensed to Mark Watson <nordickan@gmail.com>

558 CHAPTER 15 Interacting with Web Services
def resp = new XmlParser().parse(conn.inputStream)
def serv = new Namespace('http://www.webserviceX.NET/')
def result = serv.ConversionRateResult

print "Current USD to EUR conversion rate: "
println resp.depthFirst().find{result == it.name()}.text()

At the time of writing, it prints

Current USD to EUR conversion rate: 0.882

This is straightforward in terms of each individual step, but taken as a whole, the code
is fairly cumbersome. One point to note about the implementation is hidden in locat-
ing the result in the response envelope. We use the serv namespace and ask it for its
ConversionRateResult property, which returns a QName. We assign it to the result
variable and make use of the fact that QName implements the equals method with
strings so that we find the proper node.

 SOAP is verbose compared to other approaches. It’s verbose in the code it demands
for execution and—more important—it’s verbose in its message format. It’s not unusual
for SOAP messages to have 10 times more XML markup than the payload size.

 But the SOAP standard makes it possible to provide general tools for dealing with
its complexity.

15.5.2 Simplifying SOAP access using HTTPBuilder

The HTTPBuilder library used earlier for accessing REST Web Services is also capable
of accessing SOAP services. HTTPBuilder supports a builder-style notation to build up
your SOAP request envelope. This saves you from having those details in a separate
template file. The resulting code can be seen in the following listing.

@Grab('org.codehaus.groovy.modules.http-builder:http-builder:0.7.2')
import groovyx.net.http.RESTClient
import static groovyx.net.http.ContentType.XML

def base = 'http://www.webserviceX.NET/CurrencyConvertor.asmx'
def soapEnv = 'http://www.w3.org/2003/05/soap-envelope'
def contentType = 'application/soap+xml; charset=UTF-8'
new RESTClient(base).with {
 parser.'application/soap+xml' = parser.'application/xml'
 headers = ['Content-Type': contentType]
 post(requestContentType: XML, body: {
 'soap:Envelope'('xmlns:soap': soapEnv) {
 'soap:Body' {
 ConversionRate(xmlns: 'http://www.webserviceX.NET/') {
 FromCurrency('USD')
 ToCurrency('EUR')
 }
 }
 }
 }) { resp, data ->

Listing 15.13 Accessing a SOAP service using HTTPBuilder

Parses the
response

Extracts
the result

Registers a
SOAP response
parser

 b

Content-Type
expected by
SOAP server c
Licensed to Mark Watson <nordickan@gmail.com>

559Applying SOAP
 assert resp.status == 200
 println data.text()
 }
}

Most of this should look familiar to earlier parsing and builder examples. HTTP-
Builder knows how to create XML requests and parse XML responses. You’ll use those
capabilities and provide the correct elements, attributes, and namespaces expected
for a SOAP interaction.

 Perhaps the first tricky part is that you need to register an appropriate parser B
(using the 'application/soap+xml' MIME type) for the returned response. Given
that the SOAP response can be treated as plain-old XML, you can piggyback onto that
parser. Also, even though the SOAP request is just plain-old XML, the SOAP server will
be expecting a SOAP content type, so you need to set a header to the value the SOAP
server is expecting c.

 Our HTTPBuilder implementation is a big step forward over listing 15.12 but it still
contains a fair bit of boilerplate code. Just as one example, the SOAP envelope and
body elements would exist for every SOAP service. Our next step to consider is a dedi-
cated SOAP-aware library. That’s the subject of the next section.

15.5.3 Simplifying SOAP access using groovy-wslite

The groovy-wslite library knows about SOAP (and REST too if you want to consider an
alternative to HTTPBuilder for REST). It uses a builder-style approach to allow us to
specify our SOAP body payload but hides away many of the details associated with cre-
ating the actual SOAP requests or parsing the SOAP responses. The following listing
shows the resulting code.

@Grab('com.github.groovy-wslite:groovy-wslite:1.1.0')
import wslite.soap.SOAPClient

def url = 'http://www.webservicex.net/CurrencyConvertor.asmx?WSDL'
def client = new SOAPClient(url)
def action = "http://www.webserviceX.NET/ConversionRate"
def response = client.send(SOAPAction: action) {
 body {
 ConversionRate(xmlns: 'http://www.webserviceX.NET/') {
 FromCurrency('USD')
 ToCurrency('EUR')
 }
 }
}
assert response.httpResponse.statusCode == 200
println response.ConversionRateResponse.ConversionRateResult

Now, that’s a lot groovier! This particular SOAP request will use the default version of
SOAP 1.1, but we can swap to SOAP 1.2 just as easily as can be seen in the next listing.

Listing 15.14 Conversion rates using groovy-wslite
Licensed to Mark Watson <nordickan@gmail.com>

560 CHAPTER 15 Interacting with Web Services
@Grab('com.github.groovy-wslite:groovy-wslite:1.1.0')
import wslite.soap.*

def url = 'http://www.webserviceX.NET/CurrencyConvertor.asmx?WSDL'
def client = new SOAPClient(url)
def response = client.send {
 version SOAPVersion.V1_2
 body {
 ConversionRate(xmlns: 'http://www.webserviceX.NET/') {
 FromCurrency('USD')
 ToCurrency('EUR')
 }
 }
}
assert response.httpResponse.statusCode == 200
println response.ConversionRateResponse.ConversionRateResult

Here we need to explicitly set the version we require but we can drop the SOAPAction
information as that isn’t required for SOAP 1.2.

 We hope you’ve enjoyed our journey through the variety of web service client
technologies. You should have enough information to build a wide variety of web
service clients.

15.6 Summary
Web Services is such a big topic that we cannot possibly touch all bases in an introduc-
tory book on Groovy, but you’ve seen the most important aspects in enough detail to
have a good basis for experimentation and further reading.

 It has become increasingly popular to build whole application architectures around
small, dedicated, loosely coupled services that cooperate by using the mechanics that
we’ve touched upon in this chapter. They’re called microservices.

 They can live in their own little container that may even contain their private oper-
ating system. Each can have its own way of exposing its service as long as it complies
with the web standards. They may run on full-blown Java Enterprise servers, Spring
Boot, Grails, Groovy + Jetty as in section 12.5, or something as small and lightweight as
Ratpack (www.ratpack.io).

 It’s not clear whether this trend will continue, but either way, your knowledge of
Groovy’s web service support enables you to implement conventional architectures
just as well as the latest hip architectures.

 As you’ve seen, it’s easy to send XML and JSON around the world to make net-
worked computers work together, sharing information and computing power. XML-
RPC and SOAP have support in the Groovy libraries, although that support is likely to
change significantly over time. REST can’t benefit from such support as easily (not
even in the dynamic world of Groovy) due to a lack of standardization, but you’ve
seen how the use of builders can make the development of an API for a specific REST
service straightforward.

Listing 15.15 Conversion rates using groovy-wslite and SOAP 1.2
Licensed to Mark Watson <nordickan@gmail.com>

http://www.ratpack.io

Integrating Groovy
In the programming-language world, one rule of survival is simple: dance or
die. It is not enough to make a beautiful language. You must also make it easy
for programs written in your beautiful language to interact with programs
written in other languages.

 —Simon Peyton Jones

One of the biggest advantages of Groovy (even one of the reasons for its inception)
is that it integrates natively with Java because both languages run on the same plat-
form and for the most part share the same commonly used data structures like lists
and maps. It’s important to understand what makes Groovy such an attractive
option when you need to embed a scripting language in your application.

 From a corporate perspective, it makes sense to build on the same platform that
most of your projects are already running on. This protects the investment in skills,
experience, and technology, mitigating risk and thus costs.

This chapter covers
■ Embedding Groovy in Java projects
■ Securing user-defined scripts
■ Customizing the runtime context
561

Licensed to Mark Watson <nordickan@gmail.com>

562 CHAPTER 16 Integrating Groovy
 Where Java isn’t a perfect fit as a language, Groovy’s expressiveness, brevity, and
power features may be more appropriate. Conversely, when Groovy falls short because
of the inevitable trade-off between agility and speed, performance-critical code can be
replaced with raw Java.1 These balancing decisions can be made early or late with few
repercussions due to the close links between the two languages. Groovy provides a
transparent integration mechanism that permits a one-to-one mix-and-match of Java
and Groovy classes. This isn’t always the case with other scripting solutions, some of
which just provide wrappers or proxies that break the object hierarchy contract.

16.1 Prelude to integration
If Groovy and Java integrate so seamlessly, why is a whole chapter devoted to describ-
ing the integration possibilities? To answer, we need to take a step back.

 If you already have a Java project that builds using Gradle, then “incorporating”
Groovy into your project might be as simple as adding a line at the top of your Gradle
build file to enable the Groovy plugin and adding a dependency to the Groovy JAR
file. Or, if you’re compiling and packaging your Groovy artifacts into class files, then
you might be able to add those to your Java classpath. Similarly, if you’re mostly using
Groovy and want to “incorporate” a bit of Java, it might mean adding a JAR file to your
classpath or using the joint compilation flag when calling the Groovy compiler.

 But these simple scenarios don’t allow for any just-in-time provision of code, whether
that’s through users entering expressions as they might into a graphing calculator or
developers providing replacement scripts for just the bits of code that require fre-
quent changes within a live system. As an idea of how widely used this kind of facility
can be, consider Visual Basic (VB). We’re not in the business of judging its pros and
cons, but it would be hard to deny that VB is popular and has been for a long time.
Although many developers write whole applications in VB from scratch, far more use
the capability of various products to embed pieces of VB code to customize behavior in
ways the original developers may never have even considered.

 Now consider allowing that kind of flexibility in your application. Instead of hear-
ing people talking about writing VB in Microsoft Office, imagine those same people
talking about writing Groovy in your application. Imagine them using your product in
ways you never contemplated—making it more and more valuable for them.

 So, there’s a tremendous upside to integration, but it can potentially also add sig-
nificant complexity depending on which path you take. So let’s look at some of the
points you should consider when evaluating an integration opportunity, and then
what you’d need to do to get started.

1 But make sure you read about @CompileStatic in chapter 10, which gives much of your Groovy code Java-
like speed.
Licensed to Mark Watson <nordickan@gmail.com>

563Prelude to integration
16.1.1 Integrating appropriately

No one can tell you what your application’s needs are or what’s going to be suitable
for your particular situation. You must look carefully at your requirements and con-
sider whether you’ll benefit at all from integrating Groovy. We can’t make that deci-
sion for you—but we hope we can give a few ideas to guide you.

 It’s worth explicitly acknowledging that not all applications benefit from integrat-
ing a scripting language such as Groovy. We can go as far as saying that many don’t
require it. If you’re writing an e-commerce website, a multimedia player, or an FTP cli-
ent, chances are that you won’t need a scripting language. But don’t let us stop you
from using Groovy as (one of) your implementation languages for your application.
We expect, though, that you’d compile it all in one go in a traditional build process
with a single lifecycle.

 On the other hand, suppose you were building an advanced word processor, a
spreadsheet application, or a complex risk-calculation module for an even more com-
plicated bank software suite that had to evolve quickly to follow the rapid changes of
the market, legislation, or new business rules. These applications might need an exten-
sion point where end users can customize them to suit their needs. Figure 16.1 shows
one example of where you could integrate Groovy.

 For instance, the banking application might require the definition of business
rules in a script that could be defined at runtime without requiring a new and tedious
development/test/qualification phase, reducing the time to market and increasing
the responsiveness to changes in financial practices. Another example could be an
office suite of applications offering a macro system to create reusable functions that
could be invoked with a keystroke. It becomes obvious that a dichotomy of the soft-
ware world differentiates monolithic applications, which don’t need to evolve over
time and have a fixed functional scope, from more fluid applications, whose logic can
be extended or modified during their lifespan to accommodate context changes.

 Before considering using Groovy in your application, analyze whether you need to
customize it, and see whether you want to customize, extend, or amend the logic, and
not just simple parameters. If parameterization will fulfill your needs, you may be
better off with classic configuration mechanisms such as an administration web
interface through a set of web services; or, for more advanced monitoring and action

User interface layer

Evaluate
Business layer

Data layer

Capture

Groovy

code

GroovyShell

Figure 16.1 One example of an
integration solution. Groovy code
is entered by the user in the UI
layer and then executed in the
business layer.
Licensed to Mark Watson <nordickan@gmail.com>

564 CHAPTER 16 Integrating Groovy
management, you may also consider exposing JMX2 MBeans. Sometimes, even if the
logic has to change, if the choice is between a small and well-defined set of business
rules that are known from the beginning, you can also embed all those rules within
the application and decide through parameterization which one is to be used.

 Once you’ve examined your needs and come to the conclusion that a scripting
environment is what your application requires, this chapter should provide all the
information you need to make your application extendable at runtime with logic writ-
ten in Groovy.3

 In the following sections, you’ll learn how to use the GroovyShell class to evaluate
simple expressions and scripts, as well as the GroovyScriptEngine and the Groovy-
ClassLoader for further loading of Groovy classes. In addition to the techniques pro-
vided by Groovy for integrating your scripts in Java, you’ll discover alternatives for
leveraging the Spring framework and the scripting API available since Java 6, also
known as JSR-223.

16.1.2 Setting up dependencies

To use Groovy within your project, you’ll need to set it up to use the Groovy libraries.
This section covers the dependencies required for Groovy integration. The fact that it’s
so short should be a source of comfort—there’s little work to do to get up and running.

 The Groovy distribution comes with a directory containing all the core libraries that
form the Groovy runtime. The minimum for embedding Groovy is the groovy-2.4.0.jar
file.4 This contains all of Groovy’s core classes plus embedded versions of Antlr, ASM,
and Commons-CLI. If you use a feature in one of Groovy’s modules such as XML, SQL,
or JSON, then you’ll also want to incorporate that module’s JAR file as well, named
groovy-xml.jar, for instance, for the groovy-xml module. See appendix B for a complete
list of modules. Alternatively, if you want all of the modules you can use the embeddable
.jar file, called groovy-all-2.4.0.jar, which resides in the embeddable directory of your dis-
tribution. Or you can grab these dependencies from your favored online repository.

NOTE Versions of Groovy prior to 2.3.0 didn’t incorporate the Antlr, ASM,
and Commons-CLI JAR files except in the embeddable groovy-all JAR file. This
meant that you could sometimes get away with a smaller footprint because
those third-party JAR files may have been an existing dependency for some
other part of your project and therefore already on the classpath. But if you
had a noncompatible version of those JAR files on your classpath, there was a
risk that Groovy wouldn’t work. They’re now embedded to avoid such con-
flicts and you may freely use a different version of those libraries within your
application if it makes sense to do so.

2 Java Management Extensions; see www.oracle.com/technetwork/java/javase/tech/javamanagement-140525
.html.

3 Of course, we don’t wish to discourage you from reading the chapter even if you don’t have any integration
needs right now. Gaining knowledge is a worthy pursuit in and of itself.

4 The number might be different if you’re using a different version.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

565Evaluating expressions and scripts with GroovyShell
It’s not just Java applications that can benefit from the availability of a scripting
engine: you can even integrate custom Groovy scripts and expressions from an appli-
cation written in Groovy! While explaining the various embedding mechanisms, we’ll
show you how the Groovy interpreters and classloaders can be exploited from both
sides of the language fence. Now that we’ve set up our environment, we can look at
the first of our three ways of directly integrating with Groovy: GroovyShell.

16.2 Evaluating expressions and scripts with GroovyShell
The first Groovy API we’ll examine is GroovyShell. This is in many ways the simplest
of the integration techniques, and if it covers your situation, it may well be all you
need. With all the libraries in place, we’ll start dynamically evaluating expressions in a
few simple lines of code. We’ll then move gradually into more complex scenarios,
passing data between the calling code and the dynamically executing script, and then
creating classes in the script for use outside. We examine different ways of executing
scripts—precompiling them or executing them just once—and the different types of
scripts that can be run. Finally, we look at ways you can tweak GroovyShell for more
advanced uses. Don’t worry if it seems there’s a lot to learn—in simple situations, sim-
ple solutions often suffice. Also, much of the information presented here is relevant
when looking at the other APIs Groovy provides.

16.2.1 Starting simply

The simplest imaginable integration requirement evaluates an expression. For exam-
ple, some math applications may require users to input arbitrary expressions in a form
input field that can’t be hardwired at development time in a function or a closure (for
instance, a spreadsheet application where formulas are Groovy expressions). Those
applications then ask the runtime to calculate the entered formula. In such situations,
the tool of choice for evaluating expressions and scripts is the GroovyShell class. The
use of this class is straightforward and is similar if you’re using it from Java or from
Groovy. A simple expression evaluator can be implemented using GroovyShell as
shown in the following listing.5

def shell = new GroovyShell()
def result = shell.evaluate("12 + 23")
assert result == 35

Listing 16.1 A trivial example of expression evaluation in Groovy

5 You might wonder why we choose to integrate from Groovy to Groovy. Well, we’d be more likely to do it from
Java, but using Groovy simplifies our examples. Doing so can be handy even from Groovy, so that you can orga-
nize utility code in external scripts, run scripts with certain security policies in place, or execute user-provided
input at runtime.
Licensed to Mark Watson <nordickan@gmail.com>

566 CHAPTER 16 Integrating Groovy
The equivalent full Java program is naturally somewhat longer due to the scaffolding
code and imports required, but the core logic is exactly the same. The following listing
gives the complete Java code required to perform the evaluation, albeit it with no
error handling. Java examples later in the chapter have been cut down to only the
code involved in integration. Imports are usually shown only when they aren’t clear
from the context.

// Java
import groovy.lang.GroovyShell;

public class HelloIntegrationWorld {
 public static void main(String[] args) {
 GroovyShell shell = new GroovyShell();
 Object result = shell.evaluate("12+23");
 assert result.equals(35);
 }
}

In both cases, we first create an instance of groovy.lang.GroovyShell and we call
the evaluate method on it, which takes a string as a parameter containing the
expression to evaluate. The evaluate method returns an object holding the value
of the expression. We won’t show the Java equivalent for all the examples in this
chapter, but we sometimes provide one, as much as anything to remind you of how
easy it is.6

 Among the evaluate overloaded methods present in GroovyShell, here are the
most commonly used ones:

Object evaluate(File file)
Object evaluate(Reader in)
Object evaluate(String scriptText)
Object evaluate(URI uri)

You can evaluate expressions coming from a file, a reader, a string, or a URI. There are
also some variants we didn’t show that take an additional filename parameter that’s
used to specify the name of the class to be created upon evaluation of the script,
because Groovy always generates classes for scripts, too.

Listing 16.2 Trivial example from listing 16.1, in Java this time

6 It’s rarely quite as easy as the Groovy equivalent, but by now you should realize that this has nothing to do with
the features being shown and everything to do with Groovy making life easier in general.
Licensed to Mark Watson <nordickan@gmail.com>

567Evaluating expressions and scripts with GroovyShell
 From Groovy scripts, a shortcut can be used: scripts are classes extending the
Script class, which already has an evaluate method. In the context of a script, our
previous example can be shortened to the following:

assert evaluate("12 + 23") == 35

The string parameter passed to evaluate can be a full script with several lines of code,
not just a simple expression, as you see in the following listing.

def shell = new GroovyShell()
def kineticEnergy = shell.evaluate('''
 def mass = 22.3
 def velocity = 10.6
 mass * velocity**2 / 2
''')
assert kineticEnergy == 1252.814

Building on GroovyShell, the groovy.util.Eval class can save you the boilerplate
code of instantiating GroovyShell to evaluate simple expressions with zero to three
parameters. The following listing shows how to use Eval for each case from Groovy
(the same applies for Java, of course).

assert "Hello" == Eval.me("'Hello'")
assert 1 == Eval.x (1, "x")
assert 3 == Eval.xy (1, 2, "x+y")
assert 6 == Eval.xyz(1, 2, 3, "x+y+z")

The me method is used when no parameters are required. The other methods are
used for one, two, and three parameters, where the first, second, and third parame-
ters are made available as x, y, and z, respectively. This is handy when your sole need
is to evaluate simple expressions or even mathematical functions. Next, you’ll see
how you can go further with parameterization of script evaluation with GroovyShell.

16.2.2 Passing parameters within a binding

In listing 16.3, we used a multiline script defining two variables of mass and velocity
to compute the kinetic energy of an object of mass 22.3 kilograms with a speed of
10.6 km/h. But notice that this is of limited interest if we can’t reuse the expression
evaluator. Fortunately, it’s possible to pass variables to the evaluator with a groovy
.lang.Binding object, as shown in the following listing.

Listing 16.3 Evaluating a multiline script with GroovyShell

Listing 16.4 Eval saves explicitly creating a GroovyShell for simple cases
Licensed to Mark Watson <nordickan@gmail.com>

568 CHAPTER 16 Integrating Groovy

Met
acces

bin
d

def binding = new Binding()
binding.mass = 22.3
binding.velocity = 10.6

def shell = new GroovyShell(binding)
def expression = "mass * velocity ** 2 / 2"
assert shell.evaluate(expression) == 1252.814

binding.setVariable("mass", 25.4)
assert shell.evaluate(expression) == 1426.972

To begin with, a Binding object is instantiated. Because Binding extends Groovy-
ObjectSupport, we can directly set variables on it as if we were manipulating proper-
ties: the mass and velocity variables have been defined in the binding B. The
GroovyShell constructor takes the binding as a parameter, and further on, all evaluations
use variables from that binding as if they were global variables of the script c. When we
change the value of the mass variable, we see that the result of the equation is differ-
ent d. This line is particularly interesting because we’ve redefined the mass variable
thanks to the setVariable method on Binding. That’s how we could set or modify
variables from Java; Java wouldn’t recognize binding.mass, because this is a shortcut
introduced in Groovy by Binding extending GroovyObjectSupport.

 You may have already guessed that if there is a setVariable method available,
then getVariable also exists. Where the former allows you to create or redefine vari-
ables from the binding, the latter is used to retrieve the value of a variable from the
binding. The evaluate method can return only one value: the value of the last expres-
sion of the evaluated script. When multiple values are needed in the result, the script
can use the binding to make them available to the calling context. The following list-
ing shows how a script can modify values of existing variables, or how it can create new
variables in the binding that can be retrieved later.

def binding = new Binding(x: 6, y: 4)
def shell = new GroovyShell(binding)
shell.evaluate('''
 xSquare = x * x
 yCube = y * y * y
''')
assert binding.getVariable("xSquare") == 36
assert binding.yCube == 64

In this example, we create a binding instance to which we add two parameters, x and
y, by passing a map to the Binding constructor B. Our evaluated script creates two
new variables in the binding by assigning a value to nondefined variables: xSquare
and yCube c. We can retrieve the values of these variables with getVariable from
both Java and Groovy d, or we can use the property-like access from Groovy e.

Listing 16.5 Making data available to a GroovyShell using a Binding

Listing 16.6 Data can flow out of the binding as well as into it

Creates and
populates binding

 b

Evaluates expression
using binding

 c

Changes binding
data and reevaluates

 d

Prepopulating
binding data b

Setting binding data
within evaluated script

 c
hod
s to
ding
ata

 d

Groovy property
access to binding data

 e
Licensed to Mark Watson <nordickan@gmail.com>

569Evaluating expressions and scripts with GroovyShell
 Not all variables can be accessed with getVariable because Groovy makes a dis-
tinction in scripts between defined variables and undefined variables: if a variable is
defined with the def keyword or with a type, it will be a local variable, but if you’re not
defining it and are assigning it a value without prior definition, a variable will be cre-
ated or assigned in the binding. Here, localVariable isn’t in the binding, and the
call to getVariable would throw a MissingPropertyException:

def binding = new Binding()
def shell = new GroovyShell(binding)
shell.evaluate('''
 def localVariable = "local variable"
 bindingVariable = "binding variable"
''')

assert binding.getVariable("bindingVariable") == "binding variable"

Anything can be put into or retrieved from the binding, and only one return value
can be returned as the evaluation of the last statement of the script. The binding is the
best way to pass your domain objects or instances of predefined or prepopulated ses-
sions or transactions to your scripts. Let’s examine a more creative way of returning a
value from your script evaluation.

16.2.3 Generating dynamic classes at runtime

Using evaluate can also be handy for generating new dynamic classes on-the-fly. For
instance, you may need to generate classes for a web service at runtime, based on XML
elements from the WSDL for the service. A contrived example for evaluating and
returning a dummy class is shown in the following listing.

def shell = new GroovyShell()
def clazz = shell.evaluate('''
 class MyClass {
 def method() { "value" }
 }
 return MyClass
''')
assert clazz.name == "MyClass"
def instance = clazz.newInstance()
assert instance.method() == "value"

In all the examples you’ve seen so far, we’ve used the evaluate method, which compiles
and runs a script in one go. That’s fine for one-shot evaluations, but other situations ben-
efit from separating the compilation (parsing) from the execution, as you’ll see next.

16.2.4 Parsing scripts

The parse methods of GroovyShell return instances of Script so that you can reuse
scripts at will without reevaluating them each time, without compiling them all over

Listing 16.7 Defining a class in an evaluated script

Defines a
new class Creates an

instance of
the class

Uses the object
as normal
Licensed to Mark Watson <nordickan@gmail.com>

570 CHAPTER 16 Integrating Groovy
again. (Remember our SwingBuilder plotter from chapter 11.) This method is simi-
lar to evaluate, taking the same set of arguments; but rather than executing the code,
it generates an instance of the Script class. All scripts you can write are always instances
of Script.

 Let’s take a concrete example. Suppose we’re running a bank, and we have cus-
tomers asking for a loan to buy a house. We need to compute the monthly amount
they’ll have to pay back, knowing the total amount of the loan, the interest rate, and
the number of months to repay the loan. But, of course, we want to reuse this formula,
and we’re storing it in a database or elsewhere on the filesystem in case the formula
evolves in the future.

 Let’s assume the variables of the algorithm are as follows:

■ amount—The total amount of the loan (the principle)
■ rate—The annual interest rate
■ numberOfMonths—The number of months to reimburse the loan

With these variables, we want to compute the monthly payment. The script in the follow-
ing listing shows how we can reuse the formula to calculate this important figure.

def monthly = "amount*(rate/12) / (1-(1+rate/12)**-numberOfMonths)"

def shell = new GroovyShell()
def script = shell.parse(monthly)

script.binding.amount = 154000
script.rate = 3.75/100
script.numberOfMonths = 240

assert script.run() == 913.0480050387338

script.binding = new Binding(amount: 185000,
 rate: 3.50/100,
 numberOfMonths: 300)

assert script.run() == 926.1536089487843

After defining our formula, we parse it with GroovyShell.parse to retrieve an
instance of Script. We then set the variables of the script binding for our three vari-
ables. Note how we can shorten script.binding.someVariable to script.some-
Variable because Script implements GroovyObject and overrides its setProperty
method. Once the variables are set, we call the run method, which executes the script
and returns the value of the last statement: the monthly payment we wanted to calcu-
late in the first place.

 To reuse this formula without having to recompile it, we can reuse the script
instance and call it with another set of values by defining a new binding, rather than
by modifying the original binding as in the first run.

Listing 16.8 Multiple uses of a monthly payment calculator

Parses formula into
reusable script Accesses

binding
variable

Accesses binding
variable using
shorthand

Creates new
binding
Licensed to Mark Watson <nordickan@gmail.com>

571Evaluating expressions and scripts with GroovyShell
16.2.5 Running scripts or classes

The run methods of GroovyShell can execute both scripts and classes. When a class is
parsed and recognized as extending GroovyTestCase, a text test runner will run the
test case.

 Three of the commonly used variants of the run method signatures can take a
String, a File, or a Reader to read and execute the script or class, a name for the
script, and an array of Strings for the arguments:

run(String scriptText, String scriptName, String[] args)
run(File scriptFile, String[] args)
run(Reader in, String scriptName, String[] args)

But there are other variants that read the script from a URI or take the parameters as a
list instead of an array. Consult the GroovyDoc for GroovyShell for more details.

 The execution of run is a bit different than that of evaluate. evaluate evaluates
only scripts, but run can also execute classes with a main method as well as unit tests.
The following rules are applied:

■ If the class to be run has a main(Object[] args) or main(String[] args) method,
it will be run. Note that a script is a normal Java class that implements Runnable
and its run method is called by an implicit main method.

■ If the class extends GroovyTestCase or is otherwise a JUnit test, then a JUnit test
runner executes it.

■ If the class implements Runnable, it’s instantiated with a constructor taking a
String array, or a default constructor, and the class is run with its run method.

The runner mechanism is also extensible, so modules like the groovy-testng module
define their own runner.

16.2.6 Further parameterization of GroovyShell

We used the Binding class to pass variables to scripts and to retrieve modified or new
variables defined during the evaluation of the script. We can further configure our
GroovyShell instance by passing two other objects in the constructor: a parent Class-
Loader and/or a CompilerConfiguration.

 For reference, here are the constructor signatures available in GroovyShell:

GroovyShell()
GroovyShell(Binding binding)
GroovyShell(CompilerConfiguration config)
GroovyShell(Binding binding, CompilerConfiguration config)
GroovyShell(ClassLoader parent)
GroovyShell(ClassLoader parent, Binding binding)
GroovyShell(ClassLoader parent, CompilerConfiguration config)
GroovyShell(ClassLoader parent,
 Binding binding,
 CompilerConfiguration config)
Licensed to Mark Watson <nordickan@gmail.com>

572 CHAPTER 16 Integrating Groovy
While using the Binding is easy and self-descriptive, understanding how Groovy han-
dles classloaders, in particular when you instantiate a GroovyShell like here, is very
important. You could end up creating a memory leak without a proper understanding
of the mechanics.

CHOOSING A PARENT CLASSLOADER

Groovy uses classloaders to load Groovy classes. The consequence is that you must
have a minimal understanding of how classloaders work when integrating Groovy.
Alas, mastering classloaders isn’t the most trivial task on a Java developer’s journey.
When you’re working with libraries generating classes or dynamic proxies at runtime
with bytecode instrumentation, or with a complex hierarchy of classloaders to make
critical code run in isolation in a secured sandbox, the task becomes even trickier. It’s
important to understand how the hierarchy of classloaders is structured.

 A common use case is represented in figure 16.2.
 A class loaded by classloader B can’t be seen by classloader C. The standard way

classloaders load classes is by first asking the parent classloader if it knows the class,
before trying to load the class. Classes are looked up by navigating up the classloader
hierarchy, but a class loaded by C won’t be able to see a class loaded by B, because B
isn’t a parent of C. Fortunately, by cleverly setting the parent classloader of C to be B,
the problem is solved, as shown in figure 16.3. This can be done by using Groovy-
Shell’s constructors, which permit you to define a parent classloader for the scripts
being evaluated.

Classloader A

Classloader B Classloader C

Parent Parent

Figure 16.2 Tree
classloader structure

Classloader A

Classloader B

Parent

Classloader C

Parent

Figure 16.3 Linear
classloader structure
Licensed to Mark Watson <nordickan@gmail.com>

573Evaluating expressions and scripts with GroovyShell
To specify GroovyShell’s classloader, specify the parent classloader to flatten your hier-
archy as follows:

def parentClassLoader = objectFromB.classloader
def shellForC = new GroovyShell(parentClassLoader)

If you have classloader issues, you’ll get a ClassNotFoundException or, worse still, a
NoClassDefFoundError. To debug these issues, the best thing to do is to print the
classloader for all affected classes and print each classloader’s parent classloader, and
so on up to the root of all classloaders. You’ll then have a good picture of the whole
classloader hierarchy in your application, and the final step will be to set parent class-
loaders accordingly to flatten the hierarchy. Even better, try to make classes be loaded
by the same classloaders if possible.

CONFIGURING THE COMPILATION

In the list of constructors of the GroovyShell class, you’ll have noticed the Compiler-
Configuration parameter. An instance of this class can be passed to GroovyShell to
customize options of the compilation process.

 Without studying all the options available, let’s review some of the most useful
ones, as shown in table 16.1. Some more functionality is covered in section 16.7.

Table 16.1 Some useful methods in CompilerConfiguration

Method signature Description

setClasspath
(String path)

Define your own classpath used to look for classes,
allowing you to restrict the application classpath and/
or enhance it with other libraries

setDebug
(boolean debug)

Set to true to get full, unfiltered stack traces when
exceptions are written on the error stream

setOutput
(PrintWriter writer)

Set the writer that compilation errors will be
printed to

setScriptBaseClass
(String clazz)

Define a subclass of Script as the base class for
script instances

setSourceEncoding
(String enc)

Set the encoding of the scripts to evaluate, which is
important when parsing scripts from files or input
streams that use a different encoding than the plat-
form default

setRecompileGroovySource
(boolean b)

Set to true to reload Groovy sources that have
changed after they have been compiled—by default,
this flag is set to false

setMinimumRecompilationInterval
(int millis)

Set the minimum amount of time to wait before
checking if the sources are more recent than the
compiled classes
Licensed to Mark Watson <nordickan@gmail.com>

574 CHAPTER 16 Integrating Groovy
Of these methods, setScriptBaseClass is particularly worthy of note. If you want all
of your scripts to share a common set of methods, you can specify a base class extend-
ing groovy.lang.Script that will host these methods and then be available inside the
scripts. Sharing methods among scripts is a good technique to inject hooks to your
own framework services. Let’s consider a base script class that extends Script and its
role will be to inject a global multiplication function7 into all scripts evaluated by
GroovyShell:

abstract class BaseScript extends Script {
 def multiply(a, b) { a * b }
}

BaseScript extends Script, which is an abstract class, so the class must be declared
abstract, because the run method is abstract. When compiling or interpreting
scripts, Groovy will extend this base script and will inject the script’s statements in
the run method.

 To make this class the base class of your scripts, you now need to pass an org.code-
haus.groovy.control.CompilerConfiguration instance to GroovyShell’s construc-
tor, as explained by the following Groovy example:

def conf = new CompilerConfiguration()
conf.setScriptBaseClass("BaseScript")
def shell = new GroovyShell(conf)
def value = shell.evaluate('''
 multiply(5, 6)
''')
assert value == 30

This isn’t the only way to inject functions in all your scripts. Another trick to share func-
tions between scripts is to store closures in the binding of GroovyShell without needing
to use CompilerConfiguration. This can be seen in the following listing.

def binding = new Binding(multiply: { a, b -> a * b })
def shell = new GroovyShell(binding)
def value = shell.evaluate('''
 multiply(5, 6)
''')
assert value == 30

You also need to be able to write the same code in Java, so we must be able to create
closures and put them in the binding. From Java, creating a closure isn’t as neat as in
Groovy. You must create a class that derives from groovy.lang.Closure and imple-
ment an Object doCall(Object arguments) method. An alternative technique is to

7 Multiplication is easy to demonstrate in a book, but real-world examples might include handling transactional
resources, configuration, and logging.

Listing 16.9 Using the Binding to share functions between scripts

Creates closure
within binding

Calls closure like a
normal method
Licensed to Mark Watson <nordickan@gmail.com>

575Using the Groovy script engine
create an instance of org.codehaus.groovy.runtime.MethodClosure, which dele-
gates the call to a multiplication method on a custom multiplicator class instance:

// Java
MethodClosure mclos = new MethodClosure(multiplicator, "multiply");
Binding binding = new Binding();
binding.setVariable("multiply", mclos);
GroovyShell shell = new GroovyShell(binding);
shell.evaluate("multiply(5, 6)");

We’ve now fully covered how GroovyShell can be operated both from Java and from
Groovy to extend your application. GroovyShell is a nice utility class to create exten-
sion points in your own code and to execute logic that can be externalized in scripts
stored as strings, on the filesystem, or in a database. This class is great for evaluating,
parsing, or running scripts that represent a single and self-contained unit of work, but
it’s less easy to use when your logic is spread across dependent scripts. This is where
the GroovyScriptEngine and GroovyClassLoader can help. These are the topics of
the next two sections.

16.3 Using the Groovy script engine
The GroovyShell class is ideal for standalone and isolated scripts, but it can be less
easy to use when your scripts are dependent on each other. The simplest solution at
that point is to use GroovyScriptEngine. This class also provides the capability to
reload scripts as they change, which enables your application to support live modifica-
tions of your business logic. We’ll cover the basic uses of the script engine and show
you how to tell the engine where to find scripts.

16.3.1 Setting up the engine

The scripting engine has several constructors to choose from when you instantiate it.
You can pass different arguments to these constructors, such as an array of paths or
URLs where the engine will try to find the Groovy scripts, a classloader to be used as the
parent classloader, or a special ResourceConnector that provides URLConnections. In
our examples, we’ll assume that we’re loading and running scripts from the filesystem:

def engine = new GroovyScriptEngine(".")

or with an array of URLs or of strings representing URLs:

def engine = new GroovyScriptEngine([".", "../folder "])

The engine assumes that strings represent filesystem locations. If your scripts are to be
loaded from somewhere other than the filesystem, you should use URLs instead:

def engine = new GroovyScriptEngine(
 ["file://.", "http://someUrl"]*.toURL() as URL[])
Licensed to Mark Watson <nordickan@gmail.com>

576 CHAPTER 16 Integrating Groovy
The engine will search the resource following each URL sequentially until it finds
the script.

 The constructors can also take a classloader, which will then be used by the engine
for the parent classloader of the compiled classes:

def engine = new GroovyScriptEngine(".", parentCL)

The parent classloader can also be defined with the setParentClassLoader method.
 Once you’ve instantiated the engine, you can eventually run your scripts.

16.3.2 Running scripts

To run a script, the primary mechanism is the run method of GroovyScriptEngine.
This method takes two arguments: the name of the script to run as the relative path
of the file and the binding to store the variables that the script will need to operate.
The method also returns the value of the last expression evaluated by the script, as
GroovyShell does.

 If you intend to run a file named MyScript.groovy situated in the test folder rela-
tive to the current directory, you might run it as shown here:

def engine = new GroovyScriptEngine(".")
def value = engine.run("test/MyScript.groovy", new Binding())

Loaded scripts are automatically cached by the engine and they’re updated whenever
the resource is updated. The engine can also load script classes directly with the load-
ScriptByName method; it returns a Class object representing the class of the script,
which is a derived class of groovy.lang.Script. There’s a pitfall to watch out for with
this method, however. It takes a script with a fully qualified class name notation rather
than the relative path of the file:

def engine = new GroovyScriptEngine(".")
def clazz = engine.loadScriptByName("test.MyScript")

This example returns the class of the myScript.groovy script situated in the test
folder. If you’re not using the filesystem, you’ll be using URLs instead of files, and in
that case it’s mandatory to use a special resource connector that’s responsible for
loading the resources.

16.3.3 Defining a different resource connector

If you wish to load scripts from a particular location, you may want to provide your
own resource connector. This is done by passing it as an argument to the constructor
of GroovyScriptEngine, either with or without the specification of a parent class-
loader. The following example shows both overloaded methods:

def myResourceConnector = getResourceConnector()
def engine = new GroovyScriptEngine(myResourceConnector)
def engine2 = new GroovyScriptEngine(myResourceConnector, parent)
Licensed to Mark Watson <nordickan@gmail.com>

577Working with the GroovyClassLoader
To implement your own connector, you have to create a class implementing the
groovy.util.ResourceConnector interface, which contains only one method:

public URLConnection getResourceConnection(String name)
 throws ResourceException;

The getResourceConnection method takes a string parameter representing the name
of the resource to load, and it returns an instance of URLConnection. If you’re also
creating your own URLConnection, at least three methods need to be implemented
properly (you could potentially leave the others aside and throw an Unsupported-
OperationException or UnknownServiceException, like some JDK classes from the
java.net package do):

public long getLastModified()
public URL getURL()
public InputStream getInputStream() throws IOException

Although usually you’ll store your script on the filesystem or inside a database, imple-
menting your own ResourceConnector and URLConnection allows you to provide a
handle on scripts coming from any location: from a database, a remote filesystem, an
XML document, or an object data store.

 GroovyScriptEngine is perfect for dealing with scripts, but it falls short for more
complex manipulation of classes. In fact, both GroovyShell and GroovyScriptEngine
rely on a single mechanism for loading scripts or classes: the GroovyClassLoader. This
special classloader is what we’ll discuss next.

16.4 Working with the GroovyClassLoader
The GroovyClassLoader is the Swiss Army knife with all possible tools for integrating
Groovy into an application, whether explicitly or via classes such as GroovyShell. This
class is a custom classloader, which is able to define and parse Groovy classes and
scripts as normal classes that can be used either from Groovy or from Java. It’s also
able to compile all the required and dependent classes.

 This section will take you through how to use the GroovyClassLoader, from the
simplest uses to more involved situations. We examine how to get around circular
dependency issues, how to load scripts that are stored outside the local filesystem, and
how to make your integration environment safe and sandboxed, permitting the scripts
to perform only the operations you wish to allow.

16.4.1 Parsing and loading Groovy classes

Say you have a simple Groovy class Hello like the following:

class Hello {
 def greeting() { "Hello!" }
}

Licensed to Mark Watson <nordickan@gmail.com>

578 CHAPTER 16 Integrating Groovy
You want to parse and load this class with the GroovyClassLoader. In Groovy, you can
do it like so:

def gcl = new GroovyClassLoader()
Class greetingClass = gcl.parseClass(new File("Hello.groovy"))
assert "Hello!" == greetingClass.newInstance().greeting()

An instance of GroovyClassLoader is created, and its parseClass method is called
and passed the Hello.groovy file. The method returns a Class object that can then
be instantiated by using Class’s newInstance method, which invokes the default
constructor of Hello. Once Hello is instantiated, because Groovy supports duck typ-
ing (section 3.2.4), you can directly call the greeting method defined in Hello. But
in a strongly typed language, you couldn’t directly call the method. So, from Java, to
invoke a method, you have to either use reflection explicitly—which is usually pretty
ugly—or rely on the fact that all Groovy classes automatically implement the groovy
.lang.GroovyObject interface, exposing the invokeMethod, getProperty, and set-
Property methods.

 Where getProperty and setProperty are responsible for accessing properties of
your Groovy class from Java, invokeMethod allows you to call any method on Groovy
classes easily from Java:

// Java
GroovyClassLoader gcl = new GroovyClassLoader();
Class greetingClass = gcl.parseClass(new File("Hello.groovy"));
GroovyObject hello = (GroovyObject) greetingClass.newInstance();
Object[] args = {};
assert "Hello!".equals(hello.invokeMethod("greeting", args));

The invokeMethod method takes two parameters: the name of the method to call and
one that corresponds to the parameters to pass to the method you’re trying to call. If
the method takes only one parameter, pass it directly as an argument; if several param-
eters are expected, they have to be wrapped inside an array of Objects, which
becomes the argument. If you wish to call a method that adds two objects together
with a signature like add(a,b), you call it like this:

a.invokeMethod("add", new Object[] {obj1, obj2}); // Java

Instantiating GroovyClassLoader
In the example, we use the default constructor. But this class offers more construc-
tors. GroovyClassLoader (ClassLoader loader) lets you define a parent class-
loader to avoid problems with a complex hierarchy, as explained in the section
about GroovyShell. The constructor GroovyClassLoader(ClassLoader loader,
CompilerConfiguration config) gives you more control over the behavior of the
classloader, as explained in the section about GroovyShell, thanks to the param-
eterization of CompilerConfiguration.
Licensed to Mark Watson <nordickan@gmail.com>

579Working with the GroovyClassLoader
But if a method you want to call requires an array as its single parameter, you also have
to wrap it inside an array:

a.invokeMethod("takesAnArray", new Object[] {anArray}); // Java

Despite the fact that it’s possible to call any method in a Groovy class from Java with
invokeMethod, doing so isn’t Java friendly because the Java compiler will not know
these classes exist and will not let you use the greeting method directly—unless you
precompiled your Groovy classes and packed them up inside a JAR file. Fortunately,
there’s a workaround to circumvent this shortcoming of javac. To make Java under-
stand your Groovy classes, both Groovy and Java have to find a common ground of
agreement. This is what we call the chicken and egg problem.

16.4.2 The chicken and egg dependency problem

Previous versions of Groovy made it quite difficult to solve the chicken and egg prob-
lem. If you had a Java class that was using a Groovy class, itself using a Java class
defined in the same project, you had a problem. Fixing this involved code refactor-
ing, such as introducing interfaces to remove cyclic dependencies. The good news is
that this is no longer an issue, thanks to joint compilation. Joint compilation is the
process of compiling Java and Groovy classes in an apparent single pass, only using
the groovyc command.

 To illustrate, let’s consider the Java application in the following listing.

// Java
public class ShapeInfoMain {
 public static void main(String[] args) {
 Square s = new Square(7);
 Circle c = new Circle(4);
 new MaxAreaInfo().displayInfo(s, c);
 new MaxPerimeterInfo().displayInfo(s, c);
 }
}

Suppose that the Square and MaxPerimeterInfo classes are written in Java and the
Circle and MaxAreaInfo classes are written in Groovy. We might be tempted to try
using javac on all the *.java source files followed by groovyc on all the *.groovy files.
But this won’t work because the displayInfo method in MaxPerimeterInfo requires
Circle to be compiled first. We can’t swap the order around, either, because we’ll
have the reverse problem with MaxAreaInfo if Square isn’t compiled first.

 The solution is quite simple. Instead of calling javac by yourself, let Groovy do it
for you, using the –j option:

groovyc -j *.java *.groovy

Listing 16.10 A Java/Groovy mixed application
Licensed to Mark Watson <nordickan@gmail.com>

580 CHAPTER 16 Integrating Groovy
Internally, the Groovy compiler will:

■ Generate Java stubs for the Groovy files
■ Compile the Java sources and the stubs using javac
■ Compile the Groovy classes

The generation of stubs, which are Java source files corresponding to the “public API”
of the Groovy sources, allows the javac compiler to compile properly the classes, and
the Groovy compiler will replace those stubs with the real Groovy files in the second
pass. Note that using the -j option is very important: should you forget it, the Java
source files would be compiled as if they were written in Groovy!

16.4.3 Providing a custom resource loader
The GroovyClassLoader has various methods to let you parse and load Groovy classes
from different origins: from a file, from an input stream, or from a string. Here are a
few of the methods to use when explicitly asking the classloader to load a given class:

public Class parseClass(File file)
 throws CompilationFailedException
public Class parseClass(String text, String fileName)
 throws CompilationFailedException
public Class parseClass(InputStream in, String fileName)
 throws CompilationFailedException

If you’re storing your sources in a database, a possible solution is to retrieve them as a
String or as an InputStream. Then, you can use the classloader’s parseClass meth-
ods to parse and load your classes. But rather than explicitly implementing the plumb-
ing and the lookup and parsing yourself, Groovy provides a better solution, in the
form of a groovy.lang.GroovyResourceLoader. The resource loader is an interface
that you must implement to specify where your sources are to be found: give it a name
of a resource, and a URL is returned that points at the location of the resource. This is
done by a single method from that interface:

URL loadGroovySource(String filename) throws MalformedURLException

An implementation of the resource loader in Java will look something like the follow-
ing class:

public class MyResourceLoader extends GroovyResourceLoader {
 public URL loadGroovySource(final String filename)
 throws MalformedURLException {
 URL url = ... // create the URL pointing at the resource
 return url;
 }
}

TIP As was the case with GroovyScriptEngine, if you’re creating your own
URL and URLConnection derived classes, make sure your URL overrides its
openConnection method, which returns an instance of URLConnection; and
make sure you also override the getLastModified, getURL, and getInput-
Stream methods of the returned URLConnection.
Licensed to Mark Watson <nordickan@gmail.com>

581Working with the GroovyClassLoader
Once you’ve defined this class, you have to register it in your classloader before use
like this:

GroovyClassLoader gcl = new GroovyClassLoader();
gcl.setResourceLoader(new MyResourceLoader());

Your classloader will now use your resource loader to find the resources it needs from
wherever you want! At this point, you may find that you have less control than you like over
what code is executed. You may need to lock down how much access the code has to the
rest of the system, depending on how much you know about the code’s origins. This is
where the Java and Groovy security model comes into play, as you’ll see in the next section.

16.4.4 Playing it safe in a secured sandbox

When packaging an application, you know all your source code is trusted. When you
open the doors for dynamic code that might evolve over time, such as changing busi-
ness rules due to a legislation change, you have to be sure that this code can be trusted
too. Only trusted users should be able to change the dynamic code by logging in and
providing the relevant credentials. But even with authentication and authorization in
place, you’re never sheltered against human mistakes. That’s why Groovy provides a
second level of confidence in dynamic code in the form of a secured sandbox that you
can set up to load this foreign code.

 Modifying, loading, and executing dynamic code at runtime is a nice way to extend
your application in an agile way, lessening the time required to adapt it as necessary.
Long and tedious repackaging, requalifying, and redeployment scenarios can vanish
in no time. This isn’t a subject to take lightly, and of course, you’ll always have to hand
over your application to the acceptance team and pass the relevant integration tests;
but embedding code from a scripting language in your application can help you to be
more versatile when the requirements are changing.

THE JAVA SECURITY MODEL

However cool embedding a scripting or dynamic language can be, and however well
designed your system is in terms of security, you can potentially add another layer of
trust by letting this code run in a secured sandbox. Java provides the infrastructure for
securing source code through its security model with the help of a security manager and
the associated policy that dictates what permissions are granted to the code. For a sim-
ple example of what harm can happen to your application, imagine a user uploads a
script containing System.exit(1): your whole system could go down in a second if it’s
not secured correctly! Fortunately, with some setup, it’s possible to protect yourself
from such malicious code.

NOTE Covering the whole Java security model with its security managers, per-
missions, and policy files is beyond the scope of this chapter. We assume that
you’re familiar with these concepts. If not, we recommend the online resources
provided on Oracle’s website to get an in-depth view of how security works on
the Java platform.
Licensed to Mark Watson <nordickan@gmail.com>

582 CHAPTER 16 Integrating Groovy
In the Java security model, code sources are granted permissions according to their
code source. A code source is composed of a codebase in the form of a URL from which
the source code was loaded by the classloader, and potentially a certificate used to ver-
ify the code when it’s obtained from a signed JAR file.

 There are two cases you have to consider. If all your Groovy sources are compiled
first into .class files and eventually bundled in a JAR file, the standard security mecha-
nisms apply. Those classes are like normal Java-compiled sources, so you can always
use the same security managers as normal. But when you’re compiling Groovy sources
on the fly, through the integration means you’ve studied so far, extra steps need to
be followed.

GROOVYCODESOURCE AND THE SECURITY MANAGER

When scripts and classes are loaded from the filesystem, they’re loaded by a Groovy-
ClassLoader, which searches the classpath for Groovy files and gives them a code
source constructed from a codebase built from the URL of the source file. When
Groovy sources are loaded from an input stream or from a string, no particular URL is
associated with them. It’s possible to associate a codebase with Groovy sources to be
compiled by specifying a GroovyCodeSource—as long as the caller loading sources has
the permission to specify the codebase. The codebase you associate with the sources
need not refer to a real physical location. Its importance is to the security manager
and policy, which allocate permissions based on URLs.

 A concrete example is always better than long explanations. Say we’re running an
application on a server, and this application loads Groovy scripts that need to be sand-
boxed and should only be allowed to access the file.encoding system property.
The server application should have all possible permissions, but we have to restrict
the loaded Groovy script reading the property. We write a policy file explicitly indicat-
ing those rules:

grant codeBase "file:${server.home}/classes/-" {
 permission java.security.AllPermission;
};
grant codeBase "file:/restricted" {
 permission java.util.PropertyPermission "file.encoding", "read";
};

The first part grants all permissions to our server application, the second part only
allows the scripts from the file:/restricted codebase to access the file.encoding
property in read-only mode. This policy file should be available in the classpath of
the application, and the system property java.security.policy defining the policy
file to use should be specified either on the command line that launches the JVM or
in code.

 A script requesting to read the system property would include code such as:

def encoding = System.getProperty("file.encoding")
Licensed to Mark Watson <nordickan@gmail.com>

583Working with the GroovyClassLoader
Your server application will load and evaluate the script using GroovyShell, using the
methods that take a GroovyCodeSource to wrap the script and define its code source:

def script = '''
 System.getProperty("file.encoding")
'''
def gcs = new GroovyCodeSource(script, "ScriptName", "/restricted")
def shell = new GroovyShell()
 println shell.evaluate(gcs)

A GroovyCodeSource can be built in various ways depending on how you retrieve the
source code: from a string, a file, a reader, or a URI. Here are the four constructors
that allow you to build a GroovyCodeSource:

public GroovyCodeSource(String script, String name, String codeBase)
public GroovyCodeSource(Reader in, String name, String codeBase)
public GroovyCodeSource(File file) throws FileNotFoundException
public GroovyCodeSource(URI uri) throws IOException

For the calling application to be able to create a GroovyCodeSource with a specific
codebase, it must be granted permission by the policy. The specific permission required
is a groovy.security.GroovyCodeSourcePermission, which the calling application
implicitly has because the policy file granted it the java.security.AllPermission,
which grants all possible rights.

GROOVYSHELL AND GROOVYCLASSLOADER WITH GROOVYCODESOURCE

Both GroovyShell and GroovyClassLoader allow you to specify GroovyCodeSources
to wrap scripts or classes that must be secured, but GroovyScriptEngine doesn’t at the
time of writing. If the Groovy source code isn’t wrapped inside a GroovyCodeSource,
the policy will not be enforced, thus letting untrusted code run within the application.

 In the sections related to GroovyShell and GroovyClassLoader, we enumerated
several methods that allow you to evaluate, parse, or run Groovy scripts and classes.
Let’s mention now the methods that take a GroovyCodeSource, which you can use to
make integrating dynamic code safer.

 GroovyShell has two methods that take a GroovyCodeSource, one for evaluating
scripts, and the other for parsing scripts:

public Object evaluate(GroovyCodeSource codeSource)
 throws CompilationFailedException
public Script parse(GroovyCodeSource codeSource)
 throws CompilationFailedException

GroovyClassLoader also has two methods; both parse classes, but the latter also provides
an option to control whether the parsed class should be put in the classloader cache:

public Class parseClass(GroovyCodeSource codeSource)
 throws CompilationFailedException
public Class parseClass(GroovyCodeSource codeSource,
 boolean shouldCache) throws CompilationFailedException
Licensed to Mark Watson <nordickan@gmail.com>

584 CHAPTER 16 Integrating Groovy
Armed with different means of integrating Groovy securely in your application, you
can build extremely flexible applications. Of course, those mechanisms are specific to
Groovy. These aren’t the only means available, however. If you’re using the Spring
framework as a common base for your application, or if you’re using the scripting
support added in Java 6 (JSR-223), you can use the mechanisms provided in these
platforms to load your dynamic code in a way that would make it easy to move away
from Groovy, should you ever wish to.8

16.5 Spring integration
As it says on the tin, Spring is an innovative layered Java Enterprise application
framework and lightweight container invented by Rod Johnson, which matured
while Rod was writing the book Expert One-on-One J2EE Design and Development (Wiley,
2004). Spring generalized the concepts and patterns of Inversion of Control (IoC) and
Dependency Injection (DI) and is built from two main building blocks: its IoC con-
tainer and its AOP system. The framework brings an additional abstraction layer that
wraps common APIs such as transactions, JDBC, or Hibernate to help the developer
focus on the core business tasks; gives access to AOP; and even provides its own
Model-View-Controller (MVC) technology. The Spring framework can be used as a whole
or piece by piece as needs arise.

 Spring lets you wire your application components through DI by instantiating, con-
figuring, and defining the relationships between your objects in a central XML (and
since recently Groovy) configuration file, via annotations, or via API calls. Your objects
are usually plain-old Java objects (POJOs), but they can also be plain-old Groovy objects
(POGOs) because Groovy objects are also standard JavaBeans! This section explores
how you can inject Groovy dependencies into your application object model, with
options for letting beans refresh themselves automatically and specifying the bodies of
scripts directly in the configuration file.

 Since version 2.0, the Spring Framework has supported integrating beans written
in various scripting languages. Spring supports Groovy and other proven scripting lan-
guages for the JVM. With this support, any number of classes written in these lan-
guages can be wired and injected into your application as transparently as if they were
normal Java objects.

NOTE It’s beyond the scope of this section to explain how Spring can be
installed, used, or configured. We’re assuming that the interested reader is
already familiar with the framework. If this isn’t the case, the creators of Spring
have comprehensive and detailed online documentation at http://spring.io/
docs that should be ideal for discovering what it’s all about.

We’ll explain how you can wire up POGOs in Spring, discuss reloading Groovy source
code on the fly, and cover how Groovy source code can be specified directly in the

8 Not that we can think of any reason why you’d want to, but we like the principle of avoiding vendor lock-in
where possible.
Licensed to Mark Watson <nordickan@gmail.com>

http://spring.io/docs
http://spring.io/docs

585Spring integration
configuration file, where appropriate. Let’s start with the simplest situation before
working our way toward more complicated scenarios.

16.5.1 Wiring GroovyBeans

Let’s take the shape information classes from section 16.4 as an example.
 We’re going to use Spring’s bean factory to create the Groovy objects that our main

program needs. All the definitions for our class are captured declaratively in a Spring con-
figuration file, sometimes referred to as a wiring XML file. This is illustrated in figure 16.4.

 We’d normally wire both Java and Groovy classes in the wiring file and indicate the
dependencies between the different parts of our system in this file. In this case,
though, we’re going to keep it simple. We’re going to specify simple definitions in the
file to illustrate integration between Spring and Groovy. For now, we assume that all of
our Groovy files are precompiled.

 Here’s what the Spring definition file, called beans.xml in our case, looks like:

<?xml version="1.0" encoding="UTF-8"?>
<beans>
 <bean id="circle" class="spring.groovy.Circle">
 <constructor-arg value="4"/>
 <property name="color" value="Black"/>
 </bean>
 <bean id="maxareainfo" class="spring.groovy.MaxAreaInfo"/>
</beans>

Production

plan

Specifies Creates

<XML/> config file
BeanFactory

Figure 16.4 Spring’s BeanFactory reads an XML configuration file and creates instances of the
JavaBeans and GroovyBeans specified within it.
Licensed to Mark Watson <nordickan@gmail.com>

586 CHAPTER 16 Integrating Groovy
In our Groovy source file, we have the same constructor that we had previously, and
we have added a color property to our Circle class. In the Spring definition file, the
nested constructor element indicates the value to pass to the constructor during cre-
ation of our Circle. The property element indicates that the color property should
also be set as part of initialization. To make use of these definitions, we need to
change our main method in ShapeInfoMain in listing 16.10 to become

// Java
try {
 ApplicationContext ctx =
 new ClassPathXmlApplicationContext("beans.xml");
 Shape s = new Square(7);
 Shape c = (Shape) ctx.getBean("circle");
 ShapeInfo info = (ShapeInfo) ctx.getBean("maxareainfo");
 info.displayInfo(s, c);
 new MaxPerimeterInfo().displayInfo(s, c);
} catch (Exception e) {
 e.printStackTrace();
}

Spring provides a number of mechanisms to create beans for you. In this instance, we
use what’s called the application context. It has a getBean method that allows us to ask
for a bean by name.

 As we mentioned earlier, we’re assuming here that all of our Groovy classes are
precompiled. So, what have we gained? We’ve begun the process of removing explicit
dependencies from our codebase. Over time, we could start moving more depen-
dency information into the wiring file and allow our system to be configured more
readily. As a consequence, our design also becomes more flexible, because we can
swap our concrete implementations readily. This is particularly important for unit test-
ing, where we might replace concrete implementations with mock implementations.

 There’s more we can do, though: Spring supports dynamic compilation of our
Groovy scripts through a special Groovy factory class. Here’s how we’d use it. We’d
extend our bean configuration file as follows:

…
<lang:groovy id="maxareainfo2"
 script-source="classpath:MaxAreaInfo.groovy">
 <lang:property name="prefix" value="Live Groovy says" />
</lang:groovy>

…

Spring 2.0 and above support a number of dynamic scripting languages through spe-
cial language-specific factories. The namespace lang:groovy accesses the special
Groovy factory automatically. Now we can use maxareainfo2 as the name we pass to
the bean factory when creating our bean, and Spring will automatically compile the
necessary Groovy source files.
Licensed to Mark Watson <nordickan@gmail.com>

587Spring integration
16.5.2 Refreshable beans

Another feature that Spring provides is the ability to dynamically detect when Groovy
source files change and automatically compile and load the latest version of any
Groovy file during runtime. The concept is known as refreshable beans and is enabled in
our definition file using the refresh-check-delay attribute as follows (in this case,
setting the delay to five seconds):

…
<lang:groovy id="maxareainfo2"
 refresh-check-delay="5000"
 script-source="classpath:MaxAreaInfo.groovy">
 <lang:property name="prefix" value="Live Groovy says" />
</lang:groovy>
…

Refreshing beans on-the-fly can make development faster, but you should consider
disabling it again for production systems—restarting the system after a change has
been made tends to avoid confusing situations where for some period of time (how-
ever brief) only part of the system has seen the refresh.

16.5.3 Inline scripts

Although it’s arguably a bad idea to put code inside Spring’s configuration file, Spring
offers another way to define scripted beans by inlining them—including the source
directly in the configuration file. The Spring documentation mentions scenarios for
such a case, such as sketching and defining validators for Spring MVC controllers or
scripting controllers for quick prototyping or defining logic flow.

 In the following listing, we inline a variation of MaxAreaInfo (we need to change
our factory getBean call to use maxareainfo3).

<lang:groovy id="maxareainfo3">
 <lang:inline-script>
 import spring.common.Shape
 import spring.common.ShapeInfo

 class SuffixMaxAreaInfo implements ShapeInfo {
 String suffix
 void displayInfo(Shape s1, Shape s2) {
 print "The shape with the biggest area is: "
 if (s1.area() > s2.area()) println s1 + ":" + suffix
 else println s2 + ":" + suffix
 }
 }
 </lang:inline-script>
 <lang:property name="suffix"
 value="Did you guess correctly?"/>
</lang:groovy>

Listing 16.11 Spring configuration with inline Groovy class

Tells Spring we’re
using Groovy

Defines the
class we want
an instance of

Specifies a
bean property
Licensed to Mark Watson <nordickan@gmail.com>

588 CHAPTER 16 Integrating Groovy
In this case, because the content is hard-coded, setting the refreshable attribute of the
script factory doesn’t apply for those inline scripted beans. One last remark: if your
script contains a less-than sign (<), the XML Spring configuration will be invalid,
because the XML parser will think it’s the start of a new tag. To circumvent this prob-
lem, you should wrap the whole scripted bean in a CDATA section.

 This has been a brief introduction to the scripting bean capabilities of the Spring
framework. For further details and more in-depth explanations, refer to the project
documentation at http://spring.io/docs.

 Spring isn’t the only recent technology to embrace scripting. The following section
looks forward to the next release of the Java platform and explores what support will
be provided for Groovy integration.

16.6 Riding Mustang and JSR-223
Scripting and dynamic languages are in fashion again thanks to Groovy and the ubiq-
uitous JavaScript in all its flavors. This frenzy originally led Sun and later Oracle to rec-
ognize that for certain tasks, scripting languages can help to simplify the development
of applications. New JSRs have been accepted by the Java Community Process to stan-
dardize languages such as Groovy, JavaScript, and others to create a common API
allowing access to various scripting engines from your Java applications.

 This section guides you through running Groovy scripts in the new “Java standard”
way, highlighting the features of the new API as well as some ways in which it’s unavoid-
ably clunky.

16.6.1 Introducing JSR-223

JSR-223, titled “Scripting for the Java Platform,” provides a set of classes and interfaces
used to hold and register scripting engines and to represent scripts, namespaces of
key–value pairs available to scripts, or execution contexts. It offers an elegant and sim-
ple API that supports a few scripting languages—Groovy being one of them. Since
Mustang (Java SE 6), the core JSR-223 (javax.script.*) classes and an execution
engine for JavaScript have been bundled with the JDK. This makes scripting a first-
class citizen on the JVM. The Groovy JSR-223 execution engine is one of Groovy’s mod-
ules and will already be in your Groovy installation, so you should be ready to get
started with using JSR-223.

 In addition to incorporating the javax.script.* interfaces and classes, the JDK
distributes a new command-line tool called jrunscript to run scripts, which is a bit
like Groovy’s own groovy and groovysh commands. Here’s how this new tool is used:

Usage: jrunscript [options] [arguments...]
where [options] include:
-classpath, -cp <path> Specify where to find user class files
-D<name>=<value> Set a system property
-J<flag> Pass <flag> directly to the runtime system
-l <language> Use specified scripting language
-e <script> Evaluate given script
Licensed to Mark Watson <nordickan@gmail.com>

http://spring.io/docs.

589Riding Mustang and JSR-223
-encoding <encoding> Specify character encoding used by script files
-f <script file> Evaluate given script file
-f - Interactive mode, read script from
 standard input
-help, -? Print this usage message and exit
-q List all scripting engines available and exit

Although the command line enables you to execute Groovy through the new API with-
out writing any code to do so, if your application is going to embed Groovy, you’ll be
using the API directly rather than relying on the tool. Let’s meet the core classes
involved in running scripts through JSR-223.

16.6.2 The script engine manager and its script engines

The main entry point of the JSR-223 API is javax.script.ScriptEngineManager. To
get started, create an instance of this class from your Java application:

ScriptEngineManager manager = new ScriptEngineManager();

The manager is able to retrieve script engines through different lookup mechanisms:
by file extension, by mime type, or by name, with three dedicated methods:

ScriptEngine getEngineByExtension(String extension)
ScriptEngine getEngineByMimeType (String mimeType)
ScriptEngine getEngineByName (String shortName)

So, if you want to retrieve the Groovy script engine supplied with the reference imple-
mentation, you can look it up by name:

ScriptEngine gEngine = manager.getEngineByName("groovy");

With a ScriptEngine, you can evaluate Groovy expressions and scripts provided
through an instance of Reader or of a String with the set of eval methods, which
return an Object as the result of the evaluation. You can evaluate a simple expres-
sion as follows:

ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine gEngine = manager.getEngineByName("groovy");
String result = (String)gEngine.eval("'+-----' * 3 + '+'");

Here are the other eval methods available:

Object eval(Reader reader)
Object eval(Reader reader, Bindings b)
Object eval(Reader reader, ScriptContext context)
Object eval(String script)
Object eval(String script, Bindings b)
Object eval(String script, ScriptContext context)

They can throw a ScriptException, which can contain a root exception cause, a mes-
sage, a filename, and even a line number and column number where an error occurred,
particularly when the error is a compilation error. The optional ScriptContext
Licensed to Mark Watson <nordickan@gmail.com>

590 CHAPTER 16 Integrating Groovy
parameter corresponds to the environment within which a script is evaluated, and a
Bindings is a special map containing an association between a key and an object you
want to pass to your scripts. These affect what information is available to your scripts
and how different scripts can pass each other data. See the detailed JSR-223 documen-
tation for more information on this topic.

16.6.3 Compilable and invocable script engines

Beyond the basic script-evaluation capabilities, the Groovy engine implements two
other interfaces: javax.script.Compilable and javax.script.Invocable. The first
lets you precompile and reuse scripts, and the latter lets you execute a method, a unit
of execution, rather than executing a whole script as you do with the eval method.
Implementing these interfaces isn’t mandatory, but the Groovy engine provides
this feature:

// Java
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine gEngine = manager.getEngineByName("groovy");
Compilable compilable = (Compilable)gEngine;
compilable.put("name", "Dierk");
CompiledScript script = compilable.compile("return name");
String dierksName = script.eval();
compilable.put("name", "Guillaume");
String guillaumesName = script.eval();

Once you’ve got a handle on the Compilable engine (by casting the engine to the
Compilable interface), you can call two compile methods that either take a reader or
a string containing the script to precompile. These methods return an instance of
CompiledScript, which holds a precompiled script that you can execute several
times at will without the need to reparse or recompile it. Then, the CompiledScript
can be evaluated with three eval methods: one without any parameters, one taking a
Namespace, and the last taking a ScriptContext.

 Even after precompiling a script, you still can’t directly call methods declared in
that script. The javax.script.Invocable interface makes this possible in a manner
reminiscent of calling normal Java methods with reflection.

 Imagine we have a script the role of which is to change a string parameter into its
uppercase representation:

// Java
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine gEngine = manager.getEngineByName("groovy");

Invocable invocable = (Invocable)gEngine;
invocable.eval("def upper(s) { s.toUpperCase() }");
Object s = invocable.invokeFunction("upper", "Groovy");

invocable.eval("def add(a, b) { a + b }");
invocable.invokeFunction("add", new Integer(1), new Integer(2));

assertTrue(invocable.invokeMethod(s, "endsWith", "Y"));
Licensed to Mark Watson <nordickan@gmail.com>

591Riding Mustang and JSR-223
The script is evaluated and retained in the script-execution context; then, the defined
function can be called with the invokeFunction method, which takes the name of the
function to call and a vararg list of objects to pass to the underlying scripted function
as parameters. Be careful, though, because you can only invoke functions defined in
the last evaluated script. An invokeMethod method goes further and lets you call arbi-
trary methods on objects resulting from the execution of scripts. This is how we call
the endsWith method on the string returned by the first function invoked and pass
it the letter Y as an argument.

 Of course, in the last case, we could have cast the return value of upper to String
directly. Although this may seem obvious, it’s possible because Groovy plays nicely with
Java, returning real and normal classes. Other scripting languages would return some
kind of proxy or wrapper, making the integration with Java trickier.

 Despite the convenience of being able to call any function defined in a script, it’s
not yet as Java friendly as we might hope. Nevertheless, the Invocable interface gives
you another handy method for your toolbox: the getInterface method. With this
method, you can create a proxy of a given interface that will delegate all method invo-
cations to methods defined in the script.

 Say we have a Java interface representing a business service like the following one:

// Java
interface BusinessService {
 void init();
 Object execute(Object[] parameters);
 void release();
}

We create a script that contains functions mapping the same signatures as the ones
provided in the BusinessService interface:

// Groovy
void init() { println "init" }
Object execute(Object[] objs) { println "execute" }
void release() { println "release" }

We can make such a script appear to implement the BusinessService interface by
calling the getInterface method of the invocable script engine:

// Java
ScriptEngineManager manager = new ScriptEngineManager();
ScriptEngine gEngine = manager.getEngineByName("groovy");
Invocable invocable = (Invocable)gEngine;
invocable.eval(scriptAsAString);
BusinessService service =

 invocable.getInterface(BusinessService.class);

service.init();
Object result = service.execute(new Object[] {});
 service.release();

First, we evaluate the script shown earlier, then we call the getInterface method with
the class of the implementation we want our script to implement, and then we retrieve
Licensed to Mark Watson <nordickan@gmail.com>

592 CHAPTER 16 Integrating Groovy
an instance implementing that interface. Our script doesn’t even have to explicitly
implement the BusinessService interface, but through the proxy mechanism, it
appears as if it were the case. With such a mechanism, you can manipulate scripts as
if they were normal Java beans, without having to call some kind of invoke method.

16.6.4 Polyglot programming

So far we’ve been focused on calling into Groovy from Java, but you can use JSR-223
within your Groovy to call out to other languages. The following code will call into
JavaScript from Groovy:

def mgr = new ScriptEngineManager()
assert mgr.getEngineByName("javascript").eval('''
function factorial(n) {
 if (n == 0) { return 1; }
 return n * factorial(n - 1);
}
factorial(4)
''') == 24.0

The JavaScript engine is bundled with Oracle’s JDKs. For other languages you might
need to also grab a language’s respective JSR-223 execution engine.

 That wraps up our discussion of language-neutral integration options using Spring
and JSR-223. Shortly we’ll discuss all of the pros and cons of language-neutral versus
native Groovy integration options and one of the discussion points will be how deeply
you need access into the Groovy internals. Before we do that, let’s expand on one of
the key classes for deep native integration with Groovy, the CompilerConfiguration
class. We mentioned the class earlier in this chapter but it has advanced abilities that
we’ll cover next.

16.7 Mastering CompilerConfiguration
In the previous sections, we’ve shown how you could leverage the GroovyShell, the
GroovyScriptEngine, or the GroovyClassLoader to integrate Groovy code with differ-
ent flavors. All those classes have in common the ability to create classes at runtime.
Even scripts, as we’ve shown, are compiled into classes that are loaded, eventually, by
the specialized Groovy classloader.

 Creating classes at runtime, in this case, doesn’t differ much from calling the
groovyc command-line tool. The compilation process is the same if you call groovyc
from the command line or use a GroovyShell. The difference lies in the way source
code is provided (files, strings, or URIs) and the way they’re loaded (the classloader).

 What makes the GroovyShell so powerful is that you implicitly create a Script
class that can be used, for example, as the core implementation of a DSL:

def conf = new CompilerConfiguration()
conf.setScriptBaseClass("BaseScript")
def shell = new GroovyShell(conf)
Licensed to Mark Watson <nordickan@gmail.com>

593Mastering CompilerConfiguration
def value = shell.evaluate('''
 multiply(5, 6)
''')
assert value == 30

In this example, we’re explicitly changing the base script class from Script to Base-
Script. This makes all the methods from the BaseScript class directly callable from
the script text when we call evaluate. setScriptBaseClass is just one example of
what the CompilerConfiguration class has to offer in terms of customization of the
compilation process.

 Wouldn’t it be nice, for example, if you could add default imports to your scripts?
That is to say, make some classes available to your script without the user needing to
add an explicit import statement? Groovy, for example, imports by default classes
from groovy.lang or java.util. Maybe you’d want classes of yours to be imported by
default too. This is in particular important if you think of DSLs: having to add import
statements in a DSL doesn’t make it look so nice.

 In chapter 9, we’ve shown how you can leverage compile-time metaprogramming
to add behavior to your classes at compile time. Using AST transformations like
@ToString, which generates a toString() method for you, it’s easy to dramatically
reduce the boilerplate code. AST transformations come at a price, which is the use of
an annotation, which isn’t necessarily user-friendly. What if you could transparently
apply AST transformations to the scripts that are evaluated by the GroovyShell?

 Those two examples—adding imports by default and transparently applying AST
transformations—are what we call compilation customizers. Groovy comes with a set
of predefined compilation customizers that allow you to hook into the compilation
process itself in an elegant way. Of course, compilation customizers aren’t limited to
what the Groovy distribution offers, so you can write your own.

 Applying a compilation customizer is easy. Let’s see how you can add an Import-
Customizer, the class that allows you to add imports by default:

def conf = new CompilerConfiguration()
def customizer = new ImportCustomizer()
customizer.addImports('java.util.concurrent.atomic.AtomicInteger',

'java.util.concurrent.atomic.AtomicLong')
conf.addCompilationCustomizers(customizer)
def shell = new GroovyShell(conf)
def value = shell.evaluate('''
 def myInt = new AtomicInteger(1)
 def myLong = new AtomicLong(2)
''')

This example consists of two distinct parts: setting up a CompilerConfiguration,
which includes the compilation customizer, and evaluating a script. Because the com-
pilation customizer tells the compiler to transparently add imports, when the script is
executed it’s no longer necessary to add them for the script to compile.

 Let’s take a short tour of the compilation customizers that Groovy provides.
Licensed to Mark Watson <nordickan@gmail.com>

594 CHAPTER 16 Integrating Groovy
16.7.1 The import customizer

Groovy is great for building DSLs, but there are a few points to consider. Any internal
Groovy-based DSL is actually Groovy code. The objective of a DSL, however, is to be
usable by experts from the domain. There’s no reason why the users of your DSL
would be programmers. Having that in mind, it would be very unfortunate if users
had to add imports to their scripts for them to work.

 Let’s imagine a DSL that allows the evaluation of mathematical expressions. The
natural idea would be to leverage the functions and constants available in the
java.lang.Math class. Of course, a user would be able to write this:

import static java.lang.Math.*
cos(PI/2)

But obviously, the only important part of the script is the mathematical expression
itself. The import statement is here for it to be nicer to write or read. The problem is
that we ask the user to add the import statement, although because we know that our
DSL is meant to evaluate mathematical expressions, it would be normal to make the
imports by default and let the user call the cos function as well as the PI constant
without hassle. The first obvious solution to the problem is to append imports to the
user script:

def shell = new GroovyShell()
shell.evaluate('import static java.lang.Math.*\n'+expression)

While this works, the solution isn’t very elegant and comes with a major problem:
scripts, even if they are “evaluated” by a Groovy shell, are in the end compiled and
executed by a JVM. This means that if the script contains an error (and it will happen
at some time), then an exception will be thrown. In that case, the stack trace will not
match the source code: with the preceding example, we’re introducing an additional
line of code, meaning that when the exception will show an error at line 145, the
error will, for the user, really be at line 144 (because of the additional import). Of
course, you could filter out the stack trace and fix the line/column numbers yourself,
but it wouldn’t solve the debugging problem: if the script is compiled, there are some
ways of debugging it (for example, setting breakpoints in the IDE), and once again,
the line numbers in the bytecode wouldn’t match those of the source code. This is
definitely a stopper for debugging.

 To solve this problem, the import customizer will allow you to plug into the compi-
lation process and make the imports known to the compiler without the need to have
them in the form of source code:

def conf = new CompilerConfiguration()
def customizer = new ImportCustomizer()
customizer.addStarImports 'java.lang.Math'
conf.addCompilationCustomizers(customizer)
def shell = new GroovyShell(conf)
def value = shell.evaluate('cos(PI/2)')
Licensed to Mark Watson <nordickan@gmail.com>

595Mastering CompilerConfiguration
The import customizer allows you to add various types of imports, from “regular” to
static star imports, including the ability to use aliases:

customizer.addStaticImport '','java.lang.Math','PI'
customizer.addStaticImport 'cosine','java.lang.Math','cos'
conf.addCompilationCustomizers(customizer)
def shell = new GroovyShell(conf)
def value = shell.evaluate('cosine(/2)')

Table 16.2 summarizes the methods available through the import customizer.

Using the import customizer is really easy and should help you reduce the amount of
setup code users should write to get a DSL up and running. Because it’s often the case
that users of DSLs aren’t programmers, putting them in front of such unfriendly code
isn’t necessary anymore and you can concentrate on the DSL itself. This is, in general,
the goal of compilation customizers, and the next one we’re going to analyze is once
again aimed toward user-friendliness.

16.7.2 The source-aware customizer

A typical Groovy application consists of source files that are compiled by the Groovy
compiler, be it using the command-line tool, Gradle, Ant, or Maven. But what if your
source files are in fact user scripts? What if those scripts are supposed to be compiled
using a specific compiler configuration because, for example, they correspond to a

Table 16.2 Methods offered by the import customizer

Method Description

addImport(String className) Adds a regular import

addImport(String alias,
 String className)

Adds an import with an explicit alias

addImports(String… imports) Adds multiple regular imports at once

addStarImport(String packageName) Adds a star import for a specific package

addStarImports(String… packageNames) Adds star imports of multiple packages at once

addStaticImport(String className,
 String member)

Adds a static import of a member

addStaticImport(String alias, String
 className, String member)

Adds a static import of a member using an alias

addStaticStar(String clasName) Adds a static star import of all members of
a class

addStaticStars(String… classNames) Adds static star imports of multiple classes
at once
Licensed to Mark Watson <nordickan@gmail.com>

596 CHAPTER 16 Integrating Groovy

Wraps
a sou

aw
custom
DSL? In that case, one option you have is to skip those files from compilation and have
a wrapper (typically a GroovyShell) that will compile the files at runtime using a spe-
cific compiler configuration. One problem with this is that scripts are compiled at
runtime, meaning you pay the cost of compilation at the application startup or during
its lifecycle. In some circumstances this isn’t acceptable.

 Another typical user requirement is to have different compilation options depend-
ing on the file extension. By default, Groovy uses the .groovy file extension, but some
users want to be able to use different extensions with different meanings. For exam-
ple, a .spec file could correspond to an executable specification file that involves AST
transformations that aren’t necessary for regular .groovy files.

 For those use cases, the source-aware customizer provides a powerful configura-
tion mechanism that basically applies different compilation options based on the
actual source. In practice, this customizer acts as a guard for another customizer,
based on the source file. The following listing creates a source customizer that applies
the ToString AST transformation to classes whose names end with Bean.

import groovy.transform.ToString
import org.codehaus.groovy.control.CompilerConfiguration
import org.codehaus.groovy.control.customizers.*

def conf = new CompilerConfiguration()
def astCustomizer = new ASTTransformationCustomizer(ToString)
def sourceAwareCustomizer =
 new SourceAwareCustomizer(astCustomizer)
sourceAwareCustomizer.baseNameValidator = {
 name -> name.endsWith 'Bean'
}
conf.addCompilationCustomizers(sourceAwareCustomizer)

def gcl = new GroovyClassLoader(getClass().classLoader, conf)
def clazz = gcl.parseClass '''
class MrBean { String first, last }
''', 'MrBean.groovy'
def result = clazz.newInstance()
result.first = 'Rowan'
result.last = 'Atkinson'
assert result.toString() == 'MrBean(Rowan, Atkinson)'

We create the AST transformation customizer B, which would have been applied to
all classes being compiled if we added it directly to the compiler configuration.
Instead, we create a source-aware customizer c that wraps the AST transformation
customizer, then we set a predicate on the base name d that determines in which
condition the AST transformation customizer will be applied. As a last step, we make
use of the configuration in conjunction with a GroovyClassLoader to compile a
class e.

Listing 16.12 Apply @ToString to classes whose names end with Bean

Creates
ToString AST
customizer

 b
into
rce-
are
izer

 c

Creates a base-
name filter d

Uses
configuration
with Groovy-
ClassLoader e
Licensed to Mark Watson <nordickan@gmail.com>

597Mastering CompilerConfiguration
 As is, the source-aware customizers offer three ways to guard another customizer.

■ The base-name validator—Works on the filename without the extension.
■ The extension validator (extensionValidator)—Allows you to work specifically on the

file extension.
■ The sourceUnitValidator—Works directly on an internal compilation struc-

ture called SourceUnit. Unlike the previous ones, it’s capable of handling more
than just the filename, which implies it can work on sources that aren’t files.
SourceUnit gives you access to the concrete syntax tree (CST) or the AST, mean-
ing you can work on the actual classes found in source code.

Using the source-aware customizer is very interesting, but we must warn you that it’s a
very powerful tool that can lead to results which are difficult to analyze (because the
source code doesn’t match expectations depending on the file extension, for one).

 Groovy comes with many customization options that we present here from an inte-
gration perspective. In chapter 19, we’ll partly revisit them for the purpose of how to
create a DSL. There, we’ll also discuss the AST transformation customizer and the secure
AST customizer, which would also be relevant in the context of integration.

 But you don’t have to live by a fixed set of customizers that Groovy gives you. You
can just as easily write your own.

16.7.3 Writing your own customizer

The last option that Groovy offers to you with regards to compilation customization is
writing your own. In terms of complexity, it’s somehow easier than AST transforma-
tions but almost as powerful. All the customizers we’ve described so far are extending a
base class called CompilationCustomizer found in the org.codehaus.groovy.control
.customizers package. This gives you a hint of the incredible possibilities that are
now open to you.

 As an example, we’ll create a compilation customizer that will fail compilation if a
class doesn’t contain a field of type String that’s named name. The first thing to do is
to create the customizer class:

class HasNameFieldCustomizer extends CompilationCustomizer {
 HasNameFieldCustomizer() {
 super(CompilePhase.CANONICALIZATION)
 }
}

This is the minimal code you’ll have to write. At B, we’re setting the compilation
phase where the compilation customizer works. As with AST transformations, a
compilation customizer has to choose the proper compilation phase and it’s often
the sooner the better. Now we have to write the code, which will actually check if the
field exists:

void call(SourceUnit source, GeneratorContext context, ClassNode classNode) {
 def field = classNode.getDeclaredField('name')

Sets the
phase b
Licensed to Mark Watson <nordickan@gmail.com>

598 CHAPTER 16 Integrating Groovy
 if (field) {
 if (!field.type.equals(ClassHelper.STRING_TYPE)) {
 source.addError(new SyntaxException("Class ${classNode.name} " +
 "defines field 'name' but using the wrong type"),
 field.lineNumber, field.columnNumber)
 }
 } else {
 source.addError(new SyntaxException("Class ${classNode.name} " +
 "doesn't define a field named 'name' of type 'String'",
 classNode.lineNumber, classNode.columnNumber))
 }
}

Calling source.addError with a SyntaxException will cause the compiler to stop
compilation, showing a located error message. In this case, if a field exists but uses the
wrong type, then it would show the error on the field, but if the class doesn’t define a
field named name, then the error would be located at the class.

 This is a very simple example that shows that a compilation customizer is allowed
to do basically what an AST transformation can do, but you have more control on how
it’s executed. The only restriction behind a compilation customizer is that it exclu-
sively works on class nodes, but it doesn’t prevent you from visiting methods inside the
compilation customizer itself.

 So far, we’ve shown you how you could use the existing customizers, create your
own, and bind them to a CompilerConfiguration; now let’s see how you can use the
same tools with the groovyc tool itself.

16.7.4 The configscript compilation option

Compilation customizers are very powerful for embedded scripts, such as user DSLs
executed through a sandboxed GroovyShell. There are some situations where you’d
want the same level of customization from the command line itself; that is, using
groovyc too. This is possible using the --configscript compilation option:

groovyc --configscript config.groovy MyClass.groovy

As you can see, this option requires a configuration file that’s itself a Groovy script.
This configuration file will give you access to the CompilerConfiguration instance
that the groovyc command creates internally, giving you a chance to plug in your
compilation customizers. This compiler configuration instance is exposed in the con-
figuration script using the config variable. This means that you can write this in the
configuration file:

import groovy.transform.Log
import org.codehaus.groovy.control.customizers.ASTTransformationCustomizer

config.addCompilationCustomizers(new ASTTransformationCustomizer(Log))

This configuration option is also available on the groovy command, as well as in the
Ant task. All files compiled will therefore use the configuration as modified by the script.
Licensed to Mark Watson <nordickan@gmail.com>

599Mastering CompilerConfiguration
But what’s really nice is that this configuration script also exposes a nice DSL to cus-
tomize the configuration, dramatically reducing the amount of code that’s required to
tweak the CompilerConfiguration. This DSL is a builder for compilation customizers,
which is automatically bound to the withConfig method:

withConfig(config) {
 ast(Log)
}

This code is semantically equivalent to the previous one, despite being much more
concise (no more need for imports), but uses the builder syntax instead, meaning that
ast(Log) creates an AST transformation customizer for the Log AST transformation.

 Table 16.3 summarizes the mapping between the builder syntax and the tradi-
tional syntax.

Tweaking the compiler configuration using the configscript command-line option
is very powerful, but you should always be careful not to put too much magic in there.
Programmers often expect identical-looking code to produce identical-looking classes,
but using a tool such as the source-aware customizer, you’ll be able to produce very
different outputs—such as only depending on the package name. If you ever want to

Table 16.3 Mapping between builder-style and normal customizers creation

Builder Traditional Example

ast ASTTransformation

➥ Customizer
ast(Log)
ast(name:’logger’, Log)

imports ImportCustomizer imports {
 normal 'com.example.Foo'
 star 'com.example.Foo'
 staticStar 'java.lang.Math'
 alias 'Bar', 'com.example.Foo'
 staticMember 'com.Foo.bar'
}

secure SecureASTCustomizer secure {
 importsWhiteList=[]
}

source SourceAwareCustomizer source(extension:'sgroovy') {
 ast(CompileStatic)
}

inline Custom compilation
customizer

inline(phase:'CONVERSION') {
 source, context, classNode ->
 println "Class $classNode.name"
}

Licensed to Mark Watson <nordickan@gmail.com>

600 CHAPTER 16 Integrating Groovy
do this, you should always take time to document the configuration, explain why it’s
done the way it’s done, and make sure your build file uses the compiler configuration.
In the end, never use a local configuration file and consider compiler configuration
scripts as part of the source code. If you don’t do so, it’s too easy to create unreproduc-
ible builds!

 You now know about the native Groovy techniques to integrate Groovy in your Java
application and the more language-neutral solutions using Spring or JSR-223. The
great thing about this is that it presents you with a choice. The downside is that you
need to make a decision, so we provide guidance in the last section of this chapter.

16.8 Choosing an integration mechanism
This section is similar to the first one in the chapter, in that we can’t make any deci-
sions for you. Good guidance tends to be right more than it’s wrong, but there will
always be cases that appear to fit one pattern but that benefit more from another after
close examination. We don’t know what your needs are, so we can’t make that close
examination. All we can do is give suggestions and reasons for them.

 To give a good rule of thumb, if your application is built on Spring, you should
prefer using the Spring integration. If you want to be able to change or mix scripting
languages at the same time, or you have the freedom to change at will, using the
scripting integration of JSR-223 makes perfect sense. But if you want to do more
advanced things or if you’re concerned about the potential security hole opened by
dynamic code, you should probably choose some of the standard Groovy mechanisms
for embedding and executing Groovy code with GroovyShell, GroovyScriptEngine,
or the almighty GroovyClassLoader. Table 16.4 shows a summary of the pros and cons
of each integration mechanism.

Table 16.4 Sweet spots and limitations of the different integration mechanisms

Mechanism Sweet spot Limitations

Eval.me For very simple expressions Not suited for frequent eval

GroovyShell Perfect for single-line user input,
small expressions and DLSs

Will not scale to dependent
scripts

GroovyScriptEngine Supports reloading
Robust security available
Nice for dependent scripts
Supports reloading

Doesn’t support classes
Doesn’t support security

GroovyClassLoader Most powerful integration mechanism
Supports reloading
Robust security available

Trickier to handle in the case of a
complex classloader hierarchy

Spring scripting support Integrates well with Spring
Can switch languages easily
Supports reloading

Requires Spring
Licensed to Mark Watson <nordickan@gmail.com>

601Summary
The basis of Groovy’s integration is its excellent compatibility with Java. We’ve listed
the most common ways of integrating Groovy with Java, but anywhere that Java can be
integrated, Groovy can work too. Some databases allow stored procedures to be writ-
ten in Java, for instance, so Groovy can be used in the same way. Additional integra-
tion mechanisms may well appear over time in various guises. (See Grengine, http://
grengine.ch/.) Don’t assume that the options given here are exhaustive!

16.9 Summary
This chapter has given you glimpses into how you might allow your applications to
become more flexible, giving appropriate users the ability to customize behavior in a
way that may enable them to solve the exact problem they’re facing, rather than the
one that was as close as you could imagine when designing the application.

 The means of integrating Groovy into your application broadly fall into two camps:
those provided directly by the Groovy libraries and those provided in a language-neutral
fashion by Spring and, since Java 6, through JSR-223. As is often the case, the more spe-
cific solutions prove to be the most powerful ones, but at the cost of language neutrality.

 As bookends to the chapter, we discussed the kinds of applications that benefit
from this sort of integration and offer guidance as to which integration mechanism
might be best for your situation.

 There’s a good reason why the Spring team made Groovy a first-class citizen and
their scripting language of choice in version 4.0: the integration of Groovy with its
underlying platform is so deep that it’s the natural choice for any dynamic activities
on the JVM.

 You can benefit from the advantages of both worlds: you can build big and scalable
enterprise applications while still using Groovy for smart configuration, adaptable busi-
ness rules, user-defined logic, and spontaneous runtime inspections.

JSR-223 Can switch languages easily Requires Java 6
Doesn’t support security
Doesn’t support reloading
Doesn’t support Groovy-specific
configuration

Bean Scripting
Framework

Can switch languages easily
Doesn’t require Java 6

Doesn’t support security
Doesn’t support reloading
Doesn’t support Groovy-specific
configuration
More limited capabilities than
JSR-223

Table 16.4 Sweet spots and limitations of the different integration mechanisms

Mechanism Sweet spot Limitations
Licensed to Mark Watson <nordickan@gmail.com>

http://grengine.ch/
http://grengine.ch/

Licensed to Mark Watson <nordickan@gmail.com>

Part 3

Applied Groovy

We build too many walls and not enough bridges
 —Isaac Newton

In the course of this book, you’ve seen a large portion of Groovyland. Part 1
introduced you to the Groovy language, datatypes, operators, control structures,
and even the Meta Object Protocol. Part 2 led you through the Groovy library,
showing builders, templates, numerous JDK enhancements, working with data-
bases, and XML support. Your backpack is filled with valuable knowledge that
waits to be brought to new horizons.

 Part 3 gives you guidance on how to best apply your knowledge with other
tools, frameworks, and libraries that embrace Groovy.

 It starts with unit testing in chapter 17, an activity that no self-respecting pro-
fessional developer can work without. With a clever mix of the Groovy wisdom
you’ve already acquired and a bit of guidance through Groovy’s excellent testing
support, you’ll appreciate unit testing as another strength of Groovy.

 Chapter 18 prepares you for the to-be-expected multicore era and enables
you to take full advantage of all the many processing cores that your machine is
likely to have.

 Chapter 19 gives you the power of designing your own language so that busi-
ness aspects can be expressed in the jargon of their domain. You will become the
master of domain-specific languages (DSLs).

 Chapter 20 comes as a bonus for all the diligent readers who held out until
the very end. You will be reimbursed with a sneak peek into a series of tools,
Licensed to Mark Watson <nordickan@gmail.com>

604 PART 3 Applied Groovy
libraries, and frameworks that help you with tasks that are as diverse as writing web
application, desktop applications, automating Windows, using quality analysis tools,
designing by contract, and much more. It’s a quick but broad overview to spark your
interest in learning more about these projects. We hope you take it as your spring-
board to dive into the Groovy ocean.
Licensed to Mark Watson <nordickan@gmail.com>

Unit testing with Groovy
The major difference between a thing that might go wrong and a thing that
cannot possibly go wrong is that when a thing that cannot possibly go wrong
goes wrong, it usually turns out to be impossible to get at or repair.

—Douglas Adams

Developer unit testing has become a de facto standard in the Java community.1 The
confidence and structure that JUnit2 and other testing frameworks bring to the
development process are almost revolutionary. To those of us who were actively

This chapter covers
■ Unit testing Groovy and Java code
■ Incorporating code coverage tools
■ Integrating IDEs
■ Testing with Spock
■ Automating the build process

1 See Kevin Tate, Sustainable Software Development: An Agile Perspective (Addison Wesley Professional, 2005)
and Greg Smith and Ahmed Sidky, Becoming Agile (Manning, 2009).

2 See Petar Tahchiev, et al., JUnit in Action, 2nd Ed. (Manning, 2010); J. B. Rainsberger, JUnit Recipes (Man-
ning, 2004), and www.junit.org for more information.
605

Licensed to Mark Watson <nordickan@gmail.com>

http://www.junit.org

606 CHAPTER 17 Unit testing with Groovy
developing Java applications in the latter years of the 20th century, automated unit
testing was almost unheard of. Yes, we wrote tests, but they were hardly automated or
even a part of a standard build!

 Fast-forward to the present, and many people wouldn’t think of writing, let alone
releasing, code without corresponding unit tests. We write tests all the time, and we
expect everyone else on our teams to do the same. Moreover, momentum is grow-
ing behind the idea of writing code by always writing tests first. Although this isn’t
universal, it’s another indicator that the recent growth in the importance of tests
will continue.

 We test at all levels, from unit testing to integration testing to system testing. It’s
sometimes more fun to write the tests than the subject under test, because doing so
improves not only the code itself, but also the design of the code. When tests are writ-
ten often and continually, code has the benefit of being highly extensible, in addition
to being obviously freer of defects and easier to repair when needed.

 Combine this increased awareness of developer testing with Groovy, and you have
a match made in heaven. With Groovy, tests can be written more quickly and easily. It
gets even better when you combine the simplicity of unit testing in Groovy with nor-
mal Java. You can write Groovy tests for your Groovy-based systems and leverage the
many Java libraries and test-extension packages. You can write Groovy tests for your
Java-based systems and leverage Groovy’s enhanced syntax benefits and extended test
functionality.

 Groovy makes unit testing a breeze, whichever way you use it, mainly due to four
key aspects:

■ Groovy embeds JUnit, so you don’t have to set up a new dependency.
■ Groovy has an enhanced test-case class, which adds a plethora of new asser-

tion methods.
■ Groovy has built-in mock, stub, and other dynamic class-creation facilities that

simplify isolating a test class from its collaborators.
■ Tests written in Groovy can be easily run from Gradle, Maven, or your favorite IDE.

Our focus in this chapter is unit testing; however, many of the ideas can be extended to
other kinds of testing as well. We’ll mention specific examples throughout the chapter.

17.1 Getting started
The section header implies that you have preparation to do before you can start your
testing activities. But you don’t. There’s no external support to download or install.
Groovy treats unit testing as a first-class developer duty and ships with everything you
need for that purpose.

 Even more important, it simplifies testing by making assertions part of the lan-
guage,3 automatically executing test cases by transparently invoking its TestRunner

3 Java also supports assertions at the language level but disables them by default.
Licensed to Mark Watson <nordickan@gmail.com>

607Getting started
when needed, and providing the means to run suites of test cases easily, both from the
command line and through integration with your IDE or build environment. This sec-
tion shows you how simple it can be and introduces you to GroovyTestCase, the base
class used for most unit testing in Groovy.

17.1.1 Writing tests is easy

Assume you have Groovy code that converts temperatures measured in Fahrenheit (F)
to Celsius (C). To that end, you define a celsius method in a Converter class like so:

class Converter {
 static celsius (fahrenheit) { (fahrenheit - 32) * 5 / 9 }
}

Is this implementation correct? Probably, but you can’t be sure. You need to gain addi-
tional confidence in this method before the next non-U.S. traveler uses your method
to understand the U.S. weather forecast.

 A common approach with unit testing is to call the subject under test with static
sample data that produces well-known results. That way, you can compare the calcu-
lated results against your expectations.

 Choosing a good set of samples is key. As a rule of thumb, having a few typical cases
and all the corner cases you can think of is a good choice.4 Typical cases would be 68°
F = 20° C for having a garden party or 95° F = 35° C for going to the beach. Corner
cases would be 0° F, which is between -17° C and -18° C, the coldest temperature that
Gabriel Daniel Fahrenheit could create with a mixture of ice and ordinary salt in
1714. Another corner case is when water freezes at 32° F = 0° C.

 Sound complicated? It isn’t. The following listing statically imports the method
and then adds scripted unit tests using simple assertions that are built into the lan-
guage itself.

import static Converter.celsius

assert 20 == celsius(68)
assert 35 == celsius(95)
assert -17 == celsius(0).toInteger()
assert 0 == celsius(32)

Scripted tests of this kind are useful. As an example, look at this book: most listings
contain such self-checking asserts to ensure the code works and to help reveal your
expectations from the code at the same time. Most even work as inline tests where
assertions live inside the code under test.

4 Finding good test data is a science of its own and involves activities such as structural analysis of the parameter
domain. For our purposes, we keep it simple. Refer to the background literature for more information.

Listing 17.1 Scripted unit tests for the Fahrenheit to Celsius conversion method

Rounds down to
whole number
Licensed to Mark Watson <nordickan@gmail.com>

608 CHAPTER 17 Unit testing with Groovy
 But what if a test would fail due to an implementation error? Groovy will report
this back in a visual way. Say that instead of converting 95° F to 35° C, we incorrectly
assume that the result should be 34° C. If we execute the following:

assert 34 == celsius(95)

Groovy will report us back the following assertion error:

assert 34 == celsius(95)
 | |
 | 35
 false

Here you can see Groovy’s Power Assert at work. Power Assert, originally introduced
in the Spock Testing Framework, provides a very concise and clear way of reporting
errors by outputting the result of each invocation to the console. This makes it easier
to understand which parts went right, and which parts wrong.

 Whenever the environment of self-testing code changes, the inline tests assert that
it is still working. Environmental changes can happen for a number of reasons: evalu-
ating the script on a different machine, using an updated JDK or Groovy version, or
running with different versions of packages that the script depends upon.

 There are circumstances when tests cannot be inlined, such as due to performance
requirements. Sometimes scripted tests aren’t convenient enough because they do not
self-organize into trees of test suites. In such cases, it’s conventional to pack all the
tests of a given script or class into a separate class residing in a separate file. This is
where GroovyTestCase appears on stage.

17.1.2 GroovyTestCase: an introduction

Groovy bundles an extended JUnit class dubbed GroovyTestCase, which facilitates
unit testing in a number of ways. It includes a host of new assert methods, and it also
facilitates running Groovy scripts masquerading as test cases.

 The added assertions are listed in table 17.1. We won’t go into the details of each
method, mostly because they’re descriptively named. Where it’s not absolutely obvious
what the meaning is, the description provided in the table should be sufficient. Even
though we won’t discuss them explicitly, we’ll use them in the assertions elsewhere in
this chapter, so you’ll see how useful they are.

Table 17.1 Enhanced assertions available in GroovyTestCase

Method Description

void assertArrayEquals(Object[]
expected, Object[] value)

Compares the contents and length of
each array

void assertContains(char expected,
char[] array)

Verifies that a given array of chars contains an
expected value
Licensed to Mark Watson <nordickan@gmail.com>

609Getting started
In addition to the methods listed in the previous table, consider the convenient notYet-
Implemented method, which you can use to mark a test method as not implemented
yet. Here is an example:

public void testNotImplementedYet() {
 if (GroovyTestCase.notYetImplemented(this)) return
 fail("will be implemented tomorrow")
}

In the previous example, the test case is marked as not yet implemented. If the test some-
how passes, which was not yet expected, the test will fail with a descriptive error message.

 Groovy doesn’t force you to extend GroovyTestCase, and you’re free to continue
to extend the traditional TestCase class provided by JUnit.5 Having said that, unless

void assertContains(int expected,
int[] array)

Verifies that a given array of ints contains an
expected value

void assertInspect(Object value,
String expected)

Similar to the assertToString method, except
that it calls the inspect method

void assertLength(int length,
char[] array)

Convenience method for asserting the length of
an array

void assertLength(int length,
int[] array)

Convenience method for asserting the length of
an array

void assertLength(int length,
Object[] array)

Convenience method for asserting the length of
an array

void assertScript(final String
script)

Attempts to run the provided script

void assertToString(Object value,
String expected)

Invokes the toString method on the
provided object and compares the result
with the expected string

void shouldFail(Closure code) Verifies that the closure provided fails

void shouldFail(Class clazz,
Closure code)

Verifies that the closure provided throws an
exception of type clazz

void shouldFail(String scriptText) Verifies that the provided script fails when executed

void shouldFail(Class clazz,
String scriptText)

Verifies the provided script throws an exception of
type clazz when executed

void shouldFailWithCause(Class
clazz, Closure code)

Verifies that the closure provided fails and that a
particular exception is the cause of the failure

5 These methods extend the 4.12 version of JUnit, which is bundled with Groovy.

Table 17.1 Enhanced assertions available in GroovyTestCase

Method Description
Licensed to Mark Watson <nordickan@gmail.com>

610 CHAPTER 17 Unit testing with Groovy
you need the functionality of a different subclass of TestCase, you have plenty of
reasons to use GroovyTestCase and no reasons to specifically avoid it. Along with the
assertions listed in table 17.1, it’s easier to work with GroovyTestCase than TestCase,
as you’ll see in the next section.

17.1.3 Working with GroovyTestCase

To use Groovy’s enhanced TestCase class, extend it as follows:6

class SimpleUnitTest extends GroovyTestCase {
 void testSimple() {
 assertEquals("Groovy should add correctly", 2, 1 + 1)
 }
}

You can also use the JUnit 4 @Test annotation or TestNG’s equivalent to mark your
test. In that case, you don’t have to extend from GroovyTestCase unless you want to
use GroovyTestCase’s convenience methods, nor do you have to start your test method
with the “test” prefix:

import org.junit.Test
import static org.junit.Assert.assertEquals
class SimpleUnitTest {
 @Test
 void shouldAdd() {
 assertEquals("Groovy should add correctly", 2, 1 + 1)
 }
}

Remember, you’re free to extend any TestCase class you choose, so long as it’s in your
classpath. You can easily extend JUnit’s TestCase as follows:

import junit.framework.TestCase

class AnotherSimpleUnitTest extends TestCase {
 void testSimpleAgain() {
 assertEquals("Should subtract correctly too", 2, 3 - 1)
 }
}

Test cases can be run via the groovy command you’ve used previously for scripts and
applications. For example, you can run the SimpleUnitTest script seen earlier, by typ-
ing the command groovy SimpleUnitTest:

> groovy SimpleUnitTest
.
Time: 0

OK (1 test)

6 You don’t have to import it—it resides in one of the packages imported by default.
Licensed to Mark Watson <nordickan@gmail.com>

611Unit testing Groovy code
If the output looks familiar, that’s probably because it is the standard JUnit output you’d
expect to see if you ran a normal Java JUnit test using JUnit’s text-based test runner.

 Now that you’ve got your feet wet, let’s go back and start again from scratch, this
time testing a little more methodically.

17.2 Unit testing Groovy code
We’ve introduced Groovy’s testing capabilities, but we skipped over some of the
details. We’ll now explore more of those details by going through a slightly larger
Groovy application in need of testing. We’ll start with a new example and build up our
test class, refactoring tests as we go, validating boundary data, testing that inputs
aren’t inadvertently changed, even checking that the tests themselves haven’t been
adversely changed.

 Let’s imagine we’ve built a small counter class that determines how many numbers
in a list are larger than a target threshold number. The Groovy code is fairly trivial but
useful as our example class under test:

class Counter {
 int biggerThan(items, threshold) {
 items.grep{ it > threshold }.size()
 }
}

Testing this class is easy. First, we define our test case class, CounterTest, which
extends GroovyTestCase:

class CounterTest extends GroovyTestCase {
 …
}

Next, we follow the common unit-testing practice of writing a method to set up the
variables we’ll need in the tests that follow:

class CounterTest extends GroovyTestCase {
 private counter
 void setUp() {
 counter = new Counter()
 }
 …
}

We’re now in a position to write a test:

 void testCounterWorks() {
 assertEquals(2, counter.biggerThan([5, 10, 15], 7))
 }

We could continue adding tests in this way, but first let’s introduce constants that cap-
ture useful boundary case data and refactor out a helper method:

static final Integer[] NEG_NUMBERS = [-2, -3, -4]
static final Integer[] POS_NUMBERS = [4, 5, 6]
static final Integer[] MIXED_NUMBERS = [4, -6, 0]
Licensed to Mark Watson <nordickan@gmail.com>

612 CHAPTER 17 Unit testing with Groovy
private check(expectedCount, items, threshold) {
 assertEquals(expectedCount,
 counter.biggerThan(items, threshold))
}

This lets us specify more tests in a compact form:

void testCountHowManyFromSampleNumbers () {
 check(2, NEG_NUMBERS, -4)
 check(2, POS_NUMBERS, 4)
 check(1, MIXED_NUMBERS, 0)
 …
}

Once you’ve written sufficient tests to cover all the boundary cases you think are impor-
tant (or to meet your project’s coverage requirements, discussed in section 17.7.1), you
may think you’re finished, but you can do more. First, you can ensure that your
method doesn’t change the input items. You can provide the correct answer but acci-
dentally modify the input data and cause errors to occur elsewhere. Here’s one exam-
ple of such a test:

 void testInputDataUnchanged() {
 def numbers = NEG_NUMBERS.clone()
 def origLength = numbers.size()
 counter.biggerThan(numbers, 0 /* don't care */)
 assertLength origLength, numbers
 assertArrayEquals NEG_NUMBERS, numbers
 }

You can add items[0] = 0 as the first line of the biggerThan method to show how this
test would pick up an accidental bug in the code.

 We now have sound tests in place, but we can be more paranoid about our test data
and introduce a final test. Over time, we expect further developers to work on the
code, and they’ll likely change the test constants. To ensure that our key cases remain
covered, we can create a test that validates our assumptions about the data:

 void testInputDataAssumptions() {
 assertTrue NEG_NUMBERS.every { it < 0 }
 assertTrue POS_NUMBERS.every { it > 0 }
 assertContains 0, MIXED_NUMBERS
 int negCount = 0
 int posCount = 0
 MIXED_NUMBERS.each {
 if (it < 0) negCount++ else if (it > 0) posCount++
 }
 assert negCount && posCount
 }

This ensures that our positive, negative, and mixed numbers retain the properties
we intend.7

7 You could argue that we are being too paranoid here. Maybe, but it gives us a chance to show off a few more
example test assertions.

Tests to assure the input
list remains unchanged
as a result of biggerThan
operations.

Test to validate
input data
Licensed to Mark Watson <nordickan@gmail.com>

613Unit testing Groovy code
 Now for a neat bit of Groovy magic. It turns out that even though we set out to cre-
ate a calculator for numbers, nothing in our original method was specific to numbers.
We’ll add another test to illustrate this, using strings with their natural order:

 void testCountHowManyFromSampleStrings() {
 check(2, ['Dog', 'Cat', 'Antelope'], 'Bird')
 }

Putting this together results in the code in the following listing.

class Listing_17_02_CounterTest extends GroovyTestCase {
 static final Integer[] NEG_NUMBERS = [-2, -3, -4]
 static final Integer[] POS_NUMBERS = [4, 5, 6]
 static final Integer[] MIXED_NUMBERS = [4, -6, 0]
 private Counter counter

 void setUp() {
 counter = new Counter()
 }

 void testCounterWorks() {
 assertEquals(2, counter.biggerThan([5, 10, 15], 7))
 }

 void testCountHowManyFromSampleNumbers() {
 check(0, NEG_NUMBERS, -1)
 check(0, NEG_NUMBERS, -2)
 check(2, NEG_NUMBERS, -4)
 check(3, NEG_NUMBERS, -5)
 check(0, POS_NUMBERS, 7)
 check(0, POS_NUMBERS, 6)
 check(2, POS_NUMBERS, 4)
 check(3, POS_NUMBERS, 3)
 check(0, MIXED_NUMBERS, 5)
 check(1, MIXED_NUMBERS, 2)
 check(1, MIXED_NUMBERS, 1)
 check(1, MIXED_NUMBERS, 0)
 check(2, MIXED_NUMBERS, -1)
 check(3, MIXED_NUMBERS, -7)
 }

 void testInputDataUnchanged() {
 def numbers = NEG_NUMBERS.clone()
 def origLength = numbers.size()
 counter.biggerThan(numbers, 0 /* don't care */)
 assertLength origLength, numbers
 assertArrayEquals NEG_NUMBERS, numbers
 }

 void testCountHowManyFromSampleStrings() {
 check(2, ['Dog', 'Cat', 'Antelope'], 'Bird')
 }

 void testInputDataAssumptions() {
 assertTrue NEG_NUMBERS.every { it < 0 }

Listing 17.2 A complete test example, including implementation at the end

Constants
repeated in
the test

Uses a helper
method to make
code simpler

Tests proving we don’t
change the array

Calculator doesn’t only
work with numbers

Test constants
sanity check
Licensed to Mark Watson <nordickan@gmail.com>

614 CHAPTER 17 Unit testing with Groovy
 assertTrue POS_NUMBERS.every { it > 0 }
 assertContains 0, MIXED_NUMBERS
 int negCount = 0
 int posCount = 0
 MIXED_NUMBERS.each {
 if (it < 0) negCount++ else if (it > 0) posCount++
 }
 assert negCount && posCount
 }

 private check(expectedCount, items, threshold) {
 assertEquals(expectedCount,
 counter.biggerThan(items, threshold)
)
 }
}

Looks familiar, doesn’t it? It’s darn close to normal JUnit test code, but with slight
improvements thanks to Groovy’s extra assert methods, proper closure support, and
more compact syntax. Groovy hasn’t made the code much shorter here, only a bit
more convenient. As is often true, there’s more test code than production code
(although in this case, the difference is more pronounced than usual).

 It’s immediately obvious that Groovy code can test Groovy code, but it may not be
as clear that you can test your existing Java using the benefits of GroovyTestCase, too.
You’ll see this in action in the next section.

17.3 Unit testing Java code
At this point in your career, you’ve probably coded more Java applications than
Groovy ones. It stands to reason that one of the quickest ways to experience the plea-
sures of Groovy is to use this nifty language to test normal Java applications. As it turns
out, this process is amazingly simple.

 Using Groovy to test normal Java code involves three steps:

1 Write your tests in Groovy.
2 Ensure that the Java .class files you wish to test are on the classpath.
3 Run your Groovy tests in the normal way (on the command line or via your IDE

or favorite build environment).

That’s it most of the time. Of course, there are more complicated scenarios. If you’re
running a complicated integration test and want to run your Groovy test code on a
server, you can always run groovyc on your test code and then follow the same steps
that you’d go through for a Java application.

 Let’s explore this further by looking at an example. Rather than spend time
describing a Java application that you may not have seen before, we’ll consider how to
write tests for one of the Java collection classes: HashMap.

 One of the first things you’d do if you wrote Java tests for HashMap is set up test fix-
tures. You do the same thing in Groovy, but you have Groovy’s convenient syntax to
Licensed to Mark Watson <nordickan@gmail.com>

615Unit testing Java code
make your tests shorter and easier to understand. This is how we set up our test fix-
tures for an arbitrary key object and a sample map:

static final KEY = new Object()
static final MAP = [key1: new Object(), key2: new Object()]

One of the complicated things to test with Java-based tests is proper exception han-
dling. Groovy’s built-in shouldFail assert method can be of great assistance for such
tests. It’s part of HashMap’s expected behavior to disallow a null value when con-
structing the HashMap. Creating a HashMap by passing in a null value as in new Hash-
Map(null) should lead to a NullPointerException. The shouldFail method asserts
that this exception is thrown from within its closure:

void testHashMapRejectsNull() {
 shouldFail(NullPointerException) {
 new HashMap(null)
 }
}

If the attached closure fails to throw any exception (say you accidentally left out null
as the parameter), the test would fail with a message like:

junit.framework.AssertionFailedError: testHashMapRejectsNull() should
have failed with an exception of type java.lang.NullPointerException

If the closure fails but with an incorrect exception, say you accidentally had -1 instead
of null as the parameter, the test would fail with a message like:

testHashMapRejectsNull() should have failed with an exception of type
java.lang.NullPointerException, instead you got exception
java.lang.IllegalArgumentException: Illegal initial capacity: -1

The shouldFail method (inherited from GroovyTestCase) additionally returns the
exception message so you can test that the correct message is generated by the excep-
tion, as in the following example:

 void testBadInitialSize() {
 def msg = shouldFail(IllegalArgumentException) {
 new HashMap(-1)
 }
 assertEquals "Illegal initial capacity: -1", msg
 }

If the incorrect exception message was returned (say you accidentally had -2 in the
constructor call instead of -1), your test fails with a message similar to the following:

junit.framework.ComparisonFailure:
expected:<... initial capacity: -[1]>
but was:<... initial capacity: -[2]>
Licensed to Mark Watson <nordickan@gmail.com>

616 CHAPTER 17 Unit testing with Groovy
Groovy’s object-inspection methods (see section 9.1.1 for further details) also prove
useful for writing our Groovy tests. Here is how you might use dump:

assert MAP.dump().contains('java.lang.Object')

We can put all this together into a complete test class as shown in the following listing.

class Listing_17_03_HashMapTest extends GroovyTestCase {
 static final KEY = new Object()
 static final MAP = [key1: new Object(), key2: new Object()]

 void testHashtableRejectsNull() {
 shouldFail(NullPointerException) {
 new Hashtable()[KEY] = null
 }
 }

 void testBadInitialSize() {
 def msg = shouldFail(IllegalArgumentException) {
 new HashMap(-1)
 }
 assertEquals "Illegal initial capacity: -1", msg
 }

 void testHashMapAcceptsNull() {
 def myMap = new HashMap()
 myMap[KEY] = null
 assert myMap.keySet().contains(KEY)
 }

 void testHashMapReturnsOriginalObjects() {
 def myMap = new HashMap()
 MAP.entrySet().each {
 myMap[it] = MAP[it]
 assertSame MAP[it], myMap[it]
 }
 assert MAP.dump().contains('java.lang.Object')
 assert myMap.size() == MAP.size()
 }
}

None of the behavior here is unexpected—after all, the classes we’re testing are
familiar ones. Using shouldFail is more compact and readable than the equivalent
in Java with a try/catch, which fails if it reaches the end of the try block. It’s also
safer than the JUnit4 annotation for exception testing, which only checks whether
anything in the method throws the desired exception, rather than the line of code
we want to check.

 The use of dump in this test isn’t as elegant as it tends to be in real testing. When
you know the internal structure of the class, you can perform more useful tests against
the introspected representation.

Listing 17.3 Testing HashMap from Groovy

Checks that
the right kind
of exception is
thrown

Checks the
message

Uses Groovy
inspection to
examine the map
Licensed to Mark Watson <nordickan@gmail.com>

617Organizing your tests
 The final point we’ll mention about using Groovy to test your Java code is related
to the agile software development practice of test-driven development (TDD).8 Using this
practice, code is developed by first writing a failing test and then writing production
code to make that test pass, followed by refactoring and then repeating the process.
Modern IDEs provide strong support for this practice, by offering to automatically cre-
ate a nonexistent class mentioned in a test.

 You can still adopt TDD using a hybrid Groovy/Java environment. Current IDEs pro-
vide decent support to assist making this as streamlined as for pure Java environments.

 Having considered individual test classes, you’ll now see how to run sets of tests
together.

17.4 Organizing your tests
Until now, we’ve run our Groovy tests individually. For large systems, tests typically
aren’t run individually but are grouped into test suites that are run together. Or some-
times you want to run the same test but with multiple (perhaps large) sets of data.
We’ll look at ways to create suites, write parameterized or data-driven tests, and use
property-based testing. These techniques let you scale up your testing ambitions. We’ll
start with test suites.

17.4.1 Test suites

JUnit has built-in facilities for working with suites. These facilities allow you to add
individual test cases (and other nested suites) to test suites. JUnit’s test runners know
about suites and run all the tests they contain. Unfortunately, these facilities require
you to manually add all of your tests to a suite and assume you’re using Java classes for
your tests. We’ll look at ways of making life easier with Groovy.

 Because grouping tests into suites is so important, numerous solutions have
popped up in the Java world for automatically creating suites, but these too typically
assume you’re using Java classes. The good news is that because Groovy classes com-
pile to Java classes, you don’t have to abandon any of your current practices for group-
ing tests—as long as you’re willing to compile your Groovy files using groovyc first.
The even better news is that solutions exist that allow you to work more naturally
directly with your Groovy files.

 First, we should mention GroovyTestSuite, which is a Java class. It allows you to
invoke Groovy test scripts from the command line as follows:

> java groovy.util.GroovyTestSuite src/test/Foo.groovy

GroovyTestSuite, because it is a Java class, can be used with any conventional Java IDE
or Java build environment for running JUnit tests. It allows you to add Groovy files

8 See Test-Driven Development: By Example by Kent Beck (Addison Wesley, 2002) and Test Driven Practical TDD and
Acceptance TDD for Java Developers by Lasse Koskela (Manning, 2007).
Licensed to Mark Watson <nordickan@gmail.com>

618 CHAPTER 17 Unit testing with Groovy
into your test suites, as shown in the following listing. This creates a suite containing
the two previous tests. You could also add Java tests to the same suite.

import junit.framework.*
import junit.textui.TestRunner

static Test suite() {
 def suite = new TestSuite()
 def gts = new GroovyTestSuite()
 suite.addTestSuite(gts.compile("Listing_17_02_CounterTest.groovy"))
 suite.addTestSuite(gts.compile("Listing_17_03_HashMapTest.groovy"))
 return suite
}

TestRunner.run(suite())

We create a normal JUnit TestSuite and call GroovyTestSuite’s compile method to
compile the Groovy source code so that TestSuite knows how to run it. We then use
the normal JUnit console UI to run the tests. It isn’t aware that it’s running anything
other than normal Java.

 Next, we look at AllTestSuite, which can be thought of as an improved version of
GroovyTestSuite. It allows you to specify a base directory and a filename pattern, and
then it adds all the matching Groovy files to a suite. The following listing shows how
you’d use it to run the same tests as we did in listing 17.4.

def suite = AllTestSuite.suite(".", "Listing_17_*Counter*Test.groovy")
junit.textui.TestRunner.run(suite)

This time, we use the return value of the suite method directly, but if we want to add
multiple directories or patterns, we can call suite multiple times, adding the tests to a
suite before running them all together.

 We’ll have more to say about grouping tests into suites and running test suites
when we look at IDE, Gradle, and Maven integration later in this chapter, but first let’s
look at scaling up your test input data.

17.4.2 Parameterized or data-driven testing

JUnit 4, TestNG, and Spock (which we’ll cover shortly) all provide facilities for data-
driven tests. The following listing shows how to write such a test for JUnit 4.

import org.junit.Test
import org.junit.Test
import org.junit.runner.RunWith

Listing 17.4 Adding Groovy scripts to a JUnit suite with GroovyTestSuite

Listing 17.5 Adding Groovy scripts to a JUnit suite with AllTestSuite

Listing 17.6 Using Parameterized data with JUnit 4
Licensed to Mark Watson <nordickan@gmail.com>

619Organizing your tests
import org.junit.runners.Parameterized
import org.junit.runners.Parameterized.Parameters
import static Converter.celsius

@RunWith(Parameterized)
class Listing_17_06_DataDrivenJUnitTest {
 private c, f, scenario

 @Parameters static scenarios() {[
 [0, 32, 'Freezing'],
 [20, 68, 'Garden party conditions'],
 [35, 95, 'Beach conditions'],
 [100, 212, 'Boiling']
]*.toArray()}

 Listing_17_06_DataDrivenJUnitTest(c, f, scenario) {
 this.c = c
 this.f = f
 this.scenario = scenario
 }

 @Test void convert() {
 def actual = celsius(f)
 def msg = "$scenario: ${f}°F should convert into ${c}°C"
 assert c == actual, msg
 }
}

JUnit uses the Parameterized test runner B to invoke data-driven tests. The @Parameter
annotation c earmarks an array of test data. The test class constructor d is parame-
terized so that its parameters match one row of test data.

 Our example used a hard-coded array of test values, but there’s no reason this
couldn’t have come from a file, Excel spreadsheet, or database. TestNG and Spock also
have similar capabilities. Before leaving this topic, we want to look at a technique you
can use to write many fewer tests with potentially large sets of auto-generated test data.

17.4.3 Property-based testing

When applying agile developer practices, such as TDD, and working with imperative
code, we often end up playing a little game. We try to work out the minimum tests we
can write to steer the design of the production code being produced to have the
desired “business” functionality but also to achieve 100% code coverage.9 It makes
perfect sense. Because we know a little bit about our implementation’s internal work-
ings, we craft our tests to cover every branch—effectively validating the assumptions
we make in each and every part of our implementation. An effective pair program-
mer will try to bring any hidden assumptions about the implementation to the sur-
face. Best to deal with such assumptions up front and not when they become an
issue in production.

9 For the impatient, you don’t have long to wait to learn more; we’ll cover that topic in the next section.

Special test
runner

 b

Array of
test data

 c

Constructor
parameters
consume a row
of test data

 d
Licensed to Mark Watson <nordickan@gmail.com>

620 CHAPTER 17 Unit testing with Groovy
 When working with functional languages this practice is rarely used, at least not in
the same way. A slightly different slant is often taken on the testing process. Instead of
trying to test assumptions about inner workings, the focus is about validating the
external behavior of the code. Are there any hidden assumptions about its behavior
that might cause unexpected results in the future? In this context, property-based testing
as a concept has arisen and flourished.

 With property-based testing, we try to establish expected properties of part of our
system. We then hit it with a large amount of input data and see if those properties
hold. As an example consider this code:

@Grab('net.java.quickcheck:quickcheck:0.6')
import static net.java.quickcheck.generator.PrimitiveGenerators.*
import static net.java.quickcheck.generator.CombinedGeneratorsIterables.*

for (words in someNonEmptyLists(strings())) {
 assert words*.size().sum() == words.sum().size()
}

Here, we use two inbuilt generators from the QuickCheck for Java library: one that
produces arbitrary strings and another one that produces non-empty lists of items
from another generator. Putting them together, we get lists of non-empty strings.

 The property or invariant that we want to hold is that if we take any such list and con-
catenate all the strings and find the length of the concatenated string, then we should
get the same value that we would obtain by finding the length of each individual string
and summing the lengths together. This makes sure nothing is lost (or incorrectly
added) when we concatenate strings together.

 We can use the same library and apply that same concept to our temperature con-
verter as shown in the following listing.

@Grab('net.java.quickcheck:quickcheck:0.6')
import static net.java.quickcheck.generator.PrimitiveGenerators.*
import static java.lang.Math.round
import static Converter.celsius

def gen = integers(-40, 240)
def liquidC = 0..100
def liquidF = 32..212
100.times {
 int f = gen.next()
 int c = round(celsius(f))
 assert c <= f
 assert c in liquidC == f in liquidF
}

We use a generator, in this case for integers B, to provide a random set of test values
for the temperature in Fahrenheit. Then looping 100 times, we obtain the next tem-
perature from the generator c and pass it through the converter.

Listing 17.7 Property-based testing using QuickCheck for Java with Groovy

Selects integers
from this range

 b

Gets the next
integer

 c
Celsius less
than Fahrenheit
(above -40 degrees)

 d

Water should be
liquid in this range e
Licensed to Mark Watson <nordickan@gmail.com>

621Advanced testing techniques
 In general at this point, we need a way to determine if the result we got was correct.
We manually created the expected value when doing TDD, but here we won’t have
that option. We could have an oracle of some kind, perhaps another algorithm we
know produces the correct result but may be too slow to use in production, or perhaps
a database of correct answers is available. But in general with property-based testing,
we give up on the goal of trying to validate fixed values. Instead we’ll check that cer-
tain properties hold.

 For our converter we’ll check two properties:

■ That the Celsius value is smaller than or equal to the Fahrenheit value d which
holds true for temperatures above -40 degrees. That conveniently matches what
our generator is producing.

■ That any Fahrenheit temperature and its converted Celsius value pass a little
sanity check. We know the range of temperatures in which water is a liquid for
both Fahrenheit and Celsius scales.10 A Fahrenheit temperature corresponding
to the liquid phase, once converted, should be in the liquid range we know for
Celsius and vice versa e.

Each time we run the test, it uses 100 different random test values, so over time we’ll
get increasingly good data coverage of our system.11 While our water liquidity test
might seem a little strange, it reveals the nature of property-based testing. It’s up to
you to determine what properties are important in your system.

 We used simple inbuilt generators in our examples. In general, if you dive into
property-based testing, you’ll likely create your own generators and combine your own
generators with the provided ones to build composite generators. The end result of
using property-based testing is that you’ll end up having much fewer data values
encoded in your tests, which eases refactoring and maintenance.

 This approach to testing can feel “harder” as long as its underlying functional
thinking is unfamiliar. The benefit is that you’re led to detect behavioral characteris-
tics of your system by making them explicit in your tests. Writing such tests is often an
enlightening experience.

 As you can see, property-based testing is a powerful technique available in our test-
ing toolbox. Speaking of useful techniques, let’s examine a few more advanced tech-
niques, which you’ll also want to stash away in a corner of your Groovy testing toolbox.

17.5 Advanced testing techniques
Let’s switch into “Groovy expert mode” and look at advanced testing techniques. Sev-
eral of the techniques will help you test hard-to-test systems by leveraging Groovy’s
dynamic nature. You’ll also learn how to gain knowledge about your test coverage and

10 We’re keeping the underlying science nice and simple for this example.
11 And if needed, many property-based libraries have ways to seed the randomness for repeatable tests.
Licensed to Mark Watson <nordickan@gmail.com>

622 CHAPTER 17 Unit testing with Groovy
about the performance of small parts of your system in isolation. Let’s start with
exploring why systems can be hard to test.

 Automated testing is easy if you develop your automated tests in close interplay
with your production code, because you immediately design your system for testabil-
ity. Unfortunately, this level of test awareness isn’t universal, and you’ll sometimes find
yourself in the position where you have to write tests for code that already exists. This
is when you need advanced testing techniques, the same way you’d need a more spe-
cialized tool than a dinner fork to efficiently extract a single strand of spaghetti from a
bowl of pasta.

 A number of bad programming habits can make testing difficult. One is writing
incoherent classes and methods that do more than they should, resulting in overly
long classes and methods. Even worse is code with many dependencies to other classes
that we’ll call collaborators. Unit testing your subject under test (SUT) in its purist form
means that you test it in isolation without the collaborators so you’re focused on find-
ing errors in your code.12

 The first set of advanced testing techniques we’re about to explore is mainly con-
cerned with replacing such collaborators for the purpose of unit testing the SUT in
isolation. To that end, we first show how you can employ Groovy’s core language fea-
tures to provide “fake” collaborators. We then explore Groovy’s special support for so-
called stubs and mocks, which allow flexible simulation of collaborator behavior, as
well as let you specify exactly how the collaborators must be used. We finish our first
wave of techniques by considering an approach that can be used when all else fails:
using logs to test that your classes are behaving as you expect them to.

17.5.1 Testing made groovy

Once, I (Dierk) gave a lecture on unit testing where I asked the audience to challenge
me with the most difficult testing problem they could think of, something they
believed would be impossible to unit test. Their proposal was to test the load-balancer
of a server farm. How could we test this in Groovy?

 The core logic of a load balancer is to relay a received request to the machine in
the server farm that currently has the lowest load. Suppose we already have collabora-
tor classes that describe requests, machines, and the farm; a Groovy load balancer could
have the following method:

def relay(request, farm) {
 farm.machines.sort { it.load }[0].send(request)
}

The method finds the machine with the lowest load by sorting all machines in the
farm by the load property, taking the first one, and calling the send method on that
machine object.

12 Other kinds of integration tests should pick up errors that come from integrating your code with the
collaborators.
Licensed to Mark Watson <nordickan@gmail.com>

623Advanced testing techniques
 To unit test this logic, we need to somehow call the relay method to verify its
behavior. We can do this only if we have request and farm objects, but we don’t want
our test to depend on any of the production collaborator classes. Luckily, our Groovy
solution doesn’t demand any specific types, and we can use any type we fancy.

 What would be a good object to use for the farm parameter? Thanks to Groovy’s
duck typing of the relay parameters, any object that we can ask for a machines prop-
erty will do—a map for example. The machines property, in turn, needs to be some-
thing that can be sorted by a load property and understands the send(request)
method. Listing 17.8 follows this route by testing the load balancer logic with a map-
based farm of fake machines made using a FakeMachine class. Fake machines return a
self-reference from their send method to allow subsequent asserts to verify that the
send method was called on the expected machine.

import static org.junit.Assert.assertSame

def relay(request, farm) {
 farm.machines.sort { it.load }[0].send(request)
}

class FakeMachine {
 def load
 def send(request) { return this }
}

final LOW_LOAD = 5, HIGH_LOAD = 10
def farm = [machines: [
 new FakeMachine(load:HIGH_LOAD),
 new FakeMachine(load:LOW_LOAD)]]

assertSame(LOW_LOAD, relay(null, farm).load)

Note that we don’t need to create a special stub for the request parameter. Because
it’s relayed and no methods are ever called on it, null is fine.

 The important point about the previous listing is that the load-balancing logic is
tested in full isolation. No accidental change to any of the collaborator classes can pos-
sibly affect this test. When this test fails, we can be sure that the load-balancing logic
and nothing else is in trouble.

17.5.2 Stubbing and mocking

Until now, our load balancer was fairly easy to test in isolation because we could
feed all collaborator objects into the relay method. That wasn’t a real challenge.
Things get more interesting when we need to replace objects that cannot be set
from the outside.13

Listing 17.8 Unit-testing a load balancer with Groovy collaborator replacements

13 In UML terms: when the collaborator is composed, not aggregated.

Subject
under test

Replacement
class

Map
replaces
farm
Licensed to Mark Watson <nordickan@gmail.com>

624 CHAPTER 17 Unit testing with Groovy
EXAMPLE PROBLEM: COLLABORATOR CONSTRUCTION

Suppose our load balancer directly creates its collaborator farm object:

def relay(request) {
 new Farm().getMachines().sort { it.load }[0].send(request)
}

The Farm class looks like this:

class Farm {
 def getMachines() {
 /* some expensive code here */
 }
}

From an implementer’s perspective, such a solution could be justifiable for a number
of reasons. Perhaps the Farm’s getMachines method provides support for finding all
machines via a network scan and then caches that information. Anyway, we wouldn’t
want to perform an expensive operation if we didn’t need it, so placing the new
Farm().getMachines() statement within relay seems like the way to go. From a tes-
ter’s perspective, however, even allowing for potential caching, calling the real code is
going to be too expensive an operation for a unit-test environment, where tests should
execute in the blink of an eye if developers are expected to run them often. Also, we
need to run our tests even when no real machines are available.

 The implementation isn’t easily testable. We can’t use the fake implementation
techniques in the way you saw earlier, because we have no way to sneak such a subclass
into our subject under test. One common trick when testing would be to subclass
Farm. That won’t help us here either, for the same reasons. Should we give up? No!

STUBBING OUT THE COLLABORATOR

Groovy’s Meta-Object capabilities come to the rescue in the form of Groovy stubs. The
trick provided by Groovy stubs is to intercept all method calls to instances of a given
class (Farm in this case) and return a predefined result. Here’s how it works.

 We first construct a stub object for calls to the Farm class:

import groovy.mock.interceptor.StubFor

def farmStub = new StubFor(Farm)

Next, we create two fake machines to help define our expectations from the stub:

def fakeOne = new Expando(load:10, send: { false })
def fakeTwo = new Expando(load:5, send: { true })

Then, we demand that when the getMachines method is called on our stub, our
fake machines are returned. Registering this behavior is done by calling the respec-
tive method on the stub’s demand property and passing a closure argument to define
the behavior:

farmStub.demand.getMachines { [fakeOne, fakeTwo] }
Licensed to Mark Watson <nordickan@gmail.com>

625Advanced testing techniques
Finally, we pass our test code as a closure to the stub’s use method. This ensures that
the stub is in charge when the test is executed: any call to any Farm object will be inter-
cepted and handled by our stub. The full test scenario is given in the following listing.

import groovy.mock.interceptor.StubFor

def relay(request) {
 new Farm().getMachines().sort { it.load }[0].send(request)
}

def fakeOne = new Expando(load:10, send: { false })
def fakeTwo = new Expando(load:5, send: { true })

def farmStub = new StubFor(Farm)
farmStub.demand.getMachines { [fakeOne, fakeTwo] }

farmStub.use {
 assert relay(null)
}

Note that for the use of Groovy stubs, it makes no difference whether the collaborator
class is written in Java or Groovy. The class under test, however, must be a Groovy class.

STUB EXPECTATIONS

Groovy stubs support a flexible specification of the demanded behavior. To demand
calls to different methods, do so in sequence:

someStub.demand.methodOne { 1 }
someStub.demand.methodTwo { 2 }

When calls to the stubbed method should yield different results per call, add the
respective demands in sequence:

someStub.demand.methodOne { 1 }
someStub.demand.methodOne { 2 }

You can provide a range to specify how often the demanded closure should apply; the
default is (1..1):

someStub.demand.methodOne(0..35) { 1 }

Finally, it’s also possible to react to the method argument that the SUT passes to the
collaborator’s method. Each argument of the method call is passed into the demand
closure and can thus be evaluated inside it. Suppose you expect that the stubbed
method is called only with even numbers, and you’d like to assert that invariant while
testing. You can achieve this with

someStub.demand.methodOne {
 number -> assert 0 == number % 2
 return 1
}

Listing 17.9 Using Groovy stubs to test an otherwise untestable load balancer

Creates
stub

Specifies
demanded
behaviorCalls the class under

test using stub
Licensed to Mark Watson <nordickan@gmail.com>

626 CHAPTER 17 Unit testing with Groovy
Of course, you can also combine all these kinds of demand declarations, producing
an elaborate specification of call sequences on the collaborator and returned values.
The more elaborate that specification is, the more likely it is that you’ll want to also
assert that all demanded method calls happened. For stubs, this isn’t asserted by
default, but you can enforce this check by calling

someStub.expect.verify()

after the use closure.
 Stubs use a LooseExpectation for verifying the demanded method calls. It’s called

loose because it only verifies that all demanded methods were called, not whether they
were called in the sequence of the specification.

COMPARING STUBS AND MOCKS

Strict expectations are used with mocks. A mock object has all the behavior of a stub
and more. The strict expectation of a mock verifies that all the demanded method
calls happen in exactly the sequence of the specification. The first method call that
breaks this sequence causes the test to fail immediately. Also, with mocks you have no
need to explicitly call the verify method, because that happens by default when the
use closure ends.

 At first glance, it appears that mocks and stubs are almost the same thing, with
mocks being a bit more rigorous. But a deep fundamental difference exists in the pur-
pose behind their use:14 Stubs enable your SUT to run in isolation and allow you to
make assertions about state changes of the SUT. With mocks, the test focus moves to
the interplay of the SUT and its collaborators. What gets asserted is whether the SUT
follows a specified protocol when talking with the outside world. A protocol defines the
rules that the SUT has to obey when calling the collaborator. Typical rules would be:
the first method call must be init, the last method call must be close, and so on.

 Consider a new variant of our load balancer that uses a SortableFarm class, which
provides a sort method to change its internal representation of machines such that
any subsequent call to getMachines returns them sorted by load:

class SortableFarm extends Farm {
 def sort() {
 /* here the Farm would sort its machines by load */
 }
}

Our SUT now has to follow a certain protocol when using SortableFarm: first sort
must be called, and then getMachines:

def relay(request) {
 def farm = new SortableFarm()
 farm.sort()
 farm.getMachines()[0].send(request)
}

14 See www.martinfowler.com/articles/mocksArentStubs.html for more details.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.martinfowler.com/articles/mocksArentStubs.html

627Advanced testing techniques
Listing 17.10 uses a mock as constructed with the MockFor class to verify that our SUT
exactly follows this protocol. Only the compliance to the protocol is tested and noth-
ing else; for this special test, we don’t even verify that the call is relayed to the machine
with the lowest load.

import groovy.mock.interceptor.MockFor

class SortableFarm extends Farm {
 void sort() {
 /* here the Farm would sort its machines by load */
 }
}

def relay(request) {
 def farm = new SortableFarm()
 farm.sort()
 farm.getMachines()[0].send(request)
}

def farmMock = new MockFor(SortableFarm)

farmMock.demand.sort(){}
farmMock.demand.getMachines { [new Expando(send: {})] }

farmMock.use {
 relay(null)
}

If you’re unfamiliar with mock objects, protocol-based testing (also called interaction-
based testing) will probably appear strange to you. In traditional testing, we tend to
focus on state changes and return values rather than on the effects caused to collabo-
rating objects. In particular cases, interactions with collaborators are implementation
details and shouldn’t be tested. If they are part of the object’s guaranteed behavior,
mock testing is appropriate.

 Groovy’s clever way of providing stubs and mocks even for objects that cannot be
passed to the SUT is a double-edged sword. Testing should lead you into a design of
high coherence and low coupling. Without resorting to clever Java tricks, Java
mocks work only if you can pass them to the SUT, forcing you to expose the collabo-
rator, which usually leads to a more flexible design. Groovy has no such restriction,
because you can more easily test even a rotten design. The implication is that Groovy
won’t stop you from building a less-flexible design even when using the latest devel-
opment practices.

 Conversely, Java projects often suffer from the deadlock that appears when devel-
opers find large sections of untestable code. They cannot easily refactor such a section
of code because it has no tests. They cannot easily write tests without refactoring the
code to make it more testable. With Groovy’s built-in mocking facilities, you have a
better chance of escaping this deadlock.

Listing 17.10 Using Groovy mock support to verify protocol compliance

Creates
mock

Specifies demanded
behavior
Licensed to Mark Watson <nordickan@gmail.com>

628 CHAPTER 17 Unit testing with Groovy
17.5.3 Using GroovyLogTestCase

Sometimes, even with stubs and mocks, testing a particular object can be difficult. The
amount of work involved in setting up all the mocked interactions in a tricky scenario
may outweigh the benefits of your testing efforts. To be realistic, if your system (and
resulting tests) is that complex, perhaps you have a bug in your tests. In such cases,
another useful feature provided by Groovy is GroovyLogTestCase. You saw in listing 17.2
that it was relatively easy to test the fictitious countHowManyBiggerThan calculator. Sup-
pose, though, that it was much harder to test. We could resort to writing information
to a log file, and then we could manually check the log file to see if it appears to con-
tain the correct information. In these scenarios, GroovyLogTestCase can be extremely
useful. Consider the following modified LoggingCounter:

import java.util.logging.*

class LoggingCounter {
 static final LOG = Logger.getLogger('LoggingCounter')
 def biggerThan(items, target) {
 def count = 0
 items.each{
 if (it > target) {
 count++
 LOG.finer "item was bigger - count this one"
 } else if (it == target) {
 LOG.finer "item was equal - don't count this one"
 } else {
 LOG.finer "item was smaller - don't count this one"
 }
 }
 return count
 }
}

Note that the calculator outputs log messages for each of three scenarios: the item being
tested was smaller than, equal to, or bigger than the target value. We can now test this
class with the assistance of GroovyLogTestCase, as shown in the following listing.

import java.util.logging.Level

class Listing_17_11_LoggingCounterTest extends GroovyLogTestCase {
 static final MIXED_NUMBERS = [99, 2, 1, 0, -1, -2, -99]
 private count

 void setUp() {
 count = new LoggingCounter()
 }

 void testCounterAndLog() {
 def log = stringLog(Level.FINER, 'LoggingCounter') {
 def bigger = count.biggerThan(MIXED_NUMBERS, -1)
 assertEquals(4, bigger)
 }

Listing 17.11 Using GroovyLogTestCase for tricky cases

Test data

Sets up
stringLog

Invokes SUT

Traditional
JUnit style
assert
Licensed to Mark Watson <nordickan@gmail.com>

629Advanced testing techniques
 checkLogCount(1, "was equal", log)
 checkLogCount(4, "was bigger", log)
 checkLogCount(2, "was smaller", log)
 checkLogCount(4, /[^d][^o][^n][^'][^t] count this one/, log)
 checkLogCount(3, "don't count this one", log)
 }

 private checkLogCount(expectedCount, regex, log) {
 def matcher = (log =~ regex)
 assertTrue log, expectedCount == matcher.count
 }
}

If you look at the test data in the MIXED_NUMBERS list, you expect four entries to be big-
ger than -1, two to be smaller, and one to be the same. Log messages corresponding to
these cases will be stored in the log variable thanks to the stringLog statement. Our
test then uses regular expressions to ensure that the log contains the correct number
of each kind of log message.

 GroovyLogTestCase makes use of the Log String testing pattern15 in a test scenario
that would otherwise be cumbersome and error-prone to implement. It relieves you
of the work of setting the appropriate log levels and registering string appenders
for the SUT logger. After the test, it cleans up properly and restores the old logging
configuration.

 That finishes our wave of techniques for tackling hard-to-test systems. Up next we
look at performance testing.

17.5.4 Unit testing performance

There may be many performance characteristics of your system that are important
and worthy of being tested. But in the context of this chapter, we’ll limit ourselves to
looking at one library that lets you perform simple load and performance tests at the
unit test level. JUnitPerf is an extension framework for JUnit that offers the ability to
ascertain fine-grained performance and scalability of your objects and its methods.
For instance, JUnitPerf enables scenarios such as “the findTrades method must
return a list of Trade objects within one second and the test fails if it performs too
slowly (even if the test did return a valid list of Trade objects).” The framework also
adds scalability via threading. Using this scenario, you can add the requirement that
under a load of 100 invocations, the findTrades method must return a collection of
Trade objects within one second.

 Understandably, there are scenarios within Groovy where this type of framework
could come in handy:

■ Testing the performance and scalability of Groovy applications
■ Testing the performance and scalability of normal Java code in tests written

in Groovy

15 Described in chapter 27 of Test-Driven Development: By Example.

Helper method
asserting patterns
within the log
Licensed to Mark Watson <nordickan@gmail.com>

630 CHAPTER 17 Unit testing with Groovy
Using JUnitPerf with Groovy can be a little tricky. JUnitPerf is a decorator-based frame-
work. It decorates test cases by individually wrapping them with a decorator. This is
typically done within a suite method. Groovy’s GroovyTestSuite and AllTestSuite
test runners, however, ignore suite definitions and provide alternative mechanisms
for determining which tests to run.

 To allow JUnitPerf to work with Groovy involves following a few simple steps. First,
you need a way to select a single JUnit test that you want to decorate. If you look at
JUnit’s TestCase class, you’ll notice that it provides a constructor that takes the name
of a test method and allows a single test case to be selected. We can make use of this
for JUnitPerf by declaring a constructor that takes a method name and have it call
super(testName):

Listing_17_12_JUnitPerf(String testName) {
 super(testName)
}

Then we create a suite method that defines a test case using this constructor:

static Test suite() {
 def testCase = new Listing_17_12_JUnitPerf("testConverter")
 // decorate testCase and return decorated version
}

Now we can apply the appropriate decorators on the test case according to JUnitPerf’s
documentation for load and stress testing scenarios:

def loadTest = new LoadTest(testCase, numUsers, stagger)

It sounds complicated, but really it’s the same steps you’d follow to use JUnitPerf in
Java. As an example, the next listing utilizes JUnitPerf to test our temperature con-
verter. It verifies that invoking testConverter 20 times in concurrent threads (with
each thread staggered by 100 milliseconds) returns within 2100 milliseconds.

@Grab('junitperf:junitperf:1.9.1')
@GrabResolver('https://repository.jboss.org/')
import com.clarkware.junitperf.*
import junit.framework.*
import junit.textui.TestRunner
import static Converter.celsius

class Listing_17_12_JUnitPerf extends TestCase {
 Listing_17_12_JUnitPerf(String testName) {
 super(testName)
 }

 void testConverter() {
 assert 0 == celsius(32)
 assert 100 == celsius(212)
 }

Listing 17.12 Using JUnitPerf decorators to perform load and time tests

Calls super

Traditional
nontimed
JUnit testClass under

test
Licensed to Mark Watson <nordickan@gmail.com>

631Advanced testing techniques

te
 static main(args) {
 TestRunner.run(suite())
 }

 static Test suite() {
 def testCase = new Listing_17_12_JUnitPerf("testConverter")

 def numUsers = 20
 def stagger = new ConstantTimer(100)
 def loadTest = new LoadTest(testCase, numUsers, stagger)

 def timeLimit = 2100
 return new TimedTest(loadTest, timeLimit)
 }
}

When you run this program, you should see output indicating that the program is
running your tests, followed by the time it took to complete the tests. Because there
are 20 users starting 100 ms apart, we expect the test to run for at least 2 seconds. If
the time is less than 2.1 seconds, then the test will be successful:

....................TimedTest (WAITING): LoadTest (NON-ATOMIC):
ThreadedTest: testConverter(Listing_17_12_JUnitPerf): 2014 ms
Time: 2.014
OK (20 tests)

If the test takes too long to run (suppose we expect it to complete in 2.01 seconds), it
will fail:

There was 1 failure:
1) LoadTest (NON-ATOMIC): ThreadedTest:
testConverter(Listing_17_12_JUnitPerf)junit.framework.AssertionFailedError:
Maximum elapsed time exceeded! Expected 2010
ms, but was 2020ms.

The next time you need to figure out the performance of Groovy code or you want to test
the performance and scalability of your Java application with Groovy, give JUnitPerf a try!

17.5.5 Code coverage with Groovy

Code-coverage tools are now a mainstream part of any serious Java engineer’s toolkit.
They provide useful feedback on how well your testing efforts are going. To leverage
any existing Java code coverage tool for Groovy, you need to compile your Groovy into
bytecode and then run the tool as before.

 If you’re interested in the coverage of your Groovy code and you try this technique
with an older coverage tool, you’ll probably not have the ability to see reports indicat-
ing which lines of code were executed, because the tool or its reporting infrastructure
doesn’t know about Groovy source files.

 The good news is that efforts are being made to provide native Groovy support in
code-coverage tools. One open source tool that has gained Groovy support is Cober-
tura (http://cobertura.sourceforge.net).

Defines
test case

20 users for load
staggered at 100 ms

Decorates
st case to
simulate

load

Must return
within 2100 ms

Returns decorated
time-constrained test
Licensed to Mark Watson <nordickan@gmail.com>

http://cobertura.sourceforge.net

632 CHAPTER 17 Unit testing with Groovy
 Cobertura works in a similar way to many other coverage tools for the JDK.16 Dur-
ing the build process, it modifies our bytecode so that later when our code executes,
it will write out information about which code paths have been executed. This infor-
mation will be stored away in a form suitable for later processing by the coverage
tool reporting.

 Consider the following Groovy class:17

class BiggestPairCalc {
 int sumBiggestPair(a, b, c) {
 def op1 = a
 def op2 = b
 if (c > a) {
 op1 = c
 } else if (c > b) {
 op2 = c
 }
 return op1 + op2
 }
}

Here’s a test for this code:

class BiggestPairCalcTest extends GroovyTestCase {
 void testSumBiggestPair() {
 def calc = new BiggestPairCalc()
 assertEquals(9, calc.sumBiggestPair(5, 4, 1))
 }
}

At this stage, we could run our test and make sure it passes. To get coverage, however,
requires a few extra steps. We used a Gradle build file to capture these steps. The
entire build file, build.gradle,18 is fairly simple and looks like the following:

plugins {
 id 'net.saliman.cobertura' version '2.2.6'
}

apply plugin: 'groovy'

repositories {
 mavenCentral()
}

dependencies {
 compile 'org.codehaus.groovy:groovy-all:2.4.0'
 testCompile 'junit:junit:4.12'
}

16 But tools such as Clover actually hook into Groovy’s compiler phases.
17 If we were trying to be really Groovy, we could write [a,b,c].sort()[-2..-1].sum(), but that would have made it

harder to show some lines covered and some not!
18 Within the cobertura directory of the book’s sample code.
Licensed to Mark Watson <nordickan@gmail.com>

633Advanced testing techniques
The Cobertura plugin makes numerous tasks available to Gradle. The one we want is
gradle cobertura. This will compile our code, execute our tests, and generate a
Cobertura report as shown in figure 17.1. Note that nothing special was required to
get the Groovy coverage. All Java classes (if any) and Groovy classes in our project will
be part of the coverage analysis.

 If we go deeper into the report by clicking an appropriate link for one of our
source files, we can see which lines are covered by tests. Figure 17.2 shows that lines 6
and 8 are not covered yet by tests and 5 and 7 are only partially covered.

 Now that we can see where we’re missing coverage, we can add more tests to our
test method:

assertEquals(15, calc.sumBiggestPair(5, 9, 6))
assertEquals(16, calc.sumBiggestPair(10, 2, 6))

We can run the tests to make sure they all still work and then check the coverage again
to see how our coverage is going. The result is shown in figure 17.3.

 Is the code correct? The tests all pass, and we have 100% coverage—that means we
don’t have any bugs, right? For fun, let’s add one more test:

assertEquals(11, calc.sumBiggestPair(5, 2, 6))

Figure 17.1 Cobertura code-coverage summary report

Figure 17.2 Cobertura code-coverage file report showing partial coverage
Licensed to Mark Watson <nordickan@gmail.com>

634 CHAPTER 17 Unit testing with Groovy
If we run our tests again, they now fail! There was an error in our original algorithm.
That was nothing to do with Groovy, but is a reminder that coverage is a necessary but
not sufficient condition to show that you have all the tests that you need. We can fix
the calculator as shown in figure 17.3.

int sumBiggestPair(int a, int b, int c) {
 int op1 = a
 int op2 = b
 if (c > [a,b].min()) {
 op1 = c
 op2 = [a,b].max()
 }
 return op1 + op2
}

Now we can run all our tests. They should all pass, and Cobertura should report
100% coverage.

 You have seen that Groovy makes even advanced testing techniques easily available
through core language features. The running theme of improving developer conve-
nience with Groovy finds its logical continuation in the next section, where we inte-
grate Groovy unit testing in Java IDEs.

17.6 IDE integration
In section 1.6, you saw that several major Java IDEs (with the addition of plug-ins) have
useful support for editing and running Groovy code. The same mechanisms are suit-
able for editing and running your Groovy tests. But the story doesn’t end there.

 Java IDEs often have additional features to better support Java unit testing, such
as enhanced test runners. Fortunately, you’ll see that many of these enhanced fea-
tures can be leveraged for your Groovy unit testing. We explore how to use the two
test suite classes you saw earlier within an IDE, before taking a brief look at how

Figure 17.3 Cobertura code-coverage file report showing full coverage
Licensed to Mark Watson <nordickan@gmail.com>

635IDE integration
Groovy’s close relationship with Java allows it to be used with cutting-edge IDE test-
ing features.

17.6.1 Using GroovyTestSuite

While editing a Groovy test file within your IDE, you can run it like any other Groovy
file. Eclipse users with the Groovy plug-in installed might right-click, select Run As,
and then select Groovy. IntelliJ IDEA users with the Groovy plug-in installed might
press Ctrl-Shift-F10. In both cases, the corresponding tests within the current file
would run. If your Groovy file was several assert statements in a script file, as in list-
ing 17.1, then you wouldn’t see any output—this is expected because assert state-
ments make noise only when something goes wrong. If you don’t want to run your
tests individually or want additional feedback when running your tests, GroovyTest-
Suite may be what you’re after.

 In section 17.4, you saw that GroovyTestSuite could be used to invoke a Groovy
test from the command line. You also saw how it could be used to add Groovy files into
a standard JUnit suite.19 We now look at another way to use GroovyTestSuite: as part
of an IDE run configuration. Figure 17.4 shows how to configure Eclipse to use

19 Test suites remain an important concept you typically use in conjunction with other IDE integration.

Figure 17.4 Eclipse run configuration for Main tab using GroovyTestSuite
Licensed to Mark Watson <nordickan@gmail.com>

636 CHAPTER 17 Unit testing with Groovy
GroovyTestSuite as part of a run configuration. Select Run -> Run, and create a new
Java Application configuration. Set the Project to be your current project, and select
groovy.util.GroovyTestSuite as the Main class.

 Next, click the Arguments tab; in the Program Arguments box, include the path to
your Groovy script, as shown in figure 17.5.

 When you run this configuration, you should see output similar to that shown in
figure 17.6.

Figure 17.5 Eclipse run configuration for the Arguments tab using GroovyTestSuite

Figure 17.6 Eclipse GroovyTestSuite example
run output
Licensed to Mark Watson <nordickan@gmail.com>

637IDE integration
Users of JUnit’s text-based runner should now feel at home and will see a bit more
feedback than the previously empty output.

17.6.2 Using AllTestSuite

JUnit’s green/red bar reporting mechanism found in graphical test runners can be addic-
tive when you are “in the groove.” The default behavior of Groovy’s GroovyTestSuite,
however, doesn’t easily fit into the graphical runner model, because those runners usu-
ally prefer to run normal Java classes, rather than Groovy files.

 One strategy is to rely on groovyc to compile all test cases and then run them via a
Java-aware GUI runner; however, that takes an extra step. It’s more fun to see the
green bar immediately after coding! This is where AllTestSuite, which we discussed in
section 17.7, really shines. In addition to its uses for organizing your tests into suites,
AllTestSuite can also be used as part of configuring your test runs.

 To configure Eclipse to use AllTestSuite, create a new JUnit run configuration,
select your project, and set the Test class to groovy.util.AllTestSuite, as shown in
figure 17.7.

 Then, in the Arguments tab, define two properties that tell AllTestSuite which
Groovy tests to run. These properties need to be supplied as two VM Arguments. The
properties need to be adjusted for your system but will look something like -Dgroovy

Figure 17.7 Eclipse AllTestSuite run configuration Test tab
Licensed to Mark Watson <nordickan@gmail.com>

638 CHAPTER 17 Unit testing with Groovy
.test.dir=. for the directory and -Dgroovy.test.pattern=Listing*Counter*.groovy
for the filename pattern. Your configuration will be similar to that shown in figure 17.8.

 When you run this configuration, you should see the familiar green and red bars,
as shown in figure 17.9. We don’t have time to illustrate how to set up other IDEs, but
you’ll see IntelliJ IDEA screenshots when we cover Spock.

 Now that you’ve experienced how the IDE support for Groovy works, it’s time to
explore one of Groovy’s most widely used testing framework—say hello to Spock.

17.7 Testing with the Spock framework
As you can see in the Groovy GDK chapter, Groovy gives us great support to more eas-
ily test our code using powerful constructs such as maps and Groovy’s dynamic nature.

Figure 17.8 Eclipse AllTestSuite run configuration Arguments tab

Figure 17.9 Eclipse AllTestSuite example test run output
Licensed to Mark Watson <nordickan@gmail.com>

639Testing with the Spock framework
The flexibility of the Groovy language made things possible that are often hard to do
in the Java programming language.

 We can go further in this and create an even more readable and compact test.
Meet Spock (www.spockframework.org), a testing and specification framework for
Java and Groovy applications. Spock supports a diversity of testing styles and one of the
most well-known approaches is a Behavior-Driven Development (BDD)20 style approach,
characterized by its Given-When-Then format. The following listing introduces the
Spock Given-When-Then style.

@Grab('org.spockframework:spock-core:1.0-groovy-2.4')
import spock.lang.Specification

class GivenWhenThenSpec extends Specification {

 def "test adding a new item to a set"() {
 given:
 def items = [4, 6, 3, 2] as Set

 when:
 items << 1

 then:
 items.size() == 5
 }
}

What’s most interesting to know is that the code in the previous listing is completely
valid Groovy code and makes great use of the flexibility Groovy provides when writing
software. Groovy labels are used to separate the Given-When-Then blocks. Also note
that you can use spaces in the method name, a feature provided by Spock, which is
implemented using an AST transformation.

 In the setup part of the test, marked with the given label, we create a set of num-
bers. In the when part of the test we execute an action on our test subject. In our case,
we add a number. Then, in the last part of the test, we check if the item has been
added. Note that no assert statement is needed here to verify the result; all expres-
sions in the then block are checked automatically for being true.

17.7.1 Testing with mocks

The test described in the previous section is a simple one. In the real world, the class
you’re testing usually has dependencies on other classes that can make testing often a
bit trickier. Luckily, Spock provides excellent mocking21 support.

20 For more information, see http://en.wikipedia.org/wiki/Behavior-driven_development.

Listing 17.13 A simple Spock specification

21 For more information, see “Mocks Aren’t Stubs,” http://martinfowler.com/articles/mocksArentStubs.html.
Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/Behavior-driven_development
http://martinfowler.com/articles/mocksArentStubs.html
http://www.spockframework.org

640 CHAPTER 17 Unit testing with Groovy

-

 Consider a more complex example. Instead of testing java.util.Set’s, we’ll test
the purchasing of movie tickets. It’s a fairly simple domain model with a MovieTheater
and a Purchase class. In this example, we’ll mock out the MovieTheater and focus on
the Purchase class.

 Given those assumptions, let’s use an interface as follows for the MovieTheater:

interface MovieTheater {
 void purchaseTicket(name, number)
 boolean hasSeatsAvailable(name, number)
}

In a separate test, when testing the MovieTheater, we wouldn’t mock it out, but focus
on the MovieTheater instead. In this case, the MovieTheater is a mock, and we’ll vali-
date that the Purchase will call the right methods when buying a movie ticket.

 What should happen when the fill method is called on an instance of the Purchase
class is that we should check if the theater has availability and, if so, buy a ticket. A
skeleton for such a class is as follows:

@TupleConstructor
class Purchase {
 def name, number, completed = false

 def fill(theater) {
 if (theater.hasSeatsAvailable(name, number)) {
 theater.purchaseTicket(name, number)
 completed = true
 }
 }
}

With these definitions in place, we can now write our test, as shown in the following listing.

@Grab('org.spockframework:spock-core:1.0-groovy-2.4')
import spock.lang.Specification

class MovieSpec extends Specification {
 def "buy ticket for a movie theater"() {
 given:
 def purchase = new Purchase("Lord of the Rings", 2)
 MovieTheater theater = Mock()
 theater.hasSeatsAvailable("Lord of the Rings", 2) >> true

 when:
 purchase.fill(theater)

 then:
 purchase.completed
 1 * theater.purchaseTicket("Lord of the Rings", 2)
 }
}

Listing 17.14 Testing with mocks

Creation of
mock theater

Mock hasSeats
Available call
returning true

Assert
purchaseTicket has
been called one time
Licensed to Mark Watson <nordickan@gmail.com>

641Testing with the Spock framework
In listing 17.14, you can see that the then block contains one assertion and one inter-
action. An interaction consists of four distinct parts: a cardinality, a target constraint, a
method constraint, and an argument constraint:

Diving into all options here goes a bit beyond the scope of this chapter, but if you
want to learn more about Spock interactions, you can do so in the excellent docu-
mentation online.22

 The next listing has a similar approach, but describes the case when all of the movies
are sold out. There are no tickets for any movie. In the test, you see the usage of the Spock
wildcard operator (_), which can be read as “any”. In our test we don’t care which movie
is purchased; none are available, and because of this, no purchase can be completed.

@Grab('org.spockframework:spock-core:1.0-groovy-2.4')
import spock.lang.Specification

class Listing_17_15_SpockMockWildcards extends Specification {
 def "cannot buy a ticket when the movie is sold out"() {
 given:
 def purchase = new Purchase("Lord of the rings", 2)
 MovieTheater theater = Mock()

 when:
 theater.hasSeatsAvailable(_, _) >> false
 purchase.fill(theater)

 then:
 !purchase.completed
 0 * theater.purchaseTicket(_, _)
 }
}

To create a bit more flexibility, we can also use wildcard matchers in combination with
Groovy closures. The closure can be used to check the argument passed to the method,
failing the test if the argument doesn’t match. In listing 17.16, one such approach is
demonstrated. Here we basically have the same scenario as listing 17.14 but this one
runs as part of a special “couples night” scenario we’re trying to test. As part of this
scenario, we might not care what movies are watched, only that the tickets are sold in

22 For more information, see http://docs.spockframework.org/.

Listing 17.15 Using wildcards to ignore arguments

1 * theater.purchaseTicket("Lord of the Rings", 2)

Method constraint

Target constraint Argument constraint

Cardinality

Mock hasSeatsAvailable
call, any args, returns
false

The purchaseTicket
method has not
been called
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.spockframework.org/

642 CHAPTER 17 Unit testing with Groovy
pairs. We’ll ignore the first argument with a wildcard and check the second argument
by injecting a closure B that will validate the argument passed to the purchaseTicket
method, as seen in the following listing.

@Grab('org.spockframework:spock-core:1.0-groovy-2.4')
import spock.lang.Specification

class Listing_17_16_SpockMockClosureChecks extends Specification {
 def "on couples night tickets are sold in pairs"() {
 given:
 def purchase = new Purchase("Lord of the Rings", 2)
 MovieTheater theater = Mock()
 theater.hasSeatsAvailable("Lord of the Rings", 2) >> true

 when:
 purchase.fill(theater)

 then:
 1 * theater.purchaseTicket(_, { it % 2 == 0 })
 }
}

17.7.2 Data-driven Spock tests

In section 17.4 we looked briefly at data-driven tests. Spock also supports that approach
and in fact has a special notation for capturing such test case data elegantly, as can be
seen in the following listing.

@Grab('org.spockframework:spock-core:1.0-groovy-2.4')
import spock.lang.*

import static Converter.celsius

class Listing_17_17_SpockDataDriven extends Specification {
 def "test temperature scenarios"() {
 expect:
 celsius(tempF) == tempC

 where:
 scenario | tempF || tempC
 'Freezing' | 32 || 0
 'Garden party conditions' | 68 || 20
 'Beach conditions' | 95 || 35
 'Boiling' | 212 || 100
 }
}

A little syntactic sugar is going on here. Note that the variables defined in the where clause
are automatically available in the expect block. Also, there’s the use of the || symbol, which
is used as a separator between input and output separators. Note that the || could have
been replaced by the | symbol, but the || are used here to visually set them apart.

Listing 17.16 Argument checking with injected closures

Listing 17.17 Data-driven testing

Closure argument
checking

 b
Licensed to Mark Watson <nordickan@gmail.com>

643Testing with the Spock framework
REPORTING FAILURES

But what if our implementation contains an error (we’ll momentarily alter one fig-
ure), and we want to get feedback about it? In that case, the following output is:

Condition not satisfied:

celsius(tempF) == tempC
| | | |
35 95 | 34
 false

It’s a pretty clear explanation, but is it clear which iteration caused this error? Because
we only have four iterations, it’s not that hard to find out that iteration three caused
the error, and we can easily fix that. In other cases, for example when dealing with
external data, or when we have lots of data, the solution might be less obvious. To han-
dle this, we can use the @Unroll annotation.

@UNROLL ANNOTATION

A method annotated with @Unroll will have its iterations reported independently. The
test execution isn’t changed; the only thing that has changed is how Spock reports
each test iteration. We can annotate the method in the following way:

@Unroll
def "test temperature scenarios"() { … }

Executing the same test now using IntelliJ will produce the output shown in Figure 17.10.
 As you can see in the figure, each test is now reported separately. With a small

change, we can do even better though:

@Unroll
def "Scenario #scenario: #tempFºF should convert to #tempCºC"() { … }

When running the test now (again in IntelliJ), the report produced now looks as
shown in Figure 17.11.

Figure 17.10 IntelliJ IDEA Listing_17_17_SpockDataDriven test unrolled.

Figure 17.11 IntelliJ IDEA Listing_17_17_SpockDataDriven test unrolled with parameter values.
Licensed to Mark Watson <nordickan@gmail.com>

644 CHAPTER 17 Unit testing with Groovy
Now, the @Unroll annotation uses the method variables from the test. Using the place-
holders, we can tell at a glance which iteration is causing the problem and what our
actual expectation would be.

 As demonstrated in this section, Spock provides a flexible way of writing tests and
should be considered when writing code on a software project, be it in Java or in
Groovy. Making sure your software works correctly is crucial and writing tests for it is
one of the best ways to assert that your software behaves the way you want it to, and
that it keeps doing that. To do so, we can make use of build automation, which is
described in the next section.

17.8 Build automation
We looked at how to run tests individually or in suites from the command line and
using IDEs. For a team environment, however, the automated build environment
should also run all the tests.23 Two of the more popular build automation technolo-
gies in the Java world are Gradle and Maven. We’ll look briefly at how to integrate
Groovy with each of these technologies.

17.8.1 Build integration with Gradle

Gradle is a new and flexible build automation tool, capable of building, testing, pub-
lishing, and deploying software, much like Maven. Gradle accomplishes this by provid-
ing a declarative Groovy DSL and sensible defaults, making a build file not bigger than
is needed, thus improving readability.

 We’ll talk about Gradle again in chapter 20 to cover its general use for build auto-
mation. Here, we’ll focus on its use for integrating unit tests in the build.

 Before we start, we need to install Gradle. This can be done in multiple ways, one
of which is downloading Gradle from the Gradle website (www.gradle.org). An easier
way is to use the GVM tool to manage the set of software installations, such as Groovy,
Grails, Gradle, and more. The GVM can be downloaded from the GVM tool website
(www.gvmtool.net) using a simple command:24

curl -s get.gvmtool.net | bash

Once GVM is installed, installing Gradle is as easy as typing:

gvm install gradle

This will download and install the newest version of Gradle, which at the moment of
writing is version 2.2.1. Gradle uses a build file named build.gradle that contains all
the instructions to create a correct build.

23 See Pragmatic Project Automation: How to Build, Deploy, and Monitor Java Apps by Mike Clark (The Pragmatic Pro-
grammers, 2004) for more details on why this is important.

24 Windows users might want to use Cygwin or posh-gvm or download Gradle manually.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.gradle.org
http://www.gvmtool.net

645Build automation
 The basic build.gradle we’ll use is the following:

apply plugin: 'groovy'

repositories {
 mavenCentral()
}

dependencies {
 compile 'org.codehaus.groovy:groovy-all:2.4.0'
 testCompile group: 'junit', name: 'junit', version: '4.12'
}

This is the basic set of information needed to build our Groovy project. This build file
adds the Groovy plugin, which makes is possible to mix Groovy and Java code by
enabling joint compilation; adds the Groovy dependency to compile the Groovy files;
and adds the latest version of the JUnit 4 dependency.

 To create the project structure, we need to add a Gradle task, which will create the
complete project structure for us. Add the following lines of code to the build.gradle
file as shown in the following listing.

task initProject () << {
 if (hasProperty(initPlugins)) {
 initPlugins.split(',').each { plug ->
 project.apply {
 plugin(plug.trim())
 }
 }
 }

 project.sourceSets*.allSource.srcDirTrees.flatten().dir.each { dir ->
 dir.mkdirs()
 }
}

Now we can easily create a complete project structure without having to create it by
hand. Executing the Gradle initProject task will create everything we need. We can
execute the task by typing:

gradle initProject -PinitPlugins=groovy

The result is the following project structure:

.
├── build.gradle
└── src
 ├── main
 │ ├── groovy
 │ ├── java
 │ └── resources
 └── test
 ├── groovy
 ├── java
 └── resources

Listing 17.18 Adding a Gradle task
Licensed to Mark Watson <nordickan@gmail.com>

646 CHAPTER 17 Unit testing with Groovy
As you can see, Gradle created a directory structure well known by Maven users that
contains source and test folders for Groovy as well as for Java. If you’re not going to
use any Java source files in your project, you can of course remove those directories,
but for now, we’ll leave them in.

 The next task is creating the test and the SUT. For this, we’ll use a simple calcula-
tor. Place the Calculator.groovy with the following contents in the src/main/
groovy directory, as shown in the next listing.

class Calculator {
 def add(number1, number2) {
 return number1 + number2
 }
}

And its test class, CalculatorTest.groovy, in the src/test/groovy directory:

import org.junit.Test

class CalculatorTest {
 @Test
 void testAdd() {
 def calculator = new Calculator()
 assert 10 == calculator.add(3, 7)
 }
}

We’ve now created a simple test for our Calculator. By running the Gradle test task, Gra-
dle will compile our source code and run the tests to validate whether the outcome is
what we expect. Running the Gradle test task is done with the following command.

gradle test

This creates the following output:

:compileJava UP-TO-DATE
:compileGroovy
:processResources UP-TO-DATE
:classes
:instrument SKIPPED
:compileTestJava UP-TO-DATE
:compileTestGroovy
:processTestResources UP-TO-DATE
:testClasses
:test

BUILD SUCCESSFUL

As you can see here, everything built correctly, and we now have a successful build. To
accomplish this, all we had to do was enable the Groovy plugin and provide the right
dependencies, and we’re ready to integrate in our build. Can’t be much easier than
that, can it?

 Next up, we’ll integrate the build with Maven, another Open Source build tool.

Listing 17.19 Using Calculator.groovy
Licensed to Mark Watson <nordickan@gmail.com>

647Build automation
17.8.2 Build integration with Maven

Apache Maven is a software project-management framework that can help you manage
the many activities associated with producing a project’s deliverable artifacts. This may
include acquiring your project’s dependent software, compiling your software, testing it,
packaging it, and generating test and metrics reports. Two main versions of Maven are
in use today: Maven 2 (versions 2.0 and above) and Maven 3 (versions 3.0 and above).

 Maven supports the concept of plug-ins to perform many of the project lifecycle
activities that it manages for you. For example, there are plug-ins to compile Java files,
test them, package them up as jar files, and so forth. Because Groovy tests are easily
compiled to normal Java bytecode, it should come as no surprise that you can leverage
many of the existing Maven Java tasks to assist you. Plus, there are purpose-built
Maven tasks for Groovy that you can utilize.

 If you’re already a Maven user you can use the Groovy-Eclipse compiler.25 Using
the plugin you can compile your Java and Groovy projects. In the approach we’re
going to use to ensure that our Groovy tests automatically run as part of our Maven
build, we first need to compile the Groovy files down to bytecode. First we need to
enable the Groovy compiler. We can do this by adding the following to the pom.xml, so
that our Groovy sources are compiled, and can then be used in the test phase, as shown
in the following listing.

<build>
 <plugins>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.2</version>
 <configuration>
 <compilerId>groovy-eclipse-compiler</compilerId>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-eclipse-compiler</artifactId>
 <version>2.9.1-01</version>
 </dependency>
 </dependencies>
 </plugin>
 <plugin>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-eclipse-compiler</artifactId>
 <version>2.9.1-01</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
</build>

25 See http://docs.groovy-lang.org/latest/html/documentation/tools-groovyeclipse.html for more details.

Listing 17.20 Enabling the Groovy compiler
Licensed to Mark Watson <nordickan@gmail.com>

http://docs.groovy-lang.org/latest/html/documentation/tools-groovyeclipse.html

648 CHAPTER 17 Unit testing with Groovy
For the Maven groovy compiler to work, we need Groovy to be in our Java classpath.
In Maven terms, we’ve introduced Groovy as a dependency, so we’ll also have to
update Maven’s pom.xml file and add the Groovy (as well as the JUnit framework)
dependency as shown in the following listing.

<dependencies>
 <dependency>
 <groupId>org.codehaus.groovy</groupId>
 <artifactId>groovy-all</artifactId>
 <version>2.4.0</version>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.12</version>
 <scope>test</scope>
 </dependency>
</dependencies>

We are now ready to run our tests. This can be done from a DOS or UNIX command
shell:

$> mvn test

The output should look something like this:

 T E S T S

Concurrency config is parallel='none', perCoreThreadCount=true,

threadCount=2, useUnlimitedThreads=false
Running CalculatorTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.351 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 2.794 s
[INFO] Finished at: 2015-02-06T05:16:34+10:00
[INFO] Final Memory: 10M/219M
[INFO] --

Configuring Maven to run test cases in Groovy is fairly straightforward, and as you can
see, plugging Groovy into your normal Java build processes is a cinch, whether they’re
Gradle or Maven based.

Listing 17.21 Updating Maven’s pom.xml file and adding a Groovy dependency
Licensed to Mark Watson <nordickan@gmail.com>

649Summary
17.9 Summary
That wraps up our exploration of how Groovy adds immense value to your unit-testing
activities.

 In any serious project it’s recommended you use a build tool. Whether you want to
use Gradle or Maven is up to you, but build tools provide great functionality for creat-
ing build artifacts, managing dependencies or deploying software to servers. Having a
standard way of building software in a team is often crucial and should be done in a
central and standard way.

 We believe that unit testing is not only a worthwhile activity but also sometimes
even more demanding and full of variations and engineering challenges than writing
production code. Our experiences with Groovy are that it assists with meeting those
demands and challenges. We hope you felt this too when we examined the benefits
that Groovy brings to unit testing: the automatic availability of JUnit, the enhanced
test case class with its additional assert methods, and the in-built support for mocks,
stubs, and other dynamic classes.

 Groovy’s integrated unit-test support lets you test Groovy and Java code alike. Our
more detailed examination of how to unit test Groovy code with Groovy tests, how to
test Java code with Groovy tests, and how to organize your tests into meaningful suites
gave you the grounding to begin testing your own systems using Groovy.

 Our investigation of advanced testing techniques led us to explore how to use
stubs, mocks, and other dynamic classes such as maps and GroovyLogTestCase. With
the help of these advanced features, it’s possible to test complex scenarios with mini-
mal to moderate effort. Previously tricky scenarios can sometimes be tackled with
much less work. This can often be the difference between justifying unit testing and it
being too expensive. By augmenting these techniques with data-driven and property-
based testing you have enormous flexibility and no reason not to have an appropriate
testing regime and quality production code.

 For sustainable software development with a high level of test coverage, unit test-
ing must be both pleasant and efficient. What makes it pleasant is seamless integration
into the developer’s IDE of choice to provide immediate feedback in develop/test/
refactor cycles. What makes it efficient is the frequent unsupervised self-running exe-
cution of the test suite in an automated build process. In the Groovy world, both of
these have excellent support.

 Groovy gains much from its Java heritage. This was shown clearly when we looked
at additional Java-level tool integration: in particular, one technology that enabled us
to do code coverage and another that enabled us to do stress and performance test-
ing. We examined only two tools, but hundreds are available for Java, and there are
many yet-unexplored possibilities for leveraging them in Groovy.

 To advocates of unit testing, Groovy can only be seen as a powerful and positive
addition to the Java and Groovy developer’s toolkit. With Groovy, you can write your
tests more quickly and easily. Just think, with all the time you’ll save by writing tests in
Groovy, you can now go back to your customer and ask for more feature requests!
Licensed to Mark Watson <nordickan@gmail.com>

Concurrent Groovy
with GPars
The tools we use have a profound (and devious!) influence on our thinking
habits, and, therefore, on our thinking abilities.

Edsger Dijkstra
How do we tell truths that might hurt? Published as part of Selected

Writings on Computing: A Personal Perspective, Springer-Verlag, 1982.

We’ll start our exploration with general considerations about concurrency followed
by moving from the simple to the more advanced usages of concurrency. We’ll visit
waypoints that show various means of coordinating concurrent tasks, from pre-
defined coordination to implicit and explicit control. We’ll move on to investigate
how to safeguard objects in a concurrent environment and wrap up the topic with a
final showcase. But let's start by considering why we might want to enter this chal-
lenging landscape in the first place.

This chapter covers
■ Making concurrency more approachable

with Groovy
■ Using different types of task coordination
■ Putting these concepts to work with the

GPars library
650

Licensed to Mark Watson <nordickan@gmail.com>

651Concurrency for the rest of us
 Public wisdom has it that we’ll no longer see the major speed-ups in processor
cycle times that we are so used to. In the past, the safest way to improve software per-
formance was to wait 18 months, get a new computer, and enjoy the doubled speed.

 These days, it’s more likely that you’ll see a slight decrease in processor speed but
with the benefit of having twice as many processing units (cores). Our programs must
now be prepared to take advantage of the new direction of hardware evolution.

 This could mean putting the burden of managing concurrency on the application
programmer. But considering the huge number of difficulties that come with classical
approaches to concurrency, this doesn’t seem like a wise choice.

 An alternative approach is to put the burden on framework designers so that we
can run our code in a managed environment that handles concurrency for us. The
Java Servlet framework may serve as an example: the Servlet programmer—and this
includes Servlet-based technologies such as JSP, GSP, JSF, and Wicket—doesn’t care
much about concurrency, but the web server executes the application for many requests
in parallel. The programmer only has to obey restrictions such as not spawning threads
on his own and only sharing mutable state in dedicated scopes. Admittedly, projects
can break these restrictions because they’re not technically enforced, but by and large
this has been a successful model.

 The concurrency concepts we’ll look at in this chapter follow the successful Servlet
approach in that they introduce an elevated level of abstraction. This allows the appli-
cation programmer to focus on the task at hand and leave the low-level concurrency
details to the framework.

18.1 Concurrency for the rest of us
Your job as an application programmer is to get the sequential parts of your code
right, including their test cases. When concurrency is required, you can choose one of
the tools explained in this chapter, passing it your sequential code for execution.
Understanding the concepts is a prerequisite for choosing the most appropriate one
for the situation. You don’t have to understand the inner workings of each implemen-
tation, but you need to understand its approach and constraints.

18.1.1 Concurrent != parallel

A full exposition of concurrency is beyond the scope of this chapter, given that there
are whole books devoted to the topic. Also, it’s not our job to explain the concurrency
support provided by the Java language and the java.util.concurrent package in the
Java standard library. We’ll approach the topic from a Groovy point of view and
assume that you are at least somewhat familiar with the Java basics. The Groovy view
starts with the observation that concurrency is more than parallelism.

NOTE Concurrency allows better utilization of resources, higher throughput,
and faster response times, but the real value is in the coherence of the pro-
gramming model. Each concurrent task fulfills one single coherent purpose;
multiple tasks may run sequentially, in intermixed time slices, or in parallel.
Licensed to Mark Watson <nordickan@gmail.com>

652 CHAPTER 18 Concurrent Groovy with GPars
Let’s start with resource utilization. The obvious resource that you want to use effi-
ciently is your processing capacity: spreading calculations over many processing cores
to get the results faster. Note that this only makes sense if those cores would be other-
wise idle! With a dual-core machine you’re often better off leaving the second core to
the OS to run its other processes. Prominent examples of “other processes” are your
database and web server.

 Spreading computation over many cores, processors, or even remote machines is
what we call parallelism. Concurrency goes beyond parallelism. It allows asynchronous
access to the database, filesystem, external devices, the network, and foreign processes
in general, whether they’re managed by the OS or other applications. If you’re into
service-oriented architectures (SOA), you can think of all of these resources as services
that are typically slow. If we worked in a synchronous fashion—waiting for each service
to complete before progressing to the next step—we wouldn’t exploit other resources
to their maximum, especially not our processing capacity.

 One special service that’s particularly slow but has a low tolerance for latency is the
user. The user’s input may be notoriously slow but as soon as they submit it, they
expect a response immediately. A responsive UI may be the best example of concur-
rency. Even on a single-core machine, the user legitimately expects that they can move
the mouse, enter text, click a button, and so on while the application fetches web
pages or sends them to a printer. This may well make the overall task marginally slower
as the processor spends time switching context between background threads and the
UI, but the experience is a much more pleasant one for the user.

 All this may sound as if asynchronous resource consumption is the only goal of
concurrency. It’s the most obvious one but certainly not the only one, and possibly not
even the most important one. At its heart, concurrency is a great enabler for a coher-
ent programming model.

 Imagine writing a graphical application from scratch. You wouldn’t want to inter-
mix your application code with checking every tenth of a second whether the mouse
has moved and the cursor on the UI needs repainting. Nor would you want to repeat-
edly check for garbage collection from within your application. Luckily, Java comes
with a concurrent solution that takes care of updating the UI and running the garbage
collector. The main point here is that this allows each piece of the system—your appli-
cation code, the UI painter, and the garbage collector—to focus on its own responsi-
bility while remaining blissfully unaware of the others.

CONCURRENCY FOR SIMPLER CODE Concurrency enables you to write simple,
small, coherent actions that implement exactly one task. Simple actions such
as these are easier to test, easier to maintain, and easier to implement in the
first place.

These benefits don’t come free. There is controlling effort for starting and stopping
each task, mutually exclusive assignment of resources (scheduling), safeguarding shared
resources, and coordination of control when, for example, one task consumes what a
second task has produced.
Licensed to Mark Watson <nordickan@gmail.com>

653Concurrency for the rest of us
 Far too many developers are obsessed with performance improvements, overlook-
ing the other benefits that a well-designed concurrent programming model yields.

JAVA’S BUILT-IN CAPABILITIES

Java has supported concurrency at the language and library level right from the first
version. Starting a new Thread and waiting for its completion is simple. Groovy sprin-
kles a little sugar on top with the GDK so that you can start a new Thread more easily
using the start method with a closure argument.

def thread = Thread.start { println "I'm in a new thread" }
thread.join()

The introduction of the java.util.concurrent package brought many improvements,
including thread pools, the executor framework, and many datatypes with support for
concurrent access. If you haven’t yet looked at this package, now is the time to do so.
You’ll find excellent tutorials on the web as well as good books such as Java Concurrency
in Practice by Brian Goetz et al., (Addison-Wesley Professional, 2006) and Concurrent
Programming in Java by Doug Lea (Addison-Wesley Professional, 1999).

 Reading these books can also be a scary experience, though. The authors walk
through examples of seemingly simple code and explain how it fails when called
concurrently. I guess this is the reason why many developers shy away from concur-
rency. They don’t want to appear incompetent and leave those fields to the experts
who can manage this black art. Well, we have to overcome this fear somehow, and
the concepts introduced in this chapter are targeted at giving you an enjoyable path-
way into concurrency.

 The first notable difference is that we’re rarely going to use the concept of a
thread. Instead, we’ll think in terms of tasks. A task is a piece of sequential code that
may run concurrently with other tasks. This may involve thread management and
pooling under the covers but you don’t have to care.

 We’ll free you from dealing with Java language features such as volatile and
synchronized. They require advanced knowledge of the Java memory and thread-
ing model and are all too easy to get wrong. Likewise, this eliminates the need for
wait/notify constructions for thread coordination, which are an infamous source of
errors. Because we don’t expose threads, we can offer less error-prone task coordi-
nation mechanics.

18.1.2 Introducing new concepts

To make concurrent programming easier, we’ll introduce concepts that are new in the
sense that they’re not yet widely known, even though most of them were developed a
long time ago and have implementations in other languages as well. They cover three
main areas:

■ Starting and stopping concurrent tasks
■ Coordinating concurrent tasks
■ Controlling access to shared mutable state
Licensed to Mark Watson <nordickan@gmail.com>

654 CHAPTER 18 Concurrent Groovy with GPars
Parallel collections with fork/join and map/filter/reduce operations are concepts that hide
the work of starting and stopping concurrent tasks from the programmer and coordi-
nate these tasks in a predefined manner.

 Actors create a frame in that tasks can run without interference but they start, stop,
and coordinate explicitly.

 Dataflow variables, operators, and streams coordinate concurrent tasks implicitly
such that downstream data consumers automatically wait for data providers.

 If your tasks need to access shared mutable state, you can delegate the coordination
of concurrent state changes to an agent.

 We’ll use Groovy features to make the above possible, particularly closures, meta-
programming, and AST transformations. The real heavy lifting is done by the imple-
mentation in the GPars library.

USING GPARS

GPars is an external library that comes bundled with the Groovy installation and is
thus readily available in most cases. If you happen to run an embedded Groovy with-
out the standard installation then you can still refer to GPars as

@Grab('org.codehaus.gpars:gpars:1.2.1')
<some import statement here>

This statement will transparently download and cache the specified version of the
library (1.2.1 as of now) and its dependencies. If you’d like to add GPars as a depen-
dency to your Gradle or Maven build or download its jars manually, please refer to
http://gpars.org, which is also the place to find additional information, including
many demos and the comprehensive documentation.

 Now we’ve set the stage, let’s visit a common application of concurrency: process-
ing all the items in a collection concurrently.

18.2 Concurrent collection processing
Processing collections is particularly auspicious when each item in the collection can
be processed independently. This situation also lends itself naturally into processing
the items concurrently.

 Groovy’s object iteration methods (each, collect, find, and else) all take a clo-
sure argument that’s responsible for processing a single item. Let’s call such closures
tasks. Naturally, GPars builds on this concept with the capability to process these tasks
concurrently in a fork/join manner.

FOR CLARIFICATION In this chapter, the term fork/join always indicates that
several items are each processed in their own “forked” task and all tasks are
immediately “joined” after execution. The same term may have different
meanings in other contexts.

The following listing uses the fork/join approach to concurrently calculate the squares
of a given list of numbers by using the collectParallel method that the withPool
method adds through metaprogramming to a list of numbers. This method works
Licensed to Mark Watson <nordickan@gmail.com>

http://gpars.org

655Concurrent collection processing
exactly the same as Groovy’s collect besides that, we collect concurrently now, as shown
in the following listing.

import static groovyx.gpars.GParsPool.withPool

def numbers = [1, 2, 3, 4, 5, 6]
def squares = [1, 4, 9, 16, 25, 36]

withPool {
 assert squares == numbers.collectParallel { it * it }
}

The concurrency is almost invisible: no thread creation, no thread control, and no
synchronization on the resulting list are visible in the code. This is all safely handled
under the covers.

DISCLAIMER Calculating squares concurrently is only an introductory example
for educational purposes. In practice, the overhead of concurrency only makes
sense if the tasks can be split up into reasonably sized, time-consuming chunks.

You may wonder how many threads listing 18.1 uses for calculating the squares. You
shouldn’t care, but GPars uses a default that’s calculated from the number of available
cores plus one. That makes three for a dual-core machine, for example. Alternatively,
you can explicitly supply the number of threads to use as the first argument to the with-
Pool method:

withPool(10) {
 // do something with a thread pool of size 10
}

GParsPool doesn’t create threads. Instead, it takes them from a fork/join thread pool
of the Java standard library (formerly jsr166y). GPars uses this Java library feature
extensively, especially its support for parallel arrays that are the basis for all parallel
collection processing in GPars.

18.2.1 Transparently concurrent collections

Having the *Parallel counterparts of the Groovy object iteration methods is nice
and convenient. However, the method names are a bit lengthy and don’t feel groovy.
Couldn’t we use the standard method names and give them a concurrent meaning?

 The following listing makes the list of numbers transparently subject to concurrent
treatment with a method name that withPool adds to collections and that’s aptly
named makeConcurrent.

import static groovyx.gpars.GParsPool.withPool

def numbers = [1, 2, 3, 4, 5, 6]
def squares = [1, 4, 9, 16, 25, 36]

Listing 18.1 Calculating a list of squares concurrently

Listing 18.2 Calculating a list of squares with transparent concurrency
Licensed to Mark Watson <nordickan@gmail.com>

656 CHAPTER 18 Concurrent Groovy with GPars
withPool {
 assertSquares(numbers.makeConcurrent(), squares)
}
def assertSquares(numbers, squares) {
 assert squares == numbers.collect { it * it }
}

Groovy metaprogramming is again in action here. When called from within the with-
Pool closure, the standard collect method is modified to delegate to the collect-
Parallel method for collections that have been made transparent.

 Note that the assertSquares method knows nothing about concurrency! In fact,
when this method is called from outside the withPool closure, it will calculate the
squares sequentially. When called from inside the withPool closure, the calculation
runs concurrently.

IN OTHER WORDS Transparently concurrent collections enable you to pass
collections into methods written for sequential execution and make them
work concurrently for a specific caller. The caller can even decide about the
“amount” of concurrency by passing the pool size argument to the withPool
method.

Think how much easier this makes unit testing of methods such as assertSquares. Of
course, this approach has its limits. If we do something really silly, let’s say side-effecting
from inside our task, then our code may run fine sequentially but not when passed a
transparently concurrent collection.

 The following code does not construct an ordered String of squares:

def assertSquares(numbers, squares) {
 String result = ''
 numbers.each { result += it * it } // This is wrong, don't do it!!!
 assert squares.join('') == result
}

When called with numbers.makeConcurrent() the previous code may work acciden-
tally, but at times a higher number will be processed before a smaller number and the
assertion will fail. Even worse, modifying a variable in this way isn’t a thread-safe oper-
ation! Three separate operations are involved: reading the current value from the
variable, computing the new value, and writing the new value to the variable. If these
operations are interrupted by another task, the results may be inconsistent, with one
task overwriting the result of another. This is a special case of a race condition: a miss-
ing update.

 Therefore, when you run the above code multiple times, you’ll see that the result
string is often missing squares.

 For the record, the correct and concurrency-friendly solution would be

def assertSquares(numbers, squares) {
 assert squares.join('') == numbers.collect{ it * it }.join('')
}

Licensed to Mark Watson <nordickan@gmail.com>

657Concurrent collection processing
The good news is that you can easily avoid errors such as the one above by simply stick-
ing to the rule of avoiding state changes from inside the iteration methods.

 Transparent concurrency has interesting characteristics. First, it’s idempotent. Call-
ing makeConcurrent on a collection that’s already transparently concurrent returns
the collection unmodified. Second, it’s transitive. When you call a method such as
collect on a transparently concurrent collection, the returned list is again transpar-
ently concurrent so that you can chain calls. The following listing chains calls to col-
lect and grep with the effect that grep is also called concurrently. The code first
collects all squares and then filters the small ones.

import static groovyx.gpars.GParsPool.withPool

withPool {
 def numbers = [1, 2, 3, 4, 5, 6].makeConcurrent()
 def squares = [1, 4, 9]
 assert squares == numbers.collect{ it * it }.grep{ it < 10 }
}

The collect and grep methods use the same fork/join thread pool. In fact, every
concurrent collection method called from the same withPool closure will do so,
regardless of whether they appear as transparent or *Parallel invocations.

 The fork/join approach is probably the simplest step into concurrent program-
ming, but for the small squares problem, we could do better. Listing 18.3 first collects
all squares, stores them in a list, and then processes the temporary list to filter the
small squares. It’s more efficient to spare the temporary list and do the squaring and
filtering in one task. We’ll revisit this approach in section 18.3.

18.2.2 Available fork/join methods

The full list of available concurrent methods is in class groovyx.gpars.GParsPool-
Util. The transparent methods are in groovyx.gpars.TransparentParallel. Table 18.1
puts the two versions next to each other.

Listing 18.3 Using transitive transparent concurrency to find squares < 10

Table 18.1 Concurrency-aware methods in “withPool”

Transparent Transitive? Parallel

any { ... } anyParallel { ... }

collect { ... } yes collectParallel { ... }

collectMany { ... } yes collectManyParallel { ... }

count(filter) countParallel(filter)

each { ... } eachParallel { ... }

eachWithIndex{ ... } eachWithIndexParallel { ... }

every { ... } everyParallel { ... }
Licensed to Mark Watson <nordickan@gmail.com>

658 CHAPTER 18 Concurrent Groovy with GPars
Contrasting table 18.1 with the Groovy object iteration methods shows a few notable
differences that are due to the concurrent processing.

■ In addition to find, there’s also findAny. While find always returns the first
matching item in the order of its collection, findAny may return whatever
matching item it finds first.

■ The GDK inject method is replaced by fold. While inject runs through the
collection in strict order, no such order exists in concurrent processing and
thus the contract differs. The fold method acts like inject but you have to be
aware that its task closure may be invoked with any combination of items and/
or temporary results.

■ Transparent concurrent methods are only transitive when they return a collec-
tion as their return type. Note that using the transparent find method on a list
of lists also returns a collection but this won’t be transparent automatically.

■ Not all Groovy object iteration methods have a concurrent counterpart. Several
iteration methods are simply missing at the time of writing, while others don’t
make sense in a concurrent context.

 Finally, it’s worth noting that this approach to concurrent processing isn’t restricted
to collections but can be used with any Java or Groovy object—the Groovy object itera-
tion logic applies.

 We’ll now elaborate on this approach further by investigating the map/filter/
reduce concept.

find { ... } findParallel { ... }

findAll { ... } yes findAllParallel { ... }

findAny { ... } findAnyParallel { ... }

fold { ... } foldParallel { ... }

fold(seed) { ... } foldParallel(seed){ ... }

grep(filter) yes grepParallel(filter)

groupBy { ... } groupByParallel { ... }

max { ... } maxParallel { ... }

max() maxParallel()

min { ... } minParallel { ... }

min() minParallel()

split { ... } yes splitParallel { ... }

sum() sumParallel()

Table 18.1 Concurrency-aware methods in “withPool” (continued)

Transparent Transitive? Parallel
Licensed to Mark Watson <nordickan@gmail.com>

659Becoming more efficient with map/filter/reduce
18.3 Becoming more efficient with map/filter/reduce
We’ve seen concurrent tasks of calculating squares and filtering in listing 18.2 with the
fork/join approach. First, we had to collect all the squares; only then could we pro-
ceed with the filtering part. This isn’t ideal: we don’t really need the intermediate
results as a collection.

 Fortunately, there’s an alternative. The map/filter/reduce approach allows us to
chain tasks in a way that doesn’t restrict us to finish all the squaring before filtering.
To make the difference even more obvious, listing 18.4 shows a map/filter/reduce
performing a variant of the squaring problem. We’ve made two changes: increment-
ing the value before squaring it and adding the squares instead of filtering. What was
collect and fold in fork/join, becomes map and reduce for map/filter/reduce. The
methods are used in a similar fashion, but as we’ll see they work quite differently.

import static groovyx.gpars.GParsPool.withPool

withPool {
 assert 55 == [0, 1, 2, 3, 4].parallel
 .map { it + 1 }
 .map { it ** 2 }
 .reduce { a, b -> a + b }
}

The map and reduce methods are available on parallel collections. We get such an
instance by holding onto the parallel property of our list. This property is available
inside the withPool closure.

 Figure 18.1 depicts the difference in the workflow. Assume that time flows from left
to right, bubbles denote states of execution, and arrows show scheduled tasks. If you
imagine a sweeping vertical line, you can see which tasks can be executing at any

Listing 18.4 Using map/filter/reduce to increment each number in a list, square it, and
add up the squares—all concurrently

Fork

Map Reduce

Join

Map

Map

Map

Fork

Join

Figure 18.1 Contrasting task
concurrency for fork/join vs.
map/filter/reduce where map/
filter/reduce can achieve a higher
degree of concurrency
Licensed to Mark Watson <nordickan@gmail.com>

660 CHAPTER 18 Concurrent Groovy with GPars
point. While fork/join always has the same order, the map/filter/reduce example is
only one of many possible execution orders. Its inner bubbles can freely flow horizon-
tally like pearls on a string.

 In the map/filter/reduce example there are many valid execution orders. On one
run all the increments may be calculated before all squares, effectively giving you
fork/join workflow, but this is an unlikely coincidence.

 On another run we could end up with one increment and its square being calcu-
lated, then a second one, and then both being passed into the reduce task even before
the third increment starts!

 Either way, GPars makes sure that all the increments, squares, and their sum are
calculated correctly in the end. But the many different possible workflows open more
possibilities for different tasks running concurrently. The task coordination is still pre-
defined even though the coordination scheme spans over more tasks and allows for
more variability in scheduling.

 With fork/join, a collect task could only run concurrently with other invocations of
that collect task. With map/filter/reduce, any task can run concurrently with any
other one, thus providing a higher degree of concurrency.

FOR THE GEEKS: THE MERITS OF MORE CONCURRENCY If the scheduler has more
options for assigning a task to a thread, there’s a lower probability that a few
slow task invocations thwart the overall execution. With more options in the
workflow, map/filter/reduce offers more concurrency over fork/join.

We’ve seen that map/filter/reduce works on a parallel abstraction that comes with the
concurrency-aware methods listed in table 18.2. Note that only map and filter return a
parallel datatype that allows further map/filter/reduce processing.

Table 18.2 Concurrency-aware methods for map/filter/reduce

Method Chainable Analogous to

combine(initialValue) { ... }

filter { ... } True findAll

getCollection()

groupBy { ... }

map { ... } True collect

max { ... }

max()

min { ... }

min()

reduce { ... } inject, fold

reduce(seed) { ... } inject, fold
Licensed to Mark Watson <nordickan@gmail.com>

661Becoming more efficient with map/filter/reduce
This gives us enough knowledge to finally present the small squares problem with
map/filter/reduce in listing 18.5.

 We use the filter method that only passes temporary results down the execution
stream if they satisfy the given closure. This is analogous to the findAll method for
sequential code. The filter method is such an important part of the concept that
we’ve included it in the name. This also distinguishes it from the more commonly
known “map/reduce” label that’s also used in different contexts. (For comparison see
http://en.wikipedia.org/wiki/MapReduce.)

 For the assertion in the next listing we need to refer to the collection property to
unwrap our parallel datatype and make it comparable to the list of expected numbers.

import static groovyx.gpars.GParsPool.withPool

withPool {
 def numbers = [1, 2, 3, 4, 5, 6]
 assert [1, 4, 9] == numbers.parallel
 .map { it * it }
 .filter { it < 10 }
 .collection
}

Up to this point, fork/join and map/filter/reduce have proved to be concurrency
concepts that are fairly easy to use. This is mostly due to their baked-in, predefined
task coordination that implements a well-known flow of data. When one task needs to
wait for data from a preceding one, this is all known in advance and handled transpar-
ently. This leaves no room for errors to creep in.

 The map/filter/reduce approach is also available in Java because Java 8 parallel
streams were introduced. You can harness their power from Groovy as well—passing
Groovy closures where Java expects lambda expressions. It looks amazingly similar:

// Groovy with Java 8
def numbers = [1, 2, 3, 4, 5, 6]
assert [1, 4, 9] == numbers.parallelStream()
 .map { it * it }
 .filter { it < 10 }
 .collect()

In the next section, we’ll investigate how to coordinate tasks when we need more flex-
ibility in the flow of data.

size()

sort { ... } True

sum()

Listing 18.5 Collecting the small squares with map/filter/reduce

Table 18.2 Concurrency-aware methods for map/filter/reduce

Method Chainable Analogous to
Licensed to Mark Watson <nordickan@gmail.com>

http://en.wikipedia.org/wiki/MapReduce

662 CHAPTER 18 Concurrent Groovy with GPars
18.4 Dataflow for implicit task coordination
Both fork/join and map/filter/reduce work on collection of items that are trans-
formed and processed. That makes their data flow predictable and allows for an effi-
cient implementation.

 In the more general case, we may need to derive a value from data delivered by
concurrent tasks. For this to work, we need to ensure that all the affected tasks are
scheduled in a sequence that allows data to flow from assignment to usage. This may
sound difficult, but with the Dataflow concept it’s a snap.

 The following listing demonstrates a simple sum where the input data isn’t
known at the time when we declare the logic of the task. Therefore, each reference
is wrapped within a dataflow. Assignments to dataflow references happen in concur-
rent tasks.

import groovyx.gpars.dataflow.Dataflows
import static groovyx.gpars.dataflow.Dataflow.task

final flow = new Dataflows()
task { flow.result = flow.x + flow.y }
task { flow.x = 10 }
task { flow.y = 5 }
assert 15 == flow.result

We start with the calculation in B where a dataflow variable result is derived from
dataflow variables x and y, even though x and y are not yet assigned. This calculation
happens in a new task that is started by the task factory method. It has to wait until x
and y are assigned values.

 Assignments to x and y in two other concurrent tasks c make these values avail-
able so that B can execute.

 The main thread waits at d until result can be read. This means that B has to
finish, which can only happen after both the tasks in c have finished. The dataflow
from c to B to d happens regardless of which task is started first. This is implicit
thread coordination in action.

18.4.1 Testing for deadlocks

Predefined coordination schemes like fork/join and map/filter/reduce are dead-
lock-free. It’s guaranteed that the task coordination itself never produces a dead-
lock—the situation when concurrent tasks block each other in a way that prohibits
any further progress.

 It’s still possible to write code that uses fork/join mechanics and runs into a dead-
lock anyway, but this wouldn’t be the result of the coordination scheme. Instead it would
be an error elsewhere in the code. If the forked code blocks on shared resources, you
can still end up with a deadlock in the normal way.

Listing 18.6 A basic Dataflow adds numbers that are assigned in concurrent tasks

Assigns
derived value

 b

Assigns
value

 c Reads
value

 d
Licensed to Mark Watson <nordickan@gmail.com>

663Dataflow for implicit task coordination
 With dataflow concurrency, we cannot guarantee the absence of deadlocks in the
coordination itself. The following example demonstrates a dataflow deadlock due to
circular assignments:

def flow = new Dataflows()
task { flow.x = flow.y }
task { flow.y = flow.x }

For all practical cases, dataflow-based deadlocks are reproducible. The previous exam-
ple will always deadlock.

 This has a huge benefit: it makes the coordination scheme unit-testing friendly!
Aside from pathological cases, you can be sure that your code does not deadlock if
your test cases do not deadlock.

FOR THE GEEKS: A PATHOLOGICAL CASE Testability fails as soon as assignments
to dataflow variables happen at random, like this: flow.x = Math.random() >
0.5 ? 1 : flow.y

Beside testability, dataflow variables have another nice feature that makes them conve-
nient to use in the concurrent context: their references are immutable. They never
change the instance they refer to after the initial assignment. This makes them not
only safe to use but also efficient because no protection is needed for reading (non-
blocking read). The benefit is greatest when the dataflow variable refers to an object
that is also immutable, such as a number or a string.

 Because dataflow variables can refer to any kind of object, which may happen to have
mutable state, we may run into problems such as the following example where a (muta-
ble) list is assigned to a dataflow variable but possibly changes its state after assignment:

def flow = new Dataflows()
task { flow.list = [0] }
task { flow.list[0] = 1 }
println flow.list

NOTE Dataflow variables work best when used with immutable datatypes.
Consider using the asImmutable() methods, use types that are handled by
the @Immutable AST transformation, or safeguard your objects with agents
(see section 18.6).

Deterministic deadlocks and variable immutability add to the safety and robustness of
the Dataflow Concurrency model.

18.4.2 Dataflow on sequential datatypes

Until now, we’ve only seen the merits of implicit task coordination with the dataflow
concept for simple datatypes. This naturally leads to the question of whether we can
use this concept for processing more than simple data—and yes, we can.

Deadlock!

Bad idea! b
Prints [0] or [1]
without guarantee

 c
Licensed to Mark Watson <nordickan@gmail.com>

664 CHAPTER 18 Concurrent Groovy with GPars
 Think about it like this: implicit task coordination means that we automatically cal-
culate a result as soon as dataflow variables x and y have assigned values. We can easily
expand this concept to calculating a result whenever x and y are available!

 In other words, we have an input channel that we can ask for x and a second one
that gives us the next y to process. Whenever we have a pair of x and y, we calculate
the result.

 Listing 18.7 leads us into this concept by calculating statistical payout values that
derive from the amount of a possible payout and the chance that this payout might
happen. Think of this as a gambling situation where you weigh the possible payout
against your ante. Insurance companies follow a comparable approach when calculat-
ing risks.

 The operator() method creates a DataflowOperator and starts it immediately.
The chances and amounts variables represent the input channels, and payouts repre-
sents the output channel. All the channels are of type DataflowQueue for implicitly
coordinated reading and writing of input and output data. The closure that’s passed
to the operator() method defines the action to be taken on the input data. The next
available unprocessed item of each input channel is passed into it (chance, amount),
as shown in the following listing.

import static groovyx.gpars.dataflow.Dataflow.*
import groovyx.gpars.dataflow.DataflowQueue

def chances = new DataflowQueue()
def amounts = new DataflowQueue()
def payouts = new DataflowQueue()

operator(inputs: [chances, amounts],
 outputs: [payouts],
 { chance, amount -> payouts << chance * amount }
)

task { [0.1, 0.2, 0.3].each { chances << it } }
task { [300, 200, 100].each { amounts << it } }

[30, 40, 30].each { assert it == payouts.val }

Note that the operator and the value assignments for the input channels all work
concurrently, but thanks to the implicit task coordination, we still have a predictable
outcome.

 The DataflowOperator and DataflowQueue APIs are rather wide-ranging and full
coverage is beyond the scope of this chapter. Refer to the API documentation, the ref-
erence guide, and the GPars demos for more details. One feature that shouldn’t go
unnoticed, though, is that dataflow operators are composable.

 It’s no coincidence that input and output channels are both of the same type. The
output channel of one operator can be wired as the input channel of a second opera-
tor. One can make a whole network of concurrent, implicitly coordinated operators.

Listing 18.7 Dataflow streams and operators for implicit task coordination over
sequential input data
Licensed to Mark Watson <nordickan@gmail.com>

665Actors for explicit task coordination
18.4.3 Final thoughts on dataflow
Dataflow variables are lightweight. You can easily have millions of them in a stan-
dard JVM.

 They’re also efficient. A scheduler for dataflow tasks has additional information
that allows picking tasks ”sensibly” for execution.

 Dataflow abstractions can help when writing unit tests for concurrent code. They
can easily replace Atomic* variables, latches, and futures in many testing scenarios.

 Most of all, dataflow is an abstraction that lends itself naturally for all those con-
current scenarios where the primary concern is the flow of data. Take the classical
producer-consumer problem where a consumer processes data that a producer deliv-
ers concurrently. It is all about the flow of data. Listing 18.7 is a specialized form of the
same pattern, combining two producers, synchronizing on them effortlessly: we’ve
solved the “consumption” part of the problem without even thinking about it! The
consumer always patiently waits until he gets something to do.

 This is only one half of the story. Imagine the producers are much faster than the
consumer. This leads to a waste of memory and badly distributed consumption of CPU
time. The full solution also needs a throttling mechanism for the producers. Luckily,
we can easily build such a mechanism on top of dataflow operators by applying the
efficient KanbanFlow pattern (http://people.canoo.com/mittie/kanbanflow.html).

 Concurrent programming is all about modeling. We either model the flow of data
indirectly through the concurrent operations that we perform on it or directly
through dataflow abstractions.

 Several experts go so far as to claim that without the need for data handling, con-
currency is trivial; otherwise, dataflow should be the first solution approach to con-
sider. This claim may be a little bit too bold, however. We need more control over task
coordination at times than dataflow can provide. This is where actors enter the stage.

18.5 Actors for explicit task coordination
We’ve seen predefined task coordination with fork/join and map/filter/reduce and
implicit task coordination with dataflow. The actor abstraction fills the hole of how to
coordinate concurrent tasks explicitly.

 Actors were introduced many decades ago and have undergone a rollercoaster
ride of academic popularity, great hopes, challenges, disillusions, sleeping beauty, redis-
covery, and recently resurgence in popularity. They’ve been at the heart of the Erlang
concurrency and distribution model for a long time, proving the concept’s value for
parallel execution, remoting, and fault-tolerance.

 Actors provide a controlled execution environment. Each actor is like a frame that
holds a piece of code and calls that code under the following conditions:

■ A message is waiting in the actor’s inbox.
■ The actor isn’t concurrently processing any other message.

This description is the lowest common denominator between the available actor con-
cepts and implementations. Beyond it, you’ll find all kinds of variations about whether
Licensed to Mark Watson <nordickan@gmail.com>

http://people.canoo.com/mittie/kanbanflow.html

666 CHAPTER 18 Concurrent Groovy with GPars

a
fac

met
or not an actor is allowed to have mutable state, whether messages have to be immuta-
ble, whether the actor and/or the messages have to be serializable, how their lifecycle
is controlled, and so on. For the remainder of this chapter, we’ll avoid such contro-
versy. When we use the word actor, we mean the GPars definition.

 Listing 18.8 gets us started by creating three actors: decrypt, audit, and main. The
main actor sends an encrypted message to the decrypt actor, which replies with the
decoded message. When the main actor receives that reply, it reacts to it by sending it
to the audit actor, which in turn prints

top secret

import static groovyx.gpars.actor.Actors.*

def decrypt = reactor { code -> code.reverse() }
def audit = reactor { println it }

def main = actor {
 decrypt 'terces pot'
 react { plainText ->
 audit plainText
 }
}
main.join()
audit.stop()
audit.join()

Hopefully by now you’re comfortable with the static factory methods that GPars has
consistently provided. The actor B and the reactor c methods are two more exam-
ples of the same, living in the Actors class. They each return an Actor instance, which
is started right away.

 They both have a closure argument, telling them what the generated actor should
do when its act() method is called, which happens as part of starting the actor. This is
straightforward for the actor{} d factory method but a bit more involved in the case
of reactor{}. Here, the given closure is wrapped so that it’s executed concurrently
whenever a message is waiting in the inbox and the actor is not already busy. The mes-
sage is passed to the closure and the closure result is replied to the sender. You can
think of a reactor as having an act() method of

loop { react { message -> reply reactorClosure(message) } }

This construction is needed so often that the GPars team has put it into the reactor
factory method for your convenience.

NOTE You never call the act() method directly! This would undermine the
actor’s concurrency guarantees. Instead, you call the actor’s send(msg) facil-
ity that puts the given message in its inbox for further processing. Sending is

Listing 18.8 Three actors for explicit coordination of decrypting and printing tasks

reactor factory
method

 b

reactor factory
method c

ctor
tory
hod d

Sends
message e

Waits
for reply f

Sends
message g
Licensed to Mark Watson <nordickan@gmail.com>

667Actors for explicit task coordination
available in various shortcuts: the send(msg) method, leftShift(msg) to
implement the << operator, and call(msg), which enables the transparent
method call1 (see section 5.4.1) that we use in listing 18.8 for sending mes-
sages e and g.

Sending a message to an actor takes the form of an asynchronous request. The actor is
free to process our message at any time. We do not wait for its response, unless we use
the sendAndWait() method. When an actor replies to a message, it sends the reply to
the originating actor. In listing 18.8, you see the main actor sending a message to the
decrypt actor e and going into react mode f, waiting for the reply message to
arrive. The decrypt actor replies to the main actor, effectively sending the decrypted
plain text as a message.

REACT MODE IS A STATE Using an actor facility that makes the actor wait for a
reply is an example of state. GPars supports such actor states but this isn’t
common between various actor implementations. It’s up to you to decide
whether or not to use this kind of state.

Actors can be seen as asynchronous services. They wait idly until they have a message
to process, do their job, and either stop or wait again. Running actors don’t prevent
the JVM from exiting; they’re backed by a pool of daemon threads. This is why we
need the last three lines in listing 18.8.

 The main.join() waits until the main actor is finished. We can be sure that it has
received the plain text and has sent it to the audit actor. But because the audit actor
handles the request asynchronously, we cannot be sure that the printing has been
done. We have to wait for the audit actor to finish as well by audit.join(). The
audit actor is a reactor, though. It never finishes until we send it the stop() message
as shown in the following code.

main.join()
audit.stop()
audit.join()

These commands are the necessary coordination control that makes sure that the
decrypted message appears on the console before our program exits. Try the pro-
gram without these lines. If you run it several times you’ll see the output appearing
at random.

 There are so many conceivable applications of actors that we cannot possibly do
them justice in this chapter. Table 18.3 lists actor capabilities by method name.

1 When it’s possible to execute x.call() then Groovy syntax allows us to write this as x(). Such a transparent
call may have any number of arguments that the call method understands.
Licensed to Mark Watson <nordickan@gmail.com>

668 CHAPTER 18 Concurrent Groovy with GPars
Although this should give you an initial feeling for the Actor API, using it wisely isn’t
quite as easy as it might seem. Of all the concepts in this chapter, this is possibly the
one at the lowest level of abstraction and with the highest potential for errors.

 First, it’s often suggested that actors should be free of side-effects, which is restric-
tive because this doesn’t allow printing to a console, storing a file, modifying a data-
base, updating a UI, writing to the network, and so on. A more practical requirement
is that only one actor should access one such device to avoid concurrent access. This is
exactly what the audit actor in listing 18.8 does. The next time you see an actor pre-
sentation without such a safeguard, shout out loud!

 Second, keep it simple. With many actors sending and replying to messages it’s all
too easy to run into deadlocks from circular references and other concurrency traps
that we’re here to avoid. They can also be difficult to debug and unit test. If you can-
not sketch your actor dependencies as easily as in figure 18.2, consider whether any of
the other concurrency concepts may yield a simpler solution. They often do.

 Third, sendAndWait() is a troublesome feature. You may wait forever. Give it a tim-
eout at least. But if it times out, what do we do? Try again? The rule of thumb is that if
you’re using actors together with sendAndWait(), you’ve probably chosen the wrong
concept.

Table 18.3 Actor capabilities (excerpt)

Method Capability

start() Starts the actor. Automatically called by the factory methods.

stop() Accepts no more messages, stops when finished.

act() Contains the code to execute safely per message.

send(msg) Passes a message to the actor for asynchronous sequential process-
ing. Aliases for actor x:
x.leftShift(msg), x << msg, x.call(msg), x(msg).

sendAndWait(msg) Passes a message to the actor for synchronous sequential processing.
Waits for the reply. Comes with timeout variants.

loop{} Does work until stopped.

react{msg->} This is only available on subtypes of SequentialProcessing-
Actor. It waits for a message to be available in the inbox, pops one
message out of the inbox, and passes it into the given closure for
execution. Comes with timeout variants.

msg.reply(replyMsg) Sends the replyMsg back to the sender of the msg. Most useful
inside a react closure where it is delegated to the processed msg so
that it can be called without knowing the receiver.

receive() Like react but without a closure parameter to process. Returns the
message. Comes with timeout variants.

join() Waits for the actor to be finished before proceeding with current task.
Licensed to Mark Watson <nordickan@gmail.com>

669Actors for explicit task coordination
When creating a network of actors you may get some inspiration for tailoring
responsibilities along the lines of enterprise integration patterns as implemented in
the Apache Camel project (see http://camel.apache.org/enterprise-integration-
patterns.html and Camel in Action by Claus Ibsen and Jonathan Anstey (Manning,
2010), http://manning.com/ibsen/). If you think in terms of Enricher, Router, Trans-
lator, Endpoint, Splitter, Aggregator, Filter, Resequencer, and Checker, you’re on the
right track.

18.5.1 Using the strengths of Groovy

We’ve seen that Groovy provides a clean and concise API for creating and using actors.
Listing 18.8 is pretty much the most compact piece of actor code that one can think of
without sacrificing readability.

 But two more Groovy features make our language particularly interesting in this
context: assigning event hooks through metaprogramming and using dynamic dis-
patch for reacting appropriately based on the message type.

 Let’s start with metaprogramming. Listing 18.9 uses a standard reactor that calls its
own stop() method as soon as it receives a message. We’d like to be notified when the
actor stops and look into its inbox. What we’ll see is the remaining stop message:

[Message from null: stopMessage]

import static groovyx.gpars.actor.Actors.*

def stopper = reactor { stop() }
stopper.metaClass.afterStop = { inbox -> println inbox }
stopper.send()

Actors can implement the optional afterStop() message for that purpose but the
standard reactor that we used in the previous listing has no such method. We don’t

Listing 18.9 Hooking into the actor lifecycle through metaprogramming

Authorization

Audit

Calculator

Coordinator

Collector

Figure 18.2 A simple example network of actors for processing a request. A
coordination actor waits for the authorization reply and triggers a calculation.
Many actors inform the audit actor. A collector returns the result.
Licensed to Mark Watson <nordickan@gmail.com>

http://camel.apache.org/enterprise-integration-patterns.html
http://camel.apache.org/enterprise-integration-patterns.html
http://manning.com/ibsen/

670 CHAPTER 18 Concurrent Groovy with GPars
need to write our own Actor implementation because we can add such a method
through the metaclass.

 Besides afterStop() other lifecycle hook methods such as afterStop():
onTimeout(), onException(throwable), and onInterrupt(throwable) are available.
The final two in this list are particularly important because proper exception han-
dling is easily overlooked in a concurrent context.

 The third benefit of using Groovy for actors is its dynamic method dispatch. When-
ever actors respond differently based on the message type they receive, dispatch remains
to be done—either manually or automatically.

 The next listing compares the two approaches. The manual reactor switches on
the message type, effectively taking a do-it-yourself approach to method dispatch. The
auto message handler in the second part of the example defines when clauses for each
message type and leaves the dispatch to Groovy.

import static groovyx.gpars.actor.Actors.*

def manual = reactor { message ->
 switch (message) {
 case Number: reply 'number'; break
 case String: reply 'string'; break
 }
}

def auto = messageHandler {
 when { String message -> reply 'string' }
 when { Number message -> reply 'number' }
}

The difference may not look significant in this small example, but it makes a consider-
able difference when managing any reasonably sized actor of that kind. The message-
Handler is again a factory method that returns an Actor, which happens to be a
DynamicDispatchActor. You can use it in a number of different ways: through the fac-
tory method, by calling various constructors that allow registering of when closures, or
by subclassing and implementing onMethod(messageType) hooks.

BY THE WAY Static languages—the ones that have no dynamic method dis-
patch—have a hard time supporting actors with dispatch on the message type
in a way that doesn’t compromise their static language characteristics.

Actors can be difficult to handle but compared to other low-level constructs for explicit
task coordination they have a pleasant structure and the send-reply-react scheme is
easier to understand and handle than most of Java’s built-in facilities.

 Now that we’ve seen predefined, implicit, and explicit task coordination, we have
the difficulty of choosing between them. Luckily, we have yet another candidate that
we can delegate to.

Listing 18.10 Comparing manual and automatic methods for dispatching

Self-made
dispatch

 b

Groovy method
dispatch

 c
Licensed to Mark Watson <nordickan@gmail.com>

671Concurrency in action
18.6 Agents for delegated task coordination
Delegation is my favorite strategy. Whenever I don’t know what to do, don’t want to do
it, or simply don’t want to decide, I happily hand the work to a delegate. Delegates are
abundant. They often appear as agents (think “real-estate”) that are happy to work on
your behalf. GPars can also create such helpful fellows and we use them for working
on shared mutable state.

 When it comes to shared mutable state, many concurrency experts shiver with dis-
gust. But it’s totally unavoidable as long as we integrate with Java, use its common data-
types, and call its methods—not only in the JDK but also in the vast space of open
source, commercial, and home-grown APIs that we rely upon.

 Rather than deny reality, it’s more pragmatic to look for ways to safeguard our valu-
able assets. Listing 18.11 uses an agent to safeguard access to a string that we change
in a concurrency-safe manner. We’ll update the value by sending update instructions
to our agent that does all the tiring work for his client.

IMMUTABILILITY IS NOT ENOUGH Note that we don’t need to safeguard the
string as such because strings are immutable. Anyway, we have to safeguard
the reference that holds the string to make sure that the concatenation has
been done on our original string, and not a concurrently changed one.

import groovyx.gpars.agent.Agent

def guard = new Agent<String>()

guard { updateValue('GPars') }
guard { updateValue(it + ' is groovy!') }

assert "GPars is groovy!" == guard.val

Agents protect a secure place where the safeguarded object cannot be changed by
anyone but the agent. Instructions on how to change the object are sent to the agent.
Again, the usual methods are available; listing 18.11 demonstrates send, leftShift,
<<, call, and a transparent method. The updateValue() message is used when the
safeguarded object itself is replaced by a new one.

 Agents can easily be used in combination with all the other concurrency concepts
we’ve seen in this chapter. They are a simple yet ubiquitously useful tool for the con-
current programmer.

18.7 Concurrency in action
Let’s round up our tour through Groovy concurrency with an example that fetches
stock prices from the web in order to find the most valuable one. This task has
recently gained some popularity for a number of reasons:

■ Fetching web pages is slow compared to local calculations; therefore, using con-
currency is promising no matter how many processing cores we have.

Listing 18.11 Safeguarding a string for concurrent modifications
Licensed to Mark Watson <nordickan@gmail.com>

672 CHAPTER 18 Concurrent Groovy with GPars
■ The effect can be achieved with many different approaches, which gives us free-
dom of choice.

■ Many solutions have been published for different languages that we can com-
pare our solution against.

We start with the easy part: fetching the year-end closing price of a given stock ticker.
Listing 18.12 connects to a Yahoo! service that provides this information in CSV for-
mat. The result of fetching its URL looks like this:2

Date, Open, High, Low, Close, Volume, Adj Close
2009-12-01,202.24,213.95,188.68,210.73,19068700,210.73

From that data, we need the fifth entry in the second line (the closing price), which is
what the getYearEndClosingUnsafe method returns. This method doesn’t handle
any problems with connecting to the service, so we’ve created an exception-safe vari-
ant getYearEndClosing for convenience.

class YahooService {
 static getYearEndClosingUnsafe(String ticker, int year) {
 def url = "http://real-chart.finance.yahoo.com/table.csv?" +
 "s=$ticker&a=11&b=1&c=$year&d=11&e=31&f=$year&g=d&ignore=.csv"
 def data = url.toURL().text
 return data.split("\n")[1].split(",")[4].toFloat()
 }

 static getYearEndClosing(String ticker, int year) {
 try {
 getYearEndClosingUnsafe(ticker, year)
 } catch (all) {
 println "Could not get $ticker, returning -1. $all"
 return -1
 }
 }
}

Providing an exception-safe variant in addition to an unsafe method allows both con-
venience and caller-specific exception handling where each is required.

 The API design of YahooService goes for static methods with immutable parame-
ter types, which makes it concurrency-friendly even though the code shows no trait of
being concurrency-aware. It almost entirely avoids access to foreign objects with the
exception of println. Printing this way is considered a concurrency design flaw and
only acceptable when printing a single line, knowing that the PrintStream synchro-
nizes internally.

 Stateless methods are often frowned upon as being against traditional object-
oriented style, but for concurrency-friendly services, they make sense.

2 Slightly reformatted for better readability.

Listing 18.12 Fetching the year-end closing price for a given stock ticker symbol
Licensed to Mark Watson <nordickan@gmail.com>

673Concurrency in action
 Now, let’s assume we wish to check the prices for Apple, Google, IBM, Oracle, and
Microsoft using the following stock ticker symbols:

def tickers = ['AAPL', 'GOOG', 'IBM', 'ORCL', 'MSFT']

Then we could sequentially find the most valuable one by collecting all prices together
with their ticker symbols and selecting the one with the maximum price:

def top = tickers
 .collect { [ticker: it, price: getYearEndClosing(it, 2014)] }
 .max { it.price }

Nothing fancy here. This is all plain non-concurrent code that connects to the Yahoo-
Service for one stock ticker after the other.

 Listing 18.13 makes one small addition to turn this into a concurrent solution: by
calling makeConcurrent() on the tickers, which results in calling the collect logic con-
currently. This fork/join approach requires us to put the code inside a withPool scope.

import static groovyx.gpars.GParsPool.withPool
import static YahooService.getYearEndClosing

def tickers = ['AAPL', 'GOOG', 'IBM', 'ORCL', 'MSFT']

withPool(tickers.size()) {
 def top = tickers.makeConcurrent()
 .collect { [ticker: it, price: getYearEndClosing(it, 2014)] }
 .max { it.price }
 assert top == [ticker: 'GOOG', price: 526.4f]
}

Note that we use the withPool method with an argument to define the pool size. We
want to have a concurrent task for processing each ticker so that we don’t limit our
network usage by our processing capacity. We go for highest concurrency even on a
machine with a single core.

 The solution in listing 18.13 is arguably the simplest one that we can get, and it’s so
close to optimal that if you’re a practitioner, you may want to skip the rest of this sec-
tion and go right to the summary. The concurrency-addicted developer may want to
read on. We have interesting variants coming!

 Calculating the maximum once we have all prices available is a quick operation
and usually not worth optimizing, but for the sake of exploring the concepts, we do it
anyway. Listing 18.13 first collects all prices and starts calculating the maximum only
after all the prices have been fetched. We could do a little bit better.

 Suppose that AAPL and GOOG have been fetched but the remaining ones are still load-
ing. We could use that network delay to eagerly calculate the maximum of the prices we
already know. The following listing introduces what looks like a minimal change in the
code to make this happen, but which is a rather fundamental change in scheduling.

Listing 18.13 Fetching prices concurrently with fork/join
Licensed to Mark Watson <nordickan@gmail.com>

674 CHAPTER 18 Concurrent Groovy with GPars
import static groovyx.gpars.GParsPool.withPool
import static YahooService.getYearEndClosing

def ticker = ['AAPL', 'GOOG', 'IBM', 'ORCL', 'MSFT']

withPool(ticker.size()) {
 def top = ticker.parallel
 .map { [ticker: it, price: getYearEndClosing(it, 2014)] }
 .max { it.price }
 assert top == [ticker: 'GOOG', price: 526.4f]
}

We have gone from fork/join to a map/filter/reduce approach because finding a
price is conceptually a mapping from a ticker symbol to its price, and finding the max-
imum is a special logic of reducing the result set.

 Note that neither max nor any other reduction method guarantees that we process
prices as soon as two of them are available. In the worst case, we wait for the two candi-
dates that finally turn out to be the slowest ones. But on average, we win.

 Now, is listing 18.14 the best we can get? Well, so many options exist and we’re
entering the space of personal taste. Interesting variants come with dataflow. Let’s
explore at least one in the next listing that spawns a task for each ticker symbol, which
is used as the dataflow index. When calculating the maximum, we refer to the price
dataflow entry, thus implicitly waiting if the price hasn’t yet been fetched.

import groovyx.gpars.dataflow.Dataflows
import static YahooService.getYearEndClosing
import static groovyx.gpars.dataflow.Dataflow.task

def tickers = ['AAPL', 'GOOG', 'IBM', 'ORCL', 'MSFT']

def price = new Dataflows()
tickers.each { ticker ->
 task { price[ticker] = getYearEndClosing(ticker, 2014) }
}
def top = tickers.max { price[it] }
assert top == 'GOOG' && price[top] == 526.4f

We get the same concurrency characteristics as with map/filter/reduce in listing 18.14
but without the need for the extra ticker/price mapping.

 This example is well suited to investigate further concepts and you’ll find more
demos in the GPars codebase. Look for the DemoStockPrices* scripts. Actor-based
solutions exist but I personally find them less attractive because the problem doesn’t
really call for explicit coordination. They also tend to be lengthier in terms of the
code required.

 Another interesting approach would be to use the dataflow whenBound feature,
where one can deposit a closure that’s executed asynchronously after a value is

Listing 18.14 Fetching prices concurrently with map/filter/reduce

Listing 18.15 Fetching prices concurrently with Dataflows

Sets when
available

Reads
sequentially
Licensed to Mark Watson <nordickan@gmail.com>

675Summary
bound to a dataflow variable. This comes with considerable effort in terms of coordi-
nating the tasks to assert that all prices have been processed and also shielding the
temporary maximum against concurrent access. This approach has the appeal of
always calculating the currently best-known maximum as early as possible, but it’s
anything but simple.

 Weighing algorithmic appeal against simplicity is a design choice that we often
encounter in concurrent scenarios. Don’t think twice. Go for simplicity!

18.8 Summary
As a Groovy or Java programmer, you don’t have to be afraid of the multicore era. Java
has provided us with a solid, battle-tested foundation for concurrent programming
that Groovy uses to build more high-level abstractions upon.

 Now is the time to make yourself comfortable with the approaches to coordinate
concurrent tasks. The predefined control flow on collections through fork/join and
map/filter/reduce is possibly the easiest one to understand and start with. Implicit
coordination with dataflow should be your choice whenever your focus is on the
flow of data rather than the manipulation steps. Explicit control with actors should
be your last consideration when no other concept applies. And regardless of how you
coordinate your concurrent tasks, always consider using agents to protect shared
mutable state.

 It goes without saying that a mere chapter that tries to cover so many concepts can-
not do justice to the full API of such a rich project as GPars and necessarily fails to pres-
ent such a wide topic as concurrency in all its beauty.

 Even more concepts are expected in the near future and may be available by the
time you read this. Keep an eye on http://gpars.org to get the latest updates.

 Please allow me to point your attention to the grace and elegance that Groovy has
shown once again in this chapter. The functional nature of closures blends naturally
with the need to demarcate pieces of code for concurrent execution. Object iteration
methods provide a perfect base for fork/join. Last but not least, actors profit from
dynamic method dispatch and metaprogramming. I’m so glad we have this language!
Licensed to Mark Watson <nordickan@gmail.com>

http://gpars.org

Domain-specific languages
The limits of my language are the limits of my world.

—Ludwig Wittgenstein

Domain-specific languages are languages tailored toward representing a particular
domain of knowledge. Proponents of development methodologies suggest that
what leads to success or failure of a project is the quality of communication and a
common goal of producing software that delivers on promises of solving a particu-
lar domain problem.

 Languages are at the root of any kind of communication and involve two inter-
locutors. A subject matter expert (SME) can write specifications in their mother tongue,
say, English, with tons of domain-specific words and concept names that will be read

This chapter covers
■ Understanding domain-specific

languages (DSLs)
■ Writing DSLs in Groovy
■ Creating readable and expressive languages
■ Testing, securing, and providing good error

reporting when creating DSLs
676

Licensed to Mark Watson <nordickan@gmail.com>

677Groovy’s flexible nature
by software developers. A developer can also speak to a computer using different lan-
guages to tell it about the business rules of the application the SME is longing to play
with. The former will use a natural language while the latter will use one or several
general-purpose programming languages.

 A translation process is obviously involved to codify requirements into executable
code. And this process isn’t usually that straightforward because there may be ambigu-
ities in the natural language used and different approaches exist for implementing
the same behavior—using different patterns, algorithms, or idioms. More so than typ-
ing issues or lacking null pointer checks, what introduces bugs in our machinery is
the imperfection of our understanding of each other’s words and their meaning.

 Let’s step back and reflect on these considerations. In this Babel of languages,
what if we had one language that everybody could unambiguously understand? What
if this language contained words that all stakeholders could put the same meaning on,
that is both readable and expressive? And imagine if Esperanto could even be under-
stood by computers themselves? But does such a dreamed-up ubiquitous language
exist? We wouldn’t write that prose if we didn’t think Groovy could play a central role
here, and this chapter wouldn’t be named “domain-specific languages” if one couldn’t
create a special language in Groovy that would help reduce the gaps in understanding
each other and help us make our project succeed.

19.1 Groovy’s flexible nature
The grammar of the Groovy language directly derives from Java 5; you can often
copy and paste Java code into your Groovy programs and run it without any modifi-
cation. However, as a Java developer, as you learn Groovy, you’ll progressively write
more idiomatic Groovy code. Over the course of the past chapters, you’ve discov-
ered many language features and APIs that will make your code groovier and more
concise! For instance, you’ll get rid of and even forget about those boring semico-
lons—isn’t the compiler supposed to be clever enough to figure out when a state-
ment ends? You’ll also quickly omit parentheses in your println statements, among
other places. You’re rapidly benefiting from Groovy’s flexible nature at the syntax
level as well as the API level—after all, println is already a shortcut notation for
System.out.println! Let’s review what Groovy offers out of the box for making
your code look nicer to the eye.

19.1.1 Back to omitting parentheses

In Groovy, the parentheses can be omitted under certain circumstances. All top-level
statements or expressions, called command expressions, can benefit from that rule.

 Imagine you’re a NASA engineer, and you’ve sent a rover on the ground of planet
Mars. In the comfy seat of Mission Control, from miles and miles away—certainly with a
delay due to the speed of light at which information travels—you’re planning the jour-
ney of your little robot on the rocky soil. You’ll tell your robot to move left and right. In
Java, you’d need to create a class (lots of surrounding boilerplate code) and describe
Licensed to Mark Watson <nordickan@gmail.com>

678 CHAPTER 19 Domain-specific languages

Def
c

the orders in a method; in Groovy, you could put all the orders in a simple script. Let’s
put all the accompanying code aside. What could the orders look like?

 In Java, you’d need parentheses and a final semicolon:

move(left);

In Groovy, the code looks look like an imperative sentence:

move left

We don’t gain that much, but the Groovy variant is free of punctuation noise.
 In either case, you need to have a method named move() defined in your script or

class taking one parameter of type Direction, perhaps even an Enum value.
 But here we’re only showing the command the operator sends to the remote

robot. If we have the move left order in our Groovy script and execute it, we get an
exception telling us the left variable isn’t found, and if it’s found, we get another
exception afterward indicating the move() method couldn’t be found. The following
listing contains the full script.

package v01

import static Direction.*

enum Direction {
 left, right, forward, backward
}

class Robot {
 void move(Direction dir) {
 println "robot moved $dir"
 }
}

def robot = new Robot()

robot.move left

We define an enum for the directions B, so our robot can understand the left, right,
forward, and backward movements. We use a static import to import all the enum con-
stants c, so they’re available in the body of our script. Who receives the commands?
Ah yes, the robot! We obviously need a robot! We create a Robot class d and out
robot has a move() method e, taking a Direction value. We instantiate our Robot
class f to create a robot. And at last g, we can tell our robot to move left.

 That’s quite a bit of code for telling our robot to move left, isn’t it? Wasn’t a key
goal of a DSL to be concise and readable? For a single move, we need an enum defini-
tion, a static import, an instantiation, and the final command. Twelve lines of code for
a mere command which doesn’t look like the one we mentioned earlier: there’s a
robot prefix! Have we lied to you? Can’t we do better? Of course, we can!

Listing 19.1 Our naïve approach with a self-contained script

Makes constants
available in script

 c

The enum
definition

 b
ines
lass

 d

Method
definition

 e

Creates
instance

 f

Instructs robot
to move g
Licensed to Mark Watson <nordickan@gmail.com>

679Groovy’s flexible nature
 We can start by speaking of integration. We should differentiate the infrastructural
code from the business code: the code of the robot, the directions, the instantiation of
the robot are all about infrastructure, and the order we send to the robot is the busi-
ness code, our DSL code.

 Cleanly separating the kinds of code is good practice, plus it allows us to streamline
the DSL bits, so they remain short, concise, and readable. All the cleverness of the DSL
will come from the infrastructural code and how we integrate everything. This dichot-
omy is also a separation of concerns: the infrastructure stays the same, or evolves at its
own pace. The same is true for the business code: the orders sent to the rover vary
depending on where the robot is and where we want it to go.

 Let’s start work on version 2 of our robot example. GroovyShell will be our
weapon of choice for evaluating our business rules. This will be the class that will be
integrated in our back end (it could be a pure Java or Groovy back end or a mix of the
two). The Direction enum and the Robot class will be part of our infrastructural
code, already precompiled on our classpath as part of the build process of our overall
application. Compared with our full script from earlier, they’ll be removed from their
specific files (see the following two listings), and will be part of our domain model
package (v02.model).

package v02.model

enum Direction {
 left, right, forward, backward
}

package v02.model

class Robot {
 void move(Direction dir) {
 println "robot moved $dir"
 }
}

Given those domain model classes, our business rules, in the form of a Groovy script,
are already shorter, as shown in the following listing.

package v02

import v02.model.Robot
import static v02.model.Direction.*

def robot = new Robot()

robot.move left

Listing 19.2 Our enum for directions: projectmars.model.Direction

Listing 19.3 Our core robot class: projectmars.model.Robot

Listing 19.4 Our updated business rules

Imports Robot class
from model package

Uses static import
for directions
Licensed to Mark Watson <nordickan@gmail.com>

680 CHAPTER 19 Domain-specific languages
What’s still missing in our big picture is the code using the GroovyShell class we men-
tioned earlier. For simplicity’s sake, we keep business rules in a simple multiline
Groovy string, but they can come from a configuration file, from a database, or
entered interactively in a kind of console application. The following listing shows our
concrete integration. As our overall application is pretty simple so far, we keep our
application main entry point inside a Groovy script, but this could also be a more
involved, full-blown class with additional responsibilities.

package v02

def shell = new GroovyShell(this.class.classLoader)
shell.evaluate '''
import v02.model.Robot
import static v02.model.Direction.*

def robot = new Robot()

robot.move left
'''

Our main script instantiates the GroovyShell class B ensuring that it has the same
classloader as our script. Setting up the classloader in this way isn’t necessary for this
simple example but it’s a good practice to get into for many integration scenarios. Any
classes we define in our main script will be visible within the shell and any classes that
our shell creates could be passed back to our main script. We then call our shell’s
evaluate() method, which takes a string—here a multiline string—as parameter c.

Given that we’re done with our infrastructural code (our domain model classes and
our application main entry point integrating the business rules), let’s have another

Listing 19.5 The integration and main entry point of our application

External DSL file
In our example from listing 19.5, we evaluated a DSL that was in the form of a string.
But the idea here is that your DSL might come from an external file. You could also
store this DSL in a database or elsewhere. Instead of the verbatim string, you can
call other variants of the evaluate method that take a Reader, URI, or File. Here’s
an example pulling the file from a folder relative to where the script runs:

def shell = new GroovyShell()
shell.evaluate 'v02/CommandScript.groovy' as File

Here’s another loading the file from the classpath:

def shell = new GroovyShell()
def script = Robot.getResource("/v02/CommandScript.groovy")
shell.evaluate new File(script.toURI())

And of course you can use the Reader or URI variants to retrieve a remote script.

Instantiates
the shell

 b

Shell
evaluates
inline script

 c
Licensed to Mark Watson <nordickan@gmail.com>

681Variables, constants, and method injection

Pa
bindin

GroovyS
look back at our business logic from listing 19.4. We have an import and a static
import, a robot instantiation, and eventually the command we send to our robot. Is it
perfect? Well, we could consider the two imports as undesirable boilerplate code (at
least from the perspective of the person writing the business rules). The same goes for
the instantiation of the robot: it’s probably boilerplate as well. On the one hand, we’d
like references to the robot to disappear, but we don’t want our reference to the robot
to completely disappear. It could definitely help us test our business code if we inject a
mock robot, and if one day our robot is upgraded to a newer version, we could later
inject a different instance of the robot. Finally, the style used for sending our com-
mands to the robot isn’t looking like what we promised in the introduction of our
chapter, because we’ve got this robot prefix.

 To summarize, we want to:

■ Get rid of the imports
■ Inject the robot more transparently
■ Improve the way we send orders to the robot

We’ll take care of those three points in the next sections.

19.2 Variables, constants, and method injection
Tackling the injection first permits us to remove the instantiation of the class and the
related import. How can we achieve this? By using the script’s binding: every script has
a special kind of map in which dynamic variables can be saved and looked up.

 Before applying this idea to our robot example, let’s look at a simple example,
evaluating math expressions. Listing 19.6 shows how the binding can be created B
and passed to the GroovyShell in its constructor c. We create distance and time vari-
ables in the binding, and those two variables are available when we evaluate our math
formula. No MissingPropertyException is thrown; the variables are present globally
in the body of that script, without any prior definition or particular explicit lookup.
Notice we assign the quotient of distance over time into a speed variable d. We have
neither “def-ed” that variable nor used a different approach than a plain assignment
to pass the result of the calculation to the binding. In e, the variables we put into the
binding are still there—and we haven’t updated their values, but we could have done
that. And in f, we discover that the binding now contains an additional variable: our
speed variable is here, containing the result of the computation.

 Leveraging the script’s binding is a great technique to exchange variables and val-
ues during the execution of a script.

def binding = new Binding([distance: 11400, time: 5 * 60])

def shell = new GroovyShell(binding)
shell.evaluate '''
 speed = distance / time

Listing 19.6 Exchanging variables and values through a script's binding

Creates and
populates binding b

sses
g to
hell c

Calculation only
involves binding
variables

 d
Licensed to Mark Watson <nordickan@gmail.com>

682 CHAPTER 19 Domain-specific languages
'''

assert binding.distance == 11400
assert binding.time == 5 * 60
assert binding.speed == 38

With that knowledge in mind, you’ve guessed—correctly—that the binding is going to
be the approach we’ll use for injecting the robot instance into our command script.
Thanks to duck-typing, we can use that robot instance without specifying that it is of
type Robot, without having to import the Robot class! As the following listing demon-
strates, we can remove one import and inject the robot into our DSL script through a
binding object.

package v02

import v02.model.Robot

def binding = new Binding(robot: new Robot())

def shell = new GroovyShell(this.class.classLoader, binding)
shell.evaluate '''
 import static v02.model.Direction.*

 robot.move left
'''

We’ve injected a robot into our DSL script. We don’t need to instantiate a Robot
object, and we managed to get rid of one import. But we’re left with the static import
for the directions and the prefixed move method.

 We managed to inject the robot variable; we can apply the same technique to
inject the direction constants. This is a first approach that we’ll take, but we’ll also
have a look at a couple of additional options.

19.2.1 Injecting constants through the binding

In the following listing, we enumerate the directions manually, adding them in the
binding to pass to the shell.

package v02

import v02.model.*

def binding = new Binding(
 robot: new Robot(),
 left: Direction.left,
 right: Direction.right,
 forward: Direction.forward,

Listing 19.7 Injecting a robot variable into the script's binding

Listing 19.8 Injecting constants through the binding

Inputs variables
unchanged

 e

Results also
in binding f

Creates binding
using named
params or map

Passes binding
to GroovyShell
constructor

Inject
directions

 b
Licensed to Mark Watson <nordickan@gmail.com>

683Variables, constants, and method injection
 backward: Direction.backward
)

def shell = new GroovyShell(this.class.classLoader, binding)
shell.evaluate '''
 robot.move left
'''

This approach is certainly the simplest one: we add each and every direction manu-
ally into the binding B, and we notice that the static import for the constants has
disappeared from the script DSL c. It’s a bit fragile. What happens if we add a new
direction value? We’d have to update the enum definition as well as the integration
where we inject the enum values into the binding. Fortunately, Groovy’s magic
empowers us to make things less brittle by using the collectEntries() method and
spread map operator.

 The following listing shows how we can inject all the Direction enum constants
into the binding automatically, rather than manually. The collectEntries() method
creates a map that is the association of the name of the enum values and the respec-
tive values. The spread map operator will merge those entries into the binding map.

package v02

import v02.model.*

def binding = new Binding(
 robot: new Robot(),
 *: Direction.values().collectEntries { [(it.name()): it] }
)

def shell = new GroovyShell(this.class.classLoader, binding)
shell.evaluate '''
 robot.move left
'''

This new binding definition still injects the robot and spreads the content of a map
into the binding map to form one consistent map. The obvious benefit is that if ever
you need more directions, maintenance will be easier because you need to update the
Direction enum and not need to touch your integration code. No duplication!

 With enums, we managed to solve the problem of maintenance and duplication ele-
gantly, but sometimes, you don’t have enums at your disposal—perhaps legacy classes
and interfaces you have no control over, or you don’t want to import all of the enum
values. You can go with manually adding each constant as we did in listing 19.8, inject-
ing constants through the binding. You have other ways to add variables and constants
into your DSL scripts. We’ll look at those shortly, but first let’s look at simple tech-
niques for injecting methods into a script.

Listing 19.9 Injecting enum values

Import free
script c

Injects
directions
using spread
map operator
Licensed to Mark Watson <nordickan@gmail.com>

684 CHAPTER 19 Domain-specific languages
19.2.2 Injecting methods into a script

Let’s come back to our original goals with our Mars rover. From our original script, we
managed to get rid of the imports, and to inject the robot instance. However, the
movement of the robot is still “prefixed”, and isn’t as concise as it could be:

robot.move left

We want the movements to be sent to the robot, but we’d like the code to look as if we
were speaking directly to the robot, telling it explicitly “move left”, because it knows
we are talking to it—a pretty clever robot understanding human speech! But a move
method would be a method on the current script that’s running, not on the robot.
Can we redirect the methods to the robot?

 A naïve approach would be to append methods at the end of our script code,
before it gets evaluated, as illustrated by the approach in the next listing. You’d create
your own evaluation method that would call GroovyShell#evaluate, but which would
in turn do string concatenation to append each method definition you’d need to be
carried over to our robot instance.

shell.evaluate '''
 move left
''' + '''
 def move(dir) {
 robot.move dir
 }
'''

This naïve approach isn’t ideal for a number of reasons. The implementation is frag-
ile because you put code in a String that isn’t easy to refactor. For maintenance, this
is problematic because you have to update those appended method definitions
when the Robot class is evolving. If the scripts that end users are sending you are
bogus and don’t compile properly, you may get weird compilation error messages,
as the parser would see the def token afterward. Although this approach is easy, it
should be avoided.

 A proper way to add methods to the script class is to use a custom base script class.
Scripts extend the groovy.lang.Script base abstract class, and the Groovy compiler
allows us to define a different base class for our scripts (as long as it’s extending
groovy.lang.Script).

 First we need to create our own script base class, as shown in listing 19.11. Our
class is declared abstract like its parent B, and extends groovy.lang.Script. We
then add a move() method with the same signature as the one of the robot c that will
be accessible from the DSL script as a script method not requiring any prefix for being
called. We retrieve the robot d from the script’s Binding—the same binding that we
pass to GroovyShell.

Listing 19.10 Appending method definitions to script code
Licensed to Mark Watson <nordickan@gmail.com>

685Variables, constants, and method injection
package v02.integration

import v02.model.Direction

abstract class RobotBaseScript extends Script {
 void move(Direction dir) {
 this.binding.robot.move dir
 }
}

Now that our base script class is ready, let’s put it to good use. We have a number of
options to apply this base class. Let’s first look at using the @BaseScript AST transfor-
mation, as shown in the following listing.

package v02

import v02.model.*

def binding = new Binding(
 robot: new Robot(),
 *: Direction.values().collectEntries { [(it.name()): it] }
)

def shell = new GroovyShell(this.class.classLoader, binding)
shell.evaluate '''
@BaseScript(v02.integration.RobotBaseScript)
import groovy.transform.BaseScript

move left
'''

It’s nice that we can use an annotation to tweak the base class but, at least for our
example, we’ve introduced as many lines as we’ve saved. Instead, let’s look at addi-
tional ways to customize the compilation process. It’ll be handy for automatically add-
ing imports to our script, and as we’ll see later, also provides us with a better approach
for specifying a base script class.

19.2.3 Adding imports and static imports automatically

Until now our examples used GroovyShell for evaluating our robot moves, and we
see that we can pass parameters, such as a Binding to pass variables and constants,
that will be available during the execution of the script. But GroovyShell’s construc-
tor also takes a CompilerConfiguration as a parameter. Through the latter, we can
define compiler customizers (three kinds exist, and you can create your own), as well as
a custom base script class.

 Let’s start by looking at one special customizer: the import customizer from chap-
ter 16, where we looked at it from an integration perspective. The name is explicit: an
import customizer helps you customize the imports of your scripts and classes. With it,

Listing 19.11 Defining a custom base script class

Listing 19.12 Using a custom base script class

Defines base
script class

 b

Defines move()
method cRetrieves

robot from the
script’s binding d
Licensed to Mark Watson <nordickan@gmail.com>

686 CHAPTER 19 Domain-specific languages

Directi
en
va

static
impo
with

im
you can add imports and static imports, as well as star imports and star static imports.
You can also do type aliasing for your imports and static imports.

 Listing 19.13 shows how we continue improving our integration script by injecting
the robot variable B, by creating an import customizer c, then adding a static star
import for the direction enum values d, specifying the customizer to be used by the
compiler configuration e, and eventually passing the configuration to the Groovy-
Shell constructor f.

package v02

import org.codehaus.groovy.control.CompilerConfiguration
import org.codehaus.groovy.control.customizers.*
import v02.model.Robot

def binding = new Binding(robot: new Robot())

def importCustomizer = new ImportCustomizer()
importCustomizer.addStaticStars 'v02.model.Direction'

def config = new CompilerConfiguration()
config.addCompilationCustomizers importCustomizer

def shell = new GroovyShell(this.class.classLoader, binding, config)
shell.evaluate '''
 robot.move left
'''

Once you’ve instantiated an ImportCustomizer, you can add:

■ Normal imports—addImports(String… fqnClassNames)
■ An aliased import—addImport(String alias, String fqnClassName)
■ A static import—addStaticImport(String fqnClassName, String fieldName)
■ An aliased static import—addStaticImport(String alias, String fqnClassName,

String fieldname)
■ Star imports—addStarImports(String… packageNames)
■ Static star imports—addStaticStars(String… fqnClassNames)

In our case, we needed only the latter variant that allowed us to add a static star import
for all the enum constant values.

 Compiler configuration customizers are useful for DSL purposes. Later in the chap-
ter we’ll discover more customizers for securing your scripts and applying transforma-
tions, and even how to create your own customizers.

 What we want is a way to inject methods. We’ve got several interesting approaches
for doing that.

Listing 19.13 Using import customizers to add imports transparently

Injects only
variables into
binding

 b

Creates
import
customizer

 con.*
um

lues
ally

rted
star
port

 d

Imports customizer added
to compiler configuration

 e

Passes compiler
configuration to

GroovyShell f
Licensed to Mark Watson <nordickan@gmail.com>

687Variables, constants, and method injection
19.2.4 Injecting methods (revisited)

Let’s look at another option of CompilerConfiguration, which allows us to specify a
base class. It’s an alternative way to use the base class that we defined in listing 19.11.
The compiler configuration has a scriptBaseClass property that we can use to point
to our robot base script as shown in the following listing.

package v02

import org.codehaus.groovy.control.CompilerConfiguration
import org.codehaus.groovy.control.customizers.*
import v02.integration.RobotBaseScript
import v02.model.*

def binding = new Binding(robot: new Robot())

def importCustomizer = new ImportCustomizer()
importCustomizer.addStaticStars Direction.name

def config = new CompilerConfiguration()
config.addCompilationCustomizers importCustomizer
config.scriptBaseClass = RobotBaseScript.name

def shell = new GroovyShell(this.class.classLoader, binding, config)
shell.evaluate '''
 move left
'''

NOTE When you add a getter in your base script class, such as getMyConstant(),
you can then access it with myConstant in your script, as if it were passed
through the binding. That’s another way of injecting a constant in the binding.
However, if you defined a setMyConstant() setter method, this method would
not be called upon assignment of myConstant, as the variable would go into
the binding. If you wanted to call that setter, you’d have to call it explicitly
in the form of its method call.

Coming back to our abstract base script class, you certainly noticed that we repli-
cated the move() method from the Robot class. The script base class serves as a façade.
The decoupling is valuable in itself even though we currently only have one method;
otherwise, you’d have to put a delegate method in place for each method of the
Robot class.

 If you remember AST transformations from previous chapters, you might find that
using the @Delegate transformation is a good fit for delegating methods. The follow-
ing listing shows how to implement this idea. The transformation automatically adds
all methods from Robot at compile-time in your script base class. You’ll also notice
that we employed the @Lazy transformation, because the binding is populated after
the class initialization and instance construction.

Listing 19.14 Configuring and using a custom base script class

Specifies script
base class
Licensed to Mark Watson <nordickan@gmail.com>

688 CHAPTER 19 Domain-specific languages
package v02.integration

import v02.model.Direction

abstract class RobotBaseScript extends Script {
 @Delegate @Lazy Robot robot = this.binding.robot
}

The delegation approach is good if you want to delegate all method calls, but if you’re
interested in a specific set of methods, our previous solution worked well (by copying
the signatures of our robot and delegating to the robot’s methods). You can also use
the same approach that we used earlier for injecting variables, through the binding,
by adding method closures into the binding. You’ll see this in more detail when you
want to manually pick methods or add dynamic routines and don’t want to have to use
a custom base script class.

19.2.5 Adding closures to the binding
The script binding is a mere wrapper around a map. In that map of variables, we have
the keys that represent the variable names, and the values that are the variable values.
A value can be anything, including closures! And calling closure variables looks like
an ordinary method call.1

 You can quickly wrap method calls to a certain object instance as method closures
(sometimes called method pointers), using the .& notation. If we revisit our previous
examples, we can get a reference to the move() method of Robot B and add it to the
binding of our script, as the following listing shows.

package v02

import v02.model.*

def robot = new Robot()
def binding = new Binding(
 robot: robot,
 move: robot.&move,
 *: Direction.values().collectEntries { [(it.name()): it] }
)

def shell = new GroovyShell(this.class.classLoader, binding)
shell.evaluate '''
 move left
'''

In this case, we inject only one method. If we had to add all of them (Robot’s meth-
ods), we’d have to manually add every one, or resort to using a reflection to find out
all the available methods. But for one-off utility methods that need to be available to
the script, using the binding in that way is easy without necessitating the need for a

Listing 19.15 Using @Delegate for method injection and delegation

1 We’ve seen that before. Closures have a call() method (they even implement Callable) and thus refe-
rences to closures are subject to the transparent method call.

Listing 19.16 Using a method closure to inject a method

Method closure
reference to robot’s
move() method

 b
Licensed to Mark Watson <nordickan@gmail.com>

689Variables, constants, and method injection

custom base script class. Furthermore, when the functions that we need are totally
dynamic, depending on the context, the ability to add any closure, referenced under
any name, can be useful.

 Taking this idea further, what if our DSL were case-insensitive? Users of that DSL
could make mistakes in their entered case and still have the robot obey their orders.
In that situation, we wouldn’t want to add all possible methods and constants in all the
possible combinations of uppercase and lowercase letters in the script base class or in
the binding. How can we proceed? We have two solutions. For entering an arbitrary
case for method calls, we leverage our custom base script class, and for constants or
variables, we use a custom binding class.

 For entering an arbitrary case for our methods, listing 19.17 shows how we added
an invokeMethod() implementation B to our base script class to intercept method
calls. The calls are then delegated to the robot variable stored in the binding c. We use
the GString method calls, putting the name into lowercase, and we spread the argument
of the calls (using the spread operator *) back in the call of the method of our rover.

package v02.integration

abstract class CaseRobotBaseScript extends RobotBaseScript {
 def invokeMethod(String name, args) {
 getBinding().robot."${name.toLowerCase()}"(*args)
 }
}

For our direction constants, we use a custom binding class, overriding the
getVariable(String name) method so that we handle our own logic for retrieving
variables from the binding, as displayed in the following listing.

package v02.integration

import v02.model.Direction

class CustomBinding extends Binding {
 private Map variables

 CustomBinding(Map vars) {
 this.variables = [
 *: vars,
 *: Direction.values().collectEntries { [(it.name()): it] }
]
 }

 def getVariable(String name) {
 variables[name.toLowerCase()]
 }

}

Listing 19.17 Implementing invokeMethod() in the script base class

Listing 19.18 A custom binding overriding getVariable (String)

Intercepts
method
invocation

 b

Mixed-case script calls
become lowercase
robot calls c

Merges
constructor
variables
and Direction
constants

Variable lookup
via lowercase key
Licensed to Mark Watson <nordickan@gmail.com>

690 CHAPTER 19 Domain-specific languages
Putting these classes to use is shown in the following listing.

package v02

import org.codehaus.groovy.control.*
import v02.integration.*
import v02.model.*

def binding = new CustomBinding(robot: new Robot())

def config = new CompilerConfiguration()
config.scriptBaseClass = CaseRobotBaseScript.name

def shell = new GroovyShell(this.class.classLoader, binding, config)
shell.evaluate '''
 mOVe lEfT
'''

The techniques we’ve used so far were centered more around integration aspects.
They allowed us to properly integrate our business rules using our DSL, and cleanly
separate them from our domain model and from the infrastructural code, for a better
design, easier maintenance, and better overall readability, without the usual boiler-
plates of imports and too much punctuation.

 But we’ll discover many more techniques in the next sections to add more flesh to
our examples.

19.3 Adding properties to numbers
Assume you want to be more precise in your robot movements and specify distance.
We’ll create a third version of our robot system with a revamped and more powerful
domain model.

 How would you tell your rover to move right by two meters? We need to update
our move() method to support a direction and a distance, and we need to imple-
ment the concept of distance in our domain model. For the latter, we can represent
it as a combination of an amount (a number such as 2) and a unit (meters). Let’s
start with the unit that we can represent in the form of an enum, as shown in the fol-
lowing listing.

package v03.model

enum DistanceUnit {

 centimeter('cm', 0.01),
 meter ('m', 1),
 kilometer ('km', 1000)

 String abbreviation
 double multiplier

Listing 19.19 Using custom binding with lowercased variable names

Listing 19.20 Unit enum

Specifies script
base class
Licensed to Mark Watson <nordickan@gmail.com>

691Adding properties to numbers
 DistanceUnit(String abbr, double mult) {
 this.abbreviation = abbr
 this.multiplier = mult
 }

 String toString() { abbreviation }
}

For the Distance class, we’ll use our Unit enum and also have an amount, as shown in
this listing.

package v03.model

import groovy.transform.TupleConstructor

@TupleConstructor
class Distance {
 Number amount
 DistanceUnit unit

 String toString() { "$amount$unit" }
}

We update our Robot class to support a movement with a direction and a distance by
adding an overloaded move() method like this:

void move(Direction dir, Distance d) {
 println "robot moved $dir by $d"
}

In our DSL script, we can now call the new method with:

move right, new Distance(3, DistanceUnit.meters)

Is it satisfying? We’re back with a feeling of “programming” rather than giving plain
English commands to our robot. What can we do to make things better? We can inject
the Unit constants with another start static import injection, to have something like
the following:

move right, new Distance(3, meters)

We still have the new keyword, and the class name Distance, which are perhaps
slightly redundant: when a robot operator sees 3 and meters, it knows it’s a distance.
An increasing trend in the Java ecosystem is toward “fluent APIs,” that is, APIs that
“read” well, closer to what a spoken language is building. With a factory method on
Distance, we could turn our order into:

move right, Distance.of(3, meters)

This is already more pleasing to the eye, even if the overall command doesn’t yet
sound like an English sentence. But what we suggest now is that we support the follow-
ing syntax in our DSL:

move right, 3.meters

Listing 19.21 Distance class
Licensed to Mark Watson <nordickan@gmail.com>

692 CHAPTER 19 Domain-specific languages
This notation is much more concise, reads well, and is closer to plain English. Later,
we’ll also provide the shortcut notation of 3.m in the international measures format.
But how can we add properties to numbers in Groovy? We have a couple of approaches,
actually. As we’ve discovered in chapter 8 on the Groovy MOP, we can modify the meta
class or use a Groovy Category to add new methods and properties to any type, includ-
ing number types.

 We can add the meters property to the meta class of Number with a statement like:

Number.metaClass.getMeters = { new Distance(delegate, Unit.meters) }

But modifying the meta class has a drawback: its reach is pretty much global to our
JVM, and we’d pollute the namespace of numbers even outside the reach of our DSL.
We’d also need a place to register that method: we can obviously do that in our inte-
gration script as usual. As an alternative, we’d like to explore with you the idea of
using a Category. Categories have the nice quality of providing more fine-grained
control over the scope of the “monkey patching” we’re doing on numbers: changes
to the affected classes are only available under the runtime scope of the use()
method, and in the current thread exclusively. As soon as you leave the block, the
changes disappear.

 The following listing shows the implementation of our Category.

package v03.integration

import v03.model.*

class DistanceCategory {
 static Distance getCentimeters(Number num) {
 new Distance(num, Unit.centimeter)
 }

 static Distance getMeters(Number num) {
 new Distance(num, Unit.meter)
 }

 static Distance getKilometers(Number num) {
 new Distance(num, Unit.kilometer)
 }
}

Given our DistanceCategory implementation, we need to apply that Category to the
execution of our DSL script. To do that, we wrap the evaluation of the script with a
use() block as follows:

use(DistanceCategory) {
 shell.evaluate '''
 move left
 move right, 3.meters
 '''
}

Listing 19.22 Implementing a distance category
Licensed to Mark Watson <nordickan@gmail.com>

693Leveraging named arguments
Now we’re talking! Or that’s our DSL speaking for itself. Perhaps the DSL could also let
us express the logic with more formalism by allowing the following form:

move right, by: 3.meters

Notice that our method now takes a normal argument as well as a named argument.
Mixing named and non-named arguments is also a nice technique for making our
DSLs more fluent. In the next section, we’ll look at leveraging this approach.

19.4 Leveraging named arguments
Groovy’s support for named arguments in method calls helps clarify the meaning of
the parameters that are given to a method, instead of relying purely on the position of
those parameters.

 When a method call is made using a mix of named and non-named arguments,
Groovy follows a convention2 for the signature of the method to call. All named argu-
ments are put in a map, which is passed as the first argument of the call, and all the
other non-named arguments are passed afterward in the order they appear in the call.
More concretely, given a hypothetical call like:

method argOne, keyOne: valueOne, argTwo, keyTwo: valueTwo, argThree

Groovy’s runtime will interpret the call as:

method([keyOne: valueOne, keyTwo: valueTwo], argOne, argTwo, argThree)

and will in the end call the method with the signature:

def method(Map m, argOne, argTwo, argThree)

With that new knowledge in our bag of tricks, let’s see how we can apply that to our
Robot class by adding a new move() method variant with that approach:

void move(Map m, Direction dir) {
 println "robot moved $dir by $m.by"
}

That’s straightforward. All named arguments (here, only the by argument) are passed
in the first Map parameter of the method, and all the non-named arguments (here,
only the direction argument) are passed in the order they appear in the call, after
the Map.

 To go further with named arguments, we could imagine defining a speed of move-
ment, to support a usage such as:

move right, by: 3.meters, at: 5.km/h

2 As explained in chapter 7.
Licensed to Mark Watson <nordickan@gmail.com>

694 CHAPTER 19 Domain-specific languages
Our move() method can cope with an additional named argument, which will go into
the Map parameter. We need to adapt our dummy println statement for now:

void move(Map m, Direction dir) {
 println "robot moved $dir by $m.by at ${m.at ?: '1 km/h'}"
}

If no particular speed is provided, we assume the default speed is one kilometer per
hour by using the Elvis operator.

 Two things are not yet going to work: first, we haven’t defined abbreviations in our
distance category to support m, km, and so forth. The following listing shows an updated
distance category. Second, we have a notion of speed here, which is a distance divided
by a duration. But we have neither the notion of speed nor of duration.

package v03.integration

import v03.model.*

class DistanceCategory {
 // getCentrimeters, getMeters, getKilometers as before

 static Distance getCm(Number num) { getCentimeters(num) }

 static Distance getM(Number num) { getMeters(num) }

 static Distance getKm(Number num) { getKilometers(num) }
}

Let’s start with the notion of speed with the Speed class in the following listing, where
we assume that speed is always measured per hour.

package v03.model

import groovy.transform.TupleConstructor

@TupleConstructor
class Speed {
 Number amount
 Unit unit

 String toString() { "$amount $unit/h" }
}

Now we need to figure out how to construct our speed objects from our DSL. You
noticed that we used the division operator /, and an h constant. We’ll need two things:
operator overloading (seen in chapter 3) to call the div() method on distances and a
new constant in the binding of the script to provide the h hour unit.

 This time, we’ll start with the second point: we’ll introduce a duration concept and
inject the hour constant in the binding. For that we need a Duration enum as dis-
played in the following listing.

Listing 19.23 New unit shortcuts for distances

Listing 19.24 Speed class
Licensed to Mark Watson <nordickan@gmail.com>

695Leveraging named arguments
enum Duration {
 hour
}

And we can inject the hour constant manually into the binding, since we really only
care for that specific constant of time, with:

def binding = new Binding([
 robot: new Robot(),
 h: Duration.hour
])

When writing 5.km/h, we have the shortcut equivalent of 5.getKm().div(h). The
getKm() method comes from the DistanceCategory. And we need to amend the
Distance class to support the division as shown in the following listing.

package v03.model

import groovy.transform.TupleConstructor

@TupleConstructor
class Distance {
 double amount
 DistanceUnit unit

 Speed div(Duration dur) {
 new Speed(amount, unit)
 }

 String toString() { "$amount$unit" }
}

Supporting the familiar notation of speed as 5.km/h involved three techniques at the
same time: adding properties to number, operator overloading, and binding constant
injection. Sometimes, for more concise elements in your DSLs, you’ll need to combine
several techniques simultaneously to achieve your goals of readability and expressivity.

 Our more complex command now looks like this:

move right, by: 3.m, at: 5.km/h

It’s readable, like plain English, when we read that sentence aloud, but visually, some-
thing could be annoying: the quantity of punctuation needed to separate the ele-
ments of that sentence. What if we could get rid of commas and colons? Thanks to
Groovy’s command chains, we can go as far as writing this kind of statement:

move right by 3.m at 5.km/h

We got rid of the commas and colons, leaving the dots between the numbers and units
as the only punctuation. In the following section, we’ll look at these command chains,
so we can learn how to construct them for the benefit of our DSLs.

Listing 19.25 Duration enum

Listing 19.26 Updated distance with an overloaded division operator
Licensed to Mark Watson <nordickan@gmail.com>

696 CHAPTER 19 Domain-specific languages
19.5 Command chains
We started our journey about DSLs by talking about Groovy’s flexible nature, and par-
ticularly the fact we can drop parentheses (and semicolons) for top-level method calls.
A standalone call to a method that takes arguments can be written that way, making
our println’s a bit nicer on the eye. These language elements are called command
expressions or top-level statements, because they look more like commands or orders than
like usual Java programming. Method calls in a command chain can also take named
arguments, or a mix of named and non-named arguments, as we saw in our examples.

 When the Groovy developers designed that specific aspect of the syntax, they
always felt that we could probably go beyond top-level statements and find a way to
expand those simple command expressions into more complex constructs, where
we’d chain or nest method calls with that parentheses-free syntax. It took several years
before a proposal emerged providing an approach that sounded good enough, with a
good dose of groove, and that would help developers write even more beautiful DSLs.

 Let’s step back and analyze a simple command. It’s a method name (the method to
call), whitespace, and a comma-separated list of named and non-named arguments:

methodName argOne
methodName argOne, argTwo
methodName argOne, keyOne: valueOne, argTwo, keyTwo: valueTwo

We always have those two parts: method name and arguments.
 Now, what if we expanded that concept to chained method calls. What could the

syntax look like?

methodOne argOne methodTwo argTwo
methodOne argOne methodTwo argTwo methodThree argThree
methodOne argOne, keyOne: valueOne methodTwo argTwo, keyTwo: valueTwo

and how would they be interpreted? As chained method calls with the usual syntax:

methodOne(argOne).methodTwo(argTwo)
methodOne(argOne).methodTwo(argTwo).methodThree(argThree)
methodOne(argOne, keyOne: valueOne).methodTwo(argTwo, keyTwo: valueTwo)

Notice the alternation and repetition of a method name and arguments (named and
non-named). This is the essence of command chains as introduced in Groovy 1.8.

 For example, a syntax such as the one we want to achieve:

move right by 3.meters at 5.km/h

is equivalent to:

move(right).by(3.meters).at(5.km/h)

Once we’ve mentally managed to parse that new syntax with the correct added paren-
theses and dots, the implementation becomes trivial. We change the implementation
of the Robot class to have a move() method that takes a Direction, which returns an
object (instead of void currently) on which we can call a method named by() that
Licensed to Mark Watson <nordickan@gmail.com>

697Command chains
takes a Distance and returns yet another object (or the same!) that then has a
method called at() that takes a Speed as argument.

 This pattern is often used in Java fluent APIs, where we can chain method calls on
the same object, as all the methods in the chain return this, the current object on which
we operate. We could follow this approach of returning this, but instead, we’ll show
you a nice trick with nested maps and closures. The following listing shows what our
new move() method can look like.

def move(Direction dir) {
 [by: { Distance dist ->
 [at: { Speed speed ->
 println "robot moved $dir by $dist at $speed"
 }]
 }]
}

Let’s decompose that implementation in simple steps. First, our method is called
move(right). This call returns a map whose sole key is by. From that map, you get the
value associated with the by key; that’s a closure you call with the 3.meters distance as
a parameter, which in turn returns a new map with the at key, which then corresponds
to a last closure that we call, passing it the 5.km/h speed argument. This sequence of
calls is decomposed as shown in the following listing.

def map1 = move(right)
def byClosure = map1['by']
def map2 = byClosure(3.meters)
def atClosure = map2['at']
atClosure(5.km/h)

Knowing the Groovy syntax rules, we can equally write this as

move right by 3.meters at 5.km/h

Obviously, you’ll prefer the abbreviated version to the expanded one! At least I hope
so. Command chains allow you to write more English-friendly sentences with a mini-
mum amount of clutter.

 We discovered the pattern of the sequence of method name and arguments, with
an even number of elements (always a method and arguments), but it’s also possible
to have an odd number, with a series of method names and arguments, and a final
property access. Let’s look at that with a concrete example: our robot moves, but it
also has arms to examine the rocky soil, so we can tell it to deploy its left or right arm:

deploy left arm

Listing 19.27 Chained method calls with nested maps and closures

Listing 19.28 Decomposition of an extended command expression call sequence
Licensed to Mark Watson <nordickan@gmail.com>

698 CHAPTER 19 Domain-specific languages

Un
param
Now we have a “sentence” with three words. It no longer fits our pattern of method
name/arguments. But when faced with an odd number of “elements,” command
chains have their own tricks! The last element is a property access. The previous com-
mand is equivalent to:

deploy(left).arm

If you want to implement that chain of calls, you can apply our technique with nested
maps and closures, but with a little twist, as the last element isn’t a method call:

def deploy(Direction dir) {
 [arm: {-> println "deploy $dir arm" }()]
}

Notice here how the arm property from the map is associated with a closure call—see
the parentheses after the closure definition. Otherwise, the .arm part of the expres-
sion would return the closure without executing it.

 Similarly with the odd number of words, we can use silent words as parameters of
chained method calls, and use maps with default values in the place of method names
as shown in the following listing with a trading DSL.

def of = "silent word"

def buy(n) {
 [shares: { of ->
 [:].withDefault { ticker ->
 println "buy $n shares of $ticker"
 }
 }]
}

buy 200 shares of GOOG

We define a dummy variable called of B, to which we assign a random value (it could as
well be null). This variable is passed as a parameter of the closure value of the shares
key of the map c, but we don’t use that parameter through the rest of the implementa-
tion. Because we may have an infinite set of stock tickers (unlike in the case of the Mars
rover with only a finite set of instruments like its arm), we use a map with default values,
thanks to the GDK method withDefault()d. Each time we try to access a key that
wasn’t in the original empty map on which that method is called, we execute the closure
(which simply prints a message here).

 With this style of implementing command chains, we can tackle DSL sentences that
are more varied in style, and can correspond to proper English. But DSLs aren’t only
about the ability to write English phrases, and we can go beyond imperative commands
and add various forms of control flow to our minilanguages. It’s possible to use all the
control flow logic from Groovy in your DSLs (if/else, for loops, while loops, etc.), but
in the next section, we’ll also discover how to create your own control structures.

Listing 19.29 An order DSL

Defines
silent word b

used
eter c Map with Closure

defining behavior for
unknown keys d
Licensed to Mark Watson <nordickan@gmail.com>

699Defining your own control structures
19.6 Defining your own control structures
The ubiquitous if branching instruction is available in virtually all programming lan-
guages. It takes a boolean expression as parameter, and a block of code that is exe-
cuted when the boolean expression is evaluated to true. For some reason, perhaps
your business users are more comfortable with when than if? Could we have a control
structure like if, but with a when as keyword? What would we need to achieve that
goal? A method taking a boolean expression and a closure to represent our code
block to execute, as this listing shows.

def when(boolean condition, Closure block) {
 if (condition) block()
}

def a = 1
def b = 2

when(a < b, { println "a < b" })

Our when() method does take a boolean expression as first parameter and a closure
as second parameter B, but this doesn’t look the same as our if statement yet. What’s
missing? You guessed it, we remember about the syntactical rule that allows us to put
the last closure argument outside the parentheses, such as inject(seed){}, and so
forth. By following this rule, we can rewrite our control structure as:

when (a < b) { println "a < b" }

This is exactly what we wanted to achieve; we now have created a synonym for if. You
can also imagine implementing an unless method that would be like if, but when
negating the Boolean expression: unless (condition) {}.

 The astute reader might, however, notice one thing: because that’s a closure we
pass as last argument, the curly braces are always needed even when the closure only
contains one instruction. Some will say it’s a nice way of enforcing the good practice
of always requiring curly braces, but others could think it’s a lack of flexibility.

 Cases like this, where mere method calls with nice Groovy syntax tweaks exist, still
differ in one way or another, but we can find workarounds; for example, by using AST
transformations to alter the structure of our programs to reach our syntactical goals.
As a developer, you should also remember that it can come at a certain price. If you
want to have your when statement support single block statements without curly
braces, you have to implement an AST transformation. You’d have more code to
develop, test, and maintain, and it’ll take more time.

 As a developer, and as the guiding hand of the syntax of the DSL, you might have to
make compromises. Do your users want as much flexibility of syntax as possible but at
the expense of more time spent implementing the feature and more code to develop
and maintain? Are your users happy with a little sacrifice (such as requiring curly

Listing 19.30 An alternative to if

Closure is the
last parameter.

 b
Licensed to Mark Watson <nordickan@gmail.com>

700 CHAPTER 19 Domain-specific languages
braces) but want their DSL implemented more rapidly and have it be easier to develop
and maintain for the developers?

 You have to keep those considerations in mind when crafting your DSL. Sometimes,
as developers, we tend to overengineer code because we think it’ll please the end users,
but we forget the agile mantra of “YAGNI” (You Ain’t Gonna Need It), as those end users
don’t necessarily need that added flexibility of the language you’re creating for them.

 After this little warning stance, you may still want to know the solution on how to
get rid of curly braces? We’ll get to that shortly! First let’s look at another example
where curly braces might be good to remove, because the behavior of the code might
be surprising otherwise and where mandating the curly braces makes the statement
look weirder than it should.

 Let’s introduce the until construct. Like while, until is a looping construct. The
sole difference is that instead of looping while a condition is true, we’ll loop until the
condition’s evaluation becomes true. The problem here is that the condition should be
evaluated each time we iterate and call the block of code to see if we must still con-
tinue to iterate or stop. If we tried the naïve approach of the following listing, we’d get
an infinite loop, because the condition is evaluated once as false, and the condition
isn’t re-evaluated later on.

def until(boolean condition, Closure closure) {
 while (!condition) closure()
}

def counter = 0

until(counter == 10) {
 counter++
}

When the call to the until() method is made B, the Boolean expression is evaluated
only once, at that specific moment. It’s not re-evaluated each time. The consequence
is that our while loop in the implementation will loop forever, which is definitely not
the outcome we wished for. How can we have an expression that is re-evaluated each
time? By using a closure, as the following listing illustrates.

def until(Closure condition, Closure closure) {
 while (!condition()) closure()
}

def counter = 0

until({ counter == 10 }) {
 counter++
}

assert counter == 10

Listing 19.31 Erroneous implementation of the until construct

Listing 19.32 Implementation of until() using a closure condition

Eagerly
calculated
expression

 b

Evaluating closure
for each iteration b

Passing a closure
as first parameter c
Licensed to Mark Watson <nordickan@gmail.com>

701Defining your own control structures
In this implementation, we pass a closure as the first parameter in the until()
method call c and we negate the result of evaluating this closure condition during
each loop iteration B. But we also notice that the until() usage has become some-
what less appealing because we require curly braces for the condition c, making the
look different from our goal of creating a construct like while(). Obviously, as in our
when case, we wouldn’t mind also getting rid of the curly braces for the block of code
as well (the one increasing the counter).

 We’ve already come up with three cases where it could be handy if we could treat a
simple statement or expression as if it were a closure, by managing to find a solution
where we could abandon the surrounding curly braces.

 In the case of the when statement, we’d have to transform:

when (condition);
statement;

into:

when (condition) {
 statement
}

Whereas in the case of until, we’d like to transform:

until ({ condition }) {
 statement
}

into the following:

until (condition) {
 statement
}

Or if we wanted to get rid the curly braces of the single statement case that means
transforming:

until (condition);
statement;

into this form:

until ({ condition }) {
 statement
}

Have you fastened your seat belt? Okay, let’s have fun transforming nodes of the AST
that the Groovy parser creates!

 In the following paragraphs, we’ll focus on one particular transformation: allowing
curly-braces-free when calls. We’ll let you have fun with implementing all the cases—
otherwise we’d have to kill a couple more trees for producing the book with the
increased number of pages.
Licensed to Mark Watson <nordickan@gmail.com>

702 CHAPTER 19 Domain-specific languages
 In chapter 9, you learned about the two kinds of transformations Groovy supports:
local and global transformations. Global transformations, in our case, are interesting
because they’re applied everywhere without the need of decorating elements of our
business code with annotations, but that’s also the drawback of the global application
of the transformation, so everywhere we might have a until or when, the transformation
kicks in. Conversely, although local transformations exhibit annotations that may be for-
eign to business users’ eyes, they have the advantage that the transformations are local.

 For the purpose of this example, we’ll use local transformations, but as we don’t
want to impose on our business users to have to use an explicit annotation, you’ll also
learn how to hide the annotation, by injecting the local transformation transparently,
thanks to compilation customizers. We’ll get the benefits of both kinds of transformations
without their drawbacks: locality and transparency of application.

 We’ll start by defining an annotation for our local transformation. The following
listing shows our annotation definition.

package xform

import java.lang.annotation.*
import org.codehaus.groovy.transform.*

@Retention(RetentionPolicy.SOURCE)
@Target(ElementType.TYPE)
@GroovyASTTransformationClass(classes = [WhenUntilTransform])
@interface CustomControlStructure {}

Our annotation doesn’t have to be available at runtime through reflection, so the
source retention policy B will be sufficient for our needs. The annotation will be put
on types (that is, classes) c and we’ll see how to inject that annotation on the base
script of our business rules. We instruct the compiler d that the transformation is
implemented by the class called WhenUntilTransform.

 Let’s build an empty skeleton for our transformation, as shown in the following
listing, that we’ll flesh out as we progress on our journey.

import org.codehaus.groovy.ast.*
import org.codehaus.groovy.control.*
import org.codehaus.groovy.transform.*

@GroovyASTTransformation(phase = CompilePhase.SEMANTIC_ANALYSIS)
class WhenUntilTransform implements ASTTransformation {
 void visit(ASTNode[] nodes, SourceUnit unit) {
 // we’ll fill in the gaps!
 }
}

Listing 19.33 CustomControlStructure annotation

Listing 19.34 The WhenUntilTransform class

Annotation
thrown away
before runtime

 b

Class
annotation

 c

Reference to transform
implementation class d
Licensed to Mark Watson <nordickan@gmail.com>

703Defining your own control structures

Popul
bind

w
custo

Def
b

sc

s
ured
To take care of our new control structure, we use a technique we’ve already used, with
a base script class implementing our special when() method, taking a Boolean and a
closure as parameters, as shown in the following listing.

package xform

abstract class BusinessLogicScript extends Script {
 def when(boolean condition, Closure closure) {
 if (condition) closure()
 }
}

As we flesh out our overall solution, we need a little infrastructure to test our transfor-
mation as shown in the following listing.

package xform

import org.codehaus.groovy.control.CompilerConfiguration
import org.codehaus.groovy.control.customizers.ASTTransformationCustomizer

def binding = new Binding([customer: [name: 'John Doe', age: 32]])

def config = new CompilerConfiguration()
config.scriptBaseClass = BusinessLogicScript.class.name
config.addCompilationCustomizers(
 new ASTTransformationCustomizer(CustomControlStructure))

def shell = new GroovyShell(this.class.classLoader, binding, config)
def result = shell.evaluate '''
 when (customer.age >= 21) {
 "Alcohol allowed for ${customer.name}"
 }
'''
assert result == "Alcohol allowed for John Doe"

We’ll define a binding containing the data on which our business rule will work B. We
inject a variable called customer corresponding to a simple map (but you can use plain
classes, numbers, or whatever you want). We instantiate a CompilerConfiguration
object that we’ll use to define a base script class c, for our business logic (that we
defined) d and a compiler customizer that will inject our local AST transformation e.
GroovyShell will be our weapon of choice again for evaluating our business rules
using our new control structure. When instantiating the shell, we pass the current
classloader of the script as a parameter f. As we scaffold this example in the Groovy
console, and I put everything (annotation and transformation) in the same compila-
tion unit (that is, in the same script), the shell needs to know all the classes that we’re

Listing 19.35 A base script class for our business logic's control structure

Listing 19.36 Testing our transformation

ates
ing
ith

mer

 b

Config
instance

 c

ines
ase
ript d

Injects transform
annotation

 e

Create
config
shell fEvaluates

script
 g

Confirms
result h
Licensed to Mark Watson <nordickan@gmail.com>

704 CHAPTER 19 Domain-specific languages
working on. We pass the binding for sharing the information that our business rules
need and for the compiler configuration object. The business rule using our custom
control structure g is executed with the evaluate() method of the shell. We can
then check the result returned by the evaluation of the business rule h.

 So far so good, but what happens if we remove the curly braces to implement our
no-curlies requirement? We get the following exception:

groovy.lang.MissingMethodException: No signature of method:
BusinessLogic.when() is applicable for argument types: (java.lang.Boolean)
values: [false]
Possible solutions: when(boolean, groovy.lang.Closure), wait(), …
at BusinessLogic.run(Script1.groovy:9)

What’s happening here? As we hinted before, Groovy thinks the when method call
takes only a Boolean argument and treats the supposed body of the when as another
statement, not part of the when call. It treats that code as if it were written as follows
(semicolons helps better visualize what Groovy understands here):

when (customer.age >= 21);
"Alcohol allowed for ${customer.name}";

The goal of our transformation is to analyze this AST to recognize the when calls, to
wrap the following standalone statement within a closure expression, and to pass that
expression as a second parameter of the when calls, while removing that free-standing
statement from the code block it belongs to.

 Let’s put that plan into action by filling the gaps of our transformation’s visit()
method, by creating our own implementation of ClassCodeVisitorSupport, as shown
in the following listing.

@GroovyASTTransformation(phase = CompilePhase.CONVERSION)
class WhenUntilTransform implements ASTTransformation {
 void visit(ASTNode[] nodes, SourceUnit unit) {
 ClassNode annotatedClass = nodes[1]
 new ClassCodeVisitorSupport() {
 def currentMethod
 def currentBlock
 def currentStatement
 void visitMethod(MethodNode method) {
 currentMethod = method
 super.visitMethod(method)
 }
 void visitBlockStatement(BlockStatement block) {
 currentBlock = block
 super.visitBlockStatement(block)
 }

Listing 19.37 Implementing ClassCodeVisitorSupport
Licensed to Mark Watson <nordickan@gmail.com>

705Defining your own control structures
 void visitExpressionStatement(ExpressionStatement statement) {
 currentStatement = statement
 super.visitExpressionStatement(statement)
 }
 void visitMethodCallExpression(MethodCallExpression mCall) {
 super.visitMethodCallExpression(mCall)
 }
 protected SourceUnit getSourceUnit() { unit }
 }.visitClass(annotatedClass)
 }
}

ClassCodeVisitorSupport will be handy for us, for visiting the data structure that is
the AST. It implements the famous Visitor pattern, calling many visit* methods, as it
encounters a particular node in the AST.

 In our situation, we’re interested in four methods: visitMethod(), visitBlock-
Statement(), visitExpressionStatement(), and visitMethodCallExpression().

 To illustrate why those four methods are the ones we’ll pay attention to, let’s look
at the structure of the AST for the following when instruction:

when (a > b) {
 println "a > b"
}

When parsed into its AST, this code will be represented as shown in Figure 19.1.
 The when MethodCallExpression is wrapped in an ExpressionStatement, which

is an element of the list of statements of the BlockStatement, that is in turn child
of a MethodNode. We’ll track this structure by implementing the four adequate visi-
tor methods.

 Note that we’re always calling the super methods of the same name, as the parent
class of our anonymous inner class knows all the traversing logic, and you don’t have
to take care of that logic yourself.

 Let’s focus on the visitMethodCall() implementation now, as the other methods
are here only to track where we are in the AST, and have the right pointers for the

Figure 19.1 Structure of
a when() call
Licensed to Mark Watson <nordickan@gmail.com>

706 CHAPTER 19 Domain-specific languages

s)

F
e

places where the modifications of the AST will happen. Here’s how we can find the rel-
evant when() calls we want to look at.

void visitMethodCallExpression(MethodCallExpression mCall) {
 if (
 mCall.objectExpression instanceof VariableExpression &&
 mCall.objectExpression.variable == 'this' &&
 mCall.method instanceof ConstantExpression &&
 mCall.method.value == 'when' &&
 mCall.arguments.expressions.size() == 1
) {}
 super.visitMethodCallExpression(mCall)
}

Such when() calls are actually method calls on the this variable expression B, and
the name of the method being called is a constant expression with value “when” c.
We also differentiate calls when the normal Boolean/closure pair is used as argu-
ments, or when we trick the compiler into believing a when(boolean) call followed by
a plain statement is another form of our control structure. Here we don’t want to
modify the Boolean/closure call at all, only the latter one.

 We found the calls we want to act upon, now what? First, we should check that
there’s another statement after the when call that will be our single-statement when
body. Otherwise, if there were no following statement, the when instruction wouldn’t
be complete, and that would be flagged as a compilation error. But how do we know
there’s no following statement?

 We’ll look at the list of statements contained in the block statement and find the
index of the expression statement wrapping the method call B to check if its index is
the last one of the block c. If the index is the last one, the associated when statement
is missing, and we’re instructing the compiler that a compilation error should occur.

def idx = currentBlock.statements.findIndexOf {
 it == currentStatement
}
if (idx + 1 >= currentBlock.statements.size()) {
 addError("The when instruction has no body.", mCall)
} else { /* ... */ }

As usual, the GDK offers useful methods that we can take advantage of. For example,
the findIndexOf() method allows us to find the index of the statement wrapping the
when call, in the list of statements of the current block of code B. As you realize, the
other visitor methods helped us track where we were (current code block and current
statement). With the knowledge of the position of the statement in the block, we ver-
ify that the call isn’t the last element of the block c, otherwise no following statement
can be attached to our when call. If this verification fails, we add a compilation error
message d that the compiler will report! You can check that the error is thrown by

Matches
"this" part of
this.when(arg

 b

Matches constant name
"when" of this.when(args)

 c

Matches one arg
form of when(args)

Finds statement’s position
in current block

 b

Checks if statement
is last in block c

lags
rror

 d
Licensed to Mark Watson <nordickan@gmail.com>

707Defining your own control structures
temporarily commenting out the last statement of the business rule. In the else part,
we’ll continue our implementation with the transformation per se.

 What’s left to do? We want to find the statement associated with our when call, wrap
it in a closure, and modify the when call to take that closure a second parameter.

 We know the index of the when call, so the statement to be attached is the one fol-
lowing when:

def whenCode = currentBlock.statements[idx + 1]

We wrap that code within a ClosureExpression, whose constructor takes two argu-
ments: an array of parameters that the closure can receive, and the statements form-
ing the body of the closure:

def closureExp = new ClosureExpression(Parameter.EMPTY_ARRAY, whenCode)

With that closure expression we created, we can push it as a second parameter of our
when call with:

mCall.arguments.addExpression(closureExp)

The statement that we wrapped in a closure is still present in the list of statements of
the block of code containing our when call, so we need, as a last step, to remove it from
the list of statements with:

currentBlock.statements.remove(idx + 1)

Now, if you run the business rule again, you’ll notice that the new syntax is allowed: a
when call and a curly-braces-free single statement. Our final transformation class is
shown in the following listing.

import org.codehaus.groovy.ast.*
import org.codehaus.groovy.ast.expr.*
import org.codehaus.groovy.ast.stmt.*
import org.codehaus.groovy.control.*
import org.codehaus.groovy.transform.*

@GroovyASTTransformation(phase = CompilePhase.SEMANTIC_ANALYSIS)
class WhenUntilTransform implements ASTTransformation {
 void visit(ASTNode[] nodes, SourceUnit unit) {
 ClassNode annotatedClass = nodes[1]
 new ClassCodeVisitorSupport() {
 def currentMethod
 def currentBlock
 def currentStatement
 void visitMethod(MethodNode method) {
 currentMethod = method
 super.visitMethod(method)
 }

Listing 19.38 The complete AST transformation to allow brace-free when statements
Licensed to Mark Watson <nordickan@gmail.com>

708 CHAPTER 19 Domain-specific languages
 void visitBlockStatement(BlockStatement block) {
 currentBlock = block
 super.visitBlockStatement(block)
 }
 void visitExpressionStatement(ExpressionStatement statement) {
 currentStatement = statement
 super.visitExpressionStatement(statement)
 }
 void visitMethodCallExpression(MethodCallExpression mCall) {
 if (
 mCall.objectExpression instanceof VariableExpression &&
 mCall.objectExpression.variable == 'this' &&
 mCall.method instanceof ConstantExpression &&
 mCall.method.value == 'when' &&
 mCall.arguments.expressions.size() == 1
) {
 def idx = currentBlock.statements.findIndexOf {
 it == currentStatement
 }
 if (idx + 1 >= currentBlock.statements.size()) {
 addError(
 "The when instruction has no body.", mCall)
 } else {
 def whenCode = currentBlock.statements[idx + 1]
 def closureExp = new ClosureExpression(
 Parameter.EMPTY_ARRAY, whenCode)
 closureExp.variableScope = new VariableScope()
 closureExp.variableScope.parent =
 currentBlock.variableScope
 mCall.arguments.addExpression(closureExp)
 currentBlock.statements.remove(idx + 1)
 }
 }
 super.visitMethodCallExpression(mCall)
 }
 protected SourceUnit getSourceUnit() { unit }
 }.visitClass(annotatedClass)
 }
}

Such a transformation isn’t necessarily a big amount of code, but the explanations
usually take longer than what it takes in lines of code. The hardest part we would say is
to get to know better the internals of the Groovy compiler and its machinery, and how
the AST is structured.

 We solved one of the cases we listed, and we’ll leave, as an exercise to the reader,
fleshing out this transformation to cover the other cases. This would also be a good
time to go back to listing 19.36, delete the braces after the when condition, and see
John Doe still getting his drink.

 Before closing this section on custom control structures, let’s look at one more,
where we can take advantage of command chains. Many testing frameworks follow the
Licensed to Mark Watson <nordickan@gmail.com>

709Defining your own control structures
BDD approach, adopting the vocabulary of user stories: given/when/then. Let’s con-
sider the scenario:

■ Given two numbers, a and b, whose values are 1 and 2
■ When you add a and b together
■ Then the result of the addition is 3

We can interpret that scenario with the custom control structure shown next. It’s a
similar construct as if / else:

given {
 a = 1
 b = 2
} when {
 result = a + b
} then {
 result == 3
}

Such a structure is a chained method call structure equivalent to:

given({ … }}.when({ … }).then({ … })

We’ll apply the technique that we’ve learned with nested maps and closures:

def given(Closure g) {
 g()
 [when: { Closure w ->
 w()
 [then: { Closure t ->
 t()
 }]
 }]
}

The three closures are called and executed serially.
 In the context of a script, when you assign values to variables that haven’t been

defined, then the script binding is used to store those values. Our example works
fine inside a script. But if you’d run this inside a class, you’d get the following error
message:

groovy.lang.MissingPropertyException: No such property: a for class: Test

To make it work for classes as well, you should use a value holder object, for example
a map, as delegate of all the closures. And to have the assignments be done on that
value holder object, you should also set the resolve strategy of closures to use the
delegate first. Otherwise, the containing class would be used, as shown in the follow-
ing listing:

Licensed to Mark Watson <nordickan@gmail.com>

710 CHAPTER 19 Domain-specific languages
def given(Closure g) {
 def valueHolder = [:]
 g.delegate = valueHolder
 g.resolveStrategy = Closure.DELEGATE_FIRST
 g()
 [when: { Closure w ->
 w.delegate = valueHolder
 w.resolveStrategy = Closure.DELEGATE_FIRST
 w()
 [then: { Closure t ->
 t.delegate = valueHolder
 t.resolveStrategy = Closure.DELEGATE_FIRST
 t()
 }]
 }]
}

Taking advantage of the way properties are resolved in the context of a closure is often
used in DSLs, for builders for example, for switching the context of execution. In the
next section, it’s worth investigating what you can do with this technique, and particu-
larly, how you can use Groovy’s with{} method.

19.7 Context switching with closures
When you use POJOs (Plain Old Java Objects) or POGOs (Plain Old Groovy Objects)
with many properties or when you assign values to many of those properties, your code
can become quite verbose.

 Consider an address bean like this:

class Address {
 String line1
 String line2
 String city
 String zipCode
 String country
}

If you instantiate such a class the “Java-way,” you’d get the following code:

def addr = new Address()
addr.line1 = '1st, Main Street'
addr.line2 = 'Suite 345'
addr.city = 'Metropolis'
addr.zipCode = '12345'

The verbosity shows itself with the repetition of the addr. prefix. Constructors with
named arguments improve the situation:

addr = new Address(
 line1: '1st, Main Street',
 line2: 'Suite 345',

Listing 19.39 given/when/then with closure delegation
Licensed to Mark Watson <nordickan@gmail.com>

711Context switching with closures
 city: 'Metropolis',
 zipCode: '12345'
)

Groovy also adopts the context switching technique with closure delegation in the
form of the with{} method:

addr = new Address()
addr.with {
 line1 = '1st, Main Street'
 line2 = 'Suite 345'
 city = 'Metropolis'
 zipCode = '12345'
}

All the assignments are done on the properties of the object. They aren’t done on cer-
tain fields or local variables.

 Coming back to our examples with our Mars rover, a simple context switching
might have been good enough for our users, as demonstrated by the following listing.
This example also proves this context switching works as well with method calls.

package v03

import v03.model.Robot
import static v03.model.Direction.*

def robot = new Robot()

robot.with {
 move left
 move forward
}

We again use the with{} method with our robot instance B, and we can give it its
orders with the streamlined syntax c.

 One little downside, though, is that perhaps the usage of with as a method name
doesn’t look ideal within the context of the rover, but we can alias this method by add-
ing (or injecting by metaprogramming) a method on Robot that would delegate to
Groovy’s with{} method:

void execute(Closure actions) {
 this.with actions
}

Then you’d be able to send your commands that way:

robot.execute {
 move left
 move forward
}

Let’s finish this section with a concrete example of how we can improve the usage of a
library, using command chains, and using with{} again. In recent years, we’ve seen

Listing 19.40 Robot and context switching with closures

Demarcates block
where robot will
be delegate

 b

Streamlined syntax
available within block

 c
Licensed to Mark Watson <nordickan@gmail.com>

712 CHAPTER 19 Domain-specific languages
many projects using the fluent API approach that we mentioned when we spoke about
command chains. To illustrate, we’ll take inspiration from a class called FetchOptions
from the Google App Engine SDK that’s used to parameterize how data is fetched
from the datastore used for storing nonrelational information. This class can be easily
replicated by the class presented in the following listing.

final class FetchOptions {
 private int limit, offset, chunkSize, prefetchSize

 private FetchOptions() {}

 FetchOptions limit(int lim) {
 this.limit = lim
 return this
 }

 FetchOptions offset(int offs) {
 this.offset = offs
 return this
 }

 FetchOptions chunkSize(int cs) {
 this.chunkSize = cs
 return this
 }

 FetchOptions prefetchSize(int ps) {
 this.prefetchSize = ps
 return this
 }

 static final class Builder {
 private Builder() {}
 static FetchOptions withDefaults() {
 new FetchOptions()
 }

 static FetchOptions withLimit(int lim) {
 new FetchOptions().limit(lim)
 }

 static FetchOptions withOffset(int offs) {
 new FetchOptions().offset(offs)
 }

 static FetchOptions withChunkSize(int cs) {
 new FetchOptions().chunkSize(cs)
 }

 static FetchOptions withPrefetchSize(int ps) {
 new FetchOptions().prefetchSize(ps)
 }
 }
}

The FetchOptions class is an implementation of the classic Gang of Four Builder pat-
tern. You can find variants with slightly different approaches, but the key aspect and

Listing 19.41 A fluent API example

Non-extensible
class c

Private
constructor d

Enables
chaining b

Non-extensible
class

 f

Private
constructor

 g

Default factory
method

 e

A specialized
factory method h
Licensed to Mark Watson <nordickan@gmail.com>

713Context switching with closures
common gene between implementations is the fact that you have several methods
always returning this, the current instance B. That way, you can chain calls to meth-
ods of that instance that you’re building and create sentences that read well, although
with a bit too much punctuation that hinders the reading of those sentences.

 Looking at c, you quickly realize that you cannot extend the class at will because
the class is final, and you cannot easily instantiate it as the constructor is private d.
The sole class allowed to instantiate FetchOptions is the internal Builder class, which
does so in various places, such as within the default factory method e, but unfortu-
nately, this class is once again final F and has got a private constructor G. It’s not
friendly for hacking!

 The Builder class then gives you specialized static factory methods (such as H) so
you can create FetchOptions instances, and then chain calls easily on FetchOptions
once your first instance is created.

 Let’s use this FetchOptions class and its Builder:

def options = FetchOptions.Builder.withLimit(10).offset(60).chunkSize(1000)

Having to prefix all options creations with FetchOptions.Builder isn’t necessarily
beautiful. But if you use a static import on the methods of the Builder, then the situa-
tion improves nicely with:

import static FetchOptions.Builder.*

def options = withLimit(10).offset(60).chunkSize(1000)

Combine that with command chains, and you can remove much of the punctua-
tion noise:

def options = withLimit 10 offset 60 chunkSize 1000

What happens if you have such fluent APIs with a long list of methods we need to call
in a chain? You’ll have to split the statement across several lines. Without command
chain expressions, you can get away3 with:

def options = withLimit(10)
 .offset(60)
 .chunkSize(1000)

With command chains, you’d have to use a backslash to split over several lines; oth-
erwise the Groovy compiler might think these are individual method calls (that is,
not chained):

def options = withLimit 10 \
 offset 60 \
 chunkSize 1000

3 Beware of automatic code formatters that often get this so wrong that you need to fall back to tricks such as
trailing every line with a // comment so that they leave your carefully crafted code alone.
Licensed to Mark Watson <nordickan@gmail.com>

714 CHAPTER 19 Domain-specific languages
Using backslashes is probably not intuitive for business users. Furthermore with a
static import, we don’t necessarily remember that we’re creating fetch options, because
all we see is a long list of options.

 What are we trying to achieve here? We want to have a concise and readable way of
expressing the creation of fetch options. We’d like to define the options on one line
or many, transparently, but not at the expense of odd characters or abandoning
command chain expressions, and still be able to recognize them at a glace as fetch
options. Fortunately, there’s a solution for that: by combining static imports, com-
mand chains, and context switching with with{}.

 Let’s create our own fetch options builder utility class that will wrap the use of
FetchOptions.Builder, as shown in the following listing.

class FetchOptionsBuilder {
 static FetchOptions fetchOptions(Closure c) {
 def opts = FetchOptions.Builder.withDefaults()
 opts.with c
 return opts
 }
}

Our FetchOptionsBuilder class contains a single static method called fetchOptions.
We can static import it too. What’s more interesting are the three lines of code from
this single method. The first one hides the slightly noisy code for creating the first
fetch options instance. The second one then uses with to delegate all method calls
and property accesses from within the body of the closure passed as a parameter, so
that the calls and access are routed to the FetchOptions. The last one returns that
FetchOptions instance.

 Let’s see this in action in the following listing.

import static FetchOptionsBuilder.fetchOptions

fetchOptions {
 limit 10 offset 60
 chunkSize 1000
}

You can create a FetchOptions instance by importing and calling our newly created
utility class and its static method, passing a closure to that method call, in which you
can then define all the options you need, and chaining calls on a single line with com-
mand chains, or by stacking them up spanning several lines, or even a combination of
both. Furthermore, you can assign the result of that call to variables, or use such calls
verbatim as parameters of the datastore commands.

Listing 19.42 The FetchOptionsBuilder class

Listing 19.43 The FetchOptionsBuilder in action
Licensed to Mark Watson <nordickan@gmail.com>

715Another technique for builders
 All of that without the standard method call syntax of Java or too much punctua-
tion or weird line continuation characters. We managed to enhance our library with a
more Groovy-friendly builder class to instantiate a complex object.

 Speaking of builders, we’ve talked about closure delegation and resolve strategy, a
technique used by Groovy’s with{} method and by many builders in the wild (like
Grails’s), and you also learned about them in the chapter about Groovy builders, on
how to use existing ones provided by Groovy or how to create your own. Groovy build-
ers are great for creating hierarchical data structures. In the next section, I’ll show you
another handy trick to creating such trees of data.

19.8 Another technique for builders
Hierarchical data is everywhere. Groovy builders can come to the rescue for imple-
menting a DSL for hierarchical representations (extending BuilderSupport, Factory-
BuilderSupport, or using ObjectGraphBuilder), but you can also take advantage of
the @Newify transformation. But first, a few words about this transformation.

 The standard way of instantiating a class is to use the new keyword that calls one of
the constructors of the class. Several languages beyond Groovy use this notation, but
others adopt different syntaxes. Ruby prefers a factory-like approach where new is a
class method, so you can call MyObject.new(). Python appends parentheses and argu-
ments to the name of the class with MyObject(). The @Newify transformation is
designed to add those syntaxes to Groovy, as shown in the following listing.

import groovy.transform.ToString

@ToString
class Car {
 String make
 String model
}

@Newify
def car = Car.new(make: 'Porsche', model: '911')

assert car.toString() == 'Car(Porsche, 911)'

To use the Ruby-style approach, you annotate a class, a method, a field, or a local vari-
able with @Newify, as shown in listing 19.44. Then in the scope of application of that
annotation, a new static method new() appears on all types so that you can instantiate
objects by calling that factory method.

 For Python-style notation, you need to use the @Newify annotation4 with a class or
array of classes as a parameter, as demonstrated in the following listing.

Listing 19.44 Ruby-style instantiation

4 Contrast what @Newify achieves in these examples with the addition of the make() method we achieved
through metaprogramming in section 8.5.2.
Licensed to Mark Watson <nordickan@gmail.com>

716 CHAPTER 19 Domain-specific languages
import groovy.transform.Canonical

@Canonical
class Country {
 String name
}

@Canonical
class City {
 String name
 String zipCode
 Country country
}

@Newify([City, Country])
def paris = City('Paris', '75000', Country('France'))

assert paris.toString() == 'City(Paris, 75000, Country(France))'

Given the Country and City classes, and using the @Canonical transformation to have
a nice toString() output and a Java-like tuple constructor, we can then apply the
@Newify transformation to the classes for which we want to abandon the usage of
the new keyword altogether.

 You see in that example how we can build something from its parts with a more con-
cise instantiation notation. Let’s push that further with another example where we can
have an arbitrarily nested structure. As we’re in the chapter about DSLs, and the L stands
for language, we’re going to build a term expression language to represent a formula.

 We need a base interface for representing terms, as well as several implementa-
tions of that term: one for a value, one for representing an addition, and another one
for a multiplication (and you can add others if you so desire). The following listing
gives you those interfaces and classes to get started building your term structures.

import groovy.transform.*

interface Term {}

@Canonical
class Value implements Term {
 def content
}

@Canonical
class Add implements Term {
 def left, right
}

@Canonical
class Mult implements Term {
 def left, right
}

Listing 19.45 Python-style instantiation

Listing 19.46 Term, Value, Add, and Mult types
Licensed to Mark Watson <nordickan@gmail.com>

717Another technique for builders
With a Java-like instantiation, to represent the expression a * (b + c), you’d need to
write it as follows:

def term =
 new Mult(new Value('a'), new Add(new Value('b'), new Value('c')))

That’s a lot of new keywords! But if you apply the @Newify transformation, the expres-
sion becomes easier to read:

@Newify([Value, Mult, Add])
def term2 = Mult(Value('a'), Add(Value('b'), Value('c')))

Well, the expression itself is nice, but you pay the price of the annotation for the local
transformation. You’re familiar with CompilerConfiguration and its compilation cus-
tomizer to transparently inject local transformations to make their use invisible from
the user’s perspective. We won’t let you do this one as an exercise, because it’s impor-
tant to look at how we can inject a local transformation that takes parameters—so far,
the ones we injected didn’t need any. The following listing shows you how do that.

import org.codehaus.groovy.control.CompilerConfiguration
import org.codehaus.groovy.control.customizers.ASTTransformationCustomizer

def config = new CompilerConfiguration()
config.addCompilationCustomizers(
 new ASTTransformationCustomizer(
 value: [Value, Mult, Add], Newify)
)
def shell = new GroovyShell(
 this.class.classLoader, new Binding(), config)

def term3 = shell.evaluate '''
 Mult(
 Value('a'),
 Add(
 Value('b'),
 Value('c')
)
)
'''

assert term3.toString() == 'Mult(Value(a), Add(Value(b), Value(c)))'

We define an ASTTransformationCustomizer for the @Newify local transformation B,
and pass the parameters needed by the transformation in the form of a map or named
parameters. @Newify has a value parameter, which needs a list of classes for values.
When instantiating the GroovyShell, we need to pass the compiler configuration C,
and the class loader of the script. (We ran these examples in one compilation unit
inside the Groovy console.) Then we can evaluate our term expression without need-
ing to use the @Newify annotation explicitly D.

Listing 19.47 Injecting a local transformation that takes parameters

Passes annotation and
parameters to customizer

 b

Passes config
to GroovyShell

 c

Implicit
Newify

 d
Licensed to Mark Watson <nordickan@gmail.com>

718 CHAPTER 19 Domain-specific languages
 All the techniques that we learned up to now are more about empowering develop-
ers to create nicely crafted DSLs, and end users to code their business rules with a
more concise and readable language, than with a plain programming language. But
as the saying goes, with power comes great responsibilities! As a developer of the
DSL, you could trust your users to do no harm, but you could protect yourself from
mistakes or intentional misbehavior by securing your DSLs. That’s the purpose of the
next section.

19.9 Securing your DSLs
The nice aspect of an embedded or internal DSL is that you have all the underlying
language at your disposal for coding your business rules: using branching constructs,
loop constructs, the wealth of the JDK APIs and third-party libraries, and so on. But
sometimes, certain DSLs are reduced in scope and shouldn’t use anything beyond the
area this DSL is supposed to cover. Furthermore, situations exist where malicious use
of the DSL, the underlying language or the APIs, could wreak havoc in your running
application, or the overall system, and open up breaches of security.

 Because we’re on the Java platform, an obvious solution is to use a Java security
manager. You can grant permissions or prevent access to certain methods (System
.exit(0) anyone?), to system properties, to the filesystem, and many more things.
Ample documentation on this topic exists elsewhere, and it’s not the goal of this chap-
ter to cover aspects of Java itself. But be sure to remember this facility when you try to
secure your DSL. Also think of the cost of a security manager. As the security checks
are happening at runtime, this may lead to longer execution times for your business
rules. This might not be acceptable if your code needs to execute as fast as possible.

19.9.1 Introducing SecureASTCustomizer

In the previous sections, we had the opportunity to use compiler customizers for
injecting imports or AST transformations. But there’s more! You can even create your
own customizer by extending the CompilationCustomizer class, but here we’ll investi-
gate another existing customizer: SecureASTCustomizer.

 As with the other customizers, this one should be set on the CompilerConfiguration
object. It sports several setters to tell if the scripts and classes are allowed to:

■ Define a package name
■ Define a method
■ Define a closure

And it has a white list/black list mechanism to say if the scripts and classes can use:

■ Simple imports, static imports, star imports, static star imports
■ Statements, expressions, tokens, constant types, and receivers

To get our feet wet, let’s dive in with a concrete use case. When you offer an extension
point in your application, you expose an API (better yet, a DSL) that you can use to
interact with your software. If users should only use those classes from that API, you
Licensed to Mark Watson <nordickan@gmail.com>

719Securing your DSLs
can forbid them to access any other class, thanks to our secure customizer. In that
case, the whitelist approach is interesting, because you can specify you only want to
allow the use of classes coming from a certain package. Progressively, you can open
other utility classes users may need. With the blacklist approach, you allow everything,
except certain classes. Your end users shouldn’t have access to the filesystem (this is a
case that’s covered by security managers as well). The following listing shows how you
can prevent access to classes from the java.io package.

import org.codehaus.groovy.control.*
import org.codehaus.groovy.control.customizers.*

def secure = new SecureASTCustomizer()
secure.starImportsBlacklist = ['java.io.*']
secure.indirectImportCheckEnabled = true

def config = new CompilerConfiguration()
config.addCompilationCustomizers(secure)

def shell = new GroovyShell(config)

groovy.test.GroovyAssert.shouldFail {
 shell.evaluate '''
 new File('.')
 '''
}

We specify the list of star imports that are forbidden B. We also enable the indirect
import check C because someone may use fully qualified class names instead of an
import. We add the customizer to the compiler configuration object, and then we
evaluate the script D. Because we use File, which is in the blacklist, we expect an
error. Because we don’t want to break the self-testing nature of our listings, we wrap
our evaluate call within a shouldFail block.

 The error message tells us the import of the file class isn’t allowed. We didn’t
import it, but Groovy has an implicit import for java.io classes, and the indirect
import checks helped us catch this case. It’s a good practice to use the indirect check
flag, especially in the cases where people use fully qualified names.

 This first example was a bit trivial, but the samples offered within the Groovy proj-
ect’s source repository provide a more elaborate case study: the arithmetic shell.

19.9.2 The ArithmeticShell

You can use Groovy as an arithmetic expression evaluator. But if you do, what would pre-
vent users from doing things such as System.exit(0) in your formulas? The secure cus-
tomizer comes to the rescue here. It allows you to limit a particular invocation of the
shell to allow only arithmetic expressions, effectively forbidding anything else, be it
using closures, creating classes, importing classes other than java.lang.Math, and so

Listing 19.48 Prevent access to java.io classes

Disallow
java.io imports

 b

Disallow explicit
java.io class
references c

Evaluate
violating script

 d
Licensed to Mark Watson <nordickan@gmail.com>

720 CHAPTER 19 Domain-specific languages

Dis
met
forth. The following listing illustrates what’s involved in creating a shell with a locked-
down version of the Groovy language using the secure customizer.5

import org.codehaus.groovy.ast.expr.*
import org.codehaus.groovy.ast.stmt.*
import org.codehaus.groovy.control.CompilerConfiguration
import org.codehaus.groovy.control.customizers.ImportCustomizer
import org.codehaus.groovy.control.customizers.SecureASTCustomizer

import static org.codehaus.groovy.syntax.Types.*

def imports = new ImportCustomizer().addStaticStars('java.lang.Math')
def secure = new SecureASTCustomizer()

secure.with {
 closuresAllowed = false
 methodDefinitionAllowed = false

 importsWhitelist = []
 staticImportsWhitelist = []
 staticStarImportsWhitelist = ['java.lang.Math']

 tokensWhitelist = [
 PLUS, MINUS, MULTIPLY, DIVIDE, MOD, POWER, PLUS_PLUS,
 MINUS_MINUS, COMPARE_EQUAL, COMPARE_NOT_EQUAL,
 COMPARE_LESS_THAN, COMPARE_LESS_THAN_EQUAL,
 COMPARE_GREATER_THAN, COMPARE_GREATER_THAN_EQUAL,
]

 constantTypesClassesWhiteList = [
 Integer, Float, Long, Double, BigDecimal,
 Integer.TYPE, Long.TYPE, Float.TYPE, Double.TYPE
]

 receiversClassesWhiteList = [
 Math, Integer, Float, Double, Long, BigDecimal
]

 statementsWhitelist = [
 BlockStatement, ExpressionStatement
]

 expressionsWhitelist = [
 BinaryExpression, ConstantExpression,
 MethodCallExpression, StaticMethodCallExpression,
 ArgumentListExpression, PropertyExpression,
 UnaryMinusExpression, UnaryPlusExpression,
 PrefixExpression, PostfixExpression,
 TernaryExpression, ElvisOperatorExpression,
 BooleanExpression, ClassExpression
]
}

Listing 19.49 Configuration of the ArithmeticShell secure customizer

5 Listing 19.49 is based on the Groovy project’s ArithmeticShell example class.

Disables
closures

 b
ables
hods

 c

Disables imports and
static imports except
java.lang.Math

 d

Allows
mathematical
tokens e

Allows number
types f

Allows number
receivers g

Allows only blocks
and statements h

Allows only
math-related
expressions i
Licensed to Mark Watson <nordickan@gmail.com>

721Securing your DSLs
def config = new CompilerConfiguration()
config.addCompilationCustomizers(imports, secure)
def shell = new GroovyShell(config)
def result = shell.evaluate('1+cos(PI/2)')
assert result == 1

Allowing arithmetic expressions only isn’t such an easy task when you have to some-
how dumb down a full-blown programming language to allow such expressions. To
commence, using or defining closures B and defining methods C has nothing to
do with arithmetic expressions, so they’re disabled. The whitelist mechanism D is
used to disable imports except for the static star import of the java.lang.Math static
methods, which provides methods such as sine, cosine, and friends. The tokens rec-
ognized by the Groovy lexer E are filtered to only allow the ones that could make
up math expressions, such as all the arithmetic operators, increment/decrement
operators, and comparison operators. Numbers literals (*.TYPE elements) and the
use of the Number classes are allowed F. The receiver classes G are classes that can
be used and that can receive method calls. Block statements and expression state-
ments H are allowed because an expression is wrapped in an expression statement,
part of a block statement, which is the body of your script (your formula is the body
of the run() method of Script). And to finish, a list of expressions that are white-
listed I.

 Once all the customizer information is in place, we create a shell and use it J.
 That was quite a ride! When you want to restrict precisely what users can do with

the language, crafting the right rules of exclusions and inclusions can be a long task.
 As an exercise in hacking, you could have a go at trying to find a workaround to do

things that shouldn’t be allowed by this secured arithmetic shell. Remember that
hackers are more malicious than you can be, and they can find back doors easily. They
could put your system down by doing something as simple as running an infinite loop
doing nothing but consuming precious CPU cycles. How can you stop this?

19.9.3 Stopping the execution of your programs

Your application provides an extension point with a nice DSL that your users can use.
For example, imagine a wiki engine that would allow authors to make their pages
dynamic with Groovy scripting inside the wiki markup of the pages. What if a mali-
cious or not careful user creates an infinite loop? What can you do to prevent this?
Neither security managers nor a secure customizer can help there much. But Groovy
provides three interesting AST transformations that you can apply to the sources of
your scripts so that you can stop their execution when a thread is called to be inter-
rupted, after an elapsed period of time, or after a custom condition is met (for
instance, when too much of a resource is used, etc.).

 Chapter 9 on AST transformations covers the @ThreadInterrupt, @TimedInterrupt,
and @ConditionalInterrupt local transformations in section 9.2.6, so we won’t go
into much detail about their use. We’ll remind you how to make local transforms

Runs the
shell

 j
Licensed to Mark Watson <nordickan@gmail.com>

722 CHAPTER 19 Domain-specific languages
transparent to the users. Because those transformations are local, users need to put
the annotations into their scripts.

NOTE Before going further, remember that such transformations can only
be applicable on scripts and classes that are going to be compiled. You cannot
apply them after the compilation has already happened—if you wanted to
post-process classes from a JAR file, for example.

We learned this technique in previous sections, but we can apply it again here, by
looking at how we inject the @TimedInterrupt in the script of the following listing.

import groovy.transform.*
import org.codehaus.groovy.control.*
import org.codehaus.groovy.control.customizers.*
import java.util.concurrent.TimeoutException
import static groovy.test.GroovyAssert.shouldFail

def config = new CompilerConfiguration()
config.addCompilationCustomizers(
 new ASTTransformationCustomizer(value: 2, TimedInterrupt)
)
def shell = new GroovyShell(config)
def te = shouldFail(TimeoutException) {
 shell.evaluate '''
 for (i in 1..1000) {
 sleep 1000
 }
 '''
}
println te.message

A script such as B would loop a thousand times, sleeping one second at each iteration,
totaling more than 16 minutes of execution time. That can be a bit long for code that’s
not doing anything useful! Thus, we define and configure an ASTTransformation-
Customizer for the @TimedInterrupt transformation, which will wait for 2 seconds
before the script is interrupted C. As usual, this customizer is specified on the
CompilerConfiguration that we pass in the constructor of the GroovyShell.

 Now what happens when you execute that program? You get a TimeoutException
after 2 seconds:

Execution timed out after 2 units. Start time: Wed Feb 04 00:42:19 CET 2015

Please note that this interruption does not rely on a supervisor thread with a higher
priority because that wouldn’t lead to a reliable solution.

 We saw how to filter the AST with the secure customizers or how to stop the execu-
tion of long-running or resource-consuming business rules, but malicious code could
try to cheat by using metaprogramming tricks. Let’s see what you can do to prevent
this from happening.

Listing 19.50 Stopping script execution with a reliable timeout

Adds 2 second
timeout to
our script

 c

Creates
lengthy loop

 b
Licensed to Mark Watson <nordickan@gmail.com>

723Securing your DSLs

s

Def
vis
19.9.4 Preventing cheating with metaprogramming

A customer we worked with didn’t want to use security managers to forbid calls to
System.exit(0) in their business rules, as security managers would almost double the
runtime execution speed of those rules. They ended up hooking into the Groovy com-
piler to filter the AST to check for method call expressions that would happen on the
java.lang.System class, with a method name of exit. They did that before the com-
pilation customizers even existed. We’ll replicate with customizers what they did.
Interestingly, we’ll also learn how to create our own customizer beyond the three
we’ve already learned about.

 The following listing creates a custom customizer for System.exit().

import org.codehaus.groovy.ast.*
import org.codehaus.groovy.ast.expr.*
import org.codehaus.groovy.control.*
import org.codehaus.groovy.control.customizers.*
import org.codehaus.groovy.classgen.*
import org.codehaus.groovy.syntax.*
import static groovy.test.GroovyAssert.shouldFail
import static org.codehaus.groovy.control.CompilePhase.*

def config = new CompilerConfiguration()
def filter = new CompilationCustomizer(CANONICALIZATION) {
 void call(SourceUnit src, GeneratorContext ctxt, ClassNode cn) {
 new ClassCodeVisitorSupport() {
 void visitMethodCallExpression(MethodCallExpression call) {
 if (call.objectExpression.text == 'java.lang.System' &&
 call.method.text == 'exit') {
 src.addError(new SyntaxException(
 'System.exit() forbidden',
 call.lineNumber, call.columnNumber))
 }
 super.visitMethodCallExpression(call)
 }
 SourceUnit getSourceUnit() { src }
 }.visitClass(cn)
 }
}
config.addCompilationCustomizers(filter)

def shell = new GroovyShell(config)
def ce = shouldFail(CompilationFailedException) {
 shell.parse '''
 System.exit(0)
 '''
}
println ce.message

To create your own customizer, you need to extend CompilationCustomizer B by
creating an anonymous inner class. You must then implement the call() abstract
method C. This method has the ClassNode of the script or class to be introspected as

Listing 19.51 Failing compilation on System.exit()

Extends
Compilation-
Customizer

 b

Override
call
method

 c

ines
itor

 d

Overrides
method

call visits e

Detects
System.exit

 f

Flags error g
Licensed to Mark Watson <nordickan@gmail.com>

724 CHAPTER 19 Domain-specific languages
an argument for finding the offending method call. To do that, we’re creating a
ClassCodeVisitorSupport object D that will visit all the method call expressions in E.
For each such call, we’ll check if the receiver type is java.lang.System and if the
method name is exit F. If this is the case, G, we add a compilation error that will
fail the compilation of the script or class. We’ll come back in the next section on
error reporting.

 When compilation fails, you get a message similar to the following:

System.exit() forbidden at line: 2, column: 5

It’s more verbose than using a security manager, but it has no performance cost,
which is good. You might think, “Job done!” But are we done with it here? We indeed
fail the compilation when someone explicitly and literally writes System.exit() in the
source code. Fine, and that’s something along those lines that my customer did. But
when we did the code review, we noticed this wouldn’t cover all the cases—a case that
the security manager would have caught though. As you start to know Groovy pretty
well, you might find out how to call System.exit(0) and bypass our new customizer.

 If you try our customizer on the following code (without shouldFail assertion),
the compilation will work, and running the code your program will exit:

shell.parse '''
 def clazz = 'java.lang.System' as Class
 def method = 'e' + 'x' + 'i' + 't'
 def params = [0]
 clazz."${method}"(*params)
'''

The last line is an offending call to System.exit() that our customizer couldn’t spot,
since the values of the class, method name, and parameters could not really be figured
out until runtime, until the execution of the code itself.

 Apart from using a security manager, what could we do? In this case, you could add
checks in your code, checking the method call expressions to disallow those whose
method expression is a GStringExpression:

if (call.method instanceof GStringExpression) {
 source.addError(new SyntaxException('GString method names forbidden',
 call.lineNumber, call.columnNumber))
}

Then the compilation will fail as expected even in that odd forged case. But it comes
at the price of disallowing GString method calls, which may have been useful in your
DSL in certain contexts. As usual, there’s no free lunch. Also, clever Groovy users can
forge innovative method calls by abusing other Groovy constructs. Securing your
scripts and classes isn’t that trivial, but it also depends on how secure it needs to be in
the first place.

 With a similar approach, you’d want to prevent DSL users from doing any meta-
programming in the business rules they author. For example, to filter access to the
Licensed to Mark Watson <nordickan@gmail.com>

725Testing and error reporting
metaclass to alter the behavior of certain classes, you might add the following checks
in your customizer to prevent metaClass property access as well as GString property
access (that could forge a metaClass property name):

void visitPropertyExpression(PropertyExpression expr) {
 if (expr.property.text == 'metaClass') {
 src.addError(new SyntaxException('Accessing metaClass forbidden',
 expr.lineNumber, expr.columnNumber))
 }
 if (expr.property instanceof GStringExpression) {
 src.addError(new SyntaxException('GString access forbidden',
 expr.lineNumber, expr.columnNumber))
 }
 super.visitPropertyExpression(expr)
}

For metaprogramming alterations that would use categories, you could add checks in
the method call expression as shown in the following:

if (call.objectExpression.text == 'this' && call.method.text == 'use') {
 src.addError(new SyntaxException('use(category){} forbidden',
 call.lineNumber, call.columnNumber))
}

Securing DSLs is an important aspect of their design, but another often overlooked
aspect is the testing and error reporting phases, which are key to the quality and suc-
cess of your endeavor. The next section looks into this topic a bit more.

19.10 Testing and error reporting
As software developers, we often test the nominal cases first to check that we properly
implemented a feature. Oftentimes the logic to handle edge cases is shoehorned into
our solution as an afterthought. It’s particularly important in the context of DSLs
not to do this but to put sufficient emphasis on testing various cases, including error
cases such as typos a user could make throughout your design and development. As
developers, we’re used to reading stack traces, even large ugly nested ones, but we
shouldn’t push that burden onto our DSL users.

 Let’s focus on making our DSLs more robust. We aren’t going to use any DSL-
specific techniques per se, but by applying general robustness principles, we expect to
make the life of our users better. We’ll start by exploring ways to better handle those
edge cases and give better and more meaningful error messages.

 For our journey, we’ll work on an SQL-like query language, with verbs and words
such as select, from, and where. We want to issue queries like this:

query {
 select all from users
 where lastname == 'Guillaume'
}

Licensed to Mark Watson <nordickan@gmail.com>

726 CHAPTER 19 Domain-specific languages
In the following listing we scaffold our DSL.

class Query {
 static query(Closure c) {
 def q = c.clone()
 q.resolveStrategy = Closure.DELEGATE_FIRST
 q.delegate = new Query()
 q()
 }

 def getProperty(String name) { name }

 Query select(column) { this }
 Query from(table) { this }
 Query where(condition) { this }
}

Our Query class features a query method that takes a closure as argument B. We’ll
use a static import of that method later on (that we can inject with the approaches
seen earlier in this chapter). We specify the closure resolve strategy to have the Query
instance to receive all the method calls and property lookups first C. The parameters
to our verbs are looked up through the getProperty() method, which returns strings
for now D—we’re not building the full-blown DSL! Finally, all our verbs are methods
returning this E to chain method calls as commands.

 Now what happens when you execute a query where you make a typo in the verbs?
For example:

query { selct all }

In the Groovy Swing console, you’d see an error like the following:

groovy.lang.MissingMethodException: No signature of method: Query.selct() is
applicable for argument types: (java.lang.String) values: [all]
 Possible solutions: select(java.lang.Object), split(groovy.lang.Closure),
getAt(java.lang.String), sleep(long), each(groovy.lang.Closure), wait()
 at errorreporting$_run_closure2.doCall(errorreporting.groovy:23)
 at errorreporting$_run_closure2.doCall(errorreporting.groovy)
 at Query.query(errorreporting.groovy:6)
 at Query$query.callStatic(Unknown Source)
 at errorreporting.run(errorreporting.groovy:23)

Highlighted in bold, you see that a MissingMethodException is thrown. The select()
method doesn’t exist, and Groovy even suggests possible alternatives, such as the right
select() method. You also notice the line information where the problem occurred,
although the class/method parts of the stack trace are perhaps a bit obscure.

Listing 19.52 Query language

DSL entry
point

 b

Defines delegate
and resolution
strategy

 c

Trivial
implementation of
property resolution d

Enables
method
chaining

 e
Licensed to Mark Watson <nordickan@gmail.com>

727Testing and error reporting
 Should you want to provide your own exception and message, you could add a
methodMissing() method to your Query class, so that query methods that are mistyped
would go through that trap:

def methodMissing(String name, args) {
 throw new SyntaxException(
 "No query verb '$name', only select/from/where allowed"
)
}

This method uses your own custom syntax exception:

import groovy.transform.*

@InheritConstructors
class SyntaxException extends Exception {}

When you run your query, you’ll get the following trace:

SyntaxException: No query verb 'select', only select/from/where allowed
 at Query.methodMissing(errorreporting2.groovy:18)
 at Query.invokeMethod(errorreporting2.groovy)
 at errorreporting2$_run_closure2.doCall(errorreporting2.groovy:35)
 at errorreporting2$_run_closure2.doCall(errorreporting2.groovy)
 at Query.query(errorreporting2.groovy:12)
 at Query$query.callStatic(Unknown Source)
 at errorreporting2.run(errorreporting2.groovy:35)

With this approach, you get your own custom exception with an even more explicit mes-
sage, rather than the ones provided by Groovy itself. You’ll notice, however, that the
exception is coming directly from the methodMissing() method, and not from the place
that issued the call, which happens only a couple of stack trace elements later.

 The stack traces shown in this section are already filtered in the Groovy Swing con-
sole to only show relevant elements of your own programs, and the full stack trace out-
putted in your shell is much longer. You could still filter out more by removing the
stack trace elements that hide the right method call site by changing the method-
Missing() implementation like this:

def methodMissing(String name, args) {
 def se = new SyntaxException(
 "No query verb '$name', only select/from/where allowed"
)
 se.stackTrace = se.stackTrace.findAll { StackTraceElement ste ->
 ste.className != 'Query' &&
 !(ste.methodName in ['invokeMethod', 'methodMissing'])
 }
 throw se
}

We rewrite the stack trace elements array of the exception by removing the offend-
ing elements we don’t want the user to see, so as to only see where the problematic
Licensed to Mark Watson <nordickan@gmail.com>

728 CHAPTER 19 Domain-specific languages

nside
query

or
n

DSL usage is situated. Then the filtered trace is more obvious and shows the relevant
line first:

SyntaxException: No query verb 'selct', only select/from/where allowed
 at errorreporting3$_run_closure2.doCall(errorreporting3.groovy:41)
 at errorreporting3$_run_closure2.doCall(errorreporting3.groovy)
 at Query$query.callStatic(Unknown Source)
 at errorreporting3.run(errorreporting3.groovy:40)

Whether you let Groovy throw its method missing error and suggestion fixes, or
you choose to use your own explicit custom exception possibly with a filtered stack
trace, there’s one common downside: the exception happens at runtime and not at
compile time!

 Usually, developers coming from a statically typed language prefer catching errors
as early as possible, and compilation would be the perfect moment. Similarly, business
users using your DSL would appreciate that you offer them a tool (through mere com-
pilation) letting them know they made a mistake such as a typo, early on, rather than
when the business rules are deployed in the production environment. For generating
compile-time errors, nothing’s better than an AST transformation or a compilation
customizer. Using a customizer, you could get out with the following listing.

// imports not shown
new CompilationCustomizer(SEMANTIC_ANALYSIS) {
 void call(SourceUnit src, GeneratorContext ctxt, ClassNode cn) {
 new ClassCodeVisitorSupport() {
 boolean inQueryClosure = false

 void visitStaticMethodCallExpression(
 StaticMethodCallExpression call) {
 if (call.method == 'query' && call.ownerType.name == 'Query')
 inQueryClosure = true
 super.visitStaticMethodCallExpression(call)
 if (inQueryClosure)
 inQueryClosure = false
 }

 void visitMethodCallExpression(MethodCallExpression call) {
 def methName = call.method.text
 if (
 inQueryClosure &&
 call.objectExpression.text == 'this' &&
 !(methName in ['select', 'from', 'where'])) {
 src.addError(new SyntaxException(

 "No query verb ${methName}, only select/from/where",
 call.lineNumber, call.columnNumber))

 }
 super.visitMethodCallExpression(call)
 }

Listing 19.53 Checking query method names usage

Tracks
when i
Query.

 b

Checks method
calls are to known
methods

 c

Adds err
if unknow
methods
found

 d
Licensed to Mark Watson <nordickan@gmail.com>

729Testing and error reporting
 SourceUnit getSourceUnit() { src }
 }.visitClass(cn)
 }
}

With the static import of the Query.query{} method, we check that we’re in the con-
text of such a call by implementing the visitStaticMethodCallExpression()
method B, keeping a Boolean flag up to date. We check that all method calls within
that context have the correct spelling C.

 What’s more important here is we’ll have a closer look at where we add the error
message D. We’re calling the addError() method on the SourceUnit. When you
use a customizer or an AST transformation, that’s the method to use if you want to
create a compilation error. This method takes a SyntaxException as an argument to
the constructor, to which you can pass not only the error message, but also the posi-
tion of where the error is supposed to happen. There you can reuse the current AST
node’s line and column information, so the compiler delivers a nice error message
with proper location.

 The SourceUnit class also provides an addException() method which lets you
pass an exception as an argument, but we would argue this method is less interesting
because it’s not generating the usual syntax errors IDEs would expect, nor does it give
a change to properly specify position information. We’d avoid using this version.

 For more control over the error reporting from the SourceUnit when you’re using
a customizer or transformation, you can retrieve its error collector with the getError-
Collector() method, and then call more fine-grained methods than the two pro-
vided directly, as a shortcut, on SourceUnit. You can, for example, say if the error
you’re creating should fail the compilation right away or continue to find other poten-
tial errors.

We saw the case where a DSL user makes a typo in a method name, but we can also
take a quick look at what happens if they use the wrong arguments for the methods

When to use a transform vs. a customizer
For compilation errors, you might wonder whether to use an AST transformation or a
compilation customizer, as transforms and customizers offer pretty much the same
approach—introspecting the AST. The usual consultant’s answer is…it depends! It
depends on the techniques you used to implement your DSL, as well as on the inte-
gration strategy you’ve chosen to compile and execute your business rules. If you’re
already using a transform for implementing your DSL or parts of it, you should seize
your chance to also add proper compilation errors there. If you’re integrating your
business rules using Groovy’s shell, classloader, scripting engine, and so forth, then
you can define a compiler configuration object to configure the compilation, and thus
add your customizers at that point. If you’re using global or local transformations with-
out a particular integration mechanism (that is, your code is precompiled, not com-
piled on the fly), your sole option is to use an AST transformation.
Licensed to Mark Watson <nordickan@gmail.com>

730 CHAPTER 19 Domain-specific languages
forming the verbs of the DSL. More concretely, what happens if a user passes a string
instead of a date argument?

 To try that, let’s go back to our initial Query class. We’ll need a new verb for our
experiment: an after() action to check that some database result is after a certain
date. We need to add that method to our class:

Query after(Date d) { this }

This time, this method takes a Date instance. What happens if we pass a string instead
of a date? A string representing a date such as '2014/02/04'? With neither a method
missing trap nor an AST transformation checking for mistyped verbs, you’d get an
exception like the following one:

groovy.lang.MissingMethodException: No signature of method: Query.after() is
applicable for argument types: (java.lang.String) values: [2014/02/04]
Possible solutions: after(java.util.Date), ...

The message is as informative as before, so you could get away with it, even if it’s not
your custom exception showing up here.

 If you put in place a missing method trap, the error you’d get would be more
misleading:

SyntaxException: No query verb 'after', only select/from/where/after allowed

Because the method with the proper signature wasn’t found, it goes through our trap,
and our error message is indeed misleading as the user typed after in their query, but
the message seems to indicate after doesn’t exist. You could improve the error mes-
sage to make it clearer that a verb is not only the name of that verb, but also the type
of arguments that it takes. You could also investigate using our earlier customizer to
add proper checks for types, but sometimes the Groovy AST doesn’t always have enough
type information at compile time to figure out if there’s an error. For now, we’ll con-
sider an alternative way of taking advantage of multimethods.

 If you have overloaded methods taking different arguments, Groovy will always
try to call at runtime the most appropriate method according to the runtime types
of the arguments. In a nutshell, that’s what we call multimethods. The idea is to play
on that specific aspect of the multiple dispatch logic to lead your DSL to give better
error messages.

 In our case, we have an after(Date) method, but we can add an after(Object)
method:

Query after(Object d) {
 throw new SyntaxException(
 "The after method takes a Date as argument, " +
 "not ${d} of type ${d.class.name}")
}

Licensed to Mark Watson <nordickan@gmail.com>

731Summary
Which yields a nicer error message:

SyntaxException: The after method takes a Date as argument, not 2015/02/04 of
type java.lang.String
 at Query.after(errorreporting5.groovy:25)

By overloading your DSL methods with ones taking a mere object type, if the user
makes a mistake in terms of type, they’ll get a more precise and meaningful error mes-
sage, as the multiple dispatch will route the call to that trap method, rather than let-
ting the Groovy runtime not find a matching method to call.

19.11 Summary
The main purpose of DSLs is to bridge the communication gap that leads to misunder-
standing end users, software bugs, delays in delivery, and inadequacy with the real
requirements. To bridge this gap, we’ve learned in this chapter how to combine many
features and techniques to build your own DSLs.

 We covered a lot of ground: Groovy’s flexible syntax and command chains, static
imports, constant and method injection, custom control structures, closure delega-
tion strategy, AST transformations, compilation customizers, integration approaches,
security concerns, and error reporting. Often, building a DSL in Groovy is a clever way
of complying with the various call conventions to pimp an existing library to turn it
into an easy to use DSL from Groovy.

 By cleverly mixing these techniques, our business rules achieve a high-level read-
ability, and more conciseness without necessarily verging into ASCII art. The form of
the DSL matters, and we need to keep in mind that one form or another might be
more approachable for our end users. That’s why we need to work as a team, involving
users early in the process, and work iteratively toward crafting the right language that
everybody will understand.

 As a parting thought, remember that as a knowledgeable Groovy developer and
responsible barman shaking ingredients for a nice DSL cocktail, you must care for
your customer. Mixing too many flavors only leads to headaches. We recommend a
solid body of fruitful API design with a lacing of metaprogramming and a pinch of syn-
tax sugar on top.
Licensed to Mark Watson <nordickan@gmail.com>

The Groovy ecosystem
“I can’t imagine why anyone would need X” is a statement about your
imagination, not X.

 —Dan Piponi, via Twitter

Groovy is a rich and flexible language and every day Groovy programmers are find-
ing new, novel, and exciting ways to bend Groovy to their needs. The Groovy Eco-
system refers to all of the projects built around Groovy, projects that solve a
particular problem for a particular group of people, and projects that are essential
to being a productive Groovy programmer.

 This chapter starts by examining projects that make using Groovy as a scripting
language and automation tool easier: Grapes for managing dependencies within

This chapter covers
■ Incorporating tools for automation
■ Improving startup time
■ Analyzing code
■ Developing code on the web, on the desktop,

or in the cloud
732

Licensed to Mark Watson <nordickan@gmail.com>

733Groovy Grapes for self-contained scripts
scripts, Scriptom for working with Windows components, GroovyServ for making
scripts run faster, and Gradle for project and task automation.

 Groovy is a good choice to use as a system scripting language. Groovy scripts are
easily executed from the command line and can automate repetitive tasks. Groovy is
far less verbose than Java, can easily spawn new threads and processes, and has many
convenience methods for interacting with the filesystem. But the biggest advantage of
scripting with Groovy is that you have access to every library you use in development.
Need a script to access a SOAP-based web service? You can use the same library from
your development project within your script. Need to download and manipulate web
pages? You can use XmlParser and the TagSoup Java library. Any Java library is avail-
able to Groovy and it’s available within a script.

 After scripting, we’ll look at two interesting projects meant to bring a higher level
of quality for larger Groovy projects: CodeNarc for static analysis of Groovy code and
GContracts for design-by-contract within Groovy. For full-blown application develop-
ment we’ll look at three popular application development platforms tailor-made
around Groovy: Grails for web application development, Griffon for desktop develop-
ment, and Gaelyk for Google App Engine cloud applications.

 Buckle up and hold on—the whirlwind tour is about to start.

20.1 Groovy Grapes for self-contained scripts
A common use of scripts is working with other teams, such as the quality assurance or
operations team. Assume you have a hard to reproduce defect and you need someone
to execute a script on a remote machine. It’s easy to email them a script, but if the
script has a dependency on several jar files, then how do you easily package all into
something executable? How do you get libraries onto the classpath correctly? This is
the problem Grapes was invented to solve.

 Grapes lets you add Maven dependencies to your classpath from within a .groovy
file. The script can then be executed without downloading the dependencies and con-
structing a lengthy command line. Consider a script that uses the TagSoup library to
read data out of poorly formatted HTML files. The following listing gives an example
of this, reading the twitter coordinates of your book authors from the publisher’s
book page.

@Grab(group='org.ccil.cowan.tagsoup', module='tagsoup', version='1.2')
import org.ccil.cowan.tagsoup.Parser

def parser = new XmlParser(new Parser())
def html = parser.parse("http://manning.com/koenig2")

def twitterUrls = html.body.'**'.a.@href.grep(~/.*twitter.*/)
println twitterUrls.join("\n")

assert 'http://www.twitter.com/mittie' in twitterUrls

Listing 20.1 Using Grapes in the parse Twitter.groovy script
Licensed to Mark Watson <nordickan@gmail.com>

734 CHAPTER 20 The Groovy ecosystem
This script declares a dependency on TagSoup version 1.2 using the @Grab annota-
tion. To execute this script, simply invoke it with the command groovy parseTwitter
.groovy and you’ll see a set of URLs printed to the console.

 Clearly the script is importing and invoking objects from the TagSoup library, but
where did this dependency come from and how was it resolved? The answer is that the
Grapes module system is aware of the @Grab annotation. Before a script is executed,
Groovy reads the @Grab annotations and resolves the parameters as Maven dependen-
cies. Those dependencies are downloaded, resolved, and added to the classpath of the
script. Only once all of the dependencies are resolved and in-scope does the script
execution begin. There’s no need to ever email another JAR file to someone or con-
struct a long classpath statement from the command line so they can run your script.
Grapes has you covered.

NOTE Groovy uses Ivy to download the declared dependencies into your
Grape cache, which is located in the .groovy/grape directory of your User
Home directory. You can change this directory by passing a JVM parameter
to groovy named grape.root. For example, passing -Dgrape.root=/home/
.m2/repository configures Grapes to use your local Maven repository for
the cache.

Many companies maintain their own internal Maven repository for their own proprie-
tary software or because they don’t want developers downloading files from the inter-
net. You can tell Grapes about your own repositories using the @GrabResolver
annotation. If TagSoup were located in your own repository hosted at http://
myrepo.my-company.com, then you would add the @GrabResolver annotation to your
script, like so:

@GrabResolver(name='myrepo', root='http://myrepo.my-company.com/')
@Grab('org.ccil.cowan.tagsoup:tagsoup:1.2')
import org.ccil.cowan.tagsoup.Parser

These two annotations give you pretty much everything you need for working with
Grapes. Also, notice how we specified the Maven dependency using the short form
that separates the common parameters using a colon. More customization is available.
Grapes is controlled by the .groovy/grapeConfig.xml file in your User Home direc-
tory. You can edit this file to permanently add Grape resolvers, change the local repos-
itory directory, and configure network proxies. Dependencies can also be manually
installed, removed, and listed using the Grapes command line interface.

 Grapes is becoming more popular, and it provides a simple way to manage depen-
dencies. It puts the abundance of Java libraries directly in the hands of the Groovy
programmer. Tooling is becoming more frequent as well. IntelliJ IDEA has explicit
support for Grapes and can automatically configure your project structure. The web-
site MvnRepository (http://mvnrepository.com) allows you to search for dependen-
cies and displays the correct @Grab use for any library you find through their site.
Licensed to Mark Watson <nordickan@gmail.com>

http://myrepo.my-company.com/
http://myrepo.my-company.com/
http://myrepo.my-company.com/
http://mvnrepository.com/

735Scriptom for Windows automation
 That’s all you need to know about Grapes to get started, and it makes life easier
when working with the libraries in the rest of this chapter. Next up we’ll see how Scrip-
tom makes COM and ActiveX scripting easier.

20.2 Scriptom for Windows automation
Scriptom’s name stems from a mix of the word scripting and the acronym COM,
Microsoft’s component object model. Scriptom allows you to manipulate COM and
ActiveX objects as simply as if you’re using Visual Basic or JavaScript. Combining
Scriptom and Groovy means that you can take advantage of the Java world and its
libraries and at the same time control applications such as Microsoft Word or Excel
from Groovy.

 Scriptom is an add-on that you can install if you’re running Windows. It ships with
Groovy’s Windows installer, or you can download and install it manually. Scriptom is
composed of standard Java classes and native DLLs for both 32-bit and 64-bit architec-
tures. The native code does the heavy lifting needed for COM integration and the
Groovy and Java classes provide a dynamic DSL for the components. To test the instal-
lation, let’s write our first ActiveX Groovy script:

import org.codehaus.groovy.scriptom.*
def wshell = new ActiveXObject('WScript.Shell')
wshell.popup('Scriptom is Groovy!')

If everything is installed correctly then running the code dis-
plays a short message in a native dialog box, as seen in fig-
ure 20.1. You run this code like any other Groovy script; you
don’t need classpath changes or anything else.

 The Scriptom module uses Jacob (Java COM Bridge), an
open source Java/COM bridge that allows you to call COM
automation components from Java. Jacob offers a generic
API that can be used to access any native object. Scriptom
builds on top of the Jacob API to provide a more intuitive syn-
tax, similar to the kind that VB programmers are used to. You can set and read proper-
ties and invoke methods using the standard Groovy syntax. The following listing shows
how to instantiate an instance of Internet Explorer, set properties, and then invoke
the Navigate method to display a page.

import org.codehaus.groovy.scriptom.ActiveXObject

def explorer = new ActiveXObject('InternetExplorer.Application')
explorer.Visible = true
explorer.AddressBar = true
explorer.Navigate('http://www.groovy-lang.org/')

Listing 20.2 Working with ActiveX objects

Figure 20.1 A native
message
Licensed to Mark Watson <nordickan@gmail.com>

http://www.groovy-lang.org/

736 CHAPTER 20 The Groovy ecosystem
Most Microsoft applications can be automated with Scriptom using a COM interface.
Access, Excel, FrontPage, Notepad, and all the other members of the Microsoft Office
suite can be manipulated with Scriptom. In addition to applications, several utilities
available on the Windows platform let you interact with the OS in a simple fashion.
This is handy when your automation tasks include activities such as reading and writ-
ing keys in the registry, sending keystrokes to running applications, or popping up file
dialogs, which is shown in the following listing.

import org.codehaus.groovy.scriptom.ActiveXObject

def PARENT = 0
def OPTS = 0
def sh = new ActiveXObject('Shell.Application')
def folder = sh.BrowseForFolder(PARENT, 'Choose a folder', OPTS)
println "Chosen folder: ${folder.Items().Item().Path.value}"

With the Shell.Application, you can call the BrowseForFolder method, which shows
a file-chooser widget to allow you to select a directory. The PARENT and OPTS values are
the parent window (where 0 means no parent) and the option flags to use, respec-
tively. On the last line, you can see that the method returns an object representing a
file selection. On this object, you can call the Items method to retrieve the selected
files and Item to select the chosen one. This item has a property called Path to
retrieve the path of the chosen file. Finally, value is a Groovy property that lets you
unmarshal the value of the Path.

 You may wonder how to know which methods and properties are available on a given
native object or application. Unfortunately, you have to dive into the documentation of
the application you’re driving and see what’s available through its exposed APIs. For
instance, for Microsoft applications, the best source of information is the Microsoft
Developer Network (MSDN) website at http://msdn.microsoft.com/library/.

 The ability to script running applications is one side of the story; the other side is
that Scriptom can receive events when the person in front of the computer clicks but-
tons, types in text, or executes shortcuts. Also, Scriptom can receive and react to appli-
cation events, such as reaching the end of a media stream in Windows Media Player.
Registering for events isn’t straightforward, and the Scriptom website lists the full
instructions on how to do so.

 Groovy and Scriptom are a powerful combination to bridge two worlds: the Java
world with its many free libraries and server-side applications, and Microsoft’s plat-
form and its end-user-rich native applications. Scriptom allows you to interact almost
intuitively with the host environment to create complex automation tasks and control
multiple applications and external Java libraries at the same time.

Listing 20.3 Working with ActiveX objects
Licensed to Mark Watson <nordickan@gmail.com>

http://msdn.microsoft.com/library/

737GroovyServ for quick startup
20.3 GroovyServ for quick startup
We’ve seen how Grapes and Scriptom make Groovy an excellent choice for a script-
ing language. However, one challenge of the JVM we haven’t yet addressed is the rel-
atively long startup time. You can use the time command along with Groovy from
the command line to write a small one-liner to display the current time, along with
how long the command took to execute, shown next.1

$ time groovy -e "println new Date()"
Thu Jun 02 13:37:15 CEST 2011

real 0m0.631s
user 0m0.700s
sys 0m0.130s

Notice two things about the output: the one-liner prints the current date and time,
and the elapsed user-space time to execute this was 0.7 seconds. Compare this with
how quickly the same Python script executes on the same machine, shown here.

$ time python -c 'import datetime;print str(datetime.datetime.now()) '
2011-06-02 13:36:46.542847

real 0m0.024s
user 0m0.030s
sys 0m0.000s

The Python version takes 0.3 seconds, which is considerably faster. Critics of the JVM
point to these startup times and claim that JVM languages are not fit for scripting
because of these excesses. Luckily, a Groovy project called GrooyServ fixes this situa-
tion. GroovyServ replaces the groovy client application with its own client called
groovyclient. It has the same API and command line parameters, and you can see
from the output that its speed is comparable to Python’s, shown next.

time groovyclient -e "println new Date()"
Thu Jun 02 13:46:58 CEST 2011

real 0m0.036s
user 0m0.020s
sys 0m0.000s

Why so much faster? groovyclient is only half of the GroovyServ project, the other
half is groovyserver. The groovyserver application starts up a JVM as a TCP/IP server
and waits for groovyclient applications to connect. When a client connects, the exist-
ing JVM is reused to execute the script, which is much faster than starting up a new

Listing 20.4 Timing plain old Groovy

1 Windows users can use Cygwin or Measure-Command from within PowerShell.

Listing 20.5 Timing Python

Listing 20.6 Timing GroovyServ
Licensed to Mark Watson <nordickan@gmail.com>

738 CHAPTER 20 The Groovy ecosystem
JVM process. In practice, you only need to know about groovyclient because it auto-
matically starts the server the first time it’s needed. The first time you use groovyclient
the request takes longer, but all subsequent uses are fast.

 GroovyServ is partially a native application, not a pure Java application, and it’s
available for Windows, Mac, and Ubuntu Linux. GroovyServ properly tracks the cur-
rent working directory, executing your scripts out of the directory from which they
were called, which is why a native application is required. GroovyServ should function
like the groovy command even though it’s a TCP/IP server. The System.in, out, and
err are all properly streamed to the client, and calls to System.exit() are sent to the
client as well. Environment and classpath variables are also properly propagated from
script instance to script instance.

 Because GroovyServ behaves the same way as normal groovy, people can create an
alias to GroovyServ that replaces their normal groovy command. For Mac and Linux
users, add the following line to your profile:

alias groovy=groovyclient

Windows users can use the doskey command to create aliases:

doskey groovy=groovyclient $*

You should understand the limitations before replacing the groovy command. Every
script does execute in its own GroovyClassLoader, but the JVM and ContextClass-
Loader are shared. Commands such as System.getProperties() are shared between
scripts, and metaprogramming changes to classes in one script may affect another. For
example, adding a new method to java.lang.String makes that new method visible
to all future scripts. You can only clear the classloader memory by restarting or killing
groovyserver. To do this call groovyserver -r to restart or groovyserver -k to kill it.
GroovyServ is under active development and the limitations described here may have
been addressed by the time you read this.

 Despite these limitations, GroovyServ goes a long way toward overcoming the
startup time problems of the JVM. Future versions of Java might one day reduce
startup times to a tolerable level, but until then GroovyServ is good enough and
usable enough to be a simple solution to the problem. The next technology we’ll
look at is Gradle, which can help you with all sorts of automation and deploy-
ment concerns.

20.4 Gradle for project automation
We’ve seen several approaches for making Groovy a more effective scripting and task
automation language. But clearly, Gradle is the must-have application for project auto-
mation on the Groovy platform. Gradle is a project build system designed to allow sim-
ple projects to have simple, convention-based builds, while still supporting the most
complex builds for those that need it. Gradle’s motto is, “Make the simple things easy
and the complex things possible.”
Licensed to Mark Watson <nordickan@gmail.com>

739Gradle for project automation
 The build script for Gradle builds is a Groovy-based DSL, which allows you to
write builds in either a declarative or imperative manner, as well as write plain old
Groovy code whenever you need it. Gradle integrates easily with Maven repositories
for dependency management, supports multiproject and multiartifact builds, has a
rich plugin system, and is based around a real object-oriented domain model for
projects. The easiest way to see the power of Gradle is with examples. The following
listing builds a full Groovy project, integrating with Maven repositories for finding
dependencies.

apply plugin: 'groovy'

repositories {
 mavenCentral()
}

dependencies {
 compile 'org.codehaus.groovy:groovy-all:2.4.0'
 testCompile 'junit:junit:4.12'
}

This is the entire content of a typical build.gradle file. You can run it from the com-
mand line by typing gradle build. This script applies the Groovy plugin, declares
Maven Central as a dependency repository, and then configures the versions for
Groovy and JUnit. With this build you get all the standard build targets such as clean,
build, check (run the unit tests), and assemble (build the JAR files), along with sev-
eral more. The build conventions are the same as in Maven: put the production
source code in the /src/main/groovy directory, test source in the src/test/groovy
directory, and any resources in the /src/main/resources directory.

 If you’re going to build a JAR file, then it’s sensible to set a version number and
include a manifest in the JAR file. Gradle allows you to specify this declaratively within
your build file by adding the content of the following listing.

version = '1.0'
jar {
 baseName="mySample"
 manifest {
 attributes 'Implementation-Title': 'My Sample',
 'Implementation-Version': version
 }
}

You can build the JAR file from the command line by typing gradle assemble, and
the build will produce a file named mySample-1.0.jar. Inside the JAR is the correct
MANIFEST.MF file. If you need to build a .war file, then use the war plugin and the
.war file will be generated for you.

Listing 20.7 Groovy build script (build.gradle)

Listing 20.8 Building a JAR file
Licensed to Mark Watson <nordickan@gmail.com>

740 CHAPTER 20 The Groovy ecosystem
 Typical modern builds, especially in the enterprise, don’t only test and assemble JAR
files, they also upload them to a repository so that others can use the new code. Gradle
includes a standard uploadArchives task for this, and you should configure the task to
know where to copy the new files. In the following listing, we publish to a local directory,
but it’s easy to publish to a remote location or several locations at once.

uploadArchives {
 repositories {
 flatDir(dirs: file('my_repository'))
 }
}

After running gradle uploadArchives you’ll see that mySample-1.0.jar was copied to
the my_repository directory.

 No whirlwind tour of Gradle is complete without mentioning the Gradle Wrapper.
Gradle knows how to download and install itself on client machines, eliminating the
need for users to ever install Gradle once you’ve written your build file. This is perfect
for Continuous Integration servers because you have nothing to install or configure
on the remote machines. It’s also convenient for open source projects where many
users build the software infrequently and don’t want long setup times. Perhaps more
importantly than the convenience factor, using the Gradle wrapper ensures a consis-
tent environment for everyone on your team and reproducible builds should you ever
need to go back to an old version and rebuild it. To enable the Gradle Wrapper for
your build, you need to add the wrapper task to your script, run the task once, and
then check the results into version control. The task is fairly short and only changes
when you want to upgrade Gradle:

task wrapper(type: Wrapper) {
 gradleVersion = '2.4'
}

Run the wrapper once using the gradle wrapper command. This creates several files
on disk that need to be checked in: gradle-wrapper.jar, gradle-wrapper.properties, and
the gradlew.bat and gradle shell scripts. Now any user can run the wrapper for any
build task by typing gradlew instead of gradle. The wrapper will download and install
Gradle, and then run any targets the user has invoked.

 Many Gradle features exist, so many that they can’t be covered in this short space.
For a more thorough coverage we happily point you to Gradle in Action by Benjamin
Muschko (Manning, 2014) (www.manning.com/muschko/). The online documentation
is also excellent and includes a lengthy user guide, several cookbooks and tutorial-
style documents, and more. There are many features to explore, such as multiproject
and multiartifact builds, the Gradle Daemon (to increase performance), parallel unit
test execution, multiple language integration, and dozens of plugins. If you need an
automated Groovy build, then Gradle is one of the best products to consider. In the

Listing 20.9 Publishing a JAR file
Licensed to Mark Watson <nordickan@gmail.com>

http://www.manning.com/muschko/

741CodeNarc for static code analysis
process of building the code for this book, we’ve used it as well. You can see that when
looking at the sources of chapter 9, for example.

 That’s the end of the scripting and automation technologies. In the next section,
we change gears and take a look at a static analysis tool that can help your Groovy
code stay maintainable and of high quality.

20.5 CodeNarc for static code analysis
The CodeNarc project analyzes Groovy code and warns you of possible defects, bad
practices, dead code, or poor Groovy style. It’s a flexible system based around rules that
find violations in your code, and it generates reports so you can fix problems either
before checking code into version control or before the release. Consider the following
innocent looking Groovy script, and then we’ll see what CodeNarc thinks of it:

Map map = [a: 1, b: 2, "$c": 3, 'b': 4];

CodeNarc finds four violations in this one small example. Try to find them yourself
before reading on. Ready for the answers?

■ Duplicate map key—The map literal includes the key “b” twice. The value set in a
Map must be unique, so the resulting Map instance only contains three ele-
ments instead of the four specified.

■ GString as map key—The element “$c” is a GString, which should never be used
as a Map key. The hashcode of a GString is unstable, so you may not find this
element again!

■ Unnecessary semicolon—The line ends in a semicolon, which is unnecessary
in Groovy.

■ Unused variable—The variable map is never used after being created.

This small example shows a good range of the issue types CodeNarc can catch. A
duplicate map entry and an unused variable are examples of dead, or meaningless,
pieces of code. They’re probably not bugs, but they could be masking a subtle prob-
lem where the code isn’t exactly doing what you think it should. The GString as map
key is almost always a bug and should never be used in code.

 The unnecessary semicolon is a style issue. Semicolons appear frequently with new
developers used to working with Java code. The rules about style issues, such as this
one, are used to help you convert to writing more Groovy code and relying less on Java
idioms and practices.

 Let’s see a more advanced example that highlights the power and intelligence of
CodeNarc. The following listing shows a closure that squares all the values of a map.

def squareMapValues = { map ->
 if (map == null) { return null }
 if (!map) { return [] }

Listing 20.10 Squaring map values
Licensed to Mark Watson <nordickan@gmail.com>

742 CHAPTER 20 The Groovy ecosystem
 return map.values().collect { it * it }
}
assert [1, 4, 9] == squareMapValues([a: 1, b: 2, c: 3])

CodeNarc produces two violations for the squareMapValues closure. One is a simple
style issue and the other is more subtle.

■ Unnecessary return keyword—The last line of the method includes the return key-
word, which is unnecessary in Groovy.

■ Return null instead of empty collection—If passed null the closure returns null.
This means the user of the API has to perform null checks on the method
result. It’s a better practice to return an empty list when there’s no result
rather than a null.

What makes this an interesting example is that the doubleMapValues closure doesn’t
specify a return type, yet CodeNarc was smart enough to infer that the closure does
return a collection and the closure could also return null. CodeNarc analyzes the return
paths of dynamically typed methods and closures and attempts to infer their type.

 CodeNarc has nearly 350 rules, and the list is constantly growing. The rules are
grouped into different rulesets, or categories, such as basic, design, concurrency, secu-
rity, exceptions, and others. Framework-specific rules exist, such as rules targeted at
Grails or the Spock Framework. One of the most interesting categories is the concur-
rency ruleset. Concurrency is easy to get wrong, and many bad practices can be found
automatically. The Groovy language provides nice shortcuts, but it’s always good to
understand the fundamentals. Consider the concurrency-related example in the fol-
lowing listing.

class Person {
 List addresses

 @groovy.transform.Synchronized
 void setAddresses(List addresses) {
 this.addresses.clear()
 this.addresses.addAll(addresses)
 }
}

The violation generated for this code is “Inconsistent Property Synchronization.” The
method setAddresses is synchronized, but the method getAddresses isn’t. Remem-
ber, Groovy generates a getter and a setter for each property, and this code has a syn-
chronized setter but the hidden getter isn’t synchronized. The problem is subtle and
clearly needs correcting. And while you’re creating the getter, remember to return a
copy of the internal List so the code remains thread-safe.

 CodeNarc can be run in numerous ways. You can use the command line runner
that’s simple to get working for small projects, or use the Maven, Gradle, and Ant
plugins so you can run CodeNarc as part of your regular build process. Also, Grails and

Listing 20.11 Using @Synchronized
Licensed to Mark Watson <nordickan@gmail.com>

743GContracts for improved design
Griffon users have a CodeNarc plugin that automatically runs against the codebase. But
the simplest way is to run it as a unit test from a GroovyTestCase. All of these methods
are fully documented on the CodeNarc website at http://codenarc.sourceforge.net/.
CodeNarc’s output is text, XML, or HTML. You can use the default HTML reports or
define your own style sheets. Configuring CodeNarc, choosing which rules to run, and
changing rule properties can all be done via Groovy markup, XML, or a plain text prop-
erties file, and again the CodeNarc website contains complete documentation. If you
receive false positives or want to ignore violations, you’re always free to apply the stan-
dard java.lang.SuppressWarnings annotation on classes or methods.

 CodeNarc is a mature and positive addition to the Groovy ecosystem. It can be
used by teams to ensure high code quality and consistency, and used by single devel-
opers to help migrate to the Groovy way of coding. CodeNarc is like a good pair pro-
gramming partner, making recommendations when needed and being quiet when
not. Because it’s so easy to add to Groovy projects, why not give it a try?

 The next project we’ll review is also focused on code quality. The GContracts proj-
ect allows you to follow an interesting design approach that encourages you to think
about object interactions and contracts.

20.6 GContracts for improved design
The GContracts project brings the concepts of design-by-contract to the Groovy lan-
guage. Design-by-contract (DbC) is a software design approach that specifies how
components interact with each other. The unique part of DbC is that the specifica-
tions, or contracts, are defined as source code within the program, rather than sim-
ply in documentation. Creating classes, fields, and a public API is one way to specify
a contract within Groovy. DbC extends your design capabilities by allowing you to
specify class invariants, method preconditions, and method postconditions. The
following listing shows these contracts applied to a kettle object. For those unfamil-
iar, a kettle heats water, and you can either add water to a kettle or pour water out of
a kettle.

@Grab('org.gcontracts:gcontracts-core:1.2.12')
import org.gcontracts.annotations.*

@Invariant({ waterVolume >= 0; waterVolume <= maxVolume })
class Kettle {
 int waterVolume = 0
 int maxVolume = 1000

 // ...
}

The example starts by grabbing the latest version of GContracts from Maven Central
using the @Grab annotation, and declaring the Kettle class with two properties:
waterVolume (the current amount of water in the kettle) and maxVolume (how much

Listing 20.12 Using GContracts's @Invariant
Licensed to Mark Watson <nordickan@gmail.com>

http://codenarc.sourceforge.net/

744 CHAPTER 20 The Groovy ecosystem
the kettle can hold). The interesting part of Kettle is the @Invariant annotation.
This specifies logic that must always hold true for the object. It must be true after the
constructor is called or after any method is invoked. Here the invariant states the water
volume cannot be negative and the water volume cannot be more than the maximum
volume of the kettle. @Invariant is an extension of the type system, and you can define
how your type behaves using whatever Groovy code you like. If the invariant is ever
violated, an exception is thrown from the object. There should be no way for a pro-
grammer to end up with an object whose invariant is violated. Beyond @Invariant,
GContracts also provides @Requires and @Ensures annotations, which can be applied
to methods, as shown in the following listing.

// inside listing 20.12
@Requires({ amount > 0 })
@Ensures({ waterVolume == maxVolume || waterVolume > old.waterVolume })
void addWater(int amount) {
 waterVolume = Math.min(maxVolume, amount + waterVolume)
}

The addWater method from the listing adds water to the kettle, making sure not to
overflow the container. The @Requires code is a statement about what must be true
before this method is called: the method parameter (amount) must be greater than
zero. Violating the @Requires precondition produces an exception. The @Ensures
code is a statement about what must be true after this method has been called: the
water volume must be at the maximum level (waterVolume == maxVolume) or the vol-
ume must be greater than whatever the volume was at the beginning of the method
call (waterVolume > old.waterVolume).

 You may wonder where old comes from in the expression old.waterVolume. The
old variable is a snapshot, or copy, of the object’s state before the method call. You
also have access to the return value of the method using the result variable, as seen
in the following listing.

// inside listing 20.12
@Requires({ desiredAmount > 0 })
@Ensures({
 result >= 0;
 result == 0 ? waterVolume==old.waterVolume : waterVolume<old.waterVolume
})
int pour(int desiredAmount) {
 int amountPoured = (desiredAmount <= waterVolume
 ? desiredAmount
 : waterVolume)
 waterVolume = waterVolume - amountPoured
 amountPoured
}

Listing 20.13 Using GContracts's @Requires and @Ensures annotations

Listing 20.14 Using GContracts's result value
Licensed to Mark Watson <nordickan@gmail.com>

745Grails for web development
The pour method attempts to pour water from the kettle, returning the amount
poured (amountPoured) to the user as an int. You can see in the @Ensures code that
the result will always by zero or greater (result >= 0) and the final waterVolume of the
kettle will be less than or equal to the original waterVolume. This @Ensures code is a
combination of two Groovy statements separated by a semicolon. You can put as much
code as you’d like within the annotation parameters, either chaining all the expres-
sions together with &&, ||, and parentheses, or by separating them with semicolons.
Any valid Groovy code is a valid contract expression.

 Contracts can be inherited from parent types. If you specify a contract on an inter-
face or parent class, then all implementations and subclasses inherit that contract. You
can also finely control when to apply the contracts. The JVM has several assertion
enabling and disabling mechanisms built in, and GContracts honors them. Passing -da
to the JVM disables all assertions and -ea enables all assertions. Also, you can enable
and disable assertions based on package name. Any contracts you write for objects
appear in the generated Groovydoc for that object.

 DbC is a well-respected design approach that is often envied by the Java commu-
nity. At one point, adding DbC was the highest voted issue in Sun’s Java issue tracker.
GContracts brings the core DbC features to Groovy, and Groovy’s flexibility allows you
to write contracts in a clean and code-centric way. GContracts is definitely a project to
check out.

 Next up is the jewel in the crown of Groovy: Grails. If you write web applications
then you owe it to yourself to discover Grails.

20.7 Grails for web development
We’ve looked at a few libraries and applications that make working in Groovy a more
productive experience. Now we’ll look at a few application development platforms,
starting with Grails, that make writing and deploying full applications a breeze.

 Grails is a platform for writing Groovy web applications, and at its core is a Model-
View-Controller (MVC) design based on Spring, database persistence on top of Hiber-
nate, view templating with SiteMesh, project and deployment automation, and a heavy
dose of metaprogramming. The underlying technology is mature and stable enough
for the needs of any enterprise environment, and the use of Groovy as a language
within all tiers of the MVC make it a pleasure to work with. Seeing Grails in action is
the best way to appreciate it.2

 Getting a web application up and running requires running a few command line
statements and editing one or two files. Grails handles almost all the hard work for
you. After installing Grails, you create an application using the create-app command,

2 Grails in Action, 2nd Edition, by Glen Smith et al. (Manning Publications, 2014) at www.manning.com/
gsmith2/.
Licensed to Mark Watson <nordickan@gmail.com>

http://www.manning.com/gsmith2/
http://www.manning.com/gsmith2/

746 CHAPTER 20 The Groovy ecosystem
as shown in the following listing. For a quick prototype, we’ll create a simple contacts
manager application that lets you add, edit, and delete contacts from a list.

$ grails create-app contacts
Welcome to Grails 1.3.7 - http://grails.org/
Licensed under Apache Standard License 2.0
...
Created Grails Application at /home/hdarcy/contacts
cd contacts
contacts $

This script creates a new application template for you and configures your environ-
ment with reasonable defaults, such as an in-memory database for development and
an acceptable-looking set of CSS style sheets. At this point, you could run the applica-
tion successfully, but there wouldn’t be much to see without defining any models,
views, or controllers. Creating these is a simple step and again done from the com-
mand line, as shown in the following listing.

contacts $ grails create-domain-class contacts.Person
...
Created DomainClass for Person
Created Tests for Person
contacts $ grails create-controller contacts.Person
...
Created Controller for Person
Created Tests for Person
contacts $

As you can see from the output, not only were classes created, but also unit tests. All
these files are on disk, and to see a meaningful contacts application we need to give
the Person domain class a few properties and constraints and also tell the controller
to provide the standard create, read, update, and delete (CRUD) actions for the Person
object. The following listing shows the updated Person class.

package contacts

class Person {
 String name
 String email

 static constraints = {
 name blank: false
 email email: true
 }
}

Listing 20.15 Creating a Grails application

Listing 20.16 Creating a domain object and a controller

Listing 20.17 The /grails-app/domain/contacts.Person.groovy domain object
Licensed to Mark Watson <nordickan@gmail.com>

747Grails for web development
The application, when run, reads the properties from the object and displays a default
user interface based on the class. The constraints DSL is a way to specify validations for
your properties. In this case, a name is required, and the email field must be in a for-
mat for an email address. There are many more options for constraints and you can
customize them yourself. The last step before running the app is to tell the controller
to provide the default scaffolding, as shown in the following listing.

package contacts

class PersonController {
 def scaffold = Person
}

With this in place, we can run the app (using the grails run-app command) and get
a reasonable UI for a Person. You can view all the people, add new people, edit an
existing person, and delete a person. The web page displays an error if any of the
domain constraints are violated, making sure your data is always consistent. Figure 20.2
shows the Person list and the detail view for a single person, all of which Grails gener-
ated for us.

 There is much more you can do with Grails, such as define custom view pages,
override the default controller behavior, or declare complex relationships between
domain classes. But one of the most powerful features of Grails is its database inter-
face. To interact with the database you use the Groovy Object Relational Mapping

Listing 20.18 The /grails-app/controller/PersonController.groovy scaffolding

Figure 20.2 Generated list and detail view
Licensed to Mark Watson <nordickan@gmail.com>

748 CHAPTER 20 The Groovy ecosystem

F
mult
pers
(GORM) interface. In short, Grails automatically provides methods on your domain
objects for working with the database. For instance, each domain object has a save()
method that persists the object to the database, and the domain classes have a
dynamic query API built into them. You can use the Grails console (run with grails
console) to try queries interactively. The following listing shows GORM in action.

import contacts
new Person(name: 'Dierk', email: 'dierk@canoo.com').save()
new Person(name: 'Hamlet', email: 'hamlet@canoo.com').save()

def people = Person.findAllByEmailLike('%canoo%')
assert people.size() == 2
def person = Person.findByEmailLikeAndNameLike('%canoo%', 'Ham%')
assert person instanceof Person

The listing starts B by creating two Person objects and persisting to the database (or
at least the Hibernate cache) using the save() method provided by Grails. But the
real magic is in the dynamic finders on the Person class. The findAllByEmailLike c
and findByEmailLikeAndNameLike method d are dynamically created at runtime.
You can use any of the properties from your domain class to invoke such a dynamic
finder method, and many other comparators are supported, such as between, less-
Than, and notEqual. The full DSL is one of the most powerful features of Grails.

 We’ve only covered the basics of working with Grails at the command line. Many
more commands are available, and they can be listed with the grails help command.
Important commands are grails test-app (which runs all the tests), grails war3

(which creates a WAR file suitable for deployment), grails create-service (which
creates a service, allowing you to modularize and decompose your application), and
most importantly, grails install-plugin.

 Internally, Grails is based on a plugin architecture. GORM itself is a plugin and can
be replaced with a nonrelational database like Gemfire or Hadoop. Countless plugins
are available to be downloaded and installed for any conceivable purpose.

 Certain plugins are essential for a nontrivial application, such as the Spring Secu-
rity Core plugin (install-plugin spring-security-core), which provides your appli-
cation with role based security for controller actions and URLs. The Quartz plugin
(install-plugin quartz) provides job scheduling so you can run regular tasks. The
Searchable plugin (install-plugin searchable) adds easy search integration from
the UI for your domain classes, and the Mail plugin (install-plugin mail) lets your
app send mail to users or administrators. You can choose, as we said earlier, from
many, many more.

Listing 20.19 Accessing a database with GORM

3 Since Grails 3 named grails package.

Creates
persons

 b

inds
iple
ons c Finds one

person d
Licensed to Mark Watson <nordickan@gmail.com>

749Griffon for desktop applications
 Grails is the premier web application platform within the Groovy community,
and is growing in use as more developers see the productivity gains and make the
switch. If you’re writing web applications then Grails is a must-know platform. This
section is only the smallest taste of the power of Grails, and many topics were skipped
entirely. If you’re interested to know more, then we strongly suggest you pick up
one of the many books devoted solely to Grails, such as Grails in Action from Man-
ning Publications.

 Grails is a great framework, but not everybody develops web applications. If you
like Grails but write desktop applications, then Griffon is the framework for you. We’ll
look at that next.

20.8 Griffon for desktop applications
Griffon is an application development platform for desktop applications, and its goal
is to bring all the benefits of Grails to desktop developers. Griffon started life as a fork
of the Grails codebase, so many of the conventions and features are exactly the same
between the two platforms. Today Griffon is definitely its own beast and is evolving in
parallel with Grails, with its own distinct and active community. To learn all about it,
we recommend—not surprisingly—Griffon in Action by Andres Almiray et al., (Man-
ning Publications, 2012) (www.manning.com/almiray/).

 The core concepts behind Griffon are MVC groups, services, events, and plugins.
Applications are divided into several MVC groups, and the groups can themselves be
composed of other MVC groups. We’ll make an MVC group ourselves to see how it
works. Services are a way to move shared functionality into a component, similar to
how they are used in Grails. The Griffon events system allows you to send and
receive events between components, both synchronously and asynchronously. Events
can be application lifecycle events, like starting up and shutting down, or you can
define your own in-application events. Finally, plugins are a way to bundle and deploy
reusable functionality.

 To demonstrate the power of Griffon,
we’ll create an email client that allows you
to send emails through a Gmail account.
The main window lets you type in typical
email fields, and pressing Send sends
the email through a Gmail account. Fig-
ure 20.3 shows the finished application.

 To get started, create a Griffon app
in the same way as a Grails app, using
the create-app command. You’ll also
install two plugins: MigLayout for easier
form layout and Mail for SMTP mail
integration. The following listing shows
these commands. Figure 20.3 A simple Griffon application
Licensed to Mark Watson <nordickan@gmail.com>

http://www.manning.com/almiray/

750 CHAPTER 20 The Groovy ecosystem
$ griffon create-app mailer
...
$ cd mailer
...
mailer $ griffon install-plugin mail
...
mailer $ griffon install-plugin miglayout
...
mailer $

At this point we have a basic “Hello World”-style desktop application with a single
model, view, and controller. We’ll write the controller code first that sends emails.
Controllers have public closures that are invoked from the UI. The controller has an
automatic reference to both the view and the model in the following listing, which
shows the code that sends an email using the Mail plugin.

package mailer

class MailerController {

 def model

 def action = {
 sendMail(transport: 'smtps', auth: true,
 mailhost: 'smtp.gmail.com',
 user: model.yourEmail,
 from: model.yourEmail,
 password: model.yourPassword,
 to: model.to,
 subject: model.subject,
 text: model.text)
 }
}

The sendMail method is provided automatically by the plugin, and the rest of the
parameters are mostly moving data from our data model to the service call. The
model does not yet have all of these properties, and we need to add them next. A Grif-
fon model isn’t a domain model, but is an application model. An application model
allows the view and controller to exchange data, and a domain model is a way to
describe the concepts and entities in your system. For example, an application model
might have a field called enabled or busy, while a domain model is more concerned
with being a higher level description of the system. The following listing shows our
application model.

Listing 20.20 Creating a Griffon app and installing plugins

Listing 20.21 Sending email in /griffon-app/controllers/mailer/MailerController.groovy
Licensed to Mark Watson <nordickan@gmail.com>

751Griffon for desktop applications

y
package mailer

import groovy.beans.Bindable

class MailerModel {
 @Bindable String yourEmail
 @Bindable String yourPassword
 @Bindable String to
 @Bindable String subject
 @Bindable String text
}

The @Bindable annotation exists so that properties can be automatically bound to
widgets. When a widget value (like a text box) changes, the bound domain object is
automatically updated. You have no need to manually write any PropertyChange-
Listener code; Griffon handles it all for you.

 The last piece of the puzzle is the view, as shown in the following listing. The view
layer is a DSL for Swing components. You can declaratively specify the layout of the
form and supply constraints. In this case we’re using MigLayout to achieve proper
alignment of components.

package mailer

import net.miginfocom.swing.*

application(title: 'mailer', pack: true) {

 migLayout(layoutConstraints:'wrap 2', columnConstraints:'[left][fill]')

 label('Your Email:')
 textField(text:bind(target:model, 'yourEmail'))
 label('Your Password:')
 passwordField(text:bind(target:model, 'yourPassword'))
 label('To:')
 textField(text:bind(target:model, 'to'))
 label('Subject:')
 textField(text:bind(target:model, 'subject'))
 textArea(text:bind(target:model, 'text'), rows: 6, columns: 30,
 constraints: 'span, grow, wrap')
 button(text: 'Send', actionPerformed: controller.action,
 constraints: 'span, right')
 }

The property binding for the widgets is within the bind method calls at the B annota-
tions, and wiring a button to a controller action is as simple as adding the action-
Performed: controller.action parameter to the button c. The UI for our mailer is
displayed when you launch it with the griffon run-app command.

Listing 20.22 The application model in /griffon-app/model/mailer/MailerModel.groovy

Listing 20.23 The view in /griffon-app/views/mailer/MailerView.groovy

Propert
binding

 b

Button to
controller wiring c
Licensed to Mark Watson <nordickan@gmail.com>

752 CHAPTER 20 The Groovy ecosystem
 Griffon automates much of the application lifecycle, especially around deploy-
ments and packaging. Griffon has built-in support for generating Java Web Start appli-
cations, applets, and standalone apps. Additionally, the Installer plugin can be used to
create native installers for a variety of platforms, such as Windows, Mac, and Linux.
Griffon also handles the dirty work of signing JAR files; your application can be securely
signed after placing your credentials in the correct configuration files. You can still
use Griffon even if you want to commit to writing Java code. Many of the artifacts, such
as the controllers and services, can still be written in plain old Java.

 Desktop developers should take a long look at using Griffon for their next project.
Griffon provides a strong design by basing applications on MVC groups, and plugins
and services allow applications to naturally decompose into small, reusable pieces.
The short-term benefits of using the numerous plugins and project automation scripts
are obvious, but Griffon apps have a long-term advantage as well. The Griffon way is a
blueprint for well-factored and maintainable long-term desktop apps.

 The next project we’ll look at is Gaelyk, a framework for building lightweight web
applications on top of Google App Engine. Gaelyk is a good choice for simpler web appli-
cations that benefit from a cloud data store and free, easy deployments.

20.9 Gaelyk for Groovy in the cloud
Gaelyk is a lightweight yet powerful framework designed for running Groovlets and
Groovy Templates Pages in the cloud using Google App Engine (GAE). With Gaelyk
you have access to all the GAE services like the data store, task queue, and Jabber API,
and you also benefit from the power of using Groovy as a templating engine to gener-
ate your website. Whether you need to generate HTML for a UI or JSON for an Ajax
server, Gaelyk has you covered.

 To demonstrate Gaelyk and GAE, we’ll build a simple hello-world style HTML site
that integrates with Google authentication, as shown in figure 20.4. Once you have the
basics of security, routing, and Gaelyk’s take on MVC, then you should have an easy
time moving on to harder tasks such as working with the data store.

 The first step is to download and install the Google App Engine for Java SDK; you
should check the Gaelyk website to see which version is supported by Gaelyk. After

Figure 20.4 A simple
Gaelyk application
Licensed to Mark Watson <nordickan@gmail.com>

753Gaelyk for Groovy in the cloud
that you need to register with GAE and create an application. You register at and select
an app name at http://appengine.google.com/. Our sample app is named “my-welcome-
app.” The last part of the setup is to download and unzip the Gaelyk template project
from the Gaelyk website (gaelyk.appspot.com) .

 Now that everything is installed, we can run the application locally to make sure
that everything is working correctly. Gaelyk and GAE come with many helpful scripts
that automate running and deploying apps. The following code snippet shows how to
build and run the app locally:

$ groovy build.groovy
$ dev_appserver.sh
...
INFO: The server is running at http://localhost:8080/

At this point you can open your browser and see the standard welcome page of a Gae-
lyk app. With the installation verified, it’s time to configure the application to use our
ID and enable security. The app ID is defined in the file appengine-web.xml. Open
this file with a text editor and write your app ID into the <application> tag, like so:

<application>my-welcome-app</application>
<version>1</version>

Also notice the version number. Over time, you’ll want to increase this number each
time you make a deployment or release. GAE lets you run several versions of your app
at once, so managing the version number lets you test new versions in the cloud while
your users continue to use the stable release.

 Now let’s update the web.xml to enable security. GAE uses a web.xml file, which is
the standard way to define servlets, filters, and security constraints within a Java appli-
cation server. By default, a Gaelyk site is public and open to anyone. We’ll want to
enable security so that users are required to be logged in through Google. Open the
web.xml file and copy in the security description from the following listing.

<security-constraint>
 <web-resource-collection>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>*</role-name>
 </auth-constraint>
</security-constraint>

The GAE website has more information about the security constraints, but for now this
is all we need. Anyone visiting our web page will need to be signed into Google first,
and GAE handles the redirects and authentication for us.

 At last we’re ready to code application logic. Gaelyk is based on a MVC pattern that
separates the UI logic into .gtpl template files and business logic into Groovy-based

Listing 20.24 Enabling security in war/WEB-INF/web.xml
Licensed to Mark Watson <nordickan@gmail.com>

http://gaelyk.appspot.com
http://appengine.google.com/

754 CHAPTER 20 The Groovy ecosystem
controllers. The key is in URL routing. As a URL is accessed, Gaelyk internally redirects
that request to your controller, which performs logic and then renders a template
view. In our simple app we’re going to route all traffic to the “/” URL to the “wel-
come.groovy” controller. That controller will access the currently logged-in user infor-
mation and then forward the information to the view template. The view template
needs to print out a welcome message.

 The first step is to edit the routes.groovy table to forward requests to our controller
by adding the following line:

get "/", forward: "/welcome.groovy"

This configures the container so that any HTTP GET request is forwarded to wel-
come.groovy. The next step is to define the welcome controller. The controller is
where you would normally access the data store, start tasks, or perform other complex
logic. Our controller is simple; it exposes the current user in the request and renders
the default view, which is done with two lines of code:

request.currentUser = user
forward 'index.gtpl'

The last piece of the puzzle is editing the index.gtpl view. This is a Groovy Template
page, and by default the text is markup. Your tag syntax is similar to JSP syntax, and
you can include scripts using the <% %> or the ${} notation:

<% include '/WEB-INF/includes/header.gtpl' %>
<p>Welcome ${request.currentUser.nickname}</p>
<% include '/WEB-INF/includes/footer.gtpl' %>

Those are the basics of Gaelyk. We can build and test locally using the groovy
build.groovy and dev_appserver.sh .war commands. Google even provides mock
account authentication for testing. When you’re satisfied that everything is working
locally then it’s time to deploy to the cloud. Run the command appcfg.sh update .war
to push the deployment to GAE. You’ll be prompted for your Google credentials, and
after a short wait you can access your application using the public App Engine URL.

 This tutorial presents the bare minimum functionality of Gaelyk, but more exists.
Anything you can do with GAE is accessible with Gaelyk: the data store, task queue,
Jabber, image and file services, and more. GAE is a great way to get apps up and run-
ning in the cloud, and Gaelyk is the best way to use Groovy to do so. The community is
active and more Gaelyk apps are being deployed all the time. Now is a great time to
give it a spin.

20.10 Summary
This concludes our whirlwind tour of the Groovy ecosystem: those projects that
aren’t exactly part of Groovy itself but are essential for being a productive Groovy
programmer.
Licensed to Mark Watson <nordickan@gmail.com>

755Summary
 If you use Groovy as a scripting and automation language, then consider mastering
Grapes, Scriptom, GroovyServ, and Gradle. Grapes is a great way to easily manage
script dependencies and makes sharing easy. Scriptom provides a good way to auto-
mate Windows-specific work. For frequent scripters, GroovyServ can speed up the
startup time a noticeable amount. Gradle is an import technology for not only build-
ing your Groovy and Java projects, but also for project automation in general.

 On the surface, CodeNarc and GContracts are different technologies. CodeNarc is
focused on finding and preventing bugs in your code and helping with the enforce-
ment of coding standards. GContracts brings DbC to Groovy, allowing you to design
objects and interactions based on the expected contract of those objects. But the two
technologies are similar in that both are focused on improving the overall quality of a
system written in Groovy.

 For web application developers, Grails is an important technology to master
because it uses Groovy in several unique ways in order to make web apps fast to write,
easy to maintain, and a joy to work on. Griffon does the same for desktop applications.
For cloud developers, Gaelyk is a good platform for running Groovy on the Google App
Engine. You can get up, running, and deployed quickly with minimum investment.

 The tools presented in this chapter are useful, but you have plenty of room for
innovation in the Groovy ecosystem. Two recent innovations have gone as far as com-
piling Groovy to different target platforms: GrooScript (http://grooscript.org) com-
piles Groovy code to JavaScript and the gooid version of the Groovy compiler produces
the Android flavor of Java. This way, Groovy becomes a “native” web and mobile lan-
guage. Some even call it the Swift for Android.

 We pointed you to different places where Groovy applies so that you can select the
one where you’ll find your groove.

 Let the sparks of inspiration ignite your fire, try something new, and regardless of
whether it’s one of these technologies or one of your own inventions: keep groovin’!
Licensed to Mark Watson <nordickan@gmail.com>

http://grooscript.org

appendix A
Installation and

documentation

A.1 Installing Groovy
The only prerequisite for running Groovy 2.4 is that you must first have a Java Run-
time Environment (JRE) for Java versions 6, 7, or 8 installed, available free from
https://www.java.com/en/download and the JAVA_HOME environment variable set
to the location of your Java installation. For any serious development work with
Groovy, we recommend to not only use the JRE, but the full JDK.

 To install Groovy check out http://groovy-lang.org/install.html. This will give you
the latest installation instructions. We’d also like to share our experiences with you.

 We like to use the Groovy enVironment Manager (GVM, http://gvmtool.net).
It makes it simple keeping up to date with new versions of not only Groovy but
also Grails, Griffon, Gradle, Groovyserv, and more.1 Installing, using, and switching
between versions is as easy as

> gvm use groovy 2.4.0

This appendix covers
■ Installing Groovy
■ Finding more information

1 Windows users might try running GVM on Cygwin or consider Posh-GVM.
756

Licensed to Mark Watson <nordickan@gmail.com>

https://www.java.com/en/download
http://groovy-lang.org/install.html
http://gvmtool.net

757Obtaining up-to-date documentation
using Groovy version 2.4.0 in this shell.
 Each terminal window can use a different version of Groovy. To see whether your

installation works correctly try

> groovysh
Groovy Shell (2.4.0, JVM: 1.7.0_51)
Type ':help' or ':h' for help.
--
groovy:000>

and—whoosh!—you can try Groovy code in a nice, interactive shell. GVM conveniently
cares for all the grunt work of setting environment variables such as PATH, GROOVY_HOME,
and so on.

 GVM downloads and caches the Groovy version of your choice under your user
home folder as

.gvm/groovy/2.4.0

with subfolders for .jar files to embed all of Groovy in one JAR or pick any of the
Groovy modules (see appendix B) from the lib folder. This is sometimes helpful for
setting up your IDE, classpath, or manual bundles. We recommend using declarative
dependency management for that purpose, though.

A.2 Obtaining up-to-date documentation
This book aims to provide the necessary documentation for Groovy; however, other
sources can provide more detailed, up-to-date, and responsive information. We only
list a few starting points here—the community has expanded so much that the online
output is difficult to put under one umbrella.

A.2.1 Using online resources
Groovy’s home page is http://groovy-lang.org. This is where you can find links to all
the latest information, including:

■ The awesome new documentation: http://groovy-lang.org/documentation.html.
■ The famous and invaluable Groovy Quick-Reference, also available under

http://refcardz.dzone.com/refcardz/groovy.
■ A short language description and the official Groovy Language Specification

(GLS), along with the official Groovy grammar in a browser-friendly format.
■ Links to the source code repository, together with live-update feeds of latest

changes for those who prefer to live on the edge.
■ Many articles, blogs, and tutorials about Groovy on the web where the know-

it-all Groovy blog aggregator is www.groovyblogs.org, also comprising the
“Groovy Weekly.”

■ YouTube, SlideShare, Parleys, and their equivalents are full of presentations
and videos of Groovy being used for all kinds of purposes. Search for “Groovy”
or the name of your favorite Groovy in Action author.

■ http://groovyconsole.appspot.com/, where you can do live-coding in the browser.
Licensed to Mark Watson <nordickan@gmail.com>

http://groovy-lang.org/documentation.html
http://refcardz.dzone.com/refcardz/groovy
http://www.groovyblogs.org
http://groovyconsole.appspot.com/
http://groovy-lang.org

758 APPENDIX A Installation and documentation
For any questions concerning the normal use of Groovy, post questions at Stack-
Overflow.com with the “groovy” tag or subscribe to user@groovy.codehaus.org. Other
mailing lists (replace user with dev, announce, eclipse-plugin-user, or scm) deal with these
respective topics.

 We’re constantly surprised by the responsiveness of these lists and the quality of
answers that everybody receives. All mailing list participants and especially project
manager Guillaume Laforge make this community a fun place to be.

A.2.2 Connecting to the book’s forum

For questions about this book, Manning has a forum at http://www.manning.com/
koenig2 where you can meet the authors. We’d love to hear from you!
Licensed to Mark Watson <nordickan@gmail.com>

http://StackOverflow.com
http://StackOverflow.com
http://www.manning.com/koenig2
http://www.manning.com/koenig2

appendix B
Groovy language

information

B.1 Operator precedence
Table B.1 lists all the Groovy operators in order of their precedence. Most of these
operators can be overridden. See table 3.4.

This appendix covers
■ Understanding operator precedence
■ Using Groovy keywords
■ Using Groovy modules

Table B.1 Groovy operators in order of precedence

Level Operator Note

1 new ()
() {} []
. .& .@
?. * *. *:
~ ! (type)
[] ++ --

Object creation, explicit parentheses
Method call, closure, literal list/map
Member access, method closure, field/attribute access
Safe dereference, spread, spread-dot, spread-map
Negate, not, typecast
List/Map/Array index, Post inc/decrement

2 ** Power
759

Licensed to Mark Watson <nordickan@gmail.com>

760 APPENDIX B Groovy language information
B.2 Keyword list
The list of Groovy language keywords is shown in table B.2. Not all of these keywords
are used. Some keywords are reserved for future use; however, no keyword may be
used as an identifier, with the exception of in.

System.in

Table B.1 Groovy operators in order of precedence (continued)

Level Operator Note

3 ++ -- + - Preincrement/decrement, unary sign

4 * / % Multiply, div, modulo

5 + - Addition, subtraction

6 << >> >>>< Shift, range

7 < <= > >= in instanceof as Relational, in instanceof, type coercion

8 == != <=> Equals, not equals, compare to

=~ ==~ Regex find, regex match

9 & Binary and

10 ^ Binary xor

11 | Binary or

12 && Logical and

13 || Logical or

14 ? :, ?: Ternary conditional, Elvis operator

15 = **= *= /= %= += -=
<<= >>= >>>= &= ^= |=

Assignments

Table B.2 Groovy keywords

Keywords

abstract, any, as, assert

boolean, break, byte

case, catch, char, class, const, continue

def, default, do, double

else, enum, extends

false, final, finally, float, for,goto

if, implements, import, in, instanceof, int, interface, it, long
Licensed to Mark Watson <nordickan@gmail.com>

761Modules
B.3 Modules
As part of modularization in Groovy 2.0, Groovy was split into a core module and the
following (sub)modules:

groovy-ant
groovy-bsf
groovy-console
groovy-docgenerator
groovy-groovydoc
groovy-groovysh
groovy-jmx
groovy-json
groovy-jsr223
groovy-nio
groovy-servlet
groovy-sql
groovy-swing
groovy-templates
groovy-test
groovy-testng
groovy-xml

Each module is packaged into a separate JAR file. Most people use the groovy-all JAR,
which combines the classes from all these modules plus embedded versions of ANTLR,
ASM, and Commons CLI. The normal (non-all) groovy JAR doesn’t have these mod-
ules but does have the embedded ANTLR, ASM, and Commons CLI classes. In earlier
versions of Groovy, the non-all JAR didn’t have embedded versions of ANTLR, ASM,
and Commons CLI and required you to have compatible versions of at least the first
two of these in your classpath. If you use Groovy in an embedded context, you can
either use the groovy-all JAR or you can mix and match the non-all JAR files with
whichever of these modules are appropriate for your circumstances.

 For all JAR files mentioned, additional versions make use of the invoke dynamic fea-
ture of Java 7 and above. They’re marked with an –indy suffix. Those versions can run
considerably faster, but you should measure the effect for your environment. They
only work when your code is executed with Java versions 7 or 8.

native, new, null

package, private, protected, public, return

short, static, strictfp, super, switch, synchronized

this, threadsafe, throw, throws, traits, transient, true, try

void, volatile, while

Table B.2 Groovy keywords

Keywords
Licensed to Mark Watson <nordickan@gmail.com>

appendix C
GDK API quick reference

See http://docs.groovy-lang.org/2.4.0/html/groovy-jdk/ and http://docs.groovy-
lang.org/2.4.0/html/gapi/ for further information, including parameter details
and API documentation.

Array of primitives

This appendix covers
■ Understanding Groovy primitives
■ Listing Groovy packages

Table C.1 Groovy primitives

Primitive type Method name Parameter types Return type

byte[]

asBoolean _ Boolean

contains Object Boolean

count Object Number

eachByte Closure void

encodeBase64 _ Writable
762

Licensed to Mark Watson <nordickan@gmail.com>

http://docs.groovy-lang.org/2.4.0/html/gapi/
http://docs.groovy-lang.org/2.4.0/html/gapi/
http://docs.groovy-lang.org/2.4.0/html/groovy-jdk/

763Array of primitives
Table C.1 Groovy primitives

Primitive type Method name Parameter types Return type

encodeBase64 Boolean Writable

encodeHex _-- Writable

flatten _ Collection

getAt Collection List

getAt IntRange List

getAt ObjectRange List

getAt Range List

size _ int

swap int, int byte[]

toList _ List

toSet _ Set

toString _ String

char[]

asBoolean _ Boolean

contains Object Boolean

count Object Number

flatten _ Collection

getAt Collection List

getAt IntRange List

getAt ObjectRange List

getAt Range List

size _ int

swap int, int char[]

toList _ List

toSet _ Set

toString _ String

double[]

asBoolean _ Boolean

contains Object Boolean
Licensed to Mark Watson <nordickan@gmail.com>

764 APPENDIX C GDK API quick reference
count Object Number

flatten _ Collection

getAt Collection List

getAt IntRange List

getAt ObjectRange List

getAt Range List

size _ int

swap int, int double[]

toList _ List

toSet _ Set

toString _ String

float[]

asBoolean _ Boolean

contains Object Boolean

count Object Number

flatten _ Collection

getAt Collection List

getAt IntRange List

getAt ObjectRange List

getAt Range List

size _ int

swap int, int float[]

toList _ List

toSet _ Set

toString _ String

int[]

asBoolean _ Boolean

contains Object Boolean

count Object Number

Table C.1 Groovy primitives (continued)

Primitive type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

765Array of primitives
Table C.1 Groovy primitives

Primitive type Method name Parameter types Return type

equals int[] Boolean

flatten _ Collection

getAt Collection List

getAt IntRange List

getAt ObjectRange List

getAt Range List

size _ int

swap int, int int[]

toList _ List

toSet _ Set

toString _ String

long[]

asBoolean _ Boolean

contains Object Boolean

count Object Number

flatten _ Collection

getAt Collection List

getAt IntRange List

getAt ObjectRange List

getAt Range List

size _ int

swap int, int long[]

toList _ List

toSet _ Set

toString _ String

short[]

asBoolean _ Boolean

contains Object Boolean

count Object Number
Licensed to Mark Watson <nordickan@gmail.com>

766 APPENDIX C GDK API quick reference
flatten _ Collection

getAt Collection List

getAt IntRange List

getAt ObjectRange List

getAt Range List

size _ int

swap int, int short[]

toList _ List

toSet _ Set

toString _ String

boolean[]

asBoolean _ Boolean

contains Object Boolean

count Object Number

flatten _ Collection

getAt Collection List

getAt IntRange List

getAt ObjectRange List

getAt Range List

size _ int

swap int, int Boolean[]

toList _ List

toSet _ Set

toString _ String

double

downto Number, Closure void

upto Number, Closure void

float

downto Number, Closure void

Table C.1 Groovy primitives (continued)

Primitive type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

767The groovy.lang package
The groovy.lang package

Table C.1 Groovy primitives

Primitive type Method name Parameter types Return type

upto Number, Closure void

long

downto Number, Closure void

upto Number, Closure void

Table C.2 groovy.lang package

Type Method name Parameter types Return type

Closure

asType Class Object

print Object void

println _ void

println Object void

GString

asType Class Object

drop int String

dropWhile Closure String

getAt IntRange String

getAt Range String

getAt int String

take int String

takeWhile Closure String

GroovyObject

getMetaClass _ MetaClass

setMetaClass MetaClass void

ListWithDefault

getAt Collection List

getAt EmptyRange List

getAt Range List
Licensed to Mark Watson <nordickan@gmail.com>

768 APPENDIX C GDK API quick reference
The groovy.sql package

The java.awt package

The java.io package

MetaClass

mixin Class void

mixin Class[] void

mixin List void

Table C.3 groovy.sql package

Type Method name Parameter types Return type

GroovyResultSet

asBoolean _ Boolean

Table C.4 java.awt package

Type Method name Parameter types Return type

Container

clear _ void

getAt int java.awt.Component

iterator _ Iterator

leftShift java.awt.Component java.awt.Container

size _ int

Table C.5 java.io package

Type Method name Parameter types Return type

Buffered-
Reader

getText _ String

Table C.2 groovy.lang package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

769The java.io package
Table C.5 java.io package

Type Method name Parameter types Return type

Buffered-
Writer

writeLine String void

Closeable

closeQuietly _ void

closeWithWarning _ void

withCloseable Closure Object

DataInput-
Stream

iterator _ Iterator

File

append InputStream void

append Object void

append Object, String void

append Reader void

append Reader, String void

append Writer void

append Writer, String void

append byte[] void

asType Class Object

asWritable _ File

asWritable String File

static createTempDir _ File

static createTempDir String, String File

deleteDir _ Boolean

directorySize _ long

eachByte Closure void

eachByte int, Closure void

eachDir Closure void

eachDirMatch Object, Closure void
Licensed to Mark Watson <nordickan@gmail.com>

770 APPENDIX C GDK API quick reference
eachDirRecurse Closure void

eachFile Closure void

eachFile groovy.io.File-
Type, Closure

void

eachFileMatch Object, Closure void

eachFileMatch groovy.io.File-
Type, Object,
Closure

void

eachFileRecurse Closure void

eachFileRecurse groovy.io.File-
Type, Closure

void

eachLine Closure Object

eachLine String, Closure Object

eachLine String, int,
Closure

Object

eachLine int, Closure Object

eachObject Closure void

filterLine Closure Writable

filterLine String, Closure Writable

filterLine Writer, Closure void

filterLine Writer, String,
Closure

void

getBytes _ byte[]

getText _ String

getText String String

leftShift InputStream File

leftShift Object File

leftShift byte[] File

newDataInputStream _ DataInputStream

newDataOutputStream _ DataOutputStream

newInputStream _ BufferedInput-
Stream

Table C.5 java.io package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

771The java.io package
Table C.5 java.io package

Type Method name Parameter types Return type

newObjectInputStream _ ObjectInputStream

newObjectInputStream ClassLoader ObjectInput-
Stream

newObjectOutput-
Stream

_ ObjectOutput-
Stream

newOutputStream _ BufferedOutput-
Stream

newPrintWriter _ PrintWriter

newPrintWriter String PrintWriter

newReader _ BufferedReader

newReader String BufferedReader

newWriter _ BufferedWriter

newWriter String BufferedWriter

newWriter String, Boolean BufferedWriter

newWriter Boolean BufferedWriter

readBytes _ byte[]

readLines _ List

readLines String List

renameTo String Boolean

setBytes byte[] void

setText String void

setText String, String void

size _ long

splitEachLine String, Closure Object

splitEachLine String, String,
Closure

Object

splitEachLine java.util.regex
.Pattern, Closure

Object

splitEachLine java.util.regex
.Pattern, String,
Closure

Object

traverse Closure void
Licensed to Mark Watson <nordickan@gmail.com>

772 APPENDIX C GDK API quick reference
traverse Map void

traverse Map, Closure void

withDataInputStream Closure Object

withDataOutputStream Closure Object

withInputStream Closure Object

withObjectInput-
Stream

ClassLoader,
Closure

Object

withObjectInput-
Stream

Closure Object

withObjectOutput-
Stream

Closure Object

withOutputStream Closure Object

withPrintWriter Closure Object

withPrintWriter String, Closure Object

withReader Closure Object

withReader String, Closure Object

withWriter Closure Object

withWriter String, Closure Object

withWriterAppend Closure Object

withWriterAppend String, Closure Object

write String void

write String, String void

Input-
Stream

eachByte Closure void

eachByte int, Closure void

eachLine Closure Object

eachLine String, Closure Object

eachLine String, int,
Closure

Object

eachLine int, Closure Object

Table C.5 java.io package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

773The java.io package
Table C.5 java.io package

Type Method name Parameter types Return type

filterLine Closure Writable

filterLine String, Closure Writable

filterLine Writer, Closure void

filterLine Writer, String,
Closure

void

getBytes _ byte[]

getText _ String

getText String String

iterator _ Iterator

newObjectInputStream _ ObjectInput-
Stream

newObjectInputStream ClassLoader ObjectInput-
Stream

newReader _ BufferedReader

newReader String BufferedReader

readLines _ List

readLines String List

splitEachLine String, Closure Object

splitEachLine String, String,
Closure

Object

splitEachLine java.util.regex
.Pattern, Closure

Object

splitEachLine java.util.regex
.Pattern, String,
Closure

Object

withObjectInput-
Stream

ClassLoader,
Closure

Object

withObjectInput-
Stream

Closure Object

withReader Closure Object

withReader String, Closure Object

withStream Closure Object
Licensed to Mark Watson <nordickan@gmail.com>

774 APPENDIX C GDK API quick reference
Object-
Input-
Stream

eachObject Closure void

Object-
Output-
Stream

leftShift Object void

Output-
Stream

leftShift InputStream OutputStream

leftShift Object Writer

leftShift byte[] OutputStream

newObjectOutput-
Stream

_ ObjectOutput-
Stream

newPrintWriter _ PrintWriter

newWriter _ Writer

newWriter String Writer

setBytes byte[] void

withObjectOutput-
Stream

Closure Object

withPrintWriter Closure Object

withStream Closure Object

withWriter Closure Object

withWriter String, Closure Object

Print-
Stream

print Object void

println Object void

Print-
Writer

print Object void

println Object void

Table C.5 java.io package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

775The java.lang package
The java.lang package

Table C.5 java.io package

Type Method name Parameter types Return type

Reader

eachLine Closure Object

eachLine int, Closure Object

filterLine Closure Writable

filterLine Writer, Closure void

getText _ String

iterator _ Iterator

readLine _ String

readLines _ List

splitEachLine String, Closure Object

splitEachLine java.util.regex
.Pattern, Closure

Object

transformChar Writer, Closure void

transformLine Writer, Closure void

withReader Closure Object

Writer

leftShift Object Writer

newPrintWriter _ PrintWriter

withPrintWriter Closure Object

withWriter Closure Object

write Writable void

Table C.6 java.lang package

Type Method name Parameter types Return type

Byte[]

eachByte Closure void

encodeBase64 _ Writable

encodeBase64 Boolean Writable
Licensed to Mark Watson <nordickan@gmail.com>

776 APPENDIX C GDK API quick reference
encodeHex _ Writable

Object[]

asBoolean _ Boolean

asType Class Object

collectEntries _ Map

collectEntries Closure Map

collectEntries Map Map

collectEntries Map, Closure Map

collectMany Closure List

contains Object Boolean

count Closure Number

count Object Number

countBy Closure Map

drop int Object[]

dropRight int Object[]

dropWhile Closure Object[]

equals List Boolean

find Closure Object

findAll _ Collection

findAll Closure Collection

first _ Object

flatten _ Collection

getAt Collection List

getAt EmptyRange List

getAt IntRange List

getAt ObjectRange List

getAt Range List

getIndices _ IntRange

grep _ Collection

Table C.6 java.lang package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

777The java.lang package
Table C.6 java.lang package

Type Method name Parameter types Return type

grep Object Collection

groupBy Closure Map

groupBy List Map

groupBy Object[] Map

head _ Object

init _ Object[]

inject Closure Object

inject Object, Closure Object

iterator _ Iterator

join String String

last _ Object

max _ Object

max Closure Object

max Comparator Object

min _ Object

min Closure Object

min Comparator Object

minus Iterable Object[]

minus Object Object[]

minus Object[] Object[]

plus Collection Object[]

plus Iterable Object[]

plus Object Object[]

plus Object[] Object[]

reverse _ Object[]

reverse Boolean Object[]

reverseEach Closure Object[]

size _ int

sort _ Object[]
Licensed to Mark Watson <nordickan@gmail.com>

778 APPENDIX C GDK API quick reference
sort Closure Object[]

sort Comparator Object[]

sort Boolean Object[]

sort Boolean, Closure Object[]

sort Boolean,
Comparator

Object[]

sum _ Object

sum Closure Object

sum Object Object

sum Object, Closure Object

swap int, int Object[]

tail _ Object[]

take int Object[]

takeRight int Object[]

takeWhile Closure Object[]

toArrayString _ String

toList _ List

toSorted _ Object[]

toSorted Closure Object[]

toSorted Comparator Object[]

toSpreadMap _ SpreadMap

toString _ String

toUnique _ Object[]

toUnique Closure Object[]

toUnique Comparator Object[]

String[]

execute _ Process

execute List, File Process

execute String[], File Process

Table C.6 java.lang package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

779The java.lang package
Table C.6 java.lang package

Type Method name Parameter types Return type

Appendable

leftShift Object Appendable

withFormatter Closure Appendable

withFormatter Locale, Closure Appendable

Boolean

and Boolean Boolean

asBoolean _ Boolean

implies Boolean Boolean

or Boolean Boolean

toBoolean _ Boolean

xor Boolean Boolean

CharSequence

asBoolean _ Boolean

asType Class Object

bitwiseNegate _ java.util.regex
.Pattern

capitalize _ String

center Number String

center Number,
CharSequence

String

contains CharSequence Boolean

count CharSequence int

denormalize _ String

drop int CharSequence

dropWhile Closure CharSequence

eachLine Closure Object

eachLine int, Closure Object

eachMatch CharSequence,
Closure

CharSequence

eachMatch java.util.regex
.Pattern, Closure

CharSequence
Licensed to Mark Watson <nordickan@gmail.com>

780 APPENDIX C GDK API quick reference
expand _ String

expand int String

expandLine int String

find CharSequence String

find CharSequence,
Closure

String

find java.util.regex
.Pattern

String

find java.util.regex
.Pattern, Closure

String

findAll CharSequence List

findAll CharSequence,
Closure

List

findAll java.util.regex
.Pattern

List

findAll java.util.regex
.Pattern, Closure

List

getAt Collection String

getAt EmptyRange String

getAt IntRange CharSequence

getAt Range CharSequence

getAt int CharSequence

getChars _ char[]

isAllWhitespace _ Boolean

isBigDecimal _ Boolean

isBigInteger _ Boolean

isCase Object Boolean

isDouble _ Boolean

isFloat _ Boolean

isInteger _ Boolean

isLong _ Boolean

Table C.6 java.lang package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

781The java.lang package
Table C.6 java.lang package

Type Method name Parameter types Return type

isNumber _ Boolean

leftShift Object StringBuilder

matches java.util.regex
.Pattern

Boolean

minus Object String

minus java.util.regex
.Pattern

String

multiply Number String

next _ String

normalize _ String

padLeft Number String

padLeft Number,
CharSequence

String

padRight Number String

padRight Number,
CharSequence

String

plus Object String

previous _ String

readLines _ List

replaceAll CharSequence,
CharSequence

String

replaceAll CharSequence,
Closure

String

replaceAll java.util.regex
.Pattern, Char-
Sequence

String

replaceAll java.util.regex
.Pattern, Closure

String

replaceFirst CharSequence,
CharSequence

String

replaceFirst CharSequence,
Closure

String
Licensed to Mark Watson <nordickan@gmail.com>

782 APPENDIX C GDK API quick reference
replaceFirst java.util.regex
.Pattern, Char-
Sequence

String

replaceFirst java.util.regex
.Pattern, Closure

String

reverse _ String

size _ int

split _ String[]

splitEachLine CharSequence,
Closure

Object

splitEachLine java.util.regex
.Pattern, Closure

Object

stripIndent _ String

stripIndent int String

stripMargin _ String

stripMargin CharSequence String

stripMargin char String

take int CharSequence

takeWhile Closure CharSequence

toBigDecimal _ java.math.Big-
Decimal

toBigInteger _ java.math.Big-
Integer

toDouble _ Double

toFloat _ Float

toInteger _ Integer

toList _ List

toLong _ Long

toSet _ Set

toShort _ Short

toURI _ java.net.URI

toURL _ java.net.URL

Table C.6 java.lang package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

783The java.lang package
Table C.6 java.lang package

Type Method name Parameter types Return type

tokenize _ List

tokenize CharSequence List

tokenize Character List

tr CharSequence,
CharSequence

String

unexpand _ String

unexpand int String

unexpandLine int String

Character

asBoolean _ Boolean

compareTo Character int

compareTo Number int

div Character Number

div Number Number

intdiv Character Number

intdiv Number Number

isDigit _ Boolean

isLetter _ Boolean

isLetterOrDigit _ Boolean

isLowerCase _ Boolean

isUpperCase _ Boolean

isWhitespace _ Boolean

minus Character Number

minus Number Number

multiply Character Number

multiply Number Number

next _ Character

plus Character Number

plus Number Number
Licensed to Mark Watson <nordickan@gmail.com>

784 APPENDIX C GDK API quick reference
previous _ Character

toLowerCase _ char

toUpperCase _ char

Class

getMetaClass _ MetaClass

isCase Object Boolean

metaClass Closure MetaClass

mixin Class void

mixin Class[] void

mixin List void

newInstance _ Object

newInstance Object[] Object

setMetaClass MetaClass void

ClassLoader

getRootLoader _ ClassLoader

Comparable

numberAware-
CompareTo

Comparable int

Double

abs _ double

downto Number, Closure void

round _ long

round int double

trunc _ double

trunc int double

upto Number, Closure void

Float

abs _ float

downto Number, Closure void

Table C.6 java.lang package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

785The java.lang package
Table C.6 java.lang package

Type Method name Parameter types Return type

round _ int

round int float

trunc _ float

trunc int float

upto Number, Closure void

Integer

power Integer Number

Iterable

any Closure Boolean

asCollection _ Collection

asList _ List

collate int List

collate int, Boolean List

collate int, int List

collate int, int,
Boolean

List

collectEntries _ Map

collectEntries Closure Map

collectEntries Map Map

collectEntries Map, Closure Map

collectMany Closure List

collectMany Collection,
Closure

Collection

collectNested Closure List

collectNested Collection,
Closure

Collection

combinations _ List

combinations Closure List

contains Object Boolean

containsAll Object[] Boolean
Licensed to Mark Watson <nordickan@gmail.com>

786 APPENDIX C GDK API quick reference
count Closure Number

count Object Number

countBy Closure Map

disjoint Iterable Boolean

drop int Collection

dropRight int Collection

dropWhile Closure Collection

each Closure Iterable

eachCombination Closure void

eachPermutation Closure Iterator

eachWithIndex Closure Iterable

every Closure Boolean

findResults Closure Collection

first _ Object

flatten _ Collection

flatten Closure Collection

getAt int Object

groupBy Closure Map

groupBy List Map

groupBy Object[] Map

head _ Object

indexed _ Map

indexed int Map

init _ Collection

intersect Iterable Collection

join String String

last _ Object

max _ Object

max Closure Object

Table C.6 java.lang package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

787The java.lang package
Table C.6 java.lang package

Type Method name Parameter types Return type

max Comparator Object

min _ Object

min Closure Object

min Comparator Object

minus Iterable Collection

minus Object Collection

multiply Number Collection

permutations _ Set

permutations Closure List

plus Iterable Collection

plus Object Collection

size _ int

sort _ List

sort Closure List

sort Boolean List

sort Boolean, Closure List

sort Boolean,
Comparator

List

sum _ Object

sum Closure Object

sum Object Object

sum Object, Closure Object

tail _ Collection

take int Collection

takeRight int Collection

takeWhile Closure Collection

toList _ List

toSet _ Set

toSorted _ List
Licensed to Mark Watson <nordickan@gmail.com>

788 APPENDIX C GDK API quick reference
toSorted Closure List

toSorted Comparator List

toSpreadMap _ SpreadMap

toUnique _ Collection

toUnique Closure Collection

toUnique Comparator Collection

withIndex _ List

withIndex int List

Long

abs _ long

downto Number, Closure void

power Integer Number

upto Number, Closure void

Number

abs _ int

and Number Number

asBoolean _ Boolean

asType Class Object

bitwiseNegate _ Number

compareTo Character int

compareTo Number int

div Character Number

div Number Number

downto Number, Closure void

intdiv Character Number

intdiv Number Number

isCase Number Boolean

leftShift Number Number

minus Character Number

Table C.6 java.lang package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

789The java.lang package
Table C.6 java.lang package

Type Method name Parameter types Return type

minus Number Number

mod Number Number

multiply Character Number

multiply Number Number

next _ Number

or Number Number

plus Character Number

plus Number Number

plus String String

power Number Number

previous _ Number

rightShift Number Number

rightShiftUnsigned Number Number

step Number, Number,
Closure

void

times Closure void

toBigDecimal _ java.math.Big-
Decimal

toBigInteger _ java.math.Big-
Integer

toDouble _ Double

toFloat _ Float

toInteger _ Integer

toLong _ Long

unaryMinus _ Number

unaryPlus _ Number

upto Number, Closure void

xor Number Number

Object

addShutdownHook Closure void
Licensed to Mark Watson <nordickan@gmail.com>

790 APPENDIX C GDK API quick reference
any _ Boolean

any Closure Boolean

asBoolean _ Boolean

asType Class Object

collect _ Collection

collect Closure List

collect Collection,
Closure

Collection

dump _ String

each Closure Object

eachWithIndex Closure Object

every _ Boolean

every Closure Boolean

find _ Object

find Closure Object

findAll _ Collection

findAll Closure Collection

findIndexOf Closure int

findIndexOf int, Closure int

findIndexValues Closure List

findIndexValues Number, Closure List

findLastIndexOf Closure int

findLastIndexOf int, Closure int

findResult Closure Object

findResult Object, Closure Object

getAt String Object

getMetaClass _ MetaClass

getMetaProperty-
Values

_ List

getProperties _ Map

Table C.6 java.lang package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

791The java.lang package
Table C.6 java.lang package

Type Method name Parameter types Return type

grep _ Collection

grep Object Collection

hasProperty String MetaProperty

identity Closure Object

inject Closure Object

inject Object, Closure Object

inspect _ String

invokeMethod String, Object Object

is Object Boolean

isCase Object Boolean

iterator _ Iterator

metaClass Closure MetaClass

print Object void

print PrintWriter void

printf String, Object void

printf String, Object[] void

println _ void

println Object void

println PrintWriter void

putAt String, Object void

respondsTo String List

respondsTo String, Object[] List

setMetaClass MetaClass void

static sleep long void

static sleep long, Closure void

split Closure Collection

sprintf String, Object String

sprintf String, Object[] String

toString _ String
Licensed to Mark Watson <nordickan@gmail.com>

792 APPENDIX C GDK API quick reference
use Class, Closure Object

use List, Closure Object

use Object[] Object

with Closure Object

withTraits Class[] Object

Process

closeStreams _ void

consumeProcess-
ErrorStream

Appendable Thread

consumeProcess-
ErrorStream

OutputStream Thread

consumeProcess-
Output

_ void

consumeProcess-
Output

Appendable,
Appendable

void

consumeProcess-
Output

OutputStream,
OutputStream

void

consumeProcess-
OutputStream

Appendable Thread

consumeProcess-
OutputStream

OutputStream Thread

getErr _ InputStream

getIn _ InputStream

getOut _ OutputStream

getText _ String

leftShift Object Writer

leftShift byte[] OutputStream

or Process Process

pipeTo Process Process

waitForOrKill long void

waitForProcess-
Output

_ void

Table C.6 java.lang package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

793The java.lang package
Table C.6 java.lang package

Type Method name Parameter types Return type

waitForProcess-
Output

Appendable,
Appendable

void

waitForProcess-
Output

OutputStream,
OutputStream

void

withOutputStream Closure void

withWriter Closure void

String

asType Class Object

collectReplacements Closure String

decodeBase64 _ byte[]

decodeHex _ byte[]

eachMatch String, Closure String

eachMatch java.util.regex
.Pattern, Closure

String

execute _ Process

execute List, File Process

execute String[], File Process

getAt IntRange String

getAt Range String

getAt int String

leftShift Object StringBuffer

plus CharSequence String

size _ int

toBoolean _ Boolean

toCharacter _ Character

toURI _ java.net.URI

toURL _ java.net.URL

StringBuffer

leftShift Object StringBuffer

plus String String
Licensed to Mark Watson <nordickan@gmail.com>

794 APPENDIX C GDK API quick reference
The java.math package

putAt EmptyRange,
Object

void

putAt IntRange, Object void

size _ int

StringBuilder

leftShift Object StringBuilder

System

static current-
TimeSeconds

_ long

Thread

static start Closure Thread

static start String, Closure Thread

static startDaemon Closure Thread

static startDaemon String, Closure Thread

Table C.7 java.math package

Type Method name Parameter types Return type

BigDecimal

downto Number, Closure void

multiply Double Number

multiply java.math.Big-
Integer

Number

power Integer Number

upto Number, Closure void

BigInteger

downto Number, Closure void

power Integer Number

power java.math.Big-
Integer

java.math.Big-
Integer

upto Number, Closure void

Table C.6 java.lang package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

795The java.net package
The java.net package

Table C.8 java.net package

Type Method name Parameter types Return type

ServerSocket

accept Closure java.net.Socket

accept Boolean, Closure java.net.Socket

Socket

leftShift Object Writer

leftShift byte[] OutputStream

withObject-
Streams

Closure Object

withStreams Closure Object

URL

eachByte Closure void

eachByte int, Closure void

eachLine Closure Object

eachLine String, Closure Object

eachLine String, int, Closure Object

eachLine int, Closure Object

filterLine Closure Writable

filterLine String, Closure Writable

filterLine Writer, Closure void

filterLine Writer, String,
Closure

void

getBytes _ byte[]

getText _ String

getText Map String

getText Map, String String

getText String String

newInput-
Stream

_ BufferedInput-
Stream
Licensed to Mark Watson <nordickan@gmail.com>

796 APPENDIX C GDK API quick reference
The java.nio.file package

newInput-
Stream

Map BufferedInput-
Stream

newReader _ BufferedReader

newReader Map BufferedReader

newReader Map, String BufferedReader

newReader String BufferedReader

readLines _ List

readLines String List

splitEach-
Line

String, Closure Object

splitEach-
Line

String, String,
Closure

Object

splitEach-
Line

java.util.regex
.Pattern, Closure

Object

splitEach-
Line

java.util.regex
.Pattern, String,
Closure

Object

withInput-
Stream

Closure Object

withReader Closure Object

withReader String, Closure Object

Table C.9 java.nio.file package

Type Method name Parameter types Return type

Path

append InputStream void

append Object void

append Object, String void

append Reader void

append Reader, String void

Table C.8 java.net package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

797The java.nio.file package
Table C.9 java.nio.file package

Type Method name Parameter types Return type

append Writer void

append Writer, String void

append byte[] void

asType Class Object

asWritable _ java.nio.file
.Path

asWritable String java.nio.file
.Path

deleteDir _ Boolean

eachByte Closure void

eachByte int, Closure void

eachDir Closure void

eachDirMatch Object, Closure void

eachDirRecurse Closure void

eachFile Closure void

eachFile groovy.io.FileType,
Closure

void

eachFileMatch Object, Closure void

eachFileMatch groovy.io.FileType,
Object, Closure

void

eachFileRecurse Closure void

eachFileRecurse groovy.io.FileType,
Closure

void

eachLine Closure Object

eachLine String, Closure Object

eachLine String, int, Closure Object

eachLine int, Closure Object

eachObject Closure void

filterLine Closure Writable

filterLine String, Closure Writable

filterLine Writer, Closure void
Licensed to Mark Watson <nordickan@gmail.com>

798 APPENDIX C GDK API quick reference
filterLine Writer, String,
Closure

void

getBytes _ byte[]

getText _ String

getText String String

leftShift InputStream java.nio.file
.Path

leftShift Object java.nio.file
.Path

leftShift byte[] java.nio.file
.Path

newDataInput-
Stream

_ DataInputStream

newDataOutput-
Stream

_ DataOutput-
Stream

newInputStream _ BufferedInput-
Stream

newObjectInput-
Stream

_ ObjectInput-
Stream

newObjectInput-
Stream

ClassLoader ObjectInput-
Stream

newObjectOutput-
Stream

_ ObjectOutput-
Stream

newOutputStream _ BufferedOutput-
Stream

newPrintWriter _ PrintWriter

newPrintWriter String PrintWriter

newReader _ BufferedReader

newReader String BufferedReader

newWriter _ BufferedWriter

newWriter String BufferedWriter

newWriter String, Boolean BufferedWriter

newWriter Boolean BufferedWriter

Table C.9 java.nio.file package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

799The java.nio.file package
Table C.9 java.nio.file package

Type Method name Parameter types Return type

readBytes _ byte[]

readLines _ List

readLines String List

renameTo String Boolean

renameTo java.net.URI Boolean

setBytes byte[] void

setText String void

setText String, String void

size _ long

splitEachLine String, Closure Object

splitEachLine String, String,
Closure

Object

splitEachLine java.util.regex
.Pattern, Closure

Object

splitEachLine java.util.regex
.Pattern, String,
Closure

Object

traverse Closure void

traverse Map void

traverse Map, Closure void

withDataInput-
Stream

Closure Object

withDataOutput-
Stream

Closure Object

withInputStream Closure Object

withObjectInput-
Stream

ClassLoader,
Closure

Object

withObjectInput-
Stream

Closure Object

withObjectOutput-
Stream

Closure Object

withOutputStream Closure Object
Licensed to Mark Watson <nordickan@gmail.com>

800 APPENDIX C GDK API quick reference
The java.sql package

withPrintWriter Closure Object

withPrintWriter String, Closure Object

withReader Closure Object

withReader String, Closure Object

withWriter Closure Object

withWriter String, Closure Object

withWriterAppend Closure Object

withWriterAppend String, Closure Object

write String void

write String, String void

Table C.10 java.sql package

Type Method name Parameter types Return type

Date

clearTime _ java.sql.Date

minus int java.sql.Date

next _ java.sql.Date

plus int java.sql.Date

previous _ java.sql.Date

ResultSet

toRowResult _ groovy.sql.Groovy-
RowResult

ResultSetMetaData

iterator _ Iterator

Timestamp

minus int java.sql.Timestamp

plus int java.sql.Timestamp

Table C.9 java.nio.file package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

801The java.util package
The java.util package

Table C.11 java.util package

Type Method name Parameter types Return type

Abstract-
Collection

toString _ String

AbstractMap

toString _ String

BitSet

and BitSet BitSet

bitwiseNegate _ BitSet

getAt IntRange BitSet

getAt int Boolean

or BitSet BitSet

putAt IntRange,
Boolean

void

putAt int, Boolean void

xor BitSet BitSet

Calendar

clearTime _ Calendar

copyWith Map Calendar

downto Calendar, Closure void

format String String

getAt int int

minus Calendar int

next _ Calendar

previous _ Calendar

putAt int, int void

set Map void

updated Map Calendar

upto Calendar, Closure void
Licensed to Mark Watson <nordickan@gmail.com>

802 APPENDIX C GDK API quick reference
Collection

addAll Iterable Boolean

addAll Iterator Boolean

addAll Object[] Boolean

asBoolean _ Boolean

asImmutable _ Collection

asSynchronized _ Collection

asType Class Object

collect _ List

collect Closure List

collect Collection,
Closure

Collection

collectNested Closure List

each Closure Collection

eachWithIndex Closure Collection

find _ Object

find Closure Object

findAll _ Collection

findAll Closure Collection

findResult Closure Object

findResult Object, Closure Object

flatten _ Collection

getAt String List

getIndices _ IntRange

grep _ Collection

grep Object Collection

inject Closure Object

inject Object, Closure Object

intersect Collection Collection

Table C.11 java.util package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

803The java.util package
Table C.11 java.util package

Type Method name Parameter types Return type

isCase Object Boolean

leftShift Object Collection

minus Collection Collection

plus Collection Collection

plus Iterable Collection

plus Object Collection

removeAll Closure Boolean

removeAll Object[] Boolean

removeElement Object Boolean

retainAll Closure Boolean

retainAll Object[] Boolean

split Closure Collection

toListString _ String

toListString int String

toSet _ Set

unique _ Collection

unique Closure Collection

unique Comparator Collection

unique Boolean Collection

unique Boolean, Closure Collection

unique Boolean,
Comparator

Collection

Date

clearTime _ Date

copyWith Map Date

downto Date, Closure void

format String String

format String, TimeZone String

getAt int int
Licensed to Mark Watson <nordickan@gmail.com>

804 APPENDIX C GDK API quick reference
getDateString _ String

getDateTimeString _ String

getTimeString _ String

minus Date int

minus int Date

next _ Date

static parse String, String Date

static
parseToStringDate

String Date

plus int Date

previous _ Date

putAt int, int void

set Map void

toCalendar _ Calendar

toTimestamp _ java.sql.Time-
stamp

updated Map Date

upto Date, Closure void

Enumeration

asBoolean _ Boolean

iterator _ Iterator

toList _ List

toSet _ Set

Iterator

any Closure Boolean

asBoolean _ Boolean

collectEntries _ Map

collectEntries Closure Map

collectEntries Map Map

collectEntries Map, Closure Map

Table C.11 java.util package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

805The java.util package
Table C.11 java.util package

Type Method name Parameter types Return type

collectMany Closure List

count Closure Number

count Object Number

countBy Closure Map

drop int Iterator

dropRight int Iterator

dropWhile Closure Iterator

each Closure Iterator

eachWithIndex Closure Iterator

every Closure Boolean

getAt int Object

indexed _ Iterator

indexed int Iterator

init _ Iterator

inject Object, Closure Object

iterator _ Iterator

join String String

max _ Object

max Closure Object

max Comparator Object

min _ Object

min Closure Object

min Comparator Object

reverse _ Iterator

size _ int

sort _ Iterator

sort Closure Iterator

sort Comparator Iterator

sum _ Object
Licensed to Mark Watson <nordickan@gmail.com>

806 APPENDIX C GDK API quick reference
sum Closure Object

sum Object Object

sum Object, Closure Object

tail _ Iterator

take int Iterator

takeWhile Closure Iterator

toList _ List

toSet _ Set

toSorted _ Iterator

toSorted Closure Iterator

toSorted Comparator Iterator

toUnique _ Iterator

toUnique Closure Iterator

toUnique Comparator Iterator

unique _ Iterator

unique Closure Iterator

unique Comparator Iterator

withIndex _ Iterator

withIndex int Iterator

List

addAll int, Object[] Boolean

asImmutable _ List

asSynchronized _ List

drop int List

dropRight int List

dropWhile Closure List

each Closure List

eachWithIndex Closure List

equals List Boolean

Table C.11 java.util package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

807The java.util package
Table C.11 java.util package

Type Method name Parameter types Return type

equals Object[] Boolean

execute _ Process

execute List, File Process

execute String[], File Process

findAll _ List

findAll Closure List

first _ Object

flatten _ List

getAt Collection List

getAt EmptyRange List

getAt Range List

getAt int Object

grep _ List

grep Object List

head _ Object

init _ List

intersect Iterable List

last _ Object

leftShift Object List

minus Collection List

minus Iterable List

minus Object List

multiply Number List

plus Collection List

plus Iterable List

plus Object List

plus int, Iterable List

plus int, List List

plus int, Object[] List
Licensed to Mark Watson <nordickan@gmail.com>

808 APPENDIX C GDK API quick reference
pop _ Object

push Object Boolean

putAt EmptyRange,
Collection

void

putAt EmptyRange, Object void

putAt IntRange,
Collection

void

putAt IntRange, Object void

putAt List, List void

putAt List, Object void

putAt int, Object void

removeAt int Object

reverse _ List

reverse Boolean List

reverseEach Closure List

split Closure List

subsequences _ Set

swap int, int List

tail _ List

take int List

takeRight int List

takeWhile Closure List

toSpreadMap _ SpreadMap

toUnique _ List

toUnique Closure List

toUnique Comparator List

transpose _ List

unique _ List

unique Closure List

unique Comparator List

Table C.11 java.util package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

809The java.util package
Table C.11 java.util package

Type Method name Parameter types Return type

unique Boolean List

unique Boolean, Closure List

unique Boolean,
Comparator

List

withDefault Closure List

withEagerDefault Closure List

withLazyDefault Closure List

Map

any Closure Boolean

asBoolean _ Boolean

asImmutable _ Map

asSynchronized _ Map

asType Class Object

collect Closure List

collect Collection,
Closure

Collection

collectEntries Closure Map

collectEntries Map, Closure Map

collectMany Closure Collection

collectMany Collection,
Closure

Collection

count Closure Number

countBy Closure Map

drop int Map

dropWhile Closure Map

each Closure Map

eachWithIndex Closure Map

equals Map Boolean

every Closure Boolean

find Closure Entry
Licensed to Mark Watson <nordickan@gmail.com>

810 APPENDIX C GDK API quick reference
findAll Closure Map

findResult Closure Object

findResult Object, Closure Object

findResults Closure Collection

get Object, Object Object

getAt Object Object

groupBy Closure Map

groupBy List Map

groupBy Object[] Map

groupEntriesBy Closure Map

inject Object, Closure Object

intersect Map Map

isCase Object Boolean

leftShift Entry Map

leftShift Map Map

max Closure Entry

min Closure Entry

minus Map Map

plus Collection Map

plus Map Map

putAll Collection Map

putAt Object, Object Object

reverseEach Closure Map

sort _ Map

sort Closure Map

sort Comparator Map

spread _ SpreadMap

subMap Collection Map

subMap Object[] Map

Table C.11 java.util package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

811The java.util package
Table C.11 java.util package

Type Method name Parameter types Return type

take int Map

takeWhile Closure Map

toMapString _ String

toMapString int String

toSorted _ Map

toSorted Closure Map

toSorted Comparator Map

toSpreadMap _ SpreadMap

withDefault Closure Map

ResourceBundle

static getBundle String ResourceBundle

static getBundle String, Locale ResourceBundle

Set

asImmutable _ Set

asSynchronized _ Set

each Closure Set

eachWithIndex Closure Set

equals Set Boolean

findAll _ Set

findAll Closure Set

flatten _ Set

grep _ Set

grep Object Set

intersect Iterable Set

leftShift Object Set

minus Collection Set

minus Iterable Set

minus Object Set

plus Collection Set
Licensed to Mark Watson <nordickan@gmail.com>

812 APPENDIX C GDK API quick reference
plus Iterable Set

plus Object Set

split Closure List

SortedMap

asImmutable _ SortedMap

asSynchronized _ SortedMap

sort _ SortedMap

toSorted _ Map

SortedSet

asImmutable _ SortedSet

asSynchronized _ SortedSet

drop int SortedSet

dropRight int SortedSet

dropWhile Closure SortedSet

each Closure SortedSet

eachWithIndex Closure SortedSet

flatten _ SortedSet

init _ SortedSet

intersect Iterable SortedSet

leftShift Object SortedSet

minus Collection SortedSet

minus Iterable SortedSet

minus Object SortedSet

plus Collection SortedSet

plus Iterable SortedSet

plus Object SortedSet

sort _ SortedSet

tail _ SortedSet

take int SortedSet

Table C.11 java.util package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

813The java.util.regex package
The java.util.concurrent package

The java.util.regex package

Table C.11 java.util package

Type Method name Parameter types Return type

takeRight int SortedSet

takeWhile Closure SortedSet

toSorted _ Set

Timer

runAfter int, Closure TimerTask

Table C.12 java.util.concurrent package

Type Method name Parameter types Return type

BlockingQueue

leftShift Object BlockingQueue

Table C.13 java.util.regex package

Method name Parameter types Return type

Matcher

asBoolean _ Boolean

getAt Collection List

getAt int Object

getCount _ int

static
getLastMatcher

_ java.util.regex
.Matcher

hasGroup _ Boolean

iterator _ Iterator

matchesPartially _ Boolean

setIndex int void

size _ long
Licensed to Mark Watson <nordickan@gmail.com>

814 APPENDIX C GDK API quick reference
The javax.swing package

Pattern

isCase Object Boolean

Table C.14 javax.swing package

Type Method name Parameter types Return type

AbstractButton

setMnemonic String void

ButtonGroup

getAt int AbstractButton

iterator _ Iterator

leftShift AbstractButton ButtonGroup

size _ int

DefaultComboBox-
Model

clear _ void

DefaultListModel

clear _ void

iterator _ Iterator

leftShift Object DefaultListModel

putAt int, Object void

JComboBox

clear _ void

getAt int Object

iterator _ Iterator

leftShift Object JComboBox

size _ int

JMenu

getAt int java.awt.Component

Table C.13 java.util.regex package (continued)

Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

815The javax.swing package
Table C.14 javax.swing package

Type Method name Parameter types Return type

iterator _ Iterator

leftShift Action JMenu

leftShift GString JMenu

leftShift JMenuItem JMenu

leftShift String JMenu

leftShift java.awt
.Component

JMenu

size _ int

JMenuBar

getAt int JMenu

iterator _ Iterator

leftShift JMenu JMenuBar

size _ int

JPopupMenu

iterator _ Iterator

leftShift Action JPopupMenu

leftShift GString JPopupMenu

leftShift JMenuItem JPopupMenu

leftShift String JPopupMenu

leftShift java.awt
.Component

JPopupMenu

JTabbedPane

clear _ void

getAt int java.awt.Component

iterator _ Iterator

size _ int

JToolBar

getAt int java.awt.Component

leftShift Action JToolBar

ListModel
Licensed to Mark Watson <nordickan@gmail.com>

816 APPENDIX C GDK API quick reference
The javax.swing.table package

getAt int Object

iterator _ Iterator

size _ int

MutableComboBox-
Model

iterator _ Iterator

leftShift Object MutableComboBox-
Model

putAt int, Object void

Table C.15 javax.swing.table package

Type Method name Parameter types Return type

DefaultTableModel

iterator _ Iterator

leftShift Object javax.swing.table
.DefaultTableModel

putAt int, Object void

TableColumnModel

getAt int javax.swing.table
.TableColumn

iterator _ Iterator

leftShift javax.swing.table
.TableColumn

javax.swing.table
.TableColumnModel

size _ int

TableModel

getAt int Object[]

iterator _ Iterator

size _ int

Table C.14 javax.swing package (continued)

Type Method name Parameter types Return type
Licensed to Mark Watson <nordickan@gmail.com>

817The javax.swing.tree package
The javax.swing.tree package

Table C.16 javax.swing.tree package

Type Method name Parameter types Return type

DefaultMutable-
TreeNode

clear _ void

leftShift javax.swing.tree
.DefaultMutable-
TreeNode

javax.swing.tree
.DefaultMutable-
TreeNode

MutableTreeNode

leftShift javax.swing.tree
.MutableTreeNode

javax.swing.tree
.MutableTreeNode

putAt int, javax.swing
.tree.Mutable-
TreeNode

void

TreeNode

getAt int javax.swing.tree
.TreeNode

iterator _ Iterator

size _ int

TreePath

getAt int Object

iterator _ Iterator

leftShift Object javax.swing.tree
.TreePath

size _ int
Licensed to Mark Watson <nordickan@gmail.com>

818 APPENDIX C GDK API quick reference
The org.w3c.dom package

Table C.17 org.w3c.dom package

Type Method name Parameter types Return type

org.w3c.dom.Element

serialize _ String

org.w3c.dom.NodeList

iterator _ Iterator
Licensed to Mark Watson <nordickan@gmail.com>

appendix D
Cheat sheets

Cheat sheets provide you with quick information and examples to get you up and
running quickly. For more details about any topic, refer to the corresponding sec-
tion in the book or the Groovy documentation.

D.1 GStrings
For more information, see chapter 3.

// normal use
def g1 = "1 + 1 equals ${1 + 1}"
assert g1 == '1 + 1 equals 2'
assert g1 instanceof CharSequence
assert g1 instanceof GString

def x = 10

def g2 = "$x" // reference
assert g2 == "10"

def g3 = "${x}" // expression
assert g3 == "10"

This appendix covers
■ Understanding GStrings
■ Using lists, closures, and regular expressions
■ Notating XML GPath
819

Licensed to Mark Watson <nordickan@gmail.com>

820 APPENDIX D Cheat sheets
// lazy evaluation with a writeable closure!
def g4 = "${ -> x}" // closure
x = 20 // value change after definition
assert g4 == "20" // lazy evaluation!

D.2 Lists
For more information, see section 4.2.

assert [1,2,3,4] == (1..4)
assert [1,2,3] + [1] == [1,2,3,1]
assert [1,2,3] << 1 == [1,2,3,1]
assert [1,2,3,1] - [1] == [2,3]
assert [1,2,3] * 2 == [1,2,3,1,2,3]
assert [1,[2,3]].flatten() == [1,2,3]
assert [1,2,3].reverse() == [3,2,1]
assert [1,2,3].disjoint([4,5,6])
assert [1,2,3].intersect([4,3,1]) == [3,1]
assert [1,2,3].collect{ it+3 } == [4,5,6]
assert [1,2,3,1].unique().size() == 3
assert [1,2,3,1].count(1) == 2
assert [1,2,3,4].min() == 1
assert [1,2,3,4].max() == 4
assert [1,2,3,4].sum() == 10
assert [4,2,1,3].sort() == [1,2,3,4]
assert [4,2,1,3].findAll{ it%2 == 0 } == [4,2]

def animals = ['cat','kangaroo','koala','dog']
assert animals[2] == 'koala'
def kanimals = animals[1..2]
assert animals.findAll{ it =~ /k.*/ } == kanimals
assert animals.find{ it =~ /k.*/ } == kanimals[0]
assert animals.grep(~/k.*/) == kanimals

// parallel assignment as swap
def a = 1, b = 2
(a, b) = [b, a]
assert a == 2
assert b == 1

// lesser known methods

assert animals.sort { it.size() } == ['cat', 'dog', 'koala', 'kangaroo']
assert animals.max { it.size() } == 'kangaroo'
assert animals.groupBy { it.size() } == [3:['cat','dog'], 5:['koala'],

8:['kangaroo']]

assert [1,2,3].permutations().toList() == [
 [1, 2, 3], [3, 2, 1], [2, 1, 3], [3, 1, 2], [1, 3, 2], [2, 3, 1]
]
assert (1..10).collate(3) == [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]]

def matrix = [
 ['a', 'b'],
 [1 , 2]
]
assert matrix.transpose() == [['a', 1], ['b', 2]]
assert matrix.combinations() == [['a', 1], ['b', 1], ['a', 2], ['b', 2]]
Licensed to Mark Watson <nordickan@gmail.com>

821Regular expressions
D.3 Closures
For more information, see chapter 5.

def add = { x, y -> x + y }
def mult = { x, y -> x * y }
assert add(1,3) == 4
assert mult(1,3) == 3
def min = { x, y -> [x,y].min() }
def max = { x, y -> [x,y].max() }
def atLeastTen = max.curry(10)
assert atLeastTen(5) == 10
assert atLeastTen(15) == 15
def pairWise(list, Closure invoke) {
 if (list.size() < 2) return []
 def next = invoke(list[0],list[1])
 return [next] + pairWise(list[1..-1], invoke)
}
assert pairWise(1..5, add) == [3, 5, 7, 9]
assert pairWise(1..5, mult) == [2, 6, 12, 20]
assert pairWise(1..5, min) == [1, 2, 3, 4]
assert pairWise(1..5, max) == [2, 3, 4, 5]
assert 'cbaxabc' == ['a','b','c'].inject('x'){
 result, item -> item + result + item
}
assert [1,2,3].grep{ it<3 } == [1,2]
assert [1,2,3].any{ it%2 == 0 }
assert [1,2,3].every{ it<4 }
assert (1..9).collect{it}.join() == '123456789'
assert (1..4).collect{it*2}.join() == '2468'

D.4 Regular expressions
For more information, see section 3.5.

Table D.1 Regular expressions

Symbol Meaning

. Any character

^ Start of line (or start of document, when in single-line
mode)

$ End of line (or end of document, when in single-line
mode)

\d Digit character

\D Any character except digits

\s Whitespace character

\S Any character except whitespace

\w Word character
Licensed to Mark Watson <nordickan@gmail.com>

822 APPENDIX D Cheat sheets
EXAMPLES

def twister = 'she sells sea shells by the sea shore'

// contains word 'shore'
assert twister =~ 'shore'

// contains 'sea' twice (two ways)
assert (twister =~ 'sea').count == 2
assert twister.split(/ /).grep(~/sea/).size() == 2

// words that start with 'sh', \b = word boundary
def shwords = (twister =~ /sh[a-z]*\b/).collect{it}.join(' ')
assert shwords == 'she shells shore'

\W Any character except word characters

\b Word boundary

() Grouping

(x|y) x or y as in (Groovy|Java|Ruby)

\1 Backmatch to group one; for example, find doubled
characters with (.)\1

x* Zero or more occurrences of x

x+ One or more occurrences of x

x? Zero or one occurrence of x

x{m,n} At least m and at most n occurrences of x

x{m} Exactly m occurrences of x

[a-f] Character class containing the characters a, b, c,
d, e, f

[^a] Character class containing any character except a

[aeiou] Character class representing lowercase vowels

[a-z&&[^aeiou]] Lowercase consonants

[a-zA-Z0-9] Uppercase or lowercase letter or digit

[+|-]?(\d+(\.\d*)?)|(\.\d+) Positive or negative floating-point number

^[\w-\.]+@([\w-]+\.)+[\w-]{2,4}$ Simple email validation

(?is:x) Switches mode when evaluating x; i turns on ignore-
Case, s is single-line mode

(?=regex) Positive lookahead

(?<=text) Positive lookbehind

Table D.1 Regular expressions (continued)

Symbol Meaning
Licensed to Mark Watson <nordickan@gmail.com>

823XML GPath notation
// sh-words by parallel assignment
def (a, b, c) = twister =~ /sh[a-z]*\b/
assert a == 'she'
assert b == 'shells'
assert c == 'shore'

// four words have three letter, \S = non-Space letter
assert (twister =~ /\b\S{3}\b/).count == 4

// three words start with 's' and have 4, 5, or 6 letters
assert (twister =~ /\bs\S{4}\S?\b/).count == 3

// replace words with 'X', \w = word character
assert twister.replaceAll(/\w+/,'X') == 'X X X X X X X X'

// starts with 'she' and ends with 'shore'
def pattern = ~/she.*shore/
assert pattern.matcher(twister).matches()

// replace 'sea' with 'ocean' but only if preceded by word 'the'
def ocean = twister.replaceAll('(?<=the)sea','ocean')
assert ocean == 'she sells sea shells by the ocean shore'

// swap 1st and 2nd pairs of words
def pairs = twister =~ /(\S+) (\S+) ?/
assert pairs.hasGroup()
twister = [1, 0, 2, 3].collect{ pairs[it][0] }.join()
assert twister == 'sea shells she sells by the sea shore'

D.5 XML GPath notation
For more information, see chapter 14.

 Groovy supports special notation for common XML processing activities. Consider
the following delicious XML:

def recipeXml = '''
<recipe>
 <ingredients>
 <ingredient amount='2 cups'>Self-raising Flour</ingredient>
 <ingredient amount='2 tablespoons'>Icing sugar</ingredient>
 <ingredient amount='2 tablespoons'>Butter</ingredient>
 <ingredient amount='3/4 - 1 cup'>Milk</ingredient>
 </ingredients>
 <steps>
 <step>Preheat oven to 230 degrees celsius</step>
 <step>Sift flour and icing sugar into a bowl</step>
 <step>Melt butter and mix into dry ingredients</step>
 <step>Gradually add milk to the mixture until moist</step>
 <step>Turn onto floured board and cut into portions</step>
 <step>Bake for 15 minutes</step>
 <step>Serve with jam and whipped cream</step>
 </steps>
</recipe>
'''
Licensed to Mark Watson <nordickan@gmail.com>

824 APPENDIX D Cheat sheets
Initialization for XmlSlurper looks like this:

def recipe = new XmlSlurper().parseText(recipeXml)
/* … processing steps … */

Initialization for XmlParser looks like this:

def recipe = new XmlParser().parseText(recipeXml)
/* … processing steps … */

Initialization for DOMCategory looks like this:

def reader = new StringReader(recipeXml)
def doc = groovy.xml.DOMBuilder.parse(reader)
def recipe = doc.documentElement
use (groovy.xml.dom.DOMCategory) {
 /* … processing steps … */
}

Using XmlSlurper, XmlParser, or DOMCategory, you can write the following notation
to process this XML:

assert 4 == recipe.ingredients.ingredient.size()

// should be 14 elements in total
assert 14 == recipe.'**'.findAll{true}.size()

// step 4 (index 3 because we start from 0) involves milk
assert recipe.steps.step[3].text().contains('milk')
assert '2 cups' == recipe.ingredients.ingredient[0].'@amount'.toString()

// two ingredients have '2 tablespoons' amount attribute
def ingredients = recipe.ingredients.ingredient.grep{
 it.'@amount' == '2 tablespoons'
}
assert ingredients.size() == 2

// every step has at least 4 words
assert recipe.steps.step.every{
 step -> step.text().tokenize(' ').size() >= 4
}

Licensed to Mark Watson <nordickan@gmail.com>

appendix E
Annotation parameters

This appendix covers the available parameters for the annotations known by the
Groovy compiler. This includes Groovy AST transformations and related annotations.

Table E.1 Annotation groupings

AST transform Parameter details, chapter coverage

Code generation transformations

@groovy.transform.builder.Builder Table E.6, Section 9.2.1

@groovy.transform.EqualsAndHashCode Table E.16, Section 9.2.1

@groovy.transform.IndexedProperty none, Section 9.2.1

@groovy.transform.InheritConstructors Table E.24, Section 9.2.1

@groovy.lang.Lazy Table E.25, Section 9.2.1

@groovy.lang.Newify Table E.32, Section 19.8

@groovy.transform.ToString Table E.41, Section 9.2.1

@groovy.transform.TupleConstructor Table E.42, Section 9.2.1

Class design and design pattern annotations

@groovy.transform.Canonical Table E.8, Section 9.2.1

@groovy.lang.Category Table E.9, Section 8.4.7

@groovy.lang.Delegate Table E.14, Section 9.2.2

@groovy.transform.Immutable Table E.23, Section 9.2.2

@groovy.transform.Memoized Table E.30, Section 9.2.2
825

Licensed to Mark Watson <nordickan@gmail.com>

826 APPENDIX E Annotation parameters
Table E.1 Annotation groupings (continued)

AST transform Parameter details, chapter coverage

@groovy.transform.Mixin Deprecated, use traits instead

@groovy.lang.Singleton Table E.34, Section 9.2.2

@groovy.transform.TailRecursive none

Logging improvements

@groovy.util.logging.Commons Table E.10, Section 9.2.3

@groovy.util.logging.Log Table E.27, Section 9.2.3

@groovy.util.logging.Log4j Table E.28, Section 9.2.3

@groovy.util.logging.Log4j2 Table E.29, Section 9.2.3

@groovy.util.logging.Slf4j Table E.36, Section 9.2.3

Declarative concurrency

@groovy.transform.Synchronized Table E.38, Section 9.2.4

@groovy.transform.WithReadLock Table E.44, Section 9.2.4

@groovy.transform.WithWriteLock Table E.45, Section 9.2.4

Easier cloning and externalizing

@groovy.transform.AutoClone Table E.4, Section 9.2.5

@groovy.transform.AutoExternalize Table E.5, Section 9.2.5

@groovy.transform.ExternalizeMethods See @AutoExternalize

@groovy.transform.ExternalizeVerifier See @AutoExternalize

Scripting support

@groovy.transform.BaseScript Table E.6

@groovy.transform.ConditionalInterrupt Table E.13, Section 9.2.6

@groovy.transform.Field none

@groovy.transform.SourceURI Table E.37

@groovy.transform.ThreadInterrupt Table E.39, Section 9.2.6

@groovy.transform.TimedInterrupt Table E.40, Section 9.2.6

Compiler directives

@groovy.transform.AnnotationCollector Table E.2

@groovy.transform.ClosureParams Table E.10

@groovy.transform.CompileDynamic none
Licensed to Mark Watson <nordickan@gmail.com>

827Annotation parameters

Table E.1 Annotation groupings

AST transform Parameter details, chapter coverage

@groovy.transform.CompileStatic Table E.12

@groovy.lang.DelegatesTo Table E.15

@groovy.lang.DelegatesTo.Target Table E.16

@groovy.transform.PackageScope Table E.33

@groovy.transform.SelfType Table E.34

@groovy.transform.TypeChecked Table E.43

JavaBean/Swing patterns

@groovy.beans.Bindable none

@groovy.beans.ListenerList Table E.26

@groovy.beans.Vetoable none

Test assistance

@groovy.transform.ASTTest Table E.3

@groovy.lang.NotYetImplemented none

Grape handling

@groovy.lang.Grab Table E.18

@groovy.lang.GrabConfig Table E.19

@groovy.lang.GrabExclude Table E.20

@groovy.lang.GrabResolver Table E.21

@groovy.lang.Grapes Table E.22

Table E.2 Parameters for @AnnotationCollector

Parameter name Purpose

processor This parameter can be used to define a custom processor for determining the
replacement annotations for an alias annotation. By default the processor is
org.codehaus.groovy.transform.AnnotationCollector-
Transform. Custom processors need to extend that class.

value A list of replacement annotations. The default processor adds these
replacement annotations (if any) to the other annotations (if any) defined
on the alias annotation.
Licensed to Mark Watson <nordickan@gmail.com>

828 APPENDIX E Annotation parameters
Table E.3 Parameters for @ASTTest

Parameter name Purpose

phase This parameter specifies the compile phase after which the test code should run.
By default, CompilePhase.SEMANTIC_ANALYSIS.

value A closure which is executed against the annotated node after the specified phase
has completed.

Table E.4 Parameters for @AutoClone

Parameter name Purpose

excludes This parameter contains a comma-separated list of property names that should
be excluded from the cloning process. By default, all properties are included.

includeFields This parameter indicates that fields, and not only properties, should be included
in the cloning process. By default, only properties are included.

style This parameter sets the style of cloning, which defaults to AutoClone-
Style.CLONE. Other valid options are AutoCloneStyle.COPY_
CONSTRUCTOR and AutoCloneStyle.SERIALIZATION.

Table E.5 Parameters for @AutoExternalize

Parameter name Purpose

excludes This parameter contains a comma-separated list of property names or a
literal list of String property names that should be excluded from the
read and write process. By default, all properties are included.

includeFields This parameter indicates the fields, and not only properties, that should
be included in the read and write process. By default, only properties
are included.

checkPropertyTypes Turns on strict type checking for property (or field) types. In strict
mode, such types must also implement Serializable or
Externalizable. If your properties have interface types that don't
implement Serializable but all the concrete implementations do, or
the type is of a non-Serializable class but the property will be null
at runtime, then your instances will still be serializable but you can't turn
on strict checking.

Table E.6 Parameter for @BaseScript

Parameter name Purpose

value The name of the base script class
Licensed to Mark Watson <nordickan@gmail.com>

829Annotation parameters
Table E.7 Parameters for @Builder

Parameter name Purpose

forClass A class for which builder methods should be created.

builderStrategy A class capturing the builder strategy. Default: DefaultStrategy.

prefix The prefix to use when creating the setter methods.

builderClassName For strategies that create a builder helper class, the class name to use for
the helper class.

buildMethodName For strategies that create a builder helper class that creates the instance,
the method name to call to create the instance.

builderMethodName The method name to use for a builder factory method in the source class
for easy access to the builder helper class for strategies that create such
a helper class.

excludes List of field and/or property names to include within the generated builder
methods.

includes List of field and/or property names to include within the generated builder
methods.

Table E.8 Parameters for @Canonical

Parameter name or
overriding annotation

Purpose

excludes Exclude certain properties or fields by specifying their names as a
String with comma-separated values or a literal list of String values.
By default, no properties are excluded. Incompatible with includes.

includes Include only a specified list of properties by specifying the desired prop-
erty names as a String with comma-separated values or a literal list of
String values. Incompatible with excludes.

@ToString Can be used in conjunction with @Canonical to customize behavior.
See table E.41 for details. The includes and excludes parameters
for @Canonical will be ignored for toString() if this annotation is
present.

@EqualsAndHashCode Can be used in conjunction with @Canonical to customize behavior.
See table E.16 for details. The includes and excludes parameters
for @Canonical will be ignored for equals() and hashCode() if
this annotation is present.

@TupleConstructor Can be used in conjunction with @Canonical to customize behavior.
See table E.42 for details. The includes and excludes parameters
for @Canonical will be ignored for the constructor if this annotation
is present.
Licensed to Mark Watson <nordickan@gmail.com>

830 APPENDIX E Annotation parameters
Table E.9 Parameter for @Category

Parameter name Purpose

value This required annotation parameter indicates the type of the self parameter
of the generated category class.

Table E.10 Parameters for @ClosureParams

Parameter name Purpose

value Defines a ClosureSignatureHint class that the compiler will use to
infer the parameter types.

options A set of options passed to the hint when the type is inferred.

Table E.11 Parameters for @Commons

Parameter name Purpose

value Used to set the name of the logging variable. Defaults to log.

category Used to set logging category name. Default is to use the class name as log-
ging category.

Table E.12 Parameters for @CompileStatic

Parameter name Purpose

TypeCheckingMode
value

Used to indicate whether type checking should be performed (PASS) or
skipped (SKIP).

String[]
extensions

An optional list of classpath resource paths to type checking extensions.

Table E.13 Parameters for @ConditionalInterrupt

Parameter name Purpose

applyToAllClasses When Groovy finds the @ConditionalInterrupt annotation it tries
to augment every class and every script in the source file. You can
change this behavior by setting the applyToAllClasses parameter
to false. When false, Groovy augments only the specific type that was
annotated. For instance, annotating a class with @Conditional-
Interrupt(applyToAllClasses=false, { ... }) aug-
ments the annotated class but not any inner classes or public classes
from the same source file. Annotating an import statement with
@ConditionalInterrupt(applyToAllClasses=false, {
... }) augments only the Script object instance and not any sur-
rounding classes from the script file.
Licensed to Mark Watson <nordickan@gmail.com>

831Annotation parameters
applyToAllMembers Set this to false if you have multiple methods/closures within a class or
script and only want conditional checks on some of them. Place annota-
tions on the methods/closures that you want enhanced. When false,
applyToAllClasses is automatically set to false.
Set to true (the default) for blanket coverage of conditional checks on all
methods, loops, and closures within the class/script.

checkOnMethodStart Set this parameter to false to turn off the interrupt check made at the
beginning of each method. By default, this check is made.

value The value of the parameter is a closure. This closure is executed at the
start of every method, closure, and loop within the specified scope. The
closure return value is interpreted to a boolean using Groovy Truth.

thrown The type of exception that should be thrown if the timeout is reached. By
default an InterruptedException is thrown.

Table E.14 Parameters for @Delegate

Parameter name Purpose

interfaces Set this parameter to true to make the owner class implement the
same interfaces as the delegate, which is the default behavior. To
make the owner not implement the delegate interfaces, set this
parameter to false.

deprecated Set this parameter to true to have the owner class delegate methods
marked as @Deprecated in the delegate. By default @Deprecated
methods are not delegated.

methodAnnotations Set to true if you want to carry over annotations from the methods of the
delegate to your delegating method. By default, annotations are not car-
ried over. Currently Closure annotation members are not supported.

parameterAnnotations Set to true if you want to carry over annotations from the method
parameters of the delegate to your delegating method. By default,
annotations are not carried over. Currently Closure annotation
members are not supported.

excludes List of method and/or property names to exclude when delegating.
Must not be used if includes is used. For convenience, a String
with comma-separated names can be used in addition to an array
(using Groovy's literal list notation) of String values. If interfaces
is true (the default), you will need to manually supply any methods
excluded from delegation that are required for the interface.

excludeTypes List of interfaces containing method signatures to exclude when
delegating. Only includes or includeTypes or excludes or
excludeTypes should be used. If interfaces is true (the default),
you will need to manually supply any methods excluded from delegation
that are required for the interface.

Table E.13 Parameters for @ConditionalInterrupt

Parameter name Purpose
Licensed to Mark Watson <nordickan@gmail.com>

832 APPENDIX E Annotation parameters
includes List of method and/or property names to include when delegating.
Must not be used if excludes is used. For convenience, a
String with comma-separated names can be used in addition
to an array (using Groovy's literal list notation) of String values.
If interfaces is true (the default), you will need to manually supply
any methods not included via delegation that are required for
the interface.

includeTypes List of interfaces containing method signatures to exclude when dele-
gating. Only includes or includeTypes or excludes or
excludeTypes should be used. If interfaces is true (the
default), you will need to manually supply any methods excluded from
delegation that are required for the interface.

Table E.15 Parameters for @DelegatesTo

Parameter name Purpose

value Used to specify the Class that will be delegated to within the Closure
parameter.

strategy Indicates the delegating strategy with default Closure.OWNER_FIRST.

target Indicates that we are delegating to another parameter of the method call.

genericTypeIndex Indicates that we are delegating to a particular generic type of the target.

type A String representation of the type.

Table E.16 Parameter for @DelegatesTo.Target

Parameter name Purpose

value Optional ID

Table E.17 Parameters for @EqualsAndHashCode

Parameter name Purpose

excludes Exclude certain properties from the calculation by specifying them as a comma-
separated list or literal list of String name values. This is commonly used with
an object that has an ID field. By default, no properties are excluded. Incompati-
ble with includes.

includes Include only a specified list of properties by specifying them as a
comma-separated list or literal list of String name values. Incompatible
with excludes.

Table E.14 Parameters for @Delegate (continued)

Parameter name Purpose
Licensed to Mark Watson <nordickan@gmail.com>

833Annotation parameters
cache Set to true to cache hashCode() calculations. Use only for immutable objects.
By default the hashCode() is recalculated whenever the hashCode()
method is called.

callSuper Include properties from the super class by setting this parameter to true. By
default, the super class is not used as part of the calculation.

includeFields Include the class’s fields, not just the properties, in the calculation by setting
this parameter to true. By default, fields are not taken into account.

useCanEqual Set to false to disable generation of a canEqual() method to be used by
equals(). By default the canEqual() method is generated. The canEqual
idioma provides a mechanism for permitting equality in the presence of inheri-
tance hierarchies. For immutable classes with no explicit super class, this idiom
is not required.

a. “How to Write an Equality Method in Java,” by Martin Odersky et al., 2009,
www.artima.com/lejava/articles/equality.html.

Table E.18 Parameters for @Grab

Parameter name Purpose

group The organization or group (for example, org.apache.ant).

module The module or artifact (for example, ant-junit).

version The revision or version (for example, 1.7.1).

classifier The classifier if in use (for example, jdk14).

transitive Defaults to true but set to false if you don’t want transitive dependencies also
to be downloaded.

force Defaults to false but set to true to indicate to the underlying Ivy conflict man-
ager that this dependency should be forced to the given revision.

changing Defaults to false but set to true to indicate that an underlying artifact may
change without a corresponding revision change. Sometimes useful for
snapshot artifacts.

conf The configuration if in use (normally only used by internal Ivy repositories).

ext The extension of the artifact (normally safe to leave at default value of .jar but other
values like .zip are sometimes useful).

type The type of the artifact (normally safe to leave at default value of “jar” but other val-
ues like “sources” and “javadoc” are sometimes useful).

value Allows more compact String representations of dependencies in Ivy or Maven for-
mats: junit:junit:*;transitive=false or junit#junit;4.8.2.

initClass Set to false to disable automatically placing static initialization code in a Grab-
annotated class to add any dependencies to the classpath (downloading if needed).

Table E.17 Parameters for @EqualsAndHashCode

Parameter name Purpose
Licensed to Mark Watson <nordickan@gmail.com>

www.artima.com/lejava/articles/equality.html

834 APPENDIX E Annotation parameters
Table E.19 Parameters for @GrabConfig

Parameter name Purpose

systemClassLoader Set to true if you want to use the system classloader when loading
the grape.

initContextClassLoader Set to true if you want the context classloader to be initialized to
the classloader of the current class or script.

autoDownload Set to false if you want to disable automatic downloading of locally
missing .jars.

disableChecksums

Table E.20 Parameters for @GrabExclude

Parameter name Purpose

group The organization or group (for example, org.apache.ant).

module The module or artifact (for example, ant-junit).

value String convenience format (for example, org.apache.ant:ant-junit).

Table E.21 Parameters for @GrabResolver

Parameter name Purpose

name A name for the resolver.

root The URL for the resolver repository root.

value Shorthand to specify the name and root. The supplied String will be used
for both.

m2Compatible Whether the resolver is Maven compatible. Defaults to true.

initClass Whether initialization code will be added to a Grab-annotated class to register the
resolver with the Ivy runtime.

Table E.22 Parameters for @Grapes

Parameter name Purpose

value An array of Grab annotations

initClass To set the default for all child annotations
Licensed to Mark Watson <nordickan@gmail.com>

835Annotation parameters
Table E.23 Parameters for @Immutable

Parameter name or overriding
annotation

Purpose

copyWith If true, this adds a method copyWith that takes a Map of new
property values and returns a new instance of the Immutable
class with these values set.

knownImmutableClasses Allows you to specify a list of Classes which are to be considered
immutable.

knownImmutables Allows you to specify a list of Class names which are to be consid-
ered immutable.

@ToString Can be used in conjunction with @Immutable to customize behav-
ior. See table E.41 for details.

@EqualsAndHashCode Can be used in conjunction with @Immutable to customize behav-
ior. See Parameter in table E.16 for @DelegatesTo.Target
details.

Table E.24 Parameters for @InheritConstructors

Parameter name or overriding
annotation

Purpose

constructorAnnotations Set to true if you want to carry over annotations from the parent
constructors to your constructors. By default, annotations are
not carried over. Currently Closure annotation members are
not supported.

parameterAnnotations Set to true if you want to carry over annotations from the method
parameters of the parent constructors to your constructors. By
default, annotations are not carried over. Currently Closure
annotation members are not supported.

Table E.25 Parameter for @Lazy

Parameter or
modifier name

Purpose

soft If the field should be a SoftReference, and therefore eligible for garbage collec-
tion, then set this parameter to true. By default, the field is not a soft reference.

Table E.26 Parameters for @ListenerList

Parameter name Purpose

name A suffix for creating the add, remove, and get methods if the default isn’t suitable.

synchronize Whether or not the methods created should be synchronized at the method level.
Defaults to false.
Licensed to Mark Watson <nordickan@gmail.com>

836 APPENDIX E Annotation parameters
Table E.27 Parameters for @Log

Parameter name Purpose

value Used to set the name of the logging variable. Defaults to log.

category Used to set logging category name. Default is to use the class name as
logging category.

Table E.28 Parameters for @Log4j

Parameter name Purpose

value Used to set the name of the logging variable. Defaults to log.

category Used to set logging category name. Default is to use the class name as
logging category.

Table E.29 Parameters for @Log4j2

Parameter name Purpose

value Used to set the name of the logging variable. Defaults to log.

category Used to set logging category name. Default is to use the class name as
logging category.

Table E.30 Parameters for @Memoized

Parameter name Purpose

protectedCacheSize Number of cached return values to protect from garbage collection.

maxCacheSize The maximum size the cache can grow to.

Table E.31 Parameter for @Mixin

Parameter name Purpose

value The list of class types to mixin to this class. Static mixins have been deprecated in
favor of traits (trait keyword).
Licensed to Mark Watson <nordickan@gmail.com>

837Annotation parameters
Table E.32 Parameters for @Newify

Parameter name Purpose

value A list of classes which, if found in code in Python-style object creation format, will be
turned into Groovy (Java compatible) constructor calls. If not present, only Ruby-style
new method calls will be converted.

auto Set to false to disable automatic conversion of Ruby-style new method calls.

Table E.33 Parameter for @PackageScope

Parameter name Purpose

value If present, allows a context to be defined for whether a class, its methods, and/or
its fields should be left as package scope.

Table E.34 Parameter for @SelfType

Parameter name Purpose

value Class array declaring the list of types that a class implementing that trait is sup-
posed to extend.

Table E.35 Parameters for @Singleton

Parameter name Purpose

lazy Set this parameter to true to lazily instantiate the instance the first time it is
accessed. This marks the instance volatile and correctly performs double-
checked locking during initialization. The default is no lazy initialization.

strict By default, no explicit constructors are allowed. To create one or more explicit
constructors set strict=false.

property Used to alter the property name of the singleton. Defaults to instance.

Table E.36 Parameters for @Slf4j

Parameter name Purpose

value Used to set the name of the logging variable. Defaults to log.

category Used to set logging category name. Default is to use the class name as logging
category.
Licensed to Mark Watson <nordickan@gmail.com>

838 APPENDIX E Annotation parameters
Table E.37 Parameter for @SourceURI

Parameter name Purpose

allowRelative By default the URI will be made absolute (it will have an authority) in the case
where a relative path was used for the source of the script. If you want to
leave relative URIs as relative, then set allowRelative=true. Defaults
to false.

Table E.38 Parameter for @Synchronized

Parameter name Purpose

value If a user-specified lock object with the given name should be used instead of the
default privately created lock.

Table E.39 Parameters for @ThreadInterrupt

Parameter name Purpose

applyToAllClasses When Groovy finds the @ThreadInterrupt annotation it tries
to augment every class and every script in the source file. You can
change this behavior by setting the applyToAllClasses
parameter to false. When false, Groovy only augments the specific
type that was annotated. For instance, annotating a class with
@ThreadInterrupt(applyToAllClasses=false)
augments the annotated class but not any inner classes or public
classes from the same source file. Annotating an import statement
with @ThreadInterrupt(applyToAllClasses=false) aug-
ments only the Script object instance and not any surrounding classes
from the script file.

applyToAllMembers Set this to false if you have multiple methods/closures within a
class or script and only want thread interrupt checks on some
of them. Place annotations on the methods/closures that you want
enhanced. When false, applyToAllClasses is automatically
set to false.
Set to true (the default) for blanket coverage of thread interrupt checks
on all methods, loops, and closures within the class/script.

checkOnMethodStart Set this parameter to false to turn off the thread interrupt check made
at the beginning of each method. By default, this check is made.

thrown The type of exception that should be thrown if the thread interrupt is
detected. By default an InterruptedException is thrown.
Licensed to Mark Watson <nordickan@gmail.com>

839Annotation parameters
Table E.40 Parameters for @TimedInterrupt

Parameter Name Purpose

applyToAllClasses When Groovy finds the @TimedInterrupt annotation it tries to
augment every class and every script in the source file. You can
change this behavior by setting the applyToAllClasses
parameter to false. When false, Groovy only augments the specific
type that was annotated. For instance, annotating a class with
@TimedInterrupt(value = 1L, applyToAll-
Classes=false) augments the annotated class but not any
inner classes or public classes from the same source file.
Annotating an import statement with @TimedInterrupt
(value = 1L, applyToAllClasses=false) augments
only the Script object instance and not any surrounding classes
from the script file.

applyToAllMembers Set this to false if you have multiple methods/closures within a
class or script and only want timeout checks on some of them.
Place annotations on the methods/closures that you want
enhanced. When false, applyToAllClasses is automatically
set to false.
Set to true (the default) for blanket coverage of timeout checks on all
methods, loops and closures within the class/script.

checkOnMethodStart Set this parameter to false to turn off the timeout check made at the
beginning of each method. By default, this check is made.

value This parameter controls how long to wait before timing out. There is no
default value and you must specify a value.

unit This parameter controls the unit of measure for the value parameter.
The default unit of measure is TimeUnit.SECONDS.

thrown The type of exception that should be thrown if the timeout is reached. By
default a TimeoutException is thrown.

Table E.41 Parameters for @ToString

Parameter Name Purpose

excludes Exclude certain properties from toString() by specifying the
property names as a comma-separated list or literal list of
String name values. By default, all properties are included.
Incompatible with includes.

includes Include only the specified properties by specifying the property
names as a comma-separated list or literal list of String name
values. Incompatible with excludes.

includeSuper Include the toString() for the super class by setting this
parameter to true. By default, it is not included.

includeSuperProperties Include the properties from any super classes by setting this
parameter to true. By default, they are not included.
Licensed to Mark Watson <nordickan@gmail.com>

840 APPENDIX E Annotation parameters
includeNames Include the names of the properties by setting this parameter to
true. By default, the names are not included.

includeFields Include the class's fields, not just the properties, by setting this
parameter to true. By default, fields are not included.

ignoreNulls Exclude any properties that are null. By default null values
will be included.

includePackage Set to false to print just the simple name of the class without the
package. By default the package name is included.

cache Set to true to cache toString() calculations. Use only for
immutable objects. By default the toString() is recalculated
whenever the toString() method is called.

Table E.42 Parameters for @TupleConstructor

Parameter Name Purpose

excludes Exclude certain properties or fields from constructor parameters by
specifying their names in a comma-separated list or literal list of
String name values. By default, no properties are excluded.
Incompatible with includes.

includes Include only a specified list of properties by specifying the desired
property names as a comma-separated list or literal list of String
name values. Incompatible with excludes.

includeFields Include fields, not just properties, in the constructor parameters by
setting this parameter to true. By default, fields are not included.

includeProperties Exclude properties in the constructor parameters by setting this
parameter to false. By default, properties are included.

includeSuperFields Include super class fields in the constructor parameters by setting
this parameter to true. When true, the super class fields come first
in the constructor parameter list, starting with the most super type.
By default, super class fields are not included.

includeSuperProperties Include super class properties in the constructor parameters by set-
ting this parameter to true. When true, the super class properties
come first in the constructor parameter list, starting with the most
super type. By default, super class properties are not included.

callSuper Invoke the super class constructor with parameters by setting
this property to true. By default, properties on the super class
are set using that property’s setter method. When set to true, the
super class's constructor is called rather than relying on property
manipulation.

Table E.41 Parameters for @ToString (continued)

Parameter Name Purpose
Licensed to Mark Watson <nordickan@gmail.com>

841Annotation parameters
force By default, tuple constructors are not created if the class provides
its own constructor. Force these tuple constructors to be created
even when a custom constructor is present by setting this parame-
ter to true. Be careful: It is your responsibility to avoid constructor
overloading conflicts.

Table E.43 Parameters for @TypeChecked

Parameter Name Purpose

TypeCheckingMode value Used to indicate whether type checking should be performed (PASS)
or skipped (SKIP).

String[] extensions An optional list of classpath resource paths to type checking
extensions.

Table E.44 Parameter for @WithReadLock

Parameter Name Purpose

value If a user-specified lock object with the given name should be used instead of the
normal default.

Table E.45 Parameter for @WithWriteLock

Parameter Name Purpose

value If a user-specified lock object with the given name should be used instead of the
normal default.

Table E.42 Parameters for @TupleConstructor

Parameter Name Purpose
Licensed to Mark Watson <nordickan@gmail.com>

appendix F
Compiler phases

This appendix describes the phases of the Groovy compiler.
 Conway’s Law is a well-known maxim from the 1960s that states roughly that

the organization of a software system will match the communication structure of the
group creating the system. Or, as Eric Raymond’s more famous restatement1 puts
it: “If you have four groups working on a compiler, you’ll get a 4-pass compiler.”
Groovy’s compiler is a counterpoint to this law: one group maintains it yet it has
nine phases. Something unique happens in each phase, and there are good reasons
for each one’s existence. The nine phases, presented in the order in which they
execute, are:

1 Initialization—Opens the source files or input stream and configures the
compilation environment.

2 Parsing—Uses the language grammar to convert the source code into a tree
of tokens. Under the covers, Groovy uses ANTLR to help with this task.

3 Conversion—Where the token tree is converted into an AST, and is the first
place where we can begin to write AST visitors.

4 Semantic analysis—Performs consistency and validity checks beyond what the
grammar can provide. Also, classes are resolved during this phase.

5 Canonicalization—Writes any final changes into the complete AST. This is typ-
ically the last point at which you want to run a transformation.

6 Instruction selection—Chooses an instruction set for the generated bytecode;
for instance, Java 5 versus pre-Java 5 bytecode instructions.

7 Class generation—Creates the bytecode-based Class in memory.

1 Eric S. Raymond, The New Hacker’s Dictionary, 3rd Ed. (MIT Press, 1996).
842

Licensed to Mark Watson <nordickan@gmail.com>

843Compiler phases
8 Output—Finally, the binary output is written to the filesystem in the form of a
.class file.

9 Finalization—Used only to clean up any resources no longer needed.

In the early phases of the compiler, the AST is sparse and holds less information, mak-
ing it an ideal time to write information into the tree. In the later phases the AST is
denser and holds type information, making it a good time to read information from
the tree. The best way to learn about the different phases is to use the AstBrowser
within the Groovy Console. The AstBrowser lets you view the AST at different phases
of the compilation.
Licensed to Mark Watson <nordickan@gmail.com>

appendix G
AST visitors

After reading chapter 9, you should have a general idea of what types of tasks
compile-time metaprogramming can offer, how Groovy gets compiled into AST and
eventually bytecode, and which tools you’ll need for further exploration. We’re all
set to dig in and see some of the details of AST. This appendix focuses on walking
and reading an AST. We’ll look at the options for code visitors and the implementa-
tion of a static analysis tool for Groovy.

 The examples in chapter 9 are focused on writing new information into the AST
of a class. Transformations give you the class and method nodes you need to work
with as parameters. This is enough when you want to write AST. But things aren’t
always so simple. Often, we need to read the AST to discover more information about
it, such as which statements are next to each other, or which variables are in scope. To
answer more complex questions about the AST content you will need to walk the tree.

G.1 Walking and reading a tree
The standard way to walk and read a tree in Java is with the venerable Visitor pattern
from the Gang of Four. The Visitor pattern separates the object being walked (the
tree) from the behavior of the walker (the visitor). We’ll use the ASTNode class hierar-
chy as a concrete example of how this works. If you want to walk (or visit) every state-
ment and expression in the AST then you need to implement GroovyCodeVisitor.
Figure G.1 shows some of the classes you’ll need to know in order to visit AST.

 The GroovyCodeVisitor interface has one method for every subclass of AST-
Node, and each subclass of ASTNode has a visit(GroovyCodeVisitor) method.
When you tell an ASTNode to visit your visitor, then it dutifully calls the correct
method on your object. Ask to visit a ConstructorCallExpression and it calls
back your visitConstructorCallExpression method. MethodCallExpressions
calls back your visitMethodCallExpression method. With this pattern, the ASTNode
844

Licensed to Mark Watson <nordickan@gmail.com>

845Walking and reading a tree
classes stay general, and only know that they can be visited, while all of the specific
behavior resides in the visitor classes. Low coupling and high cohesion: classic traits of
good object-oriented design.

 One last piece of information: GroovyCodeVisitor visits every statement or expres-
sion in the tree; GroovyClassVisitor visits the structure of a class. Figure G.2 shows
the GroovyClassVisitor class diagram.

 The classes shown in figure G.2 are the general interfaces for the visitors. In prac-
tice, you will use the abstract classes defined to help you implement this pattern. That
way you won’t have to worry about any method dispatch or implementing a whole
bunch of uninteresting methods. Normally you want to subclass CodeVisitorSupport
or ClassCodeVisitorSupport, shown in figure G.3.

ASTNode

+visit(GroovyCodeVisitor):void

GroovyCodeVisitor

+visitMethodCallExpression(MethodCallExpression) : void
+visitConstructorCallExpression(ConstructorCallExpression) : void
+visitTernaryExpression(TernaryExpression) : void
+visitShortTernaryExpression(ElvisOperatorExpression) : void
+visitBinaryExpression(BinaryExpression) : void
... and many more

Figure G.1 GroovyCodeVisitor is used to discover information about the source code.

ClassNode

+visitContents(GroovyClassVisitor):void

GroovyClassVisitor

+visitClass(ClassNode) : void
+visitConstructor(ConstructorNode) : void
+visitMethod(MethodNode) : void
+visitField(FieldNode) : void
+visitProperty(PropertyNode) : void

Figure G.2 GroovyClassVisitor is used to discover information about the class structure.

<<interface>>
GroovyCodeVisitor

<<abstract class>>
ClassCodeVisitorSupport

<<abstract class>>
CodeVisitorSupport

Extends Implements

<<interface>>
GroovyClassVisitor

Figure G.3 GroovyCodeVisitor is used for visiting AST.
Licensed to Mark Watson <nordickan@gmail.com>

846 APPENDIX G AST visitors
To boil it down to one simple rule: extend the class ClassCodeVisitorSupport and
override whatever method you need. That’s the easiest approach and exactly how
CodeNarc works.

 CodeNarc is an open source static analysis tool for Groovy. It analyzes the AST of
Groovy classes and searches for bugs, inconsistencies, bad practices, or just unclean
code. It’s meant to be run as part of your automated build and integrates with all the
major build systems, and it can both fail the build and create a report of any problems
encountered. At its core is a set of configurable rules based on this Visitor pattern that
walks the AST of your source code. A useful example is the SynchronizedOnGetClass
rule. The code in the following listing creates a violation.

synchronized(getClass()) {
 println 'doing something...'
}

Can you spot the problem? It is a subtle concurrency error. If your class is subclassed
then this code might end up synchronizing on the wrong lock (the class of the child
class instead of the this reference), possibly leading to a live-lock! There are many
other rules as well, in categories like concurrency, unit testing, and unused code.
Rules are simple visitors, and it should be easy to understand the implementation of
the SynchronizedOnGetClass rule shown in the following listing.

class SynchronizedOnGetClassAstVisitor extends AbstractAstVisitor {

 void visitSynchronizedStatement(SynchronizedStatement statement) {

 if (statement.expression instanceof MethodCallExpression) {
 def method = statement.expression
 def argumentCount = 0
 if (AstUtil.isMethodNamed(method, 'getClass', argumentCount)) {
 addViolation statement
 }
 }
 super.visitSynchronizedStatement(statement);
 }
}

This method analyzes any usage of SynchronizedStatement. If the expression within
the synchronized statement is a method call, that method call is named getClass(),
and takes zero arguments, then a violation is created. This code cheats a little by defin-
ing an isMethodNamed helper method, but the implementation is a straightforward if
statement against the contents of the MethodCallExpression instance. Notice that the
super method is called at the end of the method. This makes sure than any nested ele-
ments later in the source are also visited. Not calling super will short-circuit your visit.
In most cases it should be called.

Listing G.1 Synchronizing on getClass()

Listing G.2 Visiting synchronized statements
Licensed to Mark Watson <nordickan@gmail.com>

847Walking and reading a tree
 The point of this example is to demonstrate that writing a useful AST visitor can be
simple, straightforward, and understandable. Writing CodeNarc rules is a good start-
ing point for learning more about AST because the problems are small and contained,
and the code and results are easily testable. Plus, it handles the problem of wiring your
AST into the compilation process, a necessary step we have not yet covered.

G.1.1 Wiring in a Visitor

There are several ways to wire a Visitor into the Groovy compilation process. Local
and global transformations handle the wiring for you. As long as you declare your
transformation correctly then it gets invoked. But sometimes you need more control
and need to wire a transformation into the compile process using a ClassLoader. This
happens most commonly for DSL writers or users of GroovyShell.

 Including a visitor with a ClassLoader is a more verbose approach than global and
local transformations. It requires more code; however, most of the code involves sub-
classing a few classes so the compiler checks your work. If your program accepts user
input and evaluates it as Groovy, or if it already uses GroovyShell for execution, then

Visitor Gotchas
Writing AST visitors is fun and rewarding; it’s one of those rare tasks where you spend
most of your time thinking. Thinking deeply about the language, the edge cases, and
how it can be used is a superb way to gain a deep understanding of Groovy. Before
jumping in and writing visitors, there are a few gotchas to consider.

■ Types—Groovy is a dynamic language, and a lot can happen at runtime. In most
cases, it is not possible to know definitively the type of an object, and it is espe-
cially hard to determine what type a method will return. Practically anything can
happen at runtime; this is a feature of the language. Be conservative when think-
ing you know the type of an object: often you cannot.

■ Scope—The rules for variable and field scope are complex in Java. We have local
variables, parameters, fields, constants, and static references. These become
more complex when adding closures and delegates to the language. Remember,
a closure may be executed far away from the point it was declared, and any vari-
ables it references can be overwritten by the closure’s delegate. It is very diffi-
cult to reason about what is in scope for a closure at compile time. Be careful
not to make assumptions.

■ State—Managing state within a visitor is tricky because of all the scoping and
nesting rules. Often you want to keep track of some variable, but the recursive
nature of trees means you risk overwriting that state the next time your method
is invoked, which can occur before your method is finished running! There are
two options. Make your visitor immutable, and when state is needed create a
new instance of your visitor to process any further tree nodes. The second
option is to hold all state in a Stack object. When saving state add an element
to the stack, and when reading state read only the topmost element. Examples
of both approaches can be found in the source code of the open source projects
previously mentioned, particularly in CodeNarc.
Licensed to Mark Watson <nordickan@gmail.com>

848 APPENDIX G AST visitors
this ClassLoader approach is the best approach to take. The ArithmeticShell previ-
ously discussed uses this approach, and a full unit test and build script is available in
all Groovy distributions. For our examples we’ll use something simpler. We are going
to write and execute a transformation that takes a Groovy script as input, and turns
any String literals into the words “Hello from our Visitor!” Before showing the trans-
formation, let’s look at how ClassLoader objects can be used to compile scripts, as
shown in the following listing.

GroovyClassLoader loader = new GroovyClassLoader()
Class clazz = loader.parseClass(' "Hello from Groovy!" ')
Script script = clazz.newInstance()
assert "Hello from Groovy!" == script.run()

A GroovyClassLoader has several public methods to turn Strings and InputStreams
into instances of Script, which are runnable via the run() method. In this listing we
turn the Groovy code “Hello from Groovy!” into a Script, execute it, and assert the
correct result. Our Visitor class example is going to subclass GroovyClassLoader in
order to wire in the transformation. The following listing shows how our code will
behave when we’re finished.

GroovyGlassLoader loader = new MyClassLoader()
Class clazz = loader.parseClass(' "Hello from Groovy!" ')
Script script = clazz.newInstance()
assert "Hello from our Visitor!" == script.run()

The only difference is that we defined our own GroovyClassLoader subclass called
MyClassLoader, and when we execute the produced Script we get a different result.
The Visitor for this is small; it simply searches the AST for any String constant and
replaces it with our Groovy message. Constants could be numeric or null as well, so it
is safest to only change the value of Strings. The entire Visitor can be seen in the
following listing and is an example of how you can use the abstract ClassCodeVisitor-
Support class.

import org.codehaus.groovy.ast.*
import org.codehaus.groovy.ast.expr.*

class MyAstVisitor extends ClassCodeVisitorSupport {
 def source

 void visitConstantExpression(ConstantExpression exp) {
 if (exp.value instanceof String) {
 exp.value = 'Hello from our Visitor!'
 }
 }

Listing G.3 Creating a Script from a String with GroovyClassLoader

Listing G.4 Simple unit test for a new AST visitor

Listing G.5 Using a Visitor to replace constants’ values
Licensed to Mark Watson <nordickan@gmail.com>

849Walking and reading a tree
 SourceUnit getSourceUnit() {
 source
 }
}

After showing a sample use script and a quick visitor, we’re finally able to get to wiring
the transformation together with the new ClassLoader. A GroovyClassLoader has a
CompilationUnit that stores all of the information about the compile, like the source,
AST, and compiled classes. It also stores a list of PhaseOperations. A PhaseOperation
is just a bit of code (for instance, a visitor) that gets executed during one of the com-
piler phases. So a GroovyClassLoader creates a CompilationUnit, a CompilationUnit
has PhaseOperations, and your PhaseOperation can be an AST visitor, as shown in the
following listing.

import java.security.CodeSource
import org.codehaus.groovy.classgen.*
import org.codehaus.groovy.control.*
import org.codehaus.groovy.control.CompilationUnit.PrimaryClassNodeOperation

class MyClassLoader extends GroovyClassLoader {
 protected CompilationUnit createCompilationUnit(
 CompilerConfiguration cfg,
 CodeSource src) {

 CompilationUnit cu = super.createCompilationUnit(cfg, src)
 def operation = new MyClassNodeOperation()
 def phase = Phases.SEMANTIC_ANALYSIS
 cu.addPhaseOperation(operation, phase)
 cu
 }
}

private class MyClassNodeOperation extends PrimaryClassNodeOperation {

 void call(SourceUnit src, GeneratorContext ctx, ClassNode node) {
 node.visitContents(new MyAstVisitor(source: src))
 }
}

In this example you can see that we subclass GroovyClassLoader in order to get at the
CompilationUnit, and we subclass PrimaryClassNodeOperation in order to add in
our visitor. All in all it is a bit of boilerplate code to write, and we have not covered any
of the exceptions you’ll want to catch (hint: MultipleCompilationErrorsException).
But this is the best approach if you’re already using GroovyShell, need to execute text-
based scripts as a DSL, or are directly using ClassLoaders to compile user input. If this
isn’t your scenario, then a local or global transformation is much easier to write.

Listing G.6 Wiring an AST visitor into a GroovyClassLoader
Licensed to Mark Watson <nordickan@gmail.com>

appendix H
Type checking extensions

In chapter 10, we introduced the optional type checking features that were added
in Groovy 2. We showed that even if Groovy remains primarily a dynamic language,
it offers a powerful type system, including the ability to hook directly into the com-
pilation process, more precisely during the type checking phase to help the compiler
or even add custom static analysis. This feature allows Groovy to become a powerful
statically typed language, capable of performing deep static analysis at compile time;
but more importantly, type checking extensions allow the programmer to improve
it, in particular for DSL analysis.

 We’ve seen that type checking extensions relied on an event-based API. In this
appendix, we’ll analyze the API and give insight on how you can combine those
events to achieve impressive static analysis extensions.

 The type checking extension writer should be aware of the fact that this feature
is only available since Groovy 2.1.0.

H.1 Type checking extension API
Groovy isn’t bound to a specific implementation of type checking APIs. However,
it’s definitely easier to write extensions using the type checking extension DSL that
it provides. Supported out of the box, it also provides shortcuts for common tasks
that would be complicated to implement without the DSL. It’s possible to write an
extension in pure Java, but it would require more code and you couldn’t load the
extension using the extensions parameter of the @TypeChecked annotations. For
those reasons, this appendix focuses on only the type checking extension DSL and
won’t explain the alternatives.

850

Licensed to Mark Watson <nordickan@gmail.com>

851Type checking extension API
H.1.1 The GroovyTypeCheckingExtensionSupport class
Internally, all type checking extension scripts inherit the org.codehaus.groovy
.transform.stc.GroovyTypeCheckingExtensionSupport class. This class offers many
helper methods that you can use in your extensions, as shown in table H.1.

Table H.1 Helper methods available in the DSL

Method Description

isXXXExpression(expr) Tests if an expression is an instance of XXX expression. For
example:
■ if (expr instanceof BinaryExpression) { … }

can be rewritten
■ if (isBinaryExpression(expr)) { … }

isDynamic(var) Tests if a variable is a dynamic variable (unresolved variable)
if (isDynamic(var)) { … }

getTargetMethod(call) Given a method call expression, returns the target method
(MethodNode) selected by the type checker. Note that depend-
ing on the event where you use it, it’s possible that the method
has not yet been selected.

getType(expr) Returns the inferred type of an expression. This method should
always be used instead of expr.getType() if you want to use
the inferred type of an expression instead of the declared type.

storeType(expr, type) Use this method to store the inferred type of an expression. If
you want to tell the type checker that the type of an unresolved
variable is String, you can use:

storeType(var, STRING_TYPEa)

addStaticTypeError(msg,
node)

This method is very important if you want to throw custom type
checking errors. In that case, you must provide:
■ msg: an error message string, which will appear as the compi-

lation error
■ node: the AST node from which the error is issued

The AST node is important to provide the code location in compi-
lation error messages (line and column number information).

classNodeFor(clazz) Returns the class node that corresponds to the provided class.
It’s important to understand that type checking extensions
work at the AST level. You shouldn’t use class literals directly
(for example to compare the inferred types) but instead use
a ClassNode. This method allows you to return the
ClassNode corresponding to a Class. There are two
variants of this method: one takes a Class as an argument
and the other takes a String.

It’s important to understand that this method should only be
used for classes that are compiled before the type checking
extension works, that is to say, classes that are on the compile
classpath. For classes that are, for example, defined in the
script being type checked, use the lookupClassNodeFor
method instead.
Licensed to Mark Watson <nordickan@gmail.com>

852 APPENDIX H Type checking extensions
H.1.2 Virtual methods

Virtual methods are an important concept in type checking extensions. It’s possible
in Groovy to write code that calls nonexistent methods. One could implement the
methodMissing method to implement dynamic method calls. If a DSL uses such a
feature, it’s normally not compatible with type checking because the method calls
cannot be resolved statically. It’s possible, however, for the DSL designer, given the
name of a method and its inferred argument types, to determine if a call is valid or
not, and therefore infer a return type. In that case, a type checking extension needs
to define a virtual MethodNode. It’s called virtual because it isn’t attached to a class:
it’s only used so the type checker knows a method call is valid and that it returns a
specific type.

 While it’s possible (and sometimes required) for an extension to create a method
node from scratch, the type checking extension DSL offers helper methods dedicated
to this task. Each method created using one of these helper methods is automatically
added to the list of generated methods of the extension, so calling isGenerated(node)
on such a method would return true:

■ newMethod(String name, ClassNode returnType)—Defines a method whose
name is name and whose return type is returnType.

■ newMethod(String name, Class returnType)—Defines a method whose name
is name and whose return type is returnType.

■ newMethod(String name, Closure returnType)—Defines a method whose name
is name, but whose return type computation is deferred.

lookupClassNodeFor(clazz) Returns the ClassNode corresponding to a class being
compiled. This method should be used whenever you need
a handle on a class that’s defined in the script being type
checked itself.

isAnnotatedBy(node,
clazz)

Tests if an AST node is annotated by the supplied annotation.
You can use a Class or a ClassNode as the annotation
parameter.

isGenerated(MethodNode) This method lets the extension writer know if the supplied
method node was generated by the type extension itself
(see virtual methods in the next section).

delegatesTo(clazz) This method can be used to emulate the behavior of
@DelegatesTo in the context of the type checking extension;
for example, if the original method isn’t annotated. See chapter
10 for details.

a. The STRING_TYPE constant comes from the org.codehaus.groovy.ast.ClassHelper class.

Table H.1 Helper methods available in the DSL (continued)

Method Description
Licensed to Mark Watson <nordickan@gmail.com>

853Type checking extension API
newMethod('findByName') {
 typeCheckingContext.enclosingClassNode
}

The last method is interesting if it’s not possible to determine the return type immedi-
ately. In that case, the closure will be called whenever the type checker needs to find
the return type of the method. This is why it’s deferred: the computation of the return
type is lazy and done on demand. (It’s lazy, but it’s not cached: the closure is called
each time the type checker calls getReturnType on the method node.) In listing H.1,
we’re supposing that the dynamic method returns the enclosing class node (the class
that’s currently being type checked).

 Note that none of those helper methods care about the argument types because,
in general, once a method call has been resolved (thus when you return such a gener-
ated method), the argument types are no longer important. Should you need them,
you need to create a method node from scratch (using new MethodNode). Note that
you don’t even need to give a method body because it’s virtual. It is used internally by
the type checker to perform type safety computations.

 Be warned that because those methods are virtual, you cannot rely on the fact that
you generate such methods to have extensions that will allow a DSL to be compiled
statically! In general, statically compiling a DSL requires an AST transform, which is
beyond the scope of type checking extensions.

 One more important thing to know before digging into the type checking han-
dlers that you can write is dealing with the type checking context and the scoping of
your extension.

H.1.3 Type-checking extension scope

It would be rare to write a type checking extension that can run in any context. In gen-
eral, a type checking extension should be active only once a precondition is met; for
example, once you’ve found an introduction verb followed by a closure:

doLater { // doLater is an introduction verb
 … // here goes custom type checking
}

More complex examples can involve deep nesting. Imagine that you want to perform
type checking of a builder, but inside the body of the builder you use a Markup-
Builder. In that case, the extension should be active when you enter the scope of the
custom builder, temporarily switched off once you visit MarkupBuilder code, then
reactivated once the visit of the MarkupBuilder closure is finished. As you can see,
defining the scope of an extension in a declarative manner is barely impossible.1 As an

Listing H.1 Find by name method returns the enclosing class node

1 This is also why type checking extensions in Groovy don’t follow the pointcut pattern that is famous to
AspectJ users.
Licensed to Mark Watson <nordickan@gmail.com>

854 APPENDIX H Type checking extensions
alternative, the type checking extension DSL provides an API that allows the use of cus-
tom scopes.

 Scopes can be used to collect and store temporary data, and they’re organized as a
stack. Creating a new scope puts it on top of the stack, and you can pop a scope from
the stack too. Scopes are also organized in a hierarchy; the scope on the stack inherits
data from the scopes beneath it in the stack. You can create a new scope using the
scopeEnter method and remove a scope from the stack using scopeExit, as shown in
the following listing.

def scope = scopeEnter()
scope.extraChecks = []
…
onMethodSelection {
 currentScope.extraChecks << { println 'Extra check' }
}
…
scopeExit {
 extraChecks*.run()
}

Listing H.2 shows that a custom event handler can access the current scope and store
additional metadata in it. There’s no limit to what data you can store. A scope basically
acts like a map, but inherits keys from its parent scope. This scoping mechanism is
powerful because it allows you to perform deferred checks, allowing complex type
checks such as forward references in a DSL.

 Forward references are a typical use case that type checkers cannot resolve nor-
mally: declarative languages are fond of declarations and normally order doesn’t mat-
ter. But imperative languages suppose that statements are executed in order and don’t
allow the use of a variable before it’s declared. Using a list of closures (extraChecks)
here, we allow several checks to be performed after all the code has been visited. This
is done by calling scopeExit, which takes an optional closure as argument. This closure
lets you perform work before the scope is removed. Here, it’s used to call the closures
of the extraChecks list.

 The call to currentScope B gives access to the scope that’s currently on top of the
stack. This is contextual data, but there’s much more than the scope offered by the
type checker as contextual data. Often, it’s interesting to know what method you’re in,
or if you’re in a binary expression, and so forth, so you can react appropriately. For
that, the type checker provides a context, available through the org.codehaus.groovy
.transform.stc.TypeCheckingContext class. This context gives interesting informa-
tion such as the stack of visited class nodes, the stack of enclosing binary expressions,
and others. All methods from this class are immediately available in the DSL. In par-
ticular, this class is also the one that stores all error messages before they’re transmit-
ted to the compiler. It’s possible for you to temporarily change the error collector.

Listing H.2 Creating a scope to store custom data

Pushes a new
scope on stackInitializes an empty list for the

extraChecks custom variable

Event handler
adds a custom
check to the list b

Pops scope
from stack

Calls deferred
actions
Licensed to Mark Watson <nordickan@gmail.com>

855Type checking events
This means that if you want to intercept all errors thrown by the type checker and
replace them with custom error messages, the type checking extensions will allow you
to do that using the type checking context!

 The type checking context is a sensitive model. It’s used in many places of the type
checker, so be careful if you need to manipulate it.

 Now that we’ve seen the basics of type checking extensions, it’s time to dig into the
various handlers that you can write and combine to perform DSL type checking.
Those handlers correspond to events sent by the type checker.

H.2 Type checking events
This section describes the events that a type checking extension can react to. Several
of those events are sent when the type checker would normally throw a type checking
error. If your type checking extension is meant to remove this error, then you should
know about the handled flag.

 The handled flag must be set by your type checking extension to tell it that you
care about the error. If the type checker fails to resolve a variable, it will call your
extension. If your extension sets the handled flag to true, then the type checker will
consider that you have fixed the error, and it won’t be shown to the user at compile
time. This is exactly what type checking extensions are meant for: handle unexpected
errors or, in certain cases, throw errors when the type checker would normally not.
The reason why you need to set a flag is that you can have preconditions. Your exten-
sion may not resolve all unresolved variables. In the following listing, the handled flag
is only set if we find a variable named 'robot'.

unresolvedVariable { var ->
 handled = ('robot'==var.name)
}

In general, it isn’t required to set this flag, but not doing so may lead to surprising
results. For example, you may help the type checker by telling it the type of variable,
but if you forget to set the flag, the error is still shown to the user. Because cases exist
where this can be useful, the flag isn’t automatically set, so you should always take care
of it explicitly. The events the type checking extension can handle are explained in
the following sections.

H.2.1 setup

Arguments: none

The setup event is always called after the type checker completes its initialization. It
gives you the chance to perform custom initialization steps before type checking starts.

Listing H.3 The handled flag
Licensed to Mark Watson <nordickan@gmail.com>

856 APPENDIX H Type checking extensions
H.2.2 finish

Arguments: none

The finish event is triggered once static type checking is completed. It allows the pro-
grammer to perform cleanup tasks.

H.2.3 unresolvedVariable

Arguments: var (VariableExpression), the unresolved variable

This event allows you to react to an unresolved variable. An unresolved variable is a
variable that isn’t defined in the context of the script. In the following code:

def variable1 = 'foo'
varable2 = 'unresolved'

variable1 is resolved, because it is declared (using def) in the context of the script. The
variable2 variable is, on the other hand, undeclared. It’s a dynamic variable and typi-
cally the type checker doesn’t know anything about it. When the type checker encounters
such a variable in a method, you’re given the chance to tell it what type it is, for example:

unresolvedVariable { var ->
 if (var.name == 'variable2'){
 storeType(var, STRING_TYPE)
 handled=true
 }
}

H.2.4 unresolvedProperty

Arguments: pexp (PropertyExpression), the unresolved property expression

Groovy allows the programmer to resolve properties at runtime (for example, using
propertyMissing), meaning that it’s possible that a property isn’t statically defined.
When the type checker encounters such an unresolved property, it throws the
unresolvedProperty event, giving the extension writer a chance to resolve its type.

H.2.5 unresolvedAttribute

Arguments: aexp (AttributeExpression), the unresolved attribute expression

In a similar manner to unresolved properties, it’s possible for the extension writer to
react on missing attributes. In that case, an unresolvedAttribute message is sent by
the type checker.

H.2.6 beforeMethodCall

Arguments: methodCall (MethodCallExpression or StaticMethodCallExpression)

This event is systematically sent before the type checker tries to resolve a method call,
that is to say, before it tries to determine the types of the arguments, then tries to find
an appropriate method. This handler can be used if the user wants to perform custom
Licensed to Mark Watson <nordickan@gmail.com>

857Type checking events
analysis of a method call, bypassing the type checker. In that case, the extension writer
should set the handled flag to true.

H.2.7 afterMethodCall

Arguments: methodCall (MethodCallExpression or StaticMethodCallExpression)

This event is systematically sent after the type checker has completed the analysis of a
method call. It’s particularly interesting to perform additional type checks once the
method has been resolved by the type checker. Indeed, before the type checker
resolves a method call, there’s no guarantee that the call is valid. Once it’s resolved,
the extension writer can have access to the target method (the real method that will
be called) and therefore perform additional analysis.

 It’s worth noting that the afterMethodCall event is also sent if the user set the
handled flag to true using the beforeMethodCall event.

H.2.8 onMethodSelection

Arguments:

■ expr (Expression)—The expression that triggered a method selection event
■ methodNode (MethodNode)—The selected method node

The onMethodSelection event is sent by the type checker each time a method is
selected. Various cases exist where a method is selected. The first one is whenever a
method call is analyzed and when a method with the appropriate name and arguments
is found on the call receiver. The second case is when using symbols such as “+” that
can be used as shortcuts for method calls.2 This explains why the onMethodSelection
event gives access to the original expression, instead of a method call. The second
argument is the method that has been selected.

 The onMethodSelection event is particularly important for reacting to specific
method calls that may be used to define the scope of the type checking extension
analysis. Imagine that you’re performing type checking of a builder. Then the custom
type checking analysis should only be active when the builder body is found; for exam-
ple, whenever the builder.build(Closure) method is selected.

H.2.9 methodNotFound

Arguments:

■ receiver (ClassNode)—The inferred type of the receiver
■ name (String)—The name of the method being called
■ argList (ArgumentListExpression)—The arguments of the call
■ argTypes (ClassNode[])—The inferred types of the arguments
■ methodCall (StaticMethodCallExpression or MethodCallExpression)—The

method call that couldn’t be resolved

2 Here, a + b is equivalent to a.plus(b).
Licensed to Mark Watson <nordickan@gmail.com>

858 APPENDIX H Type checking extensions
This event is thrown by the type checker if it cannot find any appropriate method on
the receiver that matches the name of the call and the arguments. In general, it will
correspond to two different cases: a user error such as a typo (the method doesn’t
exist) or dynamic methods (which by definition cannot be resolved statically). Using
the methodNotFound handler, the extension writer can help the type checker by resolv-
ing a dynamic method call. The behavior of the type checker depends on what you
will return:

■ An empty list means that the type checking extension didn’t find a method
either, so the type checker will throw a compilation error (no such method).

■ A single MethodNode or a list of one MethodNode means that the type checker
did find a corresponding method. It isn’t necessary that the MethodNode you
return is defined on an existing class. It can be totally virtual, because its role is
only to remove a type checking error and give the type checker a hint about the
return type of the method so that it can perform the rest of the analysis.

■ A list of multiple method nodes. In that case, the type checker will throw an
ambiguous method selection error.

H.2.10 beforeVisitMethod

Arguments: methodNode (MethodNode), the visited method

This event is sent before the type checker starts analyzing a method body. It may be
interesting to define the scope of the analysis of the extension (for example, if the
extension should only apply to a specific method), or it can be used to totally change
the behavior of the type checker for this method node by bypassing the normal type
checking. In that case, the extension writer should set the handled flag to true and
the type checking extension will take care of visiting the method body itself. Normal
type checking of the method body will be totally bypassed in that case.

H.2.11 afterVisitMethod

Arguments: methodNode (MethodNode), the method visited by the type checker.

This event is sent whenever the type checker has finished the analysis of a method
body. It can be used to perform additional checks once a method is visited, for exam-
ple, if you collect information during the visit, but that information can only be used
once the visit is complete (typical use case: a second pass).

H.2.12 beforeVisitClass

Arguments: classNode (ClassNode), the class visited by the type checker

This event is sent before the type checker starts visiting a class node that’s type
checked. It can be used to initialize custom type checking scopes, as well as implement
a different type checking mechanism for a specific class. If the extension writer wants
to perform such a custom visit, he has to set the handled flag to true. In that case, the
Licensed to Mark Watson <nordickan@gmail.com>

859Type checking events
type checker won’t visit the class and it’s the responsibility of the type checking exten-
sion to perform the analysis.

H.2.13 afterVisitClass

Arguments: classNode (ClassNode), the class visited by the type checker

In symmetry with beforeVisitClass, the afterVisitClass event is thrown once the
type checker has completed the analysis of a class. It gives the extension writer the
ability to perform additional static checks once a class is visited, when performing a
second pass analysis.

H.2.14 incompatibleAssignment

Arguments:

■ lhsType (ClassNode)—The type of the left-hand side of the assignment
■ rhsType (ClassNode)—The type of the right-hand side of the assignment
■ expr (Expression)—The expression representing an assignment

The type checker performs type checks with regard to assignments. If it ever deter-
mines that the type of the right-hand side isn’t compatible with the type of the left-
hand side of an assignment, the incompatibleAssignment event is thrown. A typical
use case for this includes the implementation of the setProperty method, which
allows the DSL developer to write complex strategies to assign properties. As an exam-
ple, the Grails BeanBuilder3 allows the following syntax:

myProp = { AnotherBean -> … }

where myProp is the property of a bean, and the right-hand side is an anonymous bean
definition. In that case, the type of the left-hand side is AnotherBean, but the right-
hand side is a Closure, which is normally not allowed. Because the builder uses set-
Property to handle this case, the incompatibleAssignment event can be used to tell
the type checker that the assignment is in fact valid. For that, the extension writer
needs to set the handled flag to true.

H.2.15 ambiguousMethods

Arguments:

■ nodes (List<MethodNode>)—The list of ambiguities
■ origin (Expression)—The expression that triggered the ambiguity

This handler has only been available since Groovy 2.2. It allows the extension writer to
react on an ambiguous method call, for example, by implementing a custom resolu-
tion strategy. The event carries the list of ambiguities, and the extension is supposed

3 For more information, see http://grails.org/doc/latest/api/grails/spring/BeanBuilder.html.
Licensed to Mark Watson <nordickan@gmail.com>

http://grails.org/doc/latest/api/grails/spring/BeanBuilder.html

860 APPENDIX H Type checking extensions
to return a single element. If it doesn’t, then the ambiguity remains and the type
checker throws the error to the user.

H.2.16 incompatibleReturnType

Arguments:

■ returnStmt (ReturnStatement)—The return statement that is incompatible
■ returnType (ClassNode)—The inferred return type of this statement

This handler has only been available since Groovy 2.2. It works in a similar fashion as
handleIncompatibleAssignment but is dedicated to return types. It allows the exten-
sion writer to handle the case where the inferred return type isn’t compatible with the
declared return type of the method. If the assignment is deemed to be valid in the con-
text of the DSL, the extension may set the handled flag to true and the error will go
away. Note that the return statement carried in this event doesn’t necessarily corre-
spond to an explicit return: implicit returns may also trigger this event.

H.3 Extensions aren’t AST transformations
The last advice that we can give you with regard to type checking extensions is to
remember that they are not meant to replace AST transformations. Because the DSL is
rich and provides direct access to the AST, the temptation to modify the AST from the
extension is great. You should never do that, as it can lead to unexpected results. Espe-
cially remember that type checking is the last phase before bytecode generation, while
AST transformations can be run in much earlier phases. Even if you think your code is
safe, even if adding a field seems to work, never trust what you see. Type checking
extensions are not meant to modify the AST.
Licensed to Mark Watson <nordickan@gmail.com>

appendix I
Android support

Getting started
It’s possible to write an Android application in Groovy. To target Android bytecode,
you must use a special version of the compiler rather than the normal groovyc
command line tool. In particular, when targeting the Android platform, you must
use specific .jar files that have a classifier of grooid. To make things easier, a Gradle
plugin adds support for the Groovy language in the Android Gradle tool chain.

This appendix covers
■ Getting started with Android
■ Getting more information

Figure I.1 Android phone
running Groovy
861

Licensed to Mark Watson <nordickan@gmail.com>

862 APPENDIX I Android support
The plugin is used by adding the following lines to the start of your Gradle build file:

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 // ...
 classpath 'org.codehaus.groovy:gradle-groovy-android-plugin:0.3.5'
 }
}

apply plugin: 'groovyx.grooid.groovy-android'

Then you need to add a dependency to the grooid version of the Groovy compiler:

dependencies {
 compile 'org.codehaus.groovy:groovy:2.4.0:grooid'
}

Note that if a Groovy JAR (such as a submodule JAR) doesn’t provide a special grooid
classifier alternative, the JAR is directly compatible with Android. In that case, you can
add the dependency directly:

dependencies {
 compile 'org.codehaus.groovy:groovy:2.4.0:grooid' // special version
 compile ('org.codehaus.groovy:groovy-json:2.4.0') { // normal version
 transitive = false
 }
}

Note that the transitive=false parameter for groovy-json tells Gradle not to down-
load the normal Groovy JAR as a dependency of the JSON dependency.

 Please go to the plugin homepage in order to find the latest, news, documentation
and version information: https://github.com/groovy/groovy-android-gradle-plugin.
Licensed to Mark Watson <nordickan@gmail.com>

https://github.com/groovy/groovy-android-gradle-plugin

index
Symbols

^ (binary xor) 65, 760
^ regex (negate character class)

operator 76
^ regex (start of line)

operator 78, 821
- (minus) operator 64, 95, 760
-- (decrement) operator 64, 95,

760
-> closure parameter

separator 43
; (semicolon) 32
! (negation) operator 146
!= operator 760
? regex (optional) operator 822
?: (Elvis) operator 150–151, 760
?. (safe dereference)

operator 172–173, 759
.@ (dot-at) operator 190–191
. (dot) 821
.. (double-dot) operator 93
.& (closure method reference)

operator 125
' (single quote) 70
''' (triple single quote) 70
" (double quote) 70
"""(triple double quote) 70
() parentheses 759, 822
() regex grouping 78, 822
[] collection literals 11, 97, 108
[] regex character class/

range 78, 822
[] subscript operator 65, 98,

759
{ } braces 124, 759, 822

{ } regex explicit quantifier 78,
822

* (multiply, star) operator 64,
760

* (spread) operator 197–198
* regex (zero or more)

operator 76, 822
*: (spread map) operator 108,

198
*. (spread dot) operator 12,

194, 759
** (power) operator 759
/ (divide) operator 760
/ (slashy string) 70
\ (escape character) 70–71
& (binary and) operator 65, 760
&& (logical and) operator 760
#! (shebang comment) 29
% (modulo) operator 64, 760
% SQL parameter

placeholder 455
+ (plus) operator 64, 760
+ regex (one or more)

operator 76, 822
++ (increment) operator 64, 95,

760
< operator 760
<< (left-shift) operator 75, 102,

115, 419, 760
<= operator 760
<=> (spaceship) operator 95,

760
== (equality) operator 87, 100,

147, 760
==~ (match operator) 76
=~ (find operator) 76

> operator 760
>= operator 760
>> (right-shift) operator 760
| (binary or, pipe) operator 65,

760
| regex (alternatives)

operator 76, 822
|| (logical or) operator 642, 760
~ (bitwiseNegate, pattern)

operator 65, 76, 759
$ GString placeholder 72
$ regex (end of line)

operator 78, 821
$/ (dollar slashy) 70

A

abstract syntax tree. See AST
Abstract Window Toolkit. See

AWT
AbstractButton type 814
AbstractCollection type 801
AbstractMap type 801
accelerator property 372
accessor methods 36, 189–190
accumulator problem 139–140
act method 668
actionPerformed method 361,

372
actions, Swing 372–374
ActiveX objects 735
actors 665–670
add method 115
addAll method 98, 115
addError method 286
addException method 286
863

Licensed to Mark Watson <nordickan@gmail.com>

INDEX864
addImport method 595
addShutdownHook method 405
addStarImport method 595
addStaticImport method 595
addStaticStar method 595
addStaticTypeError method 851
afterMethodCall event 337, 857
afterStop method 670
afterVisitClass event 337, 859
afterVisitMethod event 337,

858–859
agents 671
align attribute 369
AllTestSuite 637–638
ambiguousMethods event 337,

859–860
and method 65
Android support 861–862
@AnnotationCollector

annotation 827
annotations

groupings for 825–827
overview 37–38

AntBuilder 33
build scripts 357–358
mixing with Groovy

logic 359–360
overview 356–359

any method 409
anyParallel method 657
AOP (aspect-oriented

programming) 584
Apache Camel project 669
Appendable type 779
application context 586
application servers 181
ArithmeticShell 719–721
Array type 49
ArrayList class 97
as keyword 174
asImmutable method 105, 112
aspect-oriented programming.

See AOP
assertArrayEquals method 608
assertContains method 608
assertInspect method 609
assertions

informative failure
messages 154–155

inline unit tests 155–156
overview 31–46, 156–157

assertLength method 609
assertScript method 609
assertSquares method 656
assertToString method 609

assignment operators 760
assignments

checking 301–303
declaring closures 124

asSynchronized method 105,
112

AST (abstract syntax tree) 235,
477, 593, 844–849

AST transformations 729
@AutoClone annotation

258–261
@AutoExternalize

annotation 262–263
code-generation

@Builder annotation
243–245

@EqualsAndHashCode
annotation 238

@IndexedProperty
annotation 241

@InheritConstructors
annotation 241–242

@Lazy annotation 239–241
overview 236
@Sortable annotation

242–243
@ToString annotation

236–237
@TupleConstructor

annotation 238–239
concurrency

@Synchronized
annotation 254–255

@WithReadLock and
@withWriteLock
annotation 255–258

decompilers 271–272
design patterns

@Canonical
annotation 245

@Delegate
annotation 247–249

@Immutable
annotation 246–247

@Memoized
annotation 250

@Singleton
annotation 249–250

@TailRecursive
annotation 251–252

global transformations
282–286

GroovyConsole AST
browser 270–271

groupings for 825–827

local transformations 276–282
logging 252–253
object creation

manually 272–273
using buildFromCode

method 275–276
using buildFromSpec

method 273–274
using buildFromString

method 274–275
overview 235, 268–270
scripting

@Basescript
annotation 267

@ConditionalInterrupt
annotation 265–266

@Field annotation 266
overview 263
@ThreadInterrupt

annotation 264–265
@TimedInterrupt

annotation 263–264
testing 286–290
type-checking extensions

and 860
asterisk (*) 197–198, 760, 822
@ASTTest annotation 828
asType method 66
asWriteable method 134
AthleteDAO 488
ATOM feeds 545–547
attribute method 517
ATTRIBUTE_NODE type 509
attributes method 352, 514
attributes property 510
autoboxing 57, 159
@AutoClone annotation

258–261, 828
AutoCloseable interface 121
autocommits 463
@AutoExternalize

annotation 262–263, 828
automation

using Gradle 738–741
using Scriptom 735–736

AWT (Abstract Window
Toolkit) 360

B

@BaseScript annotation 267,
685, 828

batches 464–466
BDD (Behavior-Driven

Development) 639
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 865
bean introspection 192
beforeMethodCall event 337,

856–857
beforeVisitClass event 337
beforeVisitMethod event 337,

858
BigDecimal class 57, 86, 794
BigInteger class 57, 86, 794
binary and operator (&) 65,

760
binary or operator (|) 65, 760,

822
binary xor (^) 65, 760
@Bindable annotation 377,

751
bindable properties 37
binding

adding closures to 688–690
for Groovlets 437–441
injection of constants

through 682–683
Swing components 377–380

BitSet type 801
bitwiseNegate (~) operator 65,

76, 759
bitwiseNegate method 65
BlockingQueue type 813
blocks 124
Boolean class 56, 766, 779
Boolean tests

assignments within 147–149
evaluating 146–147

BorderLayout class 367
boundary symbols 78
boundedRangeModel

method 374
boxing 57–58
BoxLayout class 367
braces { } 124, 759, 822
brackets [] 759, 822
breadthFirst method 352, 515
break statements 160–161
brevity 30–31
BufferedReader type 768
BufferedWriter type 769
build automation

with Gradle 644–646
with Maven 647–649

@Builder annotation 243–245,
829

Builder pattern 143
builders

concepts of 350
creating custom

overview 390–391

subclassing
BuilderSupport 391–395

subclassing
FactoryBuilderSupport
395–397

using low-level method
interception hooks
398–400

example using 345–347
GroovyFX

desktop applications
389–390

FXML 388
overview 386–388
Properties 389

MarkupBuilder class
building HTML 354–355
building XML 352–354

mixing with Groovy
logic 350–352

NodeBuilder class 348–350
object trees 347–348
overview 343–345
static typing and 318–319
StreamingMarkupBuilder

class 355–356
SwingBuilder GUIs

binding components
377–380

example using 381–385
overview 360–361
reading password

example 361–363
Swing actions 372–374
Swing models 374–376
widgets 363–366
widgets, arranging 366–370
widgets, using 370–372

task automation with Ant-
Builder
build scripts 357–358
mixing with Groovy

logic 359–360
overview 356–359

BuilderSupport class 391–395,
715

buildFromCode method
275–276

buildFromSpec method
273–274

buildFromString method
274–275

button method 364
buttonGroup method 364
ButtonGroup type 814

Byte class 56, 86, 762, 775
bytecode 49, 234

C

Calendar type 801
callbacks 119, 191
@Canonical annotation 245,

829
canoo 362
CardLayout class 367
caret (^) 760, 821
CastException 243
casting types 62–63
categories 316–317
@Category annotation 223, 830
category classes 219–222
char type 56, 763
Character class 56, 86, 783
character classes 822
character literals 72
CharSequence class 779
checkBox method 364
checkBoxMenuItem

method 364
childNodes property 510
children method 352, 514
CI (continuous integration) 16
Class type 784
ClassCastException 60, 167
classes

command chains 198
constructors

implicit 175
named parameters 174–175
overview 173
positional parameters

173–174
declaring 35
declaring variables 165–167
generation of 50–51
Groovy and 47
GroovyBeans

accessor methods 189–190
declaring 187–189
event handling 191–192
Expandos 193–194
field access with .@

operator 190–191
fields 193–194
overview 187
using bean methods for any

object 192–193
inheritance 181–182
interfaces 182–183
Licensed to Mark Watson <nordickan@gmail.com>

INDEX866
classes (continued)
methods

naming 172
parameters for 168–172

multimethods 183–185
organizing

classpath 177, 180–181
file to class

relationship 176–177
imports 178
packages 177–178
type aliasing 179–180

querying objects with
GPaths 194–197

referencing and dereferenc-
ing fields 167–168

safe dereferencing with ?.
operator 172–173

spread (*) operator 197–198
traits 185–187

ClassHelper class 273
classification 134
ClassLoader type 784, 847, 849
classloaders 572, 575
ClassNode class 273
classNodeFor method 851
ClassNotFoundException 573
classpath 23, 177, 180–181
clear method 115
ClientBuilder class 551
clone method 134
CLONE style 260
CloneNotSupportedException

259
Closeable type 769
closure property 372
Closure type 767
closureColumn method 374
@ClosureParams

annotation 313–314, 830
closures

adding to binding 688–690
calling 127–129
cheat sheet for 821
classification via isCase

method 134
composition 132
context switching with

710–715
currying 130–132
declaring

comparing options
for 126–127

referring to methods as
closures 125–126

simple declaration 123–124
using assignments for 124

design pattern support
Builder pattern 143
overview 141–143
Visitor pattern 142

memoization 133
overview 11, 43–45, 118–119
reacting on parameter count

or type 130
returning from 140–141
scope for

accumulator problem
139–140

overview 134–139
simple variable scope 135

shared variables 326–327
type checking

closure argument
types 311–312

closure return types
310–311

@ClosureParams
annotation 313–314

@DelegatesTo
annotation 314–316

SAM type conversion 313
use cases

handling resources with
protocol 121–123

overview 119
using iterators 119–121

using for dynamic hooks 207
using trampoline 133

cloud computing 752
Cobertura 632–633
code analysis 741–743
code coverage 631–634
code-generation AST transfor-

mations
@Builder annotation 243–245
@EqualsAndHashCode

annotation 238
@IndexedProperty

annotation 241
@InheritConstructors

annotation 241–242
@Lazy annotation 239–241
overview 236
@Sortable annotation

242–243
@ToString annotation

236–237
@TupleConstructor

annotation 238–239

CodeNarc 741–743, 846
coercion

for numbers 85–88
overriding operators 68–69

colfill attribute 369
collate method 104
collect method 102, 112, 115,

409, 660
collection literals 11–12
collection literals ([]) 11, 97,

108
Collection type 49, 802
collections 408

Boolean tests for 146
concurrent

modification 114–115
concurrent processing

fork/join methods 657–658
overview 654–655
transparently concurrent

collections 655–657
copying vs. modifying 115
lists

adding and removing
items 100

creating 97–98
methods for accessing list

content 103–105
methods for manipulating

list content 101–103
overview 97
subscript operator 98–99
using with control

structures 100–101
working with 105–107

maps
creating 108–109
operators for 109–112
overview 107–108
working with 113–114

ranges
creating 93–94
as objects 94–95
overview 92–93
working with 95–97

collectMany method 104
collectParallel method 654, 657
colorChooser method 364
colspan attribute 369
COM objects 735
combinations method 104
comboBox method 364
command chains 198, 696–698
command expressions 677
comments 29
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 867
@Commons annotation 253, 830
commutative operators 69
Comparable interface 242, 784
Comparator interface 242
compareTo method 66, 95
Compilable interface 590–592
compilation customizers 597,

702
compile-time metaprogramming

AST object creation
manually 272–273
using buildFromCode

method 275–276
using buildFromSpec

method 273–274
using buildFromString

method 274–275
AST transformations

@AutoClone
annotation 258–261

@AutoExternalize
annotation 262–263

@Basescript
annotation 267

@Builder annotation
243–245

@Canonical
annotation 245

@ConditionalInterrupt
annotation 265–266

decompilers 271–272
@Delegate

annotation 247–249
@EqualsAndHashCode

annotation 238
@Field annotation 266
global transformations

282–286
GroovyConsole AST

browser 270–271
@Immutable

annotation 246–247
@IndexedProperty

annotation 241
@InheritConstructors

annotation 241–242
@Lazy annotation 239–241
local transformations

276–282
logging 252–253
@Memoized

annotation 250
overview 235, 268–270
@Singleton

annotation 249–250

@Sortable annotation
242–243

@Synchronized
annotation 254–255

@TailRecursive
annotation 251–252

testing 286–290
@ThreadInterrupt

annotation 264–265
@TimedInterrupt

annotation 263–264
@ToString annotation

236–237
@TupleConstructor

annotation 238–239
@WithReadLock and

@withWriteLock
annotation 255–258

generating bytecode 234
history of 234
limitations of 290–292
overview 235

compile-time type 61
compiled scripts 23
compiler customizers 685
compiler phases 842
CompilerConfiguration

configscript compilation
option 598–600

custom customizer 597–598
import customizer 594–595
overview 592–594
source-aware customizer

595–597
@CompileStatic annotation 24,

328–329, 830
composition 132
concrete syntax tree. See CST
concurrency

actors for explicit task
coordination 665–670

agents for delegated task
coordination 671

AST transformations for
@Synchronized

annotation 254–255
@WithReadLock and

@withWriteLock
annotation 255–258

collection processing
fork/join methods

657–658
overview 654–655
transparently concurrent

collections 655–657

dataflow
overview 665
sequential datatypes

663–664
testing for deadlocks

662–663
example using 671
GPars library 654
Java capabilities 653
map/filter/reduce

approach 659–661
parallelization vs. 651–653

concurrent modification
114–115

ConcurrentModification-
Exception 114

conditional operator 150–151
@ConditionalInterrupt

annotation 265–266,
830–831

configscript compilation
option 598–600

connection pools 451
constructors

implicit 175
named parameters 174–175
overview 173
positional parameters

173–174
Container type 768
contains method 94
containsKey method 110
containsValue method 110
context switching with

closures 710–715
continue statements 160–161
continuous integration. See CI
control structures

assertions
informative failure

messages 154–155
inline unit tests 155–156
overview 156–157

Boolean tests
assignments within 147–149
evaluating 146–147

conditional operator 150–151
exiting

break statements 160–161
continue statements

160–161
return statements 160–161
throw statements 161
try-catch-finally blocks 161

if statements 149–150
Licensed to Mark Watson <nordickan@gmail.com>

INDEX868
control structures (continued)
loops

for loops 158–160
while loops 157–158

overview 45–46
switch statements

classifiers 152–153
in operator 153–154
overview 151–152

using DSLs 699–710
using lists with 100–101

convenience methods 405
COPY_CONSTRUCTOR

style 260–261
count method 103
countParallel method 657
createNode method 391, 394
CRUD (create, read, update,

and delete) 448
CST (concrete syntax tree) 597
currying 130–132
cyclomatic complexity 173

D

daemon thread 424
DAOs (data access objects) 447
data transfer objects. See DTOs
data-driven testing

overview 618–619
using Spock framework

642–644
DataAccessObject 486–487
databases

application behavior 483–484
application layer 489–491
architectural overview

481–483
DataSet class

database views 479–481
operations on 475–478
overview 474–475

Groovy SQL
batches 464–466
connecting to

database 448–450
creating database

schema 452–454
deleting data 462–463
DriverManager versus

DataSource 450–452
fetching all rows 460–461
fetching metadata 466–469
fetching ResultSet 459–460
fetching single row 458–459

inserting data 454–457
installing database 447–448
named parameters 470
named-ordinal

parameters 470–471
overview 446–447
pagination 466
reading data 457–458
stored procedures 471–474
transactional updates

463–464
updating data 461–462

infrastructure
AthleteDAO 488
DataAccessObject 486–487
DbHelper 484–486

MongoDB
entering information

493–494
installing 492
overview 492
querying database 494–495

Neo4J
entering information

496–497
overview 495–496
querying database 498–500
using Gremlin 500–503

transparent domain
model 488

DataflowOperator 664
DataInputStream type 769
DataSet class

database views 479–481
operations on 475–478
overview 474–475

DataSource 450–452
datatypes

automatic boxing and
unboxing 57–58

collections
concurrent

modification 114–115
copying vs. modifying 115

Groovy type system 56–57
Java type system 55–56
lists

adding and removing
items 100

creating 97–98
methods for accessing

103–105
methods for

manipulating 101–103
overview 97

subscript operator 98–99
using with control

structures 100–101
working with 105–107

literals as objects 58
maps

creating 108–109
operators for 109–112
overview 107–108
working with 113–114

numbers
coercion with

operators 85–88
GDK methods for 88

operator overrides
coercion 68–69
listing of overridable

operators 64–66
overview 66–68

optional typing
assigning types 59
casting types 62–63
dynamic behavior and type

safety 59–62
overview 63–64

ranges
creating 93–94
as objects 94–95
overview 92–93
working with 95–97

regular expressions
for classification 84–85
common pitfalls with 80
overview 76–78
pattern symbols 78–79
performance of 83–84
working with matches

81–83
working with patterns
79–80

strings
GStrings 72–74
Java vs. Groovy 74–76
string literals 69–72

Date type 800, 803
DbC (design by contract) 156,

743
DbHelper 484–486
deadlocks, testing for 662–663
declaration time 135, 137
declareNamespace method 517
decompilers 271–272
decrement operator (- -) 64, 95,

760
def keyword 168, 304–305
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 869
DefaultBoundedRangeModel
374

DefaultComboBoxModel
type 814

DefaultListModel type 814
DefaultMutableTreeNode

type 817
DefaultStrategy 244
DefaultTableModel type 374,

816
@Delegate annotation 247–249,

687, 831–832
delegated task coordination 671
delegates 134
@DelegatesTo annotation

314–316, 334–335, 832
delegatesTo method 852
@DelegatesTo.Target

annotation 832
dependencies

for integration 564–565
using GroovyClassLoader

579–580
Dependency Injection. See DI
depthFirst method 352, 515
design by contract. See DbC
design patterns

AST transformations for
@Canonical annotation

245
@Delegate annotation

247–249
@Immutable annotation

246–247
@Memoized annotation

250
@Singleton annotation

249–250
@TailRecursive annotation

251–252
closure support

Builder pattern 143
overview 141–143
Visitor pattern 142

desktop applications 389–390,
749–752

desktopPane method 364
DI (Dependency Injection) 584
dialects 448
dialog method 364
direct mode 22
div method 64
doCall method 574
documentation 757–758
DocumentBuilder 509

documentElement property 509
dollar sign ($) 821
dollar slashy string literal 71
DOM (Document Object

Model) 410, 508
DOM parser

getting document 508–509
overview 508
using in Groovy way 512–513
walking DOM 509–512

domain-driven design 482
domain-specific languages. See

DSLs
DOMCategory 529
dot (.) 821
Double class 56–57, 86, 763, 784
DriverManager 450–452
dropWhile method 104
DSLs (domain-specific

languages) 4, 490
command chains 696–698
context switching with

closures 710–715
control structures 699–710
error reporting 725–731
flexibility of Groovy 677–681
injection

adding closures to
binding 688–690

adding imports
automatically 685–686

of constants through
binding 682–683

of methods 684–685,
687–688

overview 681–682
instantiation 715–718
named-arguments 693
overview 676–677
properties for numbers

690–693
security

ArithmeticShell 719–721
general discussion 718
metaprogramming

723–725
SecureASTCustomizer

718–719
stopping program

execution 721–722
testing 725–731
type checking and 332–333

DTOs (data transfer
objects) 447

duck typing 63, 105

dump method 403
dynamic classes 569
dynamic programming 51–52

examples using
calculating with

metrics 227–228
faking property

assignments 228–230
Intercept/Cache/Invoke

pattern 231–232
replacing constructors with

factory methods 228
undoing metaclass

modifications 230–231
metaclasses

@Category annotation 223
category classes 219–222
ExpandoMetaClass 218–219
extension modules 222–223
merging with Mixins

224–227
metaClass property 211–213
MetaClass type 210–211
MetaClassImpl 213–214
ProxyMetaClass 213–214

MOP
customizing GroovyObject

interface methods
208–210

customizing method-
Missing method 204–205

customizing property-
Missing method 206

overview 202–204
using closures for dynamic

hooks 207
object-oriented programming

vs. 200–202
overview 202
type safety and 59–62

E

each method 94, 103, 409
eachDir method 413
eachDirMatch method 413
eachDirRecurse method 413
eachFile method 413
eachFileMatch method 413
eachFileRecurse method 413
eachLine method 418
eachParallel method 657
eachReverse method 103
eachRow method 458–459
eachWithIndex method 409
Licensed to Mark Watson <nordickan@gmail.com>

INDEX870
eachWithIndexParallel
method 657

Eclipse plug-in 26
ecosystem, Groovy

CodeNarc 741–743
Gaelyk 752
GContracts 743–745
Gradle 738–741
Grails 745–749
Grapes 733–735
Griffon 749–752
GroovyServ 737–738
Scriptom for Windows

automation 735–736
editorPane method 364
EJB (Enterprise JavaBeans) 187
Element type 818
ELEMENT_NODE type 509
Elvis operator 151
Elvis operator (?:) 150–151,

760
enabled property 373
enclosing scope 45
endsWith method 591
@Ensures annotation

(GContracts) 744
Enterprise JavaBeans. See EJB
entrySet method 110
Enumeration type 804
equality 66–67
equality operator (==) 87, 100,

147, 760
equals method 100, 110
@EqualsAndHashCode

annotation 238, 832–833
escape character (\) 70–71
evaluate method 566
event-based parsing 518
events

in GroovyBeans 191–192
for type-checking extensions

afterMethodCall 857
afterVisitClass 859
afterVisitMethod 858–859
ambiguousMethods

859–860
beforeMethodCall 856–857
beforeVisitMethod 858
finish 856
incompatibleAssignment

859
incompatibleReturnType

860
methodNotFound 857–858
onMethodSelection 857

setup 855
unresolvedAttribute 856
unresolvedProperty 856
unresolvedVariable 856

every method 409
everyParallel method 657
excludeFilter option 416
excludeNameFilter option 416
execute method 452, 454, 456
executeInsert method 456
expanding operators 79
ExpandoMetaClass 218–219
Expandos 193–194
explicit task coordination

665–670
expressive code 30
eXtensible Markup Language.

See XML
extension modules 222–223
external processes 426–429
ExternalStrategy 244

F

FactoryBuilderSupport
class 395–397, 715

Fibonacci number sequence 21
@Field annotation 266, 493
fields

access with .@ operator
190–191

getters and setters 234
in GroovyBeans 193–194
referencing and

dereferencing 167–168
file I/O

filters for 420–421
overview 411–412
reading 417–418
streaming objects 422
temporary data 422–423
traversing file system 412–417
writing 418–420

File type 769
fileChooser method 364
filter method 660
filter option 416
filterLine method 420
filters 420–421
find method 103, 409, 518
find operator (=~) 76
findAll method 103, 115, 409,

518, 660
findAllParallel method 658
findAnyParallel method 658

findIndexOf method 409, 706
findIndexValues method 409
findLastIndexOf method 409
findParallel method 658
findResult method 409
finish event 337, 856
firstRow method 458
flatten method 102, 104
Float class 56–57, 59, 86, 764,

784
flow typing

closure-shared variables
326–327

instanceof inference 325
least upper bound 323–325
overview 320–323

FlowLayout class 368
fold method 660
foldParallel method 658
for loops 100, 158–160
fork/join methods 657–658
formattedTextField method 364
forward slash (/) 70, 760
frame method 364
functional programming 130
FXML 388

G

Gaelyk 752
Gang of Four 844
GContracts

@Ensures annotation 744
@Invariant annotation 743
@Requires annotation 744

GDK (Groovy Development
Kit) 10

external processes 426–429
file I/O

filters for 420–421
overview 411–412
reading 417–418
streaming objects 422
temporary data 422–423
traversing file system

412–417
writing 418–420

Groovlets 435–437
binding for 437–441
overview 434–435
templates for 441

groovy.lang package 767–768
groovy.sql package 768
java.awt package 768
java.io package 768–775
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 871
GDK (Groovy Development Kit)
(continued)

java.lang package 775–794
java.math package 794
java.net package 795–796
java.nio.file package 796–800
java.sql package 800
java.util package 801–813
java.util.concurrent

package 813
java.util.regex package

813–814
javax.swing package 814–816
javax.swing.table package 816
javax.swing.tree package 817
multithreading 423
objects

interactive 402–405
iterative methods 408–411
methods for 405–408
overview 402

org.w3c.dom package 818
overview 48–49, 401–402
primitive types 766–767
processes 423
templates

example using 431–433
format overview 430–431
general discussion 429–430,

433–434
threads 423

Gemfire 748
generics 305–306
@GET annotation 551
get method 168, 193
getAt method 65, 98, 109, 517
getBean method 586
getCollection method 660
getCurrent method 392
getErrorCollector method 729
getErrorHandler method 286
getFields method 487
getInterface method 591
getKeyStroke method 373
getLength method 511
getMaximumNumberOf-

Parameters method 130
getName method 392
getNamedItem method 511
getParameterTypes method 130
getProperties method 192, 403
getProperty method 208, 578
getPropertyname method 189
getTargetMethod method 851
getters and setters 234

getType method 851
global transformations 282–286
GLS (Groovy Language

Specification) 31, 757
glue method 368
GMongo 492
golden ratio 20
Google App Engine 752
GoogleTalk 554
GORM (Groovy Object Rela-

tional Mapping) 205, 747
GPars library

actors for explicit task
coordination 665–670

agents for delegated task
coordination 671

collection processing
fork/join methods 657–658
overview 654–655
transparently concurrent

collections 655–657
dataflow

overview 665
sequential datatypes

663–664
testing for deadlocks

662–663
example using 671
map/filter/reduce

approach 659–661
overview 654

GPaths
cheat sheet for 823
overview 12
querying objects with 194–197

@Grab annotation 23, 446, 553,
833

@GrabConfig annotation 834
@GrabExclude annotation 834
@GrabResolver annotation 734,

834
Gradle 756

Android support using 861
build automation with

644–646
overview 738–741

Grails 331, 745–749, 756
Grapes 38–39, 733–735
@Grapes annotation 834
graphical user interface. See GUI
greedy operators 79
grep method 115, 409
grepParallel method 658
GridBagConstraints class 368
GridBagLayout class 368

GridLayout class 368
Griffon 749–752, 756
grooid classifier 861
Groovlets

binding for 437–441
overview 434–437
templates for 441

Groovy
Android support 861–862
blog aggregator 757
compiling

groovyc command 22–23
running compiled script

with Java 23
features

closures 11
collection literals 11–12
community driven and cor-

porate backed 13–14
GPath 12
Java friendly 13
overview 9–11

history of 4–5
IDE support

Eclipse plug-in 26
editors 26–27
IntelliJ IDEA plug-in 24–25
NetBeans IDE plug-in 25
overview 23–24

installation 756–757
Java and

class generation 50–51
classes 47
dynamic nature of 51–52
GDK 48–49
seamless integration 6–9
static nature of 52–53
syntax alignment 9

keyword list 760–761
modules 761
operator precedence 759–760
overview 5–6
running

groovy command 20–22
groovyConsole

command 18–20
groovysh command 18
overview 17–18

users of
Java professionals 14–15
polyglot programming

15–16
pragmatic

programmers 16–17
Groovy and Grails Tool Suite 26
Licensed to Mark Watson <nordickan@gmail.com>

INDEX872
groovy command 20–22
Groovy Development Kit. See

GDK
Groovy EnVironment Manager.

See GVM
Groovy Language Specification.

See GLS
Groovy Maven integration 23
Groovy Object Relational Map-

ping. See GORM
Groovy parser for XML 513–518
Groovy script engine

defining resource
connector 576–577

running scripts 576
setting up 575–576

Groovy Server Pages. See GSP
Groovy SQL

batches 464–466
connecting to database

448–450
creating database

schema 452–454
deleting data 462–463
DriverManager versus

DataSource 450–452
fetching all rows 460–461
fetching metadata 466–469
fetching ResultSet 459–460
fetching single row 458–459
inserting data 454–457
installing database 447–448
named parameters 470
named-ordinal

parameters 470–471
overview 446–447
pagination 466
reading data 457–458
stored procedures 471–474
transactional updates

463–464
updating data 461–462

groovy-all.jar 16, 23, 512, 564,
632, 645, 648, 739, 761

groovy-wslite 559
groovy.lang package 767–768
groovy.sql package 768
GroovyBeans 585–586

accessor methods 189–190
declaring 187–189
event handling 191–192
Expandos 193–194
field access with .@

operator 190–191
fields 193–194

overview 36–37, 187
using bean methods for any

object 192–193
groovyc command 22–23, 579,

592
GroovyCastException 62
GroovyClassLoader 583, 849

custom resource loader
580–581

dependencies 579–580
loading Groovy classes

577–579
security 581–584

GroovyCodeSource 582–583
GroovyCodeVisitor

interface 844
GroovyConsole AST

browser 270–271
groovyConsole command 18–20
GroovyFX

desktop applications 389–390
FXML 388
overview 386–388
Properties 389

GroovyInterceptable
interface 208

GroovyLogTestCase class
628–629

GroovyObject interface 208–210
GroovyObjectSupport class 208
GroovyResultSet type 768
GroovyServ 737–738, 756
groovysh command 18
GroovyShell

expression evaluation
using 565–567

generating dynamic classes at
runtime 569

parameterization of 571–575
parsing scripts 569–570
passing parameters within

binding 567–569
running scripts 571

GroovyTestCase class
example using 610–611
overview 608–610

GroovyTestSuite 635–637
GroovyTypeCheckingExtension-

Support class 851–852
groupBy method 104
groupByParallel method 658
GSP (Groovy Server Pages) 442
GString placeholder ($) 72
GStrings 767

Boolean tests for 146

cheat sheet for 819
overview 39, 72–74

GStringTemplateEngine 433
GUI (graphical user interface)

GroovyFX
desktop applications

389–390
FXML 388
overview 386–388
Properties 389

SwingBuilder
binding components

377–380
example using 381–385
overview 360–361
reading password

example 361–363
Swing actions 372–374
Swing models 374–376
widgets 363–366
widgets, arranging 366–370
widgets, using 370–372

GVM (Groovy EnVironment
Manager) 756

H

Hadoop 748
HashMap class 108
hbox method 368
help 757–758
heterogeneous AST 270
hglue method 368
HSQLDB (HyperSQL

Database) 447
hstrut method 368
HTML (Hypertext Markup

Language) 354–355
HTTP (Hypertext Transfer

Protocol) 543
HTTPBuilder library 550,

558–559
HyperSQL Database. See

HSQLDB

I

I/O (input/output)
filters for 420–421
overview 411–412
reading 417–418
streaming objects 422
temporary data 422–423
traversing file system 412–417
writing 418–420
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 873
IDE support
Eclipse plug-in 26
editors 26–27
IntelliJ IDEA plug-in 24–25
NetBeans IDE plug-in 25
overview 23–24
unit testing

AllTestSuite 637–638
GroovyTestSuite 635–637

if statements
overview 149–150
using lists with 100

IllegalArgumentException 68
@Immutable annotation 37, 67,

246–247, 835
imperative names 115
implicit constructors 175, 366
imports 178
in operator 153–154
in-place processing 522–524
incompatibleAssignment

event 337, 859
incompatibleReturnType

event 337, 860
increment operator (++) 64,

95, 760
indentation 29
@IndexedProperty

annotation 241
information sink 525
inheritance 181–182
@InheritConstructors

annotation 241–242, 835
InitializerStrategy 244
inject method 103, 409, 658,

660
injection

adding closures to
binding 688–690

adding imports
automatically 685–686

of constants through
binding 682–683

of methods 684–685, 687–688
overview 681–682

inline scripts 587–588
inline tests 607
InputStream type 772
inspect method 403
installation, Groovy 756–757
instance variables 166
instanceof inference 325
instantiation 715–718
int type 56, 764
Integer class 56–57, 59, 86, 785

integration
analyzing correct solution

563–564, 600–601
CompilerConfiguration

configscript compilation
option 598–600

custom customizer 597–598
import customizer 594–595
overview 592–594
source-aware

customizer 595–597
dependencies for 564–565
Groovy script engine

defining resource
connector 576–577

running scripts 576
setting up 575–576

GroovyClassLoader
custom resource

loader 580–581
dependencies 579–580
loading Groovy

classes 577–579
security 581–584

GroovyShell
expression evaluation

using 565–567
generating dynamic classes

at runtime 569
parameterization of

571–575
parsing scripts 569–570
passing parameters within

binding 567–569
running scripts 571

JSR-223
Compilable interface

590–592
Invocable interface

590–592
overview 588–589
polyglot programming 592
script engines 589–590

overview 561–563
Spring

inline scripts 587–588
overview 584–585
refreshable beans 587
wiring GroovyBeans

585–586
IntelliJ IDEA plug-in 24–25
interactive objects 403–405
interfaces 182–183
internalFrame method 364
InterruptedException 264

Inversion of Control. See IoC
Invocable interface 590–592
invoke dynamic feature 761
invokeMethod method 203,

208, 578, 591
IoC (Inversion of Control) 584
is method 405
isAnnotatedBy method 852
isCase method 65, 101, 134,

152–153, 405, 413
isDynamic method 851
isGenerated method 852
isHandlesNodeChildren

method 395
isInstance method 152
isInterrupted method 264
isLeaf method 395
Iterable type 785
iterative methods 408–411
iterator method 352, 515
Iterator type 804
iterators 119–121

J

Jabber protocol 554
Jacob 735
Jakarta Axis 556
Java

concurrency capabilities 653
Groovy and

classes 47, 50–51
dynamic nature of 51–52
GDK 48–49
seamless integration 6–9
static nature of 52–53
syntax alignment 9

Groovy syntax vs. 29–30
invoke dynamic feature 761
shortcomings of 119
type system for 55–56

Java Database Connectivity. See
JDBC

Java Development Toolkit. See
JDT

Java Naming and Directory
Interface. See JNDI

Java Runtime Environment. See
JRE

Java Virtual Machine. See JVM
JAVA_HOME environment

variable 756
java.awt package 767–768
java.io package 768–775
java.lang package 775–794
Licensed to Mark Watson <nordickan@gmail.com>

INDEX874
java.math package 794
java.net package 795–796
java.nio.file package 796–800
java.sql package 800
java.util package 801–813
java.util.concurrent

package 813
java.util.regex package 813–814
JavaFX 387
JavaScript Object Notation. See

JSON
JavaServer Faces. See JSF
JavaServer Pages. See JSP
javax.swing package 814–816
javax.swing.table package 816
javax.swing.tree package 817
JAX-RS library 551
JBoss 435
JComboBox type 814
JDBC (Java Database

Connectivity) 446
JDK (Java Development Kit) 756
JDT (Java Development

Toolkit) 26
JEdit 26
JetGroovy 24
Jetty 435
JFrame 361
JIRA 548, 554
JMenu type 814
JMenuBar type 815
JNDI (Java Naming and Direc-

tory Interface) 451
join method 103, 668
JPasswordField 361
JPopupMenu type 815
JRE (Java Runtime

Environment) 6, 756
JSF (JavaServer Faces) 430
JSON (JavaScript Object

Notation)
building 540–542
parsing 538–539

JsonSlurper 548
JSP (JavaServer Pages) 187, 430
JSR-223

Compilable interface
590–592

Invocable interface 590–592
overview 588–589
polyglot programming 592
script engines 589–590

JTabbedPane type 815
JUnit 606, 617
JVM (Java Virtual Machine) 47

K

KanbanFlow pattern 665
keyStroke property 373
keywords 124, 760–761

L

label method 364
layeredPane method 364
@Lazy annotation 239–241, 687,

835
least recently used. See LRU
least upper bound 323–325
left-shift operator (<<) 75, 102,

115, 419, 760
leftShift method 65, 100
LinkedList class 97
list method 364, 518
List type 806
@ListenerList annotation 377,

835
lists

adding and removing
items 100

cheat sheet for 820
creating 97–98
methods for accessing

103–105
methods for

manipulating 101–103
overview 41, 97
subscript operator 98–99
type checking 306–309
using with control

structures 100–101
working with 105–107

ListWithDefault type 767
literals

as objects 58
string 69–72

local transformations 276–282
local variables 165
@Log annotation 252–253, 836
@Log4j annotation 253, 836
@Log4j2 annotation 253, 836
logging 252–253
logical and operator (&&) 760
logical or operator (||) 642, 760
Long class 56–57, 86, 765, 788
longDescription property 373
lookahead/lookbehind

matching 822
lookupClassNodeFor

method 852

loop method 668
loops

for loops 158–160
while loops 157–158

LRU (least recently used) 133

M

Mail plugin 748
main method 22, 176
makeConcurrent method

655–656
map method 660
Map type 49, 809
map/filter/reduce

approach 659–661
maps

Boolean tests for 146
creating 108–109
operators for 109–112
overview 41–42, 107–108
type checking 306–309
working with 113–114

MarkupBuilder class
building HTML 354–355
building XML 352–354

MarkupTemplateEngine 434
match operator (==~) 76
Matcher class 82, 146, 813
matches, regular expression 81
Maven 647–649
max method 103, 660
maxDepth option 416
maxParallel method 658
memoization 133
memoizeAtLeast method 133
memoizeAtMost method 133
memoizeBetween method 133
@Memoized annotation 250,

836
menu method 364
menuBar method 364
menuItem method 364
Meta Object Protocol. See MOP
MetaClass type 768
metaclasses

@Category annotation 223
category classes 219–222
ExpandoMetaClass 218–219
extension modules 222–223
merging with Mixins 224–227
metaClass property 211–213
MetaClass type 210–211
ProxyMetaClass 213–214
static typing and 317–318
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 875
MetaClassRegistry 211
metaprogramming 202, 723–725

See also compile-time metapro-
gramming

method pointers 688
methodMissing method

204–205, 727, 852
methodNotFound event 337,

857–858
methods

accessor 189–190
as closures 125–126
for GDK objects 405–408
injection of 684–685, 687–688
iterative 408–411
naming 172
parameters for 168–172

Microsoft Developer Network.
See MSDN

min method 103, 660
minParallel method 658
minus method 64, 100
minus operator (-) 64, 95, 760
MissingMethodException 205,

726
MissingPropertyException 206,

243, 297
@Mixin annotation 224–225, 836
Mixins 224–227
mnemonic property 372
mocks

stubs vs. 626–627
using Spock framework

639–642
mod method 64
Model-View-Controller. See MVC
models, Swing 374–376
modifiers 166
modules 761
modulo operator (%) 64, 760
MongoDB

entering information 493–494
installing 492
querying database 494–495

monkey patching 331
MOP (Meta Object Protocol) 4

customizing GroovyObject
interface methods 208–210

customizing methodMissing
method 204–205

customizing propertyMissing
method 206

overview 202–204
using closures for dynamic

hooks 207

MSDN (Microsoft Developer
Network) 736

multiline string literal 70
multimethods 125, 183–185,

730
multiply method 64, 100
multithreading 423
Mustang 588
MutableComboBoxModel

type 816
MutableTreeNode type 817
MVC (Model-View-

Controller) 584, 745
MvnRepository website 734

N

name method 351, 514
name property 372
named parameters 174–175,

470
named-arguments 693
named-ordinal parameters

470–471
nameFilter option 416
negation operator (!) 146
negative indexes 99
Neo4J

entering information 496–497
overview 495–496
querying database 498–500
using Gremlin 500–503

NetBeans IDE plug-in 25
@Newify annotation 715–717,

837
newInstance method 395
newMethod method 852
next method 64
NodeBuilder class 348–350
nodeCompleted method 391,

394
NodeList type 818
NoSQL

MongoDB
entering information

493–494
installing 492
overview 492
querying database 494–495

Neo4J
entering information

496–497
overview 495–496
querying database 498–500
using Gremlin 500–503

NullPointerException 172
Number type 788
numbers

Boolean tests for 146
coercion with operators

85–88
GDK methods for 88
overview 40

O

object trees 347–348
Object type 776, 789
object-oriented

programming 200–202
object-relational mapping. See

ORM
ObjectGraphBuilder 715
ObjectInputStream type 774
ObjectOutputStream type 774
objects

automatic boxing and
unboxing 57–58

Groovy type system 56–57
Java type system 55–56
literals as 58
querying with GPaths

194–197
ranges as 94–95
streaming 422

objects, GDK
interactive 403–405
iterative methods 408–411
methods for 405–408
overview 402

ODBC (Open Database
Connectivity) 448

onException method 670
onFactoryRegistration

method 395
onHandleNodeAttributes

method 395
onInterrupt method 670
online resources 757–758
onMethodSelection event 337,

857
onNodeChildren method

395
onNodeCompleted method

395
onTimeout method 670
Open Database Connectivity. See

ODBC
OpenDolphin 389
operator method 664
Licensed to Mark Watson <nordickan@gmail.com>

INDEX876
operators
coercion for numbers 85–88
for maps 109–112
overriding

coercion 68–69
listing of overridable

operators 64–66
overview 66–68

precedence 759–760
optional typing

assigning types 59
casting types 62–63
dynamic behavior and type

safety 59–62
overview 63–64

optionPane method 364
or method 65
org.w3c.dom package 818
ORM (object-relational

mapping) 187, 503
OutputStream type 774
OverlayLayout class 368
overloading, defined 64

P

packages 177–178
@PackageScope annotation 837
pagination 466
panel method 364
parallel assignment feature 82
parallelization 651–653
parameterization 567–569,

571–575
parameters

for methods 168–172
named 174–175
positional 173–174

parent method 352, 514
parentheses () 759, 822
parents method 517
passwordField method 364
@Path annotation 551
Path type 796
pattern operator (~) 65, 76,

759
Pattern type 814
patterns, defined 76
performance

regular expressions 83–84
unit testing 629–631

permutations method 104
PillarOne project 230
pipe (|) operator 65, 760, 822
pipe character (|) 760, 822

pipeTo method 428
placeholders 73
plus method 58, 64, 100
plus operator (+) 64, 760
plus sign (+) 760, 822
POGOs (Plain Old Groovy

Objects) 584, 710
POJOs (Plain Old Java

Objects) 189, 584, 710
polyglot programming 15–16,

592
popupMenu method 364
positional parameters 173–174
postDir option 415
postRoot option 415
power method 65
power operator 87
power operator (**) 759
pragmatic programmers 16–17
precompiled mode 22
preDir option 415
preRoot option 415
pretended methods 351
previous method 64
primitive types 55–767
print method 352, 405
printf method 405, 407
println method 405
PrintStream type 774
PrintWriter type 774
private keyword 166
Process type 792
processes, GDK 423
progressBar method 364
properties

defined 36, 166
for interactive objects

403–405
for numbers 690–693

properties property 403
Properties, GroovyFX 389
@Property annotation 188
property-based testing 619–621
propertyColumn method 374
propertyMissing method 206
protected keyword 166
ProxyMetaClass 213–214
public keyword 166
@PUT annotation 551
putAt method 65

Q

@QueryParam annotation 551
question mark (?) 822

R

radioButton method 364
radioButtonMenuItem

method 364
ranges

creating 93–94
as objects 94–95
overview 42–43, 92–93
working with 95–97

react method 668
Reader type 775
readLine method 418
readLines method 418
Really Simple Syndication. See

RSS
receive method 668
receiver objects 115
reduce method 660
reference semantics 55
reference types 55
refreshable beans 587
regex (alternatives) operator

(|) 76, 822
regex character class/range

([]) 78, 822
regex end of line operator ($)

78, 821
regex explicit quantifier ({ }) 78,

822
regex grouping (()) 78, 822
regex negate character class (̂)

operator 76
regex start of line operator (^)

78, 821
regular expressions

cheat sheet for 821–822
for classification 84–85
common pitfalls with 80
examples using 822–823
find operator (=~) 76
match operator (==~) 76
operator symbols 78,

821–822
overview 39–40, 76–78
pattern operator (~string) 76
pattern symbols 78–79
performance of 83–84
symbol reference 821–822
working with matches 81–83
working with patterns 79–80

remove method 115
removeAll method 115
reply method 668
requests, web service 543
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 877
@Requires annotation
(GContracts) 744

resource connector 576–577
resource loader, custom

580–581
ResourceBundle type 811
response, server 543
REST (Representational State

Transfer) 544, 547–553
RESTClient class 549
restrictive mode 79
ResultSet type 459–460, 800
ResultSetMetaData type 467,

800
retainAll method 115
return keyword 141
return statements 160–161
reversed ranges 93, 99
rightShift method 65
rightShiftUnsigned

method 65
rigidArea method 368
rowfill attribute 369
rowspan attribute 369
RSS (Really Simple

Syndication) 545–547
run method 576
Runnable interface 122
runProtected method 122
runtime 569
runtime type 61

S

safe dereference (?.)
operator 172–173, 759

SAM type conversion 313
SAX parser 518–519
SceneGraphBuilder 386–387
scope

for closures
accumulator problem

139–140
overview 134–139
simple variable scope 135

for type-checking
extensions 853–855

script engines
Groovy

defining resource
connector 576–577

running scripts 576
setting up 575–576

overview 589–590
scripted tests 608

scripting, AST transformations
for

@Basescript annotation 267
@ConditionalInterrupt

annotation 265–266
@Field annotation 266
overview 263
@ThreadInterrupt

annotation 264–265
@TimedInterrupt

annotation 263–264
Scriptom 33, 735–736
scripts

Grapes 733–735
inline 587–588
parsing 569–570
running 571, 576
using in code 35–36

scrollBar method 364
scrollPane method 365
SecureASTCustomizer 718–719
security

DSLs
ArithmeticShell 719–721
general discussion 718
metaprogramming

723–725
SecureASTCustomizer

718–719
stopping program

execution 721–722
using GroovyClassLoader

581–584
@SelfType annotation 837
semicolon (;) 32
send method 668
sendAndWait method 668
separator method 365
sequential datatypes 663–664
serialization 187, 422
SERIALIZATION style 260
ServerSocket type 553, 795
service-oriented architectures.

See SOA
set method 168
Set type 811
setChild method 395
setClasspath method 573
setClosureDelegate

method 392
setDebug method 573
setMinimumRecompilation-

Interval method 573
setOutput method 573
setParent method 391, 394–395

setProperty method 193, 208,
578

setPropertyname method 189
setRecompileGroovySource

method 573
setScriptBaseClass method 573
setSourceEncoding method 573
setup event 337, 855
setValue method 517
setVariable method 568
shebang comment (#!) 29
shifting operators 86
Short class 56, 86, 765
short-circuit evaluation 173
shortDescription property 372
shouldFail method 609, 615
shouldFailWithCause

method 609
SIMPLE style 260
SimpleStrategy 244
SimpleTemplateEngine 433, 484
single stepping 19
@Singleton annotation 249–250,

837
size method 48, 110, 518, 661
slashy string literals 70, 77
sleep method 405
@Slf4j annotation 253, 837
slider method 365
smallIcon property 373
SME (subject matter

expert) 676
SOA (service-oriented

architectures) 652
SOAP

overview 555–556
using groovy-wslite 559
using HTTPBuilder 558–559
using plain Groovy 556–558

Socket type 795
sort method 113, 115
sort option 416
@Sortable annotation 242–243
SortedMap type 812
SortedSet type 812
source-aware customizer

595–597
@SourceURI annotation 838
spaceship operator (<=>) 95,

760
spikes 16
spinner method 365
SpinnerDateModel 374
SpinnerListModel 374
SpinnerNumberModel 374
Licensed to Mark Watson <nordickan@gmail.com>

INDEX878
split method 409
splitEachLine method 418
splitPane method 365
splitParallel method 658
Spock framework

data-driven testing 642–644
overview 638–639
using mocks 639–642

spread (*) operator 197–198
Spring framework 13

inline scripts 587–588
overview 584–585
refreshable beans 587
wiring GroovyBeans 585–586

SpringLayout class 368
sprintf method 405, 407
SQL (Structured Query

Language) 446
SQL injection 454
SQL parameter placeholder

(%) 455
stacks 102
start method 668
startElement method 519
static keyword 217
static typing

builders and 318–319
categories and 316–317
checking assignments

301–303
finding typos 299–300
flow typing

closure-shared
variables 326–327

instanceof inference 325
least upper bound 323–325
overview 320–323

metaclasses and 317–318
reason for 295–296
resolving method calls

300–301
static compilation

@CompileStatic
annotation 328–329

method dispatch 329–332
type checking

closure argument
types 311–312

closure return types
310–311

@ClosureParams
annotation 313–314

@DelegatesTo
annotation 314–316,
334–335

DSLs 332–333
extension scripts 335–339
limits to 339
list constructors 306–309
map constructors 306–309
mixing dynamic code

with 319–320
SAM type conversion 313

type inference
def versus explicit

type 304–305
generics 305–306
overview 303–304

@TypeChecked
annotation 298–299

types in Groovy 296–297
StAX parser 519–521
stop method 668
stored procedures 471–474
storeType method 851
Strategy pattern 207
streaming objects 422
streaming processing 524–529
StreamingMarkupBuilder

class 355–356, 525
StreamingTemplateEngine 433
String class 59, 778, 793
StringBuffer class 75, 793
StringBuilder class 794
strings

GStrings 72–74
interactive objects in 403
Java vs. Groovy 74–76
string literals 69–72

Structured Query Language. See
SQL

stubs
collaborator construction

example 624–625
mocks vs. 626–627
overview 625–626

subject matter expert. See SME
subject under test. See SUT
subscript operator 41, 98–99
subscript operator ([]) 65, 98,

759
sum method 661
sumParallel method 658
surrogate key 452
SUT (subject under test) 622
SwingBuilder

binding components
377–380

example using 381–385
overview 360–361

reading password
example 361–363

Swing actions 372–374
Swing models 374–376
widgets

arranging 366–370
overview 363–366
using 370–372

switch statements
classifiers 152–153
in operator 153–154
overview 151–152
using lists with 100

@Synchronized
annotation 254–255, 838

synchronized keyword 254, 423
syntax

annotations 37–38
assertions 31–46
brevity 30–31
closures 43–45
command chains 198
comments 29
control structures 45–46
declaring classes 35
Groovy and Java 9
GroovyBeans 36–37
Java syntax vs. 29–30
keyword list 760–761
lists 41
maps 41–42
modules 761
numbers 40
operator precedence 759–760
ranges 42–43
text 39–40
using grapes 38–39
using scripts 35–36

SyntaxException 598, 729
System type 794

T

tabbedPane method 365
table method 365
TableColumn type 374
TableColumnModel type 816
TableModel type 816
@TailRecursive annotation

251–252
take method 104
tasks 653
TDD (test-driven development)

617
Template Method pattern 122
Licensed to Mark Watson <nordickan@gmail.com>

INDEX 879
templates
GDK

example using 431–433
format overview 430–431
general discussion 429–430,

433–434
for Groovlets 441

terminology 842
test-driven development. See

TDD
testing

AST transformations 286–290
DSLs 725–731

text
GStrings 39
regular expressions 39–40

text method 514
TEXT_NODE type 509
textArea method 365
textField method 365
TextMate 26
textPane method 365
Thread type 794
@ThreadInterrupt

annotation 264–265, 838
threads 423
throw statements 31, 161
@TimedInterrupt

annotation 263–264, 722,
839

Timer type 813
Timestamp type 800
TIOBE index 13
toggleButton method 365
toList method 98
Tomcat 435
toolBar method 365
toSet method 110
@ToString annotation 236–237,

839–840
toString method 514
TracingInterceptor 213–214
traits 185–187
trampoline algorithm 133
transactional updates 463–464
transparent domain model 488
transparently concurrent

collections 655–657
transpose method 104
traverse method 415, 417
tree method 365
TreeMap class 108
TreeNode type 817
TreePath type 817
try-catch-finally blocks 161

try-with-resources 162
@TupleConstructor

annotation 238–239,
840–841

type aliasing 179–180
type casts 31
type checking

closures
closure argument

types 311–312
closure return types

310–311
@ClosureParams

annotation 313–314
@DelegatesTo

annotation 314–316
SAM type conversion 313

@DelegatesTo
annotation 334–335

DSLs 332–333
extension scripts 335–339
limits to 339
list constructors 306–309
map constructors 306–309
mixing dynamic code

with 319–320
type declarations 31
type hints 314
type inference

def versus explicit type
304–305

generics 305–306
overview 303–304

type option 415
type-checking extensions

AST transformations and 860
events

afterMethodCall 857
afterVisitClass 859
afterVisitMethod 858–859
ambiguousMethods

859–860
beforeMethodCall 856–857
beforeVisitMethod 858
finish 856
incompatibleAssignment

859
incompatibleReturnType

860
methodNotFound 857–858
onMethodSelection 857
setup 855
unresolvedAttribute 856
unresolvedProperty 856
unresolvedVariable 856

GroovyTypeChecking-
ExtensionSupport
class 851–852

scope 853–855
virtual methods 852–853

@TypeChecked annotation 24,
52, 298–299, 841

types, primitive 766–767
typos, finding 299–300

U

ULC 362
UltraEdit 26
unaryMinus method 64
unaryPlus method 65
unboxing 57–58
uniform access principle 189
uniform resource locator. See

URL
unit testing

build automation
with Gradle 644–646
with Maven 647–649

code coverage 631–634
GroovyLogTestCase

class 628–629
GroovyTestCase class

example using 610–611
overview 608–610

IDE integration
AllTestSuite 637–638
GroovyTestSuite 635–637

inline 155–156
Java code 614–617
organization

data-driven testing 618–619
property-based testing

619–621
test suites 617–618

overview 606–607, 611–614
performance 629–631
Spock framework

data-driven testing 642–644
overview 638–639
using mocks 639–642

stubs
collaborator construction

example 624–625
mocks vs. 626–627
overview 625–626

writing tests 607–608
UnknownServiceException 577
unresolvedAttribute event 337,

856
Licensed to Mark Watson <nordickan@gmail.com>

INDEX880
unresolvedProperty event 337,
856

unresolvedVariable event 337,
856

@Unroll annotation 643–644
UnsupportedOperation-

Exception 577
URL (uniform resource

locator) 448
URL type 795
use method 405

V

valign attribute 369
value method 351, 517
value semantics 55
variables, declaring 165–167
VB (Visual Basic) 562
vbox method 368
@Vetoable annotation 377
vglue method 368
viewport method 365
virtual methods 852–853
Visitor Pattern 142, 844
visitors, AST 844–849
visitRoot option 415
vstrut method 368

W

W3C (World Wide Web
Consortium) 507

waitForOrKill method 428
web development 745–749
Web Service Definition Lan-

guage. See WSDL
web services

overview 543–545
reading RSS and ATOM

feeds 545–547
REST APIs 547–553

SOAP
overview 555–556
using groovy-wslite 559
using HTTPBuilder

558–559
using plain Groovy

556–558
XML-RPC 553–555

while loops 157–158
whitespace

matching 78
wise use of 84

widgets, SwingBuilder
arranging 366–370
overview 363–366
using 370–372

window method 365
Windows 735–736
wiring XML file 585
with method 406
withIndex method 104
withPool method 654–655
@WithReadLock

annotation 255–258, 286,
841

@WithWriteLock
annotation 255–258, 841

World Wide Web Consortium.
See W3C

writeLine method 419
Writer type 775
WSDL (Web Service Definition

Language) 234, 556, 569

X

XFire 556
XML (eXtensible Markup Lan-

guage)
building using MarkupBuilder

class 352–354
GPath notation 823

overview 506–507
processing

in-place 522–524
overview 521–522
streaming 524–529

reading with DOM parser
getting document 508–509
overview 508
using in Groovy way

512–513
walking DOM 509–512

reading with Groovy parser
overview 513
XmlParser vs.

XmlSlurper 513–518
reading with SAX parser

518–519
reading with StAX

parser 519–521
updating 529–531
XPath

Java technologies for
537–538

overview 531–534
using API 534–537

XML Stylesheet Transforma-
tion. See XSLT

XML-RPC protocol 545,
553–555

XmlParser 513–518
XMLRPCCallFailureException

554
XmlSlurper 552
XmlTemplateEngine 434
xor method 65
XPath 12

Java technologies for
537–538

overview 531–534
using API 534–537

XSLT (XML Stylesheet
Transformation) 537
Licensed to Mark Watson <nordickan@gmail.com>

König ● King

I
n the last ten years, Groovy has become an integral part of
a Java developer’s toolbox. Its comfortable, common-sense
design, seamless integration with Java, and rich ecosystem

that includes the Grails web framework, the Gradle build
system, and Spock testing platform have created a large
Groovy community.

Groovy in Action, Second Edition is the undisputed defi nitive
reference on the Groovy language. Written by core members
of the Groovy language team, this book presents Groovy like
no other can—from the inside out. With relevant examples,
careful explanations of Groovy’s key concepts and features, and
insightful coverage of how to use Groovy in-production tasks,
including building new applications, integration with existing
code, and DSL development, this is the only book you’ll need.

What’s Inside
● Comprehensive coverage of Groovy 2.4 including
 language features, libraries, and AST transformations
● Dynamic, static, and extensible typing
● Concurrency: actors, data parallelism, and datafl ow
● Applying Groovy: Java integration, XML, SQL, testing,
 and domain-specifi c language support
● Hundreds of reusable examples

Some experience with Java or another programming language
is helpful. No Groovy experience is assumed.

Authors Dierk König, Paul King, Guillaume Laforge, Hamlet D’Arcy,
Cédric Champeau, Erik Pragt, and Jon Skeet are intimately involved
in the creation and ongoing development of the Groovy
language and its ecosystem.

Technical editor: Michael Smolyak

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/GroovyinActionSecondEdition

$59.99 / Can $68.99 [INCLUDING eBOOK]

Groovy IN ACTION Second Edition

JAVA

M A N N I N G

“A clear and detailed
exposition of what is groovy
about Groovy. I’m glad to

 have it on my bookshelf.”—From the Foreword by
James Gosling, Creator of Java

“Groovy lies between
light scripting and heavier

enterprise languages—
this book will help you

 master the sweet spot.”
—Rick Wagner, Red Hat

“The most valuable Groovy
resource, written by the most

valuable members of the
 Groovy community.”—Vladimir Orany
Metadata Consulting Ltd.

“The long-awaited and
excellent successor to
 the fi rst edition.”

—David McFarland
Instil Software Ltd.

SEE INSERT

	Front cover
	brief contents
	contents
	foreword to the first edition
	preface
	acknowledgments
	about this book
	Who should read this book?
	What’s new in the second edition?
	Code conventions and downloads
	Keeping up to date
	Author Online
	About the cover illustration

	about the authors
	Part 1—The Groovy language
	1 Your way to Groovy
	1.1 The Groovy story
	1.1.1 What is Groovy?
	1.1.2 Playing nicely with Java: seamless integration
	1.1.3 Power in your code: a feature-rich language
	1.1.4 Community driven but corporate backed

	1.2 What Groovy can do for you
	1.2.1 Groovy for the busy Java professional
	1.2.2 Groovy for the polyglot programmer
	1.2.3 Groovy for pragmatic programmers, extremos, and agilists

	1.3 Running Groovy
	1.3.1 Using groovysh for a welcome message
	1.3.2 Using groovyConsole
	1.3.3 Using the groovy command

	1.4 Compiling and running Groovy
	1.4.1 Compiling Groovy with groovyc
	1.4.2 Running a compiled Groovy script with Java

	1.5 Groovy IDE and editor support
	1.5.1 IntelliJ IDEA plug-in
	1.5.2 NetBeans IDE plug-in
	1.5.3 Eclipse plug-in
	1.5.4 Groovy support in other editors

	1.6 Summary

	2 Overture: Groovy basics
	2.1 General code appearance
	2.1.1 Commenting Groovy code
	2.1.2 Comparing Groovy and Java syntax
	2.1.3 Beauty through brevity

	2.2 Probing the language with assertions
	2.3 Groovy at a glance
	2.3.1 Declaring classes
	2.3.2 Using scripts
	2.3.3 GroovyBeans
	2.3.4 Annotations
	2.3.5 Using grapes
	2.3.6 Handling text
	2.3.7 Numbers are objects
	2.3.8 Using lists, maps, and ranges
	2.3.9 Code as objects: closures
	2.3.10 Groovy control structures

	2.4 Groovy’s place in the Java environment
	2.4.1 My class is your class
	2.4.2 GDK: the Groovy library
	2.4.3 Groovy compiler lifecycle

	2.5 Summary

	3 Simple Groovy datatypes
	3.1 Objects, objects everywhere
	3.1.1 Java’s type system: primitives and references
	3.1.2 Groovy’s answer: everything’s an object
	3.1.3 Interoperating with Java: automatic boxing and unboxing
	3.1.4 No intermediate unboxing

	3.2 The concept of optional typing
	3.2.1 Assigning types
	3.2.2 Dynamic Groovy is type safe
	3.2.3 Let the casting work for you
	3.2.4 The case for optional typing

	3.3 Overriding operators
	3.3.1 Overview of overridable operators
	3.3.2 Overridden operators in action
	3.3.3 Making coercion work for you

	3.4 Working with strings
	3.4.1 Varieties of string literals
	3.4.2 Working with GStrings
	3.4.3 From Java to Groovy

	3.5 Working with regular expressions
	3.5.1 Specifying patterns in string literals
	3.5.2 Applying patterns
	3.5.3 Patterns in action
	3.5.4 Patterns and performance
	3.5.5 Patterns for classification

	3.6 Working with numbers
	3.6.1 Coercion with numeric operators
	3.6.2 GDK methods for numbers

	3.7 Summary

	4 Collective Groovy datatypes
	4.1 Working with ranges
	4.1.1 Specifying ranges
	4.1.2 Ranges are objects
	4.1.3 Ranges in action

	4.2 Working with lists
	4.2.1 Specifying lists
	4.2.2 Using list operators
	4.2.3 Using list methods
	4.2.4 Lists in action

	4.3 Working with maps
	4.3.1 Specifying maps
	4.3.2 Using map operators
	4.3.3 Maps in action

	4.4 Notes on Groovy collections
	4.4.1 Understanding concurrent modification
	4.4.2 Distinguishing between copy and modify semantics

	4.5 Summary

	5 Working with closures
	5.1 A gentle introduction to closures
	5.2 The case for closures
	5.2.1 Using iterators
	5.2.2 Handling resources with a protocol

	5.3 Declaring closures
	5.3.1 Simple declaration
	5.3.2 Using assignments for declaration
	5.3.3 Referring to methods as closures
	5.3.4 Comparing the available options

	5.4 Using closures
	5.4.1 Calling a closure
	5.4.2 More closure capabilities

	5.5 Understanding closure scope
	5.5.1 Simple variable scope
	5.5.2 Inspecting closure scope
	5.5.3 Scoping at work: the classic accumulator test

	5.6 Returning from closures
	5.7 Support for design patterns
	5.7.1 Relationship to the Visitor pattern
	5.7.2 Relationship to the Builder pattern
	5.7.3 Relationship to other patterns

	5.8 Summary

	6 Groovy control structures
	6.1 Groovy truth
	6.1.1 Evaluating Boolean tests
	6.1.2 Assignments within Boolean tests

	6.2 Conditional execution structures
	6.2.1 The humble if statement
	6.2.2 The conditional ?: operator and Elvis
	6.2.3 The switch statement and the in operator
	6.2.4 Sanity checking with assertions

	6.3 Looping
	6.3.1 Looping with while
	6.3.2 Looping with for

	6.4 Exiting blocks and methods
	6.4.1 Normal termination: return/break/continue
	6.4.2 Exceptions: throw/try-catch-finally

	6.5 Summary

	7 Object orientation, Groovy style
	7.1 Defining classes and scripts
	7.1.1 Defining fields and local variables
	7.1.2 Methods and parameters
	7.1.3 Safe dereferencing with the ?. operator
	7.1.4 Constructors

	7.2 Organizing classes and scripts
	7.2.1 File to class relationship
	7.2.2 Organizing classes in packages
	7.2.3 Further classpath considerations

	7.3 Advanced object-oriented features
	7.3.1 Using inheritance
	7.3.2 Using interfaces
	7.3.3 Multimethods
	7.3.4 Using traits

	7.4 Working with GroovyBeans
	7.4.1 Declaring beans
	7.4.2 Working with beans
	7.4.3 Using bean methods for any object
	7.4.4 Fields, accessors, maps, and Expando

	7.5 Using advanced syntax features
	7.5.1 Querying objects with GPaths
	7.5.2 Injecting the spread operator
	7.5.3 Concise syntax with command chains

	7.6 Summary

	8 Dynamic programming with Groovy
	8.1 What is dynamic programming?
	8.2 Meta Object Protocol
	8.3 Customizing the MOP with hook methods
	8.3.1 Customizing methodMissing
	8.3.2 Customizing propertyMissing
	8.3.3 Using closures for dynamic hooks
	8.3.4 Customizing GroovyObject methods

	8.4 Modifying behavior through the metaclass
	8.4.1 MetaClass knows it all
	8.4.2 How to find the metaclass and invoke methods
	8.4.3 Setting other metaclasses
	8.4.4 Expanding the metaclass
	8.4.5 Temporary MOP modifications using category classes
	8.4.6 Writing extension modules
	8.4.7 Using the @Category annotation
	8.4.8 Merging classes with Mixins

	8.5 Real-world dynamic programming in action
	8.5.1 Calculating with metrics
	8.5.2 Replacing constructors with factory methods
	8.5.3 Fooling IDEs for fun and profit
	8.5.4 Undoing metaclass modifications
	8.5.5 The Intercept/Cache/Invoke pattern

	8.6 Summary

	9 Compile-time metaprogramming and AST transformations
	9.1 A brief history
	9.1.1 Generating bytecode, not source code
	9.1.2 Putting the power of code generation in the hands of developers

	9.2 Making Groovy cleaner and leaner
	9.2.1 Code-generation transformations
	9.2.2 Class design and design pattern annotations
	9.2.3 Logging improvements
	9.2.4 Declarative concurrency
	9.2.5 Easier cloning and externalizing
	9.2.6 Scripting support
	9.2.7 More transformations

	9.3 Exploring AST
	9.3.1 Tools of the trade
	9.3.2 Other tools

	9.4 AST by example: creating ASTs
	9.4.1 Creating by hand
	9.4.2 AstBuilder.buildFromSpec
	9.4.3 AstBuilder.buildFromString
	9.4.4 AstBuilder.buildFromCode

	9.5 AST by example: local transformations
	9.6 AST by example: global transformations
	9.7 Testing AST transformations
	9.8 Limitations
	9.8.1 It’s early binding
	9.8.2 It’s fragile
	9.8.3 It adds complexity
	9.8.4 Its syntax is fixed
	9.8.5 It’s not typed
	9.8.6 It’s unhygienic

	9.9 Next steps
	9.10 Summary

	10 Groovy as a static language
	10.1 Motivation for optional static typing
	10.1.1 The role of types in Groovy
	10.1.2 Type checking a dynamic language?

	10.2 Using @TypeChecked
	10.2.1 Finding typos
	10.2.2 Resolving method calls
	10.2.3 Checking assignments
	10.2.4 Type inference
	10.2.5 Type-checked Grooviness
	10.2.6 Type checking closures
	10.2.7 Revisiting dynamic features in light of type checking
	10.2.8 Mixing type-checked code with dynamic code

	10.3 Flow typing
	10.3.1 Least upper bound
	10.3.2 Smart instanceof inference
	10.3.3 Closure-shared variables

	10.4 Static compilation
	10.4.1 @CompileStatic
	10.4.2 Method dispatch

	10.5 Static type checking extensions
	10.5.1 @DelegatesTo revisited
	10.5.2 Type checking extension scripts
	10.5.3 Limits

	10.6 Summary

	Part 2—Around the Groovy library
	11 Working with builders
	11.1 Learning by example: Using a builder
	11.2 Building object trees with NodeBuilder
	11.2.1 NodeBuilder in action: a closer look at builder code
	11.2.2 Understanding the builder concept
	11.2.3 Smart building with logic

	11.3 Working with MarkupBuilder
	11.3.1 Building XML
	11.3.2 Building HTML

	11.4 Working with StreamingMarkupBuilder
	11.5 Task automation with AntBuilder
	11.5.1 From Ant scripts to Groovy scripts
	11.5.2 How AntBuilder works
	11.5.3 Smart automation scripts with logic

	11.6 Easy GUIs with SwingBuilder
	11.6.1 Reading a password with SwingBuilder
	11.6.2 Creating Swing widgets
	11.6.3 Arranging your widgets
	11.6.4 Referring to widgets
	11.6.5 Using Swing actions
	11.6.6 Using models
	11.6.7 Binding made easy
	11.6.8 Putting it all together

	11.7 Modern UIs with GroovyFX SceneGraphBuilder
	11.7.1 Application design with FXML
	11.7.2 Properties and binding
	11.7.3 Groovy desktop applications

	11.8 Creating your own builder
	11.8.1 Subclassing BuilderSupport
	11.8.2 Subclassing FactoryBuilderSupport
	11.8.3 Rolling your own

	11.9 Summary

	12 Working with the GDK
	12.1 Working with objects
	12.1.1 Interactive objects
	12.1.2 Convenient Object methods
	12.1.3 Iterative Object methods

	12.2 Working with files and I/O
	12.2.1 Traversing the filesystem
	12.2.2 Reading from input sources
	12.2.3 Writing to output destinations
	12.2.4 Filters and conversions
	12.2.5 Streaming serialized objects
	12.2.6 Temporary data and file copying

	12.3 Working with threads and processes
	12.3.1 Groovy multithreading
	12.3.2 Integrating external processes

	12.4 Working with templates
	12.4.1 Understanding the template format
	12.4.2 Templates in action
	12.4.3 Advanced template issues

	12.5 Working with Groovlets
	12.5.1 Starting with “Hello world”
	12.5.2 Groovlet binding
	12.5.3 Templating Groovlets

	12.6 Summary

	13 Database programming with Groovy
	13.1 Groovy SQL: a better JDBC
	13.1.1 Setting up for database access
	13.1.2 Executing SQL

	13.2 Advanced Groovy SQL
	13.2.1 Performing transactional updates
	13.2.2 Working with batches
	13.2.3 Working with pagination
	13.2.4 Fetching metadata
	13.2.5 Working with named and named-ordinal parameters
	13.2.6 Using stored procedures

	13.3 DataSets for SQL without SQL
	13.3.1 Using DataSet operations
	13.3.2 DataSets on database views

	13.4 Organizing database work
	13.4.1 Architectural overview
	13.4.2 Specifying the application behavior
	13.4.3 Implementing the infrastructure
	13.4.4 Using a transparent domain model
	13.4.5 Implementing the application layer

	13.5 Groovy and NoSQL
	13.5.1 MongoDB: A document-style database
	13.5.2 Neo4J: A graph database

	13.6 Other approaches
	13.7 Summary

	14 Working with XML and JSON
	14.1 Reading XML documents
	14.1.1 Working with a DOM parser
	14.1.2 Reading with a Groovy parser
	14.1.3 Reading with a SAX parser
	14.1.4 Reading with a StAX parser

	14.2 Processing XML
	14.2.1 In-place processing
	14.2.2 Streaming processing
	14.2.3 Updating XML
	14.2.4 Combining with XPath

	14.3 Parsing and building JSON
	14.3.1 Parsing JSON
	14.3.2 Building JSON

	14.4 Summary

	15 Interacting with Web Services
	15.1 An overview of Web Services
	15.2 Reading RSS and ATOM
	15.3 Using a REST-based API
	15.4 Using XML-RPC
	15.5 Applying SOAP
	15.5.1 Doing SOAP with plain Groovy
	15.5.2 Simplifying SOAP access using HTTPBuilder
	15.5.3 Simplifying SOAP access using groovy-wslite

	15.6 Summary

	16 Integrating Groovy
	16.1 Prelude to integration
	16.1.1 Integrating appropriately
	16.1.2 Setting up dependencies

	16.2 Evaluating expressions and scripts with GroovyShell
	16.2.1 Starting simply
	16.2.2 Passing parameters within a binding
	16.2.3 Generating dynamic classes at runtime
	16.2.4 Parsing scripts
	16.2.5 Running scripts or classes
	16.2.6 Further parameterization of GroovyShell

	16.3 Using the Groovy script engine
	16.3.1 Setting up the engine
	16.3.2 Running scripts
	16.3.3 Defining a different resource connector

	16.4 Working with the GroovyClassLoader
	16.4.1 Parsing and loading Groovy classes
	16.4.2 The chicken and egg dependency problem
	16.4.3 Providing a custom resource loader
	16.4.4 Playing it safe in a secured sandbox

	16.5 Spring integration
	16.5.1 Wiring GroovyBeans
	16.5.2 Refreshable beans
	16.5.3 Inline scripts

	16.6 Riding Mustang and JSR-223
	16.6.1 Introducing JSR-223
	16.6.2 The script engine manager and its script engines
	16.6.3 Compilable and invocable script engines
	16.6.4 Polyglot programming

	16.7 Mastering CompilerConfiguration
	16.7.1 The import customizer
	16.7.2 The source-aware customizer
	16.7.3 Writing your own customizer
	16.7.4 The configscript compilation option

	16.8 Choosing an integration mechanism
	16.9 Summary

	Part 3—Applied Groovy
	17 Unit testing with Groovy
	17.1 Getting started
	17.1.1 Writing tests is easy
	17.1.2 GroovyTestCase: an introduction
	17.1.3 Working with GroovyTestCase

	17.2 Unit testing Groovy code
	17.3 Unit testing Java code
	17.4 Organizing your tests
	17.4.1 Test suites
	17.4.2 Parameterized or data-driven testing
	17.4.3 Property-based testing

	17.5 Advanced testing techniques
	17.5.1 Testing made groovy
	17.5.2 Stubbing and mocking
	17.5.3 Using GroovyLogTestCase
	17.5.4 Unit testing performance
	17.5.5 Code coverage with Groovy

	17.6 IDE integration
	17.6.1 Using GroovyTestSuite
	17.6.2 Using AllTestSuite

	17.7 Testing with the Spock framework
	17.7.1 Testing with mocks
	17.7.2 Data-driven Spock tests

	17.8 Build automation
	17.8.1 Build integration with Gradle
	17.8.2 Build integration with Maven

	17.9 Summary

	18 Concurrent Groovy with GPars
	18.1 Concurrency for the rest of us
	18.1.1 Concurrent != parallel
	18.1.2 Introducing new concepts

	18.2 Concurrent collection processing
	18.2.1 Transparently concurrent collections
	18.2.2 Available fork/join methods

	18.3 Becoming more efficient with map/filter/reduce
	18.4 Dataflow for implicit task coordination
	18.4.1 Testing for deadlocks
	18.4.2 Dataflow on sequential datatypes
	18.4.3 Final thoughts on dataflow

	18.5 Actors for explicit task coordination
	18.5.1 Using the strengths of Groovy

	18.6 Agents for delegated task coordination
	18.7 Concurrency in action
	18.8 Summary

	19 Domain-specific languages
	19.1 Groovy’s flexible nature
	19.1.1 Back to omitting parentheses

	19.2 Variables, constants, and method injection
	19.2.1 Injecting constants through the binding
	19.2.2 Injecting methods into a script
	19.2.3 Adding imports and static imports automatically
	19.2.4 Injecting methods (revisited)
	19.2.5 Adding closures to the binding

	19.3 Adding properties to numbers
	19.4 Leveraging named arguments
	19.5 Command chains
	19.6 Defining your own control structures
	19.7 Context switching with closures
	19.8 Another technique for builders
	19.9 Securing your DSLs
	19.9.1 Introducing SecureASTCustomizer
	19.9.2 The ArithmeticShell
	19.9.3 Stopping the execution of your programs
	19.9.4 Preventing cheating with metaprogramming

	19.10 Testing and error reporting
	19.11 Summary

	20 The Groovy ecosystem
	20.1 Groovy Grapes for self-contained scripts
	20.2 Scriptom for Windows automation
	20.3 GroovyServ for quick startup
	20.4 Gradle for project automation
	20.5 CodeNarc for static code analysis
	20.6 GContracts for improved design
	20.7 Grails for web development
	20.8 Griffon for desktop applications
	20.9 Gaelyk for Groovy in the cloud
	20.10 Summary

	Appendix A—Installation and documentation
	A.1 Installing Groovy
	A.2 Obtaining up-to-date documentation
	A.2.1 Using online resources
	A.2.2 Connecting to the book’s forum

	Appendix B—Groovy language information
	B.1 Operator precedence
	B.2 Keyword list
	B.3 Modules

	Appendix C—GDK API quick reference
	C.1 Array of primitives
	C.2 The groovy.lang package
	C.3 The groovy.sql package
	C.4 The java.awt package
	C.5 The java.io package
	C.6 The java.lang package
	C.7 The java.math package
	C.8 The java.net package
	C.9 The java.nio.file package
	C.10 The java.sql package
	C.11 The java.util package
	C.12 The java.util.concurrent package
	C.13 The java.util.regex package
	C.14 The javax.swing package
	C.15 The javax.swing.table package
	C.16 The javax.swing.tree package
	C.17 The org.w3c.dom package

	Appendix D—Cheat sheets
	D.1 GStrings
	D.2 Lists
	D.3 Closures
	D.4 Regular expressions
	D.5 XML GPath notation

	Appendix E—Annotation parameters
	Appendix F—Compiler phases
	Appendix G—AST visitors
	G.1 Walking and reading a tree
	G.1.1 Wiring in a Visitor

	Appendix H—Type checking extensions
	H.1 Type checking extension API
	H.1.1 The GroovyTypeCheckingExtensionSupport class
	H.1.2 Virtual methods
	H.1.3 Type-checking extension scope

	H.2 Type checking events
	H.2.1 setup
	H.2.2 finish
	H.2.3 unresolvedVariable
	H.2.4 unresolvedProperty
	H.2.5 unresolvedAttribute
	H.2.6 beforeMethodCall
	H.2.7 afterMethodCall
	H.2.8 onMethodSelection
	H.2.9 methodNotFound
	H.2.10 beforeVisitMethod
	H.2.11 afterVisitMethod
	H.2.12 beforeVisitClass
	H.2.13 afterVisitClass
	H.2.14 incompatibleAssignment
	H.2.15 ambiguousMethods
	H.2.16 incompatibleReturnType

	H.3 Extensions aren’t AST transformations

	Appendix I—Android support
	Getting started

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Back cover

